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SYNOPSIS 

Ultimate load methods have become increasingly popular in recent 

years, and a now widely used in preference to the traditional allowable 

stress approach. In particular, the simple plastic theory has been applied 

to the design of a large number of steel structures. Its use has, however, 

been restricted to frameworks with comparatively few storeys, since, in 

tall buildings, the presence of high axial loads in the columns invalidates 

one of the pAwii assumptions of the theory. In addition, simple plastic 

design is prohibited for tall frameworks which are required to resist 

wind loading without the aid of bracing, since the large sidesway 

deflections which are produced again violate the basic assumption that 

changes of geometry are small and may therefore be neglected, 

This thesis describes the development c? a rational form of ultimate 

load design for multi-storey sway frames. It is shown that the simple 

plastic equations only require slight modification in order to take 

account of the instability effects. Furthermore, iterative use of these 

modified equations produces a design which is economical, whilst satisfying 

an exacting set of design criteria, 

A variety of design aids have been developed in order to reduce 

the design time and the quantity of areEneticel work involved, with the 

result that frameworks of any size may be designed without the aid of an 

electronic computer. | 

To assess the validity of the proposed design equations, a range 

of frameworks designed by the method has been analysed using an accurate 

computer program, which traces the complete load-deformation behaviour 

up to collapse. The economy of the design method has been examined by 

comparison with several frameworks designed by other methods. Due to 

approximations in the design approach, it is not possible to produce the 

mninimum-weight. solution, but a safe, extremely economical framework is 

obtained,
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A ' beam magnification factor; 
area of an I-section; 

Ai initially assumed value for the magnification factor; 

Ac column magnification factor; 
Ps 

Ace effective magnification factor for the internal columns 
of the lowest storey; 

/ / 
Ace(sp) value of Ace under simple plastic conditions (i.e., for 

zero axial load); 

oe real distribution factor in the elastic range for member 
12, under horizontal load aH; 

ate real distribution factor in the plastic range for member 
42, under horizontal load (Ag-a)H; 

ue real distribution factor for member 12 at working load 
(combined loading); 

se real distribution factor for member 12 of a single-bay 
frame under vertical load alone; 

/ 
aes real distribution factor in the plastic range for member 

12 - leeward column of a single-bay frame; 

4 589 constants; 

Ab ad combined areas of the bending stress-blocks, and area o® 
_the direct compression stress-block of an I-section; 

B required fully plastic moment for a beam; 
flange width of an I-section; 

By Be required fully plastic moments for the beams in Storeys 1 
and 2 (counting from the top); 

b reference number of a section selected for a beam; 

Ch required plastic moment for an external column; 

C, required plastic moment for an internal column; 

Ce reference number of a section selected for an external 
column; 

Ci reference number of a section selected for an internal 
column; 

C5a,e., reduction factors for calculating the plastic modulus of 
an I-section in the presence of axial load; 

D overall depth of an I-section; 

D,E,F,¢, factors for checking the "working-load elasticity 
condition" for a beam in the lowest storey;
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FE Mo 

grad 

Young's Modulus of Elasticity; 

yield stress; 

non-dimensionalized function of B (- “h mL 

na 
total fixed-end moment or initial sway moment at joint 2; 

gradient of a straight line; 

shear force per bay in any storey; 

total shear force in any storey; 

storey height; 

combined depth of the bending stress-blocks, and degen of 
the direct compression block of an I-section; 

average value of (mHh) for two consecutive storeys; 

second moment of area of a section; 

Second moment of area of a beam section and a column 
section respectively; 

second moment of area of an internal column section and an 
external column section, respectively; 

sum of the second moments of area of all the columns in 2 
storey; 

= for a beam; 

me for a column; 

oT) for all the beams in Storey (3); 

(5) for all the columns in Storey rh): 

ratio of} the flexural rigidities of the two columns at a 
JomnG = tC where suffixes 1 and 2 refer to the columns Cc 2 

above and below the joint, respectively; 

ratio of the flexural rigidities of the lower column and 
the beam at a joint = Kea; 

Kpe 

length of any beam; 

lerchant' s\"? napnies dation factor, allowing for the 
eccentricity of axial load in a member 

2s(ite 
£8(1+c)=7%p5
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nas 

value of m at working load; 

sum of the first moments of area of the bending stress- 
blocks of an I-section about the neutral axis; 

bending moment at end 1 of member 125 

bending moment due to wind loading alone; 

sum of the bending moments at joint (j); 

fully plastic moment of a selected beam section; 

neutral axis; 

reference number for a general storey; 

stability Danotion®?? = s|1 * asd) 

ratio of axial stress to yield stress = =e ity * 

(56) Of 4 
Ee 

"change-over" value _— 
Afy 

-. 2 

stability sunotien = s|-0 : nltee)|, 

axial load in a member; 

axial load in an internal column and an external column, |: 
respectively, 

components of P. due to vertical loading and wind loading, 
respectively; 

Euler load = ls ; 

wind load intensity (force/unit area); 

ratios {nth )av and Lalth) av respectively, where suffixes 
m4Hyhy mMglghe 

1 and 2 refer to the storeys above and below the beam; 

total number of storeys in a frame; 

total number of bays in a frame; 

ratio of joint rotations ab ake ends of member 23 = ct 

spacing of frames; 

real rotational stiffness at end 1 of member ies 

sum of the real stiffnesses of all members meeting at 
qounoy 2
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wr; 

- 

Y45Ye 

ZPb 

ZPc 

/ 

ZPc 

2Pb 

ZPci»2Pce 

rotational stiffness factor for a member with the far 
end fixed; 

ratio of shear forces induced in the external columns 
of the top two storeys of a frame - vertical load alone; 
web thickness of an I-section; 

flange thickness of an I-section; 

combined stablility function for the two columns meeting 
at a joint = (n,-0,)K + (ng-0g); 

value of V at a joint in the lowest storey = (n,-0, )K+ng; 

values of V and V/ at working load; 

unit floor loading; 

total load on any beam; 

loads on beams in Storeys 1 and a 

wind ratio = ACatih) ev 

Hh )av, initial value of wr = WL ; 

effective wind ratio in the lowest storey; 

ratio of the sum of the flexural rigidities of the columns 
to that of the beam at any storey in a single-bay frame = 
Key + Kee, 

Kya 2 * 

modified version of x for the lowest storey of a single- 

bay frame = a, 

shear force in an external column due to vertical load 
alone; 

assumed axial forces in the beams of the leeward external 
bays of Storeys 1 and 2; 

full plastic modulus of a beam section; 

full plastic modulus of a column section; 

reduced plastic modulus of a column section (in the 
presence of axial load); 

required plastic modulus for a beam; 

required plastic moduli for an internal and an external 
column, respectively; 

the load factor for wind loading at which the first plastic 
hinge forms in a beam;
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Px 55 

9 (3) 

Pj) 

oS 

function used in the Gen tey oF the lowest storey of a 
Single-bay frame = 2KoV 4 

2KeV + a 

sway deflection of a single storey or a complete frame; 

sway deflection due to column flexibility; 

sway deflection due to rotation of the joints; 

ratio of the actual plastic moment of a selected beam 
section to the plastic moment required for the beam = 
Mpp _ 2Pp. 

By ae? 

: iP 
Euler ratio = =3 

Pe 

value of p at working load; 

average p value for all the columns of Storey (j); 

free rotation of a joint after plastic collapse; 

true rotation of a joint(j); 

deflection index for Storey (3) = ui). 

general value of load factor; 

design load factor for vertical load alone; 

design load factor for combined loading; 

elastic critical load; 

failure load; 

rigid plastic collapse load;
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The work presented in this thesis consists of the development 

of a method of structural design suitable for multi-storey plane 

frameworks, originally proposed by S.N.Ganahi,$1) The limitations and 

advantages of this method are critically assessed in the thesis by 

accurate analysis of a series of design examples and by comparison with 

other design methods, 3 

It is shown that the method may be easily applied to produce a 

structure which satisfies a stringent set of design criteria, In 

addition, it is demonstrated that the structure is capable of carrying 

its applied loads in a rational and efficient manner, with an even 

distribution of strength throughout the framework, 

The proposed method produces a design which is both economical and 

aesthetically pleasing in its structural efficiency. 

1.1. CRITICISM OF ELASTIC DESIGN METHODS 

One of the principal reasons for the development of the plastic 

theory was the realisation that most structures designed by the elastic 

method are necessarily uneconomical, The basis of elastic design is 

that the stresses developed in any part of a structure under normal 

working loads shall not exceed certain permissable values, these being 

given in the British Standard Specification No. 4962) 

The irrational nature of this method may be clearly Sedatitratad’?) 

by comparing the relative strengths of a simply supported beam and an 

encastré beam when both are designed elastically, 

B.S.S. No. 44.9 allows a maximum stress at working load of 10-5 

tons per sq. in, for a material with a guaranteed yield stress of
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146 tons per sq. in. It follows, therefore, that the loads could be 

  increased by a factor of F or 1.524, before yielding would 7 

occur in the extreme fibres at the most critical cross-section in the 

structure, This is true for any structure designed in this Way , 

assuming linear elastic behaviour, Elastic design therefore provides 

a safety factor of 1.52) against the onset of yielding. 

However, the structure will support additional load after yielding 

first occurs. This is due to the fact that the plastic modulus of a 

cross-section is greater than the corresponding elastic modulus, The 

ratio of the two is called the shape fiatrtisn and for an I-section is 

approximately equal to 1.15. Accordingly this implies that the fully 

plastic moment of the section is 1.15 times as great as the moment at 

which yielding first occurs, Therefore, for any elastically designed 

structure the safety factor against the occurrence of the first plastic 

hinge is 1.15 x 1.524, or 1.75 times the working loads. 

Thus, in the case of a simply supported beam carrying a uniformly 

distributed load, where only one plastic hinge is required to cause 

collapse, the load factor (i.e. the ratio of collapse load to working 

load) has the same value as the safety factor against a plastic hinge, 

both being equal to 1.75. 

However, in the case of an encastré beam more than one plastic 

hinge is required to produce a collapse mechanism, As for the simply 

supported beam the first plastic hinges occur at 1.75 times the working 

load at the ends of the beam, In this case, however, collapse does not 

occur until a third plastic hinge forms at the centre cf the beam at 

2.34 times the working load, 

So, both beams have been provided with the same safety een 

against the formation of a plastic hinge, but in one case the load 

factor is 1.75 and in the other it is 2.34. The real strengths of the 

two beams are therefore different,
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Any framed structure which consists of a number of beams and 

columns with different end conditions and applied loads will exhibit 

Similar behaviour, The load factor against collapse of every member of 

the frame is likely to be different. This is clearly undesirable since 

it implies that the majority of the members in the frame are stronger 

than they are required to be. : 

To be more precise, this means that any member designed elastically 

which is not pinned at both ends is overdesigned, This will be true of 

every single member in a rigid jointed frame, 

A far more rational and considerably more economical approach to the 

design of a framework is to select the members in such a way that the 

complete framework has some definite load factor against collapse. In 

addition, it would be desirable for every single member to have a similar 

strength, although this is seldom possible, This is the basis of plastic 

design, of which the method proposed in the subsequent chapters is a 

modified form, 

Plastic design methods have the addition advantage that the 

analysis techniques involved are generally considerably less demanding 

than those required for an accurate elastic design, due to the fact that 

the framework under consideration has far fewer redundancies than the 

corresponding fully elastic structure. It can also be be, that the. 

residual stresses developed by rolling and welding the steel sections, 

and relative settlement of the supports of a structure have no effect on 

the simple plastic collapse load, whereas they should be considered when 

using the allowable stress approach of elastic design. 

1.2. LIMITATIONS OF SIMPLE PLASTIC DESIGN 

Two of the basic assumptions of the simple plastic theory are as 

follows:- 

(a) The equilibrium equations are based on the undeformed
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structure; i.e. deflections must be small, 

(b) Local instability of any individual member or overall 

frame ingtensiaty wes not occur, 

Both these assumptions are quite valid when dealing with 

comparatively small structures, However, for multi-storey frameworks 

neither of them may be assumed to be true, particularly if the 

fee of the frame carry large axial forces or if the frame itself 

is subjected to heavy applied wind loading. 

The necessity to recognise the possibility of early collapse 

due to instability effects has been emphasized by several people, 

a review of this work being contained in Chapter 2, In particular, 

R.H.Wooa clearly demonstrated that there is a serious deterioration 

in the elastic critical load of a structure due to the formation of 

plastic hinges, and that failure may occur due to the partially 

plastic frame becoming unstable long before a complete plastic 

collapse mechanism is attained, 

The procedures incorporated in the proposed design method to 

allow for the above limitations are briefly described in the following 

section, 

1.3. PROPOSED DESIGN METHOD 

For frames in which the instability effects are negligible the 

Simple plastic theory produces a safe and economical design. 

However, as already stated,for frames with more than two or three 

storeys, or for those acted on by heavy wind loading the beams and 

columns selected by this method cease to be adequate and failure 

would occur below the specified load factor for a complete mechanism, 

These selected sections do however provide a lower bound to 

those required for a safe design. The degree by which these sections 

have to be increased depends on a variety of factors, but it is
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shown in Chapter 3 that all these effects may be incorporated into 

one function, and this has been ecesia: the "magnification factor", 

This factor is basically a function of the relative stiffnesses of 

the selected sections, which are in turn functions of the section 

properties and the stability functions derived by Livesley and 

Chandler‘? It is also shown that if the value of this magnification... 

factor was known initially it would only be necessary to multiply 

the wind loading by this value and apply the original simple plastic 

dentin equations directly to the frame under the modified wind 

loading to give a design which would automatically allow for the 

instability effects, 

However, the ultimate value of the magnification factor is not 

known initially and the proposed design method is directed towards 

calculating its value using an iterative procedure, thereby 

anivorn hh to the required set of sections rather than by obtaining 

them directly. tieyehout the procedure the equations used. to select 

sections are similar in form to the simple plastic design equations, 

the only difference being the introduction of the magnification factor, 

The determination of the value of this factor during each (ation 

occupies the bulk of the computational work, 

No attempt has been made in this introduction to give anything 

other than the basic philosophy of the design method and its relationship 

with traditional elastic and simple plastic methods, A detailed 

derivation of the design equations appears in Chapters 3,4 and 5, 

together with a statement of the basic design criteria and the 

assumptions involved, 

The following chapter consists of an historical review of 

associated work in the fields of plastic design and instability of 

structures,
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2.1. INTRODUCTION 

Prior to the development of the plastic theory in a form which 

was suitable for design purposes, all multi-storey frameworks were 

designed using modifications of the traditional elastic methods, 

Directly and indirectly, this had the following effects:- 

(a) As indicated in Chapter 1, the frames were generally 

safe, but they were uneconomical and inefficient in their 

structural behaviour. 

(b) The understanding of instability Uhposy. was delayed, 

since any tendency towards reduction in stiffness in 

complete structures due to axial load effects was disguised. 

by the nature of the design methods. For instance :- 

(4) The majority of frameworks were restrained against 

Sway and were therefore less susceptible to 

instability failure. 

(4i) In general the design methods neglected the 

stiffening effects of cladding, and this, together 

with the additional lack of economy mentioned 

in (a), ensured that the elastic critical load of 

the structure was sufficiently high for acceptable 

designs to be produced, 

In 1929 the Steel Structures Research Committee was formed in order 

to investigate the possibility of applying modern theories of structures 

to produce a more economical and rational elastic design method, 

Their final report published in 1936(6) proposed a design procedure 

which utilized the additional stiffness contributed to the ends of a 

member by those members connected to it. This was in contrast with the
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previous methods, from which a deliberately safe design had been 

obtained by underestimating the stiffnesses of the connections, for 

example by designing the beams in a framework as pin-ended. The work 

of this’ committee, which included the first full-scale tests on steel 

(7) structures, has been described in detail by Baker who stresses that 

despite the fact that the original aims were largely satisfied, the 

proposed design method could not have been paikioularly acceptable to 

industry since it was not generally adopted. The procedure was complex 

for design office purposes and this was the principal reason for its 

lack of popularity. 

Subsequently, several attempts were made to simplify the S.S.R.C. 

proposals by Baker and Willians , (2) Hiniie > and Wooa(!0+11) The 

latter produced a non-mathematical method for assessing the critical 

moments in each member of a frame, and this resulted in a design in 

which the beams were economically selected, the columns having an 

additional safety factor. 

Despite these modifications the basic lack of economy, the complexity 

and the irrational approach of elastic design still remained, and it 

was natural for the attention of research workers to turn towards the 

more logical philosophy of plastic design, In turn, this was to demand 

a definite understanding of instability theory, The remainder of this 

chapter is devoted to a review of these fields of research. 

\ 

2.2. DEVELOPMENT OF THE SIMPLE PLASTIC THHORY 
  

The principal reason for the introduction of mild steel in 

preference to other structural materials such as cast iron was its 

marked ductility. It had been appreciated that stress concentrations 

in the regions of rivet and bolt holes and at sudden changes of cross- 

section could be easily absorbed with a material such as this without 

the occurrence of local failure due to brittle fracture. Nevertheless,
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this ductility, which is associated with baka oeue outside the elastic 

range, was completely disregarded in the conventional elastic design of 

the major sclicet che components, 

Although the plastic behaviour of Steet had been observed much 

earlier, it was not until 1914 in Hungary that the first published work 

appears to have been produced describing what has now become to be known 

as a plastic collapse mechanism, In this songnt e Kazinezy noted that 

if the load on an peoaatie beam was steadily increased, "failure" was 

found to occur when three independent cross-sections of the beam had 

yielded completely. Similar observations were made by Kist(' >) in Holland 

in 1917, but Kazinczy, being the first to appreciate the fundamental 

concept of a plastic hinge, effectively laid the foundations for all the 

subsequent wori on the plastic theory. 

Following the publication of these two papers, a considerable 

quantity of research was aoctotaed in Germany, notably under the 

supervision of eruning Mekép Petbnite >) , Bleich’) and Gig: 

The tests performed by Maier-Leibnitz were particularly valuable, and he 

demonstrated collapse mechanisms for a variety of single-span and 

‘continuous beams, In addition, he was the first to show that the collapse 

load of a continuous beam is unaffected by settlement of the supports. 

This one fact has remained a powerful argument in favour of ultimate load 

methods of analysis. It is well known by engineers that considerable 

difficulties are introduced in elastic analysis by differential movement 

of supports, 

Maier-Leibnitz was also largely responsible for the stimulation of 

interest in plastic methods in Britain, His paper in Berlin in 1936418) 

summarized much of the relevant work in the previous ten years in Europe, 

and Polidwing this he was invited to a meeting with members of the Steel 

Structures Research Committee, who, as mentioned before, had become 

increasingly critical of elastic design methods whilst
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preparing their final report, This meeting led directly to the 

instigation of a research programme at the University of Bristol by 

(19,28) Baker and Roderick who attempted to verify and extend 

Maier-Leibnitz's results. Unfortunately, this programme had to be 

curtailed due to the outbreak of the Second World War, but by this 

time a series of eight portal frames had been successfully tested 

in the plastic range and the early work had been largely substantiated, 

Interest had also been aroused in America and in 19.0 van den 

Brock(2"? restated the basic ideas of the plastic theory under the new 

name of "Limit Design", The first comprehensive definition of the 

general principles of simple plastic behaviour, later to be known as the 

kinematical, statical and uniqueness theorems, was given by Horne (22) 

in 1950, this paper preceding a similar publication in America by 

(23) Greenberg and Prager} ‘Subsequently the most important developments 

came from firstly Neal and Symonds, (2225 +26) who extended the basic 

philosophy of simple plastic theory in producing several rapid methods 

of analysis, in particular the method of "combination of elementary 

(27) mechanisms", and secondly from Horne, who devised the "plastic 

moment distribution" technique. 

In 1956 all these suggestions were correlated by the publication of: 

the second volume of "The Steel Skeleton" , (28) which deals exclusively 

with the plastic behaviour of steel structures. This book not only 

states all the assumptions on which the simple plastic theory is based 

but also shows in great detail how it may be used for both design 

and analysis, In addition, it gives a clear warning of the limitations 

of the theory, with particular reference to the instability problen, 

and at the time. of publication preceded Wien important research 

directed towards developing an understanding of this phenomenon, This 

work is the subject of the following section,
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2.5. THE INSTABILITY PROBLEM 

It has been suggested in 2.1. that prior to the development of the 

plastic theory the possible incidence of instability in real frameworks 

was often disguised by the fact that the majority of structures had a 

large reserve of strength. This is not to say that the dangers of 

buckling were not appreciated, for several recommendations already 

existed in the codes of practice to counteract failure of individual 

members, However, there was generally no great necessity to consider 

overall frame instability, and most of the work designed to obviate 

this type of failure has been carried out during the past fifteen 

years. 

| It is considered suitable therefore to discuss the history of 

this subject in two sections, which are necessarily related, but which 

both chronologicelly and in content have tended to constitute two 

distinct fields of research, 

2.35.(a) MEMBER INSTABILITY 
  

It is well known that the elastic failure of a slender pin-ended 

strut under increasing axial load was analysed initially by the German 

mathematician Euler in 1759. This Selysin did in fact provide the 

basis for all subsequent development in the field of member instability. 

In 1886 Euler's theory for a perfect mathematical model was 

extended to suit the more practical case of an imperfect strut. It was 

realised that in all structures there exists a variety of imperfections 

due to errors in rolling, variation in material properties, lack of 

straightness and eccentricity of loading. Ayrton and’Perry\*2! 

suggested that the combined effect of all such imperfections could be 

represented as either an equivalent eccentricity or as an equivalent 

curvature, and using such an idealisation they derived a formula for 

estimating the applied load that is required to produce the onset of
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yielding in the most highly stressed section of a strut. Moneriere (2°) 

developed a modified version of this "Perry formula" which, although 

inconvenient to use, was popular in British practice for many years. 

The main difficulty with the application of this method was the 

individual assessment of how best to represent the imperfections in the 

Strutee in 41925 Pobortscne suggested a parameter based on a 

conservative view of the results of his and other people's tests on 

struts, and the Steel Structures Research Committee, of which Robertson 

was a member, later incorporated this function in an alternative form 

of Perry's original equation, The Committee recommended the use of 

this "Perry-Robertson formula" in its preliminary report in 1931. In 

addition, the formula was applied to calculate a range of safe working 

stresses foi: elastic design purposes and these were reproduced in 

B.S.S.No9 in 1932, The selection of the appropriate design stress: 

did however depend on the engineer's assessment of the effective 

length of the stanchion under consideration, and initially no guidance 

was given for estimating this parameter, Several explanatory clauses 

have since appeared in the code of practice to enable the designer to 

assess the degree of fixity at the ends of a column length. However, 

there is still considerable room for error, much of the assessment 

being based on past experience, and it is certain that in some cases 

large inaccuracies have been introduced by strict observance of the 

recommended procedure in B,.S.S.No.449, 

More recently, following the introduction of plastic methods, 

attention has turned towards the elasto-plastic behaviour of struts 

and the stability characteristics of beam to column connections, 

In Britain, the first qualitative failure tests on stanchions were 

performed by Baker and Roderick, initially at the University of 

Bristol and later, after the end of World War 2, at the University of 

Cambridge. Their most significant observations were firstly that the
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ultimate load of a continuous stanchion is considerably greater than 

the load which is pecudred to cause the onset of yielding at the most 

highly stressed section, and secondly that in general the loads applied 

to the beams connected to the ends of the stanchion have relatively 

little effect on the axial force required to cause failure, This 

second result is now fairly well known, It is the beam stiffness at 

the connection and not the initial moment at the end of the beam that 

largely controls the collapse load of the column, 

These early tests were performed on both rectangular and I-section 

columns bending in both single and double curvature in one plane about 

the minor axis, the results being published in three papers between 

1942 and 1948 (32233134) 
Following this work an attempt was maie by Baker, Roderick and 

(35) Horne to produce a method of analysis for estimating the collapse 

load of a stanchion bent about the minor-axis. Although this was found 

to explain adequately the behaviour of the columns in the tests, the 

theory was complicated and was therei’ore difficult to incorporate in 

any simple design method, Similar analytical procedures were later 

(36) developed by Horne to deal with the more practical cases of 

stanchions bent about the major axis and for simultaneous bending 

about both axes, Initially these methods were also complex and not in 

common use. Moreover, as will be seen in the following section, the 

majority of current design methods do in fact attempt to restrict 

plasticity to the beams rather than the columns, It has generally 

been found necessary to use either this "weak-beam, strong-column" 

approach, or occasionally the "strong-beam, weak-column" approach in 

which plastic hinges are restricted to the columns, the beams 

remaining elastic. Design methods which rely on an indiscriminate 

plastic hinge pattern in both beams and columns have often been shown 

to result in a structure which is very susceptible to overall instability.
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Horne has recently simplified his analysis methods considerably 

and has also produced a method of elastic analysis which guards against 

lateral torsional buckling for a column undergoing major and minor 

axis bending together with axial 1oaa, (37 938) 

The second type of member instability, that of lateral buckling 

of the beams due to the development of high compressive stresses in 

bending, is unlikely to occur in a regular multi-storey framework where 

generally adequate restraint is provided by composite action with the 

floor slabs, However, when dealing with certain other types of 

structure, for example a pitched-roof oie frame, this type of 

failure may be more significant. A comprehensive treatment of this 

subject is given in "The Steel Skeleton", vo1 228) | 

2.3.(b). _ FRAME INSTABILITY 

Overall frame instability is a far more complex problem than that 

of individual member instability since it becomes necessary to consider 

the interaction of every single member in the structure. Nevertheless, 

the behaviour of a single member, such as the pin-ended strut 

discussed in 2.3.(a), indicates many important principles which apply 

to a framework as a whole. 

The Euler load is in fact the first elastic critical load of a 

pin-ended strut, and this is accompanied by a series of elastic 

critical loads, each of which corresponds to a different mode of 

deformation, In a similar way, a complete framework has a large number 

of elastic critical loads, although the modes of deformation associated 

with these are of course far more varied than those of a single strut, 

Comparisons such as this have been used by several research workers to 

assist in qualitatively explaining the behaviour of rigid-jointed 

frameworks, and it is this concept of the elastic critical load which 

provides the basis of all stability analyses for both the elastic and
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post-elastic ranges, 

| Stability functions, designed to allow automatically for the 

effects of axial load on the stiffness of a structure, have been 

developed in several forms since they were first suggested by bone) 

in 1916, In 1935, James (+9) demonstrated how the moment distribution 

procedure could be modified to allow for stiffness changes due to 

axial load, his work later being extended by bindawiete who attempted 

to use stability functions in order to determine the elastic critical 

loads of frameworks, However, it is only comparatively recently that 

it has been generally realised that Lea load effects may be responsible 

for reducing the entire stiffness of a perfectly elastic frame to zero, 

and Lundquist's work was never fully appreciated until more sophisticated 

methods of analysis were produced several years later, Even then, the 

elastic instability of frameworks was considered by most engineers to 

be relatively unimportant in practical terms, This apparent apathy is 

understandable since the elastic critical load of a structure is 

generally several times greater than the normal working loads, so that 

there is rittle chance of overall instability provided that the 

framework remains elastic, 

(4.2) (5) More recently, however, Merchant and Livesley and Chandler 

have developed a wide range of readily applicable stability functions, 

and there now exist several well established methods for calculating 

the critical loads of rigidly-jointed frames, These methods have 

become essential tools for dealing with the more complicated subject 

of elasto-plastic frame instability. 

The first detailed account of the complete frame instability 

(4.3) problem was given by Merchant in 1954. As an approximate method 

for the evaluation of the elasto-plastic failure load he suggested a 

relationship based on the Rankine formula as applied to struts,
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The "Merchant-Rankine formula" is as follows:- 

where Ap represents the actual failure load of the frame, AG the 

elastic critical load and Xp the rigid plastic failure load, 

One of the main criticisms of this formula must be that despite the 

fact that an approximate solution is obtained, calculation of the 

elastic critical load is still required, which is in itself a complex 

procedure for anything other than a simple framework, Nevertheless, 

for small frames, for which the computation is not too iiveMent the 

Merchant-Rankine formula generally provides a lower bound solution to 

the actual failure load, and as such may be a useful approximation, 

The real significance of the elastic critical load of a frame was 

first demonstrated conclusively by Wooa') in i958. He showed that 

despite the fact that the critical load may initially appear to be 

deceptively high, a serious deterioration in the overall stiffness of 

a frame may occur whenever a fully plastic hinge develops in a member, 

_ Using the hypothesis that a plastic hinge contributes no more stiffness 

to a structure than a real hinge, provided that rotation continues in 

the same direction as before, Wood suggested that a new reduced 

critical load may be obtained for the mediricd. structure by effectively 

substituting a real hinge for the plastic hinge. Furthermore, as 

successive plastic hinges form this "deteriorated critical load" 

becomes so low that failure may occur due to elasto-plastic instability 

well before the attainment of the rigid plastic collapse load factor, 

and with far fewer plastic hinges than are required for a complete 

collapse mechanism, It was also proposed that the deteriorating 

critical load may be considered to be a continuously descending 

function and that failure occurs when the value of this function 

coincides with the increasing applied load, The elastic critical load
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of the frame is in fact the initial value of this decreasing function, 

and if the ratio of this load to the plastic collapse load is high, then 

the true failure load will tend to be fairly close to the plastic 

collapse load since the point of coincidence of the two curves will be 

delayed, This last observation by Wood is also indicated by the 

Merchant-Rankine formula, from which it may be seen that as AG 

increases, An tends to Ape 

Whilst generally supporting Merchant's equation, Wood did in fact 

make one important criticism, He pointed out that for frames with a 

low elastic critical load, such as hbase bending about the minor-axis, 

the formula tends to underestimate the failure load considerably. 

In the discussion on Wood's paper et Merchant commented on the 

revolutionary nature of the material presented in it . Having been 

particularly involved himself in the development of this branch of 

structural analysis, Merchant was possibly in a better position than 

most to grasp the full pat dis of Wood's suggestions, which for the 

first time gave a clear account of the relative roles played by 

plasticity ane instability in determining the ultimate load behaviour 

of tall frameworks, 

Recently, several sophisticated analysis methods have been 

developed in order to trace the load-deformation history of large 

structures up to collapse, A variety of design methods have been 

produced, some relying on iterative use of analytical procedures, 

others being of a more direct nature. A review of several of these 

methods is given in the following section, 

2.4. RECENT DESIGN AND ANALYSIS METHODS 
  

In 1957 a joint committee of The Institution of Structural 

Engineers and The Institute of Welding was formed in order to produce 

a simple and economical design method for fully rigid multi-storey
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steel frames, It was decided initially to consider no-sway frames, 

and the final recommendations of the committee for these were given 

ina er in 196165) | Briefly, it was suggested that the major-axis 

beams in a framework should be designed by the simple plastic theory, 

thus giving maximum economy, and that the columns should remain elastic 

in order to guard against local buckling and overall frame instability. 

The critical moments in any particular member were to be obtained by 

analysing one a small portion of the framework, consisting of the 

member being designed plus all other members connected to Tu. suhe 

remote ends of these members being regarded as encastré, 

This committee has recently begun to consider the design of unbraced 

frames, which is necessarily a far more complex procedure, The provision 

of adequate bracing in a framework ensures that Sidesway is negligible, 

and the analysis methods, which are an integral part of any design 

process, are simplified accordingly, In addition, one of the less 

obvious but most important subsidiary effects of bracing 1s thatéeat 

provides the frame with a comparatively high first elastic critical 

load since it eliminates all those modes of deformation which are 

generally decisive, namely those associated with sidesway, Accordingly, 

as implied previously in 2,3.(b) there is generally little danger of 

overall buckling about the major axis of a braced frame, and the mode 

of failure will almost invariably be a simple beam mechanism provided 

that adequate provision has been made against local column instability. 

In addition, this indicates that there is no necessity to ensure that 

the columns in such a frame are designed elastically, as, for instance, 

in the method described above, It would appear that greater economy 

may be obtained with no loss of safety by an elasto-plastic 

column design, for example using the method suggested by gine 

A sway frame does however require more careful treatment. Not 

only are the basic analytical procedures more complex due to the 

presence of sidesway, but also the overall stiffness of the frame is
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always considerably lower than that of the tacewestraan braced frame, 

and this is particularly so in the post-elastic range. 

In 1960 Hewnast oe proposed an approach to the design of regular 

multi-storey sway frames, In this method the structure is idealised 

initially by assuming points of contraflexure to exist at the midheights 

of the columns thus enabling one storey to be isolated from the 

adjacent ones by sectioning through these points, A pattern of hinges 

in both the beams and columns is then assumed in order to reduce the 

storey to a mechanism, and the required beam size may then be obtained 

by any of the methods of simple plastic analysis, The column size is 

selected in such a way that it will remain elastic under the factored 

toaaa, 

Heyman suggested that the stiffening effect of cladding would 

generally be sufficient to eliminate the stability problem, although 

in the discussion on his pate? some doubt was expressed concerning 

the effectiveness of this safeguard, In fact, the method he proposed 

generally produces a conservative design, and this lack of economy 

contributes towares the safety of the frame, The method may however be 

criticised for its lack of direct consideration of instability and in 

(47) the discussion it was Calladine who suggested a possible procedure 

for developing a rational design allowing for the instability effects. 

(41,48) This was investigated further by Holmes and Gandhi and an 

experimental research programme designed to substantiate their work 

(49) was later conducted by Clough ‘ 

The design methods that have been discussed so far all rely to 

some extent on the individual judgement of the engineer, and are based 

on a variety of assumptions and approximations, An alternative approach 

is that of automatic design by computer. The most sophisticated method 

available is that suggested recently by Majid and Antdtecns ee 

This involves iterative use of a non-linear elasto-plastic analysis
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procedure which is based on the matrix displacement method, The effects 

of axial load on stiffness are allowed for by the introduction of 

stability functions, while the loss of stiffness due to the formation 

of plastic hinges is automatically recorded by successive alteration 

to the overall stiffness matrix as each hinge forms, The design method 

depends on first of all analysing the frame with an initially assumed 

set of sections and then altering those sections which are either 

inadequate or oversafe, The frame is then re-analysed and the procedure 

is repeated until the method converges to a unique set of sections which 

economically satisfy the design criteria, Although the neice does not 

pretend to provide the minimum-weight solution it undoubtably produces a 

very economical design and may be applied to large frameworks of 

extremely irregular shape. The elasto-plastic analysis procedure was 

(51) first produced by Jennings and Majid 

(52) 

and has subsequently been 

developed by Majid and Anderson 

A computer program has also been written for the method proposed 

by Holmes and canani 29) » although it must be stressed that this is 

purely intended to reduce the quantity of repetitive arithmetical work, 

This design method is not dependent on the availability of a computer, 

unlike the true "computer method" mentioned above. As will be seen 

later in this thesis, the Holmes and Gandhi method may be suitably 

adapted for rapid design by hand, and as such enjoys a measure of 

flexibility which is lacking in certain other methods.
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CENERAL THE ORY 

Dik. INTRODUCTION 

In this chapter the general theory is developed for the design of 

a typical internal bay in the intermediate storeys of a regular multi- 

bay, multi-storey sway frame, Plastic thory is used as the basis of 

this design method, which is an extension of a method originally 

(1) proposed by Gandhi - in the early part of the chapter the basic 

design criteria and the assumptions involved in using the design method 

are given, These are followed by the development of a set of simple 

plastic design equations, which are later nodified to compensate for 

instability effects. 

In subsequent chapters the general theory is extended to cater for 

the design of the boundary regions in the framework, and is also 

modified to deal with single-bay frames, 

oP 4% DESIGN CRITERIA 
  

The design criteria that have been adopted in the proposed method 

are as follows:- 

(1) The framework shall be capable of withstanding 

dead load plus vertical superload at some load 

faetor sly 

(2) The framework shall be capable of withstanding a 

combination of dead load plus superload plus wind 

load at some load factor, Ag. 

(3) The framework shall be fully elastic at working 

SEOaG: ss. 

(4) Plastic hinges shall not form in the columns 

below the design load factor under either system
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of loading. 

Conditions (1) and (2) are the basic design criteria in that they 

ensure that the framework has the required strength. The values of 

load factor which have been adopted in this thesis are those which are 

generally accepted in this country, namely 1.75 for A,, and 1.40 for 

Ae. The reduced value for Ag corresponds to the 25% increase in 

allowable stresses in the presence of wind loading, as permitted in 

B.S.S.NoWh9'2), These load factors are not however obligatory, and 

the designer is free to use his own judgement in selecting appropriate 

values, 

Condition (3) is an additional design criterion that has been 

imposed in order to help control the sway deflections in the frame at 

working load, As such, it is not directly related to the strength 

requirements of the structure. Whilst it is appreciated that even if 

a frame is fully elastic, excessive sway deflections may occur, the 

deflection problem is aggravated considerably by the formation of 

early plastic hinges, and calculation of the corresponding elasto- 

plastic deflections involves more complicated analytical procedures. 

The approach which has been adopted is, therefore, to ensure first of 

all that the frame is fully elastic at working load, and then to base 

the deflection calculations on this assumption, The elastic analysis 

for deflections is given in Chapter 9, 

Condition (4) is applied in order to control the pattern of hinge 
\ 

formation in the framework, This again is not strictly necessary for 

strength purposes, but ensures that the "weak-beam, strong-column" 

design, mentioned in 2,3., is achieved, This tends to reduce the 

likelihood of early failure due to indiscriminate plastic hinge 

formation, In addition, the analysis is simplified by restricting the 

formation of plastic hinges to the beams,
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Dede BASIC ASSUMPTIONS 

The success of any design method is based initially on the 

assumptions that are inherent in its use, These generally fall into 

two catagories, In all methods it is nddakaes to idealise the actual 

behaviour of the material, in this case, steel, Also, if, as in this 

thesis, a design aetnod is to be produced which does not require the 

use of an electronic computer and which attempts to deal with large 

frameworks, it is necessary to make certain approximations about the 

behaviour of the structure, The assumptions that have been adopted in 

this approach are given in the two sub-sections below, 

ms (a) IDEALISATION OF THE MATERIAL 

The fo.lowing assumptions have been made concerning the plastic 

behaviour of steel:- 

(1) The idealised Pied wate relationship shown in Figure 1 

represents the behaviour of every fibre in the cross-section 

of a steel member subject to bending, in both the tensile and 

compressive zones. The assumed yield stress, fy, is equal to 

the lower yield stress of the material. 

(2) As indicated by Figure 1, strain hardening effects are ignored, 

(3) Plane transverse sections in any member remain plane and 

normal to the longitudinal axis after bending, the effect of 

shear being neglected, 

(4) Fully plastic hinges occur at discrete cross-sections, the 

longitudinal spread of plasticity being ignored, 

(5) The material is homogeneous and isotropic in both the elastic 

and plastic ranges, 

3.3.(b) IDEALISATION OF THE STRUCTURE 

The theory will be developed for a general rigid-jointed sway
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frame having r bays, each of span L, and q storeys, each of height h, 

as shown in Figure 2, The assumptions concerning the structure and its 

loading are as follows:- 

(1) 

(2) 

(3) 

(5) 

(6) 

(7) 

The number of bays and the number of storeys are large, so 

that the effect on a typical internal bay of the unsymmetrical 

loading conditions on the end bays is negligible, 

The span loading is uniformly distributed and of magnitude W 

per bay at working load, 

No bending moments, and therefore no shear forces, are induced 

in the internal columns by the vertical loading, as implied by 

(1). 

An equal shear force, H, is induced in each internal column in 

a storey by the application of wind loading. H is defined as 

the sum of all the applied wind forces above the storey in 

question, divided by the number of bays, 

Due to wind loading, the columns bend in double curvature in 

such a way that points of contraflexure exist at their mil- 

heights. 

The axial forces heal doed in the beams are small and may be 

neglected. 

The axial force in an internal column is equal to the force in 

the column above, plus half the loads on the adjoining beams, 

It must be stressed that these assumptions apply to the behaviour 

of the internal regions of the framework, The derivation of design 

equations for the boundary regions, which will be described in 

Chapter 4, requires that certain of these hypotheses be modified, For 

example, when dealing with the lowest storey of the framework, it is no 

longer satisfactory to assume that points of contraflexure exist at 

mid-heights of the columns, as stated in (5). Similarly, the 

assumptions (3), (4) and (7) do not apply to the design of the external
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columns, 

At this stage, using the basic assumptions, it is possible to 

isolate each beam in the frame by sectioning through the assumed points 

of contraflexure in the columns, The resulting "storey subassemblage" 

is used as the basic structure in the derivation of the general design 

theory throughout this chapter, The way in which this general theory 

may be applied to the design of a complete framework will be described 

in Chapter 6. 

The subassemblage for the internal bays of the typical intermediate 

storey (e.g. storey n in Figure 2) is shown in Figure 3(a) under the 

action of vertical load alone, and in Figure3(b) under wind load alone, 

7 ke “DERIVATION OF THE SIMPLE PLASTIC DESIGN EQUATIONS 

In this section, the simple plastic theory is applied in order to 

produce a set of equations for the design of the general storey 

subassemblage, These equations supply the values of plastic moment 

that are required for tbe beams and columns of the nudeeeenpiane sO 

that it may be capable of satisfying the design criteria given. in5.2. 

Since there are two types of loading free to act on the framework, it 

is necessary to derive suitable design equations for each loading case 

and to select the required sections by using the most critical of these 

equations, Instability effects are ignored at this stage, 

3.4.(a) FAILURE UNDER VERTICAL LOAD 

Under purely vertical loading the structure deflects as shown in 

Figure 3(a). The beam bends symmetrically with zero rotation at the 

ends, and no bending moments are induced in the columns, 

The only possible mode of failure under this type of loading 

involves the independent collapse of each beam, as shown in Figure 4, 

B is defined as the fully plastic moment required for this simple
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beam mechanism to occur at load factor 4, and may be obtained by 

equating the work done by the loads to the work absorbed by the plastic 

hinges, Thus, referring to Figure 4, for any beam:- 

B(20+0+0) = Ast 3.0 

Therefore, 

WL (1) 

Theoretically, since the internal column carries only axial load, its 

required value of plastic moment, Crs may be taken as zero,” 

3.4.(b) FAILURE UNDER COMBINED LOAD 

Under a combination of vertical and horizontal loading the 

subassemblage may be reduced to a mechanism in one of two eee: both 

of which are accompanied by sway deformation, Only two plastic hinges 

are required in each beam to create these mechanisms. In both cases, 

a hinge is bound to form at the leeward end of the beam, since at this 

location the bending moments induced by the vertical and horizontal 

loadings act in the same sense, and are therefore cumulative. The 

position of the second plastic hinge that is required to cause failure 

depends on the relative magnitudes of the moments induced by the two 

types of loading, In canerall this second hinge forms in the span of 

the beam, producing the "combined mechanism" shown in Figure 5(a). 

However, in cases of very heavy wind loading, the second hinge may form 

at the windward end of the beam, producing the "sway mechanism" shown 

in Figure 5(b). Basically, this sway mechanism is the particular case 

of the combined mechanism in which the span hinge has "shifted" from 

the centre of the beam to its windward end, However, in this design 

method, it is assumed that these are distinct modes of failure, and 

that in the combined mechanism the span hinge forms exactly in the centre 

of the beam, The validity of these assumptions will be discussed in
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detail later in this chapter. 

For both types of mechanism, the required values of fully plastic 

moment may be obtained by applying the work equation to an isolated bay 

consisting of one beam and one column, as shown in Figures 6(a) and 6(b). 

This follows from the initial assumptions concerning the distribution 

of shear forces in the columns, The work equation for the complete 

storey assemblage would be an exact multiple of that for each single bay. 

Consider first the combined mechanism in Figure 6tay. If: the 

column sways through a small angle 6, each plastic hinge rotates by 26, 

and work is done by both vertical and horizontal loads. The 

corresponding work equation is:- 

iBe = AGN 2.0 aa A ae 5t.0 + aH — .0 

Therefore, 

WL war tal Bah +o hh Pee ee Be ks a Ae i, ( 3 ) 

or, 

2 )av 
Bin Mag na 

where, 

(Hh)av = ao h ~ ha) 

In an alternative form, 

pany ft. Led , (2) 
The quantity = “V is hereafter referred to as the. "wind ratio", 

representing as it does the relative intensities of wind loading and 

vertical loading. 

Consider now the sway mechanism of Figure 6(b). In this case, if 

the soba sways through an angle 6, the plastic hinges both rotate by 

6, and the vertical loading does no work, The resulting work equation 

is:-
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Therefore, in this case, the fully plastic moment of the beam as 

Hh ) av (3) Boe as 2 

For either the combined or sway mechanisms the maximum column 

moments occur at the level of the beam, and are simply equal to the 

shear in the column multiplied by the distance from the joint to the 

assumed point of contraflexure, Therefore, for both types of mechanism 

a plastic hinge will not form in the column if:- 

Hh Cp a > ; (4) 

where Cs represents the reduced plastic moment of the column in the 

presence of axial load, 

3.4.(¢) SELECTION OF THE CRITICAL EQUATION: 

Equation (1) gives the value of fully plastic moment which is 

required for the beams of the subassemblage under purely vertical 

loading. If a section with any smaller value of B is supplied to the 

structure, collapse will occur before the design load factor, 4, is 

attained, This would result in an immediate violation of the first 

of the design criteria given in 3.2, The value of B which is given 

by equation (1) is therefore the minimum allowable fully plastic moment 

for this loading case, 

Equations (2) and (3) give the values of fully plastic moment for 

the beam which ensures that the two mechanisms which may form under 

combined loading just occur at load factor Ag. Therefore, in order 

to satisfy the second design criterion, it is necessary to supply the 

subassemblage with a beam that has a value of B equal to, or greater 

than, the larger of the two values obtained from equations (2) and(3),
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It follows, therefore , that the two basic design criteria, 

corresponding to the different loading conditions, may only be mutually 

fulfilled by selecting a beam with a plastic moment which is at least 

as great as the largest of the three values given by equations (1),(2) 

Hh )av 
and (3). It is the wind ratio (i. WL ) that determines which of 

these equations leads to the correct beam size. 

The basic equations may be rewritten in a more convenient form 

for comparison purposes. Since 4 = Pahes equation (1) becomes:- 

ote 42 we 
bee 

or, alternatively, 

Sg wee 
Ree a tte 

Equation (2) is left in its Original forms i.e. , 

2 WL 4 Hh) av 
Aaa oe i WL 

Equation (3) is rewritten as:- 

B= de TA? a 

These three equations may be non-dimensionalised by dividing by the 

common factor, Axo oe - The following notation is introduced for 

  

simplicity:- 

B f(B) = FF 
Xo ag 

and, 

(Hh ) av 
We 

WL 

The basic equations therefore become:- 

i f(B) =% 9 

corresponding to the simple beam mechanism;
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/ 
f(B) =~ + wr (2% 

corresponding to the combined mechanism; 

/ 
f(B) = 2wr (3.3 

corresponding to the sway mechanism. 

These three linear relationships are shown together in Figure 7, 

from which it can be seen that the envelope of the three lines gives 

the critical value of f(B) for any wind ratio, Initially, for low 

values of the wind ratio, this envelope is represented by equation (4 

Therefore, for a storey under light wind loading, equation (1) gives 

the required fully plastic moment for the beam. As the wind ratio 

increases, equation (2) becomes dominant, and eventually, for conditions 

of very heavy wind loading, the critical value is to obtained using 

equation (3). 

Figure 7 also shows that the range of application of each equation 

is bounded by distinct values of the wind ratio, as follows:- 

0 < ar Az 

In this range, the first ieane criterion is niet talon and equation (1) 

must be used to obtain B, The subassemblage fails by a simple beam 

mechanism under vertical load alone at A,, but has a reserve of strength 

under combined load, collapsing in this case at a load factor greater 

than Ag. Storeys which have a wind ratio falling within the above 

limits will subsequently be described as being in Zone 1. 

Tt - (Hh) av ; 

16 ~ WL 1
 

In this case, the second design criterion is critical, and equation 

(2) gives the required value of B. That is to say, under a combination 

of vertical and horizontal loading the subassemblage fails by the
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combined mechanism at \g, the load factor against a sway mechanism 

being greater than Ag. In addition, under vertical load alone, the 

selected beam is stronger than required, and a beam mechanism does not 

form until a load factor greater than 4,. This is referred to as Zone 2, 

“a Annjay 

ob 

For heavy wind loading, the second design criterion is again 

critical, but B must be obtained by using equation (3). This implies 

that under combined loading, failure occurs due to the sway mechanism 

at load factor Ag, the beam having an additional safety factor against 

the combined mechanism, Under vertical load alone at , there is a 

large reserve of strength against a beam mechanism, This is referred 

tOcas “ZOn6. o, 

In addition, for designs in all three zones, the column size is 

selected using equation (4). This equation, which is based on the shear 

force in the column, is independent of the wind ratio. Under vertical 

load alone, the column carries only axial forces, and so equation (4) 

always dictates the required plastic moment, and automatically satisfies 

the final design criterion given in 3.2, 

The third design criterion, which requires that the frame shall 

be fully elastic at working load, is discussed later in this chapter. 

The simple plastic design equations are summarized below, and in 

the following sub-section their validity is examined, 

SUMMARY 

(Hh) av 4 
ZONE 4 Oc WL, < 16 

WL 
B= 4 46 (1) 

ZONE 2 sees (Hh) av < 1 

162-2 WL fs
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WL [1 Hh)av B= %. 7 Fi hae (2) 

ZONE 3 1. Gh)av 
Se WE 

B= rg Spee (3) 
In all zones, 

Hh : Ce > (4.) 

34..(d) CRITICISM OF THE EQUATIONS 

In 3.4.(b), it was assumed that in the combined mechanism, shown 

in Figure 6(a), the span hinge always forms at the centre of the beam, 

irrespective of the intensity of wind loading, This, as suggested 

before, is not strictly true. In theory, the span hinge only forms 

in this position if the wind ratio is zero. As the wind ratio increases, 

the hinge displaces towards the windward end of the beam, always forming 

at the position of maximum bending moment in the span, At some value 

of the wind ratio, this hinge does in fact form at the end of the peam, 

producing the ane mechanism of Figure 6(b), which continues to occur 

for all higher ihiedat ten at wind loading, 

Equation (2) is therefore an approximate expression for obtaining 

the required fully plastic moment of the beam for the combined mechanism, 

In order to assess the validity of this equation, and to estimate the 

errors involved in using all three equations within the ranges of wind 

ratio stated, it is necessary to consider the true behaviour of the 

subassemblage under combined load, The accurate combined mechanism, in 

which the span hinge is not assumed to form at the centre of the beam, 

is shown in Figure 8, 

As before, the column weirs through an angle 0, Consider triangles 

PQS and RQS,



  

  

          

      

Accurate combined mechanism 

FIGURE 8



cree 

If © is small, then 

QS = PQ.6 = eo 

Therefore, 

fo - 98 _, 2 
Rr Ok c MepsO* TO oi)T. 

AL oee 

A 

QRS = Guy? 

Therefore, the rotation of each plastic hinge is 

A 2 6 + QRS = i + le = ey. 

Referring to Figure 8, the work equation is, 

W ub Ayhy, Hoh AW aaa Hene 5 8D ¢ 00 + Ao 5 —1.6 + Ap 5 oo 

bl
 

h 

Ca-u) °?° 

Therefore, 

or, 

BS 4, e, Gites eA Ss) (5) 

This may be rewritten in the non-dimensionalised form of equations 

(1 he!) end (ts tse; 

£(B) = (2-4) ud ‘ v| 

For any particular value of the wind ratio, an infinite number of 

solutions of this equation are available, each Sapondene on a different 

value of u. These solutions represent separate combined mechanisms, the 

position of the span hinge being different in each case. In accordance 

with the kinematical theorem, the true solution is obtained by using the 

particular value of u which gives the maximum value of B,
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Expanding the above equation:- 

: ; 2 

f(B) = - : + (2 - w) + 2Qwr 

For a given value of wr, f(B) is a maximum when rae a4 Ove 

But. 

Oe pd an cto we 

Therefore, B is a maximum when, 

u = 1 - Qwr 

Substituting for nu, 

f(B) [2-(1-wr) ][G=eee) + | 

This reduces to:- 

f(B) = Ske 5 Wa (5/) 4 

This equation enables the true value of B to be calculated for any wind 

ratio leading to the formation of a combined mechanism, Equation (2/), 

the previously derived approximate expression, is reproduced below for 

comparison: - 

£(B) =f + wr (2/) 

It may be seen that the approximate value of f(B), obtained from (2/), 

is always less than the exact value, given by (5/),\by an amount 

equal to the square of the wind ratio. Figure 9 indicates the order 

of magnitude of this discrepancy, In the figure, equation (5/) is 

superimposed on the assumed design envelope, originally given in 

Figure 7, The following observations may be made concerning the degree 

of error involved in using the basic design equations;-
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(i) The range of application given for Zone 1, 0 < wr < a, is 

slightly excessive, The beam mechanism will in fact be the 

an 
17.98 

However, the error involved in applying equation (1) within 

critical mode of failure within the limits O < wr < 

the limits for Zone 1 is very small (less than 1% of B). 

(ii) Within the range 5 < wr < i, theoretically the combined 

mechanism is the mode of failure,and equation (5/) gives 

the exact required value for B. However, the error 

introduced by using the approximate design equations (2) and 

(3) is not large. 

For + < wr < te which is specified as Zone 2, the correct 

mechanism is predicted, and the value of B obtained using 

equation (2) is between 1% and 11% below the correct value. 

The maximum error occurs when wr = i 

In the range Ls wr < 4; which is specified as part of Zone 

5, the predicted sway mechanism does not occur, but 

Saverthel ein. as for equation (2), the application of 

equation (3) does not underestimate B by more than 11%, This 

error reduces as the wind ratio increases, and it is 

eliminated when wr = i. 

(iii) For heavy wind loading, when wr > i, equation (3) gives the 

correct value of B, and Zone 3 accurately describes the 

failure mechanism, 
\ 

Therefore, it may be seen that the basic design equations, (1),(2) 

and (3), applied within the ranges of wind ratio specified for the three 

zones, predict values of fully plastic moment which are close to those 

theoretically required, The aim of this design method is eventually 

to produce adequate sections to satisfy the original design criteria. 

It is. believed that the basic equations are sufficiently accurate for 

that aim to be fulfilled, any discrepancies being counteracted later by
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additional conservative elements in the final design procedure, In 

Chapter 7, which is devoted to the analysis of a series of design 

examples, it is shown that this assumption is justified. 

ae» MODIFICATIONS TO THE SIMPLE PLASTIC DESIGN PROCEDURE 
  

The simple plastic design equations for a typical intermediate 

storey are summarized in 3.4.(c). These are adequate for the design 

of a framework in which the instability effects are small. However, in 

general, a multi-storey unbraced frame is subject to considerable sway 

deflection, and the presence of high axial forces, particularly in the 

comparatively slender upper columns, also reduces the stiffness of the 

structure. The basic equations are liable to underestimate the sections 

required for such a framework, and they must therefore be modified to 

allow for instability. 

Consider first the general column shown in Figures 10(a) and 10(b). 

This is in equilibrium under the action of moments M, and Mg, vertical 

force P, and shear force H, If sidesway is ignored, as in Figure 10(a), 

the equilibrium equation is as follows:- 

M, + Mg + Hh = 0 

However, in practice, sidesway always occurs as shown in Figure 

10(b), If the horizontal displacement, without joint rotation, is 

denoted by §, then the equilibrium equation for this case is:- 

M, + Me + Hh + PS = 0 

(42) 
\ 

Merchan has shown that this additional moment, which occurs 

due to the eccentricity of the axial force in the column, may be allowed 

for by rewriting the equilibrium equation in the following way:- 

M, + Me + mHh = 0 

The variable, m is a function of the ratio of axial load in the 

column to its Euler load (p = = Livesley and Chandler ‘5) have 
\ 

tabulated the complete range of values of m,
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In addition to the "PS effect", a variety of other factors require 

consideration when modifying the simple plastic design approach, These 

are:- 

(i) he axial forces cause a reduction in column stiffness. 

(ii) Additional Sidesway deflections, accompanied by additional 

bending moments, are introduced by joint rotations, 

(iii) Whenever 2 plastic hinge forms in a’ beam, its effective 

stiffness is reduced, 

In the following sections it will be shown that the combined effect 

of these factors is equivalent to aahtipa pie the design wind loading 

by a quantity A for the beams, and Ag for the columns, A and Ac are 

subsequently referred to as the magnification factors, their values 

depending on which zone is under consideration, 

The modified design equations, which are assumed to allow 

automatically for the instability effects, may therefore be summarized 

as follows:- 

ZONE 1 : Urs - < 
WL 16 

oad 
ve ae (6) 

1 A(mHh)av . 1 
ZONE 2 77:5 WL < : 

E WL}1 | AGmHh)av B tke ee +o | (7) 

ZONE 3 A. A(mih)av 
be WU 

a. A _ av (8) 

In all zones, 

Cy Ap i (9) 

Equations (6),(7) and (8) correspond to equations (1),(2) and (3)



= Sie 

in 3.4.(c). Equation (9) is equivalent to equation (4), and although 

okt is basically identical for each zone, the expression for Ac will be 

shown to vary, depending on which zone is under consideration, 

oe THE LOADING SEQUENCE 

In deriving the initial design equations, no mention was mde of 

the order in which the loads are applied to ave structure. For combined 

loading, the equations have been obtained by applying the principle 

of virtual work to assumed mechanisms, with both the vertical and 

horizontal loads at the ultimate load factor, Ae . The manner in which 

each load approaches A, is unimportant, 

However, although the simple plastic design equations are 

independent of the loading sequence, the final design equations include 

the magnification factors, A and Ac, which may only be obtained by 

observation of the behaviour of the subassemblage under increasing load, 

The values of A and A, which are derived in this way vary for different 

loading cases, 

‘The most likely sequence of loading on a building frame is that 

the wind loading increases from zero to its maximum intensity 

irrespective of the vertical loading, A system of proportionate loading, 

in which the change in horizontal loading is directly proportional to 

the change in vertical loading, is obviously unrealistic, The vertical 

- dead load of the structure, which is generally the greater part of the 

total vertical load, remains unaltered throughout the life of the 

framework, 

In addition, proportionate loading seldom produces the most critical 

set of deformations and moments in the frame, particularly in the case 

where large axial forces in the columns are instrumental in seriously 

reducing the overall stiffness, At any value of wind load, the stiffness 

of a frame analysed under proportionate loading is bound to be greater
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than its stiffness under this wind load plus the total vertical load, 

since the axial. forces in the columns are less, Accordingly, the sway 

ctcen 1 icak will be smaller, and it can be seen that at any stage in 

the proportionate loading analysis, the frame is acted upon by a less 

critical combination of loads, 

In accordance with the above argument, it is proposed that the 

magnification factors should be derived by first considering the full 

vertical loading acting on the frame before any wind load is applied, 

3./. DIRECT MOMENT DISTRIBUTION 
  

The traditional moment distribution procedure uses "stiffnesses" 

which are related to arbitrarily assumed conditions at the far end of 

a member, For example, the stiffness at one end of a member with the 

far end fixed is generally denoted by “er If the far end is pinned, 

the effective stiffness becomes aa, The initial fixed-end moments at 

the joints are distributed in the ratios of these stiffnesses in such 

a way that the conditions of joint equilibrium are satisfied. The 

introduction of the distributed moments induces additional moments at 

the far ends of the members, and again these moments must be distributed 

in order to satisfy joint equilibrium. Successive iteration of this 

procedure eventually leads to a set of bending moments which satisfies 

both the principles of equilibrium and compatibility. 

In the method of direct moment distribution, as described by Holmes 

and cenani (>) , the stiffnesses are related to the real rotations which 

occur at the ends of a member when it forms part of a structure, In 

this case it is only necessary to write down the fixed-end moments and 

then balance at the joints, using "real distribution factors", which 

are calculated from "real stiffnesses", No carry over of moment from 

one end of a member to the other is required, and thus the solution is 

obtained directly without iteration, 

Figure 11(a) shows a column subjected to both axial load and
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bending moments without shear, The reel stiffnesses, - at the ends 

of the member for this no-shear case sare as follows:- 

At end 2, 

S50 = of = (n-Reo) (10) 
At end 3, 

Soa :> = = (n- Soe “4 (11) 

where Rg ere to the ratio of the end rotations, ef and n and o 

are stability functions at Euler ratio p, as tabulated by Livesley and 

Chandler), 7 | 

Figure 11(b) shows a fully-elastic beam bending in double curvature, 

in which the axial load and the lateral displacement of the ends are 

assumed to be negligible, For this member, the real stiffnesses are:- 

Seo = (4+2R,) (12) 
and, 

a EL ‘ Soe } = 32 en Re) r - (43) 

The real stiffnesses of all the members of a multi-storey frame 

may be obtained by substituting suitable values of R in equations (10) 

to (13). 

It has already been assumed in 3.3(b) that the columns bend in 

double curvature under the action of wind loading, with points of 

contraflexure existing at their mid-heights, This implies that the end 

rotations of any column must be equal, so that R= 1, Therefore, the 

approximate expressions for the no-shear stiffnesses of any column are 

given by:- 

a (42) 

It was also stated in 3.3(b) that, for the purpose of developing 

the general theory for a typical internal bay, the total number of 

bays, r, is considered to be large, Therefore, since the same sections
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are used for each internal column, each bay behaves in an identical 

manner, and every bean whit bend in exact double curvature under the 

action of horizontal loading, as shown previously in Figure 3(b). The 

end rotations of the beam will be equal, so that R is again equal to 

unity, Therefore, substituting in equations (12) and (13), the 

approximate values for the real stiffnesses of the beams are:- 

r ie EI 
S23 = Sge = 6 7. (15) 

The use of these approximate values of real stiffness results in 

a considerable saving in design time, without introducing any large 

degree of error, The precise way in which they are applied to develop 

expressions for the magnification factors, using the direct moment 

distribution technique, is shown in the fcllowing section, 

3.8. DERIVATION OF THE MAGNIFICATION FACTORS 

The magnification factors, A and Ag, are derived for each zone in 

arbugiors 

3.8.(a) ZONE 1 

oe aUghlev Z a 

In this zone the beam and column sizes are selected using equations 

(6) and (9) respectively, Although the condition of vertical load alone 

is critical in selecting the beam size, the combined loading condition 

dictates the column size. The beam is independent of the magnitude of 

wind loading and of the magnification factor, which must be obtained 

therefore by considering the combined loading case, This is identical 

to the treatment for Zone 2,
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3.8.(b) ZONE 2 

é A(mHh ) av rae 1 4 
46 WL ee 

The loading sequence recommended in 3.6, is adopted in deriving the 

values of A and Ac. Initially the factored vertical load is applied to 

ie subassemblage, and this is followed by the horizontal loading; in 

this zone, under the vertical load alone, the beam may remain elastic 

or may develop plastic hinges, and it is necessary to differentiate 

between these two types of behaviour, 

Consider the beam in Figure 12(a) under the action of vertical load 

at load factor Ag. Due to symmetry, the joints do not rotate, and the 

bending moment diagram is as shown in Figure 12(b). The required fully 

plastic moment of a beam falling in this zone is given by equation (7); 

i.e. 

a WL |1 , AGmth)av 
Be= Ne i Fs + WL | 

Therefore, under this load, plastic hinges will have formed at the ends 

of the beam if, 

WL WL }1 A(mHh 
Ae 75 > re TE UP WL, “| 

which reduces to the condition:- 

A(mHh)av 1 
WL Pedi2 

This zone may therefore be sub-divided into two separate zones, which 

are considered in turn below, 

3.8.(b)(i) ZONE 2(3) 

1 A(mHh ) av , 1 
16 WE “42 

Plastic hinges form at the ends of each beam before the full 

vertical loading has been applied, At load factor Ae, the frame is as
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shown in Figure 13(a), and the corresponding bending moment diagram is 

given in Figure 13(b). 

On application of the wind loading, the plastic hinge at the 

leeward end of the beam continues to rotate as before, However, the 

hinge at the windward end tends to rotate in the opposite direction, 

and therefore immediately disappears, Accordingly, the frame for 

analysis under horizontal loading is as shown in Figure 1i(a). The 

internal column stiffness in each bay is identical, and the presence 

of a plastic hinge at the end of each beam effectively isolates one 

bay from the next, as indicated by ae 14(b). Assuming the number 

of bays to be large, this part of the frame satisfies the "principle 

of multiples", as described by tdghtPoob Ok and the method of direct 

moment distribution may be applied to each single bay. In the typical 

bay in Figure 15(a), points of contraflexure are assumed to exist at the 

mid-heights of the columns, and Key, Keg and Kpe represent the flexural 

rigidities of the members. 

The real stiffnesses of the columns at joint 2 may be obtained from 

equation (44). Thus, 

ze 
Sei I (ny-04)Ke4 

and, , 

Pes = (ng-02 )Kce 

Also, since the plastic hinge at 2/ may be considered to behave in 

an identical manner to a real hinge, the real stiffness of the beam at 

joint 2 is given by:- 

Boe le She 

Therefore, the total stiffness at joint 2 is:- 

28s os (ny-04)Kc4 at (ng-0g )Kce + 3Kpe 

Let x represent the real distribution factors at 2 in the presence of
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a plastic hinge at 2/, Then:- 

Sees ae _ (np-o, JK 
nat Se r rst Ess 

aoe oo, (ek 
Ss r r vee eae 

re 

oie Sz2/_ 3Kpe 
ine. ee 

These may be rewritten in the following form:- 

A (n,-o, )KKp (46). 
Pat ey eS 

A _ (ng-03g)Ke 
mee. = KeV + 3 (17) 

ee 
Bee a KeV e 3 (18) 

where, 

K ee tee nee ae mee 

ce Kpe’ ne Keg’ 

and, 

V= K(n, -o, ) + (ng-0g) 

The initial sway moments due to wind loading, increased to allow for 

the Pé effect, are shown in Figure 15(b). The total out of balance 

moment at joint 2 is:- 

Pi nk ee ae Seats 2, Ne ( mi lear 

Therefore, the total moment to be distributed at joint 2 in order to 

satisfy joint equilibrium is + Ag(mHh)av. The final moments at the 

joint due to wind loading alone are shown in Figure 16(a), whilst the 

moments due to combined vertical and horizontal loading at load factor Az 

are given in Figure 16(b). 

In this zone, failure occurs due to the formation of a combined 

mechanism, and the span hinge is assumed to form exactly in the centre
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of the beam, The bending moment at this location must therefore be 

equal to the fully plastic moment of the beam, Thus, referring to 

Figure 16(b):- 

(% se - B) . 42a -Ag(mih)av = B 

Therefore, 

tw il > Xv al
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+
 © v 
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nw S ww
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However, in this zone, 

WL }1 muh ) av 

ohare Ht eA a 

Therefore, 

A = ee 

Referring again to Figure 16(b), the moment in the lower column is:- 

Mes ss eae Ae Pac eile + de ot wh ae 

MoHshs 

A MoHoh 
eee he (1-2a25.p2) 8522 

where, 

se (mHh) av: 
eR 

MoHohs 

However, 

GC, > | Mos | = he Ac Maat 

Therefore, 

A 
Ac = 1 - 2ags.pe 

3 .8(b) (41) 20NE 2(ii) 

A. A(mtinjav . 4 

12 WL bode 

In this zone, the beams remain completely elastic under the
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factored vertical load alone, and the bending moment diagram is as 

shown previously in Figure 12(b). On application of the horizontal loading, 

the moment at the windward end reduces, and that at the leeward end 

increases, The beam deflects skew-symmetrically, with the central bending 

moment remaining unaltered, The real stiffness of each beam connected to 

a joint is therefore given by equation (15); i.e. 

r 
See’ = 6Kpe 

Since there are two beams connected to each joint, the total joint 

stiffness in this case is given by:- 

- 

ESz = (ny-04)Key + (ng-0g) Keg + 12Kpe 

Let a” denote the real distribution factors for the case when the beam is 

fully elastic. With the same notation as before, 

7 ee 

a S24 _ (n,-0,)KKe 
fea = st grr (19) 

ny 

a, = Saa - Mtanoa)Ke (20) YOKE + 12 oS: 

ey ih egg es 
ae ae. Bae (24) i. 

It may be seen that the real distribution factor for each beam is equal 

anc? ema to > ¢ 

As the wind load increases, eventually a plastic hinge forms at the 

leeward end of the beam, at some load factor, a say, where a is less than 

Ae. For this intensity of wind loading, the initial out of balance 

moment at joint 2 is given by:- 

F.E.M.> = - a(mih)av 

The bending moments obtained after distribution of the balancing moment 

are given in Figure 17(a).
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Figure 17(b) shows the bending moments due to the combination of 

vertical load at load factor Ag plus wind load at load factor a, For a 

plastic hinge to occur at 2/ under these loads:- 

Wi  ae.! 
he G5 + = -a(mHh)av = B (22) 

However, as before, for Zone 2, 

WL ki Ate )ev) 
Bee Sang iy. WL 

Therefore, eliminating B in equation (22), 

Oe / (mHh ) 
a a (ntih av | = AS a + Ag é = ey 

or, in a more convenient form, a is given by:- 

a AUS WL 
~- si ~ 2).A(mHh a 

At load factor a, a plastic hinge forms at 2’, and the stiffness of 

the beam at 2 is reduced to 3Kpg. Therefore, for subsequent wind loading, 

in the range a to Ag, the real distribution factors are identical to those 

used ts Zone 2(i), namely - . pe and bP Due to the additional 

horizontal loading, the initial sway moment at the joint is given by:- 

F.E.M.e = - (Ag - a)(muh)av 

The bending moments produced at the critical locations due to this loading 

are given in Figure 18(a), which is similar to Figure 16(a), all the 

moments being factored by the ratio Ogna) 
2 

Figure 18(b) is obtained by superimposing Figures 17(b) and 18(a), 

and shows the resulting moments under combined load at Ag. Again, in 

this zone,.failure occurs when a plastic hinge forms at the centre of the



oO
 
=
 

  

ay 

-(Az-&) Bi ee > az (An ~ %) (muh) av. 

io + af. (A\2 <x \(mH h) av. 

2 | a a 

aS 
-(d2 ~ oc) Me He he ao a Sy (Ae - 4) (mh) av. 

ea ( A2 — M)(meHh) ov. 

  
      O- 

3 

Bending reoments adue Fa wine load in the range « ka d2 

— Zone 2 (ti) 

FIGURE ‘18 (a) 
  

  

  

am MHh, 

ae 
- (Az =x) mA e a, (Az = &)(mbih) a, 

of 

~ 2 *S +722) x (mH) av. +04 
2 ee 

+ ag, « (mh) av. 

We te 
a23q +e. aSy (Ae — %)(mHh) av. 

o
p
 

(Az + %)(meA)av. 

Me Ha ho 

  

+ 23'.. & (mm Hh) ov. 
SU he ade mae he 4 oa (\2 - %)(mHh) av.     
      a a 

Bending moment at ulbimate combined load - Zane 2 (i1) 

FIGURE t&.t6). 
  

 



- 7 = 

span. Therefore:- 

Where 
Ae on t 5-822 /(A2-a) (mHh )av =.b 

This may be rewritten as:- 

oe ae + 232! (,5-a) (alth)av on at 

But, from equation (22), 

he x ee 2 cub ae 

Eliminating A>. “ leads to:- 

R= Xs a + - jae a + ape! «(Xe-a) | (ath) av -~B 

Therefore, 

B = dz HE + Bae + ae! «(he-a) [Ee 16 4 

Alternatively, 

oie ee a_\ ,A ;|{nlh)av 
B — Ae d i + ie e220 ce (- seas | WL 

Bes 

B ate Ae It +A Gaver) 
* WL 

Therefore, for this zone the beam magnification factor is given by, 

OL FG, a A 
A= Xp t822/ + (1- ate! 

Similarly, the resulting moment in the lower column may be written as:- 

Hoh A Mog = ~ Me7eMe |a(1-20fo.pa) + (No-a)(1-208s.P2)| 

= = Ap |E(1-208 5.02) + (1 2) (1-208, pa) Balala 
3 2 2 2 

As before, 

C, >|Mes | = Meshg means 
2
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Therefore, the column magnification factor is given by:- 

a a, A 
Aco = Xp (1-2a25 -Pe) ae (1 = 5) (1-2a28-P2) 

3 eG ZONE 3 

_ A(mih )av da 
Ay WL 

In Zone 3, the beam is fully elastic under vertical load alone. 

The expressions for A and Ag are identical to those derived for Zone 2(ii), 

but the value of a, the load factor for Hapbhentar loading at which the 

first plastic hinge forms, is different. 

The bending moments under full vertical load plus wind load at load 

factor a are identical to those shown in Figure 17(b), and the condition 

for the first hinge to form in the beam is again given by equation (22); 

18 

Qe) 
i a + 322 .a(mth)av = B 

In this case, however, 

B© do A(CmHh ) av 
2 

Therefore, 

v2 
a 22 (mth) a = - Xe a + Ao Atatih) ev 

which reduces to:- \ 

| 
il Eni ni ay| 

Bis erat 
‘ ak 

aee 

329. SUMMARY OF THE MAGNIFICATION FACTORS 

A summary of the basic design equations has been given in 3.5. It 

can be seen that these are easily solved if values of the magnification 

factors, A and A,, are known, These factors are summarized overleaf,



ZONE 1 0< A(atth ev < oe 

A = aby! (23) 

Age 15 Dabs ps (2h) 

ZONE 2(i) 4. A(mih)av . 4 
eae Wl he, 

The expressions for A and A, are identical to those for 

Zone 1; i.e. equations (23) and (24). 

ZONE 2(ii) 1. A(atth)av . 1 
eo Wy ude 

foe ase! + (hee yank" (25) xe he ms 

A 
Ac= 5 -(1-2a25-P2) +, (1-5 ) .(1-2a95 .p2) (26 ) 

he B. + 2 WL 

Ag dan! 3 2),.A (mHh S| (27) 

ZONE 3 A . Almih)av 
Tee WL 

The expressions for A and A, are identical to those for 

Zone 2(ii); i.e. equations (25) and (26). 

Cra ok WL 
he” fe? i 6A(mHh a (28) 

In all three zones:- 

_ (mh) av 

ae MgHghe 

3 A ( No —02 )Ke je Bice ee 
a22 > KV + Be a23 <a 3 2 

Oi re a, (ng -02 )Kp 
ee tha Ou nee «Kel 4.4000 

Also, 

V = (ny -o, )K + (n,-0.2)
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and, 

- ho i K=-—Sl. KL = C2. 

Keg’ . Kpe’ 

Under simple plastic conditions (i.e. with zero axial forces in 

the Som iied: A and A, are both equal to unity in all zones. This is 

so since, when p = 0, (n-o) = O and therefore V = 0, Thus’, ee = 

age! = 1, and abs = as = 0, and all the magnification factors become 

unity’; 

As p increases, A and Ac increase in all zones since (n-o), and 

therefore V, become negative. This leads to values of ao! ert eek 

greater than unity, and to negative values of ah and en 

In addition, it may be seen that the ratio of beam stiffness to 

column stiffness, Kg, controls the values of the magnification factors 

to a large extent. This important observation will be discussed in 

Chapter 6, which deals with the design procedure and the methods that 

have been adopted to ensure both rapid convergence and control of 

instability. 

3.10, ELASTICITY OF THE BEAM AT WORKING LOAD 
  

The equations that have been developed so far ensure that the 

design criteria (1), (2) and (4), given in 3.2., will be satisfied, 

The third design criterion demands that the framework shall be fully 

elastic at working load, 

Consider first the calculation of the maximum bending moment 

occurring in the beam at working load, 

Under vertical load alone, the bending moment diagram is as shown 

previously in Figure 12(b). The maximum moments exist at the ends of the 

beam, and are of magnitude *. 

In application of the wind loading, the moment at the leeward end 

increases and is always greater than that at the windward end. The
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leeward end is therefore the critical section in the beam, 

At load factor unity for both vertical and horizontal loading, the 

member ai biedb ange are as shown in Figure 19, corresponding to Euler 

ratios of o! and en in the columns, The total stiffness of any joint is 

given by:- 
4 4 

35's (n,-0,) Key + (ng-02) Kee + 12kKpbe 

The out of balance moment due to wind loading is given by:- 

Pp oe ee Pe 

The real distribution factor for the two beams meeting at the .joint is 

es ; a : ; : 
similar in form to age’, derived previously; i.e., 

4 | Be 12K be ee 

age ae e a (29) 

Kev... 4.412 rs" 

where, 

4 
I= | 

Vv (n,-0, ) (ng-02) 

With this notation, the total moment at working load at the leeward 

end of the beam is:- 

42; 
mee Bee ye Wo6 cont Go .(m Hh)av 

Therefore, irrespective of the zone, no plastic hinge will form in the 

beam below working load provided that:- 

oJ 
a + — . (nh) ay < Mpp (30) 

where Mpp is the fully plastic moment of the selected beam, 

In Chapter 6, it is shown that it is possible to derive a general 

equation for each zone from this basic equation in terms of the quantities 

A and ACatth ev , which correspond to load factor As, and which are 

necessarily calculated during the design of each storey. Furthermore, 

if these equations are represented graphically, the "working load
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elasticity condition" may be checked immediately, without calculation, 

by using the known values of the two variables. 

In the following chapter, suitable design equations are developed 

for the boundary regions of the framework, namely the top and bottom 

storeys, and the external columns,
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CH A P.@ ah Ree 2, 

  

Di bye bieOr UND) Ase oe Rew Get Oo NaS 

Legdts INTRODUCTION 

In the bingo chapter, equations have been derived for the design 

of the beams and the internal columns of a typical intermediate storey in 

a framework, However, these basic equations are not suitable for the 

members which constitute the boundaries of the frame, since, in these 

areas, the structural behaviour may be considerably different from that 

of the internal regions, 

It is necessary, therefore, to consider each of the limiting areas 

of the framework separately, to make suitable assumptions about the 

behaviour of that area, and to produce an appropriate set of design 

equations, This is the subject of the current chapter, which deals in 

turn with the design of the top storey, the lowest storey, and the external 

columns of the frame, 

lisa; THR TOP: STOREY 
  

Under vertical load alone, the top storey beam, like those for the 

other storeys, may only fail by a simple beam mechanism, If the required 

fully plastic moment of the beam is denoted by B,, and the vertical 

working load by W,, then, as before:- 

L 
By = A4 oo (31) 

Under a combination of vertical and horizontal loading at A\., there 

is a possibility that failure may occur by either a combined mechanism or 

a sway eran provided that the columns remain elastic. In deriving 

design equations for this storey, however, the general subassemblage, 

described in Chapter 3, is no longer valid. It is proposed, therefore, to
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consider the top two storeys of the framework as one subassemblage, with 

points of contraflexure being assumed to exist at the centres of the 

columns in the lower storey. Furthermore, it is assumed that the lower 

storey has already been designed, and that it has been supplied with a 

beam of fully plastic moment, Bg, using equations (1) to (3) in Chapter 3. 

Under combined load, a possible failure mechanism for this two- 

storey subassemblage is as shown in Figure 20, ‘In this case, both beams 

collapse due to the combined mechanism, This is in fact the only mode of 

failure for the complete subassemblage if plastic hinges corresponding to 

the combined mechanism form in the lower beam, since the wind loading on 

the upper storey is considerably less than that on the lower storey. It 

follows, that if hinges corresponding to the sway mechanism were to form 

in the lower beam, then either the combined or the sway ecbini ok would 

be possible for the upper beam, However, these two cases do not require 

consideration, as will be shown subsequently. 

Consider, therefore, the overall combined mechanism in Figure 20, 

As for the intermediate storeys, the work equation may be applied to an 

isolated bay of the subassemblage, and this is shown in Figure 21, where 

the column is considered to rotate through an angle 0 about the joint 

with the lower beam, The work equation is:- 

4BiGi + LBa6 < A2la 2 6 + Rall 2 6 4 Fede bs .0+4: Nels #20 

Eliminating 6, and regrouping:- \ 

W,L H L 
4B, + 4By = Xe “PY + Ag “BEL + de MAB s 29 (itn)av 

But, from equation (2) in Chapter 3, the lower beam will have been 

selected with:- 

Hh )av Wel
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Therefore, eliminating Bg:- 

4B, = Ag Wyb hs Hyhy 
4 2 

Therefore, 

By = de ae + Ag Jac (32) 

So, in order to satisfy the basic design criteria, neglecting any 

other types of mechanism at this stage, the top storey beam must be 

supplied with a value of fully plastic moment at least as great as the 

larger of the two values given by equations (31) and (32). Equation (31) 

will give the required value if:- 

Metin ae b fegueele 

This condition may be rewritten as:- 

WL H,h 

Gj MaNsl = Ma Tet > Ma Sp 

which reduces to:- 

Hah ‘l eee as 

7. Ss : (33) 

Now, in general, the storey heights in a framework are approximately 

equal; d.e. h, = ha, Also, when the wind loading is uniformly distributed, 

He 2 3H,. Therefore, 

Hih, + Heho (Hy + 3H, )hy 
2, a 2 
  (Hh)av = = 2H,h, 

Hk, (Hh) av 

Mae 

Equation (33) may therefore be rewritten in an approximate form as:- 

(Hh) av < i ; ( 34.) 
Wi
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In addition, the vertical load on the top storey of a frame is generally 

less than or equal to the load on the intermediate storeys, If, for 

instance, W, = We, then equation (34), which is the condition for the 

simple beam mechanism to be the critical mode of failure, becomes:- 

(Hh) av 3 z 

Web & oe 

4 

If, however, W, = ples then, 

(Hh) av “ 

Mab C
o
]
 

(Hh ) av 
is equal to the wind ratio 

WeL 
It may be seen that the quantity 

for the lower storey, In general, as will be demonstrated by the design 

examples in Crapters 7 and 8, the design of the second storey lies in 

Zone 1, where O < wind ratio < a. In only one framework, which is 

designed for very heavy wind loading, does this storey fall in Zone 2, 

and in this case the wind ratio is equal to It is therefore extremely - 
15% 

unlikely that any frame will have a wind ratio for the second storey in 

the region of 4; and so it may be assumed that the beam mechanism is 

always the dominant mode of failure for the top storey. 

As suggested previously, there is no necessity to consider the other 

possible mechanisms for the two-storey subassemblage, since these may only 

occur at even higher values of the wind ratio than 4. 

Therefore, in all cases, the beams in the top storey may be selected 

by equation (31). It is, however, difficult to assess the exact plastic 

moment required for the internal columns, since the positions of the 

points of contraflexure are unknown, It is suggested that this value 

shall be assumed to be equal to the required plastic moment for the columns 

in the second storey. This does not involve any great loss of economy, 

since the columns in this region of the frame are comparatively slender, 

In addition, the selection ot’ a slightly conservative column provides an 

additional safeguard against instability.
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The design equations for the top storey are summarized below, 

| sot Wal A SLE Be Ay 16 

where W, is the load on the top storey beam. 

Cy > required plastic moment for the column in the storey below. 

4.3. THE LOWEST STOREY 

Before deriving a set of design equations for the internal bays of 

the lowest storey, it is necessary to consider the way in which the 

internal shear forces are distributed in the columns, 

4.3(a), ESTIMATE OF INTERNAL COLUMN SHEAR FORCES 

One of the assumptions given in 3.3(b), for the derivation of the 

general theory, is that the shear force, H, induced in each internal 

column of an intermediate storey, is equal to the ote wind loading above 

that storey, divided by the number of bays, If there are r bays in the 

storey, then the total shear in the storey is equal to rH. However, the 

saben coe internal columns is equal to (r-1), so that the total shear in 

these members is (r-1)H, It follows, therefore, that each external column 

must carry a shear force of z due to wind loading. 

This assumed distribution of shear forces is satisfactory for the 

design of the intermediate storeys, where, in the resulting structure, the 

stiffness of an external column is found to be approximately half that of 

an internal column, 

However, as will be shown subsequently, a modified design approach 

has been adopted for the lowest storey, and this results in an internal 

column which is considerably greater than that in any of the storeys above. 

In contrast, the external column in the bottom storey is generally similar 

in size to that in the previous storey. This results in a ratio of 

external to internal column stiffness in the lowest storey which is less
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than a half, and a similar ratio of shear forces in these members is to 

be expected, Thus, the design shear forces for the internal columns 

would be underestimated if they were obtained by simply dividing the total 

shear by the number of bays, and this error would be particularly apparent 

when dealing with a framework with comparatively few bays. 

Figure 22 shows the assumed subassemblage for the interior bays of 

the bottom storey, together with the applied working loads, It may be 

seen that points of contraflexure are still considered to exist at the 

mid-heights of the columns in the upper storey, and each column carries a 

shear force of H,, the total shear aie rH,, However, in the lowest 

storey, where the columns are assumed to be fully fixed at the base, the 

total shear force is given by:- 

/ 
(r-1)Hy + 2He 

/ 
where Hg is the shear on each internal column, and He the shear on each 

/ 
external column, Hg is not assumed to be equal to = 3 

The wind loading on this storey is still assumed to act at the level 

of the beam, but will of course be greater than that applied to the upper 

storeys, since this force is the summation of a distributed wind loading 

acting over half the height of the upper column plus the total height of 

the lower column, This is a conservative assumption, since the true 

h 
centroid of this force system is at a level of I F 

The following empirical formula is suggested for calculating the 

+ he) above the ground, 

magnitude of the internal column shear forces:- 

: -4.,05(341 72wr! 
Ha = 2(H), 2+(r-1) (341 7wr (35) 

where 3(H), is the total shear in the bottom storey (i.e. the sum of the 

applied wind forces above ground level), and where wr’ is the wind ratio 

that would be obtained if the bottom storey shears were calculated by 

dividing the total shear by the number of bays (4.2. wr/ = leGon tev. 
rWL /
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The development of this empirical formula is given in a later 

chapter, where it will be shown that it derives from the results of a 

series of accurate computer analyses. This chapter is more concerned 

with the derivation of a set of design equations, the initial design loads 

having been assumed, 

4..3.(b) FAILURE OF THE LOWEST STOREY 

The design of the lowest storey is based on a slightly different 

approach to that used for the other storeys. One of the basic design 

criteria is that all the columns in the framework shall be fully elastic 

at the design load factor, Therefore, since the column feet are fully 

fixed in this storey and sway is largely eliminated, the only true 

mechanism possible is the simple beam mechanism, under vertical load aloe, 

Thus, irrespective of the wind ratio, for the bottom storey, 

WL 
Bras 47 

The internal column size must, however, be assessed from consideration of 

the bending ponnbhe produpel tn the combined loading case. As for the 

upper storeys, the perticalewasa is considered to be applied first, followed 

by the wind loading. 

Under vertical load alone, no bending moments are produced in the 

internal columns, Each beam behaves as if cnaaende’: with a plastic hinge 

forming at each end at a load factor below Ag. At load factor Ag, the 

frame is as shown in Figure 23(a), the corresponding bending moments being 

given in Figure 23(b). 

On application of the horizontal loading, the windward hinge 

immediately disappears, and the isolated bay for analysis is shown in 

Figure 24(a), where the flexural rigidities of the members are Ko4, Kee 

and Kpe, and the Euler ratios of the columns are P1 and pe. The real 

stiffnesses of the columns may be obtained from equations (10) and (11)
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in Chapter 9; 

For the upper column, Res +, 80, that, 

x 
Sea = (my-04)Ke4 

For the lower column, since end 3 is fully fixed, R = 0, so that from 

equation (10), 

r 
Ses = Ngkce 

and from equation (11), 

In addition, there is a carry-over of e times the moment distributed 
a 

at section 23 to the base of the column, iince there is a plastic hinge 

at 2/, the real stiffness of the beam at joint 2 is given by:- 

Sze! = 3Kpe 

The total stiffness at joint 2 is therefore:- 

285 = (ny-04 )Ke4 + Ngkcg 3Kbe 

and the distribution factors are:- 

Bon her ees, 
424 

55, BSs 

i fe 

Seas Sona 2 eee 
ceo... Bee 

_ 

6st Seo’ Kye 

pe ae



he 

Mee Nek 
ee = Kv xo 

eae != EYES 
" , 

where, 

Vi = Kine—oy) + No 

iat, 

Al
 

Be > 

K K . Aca, - Kee, 
Korie a Rig 

The initial sway moments due to wind loading at Ag, magnified to 

allow for the P& effect, are shown in Figure 24(b). The total out of 

balance moment at joint 2 is therefore:- 

F.E.M.p = - Ag(mHh)av 

Figure 25(a) shows the moments, due to wind loading alone, after 

distribution, The resulting moments under combined loading at load factor 

Ag are given in Figure 25(b). It may be seen that on the lower column 

both the initial fixing moments are negative. 

When p = 0, v/ = 1, since n = 1 and (n-o) = 0, As p increases, n 

reduces and (n-o) becomes negative, so that V’ reduces, However, n/ is 

still the dominant term, so that V’/ is always positive, Therefore, ar alge: 

always negative, and nae is always positive. 

Thus, the moment distributed at 21 is in the same sense as the 

initial fixing moment at this location. On the lower column, the moment 

distributed at 23 is in the opposite sense to the initial moment, whereas, 

since : is always positive, that carried over to joint 3 increases the 

moment at this point, Thus, the final bending moment at 3 is always 

greater in magnitude than that at 2, and this is therefore the potential 

position for a plastic hinge in the lower column,
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On the upper column, the moment at the joint is given by:- 

Mo, = aa Ae pe a a. «Ae (muh) av 

m4H,h A 
= =—hg ae. [41-2003 .p1 | 

where, 

. (atth)av 
FR mahi ls 

Therefore, a plastic hinge will not form in the upper column below AS are 

C.2> |i ees AcgmyHy hy 
Ts 2 

where, 

A 
Aca = 1-2ag4 D1 

The moment at joint 3 is given by:- 

Mgz = - Ag mitts = 22 3 -Ao(nlth)av 
2 

I 

MoHoh ° A 
te Ae oe [12 £8 .a8.Pe| 

where, 

_ (ah )av 

Fe mMgHghe 

Therefore, a plastic hinge will not form in the lower column below Ae, if:- 

/ 
wf. >| we ie AcomeHehe 

2 

where, 
; 

Ace = 1+ 2 Of ae 5 «Pa 
Neg 

It is not necessary, in this case, to derive a magnification factor 

for the beam, since its size is determined initially from the simple beam 

mechanism, In practice, under horizontal loading, there is a possibility 

(although remote) of the hinge pattern corresponding to the combined 

mechanism occurring in the beam. However, the safety of the frame would
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not be seriously affected by the formation of a second hinge in the span, 

due to the rigidity oP tis lowest storey column, 

The magnification factor for the upper storey, Ac4, is similar in 

form to that for the other intermediate storeys, and has the same 

significance, It is equal to unity under simple plastic conditions, and 

increases with the axial force in the column, As will be shown in 

Chapter 6, it is necessary to estimate the required plastic moment for 

this column during the design of the bottom storey, using the equation 

above. This value should then be checked against that which has 

previously been obtained when using the egations for the intermediate 

storeys, and the larger of the two values must be selected, 

The function i referring to the moment at the base of the bottom 

storey. column, is not a true magnification factor, Under simple plastic 

conditions, it is not equal to unity, and takes the value, 

A K / Ny Goma Pest ty 2 rears Ba, = Aco(sp)», 9ay 

Since Kg tends to be large in this storey, and since pp - 1, bsbeos a 36 

The true magnification Pace for this storey (i.e. the degree by which 

the moment at the base of tite column is eet due to instability 

effects) is in fact given by the ratio Ace - This is generally very 
Ace (sp) 

close to unity, indicating that the instability effects are small in this 

region of the frame. Despite the fact that very large axial forces tend 

to exist in the columns of the lowest storey, it is not generally realised 

that the high flexural rigidity of these columns, and the fixity at the 

foundations, tend to largely eliminate the likelihood of instability 

failure, 

A summary of the design equations for the beams and columns of the 

lowest storey is given in the following sub-section, and this is followed 

by consideration of. the condition for elasticity of the beam at working 

‘load,
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4..3(c) SUMMARY 

In the bottom storey, the beam is selected using:- 

The columns above and below the beam, respectively, are selected from:- 

C > he Acym,Hyh, (37) 

EL 2 

where, 

A 
Aca = 1 - 2a21.D4 : (38) 

and, ; 

C a AcgmgHahe (39) 
Ip 2 

where, 

i 

Ace =1 + 2 $2 225.2 (4.0) 

Alseo,,in the equations above, 

(mh ) av , _ (mHh)av, 
m4H4h,° ; Pe = mMeHshe z 

A n,-0, )KK A nok 
ae41 = ee agg = Kala 3 

pi 

where , 

v/ = (n,-0,)K + Ne 

and, 

oo K K Kia 62 ie eee 

Keg’ . Kpe 

4.3.(d) ELASTICITY OF THE BEAM AT WORKING LOAD 
  

The basic condition for the beams of the intermediate storeys to 

remain elastic at working load has been derived previously in Diet Oran, 

and an identical expression is obtained for the lowest storey; i.e., 

by 
= + — (m'ih)av < Mpp’ (4.1) 

However, in this case, the real stiffnesses of the columns are different,
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and the real distribution factor for the beam becomes:- 

/ 42 

Kvi" + 12 

where, 

= (ny-0,)'K + ng <
 | 

It has been found that this condition is often critical in the 

bottom storey, and the beam has to be increased to satisfy all the design 

criteria, Theoretically, it is possible to redesign the columns with the 

new increased beam size, with the intention of obtaining a more 

economical design, However, in general, identical columns are obtained, 

This is due to the fact that although there may be a high percentage 

increase in the second moment of area of the beam, it is still small 

compared with the size of the column, In addition, due to the large 

difference in the properties of successive Universal Columns, normally a 

considerable alteration in the required size of the column is necessary 

in order to dictate a new section, 

It is suggested, therefore, that the column sizes be selected using 

the basic equations, (37) to (40), and that at the end of the design, the 

beam, which has been selected using equation (36), should simply be 

increased, if required, in order to satisfy equation (41). No further 

alteration #0 the seetigh siren de necessary. Equation (41) is developed 

into a more readily applicable form in Chapter 6. 

4.4. THE EXTERNAL COLUMNS 

The behaviour of the external columns differs from that of the 

internal columns, since the former are subjected to unsymmetrical loading 

conditions, Before deriving design equations for these members, it is 

necessary to make several additional assumptions concerning the distribution 

of the internal forces in the framework, with particular reference to the 

most critically loaded external column,
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4.4(a) DISTRIBUTION OF FORCES 
  

Under combined vertical and horizontal loading, the shear forces 

developed ie the external columns of a framework are not purely a function 

of a horizontal loading, unlike those induced in the internal columns, 

Due to vertical load alone, the external columns deform, and shear forces 

are introduced, The following assumptions have been made:- 

| (1) The external columns bend in double curvature due to both 

horizontal and yertioak loading, with points of contraflexure 

occurring at their mid-heights. 

(2) As previously stated, in the intermediate storeys, due to 

horizontal load alone, the external columns carry shear forces 

equal to half the shear forces in the internal columns, 

(3) The axial force in an external column, due to vertical load alcne, 

is equal to the force in the column above plus half the load 

on the beam, 

(4) Due to wind loading, equal axial forces are introduced in each 

external column in a storey, the force in the windward column 

being tensile, and that in the leeward column being compressive. 

(5) At ultimate load, plastic hinges exist at the leeward ends of 

all the beams, 

Assumption (4) follows automatically from the original assumption 

in 3.3(b) that there are no axial forces in the internal columns under 

wind loading. This is illustrated in Figure 26, where a section line 

has been drawn through the points of contraflexure = all the columns of 

a storey. In order to maintain vertical equilibrium, the external column 

forces must be equal in magnitude. Also, the couple formed by these two 

forces, the lever arm of which is equal to the total width of the frame, 

must balance the moment of all the wind forces above the points of 

contraflexure, 

It follows, therefore, that under vertical and horizontal loading
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together, the leeward external column contains the greater axial force, 

and as such is the critical column for design purposes, Both external 

columns must nevertheless be provided with the same section, since the 

wind loading is free to act from either side of the frame, 

The derivation of the design equations for this critical external 

column is considered in the following three sub-sections, which deal in 

turn with the intermediate storeys, the upper storeys, and finally with 

the lower storeys. 

4..4.(b) THE INTERMEDIATE STOREYS 

Consider Figure 27, which shows the complete subassemblage for both 

the internal and external bays of an intermediate storey, at ultimate load, 

In accordance with the assumptions in 4.4(z.), plastic hinges exist at the 

leeward ends of the beams, and equal shear forces are induced as ok ino 

the internal columns. 

In order to simplify the development of the design equations, it is 

also assumed that the basic shear forces due to wind loading in the 

external columns (i.0. a and =) are magnified by the same factors as the 

shear forces in the internal columns (i.e., by Acm, and Acms). Thus, the 

bending moment in any column at the level of the beam, magnified to allow 

for the instability effects, may be obtained automatically by multiplying 

the shear force in the column by the distance to its point of contraflexure, 

Additional shear forces, denoted by X, are assumed to exist in each 

external column, both above and below. the beam, due to the action of 

the vertical loading at load factor Ag. In the leeward columns, these act 

in the same sense as the shear forces due to wind loading. However, in 

the windward column, the two components of shear act in opposite 

directions, The assumption that these additional shear forces are equal 

both above and below the beam has been found to be reasonable for the 

general case, where the beam loads, and the column heights, are
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approximately the same in each storey. 

Consider the equilibrium of the critical leeward column in Figure 27. 

For equilibrium of bending moments at joint 2:- 

AcmsH h Sao eon ke asa 5 + x) 5 

Solving for X: 

  

However, the moment on the lower column is given by:- 

  

Sia ia [re Aogalla x] Ba 

Substituting for X:- 

. Soy. omelet. * she he A. (mHh) av 
Mos i. he dp hy + he noe hy aD he ohe 2 

=~ —be_ 5 _y, Acmelehe (, he, {atth)av 
hi + he 4 hy + he MgHghe 

i 

h 4 h -—— = _ -——s 
oe hy 12 ( hy + rg 2Pe ) 

where Cy is the required plastic moment for the internal column in the 

lower storey, as obtained from Sauk on (4) in Chapter 3, For the lower 

external column to remain elastic, its plastic moment, Che must be given 

by:- 

h 1 h 
= 

ae C, > | Mos | i + C15 (; 5 tay 22) (42) 

In the particular case when h, = hg, 

QQ
 

Vv
 

ro
le
 

+ Cy.5 (1-pe) | (43) 

Also, for the upper column in the subassemblage, the following value



of plastic moment is suggested:- 

Op 5 

no
lo
 

(2:.) 

Equations (42) and (43) together supply the two columns at the joint 

with a total moment capacity which is greater than the fully plastic 

moment of the beam, This slightly conservative condition is considered 

to be necessary, It must be remembered that all the design equations 

developea in this thesis are, to some degree, approximations, Ines 

particular case, experience has shown that a small reserve of strength 

is advisable in order to ensure that a plastic hinge does not form in 

either column below the design load factor, 

It may also be seen that, in applying equations (42) and (43) at 

every joint down the external column, two values of plastic moment are 

suggested for each column, Equation (42) gives the required plastic 

moment at the top of the column, whilst equation (43), when applied to 

the next storey down, supplies the value for the base of the column,. For 

every column, therefore, the larger of these two values must be selected, 

4..4(c) THE UPPER STOREYS 

In this sub-section, the "upper storeys" are considered to consist 

of the top storey plus the second storey. These will be considered in 

turn. 

4.4(c)(i) THE TOP STOREY 

The design of the external column in this storey is straightforward. 

At the top of the leeward column, only two members are connected, and so, 

at any stage in the loading, the bending moments in both these members 

must be equal. The maximum possible moment in the beam is equal to its 

fully plastic moment, and a plastic hinge will form in the beam rather 

than in the column provided that:-



a 

CH > 5 

In fact, it may be argued that it is not necessary to restrict the 

plastic hinge to the beam at this location, The effect on the overall 

frame stiffness of the hinge forming in either the beam or the column is 

identical, However, in order to guard against local column buckling, and 

to be consistent with the basic design criteria, it is advisable to 

satisfy the condition above. 

4..4(c)(ii) THE SECOND STOREY 

The equations derived in 4.4(a), for the design of the external 

columns in the to horanintc storeys, neve been found to be unsatisfactory 

when applied to the second storey, particularly in the case when there is 

a large difference between the beam loads in the top two storeys. 

Therefore, a slightly modified approach is adopted in developing the 

equations for this storey, using the two-storey subassemblage shown in 

Figure 28(a). The shear forces due to vertical load alone in the two 

storeys are not Beetued to be equal in this case, that in the lower 

es carne column being denoted by X, and that in the upper column by tx, 

where + is constant, Figure 28(a) shows the resultant shear forces under 

combined load, the components due to wind loading having been magnified 

in the same way as for the intermediate storeys of Figure oT. 

Figure 28(b) shows the leeward column, isolated from the remainder 

of the subassemblage, In deriving this particular part of the theory, 

it is assumed that axial forces Y, and Ypg exist in the beams, as shown, 

For horizontal equilibrium at joint 1:- 
r 

Yay =X» SSB. tx 

For horizontal equilibrium at joint 2:- 

Yeo = Ag — (mgHe oa m4H, ) +o (1-t)
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Taking moments about joint 3 (the point of contraflexure) :- 

ts {hs + aie Yo 42 - B, - Be = 0 

Eliminating Y, and Yo:- 

oe a|( +B) + Pe (oata-mata) + x(1-1)| Bs 

= By, + Bo 

Solving for X leads to:- 

(B, + Be) - de ~~ (mtn) av + saya 

» ees 

(1m + #) 

The moment on the lower column is given by. - 

  

Mos = = eee tye 

Substituting for X, and re-arranging, the following expression is 

obtained: - 

h h AcmaHoh m,H,h aac an aie = elie wk MOS ote ae (Bi+Bz) - Az hy. f (2th, +he) [22 . deals | 

h ut h 
= - Tthstha) (BatBe) - Cp. 5 I - Ttheths) (4Pe-t ) 

where Cy is the required plastic moment for the internal column in the 

second storey, and since, 

myHyhy _ 
MgHghe “Pe ; 

Therefore, if there is to be no plastic hinge in the external column, 

h 1 h 
Cy > [Meal = topp2pppy(BatBe) + oft - (othe ths) (Pent )] (45)
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The factor t, the ratio of the shears due to vertical load in the 

top two storeys, has been found to depend primarily on the ratio of the 

beam loads in these storeys (i.e. z wins The following empirical values 
2 

of t, obtained by inspection from the accurate analysis of several frames, 

are suggested:- 

When We = Wo, t= 13 

When W, = ail ta 2; 

For ratios of at intermediate between and 1, t may be obtained from 
2 

the following approximate formula, which tends to lead to a slightly 

conservative value for Cain 

In the particular case when h, = hg (i.e. when the storey heights are 

equal), the general formula for 0, may be simplified considerably. For E 

example: - 

he W, = We; 

CG. eae Abatiey 4, Gio i wiabbine -1)| 
Bo 5 122 gies . (46) 

1 

ae W4 = pWes 

Cy > S(Br4Be) + Crp i - $(ipe-1 | (47) 

Also,asin the intermediate storeys, the plastic moment of the upper 

storey column, at the lower joint, is given by:- 

B 
2 

>> 

and this value should be checked against the value previously obtained 

for this column(i.e. B,).
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4.4(d) THE LOWER STOREYS 
  

In the bottom atires.; as in any other, the external column mus t 

be at least as large as that already selected for the storey above, in 

order to prevent "reverse column taper", This provisional section is 

generally found to be adequate, for the bending moments in the bottom 

storey column are normally smaller than those in the column above, 

Despite the fact that the selected column has a lower reduced plastic 

moment due to the presence of higher axial force in the bottom storey, 

there is sufficient reserve of strength. 

The only exceptions to this are likely to occur in frameworks with 

relatively few storeys, and in which the wind ratio in the bottom storey 

is low, In these cases, the two column moments at the Level: of the bottom 

storey beam become similar in magnitude, and, in addition, both the moments 

in the lower column tend to be of the same order, 

This argument is summarized below, with the aid of the notation in 

Figure 29, 

In general:- 

Msz >>>> Mes; Mea > Moe; 

Column 23 has sufficient reserve of strength if given the same 

section as 21. 

In cases of very low wind patio:- 

Mes > Mse, and its > Mo, 

Since Mg, + Meg = B, then, 

B 
Mo, > Mes > Mge > 33 

i.e., all moments tend to 5. 

Therefore, in this storey, 

Ca > 

r
l
 

although, generally, the upper column is dominant,
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4 (e) SUMMARY OF EXTERNAL COLUMN DESIGN 

STOREY No..1:- 

Ch bs 

STOREY No, 2:- 

In general, 

h 4 h 
On ome (By+Be) + 07.5 |! ~ (2th, the) (4»2-1)] 

If hy = hg, W, = We, 

Cie ee Codes eC igacd) BE 3 a 2 Tee 3 Pe 

a 

If: Hy = he, Ws = pWes 

as 2(B +B5) + C Oe das. Et he -1) Ea,” ae fas 

INTERMEDIATE STOREYS: - 

In general, 

hs 1 h pclae am See 

Pon, Ts (; aes) 

big hy = he, 

B 4 

Cy > + Cp.5(1-pe) 

BOTTOM STOREY: - 

Ch > 

N
l
 

The relationships given above refer to the lower column at a joint. In 

addition, at any joint, the plastic moment of the upper column is given 

by:- 

Ch - 

Mo
lo
 

and this must be checked against the value obtained for this column at 

the joint above, the larger of the two values being selected, Furthermore , 

"reverse column taper" must be prevented.
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The derivation of the design equations for multi-bay frames is now 

complete, The information contained in these two chapters is correlated 

in Chapters 6 and 7, where the design procedure is explained and a detailed 

design example is given, In the following chapter, the theory is modified 

to cater for the design of single-bay frames,
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CoH ASR. Derek +5 

SINGLE-BAY FRAMES 

Dail INTRODUCTION 

In the two preceding chapters, equations have been derived for 

the design of multi-bay frames, and these will now be modified, where 

appropriate, in order to cater for the particular case of a single-bay 

frame. The approach is similar to before, the general theory for a 

typical intermediate storey being developed initially, followed by 

consideration of the upper and lower storeys of the framework, The 

complete derivation of the design equations is not given in the cases 

where simple substitution may be made to equations developed previously. 

5.2. THE INTERMEDIATE STOREYS 

As for the multi-bay frames, each intermediate storey may be 

isolated from the others by assuming points of contraflexure to exist 

at the Wea hut ches of the columns, The basic subassemblage is shown in 

Figures 30(a) and 30(b) under the action of vertical load and wind load 

respectively, 

Under vertical load alone, the beam bends symmetrically, but in 

contrast with the multi-bay frame, the joints at the ends of the beam 

rotate, and bending moments and shear forces are induced in the columns, 

The shear forces at the points of contraflexure in each column of a storey 

are equal in magnitude, but act in opposite directions, as shown, 

Under wind load alone, all the members deform skew-symmetrically, 

and the shear forces induced in each column of a storey act in the same 

direction,
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5.2(a) BEAM DESIGN 
  

Provided that the columns remain elastic, under simple plastic 

conditions tte subassemblage may fail by one of the three basic mechanisms 

described for the beams of the multi-bay frames, These are reproduced 

in Figures 31(a),(b) and (c), where all the loads which do not enter into 

the virtual work equations are omitted, and where each mechanism is based 

on the undeformed geometry of the subassemblage, in accordance with the 

simple SiAgtic taser 

Thus, in Figure 31(a), the elastic rotation at the ends of the beam 

may be neglected. Also, in Figures 31(b) and (c), the shear forces due 

to vertical load alone are not included, since, considered together, they 

do no work as the structure sways. In developing a work equation for 

either the combined or the sway mechanism, *t is not necessary to state 

the exact proportions in which the shear in a storey is distributed to the 

two columns, The sum of the work done by the individual column shears is 

simply equal to the work done by the total shear. 

It follows, therefore, that in each case, the expression for the 

fully plastic moment of the beam is identical to that already obtained in 

Chapter 3, and, as before, the design may be considered to fall into one 

of three zones, depending on the wind ratio. Introducing the magnification 

factors, the beam design may therefore be summarized as follows:- 

ZONE 4 0 < A(mHh)av . 1. 
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5.2(b) COLUMN DESIGN 

The columns of a single-bay frame behave in a similar manner to the 

external columns of a multi-bay frame... Shear forces are induced by both 

the vertical and horizontal components of loading, and as shown in 

Figures 30(a) and 30(b), in the leeward column these shears act in the 

same direction, and are therefore cumulative. The combined shear forces 

in the windward column are always less than those in the leeward column, 

which is therefore the critical member for design. 

In deriving the design equations for this critical column, it is 

assumed that at some stage in the loading, before the ultimate load is 

attained, a plastic hinge forms at the leeward end of the beam, Prior to 

the formation of this hinge, while the beam is still elastic, the 

stiffnesses of each joint at the ends of the beam are approximately equal, 

so that the total shear force in the storey due to wind loading is 

divided equally between the £5 columns, However, after the hinge has 

formed, the stiffness of the joint at the leeward end may be considered 

to be negligible compared to that at the windward end, and it is assumed 

that under additional wind loading, no more shear is distributed to the 

leeward column, | 

The shear forces in the leeward column at ultimate load, magnified 

to allow for instability, may therefore be represented statically as shown 

in Figure 32. X is the component of shear due to vertical load alone at 

Ag, and, as before, this is assumed to be equal in the storeys above and 

below the beam, 4@ is the load factor for wind loading at which the first 

beam hinge forms, and Ac is the column magnification factor corresponding 

to a. 

This distribution of shear forces is similar to that assumed for the 

leeward external dot tine of a multi-bay frame, which is part of the 

sub-assemblage given in Figure 27 of Chapter 4. Comparing Figure 27 and 

52, it may be seen that the only difference in the shear forces occurs in
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the load factors applied to the wind components, It follows that 

Similar expressions for the required plastic moment of the column may be 

obtained in each case, Referring to Section 4.4(b), it may be seen that 

the value of C,, for the single-bay frame may be obtained simply by E 

substituting the quantity a ee, for Cr in equations (42) and (43). 

Thus, from equation (42), in the general case when the storey heights 

vary:- 

h, AcmeHehe he a 
cer Gabteedhantensey a omit 1 18 

CE . h, +h, °> oe 4 I hy thy *<P?| ( ) 

In the particular case when hy = hg, from equation (43):- 

AcMs C, > 5 +a Aemaliahe (1-p,) (49) 

In Section 4.4(¢)(ii), corresponding eapressions were derived for 

the external columns in the second storey from the top of a multi-bay 

framework, and the same substitution for C_ may be used to modify these. L 

Therefore, from equation (5), in the second storey of a single bay frame:- 

h AcmsHoh h Ca > Voth, the) (B,+Bo) + a ws ges f - Toth the) (Pen ) (50) 

With the same values for t as before, in the particular case when ye Nie 

equations (46) and (47) lead to the following expressions:- 

If Wi = Wo, 

Ges 5(B1+Be) +a Actaliahe I! s (upe-t ) (51) 

If W, = =We, 

H 2 C., > : (B,+Bo) + a Actallabs 1 ie (1p2-1)| (52)
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5.2(c) DERIVATION OF THE MAGNIFICATION FACTORS 

5 eG ZONE 1 

O< A(nith ) av z ade 
WL goa 

In this zone, under the vertical load alone, at load factor ),, 

a simple beam mechanism forms, However, the magnification factors are 

derived by consideration of the combined loading case, 

Consider first the application of the vertical load component at 

load factor Ag. The subassemblage, assumed to be fully elastic at this 

stage, is shown in Figure 33(a), where Kez, Keg and Kye represent the 

flexural rigidities of the members, and where p, and pg are the Euler 

ratios. 

Under this loading, the beam bends symmetrically, so that its real 

stiffness at either end may be taken as 2Kpg. The columns bend skew- 

symmetrically, and since there is no side-sway, their stiffness may be 

taken as 6K,. In practice, due to the presence of axial load in the 

columns, their real stiffnesses are slightly less than 6K,, but this small 

reduction may be neglected for the normal range of Euler ratios. So, 

for vertical load alone, the total stiffness of either joint is given 

approximately by:- 

rs = 6(Keathce) i 2Kpe 

= Kpe E Roathon 4 1| 
be 

= 2Kpe Com i 1) 

where, 

ig anaes A. (KH) 
Kpe 

The real distribution factor for either end of the beam is:-
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Vv 2Kpe a 
Qe2! = r | ‘3x+1 

us 

At load factor Ag, the fixed-end moments are equal to + Ag “, and the 

resulting bending moments in the beam are given in Figure 33(b). The 

maximum moments occur at the ends of the beam, and are of magnitude 

WL Vv 
Xe m(1- -aze/). 

In this zone; 

= out AgWL Barks Gh, le
 ce 

Therefore, no plastic hinge will form in the beam under vertical load 

alone if:- 

e 5 2 (t-ag!) < = AQWE 

Eliminating AgWL, and substituting for aes, the condition becomes: -— 

  

a 1 pi 
is |1 * | * Gh 

or, alternatively, 

Kea + Keg < 5Kpe 

It is extremely unlikely that this condition will ever be violated, 

and even if it is, the effect on the overall design will be very small. 

Therefore, it is safe to assume that plastic hinges never form in the beam 

under vertical load alone, at load factor Ag, so that the subassemblage 

may be considered to be fully elastic on application of the horizontal 

loading, While the beam remains elastic, the joint stiffnesses at each 

end are equal, so that half of the shear is applied to each column, 

Figure 34(a) shows the initial sway moments, magnified to allow for the 

P65 effect, due to wind loading at load factor a. The total out of balance



  

  

  

  
  

  

        

  

  

m, Hy a“ my, 

2 | & \' 

—o . So 

h 
= omy hyh, ne ravi h, ‘ 

4 4 

2 - ; 

-aw Mebzhe ox MeHzhe 

5 ball fe ate hh 4 4 2 
he 

LY. , 

me Hz meH2 
2 eee 

Initial Sway moments — 

Wind load alone ak load fackor 

FIGURE 34 (a). 

t t' 
Q- - . “a es 

moe Tub, a oa 5 a (mH ay 

4 
2 ae 

Zero 

o< (reHh) 
Pe Oe ee, OF 

a. meHb2 ho a as vee (mRh)av 

J le 
> 3° 

Final mements — 

wind load alone ak load fackor « . 

  

  

      
  

FIGURE 34 (b)



2 Ree 

moment at each end of the beam is given by:- 

oe a o, datth)av 
2 

The real stiffnesses of the members are identical on either side of the 

frame under this loading; i.e., 

r 
Sea = (n4-0,) Ke4 

r 
Ses = (ng-02) Keg 

Sge/= 6Kpe 

The joint stiffnesses are therefore equal, and given by:- 

if 
YS” = (my-01) Key + (ng-0g) Keg + 6Kpe 

The real distribution factors become:- 

a n,-0, )KK 

faa * Ka +6 

a (nz-02 )Ke 

aes XV s 6 

SUT aes cm 
Oe Tg ia 

where, 

Ve= (n,-0, )K € (nzg-0g) 

The resulting bending moments due to wind loading alone are given in 

Figure 34(b). For a combination of vertical and horizontal loading, the 

bending moments in the beam may be obtained by superimposing Figures 33(b) 

and 34(b), The critical beam moment occurs at joint 2/, and a plastic 

hinge will form at this location at some value of load factor, a say, 

given by:- 

WL — (muh 
hoqo(1-aze’) + bg {atth)ev = es & AoWL (53) 

Therefore,



@.age/.(mih)av = AQWL =: x : (1-2%2/)] 

WL 16 4 
255 os (3 ~ 3x+4 )| 

hoe E i a 

220, 
WL ~ a x 

oe 32ay2/(mith)av Ss 

a may be either greater than or less than Ag. If, for instance, a > NS 5 

  

then, 

WL ‘I 5-x 
Xe en eee te Se 

32a%,/(mith)av 7 Lx 
ei 

  

aze/(mHh)av . 1. [5-x 
WL pen) a 

In this case, the beam, which is designed basically to withstand vertical 

load alone at Ay, is in fact still fully elastic under combined loading 

at Ae. At this load factor, the bending moments at the critical locations, 

due to wind loading alone, are as shown in Figure 35,which indicates that 

the beam distribution a best act: is in fact the magnification factor. 

This is referred to as Zone 1(i). 

ee ‘ < A(mHh)av . 1 A 
O< WL : 

a, 
A = age/ 

Referring to Figure 35, the component of the total bending moment in the 

lower column which is due to wind loading is given by:- 

moHsoh a, mHh ) av 
My =~ Ap Batata 4 af, n, Luin) 

Heh 
- Ae Te (1-2a2'5.pe)
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Under simple plastic conditions, 

Ga 25 

a23 ! 
° 

° 

so that 

i ' a 
=)

 F My 

Therefore, the factor (4-2405 ns) represents the degree by which the 

basic moment in the lower column. is magnified by instability effects. i.e., 

a 
Ac = 1 - 2ag3.pe 

ZONE 1(ii) 1 | ~ A(mlh)av . 1 
32 | 3x+1 WL 46 

In this zone, a plastic hinge develops at the leeward end of the beam 

before the full wind load is applied, at a load factor a, where:- 

Sele ee ee = 2x 
Ag -32ape/(mUh)av | 3x+1 

The behaviour of the frame is identical to that for Zones 2 and 3, 

and the magnification factors are of the same form, 

we C Mia ZONE 

A(mHh )av < q 

416°. ae 

Nh 

re
 

In this zone, as for Zone 1(ii), the beam is fully elastic after 

the full vertical load has been applied, and remains so under wind loading 

until some load factor a. The bending moments due to the vertical and 

horizontal loading respectively are as given previously in Figures 33(b) 

and 34(b). In this zone, however, 

v WL |41 . A(mHh)av 
Bes iho i, Fi +
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Therefore, for a plastic hinge to form at 2/ at load factor a:- 

we 
WL A NewS (1 agp/) + asec (ath) av = B= hayZ + Ae at av (54,) 

Solving for a:- 

2 WL [4 | (1-age/ A( mth) av 
© = ase /.(mHh)av [net bt - 3 +s | 

iN WL 4 4 4 A aces Soe — oe 
ao peor 3 (1 sat) = Z| 
22 

In an alternative form:- 

Sotebethe, Mt Ae 
de a 2 2A(mHh)av fy 4x+1 

422 

Ay 4 WL 4 -x 

wa ,;|2 S8A(mHh)av [3x+1 
aege 

On application of further wind loading, in the range a to Ae, all the 

  

  

"   

shear may be considered to act on the windward column, the moments in the 

leeward column remaining unaltered, The initial sway moments for this 

additional wind load are shown in Figure 36(a), from which it may be seen 

that the total out of balance moment at joint 2 is given by:- 

F.E.M.g = - (Ag-a)(mHh)av 

Due to the formation of the plastic hinge at 2/, the beam stiffness at 

2 is reduced to 3Kpe, and the real distribution factors become:- 

Ae (ny -0,)KKe 
WO4S 7 RN 4 5 

A (Nzg-02 )Keg 

ag. eee gs 5 

Oo) ee 
Pas: Eger 9 

These are identical to those obtained previously for the multi-bay frames,
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The final moments at the critical location due to the full wind loading 

are shown in Figure 36(b). In this zone, collapse occurs when a second 

plastic hings fords at the centre of the beam, Therefore, combining the 

moments from Figures 33(b) and 36(b):- 

rane (142a¥,/) 4+ 4 a2 !/(Xe-a) (mHh)av -o (55) 

However, from equation (54), 

mHh ) av 
howe (Amnon! ) = Bee aoe 1 q Sth) 

Therefore, 

WL v a, mHh ) av 

haqpeO22" = ig - -* a0! cq (ub) 

Eliminating ago’ in equation (55):- 

A 

gil + hove - S42) 6 init ev y 4 abe /(Ae-a) (mith) av _B 

Therefore, 

ete 2 “822 

Gey 

Wid eras Fo \ A 7) Gath ay 
Bes MT og = e222 + ( sa) -02s 4f WL 

However, 

oe WO (mHh ) av 
B rel A. WL | 

Therefore, 

Aa quate! + (1 ak sea! 

The moment due to wind loading alone on the leeward column is again given 

by:-



As & 

My =) cd, Raliade + ana {ath)av 

' meteh - oteyBte (1-20%5.P2) 

1.6. 5088 in; zone 1; 

a 

Ac = 1-2ag3.Pe 

5.240) (i171) ZONE: 3 

1 é A(mHh ) av 
4. WL 

In this zone, the expressions for A and Ac are identical to those for 

Zone 2, However, the value of a is different, The maximum bending moment in 

the beam is as given in equation (54), but, ja this case, 

B= Ag A(mHh ) av 
2 

Therefore, a is obtained from:- 

rE (1-ady!) + aba! sa bev _ p - a, Alatdev (56) 

This relationship eventually reduces to :- 

Ces ae 

a 
2 
(> aire Gel | Ae a —" 

The design equations for all the zones are summarized in the following 

Sub-section, 

5.2(d) SUMMARY OF DESIGN EQUATIONS 

ZONE 1(i) 0 < Amlhdev . 4 a 
WL S32 | 3x+1 

  

WL 
Bas Ag 7Z



a 
A= gin 

For column design, 

a= Ae 

ZONE 1(4i) 1 [5-x) . A(mHh)av . 1 
321 3z+14 °° . WL 740 

WL 
ea T 

a a, A 
A= Xp 1822! + ( am =) » Age! 

oe ee [_5-x 
Ae  =«32age/(mHh)av | 3x+1 

ZONE 2 J ee men ay ok 
7 2 We ie 

es WL {41 . AUmih)av 

a a a A 
A= x? feat (4 - 2) < eae 

2 k + 2 WL 1 -x 
hae at 1 (2 BA(mHhyav |3x+1 

22 

ZONE 3 4A . AGath )av 
hee. oe 

Bw Xe Abatih dav 

a, a A 
A= Xp 22! + ¢ e i sate! 

Ae | ae nes 
Ae at! 2A(mHh)av | 3x+1 

22 

In all zones, 

A 
1 Ac 

ee 
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- 2823ePe2
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The column size is to be selected from the following equations, 

In the second storey from the top, in general, 

h AcmeHeh h 6 Ba+B Acmafiaha |, - -1)| 
E : (2th, +h) ( 1° 2) ae 4. (2thithe) (4p2 ) 

For the particular case when hy, = hg:- 

if W, = We, then 

‘Ma H. 
oe > 3 (By + Bg) +a Actalighe / = slurs r 1)] 

if W, =-=We, then; 

N
l
s
 

2 AcmgHah, [, _ 2 4 C_ > § (Bit Be) +a i ; 5 (4pa-1), 

In ali other intermediate storeys, in general, 

  

h AcmeHeh h sip toes gmetad _ 2 
epee hatha’ ae 4 : hy + he * 2r0| 

For the particular case when h, = hg, 

B Aemololt 
Ce > 3 +a cc SRS (1-pe) 

The equations above all apply to the lower column in the design of any storey, 

In addition, at any joint, the following condition for the required plastic 

moment of the upper column must be’ checked:- 

C2
 

V
 

ro
le
 

The distribution factors are defined as follows:- 

a7 6 a, (ng-02 )Ke . 
Teo Ra 46). OE. Rev anh? 

et a ee 
: ee KoV 3 6?
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As before, 

V = (ny-04)K t (ng-0g) 

and, 

=. 5 OK K a eas eg 
-* Kee’ Ke Kpe’ 

Also, 

te Koy + Koo 

Kpbe 

and, 

_ (mith) av 
Pe = MegHghe 

5.2(e) ELASTICITY OF THE BEAM AT WORKING LOAD 
  

The condition for the beams of a multi-bay frame to remain elastic 

at working load has been derived previously in 3.10. In the case of a 

single-bay frame, a similar expression is obtained for the critical moment 

at the leeward end, and the condition becomes, 

4 

WL 1 Hh 
7) (1-aZ2/) + age! Sey < Mpp (57) 

where, in this case, 

6 
ee 
ae KeV +6 

and, as before, 

dl i= ql 
Vio= (n4-0,) K + (ng-0g) 

5 es THE TOP STOREY. 
  

In section 4,2,, it has been shown that, for multi-bay frames, the 

simple beam mechanism is the critical mode of failure for the top storey, 

provided that:- 

Tf. Wy = Wei-



on OES 

i
m
 

and or Wy = Wai- 

(Hh) av . 
WeL 3 

where, 

W, = the load on the top storey beam, 
= x i the load on the second storey beam, 

Los = the wind ratio for the second storey, 

Identical conditions are cbtained when considering single-bay frames. 

However, the wind ratio in any particular storey of a single-bay frame is 

likely to be greater than that in the corresponding multi-bay frame. 

Nevertheless, it is still unlikely that these conditions will ever be 

violated, In the design examples of Chapter 7 and 8, the maximum value of 

wind ratio obtained for the second storey of a single-bay frame was . and 

this occurred for a frame under extremely heavy wind loading, and with 

Wa. = ee 

Thus, as before, it may be assumed that in any frame the size of the 

top storey beam is controlled by the vertical loading case. Also, in order 

to restrict the formation of plastic hinges to the beam, the reduced plastic 

moment of the column must always be greater than the fully plastic moment of 

the beam, 

The design equations for the top storey may thepezare be summarized 

as follows:- 

W,L sf jap B=aA\, 16 

C2 SB 
E
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belts THE LOWEST STOREY 
  

5 .4(a) BEAM DESIGN 

In this region, as in the multi-bay frames, due to the fixity of the 

column feet and the fact that no plastic hinges are allowed in the columns 

below the design load factor, the only true mechanism possible is the simple 

beam mechanism, Therefore, irrespective of the intensity of wind loading, 
= oH 

Be he, 

ON
 4 

5.4(b) COLUMN DESIGN 

The column size is assessed from consideration of the combined 

loading case. Points of contraflexure are assumed to exist at the mid- 

heights of the upper column, and the resulting subassemblage is shown in 

Figure 37(a). 

Under vertical load alone, the subassemblage deforms symmetrically. As 

stated in 5.2(c)(i), since there is no sidesway, the effect of axial loads 

on the real stiffnesses of the columns is very small, and may be considered 

to be negligible Pheer ors 5: cit to symmetry, 

Sze! = Kye 

Due to skew-symmetry in the upper column, 

S54 e 6Ke4 

Due to the fixity at the base of the lower column, 

Bas = Kee 

At either end.of the beam:- 

r 
XS 6 Key ay ‘Koo 40 2Kpe 

i 

be 
2Kpe [ Koo 5 4
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aes (30+ ¥) 

where, 

Dh eR iy ee 
ea eee 

The real distribution factors are therefore:- 

eo 6Kea e 3KKo 
a = = 
Ph Baw ok 44) ax! +1 
  

Vv ag Ke 2 3 2Ko 

a5 Kpal3x/+1) 3x! +1 
  

a. fs 2Khp > a 4 

29 sag 38/44) ox 
  

Under vertical load alone, at some load factor, a, the fixed-end 

moments are a %. The final bending moments, after distribution, are 

as shown in Figure 37(b). The maximum beam moments occur at the joints; 

and a plastic hinge will form at either end when:- 

WL Vv WL 
a 49 (1-age/) s B = Ne 16 = a AoWL 

i.e., a plastic hinge forms when:- 

= ao 15 3x/+1 
8 aG(¥ouns hae 46° 3x! 

In the bottom storey, due to the selection of the minimum beam size 

initially, the beam is comparatively slender in relation to the columns, 

and it has been found that generally, 3 < x/ < 15. Substituting these 

limiting values in the expression above, the following limits are obtained 

for a:- 

Be. oe 15 46 roe 16° 9 ee: Ce Ase 16° 15 

3.6 as 

1.04Ag > a > 0.96Ag



te Dh ee 

This implies that a is always very close to Ag. Therefore, it is 

reasonably accurate to assume that the first plastic hinges form at the ends 

of the beam just as the full vertical load is applied. Little error is 

involved in making this assumption, and the analysis is simplified 

considerably, 

. So, at the end of the vertical loading, the bending moments are as 

shown in Figure 38(a). When the horizontal load is applied, the plastic 

hinge at the windward end immediately disappears, and the frame for analysis 

is as shown in Figure 38(b). The real stiffnesses are as follows:- 

Due to the hinge at 2/, 

1 Wes : ie 

Also, 

So4: Sea" = (ny-0s) Key 

and, 

2 ze 
Ses = Ses = ngkeg 

The total joint stiffness at 2 is given by:- 

Sh = (n. sbi ee e+ makes + 3Kpe 

= Keg [(ny-0,)K + ng] + 2Kpe 

= (el(n.-04)% + ne] + 3) Ros 

= (KV/ + 3)Kpe 

where, 

v/ = (n,-0, )K + ny 

The total joint stiffness at 2/ is given by:- 

sf a (n, -0, )Ke4 + mKeg
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Keel (ny-0,4)K + np] 

: KpV/ Khe 

Therefore, the total stiffness at 2’ is less than that at 2, and 

the leeward column carries less shear than the windward column, The 

leeward column isstill the critical member for design, since the moments 

due to the horizontal and vertical loadings are cumulative, 

Let the initial shear in the leeward column due to wind load alone 

at Ag be yY.Ae %, where y is a constant. The shear on the windward column 

s therefore equal to AgH - y.Ag ~ = Xe B(2 -). The ratio of these two 

Shears must be equal to the ratio of the individual joint stiffnesses: 2 Ces 

» # 
Yee 9 KpV! .Kpe 

Hie 
(2-y) Ag 3 (KeV/ + 3)Kbe 

Solving this equation for y, 

2K,V/ 
Y = Bevis 

The initial sway moments on the leeward column for this assumed distribution 

of shear forces, magnified to allow for the PS effect, are shown in Figure 

39(a). The real distribution factors for the columns at 2/ are as follows:- 

ah! e (14-04) Key _ (ny-04)K 
r (ny-04)Keq + ngKog Ve 

and, 

<
1
5
 A! nok i 

ae, (ny-03) Kea + neke, — vi 

Also since the base of the lower column is fully fixed, there is a carry- 

over of = as times the moment distributed at the top of the column, The 
et 

total out of balance moment at 2’ is given by:- 

H F EM, / aie, Vere dnth)av 

The final moments due to wind loading are shown in Figure 39(b). Consider
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the upper column first. Due to the combined vertical and horizontal 

loading, 

WL v m,H,h A! (mHh) av 
Me, = - Ag qoete4 - Yerg ~~ + Ag1eVehe 3 

WL ov myHahy (4 5,4! == Xe Go st24 oo Vere i (1-2a21.p1) 

where, 

(mHh ) av 
Pra 

i m4Hyh, 

Therefore, if no plastic hinge is to occur at this location below Ag, then, 

WL ev Ac4m,H,h 
Cant | Mos | = Ag Fortes + Vere ay Pee 

Af 

Acg = 1 - 2894 eP1 

At the base of the lower column, the moment is:- 

Vv 
WL agg MgHshe O02 A! (mHh) av 

Mse = - Ag 42° oe, Yero 7 = =* azs.Y.h2 3 ce 
2 

WL ov MoHoh ga KS 
=- Ag Dy, 228 > Tors ae I a 228 a8 .Ps| 

where, 

_ (ath )av 
Doe 

MgHehe 

Therefore, the lower column must be selected from:- 

WL iv A Mealoh 
C M he eee el #_ A> SSR Ez ? | se | 2 2) 28 Yer2 ) Nl 

/ 4 

hea = 4 + 2 Shae, py 
Ne 

5 Alc SUMMARY 

In the bottom storey, the beam is selected using:- 

W 
4 

et
 

B= hg (58) o
N
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The columns above and below the beam respectively are selected from:- 

WL ev a Rip aallanela Gt 
on. > Ae yo0t24 zm): YeA2 one) (59) 

where, 

Af 

Aca = 1 - 2824 ,p4 (60) 

and, . 

WL Vv AcgmoHehe 
ie ce Ae 2° 228 = YeAg hy (61) 

where, 

/ O Al 

Ace = 1+ 2 Te 1228 -P2 (62) 

In the equation above, 

er RK ge Wi ae aoa aa 
O22 = She gq} 829 = FETT 

where, 

x/ = K,(K+ 6) 
5 

and, as before, 

K = Xu. Ke _ Kee 

Kpe Kee’ 

Also, 

_ (lh )av | _ (mbh )av 

Pie Hyg, 28S ede 

A/ nese hk 
Meda Guns)h, SI ar 3 

tk PMA a. 
Vas} 

where, 

gs ! = (n,-0,)K + Ne 

5 (d) ELASTICITY OF THE BEAM AT WORKING LOAD 
  

The basic condition for the beams of the intermediate storeys to 

remain elastic at working load has been derived in 5.2(e). An identical 

expression is obtained for the lowest storey; i.e., 

Whe 4 a¥ 4 ty 
pa Boot) + ase / ae’ < Mpp (63)
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However, in this case, the real distribution factors are different:- 

Ne eh oe ee 

ae! = Ty 
where, 

4s Kp(K + 2); 

4 

Fe fie 
G23) Sit +6 

where, 

vis (nites) % + a 

As for the lowest storey of the multi-bay frames, this condition is 

often found to be violated after the basic design has been completed, and it 

is necessary to increase the beam, However, as stated previously, it is not 

generally beneficial to repeat the design with this new beam size, 

The following chapter deals specifically with the design procedure, 

It is shown how the equations developed for the different regions of both 

multi-bay and single-bay frames may be applied efficiently for the design of 

a complete framework, In particular, emphasis is placed on methods of 

reducing the design time to a minimum,
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CHA PT ER 6 

DR SS GNe Paks 0- Cah DU ER 
  

6.1. INTRODUCTION 

In the sieilia s three chapters, equations have been derived for a 

variety of subassemblages, each of which is assumed to represent a 

particular region of either a multi-bay or a single-bay framework. The 

current chapter attempts to co-ordinate this information, and shows how a 

complete design is obtained by applying each of these sets of equations in 

turn, Particular emphasis is placed on the efficiency of the iterative 

Se Séadutne involved, and, where appropriate, suggestions are made which 

enable both tie design time and the volume of computational work to be 

reduced considerably. 

In the following section, the design of multi-bay frames is 

considered, and this is later extended to deal with single-bay frames. 

6.2, DESIGN OF MULTI-BAY FRAMES 

The design procedure for any multi-bay frame may be summarized as 

follows:- , 

(a) Calculation of the initial design loads, 

(b) Design of each intermediate storey in turn, starting at the 

second storey from the top, and using the equations developed 

in Chapter 3 with the following schedule:- 

(i) Predict initial values of the magnification factors, A and 

Hh )av 

moe! 
(ii) Calculate the modified wind ratio, anti )ev and select 

Ac, using the basic wind ratio, 

the correct zone for design, 

Determine the required plastic moments for the beams and 

the internal columns, 

Select appropriate Universal Beam and Universal Column
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sections. 

(iii)Calculate the Euler ratios, stability functions, relative 

7 flexural rigidities and appropriate real distribution factors 

for the zone under consideration, 

Determine pg, and also = if required, 

Calculate new values of A and Ac. 

Repeat step (ii) - if the sections obtained are identical 

to those selected initially, the design of the storey is 

complete - if not, repeat steps (iii) and (ii) until 

convergence is obtained, 

(iv) Check the "working load elasticity condition", 

(c) Design of the top storey, using the equations developed in 

Chapter 4. 

(d) Design of the lowest storey, using the equations developed in 

Chapter 4, The procedure is similar to that for the intermediate 

storeys, except that the beam size is fixed, and there is no 

beam magnification factor to be calculated, However, two sepavate 

column magnification factors are required, 

(e) Design of the external column, using the equations developed in 

Chapter 4. 

The following sub-section, 6.2(a) to 6.2(e), refer to each of these 

topics more fully, and describe several of the design aids which have been 

developed. An additional sub-section, 6.2(f), contains details of the design 

of a typical framework, and is intended to clarify any outstanding points. 

6.2(a) CALCULATION OF THE DESIGN LOADS 

In general, the basic frame geometry is given, together with the 

assumed dead load of the structure, and an estimate of the vertical and 

horizontal live loads which may be expected to be applied. The total load 

on each beam, and the shear force and axial force in each column must be
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calculated from the initial data. 

6.2(a)(i) BEAM LOADS 

Figure 4.0 represents a section of a typical floor in a multi-bay 

framework. The combined dead load plus live load per unit area is denoted 

by w, the length of each primary beam by L, and the frame spacing (i.e. the 

lengths of each secondary beam) by S, 

The primary beam is assumed to carry that portion of the loading 

which acts on the adjacent trapezoidal floor aheaas Therefore, if the 

total load on the beam is W, then:- 

wax 2(gplt + (1-8)]) 

w = “38 (21-8) (61) 

It is recommended a Seah (64.) should normally be used to 

calculate W, the remainder of the floor load being carried by the 

secondary; beams. However, in certain of the design examples in Chapters 

7 and 8, W is calculated by assuming that the beam carries half the loading 

on each floor panel, These particular examples are used to compare the 

economy of the design method with several other methods, and in order to 

do this, it is necessary to simulate the loading wendiketons used in these 

other designs. In general, however, the distribution of loading given in 

Figure 40 is considered to be more realistic. 

In addition, in developing the design theory in Chapter 3, the total 

beam load is assumed to be uniformly distributed. Thus, when applying the 

design equations to a real fectdube, W, as calculated by equation (64), 

must also be assumed to act in this manner,
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6.2(a)(ii) SHEAR FORCES 
  

Consider Figure it. This shows a section of ies P cert under 

two equivalent sets of wind loading, The actual loading is uniformly 

distributed, and is assumed to be of magnitude p per unit area, This 

distributed loading may be idealised as a series of point loads acting at 

the beam levels, each load being equal to the wind pressure, multiplied by 

the frame spacing, multiplied by half the sum of the heights of the columns 

above and below the beam, Therefore, the load applied at the beam in the 

general storey, n, is equal to p.S (Po a 2) 

As stated previously in Chapter e the shear force in any internal 

column of a storey is assumed to be equal to the sum of the wind loads above 

the points of contraflexure in the columns, divided by the number of bays. 

Thus, referring to Figure 41, considering either system of loads, 

ile ti 4 en ee een h H = PS. (ha + he + a Ha 2) 

TC 4s 
n h - 

- BS ae Ho soe L( zh) 2 | (65) 

This is the general expression for calculating the shear force in 

each internal column of the top and intermediate storeys. It must not, 

however, be used for the lowest storey columns, 

In the initial stages of this research project, the series of frames 

described in Chapter 7 was designed by assuming that the shear in the lowest 

storey was as given by equation (65). These frames were subsequently 

analysed, under combined loading, and in several of the analyses, plastic 

hinges were found to occur in the lowest storey internal columns below the 

design load factor Ag. Furthermore, the analyses indicated that the shear 

forces at working loadin these members were considerably greater than 

those assumed in the design. In order to compensate for this error, a 

modified formula for these shears was developed from inspection of the
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analysis results, This has been given previously by equation (35) in 

4..3(a), and was derived using the following notation:- 

H,,Hzg = shears in the upper and lower columns of the subassemblage 

(which is shown in Figure 22). 

2(H),,2(H)2 = the corresponding total shears in each storey. 

For the lower column only, 

Liste second moments of area of the internal and external 

columns, respectively. 

2(I) 

Therefore, for r bays, 

the sum of the second moments of area of all the columns. 

B(I) = 2I. + (r-1) Ty 2 Te|2 * (rt) 

For each of the eight frameworks, the ratio _H was obtained from 

tes 
the results of the analyses, and the ratio 160) was calculated from the 

original designs, Figure 42(a) shows these results graphically, and it may 

be seen that the two ratios are linearly related. The equation of this 

straight line is:- 

ee e a} 

Se eg ECL) 

Substituting for 2(I):- 

alee 
ok 1.05 T 

Hp = Re 

wy 2 * (r-4 JEL 

However, fi is unknown at the start of the design procedure, so 
S 

in order to obtain an expression for estimating He, a further substitution 

is required, Now, the relative intensities of horizontal and vertical 

loading may be represented by an "average" wind ratio per bay;i.e., 

; A 41 [ECH) yh, + 2(H)ohe| _ [2(H)hJav 
eS To oe 

This quantity depends on the initial loading conditions and the
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frame geometry. Thus, if a relationship between 7 and wr may be found, 

He may be calculated immediately. Such a relationship is derived from 

Figure 42(b). Each point on the graph corresponds to the values of 7 

and wr/ obtained in the design of a particular frame. The straight line 

shown is assumed to represent all these points, and its equation is:- 
[K
A 

b's 3+ 17wr/ 
e H

 

Therefore, eliminating =, 
c 

4 .05( 341 7wr/ 
iia \= NB) 8 Toe A NSH dae 

and this is the required expression, previously given by equation (35). 

| Despite the fact that the straight line shown in Figure 42(b) does 

not pass very close to the points for four of the frames, the resulting 

expression for Hg gives a very accurate estimate of the lowest storey shear 

in these frames, For all the frames, this value of Hg was found to be 

within four per cent of that obtained from the cheats analysis, 

Furthermore, as will be shown in Chapters 7 and 8, the use of this equation 

has been found to lead to a safe and economical design in every case. 

6.2(a)(iii) COLUMN LOADS 
  

The final design assumption in 3.3(b) states that the axial force 

in each internal column is equal to the force in the column above, plus 

half the loads on the adjoining beams. Referring again to Figure 4.0, there 

are four beams framing into each internal column, It may be seen that half 

of the loads on these four beams is equivalent to the load acting on the 

rectangular area surrounding the internal column shown on the left of the 

figure, This area is simply equal to the beam length multiplied by the 

frame spacing. Therefore, if the axial load in each internal column of the 

general storey, n, is denoted by P then, 
ae
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CBee Beko. Wes | (66) 

on the British Standard Code of Practice, CP3, it is suggested that 

the axial load to be used for the design of any column may be obtained by 

assuming a certain percentage reduction in the live load, depending on the 

number of floors carried by that column, It is the AGtHob a opinion that 

this reduction should not be applied when designing by ultimate load methods, 

Since the framework is designed to have a definite load factor against 

collapse, it would seem to be an unnecessary and possibly dangerous practice 

to reduce the design loads for the columns on the strength of a statistical 

probability. A far more acceptable philosophy is to base the design on the 

most critical loading conditions, If these are considered to be excessive, 

the design load factor may be reduced, but the knowledge that a definite 

load factor will be attained must surely remain the fundamental advantage 

of ultimate load methods. 

It has been necessary, however, in certain of the design examples, 

to include this "live-load reduction" in order to reproduce the design loads 

adopted by other research workers, In such cases, it will be stated if this 

has been done, 

Consider now the axial loads developed in the external columns, In 

Chapter 4, it was stated that each external column carries an axial load 

equal to that in the column above, plus half the beam loads, plus a 

component due to wind loading, Referring again to Figure 4.0, the axial 

load due to vertical loading alone in the external column of storey n, 

re say, is given by:- 

Vv Vv wLS 
Sesto 

The axial load component due to wind loading, oe may be obtained 

with the aid of Figure 43, which shows the shear forces and axial loads
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induced in the complete storey subassemblage, The applied wind load at 

the beam level may be expressed in the form [2(H) - 2(H) 4] since, for 

horizontal equilibrium, this force must represent the difference between 

the total shear forces in the storeys above and below the beam, For 

equilibrium of moments about the points of contraflexure in the lower 

windward column:- 

H H h h h Patty. = Pager + rH not on ) + [2(H) - 2(H),_4 1a 

But, in either storey, 

E(H). = rH 

Using this substitution, and rearranging:- 

P He ss Pp H . Utblev 
I ta aH 

Now, the total axial load in the external column is, 

V H 

Pen 3 Pain . Pen 

V wLs H Hh )av 

eg oe eet oe 

But, 

ey. aoe Ap 
En-1 En-1 En-1 

* Therefore, 

Pe =P. + ee 
wLs (Hh )av 

Rn tat 8 . (67) 

This is the general expression for the external column loads in the 

top and intermediate storeys, It may also be used for the lowest storey 

in the slightly modified form:- 

ane B whs i [=(H)h Jav 
En = ‘En-1 * 2 r.b
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As for the internal column loads, the "live-load reduction" may be 

applied if required, but again, this is not recommended, 

6.2(b) THE INTERMEDIATE STOREYS 
  

The design equations for the intermediate storeys have been derived 

in Chapter 3. In partic.iar, the magnification factors are summarized 

by equations (23) to (28) in Section 3.9. The significance of these 

equations is now examined, and following this, an empirical method is 

developed for predicting initial values of A and A, which ensure rapid 

convergence of the iterative design procedure, 

6.2(b)(i) PREDICTION OF THE MAGNIFICATION FACTORS 
  

The magnification factors for all the zones, for both beams and 

columns, are basically functions of the same variables, and themselves 

vary in a similar manner. Therefore, it is only necessary to consider 

one of them in order to develop an understanding of their physical 

significance. Consider, for example, equation (25), which represents 

the beam magnification factor for Zone 2(ii):- 

ie a A 
A= Xp 1822! + ¢ - =) age! 

where, 

Se Wi : 
Xe a ,|2  2hA(mHh)av |? 

a2e2 

Ph tee a je 
aa.” ERY «fee ee Ea + OF 

V = (ny-04)K + (ng-02) 

For the purpose of this discussion, it is convenient to derive an 

alternative expression for A, 

tet A(mlh)av _ 
WL is
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Therefore, 

    

a 4 4 
oat. / ~ 42wr 

Also, 

A 
A= x fase wi fee! ] + Agee 

2 

Eliminating oa , 

    

  

  

Ao” 

A 4 a A 
A= . awa |(o8e! = asa!) ve age! 

2as0 

which reduces to :- 

a A 
A is Cone eal 

ie 0 4 a A 
2age/ 7 / - ras (abe! = Age“) 

Substituting for ara! and eer the following general relationship 

between A, KeV and wr is obtained:- 

1eS Bie 
8(KeV+3) - av 4 -   

r (68) 
12Qwr 

However, in Zone 2(ii), 

4 4 
ee < W < —— 

12 5 4. 

These limiting values may be substituted in equation (68), 

When wr = +, 

Re ak 
ya ee (69) 

When wr = es ol: 

sei ile 
A= KeV he h (70) 

Equations (69) and (70) are represented graphically in Figure 4, 

and it may be seen that they are the limiting curves of the general set 

for Zone 2(ii) given by equation(68), In addition, equation (69) is in 

fact identical to the expression for A in Zones 1 and 2; and equation
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(70) also represents the upper bound curve for Zone 3. As stated 

before, these curves are therefore typical of those for all three zones. 

It will be remembered that A is defined originally as the degree by 

which the bending moments are magnified due to the instability effects. 

Phas: <3, 

(1) 

(2) 

(3) 

clearly indicated by Figure 4; i.e., 

ee wher KaVe="0 

Now, KgV = 0 when p = 0; i.e., when there are no axial 

loads in the columns, A is equal to unity. This is the "simple 

plastic" condition, 

A increases as KeV reduces, 

Now, KgV < O when p > 0, so that as the axial loads 

increase, A increases. The bending moments are therefore greater 

then those assumed in the simple plastic design. Any frame which 

is designed assuming A = 1, whilst carrying these axial loads, 

is unlikely to attain the required load factor. 

A > o as KegV tends to some limiting value. 

Under very heavy axial loads, A becomes very large, 

indicating that the instability effects are predominant and that 

the simple plastic design equations are hopelessly inadequate, 

If such a frame is designed assuniie AP = 4. Tailure’ will occur 

at a very low load factor, with far fewer plastic hinges than 

are required for a mechanism, In fact, in the limiting case, 

when A = wo, failure will occur due to elastic instability. This 

infinite value of A occurs when the total joint stiffness is 

zero, 

Theoretically, any point on the curve below the instability 

point represents a stable condition, and provided that the 

‘obrneat value of A is taken into account, a satisfactory design 

could be obtained, However, it may be seen that due to the non- 

linearity of the curve, the magnification factor begins to 

increase very rapidly long before the limiting value of K,V.
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The proposed design method contains many approximations, and although 

all of these are considered to be justifiable, it is clearly 

inadvisable to permit high values of the magnification factors. Any 

such value indicates that the frame is very close to the point of 

instability, and any small error in the calculations would be likely 

to produce an unsafe design, 

In order to control the instability effects, for design purposes, 

a. lami. of: ‘ 1.80 has been imposed on the value of KeV. This limiting 

ordinate is shown in Figure 4, and it may be seen that reasonably high 

values of A are still possible. The maximum values of the distribution 

factors corresponding to this limit are 2.5: for sent and 1.176 for aoe, 

and, in any zone, these lead to a maximum value of 2,5 for A, 

If, during the design of a particular storey, KzV is found to be less 

than - 1.80, its value must be increased by suitable alteration to the 

selected sections, This is considered below:- 

Expanding KeV, 

KeV Raz [(ns-01)K + (na-oa)] 

I L Pea ab “ Bee we 1 (no, ) see ee na-o)| fea E |(ny-oy) $22.82 + (ng-0e) 

Now, by inspection of the stability functions, (n-o) is approximately 

proportional to p, the Euler ratio, Also, p is inversely proportional 

to the second moment of area of the column, Therefore, approximately, 

  

4 

(ny-04) « Pa x a 

and, 

(nz-02) x Pg « — 
c2
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Alternatively, 

(n4-01) z ie 

and, 

(nz-02) = Sa. 
Ice 

where a, and ag are constants. Therefore, KgV may be written as follows:- 

KeV 
be he Toa° ce hy Tee 

Tis "Tic 4 *h 2 

All the terms apart from Ipeg are constants, so that:- 

4 

KeV an 

Thus, any alteration in the column sive has a negligible effect on 

the magnitude of KeV, which is basically a function of Ipg. Therefore, 

in order to increase KgV above the limiting value of - 1.80, ( i.e. to 

reduce its modulus), it is simply necessary to select a new beam with 

a larger second moment. of area, It is the beam size, and not the column 

size, that controls the instability effects, 

The imposition of a limit on the magnification factors has the 

additional beneficial effects of reducing the sidesway deflections and 

ensuring more rapid convergence of the iterative procedure. 

However, as mentioned previously, the most efficient way of encouraging 

convergence in the design of any storey is to make an initial estimate 

of the values likely to be obtained for the magnification factors, This 

is the first step in the design schedule given for the intermediate 

storeys at the beginning of 6.2, and is the basic subject of this section, 

Having examined the significance of the magnification factors, the 

development of the method of predicting their values may now be considered, 

As will be seen subsequently, this method is entirely empirical, and is



- 112 - 

based on the results obtained from the design of the wide range of 

frameworks given in Chapter 7. For any storey, the following notation 

is used:- 

Final wind ratio = A(atth ev =" Wr 

Final magnification factor = A 

Initial wind ratio = a aN wrt 

Initial magnification factor = A; 

i.e., wr and A are the values obtained after the design of the storey 

has converged, wr; is the basic wind ratio, which may be calculated from 

the initial design loads, and A; is the initially assumed value for A 

which will ensure rapid convergence. 

Now, in the design of any storey, m, the Merchant magnification 

factor, is approximately equal in the columns above and below the beam, 

Therefore, 

ors A(mHh ) av i oe 
WL 

: (th)av 
ee et. Wb 

Hees 

wr = Aym.wr; (71) 

It will be shown subsequently that the design of any storey is started 

by multiplying the initial wind ratio by the initial magnification factor, 

thus giving an initial modified wind ratio, which leads to the selection 

of the correct zone, In this case, convergence is bound to be rapid if 

this initial modified value of wind ratio is close to the value which 

is ultimately obtained, Therefore, in general, the following relationship 

is required for rapid convergence:- 

Aj.wr; 2 wr (72) 

Thus, eliminating wr from equations (71) and (72), 

A; 2 m.A (73) 

Since m is always greater than unity, A; must therefore be greater 

than Ae i.e., rapid convergence is obtained by initially overestimating 

the final-value sof A;
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Consider first the design of the second storey from the top (denoted 

by Storey 2), In all'the frames described in Chapter 7 which are 

designed with Universal Beams and Universal Columns, the design of 

Storey 2 lies in Zone 1, and the final magnification factor lies within 

the limits 1.17 < A < 1.24, the lower limit applying to the frame 

carrying the heaviest wind loading. This is indicated in Figure 5, 

where each of the points denoted by "2" represents the final values of 

A and wr obtained in the design of Storey 2 in each of the frames, The 

remaining points, denoted by "3", represent the results of the designs 

for Storey 3, and these will be referred to subsequently. 

As will be shown in Chapter 7, the six frames given in Figure 5 

constitute a representative sample, since they have been deliberately 

selected in order to test a wide range of Gish oh Bike beey Therefore, 

considering the distribution of points "2", it may be assumed that a 

relationship exists between A and wr in Storey 2 of any frame, given 

approximately by the equation of the straightline shown in the figure; 

eer 

Ae 12h —2 a0. wis 

However, in order to predict an initial value for A, a relationship 

between A; and wr; is required, Substituting for wr from equation (72) 

and for A from equation (73):- 

a = 1.2/7 — 2.0 Aiwr: 

Therefore, 

Ai(1 + 2.0m wr;) = 1.27m 

nee ae 

hia too /m 

‘4° 4+2,0m wr; 

Now, in general, in Storey 2, m2 1.1, so that:- 

ace Tee 
$s pecans (7h)
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For every frame which has been designed, this expression has been 

found to give an initial estimate of A which yields beam and column 

sections in Storey 2 which are identical to those finally required. 

Thus, in every case, the design converges immediately, with only one 

iteration being necessary. 

Figure 4.5 may also be used to develop a formula for Ais, thecinatial 

magnification factor for Storey 3. For each frame, it may be seen that 

the points 2 and 3 lie approximately on a straight line passing through 

the point (0,1). Assuming this to be true for any general frame, and 

describing the points 2 and 3 for this frame by the co-ordinates (wreg,Ag) 

and (wrs,45) respectively, it follows that the general equation of the 

straight line is:- 

i 4) oa Ag =1 + (Ag A) Gee 

Now, from equation (72), 

wrg = Aig.Wris 

Also, since m+ 1.05 in Storey 3, from equation (73), 

A 
Ag Sa = 0595 Ais a ee 

Therefore, 

Aho - 1 
O95 Mba =a + (a=) aso wris 

2 

2.03; 

Ao 1 
Ais [0.95 4a) rs] = 4 

Therefore, 

a 

Ais =7 ~ (75) 
[0.95 ~ Mant) wris| 

So, for Storey 3, the initial value of A may be calculated from 

the final values, Ag and wrg, obtained in the design of Storey 2, and
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the basic wind ratio, wrisg. Again, using this value of A;, it has been 

found that convergence occurs immediately in every frame. 

Equations (74) and (75) are functions of the initial values of 

magnification factor and wind ratio, A; and wr;j. However, in the 

remaining intermediate storeys, no such simple relationships exist, and 

it has been found necessary to adopt a graphical approach, relating the 

functions A and wr;. Having obtained A for any storey, A; may then be 

estimated using equation (73), with m = 1.05. The development of this 

method is given below. 

The final value of A in any storey is dependent on the zone in which 

that storey eventually lies, which in turn depends on the final wind 

ratio, wr; for example, in Zone 1, 0 < wr < a: etc. The demarcation 

between one zone and the next may also be defined in terms of the initial 

wind ratio, wr;, as follows:- 

From equation (71), if m = 1.05, 

Wr 1 (05 ssewr 

Thus, for example, substituting in the bounds for Zone 1, 

4 

0< 1.05 A wri <7 

Dividing by 1.05,A,Zone 1 may be described by:- 

4 

cs 16.8A IN
 

wr; < 

In a similar way, the limits on wr; in the other zones are as follows:- 

    

4 

Zone 2(i): 76.8A < wri < TEE 

ice 4 a Zone 2(ii): 7D.GA < Ti < Toon 

Zone 3: To < wri 

These modified zone boundaries are shown in Figure 46, within the 

limits 1 <<A < 2, Although derived by an approximate method, these lines
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have been found to represent the demarcation between the zones very 

accurately, In every storey of each of the frames described in Chapter 

(5 the pedint (wr;,,A4) does in fact indicate the same zone as that given 

in the design by the final value of wr, deeptte the fact that several 

storeys are close to the border between two zones, 

Further inspection of the variation of A with wr; in successive 

storeys of each of the frames indicates certain definite trends, and 

these are described below with the aid of Figure 4.7. In the figure, 

lines A,B,C and D refer to four fictitious frames, under different 

intensities of wind loading, and these are taken to be representative of 

the range of real frameworks given in Chapter 7, The general 

observations are as follows:- 

(a) Th. magnification factor in a particular frame under heavy wind 

loading (e.g. Frame A in Figure 4.7) ia always less than that in 

the sorpbabeading miieey. of a frame under light wind loading 

(e.g. Frame D). 

(b) As the initial wind ratio in successive storeys increases, A 

tends to increase in Zones 1 and 2, but reduces in Zone 3. 

(c) The variation of A with wr; may be considered to consist basically 

of three straight lines, denoted by (1),(2) and (3) for each 

frame in Figure 47. These are described below:- 

(1) This portion connects the points referring to Storeys 2 and 

5, as shown; if .:as in B, Ceand D."Storey 3 Jes, in Zones 

or 2(i), the line continues to the boundary between Zones 

2(4). ana 203%); 

(2) The second portion connects the point on the boundary between 

Zones 2(i) and 2(ii), or, as for Frame A, the point referring 

to Storey 3, to a point on the boundary of Zone 3, It has 

been found that there is an approximate relationship between 

the gradients of lines (1) and (2), as follows:-
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grad (2) = 0.15 grad (1) + 1.20 ° (76) 

(3) The final portion of the curve lies in Zone 3, and has 

a negative gradient, given approximately by:- 

grad (3) = - 1.70 grad (2) + 0.80 (77) 

(a) Due to the limitation of - 1.80 on KeV, as described earlier 

in this section, A is seldom found to be greater than 2.0. 

For frames under comparatively light wind loading (e.g. Frames 

C and D), this upper limit curtails lines (1), (2) and (3), as 

shown, | 

It may be seen that each of these curves depends exclusively on the 

values of A and wr; for Storeys 2 and 3, Thus, for any frame, the 

’ procedure for gases ne the value of A; in any storey is as follows:- 

(i) Design Storeys 2 and 3 in turn, using the values of A; given 

be equations (74) and (75). 

(ii)Plot the points (wr;,A) Sc these two storeys. Join these points 

and, if Storey 3 lies in Zones 1 or 2(i), continue to the 

boundary of Zones 2(i) and 2(ii). Calculate the gradient of this 

line, grad (1). 

(iii)Construct a line from the last point to the boundary of Zones 

2(ii) and 3, with gradient, grad (2), given by equation (76). 

(iv)Construct a line in Zone 3 from the last point, with gradient, 

grad (3), given by equation (77). 

(v) For any subsequent storey, knowing wr; from the initial design 

loads, A may be estimated from the graph, with an upper limit 

of A = 2.0, The initial magnification factor to be used in the 

design is given by Aj = 1.05A. 

It should also be noted that, in those frames with comparatively 

few storeys, or with light wind loading, it is unlikely that any part 

of the design will fall in Zone 3, Occasionally, the complete frame 

design may in fact fall in Zones 1 and 2(i), in which case, portions
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(2) and (3) of the curve are not required, Therefore, in order to 

eliminate unnecessary calculation, after portion (1) has been constructed 

the widen initial wind ratio (which occurs in the penultimate storey: 

i.e. the last "intermediate" storey), should be inspected to see if it 

is necessary to construct portion (2). The same procedure should be 

employed after portion (2) has been constructed, 

For example, in Frame C of Figure 4.7, portion (3) is not required 

if the maximum value of wr; im any storey is less than 0.1190. 

Similarly, in Frame D, neither portions (2) or (3) are‘required if the 

maximum wr; is less than 0.1190, the upper limit, A = 2.0, obviously 

being dominant in most storeys, In this particular frame, since wrjg = 

.01, and since wr; increases linearly as the number of storeys increases, 

3190 
the frame sould require at least twelve storeys (s.¢. 01 ) before 

portion 3 would be required, 

Using this method of predicting A, the saving in design time is 

considerable, If no initial estimate is made,the design of any storey 

has to be started using the simple plastic design equation, for which 

all the magnification factors are unity. If the instability effects 

are not predominant, convergence is obtained quite rapidly using these 

initial values, However, the simple plastic sections are often quite 

inadequate, and lead to extremely high values for A and A,. If there 

is no intervention, these magnification factors produce massive sections 

which in turn give values of A and A, very close to unity, and this 

oscillation continues until convergence is slowly obtained, 

In contrast, as will be shown in the design example in 6,2(f), using 

a sensible starting value for A, convergence is extremely rapid.
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6.2(b)(ii) SELECTION: OF SECTIONS 
  

The second part of the design procedure for the intermediate storeys 

is concerned with the selection of suitable sections for the beams and 

internal columns, In general, the sections used in the design examples 

in this thesis are the standard Universal Beams and Universal Columns. 

However, any type of section may be used provided that it has a shape 

factor approximately equal te that of an I-section, 

Having estimated the initial value of the magnification Pactory. An; 

for the storey under consideration, the modified wind ratio, wr, is 

calculated using equation (72); i.e. 

Wri Aj wr} 

The correct zone for design is then chosen, and, assuming that . 

A =A, = Aj, the appropriate values of fully plastic moment required for 

the beams and internal columns of the storey, B and Cj, are calculated 

‘using equations (6) to (9) in Chapter 3, The corresponding required 

plastic moduli, zpp and zpc¢; are obtained by dividing by the yield stress. 

Consider first the selection of the most suitable Universal Beam. 

There are seventy-four Universal Beams given in the standard 

tables ‘55 | However, the most economical design may be obtained by using 

a limited range of thirty-one of these, Each of the remaining forty- 

three sections has a plastic modulus which is less than that of one of 

the other thirty-one, whereas its weight per unit length is at least as 

great. Thus, none of these forty-three need to be considered, since, 

when selecting a beam, there is always another section which is stronger, 

yet no heavier, For reference purposes, the limited range of Universal 

Beams is given in Table 1, from which it may be seen that the section 

weights increase as the plastic modulus values increase, For simplicity, 

the section reference numbers,given on the left of the table, have been 

adopted in the design examples, 

In deriving the design equations, it has been assumed that the axial



  

CROSS-SECTIONAL 

  

  

REFERENCE | FULLY PLASTIC | 2nd, MOMENT STANDARD 

NUMBER MODULUS OF AREA AREA SPECIFICATION 

ee tin.) Ip (in.*) (in,*) 

4 16.0 68.8 440 1 Oxd.x1 5 

a 20.6 105.3 4.86 4 2xhx16 5 

3 24.8 130.1 5.62 12xhx1 9 

A 42.8 196.2 6 47 14x5x22 

7 gee? 171.6 deId 12x5x25 

6° oo 298 .1 7 6. 16x5 5x26 

Z Pe 289 .6 8.84 14x6 «75x30 

8 Bh 374.69 a .42 16x5.5x31 

9 5h 5 bee ed 10,00 1x6 67 5x34 

10 5.5 385.5 10,29 15x6x35 

14 63.8 146 63 10.59 16x7x36 

12 Pou 51555 ve 16x7xb.0 

13 89.6 704.8 13.23 48x7 545 

4h 100.9 800.6 14.671 18x7 5x50 

15 125.2 1137.9 16.17 21x8 .25x55 

16 1d 1326.8 18,23 21x8 .25x62 

17 175.6 1815.1 20,00 24x9x68 

18 200.3 2096 4. 22 37 24x9x76 

a9 24.5.3 202 1 it Cede 27x1 0x84. 

20 277.8 3266.8 27.65 27x1 Oxy. 

21 51589 1.04.9 51 29.11 - 30x10.5x99 

22 342.7 4080.5 33.53 27x11 0x1 14, 

23 317.5 4919.1 FS 30x10.5x116 

24 yAb5 5896 .0 34.69 33x11 .5x118 

25 465.9 6699.0 38 .26 DIRT 6 omA SO 

26 509.2 7801 .3 59,69 36x1 2x1 35 

e7 580.0 901 2.1 b)..16 36x1 2x1 50 

28 657.0 4 01.70 49.98 36x14. 2x170 

29 766.8 42103 57.11 36x1 2x1 Wy. 

30 942.5 11.988 67.73 36x16 .5x230 

31 4076 17234. 76 .56 36x16 .5x260           

Section properties of 31 Universal Beams, 

TABLE 1 
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loads in the beams are small, and that they may therefore be neglected, 

Thus, in selecting the most suitable sections for these members, the 

moment capacity of each Universal Beam may be considered to be equal to 

its fully plastic moment. The procedure is therefore straightforward, 

the correct section, denoted by b, being the one of the smallest weight 

for which:- 

ZPb > 2Pb 

where Zpp is the actual plastic modulus of the section, and zpp is the 

required plastic modulus for the beam, 

The standard range of Universal Columns consists of thirty-two 

sections, although, when using mild steel, only twenty-eight of these 

are suitable for plastic design piksescat In the pemeteine four 

sections, the ratio of flange width to flange thickness is excessive, 

and the sections are liable to premature failure due to flange buckling 

before the development of a fully piastic hinge. These four sections 

are given below:- 

1h x the x 87 ULC. 

42 x12 x65. UsC2 

8578 51" 2 Oe 

6 26 2x19 27 Was. 

It should also be noted that several other Universal Columns, and 

some Universal Beams, are unsuitable for plastic design when using high 

yield stress steel, These are given in the standard faplen 70. 

The properties of the twenty-eight Universal Columns, together with 

the reference numbers adopted in this thesis, are given in Table 2, 

The sections are arranged as before in order of increasing plastic 

modulus (Zpc).



  

  

  

REFERENCE | FULLY PLASTIC | 2nd. MOMENT | CROSS SECTIONAL STANDARD 

NUMBER MODULUS OF AREA AREA SPECIFICATION 

Zpe (sey. ee te (in s*) A (in.*) 
32 15.41 Ateo 5.93 6x6x20 

33 18.9 5343 7035 6x6x25 

Du, bho? 126.5 10.30 8x8x35 

i 39.8 146 3 11.76 8x8x.0 

36 49.0 155.7 74 8x8x)8 

37 59,7 227.63 17.06 8x8x58 

38 60.3 272.9 oe et LO 4 0x1 Oxd.9 

39 75.0 34.367 17 .66 10x14 0x60 

4.0 90.6 420.7 24 AG 4 0x1 0x72 

Lf TA. 52 hh. 26.19 10x1 0x89 

42 T1550 663.1 23,22 12x12x79 

AB 14.0.3 788 .9 27.06 12x12x92 

Lb 14.7.5 718.7 32.92 10x10x112 

45 163.5 8 880.7 34.19 4 2x1 2x1 06 
Lb 180.9 1165.8 30.26 14.x14..5x103 

7 209.7 422)'.3 59.11 1 2x1 2x1 33 

4G 211.0 1373.1 DoF? 14.x1..5x119 

49 242.7 1593.0 3940 14x14..5x1 36 

50 2001 $5419 47.38 4 2x1 2x161 

51 286.1 1900.1 16 7 1416x158 

5 Fi Dd 1892.6 55.86 1 2x1 2x190 

53 555.0 21.02 56.73 14x16x193 

5h 4.26 8 2942 hh 67.06 14.x16x228 

55 502.2 3526 .0 77.63 1416x264, 

56 Si 41:4 .7 94.612 Column Core 

oT 610.8 1.399 92.30 1416x314 

58 137 1 5h 5h 2 108.78: 14x16x370 

59 869 hy. 6610.3 425.25 41,1 6x1,26           

Section properties of 28 Universal Columns. 

TABLE 2 
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In selecting the appropriate Universal Column, due allowance must 

be made for the reduction in plastic modulus due to the presence of 

axial Lond eo aie section, the reduced plastic modulus, Zpé may be 

(56), calculated using the formulae given in the standard tables Sot, Class 

Zpé = Zp¢e - cn® (78) 

for all values of n less than the "change-over" value given in the 

tables, and, 

Zpg = d(1-n)(e+n) (79) 

for all greater values of n, where, 

_ mean axial stress _ axial force - (80) 
yield stress ~ area of section x yield stres 
  

and where c,d and e are constants for each section, 

For a particular value of yield stress, for any specific column, 

it may be seen that n is purely a function of the axial force in the 

column, whereas Zpé is purely a function of n, Thus a direct 

relationship exists between the axial force and the reduced plastic 

modulus, 

This relationship is shown for each of the twenty-eight Universal 

Columns in Figures 48(a) and 48(b). These curves have been constructed 

for mild steel, assuming a yield stress of 35.84 kips per sq. in. (ice., 

16 tons per sq. in.), and the reference numbers are those given in Table 

2. For any section, the plastic modulus is seen to reduce from its full 

value under zero axial load (Zp, in Table 2) to zero at a load equal to 

the area of the section multiplied by the yield stress, At this maximum 

load, the cross-section is incapable of resisting any bending moment, 

Also, since this maximum load is directly proportional to the area of 

the section, it is also directly proportional to its weight per unit 

length, For example, section 38 is lighter than section 37, despite the 

fact that its fully plastic modulus is greater. Therefore, these curves



      

   

  

    
   

  

  
  

  

  

   

  

      

Pe Bi. | L | 
Cae tei Par) Pb yd | 
Plok_ the point ( A) Ps 2p), where | ! 

A, P= axial force in Fhe cdluma at Ay, per ti4 

end zpe = the required plastic medulus. | 

_. The appropriate ULC. is given by the. 

+l ee 1 perkicular line lying above this poinkoo 

| re | — Which meets Fhe axial force axis ab lear te jevet 

re i Khe lowesk value . Pract | 
— ea pepe t + pos —~ 

N rf 

meee eee tee eer 
eee t | fot 

ty OB ee LE Nh NIN ed ek i i | ia 

1 ey 
| 0 

te € 1 ie 

gv } 

hs 

a 
ORS bce ede tee et 

a 
Pi 

Yu 
eeeUF eter | q 42 ¥ 7 

Be 
Ete 4 

ow 

Axial Sorell:   
  

  

199 200 800 400 S00 OD 750 B00 90D. 1000 «1190 12a0 1300 1400 (Kips) 

Variakion in plaskic modulus with axial load for Unwersal Columns 32 to 48; fy 25-8456, uy, 

FIGURE 48 (ce) |



  

R
e
d
u
c
e
d
 

p
l
a
s
k
i
c
 

m
e
d
u
l
u
s
 

, 
Z
p
e
!
 

(i
n?
) 

| 

0 

350 

8 6 

250 

     

Ny 0 0 

Iso 

— Bo   Axial. 
2 force — 

al 20° 400 ooo... 809 1900 1200 1400 1600 1B00 . 2Od0 2200 2400 2000 2800, 3000 3200 BaA09 3600 (Kips) 

  

Variaktion in plashic modulus with axial jocd for Universal Columns 47 to 59; fy = 35-84 K/sq. in. 

FIGURE 48 (b)



- 122 - 

not only indicate the relative strengths of the sections, but also 

their relative weights, 

In the design of any intermediate storey, Universal Column sections 

must be selected for the columns above and below the beam, Consider the 

lower column first, The required plastic modulus of this member, 2Pets 

is determined from Cs in equation (9), which has been derived for 

combined loading at load factor Ag. However, the maximum axial force 

in the column occurs under vertical loading alone at load factor Nas 

and is equal to A,P2, where Pg is the axial force at working load. 

Therefore, any Universal Column which has a reduced plastic modulus 

greater than zpci, under axial force A,Ps2, will remain elastic at the 

design load factor for either system of loading. The appropriate 

Universal Column is readily obtained from Figures 48(a) and 48(b) . ose 

the point with co-ordinates (A,Pe, 2pc;) is plotted, it may be seen that 

all the Universal Columns which are represented by curves which lie 

above this point are adequate. The most economical section is the one 

with the lowest weight, represented, as stated previously, by the curve 

which meets the axial load axis at the lowest value. In the design 

example in 6.2(f), the selected section for the Done y column is denoted 

by Cie. 

To obtain the section required for the upper column, the point 

(AaP1,2Pci) is plotted, where P, represents the axial force in this 

section at working load. The selected section is denoted DY:RCi as 

The use of these simple design charts leads to a considerable saving 

in the design time, Traditionally, equations (78) to (80) must be used 

to select the columns, and the only way of doing this is by a "trial 

and error" approach, A particular Universal Column is chosen, n is 

calculated from equation (80), and using either equation (78) or (79), 

Zpé is compared with zpc; to see if the column is adequate. If not, 

another column is chosen, and the calculation repeated, Even when a 

column with sufficient strength has been found, it is not necessarily



a $23 

the most economical, and generally the oder ariea must be repeated for 

one or two more sections to check if this is so. Thus, in selecting 

the sonmeeeaes section for any member, even with experience, at least 

three trials are necessary, ae ey ee the design of any 

intermediate storey, where sections have to be obtained for both upper 

and lower columns separately, generally at least five operations on 

equations (78) to (80) are required, and these must be repeated at the 

end of each iteration in the design of that storey. Sections must also 

be selected in a similar way for the external columns, Therefore, in 

designing for example a ten storey frame, the total number of times that 

equations (78) to (80) would have to be applied is certainly in excess 

of one hundred. Despite the fact that these equations are comparatively 

Simple in form, such repetitive calcukation is not only very time 

consuming but also extremely tedious, and is completely eliminated by 

the use of Figures 48(a) and 48(b). 

6.2(%)(iii) CALCULATION OF THE MAGNIFICATION FACTORS 

Having selected preliminary sections for the beams and internal 

columns of the intermediate storey, the next step in the design procedure 

is to determine the values of the magnification factors corresponding to 

these sections, Equations (23) to (28) in Chapter 3 are used for this 

purpose, and the relevant stability functions may be selected from Table 

as 

In the design example in 6.2(f), specific calculations are given for 

the magnification factors in each zone, and these amply illustrate the 

order of calculation of the different parameters. The resulting values 

of A and A, for any storey are always found to be similar, the reason 

Tor tate Meare examined below. 

Consider, for example, the values of A and Ac in Zone 1, as given 

by equations (23) and (24); i.e.,



  

  

  

p m n-o n : s(1+c) 

0 4.0000 0 4.0000 4.000 6.0000 

0.01 1.0083 -0 01.97 0.9669 4.051 5.9901 

0.02 1.0168 -0.1004. 0.9333 1.107 5.9802 

0.03 1 .025h. -0.1518 0.8993 1.169 59/03 

0.02, 1.0343 -0 20,2 0.861,8 + yee 59604, 

0.05 1.04.53 ~0 2574. 0.8298 1.310 5 9504. 

0.06 1.0525 0.9115 0.7943 1.392 5 9h.05 

0.07 4.0618 -0.3668 0.7584. 1 484, 5.9306 

0.08 1.0714 -0 4.230 0.7218 1.586 5.9206 

0.09 4.0812 -0 4.802 0.6848 4.701 5.9106 

0.10 4.0913 -0.5385 0.6471 1.832 5.9006 

0.11 4.1015 -0.5979 0.6089 1: 982 5.8905 

0.12 444120 -0.658), 0.5701 2.155 5.8805 

0.13 1.1227 -0,,7202 0.5306 asl 5 8704. 

0.14. 1.1336 -0.7832 04.905 Cease 5 860), 

0.15 1.1449 -0 8,7), 0 4.4.98 2 88, 5.8503 

0.16 4.1563 -0.91 30 0.4083 3.236 5 84.03 

0.17 1.1681 -0.9800 0.3661 3.677 5 8301 

0.18 1.1801 -1 0482 0.3233 442.2 5.8200 

0.19 1.192) -1.1180 0.2796 4.998 5 8099 

0.20 152051 -1 1894, 0.2351 6.059 Delvoe 

0.21 1.2180 -1 2622 0.1899 7 64-7 5.7896 

0.22 1.42515 -1 3367 0.1438 10.295 51794, 

0.23 1 .2h).9 -1 .4.1 30 0.0968 15.997 5.1692 

0.24. 1.2909 -1 4909 0.0489 31 4.89 5/590 

0.25 1.27352 -1.5708 0 ©0 5.7487             

Stability functions for the range 0 < p < 0,25 

TABLE 3 
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and, 

A 
Ac 1 - 2a25.Pe 

Expanding Ac:- 

(Ng-02)Ke 

  

Ac i er Kev +3 Pe 

ie KoV me 5 gut 2(ne-02)Kepe 

KeV + 5 

5 Ke[V_- 2(ng-og ) pe J 
  

By 3 Kev + 3 

Now, 

V (n4-04 )K + (ng-og) 

Therefore, 

hia 2 % Ko[(n,-o, \K = (ng-02) (2p2-1) ] 
Kev + 3 KeV + 3 

For most intermediate storeys, K and Pe are generally close to unity, 

and (n,-0,) = (ng-og). Thus, it may be seen that the second term in Ag 

is generally very small, and it follows that :- 

a Acs oo 
“hove % 

This is also true in Zones 2 and 3, In any frame, the greatest 

deviation from this result is likely to occur in Storey 2, where po = 3. 

However, the second term in A, is still small in comparison to the first, 

and, in all the frames that have been designed, A and A, have never been 

found to differ by more than 3%. Generally, the difference is far less 

than this, 

This fact serves as a useful check on the validity of the values
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obtained for the magnification factors. If a substantial difference 

is found between A and A,, it is certain that an arithmetical mistake 

has been made, and the calculation must be repeated, 

The design procedure continues by recalculating the wind ratio using 

the current whine ae A, and selecting a new set of sections for the beams 

and columns, If these are different to the initial set, the magnification 

factors are recalculated and a further set of sections is obtained, The 

process is continued until a unique set is obtained in two successive 

iterations. 

As stated previously, provided that a rational estimate is made for 

the magnification factors, the design generally converges very rapidly. 

However, occasionally it is found that the design tends to oscillate 

between two distinct section sizes for either the beams or the columns. 

In such cases, new a Galaee of the magnification factors, intermediate 

between those obtained for the different sets of sections, may be assumed 

in ozxder to encourage convergence, If this is unsuccessful, then the 

larger af the two sections must be selected, 

6.2(b)(iv) "THE WORKING-LOAD ELASTICITY CONDITION" 

The final stage in the design procedure for each intermediate storey 

is to check that the beam remains elastic at working load. The basic 

condition has been derived in Section 3.10, and is represented by 

ae 
“ + o (m' Hh) ay < Mpp 

This relationship is now examined in more detail. Consider first the 

possible range of values for the distribution factor, which is given by:- 

Tio Pik 6 eis 
I ei 7 

KeV + 12
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where , 

4 1- 4 
Vo= (n4-0,) K + (ng-0g) 

In 6.2(b)(i), it has been shown that it is necessary to restrict 

the value of KzV(which corresponds to Euler ratios at load factor Ag) in 

the design of any storey in order to control the instability effects, 

and a limit of - 1.80 has been chosen, There must therefore be a 

corresponding limit on a and this may easily be calculated provided 

that a relationship may be found between V and t: 

Now, since the Euler ratio in any column is directly proportional 

to the axial load in that column:- 

sae 

Also, from inspection of the stability fuictions, approximately:- 

(n-o) « p 

Therefore, 

(ny-0,) AiGngeoe 

and - 

(ng-0g) Telno-day” 

1 Ou 

We et Ly 

Thus, if the limiting value of KgV is - 1.80, the corresponding limit 

on Kv" is approximately equal to = 180 = - 1.284, - This leads to a 

maximum value of anal given by:- 

eae NZ. 
ase = 70.716 al LO. 

Now, it may be seen that the working load elasticity condition 

becomes more difficult to satisfy as age’ increases, Therefore, the 

/ assumption that ae is always equal to its maximum value leads to an 

approximate conservative condition, as follows:-



nf OP ha 

as + 0,56 (a Hh ay < Mpp 

The condition may be modified further by assuming Hh “=m, which is 

again slightly conservative, In addition, let 7 be the ratio of the 

actual plastic moment of the selected Universal Beam to the required 

plastic moment for the beam; i.e., 

Therefore, in any zone, the working load elasticity condition becomes:- 

eo + 0,56(mh)av < 7.B (81) 

Each zone may be considered in turn, with the approximate value of 

- B substituted in equation (81). 

ZONE 4 B= 42 =F he WH 

Therefore, 

WL ; 

Te + 0.56(mih)av < ne he Wh 

Dividing be 0.56WL, and regrouping:- 

Ganev < len ay tee AGA 16 
WL “EO<50lou Pee 42) , 0.561 4192 

However, denoting the final wind ratio by wr, 

(mHh) av a we 

WL A 

Therefore, the condition becomes:- 

wr . 15d9n-16 
a Sted 

SUDStiLUtIng: As a= toh, 

wr . 21-16 

Roce AED 

Alternatively, 

107 .5wr 

A? Din-16- ee,
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W A 
ZONE 2 B = Xz = he AtaBh)av 

Substituting B in expression (81), and rearranging as before, the 

following condition is obtained for Zone 2:- 

134.4 wr 
A.? Binawe + (21H220) } (83) 

ZONE 3 is i. A(aEh)ev 

In this case, the condition is:- 

‘aa 6.72 wr 

* 8. qwr-1 (8),) 

The limiting cases of these three conditions are represented . 

graphically in Figure 49, for values of yn varying between 1.0 and 1.2. 

Thus, to check the elasticity of any bear: at working load, it is simply 

necessary to calculate n and select the appropriate curve. Then, if the 

point (wr,A) lies above that curve, the beam will remain elastic at 

working load, 

Although based on several approximations, these curves appear to 

give an accurate representation of the original working load elasticity 

condition, In fact, it has not been found necessary to increase the 

beams in any of the frames described in this thesis, although, in one 

frame, which was designed with a fictitious range of sections (which will 

be discussed later), two storeys were found to lie very close to the 

limiting curve, In this particular frame, the accurate computer 

analysis predicted plastic hinges in these two storeys at load factors 

fractionally below the working load (0.991 and 0.996). In every other 

case the analysis indicated that the beams remained elastic at working 

load, as predicted by the curves in Figure 49. 

6.2(c) THE TOP STOREY 

In section 2 of Chapter 4 it has been shown that the critical mode
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of failure in the top storey is always the simple beam mechanism under 

vertical load alone at load factor A,. Even under extremely heavy wind 

loading, oi this region of the frame there is no likelihood of a combined 

or sway mechanism at load factor Aeg. : 

However, as for the intermediate storeys, the maximum column bending 

moments occur in the combined loading case. The shear force in each 

column of the top storey is considerably less than that in the storey 

below (Storey 2), and a similar ratio is bound to exist between the 

bending moments, Thus, as suggested previously, the value of plastic 

moment required for the column in Storey 2 is also adequate for the top 

storey. The Universal Column required for the top storey must therefore 

3 be identical to that denoted by cj, in the design of Storey 2, since 

this particular section is selected using the required plastic modulus 

in Storey 2, together with the axial load corresponding to the top 

storey. , 

The design of the top storey is therefore straightforward, and does 

not involve any iteration, 

6.2(d) THE LOWEST STOREY 
  

The design equations for the lowest storey have been derived in 

Chapter 4, and they are summarized in 4.3(c). The design procedure 

follows a similar schedule to that for the intermediate storeys, although, 

of course, different design equations are involved, 

It will be remembered that the design of this storey is always based 

on failure by the simple beam mechanism, Therefore, the beam size 

remains unaltered, and no beam magnification factor is required. There 

are, however, two column magnification factors to be calculated. These 

are given by equations (38) and (40) in 4.3(c);i.e., 

A 
Aca = 17-2824 .D4
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and, 

/ 

Ace = 1+ 2 22 a4. pe 
Ne 

The significance of the second of these factors, Ko has already 

been discussed in 4.3(b), where it was shown that this is not a true 

magnification factor, Under simple plastic conditions, its value is 

considerably greater than unity. Furthermore, this value does not 

increase substantially as the axial loads increase, indicating that the 

instability effects in the lowest storey are small, For this reason, 

and also because the beam remains the same in each iteration, the design 

invariably converges to the correct solution very quickly. Therefore, 

unlike in the design of the intermediate storeys, it is not siriieiae 

necessary to predict particularly accurate initial values for ‘mo and 

Ace in order to encourage convergence. 

In all but one of the frameworks described in this thesis, the design 

has been found to converge immediately by using the approximate values, 

Aca = 1 .4and: ae = 2.7. In the remaining frame, only two iterations 

were required, despite the fact that the final value of is was as low 

as 1.84. Therefore, in any frame, these initial values for the 

magnification factors may be assumed to produce a rapid design, 

As for the intermediate storeys, the design of the lowest storey 

proceeds by calculating the véaltic of plastic moment for each member, 

using the appropriate equations in 4..3(c). Column sebtions are selected 

as before using Figures 48(a) and 48(b). The Euler ratios, stability 

functions and distribution factors are then determined, and new values 

are calculated for A,, and oF As before, if the resulting sections 

are different to those selected initially, the procedure is repeated 

until convergence is obtained, 

The working-load elasticity condition must now be checked. In this
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case:- 

WL, 822! (q' 79 ie 5 (m Hh)av < Mpp 

where, 

42 
aunt = eee 

Be¥? 6.42 

and, 

vii = bia <4) rt we 

In deriving the approximate form of the working-load elasticity 

condition for the intermediate storeys, in 6.2(b)(iv), a simple 

relationship was obtained between the quantities V and ye However, 

. no such relationship exists between vi and pe since each of these 

depends on two different stability functions, (n-o) and n, 

Therefore, in this storey, it is necessary to check the condition 

arithmetically rather than by using an approximate graphical approach, 

For this purpose, it has been found convenient to derive an alternative 

form of the basic condition in terms of the section properties,Ip and 

ZPp, Which,for any Universal Beam, may be read directly from Table 1. 

Expanding ant. the condition becomes: - 

a + 4. — (n't) av < Mpp 

Kav’. 442. 

Dividing throughout by the yield stress, fy, and expanding K2:- 

  

a 

= 6(m Hh)av — 

my nL ae a iy fy Tin VS "he 

Alternatively, 

F 5 

Et < Zpp (85)



#432 

where, 4 

E = se a sa uee, ae Tee ge V" 

The quantities E, F and G are independent of the properties of the 

selected Universal Beam, Therefore, having determined these functions, 

the adequacy of the beam may be checked quite simply by substituting Ip, 

calculating the left-hand side of the condition, and comparing this 

value with ye If the condition is violated, another beam is selected 

with a greater value of Ip, and the calculation is repeated, with no 

alteration being required to E, F and G, 

This method of checking the elasticity of the beam at working load 

is more time-consuming than that developed for the intermediate storeys. 

However, it is more accurate, and in this respect it is preferable to a 

graphical approach. In the frames that have heen designed and then 

analysed, it has been found that the lowest storey beam is generally 

the member in which the first plastic hinge forms, It is therefore 

advisable to use an accurate method of checking this critical section, 

and, in every frame, the computer analysis has confirmed the validity 

of the proposed condition, 

6.2(e) THE EXTERNAL COLUMN 
  

Having selected sections for every beam and internal column in the 

framework, only the external columns remain to be designed, The 

various equations for determining C_, are summarized in 4.4(e). It may 
E 

be seen that each equation is a function of B, C_ and pg. These are all 
id 

known quantities, so that the design of the external column is straight- 

forward, and no iteration is involved, 

In calculating Cae it must be remembered that B and Cy refer to the 

required values of plastic moment for the beam and internal column, Cy



appears in the equations for Ch due to direct substitution during the 

derivation of these equations. B, however, appears due to the initial 

assumption that a plastic hinge exists at the leeward end of each beam, 

It may be argued that the value Mpp, the actual plastic moment of the 

beam, should be used in place cf B, However, since B represents the 

-basic strength requirement of the beam, it is considered that this 

should be the value with which the strength requirement of the column 

is assessed, The fact that the actual beam has a higher plastic moment 

should only increase the overall strength of the framework, In addition, 

in selecting the column sections, the two columns meeting at a joint are 

together likely to have a reserve of strength at least as great as that 

assigned to the beam. Nevertheless, it is fully appreciated that by 

selecting the sections in this way, there is a slight possibility that 

a plastic hinge may form in a column below the design load factor, This 

has not, however, been found to occur in any framework designed with 

Universal Beams and Universal Columns, 

A typical calculation for the external column is included in the 

design example which follows. 

6.2(f) DESIGN EXAMPLE 
  

This section describes the design of specific regions of the ten 

storey, four bay framework shown in Figure 50, In order to illustrate 

as many points as possible in the design procedure, to demonstrate the 

use of the design aids, and to provide a useful reference to the most 

efficient order of calculation of the numerous design parameters, a 

fairly comprehensive treatment is given for each of these regions, 

However, the calculation for four of the intermediate storeys are 

petted, since they add little to the discussion, and, whenever possible, 

repetitive arithmetical work is abridged, 

This particular frame has been selected as the design example, since
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it contains storeys lying in all of the four zones, 1, 2(i), 2(ii) 

and 3. The frame specification is given below:- 

SPECIFICATION 

Number of storeys, q = 10; Number of bays, r = 4; 

Beams Seka T=: 25tt ys Column herehta, bh = 12ft..in all storeys; 

Frame spacing, S: = 20ft;; 

in- the top storeys wy:—..05k, per ‘sqq ft... 

In all other eels W = .10K.. pen sq.:ft.” 

Wand: loading. =po=. 025k .aner Sqecaety 

Design Load factors: ty = 1.753. Ae = 1.45 

Material: Mild steel; fy = 35.84k. per sq. in.; E = 30000k, per sq.in. 

THE DESIGN LOADS 

(i) Beam loads [equation (6) ]:- 

505 220) 

2 

an ail other storeys, W = 30k. 

In the top storey, W, = (2 x 25-20) = 15k. 

pATSOe Wisp o00m25 = (50k. ft, 

(ii) Shear forces [equation (65) ]:- 

All storey heights are equal. Therefore, equation (65) reduces to:- 

H = BeSeh In - 3] 
n sty 2 

Therefore, in all intermediate storeys:- 

: 4 ered 

(iii)Internal column loads [equation (66)]:- 

In the top storey, PL =e oO 

In all other storeys, Pin = Pin-i* 50 

(iv) External column loads [equation (67) ]:- 

Equation (67) reduces to:- 

= wLsS Xe 

Pen En-1 2 8b Ca : H, |



  

Internal column load; External column load; 

  

  

Shear per bay; 0.24(H_, + H,) Initial wind ratio; 
n 4 Py = 25 Py t= 12.5 + (x) 

Beate Tea 4 = (x), say. 4 wr, = .008(H__, +H) 

Fin ‘ Pin-t ka ro Es Pen-t + 25 + (x) 

1 0.75 25 Ox2 12.9 - 

2 2.25 fe] 0.7 38 4 024, 

3 DafB 125 1.4 64..8 - 048 

4 nee 475 Sve 92,0 2072 

7 6.75 wa.) Zn9 79.9 096 

6 8.25 275 546 148.5 2120 

7 9.75 525 4.3 177.8 o 1d 

8 ‘tome 375 500 207.8 168 

9 ~ Ag6t9 4.25 5.8 238 .6 2192 

10 4-75 645 270.2 -   =(H) = 60           

Calcuation of initial design load - 10 storey, 4 bay frame - all loads in kips. 

TABLE 
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In the top storey, n = 1, so that:- 

Pa = 12.5 +? O24. -H 

In all other Saae 

Poe Puy 1 25.+ OL) (Haar + H, 

-(v) Initial wind ratios:- 

Since h is constant, in all intermediate storeys:- 

(Hh)av _ _h 
Moc NUS oo owe ee x H, 

Veees aoa; = 2008 (aa + i, ) 

The calculation of these initial loads is shown in Table 4, The 

only modification occurs in the calculation of the external column load 

in the lowest storey, for which the wind load component is given by:- 

(X) = 0,24 (% + a) 

DESIGN FORMULAE 

Many of the design formulae may be simplified considerably for any 

particular frame by substituting the known values of h,L,W,A, and Ag. 

In this case, the following simplified formulae are obtained:- 

wr = ,008 AD(mH) © 

where, for any storey, 

D(mH) = (m,H, + mgHe) kips 

In all zones, 

eee al I = (mH) i leebdi © = Cee 
K 5 oR, Kg 2 083 tie » Pe MeHe 

C, = 100.8 -ActgHes p = .0980 “ 

Cy is measured in the units kip.inches, 

In Zone 1, 

B =X, a = 98)! kiana
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98h. 
moe = 27.5 ind Pb = 35.8), 

Therefore , for all storeys lying in Zone 1, from Table 1, 

beh 

In Zone 2, 

ee TL a Sok 0.5 - 292 
he 0) 2 ~ 2h4A(mHh)av eter aS Ay (mH) 

22 22 

In Zone 3, 

h 

Bix vs Atala )ev = 50.4 AD(mH) 

foo me os WL oe i 20 8h. 
Ae ee, 7 6A(mHh )av ee / ‘AS (mi) 

a22 a22 

The function 3(mH) is included as shown, since it is always determined 

during the calculation of py,and may then be substituted directly. 

DESIGN OF THE INTERMEDIATE STOREYS 

Design calculations are given in full for Storeys 2,3,6 and 7, each 

of which lies in a different zone, The design of the remaining 

intermediate storeys is summarized, The method of estimating the values 

of A; is also included, In addition, the design of Storey 7 demonstrates 

the case when the beam has to be increased to control the instability 

effects, : 

Storey 2: 

Me..= 0.795 “tig 6°2.25; Pa 2535 Pg 75 

Wie = we O02 

From equation (74):- 

‘fee 
St ea oo Soe, eee



«ee 

Assume Ae = A. =A Ma Me = 15.0 

The initial modified wind ratio is:- 

Wie coersWr tem SOON Os 7 > Zone 1. 

Therefore, it is predicted that the design lies in Zone 1, for which 

the beam size is already known [b = 4]. The column sections must be 

selected with the aid of Figures 48(a) and 48(b). 

Gai 20a &15o eR Cee > 4905; 
I 

oi Buh, 

oP. = hh AaPo = 131 

b=ah Sin aa Cia = 353 

Ibe = 196 Ica = 42 Teg: = 53 

The Euler vatios are now calculated, and the stability functions are 

obtained from Table 3, using linear interpolation, 

pi = .0980 x 3 = .0582 

Pe = 0980 x & = 41385 

Crgatg) > = 0, 902s... (narda) # = 0.774: hy = 1.0515. mg 113523 

The functions K, V, Ke, KeV, (KeV+3) are calculated in turn, 

K -= = 0.792; V = - 0,302 x 0.792 - 0.774 = - 1.013; 

K, = 2.083 x ed = 10,5623 - KV = <0, 5695 Rav + 3 = 2.4513 

In Zone 1, the distribution factors eel and a. are required, 

Ay 3 A - 0.792 x 0.562 

  

fae! i= Sia 12953 Gas = ao ee cee O2155% 

Also, 

Est tee ODN x O05 + 1 eho’ x 2525) ae 0.789 ck. 25586 = e000 - 0 6553 

ee Cox kee Xx eel) % 5.092 O92 eas 

The magnification factors are obtained from equations (23) and (2). 

A = 1.235; 

Av= 1.= 2x (0.183) x .655 = 1.2h03
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Recalculating the wind ratio (abstracting 2(mH) from pe):- 

wr = ,008 x 1.235 x 3.335 = .0329 4 35 > Zone 1, 

Cr =9100.6 x4 .oh0 <2 546 = 524 

ZPci na 9.0 

bah Cia = 32 Cie = 33 

Thus, the sections are identical to those selected initially, and 

the design has converged, Referring to Figure 49, it may be seen that 

the working-load elasticity condition is bound to be satisfied, since 

wr < .0465, Therefore, the value of n need not be calculated, The 

sections selected for Storey 2 are therefore:- 

Beam: dh. Internal Coiumn: 33 

Storey 3: 

Hel 2.25). Ha = 3.753 Bam de: be = ee 

wri= 2048 

rom the: design of Storey 2, Acw= 122553 wre — 05295 

Therefore, in this storey, from equation (75):- 

1 4 
Aj = = = 1 64, [o.95 = S525 x cya] ” 0-6 

00329 

The design proceeds as before, and in this case, no explanation is 

given:- 

wr = 1.64 x .048 = .078) = + > Zone 2(i) 

B= 5150 x.(,.25-4 2078) = 1035; 

6.33 100,0.« 4 64 X31 75. = .620%



i —_ WG X
O
 i 

Zpp = 28.9 Zpct = 17.3 

AgP, = 131 AaPe = 219 

2h. Ci1 = 3h Cia. = 35 

Tho 496 * Teg £ 127 - = 116 

0980 x fees: 0579 

  

fie 1a 
e 125 . : Pe = .0980 x 7-2 = .0839 

(ny-04) = - 0.300; (ng-og) = - 0.4453 my = 1.051; mg = 1.075; 

K = i 0.B70 #29" 5! 6300, 4 02870 -~ Gs =. 02706; 

Ke = 2,083 x ae $54°550%  Ky¥ S4i4 Bae” RAV +3 =)1,920; 

ape! =F o5p = 145653 agg = Tee _ -0,355; 

  

Sot SODA eee eee DX 9 ok os PAGS ee oy 6.38 

Pe * xX 1.075 X 3075 . 8.01, d 

A= 1..565s 

Bes 4 + Zieh shs = 0.791 =u eee 

"008s. 4 eho 6.50. 0799 = —-—east onc, G(4), wr = 12.5 

B = 3150 x (.25 + .0799) = 1040; 

ae = 100.8 x 47,562 x 155027 — 6333 

ZPp = 29.0 2ct = 1fef 

Da= de Ci1 = 3h. Hip tre 55 

The sections are identical to the previous set, so that the design 

has converged, Again, in this storey, there is no necessity to calculate 

nN, Since, referring to Figure 49, the point (wr,A) lies above the most 

critical curve, 7 = 1.0. The selected sections for Storey 3 are 

therefore:- 

Beam: d. Internal Column: 35
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Estimate of A; for the remaining storeys 
  

Having designed Storeys 2 and 3, the curves for predicting the 

magnification factors in the remaining intermediate storeys may be 

constructed in the manner described in 6.2(b)(i). The two points 

corresponding to Storey 2 and Storey 3, (.024, 1.235) and (.048,1.565) 

are plotted as shown in Figure 51. The line through these points is 

continued to the boundary of Zones 2(i) and 2(ii), and its gradient, 

grad (1), is found to be equal to 13.5. Therefore, from equation (76), 

grad (2) "50.75 x 45,541.20 = 3.958 

From equation (77), 

gad (3) <b tah k Bess 0.80 = —1,, 70s 

The two lines corresponding to Zone 2(ii) and 3 are constructed as 

shown, It may be seen that the upper limit, A = 2, is not required, 

The points 4. to 9 represent Storeys 4. to 9 respectively and are obtained 

by constructing the ordinates corresponding to the appropriate values 

of wr; ( these values being given in Table 4.) Thus, for any storey, 

A; is obtained by reading the value of A from the graph, and multiplying 

bye 505.2 

Storey 4: The design of this storey lies in Zone 2(ii), and the results 

are summerized below. 

Ai = 1.67 > Zone 2(ii) 

Initial sections:- 

b =6 Cte. 36 Gis = 38 

Magnification factors:- 

A= 1.4333 Ac = 104473 > Zone 2(ii) 

Resulting sections:- 

bse or eso Siot=a50
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The column design has converged after one iteration, However, the 

beam section is different, so that a further iteration is reoguired. 

This leads to higher values for A and Ac, and the beam section again 

becomes b = 6, The design tends to oscillate between these two sections, 

and it is impossible to obtain convergence. The larger set of sections 

is therefore selected; i.e., in Storey 4:- 

Beam: 6 Internal Column: 38 

Storey 5:- This storey also lies in Zone 2(ii). The design is 

summarized below. 

Ay = 1,835°> Zone 2(ii}) 

Initial sections:- 

b = 6 Cia = 37 Cie = 40 

Magnification factors:- 

A = 1,567; Ac = 1.560 > Zone 2(ii) 

Resulting sections:- 

b=6 Cis S007 Cie = 39 

The beam has converged, but the size of the lower column is different. 

A second iteration leads to:- 

A = 1.668; Aco = 1.658 > Zone 2(ii) 

b=.6 Cia = 37 Cie = 39 

The design has therefore converged in only two iterations, and the final 

sections are:- 

Beam: 6 Internal Column: 39 

Storey 6:- The procedure for any Storey lying in Zone 2(ii) is 

identical to that given below for Storey 6, 

Hy 6.70; (Bg =.0.255 > Py x= 2253. Pa = 2753 

wr: = .120 

From Figure 51, A = 1.83
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Therefore, 

Ay = 1.05.x 1.83 = 1.92 > wr = 1.92 x .120 = .230 + Zone 2(ii) 

a SSOU x Ro # PI) y 1 re, 

C= 100.8 x 1,92 x 8.25 = 1600; 

2Pb = 42,1 ZPci = 44.6 

A4P. = 39 APs = 481 

b = 6 Cia = 40 Cig = 42 

Ip = 298 To, = 421 Tce = 663 

P12 = .0980 x as9 = 0523; 

Pe = .0980 x ae = 0106; 

(ny-0,) = - 0.270; (ng-og) = - 0.207; my = 1.045; mg = 1.035; 

K = 254 = 0,635; V = -0.270 x 0,635 - 0.207 = - 0.379; 

Ke = 2.083 x oe8 = 4.643 KeV = -1.755; KoV + 3 = 1.245; KeV + 12 = 10.245; 

In Zone 2(ii), four distribution factors are required:- 

age! = pops = 24405; apy = OL tet ~ 9 771; 
aSe! = ForeaR = 141703 agy = OEP x tal ~ 00939; 

= 1.045 x 6.75 + 1,035 x 8.25 _ 7.06 + 8.52 _ 15.58 _ 9 g45, 
P2 = 2x 1.035 x 8.25 1p 17.04, Puke 

aoe 1:92 a 5324 aa es pnt Oe ~_ . Me 16170 [o.5 1.92 x 15.58 Tare (1 te ) gets 

Therefore, from equations (25) and (26), 

B= 0,555 -%.1.170:4+ 0.67 «.2ek05.= 0.624 + 12125 1.7473 

Ace 05553: [42+ 2% 0.0939 %-0.912] + O67 [1+ 2% 0.77 0.912] 

! wm OL590 ke teat > Cab e 205 = O62 A 23 = 17a 

  

Recalculating the wind ratio:- 

wr 0008 x 1.747 x 15.58 = .218 > Zone 2(ii) 

B ul 3150 x (.25 + 218) = 1475; 

100.8 x 1.747 x 8.52 = 1500; by
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zPb = A101 2pct = 41.9 

b = 6 Cis = 40 Cie = 42 

1.80 os We ftee sections are identical to those selected initially, so 

that the design has converged in only one iteration. The final design 

lies close to the boundary of Zone 2(ii), as indicated initially in 

Figure 51. Therefore, the final sections for Storey 6 are:- 

Beam: 6 Internal Column: 42 

Storey 7: The design of this storey is typical of those lying in 

Zone 3, and is therefore given in some detail, However, the :equations 

for calculating A and Ag are identical to those for Zone 2(ii), except 

that “ is different, Certain sections of the calculations are abridged 
2 

accordingly. 

Hy = 8: 525% He I 975i Pa = 215; Pe. =" 3053 

wri oA 

From Figure 51, A 2 1.77; 

Therefore, 

he M440 M2 111. &, kuoe © Wr eo kk wih = (268 - Zone 5; 

B = 50.4 x 1.86 x (8.25 + 9.75) = 1690; 

Cy = 100.8 x 1.86 x 9.75 = 1830; 

2pb = 47.0 Bhci = 51.0 

A4Pa = 481 "4aPe = 568 

ee Cia = 42 Cie = 43 

Ine = 290 Ica = 663 Ice = 789 

The column cig = 41 is in fact strong enough [Figure )8(a)]. 

However, in Storey 6, section 42 has been selected, and the dimensions 

of this section are greater than those of section 41. The latter section 

therefore cannot be used in this storey, since chara sa; "reverse 

column taper" would occur, The section cig = 43 is selected instead, 

The calculation proceeds as before:-



3 ee 

p 4° 04.06 

p 2 og 02,02; 

(ny-04) = - 0.207; (ng-og) = -0.206; my = 1.035; mg = 1.035; 

K: = 0.841; V = -,370: Ke = 5.65; KeV = -2.09; 

Thus, KegV < -1.80, and the beam must be increased, For this value 

of V (which is purely a function of the column sizes) , the limiting 

. eee 
value of Kz is 370 = 1.86; 

Now, 

el 16,0 

Pe) eae 
Thus, for any beam to satisfy the limit on KeV, 

Aue < 1386 
be 

a aes 

16.0 
Ibe > 7.86 = 338; 

The beam of least weight which satisfies this condition 1s: b) = 9. 

The calculation continues with this increased section:- 

base9 

339 

= 2.083 x & = 4.84; KeV = -1.790; KoV + 3 = 1.210; KoV + 12 = 10,210; 

The expressions for the distribution factors are identical to those for 

Fa
l 

CT
 "Nl 

A v 

| 

Zone 2(ii):- 

Bg OBO; ak ed Beer atc 1 var doce Be0o76: 

    

- 1.035 x 8.25 + 1.025 x 9.75 _ $8.52 + 10.07 _ 18.59 _ 924: 
Pa 2x 1.025 x 9.75 o gOay BO ay. © 

The expression for = is different from that in Zone 2(ii):- 
2 

Saree 4.86 20.8). oe : oe ee : 

ee 4 tT I! ~ T7386 x 16059 = 0.6505 (1 mh ) veer 

A = 0.630 x 1.174 + 0.370 x 2.480 = 0.739.+ 0.918 = 1.6573 

hee 0.630 [1 + 2 x 0.0976 x 0.921] + 0.370 [1 + 2 x 0.826 x 0.921] 

= .0.630 x 1,180 + 0.370 x 2.521 = 0.742 + 0.933 = 1.675; 

The remainder of the design of this storey is summarized,
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These values of A and A; lead to the following sections:- 

Bie Boos Cia = 42 ? Cie = 43 

i.e., the columns are as before, whereas a smaller beam than b = 9 is 

obtained. Thus, in the sectond iteration, it is again found that KV < 

-1.80, and the beam must once more be increased to b = 9, Therefore, 

the same distribution factors are obtained, but, in this case:- 

eon Oe 20 .8h. 3 
es 4 ik 1 Ree tas | Fae; 

The corresponding magnification factors are:- 

B= 4-.8793: ches 449035: 

The new sections arei- 

b = 8 Cia = 42 Cig = 43 

Again, the column sizes are identical, aid the beam is less than b = 9, 

and will therefore have to be increased as before. Thus, the design has 

converged in two iterations, and the effectiveness of the limit on K,V 

in encouraging convergence is demonstrated. The final sections for 

Storey 7 are therefore:- 

Beam: 9 Internal Column: 15 

Storey 8: This storey also lies in Zone 3, and the results are 

summarized below:- : 

Ay = 1.074 > Zone: 3 

Initial sections:- 

be 8 Oigvene Cie = 46 

The beam is subsequently increased to Dea" Wie. Sunce Kavi <=] .O0. 

The magnification factors are:- 

Bie 1Q4B7 Ac = 1.4873 

The new sections are:- 

b=7 Cia = 45 Cie = 43 

Again, it is found that the beam must be increased to b = 11.
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At the end of the second iteration:- 

A = 1,718; Ac = 1.720; 

b= 8 Cis = 43 Cig = 6 
i.e., after two iterations the initial sections are again obtained, and, 

if continued, the design oscillates between two different sets. It is 

found that convergence may be obtained by restarting the procedure with 

the average values of the two sets of magnification factors; i.e., 

Ate 446033 A, = 160k 

These give the following sections:- 

bs 8 O14 = 43 Cte = 435 

. and, after the beam is increased to b = 11, 

A = 1.608 Ac= 1.608, 

for which the same sections are obtained. Therefore, the final sections 

for Storey 8 are:- 

Beam: 14 Internal Column: 1.3 
  

Storey 9: This storey also lies in Zone 3, and the design converges 

in two iterations, as follows:- 

Ai. = 14465. > Zone3 

Initial sections: 

b = 40 cyy = 46 Cie = 46 

The beam is subsequently increased to b = 12. 

Magnification factors: 

R= .1,469; Ac = 1.466; 

Resulting sections: 

b = 8 Cia = 46 - Cig = 46 

The beam is again increased to b = 12, and the final magnification 

factors are: 

A = 1,608; Ac = 1.610;
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Therefore, the final sections for Storey 9 are:- 

Bean: 12 Internal Column: 16 

THE BOUNDARY REGIONS 
  

Storey 1 (the top storey): 
  

We =.1'5k, 

ee 2 5Or G, 

Therefore, 

B= Ay Sh = 4,75 x PEER « y90k ins, 

Spp= 13.7 

boa 

Also, from the design of Storey 2, 

Cie = (ci, in Storey 2). = 42 

- Therefore, the final sections for the top storey are:- 

Beam: | Internal Column: Bye 

Storey 10 (the lowest storey) 

f= ky Wis 750; hy he 12, E(H), =. 513 2h) = 60. 

Therefore, 

fe PSY MebOr 6 Te : 
wr’ = hi ecieg sae Seas 

17wr! =-3.77 

(3 + 17wr’) = 6.77 

Thus, from equation (35), 

4.05 x 6.77 
NeeBinerae-¥ ax 6277] a Voie 

The basic loads are therefore:- 

Hy, = 12.75; He = 19.13 Py = 425; Pe = 475;
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Also, assume:- 

/ 

Acg = 1.4; Ace = 2.7 

The beam is assumed to fail by the simple beam mechanism; i.e., b =4., 

The design proceeds as follows:- 

C 400.06 = Ah 12a 15: = 4602s 
Lai 

G.. -700 8. x -2.7-% 49.1 = 5200; 
Iz 

ZPcia = 50.3 ZPcie= 145 

AgP4 = 7h. AaPs = 831 

Dace ap Cia = 46 Cro =) 

Ib = 196 5 Te4 = 1166 Lee = 1901 

Pa = .0980 x 55 = .0356; 

a 475 _ ; Pe = 0980 x i961 = 02M), 3 

(ny-0,) = -0.180; ng = 0.918; Ps = 1.1343 mz = 1.030; mp = 1.021; 
2 

K = Hos = 0.614; V/.= -0.180 x 0.614 + 0.918 = -0.111 + 0.918 = 0,807; 

Kei= 2.083 x a = 20,15; KeV/ = 16.28; KpV/ + 3 = 19.28; 

The column distribution factors are as follows:- 

A 04d 8 2015 he OO Oe Se BOT Gs. : 
gaq = Segoe mallee Goa: = eee =.05 967 } 

Die 2030 5 2.75 4) 0M) eo 1 5.16 419550... 32 66. 3 4 
¢ R00 we tery 2 26.32 5 Bese” | eee: 
  

ss Sake _ 32,66 
P2 = 3x 1.021 x 19.1 ~ 39,00 
  = 0.839; 

Therefore, from equations (38) and (0), 

Agee = t+ 2 x 0.116 x 4,205. = 44289; 

> ° v i Vtiva ¥ 144354 x.-0 96%. «49859: =~2 (825; 

The new sections are obtained from:- 

Q
 1 100.8 x 1.289 x W51bs ss ATF S5 

Q
 i 100.8 x 2.823 x19,50 = 5560; 

L206 = Le]. ZPci2 = 155



meAGd = 

BAe Cia = 46 Cig: = 51 

These are identical to the initial sections, so that the design has 

converged immediately, The working load elasticity condition, given 

by equation (85), must now be checked, The quantities E,F and G are 

calculated initially. 

4 

py = 22222 = 0055; 

4 Soe 
pse= qa: ee 017k; 

be oa. = -0.129; ne’ = 0,942; ms. = 1,022; ig = 1.015; 

Since K = 0,614, yi = -0,079 + 0.942 = 0.863; 

Paw ieee 12 x Ae 

6(m'Hh)av ee ee ee 
fy : 35 8h Kee 

G = Tose vi" 

F [+ .022 Rel eto 4 01 Dax 19.4] = 5903 

= 4904 x°2,085,% 0,865 =) 3410; 

Therefore, the condition reduces to:- 

390 
€ Zpp 

BHO 412) 

Ip 

20.9 + 

This condition is checked in Table 5, below, where it is seen that 

sections 4. and 5 are inadequate, and that eventually, section 6 is 

  

  

  

              

selected, 

ee Left hand [Right hand 

d Lp quad 118 + 12 sie + 12 side = side = Comment 
Ip Ip Ip 

= (A),say.| 20.9 + (A = Zpp 
Dp st AIRS) 7 ob |: 29a 15.3 5h 2 328 LHS >RHS 

Sa et 39 Bix 5148 1255 Det 5259 LHS>RHS 

Gok O98 Ise 25 16.7 37.6 43.9 LHS<RHS   
  

"Working-load elasticity" - lowest storey - 10st., 4 bay frame. 

TABLE 5 

i.e. The final sections for Storey 10 are:- 

Beam: 6 Internal Column: a1 

 



  

  

  

  

  

  

  

  

  

  

                  

$[1-2ure-1)| B, or C,,=(b)+(c) Final U.C. 

in Storey 2. Lae | lS Basic U.C.| (for no 
4 . B Cix(a)} CQ = : CE 

. 5 Cy Pa 3(1-p2) in mS where ‘ ZPce AP, (for reverse 
from storey | (max) 

other storeys appropriate strength) column 
below. 

(a) (b) (c) taper) 

2 4 iS eck, Me De oleae oe) : 4 1.92 492 1 492-1. 13.8 | - 22 32 32 

2 98). 304. le 6am 176 590 57 ee et 9 40 4 1s 67 3h, 31, 

9 40.0 633 aio 105 520 67 oe ee 605 16.9 ia Ps, 3h. 3h, 

4h | 1240 900 | .856 .072 605 65 ——38—— B70} 48.7 | 161 3h 3), 

5 | 1330 | 1210 | .893 L054, 665 6h. — 740 | 20.6 | 209 35 35 
6-1 4475°-|. e500). 642 | Oly 7.0 Boe is ao 880 | 24.6 | 260 36 36 

7104760.) 4 ebb fico 040 880 78 = ze 960 | 26.9 | 341 38 37 

8 | 1780 | 190 | .93% .033 890 6, ——-— 1005 | 28.1 | 363 37 37 
9 | 2010 | 2150 | .out .030 4005 6h, so 1070 | 29.8 | 417 39 39 

10 | 98 2 . _ 492 pe ee a eed ee 37 39             

External column design for the 10 storey, 4 bay frame. 

TABLE 6 
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External column: 

In this particular frame, all the storey heights are equal. The 

design equieti ona for the external columns are as follows:- 

In the top storey:- 

Cao. B E 

In Storey 2, since W, = Ae» 

Z 1 2 
Cn ae (By+Bg) + C565 I; - E(4p2-1)| 

In the remaining intermediate storeys, 

B 4 
Ch > 3 + C.5(1-P2). 

In the lowest storey, 

CH > 

No
lo
 

In addition, at any joint, for the upper column, 

Ch > 

ro
le
 

The design calculations for all the storeys are given in Table 6. 

' The final column shows the sections which are selected in order to 

prevent "reverse column taper". 

6.3  DESTGN OF SINGLB-BAY FRAMES 

The design procedure for the single-bay frame is very similar to 

that given for the multi-bay frame at the beginning of 6.2., although, 

of course, there are no internal columns to consider. Due to the 

similarity between the two methods, it is only necessary to summarize 

the procedure for single-beay frames, and to expand the main points of 

difference when they arise. 

The initial design loads are calculated using the equations already 

derived in 6.2(a). Equation (6) gives the beam loads, equation (65) 

the Shean forces, and equation (67) the column loads, 

The design of the intermediate storeys proceeds as before, with the 

initial values being predicted for the magnification factors, In this
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case, however, the values of A and Ac are always small in comparison 

with those obtained for the multi-~bay frame. Initial values of A; = 

1.25 and Acj = 1.20 have been found to ensure that the method 

converges immediately in nearly every storey of every frame. Infact, 

if the simple plastic values, A = Ag = 1, are used, convergence also 

occurs rapidly in many frames, but it is generally advisable to over- 

estimate, rather than underestimate tha magnification factors, The 

reason for the low magnification factors is that the columns have to 

be selected to resist a substantial moment due to beam loading, and 

this results in comparatively low Euler ratios. In addition, as 

implied above, Ac is generally less than A, 

Referring to equations (8) to (57) in 5.2(b), it will be seen that 

initial values are also required for the quantities pe and == in orde» 

to calculate the required plastic moment for the column. pe may be 

bite feed quite simply from the initial loading, idanuiue’ thee M4, = Mo 

= 41, 4 Also . =< occurs in the second part of the expression for Cas and 

this second part is always small in comparison to the total, Therefore, 

— there is no necessity to predict x 
2 

very accurately, and a value of 0.5 

is suggested. 

Having calculated the required plastic moments, the sections are 

selected as before, and the magnification factors are calculated using 

the equations given in 5.2(a). The process is repeated until 

convergence is obtained, 

The working load elasticity condition must now be checked, and this 

is given by equation (58) and 5.2(e); i.e., 

4 

WL v 1 Hh 
aot ') + age! Sn bev < Mpp - age 

 



eS 

v" a (n,-0,)'K + (ng-op)"; x = Anat Rea = Kp(K + 193 

An approximate form of this condition may be derived in a similar 

way to that given in 6.2(b)(iv) for the intermediate storeys of the 

multi-bay frame, Consider first the values of the factors ac? and 

4 

Seats « 

The working load elasticity condition is most likely to be violated 

in frames designed for heavy wind loading. In these frames, the beam 

stiffnesses are comparatively large, and it may be assumed that x 2 1, 

The corresponding value of ase! is rt 

In addition, as the wind ratio increases, the beam distribution’ 

factor for combined load at load factor Ag, ot increases, In all 

s * . a, s 

the frames which have been designed, the maximum value of age’ in any 

storey is 1.05, Therefore, a limiting value of KeV is obtained from:- 

Qa 7 6 

ave! = Ey ee = 1208 
16@., 

KeV = - OAs 

As for the multi-bay frame, however, 

KeV = AeKeV" 

Therefore, the limiting value of Kev" is approximately:- 

deer Oia KV = Set = - 0.516 

The corresponding maximum value for the distribution factor at working 

load is therefore:- 

pe, Go 
ase ~ 5 68h. oe ArgO5 

Also, as before, the basic condition may be simplified by assuming that 

a =m, and by substituting Mpp = 7n.B; i.e., 

we + 4 ,o5{atth) P 

Rearranging, 

muh )av B 4 

IN
 7B 

3 0.5 

= 5 

{
—
 

1609 "AS name - 3 (86)
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If the expressions for B for each zone are substituted in equation (86) 

the following approximate conditions are obtained: 

ZONE 1: oa (87) 

ZONE 2: A> oat (88)   

5.6 newr + (1.4 y-1) 

2 oe ZONE 3: BSS Te ed (89). 

The limiting values of these relationships are expressed graphically 

in Figure 52, for the range 1.0 < n <1.10. These curves have been 

found to give satisfactory results in every frame, with the point (wr, 

A) lying close to the relevant curve in those cases where the analysis 

indicates that the beam is just adequate, 

Having designed all the intermediate storeys, the top storey 

beam is designed in the same way as that in the multi-bay frame, the 

simple beam mechanism being the assumed mode of failure. The top 

storey column is supplied with a reduced plastic moment greater than 

the required fully plastic moment of the beam, 

The design equations for the lowest storeys are summarized in 5.4(c). 

In this case, it may be seen that initial values are required for the 

functions Ac, eee ane: i. and vy. Again, the design of this storey 

tends to converge rapidly, and no great accuracy is required in making 

the initial estimates, The following values have been found to give 

satisfactory results:- 

/ 

Aca = 1233 Ace F623 

Bax = Osks agg =,0365 

y = 0.75; 

The procedure is similar to that for the lowest storey of the multi- 

bay frame, and convergence generally occurs with no more than two
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iterations, 

. The working load elasticity condition for this storey is given in 

5.4(a), the basic expression being identical to that for the intermediate 

storeys; i,e., 

4 

m Way - a¥,/) + aff Pumer < yp, 

In the lowest storey, however, 

  

“ fae, 6 Be EY Pe 4 ‘ 

oe cts ia $2 BRo) seen Sas 
xv" ne Sete 

where, 

yi" = (n,-o,)'K cE nes x/ = Koy + 3Kee es Ke (K ee B. 

Kpe 5 

As for the lowest storeys of the multi-bay frame, an alternative form 

of the basic condition may be derived in terms of the section properties 

q 

Ip and Zpp. Expanding age’ and aut, the condition becomes: + 

  

1 
WL = 3x/ 6 (m Hh)av 
42° 3x71 + 1 2 <MPb 

Kev! + 6 

Substituting for x’, and dividing by fy, 

WL 4 . alg ty oe 
  

    

et: 4 1 <4 y / Pb : 4 + Aga) fy(KeV! +6) 

Expanding Ke:- 

  

    

wu 1 3m’ th) ay 
tptys 1a me hh Til lee eee 

beta cRe))  “Y[TpPebe" 
Alternatively, 

E F , 
tee (G2, ple oe (90) 

[Tp   

where, 

4 

= h 5 ake ee eS Nm nav A ee 

if Top boro) ao 12fy? is fy af = dpa ae oe 

As in the multi-bay frame, due to the selection of the minimum beam 

in the lowest storey, this condition is often violated, in which case
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a larger beam must be selected, 

The exhaustive treatment that has been given to this discussion on 

the osha procedure is believed to be justified, since the design aids 

which have been developed have been tiuha to reduce the design time 

dramatically. For example, using this procedure, a thirty storey, five 

bay frame, (uleh wild be described in Chapter 8, has been designed in 

less than fifteen hours, The Author dovbts if there is any other 

"hand-method" available which will produce as eccnomical a design in 

so short a time. 

In the following chapter, the accuracy of the design equations is 

assessed by analysing a wide range of frameworks, and it is shown that 

a safe and efficient structure is always obtained,
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afeailie INTRODUCTION 

It is essential that the validity of any approximate design method 

should be examined as extensively as possible, Verification may be 

obtained by physical testing of full scale or model structures, by 

comparison with other design methods, or by the use of accurate methods 

of structural analysis. | 

The first of these alternatives, that of direct experimentation, is 

extremely useful when dealing with comparatively small structures, but 

tends to be both expensive and laborious even when applied, for example, 

to the model of a multi-storey framework. Furthermore, unless excellent 

experimental techniques are adopted, with the numerous subsidiary effects 

of introducing a "scale factor" being taken into account, the results 

obtained may often be inconclusive, and may in fact tend to obscure certain 

deficiencies in the design approach, 

The second alternative, that of comparison of design examples is 

useful when estimating the relative economy of different design approaches. 

Also, the adequacy of any design may be assessed qualitatively in this way. 

However, little information is obtained concerning the validity of the 

design equations. : 

In contrast, if the complete load-deformation history of a framework 

is obtained by using an established method of structural analysis, the 

accuracy of the method with which that fremework is designed may be readily 

assessed, This is the procedure which has been adopted in this research 

project, and which is described in the current chapter. 

In all, eleven multi-storey frames have been designed using the 

proposed method, and these have subsequently been analysed using the
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computer program developed by Majid and. Talend A description of 

this elasto-plastic analysis program has been given previously in Section 

Qeotts 

Furthermore, each frame has been designed using a fictitious range 

of beam and column sections, These are similar in form to the standard 

Universal Beams and Universal Columns, and allow the designer to select 

the exact value of required plastic moment for any section, Thus, the 

additional reserve of strength due to the "lack of availability of sections" 

is eliminated, enabling precise information to be obtained about the 

accuracy of the design equations. The derivation of these fictitious beams 

and columns is given in the following section, Later in the chapter, the 

test frames are described, and details are given of their designs and 

analyses usin:; both the fictitious sections and the Universal Beams and 

Universal Columns which are currently manufactured, 

wes THE FICTITIOUS SECTIONS 
  

Figure 53(a) shows the general dimensions of an I-section, which, 

for simplicity, is considered to consist of purely rectangular areas, The 

section is symmetrical about the major axis, xx, and the following standard 

notation is adopted;- 

the overall depth of the section, Ds 

‘B = the width of the section, 

T = the thickness of the flange. 

t = the thickness of the web. 

The section properties may be calculated in terms of these variables, The 

area of the cross-section is given by:- 

A = 2BT + t(D-2T) (91) 

The second moment of area about the major axis is given by:- 

m3 (D-T) |? -27)% 

Eas Ee oe 2eBP } nl + t(D=2t 
12 2 12 

1s Cars
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= BE": Beta T )4 +(D- 27)8 
tS Ae ee ga , (92) 
  

Figure 53(b) shows the I-section fully stressed under pure bending. 

The neutral axis, denoted by NA, corresponds to the major axis, xx in Figure 

53(a). The fully plastic modulus is equal to the sum of the first moments 

of area of the tensile and compressive "stress-blocks" about the major 

axis, M, say. Thus, considering the flange and web areas separately, A 
mm i> - 2 

Zp = M, = a[ar. Pk Oe" 
2 8 

a6 3, 

et 2 

ap = Br(pan) + Set)" (93) 

Under a combination of bending and axial load, the neutral axis lies 

somewhere between the major axis and the outer edge of the tension flange. 

If the axial force is small, the stress distribution at failure is as shown 

in Figure 54(a), with the neutral axis lying in the web. This stress 

distribution may be considered to consist of two components, one due to 

axial force, and the other due to bending, and these are given in Figure 

54(b), together with the corresponding stress-blocks, 

Let ag and hg be the area and depth respectively of the direct 

compression block, and let ap and hy be the combined area and the combined 

depth of the bending tension and bending compression blocks, If Mes is the 

sum of the first moments of area of each half of the direct compression 

block, “then, 

= 2d hg 2 M ; 265 2 

But, since the whole of the direct compression block lies in the web:- 

hd = “lg
 

Therefore, 
fe af 

aq: At 

However, considering the direct stress component,
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ae a; 

Also, by definition, from equation (80) in Chapter 6, 

  

ely 

Therefore, 

24 =. ngA 

sO that, 

2,2 
Bg oa 

/ 
Now, the reduced plastic modulus, Zp is equal to the sum of the 

first moments of area of the bending compression and bending tension blocks 

about the major axis, ‘ say. However, 

  

My = co + 7. 

and, 

M,. = Zp 

Therefore, 

/ 
= = M -M . ~ Zp — ‘A ne Zp a 

1.6.5 
/ 2yj2 ap = ap - nA 

At 

In the same form as equation (78) of Chapter 6, the ®educed plastic 

modulus is given by:- 
; 

Zp = Zp - cn? ( 9d.) 

where, ' \ 

A? 

Ca Tt 

This equation only applies for the case when the neutral axis cuts 

the web. Referring to Figure 5(b), it may be seen that the neutral axis 

coincides with the edge of the tension flange when:- 

hg _ D-2t 
eo 2 

Substituting for hg, the condition is:-



2060 = 

Substituting for ag, 

nA = t(D-2T) 

i.e., if the critical value of n is denoted by n’, then, 

nf = 2(D-22) 
A 

If n<n/, then equation (94) may be used to calculate Zp. 

If n > n’, then the neutral axis lies in the tension flange, as shown in 

Figure 55(a). The equivelent stress distribution and corresponding stress- 

blocks are given in Figure 55(b). ‘The expression for Zp’ is derived as 

follows. As before:- 

ag = nA 

Therefore , 

ap = A - ag = A(1-n) 

In this case, from Figure 55(b), 

ag = t(D - 27) +B [hg - (D - 2T)] = nA 

Therefore, 

hy= “ Be - 27) - t(D - 27) + na] 

Also, 

hp =D =,hg 

a 

wip Bp RP Bak Bb = Me 2.5 ie oh (2D - hp) 

Since Zp/ = Mo? substitung for ap and hy from above, 

Zp/= ete (D mr hg) 

Substituting for hg, 

oe Abo [> + : [B(D - 27) - 4(D - 20) + nal 

i ig(1-n){ BD + BOD = 27) - t(D - 27) + nt | 

Alternatively,
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Zp! = (tn) x [2000 = 7)"- 4(D - 2n)| + | 

In the same form as equation (79) of Chapter 6, 

Zp!’ = d(1-n)(e+n) (95) 

where, 

Soa 1 Oak eee TZ Ee -7T) - t(D - 2n)| 

Equations (91) to (95) do not apply exactly to the standard range of 

Universal Beams and Universal Columns, since they have been derived sdbudaus 

that the cross-section consists entirely of rectangular areas, The 

Universal Beams are manufactured with a flange taper of 5°, and with a 

fillet between web and flange. Nevertheless, if the properties of any 

Universal Beam are calculated using these equations, the values are always 

schavete to within one per cent of the true values. When epplied to the 

Universal Columns, the difference is negligible, since these members are 

manufactured with parallel flanges, and therefore only the effect of the 

fillet is ignored, 

Consider first the development of a range of fictitious beam sections. 

From the standard tables‘ 2°) » it has been found that all the Universal 

Beams are dimensionally similar, and that the following relationships 

between the basic dimensions, D, B, T and t, are approximately true for 

the majority of sections:- 

Do =e 5D 

De = 4li, DG 

B= 13T 

Alternatively, B, T and t may be expressed in terms of the single 

Variable, Ds i.e <5 

B = 0.4D 0. 

B z 
T a. 0,0308D
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L 
t= oo 0,0205D 

If these values are substituted in equations (91), (92) and (93), the 

following expressions are obtained:- 

A = 0.04387 D? (96) 

I = 0.007197 D# (97) 

Zp= 0.01645 D8 (98) 

not obtans (901: (97) and (98) therefore represent the values of A, 

I and Zp of an infinite range of fictitious beams, all dimensionally 

identical, and similar in form to the majority of the Standard Universal 

Beams. For any value of D, an appropriate set of section properties may 

be obtained. 

Consider, for example, the fictitious section denoted by D = 15in. 

This is found to be similar to the 15 x 6 x 35 U.B.(section 10 in Table 1); 

as shown below. The properties of the real section are given in brackets:- 

D = 15in.(15.00); B = 6in.(6.000); T = 0.5in.(0.490); t = 0.333in.(0.306); 

A = 9,86in? (10.29); I = 364in¢ (385.5); Zp = 55.6in? (58.5); 

Equations (94) and (95), which give the values of reduced plastic 

modulus, are not required for the beam sections since the axial force in 

these members is assumed to be negligible. 

The variation of A, I and ms Wath D for the fictitious beams is given 

in Figures 56(a) and 56(b). During the design of any storey, the beam is 

selected so that its value of Zp is exactly equal to the required value, 

ZPp. For example, if it was found that zpp = 50in%, then, from Figure 

56(a), the selected beam would have a depth given by D+ 14,5in. For this 

value of D, from the same figure, A = 9.2in®, and I = 320in? 

The fictitious column sections have been derived using the
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relationships:- 

D=B 

7 pots 

B= 127 

Again these have been assumed from inspection of the standard range 

of Universal Columns, Expressing B, T and t in terms of D:- 

Be =D) 

2 ee 1a > 0.0844D 

t= rie = 0.0521D 

Equations (91), (92) and (93) become::- 

A = 0.2100 D? (99) 

T: =.0,0576°)* - (100) 

Zp= 0.0855 D8 (101) 

Also, for calculating the reduced plastic modulus, Zp’, from 

equations (94) and (95), the factors c,d,e and n/ become:- 

c = .2118 D®; ad = .011025 D®; e = 8.52h; n’ = 0.207; 

Therefore, if n'< 0.207, from equation (9), 

Zp! = Zp - .2118 D®n® (102) 

If, however, n > 0,207, from equation (95), 

Zp! = .011025 D8(4-n)(8.52 + n) (103) 

Equations (99) to (103) represent the section properties of an 

infinite range of fictitious columns, which as for the beams, are all 

dimensionally identical, and which are similar to Sek of the Universal 

Columns, 

In order to select the appropriate column, the procedure is similar 

to that described for the Universal Columns in Section 6.2(b)(ii). 

Figures 57(a) and 57(b) have been constructed from equations (102) and 

(103), for a yield stress of 35.84 kips per sq. in., and show the variation 

in reduced plastic modulus with axial load for different values of D, These
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curves correspond to those given for the Universal Columns in Figures 

48(a) and 48(b). Thus, for any column, the point (2p.,A,P) is plotted on 

the graph. The depth of the required section may be estimated quite 

accurately by linear interpolation between the values corresponding to the 

lines above and below the point. Knowing D, the section properties A, I 

and Zp are then obtained from Figure 58(a) and 58(b), which represent 

equations (99), (100) and (101). 

For example, suppose that during the design of a particular storey, 

it was found that zpc;, = 40in’, and \4P. = 200 kips. Then, from Figure 

57(a), it may be seen that the lower column in this storey would require 

a depth in the range 8.5in. < D < Yin. By interpolation, in the direction 

of the "broken" ites which cut the reduced plastic modulus curves, it is 

found that D = 8.61in. Then, from Figure 58(a), for this value of D, A = 

15.64n<, L = 207in*;: and: Zp = 55in® 

Thus, using the Pictitious sections, a complete set of beams and 

columns may be selected for any framework, and each of these has the precise 

strength given by the design equations, If such a frame is analysed, then 

any violations of the design criteria, or any excessive reserve of strength, 

may be attributed directly to deficiencies in these equations, 

In the following section, a description is given of the range of 

frames which has been designed with both these fictitious sections and 7 

with the Universal Beams and Universal Columns, 

7.3. THE TEST FRAMES 

In order to test the validity of the design equations, eight multi- 

bay and three single-bay frameworks were designed, These frames were 

deliberately devised to show the effect of the variation of each individual 

design eden tar on the accuracy of the design method, and the design loads 

and geometry of every frame are summarized in Table 7. The characteristics 

of each frame will now be discussed briefly, and any deviations from the



  

  

  

  

  

  

  

  

  

  

  

  

  

                      

Number | Number of Beam Column Frame eee Wind 

Frame | of bays,| storeys, lengths,| heights, | spacing,| w (k/sq.ft.) loading, Frame description 

r q L (#t.) | h (ft.) S (ft.) eee p (k/sq.ft.) 

1 Zz Pt 26 14 18 pa 201°25 8 storey, 2 bay; * 

2 h 40 25 128 20 ce. 025 10 storey, 4 bay; 

5 de 3 8 35 42 20 es gee 020 fe aie i 

ffs [fo [os [3 [2 | «© Poo Pe Se 
6 : 8 25 12 20. |— oe —— 020 ee oor; 

f 6 > 4? = a a a ee ee 

: 3 : ee : ts mes ee: es ee 

2 9 1 h 30 12 20. | one .030 : storey, ae bay; * 

) ; 7, Single bay 3 40 ‘ 6 30 42 20 eau _~ .020 bes oad; Ys 

et at : - a 20-8 opr Pecoerar g 
  

is See text. 

Design parameters for eight multi-bay and three single-bay test frames, 

TABLE 7 

 



- 165 - 

normal design procedure will be described, 

Frame 1:- 

This frame is similar to an eight storey, two bay frame with unequal 

bays, which has been designed previously by several other research 

(49,5758) workers » and which will be described in the following chapter. 

In this case, however, the bays were both assumed to be equal, Also, in 

deriving the initial design loads, the "live-load reduction" was included 

for the design of the columns, since the example was originally to be used 

for comparison purposes. The following floor loads were assumed: - 

dead load = .080 k.per sq. ft. 

Idive ad oad. O50 per iq... it, 

Apart fron the calculation of the column loads, the standard design 

procedure was used, 

Frame 2:- 

This is the ten storey, four bay frame, described previously in Figure 

50, which was used in Chapter 6 to illustrate the design procedure, It 

was chosen in order to verify the design method for a comparatively large 

framework containing several bays. Although, of course, much larger frames 

do exist, they are difficult to analyse with an accurate computer program, 

and this particular frame was the largest of those which were designed 

and subsequently analysed, 

Frames 3,4.5 and 6:- 

These four frames all contain eight storeys and three bays, and in 

each case, all but one of the design parameters are identical. Frames 3 

and 4 were chosen to represent typical frames with tall columns and long 

beams respectively. Frames 5 and 6 were devised to demonstrate two 

extreme loading conditions, those of heavy wind loading and heavy beam
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loading. ~ The value'of p = .040 k. per sq.’ ft. fox Frame 5 is unlikely to 

be exceeded in any normal design. In fact, this magnitude of wind loading 

is greater than the maximum value recommended in CP3, Chapter V, (1952) 659) , 

Similarly, the value of w = .250 k. per sq. ft. for Frame 6 represents a 

very heavy intensity of floor loading. 

All these four frames were designed using the standard procedure in 

Chapter 6, 

Frame /:- 

The four storey, six bay frame was selected in order to test the 

accuracy of the method when applied to a frame in which the design is 

yovarited by the vertical loading, and in which the instability effects 

are small, 

Frame 8:- 

This eight storey, three bay frame contains storeys of different 

height, and was devised to test the generality of the design equations, 

Starting at the top storey, the column heights are as follows:- 12,15, 

4212, 0 42 512,150 ts 

Frame 9:- 

The four storey, single bay frame was originally designed by 

(46) Heyman » and will subsequently be used for comparison purposes in 

Chapter 8. The loadings given in Table 7 are those adopted by Heyman, and 

in order to simulate his design, the beam loads were calculated assuming 

that each beam carries half the loads on the adjoining floor panels. Thus, 

in every storey, the total uniformly distributed load on each beam is equal 

to 60 kips. Also, the applied wind loads at each beam level were assumed 

to be equal to 7.2 kips, including the lowest storey, with 3.6 kips 

applied at the top storey. Otherwise, the standard design procedure was
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used. 

Frames 10 and 11:- 

The geometry of both these six storey, single bay frames is identical. 

Frame 10 represents the case of heavy beam loading, and Frame 11 the case 

of heavy wind loading, It may be seen that the basic wind ratio in any 

storey of Frame 11 is four times that in the corresponding storey of Frame 

10, [The same is true of Frames 6 and 5 respectively of the SM £4 bay range |. 

The following two sections contain the results obtained from the 

designs and analyses of these eleven frames, for both the Fictitious sections 

and the standard Universal Beams and Universal Columns, This information 

is summarized at the end of the chapter, 

T atts DESIGN AND ANALYSIS USING THE FICTITIOUS SECTIONS 
  

In order to analyse the frameworks, it was necessary to idealize the 

uniformly distributed beam loading as a series of point loads, since the 

computer program demands that loads may only be applied at distinct joints. 

The loading pattern which was assumed, and the corresponding "artificial" 

joints are shown in Figure 59(a). From Figures 59(b) and 59(c), it may be 

seen that there is little difference between the true and assumed bending 

moment diagrams, either at working load, when the beam is fully elastic, 

or at ultimate load, 

Under combined load, with the wind acting from the left, say, there 

is a possibility that the span hinge will form at joint 2, rather than at 

joints 1 or 3 as predicted in the design. This has occurred in the analyses 

of several frames, and although this hinge pattern is not assumed in the 

design method, it is in fact a valid mode of failure when a uniformly 

distributed load acts on the beam. It will be remembered from Section 

3.4(d), in which the basic design equations have been criticised, that in 

practice the span hinge "shifts" from the centre of the beam to the windward
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end as the wind ratio increases, The idealized loads allow the formation 

of this hinge in an intermediate position, and as such represent a more 

realistic distribution than the more popular system in which a single load 

of 7 is applied at the centre of the beam, together with loads of = at each 
k 

end. 

A slightly different system of loads to that given in Figure 59(a) 

was used in the analysis of Frame 1. As for the other frames, loads of : 

were applied at the "quarter-points" on the beams, but the loads at the 

top of the columns were adjusted in order to allow for the fact that these 

members were designed assuming the "live-load reduction", .This was simply 

done by reducing the applied load at each of these locations by the same 

amount as that assumed in the design, Without this modification, the 

analysis would not have been a realistic check on the adequacy of the 

design, 

The results obtained for the multi-bay and the single-bay frames will 

be considered separately. 

74(a) MULT I-BAY FRAMES 

The fictitious sections obtained during the design of each multi-bay 

frame are given in Table 8, where each section is defined by its overall 

depth, D. If required, the corresponding section properties may be derived 

from Figures 56(a) and 56(b) for the beams, and from Figures 58(a) and 58(b) 

for the columns. The results of the analyses of these frames are discussed 

below. 

Combined load analyses (Design load factor, Ag = 1.4) 
  

Figures 60(a) and 60(b) show the order of hinge formation obtained 

from the combined load analyses of Frames 5 and 6 respectively. These 

hinge patterns are typical of those for any multi-bay frame designed by 

the proposed method, 

Frame 5 was designed to carry very heavy wind loading, and accordingly



  

  

    

  

    

  

  

            

    

Storey number (from the top) 
Frame |Member 

1 2 3 fs 5 6 7 8 9 10 

b 13.20 ]13.20/13.20]13.60]14..00|14..45/15.1014 3,5). 

4 Ci 6.30] 6.30] 7.72] 8.83] 9.66]10.49]11.14(13.15 

Ce 7.69} 7.69] 7.69} 7.69] 7.98] 8.36] 8.89] 8.89 

b 9 40)11.90)12.22112.88/13.48114.20] 14.88) 15,42115.95 112.8) 

2 Ci 5.88] 5.88] 7.51] 8.721 9.73}/10.52]411.17111 .82/12.37 114.84. 

Ce 5.50| 6.27| 6.50] 7.07] 7.56] 8.15] 8.69] 9.16] 9.59] 9.59 

b 10.20]12.80]13.76|14.62/15.60/16 .42117.29| 14.87 Oe ee 

x Cu Let (ial elt Oe9iF| WOn O24 e260 Ai 2.884 648 a 5 

Ce 5.95| 6.95] 7.38] 8.05] 8.78] 9.40/10.00)10,00)'3 

b 13.43|16 .98]16.98]16 .98/17.26|17.78|18.56|16.98]@  “@ 

4, Ci 6.65] 6.65] 8.47]10.04]11 .}12.67]13.50) 15.31 an in 

Ce 7.84.| 8.61] 8.67] 9.13 9.66] 10.27]10.9h) 10.94] 8 . 

b 10.20 112.80]13.61}14..42115.26116.21 116 .9.| 14.48 i 

5 | oc; | 7.02] 7.02] 8.78/10.09]44.16|11.99/12.75 116.61 ‘ : 

Ce 5.95| 6.90] 7.29] 7.99] 8.6n| 9.37] 9.961 9.96) 

b 42.80 116 .12116 .12]16.20|16.88/17.83118 .64116.12 f < 

6 Ci 7.50] 7.50] 9.60]11.48]13.01]14.15]15.24147.05 j : 
oS 

Ce 1.99 | 8 elSl 88919 51-141 O01 47221115 202142202 a 

b 10.20 |12.60' 42-8014 2580 x 

Fok: bi.| Be67) 5.67 (07 Ba ebise 2 

Ce 5.95] 6.66] 6.77] 7.10 3 4 

b 10.20 |12.80|13.30]13.72 114.08 | 14..34|15.70] 14.00 : 

8 | ec, | 6.75] 6.75| 8.15| 9.39 9.90|11.35]12.07]15.00] 8 : 

ce | 5.95] 7.02| 7.02] 7.61] 7.89] 8.77| 9.38] 9.38/                       

Fictitious sections selected for Frames 1 to 8 (Multi-bay); 

each section is defined by its overall depth, D ins. 

TABLE 8 
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the majority of its storeys were found to lie in Zones 2 and 3, so that 

the combined loading fee generally dictated the required section sizes, 

This is reflected in Figure 60(a), where it may be seen that failure occurs 

shortly after the design load factor, A» = 1.4, is attained. 

In contrast, the design of Frame 6 was dominated by the vertical 

loading case, and several storeys were found to lie in Zone 1, This is 

also indicated by comparison between Figures 60(a) and 60(b). Frame 6 fails 

at a higher load factor than Frame 5 under combined loading, and plasticity 

develops in every beam much later. 

The results of all the analyses of the multi <bay frames are 

summarized in Table 9, Considering just the combined load analyses, the 

following general observations may be made:- 

(1) Every frame fails within the range 1.12 < » gg ae 

Thus, the first design criterion, ae 21.4, is always satisfied, 

and none of the frames has an excessive reserve of strength. 

(2) In seven of the frames, there are no plastic hinges in the beams 

below working load, so that the final design criterion is 

satisfied. Also, in each of these frames, the first hinge is 

found to occur in the lowest storey beam. During the design of 

Frames <1; :2,°5,7and-o. this beam was increased in order to 

satisfy the "working load elasticity condition", and, referring 

to the results for these particular frames in Table 9, it may be 

seen that the condition gives an extremely accurate solution, the 

first hinges forming 1n the ranged.009 < ’-< 45055. 

In Frame 5, however, plastic hinges occur just below the working 

load in Storeys 2 and 3, at load factors 0.991 and 0.996 

respectively. As stated previously in Section 6.2(b)(iv), during 

the design of this frame, the "working load elasticity condition" 

for the intermediate storeys indicated that these two beams were 

' just satisfactory, whereas the analysis indicates that they



  

Combined load analysis; Vertical load analysis; 

  

  

  

Frame Ag = 1.40; Me = 140753 

number No, of | No. of | First beam | First column | No. of beam’ | No. of column Total First beam 

rT beam column | hinge forms | hinge forms hinges below | hinges before Ap number hinge forms 

hinges. | hinges, | at:- ati- working Joad 5h A> = 4 34.0. of hinges, | at:- 

4 TA /5 1s. 2 1.0114 1.465 0 0 tet o 26 1.233 

2 1.41.0 dd, 4 1.033 1.4.38 0 0 1.734 28 14252: 

3 A Cu 2S 29 fo) 1.009 ~ 0 ) 1.731 16 7 T.21G 

4. 1 469 27 8 1.04.9 1.4.50 0 0 1.723 a) 1.297 

5 41 shez Jt 2 05991 4 2 2 0 leo 7o1 16 A252 

6 1.488 27 2 055 1 4.88 0 0 727 56 36 15289 

ih 1 A492 26 7 1.050 1.3596 0 4 To: (290 18 1.247 

8 1.4.63 29 0 15022 ~ 0 0 1.730 22 4.24.0                       

Analysis results for Frames 1 to 8, designed with fictitious sections. 

[Collapse Load=factor = 

TABLE 9 

el 
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should have been increased, However, the error is very small, 

and only a marginal increase is required. Furthermore, the 

akbrdee loading conditions on this frame are unlikely to be 

encountered in practice. 

(3) The third design criterion, which demands that there shall be no 

plastic hinges in the columns below the design load factor, is 

satisfied in all but one of the frames, In the remaining case, 

ieding 7 (the four storey, six bay frame), a hinge occurs at A = 

41.396 at the base of the leeward external column of Storey 3. 

Again, the deficiency is very small, and, as for Frame 5, this 

violation of one of the subsidiary design criteria has little 

effect on the overall strength of the frame. This particular 

frame does in fact have a higher c.llapse load factor than any 

other, and this is as expected, since the complete design was 

found to*lie-in Zone 1, 

Vertical load analyses (design load factor, A4 = 1.75) 
  

The hinge patterns from the ertioet load analyses of Frames 5 and 6 

are given in Figures 61(a) and 61(b) respectively, and these may again be 

seen to reflect the manner in which each of these frames was designed. 

Since the combined loading case dominated the design of most of the 

storeys in Frame 5, these storeys have a large reserve of strength under 

vertical load alone. In contrast, Frame 6 exhibits an extensive pattern 

of plastic hinges under this loading. Both frames nevertheless fail at 

approximately the same load factor, since they both contain at least one 

beam for which the vertical loading case was the critical design condition, 

Failure may occur in any frame due to the localized collapse of a single 

member, even if every other member is still fully elastic, 

Referring again to Table 9, the following general observations may be 

made concerning the vertical load analyses of all the frames:-
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(1) Under vertical load alone, all eight frames collapse due 

to the formation of a simple beam mechanism in the external 

bays of the top storey, at a load factor in the range 1./23 

< rp < 1.736. Thus, in theory, every frame fails to satisfy 

the second design criterion, i 1.75, despite the fact pr? 

that the mode of failure is identical to that assumed for 

the design of the top storey. The reason for this is that 

ip design equation for the top storey beam, By = Ay a, 3 

based on the "simple plastic" assumption that the structure 

remains completely undeformed up to collapse. In this 

particular case, the external columns in the top storey are 

comparatively flexible. Quite large deformations occur at 

the top of these columns long before the collapse load factor 

is reached, and these lead to slightly premature failure. 

(2) In all the frames, the first plastic hinge forms in the 

range 1.218 < \ < 1.297, and no hinges occur in the columns 

under vertical load alone. Thus, the third and fourth design 

criteria are always satisfied for this loading case. 

7.4(b) SINGLE-BAY FRAMES 
  

The fictitious sections obtained for the three single-bay frames are 

given in Table 10, and the analysis results for these designs are summarized 

tn sPablesd < 

Combined load analyses:- 
  

The hinge patterns obtained for Frames 10 and 11 are shown in Figures 

62(a) and 62(b). These are typical of those obtained for any single-bay 

frame, and again reflect the manner in which the frames were designed. 

Frame 11, which was designed for heavy wind loading, fails at a lower load 

factor than Frame 10, which was designed for heavy beam lozding. 

From Table 11, it may also be seen that the first design criterion,



  

  

      

  

                

Storey number (from the top). 
Frame |Member 

+ 2 2 Ly > 6 

b 15.86 |15.86116.68 116.80 

Ce 9250" -9..50)|9.50110592 

b 17 .48117.48117 .48/18.10 18.65 [18,00 

Ce 1052514 0:.251}1 0.25110 .49:114-555.14-5..60 

b 13.84.114..55116.00/17.85 119.50/16.63 

Tce | 8.12] 8.12] 8.86] 9.91 110.99]14.95       

Fictitious sections selected for Frames 9 to 11(Single-bay) ; 

TABLE 10 

  

Frame 

Combined load analysis; Vertical load analysis; 

  

  

  

Xe = 1.40; Ag = 1.753 

number No, of | No. of | First beam | First column | No. of beam No. of column Total First beam 

Ap beam column | hinge forms | hinge forms | hinges below | hinges before Mee number hinge forms 

hinges. | hinges. | at:- ati- working loads). =a’ 4.0. of hinges. | at:- 

9 1.493 7 1 1.046 1 4.93 0 0 tehoa 5 1.510 

10 1 499 co 2 4 OL, 1.386 0 1 Ta Foe 9 1.509 

11 1.396 10 3 1.015 1 «See 0 2 1.730 a 1.701                       

Analysis results for Frames 9 to 11, designed with fictitious sections, 

[ Collapse load factor = Ap] 
TABLE 11 
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Ap 2/142, 18s satisfied for Frames 9 and 10, but is violated slightly in 

Frame 11, collapse occurring in this case at >} = 1.396. Also, in all three 

frames, there are no early beam hinges, so that the third design criterion 

is satisfied. As in the multi-bay frames, the lowest storey beam in each 

of these single-bay frames was increased in order to satisfy the "working 

load elasticity condition", and the accuracy of this condition is again 

confirmed, 

In Frames 10 and 11, plastic hinges occur in the column shortly before 

the design load factor is reached, so that the final design criterion is 

violated, However, as for the multi-bay frames, the Sion i very small, 

the earliest of these hinges occurring at X = 1.386 ( within one per cent 

of nay. 

Vertical load analyses:- 

Figures 63(a) and 63(b) give the hinge formation for Frames 10 and 11 

under vertical load alone. As expected, Frame 10 develops more plasticity 

than Frame 11, since its design was controlled by the vertical loading case, 

As before, each frame fails slightly before the design load factor, A, = 

1.75, with the formation of a simple beam mechanism in the top storey, and 

again this is due to the Hines fiexteiitty of the top storey columns, The 

values of Mp for each frame are given in Table 11. The remaining design 

criteria for this loading condition are satisfied in each case, 

sD DESIGN AND ANALYSIS USING UNIVERSAL BEAMS AND UNIVERSAL COLUMNS 

As in the previous section, the results obtained for the multi-bay 

and the single-bay frames will be considered separately. 

7.5(a) | MULTI-BAY FRAMES 

Referring back to Table 8, which gives the fictitious sections for 

each multi-bay frame, and to Table 9, which gives the analysis results, it 

may be seen that both the designs and the analyses of Frames 3 and 5 are



  

Storey number (from the top). 
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The properties of the Universal Beams are given if Table 1, 

and those of the Universal Columns are given in Table 2, 

Real sections selected for Frames 1, 2, 5, 6, 7 and 8, 

TABLE 12 

  

 



  

Combined load analysis; Vertical load analysis; 

  

  

  

Frame Nao a ee Need o/s 

number No. of | No. of | First beam | First column | No. of beam No, of column Total First beam 

Se beam column | hinge forms] hinge forms hinges below | hinges before @ number hinge forms 

hinges. | hinges. | at:- ati- working load st Ae=-4 210% of hinges.| at:- 

4 1.553 18 4 41.061 4.502 0 0 41.948 30 4.1.09 

2 1.4.57 oe 2 1.151 1.4.57 0 0 1.971 26 1.4.51 

a 1.521 29 6 15055 Angee 0 0 2.016 18 qt 5S 

6 1.596 27 5 1.136 1.500 0 0 1.851 35 1 4.03 

ie 1.71.0 2h. 10 1.326 1.668 0 0 2.015 dd 42185 

8 1.542 25 6 1.075 1.475 0 fo) 25045 30 1.463                       

Analysis results for Frames 1,2,5,6,7 and 8, designed with real sections, 

[Collapse load factor = rp] 

TABLE 13 
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very similar, The reason for this is that both frames have been designed 

for high values of wind ratios Frame 3 containing tall columns, and Frame 

5 being required to withstand heavy wind loading. The results obtained for 

either frame add little to the information already supplied by the results 

for the other, Therefore, Frame 3 has not been redesigned using the 

Universal Beams and Universal Columns, In the same way, Frame has not been 

redesigned, since it is similar to Frame 6, 

The "real" sections obtained for the remaining six multi-bay frames 

are given in Table 12, The reference numbers are those adopted in Tables 

1 and 2 of Chapter 6. The analysis results are given in Table 13, and are 

discussed below. 

Combined load analysis:- 

Figures 6)(a) and 6(b) show the hinge pattern for Frames 5 and 6, and 

these may be compared directly with those given previously in Figures 60(a) 

and 60(b), which referred to the design with fictitious sections, It may 

be seen that each frame fails in a very similar manner when designed with 

the two different types of section, The use of the real sections idoveases 

the collapse load factor in each case. As before, comparing Figures 6)(a) 

and 64(b), Frame 6, which was designed for heavy beam loading, has an 

additional reserve of strength when analysed under combined load, and 

plasticity develops in the beams much later than in Frame 5. 

The results given in Table 13 for the combined load analyses indicate 

that all the design criteria are satisfied when the frames are designed 

using the real sections, Frame 7 has a particularly high value of Ape since 

its design was governed entirely by the vertical loading case. Also, the 

reason for the comparatively low collapse load in Frame 2 is that failure 

occurs in this case due to the formation of a "joint mechanism" at the 

junction of the beam and the leeward external column in Storey 9, Plastic 

hinges form simultaneously in all three members at this location, with the
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Frame 5 - Real sections — Combined load analysis . 
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result that the stiffness of the joint, and therefore that of the whole 

frame, suddenly becomes zero. However, although unexpected, this is a 

perfectly temtinate mode of collapse, since the hinges in the columns 

do not form below the design load factor. 

Vertical load analyses:- 

The hinge patterns obtained due to vertical loading on Frames 5 and 

6 are given in-Figures 65(a) and 65(b). Comparing these with Figures 61(a) 

and 61(b), it may again be seen that the frames fail in a similar manner 

whether designed with the real or fictitious sections, 

As expected, Frame 5 has a considerable reserve of strength under this 

loading, since only the top two beams were designed to fail by a simple beam 

mechanism, Both these beams were supplied with a fully plastic moment 

considerably greater than that which was reyu*red, This indicates that 

the "availability of sections" can have a large effect on the collapse load 

factor of any frame, For example, Frame 7 collapses under sical ina 

alone at AP = 2.015, despite the fact that every beam of this frame was 

designed to fail by a simple beam mechanism, 

Also, in Frame 5, the "beam mechanism" in the top storey eventually 

occurs when a plastic hinge forms in the column, as shown in Figure 65(a). 

This is again due to the fact that the beam is considerably stronger than 

required, The column was selected to have a reduced plastic moment greater 

than the fully plastic moment of the beam at Ay = 1.75, but, at higher load 

factors, this reduced plastic moment becomes smaller than that of the beam, 

and the column becomes the potential position for a plastic hinge, 

Nevertheless, no hinges form in the columns below the design load 

factor, and, as may be seen from Table 13, every frame has the required 

strength.
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7.5(b) SINGLE-BAY FRAMES 

The Universal Beams and Universal Columns obtained for Frames 9, 10 

and 11 are win in Table 14. The analysis results are summarized in 

Table 15, and are discussed below, 

Combined load analyses 

Figures 66(a) and 66(b) show the combined load analyses of Frames 10 

and 11. These.may be compared with Figures 62(a) and 62(b), which correspond 

to the designs for these frames using the fictitious sections, 

Table 15 indicates that all three frames fail at a value ‘of A, above 

the design load factor. Also, there are no hinges in the beams below 

working load, and the early column hinges, which formed in the neti bent 

sections, do not appear in these designs, Thus, all the design criteria 

are satisfied, 

Vertical load analyses:- 
  

The hinge patterns for Frames 10 and 11 under vertical load alone are 

given in Figures 67(a) and 67(b), which correspond to Figures 63(a) and 

63(b). Frame 11 again fails by the simple beam mechanism in the top storey, 

the remaining storeys being fully elastic at collapse. In contrast, five 

of the beams in Frame 10 contain plastic hinges, the design of this frame 

being largely controlled by this loading case. 

As shown in Table 15, each frame attains the design load factor, 4, 

and all the design criteria are satisfied. 

7.6 CONCLUSIONS 

By using the accurate elasto-plastic analysis program to test a wide 

range of frameworks designed using the fictitious sections, an extremely 

critical appraisal of the validity of the design equations has been made, 

In general, it is seen that these equations predict the required sections 

very accurately, although slight violations of the design criteria do



  

  

    
  

  

                      

ivciied Meeibadl Storey number(from the top). 

1 2 3 4 5 6 

9 b 12: Ve 135 5 

Ce | 39 39 a 42 

40 b ay abe: 15; 44 tS 1h 

Ce {42 42 42 42 16 Ag 

44 b aL, 8 2 4). HBS 15. 

Ce 36 36 at 1.0 42 51 

Real sections selected for Frames 9 to 11. 

TABLE 14 

  

Combined load analysis; Vertical load analysis; 

  

  

    

Frame ha = ol se0s eae = ol De 

number No. of | No. of | First beam: | First column} No. of beem No. of column Total First beam 

” beam column | hinge forms |} hinge forms | hinges below | hinges before AP number hinge forms 

hinges. | hinges. | at:- ati:- working load. | A= 1.40. of hinges, | at:- 

9 1.678 7 2 1.205 1.635 0 0 + aot 2 1.654. 

10 1.526 10 4 q7125 122 0 0 17 It 1.4.96 

14 1 4.96 14 2 1.102 1 td 0 0 1 842 3 1.802                   
  

Analysis results for Frames 9 to 11, designed with real sections. 

[Collapse load factor = 

TABLE 15 

rp 
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occur. However, this is to be expected, since the equations have been 

developed using a variety of approximations, whereas extremely sensitive 

techniques ide been Gaet in order to assess the degree of error inherent 

in their use. 

In practice, when designed with the standard Universal Beams and 

Universal Columns, it has been shown that every frame is supplied with an 

additional reserve of strength, and that all the design criteria are 

satisfied, In general, it may be a5 athe that the collapse load factor of 

the majority of frames designed by the proposed method will lie 

approximately in the range 1.5 < Me < 4.6 for combined loading, and 1.8 < 

ap < 2.0 for vertical loading. Considering the approximate nature of the 

method, this is believed to be a very satisfactory result, and it is not 

considered to be necessary to modify the design equations further in order 

to compensate for the slight deficiencies which arise in theory. 

In the following chapter, the economy of the proposed method is 

examined by comparison with certain frameworks which have been designed by 

other methods, It is shown that a competitive design is always obtained,
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CHART ER: S 

DBS GON. BeC0 N07M. Y 

8.1. INTRODUCTION 

In the previous chapter, it has been shown that the proposed 

design method may be expected to produce an adequate set of beam and column 

sections for any regular framework, The resulting structure is not only 

safe, but is also extremely efficient, for it satisfies all the original 

design criteria, without having an excessive reserve of strength. 

However, although the exhibition of "structural efficiency" is 

attractive, the popularity of any design method depends primarily on its 

ability to produce an economical design. This is the subject of the current 

chapter, 

Four multi-storey frames have been designed by the proposed method, 

and in each case the sections obtained have been compared with those 

predicted by alternative methods, The design examples consist of one 

single-bay frame, a completely regular multi-bay frame, and two slightly 

irregular frames, Each of these is considered in turn in the following 

four sub-sections,. 

8.2% FOUR-STOREY, SINGLE-BAY FRAME 
  

The first design example is the four-storey , single-bay frame which 

was used as one of the test frames in Chapter 7 (previously referred to as 

(46) Frame 9). This frame was originally designed by Heyman » uSing the loads 

shown in Figure 68, Table 16 gives the sections selected for the frame 

using the proposed design method, the automatic elasto-plastic method 

devised by Majid and Melersonte » and Heyman's method. The following 

observations may be made from the table:- 

(1) The proposed method yields slightly larger beams in Storeys 3 and 

4 than Majid and Anderson's method. Otherwise, the two designs
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Proposed design method |Majid and Anderson's method}Heyman's method 

cen! Section Zp (in?) Section Zp (in?) Section Zp (4in8) 
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Frame 
5.07 Tons 4.91 Tons 5.64. Tons 

weight       
  

All sections are Universal Beams or Universal Columns 

Four-storey, single-bay frame; selected sections. 

TABLE 16 
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are identical, and the difference in the weights of the two 

frames is less than 4%, 

(2) He panda frame is approximately 12% heavier than that obtained 

by the proposed method, the beam sections being considerably 

larger in each storey. 

Figure 69 shows the order of hinge formation for each of the designs 

under combined loading. It may be seen that every beam in Heyman's frame 

[Figure (c)] remains elastic up to the collapse load factor, hp = 1 10 3 

which is considerably greater than the design load factor, Ag = 1.4. 

Although the collapse load factor for the Author's design [Figure (a)], 

AR = 1.68, is also quite high, there is a distribution of plasticity 

throughout the frame which compares very favourably with that shown for 

Majid arid Anderson's frame [Figure (b)], 

The vertical load analyses for these frames are not shown, since they 

add little to the Tis chlator . Unter: this loading, the frame designed by 

the proposed method fails at Ap = 1.90, due to the formation of a simple 

beam mechanism in the top storey, Majid and Anderson's frame fails in the 

same way, at Ap = 14Gb. 

85. THIRTY-STOREY, FIVE-BAY FRAME 
  

and 
(16). This large framework was also originally designed by Heyman 

the frame geometry and design loads are shown in Figure 70. As for the 

previous design example, these loads were devised from the following load 

intensities:- 

Dead and live load = 0.100 kips per sq. ft. 

Wind. load = 07030: kips per sq. ft, 

In performing his design, Heyman calculated the column loads using 

the nppyackoed reduction" permitted in cp3659) | However, this reduction 

was in fact applied to the total dead load plus live load, and although 

this is an incorrect procedure, the same loads were assumed in the Author's
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design in order to provide a fair comparison between the two methods, 

Also, it was assumed that the columns were to be continuous over at least 

two storeys. The sections obtained by the two methods are given in Table 17. 

The total weight of Heyman's frame is 235.9 Tons, as opposed to 239.9 

Tons for the frame designed by the proposed method, These two weights are 

extremely close, although referring to Table 17, there is considerable 

variation between the sections selected by the two methods, Since the 

nnipbled method has been amply verified in the previous chapter, it may be 

seen that Heyman's method tends to overestimate the section sizes in the 

upper storeys, but underestimates them in the lower regions of the frame, 

Unfortunately, it. has not been possible to analyse these designs, 

since the size of the frame prohibits the use of the computer program, 

8.4. EIGHT-STORSY, TWO-BAY FRAME 

The geometry and design loads for this frame are shown in Figure 71. 

In order to allow for the variable bay widths, a slightly modified 

procedure was used to obtain an:economical set of set of sections:- 

8.4(a) MODIFIED DESIGN PROCEDURE 

(a) Calculation of the initial design loads:- 

(1) The shear force in the internal column of each storey was assumed 

to be equal to half the total storey shear, in the normal way. 

(2) The axial force in each internal column was assumed to be equal 

to the force in the column above, plus half the loads on the 

adjoining beams, plus any additional axial force at the joint, 

(3) The axial force in the Hieitoiana external column was assumed to 

be equal to the load in the column above, plus half the load on 

the 26ft. beam, plus any axial load at the joint, plus a component 

due to wind loading. This wind leading component was derived with 

the wind acting from the left, as shown in Figure 71, and was based 

on the total storey shear and the total span of the frame,
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(4) The axial force in the left-hand external column was based on the 

load applied to the 20ft. beam. In this case, it was assumed 

thet the wind was acting from the right, the wind load component 

having the same value as that oa cetated in (3). 

(b) Design based on the larger of the two bays:- 

Using the forces obtained in (1), (2) and (3) above, the frame was 

designed by the standard procedure, assuming both bays to be 26ft. 

wide, and with the wind loading acting from the left. 

(c) Design based on the smaller of the two bays:- 

Using the forces obtained in (1), (2) and (4), the frame was 

designed assuming both bays to be 20ft. wide, and with the wind 

loading acting from the right. 

(ad) Selection of the sections:- 

(1) The sections selected in (b) for the beams and external columns 

were adopted for the 26ft. beams and the right-hand ea A 

columns of the real frame shown in Figure 71. 

(2) The sections selected in (c) for the beams and external columns 

were adopted for the 20ft. beams and the left-hand external 

columns of the real frame. 

(3) In any storey, the larger of the two internal columns given by 

(b) and (c) was selected for the real frame, 

8.4(b) DESIGN AND ANALYSIS RESULTS 
  

The design loads shown in Figure 71 were taken from the B.C.S.A,. 

46607) Publication No, » which uses this frame to demonstrate the elastic 

design procedure, in accordance with B.S.S.No. 4962) , In the B.0.5 A. 

design it was assumed that the columns were continuous over four storeys, 

and so the asune procedure was adopted when redesigning by the proposed 

method, The frame has also been designed by the elasto-plastic method of 

(60) Majid and Anderson » and the results of this design are given in Table 

18, together with the sections obtained by the proposed method,
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It may be seen that the two designs are very similar, the main 

difference in weight occurring in the internal columns of the lower four 

storeys. The total ae of the Author's frame is 12.92 Tons, Majid and 

Anderson's frame which weighs 12.03 Tons, is approximately 7% lighter. In 

contrast, the elastic B.C.S.A. design yields a weight of 15.12 Tons, 

approximately 17% greater than that obtained by the proposed method, despite 

the fact that this elastic method allows for bie 3ive-Tond reduc fen in the 

design of the columns, Thus, the eeeiee method leads to a frame which is 

not as economical as that designed by the accurate computer method, as ae 

would expect, but which is considerably lighter than the frame designed 

by the traditional elastic approach, 

Although the main purpose of this chapter is to assess the economy of 

the design method by direct comparison of design examples, it was considered 

to be adviseable to analyse this particular frame in detail, since a 

modified design approach was used to allow for the unequal bay widths. The 

analysis results, together with those for Majid and Anderson's design, are 

given in Figures 72, 73 and 74, and these will be considered in tuzn, 

Figure 72 shows the analysis of the two different designs for the case 

of combined loading with the wind acting from the left. It may be seen 

that the Author's frame [Figure (a)] satisfies all the design criteria for 

this loading case, Failure occurs at Ap = 1.53, with an extensive 

distribution of plasticity throughout the frame, 

Figure 73 shows the corresponding analyses with the wind acting from 

the right, Again, the hinge formation in the frame designed by the proposed 

method is very similar to before, failure occurring in this case at a 

slightly lower load factor, All the design criteria are satisfied. Majid 

and Anderson's frame fails at Ap = 1.40, with the formation of a hinge at 

the base of the internal column, 

The analyses under vertical load are shown in Figure 74. In the 

Author's frame, a simple beam mechanism occurs in the top storey at Ap =
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1.75, and all the design criteria are satisfied, Majid and Anderson's 

frame also fails at Me 4.75, but without the formation of a simple 

mechanism, The axial load effects in the comparatively light column 

sections of this frame encourage instability. 

&% TEN-STOREY, THREE-BAY FRAME 
  

The final example is a ten-storey, three-bay frame with unequal bay 

widths, aeons previously been designed as part of the research 

programme at the University of tehigh©") , The original frame specification 

is shown in Figure 75. 

In order to be able to make a valid comparison with the Lehigh design, 

and also to be able to analyse the resulting structures using the computer 

program, it was necessary to make consideratle alterations to the design 

loads. This is the subject of the following sub-section, 

8.5(a) DEVELOPMENT OF AN EQUIVALENT FRAMEWORK 

Figure 76(a) shows the beam loads and column axial forces which were 

obtained in the Lehigh design. These loads were derived from the initial 

frame specification in Figure 75, using the allowable "live-load reductions" 

permitted for the design of both beams and columns in the American code of 

practice, ASA ase 1662) | 

Due to these live-load reductions, it may be seen that the assumed 

column loads in Figure 76(a) are no longer in equilibrium with the assumed 

beam loads, For example, in the top storey, the sum of the column loads 

_is 180.5 kips, whereas the total beam load is only 168 kips. Thus, these 

assumed design loads could only be obtained simultaneously in an analysis 

if additional vertical loads were applied at the joints. Such an equivalent 

system is shown in Figure 76(b). 

In deriving this equivalent frame, the spans have all been reduced 

in order to simulate the design conditions further, since, in the Lehigh
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design, it was assumed that plastic hinges could only form in the beams 

between the column faces, and that every column was 14 in, deep. Each beam 

load shown a Figure 76(b) was calculated by multiplying the reduced span 

by the uniformly distributed load given in Figure 76(a). Appropriate 

vertical loads were then added at the joints so that the column loads 

obtained from Figure 76(b) were identical to those originally assumed in 

Figure 76(a). The equivalent frame not only gives identical working loads 

to those deeusee in the Lehigh design, but may also be analysed to give a 

valid check on the accuracy of this design. 

However, in order to redesign the frame using the proposed method, it 

was necessary to make a further modification to the equivalent frame in 

Figure 76(b), since the Lehigh design was based on the load factors i, = 

1.70 and Ag = 1.30. The two methods obviously had to be compared using 

frameworks designed for the same ultimate loads rather than the same working 

loads. Therefore, a new set of working loads was required for the proposed 

method, such that when factored by A, = 1.75 and Ag A ano, they would give 

the same ultimate loads as before. 

The modified working loads which were adopted for ‘the proposed method 

are shown in Figure 77. The vertical loads were obtained by multiplying 

  the corresponding loads in Figure 76(b) by the factor pe. The horizontal 

loads were obtained by multiplying those used in the Lehigh design by 3: 

These two equivalent loading systems for the two designs do not 

correspond exactly, although the error is very small. Under vertical load 

alone, identical ultimate loads are obtained from either system using the 

appropriate value of A,. However, under combined load at Ag, only the 

ultimate wind loads are identical, ‘ns vertical load component assumed 

for the proposed method being about 5% greater than that for the Lehigh 

method, It is not possible to obtain identical sets of ultimate loads for 

both loading cases, since the ratio = is different in the two designs, 

However, for comparison purposes, the system shown in Figure 77 is
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conservative, in that the proposed design is based on a slightly more severe 

set of loads, 

8 .5(b) MODIFIED DESIGN PROCEDURE 

As in the previous example described in 8.4, a modified design procedure 

was adopted in order to allow for the unequal bay widths, This is summarized 

below: - 

(1) 

(2) 

)) 

(4) 

(5) 

8.5(c) 

The initial design loads were calculated from Figure ae Each 

internal column was assumed to carry one-third of the total storey 

shear, The axial loads were calculated as before, each column 

carrying the load in the column above, plus half the loads on the 

adjoining beams, plus any additional axial force at the joint. 

Equal components due to wind loading were added to the forces in 

the two external columns, 

The frame was designed using the standard procedure, with the wind 

loading acting from the right, assuming each bay to be 28ft, 10in, 

wide, The column sections were selected using the axial forces 

obtained in (1) for the left-hand internal and external columns, 

The frame was redesigned with the wind loading acting from the 

left, assuming each bay to be 22ft, 10in. wide, and using the 

axial forces obtained in (1) for the right-hand intermal and 

external columns, 

The sections obtained in (2) were adopted for the longer beams 

and the left-hand intemal and external columns, 

The sections obtained in (3) were adopted for the shorter cer 

and the right-hand internal and external columns, 

DESIGN AND ANALYSIS RESULTS 

The Lehigh design was performed using the American range of WF 

sections, which are similar in form to the standard range of Universal Beams 

and Universal Columns, These wide flange sections are considerably more
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economical than the British sections, since they are far more numerous, 

and accordingly less "widely spaced", Therefore, they were also used in 

the Author's design in order to give a closer comparison with the Lehigh 

method, Also, in both designs, the columns were considered to be continuous 

over two storeys. The sections obtained using the two different approaches 

are given in Table 19. 

The two designs may be seen to give similar results, the proposed 

method weeding lighter beams but heavier columns, The total weight of the 

Lehigh frame is 33.2 Tons, which is approximately 5% less than that of the 

Author's frame, which was designed for a slightly more critical set of 

loads, and which weighs 34.9 Tons, At first sight, therefore, it would 

appear that the Lehigh design is slightly more economical. However, as 

will be shown subsequently, this design is inadequate, failure occurring 

under vertical load alone. below the design load favteks 

The analysis results for the two different designs are given in 

Figures 78, 79 and 80, Under combined loading, with the wind acting from 

the left, the frame designed by the proposed method fails at Ap = Vagos 

as shown in Figure 78(a). ‘The first beam hinge forms above the working 

Load: ate a= 4. A Ole. he first column hinge forms at A’ = 1.397, which is 

fractionally below the design load factor, Ag = 1.40, so that the third 

design criterion is not quite satisfied. This early column hinge occurs 

due to Z fact that the design procedure neglected the bending moments 

produced in the internal columns by the vertical loading. However, the 

error is very small, and the overall strength of the framework is not 

seriously affected. Figure 78(b) shows the corresponding analysis for the 

Lehigh design, In this case, failure occurs at A = 1.4455 which?isabave 

the design load factor, A» = 1.30. Comparing Figures 78(a) and 78(b), it 

may be seen that the hinge patterns obtained for the two designs are quite 

different, a large number of plastic hinges forming in the columns of the 

Lehigh frame before collapse occurs..



  

  

  

    

Left-hand Left-hand Right-hand Right-hand 

30ft. Beams 24ft. Beams 

Storey external column | internal column | internal column | external column. 

x Y x Y 7 ¥ x ae % ¥ Xx Y 

4 46WFLO | 16WPLO |.16B 26 | 16B26 | 14WF43 | 14WFL3 | AOWF39 | 12VF40 | 8WF28 SWF24. | 10WF39 | 12WF.0 

g 18WFL5 | 18WF45 | 16WF36 | 14WF34. ae : " . ¥ : " * 

3 " < a . 14WF61 | 14WF53 | 10WF66 | 14.F61 12WF58 |14WF48 | 14WFL8 | 14WFY3 

& " " " " m" " n i t " " " 

5 tt 1 8WF50 " 16WFLO | 14WF84 | 14WF7) | 12106 | 14WF8 | 12WF99 |1)WF8h | 14WF68 | 140F61 

6 4 8WF50 " 1 6WFL.0 : 4 5 * , " 2 : 

7 . : . . 44WE411| 140114 | 14427 | 14119 | 14127, | 14119 | 14WFSy | 14S 

8 21WF55 | 18WF55 | 18WFL5 | 18WF55 ' . ; S| . : . 

9 ‘ 21WF55 : Q1WE55 | 14WE127| 140136] 14WF219 | 14WF142 | 14WF219 |14WF12 | 14F111| 12136 

10 1 8WF50 . 16WFY.0 . " : , ’ ” . : " 

Weight | 6.20 T | 6,32 1] 7.80 T | 8.462P4 4.76 T [eegoe | O26 f 898 ee oot. [4.67 T 1 3.91 T | 4.10 T                         
  

X = Author's design; Y = Lehigh design; 

Ten-storey, three-bay frame; selected sections, 

TABLE 19 
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Figure 79 shows the analysis results for combined loading with the 

wind acting from the right, Under this loading system, the Author's frame 

satisfies all the design criteria, failure occurring at Mp a blige Ene 

Lehigh frame is also safe, failure occurring at Mp = 1.449 with fewer 

hinges than were required for collapse under the previous loading system. 

Figure 80(a) gives the vertical load analysis for the Author's frame, 

and indicates that the design is adequate. The collapse load factor is 

given by MP = 1.795, which is greater than the design load factor, NG Sl S75 

Despite the fact that sway deflections are induced due to the unsymmetry 

of the structure, failure still occurs due to the formation of a simple 

beam mechanism, 

In contrast, the Lehigh frame fails at Mp = 1.625, considerably below 

the design load factor, A, = 1.70, as shown .n Figure 80(b). The previous 

analyses under combined loading indicate that the columns of this frame 

are comparatively weak, and this is confirmed by the vertical loading 

analysis. Failure occurs due to overall frame instability, and this results 

directly from the selection of a set of column sections which are. 

considerably smaller than those predicted by the proposed method, 

8.6. SUMMARY 

The following conclusions may be made from the results presented in 

cles hepa ae 

(1) The proposed design method leads to a far more economical 

framework than the traditional elastic approach, as one would 

expect. 

(2) For frames in which the instability effects are not predominant, 

the proposed method produces a considerably lighter framework 

than Heyman's ultimate load approach, In large frameworks, 

Heyman's method is liable to underestimate the required section 

sizes, since no specific allowance is made for the possibility of
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overall frame instability. [Heyman assumed that by ensuring that 

the frame was fully elastic at working load, there would be an 

adequate reserve of strength, and that the danger of instability 

would be further reduced by the stiffening effect of the cladding. ] 

In such cases, the proposed method may be used to give a safe and 

economical design, 

(3) Majid and Anderson's computer method is always likely to yield a 

lighter structure, since, by iterative use of an Accueete analysis 

procedure, the design may be continued until all the design 

criteria are just satisfied, In contrast, the proposed method 

depends on a variety of approximations, and an accurate analysis 

of the complete frame is not inherent in its use. Nevertheless, 

it has been shown that the two app:oaches lead to similar sets of 

sections, and in general, it is unlikely that the weights obtained 

by the two methods for any regular framework will differ by more 

than 10%, This difference is suprisingly low, considering that 

Majid and Anderson's method 1s extremely economical. 

(4) Any frame designed by the Lehigh method must be regarded with 

suspicion, since there is a likelihood that it will fail under 

vertical load alone before the design load factor is attained, 

However, by selecting slightly heavier columns, the proposed 

method yields a safe design, with a frame weight which is only 

slightly greater. 

(5) The proposed method may also be applied to frames in which the 

bay widths vary, using modifications similar to those described 

for the final two design examples. However, since little work 

has beem done on this subject, no specific design procedure has 

been advocated for a general unsymmetrical framework, this being 

left to the discretion of the designer, The development of such 

a general method would of course be a logical extension of the 

work presented in this thesis,
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In conclusion, it is believed that the proposed method is the only 

"hand" design procedure available which will consistently produce such an 

economical design without any serious violation of the basic design criteria. 

A lighter frame may only be designed with confidence if an accurate elasto- 

plastic analysis is used to check the adequacy of the structure. 

However, the selection of an economical set of sections implies that 

considerable sway deflections may occur in the framework due to wind loading. 

The calculation of these deflections is the subject of the following chapter.
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CHAPTER 9 

DEFLECTIONS 

9.1.22 TNDRODUCTION 

In the previous two chapters, it has been shown that the proposed 

design method produces an economical structure which satisfies all the 

original Santen criteria. However, this method has been evolved from 

consideration of the behaviour of the framework at ultimate load, and 

although steps have been taken to ensure that the frame is completely 

elastic at working load, there is a possibility that excessive working 

load deflections may occur, 

Large deformations give rise to many minor problems in the maintenance 

of tall buildings. Plaster ceilings may be damaged by vertical deflections 

of the beams, and window frames and partitions tend to distort due to shear 

deformation, Furthermore, particularly in unbraced frames, considerable 

discomfort may be caused to the occupants of a building by excessive sway 

deflections. 

In the following section, a method is derived for calculating the 

sway deflections at working load, and this is subsequently checked by 

comparison with the accurate computer analysis. Later in the chapter, the 

current opinion on the selection of suitable deflection limits is reviewed, 

and the deflections obtained for the frames which have been designed by the 

proposed method are examined in the light of this discussion, 

G24 DEFLECTION CALCULATIONS 
  

The development of an equation for estimating the sway deflections 

may be based entirely on elastic methods of analysis, since it has been 

shown that no plastic hinges form below the working load in any frame 

designed by the proposed method, An approximate, but reasonably accurate
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deflection formula may be obtained using the "equivalent column" technique, 

as described by Lightfoot’, 

The equivalent column for a typical frame is shown in Figure 81, and 

it is derived by summing the flexural rigidities of the beams and columns 

in every storey of the real frame. The Euler ratio for each atopeis is 

assumed to equal the average of the Euler ratios for all the columns 

of that storey, and the shear forces shown in the figure are the total 

storey esate tek working load, 

The generalized slope-deflection equations for Storey (3) are given 

Drees 

M¢jsj+a) = Ke(jy 8539) + (se) (j)9 (jan) - [2(140)] carci] (404,) 

and, 

M(j+aoj) = Ke (3 (88) (539 6) #965494 jaa y= [2(1+0)] cs <a (105) 

where (5) is the deflection index [i.e. the relative horizontal 

displacement at the ends of the column, A(j), divided by the height, hcjy] 

(5) 
and s and c are the standard stability functions - Adding equations 

(104) and (105):- 

Mc joj+2) + Mcj+asj) = [s(4+0¢)] (5 Ke (jy lO (jy + Oita) - 26(jy] 

Theref ore, 

O¢jy + Ocjsay (Mj jany + Mc jessy] 

Leas "Bsr Ta Key 
  

Now, 

Mcjsj+1) + Mcjaa.j) = the sum of the column moments in Storey (3) 

the initial sway moment for Storey (j). 

16e., allowing* for the Po effect, 

M(joj+a) + Mcj+as5y) = — Mj yH(jyh(s) 

Therefore , 

8(j) + 8¢j+a) mj Hj hj) 

$(5) = 3 * B[s(i+e) kayke (5) 
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Also, let 2M(j) be the sum of the initial sway moments at joint (j). 

Then, by definition, 

  

  

vr : ae 

2S (j) 

and, 

; UM (+4) 
(j+1) Reis. 

However, 

me jad Ht ej-a (Seay BSH CIB) 
2M (j) = 5 + 5 

= (mHh)av (j) 

Similarly, 

2M (j+1) = (mHh )av (j +4) 

Thus, the deflection in any storey may be obtained from the following 

    

expression: - 

A . 

$(5) = —— _ 1 [(otb)av ci) ‘. (mE) av ¢is3y ie Ak — (406) 
(J) e E83) BS ised) als(1te)] (j Ke (jy 

where, 

x 
2S 5) = (n-o) (J-1) Ke (j-1) Ti (n-o) (j Ke C5) + 1 Kp CS) (107) 

and, 

ES (j+4) (n-0) (j)Ke (J) - (n-o) (j+4)Ke (j+2) + 12Kb (j+4) (108) 

The total deflection of any frame may be found by applying equation 

(106) to each storey in turn, the solution being obtained quite simply 

provided that the section properties and loading conditions are known, 

The variation in the stability functions, s(1+c) and (n-o), as the Euler 

ratio increases, has been given previously in Table 3, Equation (106) is 

in fact the summation of the two types of deformation which contribute to 

the total sidesway deflection of a storey, the first part representing the 

deflection due to the rotation of the joints, and the second part



  

  

  

                

Approximate solution Accurate ¢ 

[equation (106) ] solution; |Percentage| (from the 
Frame 

Ar Af A=Ar+Af A error accurate 

(inches) | (inches) | (inches) | (inches) solution) 

1 2.09 0.88 2.97 3.0. -2..3% 0.00288 

2 b h6 1 82 6.28 6.39 =t..7% 0.00423 

3 5.20 2.86 8.06 79h +1 5% 0.00517 

4. ee Pk O12 2 slid. 2.57 -5 0% 0.00223 

5 4 2d 1.85 6.09 5.76 +5.7% 0.00499 

6 1633 0.53 1.86 pte 6.2% 0.00169 

: es 0.50 0.53 4 503 1si2 -8 .0% 0,001 9), 

8 3.16 1 tee 4.63 4.60 +0.7% 0.00388 

9 4.56 0.68 22h. BoD. - 0.00388 

40 4 Oh 0.63 2 ae 2.60 -1 2% 0.00300 

14 4620 1.66 5 86 5 686 [ 0.00676 

Ar = deflection due to rotation of the joints, 

Af = deflection due to flexibility of the columns, 

@ = deflection index = 4, 
h 

Total sidesway deflections at working load; Frames 1 to 11, 

(designed with fictitious sections) 

TABLE 20 
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representing the deflection due to the flexibility of the columns, 

The validity of this approximate formula has been examined by 

oaleutatius he working load deflections for each of the eleven test 

frames described in Chapter 7, and by comparing these with the deflections 

obtained using the accurate computer analysis. The results are given in 

Table 20, from which it may be seen that there is little difference between 

the two sets of solutions. It may be assumed that any deflection computed 

from Senenite 40K) will always be within 10% of the true value, and this 

is considered to be a satisfactory degree of accuracy. 

9.3. LIMITATION OF DEFLECTIONS 
  

As stated previously, the proposed design method is not in itself 

sufficient to safeguard against the numerous effects of excessive deflection, 

despite the fact that the resulting framework remains elastic at working 

load. The degree of deformation which may be tolerated must depend to a 

large extent on the functional requirements of the structure, and even a 

frame designed by the traditional elastic approach may be deemed to be 

unsatisfactory in certain circumstances. For this reason, there has been 

a general reticence on the part of the standard codes of practice to 

insist upon a universally applicable set of deflection limits, although 

certain recommendations do of course exist. 

The vertical deflection of a beam due to the action of live load is 

pa 
360 

that this limit will ever be exceeded in frames with fully-rigid joints, 

limited by B.S.S. No, 44962) to of the ak: It is extremely unlikely 

and it has certainly never been found to be violated in any of the frames 

designed by the proposed method, 

As yet, no regulations exist in this country concerning the overall 

sway deflections of a tall structure, although the horizontal displacement 

of stanchions in single-storey buildings is limited by B.S.S. No. 14,962) 

ieee of the height, The code however does state that this limit, and
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also that governing the vertical deflection of beams, may be exceeded in 

cases where greater dericction would not impair the efficiency of the 

structure or lead to local damage, 

The only comprehensive discussion on deflections in tall structures 

appears in the Report of the Sub-Committee on Wind Bracing of the A.s.c.B6o?) 

published in 1940, where a limiting deflection index of ¢ = 0.002 was 

(64.565) recommended, The same value has been suggested by other sources 

in more recent times. Nevertheless, crinter(6°) has pointed out that many 

buildings in the U.S.A. have been found to ama satisfactorily when 

designed using a value of ¢ considerably greater than 0,002, and reference 

(65) may also be found to frames designed for a deflection index in excess 

of. 0-005. 

The justification for allowing such high values of sidesway for the 

bare frame is that the deflection calculations completely ignore the 

stiffening effects of the external cladding and the partition walls. 

- Although some formsof lightweight cladding possibly have little effect on 

the sidesway, it is certain that deflection calculations based on. the bare 

frame will always be conservative. Heavy cladding is likely to reduce the 

sway deflections by a substantial amount, as demonstrated, for example, 

by tests on models of the Empire State Building >) » which suggested that 

the masonry walls increased the rigidity of the structure about 350% above 

the rigidity of the steel frame, 

Thus, while no specific allowance is made for the increase in 

stiffness due to the effect of cladding, it would appear to be common 

practice to exercise a considerable degree of tolerance if the bare frame 

deflection is found to exceed ¢ = 0.002. The decision as to what 

constitutes an "acceptable deflection" is generally left to the discretion 

of the designer, 

Referring back to Table 20, in which the overall deflections of the 

eleven test frames are summarized, it may be seen that the values of ¢ vary
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between 0.00169 for Frame 6 and 0.00676 for Frame 11. The sidesway of 

several of these frames is probably excessive, but it must be remembered 

that the designs were performed for extreme loading conditions, using the 

fictitious range of sections. The design examples given in Chapter 8 are 

however more realistic, and the deflections computed for these franes will 

now be examined in more detail. 

(a) Four-storey, single-bay frame: [Section 8.2.] 

This is the first design example in Chapter 8, The deflections 

obtained for each storey are summarized in Table 21:- 

  

  

  

          

Approximate solution [equation(106) ] Accurate 

Storey Ar Af A= Avan At d = - value 

(inches) (inches) (inches) of ¢ 

4 0:64:87 O 502, On 254 0.00161 0.00186 

2 0.371 0.132 0.503 0.00350 0.00349 

3 O59 05221 0.680 0,001.73 0.00/,75 

dy 0.237 0.158 0.395 0.00275 0.00279 

TOTALS: - col 0.555 1.809 0.00314, 0.00321       
  

Four-storey, single-bay frame; deflections at working load, 

TABLE 21 

The overall deflection index for the bare frane, ¢ = 0.00321, would 

not appear to be excessive. Heyman suggested that a value of two inches 

would be acceptable as the total sidesway of a 48ft. building, and this 

corresponds to a value of # equal to 0.00348, greater than that obtained 

for the design by the proposed method, 

The deflection index for Storey 3, ¢ = 0.00475, is considerably 

higher than those calculated for the other storeys, and it could be argued
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that this particular value is excessive. A high value of relative 

deflection for any one storey is the primary cause of local damage, and 

any limiting deflection index should logically be applied to every storey 

ina frame. The possible procedures which are available to the designer 

when a permissable deflection limit is exceeded will be discussed later in 

this chapter. 

(b) Thirty-storey, five-bay frame: [Section 8.3.] 

The deflections obtained for this frame using the approximate 

expressions given by equation (106) are summarized in Table 22, The 

overall deflection index is ¢ = 0.0036), and again this is considerably 

greater that the generally recommended value of ¢ = 0.002. However, as 

before, this bare frame deflection is unlikcly to lead to any undesirable 

effects, since only a small proportion of it will be realised in practice. 

The maximum deflection index for any storey is ¢ = 0.00/70 is Storey 23. 

The overall deflection index for Heyman's design was found to be 

0.0045 approximately, representing a sway of 19.5 inches at the level of 

the top storey beam (as opposed to 15.7 inches for the Author's design). 

(c) Eight-storey,two-bay frame: [Section 8.4. ] 

This framework has two unequal bays, so that the sway deflections 

cannot be obtained simply by using equation (106). However, the frame has 

been analysed using the computer program, and the results are given in 

Table 23 for the two cases when the wind loading acts from opposite sides 

of the frame, The maximum sidesway occurs with the wind loading acting 

from the right, and the corresponding overall deflection index for the bare 

frame is ¢ = 0.00202, which is quite satisfactory, Storey 4 exhibits the 

greatest relative deflection, with ¢ = 0.00258, 

(ad) Ten-storey, three-bay frame: [Section 8.5. ] 

The final design example in Chpater 8 also contains unequal bays, and 

again the deflections have been obtained using the computer program, The



  

  

            

Ar Af A = Ar + Af 

Storey (inches) (inches) (inches) b 

1 0.039 0.026 0.065 0.00045 

2 0.095 0.078 0.173 0.001 20 

3 0.160 0.110 0.270 0.00188 

hy 0,222 0.155 0.377 0.00261 

5 0.284. 0.134, 0.418 0.00290 

6 0,350 0.166 0.516 0.00359 

7 0.356 0.120 0.4.76 0.00331 

8 0.351 0.139 0.4.90 0.00340 

g 0.4.05 0.095 0.500 0,003)-7 

10 0.460 0.1406 0.566 0.00393 

11 0.480 0.103 0.583 0.00.05 

12 0.4.95 0.112 0.607 0,004.21 

+5 0.538 0.100 0.638 0.00). 

1h 0.486 0.108 0.594, 0.001 3 

15 0.4.30 0.098 0.528 0.00366 

16 0.4.59 0.104 0.563 0.00390 

17 0.488 0.102 0.590 0.00410 

18 0.522 0.108 0.630 0,004.37 

19 0.556 0,092 0.648 0,004.50 

20 0.542 0,097 0.639 0 . 00244 

21 0.526 0.102 0.628 0,004.36 

22 0.556 0.107 0.663 0.00460 

hy? 0.58), 0,093 0.677 0,004.70 

2h. 0.521 0.097 0.618 0.00429 

25 0.453 0,097 0.550 0.00381 

26 0474 0.101 0.575 0.00399 

27 0 1.96 0,091 0.587 0,004.07 

28 0.519 0.094. 0.613 0.00420 

29 0,595 0,066 0.601 0.00417 

30 0.270 0.067 0.337 0.0023 

TOTALS: - 12.652 3.068 15.720 0.00364. 
  

Thirty-storey, five-bay frame; deflections at working load, 

TABUB: Tae 

 



  

  

  

    

Wind from left Wind from right 
Storey 

A (inches ) d A (inches) gb 

ls 0.029 0.00022 0.147 0.00111 

2 0.091 0.00069 0.189 0.0014.3 

5 0.170 0.00129 0.271 0.00205 

4. 0.257 0.00195 0.341 0.00258 

5 0.262 0.00198 0.321 0.0024), 

6 0.286 0.00216 0/8559 0.00256 

ri 05291 0.00221 0.335 0.00254, 

8 0.176 0.001 33 0.18 0.00150 

TOTALS: - 1.562 0.00148 214.1 0.00202           

Eight-storey, two-bay frame; deflections at working load. 

  

  
  

  

    

TABLE 23 

Wind from left Wind from right 
Storey 

A (inches) dp A (inches) dp 

4 0.200 0.00139 0.036 0.00025 

2 0.275 0.00191 0.128 0.00089 

3 0.293 0.00204. 0.220 0.00153 

hy 0.364. 0.00253 0.307 0.00213 

5 0.375 0.00260 0.350 0.00243 

6 0.410 0.00285 0.395 0.00274. 

7 0.399 0.00276 0.387 0.00269 

8 0.391 0.00272 0.387 0.00269 

9 0.36) 0.00253 0.366 0.0025), 

10 0.204. 0.00143 0.207 0.00115 

TOTALS: - 3.275 0.00221 2.783 0.00188           

Ten-storey, three-bay frame; deflections at working load, 

TABLE 24 
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results are given in Table 2), In this case, the sidesway is more 

pronounced when the Hina Ged dtc acts from the left, and the overall 

deflection imdex is ¢ = 0.00221, The maximum individual storey deflection 

occurs in Storey 6, for which ¢ = 0.00285. Neither of these values is 

considered to be excessive. 

  

9.4. PROCEDURE FOR REDUCING. DEFLECTIONS 

In. accordance with the discussion in the previous section, tio specific 

limit on the deflection index has been recommended in this chapter, 

Nevertheless, it has been suggested that there are many circumstances in 

which the designer may wish to restrict sidesway deformation, and there 

are several ways in which this may be done. 

Clough 49) has suggested that acceptable deflections may be obtained 

by choosing values for the load factors which ensure that the frame remains 

elastic at working load. However, the deflection calculations that have 

been given for the four design examples indicate that considerable sidesway 

may occur even in a fully-elastic framework, Furthermore, the selection 

of higher load factors may well lead to a considerable loss of economy, 

since every member in the frame is liable to be increased, whereas excessive 

deflections may have only been found to occur in specific regions, 

This fact is amply demonstrated by observation of the deflections in 

Table 21 for the four-storey, single-bay framework, The deflection index 

for Storey 3 is considerably greater than those for the remaining three 

storeys, and the designer may only be required to reduce this particular 

value. The obvious way to do this is to increase the members in the 

immediate vicinity of Storey 3, rather than by increasing every single 

member in the frame. Despite the fact that the deflections are quite high, 

it was shown in Chapter 8 that this frame has a considerable reserve of 

strength, failure occurring at @ = 1.68 under combined loading, and 

Ap = 4.90 under vertical load alone, Thus, the selection of a higher
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design load factor would obviously be unduly conservative. 

Further tise tt onl-of the results in the previous section indicates 

that the deflection due to rotation of the joints in any storey, Ar, is 

generally far greater than that due to the flexibility of the columns, Af, 

Since Ar is a function of the total joint stiffness, which is controlled 

to a large extent by the stiffness of the beam, it may be seen that the 

most effective way of reducing deflection is to select a beam with a 

higher acecadladions of area, Admittedly, this will also supply the frame 

wits an additional safety factor, but provided that the design load factor 

is attained, the designer should not be too concerned with the load factor 

at which failure eventually occurs. Once the basic design criteria have 

been satisfied, the decision to increase any section size must be considered 

in economic terms, 

Thus, it is suggested that if any deflections are believed to be 

excessive, the appropriate beam sizes should be increased and the 

deflections recalculated using equation (106). Referring back to equations 

(106), (107) and (108), it may be seen that little computational work is 

involved, since the only terms affected by any alteration in the beams 

are the overall joint stiffnesses, B8(5) and Baas The required beam 

size may therefore be obtained quite rapidly. 

9.25. SUMMARY 

The subject of deflections has not been considered in any great detail 

in this chapter, since it does not constitute a major part of this research 

project. However, it has been shown that the sidesway of any fully elastic 

regular framework may be obtained quite accurately by reducing the structure 

to an equivalent column, Furthermore, a large number of results have been 

given to illustrate the order of magnitude of this sidesway in frames 

designed by the proposed method, Although it is considered that these 

deflections will generally be acceptable, a procedure has been described



~ 198 = 

for reducing the sidesway should the circumstances demand that a specific 

limit be applied to the deflection index, 

In the following chapter, the advantages and limitations of the 

proposed design method are examined, and the thesis is concluded by a 

brief discussion on the way in which the range of applicability of the 

method could be extended through additional research,
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GHA ne 0 

CONCLUSIONS 
  

1004 INTRODUCTION 

Throughout this research project, considerable attention has been 

paid towards assessing the validity and economy of the proposed design 

method, whiey has been found to possess distinct advantages over many 

other methods, These advantages are the subject of the following section, 

Subsequently, the limitations of the method are examined, and finally 

suggestions are made for additional research which would help to develop 

the full potential of this design approach, 

10.2, ADVANTAGES OF THE DESIGN METHOD 

By using the fictitious range of sections and the elasto-plastic 

computer analysis, it has been shown in Chapter 7 that the design 

equations accurately represent the-strength requirements of any member 

in a regular multi-storey frame. The eleven test frames were all found 

to behave in a satisfactory manner under both sets of design loads, and 

although slight violations of the design criteria occurred, it was 

subsequently shown that these criteria were satisfied in every case when 

the frames were redesigned using the phandard Universal Beams and 

Universal Columns, Furthermore, none of the fremes had an excessive 

reserve of strength, and there was found to be an extensive distribution 

of plasticity throughout each frame at the design load factor, The hinge 

patterns which were obtained from te computer analysis were shown to 

reflect the manner in which each frame was designed. 

Since these eleven frames covered a wide range of design parameters, 

it may be concluded that any frame designed for parameters lying within 

this range is likely to exhibit the same degree of safety and "structural 

efficiency", and this is a powerful argument in favour of the proposed
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method, Since the method does not depend on the use of a computer 

analysis, it is assobtial that the designer should be able to express 

confidence in the ability of the pepitatey structure to carry its applied 

loads in a safe and efficient manner, 

This "predictability" has been shown to be lacking in certain other 

methods, For example, Figure 69(c) in Chpater 8 demonstrates that the 

four-storey, single-bay frame designed by Haynen' 4°) fails without the 

formation of a single plastic hinge in the beams, whereas Heyman's design 

method is intended to be a "weak-beam, strong-column" approach, Although 

this frame has a large reserve of strength, it is disconcerting to find 

that failure occurs in a somewhat unexpected manner, and it is reasonable 

to assume that this lack of predictability could lead to premature 

collapse in a different framework, It has also been shown that the ten- 

storey, three-bay frame designed by the Lehigh methoa 6") collapses below 

the design load factor under vertical load alone, and so any subsequent 

designs by this method must be treated with suspicion, 

The subject of design economy has been examined in Chapter.8, and 

again, it was shown that the proposed method compares favourably with the 

alternative methods, The accurate computer method devised by Majid and 

(50) Anderson was shown to be the only design approach which consistently 

produces a more economical structure than the proposed method, without 

any loss of safety. The fact that the proposed method leads to a frame- 

work with a similar weight to that designed by Majid and Anderson's 

method again recommends it for use as a standard procedure, for it 

indicates that little economy has been sacrificed in producing a much 

stiles and considerably less expensive design approach, The method also 

enjoys the flexibility of being independent of the availability of an 

electronic computer, and furthermore, its ease of application is 

independent of the size of the frame. 

The design procedure was explained in detail in Chapter 6. In
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particular, the design example in Section 6.2(f) clearly illustrates 

another useful feature of the proposed method, namely that it is an 

automatic fiarat ies process, and as such is to some extent self-checking,. 

Any error in the selection of sections or in the arithmetical calculations 

is unlikely to remain unnoticed, 

10.5 LIMITATIONS OF THE DESIGN METHOD 
  

Ath oieh it has been shown that the proposed method may be used to 

obtain a satisfactory design for a wide range of frameworks , at is 

appreciated that there is a slight possibility of early failure with, for 

example, very extreme wind loading or extraordinarily tall columns, 

However, this is not considered to be a serious limitation on the use of 

the method , since such exceptional framewo.ks would normally receive 

special attention when designed by any alternative approach. In such 

cases, it is recommended that the safety of the structure should be 

assessed using an accurate elasto-plastic computer analysis. 

Similarly, it has been shown in Chapter 9 that comparatively high 

sway deflections may occur in frames designed for heavy wind loading, and 

on certain occasions the designer may consider these to be excessive, 

Again, this does not necessarily imply that the range of applicability of 

the proposed method is any smaller than that of the other methods which 

have been discussed, since even an elastic design of any such frame would 

also be likely to deflect excessively, The only way in which a satis- 

factory design could be obtained in these circumstances would be to 

introduce some form of bracing, and the argument reduces to one between 

the general philosophies of the design of sway and no-sway frames, Thus, 

as long as justification exists for the design of unbraced frames, the 

proposed method is no less valid than any other related method, concerning 

the subject of permissable sway deflections, 

One further criticism of the design method at its current stage of
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development is that it may only be applied to regular frameworks. However, 

it has been shown in Chapter 8 that certain forms of irregularity may be 

allowed Pot quite simply by appropriate modifications to the design 

approach, and it is believed that the design theory may be extended to 

cater for any frame with variable bay-widths. It may also be possible to 

deal with certain other types of unsymmetry. This subject is discussed 

more fully in the following section, 

10.4. SUGGESTIONS FOR FUTURE RESEARCH 

There are many ways in which the proposed method may be extended in 

order to produce a more generalized or more economical design procedure, 

Several suggestions are made in the following sub-sections. 

10.4(a) DESIGN OF UNSYMMETRICAL FRAMES 
  

Unsymmetrical frame behaviour may occur due to either unsymmetrical 

loading or unsymmetry of the geometrical shape, The first of these causes 

has been investigated by canani 1), who derived expressions for the 

bending moments induced in the internal columns when they are deformed in 

single-curvature due to the action of "pattern live-loading", It was 

found that the sections selected by the basic design method, which ignores 

these additional column moments, were generally satisfactory, although 

occasionally small increases were required in the comparatively slender 

upper storey columns, In the lower storeys, the substantial reduction in 

the column axial loads due to the removal of the live loads on certain 

beams adequately compensated for any additional bending moments. These 

results would form a useful basis for any future research on the subject 

of unsymmetrical loading conditions. 

The problems associated with unsymmetrical frame geometry are however 

far more numerous, and it is not suggested that the proposed method could 

ever be applied to completely irregular structures. Nevertheless, as
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mentioned in the previous section, and as described in Chapter 8, 

successful designs for two slightly irregular frameworks have already 

been achieved by making only small modifications to the basic design 

procedure. The approach adopted in these cases was based to a large 

extent on experience, and is not necessarily recommended for any frame 

with unequal bays, However, the results of these two design examples 

imply that certain general rules do exist to cater for this type of 

unsymmetry, and it is suggested that additional work on this subject 

would certainly be fruitful. The proposed method already allows for 

unequal storey heights, and this further modification would make it 

applicable to a very wide range of practical frameworks, 

Also, the proposed method may possibly be extended to cater for the 

design of frames in which the number of beys suddenly alters at a 

particular level, Many frameworks are constructed in this manner, with, 

for example, the lower few storeys containing many more bays than the main 

tower-block, In such cases, the standard procedure could be applied to 

each storey of the tower-block in turn (for it will be remembered that the 

design proceeds from the top storey downwards, and at any level the 

sections obtained are independent of the geometry of that part of the 

frame which lies below this level). Provided that means could be found 

of effectively representing the structural action of the tower-block on 

the lower storeys, the design for the remainder of the frame could be 

continued as normal, Again, such modification would extend the range of 

applicability of the design method considerably. 

10.4(b) COMPOSITE DESIGN 

There are many advantages to be obtained by considering a structure 

as a composite system rather than as a series of individual components, 

each having only one primary function, Whenever any continuity exists 

between two components, there is bound to be acertain degree of structural
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interaction, and the basic philosophy of composite design is that this 

interaction should be both recognised and allowed for during the design 

process, There is no reason why a similar philosophy should not be applied 

in order to extend the proposed design method, 

The most obvious way to produce a more economical design is to allow 

for composite action between the concrete floor slabs and the steel beams, 

However, the problems involved in modifying a plastic design method to 

allow for thas composite action are considerable, The composite beam 

does not have uniform properties, and the value of fully plastic moment 

to be assumed in design varies according to whether the concrete.slab is 

in tension or compression, Similarly, the second moment of area is 

variable, and the derivation of suitable magnification factors to allow 

for the instability effects would necessaiily be a complicated process, 

Nevertheless, it is believed that this would be justified, since 

considerable economy would be achieved, and the continuity between the 

beams and slabs would undowbtably reduce the sidesway deflections 

enormously. 

Also, should it be required to use reinforced concrete casing for the 

columns of a frame in order to satisfy the fire-proofing Poquiremenee 

then it would be possible to modify the proposed design method in order 

to take full advantage of the extra strength available, In the proposed 

method, it has been shown that the column ends are not required to undergo 

any rotation due to the formation of a fully plastic hinge, Therefore, 

the concrete casing could be assumed to carry a proportion of the total 

axial load in the member, thus relieving the steel section of a certain 

amount of direct stress, In the lower regions of the frame, where 

selection of a suitable column is largely controlled by the axial load in 

the member, considerably lighter Universal Columns would be found to be 

adequate.
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The suggestions which have been made in this section involve quite 

radical changes in the design philosophy, and are likely to lead to 

substantial saving in the weight cf the frame, There are of course many 

other refinements which could be made to the work presented in this thesis, 

but it must be remembered that the proposed method is based on a large 

number of assumptions, and despite the fact that these lead to a 

surprisingly accurate design, it does not ol aia to be anything other than 

an approximate approach, The success of any derived version of the method 

must still depend of the validity of the initial hypotheses, many of which 

were devised in order to simplify the design procedure. It would therefore 

be quite illogical to attempt to introduce a large number of sophisticated 

analysis techniques. in order to obtain only a small increase in economy, 

and this should be borne in mind when planning any future research 

programme, The Author believes that, if possible, the basic simplicity of 

the design method should be preserved,
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