ASTON UNIVERSITY

Advanced Decoding Technics For
Low Density Parity Check Codes
Decoding

YOUSSEF ALLAOUI

MSc by Research in Pattern Analysis and Neural Networks, 2004

Thesis Summary

Error-correcting codes based on very sparse matrices provide the best performance
to date. We will focus on improving the decoding of Low Density Parity Checks Codes
by examining a new variant of belief propagation for this problem. This new variant
is based on techniques such as time averaging and prior biasing. Results obtained by
extensive simulations show that, well combined, these techniques bring a modest im-
provement to BP decoding performance. We also studied the possibility of parallelism,
which consists of breaking the algorithm in independent pieces that can be solved si-
multaneously on different computer nodes. But the time spent in inter-communication
between the different machines slows the process and prevent the parallelisation to be

as fast as expected.

Keywords: Low Density Parity Checks Codes, Belief Propagation, Message Passing,

Time Averaging, Parallelisation

Acknowledgements

First , I would like to thank my supervisors, Professor David Saad and Doctor Jort
van Mourik for their general advice and attention during this project.

I am generally grateful to all my lecturers in the MSc PANN course, Professor
David Lowe, Prof Ian T Nabney, Doctor Manfred Opper and Professor David Lowe .
And more generally, I would like to thank all the NCRG researchers for their constant
enthusiasm and the familiar ambiance they keep within the department. Many thanks
to Ms Vicky Bond for her care and attention.

I would like to thank all my fellow MSc students from the Neural Computing
Research Group: Christophe, Thomas, Youenn, Ben, Kiriko, Dharmesh, Pierre, Dan,
for their constant support and their friendship through all this year.

I also want to thank my friends from Aston, Mohamed, Kleopatra, David for their
friendly presence through all this year.

And in general my friends from Birmingham Marie-Héléne, Claire, Elwafi, Sabri,
Moha, and my friends from 1’Almont for their friendship and the good time we spent
together.

Last but certainly not least, I would like to express my infinite gratitude to my
parents, my sisters Maryame, Saliha, Latifa and Malika, my brother Omar and all my

family for their love and encouragement.

Contents

1 Introduction

1.1 Noisy Channel Communication

B NI CIRIREIE & o o s o o e eNTE W S e e T b
112 Eliror-Correcking CodeR): 8 0 ain ey fo o e abia®a ol s o ot o

1.1.3 Low Density Parity Check Codes

1.2 DOcodINE PYOCEOE: « 5« it of s suss o s ls Wik o) s dhs o s et & oulle
1.2.1 ‘Messnge Possinig TechRiques . v ' v s hims abet os i minl ¢ 500

2 Current Decoding Methods

2.1 ‘Béeliof PIOpagalION ' . .o on oh o ah sy v b ih v fesimenie s ¥ b5
2.9 Limits of Opligial Desodiiy) .7 o mu ™ & o il V0 o i bste s Sakiiedy s

2O S Shanaai e Beihd " i s R TS o e e el s e s el
2.2.2 "Dyiinmical TrROSHION . 20 00 b wliadlv ol « s o s il ode, wm s oiN0 w8

3 Improvement to Message Passing

3.1 Free Ehergy MinimiBation =, o s lar oo 3w & st gle &5 4 s
82 IDEOTETIeREE 1 PR stien s T A e (b B e e R e e oo

302 N ROy DIREIE O e s T 4 e e W S R T s
2.2 THRe ANSEREME e+ & o) balens wiaus oy gty & 208 AR i s o ety
5 e I T 2 G R S e Rl SR

4 Experiments and Results

4.1 Ioplementation '3l il o s v ov s ekt ohstinl's

4.1.1 Random Graph Generation

4.1.2 Belief Propagation Implementation

................

.................

................

................

................

o0 00 =1 =%

11
11
11

13
13
18
18
19

23
23
25
25
26
26

CONTENTS

4.2 Simulations s s
4.2.1 Prior Biasing . . .
4.2.2 Time Averaging . .
4.2.3 Mixing Methods . .

.........................

.........................

.........................

.........................

4.3 Interpretations of the TesullE . & & . (v 0 v @ s s 2 loimpel siaein o v

5 Parallelisation on a Cluster
5.1 Whatisa Cluster
5.1.1 Description

.........................

.........................

5.1:2 NORG Cluster CODAGUIALION. & .5 « %t s« « bi's Soe s 4« o &

5.2 Belisf Propagation Pasallelissbion: .5 . o i me o e e ane won hn 00w

5.2.1 Implementation . .

5.2.2 Speed Performance
6 Conclusions

A Notations Used

.........................

.........................

B Belief Propagation Algorithms

B.1 Message-Passing

.........................

B.1.1 Message-Passing Algorithm : Random Method

B.1.2 Message-Passing Algorithm: Iterative Method

B.2 Functions Detail Algorithm

B.2.1 Initialisation. . . .

........................

.........................

Bi2.2 Checks Update:; Update-R() o o v voi v v s oo 6l 0 nte o niis
B.2.3 ‘Nodes Update: Update-Q(): « o nvile & 0508 e 56 o s i aieuns
B.2.4 Test Found Solution: Test-Result()

B.2.5 Time Averaging . .
B.2.6 Sequential Fixing .

.........................

.........................

C Graph Generation Detailed Algorithm

C.1 Random Graph Generation

........................

36
36
36
37
37
37
38

41

46

48
48
48
49
49
49
50
50
51
51
52

53

List of Figures

1.1
1.2
1.3

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8

3.1
3.2

4.1
4.2
4.3
44
4.5
4.6

5.1
5.2
5.3

Gaussian ChEmiel ool anbvs o oid i e W e v e e Ty S
pictorigl illustration of & BSO . v 10 v @i bt e m hel et o 8 %

Geometric representation of error correcting code

e G R e e L L, L o et P9 3 s et B o) iEes
Lioop i the TINSXEIEE EEBDI . 5 oo o0 a5 % s o iaist Blae abe ol e o8
Message Passing characteristic variables
BE pictorial iBBteation . & ol v s 55 vy s ae e e imes e ae
Geometric representation of the dynamical and critical transition

Standard BP decoding performance . . « . . o« o 2o s 0 n s 0oe b e
BP performance close to the critical transition

Suboptimal solution probability distribution

FOCEOTRIEDIL, - o0 o o v o s 56 S o o s L s h o S i

Effect of correct fixing of nodes values on BP decoding

Prior biaging eflect on BP L .. i v v sl e s m e e
Prior BIasing electon BP0t a1 o iy e d s s
Histograms for different values of @ and f=0.17
Histograms for different valuesof o and f=0.2
Time Bvaraminy efect af BE BN 0 0 o v v 0 Wil s 5 6 8 e

Both methods (time averaging + prior biasing) effect on BP

Distribution of tasksion S ChISter ih 1 it e o s s s
BP decoding speed: sequential vs. parallel

Sending data timeon theeluster. o el s ue e o 8

Chapter 1

Introduction

During any information transmission, there is some probability for the received
message to be different to the transmitted one due to corruption in the transmission
medium.

Error-less transmission can be achieved by properly encoding the message, building
in structured redundancy. The encoded message is termed codeword. Even if errors
occur during the transmission due to some noise, the correct message can be restored by
exploiting this redundancy. Retrieving the original message by decoding the received,

corrupted codeword, at the receiving which is a crucial element in the process.

The aim of this project is to apply and explore the capability of a new variant
of belief propagation to this particular decoding problem. A secondary objective is
studying the efficiency of parallelisation in this context. The following sections are a
presentation of the model of transmission used along the project and an introduction

to belief propagation.

1.1 Noisy Channel Communication

Two common features of digital modern communication are the redundancy of the
message to be transmitted and the corruption that may occur in the medium of trans-
mission. Shannon was one of the first to study these issues [12]. He proved general
results on the natural limits of compression or source coding and error-correction (chan-

nel coding) and set up the framework of what is now known as information theory.

CHAPTER 1. INTRODUCTION

Shannon’s channel coding theorem states that error-free communication is possible

if some redundancy is added to the original message in the encoding process.

1.1.1 Noisy Channels

Different models exist to represent a noisy channel. The most commonly used ones
are the Gaussian and the Binary Symmetric Channel (BSC). The former represents the
transmitted message bits as real values which are being corrupted by white Gaussian
noise whereas the latter represents the noise by flipping the transmitted bits with a

certain probability f.

For the Gaussian channel(also known as the Additive White Gaussian Noise (AWGN)
channel), transmitted bits ¢t € 0,1 are mapped to transmitted signals z € —z, +zo and
the output is y = z + v where v is a zero mean normally distributed random variable
with variance o?. We set o = 1 and vary the signal amplitude z, to control the signal
to noise ratio (SNR). This is illustrated in Figure 1.1. We declare the received bit
r=1if y > 0 and r = 0 otherwise. The likelihood of this bit being in error though
this mapping is:

f' = P(n=1|y) = (1 +exp**¥)~, (1.1)

where r = t+n (mod 2). f°, probability for each bit keeping its correct state, is defined
as 1 — f. For a code of rate R, the signal to noise ratio is equal to: Ey/Ny = z/2Ro>.
To report this in decibels, one should compute 10log;0(Es/No).

We will focus during our work on the BSC as the treatment is simpler in binary
model. Indeed the noise corruption can be represented by a noise vector such that the

received corrupted codeword takes the form r = ¢t +n . This is illustrated in Figure 1.2

1.1.2 Error-Correcting Codes

Error-correcting codes are based on mapping the original space of messages onto a
higher dimensional space in such a way that the typical distance between encoded words
(codewords) increases (as shown in Figure 1.3). This makes the corruption caused by
the noise to the transmitted word to be recognisable. In the case of Low Density Parity

Check (LDPC) Codes , this transformation is represented by the generator matrix G,

CHAPTER 1. INTRODUCTION

P(ylx=+x)

P(y I x=—xX,)

Figure 1.1: Gaussian channel.

(a) before (b) channel (c) after

Figure 1.2: Left: Original information to be transmitted. Middle: Graphical represen-
tation of the BSC, f being the probability for a bit to flip . Right: Corrupted received
message.

CHAPTER 1. INTRODUCTION

encoding consists in multiplying the original signal s by G, giving rise to codeword t.

Without Error-Correction
(0 oY o) S
TN TR Nalsy Channel ST R S
I ¥ ‘t. ‘.-~----"I .--r" .:'lH“: "“‘: :’H B
o }. ® ,I’“ . _.l. " . f _,-'b“‘_, .]‘
® Original codeword
m Corrupted codeword With Error-Correction
s faspe fin o i
e A Noisy Channel S LV
~_.i_. .-. > 'l-" : & , £ 1 o 1 o
° .I: . .I. 7 < ..:'
o T A N o o '{ o ! o

Figure 1.3: Small white circles represent possible positions of the codeword vector in a
geometric space. The black one represent the actual codeword to be sent. Channel noise
causes corruption which is represented by a drift. The black squares represented the
received corrupted codeword . The dashed circles represent decision boundaries in the
receiver. In the bottom figure, we show qualitatively the error-correction mechanism.
The redundancy introduced in the transmitted information changes the space geometry,
mapping it onto a higher dimensionality space and, by this way, increasing the distance
between words. The same drift as in the top figure does not result here in a transmission
€error.

Modern information transmission (from simple hard-disks to satellite transmission)
makes extensive use of error-correcting codes to compensate corruption by transmission

noise.

Basically, the decoding problem of codes consists in finding the most likely source
vector s in the equation GTs + n = r mod 2 where G is a generator matrix, n an
unknown noise vector and r the received vector.

In decoding the received vector r, one makes use of H a sparse matrix (a matrix
is said to be sparse if the density goes to zero when the matrix size goes to infinity)
such that GTH = 0, to obtain: Hr = H(G"s + n) = Hn = z where z is termed the

syndrome. The decoding problem consists in finding the most likely solution n to the

10

CHAPTER 1. INTRODUCTION

binary equation Hn = z given z, H and the characteristics of the channel used.

1.1.3 Low Density Parity Check Codes

Low Density Parity Checks codes (LDPC codes) are specified by a parity check
matrix containing mostly 0’s and only small number of 1’s. They belong to the family
of linear codes which encode the transmitted message through a linear transformation.

A regular binary (M, J, K') LDPC code has codeword length M and a parity-check
matrix with exactly J 1’s in each column and K 1’s in each row, assuming J > 2 and
K > J. Accordingly, in a binary LDPC regular code, every code bit is checked by

precisely J parity checks, and every parity checks involves precisely K code bits.

For the Gallager code, the parity-check matrix is a concatenation H = [C|Cy] of
two very sparse matrices, with Cy a square matrix (size (M — N)) being invertible and
C, an (M — N, N) matrix. The generator matrix G = [I|C;'C](mod 2), where I is
the identity matrix (size N).

For the MN code, the generator matrix has the form GT = C;;'C,(mod2) where C,

is an invertible square matrix (size M) and C; an (M, N) matrix.

As a linear block code, an LDPC code can be represented by a Tanner bipartite
graph in which one set of nodes, the variable nodes, correspond to the codeword vector,
and the other set of nodes, the check nodes, correspond to the set of parity-check
constraints. An edge exists between a variable node n and a check node c if and only
if n appears in the parity-check equation corresponding to ¢; in other words, if a 1
appear in the matrix H in the position (n,c). In the case of Gallager code the vector
to be estimate is the noise word whereas in MN code, it is the concatenation of signal

and noise.

1.2 Decoding Process

1.2.1 Message Passing Techniques

Invented in statistical physics and later in the area of computer sciences and com-

munication, message passing techniques rely on neighbourhood influences to find a

11

CHAPTER 1. INTRODUCTION

correct assignment of states to variables under given constraints.

Here, given a graphical model, probability propagation can be used to compute the
conditional probability of a message symbol given the observed syndrome. Information
is exchanged between neighbouring nodes in the graph by passing messages along the

edges.

Starting from a random assignment, the messages sent through each edge are up-
dated recursively with respect to messages received in the previous iterations. Each
message is associated with a variable node linked to the edge carrying the message.
Invariably, the messages can be interpreted as conveying an estimate of the node’s
value along with some reliability information for that estimate. Associated with such
a message is a hard decision: one can consider the bit’s most likely value implied by
the message. We will say that a message is ”correct/incorrect” if its associated hard
decision is ”correct/incorrect”, i.e., "does/doesn’t” agree with the true value of the
original noise bit. In addition of its good decoding performance, this algorithm has the

considerable advantage of converging to a solution in polynomial time.

12

Chapter 2

Current Decoding Methods

In the first section,we present an overview of the belief propagation and its ap-
plication for decoding corrupted codewords encoded using sparse parity-check error
correcting codes. In the second section, we observe the actual performance reached by

one method compared with existing decoding processes.

2.1 Belief Propagation

Our aim here is to infer the source message s , given the received message r with
the relation r = t + n = G¥s + n. Which is, in the case of LDPC codes, finding the
most probable solution to the equation Hn = z as explained in Sectionl.1.2 which will
give us directly the most probable codeword t.

Finding the most probable estimate is an NP-hard problem because of the form
of the posterior P(n|z) = P(z|n)P(n)/P(z) where P(z|n) equal 1 if Hn = z and 0
otherwise. So, to find the most probable n a posteriori (MPM), we should go over all
the n possible. It is computationally difficult to carry out the exact calculation as it

requires a sum over O(2V) terms.

Belief propagation can be efficiently used to obtain an approximate estimate. We

actually assume that the prior probability distribution for n is factorisable : (P(n) =

Hj P(ny)).
The decoding process relies on estimating the marginal posterior probability P(n;|z)

for each of the M message bits given the syndrome r.

13

CHAPTER 2. CURRENT DECODING METHODS

Given the observed syndrome, we map the problem onto a Bayesian network, which
in the case of LDPC code system is a bipartite graph (Figure 2.1). The probabilistic

dependencies present in the code are then represented by the graph connections.

1110000 0] Checknodes
00011100
1900 150000 0 ke b akonee
041070 15050, 1)

Figure 2.1: Tanner graph representation (right) of a sparse matrix (left)

We use belief propagation, an iterative algorithm based on message passing pro-
posed by Pearl [10] to infer the approximate solution. This algorithm is based on local
updates of a set of marginal probabilities and the propagation of beliefs (conditional
probabilities) within the network.

The convergence of these iterations requires a tree-like structure network (which
obviously means the absence of loops in undirected graphs). Indeed, on directed graphs
a node will send to its children a message related to information received from its
parents. In undirected graphs, a node sends to its neighbours a message directly
related to what it receives from these neighbours. This direct feedback might cause
a problem because a node would update its state probability on the basis of its own
previous state.

To avoid this problem, we apply the cavity rule; the message passed by the node n
to the check m is updated regarding all the checks m' other than m and vice versa for
the checks. However the problem is just partially avoided because of the existence of
small loops. Typically, the bipartite graph suffers from a significant number of loops,
but an acceptable assumption is that the network is locally tree-like if there is no short

loops (size: 4 edges) as shown in Figure 2.1.

In the particular case of the absence of short loops, Pearl’s algorithm provides very

good approximation. The negative effect of loops is negligible due to the network size.

14

CHAPTER 2. CURRENT DECODING METHODS

Figure 2.2: Representation of a loop in the bipartite graph (illustrated in Figure 2.1).
Two bit nodes tied with the same two check nodes.

Indeed, when very sparse matrices are used, the probability for a loop in the related
graph in a finite number of generations decays as y/N, where v ~ O(1) [11]. When
applying N — oo, the topology actually converges to a tree-like structure and BP
decoding becomes exact. Moreover, for a finite systems, one can expect that a limited

neighborhood of a node is tree-like.
Belief Propagation Algorithm

At each step of the algorithm we estimate the new posterior probability P(n;|z) of
a codeword’s bit to be at a certain state, given the syndrome vector z.

To simplify things, we call M (n) the set of J checks m in which bit n participates
and reciprocally N(m) the set of K bits n that participate in check m.

For each edge between a node n and a check m we define the following conditional
probabilities(Figure 2.1) :
Imn = P(Xn = 2 | T1zm), (2.1)
and

0, = P2y | Xo=1 [] {gw : o' € N(m)\n}). (2.2)

The message ¢Z, defined in Equation 2.1 provides the probability that X, = z
given all the check nodes of M (n) apart from m. The message 7}, defined in Equation
2.2 provides the probability that the check node z,, is in his actual value given X, = z.

We define as well the posterior probability:
@ = P(Xn =2 | TmeM(n)) (2.3)

15

CHAPTER 2. CURRENT DECODING METHODS

Zj
Figure 2.3: Up: The message Passing process. The arrows show the causal relationships
: the state of the check z; is determine by the sum of incoming source/noise node ;.

Down: The message going from a bit node z; to a check node z; is denoted r;; and the
opposite is denoted g; ;

This probability define the state of the pseudo-decoded word after some iterations of

the algorithm.
We will now describe in detail one iteration of the algorithm:
Initialisation Step

This sets the initial values of the g,’s to the prior value f, (in our case the noise
level f), although this initialisation has no consequence on the algorithm itself. We

run this step just once at first of the algorithm.
Horizontal Step

For the bit node n, we update the associated probabilities that bit n is equal to z(z

is 0 or 1 in our binary case), given the information obtained via checks other than m.

s P H rr. (node update rule), (2.4)
m/eM(n)\m

where ay,, is a normalization constant (such that ¢2,, + ¢r., = 1) and f, the prior.

16

CHAPTER 2. CURRENT DECODING METHODS

Vertical Step

In this step, we update the associated probabilities that the check m is satisfied
if bit n is equal to z and the other bits have a separable distribution given by the
probabilities gp,: n' € N(m) \ n.

A particularly convenient implementation of this method uses forward and back-

ward passes in which products of the differences gy, = ¢l — ¢, are computed. We

1

obtain 67y, = rl, —rl, and the update rule becomes :

T
0r,..

=(-1) [] 6q5. (check update rule) (2.5)

n'€N(m)\n
Finally given that r0, +7.,. = 1, we obtain the updated probability of the given check
equal to : %, = 0.5% (14 (—=1)%67mn)

mn
Validation Step

For each bit, we update the pseudo-posterior probability

q?:?:anf: H Tin) (2.6)

meM(n)

where a,, (such that ¢] + ¢} = 1) is a normalisation constant.

Compute then % such that z, = 1 if g5 > 0.5 and 0 else. The algorithm repeats
horizontal and vertical step until it converges to a stable codeword. Which means that
all the parity checks are satisfied; HX = z then the decoding algorithm halts, and X is

considered as a valid codeword.

There exist two methods for running one complete loop of the algorithm. The
iterative method consists in updating first all the checks and then all the nodes. The
random method consists in randomly updating one node or one check among all the
nodes not yet updated until all of them are updated. The random method appears to
lead to a faster convergence than the iterative one because within the same iteration,
updates are already propagated. This is why we make exclusive use of this method for

running our set of simulations.

17

CHAPTER 2. CURRENT DECODING METHODS
2.2 Limits of Optimal Decoding

Belief propagation appears to be the best decoding process in term of convergence
speed (polynomial time) and performance, it is illustrated in Figure 2.4.

In this picture, the image pixels are considered as the encoded message and the
received vector is corrupted over a binary symmetric flip noise density of 15%; then
at each iteration the best estimate produced by an iterative probabilistic decoder is
presented up to 14 iterations. At the 15th iteration, the guess violates no parity checks,
and the decoder algorithm halts. The decoding is error-free.

(a) Iteration 1 (b)isn2aa (G}l (d)wdlecs (e) ...14...

Figure 2.4: Belief propagation applied to a codeword transmitted through a BSC with
a noise level f = 0.15. After a few iterations we observe a convergence to the correct
solution (the original picture).

The algorithm would produce the exact posterior probabilities of all bits if the
bipartite graph defined by H contained no cycles which is atypical in reality. The
performance of such a decoding scheme is bounded in term of noise level as presented

and studied in further sections.

2.2.1 Shannon’s Bound

Shannon proved a remarkable result [12], that for any channel, there exists a certain
code rate C (the so-called Shannon capacity of the channel) below which codes capable
of achieving perfect decoding exist and above which such codes can not be found. As
the proof was not constructive, we know that codes exist but we’re unable to construct
them. A message encoded at rate R (message information content/codeword length)
up to the channel capacity C can be decoded with a probability of error that decays

exponentially with the message length.

18

CHAPTER 2. CURRENT DECODING METHODS
This theoretically achievable rate is equal, in the case of the BSC channel, to:
C =1- H?(f)! (2'7)

where

Hy(p) = —p - loga(p) — (1 — p) - loga(1 — p) (2.8)
In term of noise, for any channel and a given error correcting code rate R, there exists
a limit noise level above which it is impossible to achieve perfect decoding. And a code
which saturates Shannon’s bound represents the most efficient way of transmitting
data as the length of the transmitted message is the smallest possible for retrieving
perfectly the original data up to the given noise level fg. In the more general case of
biased messages (P(n; = 1) = f,,Vi) and allowing a decoding bit error probability ps,

the maximal code rate R, for a given flip rate noise f, is given by:

_ Hy(fs) - (1 — Hy(f))
i (1 — Ha(ps))

The challenge is to create error-correcting codes that get closer as possible to what

(2.9)

Shannon proved is possible.

2.2.2 Dynamical Transition

So far, some of the most efficient existing error-correcting codes, among which are
LDPC codes, manage to achieve excellent results up to a certain noise limit (obviously
below the Shannon’s bound). This limit is called the dynamical transition in statistical
physics. A second transition is termed thermo-dynamical or critical transition point
fc, defining the theoretically noise limit that still allows perfect retrieval for a given
code. In the case of code of rate R = 1/4 this dynamical transition is situated at around
f = 0.16 when the critical limit which i s close to Shannon limit f, = 0.21. Reach
the dynamical transition is then already a very good result with respect of other error-
correcting codes. The challenge of this project is to push practical decoding scheme

beyond the dynamical transition towards Shannon’s limit.

In order to understand what is happening, we describe the problem schematically
(Figure 2.5). One can notice that, up to the dynamical transition, there exists only

one cluster of solutions where the BP algorithm aims to find the single correct solution

19

CHAPTER 2. CURRENT DECODING METHODS

noise vector, whereas between the dynamical transition and the critical transition there
exists many clusters of potential solutions (all satisfying the parity check equations)
among which the BP aims to find the correct one. The various clusters are disconnected
what makes it difficult to move between clusters by local modifications in search of the
true solution among many suboptimal not stable solutions. As the graph is very large,
it is highly probable that in one part of the graph, BP is induced to converge to one
solution while in other parts it converges to another solution. These different parts
being more or less related to each other, each one will try to “convince” the other to
opt for its solution. This explains why the algorithm generally doesn’t converge in
this area. Beyond the critical transition point, one cannot find the true solution even

theoretically.

Codeword Space I
L)
l I

I

I

T
i I
1]
(] I
1 I
[} I
1 I
L} I
1 I
1 I
1 I
1 I
1 I
L} I
[}]
[} 1
[} |
1 I
L} 1
1 1
[} 1

one cluster of solution

several clusters

of solution
dynamic critical Noise Level
transition transition

Figure 2.5: Representation of the solutions to the equations H - n = z, given the prior.
Up to the dynamical transition: only one cluster of solutions. Between the dynamical
and the critical transition: many cluster of solutions among witch the correct and
several suboptimal incorrect ones. Above the critical transition: no solution to the
problem.

Performance

The simulation results in Figures 2.6 and 2.7 are based on decoding of biased
codewords length M = 1000. Each point represent the average error on 1000 trials with
belief propagation as a function of the noise level. Error is represented as the overlap
between the original noise vector and the decoded one (overlap of 1 means perfectly

correct decoding). We can see on Figure 2.6 that error-free decoding is obtained for

20

CHAPTER 2. CURRENT DECODING METHODS

100% cases up to a certain noise level (dynamical transition) and from then, error starts
increasing. On Figure 2.7, we focus on the area between the dynamical and critical

transition.

1.05 T T T T T T T

1 —o+¢e~oowo¢o¢¢o¢-£{ -

0.95 -
: e :

— T =

=
oo &
en WO

errorbars
(overlap)
[] = =
| a co

T

]

|

0.65 |- b SO

0.6 | | | | | |
0 005 - 01 0I5~ 0.2. 02 .03 035, 04

noise level

Figure 2.6: Overlap between the actual noise vector n and the decoded one 7 for an
LDPC code with K = 4 and C = 3 (therefore R = 1/4). Averages of 200 simulations
of BP for a code word length M=1000. Vertical rows represent standard deviations.

A suboptimal solution obtained for one of these codes is represented as a histogram
in Figure 2.8 of the cavity-magnetisations distribution (also called ferromagnetic solu-
tion) gauged by the initial code word we aim to find out. The points with negative
cavity field values represent the wrong magnetisations with respect to the original code-
word and positive points represent the correct ones. As we can see the proportion of

wrongly decoded bits is much lower than the correct ones.

21

CHAPTER 2. CURRENT DECODING METHODS

1331}»‘} :

0.95 - T =

o0

=
©
|
L
L

errorbars

4

o {H}ﬂmﬂﬂ

0.8 : ‘ :
0.15 0.16 0.17 0.18 0.19 0.2

noise level

Figure 2.7: Zoom in the previous figure on the area of non convergence between the
dynamical and critical transition

600
o8
0%°
500 Fagd :;,
%
400 5
300 5
=]
g :
3200
&
L o
<100

O

0.5 1

0
-1 -0.5

probabilit} distribution

Figure 2.8: Probability distribution histogram for suboptimal solution obtained for
f = 0.2. Parameters are N=1000 R=1/4. Circles correspond to an experimental
histogram obtained by decoding with BP over 1000 random graph constructions.

22

Chapter 3

Improvement to Message Passing

3.1 Free Energy Minimisation

As mentioned earlier (Section 2.2.2), a major problem occurring during the BP is

that convergence, for some reason, is not always obtained.
A bit of Statistical Physics

To understand the concept of free-energy, one can consider a system of N particles,
each of which can take one of a discrete number of states, where the states of the ith
particle are labelled by z;. For example, the atoms in a magnetic crystal have their
states characterised by the spin “up” or “down”. The overall state of the system will be
denoted by the state vector X = zy,...,zy. At each state of the system corresponds a
certain energy E(X). A fundamental result of statistical mechanics is that, in thermal

equilibrium, the probability of a state will be given by Boltzmann Law

p(X) = ﬁe“g“"”, (3.1)

where T is the temperature, and Z(T) is simply a normalisation constant, known as

the partition function:
Z(T) =" e =T (3.2)

XeS
where S is the space of all possible states X of the system.

For the case of a factor graph probability (generalisation of the Tanner graph seen

in Section 2.1) distribution function (see Figure3.1), we suppose that p(X) factors into

23

CHAPTER 3. IMPROVEMENT TO MESSAGE PASSING

a product of functions: p(X) = (1/Z) [[, fa(za). Here a is an index labeling M func-
tions fa, fB, .., fu, where f,(z,) has arguments z, that are some subset of z, ..., Zn.
The factor graph is a bipartite graph that expresses the factorisation structure; it has a
variable node per variable z; and a factor node per function f,, with an edge connecting

variable node i and factor node a if and only if z; is an argument of f,.

KAl X2 X3 X4

Q

A B C

Figure 3.1: A factor graph representing the joint probability distribution
p(21, T2, T3, Ta) = 5 fo(@1, Z2) fB(T1, T2, T3) fo(T4)-

We define the energy E(X) of a state X to be:

M
E(X) = - Infa(a). (3.3)

a=1

The Helmholtz free energy of a system is
Fremhoit: = —TInZ = —InZ (because generally T is set to 1). (3.4)

This free energy is a fundamentally important quantity in statistical mechanics, because
if one calculates the functional dependence of Fierimor: On quantities like a macroscopic
magnetisation field H or temperature 7', then it is easy to compute experimentally

measurable quantities like the response of the system to a variation of H or T

So far, we have described all the coding and decoding process via the Boolean (0,1)
representation. It is convenient to introduce binary variables +1 in order to apply
methods of statistical physics.

The connection between spin systems and error correcting codes, first noted by

Sourlas [13] in 1989, is based on the existence of a simple isomorphism between the

24

CHAPTER 3. IMPROVEMENT TO MESSAGE PASSING

additive Boolean group({0,1},®) and the multiplicative binary group({+1, —1},-) de-
fined by:
85X = (18" (3.5)

where S, X € {+1,—1} and s,z € {0,1}. A parity check bit in a linear code is formed
by a Boolean sum of K bits of the form @;‘;1 s; that can be mapped onto a K-spin

coupling fol Sj-

This new representation is worth using because of the compactness of the cor-
responding equations. For example, one can describe the conditional probabilities

standing for the transmission through a BSC in a simple manner as

1+ prt _ exp[Bart]

2 = 2 2cosh(B,)’

(3.6)

where t and r (€ {—1,+1}) are the transmitted and received message bits respectively,
f the flip probability also known as noise level of the channel and p=1—-2f and g3, =

(%)In[@] (Bn represents the inverse of the temperature in physical representation.)

The second advantage of this binary representation is that it makes the similarity
to Ising spin models enabling one to take advantage of the techniques developed in
statistical physics. By representing the free-energy of the system and trying to minimise

it, one can obtain the update equations for belief propagation.

3.2 Improvements

3.2.1 Prior Biasing

The problem of non-convergence may occur because of a conflict between the prior
constraint over the algorithm and the parity checks satisfaction constraint. Up to
the dynamic transition, this two constraints contribute jointly to reach the correct
solution. The prior (assumption on the noise word density), in our case derived from
the characteristic of the BSC, represents the constraint of maximising the codeword
overlap with the true solution. In statistical physical view of the problem, it represents

a temperature of our system and appear then to be crucial in the BP processing.

25

CHAPTER 3. IMPROVEMENT TO MESSAGE PASSING

The idea is to find out empirically the influence of this prior by biasing it towards a
higher magnetisation during BP iterations providing global information may facilitate
the choice of a better solution. Decreasing this prior will apply a higher constraint over
the algorithm whereas increasing it will relax this constraint (increase the temperature

makes the system more free to variate).

3.2.2 Time Averaging

The time averaging is a very powerful tool proved to reach very good results in many
fields (non linear oscillations, stability analysis among many others). The idea here is
that, if the algorithm does not converge, to compute the message sent over a certain
number of iterations, a time window, and then compute the average messages. Choosing
the time window too long could slow the algorithm without gaining in accuracy, while
too narrow windows would bias the averaging by the short oscillations influence. We
then apply sequential fizing to the system. Basically, it consists in fixing the states
of the nodes which, we suppose, have reached their final state. To do so we consider
the variables which state probability is above a certain threshold and fix them for the
following of the BP. No need to say that the choice of the threshold is essential.

Complete explanation of the algorithm can be found in Appendix B

3.2.3 Expectations

We expect the prior-biasing to give the right direction to belief propagation. This
technique should be applied when it doesn’t happen to converge. The time averaging
combined to sequential fixing should then lead the algorithm to converge to the exact
solution although it might slow the convergence speed.

As we can see in the Figure 3.2, fixing a small proportion of bits in the codewords
to their exact state gives rise to an attraction of the remainder of the bits to their final
exact state.

Using these ideas, we will endeavour in further sections to find empirically the most

efficient way to combine them in order to improve the performance of standard BP.

26

CHAPTER 3. IMPROVEMENT TO MESSAGE PASSING

0.07

'fixing.dat’ u 1:($21000) +
o‘w [- 'o t“

0.05
0.04 ¢
0‘03 | ¥ g +

0.02

proportion of fixed nodes

0.01 ¢

.
R
septt ¢

0 " i L i i i i
0.16 0.17 0.18 0.19 02 021 022 0.23 0.24
noise level

Figure 3.2: Proportion of correctly fixed bits (before running the BP) necessary to reach
the correct solutions in 100% cases, with respect of the noise level. These numbers of
necessary fixed bits have been computed by averaging the values over 1000 randomly
constructed graphs.

27

Chapter 4

Experiments and Results

In this chapter, we describe experiments carried out as part of this project and the
results obtained. In the first section, we present the implementation itself and in the
second one, an overview of the different results reached along the simulations, these

will be interpreted in the final section.

4.1 Implementation

4.1.1 Random Graph Generation

To get a correct study of LDPC codes, one needs to generate a high number of
large and sparse matrices to carry out experiments on. We use generate randomly
low density matrices with uniform weight per column and per row, but we need also to
avoid matrices with short loops (explained in Section 2.1) which means no two columns
have an overlap greater than 1. In term of bipartite graph, if two nodes are tied to the
same pair of checks, then one should allocate to them other checks to remove the short

loop. Exact explanation of the algorithm used can be found in Appendix C.

4.1.2 Belief Propagation Implementation

All the following simulations results are based on 1000 trials, and the obtained data
are processed to obtain statistical values.

The output provided is the overlap between the original and decoded message which

28

CHAPTER 4. EXPERIMENTS AND RESULTS

allows to compute the total bit error mean and the error-bar which represents the
variance obtained from the simulations results. To determine the convergence speed,
we monitor the number of iterations. To know whether the algorithm has converged
or not, we fix a maximum number of iterations.

The exact update rules used in the algorithms can be found in Appendix B.

4.2 Simulations

For each experiment, we generate a random noise vector n, and we compute the
syndrome vector z according to the sparse matrix H such that z = Hn.

We generate random noise vectors such that their density corresponds to the prior
probability f (probability for the word to have a unit element at a specific bit). If
we were to apply the flip probability to each of the bits independently, we would here
introduce variance in the number of unit elements per vector. Instead, we compute the
exact number of unit elements we need in the noise vector and allocate them randomly.
We can then be sure that we get a noise vector with a correct probability, used later in
the decoding process and that no variance is introduced in the results. In order to make
the experiments more relevant, the generation of noise vectors and sparse matrices use

distinct random number generators.

4.2.1 Prior Biasing

The prior used all along the belief propagation process is biased to a lower corruption
rate as explained in Section 3.2.1. We assign it f, = af. The biasing coefficient
a has been determined empirically by minimising the error mean during a training
part. Two methods have been implemented. The first was to fix a to a certain value
during the entire decoding process. The second was to decrease it monotonically during
the decoding process starting from a high value and decreasing dynamically at each
iteration (for example from o = 2 to 1 decreasing of 0.01 after each iteration). The
most efficient method in term of results appears to be the first one. This is the one we
use in the reported simulations.

As we can notice on the graphs (Figure 4.1 and 4.2), biasing the prior does not

29

CHAPTER 4. EXPERIMENTS AND RESULTS

1.05

0.95 -

error
=]
©o
1

0.85 -

0.8 [~

0.75 | | | | 1] |
0.14 015 0.16 017 0.18 019 0.2 0.21

noise level

Figure 4.1: Biasing the prior throughout the BP decoding by a coefficient a (here we
represent o = 0.5 and a = 1.5).

0.95 [~

09 -

error

0.85 -

0.8 -

0.75 | | I | | | I
014 015 016 017 ©.18 019 02 021

noise level

Figure 4.2: Biasing the prior throughout the BP decoding by a coefficient « close to 1
(here we represent a = 0.9 and a = 1.1).

30

CHAPTER 4. EXPERIMENTS AND RESULTS

really over-perform the standard unbiased BP decoding. But another effect is worth
studying. To have a better idea about this effect, we represent the cavity magnetisations
probability distribution (as explained in Section 2.2) for a noise level close enough to the
critical transition to be in the non-convergence area. We took f = 0.17 and f = 0.2and
tried several values for o the prior biasing coefficient for the prior (Figures 4.3 and 4.4).
Notice that for a = 1 the prior f is equal to the original flip rate for the BSC channel.

On these histograms , probabilities are gauged by the original codeword so that
we get probabilities that corresponds to the correct estimate on the positive side and
wrong estimates on the negative side of the abscissae axis. One notices that for a < 1
the probabilities tend to reach 0.5 whereas for a < 1 they tend to go towards 0 or 1.
The latter effect is the most interesting one because, as we will see in the next section
we need the state probabilities to be high enough to be sure of taking the right decision

while fix the nodes value to a certain state.

4.2.2 Time Averaging

Time-averaging, introduced in Section 3.2.2 is a variant of belief propagation which
takes place when the algorithm doesn’t converge to a solution. The #ime window has

been fixed empirically to 40 loops .

4.2.3 Mixing Methods

The best results have been achieved by using both methods. Biasing the prior
throughout the BP iterations combiened with time averaging.

As we can see from this graph (Figure 4.6), the performance of the modified BP
over-perform that of standard BP decoding. The transition point is pushed beyond
the dynamical transition (in this case 0.16) to a little more 0.17. The critical point in

this case is approximately 0.21.

4.3 Interpretations of the results

We would expect to get better decoding results, and get closer to the critical tran-

sition noise level by applying these methods, given the results illustrated in Figure 3.2,

31

CHAPTER 4. EXPERIMENTS AND RESULTS

0.14
012
0.1}
008 | -

0.06 | -

0.04

0.02 +

(a) a = 1.0 (unbiased)

feichchzde
|
£ e

s

Jisialaizk
- 1 1
.isishatk

. BEEReSE

{f) =12 () a=1.5 (h) a=1.7 (i)a=20

Figure 4.3: Histograms for different values of the prior biasing coefficient « for a noise
level f = 0.17 (above the dynamical transition). The probability distribution is gauged
by the original codeword so that we get probabilities that corresponds to the correct
estimate on the positive side and wrong estimates on the negative side of the abscissae
axis.

32

CHAPTER 4. EXPERIMENTS AND RESULTS

0.025

0.02 +

0.015

0.01

0.005 -

(a) @ = 1.0 (unbiased)

R | = e
W BiSTE :l o ; "
Lol || EEES=
(b) @a=0.7 (c) a=0.5 (d)a=03 (e) a=0.1
; = S e :
& el Nk + e
: 595 I =51 S SIS
(f) =12 (g) a=1.5 (h)a=1.7 (i) a=2.0

Figure 4.4: Probability distribution histograms for different values of the prior biasing
coefficient « for a noise level f = 0.2.

33

CHAPTER 4. EXPERIMENTS AND RESULTS

V.. timeaveraging
i standard BP -~

g 0.95 | Yo
g osf o
: 0
2 085} bl
o 0‘8 I 5 .’.. 1
075l
014 015 016 0.7 048 0.19 02 021

noise level

Figure 4.5: BP decoding using time averaging. The threshold for fixing nodes values
after time averaging has been computed empirically and set to 0.9.

! T =", mixed methods ¢
0.98 | ~ % standard BP - 1

0.96 | \
0.94 | \
092 Y
09 } e
0.88 '

0.86 |

0.84 P
082 | Wl 4

decoding error (overlap)

0.8 . : : . ; h
0.14 0.15 0.6 017 018 0.19 02 0.21
noise level

Figure 4.6: Biasing the prior throughout the BP decoding in conjunction with time
averaging as well. The biasing coefficient has been fixed empirically at 0.95 and the
threshold for sequential fizing of nodes values after time averaging is set to 0.9.

34

CHAPTER 4. EXPERIMENTS AND RESULTS

where we can notice that the fact of fixing correctly a small proportion of nodes lead the
BP decoding to the correct codeword. The results so far show a modest improvement
in decoding performance; however, obtaining an improvement on the way between the

dynamical and critical transition points is already an encouraging achievement.

Time averaging on this problem didn’t prove to be as efficient as for other hard
computational problem such as graph colouring [3] where it permitted BP algorithm to
nearly saturate the critical transition. One explanation may be that in other problems
such as graph colouring, there exist many correct solutions, whereas for error correcting
codes, only one true solution exists. This means that during the sequential fizing, only
one wrong fixed bit lead to a complete failure.

Nevertheless, prior biasing helped in reducing fixing problem, although it might

slow the convergence of the algorithm by leaving the system more free to fluctuate.

35

Chapter 5

Parallelisation on a Cluster

Traditionally, software has been written for serial computation: to be executed by
a single Central Processing Unit and through a series of instructions, executed one
after the other. In its simplest sense, parallel programming is the simultaneous use
of multiple compute resources to solve a computational problem in order to save wall

clock (computer clock) time or solve larger problems.

By its nature, the BP algorithm, particularly for very large LDPC codes, seems to
be very suitable for a parallel implementation. In other words, it could be broken apart
into discrete pieces of work that can be solved simultaneously. In the first section, we
present the clusters technology in general and the NCRG facilities in particular. In
the second section, we study how belief propagation can be parallelised and applied

therefore to the cluster computational capacity.

5.1 What is a Cluster

5.1.1 Description

A cluster is an ensemble of off-the-shelf computers integrated by an interconnection
network and operating within a single administrative domain. It consists of separating
computers with no physical shared memory. Processes on different nodes need to

communicate to coordinate computation and transfer data.

36

CHAPTER 5. PARALLELISATION ON A CLUSTER

5.1.2 NCRG Cluster Configuration

The NCRG department has two clusters , one of 24 2-Pentium nodes and a smaller
one of 7 2-AMD processor nodes. We will focus on the former as it is the one reserved
to C programming. It is composed of one master node and 23 computing nodes.

We use then the message passing model which is characterised by the fact that
each node use its own local memory during computation and then node exchange data
through communication by sending and receiving messages. This data transfer usually
requires cooperated operations to be performed by the nodes , for example: a send

operation must have a matching receive operation.

From a programming perspective, message-passing implementations commonly com-
prise a library of subroutines that exist as source code and the programmer has the
responsibility for determining parallelism operations. We commonly use the MPI (Mes-

sage Passing Interface) implemented on our cluster, for message passing programming.

5.2 Belief Propagation Parallelisation

BP decoding is an algorithm based on message passing, as introduced in Section
1.2. It is well-known that as the noise level in a channel increases, the decoding time
(measured in term of algorithm iterations) also increases. As the noise f approaches
the critic transition f,, this decoding time diverges (t &< 1/(f. — f) [5])-

In this section the technical details of our simulations are described.

5.2.1 Implementation

As we can see in the implementation (as described in Section 2.1), this decoding
process consists in a serial of nodes state updates. For different nodes (either bit or
check) the state probability update operations are independent within a single iteration
of the decoding algorithm. The main principle of the parallelisation is the sharing of
graph nodes among the cluster processors so that each one deals with a certain number
of checks and bits, as illustrated in Figure 5.1.

At each iteration, one single processor will update the checks and bits probabilities

37

CHAPTER 5. PARALLELISATION ON A CLUSTER

SINGLE MACHINE

o o T By

MACHINE NODE 1 MACHINE NODE 2 MACHINE NODE 3

.....................

Figure 5.1: Graph nodes divided and distributed among the cluster computing nodes
to have a balanced distribution of tasks .

which it is in charge of. After all the processors have completed their iteration, they
communicate the values they computed to all processors, so that for the next iteration,
they all have the same probabilities for the checks and nodes to be at a certain state.
By doing so, since the complexity per iteration is divided by the number of running

processors, the computational time should be divided by the number of cluster nodes.

5.2.2 Speed Performance

In both cases (single machine and in parallel implementation) the flip rate f (noise
level) was selected as being close enough to the dynamical transition for this code rate
such that the decoding is characterised by relatively long convergence times. We ran
the simulations over 200 different code instances and computed the average wall clock
decoding time in seconds.

We made the choice of fixing the code rate in order to have an accurate comparison
between different codeword sizes. The noise level f has been chosen for the simulations

as 0.18 .

38

CHAPTER 5. PARALLELISATION ON A CLUSTER

Code Size | Rate || Standard BP decoding time (sec.) | Parallelised BP decoding time
1000 1/4 5.702960e-01 7.668980e+00
2000 1/4 1.015597e+00 1.476667e+01
4000 1/4 2.116086e+00 2.318081e+01
8000 1/4 4.274886e+00 5.882426e+01
16000 1/4 8.532149e+00 1.074536e+02
32000 1/4 1.698316e+01 1.711698e+02
64000 1/4 3.373872e+01 4.329622e+02
128000 1/4 6.843001e+-01 7.638526e+02

256000 | 1/4 1.363311e+02 2.370557e+03
512000 1/4 2.732913e+02 6.884423e+-03

Figure 5.2: Values obtained for BP decoding time for a fixed rate and by varying the

code size

We demonstrated (Table 5.2) that the parallel implementation, although expected

to be faster in theory, is much slower than the single machine running one. This for two

reasons. The first reason is simply the high speed of the single machine for decoding.

Second is the time loss related to the inter communication required between the cluster

node during information transfer. Indeed after each iteration of the algorithm, each

process broadcasts all the values it has charged and updated during the iteration. This

data transmission are considerable with respect of the decoding computing time. This

data broadcasting time has been computed and proved to be proportional to the data

size.

39

CHAPTER 5. PARALLELISATION ON A CLUSTER

400
350 | M
300
250
200
150 |
100

sof
£ 0" 500:0001 eiI-OBI .56l+0&e1.-0&.59l+0633-;-063.59.+001-e+06

data size (bytes)

broadcasting time (wall clock seconds)

Figure 5.3: Time spent for sending data measured as number of bytes from the master
node to all the computing nodes. The upper graph has been computed by sending data
to 10 nodes. The lower line is for broadcasting data to 4 nodes.

40

Chapter 6

Conclusions

In this thesis, we carried out an empirical study on the effect of new techniques
inspired by statistical physics principles on belief propagation. We first implemented
the standard belief propagation applied to LDPC decoding problem and checked that

its performance was bounded in term of noise level given the channel model.

We studied then how to apply a variant of this belief propagation called time
averaging, as this variant appeared to achieve very good performance in other graph
problems such as graph colouring. This technique on itself didn’t prove to be efficient
because of the precision needed in error-correcting code problem. We combined this
technique with an other variant of BP called prior biasing which consists in biasing
the prior by a certain coefficient throughout the decoding process. This combination

appeared to reach quite good results and over-perform standard belief propagation.

It would be interesting to study the effect of this new variant of BP decoding
over other types of error-correcting codes such as irregular codes or MN codes. In
this project, we always considered the BP with its standard update rules. It would be
interesting in an other hand to re-think this rules in term of statistical physics by taking
in consideration the fact that the temperature needs to get lower while derivating these

rules.

We have undertaken then to implement a parallelisation of the BP decoding algo-
rithm in term of programming. What did not really appear to be efficient in term of

speed because of inter-communication time loss between the computer nodes.

41

CHAPTER 6. CONCLUSIONS

And finally, one can tell that as long as the theoretical bound in term of noise level
is not achieved, there is still room for improvement and some new decoding algorithm
or even type of error-correcting code are to be found. The fact that we can go above

the dynamical transition gives good hope in this sense.

42

Bibliography

[1] S. Chung, T. J. Richardson, and R. L. Urbanke. Analysis of sum-product decoding

of low-density parity-check codes using a gaussian approximation. 2001.

[2] M. C. Davey. Error-correction using Low-Density Parity-Check Codes. PhD thesis,
University of Cambridge, 1999.

[3] B. Fabre. Algorithm for colouring random graphs. Master’s thesis, Aston Univer-
sity, 2003.

[4] R. G. Gallager. Low Density Parity Check Codes. Number 21 in Research mono-
graph series. MIT Press, Cambridge, Mass., 1963.

[5] I. Kanter and D. Saad. Error-correcting codes that nearly saturate Shannon’s

bound. Physics Review Letters, 83(13):2660-2663, 1999.

[6] M. G. Luby, M. Mitzenmacher, M. A. Shokrollahi, and D. A. Spielman. Improved
low-density parity-check codes using irregular graphs and belief propagation. Sub-
mitted to ISIT98, 1998.

(7] D. J. C. MacKay. Good error-correcting codes based on very sparse matrices. In
Proceedings of 1997 IEEE International Symposium on Information Theory. Ulm,
Germany., page 113, 1997.

(8] D. J. C. MacKay and R. M. Neal. Good codes based on very sparse matrices. In
Colin Boyd, editor, Cryptography and Coding. 5th IMA Conference, number 1025
in Lecture Notes in Computer Science, pages 100-111. Springer, Berlin, 1995.

[9] D. J. C. MacKay and R. M. Neal. Near Shannon limit performance of low density
parity check codes. Electronics Letters, 32(18):1645-1646, August 1996.

43

BIBLIOGRAPHY

[10] J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible

Inference. Morgan Kaufmann, San Mateo, 1988.

[11] T. Richardson and R. Urbanke. The capacity of low-density parity check codes
under message-passing decoding. IEEE Transactions on Information Theory,

47(2):599-618, 2001.

(12] C. Shannon. Mathematical Theory of Communication. Number 21 in Research
monograph series. Bell Sys. Tech., Cambridge, Mass., 1948.

[13] N. Sourlas. Spin-glass models as error-correcting codes. Nature, 339:693-695,
1989.

[14] R. Vicente, D. Saad, and Y. Kabashima. Low Density Parity Check Codes - A
statistical physics perspective. PhD thesis, Aston University, 2002.

[15] J. S. Yedidia, W. T. Freeman, and Y. Weiss. Constructing free energy approxima-
tions and generalized belief propagation algorithms. Technical report, Mitsubishi,
2002. MERL TR-2002-77?

44

Index

Bayesian network, 14
belief propagation, 12, 13, 15, 31, 37, 48
Binary Symmetric Channel, 8
bipartite graph, 11, 14, 24
Tanner graph, 23

cavity rule, 14
cluster, 36

critical transition, 19
dynamical transition, 19
error-correcting codes, 8
free energy, 23

Gallager code, 11

Gaussian Channel, 8
information theory, 7

Low Density Parity Check Codes, 8, 11

sparse matrix, 14, 53

message passing, 11, 15, 48
MN code, 11

parallelisation, 36, 38
prior, 29
prior biasing, 25, 29

prior biasing, see prior

45

sequential fixing, 26, 35, 52

Shannon’s limit, 18

short loop, 14, 28

sparse graph, 28, 53

sparse matrix, see Low Density Parity

Check Codes

Tanner graph, see bipartite graph
time averaging, 26, 31, 51

time window, 31

Appendix A

Notations Used

BP : Belief Propagation algorihtm.

BSC : Binary Symmetric Channel.

e py: bit error The probability that a code message bit differs from the original

transmitted one after decoding. The difference is determined in term of overlap

between the retrieved codeword and the transmitted one.

BER: block error The probability that the decoded message differs from the

original one after decoding.

error-bar Variance among the computed error obtained throughout the process

for fixed values

M (n): set of J checks m in which bit n participates.
N(m): set of K bits n that participate in check m.
M(n) \ m: M(n) apart from n.

N(m) \ n: N(m) apart from m.

¢® = P(X, = 0| r;) represents the pseudo-posterior probability that bit X, is 0,

given the information obtained via all the checks.

¢%. = P(Xn = 0 | rizm) represents the probability that bit X, is 0, given the

information obtained via checks others than check m.

46

APPENDIX A. NOTATIONS USED

e 10 =P(Zn|Xn=0 () {gmw : n' € N(m)\n}) represents the probability of
check Z,, to be satisfied if bit n is considered fixed at 0 and the other bits have

a separable distribution.

47

Appendix B

Belief Propagation Algorithms

B.1 Message-Passing

B.1.1 Message-Passing Algorithm : Random Method

For Nmax iterations

While not {all the checks have their messages updated and
all the nodes have their messages updated} Do
Select randomly a check m among those not yet updated
For all nodes n € N(m) Do
Update its messages rm, (Update—-R())
EndFor

Select randomly a node n among those not yet updated
For all checks m € M(n) Do
Update its messages gmn (Update—Q())
EndFor
EndWhile

If (solution to the decoding is reached) Then
Exit

48

R it

APPENDIX B. BELIEF PROPAGATION ALGORITHMS

Else

Continue

EndIf

EndFor

B.1.2 Message-Passing Algorithm: Iterative Method

For Nmax iterations Do

For all the checks m Do
For all nodes n € N(m) do
Update its messages rmn (Update-R())
EndFor

EndFor

For all the nodes n do
For all checks m € M(n) do
Update its messages ¢mn (Update—Q())
EndFor
EndFor

If (solution reached) Then
exit

Else

continue

EndIf

EndFor

B.2 Functions Detail Algorithm

B.2.1 Initialisation

49

APPENDIX B. BELIEF PROPAGATION ALGORITHMS

For all the nodes n Do
For all their checks m € M(n)
Qmn = fn: the prior probability of node n: P(X, =0)
EndFor
EndFor

B.2.2 Checks Update: Update-R()

This algorithm works for a syndrome vector z and two matrices; one of cavity mag-

netisation @ and one of check satisfaction R.

For all nodes n Do

For all the checks m Do
8¢mn = 2% gmn — 1 (= gmn — dmn)

EndFor

EndFor

Update Check m :

For all the nodes n € N(m) Do

5rmﬂ = (_1)Zm Hn'EN{m]\ﬂ Jan"
Tmn = 0.5 % (1 + 6rpn)
EndFor

B.2.3 Nodes Update: Update-Q()

This algorithm works for a given prior f and two matrices of cavity magnetisation @

and check satisfaction R.

Update node n :

For all the checks m € M(n) Do
Gmn = Cmnfy Hm'EM{n)\m Venn

where oy, is such that ¢%,+¢., =1

50

APPENDIX B. BELIEF PROPAGATION ALGORITHMS

Gn = onfy nmeM(n] Tmn
where o, is such that ¢ +g¢} =1

EndFor

B.2.4 Test Found Solution: Test-Result()

This algorithm works for a given pseudo-posterior probability vector §, and a given e

for determining the convergence.

Create found code £ :

For all n Do
Zn=1 if ¢, <0.5 and 0 otherwise
EndFor

Test of convergence:

For all n
If q.n is stabilised during 5 loops Then
algorithm halts
Else

continue

EndIf

B.2.5 Time Averaging

This algorithm works for a given Nmaz maximum number of iterations above which

the algorithm halts, and a certain time window Tav for averaging the magnetisations.

For Nmax iterations
For Tav iterations

51

APPENDIX B. BELIEF PROPAGATION ALGORITHMS

Run Belief Propagation

Add the pseudo—posterior probabilities
EndFor

Average the pseudo—posterior probabilities

Sequential Fixing

EndFor

B.2.6 Sequential Fixing

This algorithm works for a given threshold and a pseudo-posterior averaged probabili-

ties vector of nodes.

Fix all the nodes which pseudo—posterior probability is above the thresho

If none is found then

fix the highest probability state node value
Endif

92

Appendix C

Graph Generation Detailed
Algorithm

C.1 Random Graph Generation

This algorithm works for a given size for the sparse matrix, K the number of unit

elements per row (sufficient to determine a rate R).

Make a list containing all the available checks

(represented by their location on the graph)

FIRST ALLOCATION

For each node n
Select randomly K checks among those remaining in the list
Allocate them to the node n
Delete these checks from the list

EndFor

LOOP TREATMENT

93

APPENDIX C. GRAPH GENERATION DETAILED ALGORITHM

For each node n
For each node n'#n
If n and n’ have more than one check in common Then
Select randomly a third node n”
Exchange one check with n’ looping one
(such that the loop between n and n’ no longer exists)
EndIf
EndFor
EndFor

54

