
SOME IMPLICATIONS OF UNCERTAINTY 

IN PERIODIC-REVIEW INVENTORY THEORY 

-o0o0- 

DAVID ARNOLD LESLIE WILSON 

Thesis submitted for the Degree of Ph.D. 

Aww 
ie 

y W! bean 

<OSEPTI 42564 

University of Aston 
in Birminghan, 

April 1971



SUMMARY 

The first part of this thesis is concerned with finding 

optimal ordering policies for multistage inventory systems in 

which stocks are reviewed periodically. A new exact method of 

calculating critical stock levels is developed in order to avoid 

difficulties in the classical dynamic programming approach. The 

equations developed for the new method also provide a clearer 

picture of the way in which optimal policies for periodic-review 

processes of finite duration converge to those for processes of 

infinite duration. Models with leadtime are then considered in a 

way which leads to a new generalisation of earlier work on stochastic 

leadtimes, Consideration of adaptive inventory systems leads on to 

the second part of the thesis, where the emphasis is on Bayesian 

methods of treating imperfectly known demand A neki one: 

Important original results are obtained when the adaptive behaviour 

of several well known distributions is considered.
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CHAPTER 1 

INT RODUCTION 

1-1. Storage and inventory 

During the last sixty years many writers have worked on 

mathematical models to describe the operation of systems in which 

goods are held in store as an intermediate stage between production 

and consumption. We may picture the general storage model as follows: 

Orders 

| PRODUCER 

Deliveries 

Flow of stock 

The system consists of three levels - consumer, store and 

    

Demands 

    

    

        
Despatches 

  

<< 

producer - with the store smoothing out differences in the rates of 

production and consumption. We look at the system from the point of 

view of the store and its operation. Requests for stock from consumer 

to store are called demands, those from store to producer are called 

orders. Shipments of stock from producer to store are called deliveries, 

those from store to consumer are despatches.



In most practical systems of this kind, there is a 

constraint that stock must flow only from producer to consumer 

The implication of this one-way flow is that the quantities of 

stock involved in demands, despatches, orders and deliveries will 

all be non-negative. 

This general class of models is usually sub-divided 

according to the relationship between the store and the producer. If 

deliveries are not controllable by orders from the store, we obtain 

a class of models typified by the storage of rainwater which is 

covered by the theory of dams - see Moran (1959) and Prabhu (1965). 

If deliveries are controlled, albeit imperfectly, we obtain the class 

of inventory models. Typical situations to which inventory models are 

applicable include the operation of an ordinary retail shop, a 

wholesale warehouse (where the consumer represents the aggregate of 

retailers), a spare-parts store in a workshop (where mchines consume 

spare parts as they break down and get repaired) and so on - see 

Hadley and Whitin (1963). 

A mjor part of the theory of inventory systems is 

concemed with finding optimal rules for ordering and the criterion. 

of optimality is usually taken to be minimum cost or, equivalently, 

maximum profit. We develop this approach by examining a very simple 

deterministic model of the type proposed by Harris (1915). 

Imagine that we are interested in stocking a single 

commodity for which demand occurs at a uniform known rate of A units 

per unit time. Our store is empty initially but we can order z units 

of stock for immediate delivery. The cost of purchasing this stock



is yp > O for any z > O plus Cp > O for each unit, making the total 

purchasing cost yp + ¢pz for any non-negative z which satisfies the 

one-way flow condition. We also impose a holding cost of ky per 

unit stock per unit time held in store and allow time to vary 

continuously. Assuming that only one initial order may be placed 

and that the process finishes when no stock remains, the duration 

of the process will be T = z/) and the total cost will be 

. 
(1-1.1) Of2) Se yp te. Osa ‘x | (z=-At)at 

fo} 

rt ad a 

A trivial solution for minimising C would be g = Cs 

but this would eliminate the need for a store and mean that no 

demand would be satisfied. Treating z as continuous and differentiating 

C to locate a minimum, we obtain the solution 

(1-1.2) Z=-H7 Cp/K,, A 

which is not feasible since z must be non=ne gative. 

However, a feasible solution can be found if we mke our 

ob jective function not total cost C(z) but total cost per ‘unit “tame 

(12.3) x(x) = S) 

Treating z as continuous and differentiating K(z) we find the minimum 

to be at Zz = z* where



(itch) ae 
ky 
  

This is the famous square-root formula of early 

inventory theory - often known as the formula for "economic ordering 

quantity (E0Q)" or "the Wilson formula" after R.H.Wilson, whose work 

followed that of Harris. 

If z is constrained to take integer values, differencing 

shows that z*, the optimal value, is the least z for which 

(opis) z(z4l) >> 2y¥pA 
  

By allowing another order to be placed as soon as the 

stock level falls to zero we can build up a multistage model in 

which each stage is identical to the single stage of duration T 

which we have just considered. If we have N such stages, all complete, 

the total cost per unit time will still be K(z) and the optimal order 

quantity for each stage will be z*: this will be true for finite or 

infinite N. If the last stage is incomplete, the contribution of this 

last stage to the total cost per unit time will become negligible as 

the total duration of the process tends to infinity, and in this case 

also the square-root formula - or (1-1.5) - will give the optimal 

order quantity for each stage.



1-2. Inventory models with periodic review 

The simple deterministic model considered in the previous 

section provides a useful starting point for the development of more 

complicated models, but as soon as we consider the demand process to 

be stochastic rather than deterministic we are faced with a further 

sub-division of the class of models. On the one hand we have models 

in which the stock position may be reviewed at any time and orders my 

be placed when necessary: we call this a continuous-review (CR) system. 

On the other hand we have models in which the review and ordering 

decision can only be made at certain fixed times: this is a periodic- 

review (PR) system. 

The CR system is applicable in situations involving high- 

value goods with a low demand rate,but such a system is costly to 

administer when many commodities are stocked. In practice, therefore, 

it is usually preferable to sacrifice the closer control afforded by 

CR to the greater convenience of PR with the period between reviews 

chosen to fit in with the planning and accounting periods used by the 

imdustry concerned. However, much the greatest part of the literature 

has been devoted to CR systems and in the United Kingdom very little 

attention has been paid to developments in PR theory - see Iglehart's 

comments. in the discussion on a paper by Thatcher (1962) and the 

bibliography of Eilon and Lampkin (1968). 

The general theory of PR systems stems from a model 

proposed by Arrow, Harris and Marshak (1951) - often called the AHM 

model. Most of the development of this basic model has been done by 

workers at Stanford University headed by Samuel Karlin and Herbert Scarf



and the classical exposition of the basic theory appeared in a 

collection of papers by Arrow, Karlin and Scarf (1958). Another 

important early work was a book by Whitin (1953), whose later 

researches are summarised in Hadley and Whitin (1963), which 

remains the best general textbook on inventory theory. 

An important tool in the analysis of PR systems is 

the technique of dynamic programming developed by Bellman (1957,1961), 

who has proposed the following hierarchy of multistage decision 

processes. 

LEVEL 0 : Deterministic processes. 

LEVEL 1 : Stochastic processes with completely 

known probability distributions. 

LEVEL 2: Adaptive processes with imperfectly 

known probability distributions. The 

increasing amount of information gained 

by observing the process is incorporated 

into the description of the system at 

each stage. 

Two further levels of uncertainty have since been proposed by White 

(1962), but it is Bellman's Levels 1 and 2 which are of most interest 

in PR inventory theory and it is through models et Level 2 that 

inventory theory ties in with the Bayesian methods of modern statistical 

decision theory. These mthods are still slightly controversial but 

seem to have gained ground since the publication of an important book 

by Raiffa and Schlaifer (1961).



1-3. Plan of this thesis 
  

In Chapter 2 we begin by oxaning a single-stage stochastic 

(Level 1) inventory model with a simple linear cost structure. This 

leads on to multistage PR models and we also show how some superficially 

different cost structures can be considered as equivalent to the linear 

structure. 

We examine the practical computation of optimal stock 

levels and find that the dynamic programming scheme suggested by 

previous authors poses a number of problems which we resolve by 

developing a new scheme based on considéring derivatives or differences. 

The equations used in the improved scheme provide a new insight into 

the connection between models with a finite number of stages and those 

with an infinite number. Since the infinite case is soluble without 

any recursive computation it is of interest to find how well it 

approximates the finite case. Some quantitative work on this topic 

is shown in Appendix 1. 

In Chapter 3 we introduce the idea of leadtime, or delay 

between ordering and delivery, and then study the effect of 

deterministic and stochastic leadtimes upon ordering policy (the 

distributions of the stochastic leadtimes being treated as completely 

known). An important original contribution is the extension of the 

theory of stochastic leadtimes to the case where more than one order 

may be outstanding at any time. At the end of the chapter we touch 

on further generalisations of the model, including the consideration 

of imperfectly known demand distributions, which leads on to models 

at Bellman's Level 2 and to Bayesian theory.



Chapter 4 brings together the necessary basic ideas 

of distribution theory, many of which are not yet common currency. 

We give a brief introduction to the theory of totally positive kernels 

in order to provide some explanation of requirements for demand 

distributions to belong to certain classes. This is followed by a 

general description of the Bayesian methods used in the next four 

chapters. 

Chapters 5,6,7 and 8 examine in detail the adaptive behaviour 

of some well known distributions which might be used to describe demand 

(and/or leadtime). We find that Bayesian methods for dealing with some 

of these distributions involve completely new distributions based upon 

functions which are here defined for the first time. Two of the new 

functions are tabulated in Appendix 2. 

The final chapter surveys what has been achieved in the 

thesis, discusses some broader applications of the distribution the ory 

and points the way for further work ahead.



CHAPTER 2 

PERIODIC-REVIEW INVENTORY MODELS 
  

2-1. | The single-stage model 
  

To develop the notation required for the more general treatment 

of multistage models which follows in later sections, we first consider 

a process consisting of one stage of known duration T. At the start of 

the process (t=0) we place a single order for immediate delivery of a 

suitable quantity of some commodity which becomes obsolete at time t=T. 

The model is therefore applicable to the stocking of perishables which 

can not be reordered: newspapers or Christmas trees are often quoted 

as typical commodities of this kind. We can relax the assumption of 

immediate delivery if the time origin (t=0) is taken to be the time of 

delivery rather than that of placing the order. 

Total demand in time T is considered to be a non-negative 

random variable, R, which has a distribution function (d.f.), denoted 

by Hy. such, that 

(2-1.1) F(r) = P[R < r], where P[A] means the probability of any event A. 

The non=-negativity constraint is imposed to ensure one-way flow through 

the inventory system. 

We shall denote the mean demand during the stage by yp, which is 

constant with respect to time. 

When R is discrete, it will have a probability mss function 

(p.m.f.) denoted by p, such that 

y 

(2-1.2) p(r) = P[R = r] and hence F(y) = o p(r). 

r=0



lO) 

Unless stated otherwise, we shall assume that any discrete distributions 

which we use are defined on zero and the positive integers. For = ill 

discrete distributions it will be convenient to use the right-hand 

cumulative function, which we shall call P(.) with round brackets to 

avoid any confusion with P[.], the probability of some event. 

Cc 

(21.3) P(y) = > Pe) = 1 - F(y-1) 
cei 

When R is continuous we shall denote the corresponding 

probability density function (p.d.f.) by f, such that 

(2-124) f(r) = ~~ F(r) and hence F(y) = fs f(r)dr 

We shall choose our order quantity to satisfy the criterion of 

minimum total expected cost. To set up the required objective function 

we need to impose a cost structure, and we shall consider the simple 

case with three positive linear unit costs: 

C, = purchasing cost per unit quantity, 

so z units bought cost pes 

on= holding cost per unit positive stock 

remaining at time T, 

SO Z units» surplus cost 1675 

Cp = runout cost per unit shortage or runout 

at time T, 

so zZ units short cost Cpae 

If we have an initial stock of x units available before 

ordering, the problem of choosing an order quantity, which we shall 

usually call z, is equivalent to choosing a target stock, y, which we 

aim to have after delivery. Because of our one-way flow condition, 

the only feasible target stocks are those not less than the initial
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stock so we shall be obliged to choose some y > x. Of course, in most 

practical cases x = 0 in a.single-stage process of this kind, and we 

would consider possible target stocks y > 0. 

The total expected cost of the process, say C4, will depend on 

both x and y and may be written 

(2-1.5) Ci (x,y) = 0, (y-x) + L(y), 

where the term L(y) represents the expected combined cost of holding 

and runout (i-e. surplus and shortage). The function L will be called 

the loss function and we define it for y > 0 to be 

© 

ee (y-r)p(r) + Cp ) (even) for discrete demand, 

r=0 r=y+1 
(2-1.6) L(y) = 

y © 

ox | (y-r)f(r)dr 4+ cp | (r-y)f(xr)dr for continuous 

- y demand. 

If there is some finite maximum value for demand, say ee then 

the top limit on the runout terms in (2-1.6) will be Ta instead of o. 

To simplify later calculations, it is convenient to rearrange 

the expressions on the right-hand side of (2-1.6) to give the following 

equivalent forms. 

In the discrete case: 

y-l 

en(ury) + (oytep) se B(r) 
r=0 

(2-1.7) L(y) 

c(y-y) ze (c#0p) se Pz); 

r=y+1 

where the top limit in the last sum may be tea instead of co.



In the continuous case: 

av 

(2-1.8) L(y) = op(u-y) + (cyte) | nan, 

Although C,(x,y) depends on both x and y, the value of x is 

predetermined and the minimising value of y, in either the discrete 

or the continuous case, will be that which minimises 

(2-129) oem L(y) = My), say. 

In the discrete case we locate the minimum by differencing. 

ha (y+1) = da (y) 

ee AL(y). 

(2-1.10) Ada (y) 

I 

From (2-1.7) we can immediately obtain the differenced loss function 

in tems of? or P. 

(2-1.11) AL(y) 755 (c,, +-c,)F(y) 

= = (c,, + c,)P(y eh) 

The minimum of &(y) lies at y#, the least value of y for which 

ANa (y)30, ise. y# is the least value for which 

c, -c¢ Oe + 6 
(2-1.12) F(y) > stile or P(y+l) < delete 

LS iP Cy + Cp J Ney + Cp . 

In the continuous case we locate the optimal value of y by 

considering the derivative of M4 (y). 

(2-1.13) M(y) = o, + Wily) . 

where the prime on a function denotes the first derivative with respect 

to the argument - here y.. From (2-1.7) we get 

(2-1.14) L(y) = - cp + (oy + cp)F(y)-
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The second derivative will be (cc) f(y) in which all the terms are 

positive and so the minimum of Ay(y) lies at y = y# such that 

Cc. 

(2-1.15) F(y#) = 2 
on + Cp 

The optimal ordering policy with discrete or continuous 

demand will thus be: 

orde® gf =°9f =- =..if*~ x <- yr 

and order nothing™it.: xi yf < 

The total expected cost with this policy will therefore be 

(2-1.16) Cy (x,y#) cm Ma (y#) if x < yf, 

(2-1.17) C, (x,x) - oe ody (x) SPs SVT. 

We can combine (2-1.16) and (2-1.17) by defining the function 

C#, the total expected cost with optimal policy, which will be a 

function of a single variable, the initial stock. 

min 

SPX 
(2-1.18) C#(x) = [-ox + Ai (y)§ 

~onx +e im (y)} « 
Y2x 

Returning for a moment to (2-1.12) and (2-1.15), and remembering 

that since Fis a d.f. we must have 0 ¢ F(y) <1, it follows that there 

are mild constraints upon the unit costs. Firstly: 

(2-1.19) 6. 3° 

which is intuitively reasonable because we could not operate the 

inventory system profitably if the unit cost of shortage were less than 

the purchasing cost. Secondly, if we relax the condition that all the
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unit costs are positive, when we set Cy = 0 we must have 

(2=-1.20) 6. ae 

The net holding cost for a perishable commodity may be the 

difference between, on the one hand, a positive charge for holding 

which represents a loss of revenue from the capital tied up in the 

stock (Hadley and Whitin (1963) usually consider holding costs which 

are effectively of this type) plus a proportion of the expenses of 

running the store and, on the other hand, a resale value for the surplus 

stock after obsolescence. If the resale value exceeds the positive 

cost, then c., will be negative. However, in any sensible system 
H 

Cy>mCp and usually Cry 

(2-1.12) and (2-1.15) give feasible results for y#. Because c,, is 

is some small positive fraction of Ch» SO that 

usually small, the key to these results is the ratio of Cp to Cpe 

fer Cp is not known then our criterion of minimum total expected 

cost, resulting from purchasing, holding and runout, can not be used to 

find y#; instead, a level of service (or minimum probability of meeting 

all demands from stock) may be specified - call this a. Then, in the 

discrete case, y# is the least value of y for which 

(2-1.21) Fly) 27. 

Comparing this with (2-1.12), we see that this is equivalent to setting 

(2-1.22) T= si ai or ¢c, = pee : 
CH + Cp R l-f7 

The equivalence between other types of runout costs and differently 

defined levels of service is demonstrated by Hadley and Whitin (1963), who 

show that the runout cost can be considered as a Lagrange multiplier in 

the equation for the expected combined cost of purchasing and holding 

subject to the’ constraint of a suitably defined level of service; this 

effectively converts the combined cost equation into our original total cost
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equation. We shall therefore, continue to pursue the total cost approach, 

but it can now be seen that our results will also be applicable to other 

problems because of the equivalence described here. 

2-2. The multistage model 

Continuing with the same linear cost structure as in (2-1), 

we now consider the case where stock remaining at the end of the first 

stage of a process is not obsolete but can serve as the initial stock 

for a second stage. The residual stock serves as initial stock for a 

third stage, and so on for a specified number of stages. At the end 

of the process the residual stock finally becomes obsolete, but until 

then no account is taken of the age of any unit of stock. 

We shall assume that there are N stages (N a known positive 

integer) and that each stage is of iieneth T. “The stock: positions 

reviewed at t = o and then again at the beginning of each subsequent 

stage, t = T, 2T, ..., (N-1)T. If the review shows that the initial 

stock at any stage is too low then a suitable quantity is ordered for 

immediate delivery. The demand in each stage is distributed indepen- 

dently and identically with discrete or continuous d.f. F as in the 

single-stage model. 

We consider first the case where N = 2. If we denote the 

total expected cost of the two-stage process by Cg, we see that this 

will depend on the initial stock (say x), the target stock when there 

are two uncompleted stages (say ye) and the target stock when there is 

one uncompleted stage (say y,). Using C, in the same sense as in the 

previous section, to represent the total expected cost of the 

uncompleted last stage alone, we can write the following equation for
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the case of continuous demand. 

0 

(34241) Co (X,yas¥a) = Ch(ya-x) + L(ya) + | Cy(ye-r, ya)f(r)ar. P 
O° 

The first two terms on the right-hand side represent the expected 

cost of the initial stage and the last term represents the expected 

cost of the rest of the process, i.e. the last stage alone, when it 

opens with the residual stock (yg-r) from the first stage. 

In considering the top limit for r in the integral to bea 

(or Tax? 32) we allow the initial stock for the last stage to be 

positive or negative. A negative initial stock implies that excess 

demands in the first stage have been held captive and form a backlog 

which is to be satisfied by the delivery of stock in the second stage 

before the second-stage demand commences. 

If we assume that excess demands represent so much lost sales 

and cannot be backlogged, then (2-2.1) must be replaced by 

Ye 

(2-2.2) Co (x92 5¥1 )=Cp(ya-x)+L (ya ) = | Cy (ye-r; ya )f(r)dr + 

° 

G, (0,ys) i £(r)ar. 
iy 

Bellman (1957) and Karlin (1958b) examine the lost-sales case in detail, 

but we shall confine our attention to the backlog case and proceed on 

from (2-2.1). 

We require to find values of yz and ye which minimise 

Ca (xpos, A Now ys only occurs in the last term as the second 

argument of C,, and we have already seen that the optimal policy tor 

a single stage results in (C, becoming C#. Thus if we use y# given by 

(2-1.15) we can then write the total expected cost of the two-stage
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process with optimal final stage as Ce a function of two variables 

only. 

(2-2.3) OE (xyya) = cp(ya-x) + L(y) + | * of (ya-n)e(x)ar. 
° 

Then proceeding as in (2-1.18), we can reduce the left-hand 

side to a function of one variable only, the initial stock x, by 

defining C#, the:total expected cost of a two-stage process with 

optimal policy in each stage, by the following equation. 

min a 
yox {Co (x,y )} I (2-2.4) CH (x) 

= nox + fta(y)ts 

where Ap is defined by 

(2-2.5) daly) = opy + L(y) + / of (y-r)£(x)ar. 

We then find the optimal value of ye, say y#, by locating the 

minimum of Ag. For the moment we shall assume that this is a unique 

minimum and return later to examine the conditions which ensure this. 

As in the single-stage model, we order up to the optimal target 

stock if the initial stock is below this value, otherwise we order 

nothing, so that we can write (2-2.4) as 

ae Ag # if # , 

(2-2,6)) ors) -{ eee at se 
“OX + Rota IP x: >a 

Proceeding in the same way, if we define Ce as the total 

expected cost with optimal policy over n remaining stages, we shall 

get the following general recurrence relationship for n = 2,35,...,Ne 

min 
(AaB ES) ay fopty-x) + 20) + | “ot, (y-r)¢(r)ar}
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When n=2, as we have already seen, we can evaluate the last term by 

using (2-1.18). 

If we define An EO 2). sere e's NDI: 

CO 

(2-2.8) AL (y) = opy + L(y) + i" c* (y-r)¢(r)ar, 
° 

then we can find the optimal target stock when n stages remain, say 

y*, and then rewrite (2-2.7) as 

(2-2.9) O#(x) = - ox + {a (v3 

I 

~ Cpx + A (y*) pig x<yh> 

L - Cpx + A) mets xpy hs 

In the foregoing analysis we have given equal weight to 

present and future costs at any stage. Since money required to 

meet future costs can be usefully employed until settlement is 

required, it is sensible to modify An by introducing a discount 

factor a (taking some value between 0 and 1) by which we reduce 

costs due for settlement T time units hence. Equation (2-2.8) will 

then be replaced by: 

CO 

(2-2.10) Ay) = Chy + L(y) + a i c% i (y-r)f(r)dr fern 's' 2.3 
° 

Whether we use (2-2.8) or (2-2.10) we could obtain a 

sequence of optimal target stocks fy#, y#, ..., Yue which determines 

our optimal policy at each stage, as a result of the following scheme 

of calculation.
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Scheme A (1) Calculate y# by equating F(y#) to the cost 

ratio in (2-1.18) 

(2). Bet n= 2 

(3) Evaluate c* (x) at a sufficient number of 

positive and negative value s of x to allow 

the integral in the last term of Ay) to be 

evaluated by a suitable numerical method in 

Step (4). 

(4) Keep n equal to the value used in Step (3) 

and calculate A Cy) at enough values of y to 

be able to locate the minimum by interpolation, 

and so find Bed 

(5) If n = N then stop, otherwise let n become 

n +1 and go to Step (3). 

The main practical difficulty of this scheme of backwards 

dynamic programming lies in knowing what values provide suitable grids 

for evaluating Cx (x) and A (y) in Steps (3) and (4) - a difficulty 

which Bellman (1961) picturesquely calls "the menace of the expanding 

grid". Some help is provided by Karlin (1958b), who has shown that 

PE RIS Bie-< Jos 

a result which we shall verify below. 

Even with discrete demands, where (2-2.9) is still applicable 

if we replace (2-2.10) by the corresponding discrete function, 

CO 

(2-2.11) Ay) = cpy + L(y) + a My c*_(y-r)p(r), 
r=0 

the problem of the grids is still considerable if very many discrete 

values of demand have an appreciable probability.
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To arrive at a more efficient scheme, we first examine what 

happens when the duration of the process becomes infinite, i.e. 

when Ny»oo. In this case, whatever stage the process has reached there 

remains an infinite number of further stages. If we define C* as the 

expected total discounted cost of an infinite number of uncompleted 

stages with optimal policy, we get a functional equation which 

corresponds to (2=2.7). 

oO 

(2-2.12) C*(x) = - Cx + we {ony + L(y) +a | O*(y-r)f(r)dr}. 
° 

We can find y*, the optimal target stock for any stage of 

the infinite-duration process, by locating the minimum (assumed to 

be unique) of A, defined by: 

(2-2.13) A(y) = Ony + L(y) + a [ ov-r)e(o)ar. 

The total cost in (2-2.12) can be written as 

Seat A(y*) if x < y*, 

“Cpx + Mag) APce > TF. 

Differentiating this with respect to the argument x, we get 

“Cp + 0 af  < ¥%s 

=O, + NM (x) af x > y*. 
(2-26.15 ) — LAr De 

Using (2-2.15) when we differentiate A(y) to locate the minimun, 

we get 

yoy? 

(2-2.16) al (y) = ep(I-a) + /(y) +0 | foie el aa 
Oo 

When y=y* the final term becomes zero and, since A(y*) is a 

minimum, we have A! (y*) = 0 amd hence, using (2-1.18) we get



aL 

(2-2.17) 0 = c,(1-a) + I/(y*) = ep(1-a) - cp + (c,+0,)F(y*). 

Thus y* is found by equating F(y*) to a cost ratio similar 

to that used for the single-stage model. 

(2-2.18) ae (1-a) Cp 

ee seamen anaes? 
H R 

In the discrete case, by considering AA(y)20, we find y* to be the 

least value of y for which 

(2-2.19) ok ee (1-a) Cp 

Now we return to the problem with a finite number of stages 

and consider the continuous case first. Differentiating (2-2.10) 

with respect to y and using (2-2.9) for n = 2,3,...N, we get 

oO 

g (2-2.20) ie = Op + Lf (¢) 4. «| ay C# | (y-r)f(r)ar 
Oo 

es 
me i / / a = (1 a)c, + L(y) + a | a r)f(r)dr 

° 

I-Tn-1 
oe / / 2 =- ac, + M(y) + «| Me Ae r)f(xr)dr. 

° 

When n = 2, this becomes 

y-yt 
(2-2.21) AK(y) = - ac, + My) + a | Af (y-r)f(r)dr. 

° 

If y# gives the unique minimum of A,, then the last two terms will 

only be positive (and hence A4(y) can only be zero) if y > y#, hence 

we must have y# > y#. Similarly, when n = 3:
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y-ys 

(2-2.22) Ad(y) = - ac, + M by) + «| Ab (y-r)}f(r)ar. 
° 

Since Af (y#) < ac, for Ag (y#) to be zero, this implies that y# > y#, 

and by induction we arrive at Karlin's result quoted above, viz. 

em Reh) FR EOE Sg 0 ne Ws 

p = 0 the equalities only being applicable when c 

Using (2-2.23) and (2-2.21), we can now construct another 

scheme for calculating our sequence of optimal target stocks. 

Scheme B (1) Find y# from (2-1.15) and y* from (2-2.18) 

Then calculate A{(y) from (2-1.13) ami (2-1.14) 

for suitably spaced values of y between y# 

and yim 

(2) Set n=2 

(3) Use (2-2.21) and (2-1.14) to evaluate A’ (y) 

at values of y be tween writ and y* and hence 

find by interpolation. 

(4) If n = N then stop, otherwise let n become 

n +1 and go to Step (3). 

This scheme does not involve tabulating C#(x), which accounts 

for much of the time required by Scheme A. If some values of C#(x) 

are required, these can be calculated separately after the Ta values 

have been found by Scheme B, so that an efficient grid can be used. 

In the discrete case, our starting point is Equation (2-2.11). 

Differencing with respect to y, this yields 

YrYn-a 
(2-2.24) AA (y) = - acy + AM(y) + a y AA, (y-r)p(r). 

r=0
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Reasoning similar to that for the continuous case shows that (2-2.23) 

still applies and the values of ye can be calculated by proceeding 

as in Scheme B, working out the corresponding discrete functions. 

There is no need for interpolation in the discrete case however. 

Bellman (1957) points out that, when considering the recurrence 

relations of dynamic programming, the derivatives (and, by implication, 

the differences in discrete cases) are more basic quantities to consider 

and satisfy simpler eqwtions. However, the implications of this for 

our present model do not seem to have been explored previously in the 

literature. 

Many writers have noted that the objective functions used in 

inventory theory are very flat in the region of the minimum and this 

has important consequences when we study the rate at which Se 

converges to y* - in other words, when we see how well the infinite- 

duration model approximtes a finite-duration one. This wuld sedi 

to be a more practical way to view the relationship between the two 

types of model than to consider the finite-duration model as a 

truncated approximant for the infinite-duration one in the manner of 

Bellman or Karlin. 

The intuitive argument for convergence is as follows. 

Looking at (2-2.20) and its discrete analogue (2-2.2h), we see that 

provided Al is still quite flat at y the integral or sum in the 

final tem for al or AA, will be small in relation to the second 

term. When this is so, (2-2.20) becomes effectively 

(2-2.25) af (y).= - ach + M(y), 

and (2-2.24) becomes 

(2-24.26) Ad (y) = - ac, + AM (y).



2h. 

The right-hand side of (2-2.25) is the same as that for A/(y) with 

a negligible last term and the right-hand side of (2-2.26) is the 

same as for AA(y) with a negligible last term. We know that the 

last term for the infinite case becomes negligible near y = y* 

and so it follows that if y* lies in the flat region for A, then 

y# will lie close to y*. 

Some examples of convergence are given in Appendix 1, where 

it will be noted that many discrete models of practical interest will 

converge at the second or third stage. 

An important practical consequence of rapid convergence is 

that if the true number of stages in the process is not known with 

certainty, then the policy for an infinite-duration process will be 

only slightly sub-optimal and, as we have seen, an analytic solution 

in terms of the demand d.f. is available for the infinite-duration 

model.
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2-3. Other cost structures 

In this section we examine how the method of analysis is 

affected when we depart from the simple linear cost structure of 

Sections (2-1) and (2-2). 

First we keep the three linear costs but add a set-up cost 

or fixed purchasing cost, Yp? of the type we considered in 

connection with the simple deterministic model of Chapter 1. 

If we order any quantity z > 0 we must now pay Yp + Cp2- 

For a single-stage process, we shall therefore replace (2-1.5) by 

(2-3.1) Cy (x,y) Yp + ¢p(y-x) + L(y) 

Yp ~ Cpx + Aa (vy) 

Let us say that the minimum of Ay lies at S&,, which we 

previously denoted by y#. If no order is placed, the only costs 

incurred are the losses L(x) resulting from starting the stage with 

initial stock x, whereas if we order up to 8, we incur a purchasing 

cost of Yp + Cp (S,-x). Thus it will be optimal to place no order 

so long as 

(2-3.2) L(x) < yp + Cp (Sa-x) + L(Si). 

Consider the break-even point and denote the stock level there by s,. 

The relationship between sy and S, will then be 

(2-3.3) L(s1) = yp + Cp (Si-s,) + L(S) 

or Ke (81:). = Yost Aa (Ss)
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The values Si and s, are known respectively as the upper 

and lower critical stocks. They characterise a policy which may 
  

be expressed. as: 

order “up, tos diy x: <* sx: 

and ordér nothing 1f x > s,. 

Such a policy is often called an (S,s) policy, or an (S,s,T) policy 

when it is used in connection with a multistage model where the 

stock is reviewed periodically with period T. 

From (2-3.3) we can see that sy>S, as Yp->0 and, since we 

have defined 84, to be equal to y# for the model with Yp = 0, the 

optimal policy for Section (2-1) can be seen as a special case of 

the (S,s) policy where the two critical stocks are both equal to y#. 

When the two critical stocks are equal at each stage, the (S,s,T) 

policy is said to become an (S,T) policy; our optimal policy in 

Section (2-2) is now seen to be of this type. If a set-up cost 

had been included in our multistage model then after calculating 

Sh (= ed, at each stage we would have to go on to calculate Sy 

using a relationship between values of An corresponding to (2-3.3) 

BO Ns. 

(2-3 4) A (sy) = Yp + A (8,,)- 

Two special cases of this model are of interest for their 

connection with the results for the simple deteministic model we 

examined in Chapter 1. Firstly, when Ch = O and the demand 

distribution is exponential with mean yp = AT we find that putting 

S. = y# in (2-1.15) gives



af 

H 
(2-3-5) exp(-S,/AT) = ———— 

Substituting this into (2-3.3) and rewriting this in terms of the 

difference between the critical stocks, we get 

Yp 
ATc 
    (2-3.6) exp(G@/AT) = +1 + ’ 

H AT 

where Q = Swiss). 

If Q@/AT is reasonably small then by considering just the 

first three terms of the Maclaurin series for the exponential we 

can get the following approximate solution for Q. 

(2-307) Qa | 2y¥prt 
re 
  

The right-hand side of this is the same as the square-root formula 

for optimal arder quantity with the simple continuous deterministic 

model if we consider Cry to be kT. 

Secondly, we consider Cp = O and a geometric demand distribution 

with mean AT so that 

(2-3.8) p(r) = Ga Wet A ebsesins 

By considering the first three terms of a geometric series we get a 

result for the difference in critical stocks which is identical to 

that for optimal order quantity with the simple discrete deterministic 

model with Cy = kts vize Q@ is the least value of Q for which 

2ypAt 

Cy 
  (2-3.9) Q(@ +1)>
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Scarf (1963) considers the problem of minimising long-run 

average cost per stage with exponential or peau tege demand and he 

shows that the approximations in (2-3.7) and (2-3.9) give reasonably 

good results for the difference in critical stocks in that case. Because 

of this the classical square-root formula and its discrete analogue | 

acquire a new importance. 

The idea of equating the instantaneous cost Cy to a time- 

dependent cost ky charged for a whole stage of length T suggests a 

way in which the results we have obtained for instantaneous linear 

holding and runout costs may be used for some other models with time- 

dependent costs. 

One such model has become widely known from Naddor's 

description of it in Churchman, Ackoff and Amoff (1957). It assumes 

that demand in each stage occurs at a uniform rate with respect to 

time but that this rate is a random variable taking independent 

values in each stage. H,lding and runout costs are time-dependent 

and are respectively ky and k, per unit quantity per unit time. 
R 

When the demand rate is treated as a continuous random variable the 

loss function can be expressed in the form: 

(2-3.10) L(y) = T[k,, [ oDecoar + ky ee f(r) dr 

a y 

+ ky [ow £(z) dr]. 

o 

If we substitute CH ron kt and’c_.'for kT and following Naddor (1966) H 

we define a new probability density
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(2-3.11) h(r) ml fG)ax, 

the loss function becomes 

a 00 

(2-3.12) L(y) = o i (y-rJa(r)ar + op | (my)a(ar), 
- y 

which is in exactly the same form as the continuous version of 

(2-1.6) with h instead of f. Naddor (1966) shows that a similar 

equivalence exists in the discrete case. 

A more important type of model with time-dependent 

costs is suggested by Hadley and Whitin (1963) who assume that 

demand is generated by a stochastic process at a known rate, By 

concentrating on the case of a Poisson process with rate ) they 

rather obscure the general approach to such models, which we can 

summarise as follows. 

Assume that the d.f. for demand at any time t is Fhe 

if demand is discrete there is a corresponding pemef.p,; sn Sala ria bf 

continuous then there is a p.d.f. fhe Time may vary continuously 

or discretely but in either case the holding and runout costs are 

respectively ky and. k, per unit quantity per unit time, 

By considering kT and. kT equivalent to Cry and Cp 

as in Naddor's model, the loss function for continuous demand 

can be written as (2-3.12) where;
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a 

) P40 for discrete time, 

(23.13) a(r)=4 
~ | £,(r) dt for continuous time, 

° 

For discrete demand, we define 

T 

(2-3 .14) ~ ees for discrete time, 

h(x) = a 

n [ Peledat for continuous time, 

Oo 

and substitute this for p(r) in the discrete version of (2-1.6). 

In the language of our Chapter ., we obtain h(r) as a mixture 

of the demand distribution at t with a uniform distribution for t.
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Hadley and Whitin (1963) consider the Poisson process for 

which 

r_-At 
(2-3.15) p(x) = p(rjat) = Ate. 

re 

Mixing with a continuous uniform distribution on (0,7) gives 

CO 

(2-3.16) h(r) = cm P (r¢1;aT) = = 3 p(x;aT). 

x=r+1 

Ignoring any purchasing costs, y# is found by (2-1.12) to be the 

least value of y for which the d.f. corresponding to h satisfies 

the usual type of inequality. This may be expressed as: 

oH 
Paro: 
  (2-2.17) — P(y+2;AT) = P(y+13AT) > 

A useful discrete-time process which has been used in dam 

theory - see Prabhu (1965) - is based on the Gamma distribution and 

has 

t-1  =-r/A 
(2-318) £,(2) = Ga) ee ; 

(t-1)$. 

Mixing with a discrete uniform distribution on {1,...,T} gives a 

ped.f. which can be expressed in terms of the Poisson right-hand 

cumulative function. 

(2-3.19) h(r) = = [1 - P(t;x/A)]. 

Using (2-1.15) and ignoring purchasing costs, we find y# by equating 

the d.f. Of: the mixture to the usual‘ cost ratio, 

  

; ; e (2-3. 20) = [yi - yt P(Bsy#/A) + aTP(T+1;y#/A)] = ae ‘



Similarly, using a loss function based on h we can solve 

multistage problems with time-dependent costs. When instantaneous 

costs of our original type are also included the solutions become 

slightly more complicated but the method is still basically the same. 

52
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on). Demand distributions end convexity 

When we were looking for the minimum of An and later for 

that of A, we assumed that each of these functions had a unique 

minimum. With linear costs of the type we have considered, this 

assumption will always be valid so long as F is strictly increasing. 

We can see this most clearly in the single-stage model, where we 

can rewrite (2-1.13) as 

(2-4-1) M(y) = (c, - cp) + (oy + cp)F(y)- 

When Cp > Cp 2 0 and Cy > QO; M will only change sign once as F 

increases and so Ay will have a unique minimum at y# and the 

simple ordering policy based on this value, the limiting (S,s) 

policy when s = S, will be optimal. 

Scarf (1960a) has shown that the condition of linearity of 

the cost structure can be relaxed without destroying the uniqueness 

of the minimum, provided that the loss function remains convex. His 

proof is based upon showing that, although A may have a number of maxima 

or minima, ‘the convexity of the loss function will ensure that A 

possesses a weak form of convexity which is nevertheless sufficiently 

strong to ensure that any oscillations in An will be too small to 

cause a departure from an (S,s) policy. 

The convexity of L can be used to establish some inequalities 

relating to the convergence of y* to y*, e.g. Scarf (1963) gives the 
n 

    

result 

ei a 2c 
im n 2 when = 0. 

Q— oe val Mé 
( dy. ) n. a L"(y*) P
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This indicates that convergence is approximately geometric, a result 

which may be compared with our figures in Appendix 1. 

Karlin (1958a,b) has shown that to make the loss function 

convex the remaining constraints on the individual costs become 

fairly mild and easy to determine when the demand p.d.f.(or p.m.f.) 

belongs to the class of Pélya frequency functions. He has since 
  

elaborated the theory of such functions, which we shall define and 

discuss more fully in Chapter 4 below. At this stage it is 

sufficient to say that the class contains most of the theo retical 

distributions which would usually be considered for the demand and 

that by using a distribution belonging to the class we can regulate 

the number of possible sign changes in the derivative (or difference) 

of Aue If there is only one sign change and An has a unique minimun, 

then the optimal policy will be affected only slightly by mall 

variations in parameter values and, if the form of the demand 

distribution is known except for the value of some parameter, each 

estimate of the unknown parameter can be converted directly into a 

corresponding optimal stock value. A method of tackling this 

estimation problem is one of the topics we shall discuss in the 

next chapter.
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CHAPTER 3 

MODELS WITH MORE UNCERTAINTY 

3-1. Known leadtimes 

Depending upon whether ordering or delivery is taken as 

datum, the time which elapses between placing an order and taking 

delivery of the same order is called the lag in delivery or the 

leadtime for ordering. 

We now examine how the models in the previous chapter need 

to be modified when leadtimes equal to @ stage lengths (i.e. equal 

to €T) are considered. First we look at the model of Section (2-2) 

with a leadtime of T, i.e. with €=1. This means that stock ordered 

in the current stage is delivered at the beginning of the next stage, 

if there is a next stage. Any stock ormered in the final stage will 

be delivered after the end of the process, so it will always be 

optimal to order nothing in the final stage. Therefore, using the 

notation en in place of th for the optimal total expected cost of 

n stages with a leadtime of @ stages, we get: 

(3-1.1) rs odes ae Lae Ba 
2 

where L is defined as before for positive argument and 

(3-1.2) L(x) = ep (u - x) for x < 0. 

Following Karlin and Scarf (1958), we may assume that goods 

are paid for when they are ordered: we shall call this convention 

cash on order. As an alternative, we may consider the more usual
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convention of cash on delivery, 

With a continuous demand distribution and cash on order, 

the recurrence relationship for n > 1 will be: 

(3-1.3) a. ae) = — 0px + L(x) 

ee foiyiage | 8, n-a (y-r)£(r)ar}. 
Sex 

oO 

The function corresponding to An is Ma,n, which no longer 

contains the loss-function term since losses in the current stage 

depend upon available stock rather than upon target stock. 

(3-14) Ma nly) = chy + a | Ca n-a(y-r)f(r)dr. 

Using (3-1.);) we can rewrite (3-1.3) as: 

ray Le Cx ae min 3 
(3-1.5) f,n (x) Cpx + L(x) + os {Mun (y)} 

Differentiating to locate the minimum of Ma 2s we find 

y# to be the value of y for which 

Ne : 

(3-156) [ R(y-r)f(r)ar = Cr 7 L/alep 
eee CR 

sub ject to a Cp > Che 

The term on the left can be written as F‘?) (y), using F‘2) in the 

usual sense of a two-fold convolution of F with TUSE Lhe
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The result shown in (3-1.6) can be explained by realising 

that the ordering decision in the penultimate stage must take 

account of demand in that stage plus the demand in the final stage 

and the total demand in two stages will have df. FC?) , 

With cash on delivery, the corresponding result is 

a 

(3-1-7) Wee yes = rs sub ject to the original 
H 

GOnda tron, C7 Sic, 
R RP 

The infinite-duration (or steady-state) solutions are also 

expressible in terms of F?). 

oy = [(1-a)/a]e,, 

C.F. C 
ss C2) poet HOUR (3-1.8) Re" (y*) = és Gea 

Cc 

for cash on order, 

on for cash on delivery. 
H R 

Comparing (3-1.8) with (2-2.18), we see that the cash-on-delivery 

solution is the same as that for a zero-leadtime model with F‘?) 

instead of F. For cash on order, the purchasing cost is divided 

by a@ as well. 

When @ > 1, e x becomes a function of the available stock, 

x,landJof<all orders Sivaar placed but not yet delivered. Now 

dynamic programming with functions of more than two variables is 

usually impracticable, but Karlin and Scarf (1958), in their 

classic treatment of backlog models with leadtime €T, show that 

this problem can be reduced to one involving functions of single 

variables only. This is a very important result because it shows 

that computation for any member of stages with a known leadtime of
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£T is essentially the same as for the corresponding problem with 

zero leadtime - provided that all excess demands are backlogged. 

We present Karlin and Scarf's results as applied to our 

usual linear cost structure with Yp = O. We use our own notation, 

which is designed to clear up some ambiguities in the original 

paper. First we define two new types of function, Lj; and Bion 

0 forsi-= 0% 

(3-1.9) Ly(y) = ily) for j=1, 
© 

a | Lj-a(y-r)f(r)dr for j = 2,3,.e8. 
; 

and c.. each It can be shown that Lj is equivalent to L with c R 
H 

multiplied by ad ang f(r) replaced by its j-fold convolution with 

itself, viz fJ)(r), 

With the cash-on-order convention: 

  

a 

a 0Ek + Ly (x) 

00 
min 

(3-1.10) By n(x) = } * vox topy + afm onma (yr) £(x)dr 

Hon snis>, C ard ead. Ais eie 

In (x) + Lo(x) +...4+ In(x) forn¢ & 

\ 

By defining 

oO 

(3-1.11) Myn (y) = copy + «| By ,n-a (y-r)f(r)ar, 
° 

we can rewrite (3-1.10) for n > & as:
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min 
{ y>x Ai yn (y)}- (3-1.12) Brn (x) = - ox + Ly (x) + 

Corresponding functions can be defined for discrete demand distributions. 

If z; denotes stock already ordered and due for delivery j 

stages from the present, aie will be a function of date. ie abd A 
yf be 

which we can express as the sum of a number of functions of single 

variables. 

(3-1.13 ) cx (Pita elas edi he) 
Lyn Loe 

Seles (XP + Dg Ce Be) + Ie (xtc ty) toes 

+ Di (rea tate oz ) +B (+ Zales s ok yo 
= 1 yn [= 

In the special case where 4 = 1, we get 

(3-1.14) C*, n(x) = Bryn(x), 

which is consistent with our treatment of l-stage leadtime above. 

For all values of & we find optimal values of y by locating 

(i 44) 
the minimum of A « The solutions will involve the d.f. F 

Lyn 

instead of the F we used in the zero-leadtime models, e.g. the 

infinite-duration solutions are: 

& 
oe [(1-a)/a Jo, for cash on-order, 

GC. + ¢ 
(144) H 

(3-1.15) F (y*)= 
R 

op7(1-a)ep for cash on delivery. 
yp
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The typical ‘effect of convolution upon’ad.f. is to’ shift 

all percentage points (fractiles) to the right, so that we may infer 

from (3-1.15) that increasing the leadtime, which results in more 

convolutions, will increase y*. 

The practical implication of these results is that 

calculations will be greatly simplified if F is chosen so that tables 

of the j-fold convolution, pee are available or can readily be 

calculated. The simplest case is: where } and +. both belong to a 

family of distributions which is closed under convolutions in the 

sense of Feller (1966).



3—2, Stochastic leadtimes 

The results of the previous section can be used when we 

consider the leadtimes to be random variables. In this section we 

shall assume that orders are dealt with on the FIFO principle (first 

in, first out) and that if more than one order has been out standing 

then leadtime for the next order to be delivered is measured from 

the delivery of the previous order: in this way we ensure that 

orders are delivered in the same sequence as they are placed and 

successive leadtimes do not overlap. 

Leadtimes are taken to be independent and identically 

distributed with p.m.f. p(@) for = 1,2,...and a corresponding right- 

hand cumulative probability P(@). Demand will be treated as a 

continuous random variable, its p.d.f. being f for one stage and e(%) 

for & stages, as before. 

We shall denote the maximum permissible number of outstanding 

orders by k. Scarf (1960b) has considered the case of k=1 and found 

that the analysis can be brought into a form which resembles that for 

a known leadtime with €=1. We show that the case of k=2 resembles 

that of @=2 and suggest that the stochastic model with given k will 

always resemble the deterministic one with =k. Following Scarf, 

we shall use the cash-on-order convention in this section. 

First, consider the steady state when k=l and let the leadtime 

be €, a known value. If k=1, there may be 1 or O orders outstanding, 

Let C(x,z,€|t) denote the total expected optimal cost when a stage 

begins with an available stock of x units and z units on order with 

a leadtime of @ stages of which t have already elapsed.



-We now let C(x) denote the corresponding cost with x units 

available and none on order. Using the results of (3-1) we can write 

(521 Olea 01h) "de CE) ie too Ly) 
CO 

+ git ‘ encabiele is 

Now considering the leadtime to be stochastic, we take the expectation 

of (3-2.1) with respect to the conditional leadtime distribution. If 

t stages have already elapsed since placing the order, leadtime must 

be at least t + 1 and the probability of this is P(t+1); we therefore 

obtain the conditional leadtime distribution by using P(t+1) as a 

normalising constant for the probability msses at €> +t. To obtain 

a compact notation we define three new functions; M, a, and fo. 

(3-2.2) M(x|t) = ater > L (x)P(t+3) for t=0,1,... 

Jal 

which becomes » & PC) for t=0. 
J 

Jal 

CO 

(3-263): *ag(t) = oe ys at p(t+j) for t=0,1,... 

jal 

CO 

which becomes e aJp(j) for t=0. 

jot
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(5<S5)).' £ o(r|t) = ee aie ot) Jolt+3)..for tia°0 1525.0 

which is a proper normalised p.d.f. and becomes 

oO 

(J) 
wo \ He (r)p(j) for t = 

jel 

The conditional expectation of C(x,2;2|t) can then be written 

(3-2.5) C(x,2/t) = Mm (x|t) + ao(t) i C(x+z-r)f,(r|t)dr. 

We can use (3-2.5) to express the total cost with no out- 

standing orders in a form similar to (3-1.13) for a known lag of one 

stagee 

(3-2.6) C(x) = a {o,2 + C(x,z/0)} 

= re {cpz i us (1 0)+a0(0) | C(x4+z-r)fo(r|0)ar} 

=-Cpx + M,(x|0) + aloe + 2o(0)/ G(y-x)eo(x]0)a 

This summarises the result of Scarf (1960b). He pointed out that 

while the function which we have called M behaves like the loss 

funetion L, the p.d.f. in the equivalent L would not be our f, except 

when the leadtime distribution is geometric, say 

(3-27) p(2) = (1-q)q’=4 for = 1,2,+++5
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in which case (3-2.6) will be the same as (3-1.3) with a discount 

factor of [a(1-q)/(l-aq)], a holding cost of c,/(1-aq); a runout cost 

of c_/(l-aq) and a demand density q 

Grane aes 
£=1 

Now let us examine the case of k = 2, where there my be 2,1 

or 0 orders outstanding. Let z denote the quantity on the first 

order to be delivered and Zz, that on the second order. Let t be the 

leadtime for 2, which has already elapsed. The equation when no more 

orders may be placed, which corresponds to (3-2.5), will be 

oO 

(3-2.8) C(x,22522|t) = M(x|t) + aot) | C(x+24-r,22/0)fo(r|t)dr. 

oO 

The equation when one order may be placed, eorresponding to 

(3-2.6), will be 

(3-2.9) C(x, 24 |t) = Ee Lc, 22 + C(x, Z4 »Z2|+)} 
7 

Cc 

= eh {cp Ze + My (x|t) + ao(t)/ C(x+z4-r, za |0)fo(r|t)dr}. 

We may use this functional equation to replace the last term by a 

function of x + 2, using the argument developed by Karlin and Scarf 

(1958) in the case of a known leadtime of two stages. To complete 

the analogy, we define functions Mg and Bg. 

(3-2.10) Ma (x|t) = ao(t) | M, (x-r|t)£o(r|t) dr.
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(3-2.11) BO(x|t) = - ob + Ma (x|+) 

+ aaa + aa(t)| BS(y-r|0)f(r|t)dr}, 

Substituting into (3-2.9), we get 

(3-2.12) C(x,z |t) = M(x|t) + B9(x+z4|t). 

This is in the same form as (3-1.13) with M, instead of I, and B§ 

instead of Bz,,- However, each function is now dependent upon t, 

but by considering t = o in (3-2.11) we can evaluate B9(-|0) ana 

hence B9(- 
  t) for any t. 

The optimal policy when there are no outstanding orders can 

be found by using the relationship 

(3-2.13) C(x) & tata 30 WOP( 24 +22) + C(x, 24 522|0)} 

and then proceeding in much the same way as for C(x, 24 |0). 

We may infer from this consideration of k = 2 that, for 

any value of k, the equation when one more order may be placed 

will always resemble that for known leadtime € = k. We suggest 

that a general proof by induction would show the general equation 

to be of the form:
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(3-2.14) C(x, ,2asee052 | t) = M(x|t) + Mo (x+z4|t)+... 

+M (x42, +2g+.-04+z2 |) 
oe k-e2 

Bo ce iG + Be (x+24 +Z9+ oe’ 1s 

whe re 

(3-215) ul (x|*) = do(t) } M_, (e-r]0)fo(x] +) for j = 2,500 

and. 

(3<2,16) Bo(x|t) = - opx + M (x|t) + Fst [ony 

Fact) Be (y-r|0)£.(r|t)ar} 

Certainly when k = 1 or 2 (and also, we suggest, in the 

general case) it will be of interest to study the known-leadtime model 

with a demand distribution which is a convolution of the basic distribution 

mixed with a geometric distribution for the convolution index. 

Hadley and Whitin (1963) have examined the problem of 

stochastic leadtimes when demand is governed by a Poisson process. 

However, their solution depends upon the very restrictive assumption 

that the range of possible leadtimes is less than the stage length, T. 

The model which we have just considered takes T as the minimum leadtime 

rather than the maximum and this assumption is often more realistic.
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3-3. Demand distributions which vary with time 
  

For simplicity, we have assumed up to now that the demands 

in successive stages are imlependent and identically distributed. 

It is well known, however, that most practical demand processes 

show appreciable autocorrelation, which is often combined with 

trend in the mean and perhaps cyclical variations. Any satisfactory 

general model for prediction must take account of these features - 

see Box and Jenkins (1968) - and they can in fact be incorporated 

into the type of model which we have been considering. The general 

method for incorporating them is given in a series of papers by 

Karlin (1960a,b) and Iglehart and Karlin (1962), which we briefly 

summarise as follows. 

Demand distribution is varied by the operation of a Markov 

transition matrix which governs the selection of a particular demand 

state for each stage; with each state is associated a p.d.f. or pmf. 

which is to govern demand during the stage. Provided each of the 

possible p.d.f's (or p.m.f's) belongs to the class of Pélya frequency 

functions the optimal policies will be of the simple form characterised 

by a set of critical stock levels of the same type as our jy}. The 

actual calculation of the critical stocks is rather complicated but 

it is described in detail by Karlin (1960a), who gives a worked 

example (unfortunately this appears to contain a misprint on p.620 

where the value of y, is stated to be 5.6 instead of 4.6). The 

method is applicable to models with or without leadtime and with 

backlog or lost sales. 

Another type of temporal variation in the demand distribution 

may arise when we know its general form but have imperfect knowledge



about the value of some parameter. One way of dealing with this 

situation is to use observations of demand to produce a maximum- 

likelihood estimate of the unknown parameter and use this estimte 

in the known form of p.d.f. or p.m.f. However, such estimtes tend 

to be rather erratic when the sample size is very small and in this 

case a Bayesian method may be preferable. Such methods are often 

criticised for combining opinions with observations but from a 

practical point of view they provide a good way of using intelligent 

guesswork when little or no solid information is available and then 

letting real data submerge the initial guesswork as observation 

proceeds. In this way we get a regular narrowing down of the demand 

distribution with increasing information. In the next chapter we 

shall explain Bayesian methods more fully and show that they involve 

an important special case of distribution mixing, a topic to which 

we have already referred. 

The history of Bayesian methods in inventory theory seems 

to begin with Dvoretzky, Kiefer and Wolfowitz (1952), who gave the 

topic a very abstract treatment in a paper dealing with various 

methods of treating imperfectly known demand distributions. Then 

Scarf (1959 31960¢) showed how these methods could be applied when 

the demand distribution belonged to the Exponential Family (see 

Section(4-2) below) and in particular to the class of Gamma distributions. 

For further results with Gamma distributions see Fukuda (1960), Scarf 

and VanderVeer (1961) and Wilson (1966). A more gmeral version of 

Scarf (1959 ) has been provided by Iglehart (196), while Hansel (1966) 

and Lampkin (1967) suggest using Bayesian methods with an imperfectly 

known Poisson distribution.



49 

To understand the Bayesian methods and various requirements 

which we have imposed upon distributions mentioned so far, we shall 

now go on to examine some basic ideas of probability distribution 

. theory.
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CHAPTER 4 

THE BASIC DISTRIBUTION THEORY 

jel. Pélya functions and total positivity 

We have seen that in his classical exposition of the 

Arrow-Harris-Marschak inventory models, Karlin (1958a,b) was able to 

generalise the results of Bellman (1957) and other early authors by 

introducing the restriction that demand distributions should belong 

to a special class called after George Pélya - the class of Pélya 

frequency functions. This restriction was quite mild since the class 

contains nearly all the usual distributions of statistical theory. The 

generalisation resulted in greater freedom in choosing the form of the 

cost functions for holding and runout so that the analysis could be 

extended to cost structures other than the linear type which we have 

considered. 

The choice of Pélya's name for the class of functions is 

due to Schoenberg (1950,1951), who was following up some earlier work 

by Pélya. A considerable corpus of theory for Pélya frequency functions 

and related topics has built up in the last twenty years and is now being 

brought together by Karlin (1968) in two volumes, the first of which has 

already appeared. We shall briefly summarise the ideas which find 

applications in inventory theory, but first it should be pointed out
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that a "Pélya frequency function" is not the same as a "Pélya 

dis tiation, the term used by many authors to denote a mixed 

distribution which is a form of Negative Binomial first stuwlied 

by Eggenburger and Pélya (1923) - see our Chapter 7 below. Another 

source of confusion is the "Pélya - Aeppli distribution" of Skellam 

(1952) and Moran (1968), which is another mixture. 

In what follows, we take f to be a typical univariate 

probability density or mass function. We may define f by 

(4-1.1) f(a os: Re) s 

where A is a normalising constant and the random variable whose 

distribution is described by f takes values in a real set (x) to 

which x in (4e1.1) belongs. Alternatively, we may introduce a 

parameter @ and write. 

(4-122 ) f(x|@) = a(x) K(x,@). 

Considered as a function of @, the expression in (41.2) is called 

the likelihood of a single observation of the r.v. described by f. 

Following Raiffa and Schlaifer (1961) we shall call K(x,@) a kernel 

of the likelihood. For any f there my be several possible factorisations 

like (4-1.2) and hence several possible kernels.
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We now consider K(x,@) to be any function of two real 

variables where x belongs to a set (x) and 9 to a set (0). We can 

then summarise the relevant ideas of Karlin (1968) in the following 

definitions, where we have altered the wording so as to present the ideas 

without recourse to measure theory. 

DEFINITION A. 

DEFINITION B. 

If we select m values from (x) and m values from 

2(@) and order them so that X4., <ika <Peee < x 

and 64, << 05 ee ea tS Oo 

the function K(x,@) is said to be totally positive 

of order k (TP, if the following determinant is 

non-—nesaurve: hom mis. 1s 2, sas 5Ke 

  

K(x 5 & ) K(x,,02) see Km ,@,) 

K (Xp, 61) K( xe ; 62 ) eee K(x2 56.) 

‘ (x2 64, ) K(x, 62 ) eee K(x, a.)   
If K(x,6) is TP, and is a kernel of the likelihood 

f(x|@), then the distribution specified by f(x|@) is 

said to be Pélya type of order k (PI,)-
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DEFINITION C. If x(u) is a function of a single real argument u 

and K(x,y) = k(x-y) is TP, when y belongs to a suitable 

set of ordered real values, then «(u) is a Pélya 

frequency function of order k (PF) and a probability 

distribution with density or mss function f(x) = A. x(x) 

is called a PF. ‘pro bab ility density or mass function. 

From these definitions it can be seen that all distributions 

characterised by a parameter are PT, and that all those with a monotone 

likelihood ratio, i.e. those for which the likelihood ratio f(x|@)/ 

f(x| @2) is a non—decreasing function of x for 6; <. 05, are’ PT... ..Most 

of the univariate parametric distributions of statistical theory, with 

the notable exception of the Caushy distribution, are PT, with respect 

to one or other of their parameters. The most important Pry distributi ons 

belong to the Exponential Family or the Range Family, which are described 

in the next section. 

The requirements for monotome likelihood ratio (or 

equivalently for PT,) provided Scarf (1959) and Iglehart (196,) with 

methods of demonstrating the behaviour of the optimal stocks iy} 

when Bayesian methods are used. 

An important property of all TP). functions, amd hence of 

PF. distributions in particular, is the sign variation diminishing
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property. For a PRY density f(x), this property my be stated in 

terms of the convolution transformation. 

© 

ar a) = / ely) £(x-y)ay« 

If g(y) changes sign r times (r<k) as y traverses the real axis, 

then h(x) changes sign at most r times. Moreover, if h(x) does 

actually change signs r times, then h(x) will have the same 

Ce ae of signs as e(y) has when x and y take ascending values 

in their respective sets. 

It was this property, a direct result of the determinant 

inequality required in Definition A, which was used by Karlin (1958a,b ) 

for the inventory models and has since been applied in many other fields - 

see Barlow and Proschan (1965) and Aoki(1967). 

The most important PF, distributions are also members of 

the Exponential Family or Range Family when their parameters are considered; 

they include the Poisson, Gamma, Normal, Lognormal, Binomial, Negative 

Binomial, Beta, Rectangular and Uniform distributions which we consi der 

in the following chapters. A simple characteristic property of PF, 

distributions is that they are unimodal.
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m2. The Exponential Family and the Range Family 

The well-known Fisher-Neyman factorisation criterion for 

sufficiency states that if the likelihood can be factorised as follows 

(4-261) f(xla) = a(x) K(t(x), 6), 

in other words x appears in the kernel only in the function t(x), then 

the statistic t(X), which is the corresponding function of the 

observable r.v. X, will be sufficient for @ when this parameter (which 

may be multidimensional) is unknown. 

An important class of distributions, which have sufficient 

statistics whose dimensionality remains unchanged with sampling, is the 

Exponential Family. In the older literature, this family is often 

called after Koopman, Pitman or Darmois - see Ferguson (1967). 

Distributions of the family have a likelihood which can be factorised 

in the following way. 

k 

(4-2-2) f(xl@) = a(x)e(o)expl >, ay(a)R4(0)1. 
j=l 

Comparison with (4=2.1) shows that the sufficient statistic for @ will 

be 

(4-203) +t(X) = [{Q&(K), G(X), o-0, &(X)}- 
* 

In most cases we are only interested in 9 being one- or two- 

dimensional. In what follows, we shall restrict @ to denote a single 

unknown parameter or the first of a pair and use ¢ for a second
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unknown parameter. In practice Equation (4-2.2) will then become 

(4-204) F(xlo) = a(x)p(o) exp [& (x)R (0)] 

for one unknown parameter and 

(4-225) f(x] 6,6) = a(x)B(0,d)exp [G(x)Ri (6) + Q(x)Re(4)] 

for two unknown parameters. 

A list of the factors for the likelihood of several useful 

distributions of the Exponential Family has been given by Lind gren(1968). 

An important feature of the Exponetial Family is that the 

set of x-values for which f(x] 6) is a proper non-negative probability 

density or mass function does not depend upon the unknown parameter 

(or parameters). However, there are distributions which admit of a 

sufficient statistic of fixed dimension and for which the admissible 

set of x-values is determined by 6 (and possibly ¢). Such distributions 

may be said to belong to the Range Family, of which the simplest 

members are the Uniform and Rectangular distributions of our Chapter 8 

below. 

The general form of likelihood for the Range Family, 

corresponding to (4=-2.2) can be written in one of the following forms. 

(4-2.6) f(x] 0,¢) a(x) B(6,¢) for wm(e)< x < we(¢). 

(4-2-7)  £(x|@) a(x) 6(6) for wi(@) < X < we(6)- I
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In cases of practical interest the functions w and we will usually 

have a very simple form such as w(@) = - 6 and we(6) = 6 or w,(6) = 

a constant and We (@) = ee 

When a sample of n values of x is drawn froma 

distribution of the Range Family, the sufficient statistics will be 

of the form t(X) = max {Xj} or min {Xj}. For further details and a 

fom of likelihood which generalises both the Exponential Family and 

the Range Family, see Ferguson (1967). 

=. Convolutions, mixtures and Bayesian methods 

To avoid considering discrete and continuous dis tributions 

separately we shall temporarily make use of Stieltjes integrals in 

the manner of Parzen (1960). We then define the convolution of the 

def. F with the d.f. G to be H such that 

Cg es Bae 4 | F(y-x) aG(x). 

If F is the same as G, then H is called the two-fold 

(2) 
convolution of F with itself and is written F - Similarly, k-fold
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(k) 
convolutions of F with itself may be defined and written F - 

the notation we used above in Chapter 3. 

When the convolution of two members of a class or family 

of distributions is again a member of that class, we say that the 

class is closed under convolutions. 

An operation which is somewhat reminiscent of convolutions 

is what we shall call mixing. If we have a parametric d.f. F(x|6) 

and the parameter has d.f. G(@), we define the marginal or mixed 

d.f. to be H(x) given by the following equation 

(Bey lee): | F(x|@) aG(@). 

The literature on mixing is bedevilled by the variety of 

terms using to describe the functions and operations involved. The 

most popular alternative names for our mrginal distribution would 

seem to be "contagious distribution" or "compmnd distribution". We 

shall refer to F as the basic distribution and G as the mixer. 

Karlin (1968) deals with the mixing of PF, distributions 

and their closure under convolutions. Our interest is mainly directed 

towards those sub-families of the Exponential family which are closed 

under convolutions and a special type of mixing which results from the 

Bayesian approach to parameter estimation. 

Briefly, the Bayesian approach is this. We know the form 

of the likelihood f(x|@) but @ is unknown. We the refore assign a 

prior distribution , G., to the unknown parameter. By mixing f with 

Go we obtain a prior marginal mass or density function, ho.
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Guedes). i Gd i £(x|9) a6,(6). 

We may imgine that our basic r.v. represents demand 

in one stage of an inventory process, in which case we would use 

ho instead of the f or p in the equations we developed for 

known demand distributions. In this way our model would reflect 

the uncertainty about the true parameter value which is expressed 

Tnios pron dis tribublon. 

After a value of the basic r.v. has been observed, say 

it is %, we can find a posterior or updated distribution for the 

unknown parameter, say G, where the subscript denotes the number 

of actual observations. Using the theorem of Bayes, we find G, 

as follows: 

(4-3 ot) aG, (|x, ) = f(x, 1¢)aGo(@) 

ho(x, ) 

Writing go and g@ for the mass or density functions 

corresponding to Go and G respectively, we can express this more 

simply as 

(lie3 55): Aenea)” = £Co be)eota) 
ho(x ) 

Proceeding in a similar fashion we can find the marginal 

mass or density function hy which will depend upon x, hence a 

posterior function gp after 2 independent observations and so on 

until after n independent observations we my write the posterior 

and marginal functions for n >1 as follows.
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f(x) | 0) gaa (|x. akadts ce soa : 

hn =1 (x [24 2X20 $+ s%n=4) 

(4-36) i CB le Seine de) 

(4-307) by ix] xg sXe as esg%) Ul [ #621 9)aG (ola s04+++53)- 

The notation shows the dependence of g and h, upon all 

the x - values observed to date. In the case of basic distributions 

which admit of a sufficient statistic for the unknown parameter, we 

may summarise the sampling history in the statistic instead of 

explicitly stating the observed x-values. Thus if t} is a sufficient 

statistic summarising n independent observations we my replace the 

last two equations by: 

(4-368) en (0| tn) f(x, | 0) en =2 (| tr=s ) 

tn =a (an [tras ) 

(4-329) In (x|th) [ #Glo)amn (alte ) using the Stieltjes 

int egral. 

St(x|@)en(@|tr )de using the 

ordinary (Riemann) integral for 

continuous 6, 

£61 6)en (ol ) for discrete 6 . 

These equations show us that, when the dimensionality of 

t, is not affected by increasing n, the functional form of g will 

be the same as that of g-, and the form of h, the same as that of 

m-1 for alln>il1. If we introduce a parameter so into go so that 

&> has the same functional form aS gp for n > 0, i,e. it may be
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written Bo(6|8o0)s then provided that s, combines with the x - values 

in the same way that they combine with each other to form t, we my 

summarise the sampling history and the initial choice of parameter in 

a "statistic" s, of the same dimensionality as t,- Equations (4-3.8) 

and (4-3.9) with t, replaced by s, will then be applicable for 

ie Odense oer . 

When g and h, have the same functional form for each 

value of n they are called self-reproducing and the set or system 

of functions (f,g,h,) is said to be closed under sampling. 

It can be shown that if the unknown parameter has some 

true value 6 and this is included in the set on which the Prom 

distribution is defined, then as n +o the posterior distribution 

will tend to a unit impulse or delta function at 9=86 and hy (x| sp ) > 

f(x|6 ). However, Bayesian methods are most useful when n is 

small and little information is available from sampling. Initial 

uncertainty about the parameter value is reflected in a broad prior 

marginal distribution; as sampling proceeds, this narrows down in 

a regular fashion.
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yale Conjugate distributions 

Raiffa and Schlaifer (1961) brought together the ideas 

which we have considered in the earlier part of this chapter and 

showed that a system of distributions closed under sampling would 

result when f was the mass or density function of a distribution 

of the Exponential Family or Range Family and go was a mass or density 

function based on a kernel of f. More explicitly, if f(x|@) has a 

kernel K(x,@), then g.(@|s.) should be of the form v.K(so,6), where v 

is some suitable normalising constant. They called a prior distribution 

of this kind a natural conjugate of f(x|@). 

Now we have already stated that there may be several 

possible kernels of f(x|@) amd Raiffa and Schlaifer (1961) showed 

that the class of natural conjugates may be further enriched by 

introducing other parameters into the prior distribution beside s,. 

Spragins (1965) has since shown that a closed system of distributions 

will still be obtained if the prior distribution is of the form 

v(6)K(so,@) where v is any non-negative function of @ containing a 

suitable normalising constant; a natural conjugate is then seen to 

be a special case in which v is independent of 6. We shall use the 

term conjugate distribution to describe the general type suggested 

by Spragins, but for simplicity we shall be mainly interested in 

natural conjugates when we examine Bayesian treatment of useful 

distributions in the chapters which follow. 

By suitable parameterisation it will usually be possible 

to reflect a wide range of prior knowledge or opinions about the 

possible values of the unknown parameter by choosing prior distributions
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from the conjugate Pali na Bearing in mind the advantages of 

closure under sampling when g, and h, come to be evaluated, it will 

be advantageous to choose a prior distribution from the conjugate 

family unless this completely fails to reflect fairly definite 

prior knowledge about the unknown parameter. 

Most of the existing literature on Bayesian methods is 

concemed with observing x-values and hence adapting g,, from which 

suitable estimates of the parameter value (or unobservable state of 

nature) can be mde at each stage of sampling. Much attention has 

also been paid to the possible types of sampling process. (Jn the 

inventory models, where we take the basic random variable to be 

demand (or possibly leadtime), the sampling process is already 

determined: we get one independent observation at each stage. Also 

we have seen that optimal inventory policies depend on the effective 

d.f. for demand and it is this, rather than a parameter value, which 

we usually want to estimate at each stage. Our interest then is 

concentrated on h, rather than g. 

In the next chapter we give the detailed derivation for 

Poisson and Gamma basic distributions and the following chapters 

summarise the corresponding results for other useful distributions. 

The general method can be seen by considering a basic distribution 

for which f(x|@) factorises to a(x)K(x,0). Imagine we choose a conjugate 

prior distribution with 

(4-41) B0(6|So) = VoK(So0)«



Let us now introduce the symbol * to denote the operation which 

combines a new observation with an old "statistic" to produce a 

new "statistic", so that 

(4-ly-e2) 81 = 89% &- 

We shall see that in practice the operation is often simple addition 

or multiplication. Assuming that the prior distribution is continuous, 

the corresponding marginal mass or density function is then obtained 

as follows. 

(4h) ho(x| Had I / £(x|@) go(6|so) a6 

a(x) / K(x, 6)K(s096) dé 

a(x) vo | K(souxs0) d@. 

If v(x) is a factor which will normalise K(sSo%x,6) to convert it to 

a proper ped.f., we can then write 

(4nbet) — Ho(x]so) = a(x) Yo 
va (x) 

since the integral of w(x)K(s,*x,6) will be unity. When x is 

observed, So # x becomes sy by (4-4.2) and let us say that vs (x) 

becomes vz so that g(@|s,) can be expressed as v4K(s1,0)- We can 

then find h, by using (4-4.3) with suffix 0 replaced by suffix 1 

throughout. The extension to finding h, for n > 1 is then obvious.



The implication for our inventory equations, e.g. 

(2-2.7) is that if we replace f(r) by hn(r]s,) the total expected 

cost will depend on the current value of S,, so that (2-2.7) would 

be replaced by an equation of the following form. 

(4-05) Gi(x]s.) = ™™ Sop (y-x) + (ys) 
2x 

00 

a | S.0-=a, Cola, ard. 

The suffix n now denotes the number of demand observations 

or elapsed stages of the inventory process while the suffix m denotes 

the number of stages till the end of the process (the n of Chapters 2 

and 3). 

In general, the recurrence relationship for dynamic 

programming now involves functions of two variables, but Scarf (1960c) 

has shown that the relationship can be reduced to one involving functions 

of a single variable when the demand distribution is Gamma with unknown 

scale parameter - see Chapter 5 below. 

When we have two unknown parameters, two "statistics" will 

be introduced into the recurrence relationships, which will then involve 

functions of three variables. Dynamic programming may still be feasible 

at this level but the curse of dimensionality prevents consideration of 

more unknown parameters if Bayesian methods are used. With more unknown 

parameters there appear to be two possible course of action; either 

to use Bayesian methods to find h,, solve the infinite-duration problem 

with this marginal distribution and rely on convergence of the critical 

stock levels to ensure that the infinite-duration solution will be 

nearly optimal for finite duration or to use the basic distribution
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with maximum-lik@ihood estimates of the unknown parameters and use 

dynamic programming. When only a small number of observations have 

been made, the first course seems preferable and we would recommend 

Bayesian methods as being most suitable when’ few observations have 

been made, even for the case of only one unknown parameter.
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CHAPT ER 

THE POISSON AND GAMMA DISTRIBUTIONS 

5-1. Definitions and inventory applications 

We shall denote the typical random variable for the 

Poisson distribution by Po(A), whose p.m.f. is 

(Sed 1d #,(e|A)-= axe™* por x = 0,1,2,¢0s and A> 0. 
Oo 

xe 

The mean and variance of P,(A) are both equal to 2d. 

Closely connected with Poisson distributions are those 

of the Gamma family. The typical Gamma r.v. is Ga(a,b), which is 

continuous and has p.d.f. 

(8-1 .2) $42| <d)6 p(bx)* te * for x > 0, 

T'(a) 

where T(-) is 
the complete 
gamma function. 

The parameter a _ specifies the order of the Gamma distribution, 

while b is the scale parameter. The mean of Ga(a,b) is a/b and 

the variance a/b?. 

In general, it is sufficient to impose the condition a > o 

and b > o, but certain special cases are of particular importance. 

When b = 1/2 and a = n/2 for some positive integer n, then we have 

the distribution of ¥ (n), ise. Chi-squared with n degrees of freedom.
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When a=1 we have the exponential distribution (sometimes called 

negative exponential) with parameter b . When a is some positive 

integer, so that I(a) can be replaced by (a-1)!, we have an Erlang 

distribution. 

All standard textbooks on stochastic processes, e.g. 

Parzen (1962), introduce the Poisson process, in which events happen 

at random intervals. When the length of the intervals is exponentially 

distributed, the total number of events in a given time will be Poisson 

distributed. We have already discussed an application of the Poisson 

process in Section (2-3), where we were interested in periodic-review 

inventory processes with time-dependent costs. Whitin (1953) and 

Hadley and Whitin (1963) minly concentrate on the Poisson process as 

the mechanism for generating demands in continuous and periodic 

inventory models. Most other writers on continuous models do likewise, 

although Bather (1966) has suggested using the Wiener process, which is 

based on the Normal distribution. 

As we noted in Section (2-3), using a slightly different 

notation, the relationship between the Poisson p.m.f. and the Gamm 

ped.fs can be expressed as 

Gy 00 

(5-1.3) fy, (ylasb ay = ) fp (xlbt)- 

Using the d.f. and right-hand cumulative function, we can write this 

more succinctly as 

(5-1-4) Pa, (tla,b) = Pp, (a|bt).
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It follows from (5-1.4.) that tables of probabilities for P,(A) can 

be used to calculate probabilities for Ga(a,b), and vice versa. 

The most useful tables are those of Molina (192) and 

Pearson (1922). Details of these and other tables are given by 

Raiffa and Schaifer (1961). Since they wrote, a more extensive 

tabulation of the Poisson distribution has been prepared by the 

General Electric Company of America - see Pelletier (1962). 

Numerous publications about the Poisson distribution are 

summarised in the monograph by Haight (1967). 

The Gamma distributions are useful in periodic-review 

inventory theory both to describe the length of leadtimes, as we 

noted in Section (3-2), and as distributions of demand, as we noted 

in Section (2-3). Also in cases where a Lognormal distribution is 

applicable, a Gamma distribution may be used, since the two parameters 

can be chosen so as to give a Gamma p.d.f. almost identical to that 

for the Lognormal. 

Bearing in mind Karlin's requirements for Pélya functions 

in inventory theory, we show that Poisson and Gamma distributions 

belong to the Exponential Family and so satisfy the .Pélya conditions. 

Consider first P,(A) with unknown A. Putting A = @ we can factorise 

Poo as in (4-2.2 ) if we substitute as follows: 

(5-1.5) ale) = s+, p(@) = e°, 

Q(x) = x, Ba(@) = log 0.
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Using the sufficiency theory of Chapter 4, we see that since 

@ (x) = x the sum of observed x's will be sufficient for 6. 

In the same way, the distribution of Ga(a,b) with 6 = a gives 

1 r? 
= exp (-bx), p(@) = Te) ? Ul (5-1.6) a (x) 

O(a) lee, Bile) = 6. 

It follows that the sum of logarithms, or simply the product, of 

observed x's will be sufficient for @. When the scale parameter 

is unknown, we put 6 = b and get 

(5-17) a(x) =x", lo) = 2) ’ 

’ Ri (@)= - 0 « Ul P4 Q& (x) 

As in the case of the Poisson, the sum of x's will be sufficient 

for @. When both parameters are unknown, we put @ = a and ¢ = b 

to get 

(5-18) a(x) == =, B( 84) = I 

La
e |

 ef
 

Ne
 

Q(x)= log x , By (@) I D>
 

~ 

-0 e Qe (x)= x > Re(¢) 

Here the product of x*s will be sufficient for 9 and the sum of x's 

for ¢. 

These factorisations and the knowledge about sufficienty 

will help us to identify the conjugates for Bayesian analysis in the 

next section.
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5-2. Convolutions and Bayesian treatment of Poisson distributions. 

It follows from the fact that the m.g.f of P,(A) is 

(5-2.1) bp (tla) = exp fae) 

that the n-fold convolution of the distribution of P,(A) results in an 

megef. of the same form as that in (5-2.1) but with A replaced by 

nA. Similarly, since the mg.f of Ga(a,b) is 

  

(5-22) ta, (tlasb) = ¢ z =) 3 

an n-fold convolution replaces a by na. Hence both the Poisson and 

Gamma families are closed under convolutions, and we may conveniently 

select demand distributions from these families when we are dealing 

with stochastic leadtimes. 

When we consider mixing a Poisson distribution, we find 

that the best-known mixing distribution is in fact the natural 

conjugate. Following Eggenburger and Pélya (1923), we mix the 

distribution of P,(A) with a Gamma distribution for unknown ), 

which means that we let 

f(x| 6) = f, (x| @) and 
° (5-2.3) 

80(6|80)=f_,,(6| S05); where So is some positive integer. 

The prior marginal p.m.f. is then found to be



Es 

  

  

oO 

(Bradt) 265 Sol aly © a | f(xlé) gotol#a)ae 
° 

Ks (so+x=1)! pre = (Tab ea gootx-l 7 (l+b)e 

eee (hap) e | (s5-+’%-— 1)8 v 

(29) CY GY 
fupi (Xl 80s 1/2 +b) ), 

which is the pem.f. of NBi (so,1/(1+b) ), a Negative Binomial r.v. as 

defined below in Chapter 7. 

Defining s, to be so + x and remembering that the sum 

on xts is sufficient for. 6, we find that. the first. priom ped sis) for 

@ will be 

(5-2.5) ex (6|s1) f(x, |@) 80( 6] 80) 7 ho(x |so) I 

(14b)*4 get -1 7 (+b )@ 

(s, - 1)! 
  

£4, (6/81 » 1+b) . 

Defining s, to be Sp-4 + X and proceeding in the same 

way as the sample size increases, we find that 

(5-2.6) g,(@ls,) = f, (e@ls,, nb), 

(5=2.7) h, (x|s_) fap (18,9 1/(n+b) ).
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Comparing these two equations with (5-2.3) and (5-2.4), we see that 

the Gamma-mixed Poisson system is closed under sampling. This comes 

ab out because the p.d.f. of Ga(so,b), which we used as prior mixer, 

18,in the: form of a kernel of fp (x| 6) with a suitable normalising 

constant, (s,-1)!, and the scale parameter, b, is simply introduced 

to enrich the family of mixing densities. 

The practical implication of this result is that if we have 

an inventory process where demands are Poisson distributed with unknown 

mean we may introduce a prior estimate of the mean (s,/b) to which we 

attach a variance (s,/b?). Having thus implicitly assigned values to 

So and b, we substitute the most recent version of ho» as given by 

(5-2.6), for the demand p.m.f. p in the various formulae in Chapters 2 

and 3 above. The relevant probabilities can then be found in the 

tables of Williamson and Bretherton (1963).
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5-3. Bayesian treatment of Gamma distributions 

When dealing with the Poisson distribution in the previous 

section we were able to confine ourselves to well-known functions. 

However, this is not the case when we apply Bayesian methods to the Gamm 

distributions. 

Let us first consider the case of an unknown order 

parameter, i.e. the case of Ga(a,b) with a= 6. From (5-1.6) we see 

that a kernel of the likelihood is 

(5-3-1), pC o)expl&(x)R(0)] = b%exp(@logx) = (bx)? 
T'(6) T(6) 
  

We already know that a > 0, so, if we further constrain @ to take 

integer values only, a possible prior pem.f. of the same form as 

(5=3.1) would be 

(523.2) Bo(6|to) = to + exp(-t.) for 6 = 1,2,00 
Cael. )t and t, > O« 

In other words, we may assume initially that our unknown parameter 

is distributed as 1 + P,(t,). 

It is tempting to suppose that sampling will result in 

a closed system in which the unknown parameter always has a displaced 

Poisson distribution, but this proves not to be the case. 

To demonstrate quickly what the actual system is, we 

introduce a new function which we call the epsilon function. We 

shall denote the epsilon function of order n by €,, which we use
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in the definition: 

(5=305:) en (x) = De ie or fate 

bi [(j-L)r Jo +4 ys [ay ]n+4 

Or ne = Oe eee 

and X50 

It can be seen from the definition in (5-3.3) that the 

epsilon function of order zero, €9(x), is identical to the exponential 

function, e or exp(x). 

The epsilon function of order one, «,(x), is related to 

the modified Bessel function of order zero, I,(x), by 

(603.4) ae(x) co By "). 

Using the epsilon function as a normalising constant, 

we can define a pem.f. based on the individual terms of the series. 

We shall say that a r.v. is distributed as Eps(n,A) if its p.m.f.is 

5-345 fepa(tlA) = ee Oa Aaya NE recagrae o 
On x= dls 2intareid 

n= Od 52, «ws and Xr > O. 

The distribution of Eps (0,A) is therefore the same as that of 

1 + Po(A), and we shall now consider the prior pem.f. in (5.3.2) as 

being that of Eps (0,to).
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esi )oe, «du, Geen) ae £(x|6@)&0(6| to) 
ea 

Oo 

ere bax) o 
si ec 

Baa: 

. pe7>® es (bt ox) 

€o(to) 

Defining t, = Xntne. for n = 1,2;..., we can then find the posterior 

pemef for the unknown parameter after one observation conditi onal 

upon the sufficient statistic ta, 

. Cots Fee 1 
[(e-2)1]? ea (bts) 
  (5~3.7) ga. (0| ta ) 

ul Paps (@llsbts) « 

By observing the behaviour of the system of functions as 

sampling proceeds, we find that the posterior pem.f. for the unknown 

parameter after n observations is 

Il (5-3.8) &n(6| th )   
[(ea)ii** < (t,) 

ii} Tips (o|n,by'tn); 

and so we have closure under sampling. 

The marginal p.d.f. always comes out in the form of an 

exponential p.d.f. multiplied by a ratio of epsilon functions.
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(5-3-9) bn (x| tn ) = be ?® enya (b"**t,x) 

€n (b" ty ) 

We shall call a distribution with this kind of p.d.f. an Epsilon-Gamma 

mixture. Members of this family of distributions will be specified by 

the three parameters (n,b tp, ) and we may write the typical r.v. for the 

family as EpsGa(n,b,t,), whose ped.f. is that shown in (5-329) 

Feller (1966) suggested mixing a Gamma distribution with 

what he calls a Bessel distribution, which corresponds to our 

distribution of Eps (1,°), but as he was not then looking for closure 

under sampling he did not discover the closed system which we have 

described here. It is also of interest to note that Poisson mixing 

of a Chi-squared (hence Gamma) distribution results in the Noncentral 

Chi-squared distribution of statistical theory - see Lehmann (1959). 

By introducing another parameter, corresponding to the degrees of 

freedom for Noncentral fi so that the order parameter of Ga(a,b) was 

expressed as a = k + 6, we could build up a more generalised closed 

system. 

We look next at Ga(a,b) with the scale parameter, b, 

unknown. From (5-1.7) we see that a kernel of the likelihood is 

(5-3.10)  p(6) exp [&(x)Ri(e)] = & e -™ 
T(a) 

which becomes the p.d.f. of Ga(a,1) if we also incorporate the factor 

a(x) = x77+, We may enrich the family of possible distributions by 

incorporating a scale parameter c, which may take any positive value.
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Remembering that the sum of x's will be sufficient for the unknown 

b = 6, we can then form the prior p.d.f. using an initial value of 

the sum statistic, s,, which we introduced in the previous section. 

(5-3.11) 8o(6|s9) Zs so° oc" en So 

T(c) 

Proceeding as before we find 

oO 

Keedite);  Toxiso) = | f(x]@) go(@|so) de 

T'(at+e) Soe ee - (sotx)tt® gatens times 

P(a)T (oe). (sgex)*** ‘, I (a #°¢) 
  

- 1: oe see bao ae » where B(.,.) is the complete 
a,c SotX 

beta function. 

This is the p.d.f. of an Inverted Beta distribution. The typical r.v. 

with this type of distribution is IBe (p,q,s), whose p.d.f. is 

(5-3.13) £23, (xlp.as) = 2 gt xP~4 

B(pyq) (s+x)P*? 

  

The special case when p = m/2, q = n/2 and s = n/m is 

Snedecor's well-known F-distribution with m degrees of freedom in 

the numerator and n in the denominator, 

Sampling leads to a ctased system with the following 

posterior and marginal p.d.f's,



i? 

5 (s g)ratent 6 9&n 

T(nat+c) 
(5-314) em (ols) = fy, (olnatc,). 

Bae es xan 4 

(5-3.15) In (x| Sn) = am Ts, 4x rarare   

(x|a,na+c,sp)- 
<5, 

Scarf (1960c) mkes use of the fact that 

1 
(5-53.16)  f,,, («lp.ass) = 5 fp, (He.a52) , 

which enables him to eliminate dependence upon s, and so reduce 

the dimensionality of the functiomlequations for the periodic-review 

inventory model when demand is distributed as Ga(a,b) with unknown b. 

Scarf's idea was later used by Fukuda (1960) and Wilson (1966). 

Raiffa and Schlaifer (1961) give more details about the 

Inverted Beta distributions (which they call inverted-beta-2 

distributions). For our present purposes it suffices to say that 

the d.f. of IBe(p,q,s) is related to that of Beta r.v., Be(p,q) 

defined in Chapter 7 below, by 

  

Sia 2. 
(5-3.17) Fino (*/P2 498) = Fre ( “ [psa 

and that tables of F,, are available - see Pearson (1956) and 

Schlaifer (1969). 

We now examine the Bayesian treatment of the Gamma
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distribution with both parameters unknown. Here we obtain a closed 

system of distributions if we choose the joint prior distribution from 

a family based upon what we shall call the psi function. We shall 

denote the psi function of order n by %, which we use in the 

definition: 

(nj)! yt (5-.3.18) ga(a,d) =) ((j-1)1)"*# 
jel 

fon nN = i0,dsy2), ee 

and a,b > 0. 

Comparison with (5-3«3) shows that go (a,b) = eo(b) and 

SO %o(a,b) = exp(b) for any value of a. 

We now use the psi function to define the Psi distribution, 

a bivariate distribution for which the joint p.m.f. is given by the 

following expression. 

5 ¢r~tyNz mys 

(5-3.19) Posi (x,y|n,s,t) = Un (55t) [(x-1)i])*2   

The lillihood for each observation of Ga(6,¢) is 

go x Ole-e 
(5-3.20) f(x|6,¢) = 

(e-1)! 

If we choose the prior joint mass and density function for the unknown 

parameters to be Fig3 (921950 2 to)» we find that we have a system 

which is closed under sampling with the following posterior and 

marginal distributions, in which s, is the sum statistic and ty 

the product statistic as before.



(5-3.21) 

(5-3.22) 
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tn hae 6 .~P8n 

  

Sn 

én (dln on) = Fa) [(e-1)#]°*# 

fp (O-¢]n Sn » tn ) ° tl 

Sn Ynta (Sn +X, tnx) 
Fe (zl sisted = Sy +x dink On tes 

= fost cg (X12 sn sta) say .
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CHAPTER 6 

THE NORMAL AND LOGNORMAL DISTRIBUTIONS 

6-1. Definitions and inventory applications 
  

The Normal (or Gaussian) distribution is the distribution 

of No(yo*), which has the following well-known probability density. 

al me 

(6-1.1) fy (*lus0?) = Spe exp [- eG] for -m <x <0. 

The parameters yp and o”? represent the mean and variance respectively. 

In the Bayesian analysis which follows, it is convenient to replace 

at 
the factor 1/J2m by the equivalent expression (1/2)? / r(1/2). 

A random variable whose natural logarithms is distributed 

as No(u,07) is said to have a Lognormal distribution or be distributed 

as LNo(y,0%). A simple change of variable shows that 

ah (6-1.2) fray (*lH20°) = xin, (108 x|u,07). forx>o. 

Thus, while the Normal distribution is defined on the 

whole real axis the Lognormal is defined on positive values only. For 

this reason the Lognormal appears a more natural distribution to choose 

for essentially non-negative quantities such as demand and leadtime: 

Brown (1959) has in fact shown that it gives a good description of 

demand in many cases. However, as we remarked in Chapter 5, the two- 

parameter Gamma family is rich enough to provide distributions which 

closely match most members of the two-parameter Lognormal family - 

and for many purposes it is simpler to use a Gamma distribution.
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On the other hand, it might be argued that the Lognormal 

may be used as an approximation to the Gamma, and the Lognormal methods 

outlined in this chapter may be considered as alternetive to those 

considered in Section (5-3). The Normal distribution itself does not 

give a good approximation to Gamma distributions of low or moderate 

order but it is, of course, often used to approximate Poisson or 

Binomial distributions under suitable conditions: the principal 

condition is that the mean be reasonably large. 

In the absence of any other information, the Normal 

distribution may therefore be used to describe demand when this occurs 

at a fairly high rate. Tables for minimising the loss in a single stage 

of an inventory process with known Normal demand are given by Eilon 

(1962). The analysis for some more complicated Normal models is given 

by Hadley and Whitin (1963), and we have already mentioned the continuous- 

time model of Bather (1966). 

The Bayesian treatment of univariate Normal distributions 

from the point of view of parameter estimation has been well covered by 

many authors; in particular we refer to Lindley (1965) and to Raiffa 

and Schlaifer (1961), who also cover the multivariate Normal. ‘The theory 

has also been widely applied to the more general problem of estimating 

unknown states of a system in stochastic control theory - see Aoki (1967). 

In the next section we introduce the distributions which are 

required as conjugates when the various Normal parameters are unknown. 

We then present the standard results for the self [producing distributions 

of the unknown parameters and add tmose for the mrginal distributions 

which are of interest in our inventory applications.



6-2. The conjugate distributions 

We start by introducing the Inverted Gamma distribution 

(the inverted - gamma - 1 of Raiffa and Schlaifer). If a random 

variable X is distributed as Ga(a,b), then its reciprocal will be 

distributed as IGa(a,b), whose p.d.f. is 

(6-2.1) froq(xlasb) 2a ee enh lx for x"S"o. 
ie 

IGa(a,b) has mean b/(a-1) and variance b?/[(a-1)?(a-2)]. 

Next, we introduce the generalised Student distribution 

with parameters (m,s*,v). The typical r.v. for this is St(m,s?,v) 

whose ped.f. is as follows 

a) ,¥/ainms ia a4 (tel (6-2.2) fo,(x|m,s 3v) = 2 - — s [v + (xn ] (v+1)/ 

fOrs= "00 <x <t005 

where 8s; v > G. 

The mean is m for v > 1 and the variance is vs*/(v-2) for p > 2. 

If X is distributed as St(m,s?,v), we find that the r.v. 

T obtained by the transformation T = (X-m)/s has the classical t- 

distribution with yp degrees of freedom, which is the distribution of 

our St(0,l,v). If tables of the t-distribution are available, we can 

therefore find fractiles for St(m,s®,v) by using the relationship 

(62.3) F., (x|m,s?,v) = Poe |o,1,v).
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It is worth noting that the generalised Student distribution 

defined here is not the same as the Noncentral t-distribution of 

chassical ‘statistics, whose p.d.t. is 

© 

(6-204)... fy, (x18,0) = | (y/u)® Py, (x(¥/v)*] 82) £g, (a |¥/2s8)ay- 
° 

When §, the noncentrality parameter, is zero, this p.d.f. reduces to 

that of the ordinary t-distribution with v degrees of freedom. However, 

the cumulative Noncentral t-distribution cannot be used to find fractiles 

for St(m,s*,v) when § ¢ 0. 

Raiffa and Schlaifer (1961) have shown that the generalised 

Student distribution arises as what we would call an Inverted-Gamma 

mixture of a Normal distribution. 

CO 

(6-2.5) fq, (x|m, 5”, v) =| fy, (xl mss") fro, (vlv/2,1/2)ay- 

° 

Because of this, we shall find that, the generalised Student distribution 

plays an important role in the Bayesian treatment of Normal distributions 

with unknown variance. 

The next distribution is the bivariate Conjugate Normal 

distribution, for which the joint p.d.f. is 

(6-2.6) Fong (x2¥|m,v,a,b) 

2 (py)/2—_,, (b+1)/2 Eyes 

T(1/2)r(b/2) i y 

1 © jo
n 

< 

Pc
p exp{-$ [bv+a(x-m)?] /y}.



We shall need this when both parameters of the Normal distribution are 

unknown. 

Finally, when dealing with the Lognormal distribution we 

shall need the LogStudent distribution, whose p.d.f. is 

(6-2.7) fy 4 (x|m, 57, v) = - fo, (Log x|m,s®,v).
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6-3. Bayesian theory for Normal distributions 

We start by considering No(y,0?) when » is unknown. 

The conjugate prior p.d.f. is then 

(6-3.1) 80(6|mo) = fy (@|mos07/a0). 

Multiplying f(x|@) by g.(e|mo), we find that the tems 

can be regrouped into the product of two Normal densities. Only one 

of these factors depends on @ and this becomes unity when integrated 

over all 6, so that the marginal p.d.f. is equal to the other factor. 

(6-3.2) ho(x|mo) = fy (x|mo,(1+a)07/ao)- 

By defining a, to be l+a,-,, or simply nt+a,, and 

introducing a kind of sample mean, 

(6-3.3) te; 2 es. See 
an 

foren.> "0; 

we then find that our choice of prior distribution results in the 

following closed system. 

(6-344) én (| ) = fy (01th 0°/ an) 

(6-3.5) hy (x|m ) fy (x/th san+2.07/an )- 
O° 

Next we consider No(u,07) with o? unknowm. In this 

case the conjugate distribution is an Inverted Gamma and we select
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(6-3.6) Bo(6|Wo) = Pr ¢q(6|bo/2,boW/2). 

a 
Remembering that 7 * is the same as T(1/2), we can 

factorise f(x| 6) Bo (6|wo) into the product of an Inverted Gamma 

ped-f. and a Student p.d.f., which gives us: the mrginal density. 

(6-3.7) ho(x|wo) = fo4(x|U,Wosbo)- 

As sampling proceeds we get the following closed system: 

(6-3.8) en (6|m ) fro,(6lbn/2,bn/2), 

I (6-3.9) In (xl) = fo,(x|us™|sbn), 

where bh is 1 + Dney, or simply n + by, and 

(6-3.10) Th = Wg + (mm - LP 

bn 
  

To give an intuitive meaning to the statistics, we 

can think of wm as the estimated variance after n observations 

and bh as the number of degrees of freedom in this estimate. 

When both parameters of No (p07) are unknown, our 

prior distribution is Conjugate Normal. 

(6-3.11) 80( 6,¢|Mo9Vo) = £ ono 6 O2¢]Mo2Vo280sD0)-
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We define. a,, bh and m as before and introduce another statistic 

which may be thought of as a kind of sample variance based on the 

sample mean, 

(6-3.12) a Dn=a Vn-a + An-1 Mi-a + XA - anth 

bn 
  

In the closed system which results under sampling, we 

then have 

(6-3.13) & (6;¢|m svn) = foo (O2¢|th 2 Vn 22nsbn ) 

(6-3-1) bn (x|mn » Vn ) a fg4.(x|th 28n+4Vn/an ybn )» 

The results for LNO(u,07) follow directly from the 

theory for No(y,07). When p is unknown we get 

(6-3.15) In(x|m) = fy. («lm .an+207/an ) 

where m, is defined to be the right-hand side of (6-3.3) with x, 

replaced by log x,. If we similarly define wm, vy, to be mm, vm with 

X, replaced by log x,, we get 

(6-3.16) hy (x| wr ) ap fro4 (usta sbn ) 

2 when o* is unknown and 

(6-3 .17) by (x|m 5 v7) = P54, (%] mn 28n+4 Vn/an bn) 

when both p and o® are unknown.
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CHAPTER 7 

THE BINOMIAL AND BETA DISTRIBUTIONS 

7-1. Definitions and inventory applications 

The Binomial distribution is that of Bi(n,p), whose 

Pellste Lo 

(7-1. Pyne =" We) Beep) 

For. @ wr py< Ws 

n ee Oita eleks 

BNC] SO 5 leseiecuvgil« 

The mean and variance of Bi(n,p) are np and np(1-p) respectively. 

Being defined on non-negative integers, this distribution is suitable 

for describing demand or leadtime. The Binomial family is closed 

under convolutions and so may be useful for providing demand 

distributions in models with leadtime. 

A related family of distributions is the Negative Binomial, 

whose typical r.v. is NBi(r,p) which has p.m.f. 

(7-208) 522 atelmay = OR) (rsa) yt 

ORO. <i pi< dag 

> © 

GN XS Oe Listy ere ek
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The mean of NBi(r,p) is rp/(1-p) and the variance is rp/(1-p)?. 

We have already seen, in Chapter 5, how distributions 

of this family arise when a Poisson distribution is mixed by a 

Gamma, but we may consider Negative Binomial distributions as 

important in their own Bight since in many ways they provide 

discrete analogues of the Gamma distributions. By a suitable choice 

of the two parameters of NBi(r,p), we can get a good approximation 

to many practical demand distributions. The Negative Binomial family, 

like the Binomial, is closed under convolutions. 

When p is unknown, the distributions of both Bi(n,p) and 

NBi(r,p) can be shown to belong to the Exponential Family, so we 

shall be able to find Bayesian distribution systems which are closed 

under sampling. 

Connected with the two families just mentioned is the 

family of Beta distributions, referred to in Chapter 5. The typical 

r.v. here is Be(a,b) whose p.d.f. is 

(7-1.3) f,,(xla,b) = BED) x1 (4_4)P1 

LO 0, << mec sande asb a>. Oj. 

The mean is a/(atb) and the variance is ab/[(a+b)?(a+b+1)]. Raiffa 

and Schlaifer (1961) show that the Beta p.d.f. varies greatly in 

shape as the parameters are changed.
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It is well known that Beta distributions for activi ty 

time are used in the PERT technique for critical path analysis. 

Although this use has been questioned, e.g. by Mac'Grimmon and 

Ryavec (1964), it seems that a suitably rescaled Beta distribution 

might give a useful description of demand or leadtime when a 

maximum value is known. 

Beta distributions belong to the Exponential Family 

when either or both of the parameters are unknown, but we shall see 

that the Bayesian treatment requires us to define some new functions.
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(7-2. Bayesian theory for Binomial distributions 

Positive Binomial distributions have probably been more 

widely studied from a Bayesian point of view than those of any other 

family except the Normal. Numerous applications have been suggested, 

e.g. by Barnard (195) in adaptive quality control and by Sutton and 

Tomlinson (1965) in adaptive control of a Ward-Leonard system. 

Briefly, the theory is that when Bi(a,p) has an unknown 

parameter p = @, we select a member of the Beta family as the prior 

distribution for this parameter. We have called the first parameter 

a here to avoid confusion with n used for sample size. 

(7-2.1) Bo(6|80) £,,,(6|S0sb-s0) 

‘ g®o7l (y_9)P-So71 

. B(So30-So) ‘is 

This leads to a system which is closed umMer sampling with the 

following posterior density, which depends upon the sum statistic, 

Sn . 

(7-262) g(6lq) = —————_ eo T(1-9) tnt 
B( sy ,nat+b—sp ) 

f,,(6| sn snatb-s ).
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The marginal p.m.f. is that of a Negative Hypergeometric 

or Beta Binomial distribution and may be written as follows: 

Sx \/na+atb=—-&s -~-x-l1 
Os a-x 

(7-2-3) in (x|sn) = (1 eet ») 
a 

  

md a B(a,na + b) : 

x(a-x)  B(x,s, )B(a-x,natb-s, ) 

Raiffa and Schlaifer (1961) dewote a section to the 

computation of the d.f. of this distribution, for which tables are 

not yet available. 

The theory for Negative Binomial distributions is very 

similar. We consider NBi(a,p) with p = @ and choose a Beta prior 

distribution, so that 

- al, Sonl -1 
(7-264) go(6l8e) = Hg py 9° (A ge, 

This leads to a closed system with Beta posterior distributi ons: 

-1 agy ast : (7-205) eml@lm) = yay en 

The marginal distribution does not appear to have been named previously, 

but we shall call it a Beta Negative Binomial distribution. Its mss 

function is 

(7-206) ha l(ate,) = 2 Sea ‘ 
x B(x,a)B(s, ,na+tb
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(73. Bayesian theory for Beta distributions 

Apparently Bayesian methods have not been applied before 

to Beta distributions, but we shall see that the theory has various 

points of interest. As in Chapter 5, we need to define some new 

functions for a concise presentation. 

First we define the eta function. The eta function of 

order n is denoted by Tn and defined by 

ary a) a ao 

The individual terms of the series may then be used to define the 

Eta distribution, i.e. the distribution of Eta(n,a,b) whose p.m.f 

is 

(7-3-2) fyp,(x[n,a,b) = coe is Gerben) 
mn ay : x=1)é 

Coe oe < a < AMO med 62 yo cies 

Now we consider Be(a,b) with the first parameter unknown, 

0° sthasb 

(7303) ~ isle) eed, a oe 

Ot yt if 6 and b are integers.
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By choosing the prior distribution for the unknown parameter to be 

that of Eta(o,t .,b), where to is a prior value of the product 

statistic, we get 

6~1 
(7-3-4)  gol@lto) = an 

Tho\ Yos 

since no(tosb) is simply a geometric series in powers of t 5. Under 

6-1 
= to (1-t.), 

sampling, this results in a closed system where the posterior and 

marginal distributions at each stage depend upon the product statistic 

tn « 

9-1 
(7-3-5) ge (6|tn) hee Lesa” 

Ta 3 poe Je 

(7-3-6) In(xltr) = G-x)"* ee ~ “= : 
: = . ™ ns 

We shall call this h, the p.d.f. of EtaBe 1(n,t,,b), the CY DILG aleraaerie 

of an Eta Beta One distribution. 

An interesting special case arises when the parameter b = 1. 

The posterior and marginal distributions in this case are related to 

the moments of the Poisson distribution. If m(A) denotes the (k) th 

. moment about the origin of Po(A), then by choosing 

6-1 =t oO 

(7H 357) “te oOlto) tet e fot 03318 «as 
(eds 

we find that (7-3.5) and (7-3.6) are replaced by the following: 

(Jn308) = a OP) “a Pua Me exn(—ts 
6-1 m tr 

HS
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(7-3-9) In(x|tr) = exp[-ta(1-x)] m (tnx) 

- m tn 
n+a 

We shall say that distributions with p.m.f's in the form 

of g,(@) in (7-3.8) are Poisson Moment distributions of omer n+1 

with parameter t,. Random variables with such a distribution will be 

said to be distributed as PoMo(n+l,t,) for positive integer n. 

It can be shown that if M.(n,t) denotes the (k)th moment 

about the origin of PoMa(n,t), then this is related to the moments 

of Po(t) by 

(725210) Gee) Se (t) 
My, (t 

The first ten moments of Po(A) are given by Haight (1967). 

The analysis is much the same when it is the second 

parameter of Be(a,b) which is unknown. Given an initial value, To, 

we define a new statistic 

(7-3.11) ™T = T™e-a(l-xn)- 

Choosing the distribution of Eta (0,T.,a) as prior for the 

unknown b = 9, we get a closed system with: 

I Cat io) e, (ale oe an AS ; 
tn (Tn 5a) L (-1)8 

(7-36.13) tn (x|tm) = _x@7t meat (1-x),a) 
(eI)! m Cin sa)
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We shall call this h, the p.d.f. of EtaBe2(n,7,2), which is the 

same as that of EtaBel(n,7,,a) but with 1l-x in place of x. 

To study Be(a,b) with both parameters unknown, say a = @ 

and b = ¢, we define another new function. The xi function of order 

n , denoted by én, is defined by 

© © 

(f=) ey lajyh) = a ve gina pert oat 

Joust kek 

LORKa yD > O- 

Using the individual tems, we define the bivariate Xi distribution, 

for which the joint p.m.f. is 

(7-315) fy, (x,y|n,a,b) ai mi pyn4 1 i 
én(asb) | Blxsy 

LOPK. ye ers as ote'e e 

By putting 

(7-3.16 ) B0(0,¢|tosTo)» fy; (0,6]0,t0T0)s 

we get the following closed system: 

Chez). eeldsel tn ta) =e ae 1 I" 
; En (tn sT™ ) Cr) 

I fy, (62¢| tn sicl 3 

Ul (7-3.18) ha (x| tn >t ) Enea (tn Xs T (1-x)) 

En (tn » T™ ) 
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CHAPTER 8 

THE UNIFORM DISTRIBUTIONS 
  

8-1. Definitions and inventory applications 
  

To illustrate the Bayesian treatment of distributions 

belonging to the Range Family, we close our survey of useful 

univariate distributions with a look at uniformly distributed 

continuous and discrete random variables. In what follows, we 

shall reserve the term Uniform distribution for the discrete case 

and use the name Rectangular for the continuous case. 

We define the Rectangular distribution on (a,b) to be 

that of Ra(a,b), which has p.d.f. 

(8-1.1) f,,,(x|a,b) ee eles aT Ora. < Bc aie 
b-a 

The Uniform distribution on fa,atl,oe.,d} is that of Un(a,b), which 

has pem.f. 

(8-1.2) fy, (xlasb) eee a ee FS ee 
b-a+l 

Referring back to Section (7-1), we see that the 

distribution of Ra(o,l) is the same as that of Be(1,1), but our 

main interest in this chapter is in cases where one or other 

of the parameters of Ra(a,b) or Un(a,b) is unknown and also where 

both are unknown. We shall call a the lower limit and b the 

upper limit for both distributions.
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In the early days of Bayesian statistics, it was usual 

to choose a Rectangular distribution as the prior in order to reflect 

vague prior knowledge about an unknown parameter - see Lindley (1965). 

If the unknown parameter was p of Bi(n,p) and the prior distribution 

was that of Ra(o,1), which is also a Beta distribution and hence a 

conjugate, a closed system resulted under sampling. In other cases, 

Rectangular distributions will not be self-reproducing. 

Apart from a brief mention by Spragins (1965) and another 

by Raiffa and Schlaifer (1961), there does not seem to be much literature 

about Bayesian methods applied to the Rectangular and Uniform distributions 

-when their own parameters are unknown. 

Because of the simple form of the p.d.f. of Ra(a,b) and the 

pemf. Un(a,b), these distributions find numerous applications in all 

branches of probability theory. We have already noted in Section (2-3) 

that taking a time average of time-dependent costs is equivalent to 

mixing the demand distribution with a Uniform or Rectangular distribution, 

and similar distributions can be used to describe demand - e.g. Wagner 

(1962) works out the stationary operating characteristics of (S,s) 

models with Uniform demand.
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8-2. The Rectangular distribution 

We start by considering Ra(a,b) with an unknown lower 

limit, so. that a = 6 and we get 

(S21) “slay eee. Mor pax eb. 
b-6 

By choosing a value A, as the prior maximum value of the 

lower limit, we can then define the following prior p.d.f. 

(8-2.2) go(olAo) = k(b-Ao)*¥ for-w< @< Ao 
(b-@)kt* where k = ye ste ee e 

This leads to the following closed system, in which A, = min ihn nay Miet 

(8-2-3)  g.(0/ An) Hy (kin) (b-A, )F*®_ = for =a < 6 <An; 
(b—9)#tA 4 

(kin) (b-An)** Hor: <r An’ 

(k+n+1) (bex)ktn¥4 

(8-2.,) hn (x| Mn ) 

k+n es for A, <x <b. 
(k+n+1)  (b-A, ) 

The marginal ped.f. therefore increases with x until it 

reaches a maximum at Aj; then it remains constant until x =b. As 

n increases, the left-hand tail of h, shrinks so that the distribution 

becomes effectively rectangular. 

To obtain the simple forms of distribution above, we have 

assumed that the unknown limit may be negative, and hence our basic 

random variable may be negative. For inventory applications with
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positive r.v's, the numerator on the right-hand side of (8-2.2) and 

(8-2.3) will have to be modified. 

When the top limit is unknown,. we select for it a prior 

minimum value By and the following p.d.f. 

(8-2.5)  go(6|Bo) = k(Bo-a)k for @>B, 
ke 

(6-a) ond b= Ee ils i 

Defining By = mx {Bn-1; x} we obtain the following closed system. 

kin)(By-a)¥*? = for 9s Be 
(6 pe gyre 

(8-2.6) gm (o|Bn) 

k+n 1 for & <x <.Bns 
(kin+1) (By-a) 

  

(8-2.7) by (x|Bp) 
k 

(cn) (Bana )htR for’ x 543, . 
(ken+1) . (x= a)ktata 

The marginal p.d.f. is now constant from a to B, and then 

decreases with x. Here the right-hand tail shrinks as n increases. 

When both limits are unknown we select A, and By as before 

and choose a prior joint p.d.f. of the form: 

(8-2.8) g0(0,¢|Ao,Bo) = k(k-1)(Bo-A,)#74 
(g-0)**4 

ter @< Ags 4.> Bo ene & & 273.6 0%
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This leads to the following closed system. 

(8-2.9) gn (65¢|AnsBu) = (k4+n)(ken=1)(By An )Et? 

sce 
  

for @< An, ¢> Be 

" (ken-1) (B,-a, )R*8 tt Pomix “< Anas 
(k+n+1) (By-x)*+nt4 

(8-2.10) hp (x|4n yBn )= 2 oe a for Ay <-x1< oh , 

(ken-1) (Bp-Ay Rtn 4 LOT ae Bre 
(kone) (x. HA, hte   

Here hh is in the form of a rectangle with tails on 

e1ther ‘sides; As: nm. ancreases; both “tails will shrink untrl the 

p.d.f. becomes completely rectangular.
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8-3. The Uniform discrete distribution 

The Bayesian treatment of Un(a,b) is simply the discrete 

analogue of the treatment of Ra(a,b) which we described in Section 

(8-2). By a suitable choice of go and values of A, and/or By we 

obtain a closed system in which the mrginal distributions are 

uniform with appropriate tails. Again the tails shrink away as n 

increasese 

An interesting feature of the analysis is that the posterior 

and marginal distributions are connected with the Riemann zeta function. 
  

This function with argument k, is defined by 

© 

(8-3.1) ¢(k) = a xO 8 for # > dg 

ee 

A general account of the theory of the zeta function is 

given by Titchmarsh (1951), and tables have been prepared by Haselgrove 

and Miller (1963). In the collection of papers on discrete distributions 

edited by Patil (1965), there is a two-page account by PR. Rider of 

a distribution based on the individual terms of the series in (8-3.1). 

Rider is dubious about practical applications of such a distribution, 

but we shall show that in a truncated form it provides conjugates for 

the Uniform distribution. 

First let us introduce the truncated zeta function of order 

k truncated at b , which is defined by 

© 

(8-3.2) C¢(k,b) = ms x © for b = 1,25... ani real k > 1. 

x=b
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We then define the Zeta distribution to be that of a random 

variable Ze(k,b) which has p.mn.f. 

=k 
(8-3.3) f,,(x|k,b) a eS SL Per eo eee y's 

¢(k,b) 

Rider's Zeta distribution is then that of our Ze(k,1). 

To illustrate the Bayesian application, consider the 

distribution of Un(1,b) where we consider the unknown b as equal 

to @ , so that 

(8-30. Ele e), Le for “x & 1, 25 ion, Ge 
0 

Select B, as a prior minimum for 6 and let 

(8-3.5) 80(6|Bo) Ea f,,(0|k, Bo) for @ > Boe 

Under sampling, we obtain a closed system with: 

(8-3.6) g(elPn) = f,,(e|k+n,B,) for 0 W - 

G(kin+1.Bo) gor x 21,2,.+09Bn; 
C(k+n, Bp ) 

(8-3.7) ba(x|Bh) = 
¢(kin+1,x) for x 

¢(k+n, Bp ) 

Vv
 Bn e 

Bearing in mind the way in which increasing k accelerates 

the convergence of ¢(k), it can readily be seen that, after a moderate- 

sized sample has been taken, the mrginal distribution will become 

effectively Uniform with 1/B, at each mass point.
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CHAPTER 9 

SURVEY AND CONCLUSION 
  

9-1. Selection from a family of conjugate distributions 

In the last four chapters we have looked at several examples 

of how to construct families of conjugate prior distributions based 

on the kernel of the likelihood. In some cases, such as Ga(6,b) in 

Section (5-3), we obtained the conjugate prior by simply normalising 

the kernel. In other cases we introduced another parameter to enrich 

the family of conjugates - for instance, this was the reason for 

introducing a general scale parameter b in Ga(sp 5b) used as the prior 

for Po(@) in Section (5-2) rather than just having a unit scale (b=1). 

We now consider how to choose a particular prior distribution 

from the conjugate family in a way which will reflect the appropriate 

degree of vagueness or precision of our initial knowledge about the 

unknown parameter. Raiffa and Schlaifer (1961) have pointed out that 

vagueness must be expressed by selecting a prior distribution which 

can be "substantially modified by a small number of sample observations" 

rather than by considering the shape of the prior distribution as 

expressed by its moments. The expression of vagueness therefore reduces 

to the selection of prior parameters which will be substantially modified 

by sampling. Thus in Chapter 5 we should choose s, and ty (the prior 

values of the sum and product "statistics") as small as possible for 

extreme vagueness, and the same applies to the parameters b and c (in 

the priors for Poisson and Gamma distributions respectively) since 

these parameters simply have a known constant added to them at each 

stage of sampling. A sensible practical rule seems to be to choose 

the initial value to be 1 when the choice is restricted to positive
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integers and 0.1 when positive fractions are allowed, though in the 

latter case it may often be more convenient to choose an integer rather 

than a fraction so that simpler tables may be used. Thus, in Section 

(7-2) we expressed the marginal p.m.f. for Bi(a,@) and NBi(a,@) in 

terms of beta functions but it may be more convenient to find factorials 

or combinatorials. Similarly, if we are dealing with Ga(@,b) and wish 

to use the short tabulation of the epsilon function in Appendix 2 then 

we would choose t = 1 rather than 0.1. 

In dealing with the Rectangular and Uniform distributions we 

should set A, as high as possible and B, as low as possible to reflect 

extreme vagueness. 

For any of the distributions which we have considered, any 

departure from the values which do reflect extreme vagueness can be 

considered as equivalent to using a number of fictitious observations 

to modify a vague prior distribution before sampling actually starts. 

We have advocated using Bayesian methods when very little 

sample information is available. In this case observations would not 

be greatly affected by any slow drift in the value of an unknown 

parameter. With larger samples such drift can be dealt with by using 

a type of exponential smoothing to update the "statistics" and so 

submerge the prior value and early sample values more quickly then 

would be the case with the simple addition (or multiplication) 

operations for updating which we have described - see Fu(1968). 

We close this section with a few words about the new functions 

which arise in conjugate distributions. The epsilon and truncated zeta 

functions involve only two variables and can therefore be tabulated in
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a reasonably compact form. Since the series which define these 

functions converge quite rapidly, direct computation is quite 

feasible when the functions are required for Bayesian analysis but 

a good quick guide to their behaviour can be obtained by studying 

the tables in Appendix 2. 

The most obvious characteristic of the epsilon function 

is the way in which €,(*) decreases very rapidly when n is 

increased and x held constant; this is a natural consequence of 

the definition with powers of factorials in the denominator. 

Similarly, increasing the power (k) of the reciprocal terms in {¢(k) 

causes rapid convergence so that, when we truncate the lower end 

of the series, ¢(k,b) rapidly becomes zero as k increases. 

In Section (7-3) we have already seen that the eta function 

of order zero is simply a geometric series and it can also be shown 

that eta functions of order one can be expressed in terms of 

negative binomial series, e.g. mi(a,l) = (1-a)7?, ma(a,2) = 2(1-a)73, 

ni(a,3) = 6(1-a)"*, so that these can be evaluated directly. The fact 

that ng(a,l) = (1+a)(l-a)° and ne(a,2) = 4(1-a)7 *[1+6a(1-a)7?] 

suggests that similar expressions can be found for eta functions of 

higher orders.
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9-2. Further work 
  

The results which we have obtained for the Bayesian 

treatment of demand distributions with unknown parameters are 

applicable in other fields where we are interested in updating the 

distribution of the observed variable. Such a situation might arise, 

for example, in reliability work where we observe the lifetime of 

components subject to failure. Gamma distributions are often used 

for lifetimes and the theory of Chapter 5 would therefore be relevant. 

Lifetimes are also commonly described by Weibull distributions, which 

belong to the Exponential Family if one parameter is unknown and yield 

a closed system under sampling if a Gamma prior is used. 

In Chapter 6 we mentioned the Bayesian theory for multivariate 

Normal distributions. Another useful topic in multivariate Bayesian 

theory has recently been studied by Martin (1967), who shows that 

Bayesian methods can be used for estimating Markov transition 

probabilities. Theoretically this technique could be used in conjunction 

with the Markov inventory model for correlated demands, to which we 

referred in Section (3-3), but the computations involved for this model 

are already quite formidable without further complications. However, 

the actual adaptive process, which involves the use-of a Matrix Beta 

prior, is quite straightforward. Murphy (1965) has suggested that 

‘related Bayesian adaptive methods applied to the Multinomial 

distribution may have applications in econometrics. 

Returning to inventory theory, it does now seem reasonable 

to think of actually using Bayesian methods with the models which we 

considered in Chapters 2 and 3. It is well known that a great hindrance
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to implementing modern systems of stock control is the inadequacy 

of existing demand records, which all too often omit lost sales and 

only show captive demands or despatches. However, as records become 

computerised, there would seem to be a case for the stock-control 

computer to have a Bayesian package which could build up demand 

distributions for important stock items. 

Even with high-speed computers, it seems unlikely that on-line 

dynamic programming will ever be feasible for regular reordering of a 

large number of items in a store - even if our Scheme B (the differential 

scheme) is used. However, this scheme is very useful for looking at 

the way in which y#* converges to y* and hence determining when an 

infinite-duration solution may reasonably be used for a finite-durati on 

process. This is an area in which further numerical work would be 

very rewarding. From the computational point of view it is preferable 

to concentrate on discrete demand distributions but, as we have shown, 

the Poisson is not the only discrete distribution worth considering. 

Of course with discrete demands the critical stock levels will also 

be discrete and we can see that va converges to y* precisely when 

AA, (y*-1) becomes negative, whereas for cont inuous demands o> simply 

creeps closer and closer to y* as n increases. 

When we think of using discrete demand distributions to 

approximate continuous ones (or vice versa) it is perhaps natural to 

choose distributions with the same means and variances. However, when 

we consider that our critical stock levels are determined by the 

fractiles of the distribution and usually by the shape of its right- 

hand tail, it becomes clear that the skewness of the distributions 

must also be considered. Some preliminary calculations suggest that 

better approximations are obtained by considering equal means and third 

moments rather than means and variances,
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9-3. Conclusion 

We have come full circle, back to the calculation of 

optimal ordering policies,and the important results of this thesis 

can now be seen in perspective. 

Firstly we developed a scheme for calculating optimal 

ordering policies which eliminated much of the redundant work 

involved in standard schemes. As a by-product of this, we obtained 

a clearer picture of the relationship between inventory processes 

with finite and infinite numbers of stages. 

We then went on to develop the theory for stochastic leadtimes 

when more than one order could be outstanding and related this to the 

existing theory for deterministic leadtimes. 

In the second part of the thesis, we examined the implications 

of unknown parameters in the demand distribution when Bayesian methods 

are used. The result of this was to reveal a number of new properties 

of well known basic distributions when these were examined from the 

point of view of their conjugates. To define the conjugate distribu- 

tions we introduced a number of interesting new functions which should 

now be included in the theory of the various basic distributions. 

The Bayesian inventory methods we have considered are 

recommended when information about demand is too vague to discern 

any trend or correlation. If these features become apparent as the 

inventory process unfolds, then more appropriate methods are available. 

However, if the demand distribution appears to be stationary and 

uncorrelated then our Bayesian methods can still be used.
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In developing the idea of likelihood kernels, we touched 

on the subject of totally positive kernels, which Karlin had 

introduced into inventory theory to enable more general forms of 

loss function to be used. Although the theory of these general 

forms is interesting, the simple linear cost structure upon which 

we have concentrated will surely remain most important in practice. 

Looking back over all the ideas which we have considered, 

it is clear that much more still remains to be done on periodic- 

review inventory theory and that developments in this subject are 

closely linked to advances in other fields of study.
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APPENDIX 1 

CONVERGENCE OF CRITICAL STOCK LEVELS 
  

Tables A.1-1 and A.1-2 show examples of the way in which 

be converges to y* for some discrete inventory models of the type 

described in Section (2-2). Using Scheme B, which we developed in 

that section, the key equations for calculating ve are: 

(1) Ahs(y) = (ep-cp) + (cyte, )F(y) 

Per 

(2) AA (y) = - aeptAha(y) +a) 9 AA, (y-r)p(r) 

HOR nis des 

For all the calculations, c.. was set at 2.0 and a at 0.9 
H 

while the mean (y) and the purchasing and runout costs were varied 

as shown. The results for the Negative Binomial distribution in 

Table A.1-2 and many of those for the Poisson in Table A.1-1 are 

based on computations done by Miss Gillian M. Bennett (iow Mrs. 

Baynes) as part of an undergraduate project under the supervision 

of the author. 

The tables show that the number of stages to convergence 

ot 
dées/vary uniformly with c 9Cp OF [Le For example, in Table A.1-1 

R 

we see that with demand distributed as Po(2) and Cp = 50 we get y* 

= Vite fOr He Oya th. Cp = LOxor 20 but we heversto.so.to n = 9 with 

Cp = 5. Moving across to the distribution of Po(6), Bo converges 

ap mt = 2 for Cp = 5b of - LO: but ab n= Siuroms cry = Oe 
Es



dade 

However, two general tendencies can be observed with each 

of the distributions. First, if the costs are held constant then 

an increase in the mean will tend to accelerate convergence. 

Second, if yw and all the costs except c, are held constant then 
iE 

convergence will slow down as Cp is increased. This second 

tendency may be explained by reference to the two equations quoted 

above. Consider the equation for Adg(y) and substitute Adi(y-r) for 

AA ee) in the final term, which we shall call the discounted 

partial convolution of AA, with p. If Cp is much smaller than Cp 

then the first term of AAy(y-r), viz. (cp-cp) » will be very negative 

and the total value of the partial convolution will be small or 

even negative so that if AAi(y) is considerably less than OC, for 

y < y* we shall find that the effect of the partial convolution 

is insufficient to make Ate(y) positive: hence y% will equal y* 

and the process will converge in 2 stages. As the value of cp is 

increased towards Cp» the partial convolution becomes large enough 

to make Adg(y) positive when y < y*, and so convergence is delayed.



TABLE A.1-1 

CONVERGENCE WITH POISSON DEMAND 

15 

‘Table shows values of Ch which give convergence at the stage indicated. 

An entry such as 90-9 denotes similar behaviour for Ch = Oar Hee lo peracioy\ o/h 
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(2) 

50 (3) 

(4) 

(2) 

60 (3) 

(4) 

(2) 

70 (3) 

(4) 

(2) 

80 (3) 

(4) 

(2) 

90 (3) 

(4) 

(2) 

100 (3) 

(4.) 

=e 

10,20 

5525540 

41-19 

yD 

10,12, 30,50 

74299 

5 

10,58,60 

61-69 

LO 

70 

71-79 

LO 

80 

81-89 

6 

87,88,90 

91-99 

5,10,25 

20 

2 

30,55,56,59 

20 

65,69 

20 

15309 

20 

80 

10 

20,90 

5 Ue 20525 

125 50,55,56 

og 

65 

69 

ton? 

50,60,83-89 

70,80-82 

PaAID 

90-9h, 

Dig 10g 2) Leal 

42-9 

12 50,51 

30,52=59 

58,60 

61-69 

70 

71-79 

80 

81-89 

87,88 

ae-oe



116 

TABLE A.1-2 

CONVERGENCE WITH NEGATIVE-BINOMIAL 

AND UNIFORM DEMAND 

Table shows nunber of stages to convergence with demand 

distributed as NBi(yy$) and Un(0,2y). 

mean Cp=60,¢ =55 Cp=50, Cp=25 Cp=50, Ch=l5 

Ul NBi Un NBi Un NBi Un 

1,5 A 3 hy. 2 3 e 

2.0 h by 3 

225 A 3 h. 2 2 2 

3.0 4. 4. 3 

4.0 2 3 3 2 3 2 

5.0 dy db 3 

7.0 3 3 2 2 2 2. 

10.0 7 2 a
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APPENDIX 2 

THE EPSILON AND TRUNCATED ZETA FUNCTIONS 

Table A.2-1 shows values of the epsilon function which 

we defined in (5-3.3), where we remarked that ¢,(x) = exp(x) and 

€4(x) = 15(2x2). Standard tables of the exponential and modified 

Bessel functions were accordingly used to check the calculated 

values in the first two columns of the table. Values were computed 

from the defining series, which was reckoned to have converged when 

the last term was less than 5 x 10° times the sum including that 

term. The number of terms required increased with x but decreased 

markedly as the order of the epsilon function was raised, so that 

no more than 5 terms were needed for any of the tabulated values 

of e5(x). 

The truncated zeta function in Table A.2-2 was computed 

by subtracting the early terms from the sums of reciprocal powers 

tabulated by Abramowitz and Stegun (196)*. Our table shows 

clearly how the marginal p.m.f. h_ defined in (83.7) will soon 

become effectively Uniform because the ratio ¢(k+1,b+1)/¢(k,b) can 

be seen to decrease as k and b increase and so the right-hand tail 

of h, (for x > B) will shrink as n increases. 

* ABRAMOWITZ M. and STEGUN I.A.(1964.) Handbook of Mathematical Functions, 

National Bureau of Standards,Washington.D.C.
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TABLE A.2-1 : EPSILON FUNCTION 

€o(x) e4 (x) €g (x) 

2.71828 2427959 2.12970 

738906 be 25235 3.53821 

20.0855 715900 5.25600 

5h..5982 11.3019 7.31542 

148 4.13 17.0578 92/5077 

1.03 01.29 2.68921 12.5984. 

1096.63 3543766 15.8967 

2980.96 49 «2086 19.6863 

8103.08 67 234d, 2h. 0102 

22026 5 90.1760 28 9136 

5987-61 120.161 Bde a Lypy2 

162755 157.760 10.6523 

14213 205.022 4.7 65906 

120260), 26.6029 55 3149 

3269017 337 2h2 6328835 

8886111 427 56). 7323576 

2.4.2x107 538.410 83.8018 

6.57x10" 673 «784 95.2833 

1.78x10° 838.369 107.873 

4685x108 1037.63 121.645 
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TABLE A.2-1 : EPSILON FUNCTION (continued) 

és (x) €4 (x) és (x) 

2.06327 2.03138 2.01565 

3.25622 3.12603 3.06267 

1.658358 4-6 28).73 4614120 

6.05016 5.50826 5.25137 

7 «66085 6.79740 6.39331 

9.42061 8.1529). 7567Uy 

11.3345 9.57566 8.77299 

13.4076 11.0664. 10.0110 

15.6451 12.6258 11.2813 

18.0522 14.6 2549 12.5840 

20.634). 1529543 13.9192 

23.3970 17.7248 15.2871 

26.3456 19.5674. 16 .6879 

29.4857 21.1827 18.1215 

32.8230 23.4717 19.5882 

36.3631 25.5350 21.0881 

40.1121 27.6736 22.621, 

bdy-6 0756 29 «8883 2.1881 

48.2599 32.1798 2547883 

52.6708 3-2 54.90 27 4.223 
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TABLE A.2-2 : TRUNCATED ZETA FUNCTION 

£(2sb) ¢(3,») S(4sb) 
1.64249 3p. 1.202057 1.082323 

» 6Ly9 3h. «202057 «082323 

° SILI. °077057 - 019823 

283823 ~ 01.0020 0074.78 

6221323 024.395 003571 

«181323 016395 001971 

0153545 011765 001200 

0133137 008850 000783 

0117512 006897 000539 

105166 «005525 000387 

095166 004.525 000287 

086902 003774. 000218 

079957 003195 «000170 

074.040 002740 000135 

068938 002375 «000109 

2 0644.9. 002079 000089 

060588 001835 000074. 

057127 001631 000062 

© 054.041 0014.60 000053 

2051271 001314. - 000045
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TABLE A.2-2 : TRUNCATED ZETA FUNCTION (continued) 

(55d) 6(6,b) th7eb) 

1.036928 d¢017 545 1.008349 

- 036928 © 017343 2008349 

-005678 -001718 #000537 

- 001563 000346 -000080 

- 000586 2000102 -000018 

-000266 - 000038 -000006 

-0001 37 «000017 «000002 

-000078 -000008 «000001 

- 000027 0 O0O0004 

-000030 ~ 000003 

~ 000020 ~ 000002 

- 000014. e 000001 

«000010 «000001 

e000007 

~000006 

- 00000 

e000003 

- 000003 

«000002 

«000002 
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