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Thesis Summary 

As a brokerage activity, some investment banks provide volume-weighted average price (VWAP) orders 

to their clients. In order to build VWAP trading strategies, one crucial step is to gain knowledge of 

the intraday trading volume patterns as well as to track tick prices for order submissions. This thesis 

describes the deterministic modelling of the volume behaviour coupled with the stochastic modelling 

of the volume dynamics. We also investigate whether we can gain a better insight by using a whole 

sector approach rather than considering just a single stock. Afterwards, we discuss further research 

that could be carried out. 

Keywords: volume-weighted average price trading, financial time series prediction, pattern 

recognition, Bayesian inference, kernel methods.
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Chapter 1 

Introduction 

1.1 Foreword 

This thesis is the report of research work carried out from January to August 2004 at Aston University’s 

Neural Computing Research Group, as part of a Master of Science by Research in Pattern Analysis 

and Neural Networks course. 

All the work has been done in close collaboration with Dr Mehdi Azzouzi (Azzouzi 2004) for the 

account of a leading investment bank in London, and all the research was driven by a real-life problem. 

The goal of the project is to model intraday trading volume patterns and dynamics for it to be 

used to build Volume-Weighted Average Price (VWAP) trading strategies. 

1.2 Volume-weighted average price 

As a brokerage activity, some big investment banks provide volume-weighted average price — commonly 

called VWAP - orders for its clients. Therefore, the aim of the traders is to deal better prices than 

the VWAP over the trading horizon. VWAP can be regarded as a proxy for the real market price of 

the asset considered. 

Following the notation in (Azzouzi 2003a), a given trading period of length N consists of 1,...,.N 

time windows of the same length, measured as the number of seconds or minutes. We define V; as the 

total trading volume, defined by the number of transactions, of a given asset during the time window 

t. Similarly, p denotes the execution price of the security from time ¢ to t+ 1 (if ¢ is sufficiently small 

to represent any transaction, to be more precise). Hence a formal definition of the VWAP is 

N 

VWAPy = Stet Vie, (1a) 
Die Ve 

Currently, VWAP orders are mainly executed manually, although some big investment banks 

claim to have developed VWAP engines. Due to the competitiveness of the business, banks keep 

their processes secret. These supposed automates take advantage of the newest method of achieving
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VWAP, which is to use trading strategies to participate proportionately throughout the trading day, 

trading as intelligently as possible and with minimal market impact. For example, orders can be split 

up for execution over the day in accordance with the historical volume ‘smile’ or pattern. Hence, the 

yolume shape as function of the intraday time has a crucial role in VWAP strategies. 

The commercial value of a VWAP machine must be measured in terms of profit and loss of 

the trading desk. If the machine beats the market, there would be a profit of 3 basis points! per 

order (considering charges of client and transaction costs). To give an idea of this emerging market, 

GoLpMAN Sacus receive VWAP orders for a daily average value of 1.5 billion euros in Europe. 

Assuming the same amount for the US and an execution price of 10 bps, this comes to a total of 750 

million euros per year for the VWAP brokerage activity. 

1.3 Motivation 

A large number of studies deal with financial time series, but usually are concerned with stock prices 

and volatility. Much less attention has been devoted to the investigation of the dynamics and patterns 

of the number of trades of a given asset. 

Knowing that almost no research has been carried out yet concerning trading volume prediction, 

and due to its importance for VWAP trading, the aim of this thesis is to study intraday trading 

volume. 

1.4 High-frequency time series 

Nowadays, datasets are available on the scale of seconds, which represents tens of thousands of trans- 

actions or posted quotes” in a single day, time stamped to the nearest second. It means that any 

statistical model, or theoretical idea, can and must be tested against available data. 

1.4.1 Properties 

High-frequency data have the following characteristics (Engle and Russell 2002): 

irregular temporal spacing: virtually all transaction data are inherently irregularly spaced in time, 

discreteness: price changes must fall on multiples of the smallest allowable price change called a 

‘tick’, 

patterns: for most stock markets volatility, frequency of trades, volume, and spreads all typically 

exhibit a U-shaped pattern over the course of the day; the time between trades tends to be 

shortest just after the opening and just prior to the closing of the market, 

1] basis point (bp) is equal to 0.01%. 
2A quote is a collection of data relative to a buy or @ sell of a security on a stock exchange.
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temporal dependence: high-frequency data tends to exhibit volatility clustering; large price changes 

tend to follow even larger price changes. 

1.4.2 Tick-time models 

Due to the fact that one of the most salient features of high-frequency transaction data is that 

transactions do not occur at regularly spaced time intervals, a large amount of statistical literature 

has been produced studying and applying (marked) point processes. The research community proposed 

the Autoregressive Conditional Duration (ACD) model (Engle and Russell 1998) and variants. Let 

a; = t; — ti-1 be the duration between two bid-ask quotes occurring ‘at times t;-1 and t;. The 

assumption introduced in (Engle and Russell 1998) is that the time dependence in the durations can 

be subsumed in their conditional expectations, ¥; = E[x;|F,-1], in such a way that 2;/E[z;|Fi1] is 

independent and identically distributed (iid), where F;-1 denotes the information set available before 

time t;, which includes at least the past durations. Thus, the ACD model specifies the observed 

duration as 

a = Wei, (1.2) 

where the €; are positive iid random variables. A second equation specifies an autoregressive model* 

for the conditional durations Y,: 

wv. 

  

P - 

= wt) ance t )) Aebirr. (1.3) 
k=l k=l 

Another approach is to aggregate high-frequency data into time series of five-minute intervals, and 

hence to use the widely used Autoregressive Conditional Heteroskedasticity (ARCH) type models first 

introduced by (Engle 1982) for modelling the predictive variance for UK inflation rates. An ARCH 

model with order p(> 1) is defined as 

Ui = Vii, (1.4) 

where ¢; is zero mean unit variance iid random variable, and 

P 
of swt Bushy. (1.5) 

k=l 

Engle was awarded The Bank of Sweden Prize in Economic Sciences in Memory of Alfred Nobel 

2003 “for methods of analyzing economic time series with time-varying volatility (ARCH) 

1.5 Thesis outline 

Chapter 2 We describe the dataset used to carry out the research and its preprocessing, especially 

the outlier detection. 
NEE eae 

3-Phis model is the ACD(p,q) where p and q refer to the order of the lags. 

10
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Chapter 3 Assuming a model combining a deterministic part and stochastic part for intraday volume, 

we review the methods and the models of the deterministic part. The main techniques used are 

splines and we highlight the link between these and Bayesian priors which finally leads us to the 

use of kernel methods, especially Gaussian processes. 

Chapter 4 We tackle the stochastic modelling. We compute residuals from the deterministic fit 

from the previous chapter. We fit the empirical density and evaluate the autocorrelation of 

these residuals. Then, we focus on the one-step ahead prediction of the residuals using leading 

edge techniques in a phase space reconstruction framework. 

Chapter 5 Instead of considering a single stock, we use a whole sector view, such as the UK bank 

sector, in order to gain some insight into the underlying forces that drive the dynamics studied. 

Chapter 6 We end the thesis by summarising the work presented and providing some future direc- 

tions of research. 

Figure 1.1 represents the logical flow of the thesis. 

  

  

  

  

  

  

          
  

Preprocessing 

| Deterministic 
Time-of-day 1 modelling 

estimation , 
| Stochastic 

ee ne modelling 
TT -- —-- fe 

Residual Component ‘ 

prediction analysis | 
' 
:     i eet 

Figure 1.1: Thesis logical flow. 
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Chapter 2 

Datasets and Preprocessing 

Since this research is carried out in an empirical manner, understanding and preprocessing the dataset 

are important. 

2.1 Data description 

Our datasets concern: 

© the forty stocks compounding the French CAC40 index. These stocks are the forty largest French 

firm capitalisations, hence they are expected to be very liquid, 

© seventeen stocks of the French SBF120 index, which is compounded of illiquid stocks, 

¢ ten stocks of the UK bank sector. 

French market consist of 5-minute tick volumes, collected from 8:00 till 16:30 (UK time) during 935 

days from the 4th of January 2000 to the 30th of September 20031. 

Figure 2.1 plots the daily volume and the daily VWAP of different stocks over the period. It 

clearly demonstrates some outliers, examples which did not (or are thought not to have) come from 

the assumed population of examples, which should be discarded as we will see later (see Section 2.2.2). 

Although, the dataset is 5-minute tick frequency, it is possible to generate any volume and VWAP 

5 x N-minute tick frequency time series. This study will stay in a 5-minute tick frequency framework 

since the forecast of interest is under this trading time horizon. 

2.1.1 Summary statistics 

Table 2.1 presents some statistics about the raw data. These statistics are calculated after having 

removed abnormal periods (see Section 2.2.1) of the dataset. 

oe ee 
1Similar periods in the case of the UK market. 

12
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Figure 2.1: Raw volume and daily VWAP of different stocks during the period of our study. 
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Skewness and kurtosis, respectively, are calculated as follows: 

ds eae (2.1) 

Ape ee =a, (2.2) 

with j = E[X] and o? = E[(X — 11)?] the expectation and the variance, respectively, of the random 

variable X. Skewness is a useful measure of the asymmetry of the probability density function (pdf). 

Clearly the skewness is zero for probability densities that are symmetric around their mean. This is 

not the case for this data. Kurtosis is the simplest statistical quantity for indicating the nongaussianity 

of a random variable. Random variables that have a Gaussian distribution. have a zero kurtosis. Here, 

the data clearly has an enormous kurtosis (from 6 up to 38), which reflects the fact that the data 

distribution has a sharper peak and a longer tail? than the Gaussian pdf. 

  
  

  

day #days| py o min max 3 ra 

Alcatel 

Monday 174 8.66 5.20 2.25 37.94 2.08 6.56 

Tuesday 185 11.53 8.77 1.58 84.65 3.99 26.57 

Wednesday 191 12.32 8.85 2.15 83.70 3.65 22.6 

Thursday 193 11.35 6.60 1.94 47.72 186 6.51 

  

  
  

  

Friday 176 11.14 6.79 2.34 52.86 2.18 8.34 

all days 919 11.04 7.49 1.58 84.65 3.39 22.85 

BNP-Paribas 

Monday 174 3.02 1.88 0.47 16.5 3.36 17.43 

Tuesday 185 3.66 1.75 0.94 10.0 1.23 1.35 

Wednesday 191 3.81 180 104 11.0 133 1.83 

Thursday 193 3.84 183 0.85 128 1.55 3.55 

  

  
  

  

Friday 176 3.52 1.70 0.97 9.93 1.30 1.83 

all days 919 3.58 1.81 0.47 16.5 1.73 4.98 

France Télécom 

Monday 174 491 442 062 31.0 3.19 13.02 

Tuesday 186 5.96 4.86 0.89 31.0 2.42 7.80 

Wednesday 191 5.97 4.63 0.84 33.7 2.26 8.09 

Thursday 193 6.01 465 0.98 29.4 2.33 7.13 

  

  
  

  

Friday 176 5.55 4.56 0.93 29.1 2.42 7.32 

all days 919 5.69 4.64 0.62 33.7 2.49 8.41 

Vivendi Universal 

Monday 174 437 53.23 WiO3 197) 2.50. \7246 

Tuesday 186 5.73 5.17 1.03 53.5 4.94 38.41 

Wednesday 191 6.10 5.06 0.98 41.5 3.14 15.01 

Thursday 193 5.58 4.76 1.02 36.0 3.69 17.92 

Friday 176 5.17 3.79 1.03 29.8 2.95 12.84 

all days: 919 5.41 452 0.73 53.5 3.92 25.54   
Table 2.1: Statistics on Alcatel, BNP-Paribas, France-Télécom, Vivendi Universal raw volumes. Vol- 

ume related quantities are expressed in millions of shares. Skewness and kurtosis are dimensionless. 

The daily turnover as a measure of liquidity is shown in Table 2.2, in order to exhibit that the 

stocks we are looking at are very liquid. 
eerie 

2Phis kind of distribution is called supergaussian or leptokurtic. 
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    Stock Daily turnover mean     
Alcatel 243.67 

BNP-Paribas 161.05 

France Télécom 229.60 

Vivendi Universal 220.68 

Table 2.2: Daily turnover statistic (expressed in millions of euros) on different stocks. 

2.2 Preprocessing 

2.2.1 Abnormal periods 

The following two periods must be discarded in the dataset since they are too ‘chaotic’ to deal with: 

auction periods: from 9h00 to 9h02 and from 17h25 to 17h30 (French time) for the French stock 

market (or Euronext), 

triple witching Fridays: third Friday of each quarterly month (March, June, September, Decem- 

ber) when option and future contracts expire simultaneously. 

2.2.2 Outlier detection 

To detect outliers, a trimmed standard deviation bandwidth filter is used on each time window. First, 

wwe discard the 2x a% most extreme values, where a is a threshold, of the dataset. Then, the trimmed 

mean, pi4,, and the trimmed standard deviation, o%, are computed with respect to each time window 

t over the trimmed dataset. Finally, we apply a bandwidth, bw, on the scaled data, XO, 

where xe represents the value on the time window t of the day i and we replace any outliers by 

ui(Xe) & bw -02(X). 
The advantage of using trimmed coefficients is to give a more robust estimate of the statistics, 

which is important due to the large kurtosis of the distribution. 

Figure 2.2 depicts the distribution of data before and after having applied the filter. We clearly 

see the distribution properties that were highlighted in the raw volume statistics (see Table 2.1). Fur- 

thermore, in Figure 2.3, in the distribution of outliers, obviously the outliers are not time-dependent. 

Table 2.3 shows the number of outliers modified with the use of this method. For the rest of the 

thesis, we will use 1% trimmed statistics since too many points are considered to be outliers if we 

increase a. 

a=1% a=5% 
3.31% 6.26% 

3.18% 5.91% 

3.43% 6.47% 

3.30% 6.46% 

Stock 
Alcatel 
BNP-Paribas 
France Télécom 
Vivendi Universal 

  

   

     

Table 2.3: Proportion of outliers with bw = 3 for 5 min tick-time volume. 
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Figure 2.2: Distribution of 5 min raw volume at different hours before and after filtering (bw = 3,a = 

1%) (BNP-Paribas on Mondays). 

on 
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i 

Figure 2.3: Distribution of the outliers by intraday time (bw = 3,a = 1%) (BNP-Paribas on Mondays). 
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2.2.3 Data transformation 

We can also transform the time series (having removed the outliers) in order to obtain better properties. 

The two main possibilities are: 

raw volumes: in other words no transformation, 

relative volumes: given by Vi := 100 x sm with V;, the raw volume. ie 

The use of relative volume is driven by our main interest, which is the study of intraday patterns 

and their effect on the VWAP. Obviously, since the VWAP is a volume-weighted quantity, the formula 

(1.1) still holds with relative volume, Vi, instead of raw volume, Vi. 

2.3 Preliminary statistical tests 

Before moving on, two effects must be studied: 

 day-of-week effect, 

stock effect. 

In order to study these effects, we use the Analysis of Variance (ANOVA) statistical technique. 

ANOVA is a useful tool which helps the user to identify sources of variability from one or more potential 

sources, sometimes referred to as treatments or factors. This method is widely used in industry to help 

identify the sources of potential problems in the production processes and identify whether variation in 

measured output values is due to variability between various manufacturing processes, or within them. 

By varying the factors in a predetermined pattern and analysing the output, one can use statistical 

techniques to make an accurate assessment of the cause of variation in a manufacturing process. 

The one-way ANOVA performs a comparison of the means of a number of replications of experi- 

ments performed where a single input factor is varied at different settings or levels. The object of this 

comparison is to determine the proportion of the variability of the data that is due to the different 

treatment levels or factors as opposed to variability due to random error. 

It has to be remarked that we use the daily volumes as experiments in the ANOVA test, so we 

should not use a normalised measure such as the relative volume since it will be pointless to have all 

treatments equal to 1. 

17
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Stock F-value 
“ACCP.PA | 5.42 — 
AGFP.PA 2.59 
AIRP.PA 3.46 
AVEP.PA 7.30 
AXAF.PA | 4.77 
BNPP.PA 7.52 
BOUY.PA 1.30 
CAPP.PA 4.83 
CARR.PA 8.54 
CASP.PA 4.45 
CGEP.PA 8.32 
DANO.PA | 1.33 
EAUG.PA | 5.18 
EXHO.PA | 6.66 

FTE.PA 2.42 
LAFP.PA 3.17 
LAGA.PA | 7.41 
LVMH.PA | 4.33 
LYOE.PA 4.23 
MICP.PA 5.26 
OREP.PA 6.26 
PERP.PA 3.20 
PEUP.PA 9.04 
PRTP.PA 4.09 
RENA-PA | 6.81 
SASY.PA 5.54 
SCHN.PA 4.22 
SGEF.PA 2.10 
SGOB.PA | 3.34 
SOGN.PA 5.27 
STM.PA 1.05 
TCFP.PA 3.97 
TFFP.PA 7.39 
TOTF.PA 8.44   

Table 2.4: Weekday effect One-Way ANOVA test on CAC40 stocks, the experiments are daily volumes 
(outliers removed with bw = 3,a = 1%). Under a 5% p-value Totes = 2.37) the null hypothesis is 
rejected except for the following stocks: AGFP.PA, BOUY.PA, DANO.PA, SGEF.PA and STM.PA. 

2.3.1 Day-of-week effect 

We performed a one-way ANOVA test with the null hypothesis that all daily means are equal. Table 

2.4 shows the results of the test: the null hypothesis is rejected over the whole week except for five 

stocks with a p-value of 5%. The result seems correct since it looks common to have different trading 

activities for different days. Hence, we have to model each day of the week separately to model raw 

volume. 

2.3.2 Stock effect 

Concerning the stock effect, we are investigating here if the intraday volume is stock dependent. This 

question will be studied in the forthcoming Chapter 5. Loosely speaking, we will try to extract few 

18
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underlying forces that might drive a whole sector. In order to achieve this goal, component analysis 

techniques will be employed, and in particular correlation measures via principal component analysis 

(see Figure 5.2). 

19
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The purpose of this chapter is to estimate the seasonality of the intraday time series, called the 

time-of-day (TOD) function. Then, residuals will be computed from the TOD function and will be 

forecast in a stochastic modelling framework (see Chapter 4.2). 

The TOD function is denoted by y. The goal is to estimate ¢ from the data pairs {t;, Vi, we with 

the following statistical model: 

Y= v(t) +e, (3.1) 

where the random errors €; are zero mean iid. Thus, the problem can be viewed from the perspective 

of function approximation. 

3.1 Splines 

The first method for estimating the TOD function is to fit the widely used spline function class. 
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Definition 1 (Order-M spline). An order-M spline with knots {7; You is a piecewise-polynomial 

of order M that has continuous derivatives up to order M —2. A cubic spline has M = 4. 

It is claimed that cubic splines are the lowest-order spline for which the knot discontinuity is not 

visible to the human eye (Hastie, Tibshirani, and Friedman 2001). Splines of any higher order are 

seldom used, unless one is interested in smooth derivatives. However, since there is an explosion of 

the pointwise variance in a cubic spline model near the boundaries, a natural cubic spline is used since 

jt adds additional constraints, namely that the function is linear beyond the boundary knots. 

The number of knots and their placement is determined in an ad hoc way by placing one knot each 

hour and extra knots at the following active periods: 

opening of the domestic market, 

opening of the US market, 

ending of the domestic market. 

‘As far as it concerns the data, since multiple realisations of the volume time series are available, 

we generate an artificial time series over a single day by averaging with respect to each time window 

over all days available; this is defined as the cross-sectional average volume V: 

d el Vea (3.2) 
kel 

where d is the total number of days. Nevertheless, if the fitting is performed directly, the TOD 

estimate will obviously be very bumpy due to the nature of the financial data, and since the main 

interest here is a smooth seasonality estimate, ad hoc pre-smoothing is applied. This is achieved using 

a two-sided moving average at each knot, thus the following value is assigned to each knot 74: 

r 
A 1 i 

Ve opt 2m (3.3) 

  

where T' is the moving average window size. This parameter directly impacts the bias-variance trade- 

off of the model and consequently its generalisation’. This approach was conducted by (Azzouzi 

2003b). 

Since, overall, the cross-validation? (CV) curve (see Appendix C.1) is approximately unbiased as 

an estimate of the prediction error curve, E [(% = er())’], 5-fold CV will be used for tuning each 

empirical parameter. Here the moving average window size T has an additional constraint which is 

to be a multiple of the time series tick frequency (5 minutes in general). 

Table 3.1 presents the window sizes obtained. We can see that the time covered by a window, 

2T +1, is between 0.5 to 1 lag between two consecutive knots. This shows that the characteristic time 

for the data is half an hour. 
es ee oie see eee eee 

1Phe ability to infer the correct structure from examples. 

2A method of evaluating parameters by dividing the training set into several parts, and in turn using one part to 

test the procedure fitted to the remaining parts. 
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Figure 3.1 depicts the fitting of the estimated TOD function by this method for each day of the 

week. It is clear that the estimate follows the well-known U-shape with a bump at 15.00, which is 

the knot just after the opening of the US market. However, this estimate does not capture the peak, 

especially for Thursdays and Fridays, at 13.30, where it seems to reflect the characteristic of the end 

of the week just before the opening of the US market. 

One major drawback of this method is that, actually, the smoothing has been performed twice, 

once by moving average technique and then by cubic spline interpolation. Also, the moving average 

window can only be a multiple of the tick-time frequency. This is a limitation since the search of the 

optimal smoothing parameter is reduced to few discrete values and not a-whole interval. 

Monday 

Se ‘ a | 2.5 
Tuesday 

       ati   5 J 5 
805 935 1115 1255 1435 1620 805 1115 1255 1435 1620 

Wednesday Thursday 

   
  

0.5 ese 0.5 : 
805 935 1115 1255 1435 1620 805 935 1115 1255 1435 1620 

Friday No day of the week effect 

25 Serene eae anemone tea 25 

  

  

    

  

  

0.5, , : 0.5 
805 935 1115 1255 1435 1620 805 935 1115 1255 1435 1620 

Figure 3.1: BNP-Paribas time of day estimate using moving average and cubic splines. The histograms 

represent the whole relative volume dataset.The stars correspond to the knots. 

3.2 Smoothing splines 

Seeking for a more general approach rather than the ad hoc method presented in section 3.1, the 

smoothing spline model arises. This spline based method avoids the knot selection problem completely 

by using a maximal set of knots, where all ¢,’s are knots. The complexity of the fit is controlled by 
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regularisation®. 

Definition 2. The smoothing (cubic) spline function is defined as the solution of the following vari- 

ational problem: among all functions, f, in the Hilbert space, Wo, of functions with continuous first 

derivatives and squared integrable second derivatives, find one that minimises the penalised residual 

sum of squares, 
N 

Yow sey? +a f £70? ae, (3.4) 
i=l 

where \ > 0 is a fired smoothing parameter. 

The first term measures closeness of fit to the data, while the second term penalises curvature in 

the function. ) establishes a tradeoff between the two. Two special cases are: 

=0: f can be any function that interpolates the data, 

=o: the simple least square fit, since no second derivative can be tolerated. 

The smoothing parameter A plays the same role as the moving average window of size T in section 

3.1, and it is also typically chosen by minimising a CV criterion such as the 5-fold one. The numerical 

minimisation procedure was achieved using an iterated simple dichotomy (on the interval [0, 1]). This 

naive dissection technique should be improved using the golden section method. 

Computational considerations for splines are given in Appendix A. 

Table 3.1 presents the regularisation constants we obtain. Obviously there are completely different 

behaviours depending on the day of the week. Monday is smooth with a huge corresponding A (= 10%) 

and the rest of the week is generally very rough (A + 10-?). This shows that, mostly, the volume 

moves sharply against time. Simulation results on three other liquid stocks results can be found in 

Appendix D, in general we found a very small value of ) for all weekdays. Only BNP-Paribas exhibits 

a ‘smooth Monday’. 

  

All i 
Monday 25 1.8x 10° 

‘Tuesday 15 2.4x 107! 
Wednesday | 30 22:7 

Thursday 15 7.9x 107? 

Friday 15 3.5x 107? 
Witch 30 1.6 x 107? 

Table 3.1: Regularisation constants obtained by 5-fold cross-validation (BNP-Paribas relative volume). 

Figure 3.2 depicts the fitting of the TOD function by this method for each day of the week. The 

curves are mainly quite rough and, compared to the fitting by the ‘moving average’ method, this fit 

seems to capture the dynamics of the volume better. For example, each peak in the data is well 

captured. 
6 

3A class of methods of avoiding over-fitting to the training set by penalising the fit by a measure of ‘smoothness’ of 

the fitted function. 
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Figure 3.2: BNP-Paribas time of day estimate using cubic smoothing splines. The histograms represent 

the whole relative volume dataset. 
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By comparing the normalised Root Mean Squared (RMS) error, the smoothing spline performs 

slightly better than the moving average cubic spline (Table 3.2). Indeed, it is clear that spline-based 

methods outperform a naive mean prediction’. 

Thus, we can say that after all, the moving average cubic spline is a good method, but as a 

benchmark and a more principled way to handle the problem the smoothing spline is a better approach. 

3.3 Bayesian regularisation 

Knowing that cross-validation (CV) method is noisy, it is worth investigating the use of a Bayesian 

method which allows us to optimise regularisation constants on-line, where the estimates of regulari- 

sation constants are adjusted after each partial optimisation of the model parameters. 

A general class of regularisation problem has the form 

N 

argmin {e L(vis f(@1)) + sai] : (3.5) 

where L is a loss function, 2 is a penalty functional, and H is a space of function on which Q(F] is 

defined. 

This estimation method can be interpreted as a Bayesian method by identifying the prior for the 

function f as 

P(f\a) x exp {—a2[f]} (3.6) 

and the conditional density of the data measurement D, assuming independent (canonical) noise values 

6 ~N(0,0 a) as N 

P(D| feo 8) « exp {- YL, sate} j (3.7) 
i=l 

where 6 = 1/02. Viewed as a function of the parameters, w, and not of the observations, D, it follows 

L(w) = p(D| fw, 8) which corresponds to the likelihood function. 

Given this interpretation, the functional we wish to minimise in (3.5) is equal to the negative 

logarithm of the posterior probability, p(fw|D, a, 8), with an additive constant, and the estimation 

procedure can be interpreted as a Bayesian maximum a posteriori (MAP) estimate. 

This Bayesian optimisation of model control parameters has four important advantages (MacKay 

2003): 

1, no test set or validation set is involved, so all available training data can be devoted to both 

model fitting and model comparison; 

2. regularisation constants can be optimised simultaneously with the optimisation of ordinary 

model parameters; 

3. the Bayesian objective function is not noisy, in contrast to a CV measure; 

see ee ee 
4For a mean prediction, the normalised RMS error is obviously 1. 
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4. the gradient of the evidence with respect to the control parameters can be evaluated, making it 

possible to simultaneously optimise a large number of control parameters. 

This perspective also gives us an automatic method for inferring the hyperparameters , a and fi. 

Assuming we have only a weak prior knowledge about the noise level and the smoothness of the 

interpolant, the evidence framework (see Section 4.2.3) optimises the constants a and (7 by finding 

the maximum of the evidence for a and , p(D|a, 8). 

3.4 Gaussian processes 

Gaussian processes (GP) are based on the ‘prior’ assumption that adjacent observations should convey 

information about each other, that is to say the idea of GP modelling is to place a prior p(f) directly 

on the space of functions, without parameterising f. 

Just as a Gaussian distribution is fully specified by its mean and a covariance matrix, a GP is 

specified by a mean and a covariance function. 

Definition 3 (Gaussian processes). Denote by t(x) a stochastic process parameterised by x € x (x 

is an arbitrary index set). Then t(a) is a Gaussian process if for any m € Noand {21,...-,tm} GX, 

the random variables (t(21);-..,t(tm)) are normally distributed. 

3.4.1 RKHS regularisation 

Here, the duality between reproducing kernel Hilbert (RKHS) spaces and GPs is explained. For more 

details see (Hastie, Tibshirani, and Friedman 2001). 

Considering a penalty functional, ©, there exists a (positive definite) kernel K such that 

Of] = I Flue» (3.8) 

where Hx is the RKHS with reproducing kernel K. Then, by Mercer's theorem (see appendix B), K 

has an eigen-expansion 

K(2,2') = wor (z)bvl2!), (3.9) 
v21 

with 7, > 0 and 0,572 < co. Thus, by definition the norm induced by K is 

2 

WFllbuc =y# <00, (3.10) 
wi” 

with fy = (f,¢v) the Fourier coefficients of f. 

Hence, (3.5) can be rewritten: 

N 

i Lyi f(s) + AllFllFee | + 3.11 arg yin y (yes Fes) + MIS Pex (3.11) 

Tt can be shown that the solution of this minimisation has the form 

N 

f(z) = oak (2,21), (3.12) 
i=1 
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and hence, using the reproducing property of Hk, 

N N 

AF] = OY K (wi zs) ava. (3.13) 
i=1j=1 

Finally, it follows that the regularisation prior is interpreted as a realisation of a zero-mean sta- 

tionary GP with prior covariance K, 

(fA) « exp{—Aa? Ka} (3.14) 

In particular, spline priors are GPs. To have a more unified theoretical way to conduct modelling, 

for the remainder of the thesis, kernel methods will be used, especially GPs. 

3.4.2 Curve-fitting with Gaussian processes 

Since our model is a Gaussian process, the conditional distribution of a prediction, tv41, at a new 

input given the training data, tw, p(tw+alty), is also Gaussian and completely specified by its mean 

and variance. We distinguish between different sizes of covariance matrix K with a subscript, such 

that Ky 41 is the (N +1) x (N +1) covariance matrix for the vector ty41 = (t1,---,tw41)" (following 

the notations in (MacKay 2003)). Then the matrix Ky. can be partitioned as follows: 

Ky k 
na nee ee (3.15) 

kT Ok 

The predictive mean and covariance at the new point are given by 

tna: = kT Ky'tn, (3.16) 

&—k' Ky’ k- (3.17) Il 2 
Fina 

GP fitting in Figure 3.3 captures the bumps of the data more smoothly, especially on Thursdays 

and Fridays. 

Considering the RMS error in Table 3.2, the GP fit gives similar results as the smoothing spline 

fitting, which can be explained by the equivalence of the two models in a Bayesian framework as 

shown before. 

Also, the GP fit presents small error bars, which means that the prediction of the GP is confident 

near the data. To remind the reader, the data is the cross-sectional average volume, that is to say 

just one artificial day. 

3.4.3 Kernel design 

The predictions produced by Gaussian processes depend entirely on the covariance matrix, K. We 

implicitly assumed that the covariance function was known. We now discuss the types of covariance 

functions one might choose to define K, and how we can automate the selection of the covariance 

function parameters in response to the data. 
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Figure 3.3: BNP-Paribas time of day estimate using Gaussian processes. The histograms represent 

the whole relative volume dataset. 
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Choice of the covariance function 

The rational quadratic covariance function is given by 

O(x,2!) = (1+ (e@-2')"W(e-2"'))”, (3.18) 

where W is positive definite. Typically, W is a diagonal matrix with length scale parameter w; for 

each dimension. : 

The prior knowledge, a smooth TOD function estimate, is encoded in this covariance function. The 

motivation of this choice is that this function has an important feature, which is that the smoothness of 

the process can be regulated directly via v, by controlling the rate of decay of the covariance function. 

Larger values of v give a faster decay and hence a rougher process. 

Furthermore, in practice a variance parameter, vo > 0, for vertical scaling and an offset parameter, 

vp > 0, which is the uncertainty of a bias, are used. Therefore instead of C' one uses pC + vp. 

Learning the kernel 

Let us assume that a form of covariance function has been chosen, but that it depends on undetermined 

hyperparameters @. We would like to earn’ these hyperparameters from the data. It is, once again, 

a complexity control problem, one that is solved by the Bayesian Occam’s razor® (MacKay 2003). 

Ideally we would like to define a prior distribution on the hyperparameters and integrate over ther 

in order to make our predictions. But this integral is usually intractable. We can either approximate 

the integral using the most probable values of hyperparameters or perform the integration over 0 

numerically using Monte-Carlo methods. In both cases, to implement these approaches efficiently, the 

gradient of the log-likelihood should be evaluated: 

oe 1 _, 0K, 1 _, 0K; i: 

B= (a Gee) + SEHR ag 8) 

Approximate inference and learning One of the most important issues concerning GPs is the 

computational cost. In fact, prediction and evaluation of the gradient of the log-likelihood requires 

the evaluation of K~!, where K := [C(ai, 25) Mer is the covariance matrix of the training data. 

Any exact inversion method (such as Cholesky decomposition, LU decomposition or Gauss-Jordan 

elimination) has an associated cost of order O(N*) and thus the cost of these direct methods becomes 

prohibitive when the number of data points, JV, is greater than around 1000. 

Sparse approximations to GP inference called sparse on-line Gaussian processes were developed in 

(Csaté and Opper 2002). While the original application was online learning, they can be understood 

as a ‘sparsification’ of a special case of the expected propagation (EP) algorithm for Gaussian fields. 

The sparse inference approximations reduce this time scaling to O(Nd?) with adjustable d < N. 

Another sparse scheme is the relevance vector machine (RVM) (Tipping 2001) which will be seen later 

in Section 3.5. 
Se ee oe ee 

Tif several explanations are compatible with a set of observation, Occam’s razor advises us to buy the simplest. 
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3.5 Sparse Bayesian learning 

Here, the model to be focused on is the relevance vector machine (RVM) (Tipping 2001; Bishop and 

Tipping 2003), which is a Bayesian framework for regression with sparsity properties. We adopt a 

fully probabilistic framework and introduce a prior over the model weights governed by a set of hy- 

perparameters, one associated with each weight, whose most probable values are iteratively estimated 

from the data. Sparsity is achieved because the posterior distributions of many of the weights are 

sharply (indeed infinitely) peaked around zero. We term those training vectors associated with the 

remaining non-zero weights ‘relevance’ vectors, in deference to the principle of automatic relevance 

determination which motivates this approach (MacKay 1995). i 

The most compelling feature of the RVM for the TOD function estimation problem is to have a 

view of the sparsity /relevance of the time-of-day against the traded volume. 

3.5.1 Model specification 

Given a data set of input-target pairs {2;,t;}//,, it is assumed that the targets are samples from a 

model with an additive noise process given by a zero-mean Gaussian with variance 0”, leading to 

ras 2 

p(t|w, 02) = (20?) -*/? exp {er}, (3.20) 

with y(z) = D4, wdi(2). 
We encode a preference for smoother functions by using a Gaussian distribution over w with a 

separate hyperparameter (adjustable variance) for each parameter in the model 

M 

p(wle) = [] V(wil0, a7). (3.21) 
i=l 

To complete the specification of this hierarchical prior, we must define hyperpriors over the scaling 

parameters a and g?. Suitable parameters for these are given by Gamma distributions: 

M 

pa) = J] 9(aila,d), (3.22) 
i=l 

p(B) = G(la,b), (3.23) 

with 6 = 1/0? and where G(zla,b) = pigex*te7*/*. Taye 

3.5.2 Inference 

Given a, the posterior parameter distribution is Gaussian and given via Bayes’ tule as 

p(wlt, a) = N(w|p, 2) with 

(A+o77@'@)"}, (3.24) 

o 7 S6"t, (3.25) 

M " 

z 
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and A defined as diag(a;,...,am). Sparse Bayesian learning can then be reformulated as a type- 

II maximum likelihood procedure, in that the objective is to maximise the marginal likelihood, or 

equivalently, its logarithm with respect to the hyperparameters a: 

a. 
log p(t\a, 0?) = —5 (N log 2x + log|C| + tC), (3.26) 

with C =07I + A 8" (Tipping 2001). 

3.5.3 Relevance vector regression in action 

To apply the RVM model, the specification of the design matrix, ®, is required. One way to use the 

preceding results is to employ the kernel K ‘learnt’ in Section 3.4.3 as basis functions ¢; such that 

; = K(-,2:). 

Figure 3.4 depicts the fit of the RVM. This fit is not much better than the GP considering the 

RMS error (Table 3.2), and the improvement is insignificant. 
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Figure 3.4: BNP-Paribas time of day estimate using the relevance vector machine. The histograms 

represent the whole relative volume dataset.The circled points correspond to the relevance vectors. 

Concerning sparsity, the plot shows the relevant time points occurring over the day: one or two 

points in the morning (8:05 and sometimes 10:15) and around six points every half an hour from 13:00. 
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It has also to be pointed that for some certain stocks (Tables D.4 and D.8), almost all Fridays’ time 

points are found out as relevant. This behaviour cannot be simply explained, although Fridays have 

a much more complex behaviour than the other weekdays. 

This result shows the importance of the opening of the US market at 14:30 to the end of the day. 

Day | MA Smooth GP. RVM__ RBF 

Monday 0.8275 0.8282 0.8237 0.8247 0.8280 

Tuesday 0.8553 0.8495 0.8537 0.8531 0.8629 

Wednesday | 0.8718 0.8695 0.8697 0.8690 0.8718 

Thursday | 0.8608 0.8532 0.8565 0.8580 0.8576 

Friday 0.8862 0.8709 0.8764 0.8761 1.2892 

Table 3.2: RMSE on the time-of-day function on the testing set (BNP-Paribas relative volume). 

3.6 Training with multiple days 

The motivation here is to investigate whether the use of the cross-sectional average volume instead of 

the multiple realisations of the daily volume time series leads to a loss of information. 

Due to the problem of scaling size in dealing with multiple days, kernel methods are intractable 

since the computational cost will be multiplied by the cube® of the number of days in the training 

set. An alternative is to recall, that the inputs of the training set are always the same, that is to say 

the time points over the day at a 5-minute tick frequency. Therefore, since the covariance matrix in 

GPs only involves input training data, with some block design and linear algebra, we should be able 

to devise a less costly model. 

An alternative and simpler approach is to use radial basis functions (RBF). Training is very fast 

with this model, using an error function quadratic in the weights. More details about the use of the 

RBF network will be given in Section 4.2.3. It has to be pointed out that RBF is also a solution of the 

regularisation problem (3.5) as for example the smoothing spline. (Girosi, Jones, and Poggio 1995) 

describe a quite general penalty of the form”? 

_f for ainl= [ Ge) ds, (3.27) 

for some positive symmetric function G that falls off to zero as ||s|| + 00. Here the tilde denotes Fourier 

transformation, and it turns out that G is the Fourier transform of the basis function g(||2 — 44i|l)- 

‘The close link with GP is that using a covariance function C such that C(x,2’) = g(d(a,2")), 

where d is a metric on the input space, leads to a mapping of the following form 

M 

u(x) = >) wje;(), (3.28) 
j=0 

with @ defined by the empirical kernel map with respect to the training patterns. 

Soe ee Se ee ee 
6his is due to a matrix inversion. 
7The idea is that 1/G increases the penalty for high-frequency components of f. 
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Then, we choose g(r) = r?log(r), the thin plate spline function, an unbounded and non pos- 

itive definite basis function that has a good theoretical motivation from the domain of functional 

interpolation (Lowe 1995). 

In addition, Bayesian techniques are used to compute the predictive distribution 

P(y|z*,D) = , p(y|z*,w)p(w|D) dw, (3.29) 

of a new input, x*, in order to take into account uncertainty about parameters estimated from the 

data. Thus error bars of our prediction can be provided using the variance of the distribution. This 

approach is carried out using an approximation of the integral via the evidence procedure (see Section 

4.2.3). 

Figure 3.5 shows that the prediction using all data is, sensibly, the same as considering a single day 

with cross-sectional average volume. However, the error bars (one standard deviation) are enormous, 

which means that there is significant uncertainty in the fitted parameters. Furthermore, this figure 

depicts error bars being negative, which reminds us that the Gaussian noise model is not the right 

‘one, since volume is a positive quantity. 

Truro 

  

  

      

  

  eG es oe Te 1s vs E20 

Figure 3.5: BNP-Paribas time of day estimate on Thursdays using an RBF network (9 hidden units). 

The histograms represent the whole relative volume dataset. The dashed lines represent one standard 

deviation error bars. The dash-dotted line represents the corresponding smoothing spline fit. 

3.7 Issues 

‘We have seen that the smoothing spline estimate was a good estimate of the TOD function and we 

have introduced it in a Bayesian framework which gives us more insight in the modelling, although it 

does not improve the fitting significantly. Recalling that the posterior, from Bayes’ theorem, describes 

our knowledge of the parameters once we have combined the observations with our prior belief of 

the parameters. Therefore, we could explain the fact that the Bayesian perspective did not achieve 

significantly better fit by saying that the posterior ‘update’ was not successful and ‘remained’ as the 
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likelihood. In other words, the maximum a posteriori (MAP) estimator remained as a maximum 

likelihood estimate. 

Since we obtained with huge error bars concerning multiple days prediction, one important issue 

to work further on is robust regression with a non-Gaussian noise model, for example a Student-t 

noise (Tipping and Lawrence 2003). This kind of model is expected to have a better generalisation, 

and of course, smaller error bars. 
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CHAPTER 4. STOCHASTIC MODELLING 

The purpose of this chapter is to convey the stochastic modelling of the residuals computed by 

removing the time-of-day seasonality of the time series. First, the residual distribution is studied, 

then prediction is tackled. 

4.1 Residual analysis 

Here, we investigate the residuals, rz, of the estimated time-of-day function, ¢, either multiplicative, 

t= we (ratios), or additive, r = Vi — Gt (differences). 

More precisely, we will focus on, the empirical probability density function of the residuals and 

the autocorrelation structure of the residual time series. 

Since our aim is to predict the residuals, this is a preliminary study, for example in order to 

investigate which noise model to employ. 

4.1.1 Properties 

First, by construction, the distribution presents a high peak at zero and one for differences and ratios 

respectively. Furthermore, the distributions exhibit fat tails and fast decay in both cases. All of these 

features are encountered regardless of which day of week is considered. 

Table 4.1 presents summary statistics on the residuals. The high kurtosis and the skewness confirm 

the features already seen and discussed in Section 2.1.1. 

Thus, the distributions are clearly non-normal and a possible way to observe departures from 

normality is to use a quantile-quantile (QQ) plot!. A QQ plot is a scatter plot of the empirical 

quantiles against theoretical quantiles. Obviously, here, the theoretical quantiles used are those from 

a normal distribution. 

Figure 4.1 shows that the departure from the normal distribution is very significant. However, this 

behaviour is not present to the same degree for small residual values, that is to say, less than zero and 

one respectively for differences and ratios 

In summary, the residuals have an asymmetric heavy-tailed distribution. An interpretation of these 

empirical results could be that the deterministic models we used for modelling the intraday volume 

were fairly good in general, except for rare events, which seem hard to capture in a deterministic way. 

The aim of the stochastic models we are going to build is to detect these kind of events in a more 

powerful manner. 

4.1.2 Density estimation 

For practical reasons, we will use residuals computed from smoothing spline fitting on relative volumes, 

since residuals from raw and relative volume have the same patterns. Our aim is to infer the parameters 

of the densities used for fitting. 
a 

1An a-quantile of a probability is a value x such that Pr(X <z) =a. 
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day [i # o min max As Ma 

Alcatel 

Monday 0.000 0.772 -1.921 8.580 2.309 10.681 

Tuesday -0.000 0.784 -1.937 9.054 2.285 10.195 

Wednesday | 0.000 0.759 -1.820 10.968 2.386 12.196 

Thursday -0.000 0.786 -1.981 15.423 2.956 24.846 

Friday 0.000 0.799 -1.937 12.891 2.803 17.776 

BNP-Paribas 

Monday 0.000 0.813 -2.184 9.061 2.367 11.172 

Tuesday -0.000 0.811 -2.338 17.355 2.809 21.430 

Wednesday | -0.000 0.787 -1.917 9.518 2.247 9.370 

Thursday 0.000 0.804 343 8.988 2.454 11.817 

Friday 0.000 0.818 -2.316 13.407 2.863 19.575 

France Télécom 

Monday 70.000 0.842 -2.300 12.134 3.131 22.889 

‘Tuesday -0.000 0.814 -2.128 12.479 2.945 20.018 

Wednesday | 0.000 0.821 -2.255 13.922 2.987 20.702 

Thursday 0.000 0.855 -2.510 23.758 3.792 46.347 

Friday 0.000 0.866 -2.116 16.325 3.614 31.383 

Vivendi Universal 

Monday 70.000 0.811 -3.281 10.781 2.707 17.228 

Tuesday 0.000 0.831 -2.490 11.921 2.874 16.415 

Wednesday | -0.000 0.822 -2.259 13.651 3.106 21.769 

Thursday -0.000 0.818 -2.677 10.497 2.794 16.009 

Friday 0.000. 0.839 -3.016 15.242 3.026 22.369 

  

   

  

  
Table 4.1: Statistics on Alcatel, BNP-Paribas, France-Télécom, Vivendi Universal additive residuals. 

  

  

(a) Additive residuals (b) Multiplicative residuals 

Figure 4.1: QQ plots of BNP-Paribas residuals on Thursdays. z-axis corresponds to theoretical 

quantiles, y-axis to empirical ones. 
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Multiplicative residuals 

Using multiplicative residuals, it is natural to use the Gamma density: 

G(zla,b) =T(a)“10-¢2*1e-**, (4.1) 

and the Weibull density: 

W(cla,b) = abr*te-*", (4.2) 

to fit the empirical distribution. 

Inference on the Gamma distribution parameters is achieved using a moment-matching technique, 

and maximum likelihood estimation is used for the Weibull distribution parameters. 

Figure 4.2(a) shows that the Gamma distribution misses the fit completely. The Weibull fit is 

better, although it is still very poor between residual values of 0 and 1. 

Additive residuals 

Additive residuals are not restricted to be positive. Hence it is sensible to use semi-parametric models 

such as a Gaussian mixture model (GMM): 

P(x) = > PWN (e|Mi, 02), (4.3) 
i=1 

with the following constraints on the mixing coefficients P(i): }7;_, P(i) = 1 and 0 < P(i) <1. 

GMMs are universal approximators, in that they can model any density function arbitrarily closely 

provided that they contain enough components. 

Gaussian components are fitted by maximum likelihood using a specialised method, known as the 

expectation-maximisation, or EM, algorithm (Bishop 1995). 

Figure 4.2(b) depicts that GMM with two centres fits reasonably well and with three centres it 

‘sticks’ to the data very well. 

4.1.3 Autocorrelation structure 

To investigate the autocorrelation of the residual time series, we evaluate the partial autocorrelation 

function (PACF) rather than the full autocorrelation function in order to have a more robust measure 

since the PACF removes the effect of shorter lag autocorrelation from the correlation estimate at 

longer lags. 

Definition 4 (Partial autocorrelation function). The partial autocorrelation function is defined 

as % = Corr(X1, X2) and 

my = Corr(Ryp2,...,k» Repija,....k) for k > 2, (4.4) 

where Ryj,...,k 18 the residual from the linear regression of Xj on (X2,...,Xx)- 
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(a) Gamma (dashed line) and Weibull (solid (b) GMM with 2 centres (dashed line) and 3 

line). €(G) = 0.9910, €(W) = 0.9914. centres (solid line) with spherical covariance. 

&(GMMz) = 0.96, &(GMMs) = 0.93. 

Figure 4.2: Density fits on multiplicative and additive residuals on BNP-Paribas on Thursdays (raw 

yolumes). @ denotes the negative log likelihood of the model per data point. 
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(a) Additive residuals. (b) Multiplicative residuals. 

Figure 4.3: Partial autocorrelation plot of Thursdays residuals of BNP-Paribas. The dashed lines give 

the pointwise acceptance region for testing the null hypothesis, 74 = 0, at the 5% significance level. 
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Figure 4.3 displays the PACF estimates. Tthe plot cuts around the fifth lag. Hence, this plot 

suggests the use of an autoregressive model as we shall see in the next chapter. 

Also, the same PACF plot is obtained for all day of the week so it is legitimate to assume that the 

linear structure of the residuals is day-of-week independent. 

4.2 Prediction 

The goal of this section is to achieve the one-step ahead prediction of the residuals. This prediction 

task is important for VWAP trading since, usually, traders receive orders that must be filled over a 

trading horizon, hence knowing the volume dynamics is crucial. 

4.2.1 Delay embedding technique 

Definition 5 (Embedding). An embedding of a manifold, M, is a smooth? diffeomorphism, 

W:M+ U(M) CU, such that V(M) is a sub-manifold of U. 

Definition 6 (Delay map). A delay map Fr,s,, : M ++ R™ of dimension m is defined by: 

Frar(@n) = [s(@n), 8(F" (@n)), +++, 8(F™" (@n))}, (4.5) 

where F: M+ M is a flow on the manifold M, s: M +> R is smooth measurement function and r 

is a positive number called the delay. 

(Takens 1981) proved that an embedding could be performed using a specific class of maps called 

delay coordinate maps: 

Theorem 1 (Delay embedding). Jt is a generic property that a delay map of dimension 2D +1 is 

an embedding of a compact manifold with dimension D if the measurement function, s: M +> R, is 

C? and éf either the dynamics or the measurement function is generic in the sense that it couples all 

degrees of freedom. 

The theorem can be visualised in the following commutative diagram: 

an CM —"—> aan eM 

: | ‘ 
Sn ER Snpi ER 

| | 
bn € R241 Bee Sn41 € R294 

By applying this result to our case, we try to ‘learn’ the following mapping: 

p= F (Rpts Penk: -s Find); (4.6) 

that is to say we forecast the next value with the knowledge of the d previous values, as shown in 

Figure 4.4. 
2We use ‘smooth’ for at least C?. 
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x(t-3) x(t-2) —_x(t-1) x(t) time 

Figure 4.4: One-step ahead prediction with a neural network. 

4.2.2 Benchmarks 

Autoregressive model 

Definition 7 (Autoregressive (AR) model). An autoregressive model of order p > 1 AR(p) is 

defined as P 
X= DobMaite, (4.7) 

i=l 

where {er} is a white noise process. 

It is straightforward to see that the AR(p) model can be viewed as a single layer network with 

inputs as past values {2;_;}_, and weights as the parameters {b;}?_,. Single layer networks implement 

the well known statistical techniques of linear regression and generalised linear models (GLM). It is 

always useful to apply a GLM to a dataset to provide a benchmark for more sophisticated methods. 

Furthermore, because of their simplicity, they rarely overfit the training data, and they also have the 

advantage of being extremely fast to train (Nabney 2002). 

Random walk 

Another widely used benchmark in the financial industry is the following: 

Definition 8 (Random walk model). A random walk model defined by: 

X= Xe-1 + &y (4.8) 

where {er} is a white noise process. 

‘We can interpret the assumption made by this model as ‘the best forecast for tomorrow is today’s 

value’. 

4.2.3 Neural networks 

Artificial neural networks (NN) are nonlinear, identical and highly connected elements capable of 

learning, in the sense of modification of model parameters and/or the model itself on the basis of 
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training examples. In other words, a NN is a nonlinear model whose parameters can be estimated 

from the data. 

Hence a NN can be viewed as a machine that can ‘learn’ and perform ‘pattern recognition’. 

Furthermore, a NN is a universal approximator in the sense that it can approximate to arbitrary 

accuracy any continuous function from a compact region of input space provided the number of 

hidden units is sufficiently large and provided the weights and biases are chosen appropriately. This 

means, in practice, that a NN can model any smooth function provided there is enough data to 

estimate the network parameters. Unfortunately, there is no guarantee that we quickly find such an 

error solution. The optimisation problem is theoretically hard because of a potentially large number 

of local minima. 

We will consider neural network modelling through multi-layer perceptrons and radial basis func- 

tion networks both of which are two-layered feedforward NN consisting of: 

d input units: the embedding dimension of the time series, 

m hidden units: the complexity of the network, 

and one output unit. The topology of the networks will be chosen in the usual method using a training 

and validation set, since a large amount of data is available. 

Multi-layer perceptron 

The multi-layer perceptron (MLP) is probably the most widely used architecture for practical ap- 

plications of neural networks (Bishop 1995). It consists of two layers of adaptive weights with full 

connectivity between inputs and hidden units, and between hidden units and outputs. 

The relationship between inputs, weights and output is defined through this mapping: 

m d 
y(@,w) = Dw tanh (ess + 0”) +60), (4.9) 

j=l i=1 

with d and m defined as before. The network is trained using the back-propagation algorithm’. The 

optimisation routine is performed via the scaled conjugate gradient algorithm. 

Radial basis function network 

‘The radial basis function (RBF) network is the main practical alternative to the MLP for nonlinear 

modelling. Instead of units that compute a nonlinear function of the scalar product of the input vector 

and a weight vector, the activation of the hidden units in an RBF network is given by a nonlinear 

function of the distance between the input vector and a weight vector (Nabney 2002). 

We shall write the RBF network mapping in the following form: 

u(x; w) = >> wj;(x) + wo, (4.10) 
i=l 

a ae ae 
3Method used to calculate the gradient vector of a fitting criterion for a feed-forward neural network with respect to 

the weights. 
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where the ¢, are the basis functions, and the w; the output layer weights. 

One advantage of the RBF model is that it brings together different approaches such as function 

approximation, kernel methods, regularisation theory ete. Another attraction of RBF networks is that 

there is a two-stage training procedure which is considerably faster than the methods used to train 

MLPs. In the first stage, the parameters governing the basis functions (corresponding to the hidden 

units) are determined using relatively fast, unsupervised methods‘. The second stage of training then 

involves the determination of the output-layer weights, which requires the solution of a linear problem, 

and is therefore fast (Bishop 1995). 

Bayesian techniques 

Using Bayesian probability theory, relying on coherent inference based on clearly defined axioms, one 

can automatically infer how flexible a model is warranted by the data; the Bayesian Occam’s razor 

automatically suppresses the tendency to discover spurious structure in data. In the context of NNs, 

Bayesian inference techniques offer a number of important benefits including the following (Bishop 

1995): 

1. regularisation can be given a natural interpretation in the Bayesian framework, 

2. error bars can be assigned to the predictions generated by a network, 

3. Bayesian methods allow the values of regularisation to be selected using only the training data, 

4. the Bayesian approach allows different models to be compared using only the training data, 

5. the relative importance of different inputs can be determined using automatic relevance deter- 

mination (ARD). 

Evidence procedure Motivated by the benefits that Bayesian methods are able to bring to NNs, 

we move into a Bayesian framework to learn the weights in a NN on the basis of a set of training data. 

First, we assume a Gaussian prior for the weights: 

p(w) = Za exp(—aEw); (4.11) 

and a likelihood function of the form 

p(D\w) = aa exp(—BEp). (4.12) 

The correct Bayesian treatment for parameters such as a and (, whose values are unknown, is 

to integrate them out of any predictions. An alternative approach is to determine the values of the 

hyperparameters a and #, using a technique called the evidence approximation (MacKay 1995). 

The approximation that is made in the evidence procedure is that the posterior density of the 

hyperparameters, p(a, 6|D), is sharply peaked around ayp,@mp, the most probable values of the 

EN ea Se 
4Methods which use only the input data and not the target data. 
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parameters. So, we should find the hyperparameter values that optimise the posterior probability 

of the weights, and then perform the remaining calculations with the hyperparameters set to these 

values. 

To achieve this, we use Bayes’ theorem and a non-informative hyperprior, p(a, 3), therefore we 

shall just seek to maximise p(DJa, 8), called the evidence for a and #3, which gives: 

20B? =W—7, (4.13) 

2BER? =N-7, (4.14) 

where 7 = W —aTTr(A7?) is the number of ‘well-determined’ parameters, with A, the Hessian matrix 

of the total error, @Ep + aE, at wmp- 

Automatic relevance determination Another difficulty in NN models is the number of input 

variables used in modelling the distribution of the targets. We must limit the number of input 

variables we use, based on our assessment of which attributes are most likely to be relevant. 

Associating a separate hyperparameter with each input variable, with careful choice of prior, we 

can use the posterior distribution to evaluate the importance of each input variable (and to weed out 

unwanted inputs) for the model predictions. The hyperparameters, which corresponds to decay rates, 

for irrelevant inputs will automatically be inferred to be large, preventing those inputs from causing 

significant overfitting (MacKay 1995). 

4.2.4 Results and comments 

‘After running simulations, we clearly see that the residuals from raw volumes rather than percentage 

volumes yield better results (RMS error). Table 4.3 (and Tables D.2, D.3, D.4, D.5) shows that the 

GLM gives a very good benchmark result of around 0.8 for the testing RMS error. One can also 

notice that the number of inputs is 5 almost every time, which is justified by the PACF plot in Figure 

4.3. Table 4.2 displays RMS error back in the initial space. We clearly see that the GLM (RMS 

error around 0.77) outperforms the random walk model (RMS error around 0.90). NNs improve on 

the former RMS error by a small amount. The RBF and the MLP produce similar results. It is 

remarkable that the complexity of the MLP is very low (1-3 hidden units) and that of RBF is high 

(8-10). Hence, we advocate the RBF, with many hidden units®, over the MLP, since firstly, results 

are similar, secondly training is faster and thirdly evidence approximation is exact in this case. 

Hinton diagrams are used in Figure 4.5 as a useful method for visualising the weights in a NN. We 

clearly see that the biases are much greater than their weight counterparts. However, weights fanning 

in the third hidden unit are very small. Then, to see the relevance of the different inputs, we look 

at the magnitude of the hyperparameters, we conclude that the second input is more relevant than 

the others (where the a’s are high), a’s for the second layer weights and biases have the same low 

magnitude. 
oe ies es Ee ee 

5Overfitting is avoided using Bayesian techniques. 
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Day RW _GLM 
Monday 0.8292 0.6953 

Tuesday 0.9047 0.7585 
Wednesday | 0.9659 0.7868 

Thursday 0.9392 0.7717 

Friday 0.9504 0.7743 

    

Table 4.2: RMSE on the initial space (with smoothing splines to estimate the TOD) on the testing 

set (BNP-Paribas raw volumes). RW is the random walk model, GLM is a single-layer network with 

5 input units. 

Model | d m RMSE  écauss &GARCH 

Mondays 

GIM [5 — 0.8225 1.1751 1.0808 

MLP |5 3. 0.8069 1.1730 1.0805 

RBF 5 2 0.8218 1.1908 1.0975 

MDN |4 8 0.9561 0.8546 = 
——— 

Tuesdays 

GIM [5 — 0.8592 1.2084 1.1642 

MLP |5 1. 0.8590 1.2095 1.1651 

RBF |5 8 0.8517 1.2068 1.1632 

MDN |5 10 1.0393 0.9105 = 

‘Wednesdays 

  

GIM [5 — 0.8561 1.1738 1.1410 

MLP |5 1. 0.8561 1.1739 1.1411 

RBF |5 8 0.8505 1.1720 1.1406 

MDN |5 6 _ 1.0796 0.9247 - 

Thursdays 

GLM [5 — 0.8652 1.1935 1.1470 

MLP |5 1 0.8653 1.1933 1.1468 

RBF | 4 10 0.8590 1.1885 1.1467 

MDN |5 9 1.0439 0.9021 - 
a 

Fridays 
SSS SS ee 

    GIM [5 — 0.8689 1.2244 1.1871 

MLP |4 4 0.8571 1.2242 1.1880 

RBF |5 6 0.8637 1.2262 1.1889 

MDN |5 9 0.9654 0.9228 - 

Table 4.3: Prediction on BNP-Paribas (raw additive residuals). The MDN model used contains 3 

centres. 

Figure 4.5: Hinton diagram of input layer weights. 
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(a) Actual values represented by the thin line, (b) Scatter plot of predictions against actual val- 
predictions by the thick one. ues. R? = —0,0082. 

Figure 4.6: Prediction of BNP-Paribas normalised additive residuals on Thursdays (2 consecutive days 
in the testing set) using an RBF network. 

Figure 4.6(a) depicts the prediction achieved. We can see that the main dynamics are captured 

but the prediction is not able to follow high peaks, which is very clear looking at the scatter plot on 

Figure 4.6(b). We might explain this behaviour by a high a hyperparameter which would ‘smooth’ 

the fit too much. 

4.2.5 Are the residuals predictable? 

Due to the poor results of the prediction, one question arises: are the residuals predictable? More 

precisely, it should be investigated whether the data has any dynamics by, for example, using statistical 

tests. To achieve this goal, we use the method of surrogate data (Theiler, Eubank, Longtin, Galdrikian, 

and Farmer 1992) which is an application of the ‘bootstrap’ method® of modern statistics. Here, we 

describe the main steps of the surrogate method: 

1. generate many surrogate time series, for example by shuffling the time-order of the original time 

series to test the null hypothesis of iid noise with arbitrary amplitude distribution; 

2. compute a discriminant statistic, Qy,, for each surrogate, such as the forecasting error (on a 

test set); 

3. measure the ‘significance’, S = Weo=nul, by the difference between the original and the mean 

surrogate value of the mean, j47, divided by the standard deviation of the surrogate values oy. 

Using twenty consecutive days for the original time series (raw volumes), a single layer network 

(with number of inputs determined by CV) as a regressor, and having generated two hundred surro- 

®An idea for statistical inference, using training sets created by re-sampling with replacement from the original 
training set, so examples may occur more than once. 
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gates, we found significance ranging from 0.9 to 3 depending on the day considered. These results lead 

us to the conclusion that there is evidence for no dynamics and confirm the fact that the residuals are 

unpredictable. 

4.2.6 Conditional variance 

Because we are in a probabilistic framework, we are able to compute the likelihood of our model 

parameters. Equivalently, this can be viewed as the fitting of the noise, ¢¢ = 2. —ya (x; wmp), from 

our model, M. 

The usual assumption is that the noise process, ¢, is Gaussian, (0,07), where o? is a fixed 

variance, We can enhance this model by assuming a time-varying variance 0; as: 

o? =wta0?_, + Bee). (4.15) 

With a conditional variance dictated by (4.15), the process {e:} is called a Generalised Autoregressive 

Condition Heteroskedasticity (GARCH) process” (Bollerslev 1986). Moreover, since the GARCH(1,1) 

model may provide parsimonious representation for some complex autodependence structure that can 

only be produced by an ARCH(p) model with large p, we will not use higher lags than that in the 

GARCH model. In fact, the GARCH(1,1) model has been very successful in empirical work and is 

regarded as the benchmark model by many econometricians. 

The results concerning the likelihood of the different models shows that the GARCH(1,1) model 

fits the noise better than the usual Gaussian noise (Table 4.3). 

4.2.7 Modelling conditional distribution 

Instead of predicting the residuals, since it is a very difficult task, we focus on increasing the likelihood 

of the previous models. According to Section 4.1.2, the GMM was quite powerful in estimating the 

unconditional distribution, p(zt), therefore we model the conditional distribution of the residuals using 

GMM. 

Hence, if we let the mixture model parameters @ be functions of the input vector x := (ay_1,--.,2t-d) 

then we can model the distribution conditional on x), Since, in general, the mapping, x“) + @(a(), 

will be complicated, we use an MLP to model it. Thus the model has the form: 

M. 

pxele) =) aj(@)45(ael2), (4.16) 
j=1 

where M is the number of components in the mixture. This combination of a NN and a mixture 

model is known as a mixture density network (MDN) (Bishop 1995; Nabney 2002). 

The MDN model assumes a non-Gaussian noise without dynamics in time whereas the GARCH 

model assume a Gaussian noise with dynamical time dependence. 

As expected, the predictions are worse than the GLM, however the likelihood of the MDN outper- 

forms the GARCH likelihood (see results in Table 4.3). 
pica rset eens ee ee Se 

7o be precise, it is the GARCH(1,1) model. 
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4.2.8 Conclusions 

Concerning forecasting, simple models such as the GLM perform quite well. More sophisticated 

techniques such as Bayesian learning for multi-layer neural networks did not improve our results 

significantly. This can be explained by the low time dependence found in the time series studied. 

Moreover, the modelling of the conditional variance was achieved by a mixture density network which 

yielded good results and clearly outperformed benchmarks as the GARCH model. 
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Chapter 5 

Feature Extraction: the UK Bank 

Sector 

Forecasting with a single stock was proved to be difficult. However applying component analysis 

techniques considering a whole sector should give us insight into underlying forces driving the sector, 

and also these latent variables may be easier to predict. We hope that the source signals we will 

extract will have simple patterns such that their prediction will be an easy task, allowing us to go 

back to the initial space to forecast the actual stocks. In fact, multivariate data are often viewed as 

multiple indirect measurements arising from an underlying source, which typically cannot be measured 

directly. 

Therefore, in this chapter, we will consider multivariate volume time series with the following 

matrix [),...,20,... ,x()], where i denotes the stock considered and a its residual time series. 

5.1 Principal component analysis 

Principal component analysis (PCA) is a powerful technique for extracting structure from high- 

dimensional data sets. PCA consists of an orthogonal transformation of the coordinate system in 

which we describe our data. The new coordinate system is obtained by projection onto the so-called 

principal axes of the data. The important feature of PCA is that it retains maximal information, by 

retaining variance of projected data, amongst all linear projections. 

Theorem 2 (Principal component analysis). Given a set of observations x) € R¢,i=1,...,.N, 

which are centered, SX, a = 0, PCA finds the principal azes by diagonalising the covariance 

matriz, 

(5.1) 

  

Unfortunately, there is no general technique to decide how many principal components should be 

used to represent the data adequately. Commonly, the number of principal components are chosen by 
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looking at the eigen spectrum of the data shown in Figure 5.1. 

s 

ay 

  1 nal ait ae eee th ee eee 

Figure 5.1: Log eigen spectrum of the UK bank sector. x-axis corresponds to eigen-values, y-axis to 

amplitude. 

5.1.1 Epps effect 

(Epps 1979) reported empirical evidence of a dramatic drop in correlations among stocks when de- 

creasing the sampling time horizon. In other words, it shows that the higher the frequency in the 

intraday data, the smaller the correlation. This phenomenon has been observed across different mar- 

kets. We investigate this pattern in the residuals of the UK bank sector by increasing the tick-time 

from five minutes to sixty minutes. 

Figure 5.2 depicts the average value of the off-diagonal elements of the correlation matrix and the 

percentage of information (variance) represented by the first principal component!. 

We still see very low values for the average correlation matrix value although they are increasing, 

which confirm again the difficulty of modelling the residuals. 

5.1.2 Automatic choice of dimensionality 

(Tipping and Bishop 1999) showed how PCA can be reformulated as the maximum likelihood solution 

of a specific latent variable model, called probabilistic PCA (PPCA), as follows. We first introduce a 

k-dimensional latent variable z whose prior distribution is a zero mean Gaussian p(z) = N(z|0, Ik). 

The observed variable z is then defined as a linear transformation of z with additive Gaussian noise, 

x=Wz+p-+e, where W is ad x k matrix and € is a zero mean normally distributed vector with 

covariance o?Ig. Thus p(x|z) = N(x|Wz + u,07Ig). The marginal distribution of the observed 

variable is then given by 

P(x) = N(a|x,C), (5.2) 

with the covariance matrix C = WW? + 07Ia. 

  

1LAmaxl where \’s are the eigenvalues of the covariance matrix.
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(a) Average value of non-diagonal elements (b) Percentage variance explained by the first 

principal component 

Figure 5.2: Properties of the covariance matrix of the UK Bank sector against tick-time frequency. 

Armed with the probabilistic reformulation of PCA, a Bayesian treatment is obtained by first 

introducing a prior distribution, p(n, Wo”), over the parameters of the model. Then the evidence 

of intrinsic dimensionality k is given by 

p(DIk) = / | if p(D|W, 1,02)p( ue, W,02) dd do?. (5.3) 

(Minka 2001) uses Laplace’s method (see Appendix C.2) to compute the integral (5.3). Applying 

this technique to our dataset, we still have a high dimensionality which is 7 or 8 out of 10 (Table 5.1). 

day k 

Monday 
Tuesday 
Wednesday 
Thursday 
Friday 

    

e
r
r
r
 

Table 5.1: Intrinsic dimensionality of the UK bank sector (raw volumes). 

5.2 Independent component analysis 

The PCA methods always produces orthogonal vectors but the assumption of orthogonality is obvi- 

ously invalid for a general mixing process and should be removed. Instead, we shall assume that the 

sources are statistically independent: this is the independent component analysis (ICA) model. 

Definition 9 (Noise-free (ICA) model). Independent component analysis of a vector x consist of 

estimating the following generative model for the data: 

2= As, (5.4) 
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Figure 5.3: PACF of the ICs of the UK bank sector (Mondays’ raw volumes). 

where the latent variables, s;, in the vector, s = [s1,82,... seals are assumed to be independent. The 

matrix A is a constant m x n ‘mizing’ matrix. 

‘The identifiability of this model can be assured (Hyvarinen 1999) if: 

1. all the independent components (IC) s;, with the possible exception of one component, are 

non-Gaussian, 

2. the number of observed linear mixtures, m, is at least as large as the number of ICs, n, 

3. the matrix A is of full column rank. 

What distinguishes ICA from PCA is that the non Gaussian structure of the data is taken into 

account in ICA. Intuitively, lack of correlation determines the second degree cross-moments (covari- 

ances) of a multivariate distribution, while, in general, statistical independence determines all of the 

cross-moments. 

The ICA model is implemented with the the FastICA algorithm (Hyvarinen 1999). 

Figure 5.3 depicts the partial autocorrelation function of the two first source signals. We can see 

that their structure is not simpler than the observed (original) signals. In fact, these ICs appear very 

similar to the original signal which is confirmed by the high intrinsic dimensionality found in Table 

5.1. 

Hence this method is not beneficial for this project.



Chapter 6 

Conclusion 

6.1 Summary of the work done 

This thesis has given an account of the work produced by conducting research on the problem of 

forecasting in finance. Below are the main points that have been covered in this thesis. 

After trying to model the seasonality of the time series using spline based methods, we found that 

an equivalent Bayesian approach, via kernel methods and Gaussian processes, was more general. 

Having removed the estimated seasonality, we have studied the non Gaussian residual distribution 

and autocorrelation structure. Then, we tried to predict, via phase space methods, the residuals using 

simple and efficient technique, namely the generalised linear model, and also more sophisticated models 

such as multi-layer neural networks. Once again, we used Bayesian perspectives to add considerable 

insight to the fitting of neural networks. But, the generalised linear model performed quite well 

compared to neural networks. This may be explained by the low time dependence we found in the 

time series by running statistical tests on surrogate time series. 

Moreover, we modelled the conditional distribution of the residuals using mixture density net- 

works and also the conditional noise using a GARCH model. The mixture density network model 

outperformed the GARCH benchmark. 

In addition, instead of focusing on a single stock, we tried to extract linear components of the UK 

bank sector (with PCA and ICA), but the sources signals extracted revealed a behaviour not simpler 

than that of the original individual signals. 

6.2 Further work 

Impact of news Based on the forecasting model we set up, it would be interesting to evaluate the im- 

pact of American and European macroeconomic news. (Andersen, Bollerslev, Diebold, and Vega 

2003) provides an empirical examination of price discovery in the context of foreign exchange, in 

particular it s hows that announcement surprises produce conditional mean jumps. Moreover, 
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it finds that the adjustment pattern is characterised by a sign effect. (Omrane, Bauwens, and 

Giot 2003) deals with the impact of scheduled and unscheduled news announcements on the 

Euro/Dollar return volatility. It is shown, using high-frequency intraday data and within the 

framework of ARCH-type and realised volatility models, that volatility increases in the pre- 

announcements periods, particularly before scheduled events. Another approach would be to 

think of it as an impulse function (a simple modelling would be a Gaussian kernel) with limited 

duration. This former duration could be evaluated looking at the likelihood of the model. 

Stationarity of the time-of-day function Another important work concerns the time-of-day func- 

tion. First, the stationarity of the time-of-day estimate should be ‘assessed, that is to say, the 

question, “how often (in time unit of, for example number of days) should the estimate be 

recomputed”, should be answered. 

Robust regression Since the residuals exhibit an asymmetric heavy-tailed distribution, lack of ro- 

bustness to outliers is a crucial drawback. Hence, a robust noise model should be employed 

(Bishop and Svensén 2004; Tipping and Lawrence 2003; Roberts and Penny 2002). 

Feature extraction The techniques we used, namely PCA and ICA, to extract features relied on 

linear combinations of existing features. A different approach could be to investigate algorithms 

which extract nonlinear structures in the data such as Kernel PCA (Miiller, Mika, Ratsch, 

Tsuda, and Schélkopf 2001). 

6.3 Afterword 

This project has been interesting in many aspects, from the involvement of abstract machine learning 

theory to its practical financial application. It has given us the opportunity to use different areas of 

expertise such as applied mathematics, statistics, computer science and finance to achieve the results 

obtained. In conclusion, unfortunately, no one model is perfect but we hope that further research will 

be conducted to improve the machine learning approach concerning finance.
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Appendix A 

Computational Considerations for 

Splines 

The idea is to find a smooth function that minimises the residual sum of squares (RSS). A popular 

measure of roughness of a function f is ||f” 3. By the Lagrange multiplier method, minimising the 

RSS subject to the roughness constraint is equivalent to the following penalised least-squares problem: 

minimising 
N 

Ditu— sey? +a [troy ae, (A) 
i=1 

with respect to f, where A is a fixed smoothing parameter (Lagrange multiplier). The first term 

measures the closeness of fit to the data, while the second term penalises curvature in the function, 

and 2 establish a tradeoff between the two. Two special cases are: 

\=0: f can be any function that interpolates the data, 

= +00: the simple least squares line fit, since the second derivative must be zero. 

‘As ) ranges from zero to infinity, the estimate ranges from the most complex model (interpolation) 

to the simplest model (linear model). Thus, the model complexity of the smoothing spline approach 

is effectively controlled by the smoothing parameter A. The estimator, fy, is a spline function and is 

referred to as a smoothing spline estimator. 

The criterion (A.1) is defined on an infinite-dimensional function space’. Remarkably, it can be 

shown that (A.1) has an explicit, finite-dimensional, unique minimiser which is a natural cubic spline 

with knots at the unique values of the x, i = [1, N]. We write: 

N+2 

f(x) = Yo wBi2), (A.2) 
j=l 

where 7;’s are coefficients and B; is the cubic B-spline basis function Nj,3. 

= ee 
1 Sobolev space of functions for which the second term is defined. 
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APPENDIX A. COMPUTATIONAL CONSIDERATIONS FOR SPLINES 

The criterion thus reduces to 

RSS(7,2) = (y — Ba)" (y — By) +7" 2B, (A3) 

where 

By = B;(ai) and Qa = [Boss dt. (A) 

Setting the derivative with respect to 77 to zero gives the equation 

(BT B+)2p)7 = Bry. (A5) 

Since the columns of B are the evaluated B-splines, in order from left to right and evaluated at the 

sorted values of X, and the cubic B-splines have local support, B is lower 4-banded. Consequently, 

the matrix M = B'B+)Qz is 4-banded and hence its Cholesky decomposition, M=LL", canbe 

computed easily. The equation LL'¥ = By can then be solved by back-substitution to give 7 and 

hence the solution f in O(N) operations. 
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Appendix B 

Kernels 

Definition 10 (Reproducing kernel Hilbert space). Let x be a nonempty set and by H a Hilbert 

space of functions f : x +R. Then H is called a reproducing kernel Hilbert space endowed with the 

dot product (-,-) if there exists a function k: x24 R with the following properties: 

1. k has the reproducing property (f,k(x,-)) = f(z) forall f eH, 

Pop sane 

Theorem 3 (Mercer). Suppose k € Loo(x”) (x4) is a finite measure space) is a symmetric real- 

valued function that the integral operator Ty, : L2(x) + La(x) defined by (Te f)(z) = f, B(x, 2')F(e') due’) 

is a positive definite. 

Let pj € Lo(x) be the normalised orthogonal eigenfunctions of T, associated with the eigenvalues 

dj > 0, sorted in decreasing order. Then 

1. (Aj)5 € 4, 

2 k(z,2') = sey dj; (z)¥j(a") holds for almost all (x,2'). Bither Ny €N, or Nx = 00; in the 

latter case, the series converges absolutely and uniformly for almost all (x, x’). 
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Appendix C 

Miscellaneous theoretical details 

C.1 K-fold cross-validation 

Let 6: {1,--..N} {1,-5 K} be an indexing function that indicates the partition to which observa- 

tion j is allocated by the randomisation. Given a set of models, f(x), indexed by a tuning parameter, 

a, denote fz*(x) the ath model fit with the kth part of the data removed. Then for this set of models 

we define the cross-validation estimate of prediction error 

N 

CV(a) = Hon fa" (a). (ca) 
i=l] 

C.2 Laplace approximation 

We seck to approximate Zp = J P(x) dz. We assume that P has a maximum at a point t. By a 

Taylor expansion at the point to, we have 

  

In P(x) = In P(z0) — sl — 29)? + O(2*), (C.2) 

where oa 

c=-34 In P(x): eae 
(C.3) 

  

We then approximate P by an unnormalised Gaussian Q: 

Qa) = P(eyexr [-5(e-20)"], (C4) 

Zp Plea) (C5) 

Similarly, on a K- -dimensional space, we have: 

and it follows 

(2x) 
“Al 

(C.6) Zp ~ P(20) 

with A the Hessian matrix of — In P evaluated at the point zo. 
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Appendix D 

Simulation Results 

Day [MA Smooth GP RVM _ RBF 

Alcatel 

Monday 0.8446 0.8891 0.8390 0.8389 0.8393 

Tuesday 0.8765 0.8661 0.8684 0.8694 0.9842 

Wednesday | 0.8792 0.8748 0.8753 0.8753 0.8866 

Thursday 0.8921 0.8783 0.8850 0.8894 0.8886 

Friday 0.9127 0.8913 0.8939 0.8922 0.9208 

France Télécom 

Monday 0.8307 0.8299 0.8292 0.8301 1.0302 

Tuesday 0.8758 0.8671 0.8702 0.8708 0.9230 

Wednesday | 0.8944 0.8938 0.8938 0.8940 0.8936 

Thursday 0.8791 0.8699 0.8741 0.8750 0.8880 

Friday 0.9018 0.8945 0.8934 0.8974 0.9441 

LVMH 

Monday 0.8742 0.8699 0.8697 0.8707 0.8315 

Tuesday 0.8706 0.8631 0.8651 0.8649 6.7208 

Wednesday | 0.8906 0.8881 0.8888 0.8891 0.8792 

Thursday 0.8886 0.8764 0.8790 0.8803 0.8678 

Friday 0.9188 0.9046 0.9063 0.9056 0.9038 

Vivendi Universal 

Monday 0.8289 0.8255 0.8250 0.8249 0.8340 

Tuesday 0.8663 0.8579 0.8623 0.8627 2.6845 

Wednesday | 0.8760 0.8733 0.8742 0.8746 0.9004 

Thursday 0.8664 0.8595 0.8606 0.8641 0.8791 

Friday 0.8994 0.8932 0.8947 0.8965 0.9337 

  
  

  

  

  

  
Table D.1; RMSE on the time-of-day function on the testing set (Alcatel, France Télécom, LVMH, 

Vivendi Universal relative volumes). 
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Figure D.1: Alcatel time-of-day estimate using moving average and cubic splines. The histograms 

represent the whole relative volume dataset.The stars correspond to the knots. 
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Figure D.2: Alcatel time-of-day estimate using cubic smoothing splines. The histograms represent 

the whole relative volume dataset. 
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Figure D.4: Alcatel time-of-day estimate using relevance vector machine. The histograms represent 

the whole relative volume dataset. The circled points correspond to the relevance vectors. 

66



APPENDIX D. SIMULATION RESULTS 

Monday 

   

      

   

  

     

   

   
   

     

  

      
                  

    

1 ail 

0.5 lll dic 
“g05 «46935 «1115-1255 «1435 = 1620 

Wednesday 
25 eee 

2 I 

; il 
15 Spee doc gain | 

i A Hil 
iin ee ee idl vi 

Hilti: » Peet 
ees il 0 itn. ii 
"e05 49935 «1115 = 1255 «1435-1620 

Friday 
25¢: SE MARNE Ns Reece 

2 

1.55 

    
  

  

   
1435 1620 

         

  

[ihn 05 . 
805 935 1115 1255 

  

      

  

   

   

  

   

  

   

    

    

  

  

  

  

Tuesday 

25 

2 [ 
1.5 Ph dil 

fig, 
lil Lidl « i col 
805 35 1115 1255 1435 1620 

Thursday 

  

  
1620 

05 
805 935 1115 1255 1435 

Figure D.5: France Télécom time-of-day estimate using moving average and cubic splines. The his- 

tograms represent the whole relative volume dataset.The stars correspond to the knots. 
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Figure D.6: France Télécom time-of-day estimate using cubic smoothing splines. The histograms 

represent the whole relative volume dataset. 
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Figure D.8: France Télécom time-of-day estimate using relevance vector machine. The histograms 

represent the whole relative volume dataset. The circled points correspond to the relevance vectors. 
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Figure D.12: LVMH time-of-day estimate using relevance vector machine. The histograms represent 

the whole relative volume dataset. The circled points correspond to the relevance vectors. 
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Figure D.13: Vivendi Universal time-of-day estimate using moving average and cubic splines. The 

histograms represent the whole relative volume dataset.The stars correspond to the knots. 
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