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Thesis Summary 

On-line learning of non-stationary tasks by two-layer neural networks is studied 
within the framework of statistical mechanics. A fully connected network with Iv 
hidden units and fixed hidden-to-output weights (a soft committee machine) learns a 
non-stationary task represented by a network of similar architecture having M_hid- 

den nodes. The network is trained via gradient descent (standard back-propagation) 
on randomly drawn inputs and the corresponding outputs generated by the teacher 

network representing the task. This work employs a general framework for the dy- 

namics of on-line learning obtained earlier for the fixed environment case. We describe 
a general task non-stationarity and investigate the learning process in these learning 
scenarios where on-line methods have been found to be most useful. The dynamics are 

first analysed for K = M = 2 which is the building block of the general case (any IX 
and M). 

The learning processes of stationary and non-stationary tasks are found to be qual- 

itatively similar. However, for non-stationarities the transient stage of the dynamics 

becomes shorter and there is some residual error after convergence. These phases are 
investigated both numerically and analytically. 

The insight gained from the non-stationary case leads to a new learning rule which 

seems to be more efficient than basic gradient descent in escaping the symmetric sub- 

space related to the transient part of the dynamics. These effects are studied in arbi- 

trary realisable scenarios (Jf = M). 

Keywords: neural network, multi-layer perceptron, back-propagation, on-line 

learning, soft committee machine, non-stationary task 
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Chapter 1 

Introduction 

Neural networks approximate a system behaviour or a task by optimising parameters 

of a mathematical model [1]. As the optimisation process is highly time consuming 

and the performance and precision of a model cannot be determined in advance, the 

use of neural computing is confined to applications where efficient algorithmic solutions 

are impossible or impractical. Such applications are typically complex and poorly un- 

derstood. Understanding speech, reading hand-written documents, and modelling and 

controlling non-linear systems are all areas where neural computing and other statisti- 

cal techniques outperform algorithmic methods. 

On-line learning is a popular method for training neural networks to identify the key 

features of the task to be learned. It extracts knowledge from each given example imme- 

diately rather than storing it for future use. This technique is particularly suitable for 

non-stationary systems i.e. systems whose parameters change in time, because data at 

a given time reflect a particular stage of the task rather than its general characteristics. 

In contrast to most previous on-line learning studies which focus on stationary sys- 

tems, this work concentrates on non-stationary tasks like [9]. ‘To enable both numeri- 

cal and analytical study, a statistical mechanics framework is employed and a generic 

non-stationarity of the system is presented, similarly to that used when investigating
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learning abilities of stationary tasks [3]. 

1.1 Training neural networks 

Multi-Layer Perceptrons (MLPs) are able to implement various input-output maps 

which are of importance to many classification and regression tasks. Two-layer ar- 

chitectures with N input units, one internal layer having an arbitrary unconstrained 

number of hidden units, and one output unit suffice to represent any scalar mappings 

of N-dimensional variables with arbitrary accuracy [2]. 

Internal parameters characterise a neural network of fixed architecture. Their choice 

determines specific maps ¢ = fw(€) from an N-dimensional input space € onto a scalar 

¢ (the index W is related to network internal parameters called weights). In order to 

bring the map fw as close as possible to a desired map fo, a process called training is 

used. 

The process of learning from examples in layered neural networks is usually ex- 

pressed as an optimisation problem, based on the minimisation of a training error 

computed over a training set composed of independent examples (€", ¢"). Network 

performance is measured by the generalisation error, which is the expected error on an 

unseen example. The two most common learning scenarios are batch and on-line. 

In batch learning, training algorithms minimise the error calculated over the whole 

training set. There are a variety of efficient optimisation methods available, such as 

gradient descent or more sophisticated second order methods (e.g. Newton-Raphson 

or conjugate gradient)|[1]. In on-line learning, single examples are presented sequen- 

tially and the training process adjusts the network parameters after the presentation 

of each example (e.g. using stochastic gradient descent)[1]. Here, the use of second 

order methods is complicated as the Hessian cannot be computed exactly and is only
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approximated [1]. 

On-line methods are very often more efficient than batch in which costly compu- 

tations and storage are required, especially for large data sets and input dimensions. 

Moreover, although it may be reasonable to store data generated by a fixed task and 

use it for training afterwards, it is less so for non-stationary mappings where examples 

reflect only a transient state of the process giving rise to data. 

1.2 Motivations and objectives 

Real world data are not all generated from stationary tasks and on-line learning is ap- 

propriate in such situations because it allows adaptation to learning mappings which 

change in time. However, most previous theoretical studies of on-line learning have in- 

deed been concerned with stationary tasks. An extension of this work to non-stationary 

tasks is the subject of this project. In the present context, non-stationarity means that 

parameters of the mapping which generates training examples are being modified. This 

work employs the framework of statistical mechanics, which provides a compact de- 

scription for the dynamics of on-line learning for stationary tasks [3]. The project 

focuses first on describing a possible non-stationarity which is as general as possible, 

and then on investigating the learning abilities of a two layer network trained on ex- 

amples generated by a network of similar architecture. The various training phases are 

studied and compared to those found for a stationary task. As a byproduct of this 

study we find a method which improves learning abilities for stationary tasks by reduc- 

ing the time required for escaping the transient stage of the dynamics which represents 

a significant part of the training process.
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1.3. Thesis outline 

The structure of the thesis is as follows: 

¢ Chapter 2: After a presentation of the general framework, the derivation of the 

dynamics for learning stationary tasks is reproduced. 

¢ Chapter 3: A general task non-stationarity is described. This is used to find the 

new dynamics, which can be integrated numerically and solved analytically in 

the neighbourhood of fixed points under certain assumptions. 

¢ Chapter 4: A modified gradient descent rule is studied both numerically and 

analytically for stationary tasks to reduce the length of the symmetric plateau 

characterising the transient stage of the dynamics. 

¢ Chapter 5: The different results obtained are summarised, and some possible 

extensions of the study are presented. 

10



Chapter 2 

The general framework 

In this work on-line learning in MLPs is examined. To facilitate the learning process 

we are provided with a training set generated by the task to be learned. Since we are 

interested in a generic formulation of on-line learning, the outputs are supposed to be 

generated by a network of similar architecture but with possibly different complexity, in 

response to inputs drawn from a Gaussian distribution. The ability of a model network 

to learn the mapping provided by the network generating the data has been studied 

at length in [3] in the case of soft committee machine (two-layer networks with fixed 

hidden to output weights). Below we describe this model, which will be used later to 

study learning of non-stationary tasks. 

2.1 Analytical description 

We consider a learning scenario in which a model MLP is trying to learn a rule repre- 

sented by another MLP on the basis of examples generated by the latter. The network 

which is being imitated represents the task and provides the training set, whereas the 

model network is being trained (i.e. its parameters are being modified) on the basis of 

these examples. It is useful to term them teacher and student networks respectively. In 

figure 2.1 these nets are shown graphically. Notice that they may have different number 

of hidden units K # M (where i and M are the number of hidden nodes of the student
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and teacher networks respectively). The network couplings from all hidden units to 

the output unit are set to 1. This special case can easily be extended to accommodate 

adaptive hidden to output weights [4] and preserves most properties of the general case. 

Training examples are denoted (€", ¢“) with €” describing N dimensional input 

vectors and ¢” the output of the teacher for the given input. Teacher nodes are as- 

sociated with N dimensional vectors whose coordinates are the weights of the edges 

linking all the inputs to a hidden unit. The weight vector associated with teacher's 

node n is denoted B, and the activation of this node is y, = B, . €. Similarly, student, 

nodes are associated with N dimensional weight vectors denoted J;; whose activation 

is x; = J; . €. We use the index 7,j,k,... to refer to the student and n,m,... for the 

teacher. 

Teacher network Student network 

  

  

        

student target 

Soft Committee Machine 

  

Figure 2.1: The task is represented by the teacher network which provides the targets 

of the student network. Each input value (JN in total) is drawn from a normal Gaussian 

distribution for both networks. All the neurons have the same activation function which 

is the error function except the output node which is linear. 

The output unit is linear and therefore the output value is D/<, g(2;) for the student 

and ©", g(yn) for the teacher, where g represents the activation function of the hidden 

12
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nodes, which is taken to be an error function: 

g(x) = wi( 4) = a et’ dt. (2.1) 

The error made by a student having weights J on a given input € is given by the 

quadratic deviation: 

; if & M 2 

(8) = 5 | Dale) Lam] (2.2) 
i=1 n=l 

As the components of each input vector €“ is drawn from a normal Gaussian dis- 

tribution, the activations x and y fluctuate with the inputs. The distribution P(x, y) 

yr of the activation, where x = (21,...,.ex)" and y = (y1,...,yar)’, is a multi-variate 

Gaussian: 

(23) 1 1 2 
P(x,y) = Ven Fo] exp {-5(%,y)"C '(x,y) ’ 

the covariance matrix C' is in terms of the overlaps among the weight vectors associated 

with the various hidden units as follows ((.)¢ corresponds to an average over the inputs): 

e (xjx.)e = J; . I, = Qix (between the i-th and k-th student units) 

© (riyn)e = Ji. Bn = Rin (between the i-th student unit and the n-th teacher unit) 

© (Yn¥m)e = Bn. Bn = Tam (between the n-th and m-th teacher units) 

where 

C= er : (2.4) 
Reh 

The distribution is completely determined by Qix, Rin, and Tm. These elements 

are called order parameters and are sufficient to represent key features of the learning 

process. The parameters J,» are characteristic of the task to be learned and we mostly 

consider an isotropic teacher for which B, . Bn=4nm- The overlaps Qi, among student, 

hidden units and R;, between student and teacher hidden units are determined by the 

student weights J and evolve during training. 

13
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A gradient descent rule for the update of student weights is used: 

get = a — Ty € (3%, 6"), (2.5) 

where the learning rate 7 is scaled with the input size N in order to take account for 

the#fluctuations of the variables. The role of 7 is to determine the speed of the training 

process. By calculating V3 explicitly for this model, the rule becomes: 

jetta ye n bit ge 
i Ny Si (2.6) 

where 

M K 

6f = g'(x}) x a(yh) — a0) ; (2.7) 

’ is defined in terms of both the activation function and its derivatives g'. The time 

evolution of Rin = J; . B, is then given by: 

Bilt Re = 3 OP vt (2.8) 

similarly for Qi, = J; . Jz, it is: 

2 

i — Qh =F (6 a + Of ot) +e a aE. & (2.9) 

These equations, which are valid for any stationary task (ie. B, does not depend 

on time) are discrete. The terms on the right-hand side of the dynamical equations 

are fluctuating with the inputs. We are interested, however, in the mean behaviour of 

the network and averages of the observed quantities are therefore calculated. These 

averages should be computed over the inputs €, but it is entirely equivalent to calcu- 

late them over the probability distribution of the activations as all relevant quantities 

depend on the activations. Averaging the training error over all examples constitutes 

the generalisation error: 

€,(J) = (€(S,€)) ey 5 (2.10) 

14
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and its expression is in terms of the order parameters only [3]: 

6,(3) = ay Rect +h aresin fe 
VI + Qi JI + Que V1 in Vib Lim 

Rin a2 seal (2.11) 

where 1 < i,k < K sum over the student hidden units, and 1 < n,m < M sum over 

the teacher hidden units. It is also more convenient to work with continuous rather 

than discrete dynamics. The time used is t = 4 and the equations of R can then be 

written: 

AR, _ REY — Re. 
At 1/N 

By considering N very large, At becomes very small and the previous equation can 

  =oruy. (2.12) 

then be written in a differential form: 

dRin 
ae (diyn) - (2.13)   

The equations for Q’s are derived in the same way by considering equation 2.9: iS 

  

A i aes he & 2 

i = wate (dirk + dpa!) + + 5 (OSE. Ee. (2.14) 

Each input neuron is drawn from a normal Gaussian (zero mean and unit variance), 

therefore we can assert that: 

(Grog ea (2.15) 

and : 

  AGtt = n( stot + Stet) + n° OR6t (2.16) 

The large N hypothesis is called thermodynamic limit and allows one to neglect 

the variance of the fluctuations which are Fe) so that the average is sufficient to 

represent the dynamics. The equations found are [3]: 

  
dR; 

stiye 217 dt 1 (5: Yn) (2.17) 

in = (6 te + Se vi) + 7? (5: &) 5 

15
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The averages in the system above require the evaluation of two types of multivariate 

Gaussian integrals: 

¢ Iz = (g'(u) v g(w)), for terms proportional to 7, where the argument u of g’ is 

one of the components of x, while both v and w can be components of either x 

ory. 

e I, = (g'(u) g'(v) g(w) g(z)), for terms proportional to n?, where u and v are 

components of x while w and z can be components of either x or y. 

These averages have been calculated in closed form, and only involve the overlaps 

[3] (see Appendix A). 

2.2 Numerical solutions 

To obtain a full description of the learning dynamics we solve the system of equations 

(2.17) numerically (using Runge and Kutta technique). Initial conditions are selected 

to reflect our lack of knowledge about the task, i.e. to represent randomly chosen 

student vectors. Throughout this work we will use randomly drawn values from a 

uniform distribution for both initial student-teacher and student-student overlaps. 

The equations are solved numerically for the case of a two hidden nodes network 

learning an isotropic teacher (Zim = Snm) with the same architecture (Jf = M = 2). 

The evolution of the student-student overlaps (Qi;) and the student-teacher over- 

laps (Rin) are shown in figure 2.2. These curves show two plateaus, one charac- 

terised by Qi; * Q 6; + (1 — 6) C ,Rin © R Vi,j,n , and another one where 

Qi; © 5; , Rin © bin Vi,j,n, when the indices have been ordered appropriately. 

The first plateau for Q’s and R’s corresponds to a transient of the dynamics and the 

generalisation error is much larger than zero (see figure 2.3). This stage is called the 

symmetric phase and is characterised by a lack of differentiation between different stu- 

dent nodes. The second phase corresponds to exponential convergence of the order 

16
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0 100 200 300 400 500 600 0 100 200 300 400 500 
t t 

Figure 2.2: Evolution of the order parameters Qj, Rin for an architecture KX = M = 2 

(n=1.66) and an isotropic teacher. Two stages can be distinguished and correspond 

to the symmetric and convergence phase of the learning. Initial conditions are drawn 

from a uniform distribution. 

  0.05 

0.04 

Eq 0.03 

0.02 

0.01 

  

      
% 100 200 a 400 500 600 

Figure 2.3: Evolution of the generalisation error for an architecture K = M = 2 

(n=1.66) and an isotropic teacher (Tnm=5nm)- Two stages are observed and correspond 

to those of the order parameters. 
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parameters to their optimal values. The generalisation error also exhibits an exponen- 

tial decay towards zero (see figure 2.3) . This is termed the convergence phase and is 

characterised by the specialisation of each student node to a specific teacher node. 

Student vectors have different behaviours in each phase. They point towards the 

same direction within the teacher subspace during the symmetric phase and each one 

starts to point in the direction of a different teacher vector at the beginning of the 

convergence phase. Finally the student vectors become aligned with those of the 

teacher [3]. 

Specialisation is then a characteristic of the convergence phase only, although the 

system spends a long time in the symmetric subspace before escaping. For this reason, 

a number of studies have suggested modified training algorithms for getting rid off the 

symmetric phase, or at least reducing it significantly [5,6]. In chapter 4 we will suggest 

another modification, which is also shown to reduce this phase considerably. 

2.3. Summary 

A statistical mechanics framework is used to describe the learning process. For a real- 

isable stationary task (same number of hidden nodes in student and teacher networks 

where teacher vectors do not depend on time) we find two distinct stages called the 

symmetric and convergence phases respectively. Specialisation is the consequence of 

the convergence phase only. We now wish to apply this framework to a changing 

environment and this is the subject of the next chapter. 

18



Chapter 3 

On-line learning in a changing 

environment 

In order to derive the dynamics for learning non-stationary tasks, we need first a frame- 

work and then a complete description of the non-stationarity. A framework similar to 

that used for stationary systems is employed in conjunction with a generic description 

of task non-stationarity, in order to have as general result as possible. 

Below we derive the dynamics for a certain non-stationarity and compare the nu- 

merical and analytical results obtained to those corresponding to learning stationary 

tasks [3]. 

3.1 Modelling changes in the environment 

There are many possibilities for modelling temporal changes of the task to be learned. A 

particular example is the smooth rotation which we will focus on since it is amenable 

to theoretical analysis and may have some similar features to non-stationary tasks 

for which on-line learning is useful. Generally, teacher vectors can have all sorts of 

cross-correlations; here we will restrict our study to the case of orthonormal vectors 

whose non-stationarity is characterised by a single parameter. The fact that these high 

dimensional vectors are chosen randomly motivates the orthonormality assumption 

19
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which simplifies the analytical work. Furthermore, we will restrict ourselves to scenarios 

where both student and teacher have the same number of hidden nodes (K = M). Two 

restrictions on the task non-stationarity are then made: 

¢ smooth changes. 

e teacher vectors remain orthonormal. 

In order to study the dynamics, changes affecting teacher vectors should be explicit 

because of their influence on the equations for the dynamics. It is convenient to con- 

sider a linear non-stationarity of the form UV: Y — Y, where V is a vectorial space of 

finite dimension and the mapping is continuous. Teacher vectors remain orthonormal, 

so W transforms from one orthonormal basis to another i.e. V is an orthogonal trans- 

formation. The determinant of such a transformation is either +1 or —1, which makes 

the distinction between: 

e symmetries, with a determinant equal to —1, 

¢ rotations, with a determinant equal to +1. 

Symmetry is inherently a discrete transformation and therefore will not be con- 

sidered in this study. However, rotation is smooth as it can be defined in terms of 

infinitesimal processes. Rotating a vector with an angle w is equivalent to rotating it 

n times with an angle “ each and smoothness results from this property. 

Teacher vectors are then rotated slowly in the N dimensional space. A rotation 

of a set of vectors is not unique and we consider one type of rotation first. The 

initial teacher space is denoted T=vect(Bj,...,Bx), the whole space is represented by 

V=T @®T*. The rotation is N dimensional but it can occur either in a subspace (for 

instance T) or in the full space of dimension NV. The interest of this study is mainly in 

identifying student’s learning abilities when teacher vectors are changing and we will 

therefore focus on a simple case where rotations are in the initial teacher’s space T. 

Moreover, according to [3] (for stationary teacher vectors), the relevant dynamics are 

20
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mainly in the space J while dynamics in T+ are an artifact of the stochasticity of the 

learning process, which is influenced by the choice of training parameters (e.g. 7). 

Rotations are then restricted to the subspace spanned by the initial position of 

teacher vectors whose coordinates can be described in terms of a KX dimensional vector: 

B=] 1 nelement 

Teacher vectors are being rotated and as mentioned before, it is better to find a 

general transformation rather than a particular one. One can look at the reduction of 

a rotation in an orthonormal basis. 

Each rotation A can be represented by a matrix: 

  

      

  

10, 0 

0 

1 0 

A= : At : (3.1) 

0 0 

0 0 | A, 

      

in an orthonormal basis. The elements A; to A, represent rotations in fixed planes 

and therefore their expression is given by: 

cos@; —sin 0; 
A= (3.2) 

sinO; cos 0; 

21
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for a very small rotation frequency (i.e. small 0;), the matrix becomes: 

A= (3.3) 

The proof of the above result is given in appendix B. This reduction shows that 

a general rotation can be written as a set of 2 x 2 rotations. The building block of a 

general rotation is therefore the K = M = 2 case studied below. 

3.2 Learning dynamics and the K = M = 2 case 

The framework is now restricted to the case K = M = 2 in which a 2 hidden nodes 

student network is trying to learn a 2 hidden nodes non-stationary teacher where the 

vectors rotate but remain orthonormal. By assuming a very slow rotation, the non- 

stationarity is described by a transformation: 

10 0 -0 
A= + (3.4) 

hal Guano 

IT 

where @ represents the frequency of the rotation. Its order has not been defined yet. 

and is of importance for the equations derived later. 

The learning rule (equation 2.6) uses a scaled learning rate 7 to control the fluctu- 

ations. Similarly, the rotation should appear with a #% scaling to preserve the smooth 

evolution of the system, and therefore we denote 0 = §;. It is important to notice that 

the rotation is not a fluctuating quantity but to maintain valid dynamics, the learning 

rate and the frequency should have the same order in N. These orders enable us to 

derive smooth continuous differential equations for the order parameters. The matrix 
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A becomes: 

10 0 -% 
A= + eta (3.5) 

w 01 & 0 
ove 10 Ne liee omeAy, 

T AN 

The expressions for the new dynamics can be derived under the hypothesis that 

teacher vectors are continuously modified by A. The correlation between student and 

teacher vectors is given by: Ri, = J! . BY for the example ju. Therefore it is possible 

to write: 

eed 
Rin (t+ oer) . Bat 

2 2 

Jt. Be+ gt. Ans BY + S he! BEY ore : 2 AN, BY , 
j= j= 

where AN, indicates the element (n, j) of the matrix A%. By considering the difference 

in R before and after introducing example 1, 

  

Rett _ pe 2 2 

“Na 1 Stun tat. DON AN; BS tn 66". Do Ans BY. 
j=l j=l 

o(1) o(i/N) (3.6) 

By considering t = § as the time, the expression can be written as: 

ARin fi 2 1 o = ndtag +3 EN At, By +0(F] 4 (3.7) 
= 

The thermodynamic limit is applied (N — oo) which means that the number of inputs 

becomes very large while the number of hidden nodes is fixed. Terms of O() are then 

neglected compared to terms of O(1), and we obtain a set of differential equations: 

dRin 
2 

a=" (Siyn)2y + Ji >> N AN; BY. (3.8) 
ja 

A similar treatment is carried out for the correlations between student vectors (Qi;) 

showing that the result for a stationary environment in equation (2.17) remains the 

same. We denote P” the relevant order parameter expression for a rotation with angle 
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w. It is possible to write the dynamical equations for the K = M = 2 case: 

    

  

    

  

dRiy a dR yw 

ee ti ee 
dy dit, 

ea Eade mae a! 
dR, a ise eu ari +u Ri; (3.9) 

dk _ dR, 
a, pum ee 
dQ, _ AQ Qin _ AQ, dQt _ dQ 
dt dt’ dt diz dt dt 

The expressions of ae are given in equation 2.17 for the stationary case. The 

initial conditions used for solving the equations numerically are similar to those used 

in section 2.2. Learning abilities are then studied in this context. The behaviour in the 

case of w = 107° is qualitatively similar to the one observed in section 2.2. There are 

still two main stages of learning, the symmetric and convergence phases as observed in 

figure 3.1. 

Note that the symmetric plateau has a length around 100 in comparison to 400 in 

the fixed environment case (figure 2.2). The plateau is then much shorter when the 

task is non stationary which is shown clearly in figure 3.2 where the generalisation 

error is plotted for w = 10-° and w = 0. 

For larger values of w, the task becomes unlearnable as shown in figure 3.3. The 

behaviour is then dependent on the rotation rate w and to study the effect of non- 

stationarity on the symmetric and convergence phases we resort to an analytical study 

with some similarities to [3], based on expansions around the symmetric and asymptotic 

fixed point and then on considering the linear systems obtained. 

3.2.1 Symmetric phase 

When the environment is stationary [3], all student vectors in the symmetric phase 

are pointing towards the same direction and show no specialisation, the generalisation 

error is constant but much larger than zero. This phase is characterised by: 
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0 50 100 150 200 x 0 50 100 150 200 

t 

Figure 3.1: Dynamical evolutions of the order parameters for w = A012, p= 6b. — 

M =2. The dynamics are qualitatively similar to those observed in the fixed environ 

ment case. 

0.05 
7 = 1.66 

0,04) 

0.03) 

0.02) 

0.01 

  

0 100 200 300 400 500 600 
t 

Figure 3.2: Generalisation error of the K = M = 2 case for the fixed environment 

(w = 0) and rotating tasks (w = 10~°). These two curves are drawn for the same 

learning rates, n = 1.66. The symmetric plateau is shorter when the task is non 

stationary. 
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Figure 3.3: Dynamical evolution of Ry; and of ¢, for w = 0.1, K = M = 2. The task 
is unlearnable as the generalisation error is oscillating and remain high. 

e An unstable symmetric fixed point (in terms of the order parameters) of the dy- 

namics, which corresponds to the values at the plateaus observed in the evolution 

of the overlaps between teacher-student and student-student nodes 

e A corresponding plateau in the generalisation error 

¢ The symmetric subspace is escaped by the student-teacher overlaps (in) first, 

and then by the student-student correlation. 

As a first step we should find the new fixed point which is not at the same position as 

for stationary tasks (figures 2.2 and 3.1). As the frequency of the rotation is supposed 

to be very small, the new fixed point will be close to the one found in [3], and can be 

obtained by expanding around the stationary fixed point. 

Initially there are four R overlaps: 

¢ Ry and Roy, representing the projection of J; and Jz on By 

¢ Riz and Ryo, representing the projection of J; and Jz on By 
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Students vectors lie in the whole space of dimension NV. As the teacher’s orthogonal 

space is related mainly to the stochasticity of the learning process, its influence can be 

neglected if we assume a small learning rate which reduces the effect of fluctuations. 

Therefore we can assume that student vectors lie in the teacher space and the four 

teacher-student overlaps can then be reduced to two using the relations: 

¢ Ra = /Qu — Ri, 

e Ry = VQ2 a Ri 

The two variables (1; and R21) then describe the behaviour of all teacher-student 

correlations. To simplify the notations, we define R = Ry, and S = Ra. To reduce 

the number of parameters further, two different categories can be distinguished in the 

student-student correlations: Qj: which is the squared length of the i-th student vector 

and Qj; the inner product between J; and J; (i # j). It is therefore possible to write 

down: Qi; = Q 6; + (1 — 6) C. There are then only two variables representing 

the student correlations (Q and C) instead of the original three (Q11,Q12 and Q22). 

The reduction of the number of variables assumes a small learning rate value. This is 

motivated by the fact that the symmetric phase is more emphasised for small 7. This 

assumption enables us to neglect terms proportional to 7? in the dynamics presented 

in equation (2.17) and to exploit the simple relations between R and Q. The terms 

proportional to 1 will then be considered for finding the symmetric fixed point. The 

symmetric fixed point is defined when the system 3.10 is zero. 

        

  
  

    

  

      

    

dR 2n ( 14+Q-R? RVQ-R RR - eget) 0s 

dt m(14+Q) \V20+Q)- 2? V24Q4R? VIF2Q V+ QP-C? ; 

ds _ 2n ( 14+Q-S?  S/Q=-S? _S - Da SG) -o R 

dt ~ (1 4+Q)\ V20+Q)- 5? V2+Q45? VIF2Q V1+Q/P-C? s 

Ce a ( i pave ee g ) (3.10) 
dt ~ 7A+Q)\V2d+Q)-R V2+QtR? Vit2Q Vt+Qr-C}’ 

ac | _% (Se + ee 
dt” (1+Q) \ 20 + Q) = V24Q4R? 1+ Q)— 52 

7 UR O)VOS RE CyVOSS yee gacs) 

V2+Q4+5? vIF2Q “ Vl+QP-C?) 

This is a non linear system in terms of the four variables R, 5, Q and C. Finding 

an analytical solution directly is a complex task. However, as the non stationarity is 

27



CHAPTER 3. ON-LINE LEARNING IN A CHANGING ENVIRONMENT 

supposed to be small it may be assumed that the new fixed point is close to the one 

observed for a fixed environment which is given analytically by [3]: 

Ou = oS 

eo (3.11) 

where P*” indicates the symmetric fixed point value of an order parameter P corre- 

sponding to a rotation rate w. The fixed point for a changing task can then be written 

as: 

Qe =8Q eg 

CG” = C*+uwe," 

R’ = R’+wr*, (3.12) 

So = 8) Vast 

where w indicates the frequency of the rotation and q*, r*, c*, s* are deviations from 

the symmetric fixed point. 

The system of equations (3.10) is then in terms of q*, r*, c*, s*, can be linearised 

using Taylor series expansion in w which is assumed to be very small. The new sym- 

metric fixed point found corresponds to: 

qi ee —0)5 (3.13) 

ge eel 
‘oe 2 eee 

To check the validity of the assumptions made to find the symmetric fixed point, 

: ; lytical 
we compare the numerical and analytical values of: n( Rsymmetric — Roymmetric) for a 

eS 
teacher rotating teacher fired 

given 7 and for different values of w. The whole set of equations is solved numerically. 

We notice in figure 3.4 that the numerical and analytical solutions are equal for w = 0 

and remain very close for larger rotation rates validating the analytical work. The dif- 

ference observed results certainly from the fact that the original system is first modified 

by assuming that student vectors are in the teacher space, and then it is linearised. 
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Figure 3.4: Numerical and analytical behaviour of ( Rsymmetric — Feymmetric)» The 

teacher rotating teacher fired 
numerical and analytical values are very close to one another which validate the the 
expression of the analytical symmetric fixed point. 

So far, the fixed point has been found under certain assumptions. The next stage 

is to study the escape from the symmetric plateau. To gain insight for the escape 

from the symmetric phase in the non-stationary environment we will first review the 

mechanism of this escape in the fixed environment framework. ‘The student vectors, in 

that case, point towards the same direction (relative to teacher vectors) and the onset 

of the escape is characterised by a change in this direction in an attempt to imitate 

teacher vectors. The order parameters are as follows: 

Q = QO +4, 
Ot) Gal cs 

Res RY ter (3.14) 

SY = S45. 
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where w indicates the frequency of the rotation and q, r, c, s are deviations from the 

symmetric fixed point. In figure (3.1), it can be noticed that r and s escape before q 

and c. By assuming that student vectors lie in the teacher space it is possible to write: 

Q = FR? +S? and C =2 RB S and an expansion around the asymptotic values gives the 

results: Q = Q*+2R*(r+s) and C = C*+2R*(r+s), so q = cin the onset, of the escape. 

To reduce the number of variables further, we will make an assumption about. 

the linear expansion of the generalisation error around the symmetric fixed point: 

€,(P)=e,(P*)+Ve,(P — P*) (P denoting the system parameters). This is motivated 
Se 

by figure 3.2 where acer notice that a small deviation from the symmetric fixed point 

should not influence a lot the value of the generalisation error. The expression of the 

generalisation error is given in equation 2.11 , and it can be linearised by assuming a 

small % fatio. The relation above implies a simple relation between the parameters: 

16810 (r + s) — 5V15 r#(5V15 +r +s) 
q= To eine ‘ (3.15) 

The method used to reduce the number of parameters relies both on the fact that 

student vectors are in the teacher space and that the generalisation error does not 

vary a lot around the symmetric fixed point. It would have been possible to use only 

the former assumption and replace the expressions of Q and C by R? + S? and 2 RS 

respectively. 

The variables q, r, c and s have then only two degrees of freedom as they are linked 

by two equations. Asr and s seem to dominate the escape from the symmetric plateau, 

we choose them to represent the evolution of the system. The dynamics reduces to: 

  
  

a (as Lb yee 15 Js, 

    

a ave O70 isin 08 
ds 2/159 , 15 8V157 , Il asta. Dee 2 hay 3.16 
ee, +3 °) *- (Gee 7m”) 8 (5:16) 

This is a set of linear differential equations whose matrix is real and symmetric. It 

has then two real eigenvalues and a general solution of the equation (for two different 
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eigenvalues) has the form: ¢1 e.!'+ 2 e' where $1 and ¢2 are the eigenvectors 

associated to the eigenvalues \;, A2 of the matrix. An escape from the symmetric 

phase can be observed if one of the eigenvalues is positive, as negative eigenvalues 

suppress the related exponential. Therefore, the only interesting eigenvalue, in this 

context, is the positive one which corresponds to : 

4V15 53 
a + lel - (3.17) 
oS , 

fired environment 

Nee 

The absolute value of the rotation angle here results from an invariance to the direction 

of rotation. 

In order to check the validity of the assumptions made to reduce the number of 

variables, we study the positive eigenvalue of the linearised system of equation with its 

four variables: q, r, c and s and compare it to what is found for the reduced system. 

The new parts of the positive eigenvalue are compared to avoid scaling problems and 

the result is shown in figure 3.5. We notice that the curves are very close to one another 

for small values of w which validate the method used to reduce the dimension. 

The expression found for the positive eigenvalue is the most important result in 

this section. It shows that the positive eigenvalue which leads to escape from the 

symmetric phase is larger for the non-stationary case than for the fixed environment 

case. The escape is therefore much quicker as it is an exponential in \ (even if w is 

small). Although this result relies on the small 7 approximation it is carried over for 

higher learning rates as observed in figure 3.1. 

Summary of the symmetric phase 

The symmetric phase is characterised by a fixed point close to the one corresponding 

to a stationary task, and the length of the symmetric plateau is shortened significantly 

compared to the fixed environment. This important result is shown for a modification 

of the task represented by rotations, and by assuming that © and 7 are small. This 

last assumption has two implications used in the previous calculations, the first is that 
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0.0001       
Figure 3.5: Comparison of the analytical and numerical solutions for the new part of the 

positive eigenvalue. The curves are close to one another and therefore the assumptions 

made to reduce the dynamics are valid. 

w is also small and the second concerns student vectors (J;, J2) who are confined to 

the teacher space. 

The study of the eigenvalue of the escape gave insight to suggesting a better training 

algorithm as described in chapter 4. 
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3.2.2 Convergence phase 

In this second phase of the learning process we examine the final convergence of the 

model to the asymptotic fixed point. This was carried out in [3] for the fixed envi- 

ronment case where each student node specialises on a specific teacher node. In figure 

3.2 we show the evolution of the generalisation error; it is very difficult to gain insight 

about the effect of non-stationarity on the convergence phase because its scaling is 

much smaller than the one for the symmetric phase. Zooming on the tail of conver- 

gence (figure 3.6) reveals a residual error for a non stationary task i.e. learning is then 

not perfect asymptotically. 

  

  

    
  

460 470 480 490 500 

Figure 3.6: Generalisation error for w = 10-§ and w = 0 (7 = 1.66). The curve is a 

zoom on the convergence phase showing a residual error for the case w # 0. 

The convergence to the asymptotic values depends critically on the learning rate 7 

which we no longer require to be small. The whole system can be represented by seven 

equations of seven variables (Appendix C). The first important feature of the conver- 

gence phase is the asymptotic fixed point obtained by solving the system of equations: 

dRin .  dQik . 
= eis Sr ak ai 0 Vi,n dt 0 Vi,k (3.18)   
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By solving the system of equations numerically for different values of w and for a 

fixed 7, we obtain the curves shown in figure 3.7. 
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Figure 3.7: Numerical dependence of the asymptotic values of the order parameters on 

w (n=0.5). 
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The most important result shown by these curves is that Q12 is quadratic in terms 

of w unlike the other order parameters which are linear. By supposing that the fre- 

quency of the teacher rotation is small, the asymptotic point will be close to the one 

for a fixed task. Therefore, we expand the order parameters around the stationary case 

fixed point as follows: 

Ru=1ltrn, R=, Ra=ra, Ro =1 +722 

Qu =14+ a1, Q2= M2, Q2 = 1+ 92 - 

(3.19) 

By linearising the system of equations to first order in qi1, q12, 422) T11,712, P21, 722 

and then by expanding the solution of the linear system to second order in w, one 

can obtain approximated expressions for the asymptotic fixed point. The expressions 

found are complicated and given in Appendix D. By plotting the curves showing the 

dependency on w for the analytical asymptotic point, it is easy to notice that they are 

similar to those found numerically (figure 3.8). 

The asymptotic fixed point depends on both w and 7, so when the learning rate is 

modified the asymptotic point is modified as well. In order to study this, the general- 

isation error is calculated for this asymptotic point and its behaviour in terms of the 

two variables 7 and w is presented in figure 3.9. 

This curve shows first that the generalisation error is diverging for particular values 

n > 2.3. So when n > 2.3 defining the maximal learning rate which seems to be 

dependent of w. Another method based on an eigenvalue analysis giving the same 

maximal learning rate is examined later on. When n < 2.3, the error may have a 

non zero minimum with respect to the learning rate used for certain values of w. Some 

contours obtained by solving numerically the original system of equations 3.9 are drawn 

for different values of w in figure 3.10. 
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Figure 3.8: Analytical dependence of the asymptotic values of the order parameters on 

w (n=0.5). 
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Figure 3.9: Generalisation error at the asymptotic fixed point in terms of w and 

The optimal learning rate (denoted nopt_err) minimising the error seems to depend 

on w. Moreover by observing the curves in figure 3.10, it appears that it is increasing 

with the rotation rate. A numerical study of this property enables to plot figure 3.11 

implying that the optimal learning rate grows with the rotation rate. 

The learning rate nopterr minimises the generalisation error disregarding the speed 

of convergence. Before investigating the learning rate optimising the speed of conver- 

gence, we will examine the residual error. 

As I mentioned before, the asymptotic generalisation error remains non zero. To 

explain the residual error, we look at the projection of the first student vector J; on 
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Figure 3.10: The generalisation error increases according to w. The error seems to be 

minimised by a certain learning rate for each given w. 

the various teacher vectors. The angle 0 between J, and B, can be expressed as: 

Rio 6 =arctan{| ——] , 3.20 arc (3) ( ) 

and remains non zero even when the process converges (which explains the residual 

error). This is only one projection and there are many others; we then assume a 

residual constant “phase shift” between the dynamics of the teacher and that of the 

student which depends on the relation between the learning rate 7 and the rotation 

rate w. The angle 6 is then studied numerically for different values of w and the result 

is shown in figure 3.12. 

The dependence of 6 on w is linear implying that a bigger “phase shift” between 

the teacher and the student results from a bigger rotation rate. 

So far, the discussion focused on the minimum of the asymptotic error and not 

on the speed of convergence to a given asymptotic fixed point. Now we study the 

convergence speed by looking at the dynamics of a set of vectors representing deviations 
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Figure 3.11: The learning rate optimising the generalisation error increases according 

to w. 

from the asymptotic fixed point: 

Qu-Qir Qu- Qi 

Q12- Via Qn - V2 

Qa2 — O30 Qa2 — Qo 

‘ Ru- Rj, |=M] Ru- Ri, | > (3.21) 

Rae Re Ru— Re 

Ry — Ry Ra — Ry 

Roa — Roy Ra — Roy 

where M is the 7x7 matrix describing the system and P* indicates the asymptotic 

value of order parameter P. There are normally seven eigenvalues for M (equation 

3.21), and they are negative in a relevant domain for 7 when w is maintained constant. 

Among the 7 eigenvalues there are only two which dominate the dynamics on the long- 

time corresponding to the largest values and their dependence on 7 is presented in 

figure 3.13. 
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Figure 3.12: Dependence of the angle made by the projection of J, in the teacher 
space with vector B; for K = M = 2. The curve is a straight line implying a linear 

dependence. 

The eigenvalue \; is a non-linear function of 7 (for a fixed w) and negative for small 

n. The eigenvalue Xz is linear in 7. For large 7, 41 becomes positive and training 

does not converge to the optimal solution, defining the maximum learning rate mar as 

A1(Mmax) = 0. The value found for fmaz corresponds to that observed in figure 3.9. 

In order to identify the convergence time 7, which is inversely proportional to 

the modulus of the eigenvalues associated with the slowest decay mode, we expand 

the generalisation error to second order in our parameters. We find that the mode 

associated with the linear eigenvalue does not contribute to first order terms, and when 

7 is small controls only second order terms with a decay rate of 242. The learning rate 

Nopt-convy providing the fastest asymptotic decay rate of the generalisation error, is 

therefore either given by the condition Ax (MNopt_conv) = 2 A2(Nopt-conv) or alternatively by 

min,(A;) if A: > 2A2 at the minimum of 1. 

By observing figure 3.13, we can then say that the optimal learning rate corresponds 
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Figure 3.13: Dependence of the two most important eigenvalues describing the con- 

vergence to the asymptotic values when 0 < 7 < 3 for a fixed w=10~*. ‘The system 
corresponds to K = M = 2 case. 

to the minimum of A, (around 7 ~ 1.8) and is bigger than nopterr (figure 3.11). This 

comparison shows that this two learning rates are not similar and have different values 

for at least one specific rotation rate. 

The optimal choice for the learning rate could be to start at the fastest convergence 

n and then switch to the lowest error learning rate. 

3.2.3 Summary of the learning process 

Studying K = M = 2 case reveals that the symmetric phase is significantly shorter 

when learning non-stationary tasks as the eigenvalues of the system which determine 

the escape time are bigger than for a stationary environment. By assuming small 

rotation rate, the symmetric fixed point can be found by expanding around the fixed 
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point obtained previously for stationary tasks. This provides insight to suggest a 

better training algorithm shown in next chapter, which speeds up the escape from the 

symmetric phase. 

The study of the convergence phase has been carried out mainly numerically because 

of the complexity of the system of equations. We have found the asymptotic values of 

the order parameters for fixed 7, revealing a convergence to a sub-optimal fixed point. 

We examined numerically the generalisation error as a function of the learning rate 7 

for fixed values of w obtaining different minima with respect to 7. This result implies 

an w dependence of topt_err Which is the learning rate minimising the generalisation 

error for a given w. 

The speed of convergence is also investigated. We find another optimal learning 

rate Nopt-conv Which minimises the time needed to reach a given asymptotic fixed point, 

by studying the eigenvalues of the dynamics. 

For each rotation rate w, there are at least two optimal choices for 7 related to the 

convergence phase. One leading to an optimal value of the generalisation error and the 

other leading to the asymptotic fixed point very quickly. 

As convergence is imperfect, the residual error is studied by projecting one student 

vector on the corresponding teacher vector, finding a “phase shift” between the student 

and the teacher orthonormal basis i.e., the angle made by the student and the teacher 

vector learned by it remains a non zero constant depending linearly on the rotation 

rate w. 

Because of time limitations some investigations are left unfinished, such as the 

dependence of nopt_conv on w and the study of the general case of simultaneous rotations 

in several directions when any number of hidden nodes may be used. 
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Chapter 4 

Modified back-propagation 

When analysing the symmetric phase in the previous chapter we have noticed that the 

length of the symmetric plateau is shortened significantly by considering a permanent, 

rotation of the teacher vectors. We would like to use the insight gained for modifying 

the dynamics in the fixed environment case in such a way that will speed up the escape 

from the symmetric phase. This idea is motivated by the behaviour in the K = M = 2 

case: 

  

Figure 4.1: Teacher vectors (Bi, Bz) are orthonormal and remain fixed. Subtracting 

a part of the student J, to J, makes it farther from Jo. 

Subtracting from each student vector a part of the other vector may assist in break- 

ing the symmetric phase by separating student vectors which are pointing almost in 

the same direction. This way students are attracted to different directions, increasing 
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their correlation with different teacher vectors. Once the system has started converging 

this additional term is not useful anymore and should be switched off to allow for the 

convergence of the student network, The aim of this chapter is to analyse the system 

with the modified algorithm and to define to what extent it improves the training 

performance. 

The new learning rule can then be expressed as follows: 

JH = Bea oer (4.1) 

The same order in N is kept for both the learning rate and the coefficient ¥ to keep 

the dynamics smooth. The study of a non-stationary environment has been carried out 

by considering a simple case as it was the building block for the general one; in this 

case there is no need to restrict the study and the focus is immediately on the general 

configuration. However, one simplification will be taken by supposing that K = M. 

This case is amenable to analysis and corresponds to a realisable scenario [3] where the 

number of student nodes is the same as the number of teacher nodes. 

4.1 Dynamics for the learning process 

The environment is supposed to be fixed and teacher vectors are denoted B,. The 

teacher-student correlation, at a time ¢ is given by: Ri, = Jt. B,, therefore: 

Re = JB, 
N ctat “is t 

= (Ij +5, 6é'—— >i Jj). Bn (4.2) 
N wd k 

Ri, +4 Oe! Ba - 2 DR, 
N N ix 

so by considering two consecutive time steps: 

Regt — Rf yr a Oy 9 Yi Hen (4.3) 
k#i 

o(1) 

As done in the previous chapters, averages through the activations of the nodes and 

thermodynamic limit are performed to get continuous differential equations. For 
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teacher-student overlaps the dynamics are as follows: 

dRin 
dt 
  =1) (btn) — P2E Rin « (4.4) 

ki 

The equation for the student-student overlaps can be written similarly as: 

Qt = (IE + Fete - yt) Gee Hee! et y-ah 

NA NH 

= Qh+ + Fi (6fes + 52 Dyan pe 7) (4.5) 
Moai q#i 

Sah (doe i+ So: a6) +35 Ses Sat + atet e. coo 
ny! Nei 

a#i PAI a#i PAG 

After considering the averages of the fluctuating quantities and by examining the 

order of the expressions: 

OF =O tj 

= n (Sta! + dat) —y (Do Qi + Das) 
ane pts : q#t 

oa) 

= + T (S at6t + > xh 6h) Ee OSU Des) (4.6) 
q#i p#i gti p#I 

On) 
2 

1, (6465 ge). 
o(1) 

The last element is O(1) because it corresponds to the variance of the distribution 

of the inputs which is a normal Gaussian (zero mean and unit variance) for each 

component of €. The thermodynamic limit simplifies the expression above as terms of 

O(#) are neglected and the continuous differential equations is given by: 

aQij 
oe =n (6:05 + 5521) — 7 (D) Qpi + DL Aas) +10? (6:55) - 

pth q#i 

The new dynamics can then be expressed in terms of those for a gradient descent as 

follow (P7 indicates the order parameter P for the modified back propagation having 

a coefficient 7): 

  

dQ). dQ?. 

Wh = ON 5 (On + Om)» (4.7) 
p#h q#i 

dR}, dR§, aR ee | 
di di > 
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The elements ie are defined in equation 2.17. 

Numerical solutions of the system are carried out to observe the evolution of the 

learning process. To have a general idea, we look at the case of K = M = 3. To 

compare the learning process with and without the new term, it is useful to find the 

solutions of the IY = M = 3 dynamics in the original framework (equation 2.5). The 

numerical behaviour of the dynamics without a new term for the back-propagation is 

shown in figure 4.2. 

-- Fe, Pio 
Rex Foi n = 0.97 

  

  

400 600 800 1000 1200 0 200 400 600 800 1000 1200 
t t 

Figure 4.2: Dynamical evolutions of the order parameters for 7 = 0 corresponding to 

gradient descent (7 = 0.97) and for a K = M = 3 case. 
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CHAPTER 4. MODIFIED BACK-PROPAGATION 

The behaviour for the modified back-propagation is similar to the one for the gra- 

dient descent (figure 2.2) as observed in figure 4.3. 

  

  

200 300 400 500 600 0 100 200 300 400 500 600 
t 

Figure 4.3: Dynamical evolutions of the order parameters for y = 10-* corresponding 

to the modified gradient descent (y = 0.97) and for a K = M = 3 case. The graphs 
are qualitatively similar to those observed for y = 0. 

As mentioned before we focus here only on the symmetric phase. The length of the 

symmetric plateau has been shortened from 1000 when y = 0 to 400 when 7 = 10°. 

The reduction is emphasised in the graph for the generalisation error for both y = 0 

and + = 10~* (figure 4.4). 

This behaviour for small values of y seems to agree with the observation made in 

the beginning of this chapter and with the intuition which has motivated the study. 

An analytical study is then performed to explain the reduction of the length of the 

symmetric plateau and its dependence on the coefficient 7. 
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0.07 

0.06} 

0,05 

0.04 

0.03 

0.02 

0.01 

  

0 200 400 “ 800 1000 1200 

Figure 4.4: Generalisation error for y = 10~* corresponding to the modified gradient, 
descent (n = 0.97) and for a K = M = 3 case. The length of the symmetric plateau 

becomes shorter for 7 = 107°. 

4.2 Analysis of the symmetric phase 

As in section 3.2.1, the symmetric fixed point has to be calculated first. Initially there 

are Geen student-student overlaps and IX? teacher-student overlaps, however in figure 

4,3 it is possible to see that all Rin have nearly the same numerical value. This should 

be coupled with the fact that we should keep the differentiation between Rj; and Rin 

(i # n) as it is important for the escape from the plateau. So, the R’s will be described 

by two variables R and S as follows: Rin = R din + (1 — bin) S. The initial teacher- 

student overlaps are reduced then to two only on the basis of the numerical behaviour 

of the system. 

Student-student overlaps have a similar behaviour except for the gap observed, in 

figure 4.3, between Qj;, i # j and Qi, and which vanishes for small » when y = 0 [3]. 

They can be written as: Qi; = Q 6;;+(1—6i;) C, and then be represented by 2 variables 

only. The symmetric fixed point is then described by 4 variables Q*, R*, C*, S* which 
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makes the system of equations below equal to zero: 

dQ 
dt 

dR 

dt 

ds 

dt 

dc 

dt 

        

  

  

  

  

4n R : (2 ee eee ) 

m1+Q)\V20+Q)-R? J20+Q)-S? Vit20 V1+Q)-C? 

2(K-1)7C, 

2n ( 14+Q-R? (K-1)RS OR 

m14+Q)\V20+Q)—R? V2 +Q)- 5? Vi F2Q 

(H =1)S(1+Q)=RCUK=1)\ : 
Va+Qyp—c? ph) y(K-1)S, (4.8) 

2n 1+Q-(K=1)S? | SR ee 
m1it+Q)\ §20+Q)-S? 20+Q)-h Vit2Q 

(R+ SUK —2))\(1+Q)—CS(K -1)) _ as 
(A) 7 (R+ 5(K —2)), 

4n (See Me 
m1+Q) \ V20+Q)- W+Q)- 9 

(4+ Q)(Q+C(K-2)-C'(K-1) oe i ae 

Vino=c a Trem) 2709 + CK = 2). 

As in section 3.2.1, this system is not linear in terms of Q, I, S, C. ‘To linearise it, 

the coefficient 7 is assumed small, which is consistent with values found to work well 

in practice used (see figure 4.3). The new fixed point should then be close to the one 

found for a classical gradient descent [3]: 

cee 

12K =12 
Pst ae 1 

JK(QK —1)~ 

Ou (ey (4.9) 

The new fixed point can be described as an expansion around Q®, C°”, R°, S° with 

respect to y. The variables used are as follows: 

QQ" = OB +70", 

Ce = CO +7, (4.10) 

RY = R’+yr*, 

Sg oy hy 3 

where P7 indicates the value of the order parameter P for modified back-propagation 
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with a coefficient y. The symmetric point is then given by: 

Pat on = CEO = K ~ NVI + I (4.11) 

peat K@k-)i 
pe ere 1 ayia 

1 7 pape 
2K 2 (2K — 1)? 

In order to know the reliability of this analytical result, we compare the numerical 

and analytical values of: 7( symmetric — Foe) (BP indicates back-propagation) in 
—— 
modified BP classical BP 

the case K = M = 8 for a given 7 and for different values of y. The set of equations 

is then solved numerically. We notice in figure 4.5 that the numerical and analytical 

solutions are equal for y = 0 and remain very close which validate the analytical 

expression of the symmetric fixed point. The difference observed results certainly from 

the fact that the original system is first linearised then solved. 

  

anvalyricat 
n( Reymmetric — symmetric) 

mpdificd PP drssical BP 5 1 1e-06 

    

   
    

  

: y 

-te00 "+. numerical 

el 
n = 10-6 

e07 analytical 

4-07       

Figure 4.5: Numerical and analytical behaviour of )(Rsymmetric — Reet) for the 

modifed BP classical BP 
case K = M = 3 (BP indicates back-propagation). The numerical and analytical values 

are very close to one another which validate the expression found for the analytical 

symmetric fixed point. 

We will now look at the escape from the symmetric phase. The order parameters 
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are then as follows: 

I Q” Qr +a, 

Ct = CV +c, (4.12) 

R= R4+r, 

SU = SY 45. 

By expanding to first order in q, r, c, s the expressions of Q and C' (Q = R? + S? and 

C = 2RS, as the teacher orthogonal space is neglected), it is possible to find that q = ¢ 

at the onset of the escape. 

To reduce the number of variables further, we will make an assumption about 

the linear expansion of the generalisation error around the symmetric fixed point: 

€)(P)=€(P*)+Ve(P — P*) (P denoting the system parameters). This is motivated 

by figure 4.4 where the car notice that a small deviation from the symmetric fixed point 

should not influence a lot the value of the generalisation error. The expression of the 

generalisation error is given in equation 2.11 , and it can be linearised by assuming a 

small 2 ratio. The relation above implies a simple relation between the parameters: 

168/10 (r +s) — 5V15 2(5V15 +r +5) 

12(14V/15 — 5277) ee) q 

The method used to reduce the number of parameters relies both on the fact that 

student vectors are in the teacher space and that the generalisation error does not 

vary a lot around the symmetric fixed point. It would have been possible to use only 

tlie former assumption and replace the expressions of Q and C by R? + S? and 2 RS 

respectively. 

The initial four parameters q, r, c and s have therefore only two degrees of freedom 

as they are linked by two equations. Then the dynamics can be written as a linear 

system in r and s by keeping first order terms in 7 in the Taylor expansions: 

* 
‘ "| = [-nk (aK -1)3 G7 VIRFI H] (4.14) 

s s 
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where: 

(4K? — 5K 4+ 2) 4(K —1)(2K? — 2K +1) oe (4.15) 
4(K —1)(2K? -—2K +1) 2(4K% — 8k? + 5K — 2) 

and 

(K = 1)(r(K —1)(47 4+ (K —1)(4(8K4 + 1643 — 60K? + 

26K — 15) + 12K —6) 54K — 15) + 6(K —1)(2K —1)) 

He 

(x(8K4 + 16K? — 60K24 (n(SK5 4+ 4K4 — 74K? + 111K? + 

454K — 15) + 6(K —1)(2K —1)) —67K +15) + 12K? — 30K? + 24K — 6) 

The escape is described by the positive eigenvalue as it has been explained in section 

3.2.1. Here, it is given in terms of the positive eigenvalues calculated for gradient 

descent and an additional term: 

nk 

V2K — In(2K +1)? aE Ne 
back—propagation 

(4K? — 2K? + 3K —2)y 
(2K + DK —1P 

  NS see) + 

(4.16) 

The new part in the eigenvalue is positive as 7 is taken positive by definition. This 

explains the shorter length of the symmetric plateau for the adaptive gradient descent 

shown in the numerical solutions (figure 4.4). This important result has been found 

under assumptions motivated by the numerical behaviour, i.e. 2 small implying that 

also y is small. Although the result found relies on the small 7 approximation, it is 

carried over for larger learning rates as observed in figure 4.3. 

To examine the validity of the assumptions we study the positive eigenvalue of the 

linearised system of equations with its four variables: g, r, c, s and compare it to 

what is found when the system is reduced. To avoid scaling problems, only A}. values 

are compared. The parameters chosen are consistent with the assumption presented 

above. The curve obtained is shown in figure 4.6. 

The curves are close to one another which implies that the assumptions made for 

the analytical study are valid. 
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Figure 4.6: Numerical and analytical values for \}. The solid curve corresponds to the 

analytical solution and the dashed curve is the numerical one. The coefficients are as 

follows: n = 10-? and y = 10-4. 

4.3 Summary 

The modified back-propagation proposed in equation 4.1 shortens the symmetric plateau 

significantly. However, this result is shown here for a realisable scenario only (IK = M) 

and under certain assumptions for the coefficients used, nevertheless, we expect a sim- 

ilar behaviour for other training scenarios. 
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Conclusion 

The aim of this study was to examine the effect of task non-stationarity on the learning 

dynamics in an on-line learning scenario. 

Non-stationarity has been modelled by rotations. This implies that the general 

case (any KX and M) is built by 2 x 2 blocks representing rotations in a system with 

two hidden nodes. By solving numerically the dynamics for the case K = M = 2 

it has been found that the length of the symmetric plateau is much shorter for non- 

stationary tasks. The theoretical study based on expanding around the fixed points and 

finding the positive eigenvalue of escaping the symmetric phase, confirms the numerical 

solutions as the positive eigenvalue is bigger than that for the stationary case. 

This behaviour has given insight for suggesting a modified back-propagation algo- 

rithm speeding up the escape from the symmetric plateau. It is based on subtracting 

from each student vector a part of the others, speeding up their separation. This mod- 

ified gradient descent is used only in the symmetric phase and has been studied for a 

general scenario where the number of hidden nodes of the teacher and the student are 

both the same. Numerical solutions show a decrease in the length of the symmetric 

plateau and the analytical work confirms this behaviour. 

The second important phase of the learning process is the convergence phase. Un- 

fortunately, even if the system escapes quickly from the symmetric subspace it is not 

converging well as the generalisation error is larger than zero for the case of non- 
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stationary tasks. The asymptotic values of the order parameters are found analytically 

and are consistent with those obtained numerically. The generalisation error is then 

plotted in terms of the learning rate 7 and the rotation frequency w showing a diver- 

gence for certain values of 7 defining Nmaz- 

The dependence of the residual generalisation error on 7 for fixed w is curved and 

has a minimum for a certain value of 7. This value of n enables us to have the minimal 

value for the generalisation error for a given rotation rate, although it has no relation 

with the time needed to reach this asymptotic value. 

To minimise the convergence time, 7? terms are kept in the dynamics and the 

dependence on 7 of the two largest eigenvalues of the linear system of equations around 

the asymptotic fixed point is studied. It enables us to find the learning rate minimising 

the time needed for convergence as well as the maximal learning rate. 

The dependence of the learning rate optimising the time needed to reach the asymp- 

totic point in the K = M = 2 case on w is not investigated in this work due to lack 

of time. It also would be interesting to look at the general case for which there is 

any number of hidden nodes for the teacher and student and which is characterised 

by simultaneous rotations in several directions. This study is complicated because of 

the number of variables used and the new dynamics are not clear as all the vectors are 

rotating with different velocities. 
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Appendix A 

Equations for a fixed environment 

These results are taken from [3]. The set of dynamics is as follows: 

dRin 
Ta = 7 (8 Yn) 

Se = (6 xr) + nde vi) + 9?(5: dx) - (A.1) 

The averages in Eq. (A.1) require the evaluation of two types of multivariate Gaus- 

sian integrals. Terms proportional to 7 involve the three-dimensional integral 

Ig = (g'(u) v g(w)) , 

where the argument wu of g’ is one of the components of x, while both v and w can be 

components of either x or y. The term proportional to 7? involves the four-dimensional 

Gaussian integral 

I, = (g'(u) g'(v) gw) 9(2)) 5 

where u and v are components of x while w and z can be components of either x or y. 

‘The expressions for the derivatives become: 

  

ai f AE nGmm=ToGmah 

on a r{E Hm Toba} +f Albsiomd— C esd} + 

0? {x Iy(t, k,n, m) — 2) I(t, k,j,n) + Enh} ‘ (A.2) 
nym it jm 
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The arguments assigned to J3 and I, correspond to the convention used to distin- 

guish between student and teacher activation (7, 7 ,... for students and n, m, ... for 

teachers). So, Is(i,n,j) = (g'(xi) yn g(x;)), and the average is performed using the 

three-dimensional covariance matrix C3 which results from projecting the full covari- 

ance matrix C (defined in chapter 2) onto the relevant subspace. For Js(i,n,j) the 

corresponding matrix is: 

Qi Rin Qis 

Cs ='| Ria, Tne R;. 

Qis Rin Qi 

The two multivariate integrals in Eq. (A.2) can be performed analytically for g(x) = 

erf(x/1/2). Is is given in terms of the components of the C3 covariance matrix by 

  

2 1 Ca3(1+ Cir) — Cr2Cis fee 1) = Cr2Ci3 A3 eee 1ECa , (A.3) 

with 

A3 =(1+Cn)(1 +\Cs3)— Ci, z (A.4) 

The expression for J, in terms of the components of the corresponding C4 covariance 

  

matrix is 

(A.5) 

where 

Aq = (1+ Cu)(1 + C22) — Ch , (A.6) 

and 

Ao = AgC34 — Cr3Coa(1 + Cr) — CisCra(1 + C2) + C12Ci3C24 + Cr2C14C 23 , 

Ay = Aq(1+ C33) — C3,(1 + Cnr) — C2,(1 + C22) + 2C12C13C2s 

Ay = Ag(1+ Cus) — CZ4(1 + Cr) — C2y(1 + C22) + 2C12C14C ra - (A.7) 

58



Appendix B 

Canonical form for an orthogonal 

linear transformation 

Theorem: 

For a real vector space Y of finite dimension, a linear transformation such that 

wb: VY — Vand * the adjoint of y, it follows that 

y* = I & Fan orthonormal basis B such that # is expressed as follows: 

  

      

  

‘Lat Bee 0 

0 

1 

-l 0 

fe : ee : aa cos 0; —sin 0; 

-1 sinO; cos0; 

0 Ay 

0 

0 Ap 

     



Proof: 

There is an equivalence to show. The part (<=) of the equivalence is easily shown by 

calculating y7)*, which is equal to J. The proof will now focus on (=>) part of the 

equivalence. 

Vx € V ||v(x)|| = [|x| because ~ is orthogonal, therefore if \ € Sp(y)' then 

JA] = 1. But A is either real or complex, let’s then suppose that there exists a real 

eigenvalue denoted \. It can have two different values: 1 = 1 or \ = —1. We consider 

the two vector spaces: €; = ker(7) — I) and €_, = ker(y + J). They have in common 

the vector 0 only, they are then ina direct sum which will be denoted F: F = & @E-1. 

Lemma: 
  

For any orthogonal operator u, if a vector space F is invariant under u then its orthog- 

onal complement is also invariant under u. 

~ Let's show this lemma. First of all, if u(Z) € # then let x € BE and y € E*. We 

know that u(x) € E so u(x) . y = 0. This is equivalent to x . u*(y) = 0, which is valid 

for any x. Therefore u*(y) € B+. We have shown that: u(Z) C E > u*(E*) C E+. 

We also know that there exists a polynomial P such as u = P(u*) (basically because 

u and u* have the same eigenvectors corresponding to conjugate eigenvalues), thus it is 

correct to write: u(B+) C E+. We have thus shown that: u(B) C E > u(E*) ¢ E*. 

For more details on this proof, see [7]. 

We can notice that #(F) C F so i(F*) c F+ and p*(F+) c F*. The mapping 

v = p+" has the property that v* = v and as v is a real mapping it can then be 

diagonalized ?, The mapping v satisfies the relation v(F*+) C F+ because and * 

satisfy it, therefore it is possible to say that the mapping v,rx (restriction of v to FS 

Ispectrum of 1 or set of its eigenvalues 
4for the proof, see [8] 
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can be diagonalized. It is therefore possible to write 3x € F+ (x #0) JA € K (space 

of the real numbers) such that v(x) =A x. 

Then (% + o*)(x) = \ x, therefore ?(x) = —x +A (x). So the vector space 

F, = vect(x, )(x)) is invariant under *p. If dim(/1) = 1 then Sy such that w(x) = px, 

pe is then equal to +1 (as 7 is orthogonal) which implies that x € F but we know 

that x € F+ so dim(F,) = 2. Consider the operator 1 = #/p,; its determinant is +1 

and if it is —1 then Jy € FN F which is impossible. So, 7; is a rotation. Then the 

vector space: F! = EF, @ E_1@ F; is invariant under # and we can continue the process 

by induction on the dimension of the vector space. We will then be able to write the 

whole space as a direct sum of E,, Ez, Fi, ---, Fin (the spaces I; are found exactly as 

F,). The application can then be written as shown in the theorem in the basis made 

by those of Fy, £2 and F;. 

61



Appendix C 

Full set of the dynamics for the 

Kk = iM = 27ease 

        

    

    

  

  
    

ahi _ 2 a 14Qu-Rh _ Ruki eee eis 

dt m(14+Qu) | 242Qn— Ri 24+2Qu-R_ VIF20n 
Ra(l + Qu) — RuQw = | -— Ry 

(1+ Qi)(1 + Q22) — Qo 

dR. aD n 14+Qn— Ri a Riu Ri2 = Ri 

dt m(1+Qi1) 24 2Qn — Ri V2+20n- Fi, V1+20n 

Raa(1 -R e 2o(1 + Qi1) 1212 | ae 

(1+ Q11)(1 + Q22) — Qf 

dR in n 14+ Qn — R3, is Ro Roo i Ray 

dt m(1+Qn) |/2+2Qn— RR 2+2Qn— FR, VI +202’ 

Rill —R. = 11(1 + Qa2) Le mee On) nie 

(1+ Qi1)(1 + Q22) — Qf2 

dR te a5 1 1+ Qa — Rip ae Ra Raz ma Rx 

dt ™(1+Q1) | /2+2Qm— Rh Y2+2Qn—FR VI +202" 

os Ria(1 + Q22) — Ro2Qi2 aie on BERS 

(1+ Qu)(1 + Q22) — Qin 
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dQu ieee Ru 4 Ria weer Ota 

uw m1+Qu y2+2Qn — Ri, 2+ 2Qu — Ri, v1 +20n 

ne Fang 
(1+ Qu)(1 + Q22) — Qf 

41? 14 2Qn — 2Ri, este @ i 2K}, 
+ VI 20 a oem [ein (ee + arcsin 2440 — 2R3, 

—2RuRi2 
24 4Q11 — 2R2,\/2+4Q1 — 2K}, 

2aresin Fe ee ony] 
VIF 8Q11/2 + 4911 — 2K}, 

( Rog + 2Q11 Roe = 2Ri2Q12 ) 
— 2arcsin 

+ 2arcsin 

vl + Qaa t+ 2Q11 + 2Q11Q22 — 2hry2 +4Q11 — 2Ri, 

2arcsin fig ata) 
VIF 3011/2 + 4011 - QR, 

(1+ 2Qi1) Rar — 2RnQu ) 

V1 + Gan + 2Qi1 + 2Q11Q22 — 2QFay/2 + 401 — 272, — 2arcsin   

  + arcsin (—@"_) 4. aresin (qin tonto) 
14+3Qu Ul Oar 20 2010 — 207, 

ae
 2 arcsin (ee ee 

VIF 3Qu 1 + Qa2 + 2011 + 2Q11Q22 — 2Qi2 
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dQi2 1% n Rir(1 + Q2a) — Qi2ka a Rio(1 + Q22) — Qi2ko2 

dt m(L+Q22) | \/2-+2Q2 — Ph 24 2Qn — Fy 

Qu(l + Q22) — Qi Qi 

V1 + Qo + Qiu + Q11Q22 — Via V1 + 2Q2 

7 Ra(l+ Qu) — Q2Ru 4: Rye(l+ Qu) — Qi2hi2 

mL+Q1) | /2+2Qu- Rh V2+2Qn — Ri, 

  

  

2   at
 

f Qoo(1 + Qui) — Qin __ Qe 

eeOs POReCORQ mm On awl con 

ie er a 0 ee ae 

my/ (1+ Q22)(1 + Qi) — Qin 

[csn ( (1 + Qur)(1 + Qo) — Q3, — (1 + Qui) Ry — (1 + G22) Ri + 2Qr2ir Rar ) 

2(1 + Qur)(1 + Qo) — 293, — R3i(1 + Qui) — Rix (lL + Q22) + 2Qi2Ri1 Rar 

(1+ Qur)(1 + Qa2) — Qty — (1 + Qu1) Rj — (1+ Qz22) Rip + 2Q12Ri2loa ) 

(1+ Qir)(1 + Qa2) = 203, — R3(1 + Qui) — Rfo(1 + Q22) + 2Qi2hi2 loo 

Dean ( —(1 + Qi1) Rar Roe — (1 + Qa2) ir Riz + Qi2Rir Raz + Qiakialear 

yr + Qu)(1 + Q22) = 2Q72 — F3i(1 + Qir) — Ri (1 + Qa2) + 2Q12hii Rar 

+  arcsin (; 

  
  

1 

y2u + Qur)(1 + Qo2) — 2Q3. — R3o(1 + Qur) — Ri2(1 + Q22) + i.) 

arcana (* + Qi1)(1 + Qo2)Rir — Qi2Rar — Qu Ri — Q2Quhu 

V1 t+ Qaa + 2Q11 + 2Q11Q22 — 2Q2 

if 

yu + Qi1)(1 + Qa2) — 293, — F3,(1 + Qur) — Ri,(1 + Q22) + aE) 

aaner (2 + Qii)(1 + Qa2) Raz — Qr2 Roe — Qi Riz — Qirleo2Q22 

V1 + 2Q22 + Our + 2Q11Q22 — 2040 

1 

v2 + Qi1)(1 + Q22) — 2Q 7 — Rh2(1 + Qir) — Ri2(1 + Qz22) + ac) 

oles (4 + Qur)(1 + Qa2) Riz — Qi2Ro — QuRia — Quhi2Q2 

V1 + Qo2 + 2Q11 + 2Q11Q22 — 2Qi. 

1 

20. + Qu)(l + Qo2) = 2Q Ps — F2(1 + Q11) — Ria(1 + Qo2) + aa) 
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‘ . (“ + Qi1)(1 + Qa2) Ror — Qo2Rar — Qi2ir — Qui Rar Q22 
—2 = arcsin 

V1 + 2Q22 + Qu + 2Q11Q22 — 207, 

1 

V2 + Qii)(1 + Qr2) = 2Q 22 — FBA(L + Qr) — R3(1 + Qaz) + EE) 
  

  

  

  

  

  

eas ( + Qu)(1 + Q22)Qu = Op = Gil + 2n)) 
1+ Qaz + 2Q11 + 2Q11Q22 — 2072 

cedearcrin (ee eee a ae i) 

1+ 2Q22 + Qi1 + 2Q11Q22 — 2Q32 

. ( (L+ Qui)(l + Qo2)Qi2 = (1 + Qi) Qi12Q22 = QuQi2 ) 
+ 2arcsin : 

vi + Qa + 2Q11 + 2011922 — 20/1 + 2Q22 + Qui + 2Q11Q22 — 2Q7e2 

dQz2 4 7 Ra zt Rx ___ Qn 

a m (14+ Q2) | \/24+2Q22— FR, (2+ 2Qn— Rh, VI+2Q22 

= Qu 
(1+ Qi)(1 + Q22) -— Qf 

47? + 2Q22 — 2K: ~ (1+ 2Q22—- oa) 

t arvieaton eae [erin (; +4Qn ie) are ( + 4Qn — 2Ry 

SOR Rn ) 
+ 2arcsin | ———_—_—_———————— 

2 +4Q22 — ee +4Q22 — 2} 

2arcsin ete] 
vi+ ae 1 oo — 2R}. 

( Riui(1 + 2Q22) — 2RaiQi2 
2arcsin   

V1 + 2Q20 + Qi + 2Qi1 22 — 2Q2ay/2 + AQa2 — 203, 

2arcsin ae ea) 
vi+ a op Th — 2K} 

(1+ .2Q22) Ria = 2RaaQua 
2aresin 7 

Vi + Qo + 2Q11 + 2011922 — 20/2 + 4Qo2 — 29}, 

  

— 902 
+ arcsin ( Qa } + arcsin ( Ou + 20nQx = 202 ) 

1+ 3Q22 1+ Qaa + 2Q11 + 2Q11Q12 — 2Q72 

+ 2 arcsin ee See | 
VIF 3Q2ay/ 1 + Qo2 + 2Q11 + 2Q11Q22 — 207 
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Appendix D 

Asymptotic fixed point for the 

kK = M=2 case 

=1- w x (-1890V3 nr? 1? V2 +3465 9? x? — 1008 mn? V3 V5 — 1134 nt V5 

+ 2562 4 — 1890 n° V2 4 +1134 9? V5 w V2+4945 2? 9? V5 — 315 V3 2° 9 

— 183007? w m+ 14445 V3 7? w n V2 — 22935 9 7? w+ 1785 V3 ww 

= 8667 n? V5 w nr? V2 +8100 w m9 V5 + 1554 V3 wy? 4+ 14445 9? V2w 7? 

— 8396 7? V3 w x? + 6096 7? V5 V3 1? w— 8415 9 V5 w n°) / 

1? (90 V3 x? n V2 —165 9 x? +48 V3 x 9? V5 +54 0° V5 — 122 n° +90 9? V2 

—54 wn? V2 V5 —45 2? n V5 —74 1? V3 +15 v3 7°) 

= a w? x? (4530 ny V2 — 3100 n? x ~ 906 9°V5 wV6 + 864 °V15 

— 19527°V3 — 780V3 mnv5 — 2550V 30? + 2112 nn? V5 

+ 1510 n? V2 V3 1 +525 n°) / 

7? (90 V3 x? n V2 —165 n 72 +48 V3 © 9? V5+54 9° V5 — 122 9° +90 9? V2 

—54 wn? V2 V5 —45 0? » V5 — 74 0? V3 +15 V3 2°) 
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1+ a wm (-1890V3 x? n? V2 + 3465 4? x? — 1008 « n° V3 V5 — 1134 9 V5 

2562 4 — 1890 ? V2 x + 1134 9° V5 x V2 4945 0? 4? V5 —315 V3 3 

183007? w m+ 14445 V3 1? wn V2 — 22935 7 7? w+ 1785 V3 ww 

8667 1? V5 w x? V2+48100 w x n°? V5 + 1554 V3 wn? 414445 9? V2 2? 

8396 7? V3 w x? + 6096 0? V5 V3 7? w — 8415 9 V5 w 7°) / 

? (90 V3 x? n V2— 165 n 7? +48 V3 wn? V5 454 n° V5 — 122 9° +90 9? V2 

—54 9 9? V2 V5 —45 0? n V5 —74 9? V3 +15 V3 7°) 

1- z wr (-1260 V3 1? nt V2 + 2310n? x? — 672 © v3 V5 — 756 4 V5 

1708 n* — 1260 n°V2m + 756n°V5r V2 + 630777? V5 + 10367? V3x 

210V3n3 1 — 122007? wa + 9315V3 29 wm? + 41760? V5V30? w 

1785 V3r'w + 5400wrn? V5 — 15255 n ww — 57849? V3 wr? 

9315 n?VQw x? — 5967 9 Vowx? — 5589 0? V5 w x? V2) / 

? (90 V3 x? n V2 —165 9 7? +48 V3 01? V5 +54 9° V5 — 122 ? +90 1 9? v2 

—54 wn? V2 V5—45 2? n V5 —74 9? V3 2 +15 VB 7°) 

4 pom (3108 9x — 1708y4V3 + 630yx° + 756n'V3V5 + 3780n? n° V2 

630.V3079? V5 — 756 n° V5 « V6 +2016 7? x V5 — 2310 ye V3n? 

1260 1° V6m + 6480 ?V6 w x? — 8784 9° V3 wr — 111607 V30%w 

13572 7? w 7? +9504 w x? n? V5 — 3888 wa?n?V/30 

4725 ww + 19440 w x n V2 + 3888 w x 9° 15 — 42667 1° w V5) / 

1? (90 V3 1? 9 V2 -—165 n 1? 448 V3 «1? V5 +54 ° V5 — 122 n° +90 7 1? v2 

—54 w 9? V2 V5 —45 x? n V5 — TA? V3 0 + 15 V3 2°) 
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-4 wn (—3108 9°x — 1708" V3 + 630nx9 + 7561 V3V5 + 3780n? 9?V2 

630/329? V5 — 756 n° V5 x V6 + 2016 9° x V5 — 2310 9° V30? 

1260 2V6r + 6480 n?V6 w x? — 8784 n° V3 wr — 111607 V37w 

13572 ? w x? +9504 w x? 1? V5 — 3888 wr?n?V/30 

4725 rw + 19440 w 13 V2 + 3888 w 1 9° V15 — 4266n 79 w v15) fi 

1? (90 V3 x? y V2 — 165 y x? +48 V3 mn? V5 +54 0° V5 — 122 9° +90 0 9? V2 

—54 m9? V2 V5 —45 0? n V5—74 9? V3 7 +15 V3 2°) 

1+ x wr (-1260 V3 x? 9? V2 + 23100? x? — 672 m n° V3 V5 — 756 94 V5 

1708 4 — 1260 9°V2m + 756° V5 V2 + 630079? V5 + 1036? V3e 

210VBx* 1 — 1220079 wr + 9315V3 1° w x? + 41767? V5V30? w 

1785 V3rtw + 5400w27? V5 — 15255 9 ww — 57849? V3 wr? 

9315 9? V2Qw x? — 5967 9 Viwm? — 5589 1? V5 w x? v2) / 

1? (90 V3 x? n V2 —165 9 1? +48 V3 0 1? V5 +54 9° V5 — 122 9° +90 x 7? v2 

54 1? V2 V5 —45 0? V5— 14? V3 H+ 15 v3 7°). 
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