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Thesis Summary

Short-term rainfall forecasting is a major subject of research in the domain of weather prediction.
The development of radar imaging since the 50’s and recent advances in data analysis methods such
as neural networks made it possible to design radar-based statistical frameworks dedicated to the
modelling of rainfall processes. A model of that kind has been developped last year at Aston Uni-
versity's Neural Research Group. This thesis describes the problems inherent to this model and the

modifications attempted to correct them.
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Chapter 1

Introduction

1.1 Foreword

1.1.1 General details

This thesis is the report of research work carried out from January to September 2003 at Aston
University’s Neural Computing Research Group, as part of a Master of Science by Research. The
objective of this report is to give account of the work done, as well as to provide documentation about
a project which offers further research opportunities.

D. Cornford and E. Batail developed last year (2002) a statistical model for short-term rainfall
forecasting [1] [5], based on a Bayesian state-space framework similar to the Kalman filter (which
will be introduced later). This model, though providing good results, lacked speed, which made it
unsuitable for operational use. Several other minor features were to be improved, in order to make
it more robust. The objective of the work carried out was to solve the speed issue and improve the
model.

1.2 Why this project?

There are several reasons why I chose this project. Listing them all would make this introduction too
personal for a scientific work, so I will only focus on the most important: the nature of the project.

Spending nine months on a project requires that one should be interested in the work. How can
one keep working seriously for so long a time if one does not like what one does? There has to be a
source of motivation, coming from interest, from which one can draw the impetus to work (especially
in research, where you have no working constraints but the ones you give yourself). That is why I
choose carefully a project which agreed with my interests.

Weather has always had a deep impact on the mind of man. We no longer worship the sun nor pray
for the rain that waters vegetation, of course, but we are still charmed by a sunny spring morning or
worried at the sight of heavy black clouds on the horizon. Formerly the field of sorcerers and psychics,
weather forecast has evolved a lot since it became a subject of scientific interest. What was yesterday
mysterious is almost understood today. What drove me to this project is not the magic of “telling
the future”, but rather the curiosity, the wonder, the will to understand the mechanisms behind the
evening TV weather forecasts.

I felt this project would suit me quite well since it involved theoretical statistical knowledge, but
wasn't yet a complete abstraction, and bore very practical, measurable applications. I thought it as

a way to learn much, and I was right.



CHAPTER 1. INTRODUCTION

1.3 Organisation of the work

1.3.1 Step 1: Localisation in the field

The first step in a research project is to answer the questions one cannot help asking. What research
field is this project related to? How does this project include itself in the ongoing developments in
the field? Is it relevant, useful? What has already been done and what hasn’'t? What are the results?
It is necessary to answer all those questions before starting the work, in order to get familiar with
the domain we are to work in, learn the basic concepts, have a clearer view of where we start from
and what we're heading to. This step basically included lots of reading from different sources, from
general introductions to weather forecasting to research papers on similar projects, so as to get an
overview of the research state in the domain and be able to understand what we are doing and why.
Attending conferences such as the NCAF meeting in January 2003 helped me to learn more about
neural networks applications (and even this particular project [6]), as well as attending a meeting at
the Met. Office this spring, where different forecasting methods were presented and helped broaden
my overview of research in this field. The results from this first approach are summarised in the
following chapter so as to give the reader a rough description of where the project situates itself with

respect to other works.

1.3.2 Step 2: Learn the model

Diving inside a project developed by somebody else is never an easy job. But it is a job from which
one learns much in terms of the basic rules to apply when being part of a project in which one is
involved for a time shorter than the project’s life. One must not just think about his work, but keep
in mind that others after him will have to use it, and thus try to build things on top of which it will
be as easy as possible to add the following bricks.

Accurate documentation about one’s work is vital. Some documentation existed about the model’s
theory (E. Batail's thesis [1] and D. Cornford’s presentation draft [6]), though I found it not detailed
enough for me to learn the model from scratch. I spent much time trying to understand things
that were not particularly difficult to grasp, but were often too lightly explained or using pieces of
knowledge not explicitly mentioned, so I had to do much research about the methods used. In a way,
this is a good thing, for it helped me achieve strong knowledge about techniques that, had they been
explained, I would perhaps have not taken the time to understand so deeply.

The Matlab code associated to the theory was much less documented (actually, no written docu-
mentation existed), and it has taken me a pretty long time to go through the code and understand
it directly from the source files. Being myself from the computer science field, I experienced how
difficult it is to understand somebody else’s work when it is not sufficiently documented. This is why
chapter 4 gives a detailed presentation of the model, in the hope this will fill the gaps in the existing
documentation, and provide the reader with a clear understanding of the model.

1.3.3 Step 3: Apply the knowledge

Once familiar with the model, I was able to start thinking about its issues and some ways to solve
them. I regret that it took me so long a time to master the model, for I have run a bit short on time
on this part. The main issues are listed at the end of chapter 4 and discussed more in detail, as well
as the solutions suggested, in chapter 5. Chapter 3 gives an introduction the theoretical concepts and
methods used in the following chapters.



Chapter 2

Statistical short-term rainfall

forecasting

This chapter gives a brief overview of what statistical short-term rainfall forecasting is about, as well

as its constraints.

2.1 Overview

There has become a real need for reliable real-time forecasts, mainly as a means to forecast flash-floods
and storms, which are amongst the most common and dangerous of natural hazards. To predict such
phenomenon, high resolution (a few kilometres) and fast forecasts are required. The usual numerical
weather prediction (NWP) systems cannot yet meet such requirements, so alternative approaches
have to be found. Forecast models with simplified assumptions as to how rainfall evolves have been
developed, amongst which are neural network based methods.

2.1.1 Numerical Weather Prediction

The classical NWP approach to rainfall forecasting consists of using the sets of multi-dimensional
differential equations which govern the physics of rainfall. Such models require high computational
resources, and are currently dedicated to large scale (> 100 km grid resolution) long-term forecasts.
Using those complicated models at the required scales for rainfall monitoring would currently be op-
erationally infeasible. Meso-scale models were developed as a way to adapt NWP to lower scales, but
nothing like the small scale required for accurate rainfall measurements.

Pedder et al. [15] have underlined the limitations of NWP models at small-scale resolution, and
suggested a mesoscale model aimed at modelling the atmospheric moisture. Their model provides
information that could be used in smaller-scale embedded models (typically real-time radar-based
short-scale models), in order to increase their performance. In the other direction, small scale systems
could also help improving larger scale models by providing more accurate local information, thus
leading to a combination of different systems at different scales for optimal forecasts.

Alternative approaches to NWP were looked for, in order to cope with smaller scale problems,

mostly by simplifying the dynamics of the atmosphere. Those methods were thought not to rely
heavily on atmospheric physics, rather, they need more observations of the process to remain close to

10



CHAPTER 2. STATISTICAL SHORT-TERM RAINFALL FORECASTING

reality. Such observations were formerly provided by ground rain-gauges measurements, until radar
technology brought a more convenient way to get regular and fast observations.

2.1.2 Radar-based models

The benefits from the use of radar technology in weather measurements have been understood since
the very beginning of radars in the 1940’s, but the United Kingdom had to wait until the early 80’s for
the development of a national network covering England, Wales and Ireland [4]. Those radars could
give high resolution (2 to 5 km grid size) images at rates down to 1 image every 5 or 15 minutes (radar
images are introduced in the following section). This gave birth to a new generation of forecast models
adapted to short-term rainfall prediction, first by combining weather radar data and mesoscale NWP
models, then by using fully radar-based models.

Wheater et al. [16] review different stochastic methods to model rainfall cells. In the simplest
model, rainfall cells are created according to a spatial-temporal Poisson process as random radius,
velocity and duration circular objects, with constant rainfall intensity over the disc thus defined. All
the cell contributions sum up to give the total rainfall rate. The model evolves in space and time,
using linear approximations (Taylor’s expansion). Since their model is too computationally expensive
to use a maximum likelihood optimisation, they suggest interesting methods for fitting the model
to the data, namely a generalised method of moments (minimise a weighted-sum of suitably chosen
parameters) and a spectral method, based on the data’s Fourier coefficients which permit the joint
probabilities of small data subsets to be treated as normal, thus enabling the use of techniques similar

to likelihood estimation.

Mathurin et al. [13] suggest an advection model to track rainfall cells. Rainfall cells are modelled
by moving ellipses, the objective being to be able to track the cells, given the fact that new cells can
appear or disappear, and existing cells can merge or split. Radar data is used, and the tracking of
cells from an image to the following is achieved by minimising a clustering error function (fit both
images, advect the first, and merge/split/create/remove its cells according to the option giving the
results the closest to the new image). Though this model is not aimed at forecasting, it gives a clear

description of an advection-based simple model.

Time-series techniques such as Kalman filter could be applied to sequences of radar images, giving
data-driven models being able to keep only the most basic assumptions about rainfall physics. Different
methods existed to cope with time-series, which gave different prediction models.

2.1.3 Neural networks

In parallel to radar technology, optimisation techniques improved, and in the 1990’s, neural networks
started to prove very efficient methods to tackle tricky non-linear problems. Their application to
time-series gave good results, and soon they were applied to data-driven weather prediction. Many
projects today are still focused on rainfall forecasting with neural networks.

Neural networks have multiple advantages. They are simpler to use than most of the other data
analysis techniques, they converge very fastly, and they are stochastic. Their simplicity makes them
easy to understand and adapt to specific problems, as well as giving them a robustness which makes
them methods one can apply to lots of general regression and classification problems. In particular,
they are very efficient at modelling complex non-linear mathematical processes. Their speed is another

11
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obvious advantage in the domain of nowcasting, where models have to be fast to be useful. But their
biggest advantage is certainly the fact that they are methods based on a statistical framework. As
a matter of fact, they provide an efficient way to quantify the uncertainty inherent to the process,
which is particularly useful in such an uncertain domain as weather forecasting.

Uncertainty lies in every step of a rainfall forecasting model. A perfect forecasting model would
require perfect measurement and error free forecasting performance. Einfal and Denoeux [7] explain
that in mathematical models adapted to natural processes, there are many factors of error: the trans-
formation of information (relations between two physical variables), the impossibility of observing the
process directly (rainfall’s physics), the reliability of the data (errors in measurements, interpolations,
even corrections), simplifications of the reality for working ease, all those factors bring their own
amount of error to the forecast. Typically, radar data can be up to 50% corrupted. And as Grecu and
Krajewski point out in a review of rainfall statistical forecasting procedures [14], even the dynamics
of rainfall themselves are still not even clearly understood.

Thus, there is a large uncertainty in forecasting which it is very important to be able to measure
in order to make relevant decisions when necessary (flood alert, for instance). This is a reason why a
stochastic approach, with simplified assumptions about atmosphere’s dynamics, appears as a relevant
choice for short-term real-time forecasting, for it is able to quantify the model’s uncertainty.

Multi-layer perceptrons have already been applied to short-term rainfall forecasts. French et al.
[8] have developed a neural network based model for 1 hour rainfall forecasts using a multi-layer
perceptron in a space-time framework, and shown that a neural network was capable of learning the
complex relationships describing the space-time evolution of rainfall. They use a model similar to the
one Wheater reviews (see 2.1.2). They emphasise the importance of the number of hidden nodes, that
has to be chosen so as to enable sufficiently close approximation of the process modelled.

The idea of using a radial-basis functions (RBF) network to model the rainfall field is a step further
in the effort to incorporate the power of neural networks into short-term rainfall forecasting.

2.2 Radar images

Radar images are obtained by measuring the reflectivity of a radar beam along a specific target of
the atmosphere. The reflectivity, Z, is related to the rainfall rate, R, by equations that are beyond
the scope of this thesis. This reflectivity is measured through space (by scanning over a given area)
and time (by taking successive scans at a given frequency), thus producing a sequence of images. The
inaccuracies in this process can occur at different steps [10], especially:

e change in rainfall intensity between the scanned area and the ground,

errors inherent in the device itself (bad calibration of the radar),

inaccuracies in the Z-R (radar-rainfall rate) relationship,

noise added while the beam travels.

All these considerations make the final image uncertain, and one shouldn’t assume the radar image
gives a perfect representation of the rainfall as it could be measured on the ground.

Each image gives a spatial representation of R at a given time, as can be seen on figures 2.1 and
2.2. Figure 2.1 is a planar representation, where the rainfall rate is proportional to the brightness,

12
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whereas Figure 2.2 gives a 3d representation, where the height is proportional to the intensity.

Figure 2.1: 2D representation of a radar image Figure 2.2: 3D representation of a radar image

The data (measurements) we use in the project are 200x200 km radar images at 2x2 km resolu-
tion from the NIMROD! radar imaging system (UK’s Metoffice), issued at a rate of 1 image every 5
minutes. This gives us a sequence of images that can be used in a space-time framework, the space
component corresponding to the area scanned for rainfall, the time coming from the sequential nature
of the images series, which can be thought of as a discrete representation of a time-evolving process

(each image being a “snap-shot” of the rainfall state at a given time).

We have briefly given an overview of the state of research in the field, to give the reader a better
sight of how this project takes place in a chain of advances in weather prediction. Before discussing

the model, we will now introduce the basics of theory necessary to understand it.

INIMROD: Nowcasting and Initialisation for Modelling using Regional Observation Data

13



Chapter 3

Bayesian theory

In this section, we discuss the main methods used in our model and introduce the basics necessary
to understand the discussion in the following sections. Readers may find this chapter a little too
theoretical; they can then skip it and come back to those notions later, to fully understand the model.

3.1 Bayesian theory

3.1.1 A statistical framework

“In this world, nothing is certain but death and taxzes.” — Benjamin Franklin

Theories are exact and tractable representations for processes that are too complicated to be
treated in their entire complexity. The main difference between a theory and the reality it models,
is that starting from the same assumption, the theory will always provide the same result. But in
the real world, it is simply impossible to carry out the same experiment twice, to make the same
measurement twice, to obtain the same result twice. So many secondary processes interact with the
main process we are interested in that it is impossible to imagine building a perfect system.

For example, in the domain of music, notes are assumed to be pure combination of sine waves,
though we know there is no such thing in the real world. Imperfections lie everywhere, from the
generation of the note (a finger never hits the piano keyboard twice in the same way) to its perception
(a microphone never records the whole complexity of the acoustic process). Even if we imagine
perfect devices for creating and observing our wave, it would immediately be corrupted from external
emissions from close radiating objects, from reflections, distortions, etc. Yet, we are able to recognise
when the same note is played twice on the piano, and to identify the note played to the note recorded.
This comes from the fact that our ear is imperfect, and is able to extract the main information in
what it hears. Building theoretical models is doing with our mind what our ear does with sound:
focus on the important parts and filter the rest.

In order for our mind to be able to understand and act on the complex world around us, we
have to focus on the main processes, neglecting external interactions then referred to as “noise”, or,
“randomness”. This can be done because those interactions usually have an impact on the main
process small enough not to change it in proportions which would make it unrecognisable.

Thus any model we build is valid to a certain extent only. It does not matter if the ear does
not feel the difference between two similar notes, but it sometimes can be necessary to measure this
difference. When forecasting a flash flood in some part of England, we need to know to what extent
this forecast is valid, before asking people to evacuate the area. In such circumstances, the error

14



CHAPTER 3. BAYESIAN THEORY

committed matters as much as the forecast.

Statistics is dedicated to such problems, where we are not only interested in the value of some
random variable, but also in the uncertainty of this value’s estimation. Let us assume we want
to measure some device’'s temperature X which can take continuously distributed values z. Our
measurement system isn’t faultless, it cannot give us the true value of X. Instead, it provides us with
an estimated value p, which is only close to the exact value. This means that we assume the exact
value of X lies somewhere around this estimate. It is interesting to know how certain our estimate
is, since, for example, a small change in temperature could be critical to our system. The function p
which associates to  the probability that X takes value z is called the probability distribution of X.
Figure 3.1 shows two different distributions for X.

p(X=x)

| W

-
»
.
v
*
-
-

i

Figure 3.1: Probability distributions with different uncertainties

Those curves show the behaviour of the probability of X. The solid line illustrates a case where
we are quite confident that X = p. On the contrary, the dashed line illustrates a case where there
is a large uncertainty as to the value of X. Since both curves are centred around the most probable
value p, we can see that we need to know, in addition to this estimated value, how our uncertainty
behaves, that is to say we need to know the shape of the probability distribution. In a critical system,
an uncertainty such as the dashed line’s would be hazardous, since there is a large chance for the true
value to be far from the estimate. Hence the importance of using the variable’s distribution, not just
a single value estimate.

All the discussion that will follow takes place in a statistical framework, where all variables have
a probability distribution (in fact, we will often forget the variable as such and only talk about it as
a distribution).

3.1.2 Bayes’ rule

Suppose we are interested in determining the probability distribution for a random variable . To do
this, we have a dataset D = (d,,...,dys) of random realisations of #. Assuming we have set an initial
distribution P(#), called the prior distribution, according to our belief as to how X is distributed,
Bayes’ rule enables us to use the dataset to correct our initial distribution, as follows:
P(D|6)
P8 D) = —=—= P(A). 3.1

61D) = 75y PO) (3.1)
P(6|D) is called the posterior distribution. The posterior distribution has incorporated the informa-
tion contained in the data D, and is closer to the true distribution we are looking for.
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P(D|#) is called the likelihood, since it tells how likely the sample D is to be picked assuming ac-
cording to our parameters distribution. If the d; in D are independent one another, we can write the
likelihood as:

M
P(DI9) = [ P(d;19),
=1

P(D) is called the evidence and is a normalising constant ensuring that P(#|D) integrates to one.
It sometimes plays a more important part than normalisation (it can be used to compare different

models, for instance).

Note: We will always use the index j for data points or functions evaluated at those points.

3.1.3 Bayesian Learning: an example

Let us consider the following problem to introduce Bayes' rule. X is a random variable having
an unknown probability distribution we try to find out. We assume this distribution is Gaussian
with unknown mean p (which we want to determine) and known variance o?. We have a dataset
D = (z1,...,2p) of M random realisations for X (which are equivalent to randomly sampling M
points from the unknown distribution).

We will start by assuming Po(u) = N'(po,02), with mean chosen according to our belief and
variance big enough to account for our uncertainty with regard to the mean, and use the data set D
to refine it. For this, we write the posterior distribution using Bayes’ rule:

P(D|pu)

Pi(p) = P(u|D) = P(D)

Po(p) - (3.2)

We can write the likelihood as:

M
P(D|p) = [] Pla;lw)

V2ro?

_ 1 (M z-Mu)?
(270?)M/2

(2 i)m'/z“‘f_i%(jhp)2
T

j=1
M
=[] e e’
=1

And thus:

P(u|D) = 5 P(D|u) Po(s)

1 aﬁgﬁ(f_p)ﬁe—z—;g(.u—uof

258_
1 M _, i 2 1 2 2
= i €XP [—%g(x - 2Zp + ) —m(#u_zﬂu#‘i‘ﬁ )

Hiex o+ Mag [ o*uo+ Moz y
= 7m P | T 0257 o + M2

We know that this integrates to one and Z"' is constant with respect to u, so Z"' is the integral of
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the exponential part, that is to say the whole distribution is the Gaussian N (y,07), where:

$ " Mo?
1 = 5 L
o 02+Ma§“0 o2+ Mo
1_1.M

T denotes the mean of the dataset: %
» 1
€I = ?‘Z Zl Ij
J:

Figure 3.2 shows the posterior distribution thus obtained with different sample sizes.

-

N=100

N=10

|
Eo

Figure 3.2: From a prior distribution (N=0) A'(0,0.1), we compute the posterior distribution using samples
from the unknown distribution of size N=10 points and N=100 points. We observe that the more information
we include from the unknown distribution, the more confident we are as to the distribution of g. The unknown
distribution had mean 0.8. As the sample size increases, the posterior focuses around the true mean, and the

confidence in this value increases (ie the variance decreases).

3.2 Radial Basis Functions (RBF) networks

Radial basis functions are an efficient way to tackle non-linear regression problems. A radial basis
function network is defined as a weighted sum of N functions (the radial basis functions) ¢, as follows:

N
yi(x) =) wik de(@) + do, (3.3)
k=1

where @ = (21, ...,z ) is referred to as the input vector, M being the input space dimension. The
output vector y is defined as (y1, ..., ya), where d is the dimension of the output space. ¢q is a constant
additive term called the bias. Figure 3.3 shows a common way to conceptualise graphically an RBF
network.

The basis functions can be of different types, but we will only focus on Gaussian basis functions

nm—uknz) |

2
20

e = -

Wik, fg and a’ﬁ are the parameters for the k' basis functions. It is those parameters we'll have to
optimise so as to make our network as close to the function to be interpolated as possible.

L
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Figure 3.3: An RBF network with n=3 basis functions, with m=3 input nodes and d=2 output nodes. This
RBF can be seen as a function from a 3d-space to a 2d-space.

The first step in a problem of interpolation with an RBF network is to choose the structure of the
network, that is to say how many hidden units we think are relevant to tackle with our problem at
best. There are rules of thumb to set that number efficiently. What one has to keep in mind is that
the greater the number of hidden units, the more flexible the network. Setting this number to a too
small value would make the function too rigid (Figure 3.4 (b)), whereas a too big value would make it
too flexible, resulting in overfitting, i.e. fitting the imperfections in the data too well (Figure 3.4 (d)).

Once the structure is chosen, the parameters have to be optimised so that the network fits the
sample best. We will not cover optimisation methods because it would require much theory that
has furthermore been treated in depth on other works (see C. Bishop [3] for a good coverage of
Bayesian theory and neural networks). Basically, the optimisation is achieved by optimising the
model’s parameters so as to minimise an error function (usually some distance between the model
and the data, for instance the negative log-likelihood) with an optimisation algorithm (the Scaled
Conjugate Gradient algorithm is used in this project).

Note: We will always use the index k for the network’s basis functions.

3.3 The state-space model (Kalman filter)

The state-space model is a model in which an observed quantity I (a rainfall intensity, for example)
depends on a state variable € (a rainfall model’s parameters, for instance) which evolves through time.
Both quantities evolve in parallel, linked together by a system of coupled equations. The Kalman filter
is a convenient way to define such a framework when the observed quantities are linearly related to
the state.

3.3.1 Introduction

To introduce the state-space model, we will follow D. Lowe’s introduction to the Kalman filter [11].
We assume there is an unknown process evolving through time, from which we get observations (I;)
at regular time (a time-series). We want to model this process so that we can predict it. We assume
the model is Gaussian and fully defined at time ¢ with a mean parameter vector @;, usually called
state vector since it gives account of the state of the model, and covariance matrix Ef.

The Kalman filter is a two step algorithm. It basically involves the forecast of the state vector
using a known dynamic rule (evolution step) and its update using the new observation (assimilation
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a) Interpolated lunction b) 2 basis function(s)

0 02 04 06 o8 1 0 0.2 0.4 06 o8 1

) 4 basis function(s) d) 20 basis function(s)

Figure 3.4: (a) shows the unknown function and the sample set drawn from it with added noise. The regression
result is shown with (b) N=2, (¢) N=5 and (d) N=20 hidden nodes. (b) shows our network is not flexible
enough to fit the sample, whereas (d) is too flexible and fits the data too close (overfitting); (c) appears to be
an appropriate choice for the network’s structure.

step). We assume all the distributions treated are Gaussian.

(1)—+ Evolution

Assimilation ——(2)

Figure 3.5: The 2 steps of a Kalman filter.

Observation equation

The observations come from noisy measurements of the process. We assume the process is a linear
function F} of the parameter vector 8; and the noise €/ is Gaussian with mean zero (white noise) and
covariance matrix Xf. We then can write the observation in the matrix form as:

L=F0,+¢

State equation

The state vector at time ¢ + 1, 8441, is generated by applying the evolution function E; (assumed
known) to the previous state vector 8;. This process includes white noise »; with covariance matrix
¥}. The noise is weighted with a weights matrix W, for better accuracy. The evolution equation is
thus:

93.'.1 =FE 6; + W; vy (34)
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3.3.2 Evolution step

Between two observations, the observed process evolves. We thus have to make the model evolve too,
that is to say to we have to evolve 8;. The evolution dynamics are assumed to be known (equation
3.4) and the model new state is conditioned on its previous state. The probability distribution for
041 given all previous observations Z; = (ly, ..., I;) is conditioned on 8;. We thus need to integrate
their joint probability over all possible values for 6;:

PO |T) = [ (01,0, T1) 8, (3.5)

— /p(91+1 | 6¢) (0| I;) d6, (3.6)

The distribution for @ at time ¢ given Z; is assumed Gaussian: p(6;|Z;) = J\f'(ém,ﬁfu), and
p(6;41]|0;) can be computed using the evolution equation (3.4)":

P(0141|0;) = N(E 0, W, B W[T).

From there, using the properties of Gaussian integration, we obtain the evolved state distribution
((2) on Figure 3.5):

P(Bes1| i) = N (Bpsrje, B ya0) (3.7)
with

ét+l|t =E; éq: (3.8)

S =EZ,E+W, W, (3.9)

3.3.3 Assimilation step

Suppose we have achieved the evolution using the state at time ¢t — 1, thus obtaining a forecast of the

process at time ¢t. Then, the real observation I; is issued, and we have to use the information it bears

to correct our model and ensure it remains close as close to the process as possible. We can write the
posterior distribution: (1416 PO To)

P |Gy ) PAT|Li—1

i e

This is Bayes’ rule, but written in a time-changing context. If one is not convinced, just write it

with time £ = 0 to find the usual formula. Since the variables are linked with their previous state,

we have to keep trace of this constraint, hence the densities are conditioned on the whole sequence of
observations up to time t — 1.
We define the (Gaussian) distributions as follow:

o Likelihood: p(1;0;) = N(F, 8;,%5), ie the observation is centred around the observed process’s
value with uncertainty due to the noise

e Prior: p(64|Z,—1) = N(é”!—l’ﬁﬂt—l)’ ilf"_l being the uncertainty in our estimation of 6,
e Evidence: p(I;|Ti—) = N(fﬂg_;,zf). ¥/ being the uncertainty in our prediction for I;.

We can then write the posterior as a Gaussian (product of Gaussians) having estimated state
vector and covariance matrix updated using the new data.

'When using double time indexes, the first denotes the step in the process and the second the image in the sequence
associated. For example, 6|, is the value for @ at time ¢ + 1 using only the observations up to I;.
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e Posterior: p(64|1;) = (9”:,2!“)

In order to find gtlt and )jfjt, we will search for the maximum a posteriori (MAP) estimate, ie the
value of étit that minimises the negative log of the posterior.

For this, we rewrite the posterior using Bayes rule and take the negative log, thus getting the
equation (the constant terms have been dropped):

—In p(etlzt) x (6 — étlt)T (ﬂfu)—l (9t & ézpz) (3 11)
o (I — F:0,)" ()~ (I; - F,6,) (3.12)

+ (0= Bye1)" (2_1)7" (0= Bype—y) (3.13)

— (= Tye-1)" (B)7" (& — Fyp-a) (3.14)

We can expand this equation and equate the quadratic terms in 8y, thus getting:
(=4 ) = F{ (Z5)' F, + (%} fit-1) s (3.15)

and, using the fact that its derivative with respect to 6; is null (optimum) and incorporating 3.15 in

the result, we find:
O1e = 011 + K eqi (3.16)

where
K, = Et|t F:T (Ei)nl
is called the Kalman gain, and

€tjt—1 = 0; — 9t|t—1

is our estimate error.
Equation (3.16) states that our estimate evolves by being added a certain fraction of error at each
step, this quantity being the filter’s gain.

It can be shown that those expressions can be rewritten in a more computationally efficient form
(with less matrix inversions in the expression of flf!r_) using ¥/

Li=FR3y,  FF+% (3.17)
Ky =%}, R (Z) (3.18)
Et[t = (ld- K\ F}) if“_l (3.19)

where Id is the identity matrix (written as such not to be confused with the observation ;).

3.3.4 Extension

In our case, the equations which govern the dynamics of rainfall fields are not linear (they are detailed
in the following chapter). They involve the variables as well as their first order derivatives. To be
able to use a “Kalman filter” like approach, approximations are made so that we can replace the
derivatives by their first order Taylor expansions (making the assumption that the change in time is
small enough).

Furthermore, the Gaussian assumption is dropped for the distributions, which we choose to have
different, more general, shapes. Our model can thus be seen as a generalisation of a Kalman filter
(relating it to the extended Kalman filter would be interesting, but knowing too little about this
notion, we prefer not to talk about it).

21



CHAPTER 3. BAYESIAN THEORY

All the details of Batail and Cornford’s model will be introduced in the following chapter. They
rely on the theoretical notions we have described in this chapter, but are often adaptations of those,
so we will give enough details for the reader to be able to understand without wasting time trying to

relate them to the general theory.
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Chapter 4

The model

In this chapter, the existing model of Batail and Cornford is described and explained.

4.1 Overview

The way the model works can be thought of as a Kalman filter. The data observed is a sequence
of radar images [;, where t denotes the evolution in time. Our aim is, given a series of images
Sy = (I,...,I;) to be able to predict the state I; ;. We will consider I as a set of observations
associating to each coordinates couple (z;,y;) the intensity I;.

We will often drop the time index for better readability. When not specified, the values are assumed
to be taken at time .

4.1.1 The rainfall rate R

Our model is a simplified representation of the reality of rainfall physics. It is mainly reduced to

two variables linked together by the advection equation (explained later): the rainfall rate R, which

models the rainfall intensity 7, and the advection field u, which models the spatial movement of I.
The rainfall rate R is modelled by an RBF network (see section 3.2) with 2D-Gaussian basis

functions:

K=
ke

AR i ;

>t exp (=3 (leaw = 2 + lew — i) ) (41)
=1g=1

This means that I can be viewed as a mixture of N 2D-Gaussians having centre (exy., cyx ), width
1‘: and height hy. Those Gaussians are spherical, meaning their width is the same in every direction
(i.e. Ais a scalar, not a matrix). It could be interesting to use a full matrix for A in order to have
basis functions with elliptic support instead of circular. This would certainly add flexibility to R and
improve the way we model 1.

The easiest way to illustrate it is to consider a spatial visualisation. A single basis function is
shown on Figure 4.1. By adding N similar functions with different parameters correctly tuned, we
can approach the 3D radar image on Figure 2.2 (i.e. by constructing an RBF network and optimising
it with respect to the image).

Those basis functions are assumed to have a physical equivalent, namely the rainfall cells. A
rainfall field is not a solid object. It is usually made of different rain cells evolving together in a bigger
ensemble, Assuming those cells produce a Gaussian-shaped rain rate (high rain in the centre and
normal decay), we can think of the basis function as being ‘rain cells’ added to give the whole rain
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Figure 4.1: 3D representation of R Figure 4.2: 2D representation of R

field. Even if this conception is a bit inaccurate, we will use this term to name the basis functions
from now on (even though those are the rain rate associated to the cells, not the cells themselves).

We will use the following notation for the parameters of R :

cx = (cry,...,cxy) the centre z-coordinates for the model (same for ey, A and h),

0) = (cxy,cyr, A, hi) the parameter vector for the k" cell,

6 = (61,...,0n) = (cx,ecy, A, h) the parameter vector for the whole rainfall rate (independent of
their order in the vector).

Considering that the rainfall moves in time, we need another variable to model its movement before
introducing how the model runs.

4.1.2 The advection field u

The advection field can be thought of, in a very simple way, as the wind flow responsible for the
rainfall movement. Actually, there are more complicated processes involved in this phenomenon (the
attraction between cells, for instance), but since we deliberately want our model to remain simple, we
define u as follows:

u(z,y) = (u(z,y),v(z,y)),
V{(:rlsyl)!"-i (xmys)} &F, P(u(zlsyl)s"wu(msnys))) = N(ﬂu‘zu)

where F is the radar image’s coordinate space. That means u(z,y) is a 2d vector, and any finite subset
from span(u) has a Gaussian marginal density distribution, or in other words, u is a Gaussian process.
The use of a Gaussian process ensures u varies through space in a continuous way (for example, we
wouldn’t want two close points to be advected in completely opposite directions). A sample from a
2D Gaussian process is illustrated in Figure 4.3.

In our model, the advection field definition space is restricted to the cells’ (each cell has an
associated movement) centres. An interesting evolution would be to have it sparsely defined all over
the image, so that our rainfall cells really behave as if they were in a somewhat independent flow.
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Figure 4.3;: A 2D Gaussian process (courtesy of D. Cornford)

4.1.3 The advection equation

The advection equation links R and u together, and thus, time and space:

oR
E = —-u.VR
_gos ol
dx dy

(4.2)

(4.3)

This equation models the dynamics in our system. It states that the rainfall rate moves in space
according to the advection field which ‘advects’ it. In this model, the advection is only applied to

the cell centres, i.e. we consider the whole cell is advected as a block during the dynamic step. The

other spatial modifications are ignored (the cell width and height are considered unchanged during its

advection).

Let us explain where this equation comes from using a a simplified single dimension example. The

rainfall rate R is advected through time according to the advection field u. If we consider a static

point z in the spatial domain, the rainfall rate evolves with respect to its movement. This process is

illustrated in Figure 4.4. The solid line represents K, and the dashed line R, as functions of z. In

R
1 -~

R R

RIH[‘U l \El
'\\\
AR s
\\
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RI(.\} \\
\\.
> X
Ax
X X

Figure 4.4: Evolution of the rainfall rate through time

a temporal approach, the model's movement is equivalent to a local change of intensity. We're thus

interested in the amount AR of rainfall rate added in 2. We can write:

RH-I (I) = Rt(I) + AR.

The difference in R is both proportional to its spatial derivative (the steeper the decrease, the bigger
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AR) and its quantity of movement Az :

R
AR= —EAI},

where Az = z — 2’. Note that if the spatial derivative of R is negative, it decreases, and

R;+1(Z‘) = Rt (mf < $)
> RI(I) ]

hence the negative sign. Noting that Az can be rewritten:

Az =uidt,
it comes:
Reon(x) = R(e) - u At 0
éﬁ A —'ll Eaﬂ
atomT o

which becomes the advection equation when the differences tend to 0.

4.1.4 Priors

Our model is fully defined with the parameters of R: (ez,cy, h,A) and those of u: (p,,E,) (notice
all those are vectors with length N where N is the number of cells). For those parameters, we need to
specify a prior distribution, according to our knowledge or expectations for their probability density.
Those priors are chosen as follow:

e The cell centres ¢ are chosen to be Gaussian distributed, with mean vector € = (¢xy, ..., CE N, €Yy, ... €Y N )
and diagonal covariance matrix X, (the centres are assumed to be uncorrelated).

e The heights h are chosen to be log-Gaussian with mean vector p, and diagonal covariance
matrix ¥, (for we assume the heights are uncorrelated).

e The inverse widths A are defined as the heights with mean vector g, and diagonal covariance

matrix ¥, (they are also assumed to be uncorrelated).
e o has already been defined with as a Gaussian process with mean g, and variance X,,.

The prior for R factorizes over the parameters as follows:

N

p(cms cy, h’: A) - H 'P(C-Tk: Clk h‘k) Ak) 3
k=1

plexr, cyk, hi, Ax) = plexr, cyr) plhe) p(Ax)-

4.2 Initialisation

This part explains how the model is initialised before it runs.
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4.2.1 Initialisation of R

The first thing to do is to build the RBF network R, using the first radar image in our sequence. For
this, we have an iterative process that successively creates cells (i.e. basis functions) and optimise

them. The following algorithm explains the process:
1. Create empty network Ry, initialise temporary radar image Ijemp = Io.
2. Find maximum intensity h,,., of radar image Iy, it is located at (Zmaz, Ymaz)-

3. Create a new cell having centre (ze,yc) = (Tmazs Ymaz), Width % (the initial value for A is tuned
by hand) and height A,

4. Proceed to optimisation.

5. Remove cell effect from liepmp.

6. Add cell with optimised (zc,ye, h, A) to Ry.

7. Go back to 2. and repeat process on modified image Iy until Ry is sufficiently close to Ij.

The optimisation step is equivalent to minimising the negative log-prior for R. This step is a
restriction to a single cell of the step detailed in section 4.3.3.
We thus end up with a network Ry with optimised parameters giving a good representation of Iy,

having N cells.

Figure 4.5: Initial radar image Figure 4.6: Initialised rainfall rate

Figure (4.6) shows the model initialised from the first image in a sequence (4.5). The crosses show
the centres of the 38 cells used to model the rainfall intensity.

4.2.2 Initialisation of u

The advection field is initialised using the advection equation and the two first rainfall rates Ry and
Ry. R, is computed from the second image in the sequence, using the same procedure as for Ry. From
the advection equation (4.2), it follows that:

dR
u=-—(VR)™1.
ot (¥
‘:Tf is estimated as the difference between the rainfall rate R; and Ry, while VR is computed from R;

aR

using the spatial differences between pixels as 5 and 2R

dy *
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Figure 4.7: Dynamics of the model (courtesy of D. Cornford)
1. Evolution of R
2. Evolution of u
3. Assimilation of R
4. Assimilation of u

4.3 Dynamics

Once initialised, the model can run in an iterative way from a sequence of radar images. It has been
shown in Section 3.3 that the Kalman filter involves evolution and update steps successively. The
practical application to our model is detailed hereafter. Figure 4.7 illustrate the dynamics of the
model.

4.3.1 Evolution of R

We use the advection equation as the evolution equation in the Kalman filter (section 3.3.2):
Ri‘.+l (I:y) =" R;(:c,y) -uVR,
which can be translated in terms of evolution of the cell’s centre:

CTyp1)e = cxy + u(exy, cyr) At + €.

CYes1)t = eyt + v(ewy, cyr) At + €.

In the implemented model, the mean of w has been used for simplicity.
The evolution’s noise being supposed to have a zero mean Gaussian density with covariance £, ,

the estimated centres distribution becomes p(cxyy1yr, cyrsrye) = N (g2, Ypt1)t)s Ef+l!t)’ where:

b =26+ A E,, + 2.,
C_.'Et+1|t = €T + Ui (Cj’l’.’;, CTyt) At
Yeyrpe = Yy + velcy, cy,) At
A small amount of noise is added to the variances of A\ and h to reflect our uncertainty in the

evolution process, thus giving estimated distributions p(Ay1)¢) and p(hyyqp)-
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4.3.2 Evolution of u

u is assumed constant through time, and we only evolve it by adding a small quantity of white noise
€, having same structure as v but a smaller variance ¥,, since the change is slow.

Uit = Ut + €y,

so that the distribution for u becomes p(t;11)t) = N(ft,,, Zu, + Ee, ). The assumption of a constant
u is justified by the fact that in practice, the rainfall field R changes much faster than w.

4.3.3 Assimilation of R

Once R has been moved according to the advection equation, and a new observation has been issued,
we correct our estimate by assimilating the information in the new data into our model. As seen in the
Kalman filter section (section 3.3.3), this step involves optimising the distribution for (ezx, ey, A, h)
given the new image, which is computed using Bayes rule.

P41 lcwtlt—l—l » CUtt+1s ’\!|t+1 : h'tIt-H) P(Cmf|t+1 1 CY |41 ’\tlt+l ) ht|t+l)

plexisr, eYppr, A1y Rgr | fi41) =

p(Ie41)
(4.4)
Before developing the computation, we drop time indexes for better readability:
-I ] As h‘ 1 FExS h’

p(I)

We then optimise the parameters (centres, inverse widths and heights) by minimising the error function
defined by the negative log-posterior (equivalent to maximising the posterior, which means maximising
the confidence in our model):

Eox —Inp(I|lex,ecy, A\, h) — Inp(ex,cy, A\, h)

The prior over the parameters is Gaussian since the posterior (which will become the new prior)
will be approximated by a Gaussian distribution using Laplace approximation (this step is detailed
further).

Since the observations are uncorrelated, we can write the negative log-likelihood:

—Inp(I|ex,cy, A h) Zlnp(f lex, ey, A, h).
=1

2

Assuming a Gaussian distribution for the measurement process (radar) with noise 0%, we can write

the likelihood as a noisy realisation of the model:

1 (15—R;)2

e 222

plljlez,cy, A h) =

where R; denotes the model’s evaluation at point (z;,y;),

N
A ;
Rj = R(:Bj)yj) = Z hi e——f [[czk——zj }2+(cy}—y_,}"] s
k=1

Hence, dropping the constant term:

P M
—Inp(I|ez, ey, A, h) x * 53 g
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The negative log-prior is given by:
~Inp(ez, ey, A, k) = ~Inp(cz, cy) — lnp(h) — Inp(A)

o %cTEc_lc B % ATZIIA+ % RTZ h

Then, we find the parameters minimising the negative log-posterior, sometimes called mazimum a
posteriori parameters for they maximise the posterior distribution. Those parameters give a posterior
distribution, often complex and difficult to integrate (we need to integrate it for the normalising
constant). That is why we approximate it using Laplace approximation.

Laplace approximation

The Laplace approximation (see D. MacKay’s introduction [12]) consists in approximating a complex
probability distribution P about its maximum with a more tractable Gaussian distribution ). It uses
the fact that at the maximum 6,,, Inp(f) can be approximated using Taylor expansion [12], thus

giving:

1
Inp(6) ~ Inp(6m) - 5 (0 - 0,,)TH(6 -06,)
where H is the Hessian of Inp at point 8,,, i.e.

2

d
= Inp(6
+J 39,693 np( ) ‘9:9"‘
Then, if we note Z the normalising constant, p can be approximated at
point 6,, by
1 1 T
q(8) = 7 p(6,,) exp =3 (@—06,,) HO-06,)]| .

What we do in our case is compute the Hessian of the posterior distribution as a function of the
whole optimised parameter vector 8, = (cZ1,...,CEN,CY1, .oy CYN; ALy ooy ANy By, oo hy). We thus can
update the parameters posterior distributions using:

o the optimised values of ez, ey, A, h for the mean vectors,

e the appropriate parts of the Hessian diagonal for the covariance matrixes.

4.3.4 Assimilation of u

The advection field’s assimilation is more simple since most of the difficulty has been put in the
assimilation of R. w is then simply integrated over the uncertainty in R:

(il Ie41) = ffP(Ut+1,ct+l,cr|fr.,ft+l)dCr.+1 dey
- f/P(‘utH|Ct+1,Ct)P(Ctlft)P(Ct+1|ft+1Jdct+1 dey

4.3.5 Forecast

Alternating evolution and assimilation steps, the model can run indefinitely as long as input data is
provided. To forecast a time t + n, we run n evolution steps from time ¢, and then produce samples
from the forecast distribution.
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4.4 Issues

In its previous state (described in this chapter), the model ran and produced accurate forecasts. But
there are several improvements one could think of to make it more robust:

e Though accurate, the model is very slow to run, which is a major issue in short-term forecasting,
since we must be able to evolve and update the model in a time shorter than the time step
between two radar images (if the model doesn’t run faster than the process it models, then it is
rather difficult to use it in a predictive way!).

e The observation noise isn’t estimated from the data, which could be improved.

e u could be improved by using a sparse advection field, defined over the whole image not just at
cells’ centres. The dynamics of u could also be more realistic than the constant approximation

we use.

e No real data test and comparison with existing techniques have been done so far.

We have introduced the model as it had been designed initially, describing how the rainfall rate
and the advection field interact together in a state-space framework to forecast the rainfall field. We
have also listed a number of issues affecting this model, the main being the speed of the model. The
following chapters will discuss the work done to solve this issue.
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Chapter 5

Speeding up the model with
Variational Bayes

In the previous section, we have described the model and underlined several issues, amongst which
the main being the update of R, very expensive in computation and thus needing a long time. Such a
time makes the model simply not usable in concrete situations. Hence our choice to focus on solving
this issue first. An analysis of the reasons for this issue has led us to consider applying variational
methods in the hope of obtaining better results.

5.1 Analysis of the speed issue

From our theoretical work (previous chapter), we can infer that most of the computation time is
dedicated to the update of R, where significant non-linear computation takes place. This feeling was
confirmed by generating a Matlab report on a 1h 40min run of the model. The following parts of the
process and the associated time are plotted in Table 5.1:

Step Time (s) Time(%)
Initialisation 1674.95 27.6
Evolution of the model 0.06 <1
Update of R 4385.65 72.4
Update of u 0.07 <1
Forecast 0.23 <1
Total time elapsed 6060.96 100

Table 5.1: Time involved by step

The most computationally intensive part is clearly the update of R, followed by the initialisation
of the model. The former is not really important, since it is done once only, and before the model
starts to run. Once the slow step was determined, we looked at possible reasons that could make it
slow, and possible solutions to those.

We tried to reduce the accuracy of the model, by diminishing the training time and accepting
larger errors in the fitting of the data. We ended up with correct mean values, but poor estimates
of the distributions. This came from the fact that the optimisation is achieved by using the Laplace
approximation. The Laplace approximation (cf. section 4.3.3) is a local approximation at the mode of
the posterior distribution. Thus, to get a good estimate of the posterior, we need sufficient optimisation
of the parameters to be close to the optimum (Figure 5.2). As a matter of fact, if we use the Laplace
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CHAPTER 5. SPEEDING UP THE MODEL WITH VARIATIONAL BAYES

approximation at some point a little too far from the optimum, the approximating Gaussian will give
a poor estimate of the posterior. This compels us to carry out high optimisation to get very close to
the maximum. Furthermore, with such an optimisation method, the approximate posterior is better
than the prior only beyond a certain amount of optimisation. Carrying out the Laplace approximation
too early would result in an estimated posterior distribution very far from the true posterior (Figure
5:2).

Figure 5.1: Laplace approximation (good).
The Gaussian distribution (solid) gives a good
local and correct global approximation of the

Figure 5.2: Laplace approximation (bad). The
Gaussian distribution (solid) gives a very poor

; approximation of the true posterior (dashed
true posterior (dashed) = * ( )

In order to reduce the length of the optimisation process, we would like a better method to
determine the posterior distribution. A global approximation, for instance, would be much better
than a local approximation at the maximum probability. There are different ways to proceed to a
global approximation. Sampling (such as in Monte-Carlo methods) is a common reliable way to get
an approximation of a whole distribution, but it requires too much computation time in our case to
be efficient. Thus, the framework we chose, in which the whole distributions are estimated during
the optimisation, is the Variational Bayes framework. The following section discusses our work using

Variational Bayes.

5.2 Variational Bayes

Variational Bayes was introduced in 1993 by Hinton and van Camp [9] in a paper where they showed
that the true posterior distribution can be approximated by a Gaussian using a deterministic algo-
rithm. The principle is similar to the Laplace approximation (see 4.3.3), except that instead of fitting
the posterior distribution locally, the whole distribution is approximated by minimising the Kullback-
Leibler (KL) distance between the posterior and a more tractable distribution. This method can be
generalised to other approximating distributions than the Gaussian.

5.2.1 The Kullback-Leibler distance

Given two distributions p and ¢ of a parameter vector €, the KL distance between those two distri-
butions is defined as follow:

KL(pll) = - / 4(6) In ;i% a0

—/q(ﬂ) In p(0) do +/q{9) In q(0) dO
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In our case, & = (cx,cy, A, h) and we want to approximate the posterior distribution. Using
Bayes’ rule, we can write its negative logarithm:
—Inp(6|I) = —Inp(I|0) — Inp(@) + Inp(I),

and, dropping the constant term, expand the KL-distance between ¢ (which we want to determine)
and the posterior:

KL(pllg) o~ [ 4(0) Inp(1]0) d6 (5.1)
2 / 4(0) Inp(6) d6 (5.2)
+/q(9) Ing(@) dé . (5.3)

We will denote KLy, KLy and K L3 the integrals in the right part of this equation (the negative
sign included), so that K L(p|lq) = KLy + KL, + KL3.

5.2.2 Distributions chosen

We chose to change the priors over the model for the following. Gamma distributions are chosen for
the inverse widths and the heights, to ensure those remain positive, and a 2 dimensional Gaussian
distribution conditioned on the widths is chosen for the centres.

Th

L(y&)

- s ﬂkﬂk ap—1 _—B, Ak
p(Ak) = Galay, Bx) = Tan) Ak e

plexk, cyr|Ar) = plexk|Ar) pleyr| M)
(SN
7l (c.u-, fk)\k) o (cyk’ Ek)\k)

- Sk e Sk [(cza—can) +(cin—cyx)?]
2m

hk‘m—l e-‘jkhk

plhx) = Ga(yx, 0x) =

ay (yx for the heights) is called the shape parameter of the inverse width Gamma distribution, for
it governs the shape the distribution takes. If it is smaller or equal to 1, the Gamma distribution is
unbounded (it has no maximum). If it is greater than 1, the Gamma distribution decays asymmet-
rically around a maximum called the mode. This is this shape we are interested in, so we have to
ensure the shape parameters remain strictly greater than 1 for our model to remain coherent.

Br (dx for the heights) is called the scale parameter of the inverse width Gamma distribution, for
it governs how high the mode (maximum probability) is. This will become obvious if we write the

mode’s value (when existing):
ap —1

Bk

It is clear that we have to ensure §j remains strictly positive for coherence of the model.

de
\mode
k

Note that we use a Gamma distribution for A for computational ease, though in the model, it is
more convenient to think in terms of widths, which then have a Inverse Gamma distribution. This
doesn’t matter since choosing a Gamma distribution for the inverse widths is equivalent to choose an
Inverse Gamma for the widths, and their parameters are exactly the same.

The centres are now conditioned on the (inverse) widths, which is a better assumption than in the
previous version of the model where both were uncorrelated. The joint distribution of the centres and
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widths is called a Normal-Gamma (a study of such distributions can be found in [2]). ¢y, ey and
&xAr are the mean and inverse variance of the spherical Gaussian distribution for the centres. £ is a
parameter giving freedom to the shape of the Gaussian, so that the constraint on A; doesn’t reduce
flexibility too strongly. No domain constraint is set for the centre means, which can become negative.
This makes sense since we work with finite radar images, where sometimes the effect of a rainfall cell
which centre is outside the image (with possibly negative coordinates) must be taken in account.

For the approximating posterior distribution ¢, we choose the same structure as p. Thus, ¢ will be
the optimised version of p.

As in the previous version of the model, the distribution factorises independently over the cells as

follows:
N
p(0) = [[ pe(0k), Ok = (car, cyn, Ae ) (5.4)
k:rl
q(0) = ] ax(6x) .- (5.5)
k=1

It also factorises over the parameters, but now the centres are conditioned on the widths, so that:
Pi(Ok) = pr(cx, cyr| Ax) pr (M) pr (hi)

ak(Or) = qr(czp, cyr|Ae) g (Ax) gr (hi) -

5.2.3 Negative log-likelihood part (KL,)

Let us first compute the first part of the distance:
KLi(pllo) = - [ o(®) 1n p(11) 0. (5.6)

This part of the distance is the correction the observation I brings to the model.

The observation I is a vector of all its data points, I = (I1,...,In), I; = I(z;,y;). Those points
are assumed to be picked up randomly, so we can write the negative log-likelihood:

M
~Inp(11) = Y —Inp(L;]6).
i=1
Assuming a Gaussian distribution for the measurement process (radar) with noise o2, we can write
the likelihood as a noisy realisation of the model:

R;—1;)2
—1DP(IJ'19)=—111( - : o )

2mo?

oc 292 (Ry — Ij)z

where R; denotes the model’s evaluation at point (z;,y;),

R.'f = R(6, Ij!yj)
N

=D Ri(6:)
k=1

N
= Z hi e_ﬁ?k [(ka—lez-i-(cyx—yj)n] .

k=1
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R;(6)) denotes the effect of the k" cell at point (z;,y;).
Hence:

1 M
—lnp(l6) = 5= > (R;(6) - I;)*
i=1

1" s
=~ 3 (RX(6) - 2LR;(6) + I?)
4=1

202

(5.6) then becomes, after dropping the constant quadratic term in I;:

KL=y fj [ / a(6) B3 (6) db — 21; / a(0) R; (6) dﬂ} (5.7)

i=1

Let us denote K, ; and K9 ; the first and second integrals in the previous equation, and compute

Ky, ; first. Using 5.5, we can rewrite it:

K]g,j = /q(ﬂ) Rj(ﬁl') df

N
:/q(a) (Z Rj(ekl)) d

k1=
N M :
=¥ f(H qk(ﬂk)) R;(0k,) dby...d6xy
k=1 k=1
N
=Y [ a0 Ri@0)
k=1

In the last but one step, the product of g, expands into a product of integrals, all but one (the
one over fi, ) integrating out to one, hence the result.

We can see that this result relies on the g-average of R; over ;. Let us compute this quantities.
We drop the k index for better readability, but remind that 6, cx, cy, A and h are in fact 8, cxx, cys,
Ar and hyg.

[ a6 R ) ao (5.8)
z/q(cx,cy]A)q(A)q(h) }Le_%{(‘:“'_“‘f)er(””_y")n]dcxdcyd,\dh (5.9)
= / q(h) hdh x / a(\) [ / q(cz, cy|A) e~ 2 [ca=2*+(ev=v*] o dey | dn (5.10)

The integral in h is the first moment of a Gamma distribution:

: (5.11)

|2

f q(h) hdh =
(5.12)

The integral over the centres in (5.10) (between brackets) is a bit more tricky. Let us compute it.
Since the centres are normally distributed, we get the following expansion for the integral:

gi / e~ Fl@—ce)+(@-c)®] =3 [(eo—2;+(ev=13)"] dog dey (5.13)

m™

¢, gé /8_%[‘5(53"_“:)2““_’5}2] dcﬂ’/e_%[ﬂ@_mg“c‘"”ﬂz]dcy (5.14)
il
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The integral in dcy is similar to the integral in dex. Inside the integral is a product of Gaussians,
which is also a Gaussian with parameters we are going to solve now.
Let us first notice that:

&(cx — cz)® + (cx — x;)° = [+ 1] ez® — 2[6cx + z;] ez + [Ea® + 23] (5.15)
=Acz’ -2Bez +C (5.16)
B]® B?
=54 {c:r: - E} -+ [C - 7] (5.17)
where:
A=€4T,
B = {cx + z;j,

C = &ex® + 7.

Given that:
A B2 27
--EA(czuz) = Bl
/e dex A
and B2 ¢
— "y - ) 2
S e =l
The integral in dez in (5.14) can then be rewritten:
27 e—é\z- E—i—l(c':r—z_.j)?
AE+1)
and the whole integral (5.14) becomes:
z f_ - e~ 3 erl(a—2,)* +(cy-v;)?] (5.18)

We then define E = = [(c‘:r =21) i (T yj)z} and average (5.18) over ¢(A):

+

o /q(A)e—’:‘Ed)t

E+1

§ / B a-1 _—-8A_—2E
= — —_— 2 2 2 ,\

Ert l iy e
fonell o8- a—1,-2(8+%)
N el ek

I el 20 S et
_mf()(ﬁ-i- ) /A le=A dA

w18 g
e (Hzﬁ)

=L (1+%£+1 [(C.’L—-xj) + (éy — yj)])_a

using the change of variables A = (8 + —25'-) A to retrieve the Gamma integral evaluating to ['(a).

Hence the preliminary result:

/q(g)Rj(g) do :%fg-f:—l (H-%ETel [(c‘x—a-,j)2+(c'y~yj)3])—a
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Let us now compute K Ly; ;. Like KL ;, we can rewrite it:

- f 9(O)R(0) db

N N
=/q(9) (Z Rj(gh)) (Z Rj(f’kz)) df

fa=d kz=1
N N . M
= Z / (H Qk(ﬂk)) Rj(gkl)Rj(Bkz) b, ...d6y
k1=1 ka=1 k=1
N N B
~ Z /qh (Ok.) Qra Oz ) R (Ok, )R (Ok,) dBr, dbi, + Z /%(9&) Rj(ﬁkﬁdﬂk
A k=1
ka#ky
N N :
= Z qul (91:1)Rj(9k1)d6k1 X /qka(gka)Rj(ekz)dgkg -+ Z/q‘(gk) RJ(Bk)zdgk
" k=1
ka#ky

This result relies on the g-averages of R; and Rf- over #;.. The first we have computed before, and
we will compute the other now. As previously, we drop the k index for better readability.

/ q(0) R2(6) do (5.19)
=/ qlez, cy|X) g(N) q(h) h? e~ [(ez=2)* +ev=93)"] geg dey d) dh (5.20)
=fq(h) h? dh x/q()\) [/q(cx,cm,\)e-"-%I‘CI-M“(CPw)’J dez dey| dA (5.21)

The integral in h is the second moment of a Gamma distribution:

/q(h) p2gp< 20D (5.22)

&
(5.23)

The integral over the centres is similar to the one in 5.10, except for a factor 2 due to the quadratic
term in R;. It is computed using the same method, but this time, we find:

A =£+42,

B! = tcn 4 225,

C' = tcx® + 222,

and g” ¢

i
i £+2

and for the whole integral averaged over g(\):

§ LS 1. A
§+—2 (1 +Ea'_—2 [(C-f—fj)2+(cy"’9’3)2])

(cx — z;)

Hence the preliminary result:

F 1 & 1§ . 3 Ty
/Q(S)Rj(g)z g =7(‘Y(52 )m (14‘55_'_—2 {(Cz_af'j)g"‘(cy—yj) ])

We can define the quantity r}::j, m € {1, 2}, reintroducing the k indexes, as:

m (et & 1 €k Py b o
rk‘j_ék( Ok ) Ek +m (1+(3"m)ﬂk§k+m[(mk %) +(cy;.'—yg)]).
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7} ; is the g-average of R; over 6, and rj ; the g-average of R?.
And write the results:

N
KL];;".,' = Z ?'_il;,j

k=1
N N N
it 1 1 2
KLy ;= Z Z rkl‘jrkz.j+zrk,j
ki1=1 ka=1 k=1

koshkl

Hence:

5.2.4 Negative log-prior part (K L,)

In this section, we derive the computation of the second part of the KL distance:

KLa(pllo) = - [ a(6) 1np(6) 0.

Using the independence assumption in 5.4 we can rewrite K Lo as:

N
KLy(pllg) = Z KLy
k=1

where

A [ a(8) Inpe(6:) db (5.24)

== [ ) () ds (5.25)

since the distributions are independent (all the gx, k' # k, in the factorisation of ¢ separately integrate
to 1). We already can see that the optimisation will be made on the whole parameters distributions,
since the parameters 6 = (cxk, cyk, Ak, hy) are integrated out. This corresponds to our wish to carry
the whole distribution during the optimisation.

We see that we can restrict our discussion to a single cell for the computing and drop all the k
indexes, and then sum up all the KLy, .

We will denote by (cz', éy', &', o', B',v',8') the parameters of the distribution p and by (¢, ¢y, €, o, 3,7, d)
the parameters of the distribution q.
Let us first expand —K Ly ;.

—KLyy = /q(c;r,cy,)\,h) Inp(ez, ey, A\, h) dex dey dX dh

= /q(h,) Inp(h) dh x /q(A) q(ez,ey|X) In[p(ex,cy|\)p(A)] dex dey dA dh.
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The integral in h gives:

/q(h) Inp(h) dh = /Ga(h,'y,é) In Ga(h,v',4') dh

/Ga ) m[( )h*f"l -“] dh

+ (v - )/Ga(h, v,8)Inh dh —5'/Ga(h v,0) h dh

F(’Y’)
The second integral is the first moment of the Gamma distribution, evaluating to . The first
integral can be expanded into:

/Ga(h,'y, &) Inh dh

o7 [ (v=1)Inh %
— | e "Inhe dh
L'(v)

RS
= b NC o (v=1)Inh _—6h
T() v U > g dh]

) [r(—y)]
[(y) ov

&7 [I"(’y)é"—l‘(’y)é*lné}
L'(7y) 627

= U(y) —Iné

where ¥ = F is the di-gamma function.

Hence:

/q(h) Inp(h) dh =In % + (' =1)(¥(y) = Ind) - 7%

The integral in ez, ey, A can be expanded into:
/q(,\) q(cz,cy|A) In[p(A) plez, cy|A) ] dex dey dX = /G(A)Q(C%CUP*) Inp(A) dex dey dA

+/q()\) qlex,cy|A) Inp(ex, cy|A) dex deydA

In the first integral, the normal distribution over the centres integrates to 1, leaving an integral

!
o !

similar to the one in h:
[a®) mpyx =i s+ (@ - 1) (¥(@) - mp) ~ o
F( ) ]

The second integral needs to be integrated over ¢z, ey first and then over \.
/q(/\) {/ q(ez,ey|A) Inp(ex,cy|)) dex dey| dA
The integral over the centres gives:
[ atca) aeul) (i pleal) +1npleyl) dea dey
= 2/q(c:£]/\) Inp(ez|\) dex
=111§—A—£A/ cJ:)N(c:c,;/\) dex

gx ¢

:1211' 13
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The first equality comes from the fact that the integrals in ez and ey are identical and sum up because
of the logarithm. The integral in the second equality evaluates to the variance of the Gaussian, ie ELA,

hence the result.
Averaging this result over ¢(\) gives:

/q(/\) [nﬁ—g} d\ = /Ga(A a,B)In A d)k+ln£—§

2n & ¢
ﬁ’“, B E_, ¢
F( ,) +(a' = 1) (¥(a) = InB) — aB +1In ol
And summing the different preliminary results and reintroducing the k indexes, we find:
—KLsp= In=—2—+ (9 — 1) (¥() = In b)) —y=2
2,k F(—Yi-) ('Yk ) ( (‘TL) L) 71‘5&
i’ C‘k Bl’k
+ In + (o — 1) (P —Infgg) —ap==
1'1( ] ) ( ) (P () Br) k Be
£ b
+ In s

For a complete model, we have to sum the K Ly ; over the cells, obtaining the final result for K:

N ."TL éi‘
KLy = Z [ In == + (7 — 1) (¥(%) — Indy) - ’Ygf

2 | 5

+lnﬁ(:) (a )(@(ak)—lnm)*akgk
.
+m§;-§—:}

5.2.5 Entropy of ¢ (KL;)

Let us now compute the third part of the distance:

KLale) =~ / 4(6) In q(6) do.

This part is the entropy of the distribution ¢. Since p and ¢ have the same definition, the result is
exactly the same as for the computation of K L, since we integrate over the same variables, except
that the parameters for p (with the prime) are replaced by the parameters for ¢ (without the prime).
We thus obtain the following result:
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N T
KL= Z[ 2 (= 1) (B — ) -
k=1
+In lfi(k":) + (ax — 1) (¥(ax) — In Bi) — o
&k

5.2.6 Result

Summing KL;, KL,, and K L3, we obtain the following result for the KL distance

N 2 N 5 N N
(Srhs) -Z e+ St -an 3,
= k=1 k=1 pas

6!
(% = %) (¥ (%) — Ind) - 7 (1—6—:)

k (a” ) ' B
+In (m) + (o — o)) (¥(ax) —InBe) — a ( = ,3_::)

() (-]

+
k=1

L(pllq) = i
|

where:

m Y+l Ek 1 Sk : x,
’""Pf‘ak( G ) o (1 BB a3 =)+ (e y“)])

As expected, the centres, inverse widths and heights have integrated out to leave only their distri-

butions parameters. When we minimise the distance, the whole distribution will be updated, so we
expect lower accuracy to be necessary for relevant results

The steps in the optimisation of the KL-distance are listed in section 6.2 of the next chapter, which
details the changes brought to the model.
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Chapter 6

The new model

The new model is very similar to the former as far as its structure is concerned. Only the fact that the
optimisation of R is now done using Variational Bayes as described in the previous chapter, and a few
improvements such as the smoothing of the data before using it, make it different from its previous
version. This chapter will discuss the modifications brought to the model and its tests on simulated
data.

6.1 Initialisation

The initialisation step is similar to the one described in section 4.2.1, except it uses the minimisation of
the KL-distance as the optimisation method instead of the minimisation of the negative log-posterior.

6.1.1 Smoothing

We have added one more step yet, which consists in smoothing the radar

data before using it in order to make it more continuous and diminish
the effect of noise. The smoothing algorithm is very simple and based
on the fact that the noise is assumed to have mean zero. Thus, each
pixel in the radar image is replaced by the mean of it and its closest
neighbours (pixels highlighted on side picture). The averaging doesn’t

alter significantly the value of the intensity at the pixel, but makes the

noise smaller, since it is averaged over a local subset of the data.

The results of the smoothing are plotted on Figure 6.1 below. On the left, the raw data, and on
the right, the smoothed data. We can see that the smoothing has removed the angles in the data,
making it closer to a noiseless continuous observation.

6.1.2 Local fitting

We have also implemented a local fitting feature, which consists in fitting each new cell on a portion
of the whole radar image localised around the centre (determined by the maximum intensity). The
reason for this is that a radar image usually contains many rain cells, with bounded width. Fitting the
whole radar image would mean trying to approximate the whole set of cells with a single Gaussian,
which then would no more represent a cell as we wish, but an poor approximation of the complete
radar image. Thus, when creating a new cell, we fit it on a local part of radar image (typically of
size 20x20 pixels, i.e. 40x40 km, centred at the Gaussian’s centre). The size of the sub-image is

43



CHAPTER 6. THE NEW MODEL

Figure 6.1: Effect of smoothing on the data

determined by experience, but would certainly require further analysis as to the usual sizes of rainfall
cells, for more accurate tuning.

6.2 Dynamics of the model

The dynamics of the model have been left unchanged, except for the use of the KL-distance as an
error function instead of the negative log-prior formerly used. For plots and forecast, we needed to set
values for the parameters (ez,cy, A, h). The modes have been used for the heights and inverse widths
(Gamma distributions), and the means for the centres (Gaussian).

Optimisation of the parameters

The tip to ensure variables are optimised under the constraint that they remain positive is to optimise
their logarithm instead. In the case of @ and v, we optimise the logarithm of @ — 1 and v — 1:

1. Pack the parameters: 8 = (¢z, ¢y, In(a — 1), In(8), In(y — 1), In(d), In(€))

2. Optimise @ using SCG. This step requires the KL distance and its gradient. Functions have
been provided which compute those values, using sub-functions computing the ri.; and their
gradient too.

3. Unpack 8: (exp(cz), exp(cy), a—1, B, v —1, 4, £) = exp(f), necessarily positive because of the
exponential, and greater than 1 for a and .

6.3 Tests

Before running the new model on real data, we needed to ensure the new optimisation method was
working in the expected way. Thus, we developed a testing platform to train it on simulated data (in
order to be able to compare the results with known parameters). We then carried out experiments,
from the most simple tasks (fitting one single cell) to the most complex (fitting several cells, from two
to a large number).

6.3.1 Simulated data

Testing a model on real data has a major inconvenience: there is no easy way to determine whether
the model's parameters are accurate or not, for we don'’t know what they should be. Thus, it was
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necessary to ensure the model worked the way we expected by training it on data where the parameters
could be easily inferred and compared to the results. We designed a tool to simulate radar images,
by generating noisy Gaussian mixtures with customisable parameters (image size, number of cells,
heights and widths bounds, amount of noise,...). Different simulated images are shown on Figure(6.2).

D %0
40
S a0
10 a
10

10 2 20 40 50

Figure 6.2: Simulated radar images with 1,10,10 and 20 cells. The second image from the left has large noise,

the two images on the right are ‘adherent’, i.e. they're built as congregated rainfall fields.

6.3.2 Fitting a single cell

This first test was made to see how the model would fit a single rainfall cell. We simulated data,
namely a Gaussian with added noise. Figure 6.3 illustrates this test. The picture on the left shows
the simulated data after smoothing, the picture in the middle shows the prior for the rain model (the
centre is determined by the maximum of the simulated data), and the picture on the right shows the

rain model after fitting using Variational Bayes.

50 50
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Figure 6.3: Single cell fitting. From left to right: simulated data, initialised model, optimised model.

The initial and final parameters means are listed in the table below, as well as the simulated data’s:

We can observe that the KL distance decreases significantly (it doesn’t tend to zero since all the
constant terms in the computation have been dropped). The end parameters (means) correspond fairly
well to the values of the simulated data. At the same time, the variances of the parameters decrease,
which means we are getting more confident in our estimate of the parameters. The distributions are
plotted on Figure 6.4, before (left) and after (right) fitting. The optimised posterior shows much
higher confidence in the mean values than the prior. This gives us a good confirmation that the
optimisation works as expected.

The parameter evolution is shown in appendix, Figure A.1. It is interesting to notice the decreas-
ingly oscillating character of the optimisation for the means and modes, which reminds of acoustic or
electronic oscillating fade-out. We must also notice that with 50 optimisation iterations, we reach the
state of convergence. This looks promising, for it means we could be able to reach an accurate state

with a small number of iterations.
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State Initial Final | Data
KL distance | -65 950 | -508 100 -
ze (mean) 40 39.13 | 39
ye(mean) 26 26.12 | 26
w (mode) 115.7 48.67 | 48
h (mode) 16.45 16.35 | 16
i 1000 | 49510 | -
ze(variance) | 0.1157 | 0.0010 | -
ye (variance) 5 0.0106 =
w (variance) | 0.1157 0.0010 =
h (variance) 25 0.0011 -

Table 6.1: Single test fitting. Variables initial and final states.

Gamma dist. for h1 (before training) Gamma dist, for h1 (after training)
0.1 25
0.08 / 2
A
A
0.08 | 155
|Ill
0.04f / \ 1
/ \
0.02f / \ 05}
) |
Pl (2N, = , 4 I S e i
0 10 20 30 40 50 0 10 20 30 40 50
Inv, Gamma dist. for w (before training) Inv. Gamma dist. for W, (after training)
0.015 1
08
0.01
0.6
0.4
0.005
0.2
0 : 0
0 100 200 300 0 50 100 150

Figure 6.4: Evolution of the distributions. The means get closer to the simulated data values, while the
variances decrease (beware the changes in the scale of axis).
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Known issue: importance of the prior’s choice

The choice of the prior has non negligible importance. Choosing a prior too far from the true distri-
bution can cause the model to crash in the optimisation step. Though we are not absolutely certain
about the reasons for this, it seems very likely to be that while using the Scaled Conjugate Gradient
algorithm to minimise the KL-distance, a bad prior results in big optimisation steps at the beginning,
and very large changes/oscillations in the parameter values, which sometimes get out of machine
precision. It is thus important to tune the prior distribution for the parameters so that it remains
“relatively” close to the expected true distribution.

We have given the values used in this test (Table 6.1), and we hope they are relevant enough to
cope with most type of data. If preliminary tuning happened to be required each time the data is
changed, this would make the model very impractical.

6.3.3 Fitting two cells

The results with the single cell fitting being satisfying, we set up a second test, with simulated data

having two cells this time. The aim of this experiment is to test the ability of the model to carry out

the simultaneous optimisation of several cells, which is a step further in testing the model’s features.
The cells are two Gaussians, as shown on the left picture on Figure 6.5.

B0 50 50

a0

. 30 .

20

10

10 20 30 40 50 "W 20 30 40 S0 10 20 30 40 B0

Figure 6.5: Two cells fitting. Fitting the whole rainfall. From left to right: simulated data, initialised model,

optimised model.

We fit the data with a method similar to the initialisation step in the model, ie by fitting a first
cell as in the previous test, removing its effect from the data, and fitting a second cell on the updated
data. This gives us our initial image (middle picture in 6.5). We then run an optimisation of the
whole 2-cells model, in order to fit the whole data, now. The results are shown in Table 6.2 below.

First cell Second cell
State Initial Final | Data Initial Final | Data
KL distance | -352 488 | -353 897 -352 488 | -353 897 -
zc (mean) 44.14 4427 | 44 41.10 41.30 | 41
yc(mean) 32.73 33.49 | 33 17.10 18.82 | 20
w (mode) 45.83 40.92 | 37 31.15 38.09 [ 45
h (mode) 19.660 19.46 | 19 5.13 5.79 6
@ 589 940 | 599 738 - 129 519 | 131 264 -
zc(variance) | 7.768e-5 | 6.823e-5 = 2.481e-4 | 2.901e-4 -
ye (variance) | 7.768e-5 | 6.823e-5 - 2.481e-4 | 2.901e-4 -
w (variance) | 7.197e-4 | 6.011e-4 - 3.264e-3 | 4.382e-3 =
h (variance) 1.577e-3 | 1.543e-3 —~ 1.122e-3 | 1.340e-3 =

Table 6.2: Two cells test fitting. Variables initial and final states.
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We can notice that the first cell gains in confidence (the variances decrease) whereas the second
loses. This comes from the fact that the initialisation is done cell by cell, on local areas, and then
the single cells are summed to give the whole model. This shows it is necessary to optimise the whole
model on the whole data, after optimising, to remove the imperfections due to the initialisation. Yet,
too much importance should not be given to the initialisation, for it is a step run only once before
running the state-space model, and most of the imperfections will be corrected once the model is
running.

It is not really obvious on Figure 6.5 that the right picture (whole model optimised) is a better
approximation of the left picture than the middle picture (initialised model, with no global optimi-
sation). The graphs for the parameters are given in an appendix, where we can clearly see that the
KL distance is minimised, which gives evidence that the whole optimised model, though locally less
accurate, is globally closer to the data.

6.3.4 Fitting a large number of cells

Testing the optimisation method on a greater number of cells still gives satisfying results (see Figure
6.6). As far as time is concerned (remember that is our main concern), we can notice that the time
taken to optimise the model increases significantly with the number of cells. We have not carried out
experiments to find out which amount of optimisation was sufficient for good accuracy so far, but it
is certainly something that should be done in the future.

1 20 30 40 50 0 20 30 40 50

Figure 6.6: Fifteen cells fitting. Fitting the whole rainfall. From left to right: simulated data, initialised

model, optimised model.

6.3.5 Further testing

The testing phase should be carried on. Here are a number of tests which could be relevant;:

¢ Compare the old model with the new one using similar tests as those described in this chapter.
Evaluate and compare both their accuracy (i.e. measure both parameter variances) and their
efficiency (i.e. their computational time to reach equal accuracies).

e Test the new model on real radar images.

e Build and test the dynamics of the new model on real data (or simulated data first if wanted).
Compare their accuracy and computation time,

e Compare both full models on real data.

Additional tests will certainly have to be performed, for it is likely that some of the tests listed go
wrong, compelling to find more specific tests to track the possible errors or incoherences.
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6.4 Conclusions

We did not have time in this project to go any further in testing the model, so only the tests concerning
the optimisation method have been carried out. Those test show good results so far, but it is clear
that further tests have to be done. First, the optimisation method must be tested on real data, and
then the model must be tested in its dynamic form.

The issue with the prior’s choice also has to be better understood and steps taken to solve it.

49



Chapter 7

Conclusion

7.1 Summary of the work done

This thesis has given an account of the work done during 9 months, as well as of the realities of
research. Here are the main points we have covered in this report.

After having introduced the main theoretical concepts on which the model is built, namely the
Kalman filter in a Bayesian state-space framework, we have explained the model itself, as well as its
issues. We have underlined in the introduction the fact that working on someone else’s work is not
an easy thing, and explained why documenting one’s work is essential when working on a long-term
project that will certainly involve new developments from other persons in the future. Aware that
this project would certainly see other modifications, we have tried to give a presentation of the model
as clear as possible, which the reader may have found a little too detailed.

Once the model had been introduced, we analysed the issues and suggested solutions, namely the
use of Variational Bayes. We have detailed the Variational Bayes theory as it is applied to this model,
and detailed the tests to which we submitted the optimisation method. We didn’t have time in this
project to test the full dynamic model on real data, nor to compare it with its previous version.

7.2 Results

The preliminary results we discussed in this thesis are satisfying. We have seen that the new opti-
misation method had good performance fitting simulated data, with fast convergence and accurate
results. This gives hope that the model, once fully implemented and tested, will represent a significant,
advance in the domain of stochastic real-time forecasting.

7.3 Further work

The time dedicated to this project was a little too short to bring the model to a fully working state,
thus there is still work to carry on. Further directions are given here, which could be a basis for a
future MSc project.

Amongst the issues met, we have mentioned the importance in the choice of the priors. When
starting with an initial state of the model too far from the data, we often end up with the model
crashing during the optimisation step. We suspect this comes from the sensitivity of the model to
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its initial conditions, which, when too inaccurately chosen, cause the variables to take values out of
machine precision. We think it is necessary to understand better the way the initialisation affects the
optimisation, in order to set up an initialisation method which would prevent the model starting in
too inaccurate an initial state. For the moment, hand tuning is required for the model to start, but
an operational model would need this step to be automated. Understanding and solving this issue
appears to us as a priority in further developments.

Once this issue is solved, testing the complete model in a dynamic framework, on real data, would
confirm its robustness. For it to be operational, another step would be required, which would consist
in optimising the code, which we believe is not as efficient as could be (but we didn’t have time to
improve it). The computation of the KL distance needs much mathematical computation, which if
not optimised, can make the model very impractical.

Then, providing a comparison of the Variational Bayes model and Batail and Cornford’s model,
as well as comparing it with other existing models, would complete the work.

Other improvements can be thought of. We have discussed about the initialisation, and how we
cope with it, and we believe it would be worth trying other initialisations methods, for even if the
initialisation is only used once before running the model, it defines the model’s structure once for all.
We think a complete initialisation method aimed at analysing the data and finding the best priors
would bring a lot more robustness to the model as it currently is.

We also want to mention the fact that so far, the advection field is cell-dependent, that is to say
each cell is associated with its movement. It could be a good improvement to have a cell-independent
advection field, defined on the whole image, and each rain cell would move according to the value of
the advection field at its centre.

All those remarks show that there is still work to do on this project.

7.4 Afterword

This project has been interesting in many ways, from the abstract theory it involves to its practical
hydrologic applications. It has given us the opportunity to learn new methods and understand better
those learnt before, but also to work in a domain different to the one of our scholar background
(computer engineering), and on all points, we consider it as a rich experience. It certainly is a little
frustrating not to have had enough time to take the project to a complete operational state, which
was our initial objective, but this is one of the aspects of a research work. It is an interesting piece
of work, and to conclude this thesis, let us just express our hope that it will be carried on and will
contribute to make research progress in stochastic weather forecasting.
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Appendix A

Test parameter estimations

In this appendix are gathered the plots for the parameter evolutions in the tests carried out in chapter
6 (fitting one and two cells).
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Figure A.1: Single cell fitting. Evolution of the parameters.
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