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Thesis Summary 

Short-term rainfall forecasting is a major subject of research in the domain of weather prediction. 

The development of radar imaging since the 50’s and recent advances in data analysis methods such 

as neural networks made it possible to design radar-based statistical frameworks dedicated to the 

modelling of rainfall processes. A model of that kind has been developped last year at Aston Uni- 

versity’s Neural Research Group. This thesis describes the problems inherent to this model and the 

modifications attempted to correct them. 
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Chapter 1 

Introduction 

1.1 Foreword 

1.1.1 General details 

This thesis is the report of research work carried out from January to September 2003 at Aston 

University’s Neural Computing Research Group, as part of a Master of Science by Research. The 

objective of this report is to give account of the work done, as well as to provide documentation about. 

a project which offers further research opportunities. 

D. Cornford and E. Batail developed last year (2002) a statistical model for short-term rainfall 

forecasting [1] [5], based on a Bayesian state-space framework similar to the Kalman filter (which 

will be introduced later). This model, though providing good results, lacked speed, which made it 

unsuitable for operational use. Several other minor features were to be improved, in order to make 

it more robust. The objective of the work carried out was to solve the speed issue and improve the 

model. 

1.2. Why this project? 

There are several reasons why I chose this project. Listing them all would make this introduction too 

personal for a scientific work, so I will only focus on the most important: the nature of the project. 

Spending nine months on a project requires that one should be interested in the work. How can 

one keep working seriously for so long a time if one does not like what one does? There has to be a 

source of motivation, coming from interest, from which one can draw the impetus to work (especially 

in research, where you have no working constraints but the ones you give yourself). That is why I 

choose carefully a project which agreed with my interests, 

Weather has always had a deep impact on the mind of man. We no longer worship the sun nor pray 

for the rain that waters vegetation, of course, but we are still charmed by a sunny spring morning or 

worried at. the sight of heavy black clouds on the horizon. Formerly the field of sorcerers and psychics, 

weather forecast has evolved a lot since it became a subject of scientific interest. What was yesterday 

mysterious is almost understood today. What drove me to this project is not the magic of “telling 

the future”, but rather the curiosity, the wonder, the will to understand the mechanisms behind the 

evening TV weather forecasts. 

I felt this project would suit me quite well since it involved theoretical statistical knowledge, but 

wasn’t yet a complete abstraction, and bore very practical, measurable applications. I thought it as 

a way to learn much, and I was right.



CHAPTER 1. INTRODUCTION 

1.3 Organisation of the work 

1.3.1 Step 1: Localisation in the field 

The first step in a research project is to answer the questions one cannot help asking. What research 

field is this project related to? How does this project include itself in the ongoing developments in 

the field? Is it relevant, useful? What has already been done and what hasn’t? What are the results? 

It is necessary to answer all those questions before starting the work, in order to get familiar with 

the domain we are to work in, learn the basic concepts, have a clearer view of where we start from 

and what we're heading to. This step basically included lots of reading from different sources, from 

general introductions to weather forecasting to research papers on similar projects, so as to get an 

overview of the research state in the domain and be able to understand what we are doing and why. 

Attending conferences such as the NCAF meeting in January 2003 helped me to learn more about 

neural networks applications (and even this particular project (6]), as well as attending a meeting at 

the Met. Office this spring, where different forecasting methods were presented and helped broaden 

my overview of research in this field. The results from this first approach are summarised in the 

following chapter so as to give the reader a rough description of where the project situates itself with 

respect to other works. 

1.3.2 Step 2: Learn the model 

Diving inside a project developed by somebody else is never an easy job. But it is a job from which 

one learns much in terms of the basic rules to apply when being part of a project in which one is 

involved for a time shorter than the project’s life. One must not just think about his work, but keep 

in mind that others after him will have to use it, and thus try to build things on top of which it will 

be as easy as possible to add the following bricks. 

Accurate documentation about one’s work is vital. Some documentation existed about the model’s 

theory (E. Batail’s thesis [1] and D. Cornford’s presentation draft [6]), though I found it not detailed 

enough for me to learn the model from scratch. I spent much time trying to understand things 

that were not particularly difficult to grasp, but were often too lightly explained or using pieces of 

knowledge not explicitly mentioned, so I had to do much research about the methods used. In a way, 

this is a good thing, for it helped me achieve strong knowledge about techniques that, had they been 

explained, I would perhaps have not taken the time to understand so deeply. 

The Matlab code associated to the theory was much less documented (actually, no written docu- 

mentation existed), and it has taken me a pretty long time to go through the code and understand 

it directly from the source files. Being myself from the computer science field, I experienced how 

difficult it is to understand somebody else’s work when it is not sufficiently documented. This is why 

chapter 4 gives a detailed presentation of the model, in the hope this will fill the gaps in the existing 

documentation, and provide the reader with a clear understanding of the model. 

1.3.3 Step 3: Apply the knowledge 

Once familiar with the model, I was able to start thinking about its issues and some ways to solve 

them. I regret that it took me so long a time to master the model, for I have run a bit short on time 

on this part. The main issues are listed at the end of chapter 4 and discussed more in detail, as well 

as the solutions suggested, in chapter 5. Chapter 3 gives an introduction the theoretical concepts and 

methods used in the following chapters.



Chapter 2 

Statistical short-term rainfall 

forecasting 

This chapter gives a brief overview of what statistical short-term rainfall forecasting is about, as well 

as its constraints. 

2.1 Overview 

There has become a real need for reliable real-time forecasts, mainly as a means to forecast flash-floods 

and storms, which are amongst the most common and dangerous of natural hazards. To predict such 

phenomenon, high resolution (a few kilometres) and fast forecasts are required. The usual numerical 

weather prediction (NWP) systems cannot yet meet such requirements, so alternative approaches 

have to be found. Forecast models with simplified assumptions as to how rainfall evolves have been 

developed, amongst which are neural network based methods. 

2.1.1 Numerical Weather Prediction 

The classical NWP approach to rainfall forecasting consists of using the sets of multi-dimensional 

differential equations which govern the physics of rainfall. Such models require high computational 

resources, and are currently dedicated to large scale (> 100 km grid resolution) long-term forecasts. 

Using those complicated models at the required scales for rainfall monitoring would currently be op- 

erationally infeasible. Meso-scale models were developed as a way to adapt NWP to lower scales, but 

nothing like the small scale required for accurate rainfall measurements. 

Pedder et al. [15] have underlined the limitations of NWP models at small-scale resolution, and 

suggested a mesoscale model aimed at modelling the atmospheric moisture. Their model provides 

information that could be used in smaller-scale embedded models (typically real-time radar-based 

short-scale models), in order to increase their performance. In the other direction, small scale systems 

could also help improving larger scale models by providing more accurate local information, thus 

leading to a combination of different systems at different scales for optimal forecasts. 

Alternative approaches to NWP were looked for, in order to cope with smaller scale problems, 

mostly by simplifying the dynamics of the atmosphere. Those methods were thought not to rely 

heavily on atmospheric physics, rather, they need more observations of the process to remain close to 

10
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reality. Such observations were formerly provided by ground rain-gauges measurements, until radar 

technology brought a more convenient way to get regular and fast observations. 

2.1.2 Radar-based models 

The benefits from the use of radar technology in weather measurements have been understood since 

the very beginning of radars in the 1940’s, but the United Kingdom had to wait until the early 80’s for 

the development of a national network covering England, Wales and Ireland [4]. Those radars could 

give high resolution (2 to 5 km grid size) images at rates down to 1 image every 5 or 15 minutes (radar 

images are introduced in the following section). This gave birth to a new generation of forecast models 

adapted to short-term rainfall prediction, first by combining weather radar data and mesoscale NWP 

models, then by using fully radar-based models. 

Wheater et al. [16] review different stochastic methods to model rainfall cells. In the simplest 

model, rainfall cells are created according to a spatial-temporal Poisson process as random radius, 

velocity and duration circular objects, with constant rainfall intensity over the disc thus defined. All 

the cell contributions sum up to give the total rainfall rate. The model evolves in space and time, 

using linear approximations (Taylor’s expansion). Since their model is too computationally expensive 

to use a maximum likelihood optimisation, they suggest interesting methods for fitting the model 

to the data, namely a generalised method of moments (minimise a weighted-sum of suitably chosen 

parameters) and a spectral method, based on the data’s Fourier coefficients which permit the joint 

probabilities of small data subsets to be treated as normal, thus enabling the use of techniques similar 

to likelihood estimation. 

Mathurin et al. [13] suggest an advection model to track rainfall cells. Rainfall cells are modelled 

by moving ellipses, the objective being to be able to track the cells, given the fact that new cells can 

Radar data is used, and the tracking of 

imising a clustering error function (fit both 

appear or disappear, and existing cells can merge or spli    

  

cells from an image to the following is achieved by mii 

images, advect the first, and merge/split/create/remove its cells according to the option giving the 

results the closest to the new image). Though this model is not aimed at forecasting, it gives a clear 

description of an advection-based simple model. 

Time-series techniques such as Kalman filter could be applied to sequences of radar images, giving 

data-driven models being able to keep only the most basic assumptions about rainfall physics. Different 

methods existed to cope with time-series, which gave different prediction models. 

2.1.3 Neural networks 

In parallel to radar technology, optimisation techniques improved, and in the 1990's, neural networks 

started to prove very efficient methods to tackle tricky non-linear problems. Their application to 

time-series gave good results, and soon they were applied to data-driven weather prediction. Many 

projects today are still focused on rainfall forecasting with neural networks. 

Neural networks have multiple advantages. They are simpler to use than most of the other data 

analysis techniques, they converge very fastly, and they are stochastic. Their simplicity makes them 

easy to understand and adapt to specific problems, as well as giving them a robustness which makes 

them methods one can apply to lots of general regression and classification problems. In particular, 

they are very efficient at modelling complex non-linear mathematical processes. Their speed is another 
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obvious advantage in the domain of nowcasting, where models have to be fast to be useful. But their 

biggest advantage is certainly the fact that they are methods based on a statistical framework. As 

a matter of fact, they provide an efficient way to quantify the uncertainty inherent to the process, 

which is particularly useful in such an uncertain domain as weather forecasting. 

Uncertainty lies in every step of a rainfall forecasting model. A perfect forecasting model would 

require perfect measurement and error free forecasting performance. Einfal and Denoeux [7] explain 

that in mathematical models adapted to natural processes, there are many factors of error: the trans- 

formation of information (relations between two physical variables), the impossibility of observing the 

process directly (rainfall’s physics), the reliability of the data (errors in measurements, interpolations, 

even corrections), simplifications of the reality for working ease, all those factors bring their own 

amount of error to the forecast. Typically, radar data can be up to 50% corrupted. And as Grecu and 

Krajewski point out in a review of rainfall statistical forecasting procedures [14], even the dynamics 

of rainfall themselves are still not even clearly understood. 

Thus, there is a large uncertainty in forecasting which it is very important to be able to measure 

in order to make relevant decisions when necessary (flood alert, for instance). This is a reason why a 

stochastic approach, with simplified assumptions about atmosphere’s dynamics, appears as a relevant 

choice for short-term real-time forecasting, for it is able to quantify the model’s uncertainty. 

Multi-layer perceptrons have already been applied to short-term rainfall forecasts. French et al. 

[8] have developed a neural network based model for 1 hour rainfall forecasts using a multi-layer 

perceptron in a space-time framework, and shown that a neural network was capable of learning the 

complex relationships describing the space-time evolution of rainfall. They use a model similar to the 

one Wheater reviews (see 2.1.2). They emphasise the importance of the number of hidden nodes, that 

has to be chosen so as to enable sufficiently close approximation of the process modelled. 

The idea of using a radial-basis functions (RBF) network to model the rainfall field is a step further 

in the effort to incorporate the power of neural networks into short-term rainfall forecasting. 

2.2 Radar images 

Radar images are obtained by measuring the reflectivity of a radar beam along a specific target of 

the atmosphere. The reflectivity, Z, is related to the rainfall rate, R, by equations that are beyond 

the scope of this thesis. This reflectivity is measured through space (by scanning over a given area) 

and time (by taking successive scans at a given frequency), thus producing a sequence of images. The 

inaccuracies in this process can occur at different steps [10], especially: 

change in rainfall intensity between the scanned area and the ground, 

¢ errors inherent in the device itself (bad calibration of the radar), 

inaccuracies in the Z-R (radar-rainfall rate) relationship, 

* noise added while the beam travels. 

All these considerations make the final image uncertain, and one shouldn’t assume the radar image 

gives a perfect representation of the rainfall as it could be measured on the ground. 

Each image gives a spatial representation of R at a given time, as can be seen on figures 2.1 and 

2.2. Figure 2.1 is a planar representation, where the rainfall rate is proportional to the brightness, 
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whereas Figure 2.2 gives a 3d representation, where the height is proportional to the intensity. 

  

              

  

Figure 2.1: 2D representation of a radar image Figure 2.2: 3D representation of a radar image 

The data (measurements) we use in the project are 200x200 km radar images at 2x2 km resolu- 

tion from the NIMROD! radar imaging system (UK’s Metoffice), issued at a rate of 1 image every 5 

minutes. This gives us a sequence of images that can be used in a space-time framework, the space 

component corresponding to the area scanned for rainfall, the time coming from the sequential nature 

of the images series, which can be thought of as a discrete representation of a time-evolving process 

(each image being a “snap-shot” of the rainfall state at a given time). 

We have briefly given an overview of the state of research in the field, to give the reader a better 

  

sight of how this project takes place in a chain of advances in weather prediction. Before disct 

the model, we will now introduce the basics of theory necessary to understand it. 

sing 

1NIMROD: Noweasting and Initialisation for Modelling using Regional Observation Data 

13



Chapter 3 

Bayesian theory 

In this section, we discuss the main methods used in our model and introduce the basics necessary 

to understand the discussion in the following sections. Readers may find this chapter a little too 

theoretical; they can then skip it and come back to those notions later, to fully understand the model. 

3.1 Bayesian theory 

3.1.1 A statistical framework 

“In this world, nothing is certain but death and taxes.” — Benjamin Franklin 

Theories are exact and tractable representations for processes that are too complicated to be 

treated in their entire complexity. The main difference between a theory and the reality it models, 

is that starting from the same assumption, the theory will always provide the same result. But in 

the real world, it is simply impossible to carry out the same experiment twice, to make the same 

measurement twice, to obtain the same result twice. So many secondary processes interact with the 

main process we are interested in that it is impossible to imagine building a perfect system. 

For example, in the domain of music, notes are assumed to be pure combination of sine waves, 

though we know there is no such thing in the real world. Imperfections lie everywhere, from the 

generation of the note (a finger never hits the piano keyboard twice in the same way) to its perception 

(a microphone never records the whole complexity of the acoustic process). Even if we imagine 

perfect devices for creating and observing our wave, it would immediately be corrupted from external 

emissions from close radiating objects, from reflections, distortions, etc. Yet, we are able to recognise 

when the same note is played twice on the piano, and to identify the note played to the note recorded. 

This comes from the fact that our ear is imperfect, and is able to extract the main information in 

what it hears. Building theoretical models is doing with our mind what our ear does with sound: 

focus on the important parts and filter the rest. 

In order for our mind to be able to understand and act on the complex world around us, we 

have to focus on the main processes, neglecting external interactions then referred to as “noise”, or, 

“randomness”. This can be done because those interactions usually have an impact on the main 

process small enough not to change it in proportions which would make it unrecognisable. 

Thus any model we build is valid to a certain extent only. It does not matter if the ear does 

not feel the difference between two similar notes, but it sometimes can be necessary to measure this 

difference. When forecasting a flash flood in some part of England, we need to know to what extent 

this forecast is valid, before asking people to evacuate the area. In such circumstances, the error 
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committed matters as much as the forecast. 

Statistics is dedicated to such problems, where we are not only interested in the value of some 

random variable, but also in the uncertainty of this value’s estimation. Let us assume we want 

to measure some device’s temperature X which can take continuously distributed values x. Our 

measurement system isn’t faultless, it cannot give us the true value of X. Instead, it provides us with 

an estimated value jz, which is only close to the exact value. This means that we assume the exact. 

value of X lies somewhere around this estimate. It is interesting to know how certain our estimate 

is, since, for example, a small change in temperature could be critical to our system. The function p 

which associates to x the probability that X takes value a is called the probability distribution of X. 

Figure 3.1 shows two different distributions for X. 

p(X=x) 

  

Ht 

Figure 3.1: Probability distributions with different uncertainties 

Those curves show the behaviour of the probability of X. The solid line illustrates a case where 

we are quite confident that X = y. On the contrary, the dashed line illustrates a case where there 

is a large uncertainty as to the value of X. Since both curves are centred around the most probable 

value 4, we can see that we need to know, in addition to this estimated value, how our uncertainty 

behaves, that is to say we need to know the shape of the probability distribution. In a critical system, 

an uncertainty such as the dashed line’s would be hazardous, since there is a large chance for the true 

value to be far from the estimate. Hence the importance of using the variable’s distribution, not just 

a single value estimate. 

All the discussion that will follow takes place in a statistical framework, where all variables have 

a probability distribution (in fact, we will often forget the variable as such and only talk about it as 

a distribution). 

3.1.2 Bayes’ rule 

Suppose we are interested in determining the probability distribution for a random variable 6. To do 

this, we have a dataset D = (d;,...,dyz) of random realisations of @. Assuming we have set: an initial 

distribution P(@), called the prior distribution, according to our belief as to how X is distributed, 

Bayes’ rule enables us to use the dataset to correct our initial distribution, as follows: 

P(D|9) POD) = op)   P(6). (3.1) 

P(6|D) is called the posterior distribution. The posterior distribution has incorporated the informa- 

tion contained in the data D, and is closer to the true distribution we are looking for.
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P(DJ®) is called the likelihood, since it tells how likely the sample D is to be picked assuming ac- 

cording to our parameters distribution. If the d; in D are independent one another, we can write the 

likelihood as: 
M 

P(D\0) = TJ P;\9), 
ya1 

P(D) is called the evidence and is a normalising constant ensuring that P(@|D) integrates to one. 

It sometimes plays a more important part than normalisation (it can be used to compare different 

models, for instance). 

Note: We will always use the index j for data points or functions evaluated at those points. 

3.1.3 Bayesian Learning: an example 

Let us consider the following problem to introduce Bayes’ rule. X is a random variable having 

an unknown probability distribution we try to find out. We assume this distribution is Gaussian 

with unknown mean pz (which we want to determine) and known variance o?. We have a dataset 

D = (aj,...,0m) of M random realisations for X (which are equivalent to randomly sampling M 

points from the unknown distribution). 

We will start by assuming Po(4) = N(o,03), with mean chosen according to our belief and 

variance big enough to account for our uncertainty with regard to the mean, and use the data set D 

to refine it. For this, we write the posterior distribution using Bayes’ rule: 

P(D\n) 
P(D) 
  Pi(u) = P(u|D) = Po(u) - (3.2) 

We can write the likelihood as: 

M 

P(D\n) = [I Pease) 

  

v2no? 

1 Lo 2 = eet (Dj 25 —MBy 
(Qo?) M2 

rh awe = Me(2-n)? 
~ Qno2)M/2 coe 

j=l 

M 

=Th Late (ei-0? 
j=1 

And thus: 

P(u|D) = 5 PD) Polu) 
Ly (au)? ag Ho)? 

  

= ze 

1 M me — 2 2 2 Sex |= = (=o = (Ie = a ex | 3o7 (F — 2an + v*) 203 (1 — 2Hon + Hu”) 

1 yp | Mad (,_ o?mo + Mode 
~ Gin OP | a6 862 o? + Moz 

We know that this integrates to one and Z'" is constant with respect to p, so Z’” is the integral of 8 Pp B 8} 
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the exponential part, that is to say the whole distribution is the Gaussian N’(j11, 07), where: 

2 2 

= ee ee 
= G24 Mop o? + Mop 

1 1 M 

a=0 4 

j=l 

  

Figure 3.2 shows the posterior distribution thus obtained with different sample sizes. 

  

  

Figure 3.2: From a prior distribution (N=0) M’(0,0.1), we compute the posterior distribution using samples 
from the unknown distribution of size N=10 points and N=100 points. We observe that the more information 
we include from the unknown distribution, the more confident we are as to the distribution of ju. The unknown 
distribution had mean 0.8. As the sample size increases, the posterior focuses around the true mean, and the 
confidence in this value increases (ie the variance decreases). 

3.2 Radial Basis Functions (RBF) networks 

Radial basis functions are an efficient way to tackle non-linear regression problems. A radial basis 

function network is defined as a weighted sum of N functions (the radial basis functions) ¢, as follows: 

N 

yi(@) = > wir bx (2) + 60 (3.3) 
k=1 

where x = (1,...,2,4) is referred to as the input vector, M being the input space dimension. The 

output vector y is defined as (y:,...,ya), where d is the dimension of the output space. ¢o is a constant 

additive term called the bias. Figure 3.3 shows a common way to conceptualise graphically an RBF 

network. 

The basis functions can be of different types, but we will only focus on Gaussian basis functions 

lel) 
2 20% 

Ano ( 

Wik, Hk and o? are the parameters for the k*” basis functions. It is those parameters we'll have to 

optimise so as to make our network as close to the function to be interpolated as possible. 
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Figure 3.3: An RBF network with n=3 basis functions, with m=3 input nodes and d=2 output nodes. This 
RBF can be seen as a function from a 3d-space to a 2d-space. 

The first step in a problem of interpolation with an RBF network is to choose the structure of the 

network, that is to say how many hidden units we think are relevant to tackle with our problem at 

best. There are rules of thumb to set that number efficiently. What one has to keep in mind is that 

the greater the number of hidden units, the more flexible the network. Setting this number to a too 

small value would make the function too rigid (Figure 3.4 (b)), whereas a too big value would make it 

too flexible, resulting in overfitting, i.e. fitting the imperfections in the data too well (Figure 3.4 (d)). 

Once the structure is chosen, the parameters have to be optimised so that the network fits the 

sample best. We will not cover optimisation methods because it would require much theory that 

has furthermore been treated in depth on other works (see C. Bishop [3] for a good coverage of 

Bayesian theory and neural networks). Basically, the optimisation is achieved by optimising the 

model’s parameters so as to minimise an error function (usually some distance between the model 

and the data, for instance the negative log-likelihood) with an optimisation algorithm (the Scaled 

Conjugate Gradient algorithm is used in this project). 

Note: We will always use the index k for the network’s basis functions. 

3.3. The state-space model (Kalman filter) 

The state-space model is a model in which an observed quantity J (a rainfall intensity, for example) 

depends on a state variable @ (a rainfall model’s parameters, for instance) which evolves through time. 

Both quantities evolve in parallel, linked together by a system of coupled equations. The Kalman filter 

is a convenient way to define such a framework when the observed quantities are linearly related to 

the state. 

3.3.1 Introduction 

To introduce the state-space model, we will follow D. Lowe’s introduction to the Kalman filter [11]. 

We assume there is an unknown process evolving through time, from which we get observations (I;) 

at regular time (a time-series), We want to model this process so that we can predict it. We assume 

the model is Gaussian and fully defined at time ¢ with a mean parameter vector @;, usually called 

state vector since it gives account of the state of the model, and covariance matrix De 

The Kalman filter is a two step algorithm. It basically involves the forecast of the state vector 

using a known dynamic rule (evolution step) and its update using the new observation (assimilation 
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Figure 3.4: (a) shows the unknown function and the sample set drawn from it with added noise. The regression 
result is shown with (b) N=2, (c) N=5 and (a) N=20 hidden nodes. (b) shows our network is not: flexible 
enough to fit the sample, whereas (d) is too flexible and fits the data too close (overfitting); (c) appears to be 
an appropriate choice for the network’s structure. 

step). We assume all the distributions treated are Gaussian. 

  

(1) —4 Evolution 
  

  

  Assimilation (2)       
Figure 3.5: The 2 steps of a Kalman filter. 

Observation equation 

The observations come from noisy measurements of the process. We assume the process is a linear 

function F; of the parameter vector @; and the noise ef is Gaussian with mean zero (white noise) and 

covariance matrix Df. We then can write the observation in the matrix form as: 

h=h0+e 

State equation 

The state vector at time t + 1, @:41, is generated by applying the evolution function E; (assumed 

known) to the previous state vector @,. This process includes white noise 1, with covariance matrix 

xy. The noise is weighted with a weights matrix W; for better accuracy. The evolution equation is 

thus: 

641 = BO + Win (3.4) 
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3.3.2 Evolution step 

Between two observations, the observed process evolves. We thus have to make the model evolve too, 

that is to say to we have to evolve @;. The evolution dynamics are assumed to be known (equation 

3.4) and the model new state is conditioned on its previous state. The probability distribution for 

9141 given all previous observations Z; = (Jo, ..., J) is conditioned on @;. We thus need to integrate 

their joint probability over all possible values for @;: 

Peale) = | p(Ors, 0412) ae (3.5) 

= | v(Ge+11 6) 0412) 06, (3.6) 

The distribution for @ at time t given Z, is assumed Gaussian: p(@;|Z,) = N61, 24,)s and 

p(9141| 8) can be computed using the evolution equation (3.4)!: 

(81411 81) = N (Er 0, We BY W/") . 

From there, using the properties of Gaussian integration, we obtain the evolved state distribution 

((2) on Figure 3.5): 

PGr411 Ze) = N Orsay, Stsaye) (3.7) 
with 

G11) = Er Ox (3.8) 

hese = Ee Diy Be + We DY We". (3.9) 

3.3.3 Assimilation step 

Suppose we have achieved the evolution using the state at time t — 1, thus obtaining a forecast of the 

process at time ¢. Then, the real observation J; is issued, and we have to use the information it bears 

to correct our model and ensure it remains close as close to the process as possible. We can write the 

posterior distribution: 

— p(Le|Oe) p(Or|Z-1) 
~  pe|Ze-1) 

This is Bayes’ rule, but written in a time-changing context. If one is not convinced, just write it 

with time t = 0 to find the usual formula. Since the variables are linked with their previous state, 

we have to keep trace of this constraint, hence the densities are conditioned on the whole sequence of 

P(9|Ze) (3.10) 

observations up to time t — 1. 

We define the (Gaussian) distributions as follow: 

© Likelihood: p(I,|@,) = N(F, 0, D4), ie the observation is centred around the observed process's 

value with uncertainty due to the noise 

© Prior: p(@,\Z;-1) = N(Bep-1) 38,1) Sia being the uncertainty in our estimation of 6; 

© Evidence: p(Iy|\Z:-1) = N(fyje-1, Bf), Bf being the uncertainty in our prediction for I. 

We can then write the posterior as a Gaussian (product of Gaussians) having estimated state 

vector and covariance matrix updated using the new data. 

1When using double time indexes, the first denotes the step in the process and the second the image in the sequence 
associated. For example, 0,44); is the value for @ at time t +1 using only the observations up to I; 
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© Posterior: p(81\Z:) = N (Bx; 56.) 

In order to find ue and a we will search for the maximum a posteriori (MAP) estimate, ie the 

value of Bui that minimises the negative log of the posterior. 

For this, we rewrite the posterior using Bayes rule and take the negative log, thus getting the 

equation (the constant terms have been dropped): 

In p(O_|Zi) o (8 — O44)” Gy (04 — 40) (3.11) 

ox (Ie = Fx)" (i)~* (I — F81) (3.12) 
+ (8: — 82-1)" hia)? (@. — 82-1) (3.13) 

= (l= tye)? (S17 (le = Lapa) (3.14) 

We can expand this equation and equate the quadratic terms in 6;, thus getting: 

(i) =F) + Oh), (3.15) 

and, using the fact that its derivative with respect to 6; is null (optimum) and incorporating 3.15 in 

the result, we find: 

rjc = Oeje—1 + Kt Ctje—a (3.16) 

where 

Ke = SFE (Sp) 
is called the Kalman gain, and 

€tjt—1 = Oe — Oee-a 

is our estimate error. 

Equation (3.16) states that our estimate evolves by being added a certain fraction of error at each 

step, this quantity being the filter’s gain. 

It can be shown that those expressions can be rewritten in a more computationally efficient form 

(with less matrix inversions in the expression of of) using Df: 

Dp =F), FE + 3f (3.17) 

Kees Ae) (3.18) 

fp = (Id — Ki) Sh, (3.19) 

where Jd is the identity matrix (written as such not to be confused with the observation J;). 

3.3.4 Extension 

In our case, the equations which govern the dynamics of rainfall fields are not linear (they are detailed 

in the following chapter). They involve the variables as well as their first order derivatives. To be 

able to use a “Kalman filter” like approach, approximations are made so that we can replace the 

derivatives by their first order Taylor expansions (making the assumption that the change in time is 

small enough). 

Furthermore, the Gaussian assumption is dropped for the distributions, which we choose to have 

different, more general, shapes. Our model can thus be seen as a generalisation of a Kalman filter 

(relating it to the extended Kalman filter would be interesting, but knowing too little about this 

notion, we prefer not to talk about it). 
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All the details of Batail and Cornford’s model will be introduced in the following chapter. They 

rely on the theoretical notions we have described in this chapter, but are often adaptations of those, 

so we will give enough details for the reader to be able to understand without wasting time trying to 

relate them to the general theory. 
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Chapter 4 

The model 

In this chapter, the existing model of Batail and Cornford is described and explained. 

4.1 Overview 

The way the model works can be thought of as a Kalman filter. The data observed is a sequence 

of radar images I;, where t denotes the evolution in time. Our aim is, given a series of images 

S; = (h,.-.,J4) to be able to predict the state 1,4. We will consider J as a set of observations 

associating to each coordinates couple (x;,y,;) the intensity J;. 

We will often drop the time index for better readability. When not specified, the values are assumed 

to be taken at time t. 

4.1.1 The rainfall rate R 

Our model is a simplified representation of the reality of rainfall physics. It is mainly reduced to 

two variables linked together by the advection equation (explained later): the rainfall rate R, which 

models the rainfall intensity J, and the advection field u, which models the spatial movement of J. 

The rainfall rate R is modelled by an RBF network (see section 3.2) with 2D-Gaussian basis 

functions: 

P+ llam —wlP)) - (4a) 

  

This means that R can be viewed as a mixture of N 2D-Gaussians having centre (¢x,, cy), width 

e and height hy. Those Gaussians are spherical, meaning their width is the same in every direction 

(ie. \ is a scalar, not a matrix). It could be interesting to use a full matrix for A in order to have 

basis functions with elliptic support instead of circular. This would certainly add flexibility to R and 

improve the way we model J. 

The easiest way to illustrate it is to consider a spatial visualisation. A single basis function is 

shown on Figure 4.1. By adding N similar functions with different parameters correctly tuned, we 

can approach the 3D radar image on Figure 2.2 (i.e. by constructing an RBF network and optimising 

it with respect to the image). 

Those basis functions are assumed to have a physical equivalent, namely the rainfall cells. A 

rainfall field is not a solid object. It is usually made of different rain cells evolving together in a bigger 

ensemble. Assuming those cells produce a Gaussian-shaped rain rate (high rain in the centre and 

normal decay), we can think of the basis function as being ‘rain cells’ added to give the whole rain 
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Figure 4.1: 3D representation of R Figure 4.2: 2D representation of R. 

field. Even if this conception is a bit inaccurate, we will use this term to name the basis functions 

from now on (even though those are the rain rate associated to the cells, not the cells themselves). 

We will use the following notation for the parameters of R : 

cx = (cr),...,czy) the centre x-coordinates for the model (same for cy, A and h), 

6x = (exp, cyx, Ax, hy) the parameter vector for the k'” cell, 

6 = (01, ...,9N) = (cx, cy,A,h) the parameter vector for the whole rainfall rate (independent of 

their order in the vector). 

Considering that the rainfall moves in time, we need another variable to model its movement before 

introducing how the model runs. 

4.1.2 The advection field u 

The advection field can be thought of, in a very simple way, as the wind flow responsible for the 

rainfall movement. Actually, there are more complicated processes involved in this phenomenon (the 

attraction between cells, for instance), but since we deliberately want our model to remain simple, we 

define wu as follows: 

u(z,y) = (u(z,y),0(@,y)) 5 

V{ (1, Yr), ++) (ts, Ys)} € F, P(u(a1, 41), ---, U(es,Ys))) = N (My, Eu) 

where F is the radar image’s coordinate space. That means u(x, y) is a 2d vector, and any finite subset 

from span(w) has a Gaussian marginal density distribution, or in other words, u is a Gaussian process. 

The use of a Gaussian process ensures u varies through space in a continuous way (for example, we 

wouldn’t want two close points to be advected in completely opposite directions). A sample from a 

2D Gaussian process is illustrated in Figure 4.3. 

In our model, the advection field definition space is restricted to the cells’ (each cell has an 

associated movement) centres. An interesting evolution would be to have it sparsely defined all over 

the image, so that our rainfall cells really behave as if they were in a somewhat independent flow. 
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Figure 4.3: A 2D Gaussian process (courtesy of D. Cornford) 

4.1.3 The advection equation 

The advection equation links R and u together, and thus, time and space: 

OR 
aT -u.VR 

Bayon ek ts By 

(4.2) 

(4.3) 

This equation models the dynamics in our system. It states that the rainfall rate moves in space 

according to the advection field which ‘advects’ it. In this model, the advection is only applied to 

the cell centres, i.e. we consider the whole cell is advected as a block during the dynamic step. The 

other spatial modifications are ignored (the cell width and height are considered unchanged during its 

advection). 

Let us explain where this equation comes from using a a simplified single dimension example. The 

rainfall rate R is advected through time according to the advection field u. If we consider a static 

point x in the spatial domain, the rainfall rate evolves with respect to its movement. This process is 

illustrated in Figure 4.4. The solid line represents R, and the dashed line R;+1, as functions of x. In 

Rw 

  

Figure 4.4: Evolution of the rainfall rate through time 

a temporal approach, the model’s movement is equivalent to a local change of intensity. We're thus 
interested in the amount AR of rainfall rate added in x. We can write: 

Re41(2)    R,(2) + AR. 

The difference in R is both proportional to its spatial derivative (the steeper the decrease, the bigger 
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AR) and its quantity of movement Ax : 

OR 
AR=—Z7 Az, 

where Ax = 2 — 2’. Note that if the spatial derivative of R is negative, it decreases, and 

Repi(2) = Re(2! < 2) 

> Ri(z), 

hence the negative sign. Noting that Ax can be rewritten: 

Ag=w At; 

it comes: 

OR 
Resi(z) = R(x) — uAt Oa 

AR__ oR 
At" dz 

which becomes the advection equation when the differences tend to 0. 

4.1.4 Priors 

Our model is fully defined with the parameters of R: (cx,cy,h,A) and those of u: (st,,,5y) (notice 

all those are vectors with length N where N is the number of cells). For those parameters, we need to 

specify a prior distribution, according to our knowledge or expectations for their probability density. 

Those priors are chosen as follow: 

¢ The cell centres ¢ are chosen to be Gaussian distributed, with mean vector € = (Cx), ..., ty, CY, --; Yn) 

and diagonal covariance matrix D, (the centres are assumed to be uncorrelated). 

e The heights h are chosen to be log-Gaussian with mean vector js, and diagonal covariance 

matrix DL, (for we assume the heights are uncorrelated). 

e The inverse widths A are defined as the heights with mean vector jz, and diagonal covariance 

matrix ©) (they are also assumed to be uncorrelated). 

« u has already been defined with as a Gaussian process with mean y,, and variance D,. 

The prior for R factorizes over the parameters as follows: 

N 
[] plete, cues tes Ae), 
k=1 

  

p(cx, cy, h,r) 

P(CrR, CYR, Nk, Ax) = PlorK, CY) P(Rk) PAK). 

4.2 Initialisation 

This part explains how the model is initialised before it runs. 
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4.2.1 Initialisation of R 

The first thing to do is to build the RBF network R, using the first radar image in our sequence. For 

this, we have an iterative process that successively creates cells (i.e. basis functions) and optimise 

them. The following algorithm explains the process: 

1. Create empty network Ro, initialise temporary radar image Itemp = Io. 

2. Find maximum intensity Amaz of radar image Ip, it is located at (t1maz,Ymaz)- 

  

3. Create a new cell having centre (xc, yc) = (maz; Ymax), Width t (the initial value for A is tuned 

by hand) and height Rmaz- 

4. Proceed to optimisation. 

on . Remove cell effect from Itemp- 

6. Add cell with optimised (ac, yc,h,A) to Ro. 

  

Pei
 

  

. Go back to 2. and repeat process on modified image Jo until Ro is sufficiently close to Ip. 

The optimisation step is equivalent to minimising the negative log-prior for R. This step is a 

ction 4.3.3. 

We thus end up with a network Ro with optimised parameters giving a good representation of Io, 

  

restriction to a single cell of the step detailed in s 

having N cells. 

   
Figure 4.5: Initial radar image Figure 4.6: Initialised rainfall rate 

Figure (4.6) shows the model initialised from the first image in a sequence (4.5). The crosses show 

the centres of the 38 cells used to model the rainfall intensity. 

4.2.2 Initialisation of uv 

The advection field is initialised using the advection equation and the two first rainfall rates Ro and 

R,. R, is computed from the second image in the sequence, using the same procedure as for Ro. From 

the advection equation (4.2), it follows that: 

OR 
“= ——-(VR)*. ar (VR) 

9R is estimated as the difference between the rainfall rate Ry, and Ro, while VR is computed from Ry 
using the spatial differences between pixels as 9% and cn 
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Figure 4.7: Dynamics of the model (courtesy of D. Cornford) 

1. Evolution of R 

2. Evolution of u 

3. Assimilation of R 

4, Assimilation of uw 

4.3. Dynamics 

Once initialised, the model can run in an iterative way from a sequence of radar images. It has been 

shown in Section 3.3 that the Kalman filter involves evolution and update steps successively. The 

practical application to our model is detailed hereafter. Figure 4.7 illustrate the dynamics of the 

model. 

4.3.1 Evolution of R 

We use the advection equation as the evolution equation in the Kalman filter (section 3.3.2): 

Risi(z,y) = Rie(x,y) —uVR, 

which can be translated in terms of evolution of the cell’s centre: 

Clty ie = CL, + u(cae, cye) At + €¢ 

CYesile = Cue + v(cae, Cyr) At + €- 

In the implemented model, the mean of u has been used for simplicity. 

The evolution’s noise being supposed to have a zero mean Gaussian density with covariance D.., 

the estimated centres distribution becomes p(cxy41\1, CYe+a|e) = N ((Cle+1\t; Yr4rje)> Dhyae)> Where: 

Vega = Det APL, + Be, 
CEepije = Cle + ur (Eee, Cy,) At 

Verije = Ue + ve(Cee, ey.) At 

A small amount of noise is added to the variances of \ and h to reflect our uncertainty in the 

evolution process, thus giving estimated distributions p(Ar+1),) and p(he41)2)- 
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4.3.2 Evolution of u 

u is assumed constant through time, and we only evolve it by adding a small quantity of white noise 

€, having same structure as u but a smaller variance U,, since the change is slow. 

Ursije = Ut + us 

so that the distribution for w becomes p(uy+1)2) =A (Hu,, Zu, + Ec,). The assumption of a constant 

u is justified by the fact that in practice, the rainfall field R changes much faster than wu. 

4.3.3 Assimilation of R 

Once R has been moved according to the advection equation, and a new observation has been issued, 

we correct our estimate by assimilating the information in the new data into our model. As seen in the 

Kalman filter section (section 3.3.3), this step involves optimising the distribution for (ex, ey, A, h) 

given the new image, which is computed using Bayes rule. 

Pi Jerejepis CYrjey1s Atjeti ’ Agjers) P(eret41,CYrjey1> Aajtris eje41) 
  C241, C! AX hegilh — P(erey1 VYrris Att+is t+1|Lt41) (Tia) 

(4.4) 

Before developing the computation, we drop time indexes for better readability: 

I sA,h sA,h len ey a RIT = oe ev rice cy, Aik) (4.5) 
pl) 

We then optimise the parameters (centres, inverse widths and heights) by minimising the error function 

defined by the negative log-posterior (equivalent to maximising the posterior, which means maximising 

the confidence in our model): 

E« —Inp(I|ex, cy, A, h) — Inp(ca, cy, A, h) 

The prior over the parameters is Gaussian since the posterior (which will become the new prior) 

will be approximated by a Gaussian distribution using Laplace approximation (this step is detailed 

further). 

Since the observations are uncorrelated, we can write the negative log-likelihood: 

—Inp(I|ex, cy, A, h) = Fae lew, cy, A, h). 
j=l 

Assuming a Gaussian distribution for the measurement process (radar) with noise o?, we can write 

the likelihood as a noisy realisation of the model: 

1 y-Rj)? 
p(Ij|ew, ey, A,h) = Jina? aa 

where R; denotes the model’s evaluation at point (xj, yj), 

  
    

  

N 
Ry = R(a;,yj) = Se hy en [(cxn—z5)?-+(cue-vs)?] | 

k=l 

Hence, dropping the constant term: 

re 
—Inp(J|ex, cy, A, h) « % 508 Le
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The negative log-prior is given by: 

—Inp(ex, ey, A, h) = —In p(ex, ey) — In p(h) — np(A) 
x 5eTBete + 5 ATESIA+ 5 hoa h 

Then, we find the parameters minimising the negative log-posterior, sometimes called mazimum a 

posteriori parameters for they maximise the posterior distribution. Those parameters give a posterior 

distribution, often complex and difficult to integrate (we need to integrate it for the normalising 

constant). That is why we approximate it using Laplace approximation. 

Laplace approximation 

The Laplace approximation (see D. MacKay’s introduction [12]) consists in approximating a complex 

probability distribution P about its maximum with a more tractable Gaussian distribution Q. It uses 

the fact that at the maximum @,,, Inp(@) can be approximated using Taylor expansion [12], thus 

giving: 

1 
In p() © In p(Om) ~ 5 (0 — 8m)” H(8 — Om) 

where H is the Hessian of Inp at point On, i.e. 

oe 

Hs = apg9, 2) Re 

Then, if we note Z the normalising constant, p can be approximated at 

point Om by 

  

(9) = 5 Pm) exp [-3 (0 - On)" HO - 6n)| 

What we do in our case is compute the Hessian of the posterior distribution as a function of the 

whole optimised parameter vector Om = (€21,...,CEN,CY1, ++; CYNs AL, + AN, hi, ..., hn). We thus can 

update the parameters posterior distributions using: 

e the optimised values of cx, cy, A, h for the mean vectors, 

e the appropriate parts of the Hessian diagonal for the covariance matrixes. 

4.3.4 Assimilation of u 

The advection field’s assimilation is more simple since most of the difficulty has been put in the 

assimilation of R. u is then simply integrated over the uncertainty in R: 

P(urtilli, Toi) = Jf lcsesssexsas celle Tes) dees dey 

= [[ vlesateesssexdeleah)eCers Iss) dees dey 

4.3.5 Forecast 

Alternating evolution and assimilation steps, the model can run indefinitely as long as input data is 

provided. To forecast a time t +n, we run n evolution steps from time t, and then produce samples 

from the forecast distribution. 
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4.4 Issues 

In its previous state (described in this chapter), the model ran and produced accurate forecasts. But 

there are several improvements one could think of to make it more robust: 

Though accurate, the model is very slow to run, which is a major issue in short-term forecasting, 

since we must be able to evolve and update the model in a time shorter than the time step 

between two radar images (if the model doesn’t run faster than the process it models, then it is 

rather difficult to use it in a predictive way!). 

The obseryation noise isn’t estimated from the data, which could be improved. 

u could be improved by using a sparse advection field, defined over the whole image not just at 

cells’ centres. The dynamics of u could also be more realistic than the constant approximation 

we use. 

No real data test and comparison with existing techniques have been done so far. 

We have introduced the model as it had been designed initially, describing how the rainfall rate 

and the advection field interact together in a state-space framework to forecast the rainfall field. We 

have also listed a number of issues affecting this model, the main being the speed of the model. The 

following chapters will discuss the work done to solve this issue. 
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Chapter 5 

Speeding up the model with 

Variational Bayes 

In the previous section, we have described the model and underlined several issues, amongst which 

the main being the update of R, very expensive in computation and thus needing a long time. Such a 

time makes the model simply not usable in concrete situations. Hence our choice to focus on solving 

this issue first. An analysis of the reasons for this issue has led us to consider applying variational 

methods in the hope of obtaining better results. 

5.1 Analysis of the speed issue 

From our theoretical work (previous chapter), we can infer that most of the computation time is 

dedicated to the update of R, where significant non-linear computation takes place. This feeling was 

confirmed by generating a Matlab report on a 1h 40min run of the model. The following parts of the 

process and the associated time are plotted in Table 5.1: 

  

  

  

Step Time (s) Time(%) 
Initialisation 1674.95 27.6 
Evolution of the model 0.06 <1 
Update of R 4385.65 72.4 
Update of u 0.07 <1 

Forecast, 0.23 <1 
Total time elapsed 6060.96 100         
  

Table 5.1: Time involved by step 

The most computationally intensive part is clearly the update of R, followed by the initialisation 

of the model. The former is not really important, since it is done once only, and before the model 

starts to run. Once the slow step was determined, we looked at possible reasons that could make it 

slow, and possible solutions to those. 

We tried to reduce the accuracy of the model, by diminishing the training time and accepting 

larger errors in the fitting of the data. We ended up with correct mean values, but poor estimates 

of the distributions. This came from the fact that the optimisation is achieved by using the Laplace 

approximation. The Laplace approximation (cf. section 4.3.3) is a local approximation at the mode of 

the posterior distribution. Thus, to get a good estimate of the posterior, we need sufficient optimisation 

to be close to the optimum (Figure 5.2). As a matter of fact, if we use the Laplace 

  

of the paramet 
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approximation at some point a little too far from the optimum, the approximating Gaussian will give 

a poor estimate of the posterior. This compels us to carry out high optimisation to get very close to 

the maximum. Furthermore, with such an optimisation method, the approximate posterior is better 

than the prior only beyond a certain amount of optimisation. Carrying out the Laplace approximation 

too early would result in an estimated posterior distribution very far from the true posterior (Figure 

5.2). 

  

Figure 5.1: Laplace approximation (good). 
The Gaussian distribution (solid) gives a good 
local and correct global approximation of the 

Figure 5.2; Laplace approximation (bad). The 
Gaussian distribution (solid) gives a very poor 

i roximation of the true posterior (dashed) 
true posterior (dashed) pp posterior (dashed) 

In order to reduce the length of the optimisation process, we would like a better method to 

determine the posterior distribution. A global approximation, for instance, would be much better 

than a local approximation at the maximum probability. There are different ways to proceed to a 

global approximation. Sampling (such as in Monte-Carlo methods) is a common reliable way to get 

an approximation of a whole distribution, but it requires too much computation time in our case to 

be efficient. Thus, the framework we chose, in which the whole distributions are estimated during 

the optimisation, is the Variational Bayes framework. The following section discusses our work using 

Variational Bayes. 

5.2 Variational Bayes 

Variational Bayes was introduced in 1993 by Hinton and van Camp [9] in a paper where they showed 

that the true posterior distribution can be approximated by a Gaussian using a deterministic algo- 

rithm. The principle is similar to the Laplace approximation (see 4.3.3), except that instead of fitting 

the posterior distribution locally, the whole distribution is approximated by minimising the Kullback- 

Leibler (KL) distance between the posterior and a more tractable distribution. This method can be 

generalised to other approximating distributions than the Gaussian. 

5.2.1 The Kullback-Leibler distance 

Given two distributions p and q of a parameter vector 0, the KL distance between those two distri- 

(8) - 6) In —~ do [a0 0 55 
- [ 1) In p(@) dO + [a In q(0) dO 

butions is defined as follow: 

KL(p||q) 
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In our case, 8 = (ex,cy,A,h) and we want to approximate the posterior distribution. Using 

Bayes’ rule, we can write its negative logarithm: 

—Inp(@|I) = —Inp(1|@) — In p(@) +Inp(J), 

and, dropping the constant term, expand the KL-distance between q (which we want to determine) 

and the posterior: 

KL(plla) «- | 4(@) Inpiuje) a9 (6.1) 

= [ (0) np(o) a8 (5.2) 

+ [0 Ing(@) dé. (5.3) 

We will denote KL, KL2 and KL; the integrals in the right part of this equation (the negative 

sign included), so that K L(p||q) = KL, + KL2+ KL. 

5.2.2 Distributions chosen 

We chose to change the priors over the model for the following. Gamma distributions are chosen for 

the inverse widths and the heights, to ensure those remain positive, and a 2 dimensional Gaussian 

distribution conditioned on the widths is chosen for the centres. 

  

  

57 
Phe) = Ga(yK, 5k) = Tyg eens 

T(x) 

_ = Pe y cat -6im P(Ak) = Galax, Bk) = Tan) Ak e 

P(CrK, CyR|Ak) = Plere|Ax) P(cuR|AK) 

ge Fee 
=N (ct. 5,) (ge) 
= SAK Seb (084 —c21)?*-+(coe—cvn)?] 

Qn 

Ox (7% for the heights) is called the shape parameter of the inverse width Gamma distribution, for 

it governs the shape the distribution takes. If it is smaller or equal to 1, the Gamma distribution is 

unbounded (it has no maximum). If it is greater than 1, the Gamma distribution decays asymmet- 

rically around a maximum called the mode. This is this shape we are interested in, so we have to 

ensure the shape parameters remain strictly greater than 1 for our model to remain coherent. 

Bx (6x for the heights) is called the scale parameter of the inverse width Gamma distribution, for 

it governs how high the mode (maximum probability) is. This will become obvious if we write the 

mode’s value (when existing): 
Nyrode _ k= 1 

Bx 
It is clear that we have to ensure §; remains strictly positive for coherence of the model. 

Note that we use a Gamma distribution for \ for computational ease, though in the model, it is 

more convenient to think in terms of widths, which then have a Inverse Gamma distribution. This 

doesn’t matter since choosing a Gamma distribution for the inverse widths is equivalent to choose an 

Inverse Gamma for the widths, and their parameters are exactly the same. 

The centres are now conditioned on the (inverse) widths, which is a better assumption than in the 

previous version of the model where both were uncorrelated. The joint distribution of the centres and 
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widths is called a Normal-Gamma (a study of such distributions can be found in [2]). c&, cy, and 

& Ax are the mean and inverse variance of the spherical Gaussian distribution for the centres. € is a 

parameter giving freedom to the shape of the Gaussian, so that the constraint on A, doesn’t reduce 

flexibility too strongly. No domain constraint is set for the centre means, which can become negative. 

This makes sense since we work with finite radar images, where sometimes the effect of a rainfall cell 

which centre is outside the image (with possibly negative coordinates) must be taken in account. 

For the approximating posterior distribution q, we choose the same structure as p. Thus, q will be 

the optimised version of p. 

As in the previous version of the model, the distribution factorises independently over the cells as 

follows: 

N 

(0) = [I] re(O), 8 = (exes cues Ats he), (5.4) 
ee 

(9) = T] a (6%) - (5.5) 
k=1 

It also factorises over the parameters, but now the centres are conditioned on the widths, so that: 

Pk(9k) = PK (CLR, CYk|Ak) Pk(Ak) Pe(he) » 

(PK) = Ak (Crk, CYR|AK) Gk (Ak) G4 (Ae) » 

5.2.3 Negative log-likelihood part (KL,) 

Let us first compute the first part of the distance: 

KLx(o||a) =~ f (@) i» pale) a9. (5.6) 
This part of the distance is the correction the observation I brings to the model. 

The observation I is a vector of all its data points, J = (,..., I), Ij = I(xj,y;). Those points 

are assumed to be picked up randomly, so we can write the negative log-likelihood: 

M 

=Inp(I|0) = So = Inp(,|0). 
j=l 

Assuming a Gaussian distribution for the measurement process (radar) with noise o?, we can write 

the likelihood as a noisy realisation of the model: 

Slap) = =n ( L 
V 200° 

1 
age (Ry - Gj? 

   
(ag -15)? ae ) 

where R; denotes the model’s evaluation at point (x;,y;), 

Rj = R(6,2;,4;) 
N 

=>) Ri(%) 
k=1 

i a =e * [(con—25)?+(emn—vs)"] 
k=1 
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R;(6,.) denotes the effect of the k*" cell at point (x;,y;). 

Hence: 

M 

= Inplll0) = 525 (Ry) - L)? 

iL ‘ 9 
= apr D (RIO) — 28 (0) + 23) 

j=l 

(5.6) then becomes, after dropping the constant quadratic term in J;: 

veg 
KI, = Io? » [/ am R5(0) do — 21; [one a) (5.7) 

Let us denote Ky;,; and Kj»,; the first and second integrals in the previous equation, and compute 

Ky, first. Using 5.5, we can rewrite it: 

ha [a (6) a0 
N 

= [ 4) (> #4(0)) db 
ky=1 

N M 

= Dy [(i a(t) Rj(Ox,) dO,...d04 
k=) k=1 

N 

=> | culOu) Ry 04) at 
k=l 

In the last but one step, the product of q, expands into a product of integrals, all but one (the 

one over 0, ) integrating out to one, hence the result. 

We can see that this result relies on the q-average of Rj over 6,. Let us compute this quantities. 

We drop the k index for better readability, but remind that 0, cx, cy, \ and h are in fact 0%, cap, Cyk, 

Ax and hy. 

[Rs a (58) 

= [ alex, euld) 40) ah) he~ 3 [lee-2)*(ev-95)"] dew dey dd dh (5.9) 

= [am hdh x fa) [fees cua) e- leean? Herma dex dey| dd (5.10) 

The integral in h is the first moment of a Gamma distribution: 

2m: Ke faynan=%, (5.11) 

(5.12) 

The integral over the centres in (5.10) (between brackets) is a bit more tricky. Let us compute it. 

Since the centres are normally distributed, we get the following expansion for the integral: 

a [oc Ple-orHa-w en 3 [(c2-2)*Hey-v)] dor dey (5.13) 
Qn 

eae fertlienertene] dex fe B{6(a-en?+1e9-9 | dey (5.14) 
2a 
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The integral in dey is similar to the integral in dex. Inside the integral is a product of Gaussians, 

which is also a Gaussian with parameters we are going to solve now. 

Let us first notice that: 

    

& (Ge — ox)? + (cx — 2)? = [€ + lon? — 2 [€e + ay) cx + [Ecx? + 23] (5.15) 

= Acz® —2Ber+C (5.16) 

B)? B 
=Alexr— 5] + [e- = (5.17) 

where: 

A=€+1, 

B= cer +2;, 
= fe? 432 C = kex? + 23. 

Given that: 

[oD dee = pas 

and 
oe (a — 2;)? 
AE 74 

The integral in dex in (5.14) can then be rewritten: 

  

and the whole integral (5.14) becomes: 

ma end er lee—25)?+(ev-vs)?] (5.18) 

We then define E = 35 ale —2)) P+ (ey — ui) and average (5.18) over q(A): 

mm
 

a 7 [wet ean 

a-1 p—-BAg- RE 
eri ase ie 

= — Ff ya-14-0+#) gy 

“8 (9 fo 
apy 

=
 

  

  

g 2 af weer (@- 25)" + (-w)']) 

using the change of variables A = (8 + £) d to retrieve the Gamma integral evaluating to (a). 

Hence the preliminary result: 

[ono w =% (1+ 58 [a-2)'+@-wy])
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Let us now compute K1j,,;. Like KLy2,3, we can rewrite it: 

Kug= [wor a 
N N 

= [ ) ( ys (0) ( SS (0s) db 
ki=1 ko=1 

N N M 

=> (Ila) Rj (O,) Rj (hs) dO dB 4 
ky=1 kg=1 b=1 

N 

tC) taka) Ry (Oa Ysa) aa Wes + 9 f a4(Ou) Ry (Ou)? 
k=l a M

z
 

ki=1 ko=1 
koFXky 

N N N 

= YY [frm 64.) Rin) A x f tae) Rye) AO] +9 fale) Ry 00)? 
ky=1 kg=1 k=1 

kathy 

dO, 

This result relies on the g-averages of Rj and Rj over 0%. The first we have computed before, and 

we will compute the other now. As previously, we drop the k index for better readability. 

[0 Re) ao 
aa 2 2 

= [ alex, cud) a0) g(h) h? e~ # [(ee-#5)*+(cu-us)"] dex dey dd dh 

= [aw nedh x [wo [/ q(cx, cy|d) e~ # [(e2-25)?+(cu-w5)"] dew dey} dd 

The integral in h is the second moment of a Gamma distribution: 

[aw fan = WY)   

ee 

(5.19) 

(5.20) 

(5.21) 

(5.22) 

(5.23) 

The integral over the centres is similar to the one in 5.10, except for a factor 2 due to the quadratic 

term in Rj. It is computed using the same method, but this time, we find: 

A’ =€+2, 

  

B! = Ect + 2a, 
C! = Ecx? + 2a}. 

and Be é 
1 A = Cc at = (c& —2;) 

and for the whole integral averaged over q(A): 

Hence the preliminary result: 

1 Cae = 1 [eo R0? do = 10 aes} (145745 [l@-a)+@-») ])   

We can define the quantity r/",, m € {1,2}, reintroducing the k indexes, as: q ki 

ie (EN OG 1 & AN ae ie 
m= 3 ( bs ) &+m (game | *) +(a-))) 

Ze | 

—a%
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Tj.j 38 the g-average of Ry over 0, and rj ; the g-average of R}. 

And write the results: 

N 

KLi2g = orks 
k=1 

Kly,5 = om = Parka t ory 
ky=1 ko=1 

koARL 

N 2 ON 5 N 

= (Sets) - Pew dey 
eed k=1 k=l 

Hence: 

  

      

5.2.4 Negative log-prior part (I L2) 

In this section, we derive the computation of the second part of the KL distance: 

KLa(pll) = - f (0) Inp(@) a0. 
Using the independence assumption in 5.4 we can rewrite K L2 as: 

N 

KL9(p||q) = 0 K Lox 
=I 

where 

Kan =~ f (0) Inpa(64) 8 (5.24) 

= | ae(04) inpu(0x) aby (5.25) 
since the distributions are independent (all the qx’, k’ # k, in the factorisation of q separately integrate 

to 1). We already can see that the optimisation will be made on the whole parameters distributions, 

since the parameters 0, = (crx, cyx, Ax, hx) are integrated out. This corresponds to our wish to carry 

the whole distribution during the optimisation. 

We see that we can restrict our discussion to a single cell for the computing and drop all the k 

indexes, and then sum up all the K L424. 

We will denote by (cx', cy’, €', a’, 8’, 7’, 0’) the parameters of the distribution p and by (ex, éy, £, a, 8, 7, 6) 

the parameters of the distribution gq. 

Let us first expand —K L2,,. 

=Klax = f alerscu2 A) Inplce,cy,2,h) dex dey dddh 

= [ amon) dh x fo a(ca,cy|A) In[p(cx, cy|A)p(A)] dea dey dd dh. 
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The integral in h gives: 

[am Inp(h) dh = J 6a00,16) InGa(h, 7,6’) dh 

hg h,7;) a a re dh 

=1) [ ca,7,6 )Inh dh = 6 f Ga(n, 7,6) hdh 

  

De 

"rat 
The second integral is the first moment of the Gamma distribution, evaluating to 7. The first 

integral can be expanded into: 

    

  

fi 
[6ar,n 6m dh = rm feta eS dh 

v8 = — (y-1)Inh 46h 

Peay By Lf Pm ert a] 
een (AZ| 

Ty) oy 
_— 6% [I"(y)67 — Tq) 07 Ind 

a 2Q) om 
= W(y) -Ind 

where Y = + is the di-gamma function. 

Hence: 

[aw Inp(h) dh =In en + (7/ — 1) (W(y) — Ind) — 4 

The integral in cx, cy, A can be expanded into: 

[a alee,ev1r) In[n0)er,ev)d)] dex dey ar =f 4(A)a(exseulA) Imp(A) dex dey ad 

+ [ 42) a(ex,cul>) Inpex, cyl) dew dey ar 

In the first integral, the normal distribution over the centres integrates to 1, leaving an integral 

similar to the one in h: 

pre’ B! 
T@) +(a' -1)(v (@) Sin) a. 

The second integral needs to be integrated over cx, cy first and then over 2. 

[ao [/ sen euia In p(cx, cy|A) dex dey| dX 

fo epee 

The integral over the centres gives: 

| [ aeaia) acyl) (Inp(ex|d) + In p(cy|d)) dex dey 

= 2 f acai In p(er|A) dex 

n§* ea f (ee - ax (a5) dex 

gn 
on gE 

=In 
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The first equality comes from the fact that the integrals in ex and cy are identical and sum up because 

of the logarithm. The integral in the second equality evaluates to the variance of the Gaussian, ie a 

hence the result. 

Averaging this result over q(A) gives: 

1) gt ! 7 
fae [in $2 -€] d\= as ae, 

B cae Lye 1 ene Ss nF +0 1) (W(a) — In) Sie é 

And summing the different preliminary results and reintroducing the k indexes, we find: 

ce b -KL2= In Ta + (% — 1) (WY) — In dx) — "5, 
ke 

ne Bk + In FE + (ak ~ 1) (lax) — In Be) — an Ft 

fe Se +1n == tn 

For a complete model, we have to sum the KL, over the cells, obtaining the final result for Ko: 

  

Ni 1 
oe KIy=- > [mg a 1) (U(r) — Inds) — 95 

+ In —4— Bis + (a, = 1) (W(an) ~ ny) — an Zt 
k D(a) 

Ceme’, +n -& | 

    
  

5.2.5 Entropy of q (KL) 

Let us now compute the third part of the distance: 

KLs(a) =~ f a(@) m4) a. 
This part is the entropy of the distribution g. Since p and q have the same definition, the result is 

exactly the same as for the computation of KL2, since we integrate over the same variables, except 

that the parameters for p (with the prime) are replaced by the parameters for g (without the prime). 

We thus obtain the following result: 
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N 

  

i 
KL3= [im FE + Cm =) (Eu) Ind) — 

: aX Dn) i 

+n Fey + (ax — 1) (W(ax) — In Bg) — a 

& +n -1] 

    
  5.2.6 Result 

Summing KL, KL2, and KL, we obtain the following result for the KL distance: 

  
1 N 2 on ow N 

tip) = siz | (Sorts) - al + ek He, 
j=l k=1 = k=1 k=l 1 

  

Ce = 94) (8(e) = 98) = (1 i) 

BE T(o%) 1 Be +In (aa) + (ax — a) (U(ayx) — In By) — a ( - a) 

-»(8)-6-8) 
where:   

  
    

me eee 1 Se. | ea, eNO a 
ray = 2 ( be ) & +m (4+ orate lm z;) + (cn -u,)'])   
  As expected, the centres, inverse widths and heights have integrated out to leave only their distri- 

butions parameters. When we minimise the distance, the whole distribution will be updated, so we 

expect lower accuracy to be necessary for relevant results. 

The steps in the optimisation of the KL-distance are listed in section 6.2 of the next chapter, which 

details the changes brought to the model. 
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Chapter 6 

The new model 

The new model is very similar to the former as far as its structure is concerned. Only the fact that the 

optimisation of R is now done using Variational Bayes as described in the previous chapter, and a few 

improvements such as the smoothing of the data before using it, make it different from its previous 

version. This chapter will discuss the modifications brought to the model and its tests on simulated 

data. 

6.1 Initialisation 

The initialisation step is similar to the one described in section 4.2.1, except it uses the minimisation of 

the KL-distance as the optimisation method instead of the minimisation of the negative log-posterior. 

6.1.1 Smoothing 

We have added one more step yet, which consists in smoothing the radar 

data before using it in order to make it more continuous and diminish 

the effect of noise. The smoothing algorithm is very simple and based NS y+l 

on the fact that the noise is assumed to have mean zero. Thus, each 

x-l) x )x+1   

  

pixel in the radar image is replaced by the mean of it and its closest 
  

neighbours (pixels highlighted on side picture). The averaging doesn’t y-1         alter significantly the value of the intensity at the pixel, but makes the   

noise smaller, since it is averaged over a local subset of the data. 

The results of the smoothing are plotted on Figure 6.1 below. On the left, the raw data, and on 

the right, the smoothed data. We can see that the smoothing has removed the angles in the data, 

making it closer to a noiseless continuous observation. 

6.1.2 Local fitting 

We have also implemented a local fitting feature, which consists in fitting each new cell on a portion 

of the whole radar image localised around the centre (determined by the maximum intensity). The 

reason for this is that a radar image usually contains many rain cells, with bounded width. Fitting the 

whole radar image would mean trying to approximate the whole set of cells with a single Gaussian, 

which then would no more represent a cell as we wish, but an poor approximation of the complete 

radar image. Thus, when creating a new cell, we fit it on a local part of radar image (typically of 

size 20x20 pixels, i.e. 40x40 km, centred at the Gaussian’s centre). The size of the sub-image is 

43



CHAPTER 6. THE NEW MODEL 

   
Figure 6.1: Effect of smoothing on the data 

determined by experience, but would certainly require further analysis as to the usual sizes of rainfall 

cells, for more accurate tuning. 

6.2. Dynamics of the model 

The dynamics of the model have been left unchanged, except for the use of the KL-distance as an 

y used. For plots and forecast, we needed to set 

  

error function instead of the negative log-prior former! 

values for the parameters (cr, cy, 4, h). The modes have been used for the heights and inverse widths   

(Gamma distributions), and the means for the centres (Gaussian). 

Optimisation of the parameters 

The tip to ensure variables are optimised under the constraint that they remain positive is to optimise 

their logarithm instead. In the case of a and y, we optimise the logarithm of a — 1 and y—1: 

cy, In(a — 1), In(), In(y — 1), In(4), In(€)) 

2. Optimise @ using SCG. This step requires the KL distance and its gradient. Functions have 

  1. Pack the parameters: 0 = (cx, 

.m been provided which compute those values, using sub-functions computing the Thy and their 

gradient too. 

3. Unpack @: (exp(éx), exp(cy), a—1, 8, y—1, 6, £) = exp(@), necessarily positive because of the 

exponential, and greater than 1 for a and y. 

6.3 Tests 

Before running the new model on real data, we needed to ensure the new optimisation method was 

working in the expected way. Thus, we developed a testing platform to train it on simulated data (in 

order to be able to compare the results with known parameters). We then carried out experiments, 

from the most simple tasks (fitting one single cell) to the most complex (fitting several cells, from two 

to a large number). 

6.3.1 Simulated data 

Testing a model on real data has a major inconvenience: there is no easy way to determine whether 

the model’s parameters are accurate or not, for we don’t know what they should be. Thus, it was 
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necessary to ensure the model worked the way we expected by training it on data where the parameters 

could be easily inferred and compared to the results. We designed a tool to simulate radar images, 

by generating noisy Gaussian mixtures with customisable parameters (image size, number of cells, 

heights and widths bounds, amount of noise,...). Different simulated images are shown on Figure(6.2).   

Ps 50, ) 
40 

20 EN} «0 
10 a 

10. 2 
10 2 % 40 50 

  

Figure 6.2: Simulated radar images with 1,10,10 and 20 cells. The second image from the left has large noise, 

  

the two images on the right are ‘adherent’, i.e. they’re built 

  

congregated rainfall fields. 

6.3.2 Fitting a single cell 

  

This first test was made to see how the model would fit a 

an with added noise. Figure 6.3 illustrates this test. The picture on the left shows 

ingle rainfall cell. We simulated data, 

    

a Gaus: 

  

the simulated data after smoothing, the picture in the middle shows the prior for the rain model (the 

centre is determined by the maximum of the simulated data), and the picture on the right shows the 

rain model after fitting using Variational Bayes. 

80 50) 

40 40} 

30]    
Figure 6.3; Single cell fitting. From left to right: simulated data, initialised model, optimised model. 

     The initial and final parameters means are listed in the table below, as well as the simulated dat: 

We can observe that the KL distance decreases significantly (it doesn’t tend to zero since all the 

constant terms in the computation have been dropped). The end parameters (means) 

  

orrespond fairly 

mulated data. At the same time, the variances of the parameters decrease, 

  

well to the values of th 

which means we are getting more confident in our estimate of the parameters. The distributions are 

plotted on Figure 6.4, before (left) and after (right) fitting. The optimised posterior shows much 

higher confidence in the mean values than the prior. This gives us a good confirmation that the 

optimisation works as expected. 

The parameter evolution is shown in appendix, Figure A.1. It is interesting to notice the decreas- 

ingly oscillating character of the optimisation for the means and modes, which reminds of acoustic or 

electronic oscillating fade-out. We must also notice that with 50 optimisation iterations, we reach the 

state of convergence. This looks promising, for it means we could be able to reach an accurate state 

with a small number of iterations.
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THE NEW MODEL 

State Initial Final | Data 
KL distance | -65 950 | -508 100 = 
ze (mean) 40 | 39.13 | 39 
ye(mean) 26| 26.12 | 26 
w (mode) 115.7 48.67 | 48 
h (mode) 16.45] 16.35 | 16 
vi 1000 49 510 = 
ae(variance) | 0.1157 | 0.0010] — 
ye (variance) 5 0.0106 = 
w (variance) | 0.1157 0.0010, = 
h (variance) 25 0.0011 =             

Table 6.1: Single test fitting. Variables initial and final states. 

Gamma dist. for h, (before training) Gamma dist. for h, (after training) 

  

      
  

04 25 
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Figure 6.4: Evolution of the distributions. The means get closer to the simulated data values, while the 

variances decrease (beware the changes in the scale of axis). 
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Known issue: importance of the prior’s choice 

The choice of the prior has non negligible importance. Choosing a prior too far from the true distri- 

bution can cause the model to crash in the optimisation step. Though we are not absolutely certain 

about the reasons for this, it seems very likely to be that while using the Scaled Conjugate Gradient, 

algorithm to minimise the KL-distance, a bad prior results in big optimisation steps at the beginning, 

and very large changes/oscillations in the parameter values, which sometimes get out of machine 

precision. It is thus important to tune the prior distribution for the parameters so that it remains 

“relatively” close to the expected true distribution. 

We have given the values used in this test (Table 6.1), and we hope they are relevant enough to 

cope with most type of data. If preliminary tuning happened to be required each time the data is 

changed, this would make the model very impractical. 

6.3.3 Fitting two cells 

The results with the single cell fitting being satisfying, we set up a second test, with simulated data 

having two cells this time. The aim of this experiment is to test the ability of the model to carry out 

the simultaneous optimisation of several cells, which is a step further in testing the model’s features. 

The cells are two Gaussians, as shown on the left picture on Figure 6.5. 

50 80) 50) 

«a « a 
2 ® . * . * 

ay 0 2 
‘a 1 

a 

Figure 6.5: Two cells fitting. Fitting the whole rainfall. From left to right: simulated data, initialised model, 

optimised model. 

We fit the data with a method similar to the initialisation step in the model, ie by fitting a first 

cell as in the previous test, removing its effect from the data, and fitting a second cell on the updated 

data. This gives us our initial image (middle picture in 6.5). We then run an optimisation of the 

whole 2-cells model, in order to fit the whole data, now. The results are shown in Table 6.2 below. 

  

  

  

  

  

  

  

  

  

     
  

          

First cell Second cell 
State Initial Final | Data Initial Final | Data 
KL distance | -352 488 | -353 897 -352 488 | -353 897 | — 
xe (mean) 44.14 44.27 | 44 41.10 41.30 | 41 
ye(mean) 32.73 33.49 | 33 17.10 18.82 | 20 
w (mode) 45.83 40.92 | 37 31.15 38.09 | 45 
h (mode) 19.660 19.46 | 19 5.13 5.79 6 
wi 589 940 | 599 738 = 129 519 | 131 264 e 
we(variance) | 7.768e-5 | 6.823¢e-5 = 2.481e-4 | 2.901e-4 ~ 
ye (variance 7.768e-5 | 6.823e-5 2 2.481e-4 | 2.901e-4 = 

w (variance) | 7.197e-4 | 6.01le-4 = 3.264e-3 | 4.382e-3 = 

h (variance) 1.577e-3 | 1.543e-3 = 1.122e-3 | 1.340e-3 =           

Table 6.2: Two cells test fitting. Variables initial and final states. 
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We can notice that the first cell gains in confidence (the variances decrease) whereas the second 

loses. This comes from the fact that the initialisation is done cell by cell, on local areas, and then 

the single cells are summed to give the whole model. This shows it is necessary to optimise the whole 

model on the whole data, after optimising, to remove the imperfections due to the initialisation. Yet, 

too much importance should not be given to the initialisation, for it is a step run only once before 

running the state-space model, and most of the imperfections will be corrected once the model is 

running. 

It is not really obvious on Figure 6.5 that the right picture (whole model optimised) is a better 

approximation of the left picture than the middle picture (initialised model, with no global optimi- 

sation). The graphs for the parameters are given in an appendix, where we can clearly see that the 

KL distance is minimised, which gives evidence that the whole optimised model, though locally less 

accurate, is globally closer to the data. 

6.3.4 Fitting a large number of cells 

Testing the optimisation method on a greater number of cells still gives satisfying results (see Figure 

6.6). As far as time is concerned (remember that is our main concern), we can notice that the time 

taken to optimise the model increases significantly with the number of cells. We have not carried out 

experiments to find out which amount of optimisation was sufficient for good accuracy so far, but it 

  

is certainly something that should be done in the future. 

50) 80) 

40 40 

30 30) 

20) 

10 

10 2 30 40 50 19 20 30 40 50    
Figure 6.6: Fifteen cells fitting. Fitting the whole rainfall. From left to right: simulated data, initialised 
model, optimised model 

6.3.5 Further testing 

The testing phase should be carried on. Here are a number of tests which could be relevant: 

e Compare the old model with the new one using similar tests as those described in this chapter. 

Evaluate and compare both their accuracy (i.e. measure both parameter variances) and their 

efficiency their computational time to reach equal accuracies). 

  

e Test the new model on real radar images. 

¢ Build and test the dynamics of the new model on real data (or simulated data first if wanted). 

Compare their accuracy and computation time. 

e Compare both full models on real data. 

Additional tests will certainly have to be performed, for it is likely that some of the tests listed go 

wrong, compelling to find more specific tests to track the possible errors or incoherences. 
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6.4 Conclusions 

We did not have time in this project to go any further in testing the model, so only the tests concerning 

the optimisation method have been carried out. Those test show good results so far, but it is clear 

that further tests have to be done. First, the optimisation method must be tested on real data, and 

then the model must be tested in its dynamic form. 

The issue with the prior’s choice also has to be better understood and steps taken to solve it. 
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Chapter 7 

Conclusion 

7.1 Summary of the work done 

This thesis has given an account of the work done during 9 months, as well as of the realities of 

research. Here are the main points we have covered in this report. 

After having introduced the main theoretical concepts on which the model is built, namely the 

Kalman filter in a Bayesian state-space framework, we have explained the model itself, as well as its 

issues. We have underlined in the introduction the fact that working on someone else’s work is not 

an easy thing, and explained why documenting one’s work is essential when working on a long-term 

project that will certainly involve new developments from other persons in the future. Aware that 

this project would certainly see other modifications, we have tried to give a presentation of the model 

as clear as possible, which the reader may have found a little too detailed. 

Once the model had been introduced, we analysed the issues and suggested solutions, namely the 

use of Variational Bayes. We have detailed the Variational Bayes theory as it is applied to this model, 

and detailed the tests to which we submitted the optimisation method. We didn’t have time in this 

project to test the full dynamic model on real data, nor to compare it with its previous version. 

7.2 Results 

The preliminary results we discussed in this thesis are satisfying. We have seen that the new opti- 

misation method had good performance fitting simulated data, with fast convergence and accurate 

results. This gives hope that the model, once fully implemented and tested, will represent a significant 

advance in the domain of stochastic real-time forecasting. 

7.3 Further work 

The time dedicated to this project was a little too short to bring the model to a fully working state, 

thus there is still work to carry on. Further directions are given here, which could be a basis for a 

future MSc project. 

Amongst the issues met, we have mentioned the importance in the choice of the priors. When 

starting with an initial state of the model too far from the data, we often end up with the model 

crashing during the optimisation step. We suspect this comes from the sensitivity of the model to
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its initial conditions, which, when too inaccurately chosen, cause the variables to take values out of 

machine precision. We think it is necessary to understand better the way the initialisation affects the 

optimisation, in order to set up an initialisation method which would prevent the model starting in 

too inaccurate an initial state. For the moment, hand tuning is required for the model to start, but 

an operational model would need this step to be automated. Understanding and solving this issue 

appears to us as a priority in further developments. 

Once this issue is solved, testing the complete model in a dynamic framework, on real data, would 

confirm its robustness. For it to be operational, another step would be required, which would consist 

in optimising the code, which we believe is not as efficient as could be (but we didn’t have time to 

improve it). The computation of the KL distance needs much mathematical computation, which if 

not optimised, can make the model very impractical. 

Then, providing a comparison of the Variational Bayes model and Batail and Cornford’s model, 

as well as comparing it with other existing models, would complete the work. 

Other improvements can be thought of. We have discussed about the initialisation, and how we 

cope with it, and we believe it would be worth trying other initialisations methods, for even if the 

initialisation is only used once before running the model, it defines the model’s structure once for all. 

We think a complete initialisation method aimed at analysing the data and finding the best priors 

would bring a lot more robustness to the model as it currently is. 

We also want to mention the fact that so far, the advection field is cell-dependent, that is to say 

each cell is associated with its movement. It could be a good improvement to have a cell-independent 

advection field, defined on the whole image, and each rain cell would move according to the value of 

the advection field at its centre. 

All those remarks show that there is still work to do on this project. 

7.4 Afterword 

This project has been interesting in many ways, from the abstract theory it involves to its practical 

hydrologic applications. It has given us the opportunity to learn new methods and understand better 

those learnt before, but also to work in a domain different to the one of our scholar background 

(computer engineering), and on all points, we consider it as a rich experience. It certainly is a little 

frustrating not to have had enough time to take the project to a complete operational state, which 

was our initial objective, but this is one of the aspects of a research work. It is an interesting piece 

of work, and to conclude this thesis, let us just express our hope that it will be carried on and will 

contribute to make research progress in stochastic weather forecasting. 
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Appendix A 

Test parameter estimations 

  

In this appendix are gat 

6 (fitting one and two c 

d the plots for the parameter evolutions in the tests carried out in chapter 

s). 
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Figure A.1: Single cell fitting. Evolution of the parameters.
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Figure A.2: Two cells fitting. Evolution of the parameters (first cell). 
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Figure A.3: Two cells fitting. Evolution of the parameters (second cell). 
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