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Thesis Summary

On-line learning of non-stationary tasks by two-layer neural networks is studied
within the framework of statistical mechanics. A fully connected network with K
hidden units and fixed hidden-to-output weights (a soft committee machine) learns a
non-stationary task represented by a network of similar architecture having M hid-
den nodes. The network is trained via gradient descent (standard back-propagation)
on randomly drawn inputs and the corresponding outputs generated by the teacher
network representing the task. This work employs a general framework for the dy-
namics of on-line learning obtained earlier for the fixed environment case. We describe
a general task non-stationarity and investigate the learning process in these learning
scenarios where on-line methods have been found to be most uselul. The dynamics are
first analysed for K = M = 2 which is the building block of the general case (any I
and M).

The learning processes of stationary and non-stationary tasks are found to be qual-
itatively similar. However, for non-stationarities the transient stage ol the dynamics
becomes shorter and there is some residual error after convergence. These phases are
investigated both numerically and analytically.

The insight gained from the non-stationary case leads to a new learning rule which
seems to be more efficient than basic gradient descent in escaping the symmelric sub-
space related to the transient part of the dynamics. These effects are studied in arbi-
trary realisable scenarios (I{ = M).

Keywords: neural network, multi-layer perceptron, back-propagation, on-line
learning, soft committee machine, non-stationary task
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Chapter 1

Introduction

Neural networks approximate a system behaviour or a task by optimising parameters
of a mathematical model [1]. As the optimisation process is highly time consuming
and the performance and precision of a model cannot be determined in advance, the
use of neural computing is confined to applications where efficient algorithmic solutions
are impossible or impractical. Such applications are typically complex and poorly un-
derstood. Understanding speech, reading hand-written documents, and modelling and
controlling non-linear systems are all areas where neural computing and other statisti-

cal techniques outperform algorithmic methods.

On-line learning is a popular method for training neural networks to identify the key
features of the task to be learned. It extracts knowledge from each given example imme-
diately rather than storing it for future use. This technique is particularly suitable for
non-stationary systems i.e. systems whose parameters change in time, because data at

a given time reflect a particular stage of the task rather than its general characteristics.

In contrast to most previous on-line learning studies which focus on stationary sys-
tems, this work concentrates on non-stationary tasks like [9]. To enable both numeri-
cal and analytical study, a statistical mechanics framework is employed and a generic

non-stationarity of the system is presented, similarly to that used when investigating
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learning abilities of stationary tasks [3].

1.1 Training neural networks

Multi-Layer Perceptrons (MLPs) are able to implement various input-output maps
which are of importance to many classification and regression tasks. Two-layer ar-
chitectures with N input units, one internal layer having an arbitrary unconstrained
number of hidden units, and one output unit suffice to represent any scalar mappings

of N-dimensional variables with arbitrary accuracy [2].

Internal parameters characterise a neural network of fixed architecture. Their choice
determines specific maps ¢ = fw(€) from an N-dimensional input space & onto a scalar
¢ (the index W is related to network internal parameters called weights). In order to
bring the map fw as close as possible to a desired map fo, a process called training is
used.

The process of learning from examples in layered neural networks is usually ex-
pressed as an optimisation problem, based on the minimisation of a training error
computed over a training set composed of independent examples (&%, ¢*). Network
performance is measured by the generalisation error, which is the expected error on an

unseen example. The two most common learning scenarios are batch and on-line.

In batch learning, training algorithms minimise the error calculated over the whole
training set. There are a variety of efficient optimisation methods available, such as
gradient descent or more sophisticated second order methods (e.g. Newton-Raphson
or conjugate gradient)(l]. In on-line learning, single examples are presented sequen-
tially and the training process adjusts the network parameters after the presentation
of each example (e.g. using stochastic gradient descent)[1]. Here, the use of second

order methods is complicated as the Hessian cannot be computed exactly and is only
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approximated [1].

On-line methods are very often more efficient than batch in which costly compu-
tations and storage are required, especially for large data sets and input dimensions.
Moreover, although it may be reasonable to store data generated by a fixed task and
use it for training afterwards, it is less so for non-stationary mappings where examples

reflect only a transient state of the process giving rise to data.

1.2 Motivations and objectives

Real world data are not all generated from stationary tasks and on-line learning is ap-
propriate in such situations because it allows adaptation to learning mappings which
change in time. However, most previous theoretical studies of on-line learning have in-
deed been concerned with stationary tasks. An extension of this work to non-stationary
tasks is the subject of this project. In the present context, non-stationarity means that
parameters of the mapping which generates training examples are being modified. This
work employs the framework of statistical mechanics, which provides a compact de-
scription for the dynamics of on-line learning for stationary tasks [3]. The project
focuses first on describing a possible non-stationarity which is as general as possible,
and then on investigating the learning abilities of a two layer network trained on ex-
amples generated by a network of similar architecture. The various training phases are
studied and compared to those found for a stationary task. As a byproduct of this
study we find a method which improves learning abilities for stationary tasks by reduc-

ing the time required for escaping the transient stage of the dynamics which represents

a significant part of the training process.
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1.3 Thesis outline

The structure of the thesis is as follows:

e Chapter 2: After a presentation of the general framework, the derivation of the

dynamics for learning stationary tasks is reproduced.

e Chapter 3: A general task non-stationarity is described. This is used to find the
new dynamics, which can be integrated numerically and solved analytically in

the neighbourhood of fixed points under certain assumptions.

e Chapter 4: A modified gradient descent rule is studied both numerically and
analytically for stationary tasks to reduce the length of the symmetric plateau

characterising the transient stage of the dynamics.

e Chapter 5: The different results obtained are summarised, and some possible

extensions of the study are presented.

10



Chapter 2

The general framework

In this work on-line learning in MLPs is examined. To facilitate the learning process
we are provided with a training set generated by the task to be learned. Since we are
interested in a generic formulation of on-line learning, the outputs are supposed to be
generated by a network of similar architecture but with possibly different complexity, in
response to inputs drawn from a Gaussian distribution. The ability of a model network
to learn the mapping provided by the network generating the data has been studied
at length in [3] in the case of soft committee machine (two-layer networks with fixed
hidden to output weights). Below we describe this model, which will be used later to

study learning of non-stationary tasks.

2.1 Analytical description

We consider a learning scenario in which a model MLP is trying to learn a rule repre-
sented by another MLP on the basis of examples generated by the latter. The network
which is being imitated represents the task and provides the training set, whereas the
model network is being trained (i.e. its parameters are being modified) on the basis of
these examples. It is useful to term them teacher and student networks respectively. In
figure 2.1 these nets are shown graphically. Notice that they may have different number

of hidden units K # M (where i and M are the number of hidden nodes of the student
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and teacher networks respectively). The network couplings from all hidden units to
the output unit are set to 1. This special case can easily be extended to accommodate

adaptive hidden to output weights [4] and preserves most properties of the general case.

Training examples are denoted (£, () with &" describing N dimensional input
vectors and (" the output of the teacher for the given input. Teacher nodes are as-
sociated with N dimensional vectors whose coordinates are the weights of the edges
linking all the inputs to a hidden unit. The weight vector associated with teacher’s
node n is denoted B,, and the activation of this node is y, = B, . §&. Similarly, student
nodes are associated with N dimensional weight vectors denoted J;; whose activation
is x; = J; . £&. We use the index 7, k, ... to refer to the student and n,m,... for the

teacher.

Teacher network Student network

)

. student target

Soft Committee Machine

Figure 2.1: The task is represented by the teacher network which provides the targets
of the student network. Each input value (N in total) is drawn from a normal Gaussian
distribution for both networks. All the neurons have the same activation function which
is the error function except the output node which is linear.

The output unit is linear and therefore the output value is > | g(z;) for the student

and "M | g(yn) for the teacher, where g represents the activation function of the hidden

12
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nodes, which is taken to be an error function:

: 2 L Y
g(z) = erf(%) = \/;/u e 2V dt . (2.1)

The error made by a student having weights J on a given input € is given by the

quadratic deviation:

|

K M 2
€(d,&) = 3 [ Z:H(-Ts) - Eg(yn) ] - (2.2)

As the components of each input vector £ is drawn from a normal Gaussian dis-

tribution, the activations x and y fluctuate with the inputs. The distribution P(x,y)

of the activation, where x = (z1,...,zx)7 and y = (y1,...,yam)7, is a multi-variate
Gaussian:
1 1 T -1 s
P(X,y)= exp{~§(x1Y) C (x,y)} 3 (23)

,‘(2?7)M+!\"|(_jl

the covariance matrix C is in terms of the overlaps among the weight vectors associated

with the various hidden units as follows ((.)¢ corresponds to an average over the inputs):
o (z;x1)e = J; . I = Qir (between the i-th and k-th student units)
o (ziyn)e = J; . B, = Ri, (between the i-th student unit and the n-th teacher unit)
® (Ynym)e = By . By = T (between the n-th and m-th teacher units)

where

¢ = o : (2.4)

R T
The distribution is completely determined by Qix, Rin, and Ty,. These elements
are called order parameters and are sufficient to represent key features of the learning
process. The parameters Ty, are characteristic of the task to be learned and we mostly
consider an isotropic teacher for which B, . B;,=6,,:. The overlaps (;; among student

hidden units and R;, between student and teacher hidden units are determined by the

student weights J and evolve during training.

13
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A gradient descent rule for the update of student weights is used:
Jut = gu _ %v; € (I*,€"), (2.5)

where the learning rate 5 is scaled with the input size N in order to take account for
the fluctuations of the variables. The role of 7 is to determine the speed of the training

process. By calculating Vj explicitly for this model, the rule becomes:
Jert —gu L g gn ;
1 1 + N 1 E 1 (2 6)
where
M K
8 = g'(f) | 20 9(yn) = X_9(zh)| (2.7)
n=1 =3

is defined in terms of both the activation function and its derivatives ¢’. The time

evolution of R;, = J; . B, is then given by:

R —Rb = L8 gk, (2:8)
similarly for Q;x = J; . Jg, it is:

2
Wl-Qh= g el 4ot )+ G o a e e (2.9)

These equations, which are valid for any stationary task (i.e. B, does not depend
on time) are discrete. The terms on the right-hand side of the dynamical equations
are fluctuating with the inputs. We are interested, however, in the mean behaviour of
the network and averages of the observed quantities are therefore calculated. These
averages should be computed over the inputs &, but it is entirely equivalent to calcu-
late them over the probability distribution of the activations as all relevant quantities
depend on the activations. Averaging the training error over all examples constitutes

the generalisation error:

€(J) = (€(3,€)e » (2.10)

14
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and its expression is in terms of the order parameters only [3]:

th . Tnm
J) =
€(J) { E arcsin B i B + nim arcsin T it

; R;

-2 garcsm 7 v '\’*/1 +T.m} y (2.11)
where 1 < i,k < K sum over the student hidden units, and 1 < n,m < M sum over
the teacher hidden units. It is also more convenient to work with continuous rather
than discrete dynamics. The time used is ¢ = £ and the equations of /2 can then be
written:

AR _ BE" — RG,

By considering N very large, At becomes very small and the previous equation can

then be written in a differential form:

dRin

=1 (Baw) (2.13)

The equations for Q’s are derived in the same way by considering equation 2.9:

AQi _ Q4 — QY et T S SR
T N = n(8fzk + fat) + 1 (6p61E". &) - (2.14)

Each input neuron is drawn from a normal Gaussian (zero mean and unit variance),

therefore we can assert that:
(5 ') =N (2.15)

and :

AQix

= = n(6zl + 6fzt) + 268! . (2.16)

The large N hypothesis is called thermodynamic limit and allows one to neglect
the variance of the fluctuations which are 0(7’-‘,\7_), so that the average is sufficient to

represent the dynamics. The equations found are [3]:

dRirlr

e : 2.1
dt n (61 yn) ( )
% = (6 xx + & zi)+ n° (6 &),

15
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The averages in the system above require the evaluation of two types of multivariate

Gaussian integrals:

o I3 = (g'(u) v g(w)), for terms proportional to , where the argument u of ¢’ is
one of the components of x, while both v and w can be components of either x

ory.

o Iy = (¢'(u) ¢'(v) g(w) g(2)), for terms proportional to 5%, where u and v are

components of x while w and 2 can be components of either x or y.

These averages have been calculated in closed form, and only involve the overlaps

[3] (see Appendix A).

2.2 Numerical solutions

To obtain a full description of the learning dynamics we solve the system of equations
(2.17) numerically (using Runge and Kutta technique). Initial conditions are selected
to reflect our lack of knowledge about the task, i.e. to represent randomly chosen
student vectors. Throughout this work we will use randomly drawn values from a
uniform distribution for both initial student-teacher and student-student overlaps.
The equations are solved numerically for the case of a two hidden nodes network
learning an isotropic teacher (7, = 6,m) with the same architecture (I = M = 2).
The evolution of the student-student overlaps (Q;;) and the student-teacher over-
laps (Rin) are shown in figure 2.2. These curves show two plateaus, one charac-
terised by Qi; = Q 6;; + (1 — 6;;) C ,Rin = R Vi,j,n , and another one where
Qi; = 6ij , Rin = 6in Vi,7,n, when the indices have been ordered appropriately.
The first plateau for @Q's and R’s corresponds to a transient of the dynamics and the
generalisation error is much larger than zero (see figure 2.3). This stage is called the
symmetric phase and is characterised by a lack of differentiation between different stu-

dent nodes. The second phase corresponds to exponential convergence of the order

16
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Figure 2.2: Evolution of the order parameters Q;;, R;, for an architecture ¥ = M = 2
(y=1.66) and an isotropic teacher. Two stages can be distinguished and correspond
to the symmetric and convergence phase of the learning. Initial conditions are drawn

from a uniform distribution.
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Figure 2.3: Evolution of the generalisation error for an architecture K = M
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to those of the order parameters.
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parameters to their optimal values. The generalisation error also exhibits an exponen-
tial decay towards zero (see figure 2.3) . This is termed the convergence phase and is

characterised by the specialisation of each student node to a specific teacher node.

Student vectors have different behaviours in each phase. They point towards the
same direction within the teacher subspace during the symmetric phase and each one
starts to point in the direction of a different teacher vector at the beginning of the
convergence phase. Finally the student vectors become aligned with those of the
teacher [3].

Specialisation is then a characteristic of the convergence phase only, although the
system spends a long time in the symmetric subspace before escaping. For this reason,
a number of studies have suggested modified training algorithms for getting rid off the
symmetric phase, or at least reducing it significantly [5,6]. In chapter 4 we will suggest

another modification, which is also shown to reduce this phase considerably.

2.3 Summary

A statistical mechanics framework is used to describe the learning process. For a real-
isable stationary task (same number of hidden nodes in student and teacher networks
where teacher vectors do not depend on time) we find two distinct stages called the
symmetric and convergence phases respectively. Specialisation is the consequence of
the convergence phase only. We now wish to apply this framework to a changing

environment and this is the subject of the next chapter.

18



Chapter 3

On-line learning in a changing

environment

In order to derive the dynamics for learning non-stationary tasks, we need first a frame-
work and then a complete description of the non-stationarity. A framework similar to
that used for stationary systems is employed in conjunction with a generic description
of task non-stationarity, in order to have as general result as possible.

Below we derive the dynamics for a certain non-stationarity and compare the nu-

merical and analytical results obtained to those corresponding to learning stationary

tasks [3].

3.1 Modelling changes in the environment

There are many possibilities for modelling temporal changes of the task to be learned. A
particular example is the smooth rotation which we will focus on since it is amenable
to theoretical analysis and may have some similar features to non-stationary tasks
for which on-line learning is useful. Generally, teacher vectors can have all sorts of
cross-correlations; here we will restrict our study to the case of orthonormal vectors
whose non-stationarity is characterised by a single parameter. The fact that these high

dimensional vectors are chosen randomly motivates the orthonormality assumption

19
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which simplifies the analytical work. Furthermore, we will restrict ourselves to scenarios
where both student and teacher have the same number of hidden nodes (K = M). Two

restrictions on the task non-stationarity are then made:
e smooth changes.
o teacher vectors remain orthonormal.

In order to study the dynamics, changes affecting teacher vectors should be explicit
because of their influence on the equations for the dynamics. It is convenient to con-
sider a linear non-stationarity of the form W :V — V, where V is a vectorial space of
finite dimension and the mapping is continuous. Teacher vectors remain orthonormal,
so ¥ transforms from one orthonormal basis to another i.e. W is an orthogonal trans-
formation. The determinant of such a transformation is either +1 or —1, which makes

the distinction between:
e symmetries, with a determinant equal to —1,
e rotations, with a determinant equal to +1.

Symmetry is inherently a discrete transformation and therefore will not be con-
sidered in this study. However, rotation is smooth as it can be defined in terms of
infinitesimal processes. Rotating a vector with an angle w is equivalent to rotating it
n times with an angle ¢ each and smoothness results from this property.

Teacher vectors are then rotated slowly in the N dimensional space. A rotation
of a set of vectors is not unique and we consider one type of rotation first. The
initial teacher space is denoted 7=vect(B;,...,Bk), the whole space is represented by
V=T @ T*. The rotation is N dimensional but it can occur either in a subspace (for
instance 7) or in the full space of dimension N. The interest of this study is mainly in
identifying student’s learning abilities when teacher vectors are changing and we will
therefore focus on a simple case where rotations are in the initial teacher’s space 7.

Moreover, according to [3] (for stationary teacher vectors), the relevant dynamics are

20
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mainly in the space 7 while dynamics in 7+ are an artifact of the stochasticity of the
learning process, which is influenced by the choice of training parameters (e.g. 7).
Rotations are then restricted to the subspace spanned by the initial position of

teacher vectors whose coordinates can be described in terms of a K dimensional vector:

(o)

B.=1] 1 nelement

0
i)

Teacher vectors are being rotated and as mentioned before, it is better to find a

general transformation rather than a particular one. One can look at the reduction of

a rotation in an orthonormal basis.

Each rotation A can be represented by a matrix:

(10 0 )
0
1 0
A= : A : (3.1)
0 0
0 0 |A,
\ )

in an orthonormal basis. The elements A; to A, represent rotations in fixed planes

and therefore their expression is given by:

cosl; —sinb;
(3.2)

i -]

sinfl; cos0;

21
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for a very small rotation frequency (i.e. small 6;), the matrix becomes:

A= (3.3)

The proof of the above result is given in appendix B. This reduction shows that
a general rotation can be written as a set of 2 x 2 rotations. The building block of a

general rotation is therefore the ' = M = 2 case studied below.

3.2 Learning dynamics and the K = M = 2 case

The framework is now restricted to the case K = M = 2 in which a 2 hidden nodes
student network is trying to learn a 2 hidden nodes non-stationary teacher where the
vectors rotate but remain orthonormal. By assuming a very slow rotation, the non-

stationarity is described by a transformation:

1 0 0 -6
A= i (3.4)
0" 1 6 0
1
where 0 represents the frequency of the rotation. Its order has not been defined yet
and is of importance for the equations derived later.
The learning rule (equation 2.6) uses a scaled learning rate ; to control the fluctu-

ations. Similarly, the rotation should appear with a 71,- scaling to preserve the smooth

evolution of the system, and therefore we denote § = %. It is important to notice that
the rotation is not a fluctuating quantity but to maintain valid dynamics, the learning

rate and the frequency should have the same order in N. These orders enable us to

derive smooth continuous differential equations for the order parameters. The matrix

22
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A becomes:

o

[u—

zlE o

o 2'5:
—
B
o

AN

~4

The expressions for the new dynamics can be derived under the hypothesis that
teacher vectors are continuously modified by A. The correlation between student and

teacher vectors is given by: RY = J* . B” for the example . Therefore it is possible

to write:
RY = (g dgn) . Byt
5 2
o J:: ; Bﬁ 9 Jil ' ZlA“N'J Bj‘ -}- % é’:‘eﬂ { Bﬁ -+ %(ﬁlep . Z A;fl\fj ;‘L H
5 =1

where A,’XJ- indicates the element (n, j) of the matrix AN. By considering the difference

in R before and after introducing example p,

RN — Ry, : N LN
R R sty 4 30 SN AN BY 4 80€%. 5 A, B
- | Jj=1

1/N
Giip s i et - o )
By considering ¢ = & as the time, the expression can be written as:
AR; 2 1
™ =&yt + 3¢ .Y N AY. B! —E 3.7
At n lyn+ H E ﬂ,jBJ+O(N) ( )

The thermodynamic limit is applied (N — co) which means that the number of inputs
becomes very large while the number of hidden nodes is fixed. Terms of O(5;) are then

neglected compared to terms of O(1), and we obtain a set of differential equations:

dRin

2
S =195 (5iyn)x.y + J; ZN A,{L- B? . (3.8)

i=1
A similar treatment is carried out for the correlations between student vectors (Q;;)
showing that the result for a stationary environment in equation (2.17) remains the

same. We denote P“ the relevant order parameter expression for a rotation with angle
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w. It is possible to write the dynamical equations for the ' = M = 2 case:

dRLI‘.)I == dIZ?I Rw

g . g T

dRy,  dR

el T

dR‘f? i dR[l)z

ai= e +w Ry, (3.9)
dRg, dR3, _

el e Ll

dQ7 _ dQ%  dQy, _ dQ% d@t, _ ds,

dt dt " di dt i dt.

The expressions of % are given in equation 2.17 for the stationary case. The
initial conditions used for solving the equations numerically are similar to those used
in section 2.2. Learning abilities are then studied in this context. The behaviour in the
case of w = 107% is qualitatively similar to the one observed in section 2.2. There are
still two main stages of learning, the symmetric and convergence phases as observed in
figure 3.1.

Note that the symmetric plateau has a length around 100 in comparison to 400 in
the fixed environment case (figure 2.2). The plateau is then much shorter when the
task is non stationary which is shown clearly in figure 3.2 where the generalisation
error is plotted for w = 107° and w = 0.

For larger values of w, the task becomes unlearnable as shown in figure 3.3. The
behaviour is then dependent on the rotation rate w and to study the effect of non-
stationarity on the symmetric and convergence phases we resort to an analytical study
with some similarities to [3], based on expansions around the symmetric and asymptotic

fixed point and then on considering the linear systems obtained.

3.2.1 Symmetric phase

When the environment is stationary [3], all student vectors in the symmetric phase
are pointing towards the same direction and show no specialisation, the generalisation

error is constant but much larger than zero. This phase is characterised by:
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Figure 3.1: Dynamical evolutions of the order parameters for w = 1072, § =166, It
M = 2. The dynamics are qualitatively similar to those observed in the fixed environ-

ment case.
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Figure 3.2: Generalisation error of the I = M = 2 case for the fixed environment
(w = 0) and rotaling tasks (w = 10%). These two curves are drawn for the same

learning rates, 7 = 1.66. The symmetric plateau is shorter when the task is non
stationary.
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Figure 3.3: Dynamical evolution of Ry, and of ¢, for w = 0.1, K = M = 2. The task
is unlearnable as the generalisation error is oscillating and remain high.

e An unstable symmetric fixed point (in terms of the order parameters) of the dy-
namics, which corresponds to the values at the plateaus observed in the evolution

of the overlaps between teacher-student and student-student nodes
e A corresponding plateau in the generalisation error

e The symmetric subspace is escaped by the student-teacher overlaps (Rn) first,

and then by the student-student correlation.

As a first step we should find the new fixed point which is not at the same position as
for stationary tasks (figures 2.2 and 3.1). As the frequency of the rotation is supposed
to be very small, the new fixed point will be close to the one found in [3], and can be
obtained by expanding around the stationary fixed point.

Initially there are four R overlaps:
e Ry, and Ry, representing the projection of J; and J; on By

e Ry, and Rj,, representing the projection of J; and J; on B,
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Students vectors lie in the whole space of dimension N. As the teacher’s orthogonal
space is related mainly to the stochasticity of the learning process, its influence can be
neglected if we assume a small learning rate which reduces the effect of fluctuations.
Therefore we can assume that student vectors lie in the teacher space and the four

teacher-student overlaps can then be reduced to two using the relations:

® Iyp = VQH — R},
o Ry = \/ Q22 — R%1

The two variables (R;; and Rj;) then describe the behaviour of all teacher-student
correlations. To simplify the notations, we define R = Ry and S = Hy;. To reduce
the number of parameters further, two different categories can be distinguished in the
student-student correlations: Q;; which is the squared length of the i-th student vector
and @Q;; the inner product between J; and J; (i # j). It is therefore possible to write
down: Qi; = Q &; + (1 — &;) C. There are then only two variables representing
the student correlations () and C') instead of the original three (Q11,Q12 and Q22).
The reduction of the number of variables assumes a small learning rate value. This is
motivated by the fact that the symmetric phase is more emphasised for small 7. This
assumption enables us to neglect terms proportional to 5? in the dynamics presented
in equation (2.17) and to exploit the simple relations between R and Q. The terms
proportional to  will then be considered for finding the symmetric fixed point. The

symmetric fixed point is defined when the system 3.10 is zero.

dR _ 2n ( 1+Q-R*  RJQ-R* R wS(1+Q)—RC‘)_wS
¢ ~ t(1+Q) \V21+Q) - V2+Q+R Vvi+2Q V(1+QP-C? ’
a5 2 ( 1+Q~52  Sy0-5%2 & _R(1+Q)~.5'C)_wn
@ - w0+ \V20+Q) -5 V2+Q+5F VI+2Q J(1+@Q)?-C? p
Q 4n ( R L Vig=itr . s ¢ ) (3.10)
@ - (1+Q \Vel+Q)-R  V2+Q+R VI+2Q J(I+QP-C?)
dC 5 (5(1+Q1—CR+\/W(1+Q)—C\/W+R(1+Q)—CS
d ~ r(1+Q)\V2(1+Q)-R? V2+Q+R? V2(1+Q) - 5?2

: 1+QVe-R-cVv@Q-5 20 Q2—02+Q)
V2+Q+85? vitg “JO+Qy-C?)

This is a non linear system in terms of the four variables R, S, @ and C. Finding

an analytical solution directly is a complex task. However, as the non stationarity is
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supposed to be small it may be assumed that the new fixed point is close to the one

observed for a fixed environment which is given analytically by [3]:

* - 1
0 0
Q = 0¥ ==
3

R =080 = - (3.11)

where P“" indicates the symmetric fixed point value of an order parameter P corre-
sponding to a rotation rate w. The fixed point for a changing task can then be written

as:

QY = Q" +wg',
O =0 it
R = R +or, (3.12)

L]

S | B9 et

where w indicates the frequency of the rotation and ¢*, r*, ¢*, s* are deviations from
the symmetric fixed point.

The system of equations (3.10) is then in terms of ¢*, r*, ¢*, s*, can be linearised
using Taylor series expansion in w which is assumed to be very small. The new sym-

metric fixed point found corresponds to:

¢ =et=0;" (3.13)
ARl o —5v/107
o

To check the validity of the assumptions made to find the symmetric fixed point,

Ranafytt'caf

aymme!ric) for a

we compare the numerical and analytical values of: 7( Rsymmetric —
—_—

teacher rotating teacher fized
given 7 and for different values of w. The whole set of equations is solved numerically.

We notice in figure 3.4 that the numerical and analytical solutions are equal for w =0
and remain very close for larger rotation rates validating the analytical work. The dif-
ference observed results certainly from the fact that the original system is first modified

by assuming that student vectors are in the teacher space, and then it is linearised.
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Figure 3.4: Numerical and analytical behaviour of n( :Rsymmmgg = Hommatric)- The

[

teacher ‘;atating teache:’ fired
numerical and analytical values are very close to one another which validate the the
expression of the analytical symmetric fixed point.

So far, the fixed point has been found under certain assumptions. The next stage
is to study the escape from the symmetric plateau. To gain insight for the escape
from the symmetric phase in the non-stationary environment we will first review the
mechanism of this escape in the fixed environment framework. The student vectors, in
that case, point towards the same direction (relative to teacher vectors) and the onset

of the escape is characterised by a change in this direction in an attempt to imitate

teacher vectors. The order parameters are as follows:

QY = @  +gq,
Y = O 4e,
R = R +»r, (3.14)
S = S 4.
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where w indicates the frequency of the rotation and ¢, r, ¢, s are deviations from the
symmetric fixed point. In figure (3.1), it can be noticed that r and s escape before ¢
and ¢. By assuming that student vectors lie in the teacher space it is possible to write:
Q = R>+ 5% and C =2 R S and an expansion around the asymptotic values gives the

results: Q = Q*+2R*(r+s) and C = C*+2R*(r+s), so ¢ = cin the onset of the escape.

To reduce the number of variables further, we will make an assumption about
the linear expansion of the generalisation error around the symmetric fixed point:

€;(P)=¢€,(P*)+Ve,(P — P*) (P denoting the system parameters). This is motivated

~0
by figure 3.2 where we can notice that a small deviation from the symmetric fixed point
should not influence a lot the value of the generalisation error. The expression of the
generalisation error is given in equation 2.11 , and it can be linearised by assuming a

small o ratio. The relation above implies a simple relation between the parameters:

16810 (r + s) — 5V/15 72(5v/15 + 7 + s)

S 12(14/15 — 5¢7) : y3645)

The method used to reduce the number of parameters relies both on the fact that

student vectors are in the teacher space and that the generalisation error does not

vary a lot around the symmetric fixed point. It would have been possible to use only

the former assumption and replace the expressions of @ and C' by R? 4 S? and 2 RS
respectively.

The variables ¢, r, ¢ and s have then only two degrees of freedom as they are linked

by two equations. Asr and s seem to dominate the escape from the symmetric plateau,

we choose them to represent the evolution of the system. The dynamics reduces to:

dr 8157 11 2V/15 7 15

7 =l +%°")r (5= t e

ds 2157 15 8157 11

e — Wiy — . 3.16
di (157r +28“’)’ (75;7 +70"")s 15)

This is a set of linear differential equations whose matrix is real and symmetric. It

has then two real eigenvalues and a general solution of the equation (for two different
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eigenvalues) has the form: ¢; eM'+ ¢, €' where ¢y and ¢, are the eigenvectors
associated to the eigenvalues \;, A\ of the matrix. An escape [rom the symmetric
phase can be observed if one of the eigenvalues is positive, as negative eigenvalues
suppress the related exponential. Therefore, the only interesting eigenvalue, in this

context, is the positive one which corresponds to :

415 53
N & bt

fized environment
The absolute value of the rotation angle here results from an invariance to the direction
of rotation.

In order to check the validity of the assumptions made to reduce the number of
variables, we study the positive eigenvalue of the linearised system of equation with its
four variables: ¢, r, ¢ and s and compare it to what is found for the reduced system.
The new parts of the positive eigenvalue are compared to avoid scaling problems and
the result is shown in figure 3.5. We notice that the curves are very close to one another
for small values of w which validate the method used to reduce the dimension.

The expression found for the positive eigenvalue is the most important result in
this section. It shows that the positive eigenvalue which leads to escape from the
symmetric phase is larger for the non-stationary case than for the fixed environment
case. The escape is therefore much quicker as it is an exponential in A (even if w is
small). Although this result relies on the small  approximation it is carried over for

higher learning rates as observed in figure 3.1.

Summary of the symmetric phase

The symmetric phase is characterised by a fixed point close to the one corresponding
to a stationary task, and the length of the symmetric plateau is shortened significantly
compared to the fixed environment. This important result is shown for a modification
of the task represented by rotations, and by assuming that % and 7 are small. This

last assumption has two implications used in the previous calculations, the first is that
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Figure 3.5: Comparison of the analytical and numerical solutions for the new part of the
positive eigenvalue. The curves are close to one another and therefore the assumptions

made to reduce the dynamics are valid.

w is also small and the second concerns student vectors (Jy, J;) who are confined to

the teacher space.

The study of the eigenvalue of the escape gave insight to suggesting a better training

algorithm as described in chapter 4.
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3.2.2 Convergence phase

In this second phase of the learning process we examine the final convergence of the
model to the asymptotic fixed point. This was carried out in [3] for the fixed envi-
ronment case where each student node specialises on a specific teacher node. In figure
3.2 we show the evolution of the generalisation error; it is very difficult to gain insight
about the effect of non-stationarity on the convergence phase because its scaling is
much smaller than the one for the symmetric phase. Zooming on the tail of conver-
gence (figure 3.6) reveals a residual error for a non stationary task i.e. learning is then

not perfect asymptotically.

0460 470 480 490 500

Figure 3.6: Generalisation error for w = 10~° and w = 0 (7 = 1.66). The curve is a
zoom on the convergence phase showing a residual error for the case w # 0.

The convergence to the asymptotic values depends critically on the learning rate g
which we no longer require to be small. The whole system can be represented by seven
equations of seven variables (Appendix C). The first important feature of the conver-

gence phase is the asymptotic fixed point obtained by solving the system of equations:

dRin . dQix .
= St A L 3.1
Tn—0 Vin ST =0 ik (3.18)
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By solving the system of equations numerically for different values of w and for a

fixed 7, we obtain the curves shown in figure 3.7.
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Figure 3.7: Numerical dependence of the asymptotic values of the order parameters on

w (n=0.5).
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The most important result shown by these curves is that @, is quadratic in terms
of w unlike the other order parameters which are linear. By supposing that the fre-
quency of the teacher rotation is small, the asymptotic point will be close to the one
for a fixed task. Therefore, we expand the order parameters around the stationary case

fixed point as follows:

Ryu=1+4+rn, Ria=r12, Ray=1rn, Raa=1+r2

Qi =1+qu, Qiz=q2, Qa2 =1+ qa2 .

(3.19)

By linearising the system of equations to first order in qy1, q12, 22, T11,712, T21, T22
and then by expanding the solution of the linear system to second order in w, one
can obtain approximated expressions for the asymptotic fixed point. The expressions
found are complicated and given in Appendix D. By plofting the curves showing the
dependency on w for the analytical asymptotic point, it is easy to notice that they are

similar to those found numerically (figure 3.8).

The asymptotic fixed point depends on both w and 7, so when the learning rate is
modified the asymptotic point is modified as well. In order to study this, the general-
isation error is calculated for this asymptotic point and its behaviour in terms of the

two variables n and w is presented in figure 3.9.

This curve shows first that the generalisation error is diverging for particular values
7 > 2.3. So when y > 2.3 defining the maximal learning rate which seems to be
dependent of w. Another method based on an eigenvalue analysis giving the same
maximal learning rate is examined later on. When 5 < 2.3, the error may have a
non zero minimum with respect to the learning rate used for certain values of w. Some
contours obtained by solving numerically the original system of equations 3.9 are drawn

for different values of w in figure 3.10.
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Figure 3.8: Analytical dependence of the asymptotic values of the order parameters on

w (n=0.5).
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Figure 3.9: Generalisation error at the asymptotic fixed point in terms of w and 7

The optimal learning rate (denoted nopi_err) minimising the error seems to depend
on w. Moreover by observing the curves in figure 3.10, it appears that it is increasing
with the rotation rate. A numerical study of this property enables to plot figure 3.11
implying that the optimal learning rate grows with the rotation rate.

The learning rate fopt_err minimises the generalisation error disregarding the speed
of convergence. Before investigating the learning rate optimising the speed of conver-
gence, we will examine the residual error.

As I mentioned before, the asymptotic generalisation error remains non zero. To

explain the residual error, we look at the projection of the first student vector J; on
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Figure 3.10: The generalisation error increases according to w. The error scems to he
minimised by a certain learning rate for each given w.

the various teacher vectors. The angle 0 between J; and B; can be expressed as:

Riz
0 = arct —1, 3.20
arctan (R") ( )

and remains non zero even when the process converges (which explains the residual
error). This is only one projection and there are many others; we then assume a
residual constant “phase shift” between the dynamics of the teacher and that of the
student which depends on the relation between the learning rate 7 and the rotation
rate w. The angle @ is then studied numerically for different values of w and the result
is shown in figure 3.12.

The dependence of @ on w is linear implying that a bigger “phase shift” between

the teacher and the student results from a bigger rotation rate.

So far, the discussion focused on the minimum of the asymptotic error and not
on the speed of convergence to a given asymptotic fixed point. Now we study the

convergence speed by looking at the dynamics of a set of vectors representing deviations
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Figure 3.11: The learning rate optimising the generalisation error increases according
to w.

from the asymptotic fixed point:

G T
Q12 — Q7 Q2 — Q7
Q22 — @3, Q22 — @3,
% Ry—Ry | =M| Ru-R;, | » (3.21)
Ris— RS, Ris— R,
By — 13, Ry — 13,
=Ry )\ Rm )

where M is the 7x7 matrix describing the system and P* indicates the asymptotic
value of order parameter P. There are normally seven eigenvalues for M (equation
3.21), and they are negative in a relevant domain for 7 when w is maintained constant.
Among the 7 eigenvalues there are only two which dominate the dynamics on the long-

time corresponding to the largest values and their dependence on 7 is presented in

figure 3.13.
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Figure 3.12: Dependence of the angle made by the projection of J; in the teacher
space with vector By for K = M = 2. The curve is a straight line implying a linear
dependence.

The eigenvalue ); is a non-linear function of 5 (for a fixed w) and negative for small
n. The eigenvalue ), is linear in 5. For large 5, Ay becomes positive and training
does not converge to the optimal solution, defining the maximum learning rate 7. as
A (maz) = 0. The value found for 7,4, corresponds to that observed in figure 3.9.

In order to identify the convergence time 7, which is inversely proportional to
the modulus of the eigenvalues associated with the slowest decay mode, we expand
the generalisation error to second order in our parameters. We find that the mode
associated with the linear eigenvalue does not contribute to first order terms, and when
1 is small controls only second order terms with a decay rate of 2);. The learning rate
Nopt_conv, Providing the fastest asymptotic decay rate of the generalisation error, is
therefore either given by the condition Ay (opt_conv) = 2 A2(7opt_conv) OF alternatively by
min,();) if Ay > 2A; at the minimum of A;.

By observing figure 3.13, we can then say that the optimal learning rate corresponds
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Figure 3.13: Dependence of the two most important eigenvalues describing the con-
vergence to the asymptotic values when 0 < 7 < 3 for a fixed w=10"*. ‘The system
corresponds to I = M = 2 case.

to the minimum of \; (around n &~ 1.8) and is bigger than 9op_err (figure 3.11). This
comparison shows that this two learning rates are not similar and have different values
for at least one specific rotation rate.

The optimal choice for the learning rate could be to start at the fastest convergence

5 and then switch to the lowest error learning rate.

3.2.3 Summary of the learning process

Studying K = M = 2 case reveals that the symmetric phase is significantly shorter
when learning non-stationary tasks as the eigenvalues of the system which determine
the escape time are bigger than for a stationary environment. By assuming small

rotation rate, the symmetric fixed point can be found by expanding around the fixed

41



CHAPTER 3. ON-LINE LEARNING IN A CHANGING ENVIRONMENT

point obtained previously for stationary tasks. This provides insight to suggest a
better training algorithm shown in next chapter, which speeds up the escape from the
symmetric phase.

The study of the convergence phase has been carried out mainly numerically because
of the complexity of the system of equations. We have found the asymptotic values of
the order parameters for fixed 5, revealing a convergence to a sub-optimal fixed point.
We examined numerically the generalisation error as a function of the learning rate »
for fixed values of w obtaining different minima with respect to 7. This result implies
an w dependence of 7,pt_er» which is the learning rate minimising the generalisation
error for a given w.

The speed of convergence is also investigated. We find another optimal learning
rate Nopt_cony Which minimises the time needed to reach a given asymptotic fixed point,
by studying the eigenvalues of the dynamics.

For each rotation rate w, there are at least two optimal choices for 5 related to the
convergence phase. One leading to an optimal value of the generalisation error and the
other leading to the asymptotic fixed point very quickly.

As convergence is imperfect, the residual error is studied by projecting one student
vector on the corresponding teacher vector, finding a “phase shift” between the student
and the teacher orthonormal basis i.e., the angle made by the student and the teacher
vector learned by it remains a non zero constant depending linearly on the rotation
rate w.

Because of time limitations some investigations are left unfinished, such as the
dependence of 7,p;_cony 00 w and the study of the general case of simultaneous rotations

in several directions when any number of hidden nodes may be used.
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Chapter 4

Modified back-propagation

When analysing the symmetric phase in the previous chapter we have noticed that the
length of the symmetric plateau is shortened significantly by considering a permanent
rotation of the teacher vectors. We would like to use the insight gained for modifying
the dynamics in the fixed environment case in such a way that will speed up the escape

from the symmetric phase. This idea is motivated by the behaviour in the K = M = 2

case:

Figure 4.1: Teacher vectors (By, B;) are orthonormal and remain fixed. Subtracting
a part of the student J, to J; makes it farther from J,.

Subtracting from each student vector a part of the other vector may assist in break-
ing the symmetric phase by separating student vectors which are pointing almost in

the same direction. This way students are attracted to different directions, increasing
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their correlation with different teacher vectors. Once the system has started converging
this additional term is not useful anymore and should be switched off to allow for the
convergence of the student network. The aim of this chapter is to analyse the system
with the modified algorithm and to define to what extent it improves the training
performance.

The new learning rule can then be expressed as follows:

35t e Jf+%6f£‘—% §J},. (4.1)

The same order in N is kept for both the learning rate and the coefficient y to keep
the dynamics smooth. The study of a non-stationary environment has been carried out
by considering a simple case as it was the building block for the general one; in this
case there is no need to restrict the study and the focus is immediately on the general
configuration. However, one simplification will be taken by supposing that K = M.
This case is amenable to analysis and corresponds to a realisable scenario [3] where the

number of student nodes is the same as the number of teacher nodes.

4.1 Dynamics for the learning process

The environment is supposed to be fixed and teacher vectors are denoted B,. The

teacher-student correlation, at a time ¢ is given by: Rf, = J! . B,, therefore:

R = 3B,

= 3+ % stet — % ¥ 3). B, (4.2)
k#i
B S B SR
N o

so by considering two consecutive time steps:

Ri}' — R
"IT“E =1 6Yn =7 Bin - (4.3)
k#i
o(1)

As done in the previous chapters, averages through the activations of the nodes and

thermodynamic limit are performed to get continuous differential equations. For
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CHAPTER 4. MODIFIED BACK-PROPAGATION

teacher-student overlaps the dynamics are as follows:

deﬂ.
for i)~ 73 B (11
k#£1

The equation for the student-student overlaps can be written similarly as:

QHI = ( 5: YZJt) (Jt 6! ZJt

qvét p#;
=iy (8l + 8z Z QL+ Y Q%) (4.5)
p#: gF#i
S +Zr6‘)+N22J‘ o+ st gt gt
qFi P#i qFi ] N

After considering the averages of the fluctuating quantities and by examining the

order of the expressions:

QH-I f_
o = 8B e~y (2 Qe+ 2. Q)
R p#i q#i
o(1)
= ’K{ (3 atst+ 3 =6t +— it (4.6)
e S P et pEl
o(+)
7?2 tct
— (656"
+ J\,(é g . E)
o(1)

The last element is O(1) because it corresponds to the variance of the distribution
of the inputs which is a normal Gaussian (zero mean and unit variance) for each
component of &. The thermodynamic limit simplifies the expression above as terms of

O(+# ) are neglected and the continuous differential equations is given by:

dQs;
& =7 (6,‘.‘733‘ 1 6_;:1:,‘) = (Z Qpi + Z Qqj) + 7?2 (6i‘5i> :
dt p#h q#i

The new dynamics can then be expressed in terms of those for a gradient descent as

follow (P” indicates the order parameter P for the modified back propagation having

a coefficient ¥):

d KK d Oi
Wi _ D (5 Qu+ Low) (4.7)
p#h a#i
dR} dR
TS el d L — Rkn b
dt dt kz;h
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The elements ‘%ﬂ are defined in equation 2.17.

Numerical solutions of the system are carried out to observe the evolution of the
learning process. To have a general idea, we look at the case of K = M = 3. To
compare the learning process with and without the new term, it is useful to find the
solutions of the ' = M = 3 dynamics in the original framework (equation 2.5). The

numerical behaviour of the dynamics without a new term for the back-propagation is

shown in figure 4.2.

Q11 o Ryy, Iy
n = 0.97 Sl Cpoans
Q12 W 1 N - Ros, Boi 1 = 0.97 ;f’
Q22 !
*-‘ . Itas, I3 i
l
Qa3 * 0.8} 1
A e /
|
il ft Je s i !
Fr oty Q33 "+ 06 f
(| R A———— e i ':
/

0 200 400 600 800 1000 1

200 400 600 800 1000 1200 :
t

Figure 4.2: Dynamical evolutions of the order parameters for 4 = 0 corresponding to
gradient descent (n = 0.97) and for a K = M = 3 case.

46

200



CHAPTER 4. MODIFIED BACK-PROPAGATION

The behaviour for the modified back-propagation is similar to the one for the gra-

dient descent (figure 2.2) as observed in figure 4.3.

S e 1 »)

L ! S

1 — Q1o 7 =097, *_,;ﬁ"”'"”“

/ e
+ Q'Z'Z I +
I .
08f - @e3 dine i
i / ;

... Qi3 it Sy

0 100 200 300 400 500 600 0 100 200 300 400 500 600
t

J

Figure 4.3: Dynamical evolutions of the order parameters for 7 = 10~ corresponding
to the modified gradient descent (n = 0.97) and for a ' = M = 3 case. The graphs
are qualitatively similar to those observed for v = 0.

As mentioned before we focus here only on the symmetric phase. The length of the
symmetric plateau has been shortened from 1000 when v = 0 to 400 when v = 105,
The reduction is emphasised in the graph for the generalisation error for both v = 0
and v = 107° (figure 4.4).

This behaviour for small values of 7 seems to agree with the observation made in
the beginning of this chapter and with the intuition which has motivated the study.

An analytical study is then performed to explain the reduction of the length of the

symmetric plateau and its dependence on the coefficient 7.
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Figure 4.4: Generalisation error for v = 10~° corresponding to the modified gradient

descent (7 = 0.97) and for a K = M = 3 case. The length of the symmetric plateau
becomes shorter for v = 107°.

4.2 Analysis of the symmetric phase

As in section 3.2.1, the symmetric fixed point has to be calculated first. Initially there
are &-U—‘zﬁl student-student overlaps and K2 teacher-student overlaps, however in figure
4.3 it is possible to see that all R;, have nearly the same numerical value. This should
~ be coupled with the fact that we should keep the differentiation between It;; and R,
(i # n) as it is important for the escape from the plateau. So, the R’s will be described
by two variables R and S as follows: Ri, = R 6in + (1 — 6in) S. The initial teacher-
student overlaps are reduced then to two only on the basis of the numerical behaviour
of the system.
Student-student overlaps have a similar behaviour except for the gap observed, in
figure 4.3, between Q;;, ¢ # j and @, and which vanishes for small n when v =0 [3].

They can be written as: Q;; = @ &;+(1—46;;) C, and then be represented by 2 variables
only. The symmetric fixed point is then described by 4 variables Q*, R*, C*, S5* which
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CHAPTER 4. MODIFIED BACK-PROPAGATION

makes the system of equations below equal to zero:

dQ 4y ( R (K -1)§ Q (k=1)C )

it - A+ O\ TO-F VAT -5 it JiFQr-c?
= (K ~1vC,
ol o 27 ( 1+Q-R*  (K-1)RS R
dt — *(1+Q)\V2(1+Q)-R 2(1+Q)-57 VI+2Q
(K -1)S(1+Q)—- RC(K -1) 5 e
= T E ) e )_7(3 -1)8, (4.8)
48 21 (1+Q-(ﬁ'—1)52_ SR .
d — w(1+Q)\ V21+Q)-5 (1+Q) -R* VI+2Q
_ (R+S(K-2))(1+Q)-CS(K -1)\ -
dc 4 (-5'(1+Q)-CR R(1+Q)+S(1+Q)(K —-2)—-CS(K - 1)
dt — w(1+Q)\Ve(1+Q)-R? V2(1+Q) - 57
(14+Q)Q+C(K~2)~CHK - 1) 5 4 g

As in section 3.2.1, this system is not linear in terms of @, R, S, C. To linearise it,
the coefficient 7 is assumed small, which is consistent with values found to work well
in practice used (see figure 4.3). The new fixed point should then be close to the one

found for a classical gradient descent [3]:

. 1

QU‘ = CO = m ) (49)
1{0. e Su- i== ; s
K(2K —1)

The new fixed point can be described as an expansion around Q°", C°", R%", S with

respect to v. The variables used are as follows:

-

Q" = Q¥ ++4¢",
Ol = O 4y, (4.10)
R = R 441,

ST. e 5‘0. + 'Y oS* .

where P? indicates the value of the order parameter P for modified back-propagation
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with a coefficient 4. The symmetric point is then given by:

) ) (2K? — K — 1)V2K + 1«
q = g= =~ = 3 3 (4]1)
K(2K —1)2q
: ! (2K* - K — 1)V2K + 1x

FAE T Py e
2K3(2K — 1)y

In order to know the reliability of this analytical result, we compare the numerical

, lyti ey ; .
and analytical values of: 9( Ryymmetric — R:;:if‘;ff!c) (BP indicates back-propagation) in

modi)":sd BP  classical BP 2
the case K = M = 3 for a given n and for different values of 4. The set of equations

is then solved numerically. We notice in figure 4.5 that the numerical and analytical
solutions are equal for 4y = 0 and remain very close which validate the analytical
expression of the symmetric fixed point. The difference observed results certainly from

the fact that the original system is first linearised then solved.

arnalyrical
7( Raynnnetr:’c i; Rsynunetric )

:nﬁ»difit’ﬁ'uf!f’ kﬁﬁtssic‘ L BP 807 le06
0 : I "y.

" .. numerical

-le-07

'k‘ﬁ? R kB G

-Je-07 analytical

Ae07

; ; . ‘ Iytical
Figure 4.5: Numerical and analytical behaviour of n(Rsymmetric — Rogmmetric) for the
- —_ “\ ’

modi}:d BP  classical BP
case K = M = 3 (BP indicates back-propagation). The numerical and analytical values

are very close to one another which validate the expression found for the analytical
symmetric fixed point.

We will now look at the escape from the symmetric phase. The order parameters
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are then as follows:

Q. = 9" ¥+ o4
o' = Ve, (4.12)
R = R+ r,

AR - G )

By expanding to first order in g, r, ¢, s the expressions of @ and C' (Q = R? 4+ S% and
C = 2RS, as the teacher orthogonal space is neglected), it is possible to find that ¢ = ¢
at the onset of the escape.

To reduce the number of variables further, we will make an assumption about
the linear expansion of the generalisation error around the symmetric fixed point:

€,(P)=¢,(P*)+Ve,(P — P*) (P denoting the system parameters). This is motivated

~0
by figure 4.4 where we can notice that a small deviation from the symmetric fixed point
should not influence a lot the value of the generalisation error. The expression of the
generalisation error is given in equation 2.11 , and it can be linearised by assuming a

small % ratio. The relation above implies a simple relation between the parameters:

168v/10 (r + 5) — 5v/15 7£(5V/15 + r + )
& 12(14/15 — 527) ' =

The method used to reduce the number of parameters relies both on the fact that
student vectors are in the teacher space and that the generalisation error does not
vary a lot around the symmetric fixed point. It would have been possible to use only
the former assumption and replace the expressions of @ and C' by R? + S? and 2 RS
respectively.

The initial four parameters ¢, 7, ¢ and s have therefore only two degrees of {reedom

as they are linked by two equations. Then the dynamics can be written as a linear

system in 7 and s by keeping first order terms in y in the Taylor expansions:

x
% g = [-nK (2K — 1)} ¢ — v V2K +1 H] (4.14)
8 8
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where:
2(4K?% — 5K +2) 4K —1)2K? —2K +1)
e (4.15)
4(K —1)(2K* - 2K + 1) 204K3 —8K? + 5K — 2)
and
( (K —1)(n(K — 1)(4K?+ (K — 1)(m(8K" + 1652 — 60/ %+ \
261 — 15) + 12K — 6) 54K — 15) + 6(K — 1)(2K — 1))
H =
(m(8K* + 16 K* — 601+ (r(8K° + 4K — T4K3 + 111 K%+
\ +54K — 15) + 6(K —1)(2K — 1)) —67K + 15) + 12K —30K?% + 24K — 6) )

The escape is described by the positive eigenvalue as it has been explained in section
3.2.1. Here, it is given in terms of the positive eigenvalues calculated for gradient

descent and an additional term:

K
Ap =20 +21 =2 i 3
e V2K — In(2K + 1)}

back—propagation

(4K? —2K* 4+ 3K — 2)y
(2K + 1)(2K — 1)?

(4.16)

The new part in the eigenvalue is positive as v is taken positive by definition. This

explains the shorter length of the symmetric plateau for the adaptive gradient descent
shown in the numerical solutions (figure 4.4). This important result has been found
under assumptions motivated by the numerical behaviour, i.e. 7,1 small implying that
also v is small. Although the result found relies on the small 7 approximation, it is
carried over for larger learning rates as observed in figure 4.3.
To examine the validity of. the assumptions we study the positive eigenvalue of the
linearised system of equations with its four variables: ¢, r, ¢, s and compare it to
what is found when the system is reduced. To avoid scaling problems, only Al values
are compared. The parameters chosen are consistent with the assumption presented
above. The curve obtained is shown in figure 4.6.

The curves are close to one another which implies that the assumptions made for

the analytical study are valid.
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Figure 4.6: Numerical and analytical values for A]. The solid curve corresponds to the
analytical solution and the dashed curve is the numerical one. The coefficients are as
follows: 7 = 1072 and v = 1074,

4.3 Summary

The modified back-propagation proposed in equation 4.1 shortens the symmetric plateau
significantly. However, this result is shown here for a realisable scenario only (/' = M)
and under certain assumptions for the coefficients used, nevertheless, we expect a sim-

ilar behaviour for other training scenarios.
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Conclusion

The aim of this study was to examine the effect of task non-stationarity on the learning
dynamics in an on-line learning scenario.

Non-stationarity has been modelled by rotations. This implies that the general
case (any K and M) is built by 2 x 2 blocks representing rotations in a system with
two hidden nodes. By solving numerically the dynamics for the case K = M = 2
it has been found that the length of the symmetric plateau is much shorter for non-
stationary tasks. The theoretical study based on expanding around the fixed points and
finding the positive eigenvalue of escaping the symmetric phase, confirms the numerical
solutions as the positive eigenvalue is bigger than that for the stationary case.

This behaviour has given insight for suggesting a modified back-propagation algo-
rithm speeding up the escape from the symmetric plateau. It is based on subtracting
from each student vector a part of the others, speeding up their separation. This mod-
ified gradient descent is used only in the symmetric phase and has been studied for a
general scenario where the number of hidden nodes of the teacher and the student are
both the same. Numerical solutions show a decrease in the length of the symmetric
plateau and the analytical work confirms this behaviour.

The second important phase of the learning process is the convergence phase. Un-
fortunately, even if the system escapes quickly from the symmetric subspace it is not

converging well as the generalisation error is larger than zero for the case of non-
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stationary tasks. The asymptotic values of the order parameters are found analytically
and are consistent with those obtained numerically. The generalisation error is then
plotted in terms of the learning rate n and the rotation frequency w showing a diver-
gence for certain values of 7 defining 742

The dependence of the residual generalisation error on 5 for fixed w is curved and
has a minimum for a certain value of . This value of 5 enables us to have the minimal
value for the generalisation error for a given rotation rate, although it has no relation
with the time needed to reach this asymptotic value.

To minimise the convergence time, n? terms are kept in the dynamics and the
dependence on 7 of the two largest eigenvalues of the linear system of equations around
the asymptotic fixed point is studied. It enables us to find the learning rate minimising
the time needed for convergence as well as the maximal learning rate.

The dependence of the learning rate optimising the time needed to reach the asymp-
totic point in the I = M = 2 case on w is not investigated in this work due to lack
of time. It also would be interesting to look at the general case for which there is
any number of hidden nodes for the teacher and student and which is characterised
by simultaneous rotations in several directions. This study is complicated because of
the number of variables used and the new dynamics are not clear as all the vectors are

rotating with different velocities.
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Appendix A

Equations for a fixed environment

These results are taken from [3]. The set of dynamics is as follows:

dR:' n

e ea (6i yn)
% = n (& zx) + n(bk z:) + 7%(6; ) . (A.1)

The averages in Eq. (A.1) require the evaluation of two types of multivariate Gaus-

sian integrals. Terms proportional to 7 involve the three-dimensional integral
Iy = (¢'(u) v g(w)) ,
where the argument u of ¢’ is one of the components of x, while both v and w can be
components of either x or y. The term proportional to n* involves the four-dimensional
Gaussian integral
Iy = (g'(u) g'(v) 9(w) 9(2)) ,
where u and v are components of x while w and z can be components of either x or y.

The expressions for the derivatives become:

d-Rl' n

e ?}{Z[a(i,n,m)—-zfa(i,nmj)} )

Rt n{Zh(i,k,m)—zfa(i,k,j)} +n{Zfswai»m)—213(’“"'*3"} p

n? {Z Iy(i, ky,n,m) — 22 Is(i, k,j,m) + Z Ii(i, k, 3, l)} ; (A.2)
n,m Wl

in
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The arguments assigned to I3 and I; correspond to the convention used to distin-
guish between student and teacher activation (¢, j ,... for students and n, m, ... for
teachers). So, I3(i,n,7) = (¢'(x:) yn 9(x;)), and the average is performed using the
three-dimensional covariance matrix C3 which results from projecting the full covari-
ance matrix C' (defined in chapter 2) onto the relevant subspace. For I3(z,n,j) the

corresponding matrix is:

Qs Hw Oy
Ca = R,‘n T,m Rj
Qi; Rin Qjj

The two multivariate integrals in Eq. (A.2) can be performed analytically for g(z) =

erf(a:/\/ﬁ). I3 is given in terms of the components of the C'3 covariance matrix by

2 1 Cu(l+Chy)—Ci12Cis
T s . A.3
3 ™ \/}ia 1+Cll ( )
with
Az = (1+ Cu)(1 + Ca3) = Cly . (A.4)

The expression for I4 in terms of the components of the corresponding Cy4 covariance

matrix is
I = % \/lﬂ arcsin (W?EC/E__;) ) (A.5)
where
Ar= (14 Cy)(1+Cy)-C% , (A.6)
and
Ao = A4Css— C23Cau(l + Ci1) — C13C1a(1 + Ca2) + C13C13C24 + C12C14Cas

Ay = Ay(14 Cs3) = CL(1+ Ciy) — CP5(1 + C) + 2C12C13C

Ay = A,q(l 4 644) — 0224(1 + Cu) - 0124(1 -+ ng) + 2C12C14C54 . (AT)
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Appendix B

Canonical form for an orthogonal

linear transformation

Theorem:
For a real vector space V of finite dimension, a linear transformation 3 such that
P: ¥V — YV and ¥* the adjoint of 1, it follows that

Pp* = I < I an orthonormal basis B such that i is expressed as follows:

& Te S 0 )
0
|
-1 0
e : : o T cosf); —sinb;
-1 sinfl; cos0;
0 Ay
0
& .




Proof:
There is an equivalence to show. The part (<=) of the equivalence is easily shown by

calculating 11*, which is equal to I. The proof will now focus on (=) part of the

equivalence.

Vx € V |l(x)|| = ||x|| because 3 is orthogonal, therefore if A € Sp(3)' then
|\l = 1. But A is either real or complex, let’s then suppose that there exists a real
eigenvalue denoted \. It can have two different values: A = 1 or A = —1. We consider
the two vector spaces: & = ker(y — I) and €y = ker() + I). They have in common

the vector 0 only, they are then in a direct sum which will be denoted F: F = & @ E_;.

Lemma:

For any orthogonal operator u, if a vector space E is invariant under u then its orthog-

onal complement is also invariant under wu.

Let’s show this lemma. First of all, if u(E) C E then let x € E and y € E*. We
know that u(x) € E so u(x) . y = 0. This is equivalent to x . u*(y) = 0, which is valid
for any x. Therefore u*(y) € E+. We have shown that: u(E) C E = u*(Et) C E*t.

We also know that there exists a polynomial P such as u = P(u*) (basically because
u and u* have the same eigenvectors corresponding to conjugate eigenvalues), thus it is

correct, to write: u(E+) C E*+. We have thus shown that: u(E) C E = u(E*) C E*.

For more details on this proof, see [7].

We can notice that (F) C F so (F*) ¢ F* and ¢*(F*) C F*. The mapping
v = 1 + ¥* has the property that v* = v and as v is a real mapping it can then be
diagonalized 2. The mapping v satisfies the relation v(FL) C Ft because 3 and "

satisfy it, therefore it is possible to say that the mapping v #. (restriction of v to FL)

Ispectrum of 1 or set of its eigenvalues
2for the proof, see [8]
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can be diagonalized. It is therefore possible to write 3x € F* (x # 0) 3\ € R (space
of the real numbers) such that v(x) = A x.

Then (3 4 ¥*)(x) = A x, therefore *(x) = —x + A ¥(x). So the vector space
Fy = vect(x,(x)) is invariant under . If dim(Fy) = 1 then 3pu such that ¥(x) = p x,
p is then equal to +1 (as ¢ is orthogonal) which implies that x € F but we know
that x € F* so dim(F;) = 2. Consider the operator ¥, = ¥p,; its determinant is &1
and if it is —1 then Jy € Fy N F which is impossible. So, 1y is a rotation. Then the
vector space: F' = E; @ E_; @ F) is invariant under  and we can continue the process
by induction on the dimension of the vector space. We will then be able to write the
whole space as a direct sum of Ey, Ep , Fy, ..., Fy, (the spaces F; are found exactly as
I1). The application can then be written as shown in the theorem in the basis made

by those of E;, E; and F;.
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Appendix C

Full set of the dynamics for the
K = M =2-case

dRyy = 9 n 1+ Qu — R, P IRy Iy . Ity
dt T(1+Qu) |\ 2+2Qu — R, 2+2Qu- R, VI+2Qu

Riz(1 + Q1) — R11Qh2
VI +Qu)(1+ Qa) — Q2
dRyy 9 n l 1+ Qu— R}, P Ry1 Ry K Ry
di m(1+Qu) |\ 24201 - R, 2+2Qu- R}y VI+20u
» Ryo(1 + Q1) — 2@z ] P
VI +Qui)(1 + Q2) — Q1

dRyy 9 n 1+ Q22 — R, & Ray Ry 3 Ry
dt m(1+Qu) | \2+2Q: - R:  \2+2Qn- R}, VI+20n’

=) R[z

Ry (1 + L
N 1l + @2) 21Q122 O (TS
\/(l + Qu1)(1 + Q22) — @t
dRz; 9 U 1+ Qs — R, & Ra1 a2 iy ey
dt m(1+Qu) |\/2+2Q: - R 2+2Qn-R} VI+2Q02

. Rizo(1 4+ Q22) — R22Q12 (1 + sz):| + w Ry

V4 Qu)(1 + Qx) — @t
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dQ1

dt

_|_

4

Ui Ry o Ry, - Q11

m1+Qu [\/242Qu - R, /2+2Qu-Ri, VI+2u
Ql?

VI +Qu)(1+ Qn) - Q%

4 ?,}2 1 + 2Q11 =t 23?1 + -“-Cgin 1 + 2@]] = 2R?2)
i T T 2+ 401, — 212,

~2Ru R )
V2 +4Qu — 2R3,/2 + 4Qu — 2R,

2 arcsin

2 arcsin

11
v1+ Qll\/2+4Q11_2R11)

2 arcsin ( Raz + 2Q11 Ras — 2R12Q12 )

\/1 + Q22+ 2Qu + 2Q11 Q22 — 2@12\/2 +4Qu — 2014,

2 arcsin

iy
VIF3Qu\/2+4Qu — 2312)

(14 2Q11)R2 — 2R11 Q12 )
\/1 + Q22+ 2Q11 + 2Q11Q22 — 2lef+ 4Qy — 2R?,

arcsin (—ﬂ—) + arcsin ( Q22 + 2Qu Q12 — 2Q1, )
1 +3Qu 14 Qa2 4 2Q11 + 2Q11Q12 — 2Q7%,

2 arcsin

2 arcsin ( Q12 )]
v1+ 3@11\/1 + Q22 + 2Q11 + 2Q11Q22 — 2Q%,
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dQ2 2 | g n [Rn(l + Q22) — Q122 4 Ri2(1 4+ Q22) — Q121222
dt (1 + Q22) \/2+2sz — 3, \/2+2Q22 — R,
_ Qu(1 + Q2) — Q3, b @12
\/1+Q22+Q11+Q11Q22— 12 V1+2Q2

3= =9 n R21(1+Q11)_Q12.R“ 4 R12(1+Q11)_Q12312
(14 Qu) \/2+2Q11 — R, \/2-{-2@11 - R},
i Qa2(l +Qn) — @, % Q12 ]
\/I + Q4+ Qu+Qu@n-Qh V1+2n
n?
+

47*'2\/(1 + Qa)(1 +Qn) — Qf

[a.rcsin ( (1+Qu)(1+ @) —Qf — 1+ Qu)k; — (1 + Q22) 13, + 2Q12 101 i )
2(1 + Qu1)(1 + Q22) — 2Q%, — B3, (1 + Q1) — B} (1 + Q22) + 2Qu2Ryy By

(14 Qu)(1+Q22) — Q3 — (1 + Q1) 3, — (1 + Qa22) R}, + 2Q12 Ry 2 )

(1 + Qu)(1 + Q22) — 2Q%, — R3,(1 4+ Qui) — Rix(1 + Qa2) + 2Q12/t2 Rae

2 arcsin ( —(1 4+ Q1) Rar Raa — (1 + Q22) Riy Raa + Qualtii Raz + Qraltialia
V201 + Qi) (1 + Q) — 2Q%, — B3 (1 + Qu) — RY (1 + Q22) + 2Q12Rin Ry

+ arcsin (2

1
\/2(1 + Qu)(1 4 Q22) — 2Q%; — R, (1 + Qui) — Rip(1+ Q22) + 2@12312]222)

iedin ((1 + Qu)(1 + Q22) R1y — Qu2Ray — Quu iy — Q22Q11
\/l + Qa2+ 2Q11 + 2Q11 Q22 — 2Q7%,

1
V2(1 + Qu)(1 + Q2) — 2Q%, — R (1+ Qu) — B} (1 + Q22) + QQHRUR“)
(l + Qll)(l + QTZ)R?.Z o Q22R22 g Q12R12 E2l Qllezsz
\/r+ 2Q22 + Qu1 + 2Q11 Q22 — 201,

—2 arcsin (

1
\/2(1 +Qu)(1 + Q2) — 2Q%, — R3(1 + Qui) — R (1 + Q22) + QleﬂmRzz)

—2 arcsin ((1 + Q11)(1 4 Q22) Riz — QraR2z — Quiltiz — QuiR12Q2
1+ Q2+ 20 + 201G — 2Q%

1
V21 + Qu)(1 + Q) — 2Q%, — (1 + Qui) — Riy(1 + Q) + 2Q12312322)
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dQ22
dt

y . ((l + Q11)(1 + Q22)R21 — Q22Ry — Qraltyy — Q11 121Q22
2 arcsin

Il

\/l +2Q22 + Q11 + 2Q11Q22 — 2Q%,

1
\/2(1 + Qu1)(1 + Q22) — 2Q%, — R (1 4+ Qi) — R (1 + Q22) + 2@12311321)
arcsin ((1 +Qu)(1 4+ Q2)@u — @}, — Q4 (1 + sz))

14 Qa2 +2Qu1 + 2Q11Q22 — 2Q7%,
accaln ((1 + Qu)(1 + Q22)Q2 — Q3,(1 + Qu1) — fz)
14+ 2Q2 + Qu + 2Q11Q22 — 2Q%,

2 srcsit ( (14 Qu)(1 + Q22)@12 — (1 + Q11)Q12Q22 — @11 Q12 )] .
\,/1 + Q2 +2Qu + 2Q1u Q2 — 2Q¥z\/i +2Q2 + Qi + 2Q11Q22 — 20,
” Iz ¥ Ry A @22
m(1+Q2) | \/242Q0— R 2+2Qn-R;, V14202

4

Q12
\/(1 + Qu)(1 + Q22) — Q%z]

3 u arcsin - t 2Q22 = 2R21 5 arcsin (1 . 2Q22 - 2R§2)
l "‘l"' 2 29 2 "1" 4@22 e 2R21 2 + 4Q2‘2 - 2R%2

2 arcsin

— 3R i )
\/2 + 4Q2; — 2R3 \/2 +4Q2 — 2R3,

2 arcsin

Iz
Vv1+ 3@22\/2 +4Q2 — 2322)

( Ry (1 4+ 2Q22) — 2R51Q12 )

2 arcsin

U+ 2Q02 + Qui +2Q11 Q22 — 2Q%\/2 + 4Q20 — 2183,

2 arcsin

By
VI F3Qm\/2 +4Qu — 2R3 )

(14 2Q2) Rz — 2152Q12 )
\/1 + Q22 +2Qu +2Q11 Q2 — 2@12\/2 +4Q — 215,

arcsin _ G5 ) + arcsin ( Qu +201Qz — 205, )
1 4 3Q2 14 Qo +2Q1 +2Q11Q12 — 2Q7%,

2 arcsin

2 a,rcsin( @iz > )]
v1+ 3@22\/1 + Qa2 + 2Q 11 + 2Q1Q22 — 2Q1,
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Appendix D

Asymptotic fixed point for the
= M = Zicase

Qu = 1- g w (—1890\/5 72 0% /2 4 3465 % 72 — 1008 7 »° V3 V5 — 1134 9* V5
+ 2562 ' — 1890 »° 2?:'—}-11341}3\/511' \/§+945TF2T)2\/5—315 V3 iy
— 183009 w 7 + 14445 V3 7% wn V2 — 22935 n 7> w + 1785 V3 7' w
— 8667 ?;2\/5w7r2\/§+8100w?rn3\/5+1554 V3 n® + 14445 7% V2 w x?
— 8396 n® V3w n? 46096 n* V5 V3 7* w— 8415y V5 w n°) /
?}2(90\/5?1*21;\/5—165r;7r2+48\/§?rr;2v/5—|—54?}3\/5-122?}3+901rr;2\/§
—54 7 9* V2 V5 —45 72 n V5 — T4 n? V3w +15 V3 1)

Q12 = wd w? x? (4530 T V2 — 3100 »% 7 — 906 n*V/5 V6 + 864 n°V/15

49
~ 1952 7°V/3 — 780v/3 n*nv/5 — 2550v/3n’n + 2112 7 9* V5
+ 1510 > V2 V3 1 +525 7°) /

7!?(90 V3rinvV2-165 2 +48 V37 9® VB +54 9° V5 — 122 9° + 90 7 n* V2

~541r?;2\/5\/g~451r2?;\/5—74?;2x/—3-1r+15 \/5?1’3)
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Q22

Rz

1+ g w  (—1890v3 7 7? V2 + 3465 n* x* — 1008 7 »° V3 V5 — 1134 n* V5
2562 n* — 1890 7° V2 7 + 1134 n® V5 7 V2 + 945 72 n> V5 — 315 V3 ©° g
183009 w 7 + 14445 V3 7% w n V2 — 22935 § 7° w + 1785 V3 1! w

8667 n? V5 w 7% V2+ 8100 w w1 V5 + 1554 V3 7 > + 14445 9> V2 w 7

8396 72 v/3 w 7% + 6096 n* V5 V3 7% w — 8415 VB w 7°) /

7% (90 V3 72y V2165 72 +48 VB 7w p? VB +54 4° V5 —1221° + 90 7 9’ V2
~54 7 p? V25— 4577 g VE—T4n? V31 +15 V3 1)

= 295 w m (—1260 V3 7% 47 V2 + 23109 72 — 672 = 4°V3 V5 — 756 ' V5

1708 5" — 1260 n>v2r + 7565°V5rv/2 + 6307%7°V/5 + 10367° V37

210v373 n — 122009° wr + 9315v/3 7 w 72 + 41769*V5V37° w

1785 V37w + 5400wrnV/5 — 15255 n 7w — 57847V3 wr?

9315 7°V2w 7° — 5967 n VBwr® — 5589 5? V5 w 7* V/2) /

7% (90 V3 7% g V2165 5 72 +48 V3 7 n? V5454 ° V5 - 122 0> +90 7 9 V2
—SAa V2 VE—4572nVE—Tan? V3x 415 \/§rr3)

4
19 wm (—3108 n’r — 17087*/3 + 630n7> + 7569 v/3V/5 + 37807? n*V2

630v3x%V/5 — 756 n° V5 1 V6 + 2016 5* 7 V5 — 2310 7’37’

1260 33v/67 + 6480 V6 w 2 — 8784 > V3 wr — 111609V37°w

13572 % w 72 + 9504 w 7% n? V/5 — 3888 wr’y?V/30

4725 7w + 19440 w 7% 7 V2 4 3888 w 7 7> V15 — 42667 7° w \/I5) /

n? (90 V3 7%y V2165 n 7> +48 V3 7 n* V5454 n° V5 - 122 9> + 90 7 o’ V2
—547 P V2VE—45 72 VB T4 V3 +15 V3 1)
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Ry = ‘21% wr (—3108 n°r — 17087*V/3 + 6309> + 7560 V3V/5 + 37807 n*V2
— 630V37%n%V/5 — 756 n° V5 m V6 + 2016 ® © V5 — 2310 n?V3r?
+ 1260 V6 + 6480 V6 w 7% — 8784 n° V3 wr — 111609V 37w
— 13572 9% w % + 9504 w 72 * V5 — 3888 wrn?V/30
+ 4725 mlw + 19440 w 7 n V2 + 3888 w 7 n® V15 — 4266y ©° w \/TE')) /
n’ (90 V3 x? n V2 - 165 n n? + 48 V3 y? V5 + 54 7° V5 — 122 n° + 90 7 n? V2
—SA T V2 VE—-451in VE—TAn V3415 \/-§r3)
Ryp = 1+ Zgﬁ wm (—1260 V3 1% 52 V2 + 23100% 7% — 672 m n°V/3 V5 — 756 n* V5
+ 1708 pt — 1260 *V2r + 7563°VEr V2 + 630720?V/5 + 10365 V37
— 210v/37% n — 12200 wr + 9315V/3 7° w % + 41769 V537 w
+ 1785 V3r'w + 5400wrn®V/5 — 15255 5 7w — 578403 wr?
+ 9315 7°V2w 7* — 5967 5 V5wr® — 5589 n* VB w 72 V2) /
7% (90 VB 72y V2—165 g 7 +48 V37’ VB4 540> V512297 + 90 7 9 V2
54?2 VE5—4572nVE—-Td? V3415 \/§T;3).
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