
ASTON UNIVERSITY 

Advanced Decoding Technics For 

Low Density Parity Check Codes 

Decoding 

YOUSSEF ALLAOUI 

MSc by Research in Pattern Analysis and Neural Networks, 2004 

Thesis Summary 

Error-correcting codes based on very sparse matrices provide the best performance 

to date. We will focus on improving the decoding of Low Density Parity Checks Codes 

by examining a new variant of belief propagation for this problem. This new variant 

is based on techniques such as time averaging and prior biasing. Results obtained by 

extensive simulations show that, well combined, these techniques bring a modest im- 

provement to BP decoding performance. We also studied the possibility of parallelism, 

which consists of breaking the algorithm in independent pieces that can be solved si- 

multaneously on different computer nodes. But the time spent in inter-communication 

between the different machines slows the process and prevent the parallelisation to be 

as fast as expected. 
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Chapter 1 

Introduction 

During any information transmission, there is some probability for the received 

message to be different to the transmitted one due to corruption in the transmission 

medium. 

Error-less transmission can be achieved by properly encoding the message, building 

in structured redundancy. The encoded message is termed codeword. Even if errors 

occur during the transmission due to some noise, the correct message can be restored by 

exploiting this redundancy. Retrieving the original message by decoding the received, 

corrupted codeword, at the receiving which is a crucial element in the process. 

The aim of this project is to apply and explore the capability of a new variant 

of belief propagation to this particular decoding problem. A secondary objective is 

studying the efficiency of parallelisation in this context. The following sections are a 

presentation of the model of transmission used along the project and an introduction 

to belief propagation. 

1.1 Noisy Channel Communication 

Two common features of digital modern communication are the redundancy of the 

message to be transmitted and the corruption that may occur in the medium of trans- 

mission. Shannon was one of the first to study these issues [12]. He proved general 

results on the natural limits of compression or source coding and error-correction (chan- 

nel coding) and set up the framework of what is now known as information theory.
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Shannon’s channel coding theorem states that error-free communication is possible 

if some redundancy is added to the original message in the encoding process. 

1.1.1 Noisy Channels 

Different models exist to represent a noisy channel. The most commonly used ones 

are the Gaussian and the Binary Symmetric Channel (BSC). The former represents the 

transmitted message bits as real values which are being corrupted by white Gaussian 

noise whereas the latter represents the noise by flipping the transmitted bits with a 

certain probability f. 

For the Gaussian channel(also known as the Additive White Gaussian Noise (AWGN) 

channel), transmitted bits ¢ € 0,1 are mapped to transmitted signals 2 € —ao, +o and 

the output is y = x + where v is a zero mean normally distributed random variable 

with variance o?. We set o = 1 and vary the signal amplitude zp to control the signal 

to noise ratio (SNR). This is illustrated in Figure 1.1. We declare the received bit 

r=1if y > 0 andr =0 otherwise. The likelihood of this bit being in error though 

this mapping is: 

f= P(n= lly) = (1+ exp*")?, (1.1) 

where r = t-+n (mod 2). f°, probability for each bit keeping its correct state, is defined 

as 1—f. For a code of rate R, the signal to noise ratio is equal to: E,/No = 23/2Ro?. 

To report this in decibels, one should compute 10logi0(E4/No). 

We will focus during our work on the BSC as the treatment is simpler in binary 

model. Indeed the noise corruption can be represented by a noise vector such that the 

received corrupted codeword takes the form r = ¢+n. This is illustrated in Figure 1.2 

1.1.2 Error-Correcting Codes 

Error-correcting codes are based on mapping the original space of messages onto a 

higher dimensional space in such a way that the typical distance between encoded words 

(codewords) increases (as shown in Figure 1.3). This makes the corruption caused by 

the noise to the transmitted word to be recognisable. In the case of Low Density Parity 

Check (LDPC) Codes , this transformation is represented by the generator matrix G,
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Figure 1.1: Gaussian channel. 
~~

 

  

(a) before (b) channel (c) after 

Figure 1.2: Left: Original information to be transmitted. Middle: Graphical represen- 
tation of the BSC, f being the probability for a bit to flip . Right: Corrupted received 
message.



CHAPTER 1. INTRODUCTION 

encoding consists in multiplying the original signal s by G7, giving rise to codeword t. 

Without Error~Correction 

Noisy Channel 

  

© Original codeword 

= Corrupted codeword 

Noisy Channel    
Figure 1.3: Small white circles represent possible positions of the codeword vector in a 
geometric space. The black one represent the actual codeword to be sent. Channel noise 
causes corruption which is represented by a drift. The black squares represented the 

received corrupted codeword . The dashed circles represent decision boundaries in the 

receiver. In the bottom figure, we show qualitatively the error-correction mechanism. 

The redundancy introduced in the transmitted information changes the space geometry, 
mapping it onto a higher dimensionality space and, by this way, increasing the distance 
between words. The same drift as in the top figure does not result here in a transmission 
error. 

Modern information transmission (from simple hard-disks to satellite transmission) 

makes extensive use of error-correcting codes to compensate corruption by transmission 

noise. 

Basically, the decoding problem of codes consists in finding the most likely source 

vector s in the equation G?s + n = r mod 2 where G is a generator matrix, n an 

unknown noise vector and r the received vector. 

In decoding the received vector r, one makes use of H a sparse matrix (a matrix 

is said to be sparse if the density goes to zero when the matrix size goes to infinity) 

such that G7H = 0, to obtain: Hr = H(G7s +n) = Hn = z where z is termed the 

syndrome. The decoding problem consists in finding the most likely solution n to the 

10



CHAPTER 1. INTRODUCTION 

binary equation Hn = z given z, H and the characteristics of the channel used. 

1.1.3. Low Density Parity Check Codes 

Low Density Parity Checks codes (LDPC codes) are specified by a parity check 

matrix containing mostly 0’s and only small number of 1’s. They belong to the family 

of linear codes which encode the transmitted message through a linear transformation. 

A regular binary (M, J, K) LDPC code has codeword length M and a parity-check 

matrix with exactly J 1’s in each column and K 1’s in each row, assuming J > 2 and 

K > J. Accordingly, in a binary LDPC regular code, every code bit is checked by 

precisely J parity checks, and every parity checks involves precisely K code bits. 

For the Gallager code, the parity-check matrix is a concatenation H = [C,|C2] of 

two very sparse matrices, with C2 a square matrix (size (M — N)) being invertible and 

C, an (M — N,N) matrix. The generator matrix G = [J|Cy'C,](mod 2), where I is 

the identity matrix (size N). 

For the MN code, the generator matrix has the form G7 = C7!C,(mod2) where OC, 

is an invertible square matrix (size M) and C, an (M,N) matrix. 

As a linear block code, an LDPC code can be represented by a Tanner bipartite 

graph in which one set of nodes, the variable nodes, correspond to the codeword vector, 

and the other set of nodes, the check nodes, correspond to the set of parity-check 

constraints. An edge exists between a variable node n and a check node c if and only 

if n appears in the parity-check equation corresponding to c; in other words, if a 1 

appear in the matrix H in the position (n,c). In the case of Gallager code the vector 

to be estimate is the noise word whereas in MN code, it is the concatenation of signal 

and noise. 

1.2 Decoding Process 

1.2.1 Message Passing Techniques 

Invented in statistical physics and later in the area of computer sciences and com- 

munication, message passing techniques rely on neighbourhood influences to find a 

11
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correct assignment of states to variables under given constraints. 

Here, given a graphical model, probability propagation can be used to compute the 

conditional probability of a message symbol given the observed syndrome. Information 

is exchanged between neighbouring nodes in the graph by passing messages along the 

edges. 

Starting from a random assignment, the messages sent through each edge are up- 

dated recursively with respect to messages received in the previous iterations. Each 

message is associated with a variable node linked to the edge carrying the message. 

Invariably, the messages can be interpreted as conveying an estimate of the node’s 

value along with some reliability information for that estimate. Associated with such 

a message is a hard decision: one can consider the bit’s most likely value implied by 

the message. We will say that a message is ”correct/incorrect” if its associated hard 

decision is ”correct/incorrect”, i.e., ”does/doesn’t” agree with the true value of the 

original noise bit. In addition of its good decoding performance, this algorithm has the 

considerable advantage of converging to a solution in polynomial time. 

12



Chapter 2 

Current Decoding Methods 

In the first section,we present an overview of the belief propagation and its ap- 

plication for decoding corrupted codewords encoded using sparse parity-check error 

correcting codes. In the second section, we observe the actual performance reached by 

one method compared with existing decoding processes. 

2.1 Belief Propagation 

Our aim here is to infer the source message s , given the received message r with 

the relation r = t + n = G?s+n. Which is, in the case of LDPC codes, finding the 

most probable solution to the equation Hn = z as explained in Section1.1.2 which will 

give us directly the most probable codeword t. 

Finding the most probable estimate is an NP-hard problem because of the form 

of the posterior P(n|z) = P(z|n)P(n)/P(z) where P(z|n) equal 1 if Hn = z and 0 

otherwise. So, to find the most probable n a posteriori (MPM), we should go over all 

the n possible. It is computationally difficult to carry out the exact calculation as it 

requires a sum over O(2") terms. 

Belief propagation can be efficiently used to obtain an approximate estimate. We 

actually assume that the prior probability distribution for n is factorisable : (P(n) = 

I]; P(nj)). 

The decoding process relies on estimating the marginal posterior probability P(n,|z) 

for each of the M message bits given the syndrome r. 

13



CHAPTER 2. CURRENT DECODING METHODS 

Given the observed syndrome, we map the problem onto a Bayesian network, which 

in the case of LDPC code system is a bipartite graph (Figure 2.1). The probabilistic 

dependencies present in the code are then represented by the graph connections. 

1110000 0|  Checknodes 

00011100 

THO) 0) 1708 OG 1 Oe Wish aces 

01001001 

Figure 2.1: Tanner graph representation (right) of a sparse matrix (left) 

We use belief propagation, an iterative algorithm based on message passing pro- 

posed by Pearl [10] to infer the approximate solution. This algorithm is based on local 

updates of a set of marginal probabilities and the propagation of beliefs (conditional 

probabilities) within the network. 

The convergence of these iterations requires a tree-like structure network (which 

obviously means the absence of loops in undirected graphs). Indeed, on directed graphs 

a node will send to its children a message related to information received from its 

parents. In undirected graphs, a node sends to its neighbours a message directly 

related to what it receives from these neighbours. This direct feedback might cause 

a problem because a node would update its state probability on the basis of its own 

previous state. 

To avoid this problem, we apply the cavity rule; the message passed by the node n 

to the check m is updated regarding all the checks m’ other than m and vice versa for 

the checks. However the problem is just partially avoided because of the existence of 

small loops. Typically, the bipartite graph suffers from a significant number of loops, 

but an acceptable assumption is that the network is locally tree-like if there is no short 

loops (size: 4 edges) as shown in Figure 2.1. 

In the particular case of the absence of short loops, Pearl’s algorithm provides very 

good approximation. The negative effect of loops is negligible due to the network size. 

14
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Figure 2.2: Representation of a loop in the bipartite graph (illustrated in Figure 2.1). 
Two bit nodes tied with the same two check nodes. 

Indeed, when very sparse matrices are used, the probability for a loop in the related 

graph in a finite number of generations decays as y/N, where y ~ O(1) [11]. When 

applying N — oo, the topology actually converges to a tree-like structure and BP 

decoding becomes exact. Moreover, for a finite systems, one can expect that a limited 

neighborhood of a node is tree-like. 

Belief Propagation Algorithm 

At each step of the algorithm we estimate the new posterior probability P(nj|z) of 

a codeword’s bit to be at a certain state, given the syndrome vector z. 

To simplify things, we call M(n) the set of J checks m in which bit n participates 

and reciprocally N(m) the set of K bits n that participate in check m. 

For each edge between a node n and a check m we define the following conditional 

probabilities(Figure 2.1) : 

Gnn = P(Xn = 2 | Tizm)s (2.1) 

and 

ti =P(Zm|Xn=2 () {amu : ni € N(m)\n}). (2.2) 

The message g*,, defined in Equation 2.1 provides the probability that X, = x 

given all the check nodes of M(n) apart from m. The message r7,,, defined in Equation 

2.2 provides the probability that the check node 2, is in his actual value given X, = 2. 

We define as well the posterior probability: 

G = P(Xn = 2 | Tmem(n)) (2.3) 

15
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aj 

Figure 2.3: Up: The message Passing process. The arrows show the causal relationships 

: the state of the check z; is determine by the sum of incoming source/noise node 2;. 
Down: The message going from a bit node 2; to a check node z; is denoted rj, and the 

opposite is denoted q;,; 

This probability define the state of the pseudo-decoded word after some iterations of 

the algorithm. 

We will now describe in detail one iteration of the algorithm: 

Initialisation Step 

This sets the initial values of the g,’s to the prior value f, (in our case the noise 

level f), although this initialisation has no consequence on the algorithm itself. We 

run this step just once at first of the algorithm. 

Horizontal Step 

For the bit node n, we update the associated probabilities that bit n is equal to «(ax 

is 0 or 1 in our binary case), given the information obtained via checks other than m. 

Ga Onnite Il rz), (node update rule ), (2.4) 

m/EM(n)\m 

where Qn is a normalization constant (such that in + Gn = 1) and fn the prior. 

16
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Vertical Step 

In this step, we update the associated probabilities that the check m is satisfied 

if bit n is equal to x and the other bits have a separable distribution given by the 

probabilities dmn: n' € N(m) \n. 

A particularly convenient implementation of this method uses forward and back- 

ward passes in which products of the differences dgmn = Gin — Yorn are computed. We 

obtain drmn = Th» — 7%, and the update rule becomes : 

6r2,, =(—1)"" |] da%, (check update rule ) (2.5) 
n/EN(m)\n 

Finally given that r°,,, +r},,, = 1, we obtain the updated probability of the given check 

equal to : r2,,, = 0.5 * (1 + (—1)*6rmn) 

Validation Step 

For each bit, we update the pseudo-posterior probability 

Gone [le tem (2.6) 
m€M(n) 

where a, (such that g° + gi = 1) is a normalisation constant. 

Compute then X such that 2, = 1 if g} > 0.5 and 0 else. The algorithm repeats 

horizontal and vertical step until it converges to a stable codeword. Which means that 

all the parity checks are satisfied; HX = z then the decoding algorithm halts, and x is 

considered as a valid codeword. 

There exist two methods for running one complete loop of the algorithm. The 

iterative method consists in updating first all the checks and then all the nodes. The 

random method consists in randomly updating one node or one check among all the 

nodes not yet updated until all of them are updated. The random method appears to 

lead to a faster convergence than the iterative one because within the same iteration, 

updates are already propagated. This is why we make exclusive use of this method for 

running our set of simulations. 

Ty
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2.2 Limits of Optimal Decoding 

Belief propagation appears to be the best decoding process in term of convergence 

speed (polynomial time) and performance, it is illustrated in Figure 2.4. 

In this picture, the image pixels are considered as the encoded message and the 

received vector is corrupted over a binary symmetric flip noise density of 15%; then 

at each iteration the best estimate produced by an iterative probabilistic decoder is 

presented up to 14 iterations. At the 15th iteration, the guess violates no parity checks, 

and the decoder algorithm halts. The decoding is error-free. 

  

(a) Iteration 1 (b) isda. (cel Ea fe (@)1d (e) ..14... 

Figure 2.4: Belief propagation applied to a codeword transmitted through a BSC with 
a noise level f = 0.15. After a few iterations we observe a convergence to the correct 
solution (the original picture). 

The algorithm would produce the exact posterior probabilities of all bits if the 

bipartite graph defined by H contained no cycles which is atypical in reality. The 

performance of such a decoding scheme is bounded in term of noise level as presented 

and studied in further sections. 

2.2.1 Shannon’s Bound 

Shannon proved a remarkable result [12], that for any channel, there exists a certain 

code rate C' (the so-called Shannon capacity of the channel) below which codes capable 

of achieving perfect decoding exist and above which such codes can not be found. As 

the proof was not constructive, we know that codes exist but we’re unable to construct 

them. A message encoded at rate R (message information content/codeword length) 

up to the channel capacity C can be decoded with a probability of error that decays 

exponentially with the message length. 

18
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This theoretically achievable rate is equal, in the case of the BSC channel, to: 

C=1-H,/(f), (2.7) 

where 

Ho(p) = —p- loge(p) — (1 — p) - loga(1 — p) (2.8) 

In term of noise, for any channel and a given error correcting code rate R, there exists 

a limit noise level above which it is impossible to achieve perfect decoding. And a code 

which saturates Shannon’s bound represents the most efficient way of transmitting 

data as the length of the transmitted message is the smallest possible for retrieving 

perfectly the original data up to the given noise level fs. In the more general case of 

biased messages (P(n; = 1) = fs, Vi) and allowing a decoding bit error probability pp, 

the maximal code rate R,, for a given flip rate noise f, is given by: 

_ Half) (0 Ha) 
(1 — Ha(pe)) 

The challenge is to create error-correcting codes that get closer as possible to what 

Re (2.9) 

Shannon proved is possible. 

2.2.2 Dynamical Transition 

So far, some of the most efficient existing error-correcting codes, among which are 

LDPC codes, manage to achieve excellent results up to a certain noise limit (obviously 

below the Shannon’s bound). This limit is called the dynamical transition in statistical 

physics. A second transition is termed thermo-dynamical or critical transition point 

fc, defining the theoretically noise limit that still allows perfect retrieval for a given 

code. In the case of code of rate R = 1/4 this dynamical transition is situated at around 

f = 0.16 when the critical limit which i s close to Shannon limit f, = 0.21. Reach 

the dynamical transition is then already a very good result with respect of other error- 

correcting codes. The challenge of this project is to push practical decoding scheme 

beyond the dynamical transition towards Shannon’s limit. 

In order to understand what is happening, we describe the problem schematically 

(Figure 2.5). One can notice that, up to the dynamical transition, there exists only 

one cluster of solutions where the BP algorithm aims to find the single correct solution 

19



CHAPTER 2. CURRENT DECODING METHODS 

noise vector, whereas between the dynamical transition and the critical transition there 

exists many clusters of potential solutions (all satisfying the parity check equations) 

among which the BP aims to find the correct one. The various clusters are disconnected 

what makes it difficult to move between clusters by local modifications in search of the 

true solution among many suboptimal not stable solutions. As the graph is very large, 

it is highly probable that in one part of the graph, BP is induced to converge to one 

solution while in other parts it converges to another solution. These different parts 

being more or less related to each other, each one will try to “convince” the other to 

opt for its solution. This explains why the algorithm generally doesn’t converge in 

this area. Beyond the critical transition point, one cannot find the true solution even 

theoretically. 

Codeword Space 
  

‘one cluster of solution 

several clusters 

' \ ' \ t t ' ' ' ‘ ' ' ' ' 
' at. ' ' ' ' ' 
' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' \ ' ' ‘ ' ' '       of solution 

dynamic critical Noise Level 

transition transition 

Figure 2.5: Representation of the solutions to the equations H -n = z, given the prior. 
Up to the dynamical transition: only one cluster of solutions. Between the dynamical 
and the critical transition: many cluster of solutions among witch the correct and 

several suboptimal incorrect ones. Above the critical transition: no solution to the 
problem. 

Performance 

The simulation results in Figures 2.6 and 2.7 are based on decoding of biased 

codewords length M = 1000. Each point represent the average error on 1000 trials with 

belief propagation as a function of the noise level. Error is represented as the overlap 

between the original noise vector and the decoded one (overlap of 1 means perfectly 

correct decoding). We can see on Figure 2.6 that error-free decoding is obtained for 

20
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100% cases up to a certain noise level (dynamical transition) and from then, error starts 

increasing. On Figure 2.7, we focus on the area between the dynamical and critical 

transition. 
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Figure 2.6: Overlap between the actual noise vector n and the decoded one f for an 
LDPC code with K = 4 and C = 3 (therefore R = 1/4). Averages of 200 simulations 
of BP for a code word length M=1000. Vertical rows represent standard deviations. 

A suboptimal solution obtained for one of these codes is represented as a histogram 

in Figure 2.8 of the cavity-magnetisations distribution (also called ferromagnetic solu- 

tion) gauged by the initial code word we aim to find out. The points with negative 

cavity field values represent the wrong magnetisations with respect to the original code- 

word and positive points represent the correct ones. As we can see the proportion of 

wrongly decoded bits is much lower than the correct ones. 
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Figure 2.8: Probability distribution histogram for suboptimal solution obtained for 
f = 0.2. Parameters are N=1000 R=1/4. Circles correspond to an experimental 

histogram obtained by decoding with BP over 1000 random graph constructions. 
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Chapter 3 

Improvement to Message Passing 

3.1 Free Energy Minimisation 

As mentioned earlier (Section 2.2.2 ), a major problem occurring during the BP is 

that convergence, for some reason, is not always obtained. 

A bit of Statistical Physics 

To understand the concept of free-energy, one can consider a system of N particles, 

each of which can take one of a discrete number of states, where the states of the ith 

particle are labelled by «;. For example, the atoms in a magnetic crystal have their 

states characterised by the spin “up” or “down”. The overall state of the system will be 

denoted by the state vector X = },...,2y. At each state of the system corresponds a 

certain energy E(X). A fundamental result of statistical mechanics is that, in thermal 

equilibrium, the probability of a state will be given by Boltzmann Law 

Lee 
WX) = Fae BONE (3.1) 

where T is the temperature, and Z(T) is simply a normalisation constant, known as 

the partition function: 

AVI SD AOI (3.2) 
Xes 

where S is the space of all possible states X of the system. 

For the case of a factor graph probability (generalisation of the Tanner graph seen 

in Section 2.1) distribution function (see Figure3.1), we suppose that p(X) factors into 
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CHAPTER 3. IMPROVEMENT TO MESSAGE PASSING 

a product of functions: p(X) = (1/Z) 4, fa(wa). Here @ is an index labeling M func- 

tions fa, fp,.., fm, where fa(va) has arguments x, that are some subset of 21,..., 2y. 

The factor graph is a bipartite graph that expresses the factorisation structure; it has a 

variable node per variable z; and a factor node per function f,, with an edge connecting 

variable node i and factor node a if and only if x; is an argument of f,. 

X1 X2 X3 X4 

= 

A B c 

Figure 3.1: A factor graph representing the joint probability distribution 

(21, 2, 3,24) = fa(z1, 22) fa(t1, 22, U3) fo(aa). 

We define the energy E(X) of a state X to be: 

M 
E(X) = — > Infa(za)- (3.3) 

a=1 

The Helmholtz free energy of a system is 

Fretmnott2 = -TInZ=-—InZ (because generally T is set to 1). (3.4) 

This free energy is a fundamentally important quantity in statistical mechanics, because 

if one calculates the functional dependence of Fyertmotz 00 quantities like a macroscopic 

magnetisation field H or temperature T’,, then it is easy to compute experimentally 

measurable quantities like the response of the system to a variation of H or T. 

So far, we have described all the coding and decoding process via the Boolean (0,1) 

representation. It is convenient to introduce binary variables +1 in order to apply 

methods of statistical physics. 

The connection between spin systems and error correcting codes, first noted by 

Sourlas [13] in 1989, is based on the existence of a simple isomorphism between the 
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additive Boolean group({0, 1},@) and the multiplicative binary group({+1, —1}, -) de- 

fined by: 

S-X = (-1)°, (3.5) 

where S,X € {+1,—1} and s,z € {0,1}. A parity check bit in a linear code is formed 

by a Boolean sum of K bits of the form Ou s; that can be mapped onto a K-spin 

coupling Dijer Sj. 

This new representation is worth using because of the compactness of the cor- 

responding equations. For example, one can describe the conditional probabilities 

standing for the transmission through a BSC in a simple manner as 

1+prt _ exp[Bnrt] 

BUS 2  ~ 2cosh(Bn)’ 
  (3.6) 

where t and r (€ {—1,+1}) are the transmitted and received message bits respectively, 

f the flip probability also known as noise level of the channel and p = 1—2f and £, = 

(3)in{ 59). (8, represents the inverse of the temperature in physical representation.) 

The second advantage of this binary representation is that it makes the similarity 

to Ising spin models enabling one to take advantage of the techniques developed in 

statistical physics. By representing the free-energy of the system and trying to minimise 

it, one can obtain the update equations for belief propagation. 

3.2 Improvements 

3.2.1 Prior Biasing 

The problem of non-convergence may occur because of a conflict between the prior 

constraint over the algorithm and the parity checks satisfaction constraint. Up to 

the dynamic transition, this two constraints contribute jointly to reach the correct 

solution. The prior (assumption on the noise word density), in our case derived from 

the characteristic of the BSC, represents the constraint of maximising the codeword 

overlap with the true solution. In statistical physical view of the problem, it represents 

a temperature of our system and appear then to be crucial in the BP processing. 
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The idea is to find out empirically the influence of this prior by biasing it towards a 

higher magnetisation during BP iterations providing global information may facilitate 

the choice of a better solution. Decreasing this prior will apply a higher constraint over 

the algorithm whereas increasing it will relax this constraint (increase the temperature 

makes the system more free to variate). 

3.2.2 Time Averaging 

The time averaging is a very powerful tool proved to reach very good results in many 

fields (non linear oscillations, stability analysis among many others). The idea here is 

that, if the algorithm does not converge, to compute the message sent over a certain 

number of iterations, a time window, and then compute the average messages. Choosing 

the time window too long could slow the algorithm without gaining in accuracy, while 

too narrow windows would bias the averaging by the short oscillations influence. We 

then apply sequential fizing to the system. Basically, it consists in fixing the states 

of the nodes which, we suppose, have reached their final state. To do so we consider 

the variables which state probability is above a certain threshold and fix them for the 

following of the BP. No need to say that the choice of the threshold is essential. 

Complete explanation of the algorithm can be found in Appendix B 

3.2.3 Expectations 

We expect the prior-biasing to give the right direction to belief propagation. This 

technique should be applied when it doesn’t happen to converge. The time averaging 

combined to sequential fixing should then lead the algorithm to converge to the exact 

solution although it might slow the convergence speed. 

As we can see in the Figure 3.2, fixing a small proportion of bits in the codewords 

to their exact state gives rise to an attraction of the remainder of the bits to their final 

exact state. 

Using these ideas, we will endeavour in further sections to find empirically the most 

efficient way to combine them in order to improve the performance of standard BP. 
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Figure 3.2: Proportion of correctly fixed bits (before running the BP) necessary to reach 

the correct solutions in 100% cases, with respect of the noise level. These numbers of 

necessary fixed bits have been computed by averaging the values over 1000 randomly 

constructed graphs. 
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Chapter 4 

Experiments and Results 

In this chapter, we describe experiments carried out as part of this project and the 

results obtained. In the first section, we present the implementation itself and in the 

second one, an overview of the different results reached along the simulations, these 

will be interpreted in the final section. 

4.1 Implementation 

4.1.1 Random Graph Generation 

To get a correct study of LDPC codes, one needs to generate a high number of 

large and sparse matrices to carry out experiments on. We use generate randomly 

low density matrices with uniform weight per column and per row, but we need also to 

avoid matrices with short loops (explained in Section 2.1) which means no two columns 

have an overlap greater than 1. In term of bipartite graph, if two nodes are tied to the 

same pair of checks, then one should allocate to them other checks to remove the short 

loop. Exact explanation of the algorithm used can be found in Appendix C. 

4.1.2 Belief Propagation Implementation 

All the following simulations results are based on 1000 trials, and the obtained data 

are processed to obtain statistical values. 

The output provided is the overlap between the original and decoded message which 
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allows to compute the total bit error mean and the error-bar which represents the 

variance obtained from the simulations results. To determine the convergence speed, 

we monitor the number of iterations. To know whether the algorithm has converged 

or not, we fix a maximum number of iterations. 

The exact update rules used in the algorithms can be found in Appendix B. 

4,2 Simulations 

For each experiment, we generate a random noise vector n, and we compute the 

syndrome vector z according to the sparse matrix H such that z = Hn. 

We generate random noise vectors such that their density corresponds to the prior 

probability f (probability for the word to have a unit element at a specific bit). If 

we were to apply the flip probability to each of the bits independently, we would here 

introduce variance in the number of unit elements per vector. Instead, we compute the 

exact number of unit elements we need in the noise vector and allocate them randomly. 

We can then be sure that we get a noise vector with a correct probability, used later in 

the decoding process and that no variance is introduced in the results. In order to make 

the experiments more relevant, the generation of noise vectors and sparse matrices use 

distinct random number generators. 

4.2.1 Prior Biasing 

The prior used all along the belief propagation process is biased to a lower corruption 

rate as explained in Section 3.2.1. We assign it f. = af. The biasing coefficient 

q@ has been determined empirically by minimising the error mean during a training 

part. Two methods have been implemented. The first was to fix a to a certain value 

during the entire decoding process. The second was to decrease it monotonically during 

the decoding process starting from a high value and decreasing dynamically at each 

iteration (for example from a = 2 to 1 decreasing of 0.01 after each iteration). The 

most efficient method in term of results appears to be the first one. This is the one we 

use in the reported simulations. 

As we can notice on the graphs (Figure 4.1 and 4.2), biasing the prior does not 
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Figure 4.1: Biasing the prior throughout the BP decoding by a coefficient a (here we 
represent a = 0.5 and a = 1.5). 
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Figure 4.2: Biasing the prior throughout the BP decoding by a coefficient a close to 1 

(here we represent a = 0.9 and a = 1.1). 
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really over-perform the standard unbiased BP decoding. But another effect is worth 

studying. To have a better idea about this effect, we represent the cavity magnetisations 

probability distribution (as explained in Section 2.2) for a noise level close enough to the 

critical transition to be in the non-convergence area. We took f = 0.17 and f = 0.2and 

tried several values for a the prior biasing coefficient for the prior (Figures 4.3 and 4.4). 

Notice that for @ = 1 the prior f is equal to the original flip rate for the BSC channel. 

On these histograms , probabilities are gauged by the original codeword so that 

we get probabilities that corresponds to the correct estimate on the positive side and 

wrong estimates on the negative side of the abscissae axis. One notices that for a < 1 

the probabilities tend to reach 0.5 whereas for a < 1 they tend to go towards 0 or 1. 

The latter effect is the most interesting one because, as we will see in the next section 

we need the state probabilities to be high enough to be sure of taking the right decision 

while fix the nodes value to a certain state. 

4.2.2 Time Averaging 

Time-averaging, introduced in Section 3.2.2 is a variant of belief propagation which 

takes place when the algorithm doesn’t converge to a solution. The time window has 

been fixed empirically to 40 loops . 

4.2.3 Mixing Methods 

The best results have been achieved by using both methods. Biasing the prior 

throughout the BP iterations combiened with time averaging. 

As we can see from this graph (Figure 4.6), the performance of the modified BP 

over-perform that of standard BP decoding. The transition point is pushed beyond 

the dynamical transition (in this case 0.16) to a little more 0.17. The critical point in 

this case is approximately 0.21. 

4.3 Interpretations of the results 

We would expect to get better decoding results, and get closer to the critical tran- 

sition noise level by applying these methods, given the results illustrated in Figure 3.2, 
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Figure 4.3: Histograms for different values of the prior biasing coefficient @ for a noise 
level f = 0.17 (above the dynamical transition). The probability distribution is gauged 
by the original codeword so that we get probabilities that corresponds to the correct 
estimate on the positive side and wrong estimates on the negative side of the abscissae 

axis. 
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Figure 4.6: Biasing the prior throughout the BP decoding in conjunction with time 
averaging as well. The biasing coefficient a has been fixed empirically at 0.95 and the 

threshold for sequential fixing of nodes values after time averaging is set to 0.9. 
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where we can notice that the fact of fixing correctly a small proportion of nodes lead the 

BP decoding to the correct codeword. The results so far show a modest improvement 

in decoding performance; however, obtaining an improvement on the way between the 

dynamical and critical transition points is already an encouraging achievement. 

Time averaging on this problem didn’t prove to be as efficient as for other hard 

computational problem such as graph colouring [3] where it permitted BP algorithm to 

nearly saturate the critical transition. One explanation may be that in other problems 

such as graph colouring, there exist many correct solutions, whereas for error correcting 

codes, only one true solution exists. This means that during the sequential fizing, only 

one wrong fixed bit lead to a complete failure. 

Nevertheless, prior biasing helped in reducing fixing problem, although it might 

slow the convergence of the algorithm by leaving the system more free to fluctuate. 
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Chapter 5 

Parallelisation on a Cluster 

Traditionally, software has been written for serial computation: to be executed by 

a single Central Processing Unit and through a series of instructions, executed one 

after the other. In its simplest sense, parallel programming is the simultaneous use 

of multiple compute resources to solve a computational problem in order to save wall 

clock (computer clock) time or solve larger problems. 

By its nature, the BP algorithm, particularly for very large LDPC codes, seems to 

be very suitable for a parallel implementation. In other words, it could be broken apart 

into discrete pieces of work that can be solved simultaneously. In the first section, we 

present the clusters technology in general and the NCRG facilities in particular. In 

the second section, we study how belief propagation can be parallelised and applied 

therefore to the cluster computational capacity. 

5.1 What is a Cluster 

5.1.1 Description 

A cluster is an ensemble of off-the-shelf computers integrated by an interconnection 

network and operating within a single administrative domain. It consists of separating 

computers with no physical shared memory. Processes on different nodes need to 

communicate to coordinate computation and transfer data. 
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5.1.2 NCRG Cluster Configuration 

The NCRG department has two clusters , one of 24 2-Pentium nodes and a smaller 

one of 7 2-AMD processor nodes. We will focus on the former as it is the one reserved 

to C programming. It is composed of one master node and 23 computing nodes. 

We use then the message passing model which is characterised by the fact that 

each node use its own local memory during computation and then node exchange data 

through communication by sending and receiving messages. This data transfer usually 

requires cooperated operations to be performed by the nodes , for example: a send 

operation must have a matching receive operation. 

From a programming perspective, message-passing implementations commonly com- 

prise a library of subroutines that exist as source code and the programmer has the 

responsibility for determining parallelism operations. We commonly use the MPI (Mes- 

sage Passing Interface) implemented on our cluster, for message passing programming. 

5.2 Belief Propagation Parallelisation 

BP decoding is an algorithm based on message passing, as introduced in Section 

1.2. It is well-known that as the noise level in a channel increases, the decoding time 

(measured in term of algorithm iterations) also increases. As the noise f approaches 

the critic transition f., this decoding time diverges (t « 1/(f. — f) [5)). 

In this section the technical details of our simulations are described. 

5.2.1 Implementation 

As we can see in the implementation (as described in Section 2.1), this decoding 

process consists in a serial of nodes state updates. For different nodes (either bit or 

check) the state probability update operations are independent within a single iteration 

of the decoding algorithm. The main principle of the parallelisation is the sharing of 

graph nodes among the cluster processors so that each one deals with a certain number 

of checks and bits, as illustrated in Figure 5.1. 

At each iteration, one single processor will update the checks and bits probabilities 
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SINGLE MACHINE 

MACHINE NODE 2 

  

MASTER NODE 

Figure 5.1: Graph nodes divided and distributed among the cluster computing nodes 
to have a balanced distribution of tasks . 

which it is in charge of. After all the processors have completed their iteration, they 

communicate the values they computed to all processors, so that for the next iteration, 

they all have the same probabilities for the checks and nodes to be at a certain state. 

By doing so, since the complexity per iteration is divided by the number of running 

processors, the computational time should be divided by the number of cluster nodes. 

5.2.2 Speed Performance 

In both cases (single machine and in parallel implementation) the flip rate f (noise 

level) was selected as being close enough to the dynamical transition for this code rate 

such that the decoding is characterised by relatively long convergence times. We ran 

the simulations over 200 different code instances and computed the average wall clock 

decoding time in seconds. 

We made the choice of fixing the code rate in order to have an accurate comparison 

between different codeword sizes. The noise level f has been chosen for the simulations 

as 0.18. 
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Code Size | Rate || Standard BP decoding time (sec.) | Parallelised BP decoding time 

1000 1/4 5.702960e-01 7.668980e+00 

2000 1/4 1.015597e+00 1.476667e+01 

4000 1/4 2.116086e+-00 2.318081e+01 

8000 1/4 4.274886e+-00 5.882426e+01 

16000 1/4 8.532149e+00 1.074536e+02 

32000 1/4 1.698316e+01 1.711698e+02 

64000 1/4 3.373872e+01 4.329622e+02 

128000 1/4 6.843001e+01 7.638526e+02 

256000 1/4 1.363311e+02 2.370557e+03 

512000 1/4 2.732913e+02 6.884423e+03             
  

Figure 5.2: Values obtained for BP decoding time for a fixed rate and by varying the 

code size 

We demonstrated (Table 5.2) that the parallel implementation, although expected 

to be faster in theory, is much slower than the single machine running one. This for two 

reasons. The first reason is simply the high speed of the single machine for decoding. 

Second is the time loss related to the inter communication required between the cluster 

node during information transfer. Indeed after each iteration of the algorithm, each 

process broadcasts all the values it has charged and updated during the iteration. This 

data transmission are considerable with respect of the decoding computing time. This 

data broadcasting time has been computed and proved to be proportional to the data 

size. 
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Figure 5.3: Time spent for sending data measured as number of bytes from the master 

node to all the computing nodes. The upper graph has been computed by sending data 

to 10 nodes. The lower line is for broadcasting data to 4 nodes. 
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Chapter 6 

Conclusions 

In this thesis, we carried out an empirical study on the effect of new techniques 

inspired by statistical physics principles on belief propagation. We first implemented 

the standard belief propagation applied to LDPC decoding problem and checked that 

its performance was bounded in term of noise level given the channel model. 

We studied then how to apply a variant of this belief propagation called time 

averaging, as this variant appeared to achieve very good performance in other graph 

problems such as graph colouring. This technique on itself didn’t prove to be efficient 

because of the precision needed in error-correcting code problem. We combined this 

technique with an other variant of BP called prior biasing which consists in biasing 

the prior by a certain coefficient throughout the decoding process. This combination 

appeared to reach quite good results and over-perform standard belief propagation. 

It would be interesting to study the effect of this new variant of BP decoding 

over other types of error-correcting codes such as irregular codes or MN codes. In 

this project, we always considered the BP with its standard update rules. It would be 

interesting in an other hand to re-think this rules in term of statistical physics by taking 

in consideration the fact that the temperature needs to get lower while derivating these 

rules. 

We have undertaken then to implement a parallelisation of the BP decoding algo- 

rithm in term of programming. What did not really appear to be efficient in term of 

speed because of inter-communication time loss between the computer nodes. 

41



CHAPTER 6. CONCLUSIONS 

And finally, one can tell that as long as the theoretical bound in term of noise level 

is not achieved, there is still room for improvement and some new decoding algorithm 

or even type of error-correcting code are to be found. The fact that we can go above 

the dynamical transition gives good hope in this sense. 
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sparse matrix, 14, 53 

message passing, 11, 15, 48 
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prior, 29 

prior biasing, 25, 29 

prior biasing, see prior 
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Appendix A 

Notations Used 

e BP : Belief Propagation algorihtm. 

e BSC : Binary Symmetric Channel. 

e ~: bit error The probability that a code message bit differs from the original 

transmitted one after decoding. The difference is determined in term of overlap 

between the retrieved codeword and the transmitted one. 

e BER: block error The probability that the decoded message differs from the 

original one after decoding. 

e error-bar Variance among the computed error obtained throughout the process 

for fixed values 

e M(n): set of J checks m in which bit n participates. 

e N(m): set of K bits n that participate in check m. 

¢ M(n)\m: M(n) apart from n. 

e N(m) \n: N(m) apart from m. 

¢ g2 = P(X, =0|r) represents the pseudo-posterior probability that bit X,, is 0, 

given the information obtained via all the checks. 

© gin = P(Xn = 0 | rizm) represents the probability that bit X;, is 0, given the 

information obtained via checks others than check m. 
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e 7, =P(Zm|Xn=0 1) {mn : n’ € N(m)\n} ) represents the probability of 

check Z, to be satisfied if bit n is considered fixed at 0 and the other bits have 

a separable distribution. 

47



Appendix B 

Belief Propagation Algorithms 

B.1 Message-Passing 

B.1.1 Message-Passing Algorithm : Random Method 

For Nmax iterations 

While not {all the checks have their messages updated and 

all the nodes have their messages updated} Do 

Select randomly a check m among those not yet updated 

For all nodes n€N(m) Do 

Update its messages rmn ( Update-R() ) 

EndFor 

Select randomly a node n among those not yet updated 

For all checks m€M(n) Do 

Update its messages gmn ( Update-Q() ) 

EndFor 

EndWhile 

If (solution to the decoding is reached) Then 

Exit 
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Else   

Continue 

Endlif 

EndFor 

B.1.2 Message-Passing Algorithm: Iterative Method 

For Nmax iterations Do 

For all the checks m Do 

For all nodes né€ N(m) do 

Update its messages rmn ( Update-R() ) 

EndFor 

EndFor 

For all the nodes n do 

For all checks mé€M(n) do 

Update its messages gmn ( Update-Q() ) 

EndFor 

EndFor 

If (solution reached) Then 

exit 

Else   

continue 

EndIf 

EndFor 

B.2 Functions Detail Algorithm 

B.2.1 Initialisation 
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For all the nodes n Do 

For all their checks m€ M(n) 

Qmn = fn: the prior probability of node n: P(X, =0) 

EndFor 

EndFor 

B.2.2 Checks Update: Update-R() 

This algorithm works for a syndrome vector z and two matrices; one of cavity mag- 

netisation Q and one of check satisfaction R. 

For all nodes n Do 

For all the checks m Do 

69mn = 2* mn — 1 (= Bin — Gan) 

EndFor 

EndFor 

Update Check m : 

For all the nodes n€N(m) Do 

St mn = (—1)?" Thnen(m)\n 59m! 

Tmn = 0.5 * (1+ drmn) 

EndFor 

B.2.3 Nodes Update: Update-Q() 

This algorithm works for a given prior f and two matrices of cavity magnetisation Q 

and check satisfaction R. 

Update node n : 

For all the checks m€M(n) Do 

Gan = Onn fi Um em(n)\m Minin 
where Gm, is such that g%n+q@hn=1 
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Tr = Onf Tmem(n) Tn 

where a, is such that g@+q,=1 

EndFor 

B.2.4 Test Found Solution: Test-Result() 

This algorithm works for a given pseudo-posterior probability vector q, and a given € 

for determining the convergence. 

Create found code @ : 

For all n Do 

fn =1 if gq, <0.5 and 0 otherwise 

EndFor 

Test of convergence: 

For all n 

If q-n is stabilised during 5 loops Then 

algorithm halts 

Else   

continue 

Endif 
  

B.2.5 Time Averaging 

This algorithm works for a given Nmaz maximum number of iterations above which 

the algorithm halts, and a certain time window Tav for averaging the magnetisations. 

For Nmax iterations 

For Tav iterations 
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Run Belief Propagation 

Add the pseudo—posterior probabilities 

EndFor 

Average the pseudo—posterior probabilities 

Sequential Fixing 

EndFor 

B.2.6 Sequential Fixing 

This algorithm works for a given threshold and a pseudo-posterior averaged probabili- 

ties vector of nodes. 

Fix all the nodes which pseudo—posterior probability is above the thresho 

If none is found then 

fix the highest probability state node value 

Endif 
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Appendix C 

Graph Generation Detailed 

Algorithm 

C.1 Random Graph Generation 

This algorithm works for a given size for the sparse matrix, K the number of unit 

elements per row (sufficient to determine a rate R). 

Make a list containing all the available checks 

(represented by their location on the graph) 

FIRST ALLOCATION 

For each node n 

Select randomly K checks among those remaining in the list 

Allocate them to the node n 

Delete these checks from the list 

EndFor 

LOOP TREATMENT 
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For each node n 

For each node n'#n 

If n and n’ have more than one check in common Then 

Select randomly a third node n” 

Exchange one check with n’ looping one 

(such that the loop between n and n’ no longer exists) 

EndIf 

EndFor 

EndFor 
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