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SUMMARY 

The increasing use of electroheat in industrial processes 

necessitates a thorough investigation into the current 

state of control techniques for electric process heating. 

A new unified approach to the assessment of stability of 

continuously and discontinuously controlled electroheat 

processes has been derived. It utilises a newly defined 

critical frequency locus in conjunction with the des- 

cribing function. 

An exponential describing function is proposed for deter- 

mining the conditions for a critically damped response to 

step-inputs in discontinuously controlled electroheat 

processes. The results obtained closely correlate with 

actual: test results. 

The improvements obtainable by incorporating derivative 

feedback in discontinuously controlled processes has been 

analytically investigated. Facile displays have been 

developed that determine the optimum derivative content 

in the feedback loop. 

The computer control of electroheat processes has been 

thoroughly examined. A design of model-referenced inte- 

grating controller has been established from first prin- 

ciples. It eliminates offset errors due to disturbance 

inputs. 

A time-optimal control strategy has been established. It 

combines the advantages of discontinuous control with the 

advantages of the new model-referenced integrating control. 

It results in a performance that is greatly superior to 

that obtained with conventional control techniques for 

these processes. 
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z INTRODUCTION 

The increasing use of electroheat in industrial processes 

prompted the Electrical Engineering Department of the 

University of Aston in Birmingham, to examine in depth the 

current control technique for such processes and develop new 

strategies for vastly improved performance. 

With a view to developing new control techniques that could 

be applied to a class of electroheat processes, it was decided 

to restrict the investigation to those processes that had the 

following common characteristics: 

1) The processes possessed distributed parameters. 

2) The processes were essentially of the single variable 

type i.e., temperature was the most significant 

parameter of the process. 

Typical examples of such processes are the electrically heated 

fluidized beds, boilers without superheaters, induction fur- 

naces, plasma torches, vats, ovens, kilns, etc. The mathema- 

tical model for such processes, established by several 

workers! 2 3 * were found to comprise one significant transit 

delay and one or two major time constants. Expressed mathe- 

matically, these models take the following forms: 

G, (s) G exp(-sL)/(1 + sT) tad 

G,(s) G exp(-sL)/(1 + sT,) (1 + sT,) Ci. a) 

where G is the gain of the heating apparatus. 

x; Ty> T, denote the major time constants. 

L is a significant transit delay of the process. 

In general, the transit delay L arises due to the distri- 

buted nature of the process, while the time constants are 

due to the thermal resistance and the thermal capacitance 

of the process. 

A typical response of such processes to step temperature 

commands is displayed in Figure 1.1. In practice such pure 

delays are not normally encountered, but, the temperature 

rise for the period L is so small compared to the ee eS 

of the step command that it may be ignored.



e(t) 

     
exp(-sL) 

de + ST 

(b) exp(-sL) 
  

(1 + sT,)Q1 + sT,) 

    
Fig. 1.1 Typical step response of electroheat processes and their mathematical models.



In the course of the investigation into the control of such 

processes, it was found that, until the recent past, the design 

of controllers was based on empiricism, rather than an analy- 

tical understanding of the behaviour of closed-loop controlled 

processes. In fact the optimum control settings derived empiri- 

cally by Ziegler and Nichols® in 1942 are still being used 

widely in process control. However in the past few years, 

considerable work has been done in developing analytical 

techniques for the design of temperature controllers, especially 

by the International Union for Electroheat, BISRA, and their 

allied organisations. 

Briefly, ‘the objective of the investigations, described in 

detail in the ensuing chapters of this report were: 

1) 

2) 

3) 

4) 

Development of an unified stability criteria for 

both continuously and discontinuously controlled 

processes. 

Determination of critically damped response (non- 

oscillatory response) criteria for discontinuously 

controlled processes. 

New strategies for better performance characteristics 

when continuous or discontinuous controllers are used. 

Development of time-optimal controllers that utilise 

the digital computer for both process simulation and 

on-line control. The objective here is to minimise 

the storage requirements on the computer so as to 

facilitate time-shared control. 

The flow chart displayed in Figure 1.2 traces the course of 

the investigations and the presentation of this report.
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STABILITY ANALYSIS OF CONTROLLED 
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Fig. 1.2 Flow chart of the development of the research work and the presentation of this 
report.



Chapter 2 

STABILITY CRITERIA FOR ELECTROHEAT PROCESSES 
 



STABILITY CRITERIA FOR ELECTROHEAT PROCESSES 
  

2.1 INTRODUCTION 

The determination of stability of controlled electroheat 

processes by classical methods viz. Bode plots, Nyquist's 

criterion, root-loci etc. is very cumbersome for processes 

with distributed parameters. In this chapter a critical 

frequency locus for the determination of stability of 

controlled electroheat processes, is proposed; this locus 

determines the critical stability condition directly in 

terms of the process parameters. It is further shown that 

the use of the describing function technique leads to a 

unified stability criteria for both continuously and 

discontinuously controlled processes. 

It is also shown that the use of the conventional describing 

function in the analysis of discontinuous controllers leads 

to erroneous results when processes are modelled by equation 

(1.1). The RMS describing function, initially proposed by 

Gibson®, is shown to be more accurate for discontinuous 

controllers. 

Experimental investigations have established the accuracy of 

the describing function technique in the analysis of stability 

of controlled electroheat processes. These are described in 

chapter 5. 

2.2 CHARACTERISTICS OF NONLINEAR CONTROL ELEMENTS 
  

The characteristics of the commonly encountered nonlinear 

control elements in electroheat processes are displayed in 

Figure 2.1. These are the on-off, three-position, five- 

position, multiposition and proportional control elements; 

and their characteristics are displayed in Figures 2.1 (a), 

(b), (c), (d), and (e) respectively. The control elements 

described have odd-symmetrical characteristics; but 

asymmetrical control elements are often used in the control
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Fig. 2.1 Characteristics of commonly encountered discontinuous control elements.



of electroheat processes and typical characteristics have 

the forms shown in Figures 2.1 (f) and (e): 

The range of the actuating signal over which the output of 

the control element is constant, is referred to as the 

calibration increment; while the magnitude of the change in 

the output, as the actuating signal varies from one range to 

another, is referred to as the increment of control effort. 

In Figures 2.1 (a)-(g) the calibration increment and the 

increment of control effort are denoted by Ae and Am 

respectively. The characteristics of the control element are 

described in terms of the distribution of the calibration 

increments and the increments of control effort. A general 

multiposition discontinuous control element characteristic 

is displayed in Figure 2.1(h). The maximum and the minimum 

values of the output are fixed at O and-=«1l. 

The control element is said to be linearly distributed 

if (see Figure 2.1 (h) ) 
  

AG a AG. = .S she site cesar. = BNC Ae 

n 
and 

Am, AM5 = o8ieres (6 8/6 Sei aire Am Am 

n 

One may then define a slope for the control element as 

K = (Am/Ae) 

For the linear case, if the control element has Q positions 

then 

sm = 5/(Qet) 

Therefore 

K = £/7()-1) te 

The control element can therefore be described in terms of the
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Fig. 2.2 Block diagram of a typical control 
system for an electroheat process. 
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Fig. 2.3 Simplified block diagram of the control 
systemief Fig. 2.2. 

    

      
Zone of constant 
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Fig. 2.4 The zone of constant control effort 
in a discontinuous control element.



number of positions Q andthe slope K. 

The analysis of stability will be presented for the linearly 

distributed control element, since, these are the commonly 

used control elements in electroheat process control. 

The block diagram of a typical temperature control system 

for electroheat processes is shown in Figure 2.2. A and H 

represent the transfer characteristics of the reference 

input element and the feedback unit respectively. These are 

usually constants and, without loss of generality, can be 

assumed to be unity: 

J ee 

H = 

u is the disturbance input to the system. For the analysis 

of stability, only the disturbance-free system need be 

considered. Thus 

ce
 il ©
 

Under these conditions, the block diagram of Figure 2.2 

Simplifies to Figure 2.3. 

Before the criteria for stability are developed, the following 

observations should be made as to the nature of the input 

command 

1) Discontinuous controllers of the type shown in 

Figure 2.1 are usually used only for constant 

input commands, i.e. Dé... = 0 

2) A necessary condition for no oscillations in the 

system is that the control element possesses a 

finite zone of constant control effort about the 

e = O axis of the control element characteristic. 

This is shown in Figure 2.4 for a multiposition 

controller.
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3) A further condition’ for no oscillations and no 

offset (or droop) errors is that the control 

effort around the e = O axis be equal to the 

normalised input command, i.e. 

6/6 

where G is the gain of the heating apparatus 

and 6. is the input command. 

For a linearly distributed control element this 

condition reduces to 

6./G = n.Am = n/(Q-1) 

where n is an integer less than (Q-1). Am is the 

increment of control effort. 

Summarising, stability analysis will be presented for the 

following conditions: 

ay A dee 1 

b) u = 0, Du = 0, De. = 0 

c) There is a zone of constant control effort about 

the e = O axis. 

d) The normalised input command 6../G = n.Am. 

2.3 THE CONVENTIONAL DESCRIBING FUNCTION FOR DISCONTINUOUS 

CONTROL ELEMENTS 

The describing function of a nonlinear control element is 

defined as the ratio of the fundamental component of the 

output to the input amplitude, when the input signal is 

Sinusoidal. 

For the odd-symmetrical control element shown in Figure 2.5 

the direct component and the fundamental component of the 

output is found to be®
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Fig. 2.5 Output of a discontinuous control 
element to a sinusoidal input signal. 
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E - ( 4,4 | | sintwt)  (2<2)   

N
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m(t) = 

R46 d OS, ks his geve, (0 a c1y 2 

where E is the peak value of the input signal and E > k.Ae 

Since the describing function relates only the fundamental 

component of the output to the input amplitude, an alternate 

representation of the control element is required, to take 

into consideration, the direct component in the output. The 

form of equation (2.1) suggests that the control element of 

Figure 2.5 can be split into its direct and oscillatory 

parts as shown in Figure 2.6. 

The describing function of the oscillatory part is then 

k 1 

m,/E = eal el ate a (a 
1=1 

  

Dividing m,/E by K_ one obtains 

  

k a 

i=l 

N *1S. displayed. asa function of E/te “In Figure 2.7. This 

curve can be used to determine N _ for any Q-position 

odd-symmetrical control element up to Q = 33. m,/E is 

obtained from by the relation 

m,/E = KN 

The plot of Figure 2.7 shows that there are (Q - 1)/2 

maxima and these occur at 

(E/se) an +) ¥2 = 2 (2.4)
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(E/Ae) is the location of the n th maxima 

It is also found that the value of N at the values of (E/Ae) , 

given by equation (2.4) increases with n. The global 

maximum occured at 

(0.4 272-3) /2 (Len) (E/ae) 
eal 1/2 

The corresponding value of N at this value of (E/Ae) is 

found to be 

Nic 429 = 
"7 E/Ae = (Q + 272 - 3)/2 

k 1 

A (o[s- cH] } Q.6) a 1 

Where, My = Q-% 272 = 3 

  

Figure 2.8 displays N, as a function of: 40 = 13/2. 

Figures 2.7 and 2.8 enable the determination of the describing 

function for any linearly distributed odd-symmetrical control 

element. The use of these curves in the analysis of stability 

of electroheat processes will be explained in sections 2.5 

and 2.6. 

2.4 THE RMS DESCRIBING FUNCTION OF NONLINEAR CONTROL ELEMENTS 

In using the conventional describing function for the analysis 

of stability, it is assumed, often with justification, that 

the higher harmonics in the output of the nonlinear control 

element do not contribute significantly to the output of the 

process. This assumption is valid, only if the higher 

harmonics are sharply attenuated by the process. 

In the case of processes modelled by equation (1.1) and 

controlled by a Q-position discontinuous control elememt this 

assumption is not valid. A typical temperature waveform of a 

process controlled by a three-position controller is shown



i 

oGt) 

  

    
Pig. 2-9 *.Steady. state. oscillation. in -a 

3-position controlled process.
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in Figure 2.9. The amplitude of the third harmonic is found 

from Fourier analysis to be nearly a third of the fundamental 

component. The conventional describing function, which 

ignores the higher harmonics, could therefore lead to 

erroneous results. The accuracy of the describing function 

analysis is improved, if the third harmonic in the output of 

the nonlinear control element is also considered; however 

except in the case of the simplest nonlinear elements this 

analysis becomes very complicated. ? 

The RMS describing function which considers the RMS value 

of the output accounts for the effects of the higher 

harmonics in the output signal. This form of quasi- 

linearization of the nonlinear characteristics of the control 

element is justified in terms of energy equivalence®. 

For the odd-symmetrical control element displayed in Figure 

2.5 the RMS value of the output can be shown to be 

k 1 

ae 1 LED Zito A hey 
Mons oe 12 [Be a —ouMz Sin ( E ) Peeh) 

: Nan 

where k = ee pecs eee 

and M = (Q- 1)/2 

The RMS value of the input sinusoidal signal is E/Vv2. 

The RMS describing function of a nonlinear control element 

is defined as the ratio of the RMS values of the output to 

the input, when the output has no direct component. However 

as in the previous section, the control element can be split 

into its direct and oscillatory parts as shown in Figure 2.6. 

The describing function of the oscillatory part is then 

m,/E - |2-| Se xe Seo sin” hate] (2.8) 

Normalising the above with respect to the slope of the 

control element, one obtains
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N = (m,/E).2M.a0 = é Ee =e Het sin 2=AS)| | (2.8) 

  

where y = “E/M.Ae 

k is the integer part of E/sAe 

and << 4s 

The RMS describing function is similar in many respects to 

the conventional describing function. A plot of N vs. E/ase 

reveals M maxima, the value of N at these maxima, increasing 

with E/Ae. As before the global maxima occurs when k = M. 

The RMS describing function is displayed in Figure 2.10. 

Figure 2.11 displays the global maximum of the describing 

function as a function of (Q - 1)/2 for both the RMS and the 

conventional describing functions. It is observed that the 

RMS describing function yields higher values for x. than the 

conventional describing function. As Q is increased, however 

this difference is reduced. 

COROLLARY 

The proportional control element described in section 2.1 

may be considered as an infinite-position control element 

with the slope given by 

lim ao ete 
Ae> 0 

The RMS describing function is displayed in Figure 2.12. It 

is observed that the global maximum value of the describing 

function No is.l1. 

2.5 STABILITY CRITERIA 
  

The block diagram of Figure 2.3 can be redrawn as shown in 

Figure 2.13 with the control element split into its direct 

and oscillatory parts. KN is the describing function of the
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oscillatory component of the control element; while the 

direct component is shown as a separate input into the 

process. Since the control element considered is odd- 

symmetrical, condition 2 formulated in section 2.2 

requires that 

6,./G = 1/2 

The stability analysis, when asymmetrical control elements 

are used, will be presented in section 2.6. 

The transfer function of the controlled electroheat process, 

shown in Figure 2.13 is 

(1 + KNG).G (jw) (2.10)   S (ju) = 
r 1 + KNG. 6, Ge) 

where 6G») is the transfer function of the process and 

has the form given by equation (1.1) or (1.2). 

Defining uw as u = KG, equation: (2.10) can be written as 

ee Meee ee oe) & (jo) = 
r i + Nu+G, Ga) 

The stability of the control system is determined by the 

location of the zeros of the characteristic equation i.e. 

the zeros of 

1 + Nu.G(jo) = 0 GAD 

This requires 

" =
 [Nu.G, (je) | 

(2-233 

ul 

=
 and arg (6, Gjw)) 

Equations (2.13) which can be solved graphically or 

analytically determine the stability boundaries for the 

controlled process.



os 

For processes that can be modelled by equation (1.1) where 

GG) = exp(-joL)/(1 + jwT) 

equations (2.13) take the form 

ct 

Nu. = (L + w?T?)? (2.14) 

at 
ob + tan: (of. <t (2.15) 

Eliminating wT from the above equations, one obtains 

el 1 
oes PB REE: 2 

ce + 
(N22 Be 1)* 

Equation (2.16) determines the stability boundaries for 

processes modelled by equation (1.1). Figures 2.14 (a),(b), 

and (c) display L/T as a function of Nathe Since i 

is known from Figure 2.11, » and therefore the slope of the 

control element is easily determined. 

It is worth noting that equation (2.16) may also be used 

for the determination of stability of processes controlled 

by proportional control elements. In this case, the maximum 

value of N is 1; hence equation (2.16) reduces to 

aa 1 
2 tae Cet. 2} 

(i= 1)2 
(2.16a) 

  Let. = 

The above result corresponds with the stability criterion 

developed by Roots and Wu!®, 

2.5.1 EXAMPLE 

An example will be worked out that illustrates the ease 

with which stability conditions can be evaluated. An 

electroheat process with a time constant of 1 hour, which 

can develop a maximum temperature of 1000°C, is to be
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controlled by a five-position controller that enables the 

following output values to be realised: 0, 3}, 4, 3, andl. 

It is desired to control the temperature at 500°C. The 

transit delay due to the distributed nature of the thermal 

system is 6 minutes. Determine the calibration settings for 

the controller so that the process operation is stable. The 

process is modelled by equation (1.1). 

For this example, L/T = 0.1, G =. 1000°C, 6/6 = } 

and O72 5,210 <"1)/2 #2 

From Figure 2.11, Ne (RMS) for a five-position controller is 

found to be 0.8021. From Figure 2.14 (c), Nou for L/T =-Os1 

is found to be 16. 

Therefore u 16/0.8021 

19.948 

For a linearly distributed control element, the calibration 

increment is found to be 

Ae = G/u(Q - 1) = 1000/(19.948).(4) 

t2. S32°C 
Any calibration increment less than the above value will 

yield a stable control of the process. The critical control 

element characteristic is shown in Figure 2.15. 

For electroheat processes modelled by equation (1.2), the 
  

analytical procedure outlined above, may be used; but the 

graphical procedure, discussed in the subsequent development 

is shown to be more straightforward and simpler. This method 

is a modification of the Bode diagrams, specially adapted to 

the evaluation of stability boundaries for electroheat 

processes. 

In this method, equations (2.13) are written in terms of the
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process parameters. In the case of processes modelled by 

equation (1.1), equations (2.13) take the following form: 

  

1 

te = {4154 w*T,7) (1 + w*T 7) }? 

(218) 

eS a 
=~. tan. (wt) = tan: Cals) 

“ 1 2 
L/T, = 

fy a 

Equation (2.18)represents two functions of wT) and these are 

plotted in Figure 2.16 for T/T, = 0.1. The evaluation of 

stability, now reduces to the determination of Ny for a 

given L/T, or vice-versa. For a given L/T,, the critical 

frequency is determined from Figure 2.16; the corresponding 

value of Ny» at this critical frequency, is the maximum gain 

allowed for the process. 

For example, if L/T, = 4, and T/T, -“O.1. the critical 

frequency (o.+Ty) is found to be 8.1. The value of Nu at 

this frequency is 10.5. Therefore for stability 

Np <* 10.5 

or u: < . Min(10.5/N) = 10.5/N., 

Ni, is obtained from Figure 2.11. 

The above procedure illustrates the ease with which stability 

conditions are determined. This method obviates the need for 

Bode diagrams, Nyquist plots and complex analytical methods. 

Using the above procedure, the stability boundaries for 

processes modelled by equation (1.2), were determined for the 

following typical process parameters: 

T/T, ~ 0.1, 0¢5 and-1.0 

These are displayed on a logarithmic scale in Figure 2.17.
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2.6 STABILITY OF PROCESSES WITH ASYMMETRICALLY DISTRIBUTED 
  

CONTROL ELEMENTS 

In section 2.5, the stability criteria for processes, where 

the normalised input command 6/G = 1, were derived. The 

analysis of stability, when asymmetrical control elements 

are used, is complicated by the fact that in the event of 

instability, the input to the control element is comprised 

of a direct component (offset or droop) in addition to the 

oscillatory signal (assumed sinusoidal). A dual-input 

describing function has been proposed by Douce et al!!, for 

the analysis of stability in such cases. The procedure, 

however, is very cumbersome and not easy to apply. 

Fortunately, electroheat processes designed for input 

commands 6 ./G = 3 , were also stable when 6 /G + 0.5. 

The critical condition for stability in such systems was 

found to be determined only by the symmetrical region of 

the control element. This is illustrated in Figure 2.18 (a) 

for a five-position control element with the normalised 

input command 6,./G = 4. The output of the control element 

assumed any of the following values: 0, 3}, 41, 3, 1. The 

symmetrical region in this case is A-B-C-D-E; and the slope 

of the control element K for a stable operation of the 

process is the same as the slope of a three-position control 

element with 6./G 4. Similarly, if 6,./G = 3 the five- 

position control element has the characteristics shown in 

Figure 2.18(b). The symmetrical region in this case is 

P-Q-R-S-T and the slope K for stable operation is the same 

as the slope of a three-position control element with 

o/G6 =}. 

Thus the stability of electroheat processes controlled in 

this manner, can be easily determined in terms of the 

stability of processes controlled by odd-symmetrical control 

elements. The following example will illustrate the 

application of this technique.
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An electric furnace has the following operating conditions: 

1) The process has the following transfer function: 

G exp(-sL) 
G (s) = a eee 

P A toe 

where G= =. 1000°C 

L/T = Cok 

Determine the stable operating conditions for the following 

input commands: 

8. = 250°C, 500°C and 750°C 

2) A five-position control element whose output can assume 

the following values: 0, 4, 4, 3, and 1..is to be used 

for the control of temperature. 

SOLUTION: 

The calibration increment for eam 500°C has been found 

from the example(section 2.5.1) to be 

Ae a“ Fee 6 

0 500°C 

The input commands ic: = 250°C and 750°C correspond to 6./G 

ratios of } and 3} respectively. As outlined earlier the 

stability for such commands, depends only on the symmetrical 

region of the control element; for a five-position control 

element, the calibration increment Ae is the same as for a 

three-position control element with the following operating 

conditions: 

6,/G = 

N
i
=
 

500°C QQ
 tl 

From Figure 2.11, x. for a three position control element is 

found to be 0.7242. From figure 2.14, Nat For... C7? #0, 1 ts
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found to be 16. Therefore 

u 16/0.7242 = 22.2 

$0041 22.2.) (2)ceade oe 0 Ae 

The complete solution is then 

  

Ae €. 253°C 
a oO Q = S00--€ 

Ae a 34 C 
250°C 

6 2erigea   

A control system designed for 6 ./G = 4, is also stable for 

other input commands, provided, the conditions formulated in 

section2.2 are fulfilled. An asymmetrical control element 

permits a higher critical gain (smaller calibration increment) 

for the same process.The critical gain, however is not 

altered, if a proportional control element is used as the 

control element, since the stability boudaries are 

independent of the input command. 

2-7 DISCUSSION 

The stability boudaries for electroheat processes modelled 

by equations (1.1) and (1.2) were determined in sections 2.5 

and 2.6; facile displays that enabled stability evaluation 

in terms of normalised parameters of the process were 

presented. 

From the displays presented in the earlier sections, it is 

observed that the normalised transit delay (L/T or L/T,) 

is the most significant parameter of the process in the 

analysis of stability. While a small delay permits high gain, 

a large delay causes the process to go unstable even when the 

gain of the controller is small; this is particularly 

important for processes in which the delay is caused by the 

location of the temperature transducer. For such processes 

the stability analysis yields valuable information on the
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maximum permissible delay in the process. 

In the case of processes that can be represented by equation 

(1.2), the stability is also affected by the relative 

magnitude of the two time constants T, and T,. Frequently, 

the smaller time constant is due to — inertia of the 

heating apparatus; it is therefore assumed often with 

justification, that the smaller time constant T, is 

negligibly small. This assumption is valid, only, if the 

smaller time constant is at least twenty times smaller than 

the major time constant i.e. T,/T, < 0.05. Comparison of the 

stability boundaries of the processes modelled by equation 

(1.2) reveals the following: 

4). For oO = (T,/T,) < 0.05, the stability of the 

processes is essentially determined by the major 

time constant Th: 

2) When T,/T, = 0.1, the stability is decreased. 

3) When T,/T, = 0.5, the stability is improved and is 

found to be very nearly the same as that of a first 

order process. 

4) When T,/T, = 1.0, the stability of the process is 

further improved. 

5) The frequency at which instability occurs, is however 

different for the four cases mentioned above. 

The effect of the transit delay and the relative magnitude of 

the two time constants, is easily observed in Figure 2.17. 

Test results based on a digital simulation of electroheat 

processes is discussed in chapter 5S. 

SUMMARY 

A unified approach to the determination of stability of 

electroheat processes controlled continuously or discont- 

inuously, has been presented. Facile displays that determine 

the stability boundaries in terms of the normalised parameters 

of the process are intended for the professional engineer
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TRANSIENT RESPONSE OF ELECTROHEAT PROCESSES 
  

Sta INTRODUCTION 

The analysis of stability presented in Chapter 2, does 

not yield any information on the transient behaviour 

of closed-loop controlled electroheat processes. The 

prediction of transient behaviour of such processes 

especially when they are controlled discontinuously, 

is very difficult; this is due to the lack of a precise 

solution of the differential equations governing such 

processes. The difficulty is further enhanced by the 

transit delay inherent in electroheat processes. In 

this chapter new generalised graphical techniques are 

presented that enable the design of closed-loop control 

systems to given specifications. 

A new exponential describing function, which has not 

been proposed before, is described; this describing 

function derives conditions for non-oscillatory response, 

when electroheat processes are controlled discontinuously. 

Exact solutions, where possible, are derived for non- 

oscillatory response to step inputs, when discontinuous 

controllers are used. 

3.2 TRANSIENT RESPONSE OF CONTINUOUSLY CONTROLLED PROCESSES 
  

52-1. Proportional control 
  

The prediction of transient response of any controlled 

system is based on the knowledge of the distribution of 

closed loop poles and zeros. The distribution of the 

poles and zeros depends on the open loop gain and the 

open loop poles and zeros. 

If the open loop system has a transfer function G(s) 

and the open loop gain is yu , then the closed-loop trans- 

fer function of a unity feedback system is
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2 (s) = uG(s)/{1 + uG(s)} 

The closed loop zeros are therefore the same as the open- 

loop zeros; whilst the closed loop poles are the roots of 

the characteristic equation 

1+ Gis): .= =O (3.1a) 

or the values of s that satisfy 

G(s) = -1l/u (3.1b) 

The following relations exist between the nature of closed 

loop poles and the transient response: 

1) If all the roots of the characteristic equation are 

real and negative, then the transient response to 

any of the standard inputs (viz. step, ramp, impulse 

etc.) is non-oscillatory. 

2) If any of the roots are complex, having negative real 

parts, the response is damped oscillatory. 

3) If any of the roots are imaginary, then the transient 

response is undamped oscillatory. 

4) If one or more of the roots have positive real parts, 

then the system is unstable. 

Thus it is essential to know the nature of the roots of 

equation (3.1), for predicting transient response. 

For a process modelled by (1.1) the characteristic equation 

has been shown to be



a7 

Lot ge uexp(-sL) = 0 (3.2a) 

or exp-(-sL)/(1.+°sT) °° =2=1/y (3.2b) 

The solution of equations (3.2) may be obtained graphically 

25. by the root locus technique The technique may however 

be modified so that a general technique for the design of 

‘control systems is available. 

A generalised root technique, applicable to processes with 

any L and T is achieved by the transformation of the 

Laplace complex variable s as follows: 

The transfer function of the process is given by: 

G,(s) = wexp(-sL)/(1 + sT) 

This may be written as 

G(s) = yexp(L/T) .exp{-(sL + L/T)}/(1 + sT) 

= ypexp(L/T).exp{-(sL + L/T)}/(sL + L/T) (T/L) 

If one defines u =. sb. 4 L/T 

and n = (uL/T)exp(L/T) 

the transfer function of the process may be written as: 

G, (uv) = nexp(-u)/u 

With the above transformation, equation (3.2b) takes the 

form:
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exp(-u)/u = -1/n (333) 

Since equation (3.3) is independent of L and T, the solution 

of this equation is applicable to electroheat processes 

with any combination of L and T. 

The complete solution of equation (3.3) is obtained by 

plotting the root locus as n is varied and superimposing 

on these the constant gain (n ) contours. 

The root loci is plotted as follows !*: 

i) 

27) 

iii) 

iv) 

Construct the phase-loci for exp(-u) 

and (1/u). These are displayed in Figures 

Bolte) gne 2h 

Superimpose the phase locus of exp(-u) 

on the phase-locus of (1/u) as shown 

in Figure 3.2. 

Join all the points where the sum of the two 

phase angles is + 7 (180°), by a smooth curve. 

This curve is then a branch of the root locus 

for a phase angle of +n. Similar branches may 

then be constructed for other phase angles by 

joining those points where the total phase is 

SUZ ew Lg ee Le ees ee ree eee Pippre 3.2 

displays the branches for phase angles of 1m 

and 3n. It will be shown later that it is 

sufficient to consider these two branches in 

the design of controllers for electroheat 

processes. 

From (ii1), i1t..is clear. that-the root-loci 

for processes with transit delay, will have 

infinite branches.
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Since the root-loci are symmetrical about the real axis 

(all complex roots occur in conjugate pairs), only one half 

of the loci need be shown. 

The gain n corresponding to any root ( a point on the root 

loci) is determined by the relation 
=
 I | 1/6, (u) | 

|u.exp(u) | 

If: @.-a* jw. i8‘a root, then: is given by 

N
i
m
 

n = exp(a){a* + w2} 34) 

While there is only one value of n corresponding to a 

given root (ie: a point on the root loci) the converse is 

not true. Thus for a given n there are infinite roots 

one on each branch of the root loci. In order to predict 

the transient response characteristics of a process it is 

necessary to have a knowledge of the distribution of the 

roots for a given gain n . This is facilitated by con- 

structing constant gain (n ) contours and superimposing 

these on the root loci plots of Figure 3.2. The equation 

governing the constant gain contour is derived from equation 

(3.4), where 

N
i
a
 

n = exp(a){a2 + w2} 

Expressing w in terms of n and a one obtains 

w2 = ntexp(-2a) - a2 

Then for a given n, w is a function of a and this is plotted 

on the u-plane. By constructing families of such curves for 

various values of n the constant gain contours are obtained. 

These are shown superimposed on the root-loci plots in Figure 

3.3. The intersections of the constant gain contour with the 

branches of the root loci determine the various roots cor- 

responding to a given gain n . By the use of the inverse
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transtormation. 

cu* b/T) /L n ul 

and 

u = nexp(-L/T)/(L/T) 

The closed loop poles of the controlled electroheat process 

in the s-domain, corresponding to a given » are easily 

determined. 

It is seen that by the use of the generalised root loci 

and the constant gain contours% the complete solution of 

a controlled electroheat problem can be obtained. Also 

the transformation of the complex variable s to u enables 

the same curves to be used for any process that can be 

modelled by equation ( 1.1). 

The problem of controller design is now reduced to the 

choice of gain y (or n ) that yields the desired response. 

From Figure 3.3 it is observed that, to a given choice of 

n (and therefore » ) there are at the most two real LOOtS', 

while all the other roots are complex. One may then conclude 

that for processes that have transit delay, a nonoscillatory 

response cannot be obtained. This directly contradicts the 

findings of Roots and Wu !5. This contradiction is due to 

the fact that previous work!5 considered only one branch of 

the root-loci, namely the branch corresponding to a phase- 

lag of 180° ( 1 ); it has clearly been shown that root-loci 

for the processes considered here have infinite branches and 

that real roots are found on only the branch corresponding 

to a phase of 180°. 

In selecting the gain uw (or n ) for the process it is sufficient 

to take into account the roots on the two branches of root 

loci corresponding to a phase lag of 180° ( * ) and 540° 

(3 1). The roots on the other branches have such large 

negative real parts that they may be safely ignored. 

  

* The author acknowledges the help of Prof. L.D.Meeker in the 
formulation and plotting of constant gain contours.
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The procedure for selecting the gain uw for a desired 

response subject to the restrictions mentioned above, is: 

i) Since in most electroheat processes, it is 

required to restrict overshoot to less than 

9%$°the required damping factor .« is 0.7 13. 

This corresponds to predominant poles located 

in the s-plane at an angle of a5”, 

4%) In the u-plane, locate the point A (Figure 3.3) 

on the positive real axis such that OA = L/T. 

At A construct an angle of 45° intersecting the 

lower branches of root-loci at B as shown in 

Figure 3.3. 

iii) Determine the gain n at the point B. By using 

the constant gain (n) contours locate the root 

‘on the higher branch (point C in Figure 3.3). 

iv) If the roots at B and C are denoted by u, and u 1 
then the corresponding poles on the s-plane 

: 

are obtained from the relation 

6 og (u; “LIT {hy @- ice 

v) Since the root-loci are symmetrical about the real 

axis ther will be additional poles P,* and P,* 

being the complex conjugates of Py and P> 

respectively. 

vi) The required gain y is obtained from n by the 

relation 

yw = nexp(-L/T)/(L/T) 

vii) The closed-loop transfer function is then 

ywexp(-sL) uP P>P,*P,* exp(-sL) (35) 
  

  

1 + sT + pexp(-sL) (1+u) (s-p,) (s-p,*) (s-p,) (s-p,*) 

where Pi» Po» Py” P,* are obtained from (iv) and (v). 

viii) It is only required to shift the point A for any 

other value of L/T. The same procedure may then 

be repeated.
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It may be easily verified from any standard text on 

control systems that the step response of a controlled 

process whose transfer function is given by equation 

(3.5) has an overshoot of about 5-6% provided y is 

chosen according to the method outlined above. 

3.2.2. Proportional-integral control 
  

If an electroheat process is subject to sustained dis- 

turbances (viz. load variations, power supply variations, 

ambient temperature changes etc) a proportional controller 

alone does not yield an acceptable performance; this 

requires an additional integral control, whereby the 

manipulated variable is continuously adjusted until in 

the steady state the error is eliminated. 

A method will be outlined whereby the same set of curves 

developed in the previous section for proportional control, 

is used to choose the controller parameters for the desired 

response. 

The transfer function of the electroheat process in cascade 

with a proportional-integral controller has the form 

oh + (1/Tps) }Gexp(-sL) 
  Gots) Ge) = a 

where sensitivity of proportional control 

Reset time of integral control 

Gain of heating apparatus 

j= K + (1/T,s) = controller transfer function (s 

(s) 
Ns 

Gexp(-sL)/(1+sT) = process transfer 

function Et
. 
(G
a 

3G
 

6)
 

es
 

i 

process parameters 

The transfer function after simplification may be written as 

{KT,s + 13G.exp(-sL) 
Ghose = (3.6) 

Tps Ci: 4*sT) 
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If TR in equation (3.6) is made large such that KT,>>1 

then 

Gate) Meats) = KG .exp(-sL)/(1:>.+ sT) 

(proportional control) 

ee TR is chosen small such that KT,<<1 then 

Batsi<8 (8) * G exp(-sL)/Tps(1 ST} 

(integral control) 

lt is-seén that. for large TR the controller action is 

Similar to proportional control, and for small TR an 

integral control is realised. With small Tp however, 

the gain of the system is increased to a large value and 

consequently results in a poor performance. A large TR 

on the other hand yields a response similar to proportional 

control; consequently the response to disturbance inputs 

is very sluggish. 

Experimental investigations® 1% and theoretical con- 

siderations (outlined above) reveal that the benefits of 

integral control are realised if TR is chosen such that 

KT, sf. OT ok = T/T, 

Equation (3.6) with TR as above reduces to 

G(s) «G, (s) = G exp(-sL)/T,s A472 

If one defines 

u = sL 

and n = L.G/Tp 

equation (3.7) may be written as 

Suht)aG lu) = nexp(-u)/u 

The characteristic equation then takes the form 

exp(-u)/u = -1/n



45 

This is the same as equation (3.3). Hence the generalised 

root-loci technique developed in section 3.2.1 may be utilised 

to determine n for the desired response. The only difference 

in the procedure for the choice of n is that the angle of 45° 

is constructed at the origin and the intersection of this 

with the branch of root-loci corresponding to a phase lag of 

™, yields the predominant closed loop poles. The corresponding 

value of n and therefore K, TR is then easily obtained from 

the relation 

n = |1/G_(u) G,(u) | 

Thus the generalised root-loci enable the design of both 

proportional and proportional-integral controllers for 

electroheat processes, by the use of the same set of root- 

loci and constant gain contours. It is in the author's 

opinion, a simple, yet analytically sound approach to the 

design of continuous controllers for electroheat processes. 

3.3 TRANSIENT RESPONSE OF DISCONTINUOUSLY CONTROLLED 

ELECTROHEAT PROCESSES 
  

  

The transient response of electroheat processes when dis- 

continuously controlled presents a unique problem. An exact 

Solution will be outlined for On-Off and three-position 

controllers when used for processes modelled by (1.1). An 

exponential describing function for the analysis of transient 

response characteristics for multi-position discontinuously 

controlled processes is also presented. 

3.3.1 EXACT SOLUTION OF TRANSIENT RESPONSE CHARACTERISTICS 
  

a) ON-OFF CONTROL 

The On-Off control of electroheat processes has been 

exhaustively treated in several articles!® and the results 

will be briefly quoted here. 

The response of On-Off controlled processes to step temperature 

commands is always oscillatory, the period and the offset error 

being dependant on the magnitude of the input command. The 

amplitude of oscillaticn, the period of oscillation, the type of
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Fig. 3.5 Effect of input command on the parameters of an 

on-off controlled electroheat process.
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oscillation and the offset error are given by 

Amplitude f= G{l - exp(-L/T)} 

G8 8 
Period ty oT 1 ia 2 

oe on 

where ie 6. exp (-L/T) + G{l1 - exp(-L/T)} 

(maximum value of 6) 

ie 6,.-exp(-L/T) (minimum value of 6) 

where 

6(t) is the temperature of the process 

L is the transit delay 

¥ is the time constant 

Offset error eo 8 

where 6 is the average value of @(t) 

t 
1 q 

Average value Com fe Ptjsde 

o 

Figure 3.5 displays the variation of 84> ty y in terms of 

the normalised parameters. 

Figure 3.6 depicts the response of the process to a step- 
input. 

From the displays of Figure 3.5 and 3.6 the following con- 

clusions may be reached: 

1) The response is always oscillatory. 

2) The amplitude of oscillation increases as Li7t ‘=e 

increased. 

3) The period of oscillation is a function of the input 
command 6/G and is a minimum when 6/6 = 0.5.
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4) The offset error is zero only if 6,./G a O.5; 1 is 

negative if B/ 88 0.5 and positive if 6 ,./G> 0.5 

b) 3-position control 
  

In the case of a 3-position control, the output of the control 

element assumes three values viz. m= O,m,,1. AS mentioned 

in Chapter 2 (Section 2.2) it is required that 

ny * 6,./G 

The analysis is presented in the time-domain . The differential 

o = constant 

equation of the process is 

Ti De(ty +e0(t) . =... 6.m(t- .b) 

The following characteristic will be assumed for the 3- 

position control element (see Figure 3.7a). 

Assuming zero initial conditions ie: 

6 (0) 0 

6,.(t) By, t » 9 

the initial trajectory of o(t) is 

6 (t) 

e(t) 6[1 - exp{-(t - L)/7)| et SL 
and m(t) is given by 

O: OS tack (3 gy 

u(t) <=, 3 seret sO and “6(t)-* 6. - Ae, 

The first switching (m(t) = 1+ m(t) = 6,/G) will occur when 

6(t) =9,~Ae)- If the switching instant is denoted by ty 

é(t,).= 6, = Ae, = Gil -“exp(-(t,-'L)/T)} (3.9) 
Tr 

and 

m(t,) = 6 ./G



  

    

      

m 

1 CC 

A) 

6./G 

8 
$5 

O oe - Ae, rs + Ae, 

Fig. 3.7a Three-position control element 
characteristic as a function of 
output temperature of process. 

    

      

Fig. 3.7b Three-position control element 
characteristic for a nonoscill- 
atory temperature response. 
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But 6(t) will continue along the trajectory given by 

equation (8) for the duration of the transit delay L, 

after switching. Thus 

atts + 1) G{l - exp(-t,/T)} (3.10) 

The conditions for a desired transient response may now 

be determined 

If it is required that there be no overshoot then the 

condition is that 

e(t,.+ L) = G{l - exp(-t,/T)} t 6. Geese 1 

From equation (9) it may also be found that 

6(t, +e (8. ~he, )exp(-L/T) + G{l - exp(-L/T)} 

Condition (11) therefore reduces to 

(6 

Simplifying one obtains 

ae Ae, )exp(-L/T) + G{l - exp(-L/T)} < ve 

Ae, > (G - 6.) {exp (L/T) = 1} (322) 

The transient response of the process when Ae, is chosen 

according to the condition (3.12) is shown in Figure 3.7c 

If the -initial-«conditions»were 

= Oe 0. 8(O) > 6. Ae 
2 

6.(t) =) oe O 

then the o(t) trajectory is given by 

6(t) = 6(0) exp(-t/T), m(t) ul ©
 (3.13) 

if the first switching occurs<at: t' = t. then 2 

6(t.) ae he, = 85 exp(-t,/T)



  

  

  

  

6./G   0 

Pig..3.7¢ 

  

Nonoscillatory response of a 
process with zero initial condi- 
tions. 

  

  

  6 ./G     
  

O 

Fig. 3.7d Nonoscillatory response of a 
process with nonzero initial 
conditions. 
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and 

m(t,) = 6 ./G 

But 6(t) continues to follow the trajectory of equation (3.13) 

for the duration of the transit delay (L). Then 

" ett... +4) 6 exp(-(t, + L)¢T) 
2 

(6. + he, )exp(-L/T) (3.14) 

For no overshoot, it is required that 

(6. + Ae,)exp(-L/T) > Oe 

ie. Ae, > 6 {exp (+L/T) - J} (3.153 

Figure 3.7d displays the transient response to a step input 

when Ae, is chosen according to (3.15). 

Thus the criteria for nonoscillatory response depends on the 

initial conditions. For a three-position controller, the best 

results are obtained with an asymmetrical distribution of the 

calibration increment about the e = O axis as shown in 

Figure 3.7b. 

The choice of Ae, and se, is governed by the inequalities 

(3.12) and (3.15). It is worth pointing out that the sum 

of the two increments Ae, and Ae, is a constant when the 
1 2 

controller is designed for critical damping. Thus 

de, + be, = G{exp(+L/T) - 1} (3.16a) 

Under these conditions, one can define the slope of the 

control element as 

K 

or fe 

1/(de, + Aes) 

1/(exp(L/T) - 1) (3.16b)
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With the choice of Ae, ,Ae, as noted above critically 

damped response is obtained under any given initial 

conditions. 

3.3.2. Exponential Describing Function 
  

An exponential describing function for determining the 

transient response of electroheat processes controlled 

by multiposition discontinuous elements is presented 

here. The results derived by using the describing 

function closely check with actual test results. This 

method, however, determines only the conditions for non- 

oscillatory response. Since in most electroheat processes, 

large overshoots (greater than 3-4%) are not acceptable, 

the analysis presented here will be of significance in 

the design of multiposition discontinuous controllers. 

It may be recalled, that, in the analysis of stability, 

it was assumed that the input to the control element 

was a sinusoidal signal. The output was then related 

to the input by a sinusoidal describing function. It 

was therefore decided to investigate the relation of 

the output of the control element to the input when the 

input is an exponential function (as would be the case 

in the event of a nonoscillatory response). 

Exponential describing functions have been used before 

in the transient analysis of nonlinear control systems !7. 

But the results derived were very inaccurate when applied 

to processes with transit delay. The method described 

below was found to yield reasonably accurate results. 

The analysis will be presented for the odd-symmetrical 
‘control elements shown in Figure 2.1. It will be assumed 

that the conditions formulated in Chapter 2 (Section asc) 

are fulfilled. Then the exponential input to the control 

element will be of the form



DS 

e(t) = G.exp(-t/T,)/2 

where G is the gain of the heating apparatus 

Ty an arbitrary time constant. 

The output of the control element will be as shown in 

Figure 3.8. 

The output is seen to comprise a d.c. component and a 

transient component. The d.c. component whose magnitude 

is 1/2 indicates the power required to maintain the 

temperature at the value G/2; while the transient compo- 

nent may be considered as the excess power that raises 

the temperature from O to G/2. 

The shaded area shown in Figure 3.8 then represents the 

heat energy consumed in the transient state. This area 

can be easily shown to be 

  

  

Ty 5 M-1 j 1 
N(M) + = pin ) + Doct - —).In{ 1 + | 

Z 2M.Ae et M M=j 

Met 

(3719) 

Ty G 
= ——. ln(—) , M= 1] 

Z 2Ae 

where Ae is the calibration increment of the control 

element. 

M = 34 » Q-the number of possible values of M. 

If K(M) is the slope of the control element = 1 
(Q-1).Ae 

and »(M) = K(M).G 

then 

7 

N(M) = 4 {inu(M) + A(M)} (3.20)
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e(t) = Gexp(-t/T,)/2 e       

Fig. 3.8 Output of a multiposition discontinuous control element 

to an exponential input signal. 
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A plot of A(M) as a function of M is displayed in Figure 3.9. 

The values of N derived above which represents the energy 

in the transient state should be equal, irrespective of the 

form of control (assuming a critically damped response). 

Thus 

N(1) = N(2) = seeeees = N(M) = +++ = N(o) (3:29) 

An exact solution has been found for the transient response 

analysis of processes controlled by a 3-position controller. 

Then using equation (3.21) and the value of the gain yu 

obtained from the exact analysis for a 3-position controller 

(M = 1), the conditions for a nonoscillatory response to 

step input commands may be derived for multiposition 

discontinuous controllers (M > 2). 

For a 3-position controller it was shown that (equation(3.16b)) 

uth} © -1/Cexpthyt). =-1) 

From equation (3.21) 

N(1) =. N(M) , Mi m2 Fe sees eee 

ie: T,-Intu(1)}/2 eae T,: In{u(M) + ACM) } 

Simplifying 

u(M) = y(1).exp{-A(M) } (3.22) 

where M = (Q - 1)/2 and Q is the number of values m assumes.



Fig, 3. 

  

A (m) 

  

  

  

                  

0 a 2 3 4 

Exponential describing function of multiposition 
discontinuous control elements. 
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Equation (3.22) enables the evaluation of u(M) for a 

critically damped response when multiposition dis- 

continuous controllers are used. A(M) is obtained 

from Figure 3.9. Figure 3.10 displays y(M) as a 

function of M for a process modelled by (1.1) where 

L/T-* 0.1,.0.25, 1. The exact values derived from 

simulation studies is also displayed for comparison 

It is seen that for L/T=0.25 the exponential describing 

function yields accurate results. The error is seen to 

increase with L/T. And the error is about 14% when 

L/T = 1. But such high values of L/T are not encountered 

in electroheat processes. In any case the models used 

for such processes are themselves only approximate; 

therefore values obtained within 10% accuracy are quite 

acceptable. 

When the control element has an assymmetrical distri- 

bution the describing function postulated above may still 

be used; however a general describing function is no 

longer realisable, since the common features of symmet- 

rical control elements do not exist in an asymmetrical 

control element. The procedure for determining the 

gain for a critically damped response will be illustrated 

for a 5-position control element. 

When the input to the control element is an exponential 

function, the output is as shown in Figure 3.11 for 

6,./G = j. 

The transient output indicated by the shaded area in 

Figure 3.11. is given: by 

  

3T C T 3 T 
Ni2)*m eee, Tp oe (ewe ob we La 2 

4 12E 2 2 4 

37, e a‘ 9 
= — lin — + — ln - (3235) 

4 12E 4 2 
For a 3-position controller where exact solutions have 

been found, it can be shown that
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  u (M) 

  

  

  

  (a) 
ee 

RW etl Sicnes iene é 

(b) 

  

  
  

— ae 
— Sit wh es te       sg ey etl           

    
Fig. 3.10a Boundaries for nonoscillatory response in a discont- 

inuously controlled electroheat process as determined 
by (a) exponential describing function and (b) simul- 
ation on the digital computer. See Fig. 3.10 b for 
the determination of gain for nonoscillatory response.
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u(1) 
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  s ae 

Be cae 

So 

L/T 

0.2 0.4 0.6 0.8 eo 
              

Fig. 3.10b Facile display for determining the gain of multi- 
position discontinuous controller for nonoscilla- 
tory process response. u(M) is obtained from u(1) 
by the relation u(M) = u(1).exp{-A(M)} and A(M) 
is obtained from Fig.3.9.
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Fig. 3.11 Output of an asymmetrical control element to an exponential input 

Signal. 
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Fig. 3.12 Asymmetrical control elements for nonoscillatory response. 
(a) Nonlinear control element (b) Linear control element. 
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N(1) = (3ST, /4) .1n(G/4de) (3,24) 

It is required that N(1) = N(2) as before. Equating 

(3.23) and (3.24) and simplifying 

  

  

3 G 1 9 3 G 
—Ih —— + —‘In— =. — In 
4 2B 4 2 4 4he, 

Ae 

Therefore Bre oe exp(1/2) = O.55Ae, 
3 

Ae, is found from equation (3.12) to be 

3G 
Ae, = {exp(L/T) - 1} 

Therefore 

E © Q.41{G exp(L/T) - 1} (4.325) 

This is the value of the calibration increment when the 

system starts from zero initial conditions. 

When the initial conditions for the process are 

6(O) > met EF, 

Then the transient response is the same as that of a 

3-position controller with m = 0, 3, 1 and 6,./G* = } 

and G” = G/2 

Then the calibration increment E} may be found from (3.15) 

and is given by 

5 = G{exp(L/T) - 1}/4 (3326) 

Ey is thus seen to be less than E as given by equation (3.25) 

A non-linear control element would therefore give a critically 

damped response under any given initial conditions. If it 

is required to use a linearly distributed control element 

then the calibration increment is chosen according to 

equation (3.25) Figure 3.12 displays the linear and non- 

linear control element for a 5-position controller.
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The use of exponential describing function thus enables 

the design of discontinuous controllers for electroheat 

processes. The procedure is quite simple, yet the results 

are reasonably accurate. 

The analysis presented here has so far been restricted 

to processes modelled by (1.1). The extension to 

second order processes (1.2) is quite straight forward, 

provided the ratio of the two time constants (T,/T,) 

is Jess;than 0.1. .Inaccuraty results if (T,/T,) is greater 

than 0.1, since the input to the control element is no 

longer an exponential function. However rough estimates 

of the gain required may be obtained if the second-order 

process is simplified to first order process by the 

Zeigler-Nichols approximation 18, 

3.4 SUMMARY 

a A new generalised root-locus technique has been 

presented that enables the design of continuous 

control systems to desired specifications. 

2) Exact solutions have been derived for the 

transient response of electroheat processes 

when controlled by On-Off (two-step) 3-position 

controllers. 

3) A new exponential describing function has been 

formulated that determines the criteria for 

critically damped response of multiposition 

discontinuous controllers. This is hoped to 

be a fruitful area for further research. 

4) The unified stability analysis presented in 

Chapter 2 and the transient response charac- 

teristic presented in this Chapter have 

established powerful techniques for the design 

of controlled electroheat processes.



Chapter 4 

NEW CONTROL STRATEGIES FOR ELECTROHEAT PROCESSES
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NEW CONTROL STRATEGIES FOR ELECTROHEAT PROCESSES 
  

4.1 INTRODUCTION 

The design of proportional controllers for electroheat processes 
was discussed in Chapter 3. As is well known, the proportional 

controllers are incapable of compensating for sustained load 

disturbances; consequently, offset errors occur, often impairing 

the quality of the final product. For electroheat processes 

that are subject to sustained disturbances, the use of propor- 
tional- integrating controllers is recommended. The design 

of such controllers has been well covered in literature 5 19 20 21, 
In this chapter new control strategies that lead to improved 

process performance are presented. In particular the following 
control schemes are investigated in detail: 

i) The effect of derivative feedback in discontinuously 
controlled processes. 

ii) The development of a nonsaturating model-referenced 
integrating controller that utilises the digital 

computer for both process simulation and on-line 
control. 

iii) Development of a time optimal controller that incor- 
porates a 3-position discontinuous controller with 

derivative feedback in cascade with a model-referenced 

integrating controller. 

The analysis is mainly restricted to processes modelled by 
(1.1) . The extension of the analyses to processes modelled 
vy (1.2) is indicated. 

4.2 EFFECT OF DERIVATIVE FEEDBACK IN DISCONTINUOUSLY CONTROLLED 
ELECTROHEAT PROCESSES 
  

The improvement in process performance that results, when deri- 
vative content is incorporated in the feedback loop of discon-
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tinuously controlled processes is analytically examined. 

The analysis is presented for two different kinds of dis- 

continuous controllers that are commonly used in electroheat 

control. These are the on-off (two-position) controller and 

the 3-position controller. 

4.2.1. On-off controllers with derivative feedback 
  

(a) FIRST ORDER PROCESS 
  

The improvement in process performance as a result of derivative 

feedback in on-off controllers is well known and has been reported 
by several workers *% 23, However the choice of the derivative 

content had always been empirical; this often resulted in on-off 

controllers designed with arbitrarily chosen derivative content 

causing droop errors and even uncontrollability (instability)2*. 

An investigation was conducted into the effects of derivative 

feedback with the purpose of establishing a sound basis for 

the optimum derivative content in on-off controllers. The findings 
of this investigation have been published and is attached as 
Appendix 4A 2°, 

(b) SECOND ORDER PROCESS 
  

For second order process (modelled by 1.2) an analytical solution 
is obtained by approximating the step-response as outlined by 

Zeigler-Nichols 26, 

The step-response of a second order process is displayed in 

Figure 4.la. This response may be approximated to a first order 
response, by incorporating a time-lag and an equivalent time 
constant as shown in Figure 4.1 b. 

The procedure for this approximation is as follows: 

1) Locate the point of inflection in the step response 

of the second-order system (point P in Pugure 4.1] a). 

This point may also be determined analytically by 

finding the value of 6, where the slope has a maximum 
value.
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Fig. 4.la Step response of a second order 
process. 
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Fig. 4.1b Equivalent first order, transit 
delay model of second order process. 
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2) Determine the slope K of the step-response at the 

point P. Locate the intersection of this slope 

with the time axis (point Q in Figure 4.1la ) 

3) Then the first-order approximation of this process 

is given by: 

6 ,(s) = exp(-sL,)/(Q1 + sT) 

where L, is the equivalent delay (0Q in Figure 4.1a ) 

Al
re
 

T is the equivalent time constant = 

With the above approximation, the second-order process with 

delay (1.2) may be written as 

G(s) = exp{-s(L + LJ3/Q + sT) 

The analysis of derivative feedback may then be carried out, 

using the method outlined above. 

4.2.2. 3-position controller with derivative feedback 

The conditions for a critically damped response were derived 

for a .S-position controller, in Chapter 3. (Section 3.3.1.)..it 

is shown in this section the improvement in process response 

when derivative feedback is incorporated in the controller. 

The optimum derivative content for the best performance is 

shown to result in an asymmetrically distributed control ele- 

ment. The analysis is presented in the time-domain. The block 

diagram of the control system is shown in Figure 4.2. 

The differential equation of the controlled process is given by 

TDe(t) + o(t) = Gm(t - L)



  

}. e(t) te 
  

  

      

Oz (t) 

Fig. 4.2a Block diagram of a three-position control 
system incorporating derivative feedback. 
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© (t) 

Fig. 4.2b Three-position control element characteristic 
for a nonoscillatory response.
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If the system starts from the ambient temperature, then the 

temperature of the process is given by 

i 6(t) OQ, Pet Sih 

6(t) G(1 = exp(L - t)/T), tm | 

The rate of change of temperature is given by 

De (t) o a ed eee 

De (t) (G/T)exp(-(t' - L)7T) 4. t > 4 

The feedback signal is given by 

6 -(t) o(t) + KDe(t) 

G{l - exp(-(t - L)/T)(1 - K/T } (4.1) 

where K is the derivative gain. 

A switching action (m = 1 +m = 6,/G) occurs ‘at’ t = ti> when 

6 -(t) a Oe aay 

Therefore 

6-(t,) = G{l - exp(-(t - L)/T)(1 - K/T)} 

a Oo Bee : 3 (4.2) 

Due to the transit delay 1, 6 -(t) follows the m = 1 trajectory 

for the duration of the delay. 

Then 

6-(t, 2) ee tl --expt=(t. 92h) 71) 71. = Reet (4.3) 

Substituting the value of exp(-t,/T) obtained from equation 

(4.2) in equation (4.3), one obtains 

6 -(t, +L) =G- (G - oo Se, )exp(-L/T) (4.4)



it 

The corresponding value of @6(t) at t = ty + L can be shown to 

be 

6{t.. #5). = G0 - exp(-t,/T)) 
1 

= G(1 - exp(-L/T) -. K/T) + (0, - he, )exp(-L/T) 
  (475) 

(i. = R/T 

For a critically damped response, it is required that 

6-(t, tL oe 6. + de, (4.6a) 

and 6(t, * i) is os (4.6b) 

Equation (4.6b) when solved for A@ys gives 

Ae, = (G - 6) - exp(-L/T) - K/T)exp(L/T) (4.7) 

Substituting the value of Ae, in equation(4.4) and simplifying 

equation (4.6b), one obtains 

Ags 2? (K/T)(G - 6.) (4.8) 

Conditions (4.7) and (4.8) establish the criteria for a 

critically damped response (nonoscillatory), when the process 

starts from ambient temperature. 

When the process initial conditions are different, ie. 

6(0) = 6 

following conditions: 

ee oe then a similar analysis yields the 

Ae, = 6 (1 - exp(-L/T) - K/T)exp(L/T) (4.9) 

Ae, > K.o/T (4.10) 

Substituting the value of Ae, and Ae, from equations (4.7) 

and (4.9) in the conditions (4.8) and (4.10) and solving for 

K, it is observed that 

(G - 6,).(1 ~ exp(-L/T)) 

G - 6 (1 ~ exp(-L/T) 

  

A



a2. 

and 

A 6.(1 -. exp(-L/T)) (441) 
  | 

ae (G - 6,.Jexp(-L/T) 

Conditions (4.7) - (4.11) constitute the complete solution of 

a three-position controlled process for a nonoscillatory 

response to step temperature commands. 

The results may now be summarised. The calibration increments 

Ae,, Ae, and the optimum derivative content K are given by 

de, (G - 6.) (1 - exp(-L/T) - K/T)exp(L/T) ) 

Ae, 6..(1 - exp(-L/T) - K/T)exp(L/T) 

  

  

K (G - 6,).(1 - exp(-L/T)) 
— < 

T G - 6.1 - exp(-L/T)) 

oot G/2 

(4,12) 
K Ll = exp(-L/T) 

T 1 + exp(-L/T) 

a G/2 

K 6(1 - exp(-L/T)) 

tse ae J exp (-L/T) 

2 G/2     
The above equations indicate that the calibration increments 

and the optimum derivative content are dependent on the 

input command. Consequently an asymmetrically distributed 

control element is required to be used to achieve a 

nonoscillatory response for step temperature commands.
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The effect of derivative feedback on the process response is 

best understood, by determining the calibration increments 

of the control element with and without derivative feedback, 

for a nonoscillatory step response. This is illustrared in 

Figure 4.3. 

The principal advantage of incorporating derivative signal 

in the feedback loop is that, the dead-zone (or the zone of 

constant control effort) is now smaller. In any three 

position controller with a dead-zone, the offset errors due 

to disturbances are not eliminated, since there is no control 

action within the dead-zone. Hence a better performance is 

obtained, if the width of the dead-zone is minimised. This is 

achieved by incorporating derivative feedback. The improvement 

that results is futher illustrated by the following example. 

EXAMPLE 

Given that the process is modelled by equation (1.1) with the 

following data: G = 100°C, L/T = 1/8, oe 50°C 

Determine the calibration increments for a three-position 

controller with and without derivative feedback for a 

nonoscillatory response to a step input command. 

For the controller without derivative feedback, the 

calibration increments are given by equations (3.12) and 

(3.15). They are found to be: 

  

  

Ae, = (G- 6.) (exp(L/T) - 1) 

K=0 

+ ie 

Ae, = 6, (exp(L/T) SJ 

K=0 

e47.3°C
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Fig. 4.3 Switching boundaries for a 3-position controlled Pig. 4.4. Controller charac- 
process with and without derivative feedback. feristics for the.., 
t, is the switching instant; t, is the settling time. example. = 
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If derivative feedback is incorporated according to equations 

(4.12), . then 

  

  

Ae, e333 C 

Kk +0 

Ae ai 3533508 
2le K +0 

The width of this dead-zone without derivative feedback is 

given by 

Ae = (oe, + 99) n S650°6 

K =0 K = 0 

If optimum derivative feedback is incorporated then 

Ae * (kG, + ou = 6.66°C 

K +0 K + 0 

  

The controller characteristics for critically damped response 

with and without derivative feedback is displayed in Figure 4.4. 

The above example clearly shows that with optimum derivative 

feedback, the width of the dead-zone is more than halved; 

consequently a faster response to disturbance input is 

obtained. For the example considered above, the process does 

not respond to disturbance input less than 71°C in magnitude, 

if the controller has no derivative feedback; while if optimum 

derivative feedback is incorporated into the controller, this 

range of insensitivity is reduced to 3.33°C. More accurate 

control is thereby achieved. 

Since the calibration increments are now a function of the 

derivative content K and the optimum derivative content varies 

with the input command, 3-position controllers in general have 

a nonlinear distribution. 

The optimum derivative content for processes modelled by 

(1.2) is derived by the use of the Zeigler-Nichols approxi- 

mation as explained in Section 4.2.1. (b)..
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4.3. MODEL REFERENCED INTEGRATING CONTROLLER 
  

The use of process models in the design of control systems 

is well known 27 28; their application in the design of 

adaptive control systems has been the subject of extensive 

investigations *’. In this section, the use of the model 

as a control element will be indicated. The forerunner 

to this investigation is the Smith's Linear predictor 28 

for processes with transit delay or transportation lag. 

The Smith's Linear predictor was designed only to overcome 

the destabilising effect of the transit delay. The scheme 

proposed in this section utilises the process model itself 

as an integrating control element. 

If a process is subject to disturbances, an integrator is 

required to eliminate offset errors that might arise. The 

proportional controller and the discontiuous controller 

discussed earlier are not satisfactory since these do not 

adequately compensate for disturbances. In the case of 

proportional control, a step disturbance causes an offset 

error, whose magnitude is a function of the gain of the 

process; while if the process is discontinuously controlled, 

in addition to an offset error, there are also oscillations. 

The model-referenced integrator will be presented as the 

logical outcome of the design of nonsaturating digital controller 

for a finite time deadheat response to step inputs. It will 

further be shown that by conbining the advantages of discon- 

tinuous control with those of integrating control, a time- 

optimal controller for electroheat process is realised. The 

analysis is mainly restricted to processes modelled by (1.1) 

since these represent a class of common thermal processes. 

The extension of the results to processes modelled by (1.2) 

by the procedure indicated in section 4.2.1 (b) is straight- 

forward.
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4.3.1. Digital controller for critically damped response   

In this section, asimple time-domain technique of synthesizing 

digital controllers for deadbeat response to step input commands 

will be presented. The strategy developed here takes into 

consideration the plant saturation; further the method outlined 

facilitates the use of computers as on-line controllers for 

electroheat processes. 

The open-loop digital control of electroheat process will be 

considered first; the required closed-loop control for the 

same response characteristics is then easily determined. 

Figure 4.5 shows the closed loop digitally controlled electro- 

heat process. The closed loop controller is denoted by its 

impulse response D. (Z) Figure 4.5 b shows the equivalent 

open loop control of the same process. The open loop controller 

is denoted by Ds, (72 

The first consideration in the design of digital controller 

is the choice of the sampling périod. . Strictly, the choice 

of the sampling period is governed by Shannon's theorem, 7? 

which states that the sampling frequency T. should be greater 

than twice the highest frequency of the input Signal. In 

practice, especially in electroheat process, there are no 

band-limited input signals; hence a more meaningful criteria 

for the choice of sampling period, is required. 

Since the electroheat process has a low pass filter  charac- 

teristic, it is sufficient to consider such frequencies where 

attenuation by the process is less than a given value. Thus 

the amplitude of the process modelled by (1.1) is given by 

[Ge] = 1/VG + 272) 

For high frequency (wT>>1) this may be approximated as 

[(G(jw))| = I/oT
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Fig. 4.5a Electroheat process controlled by a digital controller. 
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Fig. 4.5b Equivalent open loop digital control of an 
electroheat process.
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If the highest frequency of interest is considered as 

that which gives a value of |G(jw)| = 0.01 then the 

value of this frequency is given by 

u 1/wT 0.01 

Therefore W 100/T 

Now the application of Shannon's theorem leads to a sampling 

frequency Wg of twice this value, ie: 

& 2 ee. (02) (200777 

The sampling period is therefore 

a = 2n/w. = 1T/100 

(4.13) 

Tadt e,.0/100 <= 0208 

The sampling period chosen according to the above method 

yields a reasonably acceptable performance 39. It will be 

assumed in the following analysis that ss is chosen according 

to the criterion outlined above. 

Considering the block diagram of Figure 4.5 (b), let 

ay 
6.(Z) = 6/(1 eT 3 (a step function of magnitude 

8.) x 

The output of the open-loop controller Dd. (Z) is then 

E(Z) = 6 (2) .D. (2) 

The modified Z -transform of the process and the hold can be 

shown to be
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ft at th ee acre 8 faa), = atl o 
G,(Z,m) = + (4.14) 

te all ycd 

where a(m) = exp (-mT ,/T) 

aot). = exp, (<TD) 

Ee ul (k + 6)T. O<é< 1 

and m is a Z-transform parameter such that O<m<1l 

The ordinary Z-transform is obtained from the relation 

ZG, (Z,m) < 6, (2) 

m->O 

The use of modified Z-transform enables the output to be 

determined between the sampling instants. The output is 

then given by 

6(Z,m) = E(2).G, (Z,m) = 6.(Z) .D, (2) .G, (2 ,m) (4 15) 

The output at each sampling instant and between the sampling 

instants is easily determined by a series expansion of 

6(2Z,m) 

6(Z,m) = a “ite. eer ee 8 oe 2<toe3{2 © a(n) * 

e(uijil. Getaii? = EOsatmii? - aflkir * 4. Oe 

where eo &, are the coefficients of the various powers of 

Zin the series expansion of E(Z). The second series on the 

right is the series expansion of G,(Z,m). The product of the 

two series of (4.16) is given by



biz nee | eb + (e,b, + e,b,)z + + 81 

(e,b, + e,b, + e,b JZ - eine < ska ee | 4537) 

where Bo ok ee) 

by = a(m){l - a(1)} 

by *~-etmyatt){l -.a(l}}: etc, 

The output (ie: the temperature of the process) between 

the sampling instants nT. and (n+1)T. is given by the 

coefficient of Z” in (4.17). The output at the sampling 

instant is obtained with m = O and the output between 

the sampling instants is obtained by varying m between 

O and 1. 

From (4.17) it is observed that the temperature is zero 

fo¥/t2#0 to t=kT.. The output between (k+1)T, and (k+2)T, 

is given by 

6(t) Geb, Ge, {1 ~ G4m) tT, 

(k + 1)T, Siete Mee 2)T. 

e(t) = Ge_{1l - a(m)} = 0; f= 1k + 2)T. 
: n= 0 (4.18) 

(ti. = Ge i. > a = Ge 41 = Bilt); 
m= 1 

t © {k ¢ 2)T. 

It is required to choose Cor Cporee + SO that the output 

temperature is raised to the value of the command 0. 

in the fastest time without overshoot. The constraints 

on the digital controller are such that 

O een Se Sy i @h; oie eoeeoeeoeeee ee



82 

The constraint on the input command is 

O< 98" <G 
ic 

Since the value of the command cannot exceed the maximum 

temperature G, which the process can attain (with full 

power). For similar reasons, it is required that O<e,<1 

since e; which represents the input power cannot exceed 

the power rating of the heating apparatus; also since 

there is no forced cooling e; should be greater than zero. 

The design of controllers for Pients subject to saturation 

has been studied by several authors . The design is 

based on the assumption that the maximum value of the input 

command to the system is known. If, for example, this maxi- 

mum value is eo and the settling time for deadheat response 

is nT. then the process will respond to any step command 

6 <8 with the same settling time. Figure 4.6. displays 

the step response of such a control for various input 

commands. 

If the input command exceeds 6,, then saturation occurs, and the 

System response then exhibits overshoot and the settling time 

is no longer finite, also the form of the controller ve) 

required for such processes is complex and requires increased 

storage location if a digital computer is used. 

In the scheme suggested below, the digital controller is 

designed for the maximum input command, ie: 2 G. When 

this controller is used in conjunction with a 3-position 

controller incorporating derivative feedback a much faster 

response results. 

The design of the digital controller will now be illustrated 

for a step input command. 

wed. 6) .* G/0.- 27) 

the magnitude of the step command being G.



a 

  

  

B. 
=   t —e 

Fig. 4.6 Step response of digitally controlled 
electroheat process designed for cons- 
tant settling time. 

83



84 

From equation (4.18) it is seen that the first nonzero 

output occurs for t> (K+2)T.. 

The output at the sampling instant t = (K+2)T. is 

e(t) = G.e {1 * BUNs) 2 (k + 2)T. 

Since the maximum value of Aas 1 the output is then 

o(t):=-G{l =.atl}}; t= (k°4 2)T, 

The output between (K+2)T. and (K+3)T. is given by 

a(t) = Gle b, + eb.) 

= G(b, + e,b)) since ta 1 

= G [ atm) a - a(1)} + e,{1 - a(m) } 

(+ 2) out kaa): 

At. t = {k + ayT 

e(t) = G [ aca) «a - a(1)} +e, {1 - a(1))| 

tt G{1 - a(1)}{a(1) + e,} 

" With e, = Lett) Gis atl) 341. ef1)3 

Gil.-4a(1)2}. <6 

rt Can be.simiiarly shown that with €4 * ¢. 8 <.4e... = 1 the 

successive outputs are given by 

ett) = Gul = af") t (4.19) ll 

<
 
~
 f 3 Sa
i —
 

n 

n= 0, 1. Ue eeeeveve ° 

Thus the process attains the temperature G only at t+“, Also 

the values of Oger Cy.s+++ee€ +++ are equal, ie: es." 1.
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This gives 

Ets) it oO
 a oO
 

N
 oe
 

oy a e272 ies anes erokare o6e ° (4.20) 

" ae
 

~~ o
a
 

ja
 1 Nm 

i 

Since 

1 
Biz) #0 (2).0.() = 6 0.(2)/(1-- Z°*) 

Therefore 

D, (2) = 1/G (4.21) 

With the open loop digital controller, the process responds 

to any input command ee without saturation effects. This 

is easily observed by evaluating E(Z) for an input command 

6 (2) given by 

1 
Pale = 8 / (it ek Qo 

“4 
E(Z) = 6. (2) D, (2) = 6/61 eae) 

Thus the output of E(Z) which indicates the power input to 

the electroheat process is equal to the power that raises 

the process to the temperature 01. and maintains it at 0. 

The step response of such a controlled process for various 

magnitudes of input command is displayed in Figure 4.7. In 

the time domain the output temperature at any instant is 

given by 

e(t) = 6f1 > Oxnret/t ty). Oi et oe



  

    
Fig. 4.7 

ee 

Step response of electroheat process 
controlled by a nonsaturating digital 
controller. 

86



87 

Admittedly this response (Figure 4.7) is very slow compared 

to the responses obtainable (Figure 4.6) by other methods?? 33, 

The advantage of the scheme proposed above is that the process 

never saturates. Also the form of D.(Z) given by (4.21) is 

very simple to implement if only open loop control is desired; 

further the closed loop controller D.(Z) (Figure 4.5a) that 

yields the same response is also much simpler to implement. 

The closed loop controller D (4) that yields the same step 

response as the open loop controller D,(Z) is derived as 

follows: 

For open loop control: 

e(Z,m) = 0,(Z) D.(Z) G,(Z,m) 

For the closed loop control: 

6(Z,m) = E'(Z) D.C) G, (Z,m) 

For the two responses to be identical: 

@.(2) Do{Z) = B' (2) B.C) 

From Figure 4.5a E'(Z) can be seen to be: 

Sete © 0 AZ/LT FO ete yG 14) 9 

D(2) = D.(Z)/{1 + D.(2) G,(2)} 

Simplifying: 

D.(2) = D,(2)/ 5 D. (2) G, (Z) (4.22)



Fig. 4.8 
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Closed loop nonsaturating digital control of electroheat process. 
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Substituting the value of G, (2) from equation (4.14) with 

m = 1, the closed loop compensator has the form 

a 77 6k + 1) ) D4). = 4 at CC = al Oh (4.23) 

This form of D2) is a special integrator and may be 

verified by substituting Z = 1 in equation (4.23). The 

denominator becomes zero with Z = 1, thus revealing a pole 

at Z = 1. Equation 4.23 may also be written as: 

  

A/G 
D(Z) = S i 

: fe oye tyes ag ty 

: CR ee (4.24) 
1 - G,(Z)/G G - G, (2) 

Thus D. (2) is seen to incorporate the plant characteristics 

G, (2). This form suggests that the flow diagram for realising 

D.(4) may be as shown in Figure 4.9. The path identified by 

(G6, (Z)},, denotes a digital model of the process. Thus D.(Z) 

given by equation (4.23) is termed a model-referenced 

integrator?*. The simulation of the model on the digital 

computer is shown in Figure 4.10. The closed loop transfer 

  

function of the controlled process for an input command Gs 

in the absence of disturbance inputs is given by (see Figure 4.8) 

6/6 (Z,m) = G,(Z,m) D(Z)/{1 + G, (2) D(2)} 

Substituting the expressions for G,(Z,m), G, (Z) and D.(2) 

from equations (4.14) and (4.23) and simplifying one obtains 

0/0 .(Z,m) = G,(Z,m)/G | (4.25) 

Equation (4.25) with the substitution of the expression for 

G, (Z,m) becomes



e€ 

ve
 

Eteig 4 

Fig. 4.9 Flow diagram of model-referenced integrator. 

    {K+1/G} 
  

Fig. 4.10 Flow diagram for simulation of model-referenced 
integrator on the digital computer. 0

6
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zk +1.) (k + 
(1 - a(m)) + Z~ 2) (acm) - a(1)) 
  , eer 

r < 1 - a(1)z"* 

It is seen that with D.C) as given by equation (4.23), the 

closed loop transfer function has the same form as the 

transfer function of the process, except for the constant 

term. 

Similarly, it may be easily shown that the transfer function 

of the output for a disturbance input e. in the absence of 

input command 6. (ie.9, = 0) is 

o(Z,m) = ©,G(Z,m)/{1 + D.(Z) G,(Z)) 

  

0 = 0 
. 

-1 =(k + 1) 
6 ,G(Z,m) {1 mee’ - (1 - a)Z } (4.26) 

@M- a2?) 

where 

@G(Z,m) = Z [ °,¢s) 6(s)| 

Zn] 6 (s) -Gexp(-sL)/(1 + s7)| 

Once 6, Cs) is specified (ie. a step or ramp function), the 

modified Z-transform of the above function may be obtained 

from any standard table of Z-transforms?®. It should be noted 

that in general 

@,,6(Z,m) # Z. [e,,(s)}. Zi. [ s¢s)] 

The compensating action of the above control scheme will 

now be shown by examining the steady state value of the 

output, when the disturbance input is a step function.
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For a step disturbance (6,(s) = 8,/s -) an application 

of the final value theorem yields the steady state output. 

Thus 

  

  

  

(Io 9) 0.G(Z) (1 =.a2 = Ciena} 
lim ett) =.2im 

+t Sees oh Geta 

ee oka? (1 es a) 

where 6,6 (Z) = 

Gees C1 az) 

Therefore 

pete ad = (a-aye 1 yay 
lim: = 9¢t) = lim - = 0 

tse ees Gtr © 274 

The control scheme of Figure 4.8 with D.C) as given by 

equation (4.23) gives an open loop control for input 

command * and as an integrator for disturbance inputs 

7 

The controller scheme may also be extended to continuously 

controlled electroheat processes. In this case the digital 

controller, the zero-order hold and the sampler are replaced 

by a continuous (or analogue) controller having the form: 

G(s) = 1/[6 - {G(s)},] (* 2275 

where G(s) G.exp(-slL)/(1.+.sT)
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The control system is then as shown in Figure 4.11 

pets) t. denotes the model of the electroheat process. 

Electroheat processes involving large power are difficult 

to simulate by analogue methods; hence the use of digital 

computer is required, in which case the control scheme of 

4.5(a) is adopted. Since only a few storage locations are 

involved in the implementation of such a control scheme, 

time-shared computer control is facilitated. The control 

scheme of Figure 4.5(a) is displayed as block diagram 

for computer control in Figure 4.8 . Experimental investi- 

gations (reported in Chapter 5) reveal, that the simulation 

of the model even when inexact leads to imporved performance. 

4.4 OPTIMAL CONTROL OF ELECTROHEAT PROCESSES 
  

One of the main disadvantages of the control scheme discussed 

in the previous section is the slow response as evidenced 

in Figure 4.7. It was shown in Section 4.2.2. that a 3- 

position controller with derivative feedback yields a finite 

time deadheat response if the calibration increments and 

the derivative content are optimally chosen (equations 4.12) 

It can be easily shown that the step response of a 3-position 

controller is a time-optimal response. 

Since the plant is subject to saturation, the maximum value 

of the input command is G. Thus 

6. <°G 

In other words the optimal trajectory for an input command 

is given by 

Oopt (t) = -G{1 --exp(<t/f)} (4.28) 

If for any given input command 8.» the process response is made 

to follow the optimal trajectory of equation (4.28) until the 

process temperature 6, is attained, then optimal control is



    

2, (s) 1 G expsL) a 
G- (Ge), 1+sT 
  Y 

            

  

Fig. 4.11 Control scheme for continuous nonsaturating 
control of electroheat processes.
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realised. The desired response for various input command 

is displayed in Figure 4.12. This response is superior to 

those obtainable by the methods proposed by several authors aor 

where the settling time was fixed for any input command. Further 

the process of saturation caused further complications. 

The response of Figure 4.12 is easily realised by a 3-position 

controller with derivative feedback. But an electroheat process 

subject to disturbance inputs requires an integrator for 

elimination of offset errors. This compensation may be achieved 

by incorporating the model referenced controller proposed 

earlier (Section 4.4.2.) Thus combining the 3-position control- 

ler,time-optimal controller, capable of counteracting the 

effects of disturbances is realised. 

The control scheme is displayed in Figure 4.13. This is 

a multiple loop control system incorporating a continuous 

sampled data controller and a discontinuous controller with 

derivative feedback. If an analogue model of the process 

can be simulated, then the digital controller and the zero- 

order hold may be replaced by the controller G(s) (equation 

4.27). It is also seen from Figure 4.13 that the input command 

to the model-referenced controller is the output of the 3- 

position controller. This control-scheme may then be termed 

as the input-modulated optimal control. It is assumed that 
  

the 3-position controller characteristics satisfy equations 

(4.12). ! 

The following relations exist for this control system: 

a) Disturbance input ne 0 

From equation (4.25) this is observed to be 

S(Z,m) = G,(Z,m)/G 

Since r is the output of the 3-position controller,
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Fig. 4.12 Desired step response of electroheat process 
for various input commands.
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Fig. 4.13 Cascade combination of 3-position controller and the model-referenced integrating 
controller that leads to the optimal control of electroheat process. 
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T(t}. eG 
ett): > Ae, 

Tit) <= e 
“he, < ettio-x Ae, 

Tit) e.0 

  

e(t) < “he, 

In view of the above, it may be concluded that in the 

absence of disturbance inputs, the step-response of 

the controlled process is the same as that of a 3- 

position controlled process with derivative feedback. 

b) (i) Disturbance input 6 0 

(ii) ~Aey<0, <Aey 

€111)° 9.f{t)-= a eee 

It will be assumed that a disturbance input eo, is applied 
to the process, at time t >0, when the system is in the 

Steady-state, ie: @(t) = 0 In view of (iii) the three 

position controller is inactive, the magnitude of 8 is 

within the limits of the deadzone. 

The output temperature is then governed by equation (4.26) 

with the qualification that 6.70. Then 

9 a.G(Z,mil © az" — (eae te) (Zim). = + . (4.29) — 1-372 eft <"d2-5 
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The application of the final value theorem to 06(Z,m) 

it may be shown that the steady state value of the 

output temperature is 

lim eft) = lim. (2 = 24) 6(2 mii 8 
tro Lead 

rE 

Thus for disturbances whose magnitudes are within the 

limits of the deadzone of the 3-position controller, 

the compensation is performed by the integrator alone. 

c) (i) o17 0 

(ii) o(t) = 0.» t = 0 

Fi12) 6,> 6> Ae,, or 6,.-G<6 (u) < “Ae, 

Since the magnitude of the disturbance = is now greater 

than the width of the deadzone, the three position con- 

troller is also activated in addition to the compensating 

action of the integrator. The 3-position controller brings 

the process temperature within the deadzone in the fastest 

possible manner, while the action of the integrator is 

more predominant when the error is within the deadzone. 

d) (4)+), 600) F200 

Cit) 6.0) "= 0.» t =0 

Cii2) Ber 050. > G<O 

For disturbances of such magnitudes, the controller is 

not adequate to compensate for the offset errors since, 

for a 8 forced cooling is necessary to maintain the 

temperature at 8,3 while for ee G<O, the power input 

to the heating apparatus is required to be greater than 

the rated power.
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The above observation is in general true for all 

electroheat processes; such disturbances however 

are not normally encountered. 

The experimental investigations the actual step 

response to disturbance inputs are discussed in 

Chapter 5. 

In passing, the following observations should be 

noted: 

1) The integrating controller is applicable to any 

electroheat process; the only requirement is that a 

digital simulation of the process be possible. Thus 

processes modelled by (1.2) and other more complex 

processes are amenable to control in an optimal 

manner. 

2) Strictly deadheat response is assured, only, if 

the digital controller (equation 4.23) is replaced 

by its analogue equivalent (equation 4.27). However, 

if a sufficiently small sampling period is chosen, 

an almost deadheat response, sufficient for practical 

applications, is realised. 

3) The design of optimal controllers for processes 

modelled by (1.2) is facilitated by equation (4.24) 

and the Zeigler-Nichols approximation discussed in 

pection 4.2.1 °{b). 

4.5 SUMMARY 
  

The improvements that result with derivative feed- 

back in discontinuously controlled processes has 

been discussed and exact results that enable the 

design of control elements discussed. : 

A model referenced integrating controller suitable 

for plants subject to saturation has been proposed.
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The realisation of such controllers on the digital 

computer has been indicated. 

An optimal controller that combines the advantages 

of a 3-position controller incorporating derivative 

feedback, with those of the model referenced inte- 

grating controller, has been shown to result in an 

improved performance of the process. The performance 

is better than optimal controllers designed accord- 

ing to the conventional methods.
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scontinuous ‘PD’ Conirol of Thermal Processes 

1ermal processes (boilers, furnaces, torches etc.) that are often 

mntinuously controlled (to reduce the cost of control) a great, 
of confusion has existed as to the effect of derivative signals in 

eedback loop. This has resulted in empirical design rules for the 
yative feedback settings of their controllers. This paper presents 
nalysis of the effect of derivative feedback upon the perform- 
indices of such processes. Methods of evaluating these indices, 

various combinations of command and derivative feedback, are 

n. The boundaries are clearly defined for the process instability 
results from excessive derivative feedback. It is shown that 

well-known cycling characteristic display is inadequate for 
eying to the practising engineer the effect of derivative feed- 
¢. Two new displays have been derived that clearly show the 

‘t of command and derivative feedback upon the process per- 
rance. Finally, the optimum derivative feedback conditions are 

n for the typical process. The presentation is intended for the 
essional engineer concerned with the control of industrial 

esses. 

NTRODUCTION 

he results reported here arise from an investigation into the 

trol of processes involving an electrothermal energy con- 
ion (Induction furnaces, Arc furnaces, Plasma torches, etc.), 

these results can be applied to the many thermal processes 
ilers, Ovens, Vats etc.) that previous work!:? has shown to be 
esentable by the cascade connection of a transit delay (L) 

a time constant (7). The transit delay arises because of the 

ributed nature of many thermal processes, and can be 
irded as a cascade of an infinite number of time parameters: 

l exp(— sk) =, ™,, HM + skin 

ny of these processes are discontinuously controlled because 

represents an economical form of process control?:4 and the 
mon form of this control is ‘two-position’ or ‘bang-bang’ in 

ch the thermal element is either inoperative or operating at 
imum capacity. The mode dependent nature of the time 

stant of some thermal processes will not be considered as the 
Its reported here can be extended to cover such cases in the 

ner reported elsewhere.®:® 
he effect of a derivative signal on the control of such processes 
10t analytically understood. Consequently many control 

neers tend to avoid incorporating derivative feedback when 

trolling these processes. Alternatively, when derivative feed- 
k is used, the manner in which it is incorporated into the 

sess-controller is often based upon empiricism. This fre- 
ntly results in permanent offset errors that displace the 
trolled temperature from the command (or set point) and, 

infrequently, also cause instability. This paper presents an 
lytic basis for the use of derivative feedback in all discon- 

ously-controlled thermal processes. 

  

f. Roots was, and Mr. Shridhar is, with the Electrical Engineering Department, 
ersity of Aston in Birmingham. Prof. Roots is Head of Electrical Engineering, 
ersity of Windsor, Ontario, Canada. 

*Professor William K. Roots, MSc, PhD, WhF, 
FIEE, Sen Mem IEEE, MIE Aust, 

and *Malayappan Shridhar, BSc, DMIT, MS. 

  

  

NOMENCLATURE 

b = primary feedback 

e = actuating signal 

m = manipulated variable 

Ss = Laplace complex variable 

sgn (e) = e/lel = +1or-—1 

t = general symbol for time 

to = ON time (portion of tg for which m = + 1) 

tp = OFF time (portion of tg for which m = 0) 

tg = period = to + tp 

u = disturbance input 

y = 0, — 0 = offset error 

= two position controller characteristic with 

zero deadspace (achieved by a secondary 

feedback loop if necessary) 

D = d/dt 

G = gain of a thermal process. Incorporates any 

thermal attenuation within the process. 

K = derivative feedback coefficient 

L = transit delay 

iB = process time constant 

a =) K/T- 

= DT 

= 1 — exp(— 8) = 1 — exp(— L/T) 
(= index of process time parameters) 

i) = controlled variable 

6 = mean value of 0 

0a = 0m — 9n (= cycling amplitude) 

9m = maxima of 0 

On = minima of 0 

0, = command 

x = [(u+ G) — 8,]/[6, — ul 

= 07/G nao 

So = exp (— L/T) = exp (— 8) = 1 — ¥   
  

2. CONTROLLED THERMAL PROCESSES 

Figure 1 shows the general block diagram for a controlled 

process with a derivative content (K) in the feedback, all symbols 
being designated in the previous nomenclature section. Figure 1 

3



TABLE 2 

vation of the performance indices in terms of the operating conditions 
when the derivative feedback is negligible (a = 0). 

  

Performance Index Derivation 

Period (tg) “ a tenn 

6a 
Amplitude (64) Gaal 

In Jar, a y ol ap) 
Error (y) Lag aha ih pel cise:     

symbols «, 8, p will be used to identify the normalised 

ating conditions of (4), (5), (6). Earlier electroheat litera- 
|,7,9 also used the symbols y, o, A which are identified in 

endix B; which also summarises the interrelationships 
een these earlier symbols and the simplified nomenclature 

lis paper. 

) understand controlled thermal process behaviour it is 
rtant to be able to evaluate the performance indices (1), 
(3) in terms of the operating conditions. This is important 

hree reasons: 

) To be able to design new processes and to predict their 
performances in the conceptual stage. 

) To design systems for the control of such processes, or to 

specify controlled-performance requirements that are 
practicable. 

) To design algorithms for the computer control of such 
processes. 

hen the derivative feedback content is negligible (« = 0) 

> performances indices can be expressed in terms of the 
ating conditions by the equations displayed in Table 2. 
y professional engineers know, from practical experience, 

these performance indices will change as the derivative 
back becomes significant (« > 0). To fully understand 
yative-discontinuous control, and to gain the conceptual 

hts necessary for the effective use of computers in controlling 
processes, one must know how these equations (Table 2) 

iffected by the presence of derivative feedback and how to 
ent this knowledge in practical terms. This is accomplished 
ie next two sections. 

ESTRICTED DERIVATIVE FEEDBACK 

ible 2 considered controlled processes that had a negligible 
‘ative content in the feedback. It is known that when the 
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K>70 

Figure 3. The reduction of the amplitude (92) and period (tg) due 
a derivative content (K) in the primary feedback loop. (A) K=0 
(B) K > 0. 

derivative content is increased, one effect is to reduce tg and 9¢ 

(as shown in Figure 3) which improves the process performance. 
It is equally known that if this derivative content is increased 
arbitrarily, the process can become unstable (ie. become un- 
controllable). In practice, a controlled process with derivative 

content has two modes of behaviour. The first is when the deriva- 

tive content is small, and this will be called restricted derivative 
feedback. The second mode of behaviour is when the derivative 
content is further increased, and this will be called increased 

derivative feedback. What is not generally realised is that the 
boundary condition between these two behavioural modes is the 

quantity y (see Appendix B) and that they can be defined as 
follows in terms of « (ie. in terms of K): 

Restricted Derivative Feedback: 

Onc, <ty/2 (7) 

Increased Derivative Feedback: 

Vy / Dey 1 (8) 

The important practical implication is that in a real process the 

parameters L and 7 (and hence y) define the boundary condition 
between these two modes of behaviour. The spectrum of all 

commands possible for a process (ie. 0 < p < 1) divides into 
three ranges, each of which denotes a particular performance 
mode of the process. In other words as the command changes 

from one range to another, the performance of the process 
changes from one behavioural mode to another (distinctly 

different) behavioural mode. In the case of restricted derivative 

feedback (7) the process is controllable (ie. stable) in each of these 
three command ranges. In the next section (Section 5) it will be 
shown that with increased derivative feedback (8) these ranges. 
have different boundaries, also in one of these ranges (the middle 

range) the process can become uncontrollable (ie. unstable). 
For a process with restricted derivative feedback (7) these 

TABLE 3 

Derivation of normalised performance indices in a process with restricted derivative feedback. 

  

  

Line Command 6a/G to/T 

1 o<p<aly wid ee B+in |e +70 — ao) 
(1 — a) een is 

2 ay = p< (1 —a/y) ! eae In e =o Pea 8-00] 

eS o’p (1 — p) 

3 (l-a/y)<p<1 lace HIE 8 + In| Od — p) + vl — a) 
(l= a) (1 — a) o(1 — p) 

  

  

     



  

  

  

  

      

oorse 
a 4 1 

eet ne ea IR areas 
r 3G0o +03 
AGT 1 

/ MG oxexp(-Fi) 
gh eae eee ee i423 

Boe B, > By>By>0 

o 

a Rabe eS 
ee 2 

RS Mes IT Le ete MO 4 oA 2 

ea Z4]. ee gS ae as 
Zie- —-~ 103 

eae 
1 1 

3 / 

a 
G 

e 5. The relationship between 6, and 6. Note that whena/y > 1/2 
is a discontinuity in this relationship indicating a region in 

1 control of the process is lost. 

r Command Range 

Op <= 1/2 (10) 

r+ Command Range 

2s peel (11) 

means that the (middle) region of uncontrollability is 

sed to a line (at p = 1/2). The performance indices in the 
r (10) and upper (11) command ranges are displayed in 

> 5, and it will be noted that they are all command dependent 

nfluenced by the command). Appendix A summarises the 
ation of Table 5. 

th the criterion for selecting an upper limit for the derivative 

yack, and the boundaries of the (middle) command range of 
ntrollability in Table 4, can be conveniently summarised by 
ew display of Figure 5. This shows the normalised relation- 

between the command 6; and the mean controlled variable 6 
1 number of processes; the difference between 6, and 6 

y the error y(= 0, — 6). It will be noted that when «/y = 1/2 
is no discontinuity in the relationship between 6, and 6 

, although this relationship may be nonlinear (ie. an error y 
3), there is no middle region of command in which 6 is 

yendent of 0;. However when «/y > 1/2 discontinuity occurs 
is 0, : 6 relationship. The limits of this discontinuity are the 
daries of the middle command region in which @ is inde- 

ent of 0; (ie. the process is uncontrollable). It will also be 
1 that these boundaries of the uncontrollability region vary 
o (and hence with @). As @ increases so the boundaries of 
riddle (uncontrollable) command region increase. 

ZW PERFORMANCE DISPLAYS 

the past!° the so-called ‘cycling characteristic’ diagram was 
to summarise the complex mathematical relationships 

ved in the performance of the process. The most useful 
ay was the parabolic relationship between the period f, and 
ommand 0; (or, in normalised form, between tq/T and p). 

n the feedback contains derivative signals such displays are 
ynger a useful summary. For instance Figure 6 displays the 

Roots & Shridhar 

  

  

      

tq { y 

O04 

0-3 

0-2 

Mo\"V 
+\¥ 

AG 

~“=1 

OAR 

(2t/7) 

pP V—_ 

tL 1 L y i 1 i 

% % % % % Va % 

Figure 6. Conventional display of t/T as a function of p for the 
derivative feedback range 0 < a < ¥/2. 

relationship between f,/7T and p for a controlled process with 
varying amounts of derivative feedback. With no derivative 

feedback (« = 0) the display follows the familiar form!® with a 
minimum ;{4q/7 at p = 1/2. As the derivative content increases 

(ie. « increases) so this minimum reduces until at « = y/2 the 
limiting condition ({ q/T = 2() is reached at p = 1/2. Thereafter, 

as « is still further increased (« > y/2), the deadband becomes 
apparent in which t,/T is independent of the command (ie. is 
fixed at 2%) and the process is uncontrollable. However this is 

not a satisfactory display as the important relationships of the 
previous sections are not readily discernible. 

Similarly the ciassical display of the mean manipulated variable 

(m) as a function or command (p) is not satisfactory, as it is, 
difficult to clearly identify the effect of varying «. A slight im- 

provement is obtained if the normalized error (y/G) is displayed 
as a function of p, and this gives m information because: 

hao g 
on (12) 

yWiG=p—m 

There will be a change in the polarity of y according as to 

whether p is greater than, or less than, one half. Consequently, 
a more effective display is obtained if | y! is plotted as in 

TABLE 5 

Derivation of normalised performance indices in a process with derivative feedback 

at the recommended upper limited a = y/2 

  

Line Command 

1 0<p<}4 

2 ci p< 1   
i 

0a/G tg/T 

[ees = k pos 
Lo po 

1+2po i y(1 + o) 
1 ieee eee. 

+| e200) * Sel « B)    



JNCLUSIONS 

An analytic basis has been presented from which the 
rmance characteristics of discontinuously-controlled ther- 

rocesses can be calculated for varying amounts of derivative 
ack, 

The performance, of the process so controlled, is deter- 
d by the important index y: 

y =1— exp (— L/T) 

The performance indices vary significantly according as to 

1er the normalised derivative feedback «(= K/T) lies below 
ove «/2. It is, therefore, convenient to consider two ranges 
rivative feedback: 

0 < « < y/2 (restricted derivative feedback) 

y/2 < « < 1 (increased derivative feedback). 

eater derivative feedback (ie. « > 1) has no meaning as 
ol of the process is lost. For increased derivative feedback 
< a < 1) there will also be a range of commands, sym- 
cally distributed about p = 1/2 in which control of the 
ss is lost. As « +1 this range extends to encompass all 

ble commands (0 < p < 1). 

f only restricted derivative feedback is used (0 < « < y/2) 
erformance indices will be command dependent, and the 
ss will be controllable. 

For many processes the optimum value of derivative feed- 
will be determined by: 

o — py or 
p < 1/2 

a = y(1 — p) 
p>1/2 

se conditions are observed the normalised error | y| /G will 

a minimum, and the maximum practical benefit will be 

ned in the reduction of the normalised period f4/T. 

If the gain G can be so selected that the process normally 
ites with commands in the region of: 

0. =.1/2 

est possible process performance will be obtained as the 

| y |/G will be zero; and if: 

vl p) 

nallest possible period will result: 

ta/T = 28 (=2L/T) 

Two new displays have been developed that portray the 

Ope ys Oe: 

Roots & Shridhar 

effect of derivative feedback upon the period (Figure 8) and the 
error (Figure 9). These simplify the prediction of the process 
performance that can be obtained for various combinations of 
command and derivative signal. 
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APPENDIX A 

e equations of Tables 2, 3, 4 and 5, are derived on the 

nption that 6(¢) is cycling in dynamic equilibrium between 
axima 9m and minima 0, 

Let 0(t) = 0m att =0 

[Then 0(t) = 0m exp (— t/T);t > 0 

(t) = O(t) + KDO(t) = Omlexp (— t/T)\ — «) 

(0) = On (1 — a) 

(i) If 8m (1 — «) < 0, (Al) 

1 switching operation at ¢ = Oresultsinm =0 +m = + 1. 

eaches 6, a time L after the switching instant. 

fore: 

n = Om exp (— L/T) (A2) 

(ii) If 6m (1 — «) > 90, (A3) 

at t = t; b(t) = 9m (1 — «) exp (— t;/T) = 0, 

and a switching operation at ¢ = ft, resultsinm =0 +>m= +1. 

6(t) reaches 9, att =t, + L: 

On = Om exp [— (ty + L)/T] = 9, exp (— L/T)/( — x) 
(A4) 

If: O(t) = 6, att =0 

then 0(t) = 9, exp (— t/T) + G[l — exp (— ¢/T)]; t > 0 
b(t) = 9n (1 — «) exp (— t/T) + 

G[l — exp (— t/T)] + « Gexp (— t/T) 

b(0) = 9n (1 — a) + «G 

Case (iii) If 6,(1 — «) + eG = 6, (A5) 

then a switching operation at ¢ = Oresultsinm = +1 —>m=0. 
6(t) reaches 9m a time L after the switching instant. 

Therefore: 

8m = On exp (— L/T) + G[l — exp (— L/T)] (A6) 

9



Chapter 5 

SIMULATION OF ELECTROHEAT PROCESSES ON THE DIGITAL AND 

ANALOGUE COMPUTER 
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SIMULATION OF ELECTROHEAT PROCESSES ON 
  

THE DIGITAL AND ANALOGUE COMPUTER 
  

5.1. INTRODUCTION 

An experimental verification of the analytical deri- 

vations and the new control strategies developed in 

earlier chapters is presented in this chapter. The 

process and the associated control systems are simu- 

lated on the digital or the analogue computer. 

Useful computer programmes for the study of electro- 

heat processes controlled continuously or discon- 

tinuously are appended. 

5.2. STABILITY AND TRANSIENT RESPONSE ANALYSIS 
  

BY DIGITAL COMPUTER SIMULATION 
  

The digital computer simulation of electroheat processes, 

and the associated control systems, essentially involves 

sampling; hence the response one observes in a contin- 

uous process cannot be simulated in a digital computer. 

However, by choosing a sufficiently small sampling 

period, this difficulty is overcome. The basis for 

digital computer simulation of electroheat processes 

is the differential equation governing the process 

behaviour and the corresponding difference equation. 

The differential equation of a controlled electroheat 

process modelled by (1.1) is 

T. De(t) * e(t)*:'* G.£(6,. - o(t - L)) tSut) 

where 6(t) is temperature of the process 

t is the time constant 

L is the transit delay 

8 is the input command 

£ is the control law 

G is the gain of the process
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For a constant input command ee equation (5.1) may be 

written as 

TDOtt),+ 8(t)> = 6.m(t = L) CS .2) 

where m is the manipulated variable. 

and m(t-L) = (0. - ®@(t-L) ) 

The system of equation (5.2) when simulated on the 

digital computer has the form shown in Figure 5.1. 

Thus digital simulation makes it necessary to incor- 

porate a sampler and a zero-order hold. The input to 

the zero-order hold is a series of impulses. spaced 

i (sampling period) apart and the output is a 

series Of pulses..(this is: aliso.the input. to the-process) 

This is illustrated in Figure 5.2. 

Since only digital simulation (as distinct from digital 

control) is considered here it is assumed, without loss 

of generality, that the transit delay is an integral 

multiple of the sampling interval. Thus: 

eek Gy 

where K is an integer. 

The output between any two sampling instants nT. and 

(i + 1)T, is given by 

e(t) = 6 (nT 5) exp(-t/T) +m(t - KT .)G{1 = exp(-t/T)}} C3. 3) 

nT. ere sry 1)T, 

n;K 

a(t) =: 0, mee KT



Or 

Fig. 5 
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Equation (5.3) is the basis for digital computer 

simulation of controlled electroheat processes. 

The input to the process, the manipulated variable 

m(t-L) is the output of the controller delayed by 

L seconds. By defining the appropriate control law, 

the step-response of electroheat processes when 

closed-loop controlled is obtained. The controller 

may be of any type, ie: continuous or multiposition 

discontinuous. 

The computer program, written in Fortran IV, for 

electroheat processes modelled by (1.1) is included 

as Appendix 5A. This program consists of the following: 

1) The main program defines the initial conditions 

and determines 6(t) according to equation (5.3). 

2) Sub-routines for defining controller charac- 

teristics. 

a) Proportional control. 

b) Multiposition discontinuous control. 

3) Sub-routines for the form of output, ie: 

graphic plots, or tabulated results. 

With this program, criteria for critically damped response 

and stability were obtained. These are displayed in 

Figure 5.3 and Figure 5.4 respectively, which also 

display the criteria derived analytically in Chapters 

45000 “3. 

The following observations are made on the accuracy 

of the describing function technique in the analysis 

of stability; and transient response.
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oe Boundaries for nonoscillatory response in a disconti- 
nuously controlled electroheat process as determined 
by (a) exponential describing function and (b) simul- 
ation on the digital computer.
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1) Both RMS describing function and the conventional 

describing function yield higher values of 

critical gain than the actual value. 

2) The RMS describing function yields more accurate 

results for multiposition discontinuously controlled 

processes. 

3) The exponential describing function facilitates 

determination of calibration increments for 

multiposition discontinuously controlled processes, 

to obtain a non-oscillatory response. The results 

obtained from theoretical considerations, which 

involved simplification and approximation, are 

quite close to the actual values obtained from 

simulation. 

The stability and transient response analysis by the 

sinusoidal describing function and the newly defined 

exponential describing function respectively, described 

in Chapters 2 and 3, constitute a powerful technique for 

design of controlled electroheat processes. The digital 

computer simulation of controlled electroheat processes 

enables a verification of the theoretical techniques and 

the determination of more accurate settings. The computer 

programs presented in the appendix also enable the 

determination of the stability and transient response 

characteristics of sampled-date controlled electroheat 

processes. 

5-3 DISCONTINUOUS 'PD' CONTROL OF ELECTROHEAT PROCESSES 
  

Ook Derivative: teedback in On-off control 
  

The improvement in process performance when derivative 

feedback is incorporated in discontinuous controllers 

(on-off and three position) was theoretically established 

in Chapter 4. The results were verified by a simulation 

of the process and the control system on the analogue
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computer. For purposes of simulation it was assumed 

that the transit delay was due to a cascade of eight 

equal time constants, ie: 

éxnG-slL) = 170): +°sl1/87" 

Figure 5.5 displays the effect of derivative feedback 

on the period and amplitude of oscillations for the 

symmetrical case (0,./G = 3) in an on-off controlled 

process. Both the reduction in amplitude and period 

of oscillations are clearly observed. 

It was further pointed out that excessive derivative 

feedback can lead to increased droop errors and even 

uncontrollability. This is illustrated in Figure 5.6 

for 0,./G = 0.25. As the derivative content is arbitrarily 

increased the output temperature tends to oscillate 

about the mean value 6 (where 6/8. #54) 

In the simulation of electroheat processes on the analogue 

computer the following scaling was adopted: 

O.5° secs: 

48 secs. 

10 volts. 

ove Ve OD
: 

Gl
s 

e
a
e
 

ll 

7 

The value of the derivative gain K that minimised the 

droop error (y) was found to be (from experiments) 

Roa tei ee 

From theoretical considerations, the gain K for minimum 

droop error is found to be 

K = T.¢,/G (l-exp(-L/T) ) = .125 

The agreement is quite close, if one considers that the 

mathematical model used for theoretical studies was
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6(t) 

  
2 

    
Effect of derivative feedback on the response of an on-off controlled 

electroheat process. Note the reduction in the amplitude and period of 

oscillation due to derivative feedback (response indicated in blue). t
t
t



Fig. 

6(t) 

  

  
5.6 

  

Offset errors due to excessive derivative feedback. 

feedback (b) restricted derivative feedback (c) excessive derivative 

feedback. 

  
(a) no derivative 

c
t
l



a15 

different from the model simulated on the analogue 

computer. 

5.3.2. Three-position control with derivative feedback 
  

The main improvement in process performance that results 

when derivative control is incorporated in three-position 

controllers is the faster response to load disturbances 

since narrower calibration increments are permitted. 

Figure 5.7 displays the step response of an electroheat 

process controlled in the following modes: 

1) Open-loop control. 

2) Three-position closed-loop control without 

derivative feedback. 

3) . Three-position closed-loop control with 

derivative feedback. 

Clearly, the best response is obtained when a three- 

position controller with derivative feedback is used. 

The response is also time-optimal since the process 

utilises the maximum available power until the desired 

temperature is attained. A close correlation between 

the theoretical results and the experimental results 

was observed when the process was simulated on the 

analogue computer. The simulated process had the 

same characteristics as in Section 5.3.1. The optimum 

derivative content K was found to be ( for 6 /G = 0.5) 
Yr 

Kopt = 0526 

The theoretically derived value of K opt is found to be 

(from equation 3) 

1 - exp(-L/T) 
= To ————__ = 0.27 

Ko is P 1 + exp(-L/T)



Fig. 

  

    

    
Sr 7 Step response of a three-position controlled electroheat process. 

(a) open loop control (b) three-position control without derivative 

feedback and (c) three-position control with optimum derivative 

feedback. 
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The close agreement between the analytical and 

experimental results was verified for various values 

of the parameters. The theoretically derived results 

were found to hold even if the simulated process was 

inexact. 

5.4 MODEL-REFERENCED OPTIMAL CONTROLLER FOR 

ELECTROHEAT PROCESSES 

  

  

The model-referenced optimal controller developed in 

Chapter 4, section 4.5, was simulated on the analogue 

computer. The block diagram of the control system 

is shown in Figure 4.13. . The response to a constant 

input command 6. Was observed for the following con- 

figurations of the control system: 

i) model-referenced controller without 

the cascaded three-position controller. 

ii) model-referenced controller with three- 

position controller in cascade. 

iii) model-referenced controller in cascade 

with three-position controller, but with 

an inexact model. 

The responses are displayed in Figure 5.8 for the following 

process characteristics: 
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4 secs. " 

For the inexact model L and T had the following values: 
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Fig. 5.8 Optimal control of electroheat process. (a) model-referenced control 
(b) model-referenced control in cascade with 3-position control (optimal 
control) and (c) same as (b), but with inexact model. 
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A study of the response under the aforementioned 

conditions revealed the following advantages: 

i) The system was highly stable. 

ii) The process attained the desired value 

even when the three-position controller 

failed. 

  

iii) The response of the process when the 

model was inexact was still acceptable 
  

and there was only a small overshoot. 

iv) It was further observed that fail safe 

(or a stand by) control system is attainable 

by a parallel combination of the three- 

position controller and the model-referenced 

controller, as shown in Figure 5.9. When 

either of the controllers failed or was dis- 

connected the other controller was capable of 

restoring the output variable to the desired 

value.When both were operative, a time-optimal 

response was obtained. The control scheme of 

Figure 5.9 was not merely a fail-safe or a 

standby system, but was also a time-optimal 

control system under normal operating conditions. 

It was also observed that the response to a given input 

command o, followed an optimal trajectory given by 

(see Figure 5.10): 

Cpr) Cae ep(-(tee LITE tok 

When the desired value 6. was attained by the process, 

the switching action of the three-position controller 

caused the output of the process to stabilise at the 

value OV: The response of the process to various input 

commands are displayed in Figure 5.10.
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The response of the model-referenced control scheme 

was also compared with the response of a PI controlled 

process with optimal control settings recommended by 

Zeigler and Nichols> 18 Harriott?! and Jackson 2° 

The PI controller settings for a process whose transfer 

function was of the form (1.1) were: 

: s ok 
Proportional gain K <Tn 

Reset time a3 = L.G 
0.3 

where L is the transit delay of the process 

and T is the time constant of the process. 

and the controller transfer function had the form 

A 
) Tp: 

  ete Ue + 

The response of the conventional PI controlled process 

and the model-referenced controlled process are shown 

in Figure 5.11. The response of the model-referenced 

control scheme is clearly better than the conventional 

PI control scheme. 

veo SUMMARY 

1) Experimental studies on the analogue computer 

and the digital computer have established the 

accuracy of the describing function technique 

in the stability analysis of multiposition 

discontinuously controlled electroheat 

processes. 

2) The newly defined exponential describing function 

has been found to yield reasonably accurate results 

for establishing the critically damped response 

criteria.
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Fig. 5.11 Comparison of Conventional control with the optimal control strategy for 

electroheat process. (a) optimal control (b) conventional PI control. 
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3) 

4) 

3) 

L2@ 

The feasibility of incorporating derivative 

feedback for discontinuous controllers has 

been demonstrated on the analogue computer. 

The model-referenced control scheme has been 

shown to be superior to the current control 

strategies in: the. field..of electroheat pro- 

CESS C5,< 

The combination of model-referenced controller 

and the three-position discontinuous controller 

has been shown to yield a time-optimal control 

strategy (when operating together) or a standby 

control system (when operating individually).



APPENDIX 5A 

1) The main program simulates electroheat processes modelled by 

equation (1.1) and evaluates the temperature according to control law. 

SIMULATION OF FIRST ORDER PROCESS WITH DELAYe- THIS 

PROGRAM SHOULD BE USED WITH TWO SUBROUTINES+- THE FIRST 
SUBROUTINE DEFINES THE CONTROL LAW: THE SECOND DEFINES 

THE FORM OF OUTPUT DESIREDsVIZ-e GRAPHIC OR TARULARe THE 
PROCESS TRANSFER FUNCTION HAS THE FORM 

GCS0e SB XP SLAG ST). THE INPUT. TO THE CONTROL 
BEEMENT soo A: STEP FUCTION OF MAGNITUDE Rs 

THE OUTPUT TEMPERATURE WILL BE DENOTED BY THETA. 

G IS THE GAIN OF THE HEATING APPARATUS» L IS THE 
TRANSIT DELAYs T IS THE TIME CONSTANTs M IS THE MANI- 
PULATED VARIABLE INDICATING THE INPUT HEAT POWER TO 
THE PROCESS+ Ks MYUs» Es» REFER TO THE CONTROLLER PARA- 
METERS« CON REFERS TO THE FORM OF CONTROL$; IF CON 
EQUALS 1 THEN DISCONTINUOUS CONTROL$ IF CON EQUALS @ 
WE HAVE CONTINUOUS PROPORTIONAL CONTROL +e K REPRESENTS 
THE DISCONTINUOUS CONTROL CHARACTERISTICs: FE REPRE- 

SENTS THE CALIBRATION INCREMENT: MYU INDICATES THE 

GAIN OR SENSITIVITY OF THE CONTROLLER. 

THE PROGRAM BEGINS. 

DECLARE THE VARIABLES VIZe REAL OR INTEGER. 

REAL Ts THETAsMsMYUs CON 

INTEGER L»sK 

DIMENSION THETAC150)5MC(150) 

C READ IN THE VALUES OF LsT»sTHETAC1 )»Gs»sMYUsKsCON>SR 

READ (151)L5KsTsG»R»MYUs THETA C1 2s CON 

1 FORMAT C2135 5F6-¢3sF 3601) 

N1=1 

Z=L 

BLBYT=Z7 7 

IF CCON-EQ+%-%)GOTOT 

IF (CCON-EQ-1+¢%4)GOTOS 

T WRITEC2512).) ELBYTsGsMYUsR 

12 FORMATC21H PROPORTIONAL CONTROL//6H L/T =5F60395X»s 3H 
1G =sF6e3//16H MYU =59F6e355X»s3HR =59F6-3//) 

GOTO9 

8 WRITE (C253) ELBYT» G»sMYUsRsK 

3 FORMATC22H DISCONTINUOUS CONTROL//6H L/T =»9F6°325Xs3H 
CG-=s6%3/7/76H MYU: =sF60355x%93HK =s 13/4) 

C DEFINE INITIAL CONDITIONS ON M 

9 DO2I= 1 sl 

2 MC JI=9-0 

C CHOOSE THE APPROPRIATE CONTROL LAW FOR MCE + 1-9. 
15 A=MCL+1) 

D=THETA(1) 

CALL CONLAW (CAs Ds R»sG»MYUsK) 

MCL+1)=A 

CALL OUTPUT(CDsR»sN1) 

I=L+e 

C EVALUATE THETA FOR TIME (L+2) 

DO6J=25] 

THETA CJ)=THETAC J-1)*EXP C-1 ¢/T)4MCJ-1)* (1 e-EXP(C-160/T)) 
C PRINT OUTPUT RESULT 

D=THETACJ) 

CALL OUTPUT(DsRsN1 ) 

6 CONTINUE 

C EVALUATE M(L+2) 

A=MC(L+2) 

D=THETAC2) 

CALL CONLAWCAs Ds RsGsMYUsK) 

MCE +2) =A. 

Cx TO; SAVE STORAGEs REPEAT CYCLE Tek. CGers)=CC1) 
: THETA C1 )= THETACL4+2)*EXP(-16/T)4+MCL4+2)%*C1e-EXP(-1-/T)) 

J=1 

10 A=MCJ) 

D=THETAC J+2) 

C.. EVALUATE-MGJ). FOR J=1 TO JeL 

CALL CONLAW CAs DsR»sGsMYUsK) 

MCI =A 

J=J+1 

IF CJ*GTeL)GOTOIS 

GOTO19 

END 
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2) Subroutine for proportional control of electroheat process. 

CONTROL LAW FOR PROPORTIONAL CONTROLLER WITH SATURATION. 
SUBROUTINE FOR DEFINING THE PROPORTIONAL CONTROLLER WITH 

C SATURATIONe THE VALUE OF M AT ZERO ERROR IS THE NORMALISED 
C INPUT COMMAND. 

SUBROUTINE CONLAWCAsD»sRsGsMYUsK) 
REAL MYU 

C DEFINE CONTROL LAW 
A=R¥* C1 6 +MYU)-MYU*D 
IF CA+GTeG)A=G 
IF CAsLT +e +D)A=02 

RETURN 

END 

C
e
 

3) Subroutine for multiposition discontinuous control of electroheat 
process. 

C SUBROUTINE FOR A CONTROL LAW THAT CORRESPONDS TO THE 
C MULTIPOSITION DISCONTINUOUS CONTROL ELEMENT CHARAC- 
C TERISTIC+ THE DEAD ZONE AROUND THE FE = @ AXIS HAS A 
C WIDTH 2E; WHILE THE OTHER ZONES OF CONSTANT CONTROL 
C EFFORTHAVE WIDTH E + THE DISTRIBUTION OF THE CALIB- 
C RATION INCREMENTS IS LINEAR. 

SUBROUTINE CONLAWCAs Ds RsGsMYUsk) 
REAL MYU 

C DEFINE CONTROL LAw 
Bl=K 

E=G/(2+¢*B1 *MYU) 

IF (D+LT+R-B1*E)A=G 

IF (D*GT+Rt+B1*E )A=0 09 
DO71J=15K 

Yl=J 

Ye=J-1 

IF (DeLT+R-Y2*E sAND eDeGT+R-Y1*E A=R4G*CCY2/ (20*B1))) 
IF (CD eGT+R+Y2*E sAND eDoLTeR+Y1*E DA=R-G¥CCY2/(90*B1))) 
IF (DeLTeBeA)D=0.0 

71 CONTINUE 

RETURN 

END 

4) Subroutine for plotting output temperature of controlled electroheat 

process against time. 

C SUBROUTINE FOR GRAPHIC PLOT 
SUBROUTINE OUTPUTCDsRsN1) 
REAL LINE 
DIMENSION LINEC61) 
DATA BLANKsDOTsPLUS»STARsHORIZ/1H »1He»1H+s1H*s 1H-/ 
IF (N1-¢GT+-1)GOTO2 
DO101J=1561 

101 INE CJO=DOT 
DO192I5=156195 

192 LINECJ)=PLUS 
WRITE C2, 103)LINE 

103 FORMATC1H »61A1) 
DO1464J=1561 

194 LINECJ)=BLANK ; 
LINE (1 )=DOT 
N=D+1e5 

IF (NeLT+1)N=1 
DO196J=156155 

196 LINE CJ)=PLUS 
M=R+1-@ 

LINE (M)=DOT 
LINE (N)=STAR 
WRITE C2, 107)LINESD 

107 FORMATC1H 361A15F8.3) 
LINE (N)=BLANK 
N1=2 

RETURN 
END 

wm 

5) Subroutine for tabulating output temperature of controlled electro- 

heat process. 

C SUBROUTINE FOR TABULATING TWO PARAMETERS OF AN 
C ELECTROHEAT PROCESS CONTROL SIMULATION PROBLEM 

SUBROUTINE OUTPUTCDsRsN1) 
WRITEC251)DsR 

1 FORMATC2F 12-5) 

RETURN 

END



 



Chapter 6 

GENERAL CONCLUSIONS 
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Chapter 6 

GENERAL CONCLUSIONS. 
  

Individual conclusions have been summarised at the end 

of each chapter. Here the general conclusions are listed 

together with their implications on future developments 

in the control of electroheat processes for industrial 

applications. Also included are details of where these 

results have been published. 

1) 

2) 

3) 

The control of an important class of electroheat 

processes has been examined in depth. These are 

processes with distributed parameters and are 

common in industry. Typical examples are induc- 

tion furnaces, electroheated fluidised beds, plasma 

torches, boilers, vats, kilns; etc, 

As a result of the application of the established 

describing function technique to this problem, a 

new unified approach to the determination of sta- 

bility in controlled electroheat processes has 

been established. The most important feature of 

this contribution is that the same approach covers 

both continuous and discontinuous electroheat. It 
  

therefore represents a considerable advance on 

Roots and Wu !° which was restricted to continuous 

control. 

A new exponential describing function has been 

developed and tested. This greatly simplifies 

determination of the criteria for nonoscillatory 

response for discontinuous controllers of all 

classes (ie: two-position, multi-position, quasi- 

continuous, etc) and also the proportional control- 

ler with saturation (which is the limiting case of 

quasi-continuous control). This combination is 

in the author's opinion even more important than 

the new stability determination of item 2, as it 

readily determines the controller characteristics



4) 

5) 
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for desired transient response. Because it 

covers all classes of discontinuous and con-' 

tinuous controllers it is a significant advance 

over the second Roots and Wu contribution !5 

as they only considered the continuous case. 

New strategies have been developed and proven 

for improving the performance of discontinuously 

controlled electroheat processes. The salient 

contributions are: 

i) The first analytic derivation of the 

optimal controller parameters for 

derivative discontinuous control of 

eléctroheat. 

ii) Item (i) was extended to cover three- 

position control and criteria were 

established for the minimization of 

deadzone in such controllers. 

The above represents a considerable advance 

beyond the contribution of Roots and Walker 22. 

New strategies have been developed and proven for 

improving the performance of continuously control- 

led electroheat. The salient contributions are: 

i) A generalised root-locus technique for 

the design of continuous controllers of 

given performance specifications when 

controlling electroheat processes. 

ii) Developing and proving the concept cf 

a model-referenced controller. This has 

limited computer storage requirements 

and thus facilitates time-shared control 

with low-priced digital computers.



6) 
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iii) A fascinating feature of (ii) is that 

control of a standard acceptable in 

many industrial operations is obtained 

even when the model is inaccurate. 

The above represents a significant improvement 

over the approach of Chu !4 and Harriott 2! 

whose work mainly form the basis of industrial 

electroheat control. 

The new concept of controlling electroheat by the 

combination of a model-referenced computer control- 

ler and a three-position discontinuous controller 

was developed. The significant contributions are: 

i) The time-optimal control of the process 

is easily achieved. 

ii) The two types of controllers can be in 

cascade or parallel. If in cascade the 

combination never saturates. If in paral- 

lel it gives fail-safe or standby control. 

iii) This combination gives better command 

response and disturbance compensation than 

any electroheat controller currently in use. 

If one takes Roots ?5or Harriott?! as the latest 

state of the art of electroheat control, this new 

concept is a considerable advance over either of 

them.
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PUBLICATION OF THESE RESULTS 
  

"A practical guide to derivative discontinuous 

control of electroheat". 

L'Union Internationale d'Electrothermie, Report 

No. ACWG 69-16, March 1969. 
  

"Discontinuous 'PD' control of thermal processes". 

Trans. Inst. Measurement and Control, Vol.2, No.5, 

May 1969, pp.T57-T64. 

  

"Derivative discontinuous electroheat control". 

IEEE Trans. Industry and General Applications, 
  

accepted. 

"Temperature control strategies for industrial 

processes". 

IEEE Trans. Industry and General Applications, 
  

accepted. 

"Stability criteria for discontinuous electroheat 

processes". Accepted for IEEE Industry and General 
  

Applications Annual Meeting, Detroit, October 1969, 
  

and for IEEE Trans. Industry and General Applications. 
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