Automatic Incident Detection in
Video Surveillance

PIERRE BEGUERIE
MSc by Research in Pattern Analysis and Neural Networks

”
<

ASTON UNIVERSITY
August 2006

This copy of the thesis has been supplied on condition that anyone who
consults it is understood to recognise that its copyright rests with its
author and that no quotation from the thesis and no information derived
from it may be published without proper acknowledgement.

ASTON UNIVERSITY

Automatic Incident Detection in

Video Surveillance

PiERRE BEGUERIE

MSc by Research in Pattern Analysis and Neural Networks, 2006

Thesis Summary

A new generation of video based detection systems for use outside has recently been
developed. They are intelligent detection systems which provide automatic surveillance
through real-time video analysis and event detection. In doorway scenarios, the goal
of such systems is to be able to automatically detect any incident occurring in front of
a door.

This thesis introduces several tools useful to create an automatic incident detection
system in video surveillance. Every event occurring in the scene filmed by the camera
is first detected. Then, classification techniques will be described so that a robust
human classifier can be constructed; assuming the humans are the only objects able to
cause an incident. A probabilistic video tracking algorithm will then be presented. It
will be used to track the detected human beings over time in order to estimate their
trajectories and know if an alarm should be given or not by the system. The theoretical
backgrounds to these tools will be explained. Some results will also be shown. Toy
data will first be used to validate the different tools separately. Global results on real
data will be displayed at the end of the thesis.

Keywords: Video Tracking, Motion Estimation, Event Detection, Shape
Classification

Acknowledgements

I would like to thank Professor Ian Nabney for his more than weekly help during
the whole project. I would also like to thank Doctor Yuan Yuan. Their thoughtful
comments have always been extremely useful to me.

I would like to thank TVM for the time they spent installing and helping me
understanding their softwares, for the very useful meetings we had, for the video data
they provided us.

Thank you so much to everyone who spent and made this wonderful year in Birm-
ingham with me. Thank you all.

Contents

1 Introduction

2 Application Context

2.1 . AV AlgonitBme o 50w 0 RS B 6 TS s e s e e 3 i
22" Thevideo dataprovided | . .. U o 5 o5 S ot B B ¥ o e oo e e
2.3 T Jusues and OMYOCEIVEE /"0 0 5 7k il v b B e e SRS R L

Motion Estimation

3.1 Macro-Block Motion BEEIRALION . . ' b » o piebe s e g o0 on ool 5o
1300 Banroh Rpan P ST LA e L B T e RS e B e
< 1 B B 5 (TR e BRSSO o oy S
213 SeanRlanribhas = 0 R, L L PR LIS e S e T
3:1.4 Diamond Search - Algorithm . . . v v o 0 v ol wve v s e s
3.2 Feature extraction using Motion Estimation
32 MNIOR e 3 R N ol N R e e e
3.2.2 Contours of the movingobjects oo v v v v in o
3:3 . Rperimenta BRel ROsUINE . -5 S h v s 3 o s ke s e o s v

Model-Based Vision

41 Bnlitiesstinee tAOABL TN i SR Nell on fe w e & d tr ue
4.2 ShaDe-ahace MoAel . o < Vi s GIEEd Be G B R e e e
ol T e i O | | . el TR W BT S
4.2.2 The Space of Euclidean similarities
B T T 70 1001 o 1 s TR E et s sl s B MR O e it e
44" Patermanisto Gtang 4 oL GBS i e e eh el e e ol e i a
441 Normihl IMAGe PIOCRSRINIS & < i v o5 o v & a Wi ah v b e i woev o g s
442 Regularisation techniques « v v aiv v o o i o s v 0 s
44.3 = Deterrapistic fitting algorithm. . - . . . v o e tim v oalm s
444 . Detertaifistic tracling oo vosiate cnio iy & et b s % e e ol bia
4.5 . Probamligtic modelRg ;: & o wivia vt e b wh et e s ey i
4530 Prohabilistic model of SHApe .~ 0 0 e ns s e o e e e s

10
10
11
12

13
13
14
14
15
17
19
19
20
20

CONTENTS

g redVRmie Thadeler 1 ol W L A e et L
453 Traclong vsing Kalman RIS o & |« » sl v v hoei s o vis s

5 Preliminary Image Processing
5.1 DBacilraand SUbETackIon: Wl T <m0, b e ok w e e e 6
5.2 ‘Dynamic background update .. «s o0 5 i Gl s s e e e o

6 Detection and Classification of Events

S-S Hictaction BF TovBRta 1 0. e e 1 5 e o e g |
6.1 Minitaura size HoRection” "o & 5 an e ek eaw Vg et G v T 0
6.1.2 Extraction of events using Motion Estimation

¢ AR O B et R T O Sy D W S AR e WSS) s
6.2.1 Edge Direction Histogram (EDH)
.22 Exarplet ol TATH . o o i % at o & ol o ke e o LA e

6.3 Expenments ant Beauita®, Ao, 08 o o o it brtek s e

7 Experiments and Results

ey L o e g R i S A g P S
1.0 Nideo trackingon real data . . . o b s lov v v w e v o e e
7.1.2 Video tracking on background-subtracted data
7.1.3 Video tracking with constr&ints « .« « : v . s o o 5 v s 5w s b
Gl - Antamatic Video tIBCAE S . 10 v ole bl sl o, & o e B

7.2 0 Shape CIASIBeREIoh . e s et i e sl s s
L SVRARIEEEIE . e = i s e i e & Rt gt T
122 Non-Boear cIssBleRtIBn. o v voe o ot e v e e s Hre 5 e b 8 o
1.2.3 Long training and test 8ets . . o« =i dm n o v i s va b v e e

8 Conclusion
SR ohicvernentas W setm o Bl Toldi ae) e S0 = C L
RIS T Worlol T rht Atz R, o e e L e e L S

List of Figures

220

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8

5.1
5.2

6.1
6.2
6.3
6.4

Examples of videodataprovided. 11
Macro+Black Motion Bebimalion. - . . & 4 s e setrir oo s b0 s ane 13
ST R T e R S S RS LA W I A e 14
The exhaustive search algorithm. 15
The three-step search algorithm. v v v v i v viovie v 16
The diarond sesrch pREEEINS. . 0 i 'm0 v e v o 160 s 5% e % 17
Thedianiond seArel BHIOFEDNIN: 5 ¢ s 5 o155 & 5 5 are & 5 sam s s 18
Exampleof mobion estImation. . o v v tw v s i b feleis w0 o e e e 19
ERample of TotIon OBt o vt Way o sy S bl 5 s 20
Ciontonrs of the maving obijects, ./« . o 7 & i Al s sl daw v ot 21
MOHon eatImatIoN BE A CRE = 1 3o R il Tin? s et oy e w8 22
Motion estimatioft of 8 Brugle. . o ip v il e e e e s e ey 22
Motion eatimBtion BRa BUB. v+ 05 v Sovl v o 0w e st e At B e 23
Motion cebuRBEOR OEB VAN, . o «on ol v ont slnse 8 oo et e e e s 23
Motioh estimafion atnight.. & o ox e s e o w6 b e e G s 1 24
mitial tamnplate "ot A TR, e S B B R R A e 27
NETC I aIme M v e AT S T e e e e B T L P o i b 28
ST v S S S oA SRR W DU AN S S Ao L L 29
INopmsl Iage PIOCESBINE. v & o o s ss bos mos0 30 5 %0 m w0 el W 30
PEBLUES CHEVE o 4w s s S s o o b g Wl 1 s ol s e 7 W 31
T I A R T oy N et Ser Tl o ML R N W i 33
Deterministic tracking. . & 050 oo et 2T s a s n el o) Gk sl e e 34
Probabilistic tracking using a Kalman filter. 37
Backerotnd SubaBEIONS. . 70 . 5015 - B v C e e e s e 39
Lrnaaic backeround utdates. o0 o Ll S e ke e L ot M 40
Window:of Interist. o 5" e R Y e e s e iR R S e 42
New detection algorithm to cancel detection redundancies. 44
Redundancy due to the background. . . . <. v oo ov v v aw v un 45
Event extraction using motion estimation. 47

LIST OF FIGURES

6.5
6.6
6.7
6.8
6.9

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
1.9
7.10
7.11
7.12

7.13
7.14

EDH applied on real dataill{2). . . v 50 S st it et e e
EDH applied on real dats (2(2). . 0. o0 Gl e s e s wi e e s
EDH applied on background subtracted data (1/2).
EDH applied on background subtracted data (2/2).
Confusion matrices of the linear human classifiers using the test set. . .

Probabilistic video tracking directly applied on real data.
Probabilistic video tracking applied on background subtracted data. . .
Probabilistic video tracking with constraints.
Automatic probabilistic video tracking.
NMisnalisations with NeuroBealo. « o o o b5 =0e v 808 ive e v o b v
Visvahisation with PapbiView, o o 00 o e btk v wmom e ifs 950 8 s e s
Visualisation of the classes with Partiview.
Confusion matrices of the non-linear human classifiers using MLP. . . .
Yhe falcg-Togativen. L e 50 Slaet e Mlle s P T S
Ehe {alee PORIVES. it & N s wd o b Tl et s e s e ara s e
False negative triggers caused by the background.
False negative triggers correctly classified by the non-linear classifier at
BHOEhEr LIINE. 0 s S v s oo b Bt s b Sl T i ek s
PRt POBIVe LTIgHRIB. " Shi G i diis ol o be s el b e S T E s
Confusion matrix of the non-linear human classifier tested on the long

e I e R P e

54
55

a7
58
59
60
62
63
63
64

66
66

Chapter 1

Introduction

Surveillance camera systems (such as CCTV) for use outside were first developed
as a means of increasing security in banks. Today they have developed to the point
where they are simple and inexpensive enough to be used in home security systems.

CCTYV was developed partly in response to IRA bombings in the United Kingdom.
Experiments in the UK during the 1970s and 1980s led to several larger trial programs
in the early 1990s. These were deemed successful in the government report "CCTV:
Looking Out For You”, issued by the Home Office in 1994, and paved the way for a
massive increase in the number of CCTYV systems installed. Today, systems cover most
town and city centres. The exact number of CCTV cameras in the UK is estimated
around 4,000,000.

Nowadays, a new generation of video based detection systems (VBDS) has been de-
veloped. They are intelligent detection systems which provide automatic surveillance
through real-time video analysis and event detection. Surveillance camera systems
have become such a burning issue that the Home Office has developed its own imagery
library for intelligent detection systems (i-LIDS) so that academics and system manu-
facturers can test the performance of their VBDS.

The aim of this project was to build an intelligent VBDS able to automatically
detect the incidents occurring in front of a doorway. We will show you how we first
detected any event occurring in the scene filmed by the surveillance camera system.
We will then describe the classification methods we applied in order to only consider
the events which can cause an incident (i.e. the human beings). Finally, we will explain
how, once detected and classified, the human beings are tracked over time so that we
can decide whether an event alarm should be given or not.

After presenting the application context in Chapter 2, the different methods we
applied and used during the project will be described. Motion estimation algorithms

CHAPTER 1. INTRODUCTION

and some of their applications will be explained in Chapter 3. After that, mathematical
models will be used to build a video tracking algorithm in Chapter 4. Some preliminary
processes applied to the video data will then be presented in Chapter 5. Chapter 6
will deal with the detection algorithm we developed and the classification methods we
used in order to construct a robust human classifier. Finally, some results on real video
data will be shown in Chapter 7.

Chapter 2

Application Context

TransVisualMedia (TVM) is an innovative English company based in Birmingham.
They are specialized in video based detection systems. Their already existing VBDS
concentrates on doorway surveillance scenarios. Thanks to their system, any human
being passing in or out of the door should trigger an alarm event. Any other event
(vehicle driving in the street, human being walking through the scene, illumination
change) should be neglected.

However, TVM was facing difficulties classifying events triggered off by human
beings from the others. They also tend to struggle with changing environmental con-
ditions (as they are dealing with outdoor applications). These variations generate a
high number of false alarms, reducing the effectiveness of their algorithms. The goal
of this project was to improve this already existing system.

2.1 TVM’s algorithms

This section is not an exhaustive description of the whole already existing TVM’s
system. Some key ideas are just given so that the reader can understand the general
concepts used in their algorithms.

An event is caused by an object moving in the scene. To be considered, such an
object has to be larger than a minimum threshold size and smaller than a maximum
threshold size. These limit sizes depend on the setting up of the system. They are
initialized by hand. Doing so, any too small event is neglected. Too big events caused
by vehicles for instance are not taken into account as well.

In order to focus on the regions of interest (i.e. the regions where events can occur),
some masks can be applied to the video data. Such processes cannot be generalized to
every camera, they are initialized by hand.

Cameras are not set up carefully for orientation. Indeed, they can be hidden behind

10

CHAPTER 2. APPLICATION CONTEXT

a curtain or a window. Masks can also be applied in order to cancel lighting issues
caused by such orientation conditions. They also need to be initialized by hand.

To conclude, TVM'’s system is based on a minimum/maximum size thresholds sys-
tem which reduces the number of events taken into account. Moreover, different masks
can be applied locally in order to cancel problems to a particular camera.

2.2 The video data provided

TVM’s algorithms are run over video sequences recorded by fixed cameras aiming
at a doorway. The scene is filmed 24 hours a day.

Every ten minutes, a new avi file is generated. This will allow us to run the algo-
rithm for every ten-minute video sequence separately. Actually, avi files are converted
to motion JPEG format which contain a list of images extracted from the video (in
JPEG format). Four frames are extracted every second. As a video sequence lasts ten
minutes, a motion JPEG file contains around 2400 frames. These motion JPEG files
are used as the inputs of the algorithms of the system.

Few examples of video frames provided are shown in Figure 2.1.

i;
P
:
§

Figure 2.1: Examples of video data provided. The camera is fized, aiming at a doorway.
Some events can occur in the scene (a man walking, a bus or a car driving). The scene
is filmed 24 hours a day, during days and nights.

11

CHAPTER 2. APPLICATION CONTEXT

2.3 Issues and Objectives

Such a system did not allow TVM to get sufficient results. The false positive rate
was too high. Too many events were still taken into account. The purpose of this
project was to improve the robustness of TVM’s algorithms.

A robust human classifier needs to be constructed so that human beings or groups
of human beings can be distinguished from any other events (cars, buses).

[llumination changes generated many false triggers, especially at night. Solutions
need to be found.

Moreover, in order to generalize the system to every camera, the parameters of the
system need to be adjusted in another way.

In the next chapter, we shall consider the problem of motion estimation. This first
tool will be used to try to improve the robustness of TVM’s system.

12

Chapter 3
Motion Estimation

Information from video sequences can be extracted using the intuitive idea of
motion between frames. Pixels corresponding to an object on one frame move to form
a corresponding image of the object on the subsequent one. To reduce this temporal

redundancy, techniques such as motion estimation [1] are used.

3.1 Macro-Block Motion Estimation

Motion vectors defining displacement of regions are defined into the frame. Each
scene is divided into non-overlapping macroblocks assumed to be composed of closely
associated pixels moving the same way (distance and direction). Each macroblock
defines a single motion vector. The process of determining the values of the motion
vector for each frame is called macro-block motion estimation.

Reference Frame Current Frame
beanch fired
I
"J Cpmparis on of Macrdblo ti
LV 7 . T e
\\
\

\

Blodk corres ponding to the best match

Figure 3.1: Macro-Block Motion Estimation.

In order to determine these motion vectors, three key ideas are needed. To make this

13

CHAPTER 3. MOTION ESTIMATION

clear, let us define motion estimation in another way. Motion estimation can also be
seen as the comparison of the macroblocks F of a current frame with the macroblocks
of a search area GG in a reference frame (Figure 3.1). The reference frame generally
represents the previous frame as we are trying to estimate the motion of objects over
time.

3.1.1 Search Area

We first need to define the search area in the reference frame - the region where
we should find the corresponding block of a given macroblock of the current frame.
The search area is usually simply defined by a parameter p, the search parameter that
defines the size of the area. To give an example, in MPEG compression, p = 6 so that
the search area surrounding the macroblock looks like the one shown on Figure 3.2.

Figure 3.2: Search area. The search parameter p defines the search area G surrounding
the macroblock in the current frame F.

3.1.2 Cost Function

Then, we have to introduce a cost function between macroblocks to be able to
compare them. Some commonly used cost functions are : the mean-squared difference
(MSD) and the mean-absolute difference (MAD).

MSD(z,y) o< 3 3 [F(i,5) = Gli+ 2,5 +y)P (3.1)

MAD(z,y) Z Z |F(i,j) — G(i +z,j +y)| (3.2)

The smaller the value of the cost function, the better two blocks match.

14

CHAPTER 3. MOTION ESTIMATION

3.1.3 Search Algorithm

Finally, we have to define an effective search algorithm that finds the best matching
block in the search area efficiently - computing as few cost function values as possible.
Exhaustive Search Algorithm

The obvious algorithm one could implement is the exhaustive search algorithm
that computes cost function values for every macroblock in the search area; this is very
costly! Its complexity is of O(p?). Figure 3.3 illustrates such a search algorithm.

E

Figure 3.3: The exhaustive search algorithm.

Fast Search Algorithm

As soon as a search algorithm is not exhaustive, it becomes a fast search algorithm.
Many popular techniques have been proposed in the literature [1]. They are faster
than exhaustive search by computing fewer cost function values. Their complexity is
of O(log p).

Figure 3.4 illustrates the Three-Step Search Algorithm, one of the most popular
algorithms. It was implemented by Lee et al. in 1994. It works in three steps:

1. Step 1:
The algorithm starts by computing the cost function value at the centre of the
search area. A step size L is then defined by L = p/2. Cost function val-
ues are then calculated at the eight following points surrounding the initial

15

CHAPTER 3. MOTION ESTIMATION

point: (L,0),(L,L),(0,L),(-L,L),(-L,0),(-L,-L),(0,—L),(L,—L). These
eight values are compared. The best one (i.e. the smallest one) is chosen to
become the best matching point so far. This position represents the current best
motion vector for the block in the search area. It becomes the center location of
the next step.

2. Step 2:
The step size is divided by 2: L = L/2. The cost function is then applied to the
new eight surrounding locations this step size away from the current best position.
As in step 1, the smallest value among these eight points and the current best
point becomes the new best location.

3. Step 3:
This process of calculating the eight neighbours of the current best position con-
tinues until the step size becomes smaller than 1. At this point, the current best
point becomes the actual best point in the whole search area. It gives the selected
motion vector for the block in the search area.

4
p= 6 ™1 1 F'1"\
L 3 [
(1] (1 m
] [

Figure 3.4: The three-step search algorithm. The labels in the squares correspond to
the iteration of the algorithm. The first step of the algorithm finds a new best position
at the location (3,-3). Then, dividing the step size by two, the new best location after
step 2 becomes (5,-5). Finally, the actual best location is reached at (6,-4) after step 3.
(6,-4) is the obtained motion vector.

As it computes fewer cost function values, this algorithm is more efficient than
the exhaustive search algorithm. Other algorithms working in a similar way have

16

CHAPTER 3. MOTION ESTIMATION

been proposed: for instance the two-dimensional logarithmic search algorithm and the
conjugate direction search algorithm [1].

However, these quite old algorithms are based on a very strong assumption that
cannot be verified in real data. The search area viewed by these motion estimation
techniques is assumed to have one and only one minimum (for the cost function). New
algorithms do not assume this anymore. One of these algorithms, Diamond Search [2]
is particularly efficient.

3.1.4 Diamond Search Algorithm
Observations

This algorithm relies on two main observations. Firstly, in real data, the assumption
made in the previous fast search algorithms of a unique global minimum is unlikely to
hold.

The second observed fact is that motion vectors are very often enclosed in a circular
support with a radius of two pixels, centred on the position of zero motion. Moreover,
displacements are mainly horizontal and vertical. Hence, taking into account these two
facts, a'new search pattern and algorithm have been proposed by S. Zhu and K. K. Ma
in 2000." The search pattern is composed of two diamond patterns: the Large Diamond
Search Pattern (LDSP) and the Small Diamond Search Pattern (SDSP) (Figure 3.5).

L]
"\
- ~
- 1] ~
- i ~
I ~
L} -~
L ' [] L)
* 1 - '\
- i LY - ~
. - ’ L] ~
F 1 - 1 .
0 * ~
t . * 1 ~
P---————— .‘ _________ .. .-___,-___.
~ - L3 #
. | # . 1 v
~ i ’ . »
~ H # - i 5
*. | P b Sl
*
@ i = »
» [] -
~ -
- 1 -
- 1 -
a) “" b)

Figure 3.5: The diamond search patterns. a) Large Diamond Search Pattern (LDSP),
b) Small Diamond Search Pattern (SDSP).

The Diamond Search Algorithm

The diamond search algorithm works in three steps:

1. Step 1:
The initial LDSP is centered at the origin of the search area. The cost function is

17

CHAPTER 3. MOTION ESTIMATION

then evaluated at the nine points of the LDSP. If the minimum value is achieved
at the centre of the LDSP, then go to Step 3, otherwise, go to Step 2.

2. Step 2:
The minimum point found in the previous step becomes the new centre point
of the LDSP. The nine cost function values of the new LDSP are then evalu-
ated. If the minimum is achieved at the centre position, go to Step 3, otherwise,

recursively repeat this step.

3. Step 8:
Switch the search pattern from LDSP to SDSP with the same centre. Cost
function values are then evaluated at the five points of the SDSP. The minimum

gives the actual final solution of the motion vector.

o .‘:\ﬂ ‘.‘.
bt it
s AR R
e B (S i
P 3 . ‘
e 2 H
- .

Figure 3.6: The diamond search algorithm. The initial LDSP is centered at the origin of
the search area. The first best point is found to be (2,0) (Step 1). LDSP are iteratively
updated (labels corresponding to the number of iterations are displayed in the LDSP):
the new minimum becoming the center of the next LDSP (Step 2). As soon as the
minimum is reached at the centre location of the LDSP (at (3,3)), the search pattern
is switched to SDSP (Step 3). The best point is found at (2,3). It defines the motion
vector of the macroblock (red arrow).

Figure 3.6 illustrates this algorithm. This technique is very efficient as very few
cost function values are computed to find the final motion vector. Moreover, from one
LDSP to another, many points are redundant and do not need to be computed twice.

18

CHAPTER 3. MOTION ESTIMATION

This is the motion estimation search algorithm we have decided to implement. Fig-
ure 3.7 is an example of diamond search motion estimation on the video data provided.

Figure 3.7: Example of motion estimation. From the initial frame (left), we reconstruct
the current frame (centre) using diamond search motion estimation. The reconstructed
frame is displayed on the right.

The woman walking has moved from left to right. Starting from her left position
in the previous frame, the position of the woman in the reconstructed frame is similar
than the one in the current frame. The motion estimation algorithm has estimated
well the motion of the human being. Moreover, for the macroblocks on the fringe of
the image, the search algorithm can find the minimum in regions outside the initial
image. That is why we note black blocks appearing in the reconstructed frame.

Run in Matlab, the algorithm of reconstruction of such a frame with macroblocks
of 8 times 8 pixels lasts around 12 seconds. It should be much faster using other
programing language.

3.2 Feature extraction using Motion Estimation

Once we have built the reconstructed frame using motion estimation, we want to
be able to extract the moving objects of the scene.

3.2.1 Motion Frame

Each macroblock has moved along a certain motion vector. The faster the object
moves, the longer its corresponding motion vectors are. Therefore, from the recon-
structed motion estimation image, we build the motion frame which is the frame of the
norms of the motion vectors. It is a grey scale image of N * M pixels with N and M
the number of macroblocks in a row and a column of the image respectively.

Figure 3.8 shows a motion frame obtained from a motion estimation reconstructed
image (the one in Figure 3.7). When a macroblock has not moved, its norm is 0. Its
corresponding pixel in the motion frame is black. The longer a motion vector is, the
whiter its corresponding pixel in the motion frame becomes.

19

CHAPTER 3. MOTION ESTIMATION

Figure 3.8: Example of motion frame. From the motion estimation reconstructed frame
(left), we build the motion frame (right). The moving areas become grey or even white
while the static regions are black.

3.2.2 Contours of the moving objects

Motion frames are quite noisy. We note on Figure 3.8 that some macroblocks from
the background have moved although no moving object is in this area. This is due
to little illumination changes occurring in real data. In order to get rid of this noise,
two-dimensional median filter is applied to the motion frames to obtain smoother areas
of motion. The median filter considers each pixel in the image and looks at its nearby
eight neighbours. The pixel is then replaced by the median of those values. The median
is calculated by first sorting all the pixel values from the surrounding neighbourhood
into numerical order and then outputting by the middle value among the nine sorted
value (ie the fifth value).

Contours are then drawn around the regions of motion detected [7]. The contours
are the isolines of the filtered motion frame. The object boundary length must be
greater than a minimum threshold in order to be considered. This removes small
moving objects. Contours of the motion frame are finally converted from macroblock

to pixel to fit the real data and actually surround the moving objects (Figure 3.9).

3.3 Experiments and Results

The images shown in section 3.2 suggest that diamond search is a good motion es-
timation algorithm for this data (Figure 3.7). Moreover, the feature extraction module
using motion estimation has also given satisfactory results (Figure 3.9).

We want to test the motion estimation module on more examples to validate it and

identify any drawbacks.

20

CHAPTER 3. MOTION ESTIMATION

Figure 3.9: Contours of the moving objects. The motion frame is filtered to get rid of
the noise due to little illumination changes (left). Contours of the moving objects are
then drawn (blue curve). They are finally converted from macroblock to pizel to fit the
real data (right).

Several examples are displayed from Figure 3.10 to Figure 3.14. They show six
images. In the first row, the first two are the previous and the current frame respectively
and the third image is the reconstructed frame using motion estimation. In the second
row, the motion frame, the filtered motion frame and the current frame with the

contours of the moving objects (blue curves) are displayed from left to right.

Motion estimation is a tool that works in video sequences in which motion is slow
from frame to frame. As we are dealing with 4-frame per second video sequences,
motion can be quite fast. For instance, a car or a bus driving on the street can appear
completely in the scene from one frame to the subsequent one. If an object is on the
previous frame, motion estimation should find the corresponding pixels to this object
on the current image. In such fast motion cases, motion estimation search algorithm
cannot find the corresponding pixels to the moving objects as it is just not present in
the previous frame. The difference between two subsequent frames is too high. In fast
motion cases, motion estimation cannot reconstruct properly the current image.

However, motion frames in such cases show that motion has been detected in the
regions where the moving objects have appeared. Thus, feature extraction is possible.

Contours surrounding the moving objects can be drawn (Figure 3.10 and Figure 3.11).

Other examples displayed in Figure 3.12 to Figure 3.14 demonstrate that big objects
(bus, van, ...) passing through the scene can generate several areas of motions. This
causes a redundancy in the feature extraction (Figure 3.12).

Moreover, large objects affect the whole illumination of the scene. False regions of

21

CHAPTER 3. MOTION ESTIMATION

Figure 3.10: Motion estimation of a car. From the previous frame to the current
image, the whole car has appeared in the scene. Too many pizels have moved and
motion estimation cannot work properly. The car cannot be on the reconstructed frame
as it is not on the previous frame. However, the motion frame shows that motion has
been detected in the area where the car should be. Thus, moving object extraction is
possible.

Figure 3.11: Motion estimation of a truck. The whole truck has appeared in the scene
from the previous to the current frame. Like in Figure 3.10, motion estimation recon-
struction cannot work properly. However, the motion frame shows that motion has been
detected in the area where the truck should be. Moving object extraction is possible.

22

CHAPTER 3. MOTION ESTIMATION

Figure 3.12: Motion estimation of a bus. Motion has been detected in the region where
the bus has appeared. However, several regions of motion are extracted from only one
moving object.

Figure 3.13: Motion estimation of a van. Motion has been detected in the region where
the van has moved. The van has caused an illumination change in the whole scene.
From the previous to the current frame, the iron shutters have become darker; this has
generated areas of motion as shown on the motion frame. Contours are drawn around
these regions. Illumination changes can create false areas of motion.

23

CHAPTER 3. MOTION ESTIMATION

Figure 3.14: Motion estimation at night. At night, illuminations changes are more
likely to occur. They creates false areas of motion.

motion can then be created (Figure 3.13). This phenomenon is emphasized at night
(Figure 3.14).

In conclusion, motion estimation is an efficient tool to detect motion and extract
moving objects in the scene. Even if the reconstruction of the image using diamond
search motion estimation is just possible for slow motion objects (human walking), fea-
ture extraction is still feasible in fast motion cases. Contours can still be drawn around
the moving objects. However, a few drawbacks have been enumerated. Redundancy in
the feature extraction can be caused by big vehicles generating several areas of motion

or illumination changes creating false regions of motion.
In the next chapter, we shall consider the problem of tracking moving objects in a

cluttered background. Instead of simply looking for regions of change, a model-based

approach will be described.

24

Chapter 4

Model-Based Vision

The computer vision system we want to build must be able to analyse object shape
and motion in real time. To this end, model-based vision approaches [3,4] use mathe-
matical models. Historically, the first mathematical models proposed to fit data, known
as deformable models, combined mathematical geometry (splines) and the dynamics
of elastic curves. They were known as active contours or snakes, or later, deformable
templates, which added harder geometrical constraints to the shapes. On a dynamic

point of view, fitting over time is called tracking.

4.1 Spline-space model

In order to construct curves r in the plane, parametric spline functions can be used:

r(s) = (z(s),y(s)) s € [0, L], (4.1)
where L is the length of the curve and the coordinate functions z and y are spline

functions of the curve parameter s:

(s) =B(s)'Q" y(s) =B(s)'QY, (4.2)
with B the vector made of the B-spline basis functions [4] and Q* and QY the = and
y coordinates of the control points of the curve respectively.

Hence, one can define a spline-space as follows:

where

CHAPTER 4. MODEL-BASED VISION

Q is called a spline-vector. Therefore, in a sline-space a curve r is defined thanks to a
finite number of control points.

The length of Q, Ng, defines the dimension of the spline-space. This dimension is very
high. Indeed, it is twice the number of control points of the curve (Figure 4.1).

4.2 Shape-space model

4.2.1 Definition

In order to speed up the algorithms run on the curves, one may want to define a
lower dimensional space to express any curve in the plane. The idea is to no longer
consider a curve as a set of control points but as a set of transformations allowed from
an initial template curve.

Shape-space is a space parameterigsing the allowed deformation on the curve. Its
dimension Ny is typically considerably smaller than that of a spline-space. A shape-
vector X is a vector of length Ny.

One can mathematically define a spline-space vector Q from a shape-space vector
X as follows:

Q= WX+ Qq, (4.5)

where W is a Ng * Nx shape-matrix which creates a linear mapping from shape-space
to spline-space and Qg is a template curve against which shape variations are measured.
Qo is generally drawn by hand on the initial frame of the video sequence we are working
with (Figure 4.1).

4.2.2 The Space of Euclidean similarities

The Euclidean similarities of a template curve Qp (defined in spline-space) are the
curves obtained from Qg by any translations in the plane, any verical rotations or any
scaling in the plane. They form a 4-dimensional shape space with Ng # 4 shape-matrix

01 Q Qg

T T W
where 0 = (S s N) and 1 = (G) are —-vectors.
The first two columns of W cover the horizontal and vertical translations respec-

tively. The third and fourth columns, obtained from the template curve, govern the
rotation and scaling. By varying X, we can define any curve obtained from the initial

26

CHAPTER 4. MODEL-BASED VISION

Figure 4.1: Initial template. The black boxes represent the control points of the inter-
polated curve (dashed blue line).

template curve Q.

T
For instance, the initial curve is represented by X = (0000) !
More generally, a curve obtained from the template curve by a translation of T =

T
(i A A) , a rotation of angle # and a magnification of scaling factor A is repre-
;)
sented by X = (T, T, Acosf—1 Asinf) .
More complex shape spaces can be defined. They allow more degrees of freedom to
the curves. However, we have decided that translations, rotations and scaling should

be enough to be able to characterize most of the human motions in the short range of

movement in the application.

4.3 The Ly - norm

The main point of defining such models is to compare spline curves - in spline-
space - or shape-vectors - in shape-space. A definition of a norm in spline-space and

shape-space is thus needed. This norm is called the L, - norm and is defined as follows:

L,(Q) = |1Ql = VQTUQ (4.7)
Lo(X) = |X| = VXTHX (48)

27

CHAPTER 4. MODEL-BASED VISION

where

=B o AT = SR
U_(O B) B*ffo B(s)B(s)'ds H=WTUW. (4.9)

U (with dimension Ng * Ng) is called the metric matrix for curves. It is defined in
terms of the metric matrix for the B-spline B (with dimension %9 * %‘4) H (with di-

mension Ny * Nx) is the metric matrix for shape-vectors obtained from spline-space 4].

Using all these newly defined spaces, one can now write a basic deterministic fitting
algorithm.

4.4 Deterministic fitting

On the first frame of a video sequence, one can define the initial template curve

ro, choosing by hand its control points Qg and using B-spline interpolation as shown
f

in Figure 4.1. This allows us to define the initial shape-vector Xy = (U 9 9 .0
Then, on the second frame of the video sequence, starting from the initial template,

we would like to find the new position of the hat (Figure 4.2).

Figure 4.2: Next frame. The hat has moved from its original position (the dash blue
curve).

4.4.1 Normal image processing

Image-filtering operations are applied along the initial curve ro. They enable to
find the new position of the hat by emphasizing its edges. However, in order to build

28

CHAPTER 4. MODEL-BASED VISION

an efficient algorithm and to avoid filtering across the entire image, we need to define
a search region in which the image feature we are interested in is likely to lie. Image
processing can then effectively be restricted to this search area. Forming such a search
region by sweeping normal vectors of a chosen length along the initial curve is very
efficient (Figure 4.3). Indeed, the search of the edges is done along one-dimensional

small lines - as the object does not move far.

Figure 4.3: Search Region. Normals along the initial curve enable to define an efficient
search region to restrict the image processing.

Features can then be extracted by performing one-dimensional image filtering along
each of the sampled normals. If s = {sy, ..., sx} is a sample of points lying on the initial
curve ro(s), this process will give a sequence of sampled points {r(s1), ..., 7s(sny)} which
defines the feature curve ry(s).

The image intensity is computed along each normal. Then, using a discrete con-
volution product between the image intensity along the normal and a one-dimension
edge detection operator, the feature point is located. It is given by the maximum of
the convolution product function (Figure 4.4).

However, it is possible that more than one feature point is found on the normal
(more than one maximum value). We assume that such cases are rare and that just
one point - the global maximum - is then retained.

Such a process outputs an estimate of the feature curve ry as shown in Figure 4.5.

29

CHAPTER 4. MODEL-BASED VISION

n/\/'

B B W N
Edge Detection Mask
3m T T T Ll LI T L] T T

200 B

1 DU 1] L 1 L 1 L 1 |
0 10 20 30 40 50 60 70 80 90 100

Intensity along the normal
40 T 1 T] L T L] Ll T

20 o

1 1 L

[] 1 1 L L i
0 10 20 30 40 50 60 70 80 90 100

Convolution Product

Figure 4.4: Normal image processing. Normals are constructed at sample points
along the initial curve (top left image). Using a convolution product between the one-
dimensional edge detection mask (top right graph) and the intensity along the curve,
the new position of the edge is given by the mazimum of the convolution product.

4.4.2 Regularisation techniques

Generally, measurements made from images are noisy, for instance due to cluttered
backgrounds. We notice on Figure 4.5 that, on some normals, the feature points found
by the image processing do not correspond to the edge of the hat but to an edge of
the background. Regularisation techniques can procure higher tolerance to noise by
biasing the fitted curve toward a mean shape T(s) to a degree determined by a constant

«. The minimisation problem can be expressed as
min affr — F[* + [Ir — 1| (4.10)
The problem can be written more conveniently using shape space as
mina|X - X|*+[|Q - Q/[* where Q=WX+Qq. (4.11)

Q; is the representation of the feature curve in spline-space.
The goal of regularisation is to constrain the fitted curve toward the mean shape
r. However, this is not satisfactory. Indeed, it may be desirable in practice for T to

30

CHAPTER 4. MODEL-BASED VISION

Figure 4.5: Feature curve. The green feature curve is obtained from the dashed blue
initial curve using normal image processing.

influence the shape of the fitted curve but not its position and orientation. Thus, a
better regulariser is needed. It uses a weight matrix R (positive semi-definite).

min(X - X)"R(X -X)+ Q- Q/[I* where Q=WX+Qo (4.12)

To achieve the desired invariance of the regulariser to translation and orientation
transformations (the Euclidean similarities), R must be restricted by means of a pro-

jection p to operate over deformations outside the space of Euclidean similarities.
R =ap’Hp (4.13)

The projection operator p can be expressed in term of the shape-matrix W of the

shape-space used
p=1-(WtW)?, (4.14)

where I is the identity matrix and W is the pseudo-inverse matrix of W.

4.4.3 Deterministic fitting algorithm

Combining the new measurements of the position of the hat (from the feature
curve obtained using the normal image processing) with the regularisation techniques
described above, one can write a basic recursive deterministic fitting algorithm.

Given an initial shape estimate T(s) (X in shape-space) with normals 1i(s) and a
regularisation weight matrix R, the deterministic algorithm outputs a shape-vector

31

CHAPTER 4. MODEL-BASED VISION

estimate X of the fitted curve on the subsequent frame (Figure 4.6). A vector of
aggregated observations Z and its associated statistical information matrix S are also

computed (Algo 4.1).

The deterministic fitting algorithm (Algo 4.1)
1. Choose samples along the initial curve T(s): s = {sy,...,sn}.

2. For each sample s;, apply the normal image-processing filter passing though ¥(s;).
It outputs the corresponding feature position Tz (s;).

3. Initialisation of the aggregated observation vector and its associated statistical

information matrix
Zp =0, S0 =0

4. Iterate, fori=1,..,N
e Normal displacement

vi = (rs(si) — T(s:)) - 0(s4),

hla)T=aeyr [B0 2

0 B(s) "

e Update the aggregated observation vector and its associated statistical matriz

Sw', = Siﬁl + %h(s,—)h(si)'r,
Z;=7; 1+ %h(si)v,».

5. Final aggregated observation vector and statistical matrix
Z=12Zy, S =Sy.
6. The fitted shape-vector is given by

X=X+ (R+8S)'Z.

32

CHAPTER 4. MODEL-BASED VISION

Figure 4.6: Fitted curve. From the initial dashed blue curve, new measurements of
the position of the hat are found using normal image processing (green feature curve).
Then, using reqularisation techniques, the fitted curve is found (red solid curve).

4.4.4 Deterministic tracking

Fitting over time is called tracking. Using the previously presented deterministic
fitting algorithm, one can obviously write down a first rudimentary tracking algorithm
using the fitted curve at time ¢ as the initial estimate of the fitting algorithm at time
i+ 1.

Such an algorithm is quite efficient. However, in such a deterministic modelling,
tracking becomes prone to divergence due to background clutter (Figure 4.7).

The figure shows 16 frames extracted regularly from a 80-frame video tracking (one
every five frames). We note that the black fitted curves correspond well to the actual
hat from the first frame to the tenth one (in the 50 first frames of the video sequence).
However, after this, the right part of the hat falls into an edge of the background. The
consequence is a deformation of the shape that becomes worse and worse until the end
of the tracking.

4.5 Probabilistic modelling

In order to get rid of the drawbacks caused by the deterministic modelling previ-
ously considered, a new concept of active vision needs to be defined. It uses probabilistic

modelling.

33

CHAPTER 4. MODEL-BASED VISION

Figure 4.7: Deterministic tracking. The deterministic tracking algorithm is run over a
80-frame video sequence. One frame out of five is displayed. The black curves represent
the fitted curves. After the tenth image (the fiftieth frame of the actual video sequence),
the fitted curve starts to diverge to the right due to background clutter. This is the main
drawback of deterministic tracking.

4.5.1 Probabilistic model of shape

In the deterministic point of view, a shape-vector X was found to be the best
solution to the fitting problem (Algo 4.1). In the probabilistic way of thinking, it is no
longer a single value one has to find but a whole probability distribution whose mean
will be the fitting solution [4,6].

Hence, one can define, using Bayes’ rule, a probabilistic model of shape as follow:

P(X|Z) x P(Z|X)P(X), (4.15)

where P(X|Z) is the posterior distribution (the distribution of X from fitting), P(Z|X)
is the likelihood (the measurement of the observations Z) and P(X) is called the prior
(the regularisation term).

34

CHAPTER 4. MODEL-BASED VISION

4.5.2 Dynamic models

For dynamic models, probabilities need to depend on the previous states. The prior
up to time k becomes P(Xj|X; x—1) for instance, where X, ,_; = {X,,i € [0,k — 1]}.
The Bayesian tracking problem is to recursively construct the posterior probability
density function (pdf) P(X|Z;. x) given measurements up to time k. In principle, this
is done in two steps: prediction and update [6].
Assuming the required pdf P(Xx_1|Z, x—1) is available, using the Chapman-Kolmogorov
equation, the prediction step gives the prior pdf of the state at time k as follows:

P(Xi|Zy k1) = /P(Xklxk—l)P(Xk-—l|Z1..k~l) dXk-1. (4.16)

Moreover, at time k, a measurement Z; becomes available and this may be used to
update the prior via Bayes’ rule:

P(Z| Xy) P(Xi|Zy k-1)

P(X,|Z = : 4.17
i e S

where the normalising constant is:
P(ZulZ141) = / P(Z4|X4) P(Xk|Z1.4-1) dXi. (4.18)

In the update stage, the measurement Z is used to modify the prior density to obtain
the required posterior density of the current state.

However, such a propagation of the posterior density cannot always be determined
analytically. In those cases other methods such as particle filters [5,6] will be needed.
If we assume that the posterior density is a Gaussian and that the state propagation is
linear, then the exact optimal solution to the tracking problem is given by the Kalman
filter.

4.5.3 Tracking using Kalman filters
First-order Auto-regressive processes

The evolution of the Gaussian density for the state of the tracked object is prop-
agated thanks to the Kalman filter. Moreover, the propagation of the Gaussian prior
distribution from time ¢ — 1 to time ¢ is assumed to follow a first order auto-regressive
process

X(t) = AX(t - 1) + D + Bw, (4.19)

where w is randomly chosen from a distribution N (0, 1) and D is the mean displacement
in each time step.

35

CHAPTER 4. MODEL-BASED VISION

A, B and D have been chosen to reflect translational motions in shape-space [4]:
A=I,. B=mH' D=0 (4.20)

with by = %T,?f . 4 is the rate of growth of the moving object over time (v, =
35 pizel.s7/?). 7y is the interval of time between two consecutive frames of the video
sequence (15 = 0.25 s).

The prior distribution can be written
il

PX(6)IX(t - 1)) o exp{ 3[BT (X(t) - AX(¢t — 1) - D)|I*}. (4.21)
As we are dealing with Gaussian distributions, we just need to know their mean and
covariance matrix to entirely define them. Then, since by definition X(t) = E[X(t)]
and P(t) = Var[X(t)], we can write down the mean-state and the covariance equations:
X(t)=AX(t-1)+D, (4.22)
P(t) = AP(t — 1)AT + BBT. (4.23)

Tracking using first-order Kalman filter (Algo 4.2)

The propagation over one-step using first-order Kalman filter works in three steps
[4]:

1. Prediction step.
The mean-state and covariance equations (4.22 and 4.23) are used in this step to
obtain the predicted state shape-vector)_((t) and the predicted covariance matrix
P(t).
X(t)=AX(t—-1)+D, P(t)=AP(t—1)A” + BB". (4.24)
2. New measurements.
New measurements are then found using the fitting algorithm previously pre-

sented (Algo 4.1) using X(t) and P(t) as inputs. The aggregated observation
vector Z(t) and its corresponding statistical information matrix S(t) are obtained.

3. Assimalation step.
The assimilation step is based on a Kalman gain K(%).

K(t) = P(t)[St)P(t) + I (4.25)

A new estimated value of the fitted shape-vector X(t) and the new covariance
matrix P(¢) are computed thanks to this Kalman gain.

X(t) =X(t) + K®Z(), Pt)=P(t) - K(t)S(t)P(t). (4.26)

These two values will be used as the inputs of the prediction step of the propa-
gation from time ¢ to time ¢ + 1.

36

CHAPTER 4. MODEL-BASED VISION

Experiments and Results

An example of probabilistic tracking using such a first-order Kalman propagation
is presented in Figure 4.8. The algorithm is run on the same 80-frame video sequence
as the deterministic tracking in Figure 4.7. One frame of every five is displayed. Black
curves still represent the fitted curves. If we compare the results obtained from the
deterministic algorithm in Figure 4.7 and this probabilistic result, we note that the
fitted curve no longer diverges and falls into background edges after the tenth image.
Such a probabilistic tracking using a first-order Kalman filter is more robust and less
prone to divergence due to the background than deterministic tracking,.

Figure 4.8: Probabilistic tracking using a Kalman filter. The probabilistic tracking
algorithm using a first-order Kalman filter is run over a 80-frame video sequence. One
frame cut of five is displayed. The black curves represent the fitted curves, which follow
quite well the actual hat over the whole sequence. Such a probabilistic tracking is more
robust than the deterministic one.

To have in mind an idea of the performance of this algorithm, run in Matlab, such
an 80-frame tracking lasts 52 seconds.

37

Chapter 5
Preliminary Image Processing

The image data provided is cluttered. Some preliminary image processes must be
applied to the frames of the video sequences in order to simplify the data on which the
algorithms are run.

5.1 Background Subtraction

Background subtraction is a very common tool to separate moving objects from
their backgrounds. It suppresses background features to prevent them from distracting
the fitting and tracking algorithms. Moreover, the background of the data provided is
largely stationary. Therefore, this approach is suitable.

Let us call Bek(z,y) the image of the background and I(z,y) the current frame.
Given a noise threshold o, the background subtracted image BS(z,y) is constructed
as follows [4,7]:

0 if | Bek(z,y) — I(z,y)| <o

5.1
|Bck(z,y) — I(z,y)| otherwise &4

s
Figure 5.1 shows three examples of background subtractions. The moving objects
evolving on the scene (a bus, a car and a woman) are separated from the background

as expected.

5.2 Dynamic background update

The camera films the scene 24 hours a day. The illumination changes as time
passes during the day. Moreover, objects can stop in front of the door during a certain
period of time (cars, buses). Such things affect the definition of the background which
needs to be updated over time to be adapted to the current situation.

38

CHAPTER 5. PRELIMINARY IMAGE PROCESSING

Figure 5.1: Background subtractions. Three examples of background subtraction are
shown. we have chosen the noise threshold to be o = 10 which is around 5% of the
mazimum intensity value (256). The first column is a set of three images of the video
in which events are occurring (a bus and a car driving, a woman walking). The second
column showns the background of the scene. Images resulting from background subtrac-
tion between these two first columns are displayed in the third column. The moving
objects are highlighted.

A new background is defined as soon as two consecutive frames are identical enough.
Effectively, we build the subtracted image between the two frames. When the number
of non-zero pixels is lower than a minimum tolerance corresponding to the minimum
size of detection for moving objects (see section 6.1.1), the latest frame becomes the
new background.

Finally, to prevent from having to update the background at every stage, we define
a minimum time step that represents the period of time starting from the latest back-
ground update during which the background cannot be updated. We have chosen this
time step to be 10 seconds; i.e. 40 frames as we are dealing with 4-frame-per-second

video sequences.

39

CHAPTER 5. PRELIMINARY IMAGE PROCESSING

update: 1 update: 41 update: 81

A"

update: 152

update: 581

L a

Figure 5.2: Dynamic background update. The algorithm is run over a 1000-frame
video sequence. The successive backgrounds are displayed. The numbers at the top of
the images correspond to the times of update (in frames). The difference between two
updates varies from 40 (the minimum time step) to more than 80, depending on the
number of events occurring in the scene.

Figure 5.2 illustrates the dynamic background update. The algorithm is run over
a 1000-frame video sequence. The successive backgrounds are shown. The number at
the top of each image corresponds to the time (in frames) of the background update.
We note that the difference between two consecutive time updates is always greater
than 40 (the minimum time step defined above). This difference can be quite large
(up to 82 between the fourth and the fifth background). This is due to several events
occurring in the scene in the same period of time.

These preliminary image processes were applied to the cluttered video data pro-
vided. They were useful to separate the moving objects from the background for
instance. They will also be needed to detect and then classify the events occurring in
the scene (Chapter 6).

40

Chapter 6

Detection and Classification of

Events

The main goal of the project is first to be able to detect, among the continuous
flow of video data, every event occurring in the scene, and then to classify whether
these events have been triggered off by a human being or not.The objective is to detect

human triggers only (i.e. improve the false positive rate).

6.1 Detection of Events

The first step to build such a human classifier is the detection of every event oc-
curring on the video.

An event can be defined as a sudden change in the scene. It can be due to a person
walking on the pavement, a bus or a car driving on the street, a door opening, an
illumination change.

6.1.1 Minimum size detection

Using the previously described background subtraction and dynamic background
update (Chapter 4) that define a model for the background of the scene at any time,
one can easily highlight the sudden changes (the events) in the video sequence by just
subtracting the current frame from its corresponding background.

Frames resulting from such an operation are mainly made up of black pixels except
for the regions in which noticeable changes have been observed (see Figure 5.1). Hence,
such an operation enables the detection of events.

We need to add more constraints and details to this basic idea to actually build an
event detection algorithm.

41

CHAPTER 6. DETECTION AND CLASSIFICATION OF EVENTS

Minimum size detection

The purpose of our detection module is to be able to register every relevant change
in the video. Events creating too small changes, because they are occurring on the
borders of the scene or because they are actually triggered off by too small objects
such as a cat or a small dog, should not be taken into account.

To avoid those irrelevant events, we can use a minimum size threshold of detec-
tion. This threshold represents the number of pixels that are not equal to zero in the
background subtracted frame. It represents the actual size of the detected event.

To have an idea of the size of an object on the video data provided (of resolution
240 * 320 pixels), note that a moving human being generally affects more than 1500
pixels. However, this will depend on the distance from the camera. To make sure we
do not miss any relevant trigger, we have decided to take a lower threshold of 500.

Window of interest

Relevant events are more likely to occur in the centre of the scene (which should
be centered around the door). To support this, we define a window of interest on the
video. This region is the only area in which an event will be detected.

To make the algorithm general, we have chosen to define the same window of interest
for any scene: the vertically centered half shown by the region between the two dashed
lines in Figure 6.1.

However, one can easily define by hand the region of interest for a particular scene

in order to localise detection.

Figure 6.1: Window of interest.

42

CHAPTER 6. DETECTION AND CLASSIFICATION OF EVENTS

The definition of such a window also enables the minimum size detection previously
presented to work. Indeed, if we considered the whole scene as the window of interest,
as soon as an object entered the scene, an event would be detected. Suppose that this
event is coming from a border of the scene. When it is detected, we cannot see the
whole of the object but just a tiny part of it (bigger then the minimum threshold). We
do not have any idea of how big it really is. It also affects our knowledge of shape if
only a small part of the object is detected.

Centering the window of interest enables to get rid of these border issues and to

estimate the true size and the shape of the objects when they enter the detection area.

Redundancy and Slow motion

At this point, as soon as the size of the event occurring into the window of interest is
larger than the minimum size of detection, a trigger is given. For instance, that means
that a man (bigger than the minimum threshold) crossing the window of interest during
5 seconds creates around 5 times 4 = 20 events. Thus, there is a huge redundancy
among the detected events.

In order to avoid it, we no longer only check the size of the moving objects but
we also take into account the variation of this size over time. Effectively, we store the
size values for the past second - to allow slow moving objects to be detected and to
let them enter the area of detection. Then, we check if the current value generates an
increase greater than 100% compared with the previous values: i.e., if the size of the
change has more than doubled over the past second. If and only if this is the case,
then an event is detected. Basically, with such a system, an object is just detected on
entering the window of interest because it affects a lot the size of change (an increase
of more than 100%). However, once the object is fully into the region of interest, the
size of change does not vary a lot anymore and no new event is detected. An example
of such a detection algorithm is presented on Figure 6.2.

Four events are detected: first a car and a van entering the region of interest, then
a human walking. Finally, as soon as a human is leaving the area of detection, a car is
driving on the street. It is also detected.

We note that this algorithm allows multiple detection of events. Even if a moving
object is already in the scene, if another object enters the region of interest, it is also
detected.

However, one drawback of using background subtraction is that the background
can affect the shape of the moving object. This can cause unexpected variations of its
size, and thus some redundant events as shown in Figure 6.3.

43

CHAPTER 6. DETECTION AND CLASSIFICATION OF EVENTS

2000 L L T T LI L 1 1 1

1000

e O R SR ¥ |

0 10 20 30 40 a0 60 70 60 90 100

T
1

size of motion

detected events
=1
(4}
I

0 f6. 20 @@ «ah S; 's0 ‘f 8G S0 300

Figure 6.2: New detection algorithm to cancel detection redundancies. The evolution of
the number of non-zero pixels on the background subtracted frame is presented on the
top graph. The red horizontal line represents the minimum size threshold. The values
of 1 on the second graph represent the detected events. There are four, which are shown
in the four images at the bottom.

This figure shows the evolution of the size of motion and the actual detected events
on the two top graphs as before. Moreover, the bottom pictures are key frames (first
row) and their corresponding background subtracted frames (second row) taken from
the video sequence.

The man enters the window of interest on the left image. A first event is detected.
But, on seeing the background subtracted frames of the first two images, we note that
the human shape is not clearly defined. As soon as the man walks in front of the
white sign (third image), the contrast becomes higher. Thus, the shape becomes more
visible. Its size increases and another event is unexpectedly detected because of the
background. The contrast stays high until the man passes the door (fifth frame). Then,
as we can see on the corresponding background subtracted frames, the shape becomes
vaguer and its size decreases (top graph) until the man goes out of the window of
interest (sixth and last image).

44

CHAPTER 6. DETECTION AND CLASSIFICATION OF EVENTS

- 5000 i i T T
§=]
=]
B
s
]
@ 0 1 1]]
12 14 16 18 20
-E 1 T T T T T T T T
@
>
[+ 1]
= 05F)
@
o
@D
@ | 1 1 1 1 | 1
=
0 2 4 6 i} 10 12 14 16 18 20

Figure 6.3: Redundancy due to the background. The evolution of the number of non-
zero pizels on the background subtracted frame is presented on the top graph. The
values of 1 on the second graph represent the detected events. The bottom pictures are
key frames (first row) and their corresponding background subtracted frames (second
row) sampled from the video sequence. The background affects the apparent shape of
the moving man while he is walking on the pavement. Hence, two triggers are given.

6.1.2 Extraction of events using Motion Estimation

The detection step allows us to consider frames in which at least one event occurs.
However, several events can occur at or almost at the same time and need to be
distinguished by the detection algorithm. Indeed, if a human being walks through the
scene while a bus is driving on the street, we must be able to detect both events, even
if the bus is the bigger object of the two and thus the more likely to be detected.

Moreover, from the shape classification point of view (which will be explained in
detail in section 6.2), if the detection algorithm outputs a single event in the person /
bus situation, it will become extremely difficult to extract and take into account the

shape of the human being as they are smaller than the bus. It will then become very

CHAPTER 6. DETECTION AND CLASSIFICATION OF EVENTS

difficult to classify properly events triggered off by human beings from the others.

Hence, after having detected every event occurring on the scene, we need to extract
them separately. This will allow us to deal with multiple events occurring at the same
time and will enable the classification of events.

To do so, we can use feature extraction based on motion estimation as presented
in section 3.3. As soon as some event is detected in a frame of the video sequence,
we run the diamond motion estimation algorithm (see section 3.2) between this frame
and the previous one. We can then extract different areas of motion corresponding to
the different moving objects evolving on the scene. To be more precise, the feature
extraction module gives the boundaries of the moving objects as outputs. From these
contours, we define the areas of motion as the smallest rectangles surrounding the
contours as shown on Figure 6.4. Non-rectangular areas of motion could have been
considered, they are part of the future work.

We note that the motion algorithm detects the two moving objects: the man and
the car. However, a third area of motion is detected in the window in the top right
corner of the image. This is due to the change of illumination caused by the car. Such
events were presented as drawbacks of the motion estimation algorithm in Chapter 3.
They are quite common but will be easily discarded thanks to the classification step

in section 6.2.

Finally, the event detection module is the combination of the minimum size algo-
rithm and the event extraction using motion estimation. It allows us to detect and
isolate every single event occurring in the video scene. Those detected events need now
to be classified.

The Event Detection Algorithm (Algo 6.1)
1. Initialisation

e Initialisation of the previous and current frames
previousframe = NULL;
currentframe = ReadFrame(Video, 1);

e History of the size of motion during 1 second
Hist = [0,0,0,0];

2. Whale the video sequence is not finished
for (i = 2...NbFrame)

46

CHAPTER 6. DETECTION AND CLASSIFICATION OF EVENTS

Figure 6.4: Event extraction using motion estimation. Three rectangular areas of
motion (bottom tmages) have been detected by the motion estimation feature extraction
module. Blue lines represent the boundaries of moving object found by the motion
estimation algorithm.

e Current and previous frame updates
previousframe = currentframe;
currentframe = ReadFrame(Video, i);

e Dynamic background update
UpdateBackground(previousframe, currentframe, o, MinTimeStep);

e Minimum size event detection avoiding redundancy (6.1.1)
DetectEvent(currentframe, MinThreshold, Hist);

e Update the one-second historic Hist
e If an event has been detected (6.1.2)

— Diamond search motion estimation
MotionEstimation(previousframe, currentframe);

47

CHAPTER 6. DETECTION AND CLASSIFICATION OF EVENTS

— FEaxtraction of the events from the motion frame
BuildContours(MotionFrame);

— Build rectangular areas of motion around the contours extracted

end

end

Diamond search motion estimation takes around ten seconds to run. Thus, depend-
ing on the number of events detected during a ten-minute video sequence, the time of
process of this event detection algorithm can vary a lot (from eight minutes to forty
minutes).

Without the event extraction module (6.1.2), for a ten-minute video sequence, the
minimum size event detection algorithm (6.1.1) lasts from five to six minutes, depending
on the number of events detected.

6.2 Shape Classification

Once an event has been detected, we need to decide if it has been triggered by a
human being, several human beings or by any other objects. We need to find a way to
distinguish human beings from buses, cars, illumination changes, etc.

6.2.1 Edge Direction Histogram (EDH)

Edges in images constitute an important feature to represent their contents and
shapes. Edge detection in an image can significantly filter out noise and useless infor-
mation while preserving its important structural properties.

A. Jain , H. Zhang and A. Vailaya [8] introduced the edge direction histogram
(EDH) in 1998. This method finds the image edges and groups them depending on
their orientation.

After explaining how to construct such histograms, we will show how their feature
can effectively represent the shape information of an object and be a useful tool to
build a human classifier.

The algorithm for generating the EDH consists of four steps as follows [9]:

1. Edge Detection
The Sobel operator is a well-known edge detection algorithm. It computes the

48

CHAPTER 6. DETECTION AND CLASSIFICATION OF EVENTS

gradient image and generates two edge components at every pixel: a horizontal
one (G,) and a vertical one (G,). Sobel convolution masks are presented in (6.1):

=1 Dl IR
Gx = -2 0 2 . Gy — 0 0 0 . (61)
-1 01 =] =2 =1

The amplitude and edge orientation are then computed as follows:

ampg = /G2 + G? (6.2)

&g = arctan((6.3)

c.)
2. Finding prominent edges
This step extracts the prominent edges of the gradient image. They are extracted
by comparing the edge amplitudes with a minimum threshold value T. We have
chosen T = 25, which is approximatively 10% of the maximum intensity value
(256). If the amplitude of the edge at a pixel is lower than T', then it is neglected.

3. Edge orientation quantization
This step quantizes the prominent edges uniformly depending on their orienta-
tions into n segments equal to five degrees from 0 to 180: @gy, ..., Pgn.

4. Computing elements of EDH
To finish and actually build the EDH, we just need to count the number of

elements in every segment of quantization.

6.2.2 Examples of EDH

In order to justify how an EDH can be used as a tool to build a human classifier,
we show some results for different detected events.

EDH on the real data

EDH can be directly applied to the rectangular areas extracted by the detection
algorithm. Figure 6.5 and Figure 6.6 show several examples of EDHs generated from
different detected events.

Each bar of the histogram represents a five-degree segment from 0 to 180. The first
and the last ones correspond to the horizontal edges whereas the middle ones represent
the vertical edges.

Figure 6.5 presents several EDHs of non-human events (a bus, a car, a van and an
illumination change at night). As we are constructing the EDH directly from the real

49

CHAPTER 6. DETECTION AND CLASSIFICATION OF EVENTS

data, edges from the background are also taken into account in the EDH. We note that
for these events, edges are more likely to be horizontal than in any other direction.
Moreover, the maximum of the EDH is reached for a value always higher than 200, up
to 800 in the case of the bus. This is a measure of the size of the moving object.

On another hand, Figure 6.6 shows three EDHs of human beings walking in the
scene. These three EDHs present a similar feature. Edges are more distributed over
the whole range of directions. There are still more vertical and horizontal edges than
in the other directions. Moreover, the size of the moving objects is generally smaller
than in the previous cases.

EDH on the background subtracted data

In order to get rid of useless information contained in the background, EDH can
also be applied to the background subtracted data.

EDHs are generated on the same set of examples (Figure 6.7 and Figure 6.8).
The only difference is that the background is subtracted from the rectangular regions
extracted by the event detection algorithm.

Vehicles (the bus, the van and the car) create EDHs in which horizontal edges are
still predominant (Figure 6.7). However, as the background affects the shape of the
moving objects, their edges can also be affected. That is why the second event in
Figure 6.7 generates such a small EDH (its maximum is lower than 10). Illumination
changes are almost completely canceled thanks to the background subtraction. The
corresponding EDH is almost null.

On the other hand, human beings generate quite similar EDHs. They are more
distributed over the whole directions. Their maximum is reached for the vertical edges
- as a man is more likely to be upright. The maximum value is lower than 50.

EDH seems like a good tool to classify human beings from other events. Indeed, in
both cases of EDH generated from the real data and from the background-subtracted
data, EDHs of non-human events and EDHs of human beings are extremely different.
Moreover, EDH generated by human beings present quite similar features.

50

CHAPTER 6. DETECTION AND CLASSIFICATION OF EVENTS

number of cangidates

number of candidales

numzer of candidates

number of candidales

Edge Dwaction Heetogram

80 100 120 140 0
wige dirackon

Edge Direction Histagram

1

&0 80 100 120 140 180 100 200
soge dirachon

Edge Duection Hislogram

B0 60 oo 120
adge dirsclion

Edge Duecton Histogram

&0

B0 80 100 120 14C 200
edge direclion

Figure 6.5: EDH applied on real data (1/2).

CHAPTER 6. DETECTION AND CLASSIFICATION OF EVENTS

Edge Direction Hislogram
200 T ™

number of candidates

1] 2o 40 BO 80 100 120 40 Y60 180 200

edge direction
Edga Dusction Histagram
250 v T T T T
200 -
g 150 =
k]
a
=
4 100 4
-]
a
50 4
0 I
o 20 40 B0 L] 100 20 40 180 80 200

edge direclon

Edge Disciion Hislogram

number of cansidales

BO 100 120 140
wdgh direchon

Figure 6.6: EDH applied on real data (2/2).

CHAPTER 6. DETECTION AND CLASSIFICATION OF EVENTS

Edge Dusction Histogram

300 - T T T T T T

i) 20 40 &0 aa 100 120 140 160 180 200
wiign direchon

Edge Ditection Histogram
' . v " i T

d
= 4
B
g
&
£
a0 100 120 140 160 180 200
wige dlraciion
Edgo Durection Hestogram
|
4
|
& 9
]
°
-]
®
1
& 80 o0 100 120 140 160 100 200
edge direction
Eage Diection Histogram
[ry———
|
|
4
&
;]
<
)
A
B
&
4
|
L L L s |
L 100 120 140 180 1BO 200
edge direclion

Figure 6.7: EDH applied on background subtracted data (1/2).

CHAPTER 6. DETECTION AND CLASSIFICATION OF EVENTS

kdzeI rECHon Histogra
s

candigaieg

| m.ulhium

o] sl eclnr

Edge Durection Histogram

kLY

.il.l.llld Ilhm....

edge direclio

Edge Disclion Helogram
. . v T

adge dirschon

Figure 6.8: EDH applied on background subtracted data (2/2)

A0 1on 120 140 180 180 Fal

=

CHAPTER 6. DETECTION AND CLASSIFICATION OF EVENTS

6.3 Experiments and Results

The EDH should be a useful tool to classify events triggered by human beings from
any other. The examples displayed in section 6.2 were encouraging. We now need to
test, on the video data provided, whether EDH may help us to build a human classifier
or not.

As soon as an event is detected, we save the EDH generated. This 36-dimensional
vector will be the input to our human classifier. One ten-minute video sequence was
taken every four hours of a day to build a one-hour training set. Such a training set
contains different illumination conditions depending on the time of the day. 584 events
have been detected in the training set.

The test set was then built by taking nine ten-minute video sequences at different
times of the day. 835 events have been detected in the test set. 39 have been triggered
by human beings, 796 by non-human events.

From these data sets, we trained and built two linear classifiers: one for EDH gen-
erated directly from the real data and one for the EDH generated from the background
subtracted data. We then tested them on the test set. The resulting confusion matrices
are displayed in Figure 6.9 respectively on the left and on the right.

Classification rate: 86 2874% Classification rate: 56 4072%

75 n 78 1

Figure 6.9: Confusion matrices of the linear human classifiers using the test set. The
first row represents the non-human events while the second one corresponds to the
human beings detected. Left: Classifier on real data - Right: Classifier on background
subtracted data.

We note that even with such basic linear classifiers, the classification rates are quite
high (around 96%). However, the human misclassification rate (bottom left number)
is quite high in both cases: 25% and 30%.

These results are very encouraging. Further experiments will be made to try to
build a more robust human classifier in Chapter 7.

55

Chapter 7

Experiments and Results

This chapter presents the experiments we have performed and the results we have
obtained from the different tools described in the previous chapters. Motion estimation,
model-based vision, detection and classification of events are applied on the real video
data to try to solve the issues and achieve the objectives which were set at the beginning
of the project.

7.1 Video tracking

Model-based vision uses mathematical models and probabilistic modelling that
helped us to build a video tracking algorithm using first-order Kalman filter (Chapter
4). Some results on toy data were presented. We now need to build a video tracking
algorithm working on the real data provided.

7.1.1 Video tracking on real data

A probabilistic tracking algorithm using a first-order Kalman filter was run on toy
data at the end of Chapter 4. The tracking results obtained (Figure 4.8) were very
encouraging. The hat was tracked quite well over time. Let us apply this algorithm
directly to the cluttered data provided.

Figure 7.1 shows the results of such an operation. The initial template is generated
by hand. The fitted curves do not track the man at all but fall into edges of the
background. The video sequence is so cluttered that probabilistic tracking cannot
work directly on it.

We note that the shape of the fitted curves stays the same during the tracking.

However, their orientations and sizes vary too much.

56

CHAPTER 7. EXPERIMENTS AND RESULTS

Figure 7.1: Probabilistic video tracking directly applied on real data. Initialisation
of the template surrounding the shape of the man is drawn by hand. The probabilistic
tracking algorithm using Kalman filter is then run over a 25-frame video sequence. One
frame out of three is displayed. The black curves correspond to the fitted curves.

7.1.2 Video tracking on background-subtracted data

Our probabilistic video tracking algorithm cannot be run directly on the video
sequences provided. Some preprocessing should be applied to simplify them. Let us
use the background subtraction described in Chapter 5 and run the tracking algorithm
on the background subtracted data.

Fitted curves no longer fall into edges of the background (Figure 7.2) - as it is
subtracted. However, as the background affects the shape of the moving object, the
fitted curves fall into edges created by the man himself. We do not track the whole
man but a part of it.

In this case again, we note that the general shape of the fitted curve is still similar
at all times. Orientation and size are still an issue.

7.1.3 Video tracking with constraints

The motion of a human being walking on the pavement is almost a translation.
Moreover, we have found problems caused by the orientation and the size of the fitted
curves in the previous tracking examples (Figure 7.1 and Figure 7.2).

The probabilistic tracking algorithm described in Chapter 4 (Algo 4.2) works in
shape-space. At time t, the fitted curve is defined by an estimated shape-vector X(t)
and a covariance matrix P(t). The shape space we have decided to use is the space of
Euclidean similarities in which a shape-vector X is a four-dimensional vector

X = (Ty Ty Ts T4)T (7.1)

where z; and z, cover the translations of the curve while z3 and z4 govern its orienta-

57

CHAPTER 7. EXPERIMENTS AND RESULTS

NN

Figure 7.2: Probabilistic video tracking applied on background subtracted data. Ini-
tialisation of the template surrounding the shape of the man is still made by hand.
The probabilistic tracking algorithm is then run over a 50-frame background subtracted
video sequence. One frame out of three is displayed. The yellow curves correspond to
the fitted curves.

tion and size (Section 4.2.2). If we add constraints on these last two components, the
motion of the curve defined by such a shape-vector would be forced to be a transla-
tion. Therefore, we force the fitted curves to only have translation motion by adding
constraints to the fitted shape-vectors. This probabilistic tracking algorithm with con-
straints is then run on the background subtracted data.

Figure 7.3 illustrates the success of such a video tracking with constraints. The
fitted curves (black contours) track the human walking on the pavement during the

whole sequence.

Assuming that human beings moves in translations, we have built a probabilistic
video tracking algorithm that works on our cluttered video data. This assumption is
acceptable provided that the principal motions are across the frame and not toward or

away from the camera.

CHAPTER 7. EXPERIMENTS AND RESULTS

Figure 7.3: Probabilistic video tracking with constraints. The probabilistic tracking
algorithm is run over a 50-frame background subtracted video sequence. Moreover,
we add constraints on the last two components of the fitted shape-vectors so that the
motion of the fitted curves is a translation. One frame out of three is displayed on the
real images (with the background). The black curves correspond to the fitted curves.
Run in Matlab, this algorithm lasts 34 seconds.

7.1.4 Automatic video tracking

The previous tracking algorithms were not completely automatic: the initial tem-
plates were drawn by hand around the person we wanted to track. To make tracking
automatic, we have to find a way to generate these initial templates.

The person we want to track is a moving object. If we use a feature extraction
module based on motion estimation as presented in section 3.3, we would be able to
draw a boundary surrounding this person. This contour can be used as the initial
template we need. It allows to initialise automatically the probabilistic video tracking
algorithm.

The results of such an automatic video tracking algorithm is presented in Figure
7.4. After having initialized the template using motion estimation feature extraction

59

CHAPTER 7. EXPERIMENTS AND RESULTS

Figure 7.4: Automatic probabilistic video tracking. Initialisation of the template sur-
rounding the shape of the man is done using motion estimation feature extraction. The
probabilistic tracking algorithm with constraints is then run over a 50-frame background
subtracted video sequence. One frame of every three is displayed. The black curves cor-
respond to the fitted curves.

(first frame), the tracking algorithm is run over a 50-frame background-subtracted
video sequence. Constraints are added so that the motion of the fitted curves is forced
to be translational. Run in Matlab, this algorithm lasts 49 seconds.

We have built a probabilistic video tracking algorithm using constraints. It works
on the cluttered video data provided. However, such an algorithm is quite slow. Indeed,
tracking automatically a person over a 12-second video sequence lasts 49 seconds. It
is too long to deal with real time tracking. However, time should be gained by using
another programing language than Matlab.

This tracking algorithm is restricted to slow motion video tracking (human video
tracking). Indeed, for fast motion objects, the tracking cannot work as the fitted curves
are recursively obtained using normal image processing (section 4.4.1). The length of
the normals is a measure of the motion speed. To make the tracking algorithm work

60

CHAPTER 7. EXPERIMENTS AND RESULTS

in fast motion cases, as we are dealing with 4-frame per second video sequences, the
length of the normals should be longer than the size of the video frames!

7.2 Shape Classification

Chapter 6 allowed us to define an event detection algorithm (Algo 6.1). Once an
event was detected, we needed to be able to classify it whether it has been triggered
off by one or several human beings or not. EDH was presented as a useful tool to build
such a human classifier (section 6.2). First basic but encouraging linear classification
results have been presented in section 6.3. Two different classifiers were discussed: one
built from EDH directly extracted from the real data and one using EDH generated
from background subtracted data. Further experiments need to be performed to try
to build a robust human classifier.

7.2.1 Visual results

In order to validate the use of EDH as a tool to build a human classifier, let us
display some visual results. We use the same data sets as in section 6.3. The training
set was built by taking one ten-minute video sequence every four hour during 24 hours.
The test set was constructed by taking nine ten-minute sequences at different times of
the day.

Classification results using NeuroScale

NeuroScale [10] enables to visualize a high dimensional data set into a two or
three-dimensional space. The NeuroScale algorithm uses stress functions to learn a
non-linear mapping from the high dimensional data space to the feature space. The
dimension of the feature space is two or three so that the results can be visualized.
The mappings in NeuroScale are based on neural network models, specifically radial
basis functions.

We use such a probabilistic tool to visualize our classification results (Figure 7.5)
on data sets obtained from EDH generated directly with the real data first (left), then
from EDH created with the background-subtracted data (right).

We note that, in the case of EDH directly generated from the real video data,
we cannot define at all a cluster of human events. Indeed, the red points are scat-
tered in the whole two-dimensional feature space. On another hand, for EDH created
from background-subtracted data, human events are more or less gathered in a clearly
defined cluster. EDH generated from background subtracted data must be a more
suitable tool to build a robust human classifier than EDH directly generated from the
real data.

61

CHAPTER 7. EXPERIMENTS AND RESULTS

1500 - 1)
80
om j
r
0, am .
& s
500 - 4 . ..
i é%‘ :
-2 0 s S
o £ .- P
RELTS =2 2l T
2l 4 o
400
"% 0 S0 0 B0 20 W0 300 e o =0 1800 150 o0

Figure 7.5: Visualisation with NeuroScale. Training data from non-human events
(blue points) and human events (red points) is projected into a two-dimensional plan
by a NeuroScale model. The left and right plots are respectively obtained from EDH
generated from real data and background-subtracted data.

However, there still exist some overlapping regions between the human events and
the non-human events.

Classification results using Partiview

In order to extract more information from the projection made by NeuroScale, we
may want to know what events have been misclassified to be able to visualize them.
To do so, the output of the NeuroScale algorithm is used as the input of Partiview.
Partiview is a fast industrial-strength three-dimensional plotting tool written by Stuart
Levy [11]. It turns out to be useful for seeing the output of machine learning algorithms
(such as NeuroScale). An event is no longer represented by a point (blue or red,
depending on the class it belongs to) but by its corresponding frame output by the event
detection algorithm (Algo 6.1). An example of such a visualisation using background
subtracted data is presented in Figure 7.6.

The classes of human events and non-human events can be displayed separately so
that the misclassified events are extracted more easily (Figure 7.7).

In this example, one human event is clearly misclassified. Its corresponding feature
point in the NeuroScale projection is standing far away from the other human beings,
among the non-human events (Figure 7.6 and Figure 7.7). However, the principal
overlap between the two classes is so dense that we cannot clearly define the whole
misclassified events. Points are too close to each other. Mathematical methods will be
used in section 7.2.3 to visualize properly the misclassified events.

62

CHAPTER 7. EXPERIMENTS AND RESULTS

Figure 7.6: Visualisation with Partiview. Training data from non-human events (blue)
and human events (red) is projected into a three-dimensional space by a NeuroScale
model. Then, using Partiview, the frames corresponding to the detected events are
displayed.

Figure 7.7: Visualisation of the classes with Partiview. Separating the human class
from the non-human class enables to visualize the clearly misclassified events. The red
image at the top right corner of the human class image (left) is clearly misclassified.

63

CHAPTER 7. EXPERIMENTS AND RESULTS

7.2.2 Non-linear classification

Basic linear human classifiers were presented in section 6.3. The results we obtained
were very encouraging as we had good classification rates: around 96%. However, the
human misclassification rates were greater than 25%. We need to build a more robust
human classifier using non-linear classification in order to improve the false positive
rate.

The multi-layer perceptron (MLP) is the most widely used neural network [12].
Assuming enough data is provided to estimate the network parameters, a MLP can
model a non-linear decision boundary in a classification problem.

We used the same data sets as in section 6.3. Non-linear classification using MLP
was run in both cases of EDH generated from real data and from background-subtracted
data. The MLP was trained using the one-hour training set previously described
(section 6.3). Evidence procedure [12] was used to determine the optimal weights
and hyperparameters of the network. We then tested the non-linear classifiers with the
ninety-minute test set. The resulting confusion matrices are displayed in Figure 7.8.

Classification rate: 86 5268% Classification rate: 97 3653%

73 i 11 2 i 1

Figure 7.8: Confusion matrices of the non-linear human classifiers using MLP. The
first Tow represents the non-human events while the second one corresponds to the
human beings detected. Left: Classifier on real data - Right: Classifier on background-
subtracted data.

The resulting classification rates are at least as high as for the linear classifica-
tion described in section 6.3 (more than 96%). In the case of EDH generated from
background-subtracted data, this rate is even greater than 97%. However, the human
misclassification rate varies quite a lot between the two non-linear classifiers. For EDH
created directly from real data, it is equal to 41% whereas for EDH generated from
background-subtracted data it is 20%.

The non-linear classifier using background-subtracted data classifies the human
beings from any other events in a much better way than the classifier using real data.
It is the human classifier we have adopted to perform further experiments.

However, some misclassified events still remain. Let us display those events to
understand why they have been classified wrongly. Figure 7.9 presents the eight human

64

CHAPTER 7. EXPERIMENTS AND RESULTS

beings classified as non-human events (the false negatives) whereas Figure 7.10 shows
the fourteen non-human events classified as human beings (the false positives).

Figure 7.9: The false negatives (i.e.: the human beings classified as non-human events)

False negative triggers displayed in Figure 7.9 are caused by four different reasons.
In the first row of Figure 7.9, the four detected men are always walking while a car is
driving in the street. Two events are occurring at the same time. The moving object
extraction module outputs a single area of motion. Since a car is bigger than a human
being, edges created by the vehicle are predominant in the EDH generated. Thus, the
humans walking are not considered. Events are misclassified. Secondly, in the first
frame of the second row in Figure 7.9, a flash of light on the left side of the image
affects the contours of the man walking. The man is misclassified as well. Then, on
the next frame, the detected man is just going out of the door. Just a part of him is
visible. It is not enough to classify well this man. Finally, on the last two frames in
Figure 7.9, nothing seems to explain why those two walking human beings have been
misclassified. If we display the background subtracted images corresponding to these
two frames (Figure 7.11), we note that the background affects a lot the apparent shapes
of the two human beings. That explains why they have been misclassified.

We discussed in section 6.1.1 how the background could affect the human shapes
and detect several events for a single moving object at different time. Using this idea,
we can try to find if the misclassified human beings have been well-classified at some
point of the video by the non-linear classifier. Displaying the whole set of well-classified
humans, three familiar human beings are extracted in Figure 7.12.

Finally, as some misclassified humans have been well-classified at another time in
the video, the actual human misclassification rate decreases. If we no longer consider
the three human beings in Figure 7.12 as misclassified events, this rate becomes lower
than 13%.

On another hand, we also have to explain why the false positive triggers shown in

65

CHAPTER 7. EXPERIMENTS AND RESULTS

Figure 7.10: The false positives (i.e.: the non-human events classified as human beings)

Figure 7.11: False negative triggers caused by the background which affects the appar-
ent shapes of the humans.

66

CHAPTER 7. EXPERIMENTS AND RESULTS

Figure 7.12: False negative triggers correctly classified by the non-linear classifier at
another time.

Figure 7.10 have been wrongly classified by the non-linear classifier. The eight first
events (the two first rows in Figure 7.10) are caused by illumination changes occurring
at night. Sometimes, some flashes of light are strong enough to create areas of motion
whose édges are distributed in the whole range of directions. They can be classified
as human beings. False positives caused by big moving objects are shown in the third
row of Figure 7.10. They are classified as human beings. We presented in section 3.4
few drawbacks of feature extraction using motion estimation. Multiple areas of mo-
tion could be created by one big moving object. This can explain why a truck can be
classified as a human being. In the images displayed in the third row of Figure 7.10,
it is not the whole truck that is actually detected but a small part of it (Figure 7.13,
left image), which is classified wrongly. Big moving objects can also generate wrong
regions of motion by creating light changes in the scene. In the first image of the fourth
row in Figure 7.10, an illumination change is detected in the iron shutter (Figure 7.13,
central image). It is classified as a human being. Finally, the last image in Figure 7.10
is a man about to pass through the door (Figure 7.13, right image). It could have been
considered as a human being.

Finally, using EDH generated from background-subtracted data, we have built a
robust and efficient non-linear human classifier. A few misclassified events still remain
though. They are caused by the feature extraction based on motion estimation module
whose drawbacks have been discussed in section 3.4. The background can also affect
the apparent shape of the moving objects and generates some misclassification.

7.2.3 Long training and test sets

The non-linear human classifier we have just presented in section 7.2.2 was trained
and tested over longer training and test sets. One ten-minute video sequence was taken
every hour during 24 hours to construct a four-hour training set. Such a training set
contains different illumination conditions depending on the time of the day. 2156 events
have been detected in the training set. A four-hour test set was built using the same

67

ASTON UNIVERSITY
LIBRARY & INFORMATION SERVICES

CHAPTER 7. EXPERIMENTS AND RESULTS

Figure 7.13: False positive triggers. The left image is a small part of a truck. An
illumination change is detected in the central image. A part of a man is shown in the
right image. They are all wrongly classified as human beings.

process. 1606 events have been detected in the test set. 72 were triggered by human
beings, 1534 by any other events.
The resulting confusion matrix is displayed in Figure 7.14.

Classification rate: 96.8867%

1496 38

12 60

Figure 7.14: Confusion matrix of the non-linear human classifier tested on the long
test set.

Even with longer data sets, the non-linear human classifier we have built in section
7.2.2 outputs very good results. The good classification rate is still high (almost 97%)
whereas the human misclassification rate stays low (16%).

68

Chapter 8

Conclusion

8.1 Achievements

Some noticeable achievements have been made during this eight-month MSc project.
We have developed an event detection algorithm. Thanks to it, any moving object,
bigger than a minimum threshold size, triggered an alarm event on entering the central
region of the scene (the region of interest). Thus, as soon as a big enough object was
moving in the scene, we could detect it. Furthermore, in order to focus on the moving
regions, feature extraction based on motion estimation was used to highlight the events
occurring by drawing their boundaries. Every event occurring in the scene was more
than detected. It was also highlighted. It allowed us to deal with multiple objects
moving in the scene at the same time. However, a few drawbacks have been identified.
Indeed, big moving objects could generate several areas of motion. Moreover, they
could affect the lighting conditions of the whole scene and thus cause the detection of
false events. This phenomenon was emphasized at night.

After being detected, each event had to be classified in two different classes. We
have to know if it has been triggered by a human or several human beings or by any
other kind of events (vehicle driving in the street, illumination change, etc). To do so,
we have constructed a robust human classifier using multi-layer perceptrons (MLPs)
and edge direction histograms (EDHs). EDH was built from the background-subtracted
data corresponding to the detected event. On the contrary to vehicles or light changes
which generated strongly vertical and horizontal EDHs, human beings created EDHs
in which edges were more distributed in the whole range of directions. These ideas
allowed ‘us to build a quite robust non-linear human classifier. The results obtained
were very good: the classification rate was almost 97% and the human misclassification
rate was 16%.

Preliminary processes such as the background subtraction we used in the classifi-
cation algorithm were applied to the data provided. Those processes were essential to

69

CHAPTER 8. CONCLUSION

obtain good results from the cluttered video data. However, they were quite basic. Sev-
eral parameters needed to be defined by hand: the noise threshold of the background
subtraction (Section 4.1), the time step and the minimum tolerance of the dynamic
background update (Section 4.2).

Such a human classifier does not exist in TVM’s algorithms. It allowed us to have
better results by decreasing the false positive rate of the system.

At this point, we have detected every event occurring in the scene. We have then
classified them so that the events triggered by human being remained only (i.e. the
objects able to cause an incident). Basically, every human beings passing through the
scene generated an alarm event. This was not sufficient. Indeed, to cause an incident
and trigger an alarm, a human being also needed to go in or out of the door. We
had to know where the humans were going. We needed to track them over time to
estimate their trajectories. That is why we finally used mathematical models to build
a probabilistic video tracking algorithm using first-order Kalman filters. Preprocesses
were applied to the data in order to make this algorithm work with the cluttered video
data. Moreover, motion estimation was used to create an automatic tracking algorithm.
This tracking was assumed to work for slow motion objects only (the human beings).
As the only objects which needed to be tracked are the one classified as human beings,
this assumption was suitable.

70

CHAPTER 8. CONCLUSION

8.2 Future work

Future works still need to be done in order to actually build a video based detection
system.

The main task will be to link the detection and the human classification algorithms
to the video tracking. Doing so, every human walking through the scene will no longer
be considered as an alarm event. The only incident remaining will be the human beings
going in or out of the door as we will know where they are going thanks to the tracking
algorithm.

Moreover, we just ran our algorithms in Matlab. Thus, they were quite long;
especially the probabilistic tracking algorithm and the motion estimation search. Better
results should be obtained by using other programming languages (Java for instance).

Other things will need to be improved in the algorithms we have already imple-
mented. The basic preliminary processes (background subtraction and dynamic back-
ground update) will need to be changed. Indeed, a new definition of the background
will need to be given so that it does not affect the apparent shape of the moving ob-
jects anymore. The feature extraction based on motion estimation will also need some
improvements: the identified drawbacks should be solved. The regions of interest sur-
rounding every event should no longer be rectangular so that the algorithms become
more general. More complex shape-spaces may need to be used to allow more degrees
of freedom to the tracked curves. Finally, some parameters which need to be initialized
by hand still remain. They will need to be generalized so that the system can work for

every calmera.

71

Bibliography

(1] B. Furht, J. Greenberg and R. Westwater, Motion estimation algorithms for video
compression, Kluwer Academic Publishers, 1997.

[2] S. Zhu and K.K. Ma, A new diamond search algorithm for fast block matching
motion estimation, in Proceedings of Int. Conf. on Information, Communication and
Signal Processing, pp. 292-296, Sept. 1997.

[3] A. Blake and A. Yuille, Active Vision, MIT Press, 1992.
[4] A. Blake and M. Isard, Active Contours, Springer, 1998.
[5] M. Isard and A. Blake, ICondensation: Unifying low-level and high-level track-
ing in a stochastic framework, Proc 5th European Conf. Computer Vision, Vol. 1 pp.

893-908, 1998.

[6] S. Arulampalam, S. Maskell, N. Gordon and T. Clapp, A Tutorial on Particle
Filters for On-line Non-linear/Non-Gaussian Bayesian Tracking, IEEE Transactions
on Signal Processing, Vol. 50, NO. 2, pp. 174-188, 2002.

[7] R.C. Gonzalez and R.E. Woods, Digital Image Processing, International Edition,
pp. 519-642, 2002.

[8] A. Jain , H. Zhang and A. Vailaya, On Image Classification: City vs. Landscape.,
In Workshop in Content-based Access to Image and Video Libraries, pp. 3-8, 1998.

[9] F. Mahmoudi, J. Shanbehzedeh, A-M. Eftekhari-Moghadam and H. Soltanian-
Zadeh, A new non-segmentation shape-based image indexing method, IEEE Interna-
tional Conference on Acoustics, Speech, and Signal Processing, Proceedings (ICASSP
'03), Vol. 3 pp. 17-20, 2003.

[10] D. Lowe, M. E. Tipping, NeuroScale: Novel Topographic Feature Extraction using

72

CHAPTER 8. CONCLUSION

RBF' Networks, Advances in Neural Information Processing Systems 9, pp. 543-549,
1997.

[11] Dinoj Surendran, Stuart Levy, Visualizing High Dimensional Datasets Using Partiview,
infovis, p20, IEEE Symposium on Information Visualization (INFOVIS'04), 2004.

(12] C. M. Bishop, Neural Networks for Pattern Recognition., Oxford University Press,
1995.

73

