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Thesis Summary 

Weather forecasting is a prediction of what the weather to come will be like. This can 

be done in a deterministic or probabilistic way. We are interested in nowcasting, which 

is the production of short-range (0 to 6 hours) forecasts. The goal of this thesis is to 
create and develop a statistical model for precipitation forecast with radar data only. 
This forecast will be probabilistic, which means that we will provide a forecast mean 
and covariance for the precipitation. This study starts with the research of a space 

reduction for the data, as time required to run models is crucial in weather forecasting. 
Then, we build in a Bayesian framework a general model, which is developed in the 
latter part of the thesis. We need dynamics to represent the evolution of the rainfall 
field. The dynamics of this model come from the advection equation, which links the 
rainfall field to the advection field. The model has been tested with simulated and real 
data. 
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Chapter 1 

Introduction 

1.1 Weather forecasting 

Weather forecasts provide information about the weather to come. Many different 

techniques are used in weather forecasting, from relatively simple observation of the 

sky to highly complex mathematical models run on computers. Weather prediction 

can be for the next hour, next day, or next few days. However, the forecast’s accuracy 

decreases significantly beyond about 10 days. Weather forecasting remains a very com- 

plex task although enormous improvements in the accuracy of weather forecasting have 

been realized. The improvements are mainly stimulated by the advances of modern 

technology, especially computers and weather satellites, and the availability of data 

provided by coordinated meteorological observing networks. 

The works of Lorentz led to the idea of chaos in physical systems. In the case of me- 

teorology, this implies that small differences in the initial conditions of the atmosphere 
can lead to big differences later in the weather. Sometimes these initial differences 
are too small to be detected by observations. The weather can therefore be chaotic 

and unpredictable, which is why it is really hard to do weather forecasting. Weather 

forecasting is one of the hardest challenge not only because of this but also because it 

demands a large amount of computational power. 

Weather forecasting is a large field and we restrict our attention to precipitation 
forecasting. Meteorologists call precipitation all the forms of water that fall from the 
air to the Earth’s surface. Air contains water vapour from the evaporation of liquid 
water from the Earth’s surfaces (oceans, soil, lakes, rivers, ...). When air moves because 
of differences of temperatures and pressures, it may cool and may release vapour as 
condensation in form of cloud or eventually rain (or another form of precipitation). 

Precipitation seems to be the most obvious of the weather elements in its effects 
on normal life. Indeed, too much precipitation (flash floods, floods, heavy rain storms) 
or drought can be dangerous (agriculture, transport, navigation,etc), that is why there 
is a need fo forecast precipitation. Forecasting precipitation is not simple, rainfall 
can be convective, or frontal and a number of different forecast methods are possible 
: nowcasting, which is the production of short-range (0 to 6 hours) forecasts, and 
numerical weather prediction forecasts over longer periods. 

We are interested in nowcasting of all types of rainfall. Nowcasting began nearly 50 
years ago with the work of Ligda [11]. He showed that forecasts could be made from 
the persistence and the movement of radar echoes.



The aim of this project is to define and to develop a full probabilistic quantitative 

precipitation forecast (QPF) model based on the advection equation (Chapter 3). This 
model is a statistical one which produces a probabilistic nowcast of precipitation using 

radar data only. 

1.2 Different Approaches to Forecasting 

A lot of research on this subject, precipitation forecasting, has already been done. 

Within meteorology, there are two general forecasting approaches : deterministic or 

probabilistic methods. 

1.2.1 Deterministic 

Numerical Weather Precipitation (NWP) is the basic framework of deterministic fore- 
casting. These models contain full representations of the physical equations governing 

large scale tropospheric behaviour. Actually, NWP numerically integrates a set of par- 

tial differential equations, in state variables that describe the atmosphere (physically 

based partial differential equations). These equations describe the time evolution (and 
coupling) of the state variables. 

NWP consists of solving nonlinear differential equations. ‘This is not possible by 
precise analytical methods; it is done by numerical approximation. To realize this, a 
huge amount of computation is required. NWP models have always been limited by 

the rate of evolution of computer power. Besides, because of the non linear nature 

of equations, the initialisation is again very important (small differences in the inital 

conditions can imply big differences later on). 

These models do not obtain accurate results for nowcasting. In very short range 
forecasting, the key problem is data assimilation, spin up and the time required to run 
models. The spin up (0-3 hours) is the time it fakes the model to stabilise. It ensures 
internal consistency in the variables. The spin up can seriously affect the quality of 
data assimilation. 

1.2.2 Model used 

There are many different modelling approaches, the two most commonly used in the 
UK are: 

NIMROD is an automated precipitation nowcasting system using rainfall data from 
the UK weather radar network, weather satellite observations and Meteorology office 
Mesoscale Model outputs as the basis for prediction. 

GANDOEFF [2], acronym for Generating Advanced Nowcasts for Deployment in Op- 
erational Land-based Flood forecasts, is an automated convective rainfall nowcasting 
and early warning system. This model uses the previous one to forecast if there is 
no airmass convection. If airmass convection occurs, it uses an object-oriented model, 
which simulates the life cycles of individual showers (rain) independently. 
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1.3. Thesis overview 

This thesis first develops a very general QPF model, and then implements it. 
Chapter 2 presents the radar dataset used for the forecasting. This data has been 

provided by the UK Met office. The way data is retrieved from the radar is briefly 
overviewed. Chapter 3 deals with the advection equation, and the QPF in a very general 

definition. If introduces as well the Bayesian approach and the framework in which the 

model is defined. In Chapter 4, the first attempt to create a forecast precipitation model 
is described. This chapter also deals with the way to solve the advection equation, and 

problem encountered with the finite difference method. Chapter 5 copes with the 
chosen model for the rainfall field. The results of the fitting of this model on real data 
are presented. Chapter 6 presents the final fully probabilistic model developed, as well 

as the results obtained on simulated and real data. The development of this model is 

the result of a working collaboration with Dan Cornford. 
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Chapter 2 

The data 

This chapter presents radar data. It also deals with space reduction of our datasets. 

2.1 Radar data 

Radar data is widely used in precipitation forecasting, because radar can be used 
to measure rainfall. In 1948, Marshall and Palmer demonstrated the existence of 
drop size distribution which is a function of the rain rate, and therefore led to a 
corresponding relation between radar reflectivity Z and rain rate R [3]. Further work 
has been undertaken and now rainfall measurements can be retrieved from radar data. 
However, radar rainfall measurements are not perfect and ground clutter or bright 
beam must be taken into account. The former is simple fo understand and to detect. 
When a pulse of energy leaves a radar antenna, it gradually spreads in all directions. 
When this pulse strikes a cloud or rain drops, it reflects a pulse in all directions and 
some of this reflected pulse reaches the antenna. The problem is that buildings and 
hills also reflect this pulse and are often plotted on radar pictures as precipitation. 
You can spot ground clutter by viewing a loop of individual radar pictures and looking 
for stationary radar returns embedded with moving radar returns. These stationary 
returns are usually ground clutter. Ground clutter often can be filtered out of the radar 
image due to the development of stronger computers and Doppler radar [14]. A radar 
bright band is observed in layers where the water phase in the air changes from solid to 
liquid (the height at which snow begins to melt into rain). The enhanced reflectivity 
can be caused by aggregation of wet snow crystals near this layer, or by relatively 
large single ice crystals developing a wet surface during melting. In either case, the 
wet crystals/aggregates appear to have a dielectric constant more nearly characteristic 
of water, while briefly maintaining a size that is larger than an equivalent-mass water 
droplet. As radar data used the drop size of the rainfall to estimate the rainfall, these 
effects imply error in the estimate of the rainfall. On the radar image, it gives a bright 
band layer. This bright band implies a error in the estimate of the rainfall [1]. 

Radar data provides rainfall measurement. This data is often plotted on an image 
where the colour map represents the different values of the rainfall rate. To colour the 
image is the same thing as using a plot in 3D (see Fig 2.1). 

12
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Figure 2.1: Image of the radar data in 2D and in 3D, 30 October 2000 6:45 am. In 
2D, the colormap determines the value of the rainfall at each point. The axis represents 

the size of the image in km. 

2.2 Presentation of the data set 

The data used in this project was supplied by the UK Met office. The data can be 
divided into two types : one covers the whole of the UK mapped to a 5-km grid, and 

the second covers part of England and Wales. We will concentrate on the data covering 

England and Wales (at 2km resolution). Each image represents rainfall intensity and is 

sampled at 5 minutes interval. Each set of data covers the same grid but over different 
dates and over different lengths of time. The data contains a matrix which gives the 
rainfall intensity. 

Radar data is our primary and unique source of precipitation information. We 

obtained two differents types of data: one using only one radar, the other uses multiple 

radars to create a composite image, we have only used those with only one radar. 

Actually radar echoes do not measure rain, but rather microwave radiation. The 

data we get is preprocessed to remove ground clutter and bright band. They are the 

best available estimates of spatially distributed precipitation intensity. But some errors 

still occurs. 
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2.3 Exploring the data 

Weather forecasting is one of the most computationnally intensive activities, and today 
biggest computers are used to make weather predictions. The main problem is the high 
dimensionality of the data. In this chapter, each location will be treated as a separate 

dimension. 

In this chapter, we study the possibility of reducing the dimensions of the provided 

data sets in order to gain time in data assimilation and in general to be as quick as 
possible. Being computionally efficient is especially important in nowcasting. The first 

part of the project was to deal with the data, try to understand its structure, and to 
reduce, if possible, the dimension of the state space in which to represent the rainfall 

field without compromising the forecast performance. A Principal Component Analy- 
sis (PCA) [6] was applied to the data in order to project it onto a subspace. PCA is a 
classical statistical method. PCA involves a mathematical procedure that transforms 

a number of (possibly) correlated variables into a smaller number of uncorrelated vari- 
ables called principal components. The first principal component accounts for as much 

of the variability in the data as possible, and each succeeding component accounts 

for as much of the remaining variability as possible. Often, PCA is performed on the 

covariance matrix of the variables. 
Let's define ©p the covariance matrix of the data matrix of dimension n. Sp is real 

symmetric positive definite matrix. So we can obtain an orthogonal basis by finding 
its eigenvalues and eigenvectors. We can rewrite the covariance matrix : 

Ep =UAU' (2.1) 

where U is the basis change matrix from the old base to the new one, this matrix is 
orthonormal, A is a diagonal matrix with all the eigenvalues on the diagonal. 

Let’s note (A1,..,An) the set of eigenvalues with A, < .. < A; and (uj,..,Un) the 
corresponding eigenvectors. 

Varexp(k) = ery (2.2) 

  

where Varezp(k) represents the variance explained by the k first eigenvalues, k < n. 

The set of vectors (w,.., ux), k <n, explains Varezp percent of the variance. The 

subspaces determined by the eigenvectors (1j,.., uz) are all the projection space possi- 
ble. A subspace then has to be chosen. Choosing the subspace is then equivalent to 

fixing k. The aim of PCA is to find k as small as possible, but large enough to explain 
the data. Vareep(k), which is a function of the number of components k, enables to 

know for each k how well this reduction fit the data. Therefore, the choice of k, which 

depends on how well we want to fit the data and how much we want to reduce space, 

can be made by comparing the reduction obtained and the variance explained. 

In our case, the observation data is a matrix of 210 by 210 pixels. The data set 

used is from measurement made on the 3" April 2000. The observation starts at 9:15 

am, finishes at 1:50 pm, and is sampled every 5 minutes. The number of observation, 

denoted T, is 34. In this chapter, we will denote (D;)i<ter the observation matrix, 

where D, is the first observation at 9:15 am and Dr the last at 1:50 pm. 

To perform PCA on the whole data matrix is impossible because it requires too 

much computational power. Therefore we divided the matrix into blocks and put each 
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block in a column vector. By convenience, these blocks are square. The size of the 

block is a parameter we have to choose. We have tried a lot of different size of block, 
which were computationally plausible. In the results presented below, the size of block 

is 20. We have choosen to show you the results with this particular choice of parameter 

because this choice gives interesting results. 
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Figure 2.2: Division of the image into blocks. N is the number of block per image. 
Bi, represents the block number n at the time t. Each block B,,, composes a column 

of the data matrix. Image 1 is the radar data at time t = 0. T is the number of radar 
data we have in this dataset. Each time step between two observations is 5 minutes. 
The Image T represents the radar data at t = T. D, is the radar data matrix at time t. 
b,,. is the first block of the first image (t = 1), bi,y is the last block of the first image, 
br,w is the last block of the last image. The size of the mapped matrix is M = n?, 
lines, and N * T rows. 

PCA is applied to the transpose of the data matrix (shown in Figure 2.2). 
This decomposition leads to a global basis for each block. We did this decomposition 

because we thought that all blocks could have some common features. 
We have N *T blocks of size M «1. Then, we find a space basis such that : 

D) = UAU! (2.3) 

where ©, is the covariance matrix of the block, U = [u,.., us] is the basis change 

matrix, A is a diagonal matrix with all the eigenvalues (A;)i<i<ar in the diagonal. In 
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PCA, we have to choose the number of eigenvectors we want to keep but we want to 

have k << M. This number depends on the Varezp we want to have. Let us note k 

the size of the subspace chosen, reducing the dimension from M to k. 
Let us define A = [u,.., ux]. To each by, corresponds a unique Stn Such as : 

bin © A.Stn (2.4) 

where s;,, is a real row vector of dimension k. 

The equation 2.4 is only an approximation because we have trimmed the matrix to 

the k first components. 

Globally, D; is represented by 4,1, ..., ¢,.v. Thus, for each observation data matrix 

we have a reduced size of k * N. 

PCA enables us to change our basis to represent data. It computes all the eigen- 
values as well as the eigenvectors. From the eigenvalues and eigenvectors, we have to 

decide if a reduction using PCA is worth while. 

2.4 Results 

We have explored the evolution of the eigenspectrum (sorted by decreasing value) and 

the eigenvectors. The ideal would be to find a big difference between the n first eigen- 
values and the others with n as small as possible. Then, these first n eigenvalues would 

account for most of the variance and we could do a projection over these eigenvalues 

and neglect the others. The purpose is to find n really small in order to have a useful 

projection. In the test presented, we choose 20 as the size of each block. The Figure 
2.3 shows the eigenvalues on a linear and a logarithmic scale. The logarithmic scaled 
graph is interesting because it shows some step between the eigenvalues. 
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Figure 2.3: Plot of the eigenvalues on a linear scale (top) and on logarithmic scale 

(botttom). The size of each image block is 20. Data measurements from the 3" of 
April 2000. On the log-plot, we have only plotted the first 200 eigenvalues, because of 
computational issues. 
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Number of principal components | Variance explained 

10 93.14 
20 96.93 
30 98.43 
40 99.23 

50 99.67 

60 99.94       
  

Table 2.1: Variance explained in accordance with the number of components 

In this test, the size of each block b;,, is 20, so the number of blocks per observation 

data matrix is 100. The dimension of the eigenspectrum is in this case 400 (207). 
So it seems possible to remove some components. More than 99,9% of the variance 

is explained with the first 60 eigenvalues (see Table 2.1). We can project the data on 
a subspace of dimension 60. The 60 eigenvectors corresponding to these eigenvalues 

will be a basis of this subspace. We have to keep so many basis because we want to fit 

the data the best we can. The size of the space when the size of the block is 20 is 400. 

The reduced dimension is still not small enough. 
We want to plot the eigenvectors corresponding to these eigenvalues (Figure 2.3), 

and to look at these basis vectors. We have to invert the mapping to plot them. 
Eigenvectors are column vectors of size M, where M is the square of the size of each 

block. The size of each block has been chosen before mapping. We are reshaping the 
eigenvectors into a square matrix whose dimension is the size of the block. Now, we 

are able to plot them. 

The 16 eigenvectors corresponding to the 16 biggest eigenvalues are plotted as well in 

order to visualise the resulting projections. Those eigenvectors are the most interesting 
one because they are explaining most of the variance. Plotting the corresponding 

eigenvectors seems to encourage us to believe suitable basis functions could be found 

(Figure 2.4). Indeed, the global shape of the eigenvector is quite similar to radar data. 
Some local structures can be seen on the image of each eigenvector. 
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Figure 2.4: The eigenvector images E) corresponding to the specific eigenvalues \ in 
decreasing order. Localised structures appear on the images. Data from the 3" of 
April 2000. 

We then increase the size of each block, but now blocks can overlap each other, as 
shown in Figure 2.5. 

B2 | 

Block 

Translation 

  

            

Sizebloc     
  

Image 

Figure 2.5: Division of the data image with overlapping block. The division in block is 
different than in Figure 2.2 but afterwards the process done on each block is the same. 
Surrounding blocks have now a common place. 
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This overlapping block decomposition has been done, because we thought that it 
could give more general basis. Since, two successive blocks have a common part. This 

methods increases the size of the data, but we hope to catch more characteristics 
of the radar images. Moreover, the method without overlapping was presenting a 

drawback: if a precipitation cell is divided between blocks, we are not able to track all 

the characteristics of this cell. Now with this method this problem is solved. 
The size of the block is again a parameter we have to choose as well as the size of the 

overlapping. We have tried a lot of different size of block and overlapping, which were 
computationally plausible. In the results presented below, the size of block is 40 and 

we translate each block by 25 (translation along the rows). We have choosen to show 
these results because this choice gives interesting results. More general eigenvectors 
which now require approximately 150 eigenvalues to explain more than 99.9% of the 

variance (Figure 2.6(a) and 2.6(b)) are now obtained. 
These eigenvectors which represent the basis are more general because a part of the 

data appears two times as there is an overlapping block decomposition. Moreover, it is 

clear that fo account for the same amount of variance than in the previous experimence 

(without any overlapping) we need to keep more basis function as surrounding blocks 
have a common part. The graph of the eigenvalues is similar to the one obtained 

without this overlapping method and presents the same kind of discontinuity. 
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Figure 2.6: Plot of eigenvalues on the top and eigenvectors on the bottom of the PCA. 
The image block 6;,, t fixed, are overlapping. On the bottom plot, the eigenvector 

images corresponding to the specific eigenvalues in decreasing order (must be read 
from the top left to the right as in Figure 2.4). Data measurements made from the 3” 
of April 2000 
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2.5 Summary 

‘To conclude this chapter, it can be seen that it is possible to reduce the dimension of 

the state space, and here we have quite promising results. But the reduction we find 

is not worth while. In this project, we need to put dynamics in the model. With this 

projection, to cope with prediction is a hard task. 

To deal with dynamics, we would have to put dynamics in s;,1,.., sv as A is fixed 

(see equation 2.4). 
Let us define S; = (5,1, .., $z,)’ as a real row matrix whose size is k * N,1, k is the 

number of components chosen. Having dynamics is to be able to infer S,,; from S;. 
A typical linear dynamical system can be defined by : 

Si = BS +7 (2.5) 
where B is a real matrix of size (k x N,k * N) and 7 is observational noise. We would 
have to learn B for the observation data sequence. In practice, this would not be 

computationally feasible because of the size of B. For instance, if the size of each block 

bin is 20, then N is 100 and we choose 50 components, so B is a matrix whose size is 

5000 * 5000. 

The learning of B will be too long. In this project, we need to put dynamics in the 
model. If we kept this space reduction, we would have computation problem for the 
dynamics. To have a matrix B whose dimension is not too big, we would need to keep 

only 1 or 2 components (then the size of B would be 100 * 100 or 200 * 200). But we 
would not have enough information if we kept only 1 or 2 components. 

The idea of using PCA to reduce the size of the data is not incorporated into our 

analysis. This reduction will be done differently. Although this space reduction method 

was not chosen, this study gave us some knowledge about the rainfall data structure. 
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Chapter 3 

Quantitative Precipitation Forecast 

Model 

Precipitation forecasting can be made over different time lengths. For this work, we 
are interested only in short range prediction which are usually up to 24 hours forecast. 

Noweasting is a production of short range prediction where time lengths are limited to 

6 hours. 

The basic difference from the previous chapter, where the model for the rainfall was 

a discrete pixelised model with uncorrelated error, is that in this chapter the rainfall 

field model is a continuous process. The method on which the model is based is the 

advection and the growth/decay of the current precipitation field. The advection is 

supposed to be a continuous process in space and time. We will assume only the 

advection term is responsible for the dynamics. 
There are several pieces of knowledge we would like to incorporate concerning pre- 

cipitation and its short term evolution. The rainfall field is supposed to be positive 

all the time. The rainfall field and the advection are continous processes in space and 

time. We will also try to incorporate that the space and time rate of change of the 

advection is much slower than that of the precipitation field. 

This chapter deals first with advection, then, using the Bayesian framework, the 

model is developed. In the final section, we give the description of a general model. 

3.1 Advection 

3.1.1 Definition of advection 

Air movements are sparked by differences of temperature or pressure, and are felt 

as the wind. In the atmosphere convection and advection transfer heat energy from 

the hottest regions to the coldest ones. We can observe air movements of this type 

during the formation of the sea or coastal breeze, as consequences of the difference of 

temperatures between the sea and the soil. On a larger scale, differences of temperature 

are at the origin of the principal wind zone through the earth [10]. 
One way that heat is transferred through air is by convection. In the atmosphere, 

convection occurs when a layer of air in contact with a hot surface warms by conduction, 

acquires buoyancy because warmer air is less dense than colder air, and rises, taking 

with it the energy that it stores. As the Earth is heated by the Sun, bubbles of hot air 

22



called thermals rise upward from the warm surface. In meteorology, convection refers 

primarily to atmospheric motions in the vertical direction. 

Advection is defined as the process of transport of an atmospheric element just from 

the mass motion of the atmosphere. As a consequence the properties of the atmosphere 

element are also transferred. Here advection refers to the horizontal transport of the 

variable [5]. So the advection can be represented by a vector of dimension 2. Let us 
note it (u,v). Two features of information about advection are especially important a 

av meteorology : the vorticity and the divergence. The vorticity is defined by (ae aay 

with x,y planar coordinates and the divergence is defined by (2 + 2). Vorticity is 
defined as twice the angular speed of rotation, whereas divergence as the elative rate 

of increase of the area enclosed by a material surface [7]. We want to set these features 
of the advection and try to stick to the reality as far as possible. In practice, the 

divergence is very small. 

In this thesis, we are only assuming advection, because our dynamics will be only 

in 2 dimensions. 

3.1.2 Advection equation 

The dynamics in the rainfall field we will use are actually from the optic flow theory. 

The optic flow theory is used for tracking objects in an image. Finding optic flow 

is finding image displacements [12]. To find optic flow, different methods have been 
developed. The gradient based approach is one of them. Gradienf-based methods use 

spatial and temporal partial derivatives to estimate image flow at every position in the 
image. 

Horn and Schunk use space-time derivatives of the evolving image brightness func- 
tion to give a single equation which partially determines the optic flow. The assumption 
is made that the brightness of any part of the imaged world changes very slowly, so 
that the total derivative of the brightness is zero. When differentiated using the chain 

tule, this gives the equation 3.1 : 

a1 ae | O1 Oy , at _ 
Bel Guar Or US (3) 

where (zx, y,t) is the image brightness function. 

In radar data, we can use as well as in optic flow the equation 3.1 to track movements 

of cells of rainfall. Our starting point is the work from the Met office based on this 

equation [9]. Our goal is to introduce probabilistic methods to their current advection 
based approaches. We will use optic flow methods, and these will be used in order to 
compute the advection field. 

Nevertheless, the equation 3.1 makes the assumption that features within an image 

sequence only change shape, and do not change in size or intensity. This is not the case 

with rainfall, that is why we add a growth/decay term G in this equation to take into 
account the change in our image sequence. The advection equation is then defined by 

equation (3.2). 
The advection equation is then : 
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OR OR 
nae ge te (3.2) 

where (u,v) is the velocity at each point (x,y), in the images and R(z, y) is the rainfall 
intensity at a given time. 

The rainfall and the advection field are continuous processes in time and in space. 

Gis, in principle, a function of space and time but due to its complexity we will proceed 

with certain approximations. Namely it will encompass the model error and will not 

be a function of space. Judging from the model’s output and by comparison with the 

data the idea is to adjust G by trial and error. 
In comparison with the model used in Chapter 2, the main difference is that R is 

now a continuous process. In Chapter 2, R; was represented by D;, which is a simple 

pixel model. 

The main advantage of this continuity in the rainfall model is that this is more 

realistic. Indeed, the rainfall process is a continuous one. Since the equation 3.2 

describes a differential equation our objective will be to construct a differentiable model 

to enable partial derivatives with respect to space and time to be computed. The 

model will be necessarily continuous, as differentiability implies continuity. With the 

advection equation, we decompose R using the advection field and an initial value of 

R. This point is essential because it is our dynamics. It enables us to do our update 

along the time axis. We assume only advection which means that advection is the only 
dynamics we will take into acount. 

3.2 The Bayesian approach 

3.2.1 Bayesian point of view 

Bayesian inference is another way of using probability. In a frequentist paradigm, the 

probability of an event is considered as the fraction of times that the event occurs in 

the limit of an infinite number of trials. But in a Bayesian framework, a probability 

can be interpreted as a subjective degree of belief about the result of the match. It is 

an expression of belief rather than an expectation of a number of trials. 

Cox in 1946 showed that the Bayesian interpretation of probability leads to a con- 

sistent Bayesian formalism where degrees of belief can be updated in the light of new 

information, or data, using Bayes’ rule. 

3.2.2 The principle 

The purpose of a Bayesian framework [8] is to use the Bayes’ rule to compute the 

probability of parameters given the observations (data). For instance, the probability 

of the parameter w given the observations D : 

v(w|D) = Pw) (3.3) 
The distribution p(w) is called the prior distribution and quantifies the knowledge 

available about the parameter values before the data is observed. The prior reflects 

  

24



our initial belief in the range of values that w takes. In the absence of any serious 

beliefs, the prior distribution will normally be rather flat or uninformative. The prior 

distribution is very broad to reflect the fact that we have little idea of what values the 
paramters should take. It is better to give little information on the prior than to give 

wrong one. The distribution p(D|w) is the dataset likelihood. 
The distribution p(w|D) is called the posterior distribution and is determined by 

using Bayes’ rule (Equation 3.3) (see Figure 3.1). 

Posterior 

p(wiD) 

  

Figure 3.1: Schematic illustration of Bayesian inference for a parameter w. The prior 

distribution reflects our initial belief in the range of values of w. Once the data are 
observed, we can calculate the posterior distribution using Bayes’ theorem. Since some 

values of the parameter will be more consistent with the data than others, the posterior 

distribution will be narrower than the prior distribution. 

p(D), known as the evidence, is a normalisation factor that ensures that the poste- 

rior distribution integrates to 1. It is given by an integral over the parameter space. 

v(D) = [ p(Dju')o(u au! (3.4) 
p(D) is constant as the observations does not change and is unknown, so : 

p(w|D) x p(D\w)p(w) (3.5) 

Then, if we assume that the noise on each component D; is independent and iden- 
tically distributed (iid), we have : 

p(w|D) x [] | p(Di|w:)|p(w) (3.6) 
i=1 

The distribution p(w|D) is rarely tractable, so we need fo do some approximations. 

There are two differents types of approximation. You can either approximate the pos- 

terior with a tractable distribution keeping probability nature or you can use a point 
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estimate: the maximum a posteriori (MAP) solution. The MAP solution consists of 
finding the w which maximises probability p(w|D). The MAP solution is the standard 
regularization, provided that the noise is gaussian and additive, and the prior is a gaus- 

sian distribution. We need to put some smoothness constraints to do approximation, 

and the techniques that exploit these constraints are called generalization. The prior 
in the case of regularization framework represents the smoothness constraints of the 

model. 

We can then write the error on the parameter, which is the negative log likelihood 

of the parameter : 

E = —log(p(w|D)) 

= —log (ifort) + constant 
Pf 

- > log(p(D;|w;)) — log(p(w)) + constant 
i=l 

I 

Then, an estimate of the parameter can be retrieved using an optimisation method 

like gradient descent, or scaled conjugate gradient (SCG). In simulation, we will use a 
SCG optimisation method which is much more faster than a gradient method. 

The goal is to retrieve the parameter using a MAP solution. Roughly, we are looking 

for the parameter w which minimises —log(p(w/D)) the negative log-likelihood. The 
Bayesian process starts from an uniform field at the expected mean to converge as 

quick as possible. 

3.3 Full Model 

Our purpose is to create a statistical model which enables us to forecast precipitation. 

In this section, I will first introduce time series, statistical model, and describe the 

model that inspired us in the creation of our own model. Then, we will define in a very 

general way the model we developed. 

3.3.1 Kalman filter method 

The final objective is to predict, given a sequence of observations, the rainfall field, 

which can be seen like time series. A multivariate time series is a sequence of continuous 

d-dimensional random vectors X indexed by a time variable t. Suppose that at time t, 
we have seen a sequence of observations X7 = [a1,.., z:, ..27] and that we wish to build 

a model from the sequence X! that enables us to predict the value of X at time T +1. 

Unfortunately, in most realistic cases, the observations are not deterministically related. 

Besides, because of the finite and limited size of the data, there will be undoubtedly a 

mismatch between our model and the true process. 

Probability theory is a powerful tool for expressing uncertainty and randomness 

in our model. A statistical model is based on certain probabilistic assumptions that 

attempt to capture the essential characteristics of the data generation process. We do 

not believe that a model will represent exactly the true process but we hope we will 
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be able to develop tools that enable us to make decision for new data points. Given a 
model and a sequence of observations, the main purpose of time series is to estimate 

the parameters of the model by a statistical procedure, such as maximum likelihood, 

and make predictions. 

We are now going to describe the probability theory we used in our model : state 
space and Kalman filter algorithm. The Kalman filter algorithm is largely explained 
through an example. 

The state space representation is a compact description of ARMA (Auto Regressive 

Moving Average) models and is based on the result that any finite order difference or 
differential equation can be rewritten as a first order vector difference or differential 
equation. For instance, an AR (Auto Regressive) model of order 2 is written: 

Ly + A, Ty-1 + Ag Tt-2 = & (3.8) 

where 2; is a time series and & is a noise term We can write : 

y(1) |] _ [0 —az ye-1(1) 9 

ees | [eee ital: 

where y;(2) = x, and y,(1) = —a224-1 

In state space modelling, the observations are taken to be a combination of a set 

of variables called state variables which constitute the state vector at time t. This 
vector describes the state of the underlying system at time t. In the state formalism, 

the observation vector D, is described by a state vector w;, which contains information 

gained from previous measurements. 

The state evolution for a linear discrete model is such that : 

wr = Awe t+ Bie (3.9) 

where ji is the noise term 

A Kalman Filter is a sequential procedure for estimating the state vector at each 

time step for a linear model with Gaussian noise processes. Actually, the said procedure 

is composed of an evolution step and an update step. To give a concrete example, the 

all Kalman filter process, we give the example of one iteration in the filter with linear 

model. In this case, we wish to find the MAP estimate of the state time at time ¢ given 
new data D; and our estimate of the state at the previous time step ¢ — 1, i.e. Welt-1- 

The Kalman filter operates in a Bayesian framework, the posterior distribution can be 

written : 

P(wr|Dz) x p(Dy|wr)p(we|Di-1) (3.10) 

We assume that each of these densities is Gaussian. As the model is linear in this 
case, we can define S; such as: 

Di = Sew + & (3.11) 

where €; is the noise. We assume the noise to be zero mean. 

The likelihood contains all the information from the new data. 

P(D,\wr) = N(Sywr, Re) (6.12) 
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The prior (see Equation 3.12) contains all the information obtained from the previous 

data. Assuming a Gaussian, this distribution will be centred on our estimate of the 
state vector at time ¢ given all the data at time ¢ — 1, that is ®y,-1. The covari- 

ance matrix of the distribution will also be an estimate, denoted Py, which will be 

continually updating along with the state. The prior is then: 

p(we|Dy-1) = N(Wepe-1, Pips) (3.13) 

Finally, given the Gaussian assumptions above, the posterior distribution will also 
be a Gaussian centered on the best estimate given all the data up to now and including 
time ¢. The covariance matrix will our updated estimate of P;. So we have : 

P(we|Dt) = N (tee, Pr) (3.14) 
In order to determine «4, we minimise the log posterior with respect to w;,. It can be 

shown that: - F 

Py = SERPS: + Py, (3.15) 
and that: 

thee = Dyer + Keet|t — 1 (3.16) 

where K, = P,,S7R;! is called the Kalman gain 
The equation (3.16) gives our new state estimate. This is the update step. 

Now, the next step is to evolve the estimates of w while waiting for new data. In 

the update step, we have obtained the posterior distribution p(w:41|D,) (see Equation 

3.12). We can write this probability in the following form: 

P(we41|Dt) = J rlce wD, 

= f rlvesle D,)p(wi|Di)dwy (3.17) 

= f rlweslen)p(r|Debde 

where p(w;41, w;) is the joint distribution of the random variables w;41 

The second step comes from the Bayes’ rule and the last one follows from the fact 

that w;,1 depends on the data history omly through w;. 

We notice that the posterior from the previous time step has appeared within the 

integrand. It has already assumed to be N(tiy, Pit) distribution. p(w;,1|D;) represents 

the prior distribution of the next time step (see Equation 3.12). It is assumed to be 
a N (etre, Posie). The expression for p(w;+;|w:) is the state evolution equation 3.9. 

The noise is assumed to be zero mean with covariance M;. So we can show that 

P(Wep1|We) = N (Aru, B.M:B?) (3.18) 

By substituting these expressions in 3.17, we obtain the following equations which 

complete the Kalman filter algorithm. 

Werle = ArWye (3.19) 

Payste = A:PyAT oh B,M,.By (3.20) 
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3.3.2 State space and observations 

Data is available from radar which gives us the rainfall intensity that we will denote 
J,, which are the observations. We are using the following variable presented in Table 

3.1: 

  

I, | Observation 

R, | Rainfall field 

u, | First component of the advection vector 

vu, | Second component of the advection vector 
G, | Growth/decay term 

  

        

Table 3.1: Observation and state space 

The radar data, J, provides the observations which are a noisy realisation of R. The 
error in the observation is assumed to be uncorrelated. We will assume a Gaussian noise 

over the data. 

All these variables are supposed to be random variables and compose the state 

space. The precipitation field and the advection fields are stochastic processes at each 

space location. 

G is also in theory a stochastic process at each space location. But due to its 

complexity, it won’t be considered as a state variable in the development of the model. 

G will disappear from the state variable to be included in the model noise . But in 
this section and the next one which presents our model in a theoretic point of view, G 
is treated as a state variable. 

3.3.3 Statistical model 

Our state space is composed by the rainfall field R;, the advection field (u,v), and G;. 

We will pose this general state space model : 

Forecast step : 

P(Resr | Re, te, ve, Gr) (3.21) 

where Ria is the estimate of R at time t+ 1 

Update step : 

P(Rep1, Vey, Veer, Gor | Resa, Teri, Re) a p(ueyr, V4, Gry | Resi, Ri) (Riga | Resi, Lt41) 

(3.22) 
The only assumption on this basic model is that the advection equation holds and 

that the observations from time to time are not independent. This model is general, 

and we have a lot of choice over methods used to model the state variables. The 
intention is to use statistical model with a partial differential equation based approach. 

Within a Bayesian framework (see Section 3.2), the equation of the update step is 

defined as the posterior distribution of the state variables given the forecast (prior) 
and the observation (radar). 

We can represent this model by this graphical model (see figure 3.2). 
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t t+1 

oe 
Figure 3.2: General graphical model representing links between state space variables. 

  
  

The model we posed is very general and it will function in a similar way to a Kalman 
filter (see Section 3.3.1). The same method will be applied to evolve and update the 
states. 

The forecast step corresponds in Kalman filter term to the evolution state. In the 

forecast step, we will integrate the advection equation with respect to time. Given 
the advection field and the growth/decay term at time t, and the rainfall at time t, 

as the advection equation decompose R;,; by a combination of R;, (u, v)t,Gz, we will 

first compute the evolution of the rainfall field and then the advection field and the 
growth/decay term. This introduces a hierarchy into the steps defined in Kalman 
filter. The computation of the forecast step is not easy because we need to estimate 

probability of the current state R, by using our differential equation, which is also not 

trivial to integrate. Here we will need to again use some approximations. 

In the update step, we will condition our state space model to the observation J. We 

can say much about this step because we need to define model over our state space. We 

specify model classes on R,u,v, and G through the definition of appropriate prior (we 
are in a Bayesian framework). In these specifications of priors, we try to incorporate 

the properties listed in the previous section. 

Besides, there are several pieces of prior knowledge we would like to incorporate to 

this model concerning precipitation and its short term evolution, these include: 

e R>0 

e The rainfall advection fields are continous processes in space and time 

e The space and time rate of change of the advection is much slower than that of 
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the rainfall 

e The observations I are a noisy realisation of R 

Finally, the model posed is very general and can lead to lot of different developments. 
Tt depends on how the variables of the state space will be modelled. 

To develop our model, we have to specify a model over our state space. This is 

clearly needed by both of the model steps described in this section. The growth/decay 
term will not be modelled in first instance and will encompass the error model. The 
advection field has not been modelled yet and nor has the rainfall. This last one is 
the variable which has the most of constraints. We have several pieces of physical 
information we want to represent, and this modelling will be the hardest one. 

But before trying to model our state space variable, I will introduce the first. work 
using the advection equation and using the 2 steps described in this section ( Equation 

3.21 and 3.22. This work makes a lot of simplifications on the nature of all the variables 

and makes use of techniques to approximate partial derivatives. 
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Chapter 4 

Preliminary work 

The final model has been introduced in Chapter 3. The variables introduced previously, 
ie. the rainfall R and the advection field (u,v), and the growth/decay term G are not 
modelled, but have to be continuous. However, in this chapter, G will not be taken 

into account, and R will still be represented by the pixel model with uncorrelated 
errors. Actually the rainfall field R and the observation I are equivalent. In this 
chapter, we build a first model of quantitative forecastprecipitation. This model is not 

a probabilistic model. But it is a first step in the process of creation of the final fully 

probabilistic model. There is no forecast step (Equation 3.21). The forecast uses the 
current value of the advection field and the advection equation to compute the rainfall 

field at the next time step. 

We will first deal with the initialisation of the advection field, then with the sim- 

plifications made in the model, and finally we will give some results. 

4.1 Initialisation of the advection field 

The initialisation of the advection field consists of giving an estimate of u and v at 
time t = 0. Given 2 successive observations, and by using the advection equation (3.2), 
we can compute a estimate of the advection vector. The initialisation is a crucial part 

of a model as we want to find the best estimate possible. 
In this chapter, the growth/decay term is completely neglected because of its com- 

plexity. We do not have enough information about this term to incorporate it in the 

model. So we can simplify the expression of the advection equation: 

aR__ AR__ OR 
Hos ean ia (4.1) 

The equation (4.1) can be seen as linear equation with 2 unknowns wu and », if 
oR ae ae are fixed. This is the case at a given time. In our case, we deal with the 

initialisation which takes place at time t = 0. 

The problem here is to compute an estimate of the partial derivatives of the rainfall 

field with respect to space and time given two observations. The solution presented 
below makes use of the finite difference technique [4]. The finite difference techniques 
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consist of using Taylor series at the second order (Equation 4.2) and subtracting them 
to compute derivatives. 

2 

gd An) = f(a) Refi) + a f"(a) + O(a). (4.2) 
Equations (4.3), (4.4), (4.5) are obtained from the equation (4.2) : 

OR Riz +Az)— Re — As) 

Ox 2Aa (3) 

OR _ R(y+Ay) — Rly — Ay) 
ae oe (44) 

aR _ R(t + At)— R(t) 
aa At (>) 

This enables the computation of an estimate of the rainfall field at the following time 
step, if we know (u,v) and R at the current time. This is the decomposition of R. 
Using the finite difference, we transform the advection differential equation into the 
following linear equation : 

Au+Bu=C (4.6) 

where Ro and R; are the rainfall field at the respective time t = 0, t = 1, A = 
Ret _pe-ty Re nytt ag ante as 

This linear aneenttieg 2 unknowns, and we haven’t got any other equation to 

create a equation system. This is underdetermined. So we assume that (u,v) is locally 

constant on an area using again this decomposition by block of the data matrix (see 

Figure 2.2). 

We do not want either the size of each block to be too small to avoid inaccurate 
result either to be too big to avoid having one single value for a big part of the map. 

We have tried different size of block among the plausible values: 5,10,15,20,30,40. The 

results are quite similar with these values, so from now the size of each block chosen is 

20. With this approximation, we have now 20*20 equations and always 2 unknowns. So 
we are able to find the least mean square error solution of the overdetermined system. 

To avoid solving the advection equation in block where there is no rain, a threshold 

has been fixed and the initial advection vector is computed only if the sum of the 
precipitation in this block is more than this threshold. The resolution of the system 

gives an estimate of the advection vector on each block. Then we average this vector 

over all the blocks to have one single value as estimate of this vector on the whole map. 

Once we have solved this system which computes an estimate of the initial value of 

the advection vector (u,v), we are able to start a forecast by using the decomposition 
of R through the advection equation. 

4.2 Process 

This section presents the first model. In this first model, a lot of simplifications have 

been done. First, the forecast step (3.21), which integrates the advection equation and 

which corresponds to the state evolution in Kalman filter term (see Section 3.3.1), does 
not exist in this model. As the model for R is a simple pixel model, R and J are the 

33



same. The update step is only an update of the estimate of the advection vector. The 

forecast. used in its first sense predicts quantitative precipitation. 

4.2.1 Gaussian process 

The goal of the update in this case is to update the advection. As we are working in 

a Bayesian framework (see Section 3.2), we need to define a prior over the advection 

vector (u,v). A Gaussian Process has been chosen to model the advection field. A 
Gaussian process is a family of random variables y(x), such that for any finite collection 
the joint distribution of y(x1)...y(v,) is Gaussian. 

A Gaussian Process prior seems to be a good model for the advection vector because 
it allows to control the vorticity and divergence in the advection field and to control 
the length scales and prior variance of the processes. We can add some constraints to 

encourage advection fields with very small divergences. Indeed, the rotational com- 

ponent of the flow is much larger than the divergent component. This is convenient 
because the vorticity and the divergence are two parameters of this model we can set 
up. 

4.2.2 Update of the advection 

  

  

  

  

      

          

Figure 4.1: Simplified model. R and J are the same as we assume a simple pixel model. 
The forecast step has disappeared from the figure 3.2 Forecast is used here in its first 
sense. 

Given that the growth/decay term is neglected and that R is equivalent to J, we have 
only one variable the advection field in our state space (see Section 3.3.2. Because of 

this simplification, the expression of the update step (Equation (3.22)) can be rewritten. 
It remains only the posterior distribution p(ui41, ¥:41 | Rey1, R:) of the advection given 

the rainfall field at time t and t+ 1. The equation obtained using Baye’s rule then for 

the update is: 
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P(Uer1, Yost | Regi, Re) ap(Resr | vera, Yer1, Re) p(ue1, Ves1) (4.7) 

The idea is to find the MAP solution to update the advection equation. We have 
already defined the prior, and we need to be able to compute the likelihood of the 
rainfall a time t + 1 given the advection at the same time and the rainfall at the 
previous time. As the error in the rainfall model is assumed to be uncorrelated, we can 

rewrite the expression of the likelihood term: 

P( Rep | Uesr, Vert, Re) = Thy pig(Resr | vers, ves1, Re) (4.8) 

We assume that this likelihood term is a Gaussian over all the locations. 
We can write the error on the parameter (equation 3.7): 

= Slog (pi,j (Res | Uey1, Uepr, Re) — log p(ues1, Yes) + (4.9) 
ig 

where K is a constant 
The equation 4.9 is the basis for the update of our model and will be optimized by 

minimising (see Chapter 3 Section 3.2) using a scaled conjugate gradient method to 
the find the MAP solution. . 

4.2.3 Forecasting 

In this first forecasting model, the forecast step used is not probabilistic but determinis- 

tic. The advection equation is used again to compute from the advection vector and the 

previous value of R the next forecast values of R. The finite difference approximation 

is reused. 

x a t Ot a a 
Bigs = REP — uP (RY — REM) — oh RY RY) (410) 

where the advection field is supposed to be locally constant. 

We are aware that this model is too simple to be efficient. This model uses the finite 

difference technique approximation for the initialisation of the advection vector, but 

also for the forecast. This approximation is unstable. As we are using it often, we are 

aware that the result will probably be inaccurate. Besides, the forecast is deterministic. 

The evolution of the rainfall field can not be predicted with such a simple model. 

In this chapter, the rainfall field has not got any model yet, whereas the advection 

field is assumed to be a Gaussian process. 
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4.3 Results 

4.3.1 Test on simulated data 

The initialisation has been tested on simulated data and the method coded in this 
model has been compared with a cross correlation method. 

We have implemented a method which computes the cross correlation between two 
images. The idea is to translate the image of —n pixels through the x axis, and Em 
pixels through the y axis. The value of the advection vector is proportional to the 

number of pixels whose the image translated gives the biggest correlation. In the case 

of simulated data, the true parameter value is known, which enables us to know how 

accurate is the result of this initialisation. The table (4.1) gives the results obtained 
when we simulate different values for the advection vector (u,v), using the solution 

of the advection equation when using the finite diffence techniques and the technique 
called cross-correlation comparing two imagesS. 

We have to be clear about fhoses values. We are simulating two images. The 

second one is just a translation of the first one. The couple of values in the fable 
in the column called Simulated represents in the coordinates system the translation, 

expressed in pixel, along the x and y axis. The function cross-correlation enables us to 

check we have created without any mistakes the simulated data. 

The advection vector is expressed in m.s~!. The value given in the table 4.1 are 

actually the result of the operation (u,v) * At/(2* 1000), where At is the time step 
between two images, 1000 is to pass in km, and 2 because one pixel is worth 2 km. 

‘The results of {he computation of the advection vector using this advection equation 

give really inaccurate values. We notice in this fable that globally when the translation 

between those images increases, the accuracy decreases significantly. 

These results are not really usable and we are not expecting accurate results on real 

data. This issue can be explained by the fact the partial derivatives are approximated 

by finite difference, and these techniques are very unstable. When the translation 

between two images is important, as fo initialise the advection vector we are using this 

block decomposition, the image at time ¢ and at time t + 1 are completely different. 

The kind of problem occurs as well when the time step is too big, since the trans- 

lation is determined by the move speed of the object in the image, and the time step 
between those 2 images. 

4.3.2 Test on real data 

This section presents the results obtained when running the model on our real data. 
The first part in this model is the initialisation of the advection vector at time t = 0 

(section 4.1). 
The figures (4.2) and (4.3) show the results of this initialisation: 
‘This computed initial advection vector gives the general direction of the advection, 

but some arrows are clearly wrong. Some arrows are much longer tha the others, 

these arrows are wrong. The advection is supposed to be a continuous process, so we 

can not have such differences between surroundings arrows. We have an idea of this 

general direction of the advection because we have the observations at the following 
time step, and we have built from all the observations a movie (displaying in real time 

36



  

  

  

    
      

Advection 
Simulated | Advection equation | Cross-correlation 

1,0 1.03,0.02 1,0 
2,0 1.14,0.24 2,0 
3,0 1.17,0.22 3,0 
4,0 1.2,-0.02 4,0 
0,1 0,0.99 0,1 

0,2 0.12,1.16 0,2 
0,3 0.19,1.32 0,3 
0,4 0.22,1.39 0,4 
11 0.95,0.73 LI 
21 1.06,0.57 2,1 

2,2 1.01,0.65 2,2 
Each value is expressed in pixel 
  

Table 4.1: Results obtained on simulated data. The column ”Simulated” represents 
in pixels along the x and y axis the true translation which we have performed on the 
image. The column ” Advection equation” gives the result in pixels (i.e. 2km) obtained 
when using the advection equation to find the translation and, finally the last column 

gives the results obtained when using the cross-correlation method. For instance (4** 
line of the table), when we have translated the image of 4 pixels along the x axis and 0 
along the y axis, the cross-correlation method finds the true translation whereas when 
using the advection equation, we find 1.2 pixel along the x axis and almost nothing 
along the y axis. These results show that the initialisation of the advection does not 
give accurate results. These values represent pixel on the image (i.e. 2 km each pixel). 

‘Ravection compated in each Block 
  

    
  

  

Figure 4.2: Computed advection on real data. Arrows represent the advection vector. 

Data from 30" October 2000 6h45am and 6h50am. 

our sequence of images) which gave us an idea of the advection. 

We were expecting inaccurate results with real data as we did not get good ones 
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Figure 4.3: Computed advection on real data. Arrows represent the advection vector. 
Data from 3" April 2000 9h30am and 9h35am. 

with simulated data. The results obtained when running this model are especially 

inaccurate. Results of the forecast from this model are not presented here as there 
are too inaccurate. The forecast part gives worse results than the initialisation. The 

forecast uses the equation (4.10) at each time step. This equation makes use again of 
the finite difference techniques to compute the partial derivatives. 

The finite difference technique are something to use with care. The way of solving 

of the advection equation (4.1) we used is certainly not the most clever one. 
The use of finite difference to compute derivatives is banned in our case. The finite 

difference techniques are really instable, especially in weather radar data, where the 

value from one pixel to another can change drastically. 
In this chapter, we have defined the model for the advection field. The advection 

field is going to be a Gaussian process. 
As this technique can not be used, we have to find a model for the rainfall field 

which will enable us to compute the derivatives of the rain with respect to the space 
and the time. In the building of our model introduced in Chapter 3, the next step 
is thus to find a continuous model for the rainfall field which takes into account the 
constraint concerning the partial derivatives. 
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Chapter 5 

Rainfall Model 

The rainfall field R and the growth/decay term G introduced in Chapter 3 are not 
modelled. The advection field (u,v) will be modelled by a Gaussian process. 

RF is the variable we are most interested in as the goal of our model is to forecast 

precipitation. We are going to propose a working model for the rainfall field R. 
The discrete pixelised model used initially is not good enough and the main point 

is that since Chapter 3 the rainfall field is constrained to be a continuous model in 
space and in time. In this Chapter, we cope with the space continuity of this field. 

The rainfall model R is to represent the data, which are our noisy radar observation 

le 

In this chapter, we will first introduce the model chosen, then its development and 

finally we will test the model on real data. 

5.1 Theoretic Support 

5.1.1 RBF network 

Radial Basis Functions (RBF) are related to kernel methods for density estimation, re- 
gression and to normal mixture models. RBF models [8] measure the distance between 
an input vector x and a parameter ju; (i is the hidden node index) with some weighting 
coefficients w. 

The idea of a RBF model is to approximate a given function f using a set of basis 

function ®. ® is a non-linear function to be chosen. The output is then taken to be a 

linear combination of the basis functions : 

fa=>0 w,®;(|| ¢ — 2° ||) + wo (5.1) 

where w; is the weight associated to the 7” basis function, wo the bias. 

A radial basis function network uses several RBFs as hidden units (See Figure 5.1). 

Several forms of basis function can be used, the most commonly used are the Gaus- 

sian and the thin-plate spline, the thin-plate spline basis function is : 
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Outputs t y, 
  

basis functions 

  

  

Figure 5.1: Radial basis function network 

&(z) = 27 In(z) (5.2) 

The Gaussian basis function can be expressed by: 

Io = IP ®,(z) = exp(— a? ) (5.3) 

where z is the input vector and ji; is the vector determining the centres of the basis 

function ®;. The interpolation formula (5.1) is then: 

M 

y = fe) = Y) wjOj(2) + wo (5.4) 
jan 

where z is the input vector, y is the output vector, 0; the width and M is the number 

of basis function. The number of basis functions needs to be less than the number N of 

data points. 

Each basis function has its own width oj, which controls the smoothness properties 

of the interpolating function. The Gaussian is a localised basis function with the 

property that lim, _,.. ®(z) = 0. This property is interesting in our case as we have a 

compact working space. A 

For a large class of basis functions, RBF networks are universal approximators [13]. 
Besides, they posess the property of best approximation, which means that the set of 

functions corresponding to all possible choices of the adjustable parameters includes 

the optimal approximation. 

The main advantage of this network’s family is that RBF models are very fast 
in comparison to networks with sigmoidal units. Once the basis functions have been 
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chosen, we have a simple model whose parameters can be found by a least squares 

procedures, or any other optimisation procedure. The main drawback of this network 

is that it becomes impractical with input vectors of large dimension (the curse of 
dimensionality). 

5.1.2 The chosen model 

There are a lot of possible parameterisations of the precipitation fields. In the first 

instance, we were using a simple model with pixel descriptions, and uncorrelated errors 

(Chap 4), which actually comes to use the raw radar observation. 
After having observed the structure of the rainfield in Chapter 2, we have thought 

that to represent this type of data, we could use a RBF network to fif the data. 

  

Figure 5.2: Gaussian basis function of the chosen RBF 

Actually, we are using this kind of basis function to fit the rainfield (Figure 5.3). 
This basis function is a gaussian, the usual basis function employed in RBF models. It 

enables us fo fit gaussian on precipitation field distribution. The observation of image 

in 2D and in 3D of the observation data in Chapter 2 gave us the idea fo use RBF 
network. It allows to smooth the rainfall field and to have a continuous model. Each 

bump can be thought of as representing a precipitation cell. The main advantage cited 

in the previous section of the use of an RBF is important because in Nowcasting, the 
time required fo fit the data is crucial and we want to be as fast as possible. The 
main drawback cited in the previous chapter is not concerning as the dimension of the 

dataset is only 2. In our case, use of RBF network seems to be relevant. 

The model rainfall field R presented here is differentiable with respect to x and 

y, as it is a sum of differentiable functions. We reach here with this model another 

advantage. We will have to compute derivatives with respect to space to solve the 

advection equation (Equation 3.2). We will not have to make use of any approximation 

like the finite difference to compute the partial derivatives. The error will then come 

from the differences between the dataset and the model used for the rainfall field. 
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With this model, the rainfall field is determined by the following parameters: 

e c the centers of the Gaussians. 

e h the height of the Gaussians. 

e w the width of the Gaussians. 

These three parameters are vectors whose size is given by the number of cells (i.e. 
Gaussians) used in the RBF network to determine the rainfall. 

  

Cell k 

©) 
R Model       

Figure 5.3: Graphical representation of the rainfall field model. cy is the center, hy is 

the height, and w, is the width of the cell k 

In the case of the rainfall field, the weight of each basis function represents the 
rainrate on the center of this cell. 

The initialisation of the center, of the widths and of the weights is really important 

to fit well the model as well as to have the quickest computation possible. Unlike a 

proper RBF network where only the heights are updated, here the center and the width 
will change as well during the iteration in the filter (see Figure 3.2). A scaled conjugate 

gradient is applied to the data to fit the model. As defined in Chapter 3, the QPF 

model we want to develop is within a Bayesian framework. We need to define priors 
over all our state space composed by R, (u,v), and G. That means with the model 
adopted for R that we have prior on the rainfall parameters : centers(x,,y-), the width 

of each cell h, and the height of each cell h. 

These priors constrain our initial estimates of the state. We assume diffuse Gaussian 

process priors over the centers c of the form N(0,¥,), where N(u,5) stands for the 
Gaussian distribution with mean yz and covariance D. », is a full covariance matrix. It 

ensures that the centers can be correlated. The priors over the heights and the widths 

are log-Gaussian. This ensures R > 0, this matches with one of our desires expressed 
in Chapter 3 and constrains the value to be realistic. 

Gaussians are convenient, and widely used in this project because to define a Gaus- 
sian, we only need to define a mean and a covariance matrix and also because of their 

properties (multiplication, addition). 

42



5.2 Development 

In this section we explain the different steps of the development of the rainfall model: 
the initialisation and the optimisation of the parameters to fit the data. This devel- 
opment corresponds to the training of an RBF network. We are using the noisy radar 
data observation 7 to train this network. 

5.2.1 Initialisation 

The initialisation consists of setting initial values for the parameters of R. We want 
to choose good starting points for the centers, the widths, and the heights of the cells. 
Find good starting means to set values for the parameters which are the closest possible 
fo the true value. This process is quite important as we want to have to learn the 

parameters determining R as fast as possible. The better the initialisation, the faster 
fhe optimisation will be. We implemented and compared two different initialisations. 

The starting point to initialise the model for the rainfall field is an observation. In 

the first initialisation, the number of cells (i.e. number of centers) is fixed and has to 
be hand chosen. The observation J is first smoothed. A function fo find maxima in a 

matrix data is then applied. The basic idea is to find the biggest value in the matrix 
parameter of this function and then to set this maxima and the pixels surrounding 
this maxima to zero which implicitly means that the initial value given to the width 
is 1 pixel. With this method, only one maxima is found in this region. This is done 

iteratively and stops when the number of cells chosen is reached. Then the index of 
the maxima found in the observation is used to give a starting point to the centers. 

‘The index corresponds to the index of the observation matrix. 

We have to define a grid over the observation to make more easily understandable 

what represents the index on the observations and to show how we place centers on 

the map (see Figure 5.4). 

  

      

  

  

0,0 0,2 0,4 0,6 0,8 

: Ae 

yo \ 22 a4 26 a8 

Res : 2 km 

4l0 2 
a ‘enter of this pixel 
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Coordinate of 
the grid 

8,0 2       
  

Figure 5.4: Grid on the map. This figure shows the coordinates system defined over 

the map obtained with radar data. 
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The centers are not put exactly on the point where the maxima has been found. 

Random numbers r, and r, are added because we don’t want to have the center right 

in the middle as it won’t be realistic. Each value of the observation matrix J represents 

a 2 km by 2km square in the data sets we used in this study (see Chapter 2). There 
is no reason to put this straight in the middle of the pixel, and as you have not any 

knowledge on where to put we add these random numbers. The heights are chosen 

close to the value of the maxima and the weights worth 1, due to the method used to 
find the center. The principal problem with this initialisation is that the number of 

cells is fixed. 

init ay" = agrid(mazi, maxj) + = +1 (5.5) 

res 
2 

where 2" and yi" are the center’s coordinates, xgrid is the grid in accordance c 
with the x abscisse applied to the map, ygrid is the one in accordance to y coordinate, 

(maxi,maxj) is the index of the maxima and r, and r, are random numbers between 0 
and 1. 

The second way of initialising is quite different. In the previous initialisation pro- 
cess, we were setting all the parameters first without any optimisation method and 

the network was ready for the training. In this case, we are searching for the biggest 

value of the observation matrix. The first center is then found. The height and weight 
are chosen in the same way as in the previous initialisation, but then a quick first 

optimisation is done. So a cell is fitted to the observation and then this first result is 

subtracted from the observation data and the same process is done again iteratively 

using as observation the subtracted resulting we call updated observation. This itera- 
tive process continues until all the remaining value in the updated observation matrix 
are under a threshold (0.5 mm.h7! in practice). 

yi’ = ygrid(mazi, maxj) + +Try (5.6) 

5.2.2 Optimisation 

Once the process has been initialised, an optimisation of the centers, the widths and 
the heights is done. This optimisation consists of trainning our network with our 
observation J. 

Using Bayes’ rule, we obtain : 

(RID) x p(T|R).p(R) (5.7) 

We have defined in the Subsection 5.1.2 a prior for the rainfall field. All the param- 

eters which determine R have a prior (Gaussian for the centers, and log-Gaussian for 

the heights and the widths). The optimisation is done using the negative logarithm of 
this equation (see 3.7). 

—log(p(R\Z)) = —log(p(Z|R)) — log(p(R)) + K (5.8) 

where K is a constant. 

We assume a gaussian noise over the radar data I. So, 

p(IIR) = Bq 2d Ras)” (5.9) 
noise 
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where Onoise is the variance of the noise 

This optimisation used again a SCG to determine the MAP solution of all the 
parameters which determine R. 

5.3 Test 

The goal here is to test the efficiency of the model at fitting real data. This real 
data is our observation I provided by the Met office (see Chapter 2). We will do a 
comparison between our different initialisations, and then choose the one which is the 
more interesting for our QPF model. The most important constraint we have is the 
time required by the model to fit the data. 

5.3.1 Error measure 

To have an idea of this efficency, we define an error function. The error measure used 
to analyse the results of this RBF model is the root mean squared error: 

  

(5.10) 

where R;,; is the network output, J;,; the target, and N is the number of elements. 

This error measures the average error in mm.h~! on each pixel. 

5.3.2 Test on real data using first initialisation 

The model we developed has been tested on real data. It consists of training our 
network on the radar observation provided J. The Table 5.1 shows the errors obtained 
when using the first initialisation described in the previous section of this chapter in 

function of the number of cells chosen. Tests have been realised on two different sizes 

of data. The figures (5.5) and (5.6) are the images of the real radar data and of the 
result given by the model. The difference between this 2 couples of figures is the size 

of the data used. 

The results show that this initialisation give interesting accuracy. But the RMSE 
shows that the results do not really vary with the number of cells but depends more 

on the data. As the number of cells has to be fixed at the beginning of the process, it 
matters because we do not really know which value to give to this parameter. Really 

different results happen when the number of cells is changed. Besides, we can fix the 
number of cells but as soon as the data will change, the number of cells will have to 

be changed. Moreover, time required to fit this model to the observation is very long 

and in nowcasting, we need to be as quick as possible.



  

  

  

Map size 60*60 km? | 100*100km? 
Number of cells RMSE 

5 3.69 3.14 

10 2.53 4.77 

15 2.14 3.78 

20 1.87 4.25 

40 1.39 4.15 

60 3.43 2.13 

80 1.08 1.12 

100 1.06 4.19 

120 4.96 2.66 

140 4.36 3.35 

160 4.73 0.89 

180 3.14 0.86 

200 4.24 0.93 

220 4.26 4.41 

240 1.08 4.37 

260 Ley 0.86           

Table 5.1: RMSE in accordance with the number of cells. Two different size have been 
used : 60km by 60km and 100km by 100km. Data from the 30" of October 2000 at 
6:45 am. 
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Radar image Modelled rainfall field image 

  

  

Figure 5.5: Image of the observation over 60km by 60km and of the rainfall field 
modelled from this observation with 100 cells. Realised with the first initialisation 
(data from measurement made the 30“ of October 2000 at 6:45 am). 

Radar image Modelled rainfall field image 

  

Figure 5.6: Image of the observation over 100km by 100km and of the rainfall field 
modelled from this observation with 260 cells. Realised with the first initialisation 
(data from measurement made the 30 of October 2000 at 6:45 am). 
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5.3.3 Test on real data using second initialisation 

The results are not as promising as the one for the other initialisation (see Table 5.2). 

  

  

Map size (km?) | Number of cells | RMSE 
40*40 9 1.79 

60*60 13 2.40 

80*80 17 2.37 

100*100 20 2.17 

120*120 21 1.96         
  

Table 5.2: RMSE and number of cells in accordance with the size of the map used. 
This test is realised using the second initialisation (data from the 30" of October 2000 
at 6:45 am). 

This initialisation presents a lot of advantages over the previous one : 

e The second initialisation is quicker than the first initialisation, especially when 

the size of the data is not too big (matrix is 40 by 40 or less). 

e The number of cells is not fixed and is determined by the algorithm. This problem 
in the first initialisation is really critical as the accuracy of the results will change 

drastically as soon as we test new data. The number of cells which fits best the 
model depends on the data and should not be fixed. 

e Test realised on real data showed that this algorithm does not create too much 
center. Using the first initialisation with the same number of cells as in the second 

will give really inaccurate results. For instance,with a map of 60km by 60km, the 

second initialisation determines 13 cells and the RMSE is 2.4. With 15 cells in 

the first one, the RMSE is 3.78. 
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Radar image Modelled rainfall field image 

  

      

  

Figure 5.7: Image of the observation over 60km by 60km and of the rainfall field 
modelled from this observation. Realised with the second initialisation (data from 
measurement made the 30" of October 2000 at 6:45 am). 

Radar image Modelled rainfall field image 
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Figure 5.8: Image of the observation over 100km.by 100km and of the rainfall field 

modelled from this observation. Realised with the second initialisation (Data from 
measurement made the 30" of October 2000 at 6:45 am). 
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With the first initialisation, interesting results can be obtained, but it needs a lot 

of centers, which implies a very long optimisation. So as the time required to run the 
model is crucial in nowcasting, and because the second initialisation gives also accurate 
enough results, the second initialisation has been chosen as the starting process of the 
training of our RBF model on the observation J. Moreover, because the number of 
cells has to be hand set, this initialisation is not usable in our case. 

The rainfall model is now determined and the way to fit it to the data as well. 
The rainfall model is a linear combination of Gaussian functions, and is determined by 
three parameters: the centers, the widths, and the height. 

Now, we have modelled all our state space variables, and the next and last step in 
the construction of our model is the development of the state evolution and the update 
step in our filter introduced in Chapter 3. We assume that the advection is the only 
dynamics.



Chapter 6 

Fully probabilistic model 

In the previous chapter, we define our state space, the model, and the model used for 
the advection field (u,v) (Chapter 4) and for the rainfall field R (Chapter 5). 

We are now going to present the development of the model introduced in Chapter 

3. 
This model is a statistical model and enables probabilistic nowcast of precipitation. 

In this chapter u will denote the advection vector which was denoted (u,v) until now. 
In this chapter, we will first briefly cope with the model introduced in Chapter 3, 

then we will deal with the process which leads to forecasting, finally we will give some 
results on simulated and real data. 

6.1 Model 

6.1.1 Framework 

@ R model 
  

    uy Uy Ut42 eo 
forecast cs) 

R, NS Rut Ns Ru update 

@ 
@ 

I Tut Tuo 

  

  

  

                

cell k                     

Figure 6.1: Advanced graphical model. This model is hierchichal. The numbers 1, 2, 

3, 4 give the order of the operation to be made. In the graphical model, arrows in red 

represent the forecast, and the one in yellow the update. On the right is a scheme of 

the model used in this model for R. Each cell is determined by a center, a height and 

a width. 

51



The model is a state space model with the state space R, u and observations 7. 

The term G is omitted because if is encompassed in the model error. R and u are 

continuous function in time and space. 

To ensure correct inference of u, a hierarchical structure is imposed as shown in 
Figure 6.1. We need to evolve and to update the rainfall field first because these update 
and evolution are based on the advection equation and so we need the current value 
of the advection field to compute these values.Thus conditional on R and J becomes 
independent over time and is found using two R fields. The model functions in a similar 
way to a Kalman Filter (see Section 3.3.1) but the updates are non-linear as the the 
relation between FR and J is not linear. 

6.1.2 Priors 

As we are using a probabilistic Bayesian framework, we have defined prior distribution 
over all the state variables. The prior over the advection model has been introduced 

in Chapter 4 and the precipitation one in Chapter 5. The Table (6.1) reminds all the 
prior defined : 

  

  

    

State variable Prior 

ce Gaussian (0, 4.) 
w log-Gaussian 
h log-Gaussian 

u Gaussian process N(0, Du)     
Table 6.1: Priors for state variables 

Figures 6.2 and 6.3 represent samples from the priors over R and u: 
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16 

  

Figure 6.2: Two different samples from the prior over the rainfall field R. 
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Figure 6.3: Two different samples from the prior over the advection vector u. 

Once the priors are well defined over all our variables, we can deal with probabilistic 

tools. 

6.2 Process 

In this section, we are presenting the different steps in our filter (state evolution and 
update), and how the precipitation forecast is done. Before iterating in the filter, 
we need to initialise R and then u. The rainfall field is initialised by following the 
procedure initialisation, optimisation presented in Section 5.2 with the observation at 

time t = 0 and t = 1 as we need to solve the advection equation (3.2) to find the 
initial value of u. We are able to compute exactly the partial derivatives of R with 

respect to space. The partial derivatives with respect to time are computed using finite 
difference techniques (see Chapter 4). Then, we have a linear system over all space 

location (Section 4.1), and we are assuming u locally constant to solve this system with 

the same method than in Chapter 4. 

6.2.1 State evolution 

We need first to define the state evolution for R and u, which corresponds to step 1 
and 2 in the Figure 6.1. 

Step 1: Since the model is hierarchical, we will first update R using the advection 

equation (see Equation 3.2). R is a function of the centers c, of the height A and of the 
widths w and is a linear superposition of RBF's We assume that the advection vector 

is locally constant. The forecast step R for is given by : 

  

Cee = Cy + Ob.uy + (6.1) 

where 6¢t is the length of the forecast step and e, is the error in the forecast due to 

the simplifications of the model and that not all apparent cell motion is due to the 
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advection. As c and u are both Gaussian, this error is also assumed to be Gaussian. 

Since c, u and e¢, are both gaussian, this forecast is also a Gaussian with : 

Hews = Mey + Ot * ty (6.2) 

Dea De + 0b * Dy, + Deg (6.3) 

where the % over-bar denotes the mean of the Gaussian. 
So the dynamics are taken into account in the update of the center. For the update 

of the height and the widths of the cells it is easier as there is no dynamics. A small 
amount of log-Gaussian is added at each time step. We have not got any knowledge 
about the change of h and w, so this small amount stands for our growing uncertainty 
about these parameters. 

Step 2: This step deals with the update of the advection field. There is no explicit 
dynamics for this field, but the belief that it has much more longer time scale than the 
movement of the cells. The update chosen for wu is : 

  

Utp1 = Ut + &y (6.4) 

where €, has the same characteristics as u but with a smaller variance to reflect that 
u changes slowly. This update of u is a sum of two Gaussians, so it is still a Gaussian 
with : 

Hay = Huy (6.5) 

Dg = Day + Dey (6.6) 

The definition of this system noise reflects our uncertainty in our predictions. Now 
we have defined a method by which the states can be updated. Besides, priors have 
also been defined, so the model can be run in a generative way. We can sample from 
the prior distribution and then use the state updates to generate example data. Using 
this model in this way is a good way to check for a sensible model specification. 

On the next figure (6.4), the model is run in a generative way: 
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Figure 6.4: Model run in generative way. The time step between each image is 1 hour. 

‘These figures must be read from the top left to the right. 

6.2.2 Data assimilation 

We have to condition the model on the observations to make the model useful. In 

Numerical Weather Prediction (NWP), this is called data assimilation. Using Kalman 
Filter (Chapter 3) vocabulary, we are going to update the state given observations. 
First we update R and then u. These steps correspond to the step 3 and 4 on the 
Figure 6.1. 

Step 3: 

Tag must be updated first. But this update is not trivial at all because the relation 

between 7 and R is not linear. 
Using Bayes’ rule, we can write : 
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(Lest | Coy, We4r, Meyr)P(CeH1, Weer Mert) (6.7) 
pest) 

The prior distributon for the parameter (c, w, h) is written: 

P(CoHt, Wet, Meg | Trot) = 

(Corr, Wes, hess) = P(Ce+1)P(toes1)P (hes) (6.8) 

This writing of the prior comes from the step 1 in the previous section and c,w and h 

are uncorrelated. The likelihood term p(Ji41 | Cr+1, We41, At41) (6.7) is defined by the 
errors on the observations and p(J;;1) is constant and unknown. 

This step which corresponds to have an estimate of the posterior distribution has 
been developed in two ways. First, sampling using Markov Chain Monte-Carlo was 

used. But sampling, although giving accurate results, needs again a lot of computa- 

fionnal power and it is quite long, so it is not appropriate for nowcasting. Then, we 

used a Laplace approximation about the MAP probability solution. This method is 

not as good as sampling but it is so much quicker. Actually, we are using the Hessian 

at the most probable parameter values to give the inverse of the covariance of the 

approximating Gaussian posterior distribution for the parameters. Because when the 
posterior is a Gaussian, then we have the following property : V?E = D~! where V?E 
is the Laplacian of the error function at the MAP (using Taylor’s series). 

Simulated data Estimate or R and u 
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Figure 6.5: Left plot, simulated data. Right plot, the estimate of R and u. 

Step 4: Now u has to be assimilated. This is simpler for the advection field as the 

complex part is in the model for R. However, the model is hierarchical and we have to 

integrate over our uncertainty in R. 

  

P(Ur+1 | Te41, 24) = | [vlc | Ce, Wert )dcep(tes1)p(Ce+1 | Ti+1)derr1 (6.9) 
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Here again the approximation that u is locally constant is made. 

The updated wu is a Gaussian. The mean and covariance are computable and we 
find (based on equation (6.9)) : 

Pues = Dury [Doe Ge + St[Lee + Dery + Dee] "(Gai — &)] (6.10) dey) 

=1 =1 =1 
Dos = Daeg + OE [Be + Derg, + Bee] (6.11) 

The resulting advection vector is a mix of the advection vectors inferred at the 
previous time step and those computed from the relative movements of the cells. This 

mix is actually a linear combination where the weight assigned to each information 

source source depends on our beliefs about their relative errors. 

6.2.3 Forecasting 

All the non-linearity is in the state update, when you condition the model on the 

observations. Given the approximations, the forecast step is linear and fast. After a 

few iterations in the filter, we can start forecasting rainfall. This step consists only of 

propagating the distribution of the rainfall and of the advection field, in which we have 
incorporated our incertainty. Actually, the forecast step repeats the state evolution 

of the system using the same propagation of the distribution as it was done in step 1 

and 2 (described in this Chapter Section 6.2.1). The difference between the forecasting 
and the state evolution is in the definition of the error covariances definition. On the 
forecast side, the noise added is lower than in the state evolution. These parameters 
are set using expert judgement, and so are specified as deterministic variables and are 

hand tuned. 

This forecast is a probabilistic one, so we have a forecast distribution, and not only 

a prediction. That means we have a forecast mean and covariance for the rainfall and 

the advection field. Sampling can produce realisations from this distribution. 

The specification of the forecast error covariances is especially hard, and for the 

moment these values are hand tuned. This model could be improved by transform- 

ing these hyper-parameters into random variables and then estimating their posterior 

distribution given a large set of data. The errors on w and h are supposed to be in- 
depedent. That means that cells close to each other do not have any link except that 
they have similar advection. The errors on the centers are uncorrelated as well. The 

covariance matrix Le, is diagonal given the errors in the advection field. 

6.3 Test 

6.3.1 Simulated data 

Before testing it on real data, the model was run on simulated data. First, it is useful to 

debug when coding, then once the development is finished, it enables us to have an idea 

of the accuracy of the model. In the case of simulated data, the true parameter values 
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are known, so we can compare our results with the true parameters. Tests on simulated 

data show that the model can retrieve well the rainfall as well as the advection field in 
the filter (Figure 6.6). 
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Figure 6.6: Simulated data on the top and fitted model on the bottom. This is the 
result obtained at each iteration of the filter. 

This model provides a probabilistic nowcast, which means that we don’t obtain 

only one forecast rainfall matrix, but a forecast distribution. 

Figure (6.7) shows the mean prediction of a one hour forecast of the distribution, 
whereas Figure (6.8) shows 6 realisations from the forecast rainfall distribution. 

Test on simulated data are promising, and the model is able to estimate the rainfall 

field and the adevction vector in the filter. To conclude about the forecasting part, we 
need to test it on real data in order to compare the mean forecast and some realisations 

from the distribution to the true rainfall field. 
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Figure 6.7: A mean 1 hour forecast from the forecast rainfall distribution. 
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Figure 6.8: 6 random realisations from the forecast rainfall distribution. 
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6.3.2 Real data 

Results on simulated data are promising, but testing a model on real data is often 
not trivial. Applying the model to real data is more challenging, but the goal of a 
precipitation forecasting model is to be operational to be run on real data. The figure 

6.9 shows that the model can retrieve quite accuratly the rainfall and the advection 
field with real data. The result is not as accurate as with real data, but in the filter, 

the model fits well the data. 

100 100 100 

km
    

0 50 100 0 50 100 0 50 100 
km km km 

km
           = 5ms10ms~ = 5ms10ms~! = 5ms10ms~! 

0 50 100 0 50 100 0 50 100 
km km km 

Figure 6.9: Radar images on the top and fitted model on the bottom. Data from 

measurements made on the 30 of October 2000. 

Figure 6.10 shows a one hour mean forecast and the corresponding real radar image. 
The result is a complete over estimates of the precipitation. This over-estimates is in 

part accounted by the absence of model for the growth/decay term. 
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Figure 6.10: Radar image on the left and a one hour mean forecast on the right. 

The figure 6.11 shows 6 realisations from the forecast distribution associated fo the 
mean forecast in the figure 6.10: The definition of the forecast error covariances on 
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Figure 6.11: 6 random realisations from the forecast rainfall distribution. 

the rainfall and advection field needs a more data driven approach to be specified. The 

growth/decay term G encompass the model error, thus it lacks of dynamics. On this 

point, a lot of improvements on this QPF model can still be done. 
This model is a fully probabilistic one for precipitation nowcasting using only radar 

data, which produces probabilistic predictions. It provides a mean and covariance for 

the rainfall field R and the advection vector u. This model incorporates uncertainty 
about our variables in the observations and the model assumptions. 

61



Chapter 7 

Conclusions 

The aim of this project was to create, and develop a fully probabilistic model for pre- 

cipitation nowcasting using radar data only. The main reason for using a probabilistic 

framework is that at scales we can hope to represent there is an inherent stochastic 

nature to the evolution of the precipitation field. To develop this model, we used 
statistical theory and a Bayesian framework. 

As preliminary work, we studied if a space reduction of the dataset provided was 
feasible. Work on the reduction space has not been incorporated in the development, 

of this model, but some promising results have been obtained. ‘The size of the data set 

was a constant problem in this project as we wanted to have an operational system. 

After this work of space reduction, we have constructed the basis of the quantitative 

forecast model. We made the assumption that advection is fhe only dynamics, and we 

decided to incorporate the model into a Bayesian framework. The model introduced 

in this chapter is very general and is the basis of all the further developments. The 

growth/decay term G due to its complexity was included in the model error in practical 
development. 

Once the theoretical model was defined, a first attempt to create a model which is 

not probabilistic was done. The results are not accurate, but this attempt gave some 

information about the problems. Especially, the instability of the finite differences 

makes us look for a rainfall model whose space partial derivatives are computable as 

finite difference techniques give inaccurate results for huge advection vector. Although 

this first model was not completely probabilistic, the update of the advection vector 

was treated in a Bayesian framework, and we had to define our prior over this state 

variables. We decided to represent this field by a Gaussian Process, as we wanted to 
be able to control the vorticity and the divergence of this one. 

After assimilation of the structure of the data in Chapter 2 and 4, considering the 

constraints posed in Chapter 3, we have modelled the rainfall by an RBF network. We 

obtained accurate and promising results with this model for the precipitation field. The 

training of this network on real data is fast enough for nowcasting, and the fitting model 

smoothes the rainfall. The dynamics of this field were again related to the advection 

equation (3.2). Then, as we had defined all our state space variables, we implemented 

our model using a filter working in the same way as a Kalman filter excepting the non 

linearity of the update space. This non linearity is due to the fact than the rainfall 

model is not linear. We incorporated our uncertainty in the model through an noise 

addition in our evolution state. The model developed provides a forecast mean and 
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covariance for the rainfall field and the advection field. By sampling, we can produce 
realisations from this forecast distribution. Results on simulated data show that the 
model can retrieve well the rainfall field and the advection vector as well. In the light 
of the results, the difference between simulated and real data can be observed once 

more. The model still needs some improvements to be able to do accurate predictions. 

But preliminary tests are promising, and we can really expect better results if some 

further work is undertaken. 

First, it will be nice to see results with other real tests and to compare this model 
with other operational models. Then, it is really important to improve the represen- 

tation of the growth/decay term G. This term is, in principle, a variable of the state 
space but due to its complexity has been included in the model error. To be more+ 
realistic, it should be, as the rainfall field R and the advection field u, a function of 

space and time. It could be represented by a stochastic process at each space loca- 

tion. Then, inserted in the model, it will need to cope with dynamics. One idea is 
to find some information about this term by trial and error. If would also be nice 
to have a more data driven approach in order to specify more carefully the forecast 

error covariances (rainfall and advection field). Now, these error covariances are set 
by expert judgement which means they are hand tuned deterministic variables. One 

improvement to this model would be to make these parameters random variables, and 

estimate their posterior distribution given a set of data. Finally, explicit dynamics for 

the advection vector should be found. 

This project, which provides a probabilistic QPF model, can serve as a basis for 

further experiments. 
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