### CRYSTALLISATION RATE OF PENTAERYTHRITOL

by'

John Frederick Rogers

992

A Thesis submitted to the University of Aston in Birmingham as a requirement for the Degree of Doctor of Philosophy.

> Department of Chemical Engineering University of Aston in Birmingham There

September, 1969.

15. FED 71 135367

660.655 Rog

#### SUMMARY

The growth rate of Pentaerythritol crystals in aqueous solution has been measured over the temperature range 30 to 75°C by following the decrease in solution concentration of stirred crystal suspensions by refractometry. Measurements have also been made of the crystal mass increase in a fluidised bed for comparison at low relative crystal/ solution velocities.

Two methods of crystal size analysis have been used : the Coulter Counter method and the image shear microscope method. The Coulter Counter theory has been corrected to allow for crystal shape and size, and the seed size distributions determined allowed for in the computation of crystal growth rates.

Commercial material containing two major impurities Di-P.E. and a Formal, exhibited an unusual transient overlap effect in the equilibrium solubility determination. The solubility approached from dissolution first obtained a peak enhanced concentration before attaining equilibrium. The equilibrium relationship for purified material was found to be represented by :

$$\log_{10} x = 4.980 - \frac{1242}{T}$$

where x = % mass fraction and T is in  $^{\circ}K$ .

Growth rates (g), which ranged from about  $10^{-8}$  cm/min to  $10^{-3}$  cm/min were correlated with supersaturation (s) by the equation  $g = k_L s^b$ . It was found that b varied with the amount of impurity and temperature but had an average value of ca. 2. Values of  $k_L$  increased with temperature and the activation energy for commercial material was

found to be about 30 kcal/gmol. It was concluded that surface integration was the rate controlling process.

Heterogeneous particles were found to enhance growth rates but the absence of particles >0.45 micron resulted in brittle crystals. Although it was found that purification from Formal also enhanced the growth rate, the rate was very sensitive to traces (<0.1ppm level) of an unidentified third impurity which could not be easily removed.

#### ACKNOWLEDGEMENTS

The author would like to express his sincere thanks to the following:-

Dr. D.E. Creasy for his constant assistance and stimulating advice throughout the entire period of this research.

My wife for her invaluable help with the computational and clerical details.

The University of Aston for the use of its research facilities.

Professor G.V. Jeffreys for his interest and encouragement.

Mr.N. Roberts and the technical staff of the Chemical Engineering Department for their co-operation at all times.

British Petroleum Company Limited for financial assistance during the latter stages of this research.

Miss E. Powis for typing the thesis.

# CONTENTS

|                                                       |           |            |                                                                               | PAGE |
|-------------------------------------------------------|-----------|------------|-------------------------------------------------------------------------------|------|
| Section One - Introduction                            |           |            |                                                                               |      |
| Section Two - Survey of Literature on Crystallisation |           |            |                                                                               |      |
| 2.1.                                                  | Solubil   | ity        |                                                                               | 3    |
| 2.2.                                                  | Nucleat   | ion        |                                                                               | 8,   |
|                                                       | 2.2.1.    | Primary N  | ucleation                                                                     | 9    |
|                                                       |           | 2.2.1.1.   | Homogeneous Nucleation                                                        | 9    |
|                                                       |           | 2.2.1.2.   | Heterogeneous Nucleation                                                      | 13   |
|                                                       |           | 2.2.1.3.   | Induced Nucleation                                                            | 14   |
|                                                       | 2.2.2.    | Secondary  | Nucleation                                                                    | 15   |
| 2.3.                                                  | Crystal   | . Growth   |                                                                               | 17   |
|                                                       | 2.3.1.    | Diffusion  | Theories                                                                      | 18   |
|                                                       | 2.3.2.    | Surface I  | ntegration                                                                    | 20   |
|                                                       | 2.3.3.    | Experimen  | tal Data                                                                      | 26   |
|                                                       | 2.3.4.    | Impurities | s in Crystal Growth                                                           | 35   |
|                                                       |           | 2.3.4.1.   | Effect of Impurities                                                          | 35   |
|                                                       |           | 2.3.4.2.   | Equilibrium and non-equilibrium<br>capture of Impurities in Crystal<br>Growth | 37   |
| Sect                                                  | ion Three | - Previous | s Work done on Pentaerythritol                                                | 39   |
| 3.1.                                                  | Crystal   | Structure  |                                                                               | 39   |
| 3.2.                                                  | Impurit   | ies        |                                                                               | 40   |
|                                                       | 3.2.1.    | Nature of  | Impurities                                                                    | 40   |
|                                                       | 3.2.2.    | Preparatio | on of Formal                                                                  | 42   |
|                                                       | 3.2.3.    | Purificat  | ion of P.E.                                                                   | 44   |

|       |                                                 | PAGE |
|-------|-------------------------------------------------|------|
| 3.3.  | Physical Properties                             | 44   |
| 3.4.  | Chemical Analysis                               | 47   |
|       | 3.4.1. Introduction                             | 47   |
|       | 3.4.2. Acetal Chromatographic Analysis          | 47   |
|       | 3.4.3. Formaldehyde Content                     | 48   |
|       | 3.4.4. T.M.S. Chromatographic Analysis          | 51   |
| 3.5.  | Crystal Growth                                  | 51   |
| Secti | on Four - Bench Scale Crystallisation Apparatus | 55   |
| 4.1.  | Introduction                                    | 55   |
| 4.2.  | Fluidised Bed Apparatus                         | 56   |
|       | 4.2.1. Preliminary Design                       | 56   |
|       | 4.2.2. Solution Concentration Decay             | 57   |
|       | 4.2.3. Modified Design                          | 58   |
| 4.3.  | Repetitive Inversion Sedimentometer             | 59   |
| 4.4.  | Stirred Cells                                   | 61   |
|       | 4.4.1. Cell A                                   | 61   |
|       | 4.4.2. Cell C                                   | 62   |
|       | 4.4.3. Cell S                                   | 62   |
|       | 4.4.4. Cell G                                   | 63   |
| 4.5.  | Discussion                                      | 64   |
| Secti | on Five - P.E. Equilibrium in Aqueous Solution  | 65   |
| 5.1.  | Previous Work                                   | 65   |
| 5.2.  | Refractometer Calibrations                      | 68   |

|     |      |          |                                                  | PAGE |
|-----|------|----------|--------------------------------------------------|------|
|     |      | 5.2.1.   | Reading Accuracy                                 | 68   |
|     |      | 5.2.2.   | Calibration                                      | 69   |
|     |      | 5.2.3.   | Instrument Calibrations                          | 72   |
| 5.  | 3.   | Equilib  | rium Results                                     | 72   |
|     |      | 5.3.1.   | Impure P.E.                                      | 72   |
|     |      | 5.3.2.   | Pure P.E.                                        | 75   |
| Se  | otic | on Six - | Experimental and Computational Methods           | 78   |
| 6.  | 1.   | Shape F  | actor                                            | 78   |
|     |      | 6.1.1.   | Measurements on Pure P.E. Crystals               | 78   |
|     |      | 6.1.2.   | Impure P.E. Crystals                             | 79   |
|     |      | 6.1.3.   | Shape Factors                                    | 79   |
| 6.  | 2.   | Size An  | alysis                                           | 81   |
|     |      | 6.2.1.   | The Coulter Counter Size Analyser                | 82   |
|     |      |          | 6.2.1.1. Description                             | 82   |
|     |      |          | 6.2.1.2. Particle Size Effect                    | 84   |
|     |      |          | 6.2.1.3. Discussion                              | 93   |
|     |      | 6.2.2.   | The Image Shear Microscope                       | 95   |
| 6.  | 3.   | Fluidis  | ed Bed Experiments                               | 97   |
|     |      | 6.3.1.   | Preliminary Fluidisation Experiments             | 97   |
|     |      | 6.3.2.   | Fluidisation Experiments with Modified Apparatus | 98   |
|     |      |          | 6.3.2.1. Procedure                               | 98   |
|     |      |          | 6.3.2.2. Analysis of Results                     | 100  |
| 6.4 | 4.   | Stirred  | Cell Experiments                                 | 104  |
|     |      | 6.4.1.   | Introduction                                     | 104  |
|     |      | 6.4.2.   | Seeded Solutions                                 | 105  |
|     |      |          |                                                  |      |

|                                                                 | PAGE |
|-----------------------------------------------------------------|------|
| 6.4.2.1. Seed                                                   | 105  |
| 6.4.2.2. Procedure                                              | 107  |
| 6.4.2.3. Analysis of Results                                    | 109  |
| Section Seven - Results                                         | 115  |
| Experimental Legend                                             | 114  |
| 7.1. Growth Rates in a Fluidised Bed                            | 115  |
| 7.1.1. Preliminary Experiments                                  | 115  |
| 7.1.2. Results with Modified Fluidised Bed Apparatus            | 116  |
| Table 33 - Conditions of Previous Work Growth Experiments       | 119  |
| Table 34 - Chronological Summary of Experiments in Seeded Cells | 119  |
| 7.2. Seeded Solutions in Stirred Cells                          | 127  |
| 7.2.1. Experimental Data                                        | 127  |
| 7.2.2. P.E. Materials                                           | 128  |
| 7.2.2.1. Batch A                                                | 128  |
| 7.2.2.2. Batch B                                                | 129  |
| 7.2.2.3. Batch C                                                | 130  |
| 7.2.2.4. Batch D                                                | 131  |
| 7.2.2.5.1. Batch E                                              | 133  |
| 7.2.2.5.2. Filtered Batch E                                     | 136  |
| 7.2.2.5.3. Purified Batch E                                     | 137  |
| 7.2.2.5.4. Filtered Purified Batch E                            | 140  |
| 7.2.2.6. Batch F                                                | 141  |
| 7.2.2.7.1. Purified Batch G                                     | 142  |
| 7.2.2.7.2. Attempted Extractions of Unknown<br>Impurity         | 145  |

|              |                                                             | PAGE |
|--------------|-------------------------------------------------------------|------|
|              | 7.2.2.7.3. Attempted neutralisations of<br>Unknown Impurity | 148  |
|              | 7.2.2.8. Purified Batch E + 1.0% Di-P.E.                    | 150  |
| 7.2.3.       | Enhancing effect of Heterogeneous Particles                 | 151  |
|              | 7.2.3.1. Establishing the effect                            | 151  |
|              | 7.2.3.2. Absolute cleanliness of Cell C                     | 154  |
| 7.2.4.       | Hydrodynamic Considerations                                 | 156  |
| g            | ·                                                           | 160  |
| Section Eigh | t - Discussion                                              | 100  |
| 8.1. Equili  | brium in Aqueous                                            | 160  |
| 8.2. Result  | s of Previous Work on Crystal Growth                        | 165  |
| 8.3. Crysta  | l Growth                                                    | 169  |
| 8.3.1.       | Relative Velocity Effect                                    | 169  |
| 8.3.2.       | Seeded Solutions in Stirred Cells                           | 170  |
|              | 8.3.2.1. Experimental Testing of<br>Mathematical Model      | 170  |
|              | 8.3.2.2. Batches B, F and G                                 | 173  |
|              | 8.3.2.3. Batches C, D and E                                 | 174  |
|              | 8.3.2.4. Purified Batch E                                   | 177  |
| 8.4. Sugges  | tions for Future Work                                       | 180  |
| Conclusions  |                                                             | 183  |
| Appendix A   | - Calibration and Equilibrium                               | 187  |
| Appendix B   | - Size Analysis                                             | 195  |
| Appendix C   | - Referring to Section 6                                    | 222  |
| Appendix D   | - Crystal Growth Rate Results                               | 231  |

|              |           |                                 | PAGE |
|--------------|-----------|---------------------------------|------|
| Appendix E - | Analysis  | of Previous Work (1)            | 364  |
| Appendix F - | Impuri ty | Extraction with Molecular Sieve | 376  |
| Nomenclature |           |                                 | 383  |
|              |           |                                 |      |

References

390

# LIST OF TABLES

| TABLE |                                                                                                          | PAGE |
|-------|----------------------------------------------------------------------------------------------------------|------|
| 1     | P.E. Batch Chemical Analyses                                                                             | 187  |
| 2     | Isothermal Correlations Batch D                                                                          | 188  |
| 3     | Isothermal Correlations Pure P.E.                                                                        | 189  |
| 4     | Refractomater Equivalence Table                                                                          | 190  |
| 5     | Equilibrium and Maximum Values obtained for Impure<br>P.E. from Dissolution                              | 192  |
| 6     | Equilibrium Results of Impure P.E.                                                                       | 193  |
| 7     | Equilibrium Results of Pure P.E.                                                                         | 194  |
| 8     | Coulter Counter Calibration 50 u tube                                                                    | 200  |
| 9     | Coulter Counter Calibration 280 µ tube                                                                   | 201  |
| 10    | Coulter Counter Calibration 560 tube                                                                     | 202  |
| 11    | Coulter Counter "F' Factors 50 mtube                                                                     | 203  |
| 12    | Coulter Counter 'F' Factors 280 u tube                                                                   | 204  |
| 13    | Coulter Counter 'F' Factors 560 tube                                                                     | 205  |
| 14    | Coulter Counter Data Chart Explanation                                                                   | 206  |
| 15    | Coulter Counter Diameter Correction for 280 tube                                                         | 207  |
| 16    | Coulter Counter Diameter Correction for 50 tube                                                          | 208  |
| 17    | Coulter Counter Diameter Correction for 560 tube                                                         | 209  |
| 18    | Comparison of Dispersing Techniques for Coulter Counter                                                  | 210  |
| 19    | Example Coulter Counter Data Batch E , Sample 1                                                          | 211  |
| 20    | Example Coulter Counter Data Batch E , Sample 2                                                          | 212  |
| 21    | Example Coulter Counter Data Batch E , Sample 3                                                          | 213  |
| 22    | Averaged Coulter Counter Batch E Sample Analyses                                                         | 214  |
| 23 .  | Size Analyses Comparison of Batch C Seed after attrition<br>in Cells A and C at Different Stirrer Speeds | 215  |

| TABLE         |                                                                                             | PAGE |
|---------------|---------------------------------------------------------------------------------------------|------|
| 24            | Collected Size Analyses of Seed Materials attrited<br>at 2000 r.p.m. in stirred Cell C      | 216  |
| 25            | Collected Size Analyses of Seed Materials used in Fluidised Bed Experiments                 | 218  |
| 26            | Coulter Counter Product Size Analyses                                                       | 219  |
| 27            | Image Shear Size Analyses                                                                   | 220  |
| 28            | Image Shear Product Size Analyses Batch E Seeded<br>Growth Experiments at 60°C              | 221  |
| 29            | Evaporation Interpolated Values                                                             | 230  |
| 30            | Experimental Legend                                                                         | 114  |
| 31            | Preliminary Fluidised Bed Results                                                           | 231  |
| 32            | Example Experimental Data Sheet Modified Fluidised<br>Bed Results                           | 232  |
| 33            | Conditions of Previous Work Growth Experiments                                              | 119  |
| 34            | Chronological Summary of Experiments in Seeded Cells                                        | 119  |
| 35            | Example Experimental Data for Stirred Cells                                                 | 233  |
| 36            | Qualitative Results of Seeded Solutions at 60°C                                             | 234  |
| 37            | Qualitative Results of Seeded Solutions at 70°C                                             | 235  |
| 38 <b>-</b> J | 148 Growth Rate Results in Seeded Cells 236 -                                               | 363  |
| 149           | Summary of Previous Work (1) on Seeded Cells Stirred at 500 r.p.m.                          | 364  |
| 150           | Computed R.P.A.l with Previous Size Analysis D and Previous Equilibrium Value               | 368  |
| 151           | Computed R.A.5 with Previous Size Analysis ${\rm D}_{\rm C}$ and Previous Equilibrium Value | 368  |
| 152           | R.P.A.l with Previous Size Analysis D but Corrected Equilibrium Value                       | 369  |
| 153           | R.A.5 with Previous Size Analysis D but Corrected Equilibrium Value                         | 369  |

| TABLE |                                               | PAGE |
|-------|-----------------------------------------------|------|
| 154 ] |                                               | 370  |
| 155   |                                               | 371  |
| 156   |                                               | 372  |
| 157 > | Computed Previous Results with Corrected Size | 373  |
| 158   | Analyses D and Equilibrium Values             | 374  |
| 159   |                                               | 374  |
| 160 ] |                                               | 375  |

# LIST OF FIGURES

| Figure<br>No. |                                                               | Following<br>Page |
|---------------|---------------------------------------------------------------|-------------------|
| 2.1.          | Phase Equilibrium Diagram                                     | 3                 |
| 3.1.          | Von Groth's Crystal Morphology                                | 39                |
| 3.2.          | Solubility and Nucleation of P.E.                             | 45                |
| 3.3.          | Di - P.E./Pure P.E. Melting System                            | 46                |
| 3.4.          | Formal/Pure P.E. Melting System                               | 46                |
| 3.5.          | Fluidisation of P.E. Crystals in Water                        | 47                |
| 3.6.          | Spekker Formaldehyde Calibration                              | 49                |
| 3.7.          | Corrected Optical Densities of P.E. Solutions                 | 50 .              |
| 3.8.          | Variation of Growth Rate Constants with<br>Temperature        | 53                |
| 4.1.          | Preliminary Fluidised Bed Apparatus                           | 56                |
| 4.2.          | Modified Fluidised Bed Apparatus                              | 58                |
| 4.3.          | Modified Fluidised Bed Apparatus                              | 58                |
| 4.4.          | Repetitive Inversion Sedimentometer                           | 60                |
| 4.5.          | Cell C                                                        | 62                |
| 4.6.          | Cell S                                                        | 62                |
| 4.7.          | Cell G                                                        | 63                |
| 5.1.          | Temperature Correction for Partially Immersed<br>Thermometer  | 186               |
| 5.2.          | Refractometer Calibration. Impure P.E.                        | 70                |
| 5.3.          | Refractometer Calibration. Pure P.E.                          | 71                |
| 5.4.          | Attainment of Equilibrium of Impure P.E.<br>Solutions at 60°C | 74                |

# LIST OF FIGURES (CONT.)

| Figure<br>No. |                                                  | Following<br>Page |
|---------------|--------------------------------------------------|-------------------|
| 5.5.          | Equilibrium Values of Impure P.E. at 60°C        | 75                |
| 5.6.          | P.E. Equilibrium in Aqueous Solution             | 75                |
| 5.7.          | Concentration Conversions                        | 190               |
| 6.1.          | P.E. Crystal Morphology                          | 78                |
| 6.2.          | "Pure" P.E. Crystal                              | 79                |
| 6.3.          | The Coulter Counter Particle Size Analyser       | 94                |
| 6.4.          | Evaporation Rates in Growth Cells                | 229               |
| 7.1.          | Results of Preliminary Fluidised Bed Experiments | 115               |
| 7.2.          | Results of Modified Fluidised Bed Experiments    | 117               |
| 8.1.          | Batch A Growth Velocities                        | 167               |
| 8.2.          | Burified Batch A Growth Velocities               | 167               |
| 8.3           | Batch E Seed and Selected Products               | 170               |
| 8 /           | B.E.15 Seed and Product Size Analyses            | 171               |
| 8.5.          | R.P.E.12 Seed and Product Size Analyses          | 172               |
| 8.6           | Batch D. Growth Velocities 70°C                  | 175               |
| 9.7           | Batch C Growth Velocities                        | 176               |
| 8.8.          | Batch E Growth Velocities                        | 176               |
| 8.0           | Impure P.E. k. vs 1                              | 176               |
| 8 10          | Burified Batch E Growth Velocities 70°C          | 177               |
| 8.11          | Purified Batch E Growth Velocities 50°C, 60°C    | 177               |
|               | and 75°C                                         |                   |
| 8.12          | Purified Batch E Growth Velocities 40°C          | 178               |
| 8.13          | Purified Batch E k vs $\frac{1}{T}$              | 179               |

### SECTION ONE

#### INTRODUCTION

Pentaerythritol, C(CH<sub>2</sub>OH)<sub>4</sub>; (referred to hereafter as P.E. for convenience) is a polyhydric alcohol produced as a white orystalline compound by the reaction of acetaldehyde and formaldehyde in the presence of an alkaline condensing agent. First discovered in 1882 it was not manufæctured on a commercial scale until the early 1930's when it was used for the production of the explosive PETN (pentaerythritol tetranitrate). It was used extensively for this purpose during World War II, but its use has since grown rapidly in the manufacture of resins for surface coatings.

Side reactions often occur in the manufacture of P.E. yielding a product containing up to about 2% of the ether, Di-Pentaerythritol, and about 4% of an unidentified complex formal derivative, labelled the 'Formal' hereafter. These impurities are acceptable for the present market requirements, but are suspect in causing crystallisation difficulties during manufacture. During the final production stages the P.E. process solution is cooled in a batch crystalliser and this results in a P.E. product consisting of agglomerates of a few large crystals and a large number of small ones. The amount of this fine material is such (18 mass % <350 mesh) that it is very "dusty" and unpleasant to handle. The object of the present study was to obtain the data necessary for the design of a crystalliser capable of producing a dust free uniform sized product.

The usual procedure for the study of a orystallisation process is

to study the pure analar material, occasionally with the effects of known additions of impurities. The nature of this project is such that it necessitates a reverse approach.

A number of batches of P.E. were obtained containing varying amounts of the impurities di-P.E. and Formal. In the earier work (1) on P.E. orystallisation it was suggested that the 'formal' inhibited crystal growth below about 67°C. However no account was taken of the di-P.E. impurity, and it was realised that many parameters would have to be investigated before an understanding of the process to the extent of the evaluation of design criteria could be achieved.

# SECTION TWO

- 3 -

# SURVEY OF LITERATURE ON CRYSTALLISATION

# 2. 1. Solubility

The first requirement for the study of any crystallisation process is a knowledge of the phase equilibrium diagram. A typical example of the type of diagram obtained for the system pure solute dissolved in pure solvent is shown by the line IBDG, called the "solubility" curve, in Figure 2.1. This curve defines the mass of solute which is in equilibrium with a given mass of solvent at various temperatures; the solvent is then said to be saturated with respect to the solute. For systems of more than one solute each must be studied individually.

A solution which contains more dissolved solute than that represented by the saturation composition is termed "supersaturated". Ostwald (2) seems to have been the first to introduce the terms "Labile" and "Metastable" zones which refer to the supersaturated solutions in which homogeneous nucleation may, and may not occur respectively.

Miers (3) did considerable research on this subject by studying the refractive index of solutions. Although he realised that factors such as the rate of cooling had an effect on the limits of supersaturation, he believed that supersolubility was a real property of solutions and melts under ordinary conditions. The supersolubility curve is shown in Figure 2.1 by the broken line KCEP.



For the purpose of illustration Figure2.Lis considered as a "conserved property diagram" to a first approximation so that straight lines and the "lever-rule" may be used to show the effect of mixing solutions. This strictly requires that temperature is proportional to enthalpy per unit mass of mixture, and that the units of concentration are mass fraction (Spalding (4)).

If a solution in state A is cooled it remains undersaturated until temperature B is reached on the solubility curve. If further cooled it becomes supersaturated until temperature C on the supersolubility curve is reached; any further attempted cooling will produce spontaneous nucleation. The region between the solubility and supersolubility curves is the metastable supersaturated solution in which crystals (if present) are able to grow, but homogeneous nucleation does not normally occur. It is possible to produce supersaturation not only by cooling but also by evaporation or sometimes by the addition of another solute soluble in the solvent. The concentration then follows line A D E, Figure 2.1. The supersaturation curve is affected by many variables and is now considered to be a region of supersaturation rather than a definite curve, which is roughly parallel to the solubility curve.

Systems with appreciable increase of solubility with temperature are often crystallised industrially by means of a continuous cooling crystalliser. Two methods of adding the concentrated feed to a continuous cooling crystalliser are shown in Figure 2.1. where the solution conditions entering and leaving the crystalliser bed are represented by points M and N respectively. The conventional method

- 4 -

is the feed addition to the mother liquor leaving the bed (point N) before entering the cooler (dashed line LM). Alternatively the feed may be added after the mother liquor has been cooled (point J) prior to the mixture entering the bed (point M). This latter method gives the shortest residence time for what is probably the highest supersaturation. For the successful control of a continuous industrial crystalliser additional equipment is also needed for the removal (and redissolving) of fines generated in the system.

The phenomenon of supersolubility can be explained by the enhanced solubility of fine particles. Ostwald (2) found that if a solute was finely ground before dissolving in water, a solubility greater than the normal solubility was obtainable. He derived the equation which was later corrected by Freundlich (5) to the Ostwald-Freundlich equation:

where  $c_r$  and  $c_{CO}$  are the solubilities of the spherical particles of radius r and co respectively,  $\sigma$  is the surface energy of the solid particle in contact with the solution,  $V_m$  is the molar volume of solute, T is the absolute temperature and R' is the gas constant. In the derivation of this equation it was assumed that the particles were spherical, the dissolved solid obeyed the gas laws, and that  $\sigma$  and  $V_m$ were independent of particle size. A number of workers have postulated corrections to the Ostwald-Freundlich equation; e.g. consideration of the energy contributions of edges and corners to

- 5 -

the total surface energy; allowance for the degree of dissociation or ionisation of the dissolved solid; and the variation of surface energy with particle size. However the equations deduced all postulated a continual increase in solubility with reduction in particle size.

Knapp (6) showed that, if the opposing effect of the electric charge on the surface tension of a particle was considered, the particles being assumed to be isolated charged spheres and their charge independent of size, then the Ostwald-Freundlich equation was modified to:-

$$\ln \frac{c_r}{c_{co}} = \frac{V_m}{R'T} \left( \frac{2\sigma}{r} - \frac{q^2}{8 \pi \gamma r^4} \right) \dots 2.2.$$

where q is the particle charge and  $\bigvee$  the dielectric constant of the medium in which they are dispersed. From 2.2 the solubility can be shown to have a maximum when

$$\mathbf{r}^* = \left(\frac{q^2}{4 \, \mathrm{II} \, \mathrm{Vo}}\right)^{\frac{1}{3}} \dots 2.3$$



#### PARTICLE SIZE r

where r\* is the critical radius for maximum solubility c\*

- 6 -

However according to Helmholtz's theory there arises at the interface of disperse particles and the dispersion medium an electrical "double-layer". If then each particle is regarded as a double layer

condenser, its electrical energy is given by  $\frac{q^2d}{2\gamma r (r+d)}$ 

where q is the electrical charge on each layer and d is the distance between the layers. If d is negligible compared with r this reduces to  $\frac{q^2d}{2\sqrt{r^2}}$ . The Ostwald-Freundlich equation then becomes:-

$$ln \frac{c_r}{c_{oo}} = \frac{V_m}{R^{1}T} \left( \frac{2\sigma}{r} - \frac{q^2 d}{2 \pi r^5} \right) \dots 2.4$$

and the solubility is then a maximum when :-

$$r^* = \left(\frac{5q^2 d}{8 \pi \gamma \sigma}\right)^{\frac{1}{4}} \qquad \qquad 2.5$$

Dundon (7) found appreciable increases in the solubilities of 0.2  $\mu$  to 0.5  $\mu$  diameter particles of PbI<sub>2</sub>, Ag<sub>2</sub>Cr O<sub>4</sub>, PbF<sub>2</sub>, SrSO<sub>4</sub>, BaSO<sub>4</sub>, CaF<sub>2</sub>, and he found that the solubility rose to a maximum on decreasing the particle size further. RdLer (8) studied the solubility of gypsum and found that the solubility rate was proportional to the specific area at sizes above 25  $\mu$ , that between 25  $\mu$  and 2.8  $\mu$  the solubility rate increased more rapidly than the surface exposed and that below 2.8  $\mu$  the solubility rate began to decrease again.

# 2.2. Nucleation.

Crystallisation is a two step process involving first nucleation and then the growth of the nucleus to macro size. Nucleation involves the activation of smaller unstable particles called embryos. An embryo formed in the metastable region is very small and will dissolve on account of the increased solution potential. As the degree of supersaturation is increased the size of the embryo which can be tolerated by the solution decreases to a critical size where the embryo becomes a nucleus possessing sufficient excess surface energy to form a new phase and growth begins.

Two types of nucleation are apparent, Primary nucleation and Secondary nucleation. Most Primary nucleation processes occur heterogeneously as it is extremely difficult if not impossible to avoid extraneous nuclei. Van Hook and Frulla (9) found that by carefully preparing samples of 1 to 5 cm<sup>3</sup> of sucrose solution the metastable limit was raised to a supersaturation of about s = 0.6, where  $s = c - c_{\infty}$  at ordinary temperatures as compared with the previously

accepted limit of 0.2. The samples had to be prepared by careful dissolution followed by deactivation of latent nuclei by heating at temperatures at least 20°C above saturation, and sealing in closed tubes. They also averaged the observations of at least 50 droplets of solution and found that nucleation rate decreased to a limiting value of about one half the rate observed in the carefully prepared larger samples in the sealed tubes. These results seem to imply that this phenomenon is due to the diminished probability of smaller

- 8 -

samples containing foreign nuclei, indicating that heterogeneous nucleation probably occurs in most practical cases. The primary nuclei then grow in the supersaturated solution.

The growth of the primary nuclei in the supersaturated solution may be accompanied by the formation of fresh nuclei which is then termed secondary nucleation. This phenomenon of secondary nucleation has also occasionally been observed during the growth process of seeded supersaturated solutions, at a supersaturation below that required for primary nucleation.

### 2.2.1. Primary Nucleation.

### 2.2.1.1. Homogeneous Nucleation.

When nucleation occurs the transition from the metastable phase to the stable phase represents a decrease in the degree of molecular mobility, a decrease in the free energy of the system and so demands expenditure of energy to create the stable phase. The total quantity of work required to form the stable nucleus is the sum of the work required to form the surface and the work required to form the bulk of the particle.

Gibbs (10) was the first to show that the work of formation of a droplet from its vapour equals one third of that required to form the surface of the droplet. He showed that the total work required to form a droplet from its vapour,  $w = a_p \sigma - v_p \Delta P$  where  $\sigma$ is the surface energy per unit area of a droplet of radius r

- 9 -

a<sub>p</sub> = surface area of the droplet = 
$$4 \text{ II } r^2$$
  
v<sub>p</sub> = droplet volume =  $\frac{4 \text{ II } r^3}{3}$ 

 $\triangle P$  = Pressure difference in the droplet =  $\frac{2\sigma}{r}$ 

$$W = \frac{4 \pi r^2 \sigma}{3} \qquad 2.6$$

Similarly, for the homogeneous nucleation of a small particle from a solution, the excess free energy  $\Delta G$  between the particle and the solute in solution is equal to the sum of the surface excess free energy  $\Delta G_s$ , i.e. the excess free energy between the surface of the particle and the bulk of the particle, and the volume excess free energy. If  $\Delta G_r$  is defined as the excess free energy per unit volume between a very large particle and the solute in solution,

10 -

then, 
$$\Delta G = \Delta G_{s} - v_{p} \Delta G_{v}$$

and for the spherical particle,

$$\Delta G = 4 \operatorname{II} r^2 \sigma - \frac{4}{3} \operatorname{II} r^3 \Delta G_v \quad \dots \quad 2.7$$

The maximum value of  $\triangle G$ , designated  $\triangle G^*$ , occurs at a critical size  $r^*$  (i.e. a critical number of molecules in the embryo) and represents the free energy of formation of the critical nucleus.

From equation 2.7, when  $\frac{d \Delta G}{dr} = 0$ 

$$r^* = 2 \sigma^2$$
 .... 2.8

and 
$$\Delta G^* = \frac{4}{3} \Pi \sigma (r^*)^2$$

This derivation assumes a spherical nucleus and consequently an isotropic  $\sigma$ . Cormia et al (11) have modified this assuming a cylindrical nucleus with different surface energies for the side and end. A spherical nucleus appears more reasonable in most cases, however, and for this the Ostwald-Freundlich equation (2.1) relates the supersaturation expressed as  $\frac{c_r}{c_{\sigma\sigma}}$  to the radius by:

$$\int n \frac{c_r}{c_{\phi 0}} = \frac{2 \sigma V_m}{R^{\dagger} T r}$$

and so for the critical nucleus:

$$\mathbf{r}^* = \frac{2 - V_m}{\mathbf{R} T \ln \left(\frac{c_r}{c_{\omega}}\right)} \qquad 2.9$$

and the free energy of formation of the critical nucleus becomes:

$$\Delta G^{*} = \frac{16 \text{ II } - \frac{3}{2} \text{ V}_{m}^{2}}{3 (\text{R}')^{2} \text{ T}^{2} (\ln \left(\frac{c_{r}}{c_{\infty}}\right))^{2}} 2.10$$

Kinetically the formation of nuclei can be assumed to be a series of bimolecular reactions of the form

$$A_{1} + A_{1} \Longrightarrow A_{2}$$

$$A_{i} + A_{1} \Longrightarrow A_{i} + 1$$

$$A_{i+1} + A_{1} \Longrightarrow \text{critical nucleus.}$$

- 11 -

The rate of nucleation, j, i.e. the number of nuclei formed per unit time per unit volume may, since it is due to a random process, be expressed in terms of an Arrhenius type velocity equation:

$$j = C \exp\left(\frac{-A G}{R' T}\right)$$

where C is a constant of proportionality.

Therefore for spherical nuclei:

Becker and Doering (12) proposed an equation of the form of Equation 2.11 with an analysis of the frequency factor or pre-exponential term C. They assumed that embryos of all sizes up to critical size achieve a non-equilibrium steady-state distribution by growth and decay processes, and introduced a non-equilibrium factor into the term C to allow for the backflux and decrease in embryo population caused by the growth of nuclei. This theory has been summarised by Van Hook (13).

Becker (14) proposed the nucleation rate equation:

$$j = C \exp \left(\frac{-\Delta G_d}{\frac{K_b T}{K_b T}} - \frac{\Delta G^*}{\frac{K_b T}{K_b T}}\right) \dots 2.12$$

Where  $K_b$  is the Boltzmann constant and  $\Delta G_d$  is the free energy of activation of diffusion. The alternative equations for the nucleation rate have been reviewed (13) (15) (16), but are generally of the form of equation 2.11,  $ilde{G}_d$  being assumed constant over a limited temperature range.

### 2.2.1.2. Heterogeneous Nucleation.

The presence of a solid impurity in a supersaturated solution can act as a catalyst for nucleation and it has been shown that homogeneous nucleation is very difficult if not impossible to produce in practice. However, not all impurities in a particular system will act as accelerators and it is in fact possible for some to act as nucleation inhibitors.

The free energy of formation of the critical nucleus for heterogeneous nucleation  $\triangle G^*$  is related to the free energy of formation of the critical nucleus for homogeneous nucleation  $\triangle G^*$  by:

$$\Delta G^{*} = \beta \Delta G^{*}$$

where  $\beta$  is a factor less than unity.

Volmer (17) has related  $\beta$  to  $\alpha$  (the angle of contact between the crystalline deposit and the foreign solid surface) which is analogous to the angle of wetting in liquid-solid systems:

$$\beta = \frac{(2 + \cos \alpha)}{4} (1 - \cos \alpha)^2 \dots 2.13$$

When  $\approx = 180^{\circ}$ ,  $\beta = 1$  and  $\Delta G^{*'}$  is the same as for homogeneous nucleation.

When  $\propto = 0^{\circ}$ ,  $\beta = 0$  and  $\Delta G^{*'} = 0$  and nucleation is spontaneous. When  $\propto$  lies between  $0^{\circ}$  and  $180^{\circ}$   $\Delta G^{*'} < \Delta G^{*}$  and so the impurity acts as a nucleation accelerator.

Preckshot and Brown (18) have studied the effect of

- 13 -

crystallographically similar, but insoluble, ionic crystals in nucleating quiet supersaturated solutions of potassium chloride. The time required for nucleation for various fixed degrees of supersaturation were measured conductometrically. They found that for the same time necessary for nucleation, lead sulphide promoted nucleation at a lower degree of supersaturation than an unseeded solution; lead telluride required even less supersaturation; and lead selenide was the most effective.

Telkes (19), working on the nucleation of supersaturated inorganic salt solutions, has contributed data to strengthen the theory that an additive will accelerate nucleation only if its orystallographic structure and that of the salt to be crystallised agree to within 15%.

### 2.2.1.3. Induced Nucleation.

Nucleation can be induced in supersaturated solutions free of extraneous material, below the supersaturation necessary for homogeneous nucleation. This can be done by the effects of external influences such as electric and magnetic fields, ultra-violet light, X-rays, sonic and ultrasonic radiation, cavitations produced by stirring and even the mechanical impact of a stirrer with the vessel walls. Of these ultrasonic radiation seems to be the most effective nucleator.

Ultrasonics, when applied to liquids, cause cavitations in the liquid alternately producing areas of high and low pressure. The frequency and power of the ultrasonic waves have to be carefully controlled for a particular process, as while the low pressure areas cause embryo coagulation, high intensity ultrasonics break up suspended

- 14 -

- 15 -

particles.

Van Hook and Frulla (9) found this effect in the nucleation of sugar solutions. They found that at a supersaturation ratio of 1.1 for which homogeneous nucleation would not occur, a sugar solution would nucleate on momentary irradiation of ultrasonics at a frequency of 8 k.c. and a minimum power input of 10W/cm<sup>2</sup>, yielding a prolific crop of crystals. However, at 340 k.c. very few crystals developed in the same time.

Mullin and Raven (20) also showed this phenomenon with stirred solutions. They found that the degree of supersaturation necessary for nucleation decreased with increasing stirrer speed only over a limited range, after which there was an increase before again decreasing with further increase in stirrer speed. They suggested that this increase was probably due to the fracture of nuclei at this critical stirrer speed yielding fragments of less than nucleic size.

### 2.2.2. Secondary Nucleation.

Miers (21) in 1911 observed that if a crystal was introduced into a supersaturated solution which was in a metastable state below that required for spontaneous nucleation, it may cause crystals to grow not only in contact with it but also at some distance from it. This phenomenon of nucleation occuring at a supersaturation below that required for spontaneous nucleation by the presence of other growing crystals is termed secondary nucleation.

Strickland - Constable and Mason (22) working on MgSO4.7H2O distinguished four classes of breeding of nuclei:-

(i) "Initial breeding" which occured when a seed crystal yielded a shower of small crystals, which were originally attached to it, after immersion in a supersaturated solution.

(ii) "True breeding" which resulted from broken portions of the dendritic or needle-like growth on the original seed.

(iii) "Splinter breeding" which occured when a needle broke off a mother crystal accompanied by a shower of small crystallites.

(iv) "Attrition breeding" which was that which resulted from agitation.

McCabe (23) investigating the growth of stirred, seeded supersaturated solutions of potassium chloride and copper sulphate found that the size distribution plots of seed and product crystals differed only by a displacement along the diameter axis, indicating no agglomeration or secondary nucleation.

Melia and Moffitt (24) however observed secondary nucleation with potassium chloride solutions although it did not normally occur until dendritic type growths appeared on the crystal surface. They suggested that it was produced by the shearing action of the solution on the crystals. This hypothesis was further strengthened when they worked on sodium chloride solutions in the presence of additives which promoted dendritic growth of the sodium chloride crystals. A large increase in the number of secondary nuclei produced was observed in the presence of the additives. They also found that these secondary nuclei were themselves capable of producing fresh nuclei.

Ting and McCabe (25) investigated the secondary nucleation characteristics of continuously cooled, stirred seeded solutions of

- 16 -

magnesium sulphate. They found that on cooling a solution a first crop of nuclei were produced at a certain temperature with insufficient heat release to change the cooling rate; then on further cooling a temperature was reached when prolific nucleation occured, completely obscuring the stirrer and accompanied by sufficient heat release to appreciably retard the rate of cooling. It appears therefore that there is a "supersaturation curve" for both primary and secondary nucleation. Both of these "supersaturation curves" were offected by seed size and weight, stirring and cooling rate.

Cayey and Estrin (26) studied the secondary nucleation period for magnesium sulphate and counted nuclei photographically after different conditions of seeding. They suggested (in contradiction to Melia and Moffitt (24)) that the secondary nucleation was dependent on the number and size of seed crystals, and on the level of supersaturation.

Secondary nucleation is a phenomenon which is still not fully understood. It appears that it only accurs for some particular systems and then only if a certain supersaturation level is exceeded. The experimental data available is limited and in certain cases conflicting.

# 2.3. Crystal Growth.

The following consecutive steps are required in any heterogeneous reaction:-

1. Transport from the medium to the reaction environment.

2. Absorption on the surface.

- 17 -

3. Orientation in the surface (reaction).

4. Desorption of products of reaction.

5. Dissipation of products of reaction.

For crystal growth from solution the last two steps consist of the dissipation of the heat of crystallisation which will be rapid compared with the relatively slow growth rate, and so step 1 is more likely to be rate controlling with respect to 4 or 5. A molecule on arriving at the crystal surface is not necessarily immediately incorporated into the crystal lattice because it may either diffuse away or it may not be at a favourable site. As the orientation of the molecule for the greater part of the entropy change step 3 is more likely to be rate controlling than step 2. So the two most likely rate controlling steps are:

1. Transport from the medium to the growing environment.

2. Orientation in the surface.

### 2.3.1. Diffusion Theories.

Noyes and Whitney (27) assumed that the liquid in contact with the crystal was saturated, and that crystallisation was the reverse of dissolution. They assumed that the rate at which a substance dissolves in its own solution was proportional to the difference between the concentration of that solution and the concentration of the saturated solution. Nernst (28) assumed that the crystal was surrounded by a laminar film of liquid of thickness, §, through which the solute had to diffuse. Then:

$$\frac{dm}{dt} = \frac{D_{\mathcal{L}} A}{\delta} (c - c_0) \dots 2.14$$
where m = mass of solute deposited in time t
$$A = \text{surface area of the crystals.}$$

$$c = \text{solute concentration in the bulk of the solution.}$$

$$c_0 = \text{solute concentration of saturated liquor.}$$

$$D_{\mathcal{L}} = \text{coefficient of diffusion of the solute.}$$

However, this equation suffers from the defect that it assumes the Riquid in contact with the crystal is saturated, whereas it was found by Miers (29) to be supersaturated.

Mullin (30) has shown how Berthoud (31) and Valeton (32) suggested that there were two steps involved in crystal growth: diffusion to the crystal surface and then an "integration" reaction (assumed to be first order) when the solute was incorporated into the crystal lattice.



- 19 -

These two stages can then be represented by

$$\frac{dm}{dt} = K_d A \left( c - c_i \right) \qquad 2.15$$

and 
$$\frac{dm}{dt} = K_r A \left(c_i - c_o\right)$$
 ..... 2.16

where  $K_d$  is a coefficient of mass transfer by diffusion,  $K_r$  the integration rate constant and  $c_i$  the solute concentration at the crystal/solution interface.

c<sub>i</sub> can be eliminated to present an overall crystal growth equation:

$$\frac{dm}{dt} = \frac{A(c - c_{\infty})}{\frac{1}{K_d} + \frac{1}{K_r}} \qquad 2.17$$

or 
$$\frac{dm}{dt} = K A (c - c_{oo})$$
 ..... 2.18

where  $\frac{1}{K} = \frac{1}{K_d} + \frac{1}{K_r}$ 

Marc (33) found that as the stirring rate was increased the velocity of growth increased until after a critical rate was reached it remained constant. He considered that at this stage the crystal was covered with an adsorbed layer of molecular dimensions. Crystal growth is then assumed to be controlled by the surface integration step, equation 2.16, and  $K \stackrel{\frown}{\rightharpoonup} K_r$ , equation 2.18.

# 2.3.2. Surface Integration.

The following theories have given significance to the "K r rate constant", equation 2.17, which makes allowance for the facility

- 20 -
with which a surface may incorporate a particle adjacent to it.

The first theories on crystal growth concerned the morphology of the crystals and an historical account of these earlier theories has been made by Buckley (34), from which the following has been abstracted:

"Curie (35) proposed that there was an intimate connection between the crystalline form and the surface energy of the solid. Each face has a specific free energy and the crystal will assume the habit giving minimum surface energy, such that i = n $\sum_{i=1}^{n} A_i \sigma_i = minimum$ .

" Volmer (36) based his theory on the existence of an absorbed layer around the crystal surface of molecular dimensions. While studying the growth of mercury crystals from the vapour state at low temperatures he observed the crystals growing layer by layer. He proposed that a molecule arriving at a crystal surface lost only a portion of its latent heat and was thus bound to the surface but had complete mobility on the surface. The adsorbed layer consists then of such molecules frequently colliding with each other forming larger two dimensional particles. When a particle becomes of nucleus dimensions it would attach itself to the crystal lattice. This is called Two Dimensional Nucleation. Volmer assumed that the transfer of the particle from the adsorbed layer to the lattice would be instantaneously made up from the solution. He proposed that the relationship between the growth velocities g1 and g2 of two differing lattice planes was given by:

 $\frac{g_1}{g_2} = C \exp\left(\left(H_1' - H_2'\right) n / R'T\right) \dots$ 2.19

- 21 -

where C is a constant, n a factor  $\geq 1$ , and  $H_1$  and  $H_2$  are the heats of adsorption of the two planes. He assumed that the heat of adsorption of a particular lattice plane was proportional to the specific surface energy.

"Brandes (37) making similar assumptions to Volmer considered the surface free energy to have little influence on crystal growth. He considered that the work of formation of the two dimensional nucleus was the controlling factor for growth, since the growth of the nucleus to complete the lattice plane was very rapid compared with the nucleus formation. The ratio of the growth velocities  $g_1$  and  $g_2$  on planes 1 and 2, where the work of formation of the nucleus is  $w_1$ , and  $w_2$  was given by:

$$\frac{g_2}{g_1} = \exp\left(-\left(w_2 - w_1\right) / k_b T\right) \dots 2.20$$

where K is the Boltzmann constant.

" The work of formation was derived on a basis analogous to three dimensional nucleation.

"Bravais (38) postulated that the velocities of growth on lattice planes depends on the densities of the lattice points on the planes. However there are many criticisms to this theory.

" Both Kossel (39) and Stranski (40) proposed theories to account for the way in which atoms or molecules attach themselves to the crystal face. Kossel (39) assumed the crystal to build itself up by the indefinitely continued repetition of the most probable equivalent steps. He showed that it was immaterial to his theory whether the molecular attachments occured in rows parallel to a cube

~ 22 -

edge or the diagonal. He expressed the attachment energy  $\nabla_0$  as being made up of three components

 $\bigtriangledown_{0} = \bigtriangledown' + \bigtriangledown'' + \bigtriangledown'''$  of which  $\bigtriangledown'$  and  $\bigtriangledown'''$  were tangential to the growth direction and  $\bigtriangledown'''$  was at right angles to the lattice plane. Thus for the original two dimensional nucleus on a new plane the energy release was that due to  $\bigtriangledown'''$  only. For this particular nucleus he found that for a homopolar crystal the most probable position of attachment is the interior of the plane, followed by the edge and the corner in lower degrees of probability; whereas for an ionic crystal the probability was in the reverse order, i.e. corner > edge > interior. Kossel stated that once the initial nucleus was attached the plane would build up rapidly to completion.

" Stranski (40) working independently and considering the relative work of separation necessary to remove molecules from various positions in the lattice plane came to the same basic conclusions as Kossel".

Nielson (41) also considers this two-dimensional nucleation mechanism of growth. He classified two types of mechanism:

(i) The "mononuclear layer" mechanism where the time between two consecutive nucleations is greater than the time it takes for a surface nucleus to grow such that it covers the crystal surface.

(ii) The "polynuclear layer" mechanism where the surface nucleation is so fast that each molecular layer of the crystal is the result of intergrowth of numerous individually nucleated surface crystals.

However the probability of the formation of these twodimensional nuclei is a very sensitive function of supersaturation,

- 23 -

and Burton, Cabrera and Frank (42) have shown that if reasonable values of the edge energy of the two-dimensional nuclei are assumed, a critical supersaturation of about s = 50%, where  $s = \frac{c - c_{co}}{c_{co}}$  is necessary for the formation of two-dimensional nuclei. Whereas growth has been known at very low supersaturations of s = 1% and lower.

Frank (43) recognised that growing crystals are not perfect flat plane faces, and that their imperfections will provide the steps required for growth making two-dimensional nucleation unnecessary. The face containing a "screw dislocation", i.e. the one in which the displacement is parallel to the dislocation line will then grow perpetually "up a spiral staircase". If there are two such dislocations on a face, growth will occur if the supersaturation is raised to a value such that the size of the critical two-dimensional nucleus correctly orientated will pass between two points in the positions of the two dislocations.

Burton, Cabrera and Frank (42) based their theory on the existence of these screw dislocations and considered the crystal growth process from the vapour to be a result of three separate processes, (i) exchange of molecules between adsorbed layer and vapour, (ii) diffusion of adsorbed molecules towards the steps and exchange with them and (iii) diffusion of adsorbed molecules in the edge of the steps toward the kinks (or growth sites along the steps) and exchange with them.

Strickland - Constable (44) has summarised this theory of Burton et al (42) for crystal growth from the vapour and shown that a

- 24 -

similar approach can be made for growth from solution, and the flux J' (mass transferred per unit area and unit time) is then given by:

$$J^{1} = \frac{\beta' D_{L}}{a^{1}} \quad \frac{\tanh\left(\frac{y_{0}}{\sqrt{2z_{s}}}\right)}{\left(\frac{y_{0}}{\sqrt{2z_{s}}}\right)} \quad (c - c_{0}) \quad \dots \quad 2.21$$

where  $\beta$  is a reflection coefficient of the molecules,  $D_{\ell}$  the diffusion coefficient, a' is the molecular spacing in the adsorbed layer,  $y_0$  is the distance apart of the steps and  $z_s$  is the average diffusion distance of adsorbed molecules.

If  $y_0$  is assumed inversely proportional to  $(c - c_0)$  then for high supersaturations,  $y_0$  is small, and  $J' \rightarrow \frac{D_L \beta'}{a'} (c - c_0)$  whereas for low supersaturations,  $y_0$  is large, and  $J' \rightarrow \frac{D_L \beta'}{a'} (c - c_0)$ 

Strickland - Constable (44) has reported that Reich (45) found a second order growth rate dependence on supersaturation for well stirred seeded solutions of  $MgC_2C_4$ . 2 H<sub>2</sub>O, BaC<sub>2</sub>O<sub>4</sub>. 2 H<sub>2</sub>O, and T& Br.

Chernov (46) adopted a similar approach to Burton et al (42) and came to the same conclusion for the dependence of the normal (perpendicular) growth velocity, g, of a crystal face growing from a vapour being proportional to  $s^2$  for low supersaturations and being linearly dependent on s for higher supersaturations. He showed the non-linear dependence on supersaturation to be obtained for  $0.05 \leq s \leq 0.80$  when crystals of  $\beta$  - methyl naphthalene and p-toluidene were grown from the vapour. For the normal growth velocity from solution Chernov assumed that matter is transferred to the crystal only on the end faces of steps and only by diffusion within the volume of a fixed boundary layer of thickness,  $\delta$  adjacent to the crystal. He found that for the interval 0.01 < s < 0.2 the following approximation was true:

and at very low supersaturations b = 2. The exponent b increased as  $\delta$  decreases, and the region of the quadratic equation is enlarged as the solution is stirred more vigorously.

Burton et al (42) have observed that in some cases a crystal surface will not grow at all, in spite of the fact that it is in contact with a supersaturated solution of s -200.1. This could either be due to the absence of dislocations in the crystal surface, or else to the presence of so many of them that the mean distance between them is too small for the particle integration. As this would require of the order of  $10^{12}$  dislocations per cm<sup>2</sup> which is high, the former explanation is more probable.

#### 2.3.3. Experimental Data.

In order to assess the contribution of the surface integration and the diffusional resistance respectively on the growth process it is necessary to try to eliminate one of them. As the relative crystal/ solution velocity is increased the laminar film thickness, § decreases until in the limit the surface integration step should control. Marc (33) found this effect with stirred suspensions of potash alum,

- 26 -

 $NH_{3}alum K_2Cr_2D_7$  and  $AgOA_c$  when after a certain stirrer speed was attained no further increase in growth rate was observed. He then found the growth rate to be proportional to the square of the degree of supersaturation.

Bransom et al (47) however found no such limit with the growth rate of seeded solutions of magnesium sulphate heptahydrate stirred between 100 revs/min. and 1000 revs/min. They found a continual increase in the mass transfer coefficient, up to an experimental limit of 30°C, with stirrer speed which was independent of seed size. They attributed this to "homogeneous isotropic turbulent eddies".

Cartier et al (48) modified an equation by Amelinckx (49) for the resistance to crystallisation due to the surface integration. The particle integration rate was based on a statistical determination of the rates of particle attachment and detachment at a crystal face. They obtained the equation

$$\frac{dm}{dt} = K_r'A \left( \exp\left( \mathbb{Z} \left( c_1 - c_0 \right) \right) - 1 \right) \dots 2.23$$

$$re \qquad \mathbb{Z} = -\frac{1}{k_b T} \qquad \frac{d \nabla}{dc}$$

whe:

- 27 -

Hence a plot of  $\ln\left(\frac{dm}{dt} + K_r'A\right)$  against  $\left(x_i - x_{\infty}\right)$  which are the concentrations in mass %, should give a straight line of slope  $\int_{r}^{Z}$  where  $\int_{r}^{r}$  is the solution density. A value of  $K_r'$  has to be determined by trial and error which will give an intercept of  $\ln K_r'A$ . It was found that  $K_r'$  and Z could be expressed in terms of the absolute temperature:-  $\underline{3}$ 

$$K_{r}' = \alpha T^{\overline{2}} - \beta$$
$$\beta Z = B - \frac{A}{T}$$

where  $\propto, \beta$ , A and B are constants.

Cartier et al studied the effect of relative crystal/solution velocity (u) on growth rate by direct measurements of a single crystal with a microscope. They found for citric and itaconic acids the diffusional resistance was insignificant at sufficiently high relative velocities and equation 2.23 then satisfactorily correlated their results.

Mullin and Garside (50) worked on the crystallisation of aluminium potassium sulphate using single crystal measurements as used by Cartier et al and measurements of weight and sieve analysis in a fluidised bed. They found a good agreement with the growth rates obtained by the two methods. They found that the growth rate was proportional to  $u^{0.65}$  and that the dependence on supersaturation  $(c - c_{co})$  varied between  $(c - c_{co})^{1.4}$  and  $(c - c_{co})^{1.62}$  within the supersaturation limits  $0.003 < (c - c_{co}) < 0.015$ . However the exponent 1.62 remained fairly constant above a certain relative velocity.

Davis and Jones (51) used conductivity measurements to

determine the rate of growth of seeded stirred suspensions of silver chloride. They found that the growth rate was independent of stirrer speed between 100 r.p.m. and 500 r.p.m. and so assumed integration control, for which they found the dependence on supersaturation to be second order. No account was taken of the increase of crystal area during these experiments, but conditions were chosen such that the total change was only 0.1% of the original total surface area of the seed crystals.

Schierholtz (52) nucleated stirred solutions of calcium sulphate at  $25^{\circ}$ C and followed the decrease in concentration using titration measurements of samples of solution at regular intervals. He found that the crystallisation rate was first order with respect to  $(c - c_{\infty})$  with the exception of the early and final stages. No allowance was made for the effect of change of crystal area, but as the product crystals were of an acricular nature he suggested that the effective area available for crystal growth throughout this period would be constant.

McCabe (53) has proposed a method for the prediction of the size analysis of a mass of crystals grown from a mass of crystals of known size analysis, which is known as "McCabe's  $\Delta \Delta$  law". This states that if a known mass of seed crystals of known size distribution is grown under given conditions of supersaturation then the size analysis of the product is given by:

$$M_2 = \int_{0}^{M_1} \left(1 + \frac{\Delta D}{D_1}\right)^3 dM_1 \dots 2.24$$

- 29 -

where  $M_2$  is the product mass obtained from  $M_1$  seed,  $D_1$  is the seed size and  $\Delta$  D the increase in size.

Solution of equation 2.24 involves tedious trial and error methods. A nomograph by Hooks and Kerye (54) has eased the solution by giving the ratio  $\left(1 + \frac{\Delta D}{D_{i}}\right)^{3}$  for trial values of  $\Delta D$  for any seed size  $D_{i}$ .

McCabe (23) added experimental validification to equation 2.24 by crystallising potassium chloride and copper sulphate by means of a seeded water cooled crystalliser tube agitated by rubber strips attached to a central shaft and revolved inside the centre of the tube. He showed that for these seeded suspensions over a wide number of variables, e.g. agitator speed, weight ratio of product to seed, temperature, etc., the size distribution plots of cumulative number percentage over size, D, for product and seed crystals, obtained from a sieve analysis differed only by a displacement along the diameter axis. This indicated that neither agglomeration nor secondary nucleation occured during the growth process, and that the linear velocity of growth was independent of crystal size. However this has since been shown to be true only for surface integration control.

As temperature has a greater influence on the kinetics of a reaction than on the physical property of the solution, the extent of the resistance to crystallisation presented by the surface integration can be seen by studying the effect of temperature on the growth rate. The effect is indicated by the value of the activation energy involved.

Van Hook (55) compared the activation energies of sugar solutions of viscosity and diffusion with growth with the conclusion

- 30 -

that the former two were considerably less than the third over the normal temperature range. The comparison was made at a constant supersaturation of s = 0.05 and the three values approached a common low level only at high temperatures. The high activation energy associated with growth was of the order normally associated with purely chemical reactions rather than physical processes (i.e. greater than 10 K cal/g. mole).

Rumford and Eain (56) determined the rate of growth of sodium chloride crystals in a fluidised bed for different supersaturations over the range 26 to 73°C. Below 50°C the rate of growth plotted against supersaturation was non-linear showing the growth rate to be surface integration control. Above 50°C the growth rate was linearly dependent on supersaturation. This could either be a first order surface integration or diffusion controlled growth. As the activation energy for crystallisation was found to be 5.4 K cal/mole, they considered the growth rate to be diffusion controlled above 50°C. Cooke, however, in a discussion (56) disagreed with this conclusion and suggested that the growth rate was diffusion controlled at all temperatures, but the contribution of the surface integration is greater at lower temperatures and supersaturations. He suggested that if the authors had continued their work for higher supersaturations the curves would have become linear for all temperatures.

McCabe and Stevens (57) found that equation 2.24 is inapplicable with low relative velocities in a diffusion controlled process with a crystal size distribution. They studied the rate of growth of copper sulphate pentahydrate crystals in an agitated solution following the

- 31 -

decrease in solution concentration using a conductivity cell. They found that the rate of growth g could be expressed in terms of relative velocity, u, between crystals and solution, the interfacial growth rate  $g_i$ , and the growth rate at zero velocity,  $g_o$ , by the empirical equation:

$$\frac{1}{g} = \frac{1}{g_0 + Cu} + \frac{1}{g_i}$$
 ..... 2.25

where C is a constant.

They found that the growth rate was not affected directly by crystal size, but, at low values of u, g is markedly influenced by the crystal - solution relative velocity. As u increases, the effect of velocity on growth rate diminishes and finally becomes negligibly small. This is consistent with the view that the growth process consists of a diffusion process and a surface integration in series.

Hixon and Knox (58) found the rate of growth coefficients to depend both upon the mass transfer coefficients which varied with fluid velocity and the rate coefficient of the surface integration. They measured the increase of weight of single crystals of copper sulphate and magnesium sulphate and calculated the product area from

$$A_2 = \left(\frac{M_2}{M_1}\right)^{\frac{2}{3}} A_1$$

They correlated their results on a dimensionless basis to allow the mass transfer coefficients to be compared with mass transfer coefficients or heat transfer coefficients of other systems:

$$\frac{K_{d} D}{D_{m}} = C \left( \frac{\rho_{u} D}{\mu} \right)^{0.6} \left( \frac{\mu}{M_{m} D_{m}} \right)^{0.3} \dots 2.26$$

These are the Sherwood, Reynolds and Schmidt numbers respectively:

where D<sub>m</sub> = Molar Diffusivity. D = Equivalent Diameter of the crystal. K<sub>d</sub> = Coefficient of mass transfer by diffusion. M<sub>m</sub> = mean molicular weight of the solution. f = density of the solution. f = density of the solution. u = crystal / solution relative velocity. C = a constant.

To correlate the data on this basis, it was necessary to assume that a resistance i.e.  $\left(\frac{1}{K_r}\right)$  was being presented by a surface reaction of first order for magnesium sulphate and of second order for copper sulphate.

Bransom (59) has shown that for a fluidised bed the growth velocity g can be correlated in terms of a modified Reynolds number Re':

 $g = \frac{dr}{dt} = C \left( \operatorname{Re}^{\prime} \right)^{n} \left( c - c_{\infty} \right)^{b}$ 

where  $Re' = \frac{2r \rho u}{\mu'}$ , r = crystal equivalent radius,f' = solution density and C = specific growth rate.

Using the data of Hixon and Knox (58) he found b = 1 for both copper and magnesium sulphate, n = 0.65 for copper sulphate and n = 0.3 for magnesium sulphate. He further showed that for a given continuous crystallisation process, µ and pare constant and u varies very little so that:

$$g = C r^n (c - c_0)^b$$
 .... 2.27

and when the growth rate of crystals is expressed in this form most of the important operating parameters can be predicted.

Bransom and Palmer (60) working on an Oslo type of crystalliser found the exponent n = 1.0 when calculating average growth rates for a bed of crystals. However when size analyses were done on the individual beds before and after growth it was found that n = 1.5. This was explained by the size classification occuring in the bed.

Bennett (61) has used the data of Rumford and Bain (56) to obtain a value of n = 0.171 for the same correlation, equation 2.27.

However the exponents b and n will vary according to the type of system and the material used.

Bennett and Fentiman (62) found for the crystallisation of sucrose crystals that the rate constant differed for three different size fractions of seed used by a factor of two. After washing the seed in aqueous methanol the rate constants were reduced and the three size fractions then gave a similar value. When the specific surface area of each type of seed was measured, however, by the krypton adsorption method this showed that the difference was due to the surface roughness of the seed caused by adhering dust particles. The ratio of surface areas then measured for each type of seed, before washing, was similar to the ratio of the rate constants. They also pointed cut that the relationship between total mass, or total volume,

- 34 -

and total surface area for a polydisperse system of normal distribution undergoing crystal growth is probably not  $M \propto A^{1.5}$  but is closer to  $M \propto A^{1.3}$ . However this relationship will depend on the size distribution of the original seed.

## 2.3.4. Impurities in Crystal Growth.

## 2.3.4.1. Effect of Impurities.

The interaction of growing crystals with impurities is thought to give rise to effects such as change of growth rate, impurity capture and crystal defect formation, e.g. internal strains and dislocations.

The presence of an impurity usually causes a lowering of the growth rate. Buckley (34) has stated that the strongest effect is usually produced by organic substances of high molecular weight. An important characteristic of this kind of impurity is its inability to influence appreciably the dissolution rate of crystals. Certain inorganic ions are also effective when present in very small quantities. Increases in growth rate have been experienced in a few cases, and accounted for either by the catalytic effect of an impurity or by lowered surface energy, the smaller size of the critical mucleus and the enhanced probability of two-dimensional nucleation.

McCartney and Alexander (63) worked on the crystallisation of calcium sulphate by following the concentration change of seeded solutions using ad ip-type conductivity cell. They found a second order dependence on supersaturation for both pure and impure solutions, regardless of the amount of inhibition of growth. They also found that the additives which interact with calcium sulphate are those with polar groups on a chain structure, particularly proteinaceous and polycarboxylic materials. Also the retarding power increased markedly with molecular weight. Polyacrylic acid, for instance, completely inhibited growth at a concentration of 1.3 p.p.m., and even in 0.13 p.p.m. it retarded the growth rate by 74% compared with that of pure calcium sulphate. They found that if a strong acid was added to one of the polycarboxylic materials, the latter's ionization was suppressed and the retarding action largely destroyed. Although for HCl and H<sub>2</sub>SO<sub>4</sub> the crystallisation rate was still retarded by the action of these acids themselves.

Chernov (46) attempted to explain the effects of impurities on the spiral growth of crystals, and based his treatment on the layer growth of crystals resulting from the motion of steps. He considered two possible mechanisms of inhibited crystal growth:

(a) (b)

Strongly adsorbed impurities captured by a growing crystal. Impurity poisoning of active growth sites (kinks).

He suggested that an impurity slows the advance of elementary steps whose heights are comparable with that of the adsorbed impurity molecules, and, that this effect becomes less noticeable as the step height increases. The influence of impurities on the normal growth . rate must therefore depend particularly on the mean step height.

Chernov stated that when adsorbed impurities have a short lifetime on the crystal surface, the impurity poisoning of active sites becomes important and it is then practically impossible to

- 36 -

incorporate new particles into the crystal in the poisoned kinks. He mentioned that kinks in a step are poisoned by impurities in both growing or dissolving cystals.

Impurity molecules captured by a growing crystal differ in size from the crystal constituents and therefore induce tensile strains in the lattice.

# 2.3.4.2. Equilibrium and non-equilibrium capture of impurities in crystal growth.

Chernov (46) stated that when the system consisting of a crystal and the surrounding medium contains an impurity, the impurity concentration  $x_g$  in the crystal and  $x_w$  in the medium, under equilibrium conditions are related to the phase diagram. The equilibrium coefficient of distribution (or capture) K<sup>1</sup> is then given by:

$$K' = \frac{x_s}{x_w}$$

If a crystal grows very slowly its impurity concentration is determined by the equilibrium capture coefficient, and by  $x_W^*$  at the interface. When K<sup>i</sup> is less than unity (crystal rejects impurity)  $\sum_W^*$  will increase with growth rate. Therefore the equilibrium capture coefficient increases effectively with the growth rate.

Chernov mentioned that the equilibrium impurity concentration is not constant throughout a crystal, since a difference exists between its value near the surface and that in the bulk. He added that the equilibrium concentration can be characterized approximately by three quantities: the concentration in the bulk of the crystal, that in the surface layer, and that in the steps, and that these can differ considerably from each other. If a crystal grows very slowly an equilibrium concentration exists in all three quantities. At high growth rates equilibrium is not established in the bulk, but it may be in the surface layer and the steps, or only in the steps. However each surface layer becomes an interior layer with an equilibrium impurity concentration. This also applies to the line of atoms forming the end face of a crystal. At still higher growth rates none of the three equilibrium concentrations is achieved. Therefore when new layers are deposited on the crystal surface the impurity concentration in these layers will not generally be in equilibrium, and impurity diffusion from or to the crystal will begin.

Although it is usually assumed that in the solution the ratio of impurities to the substance being crystallised is greater than in the crystal (i.e. "purification") Botsaris et al (64) showed that this is not always the case. They investigated the incorporation of lead molecules in crystals of KCl and concluded that a possible mechanism is one of non-equilibrium capture of impurity, the magnitudes of the distribution coefficient depending on the rate of crystal growth, and the rate of diffusion of impurity through the lattice structure.

- 38 -

## - 39 -SECTION THREE

#### PREVIOUS WORK DONE ON PENTAERYTHRITOL

#### 3.1. Crystal Structure.

Berlow, Barth and Snow (65) state that P.E. has a body centred lattice of tetragonal symmetry with two molecules in the unit cell. The crystal has a four fold alternating axis of symmetry parallel to its c- axis. The central carbon atom of one molecule in the unit cell is at (o, o, o) and that of the other at  $(\frac{1}{2}, \frac{1}{2}, \frac{1}{2})$ . The molecular units are so arranged that the oxygen atoms are in planes perpendicular to the vertical c- axis. The oxygen atoms of four neighbouring molecules are arranged in the form of a square whose sides are inclined 10° to the a and b axes. In P.E. the C-C bond length is 1.50 Å, the C-O bond length is 1.46 Å and the 0-O distance is 2.69 Å.

Von Groth (66) states that P.E. crystals should be tetragonal bipyramids on (001). He showed the morphology as figure 3.1. where the Miller indices of the main faces are marked. This is a 1 st order (h h 2) class 4/mmm tetragonal bipyramid, as shown by Bishop (67). Von Groth gave the ratio of the unit cell axes as  $\underline{c} = 1.0236$ , and this ratio is also recorded in the Barker Crystal Index (68). If however the bipyramid base is orientated at  $45^{\circ}$  to the a, b axes, this 2nd order orientation gives the equivalent axes ratio of  $\underline{c} = 1.447$ , which is almost in agreement with Berlow et al (65) who recorded the values a = 6.10, c = 8.73 and hence  $\underline{c} = 1.43$ . Wyckoff (69) also records values which give a similar ratio, of a = 6.083 ± 0.002 Å and c = 8.726 ± 0.002 Å and hence  $\underline{c} = 1.4345$ . The melting point has been recorded

FIGURE 3.1.

.

## P.E. CRYSTAL MORPHOLOGY ...... VON GROTH (66)



as 260.5°C by Wyckoff (69) which compares favourably with the value of 259°C found for Pure P.E. in the previous work (1), whereas Von Groth (66) records the melting point as 253°C and so the data of Wyckoff is taken to be more accurate.

Figure 6.1.A shows a sketch of the tetragonal bipyramid in the 2nd order (h o 1) orientation with the indices of the main faces marked and also of the minor ones which sometimes appear. For the Wyckoff ratio of c = 1.4345 if the bipyramid base is taken as unit length, the length of the remaining (1 0 1) sides become 1.0074 and the normal angle between the (1 0 1) and (1 0 1) faces is 69.67°. For practical purposes and within experimental error therefore, the external geometry may be considered as if the crystal is of the cubic system with each (1 0 1) faces an equilateral triangle and the normal angle between any two faces being 70.53°. This has been done in section 6, figure 6.1.8.

Wyckoff (69) also states that there is a phase change at  $179.5^{\circ}$  C above which the unit cell becomes cubic and tetramolecular with a = 8.963 Å. This cubic modification of P.E. was also found by Nitta and Watanabé (70) at 180<sup>°</sup>C using X-ray diffraction measurements.

## 3.2. Impurities

#### 3.2.1. Nature of the impurities

Two main impurities (0.1%) were analysed chromatographically in the commercial Pentaerythritol. These were the ether Di -Pentaerythritol, and a complex unidentified by-product of

- 40 -

formaldehyde and P.E. which, for the purpose of this work is labelled the "Formal". The amount of Di- P.E. present varies from 0% to about 2% whereas the Formal present is usually about 4%. As the Formal identity is unknown this analysis figure is only comparative in relation to Di - P.E., obtained by giving the Formal the same chromatograph response factor as Di - P.E.

Di - Pentraerythritol is a white odourless crystalline ether, having the formula:

HOCH<sub>2</sub> - 
$$C - CH_2 - O - CH_2 - CH_2 OH$$
  
 $CH_2OH$   $CH_2OH$   $CH_2OH$   $CH_2OH$ 

with a molecular weight of 254.

Similar compounds to the unidentified Formal have been reported in the literature as being present in commercial P.E.

Salkind et al (71) and Wiersma et al (72) consider this to be the compound Bis-pentaerythritol monoformal with a molecular weight of 284 and a hydroxyl value of 35.9%.

HOCH<sub>2</sub> - 
$$CH_2OH$$
  
 $HOCH_2 - CH_2 - O - CH_2 - O - CH_2 - CH_2OH$   
 $CH_2OH$   
 $CH_2OH$   
 $CH_2OH$ 

Barth and Snow (73) however have reported the detection of a similar impurity which they identified by carbon and hydrogen determinations, hydroxyl value, molecular weight and saponification value as formaldehyde bipentaerythritol acetal having the formula:

$$HOCH_2 - CH_2OH$$
  
 $HOCH_2 - CH_2OH$   
 $CH_2OH$   
 $CH_2OH$   
 $CH_2OH$   
 $CH_2OH$   
 $CH_2OH$   
 $CH_2OH$ 

with a molecular weight of 270 and hydroxyl content of 37.8%

The degree of polymerisation of formaldehyde in the aqueous solution can be expressed in the form of the following reactions:

0

- 42 -

$$\begin{array}{c} CH_2O + H_2O & \longrightarrow & HOCH_2OH \\ & & Methylene glycol \\ 2 & HOCH_2OH & \longrightarrow & HO (CH_2O)_2H + H_2 \\ & & dimer \end{array}$$

HOCH<sub>2</sub>OH + HO  $(CH_2O)_2H \xrightarrow{} HO (CH_2O)_3H \div H_2O$ trimer

Salkind et al (71) have proposed two possible sequences of reactions which account for the formation of di- P.E. and bis - P.E. monoformal. The first is based on the fact that very little formaldehyde exists in aqueous solution as free H C H O but it is mostly in the hydrated form. The reaction proceeds by splitting out water between these polymers and acetaldehyde. In the sequence of reactions methylene glycol forms P.E., the hydrated dimer forms Di - P.E. and the trimer by a similar sequence forms bis - P.E. monoformal. The other proposed sequence recognises the low concentration of H C H O in aqueous solutions but considers its high reactivity compared to that of its polymers. The formaldehyde reacts with acetaldehyde to form acrolein, two molecules of which then react with methylene glycol to form bis - P.E. nonoformal. In the previous work (1) the attempted extraction of Formal with n - propanol using the method of Barth and Snow (73) gave a product which analysed chromatographically as containing only 15% Formal. In view of Salkind's (71) suggested sequence of reactions for the formation of the impurities, an attempt was made (1) to synthesise the Formal using P.E. and Formaldehyde. At first the formaldehyde was used in the form of the commercial 40% aqueous Formaldehyde solution, but after refluxing with impure P.E. (Batch A) this resulted in a decrease in Formal content. This was attributed to an inhibiting effect of the methanol present as a stabliser in the formaldehyde solution.

The formaldehyde was therefore added in the form of paraformaldehyde (a mixture of low molecular weight polyoxymethylene glycols) to aqueous P.E. solutions. Walker (74) recorded various equilibria occuring in dilute and consentrated aqueous formaldehyde solutions for different pH ranges, and reported that good yields of formals were obtained by heating alochols with paraformaldehyde at 100°C in the presence of ferric chloride. Experiments were therfore carried out (1) under different conditions of pH and formaldehyde concentration, and with ferric chloride sometimes added in an attempt to synthesise the compound. All solutions were found to be cloudy at first but cleared after about 20 minutes, which was attributed to the slow depolymerisation rate of the paraformaldehyde. During the reaction the solubility of P.E. was found to be greatly enhanced and concentrations of ca. 58 mass % were often used. The pH of the solution did not appear to effect the formation of the Formal although the presence of ferric chloride

- 43 -

seemed to favour the formation of Di - P.E. It was found that the critical condition for the synthesis of the formal by the reaction of P.E. with formaldehyde is a long refluxing time. 70 g of Batch A (with 4.73% Formal and <0.1% Di - P.E.) refluxed with 10 g of Paraformaldehyde in 50 cm<sup>3</sup> water for 40 hours yielded on cooling to room temperature and filtering, 21 g of product crystals analysed chromatographically as containing 25% Formal and 0.5% Di - P.E. However this product contained other by-products of reaction and it was decided to study the effects of Formal on the crystallisation of P.E. by using mixtures of the batches of material with known impurities, with the purified P.E., thus limiting the impurity content usable to about 5% Formal.

## 3.2.3. Purification of P.E.

The commercial batches of P.E. were purified by dissolving sufficient material in 10% (w/v) HCl to form a saturated solution at its boiling point. The solution was refluxed for 1 hour, cooled to 0°C, filtered and washed in ice cold water. This procedure was then repeated and the resulting P.E. recrystallised from distilled water. The product was then washed with successive quantities of ice cold water and dried in an oven. The chromatographically "Pure P.E." analysed as containing <0.1% Di - P.E. and <0.1% Formal will be referred to as Pure P.E. hereafter.

## 3.3. Physical Properties

PENTAERYTHRITOL : HOCH<sub>2</sub> - C - CH<sub>2</sub>OH CH<sub>2</sub>OH

- 44 -

Berlow et al (65) state that P.E. is a polyhydric alcohol with four primary hydroxyl groups arranged compactly around a central carbon atom. It is an odourless, white crystalline compound which is non-hygroscopic, practically non-volatile and stable in air. Its density is 1.396 g/cm<sup>3</sup>. The entropy of transition of P.E. is 22.8 c.u., its entropy of fusion is 3.2 e.u., and its entropy of sublimation is 60.8 e.u.

The diffusion coefficient of P.E. in water at  $20^{\circ}$ C is 0.573 cm<sup>2</sup>/s at a normality of 0.4 and 0.589 cm<sup>2</sup>/s at a normality of 0.2.

P.E. is moderately soluble in cold water and freely soluble in hot water. Values of 5.6 mass% and 30.5 mass% were found in the previous work (1) at 20°C and 80°C respectively. The solubilities in aqueous solution found for Pure P.E. and for impure P.E. above  $50^{\circ}$ C were in good agreement with Cooke's data (75) and were correlated by the equation  $\log_{10} x = 5.072 - \frac{1266}{T}$  where x = mass% and T = degrees Kelvin, which is shown in figure 3.2. Berlow et al (65) report that P.E. is only slightly soluble in alcohols and other organic liquids. The nucleation correlations (figure 3.2) of P.E. in aqueous solution were found to be (1) :

Pure P.E.  $\log_{10} x = 2.289 - \frac{633}{T}$ Impure P.E.  $\log_{10} x = 3.112 - \frac{545}{T}$ 

I.C.T. (76) has reported the heat of combustion as 661 Kcal/mol and the equivalent conductance as 1.71 at  $25^{\circ}$ C and 0.06 g mol / dm<sup>3</sup>.

According to Bradley and Cotson (77) the vapour pressure of P.E. ranges from 2,12 x  $10^{-5}$  cm H g at  $106.4^{\circ}$ C to 52.4 x  $10^{-5}$  cm H g at 135.1 °C and is represented by the equation log p = 15.17 - 7528.



FIGURE 3.2.

EQUILIBRIUM AND NUCLEATION OF P.E. IN AQUEOUS SOLUTION (1)

Nitta et al (78) stated the vapour pressure of P.E. is given by log  $p = 14.525 - \frac{6861}{T}$ . Bright and Carson (79) give the heats of solution of P.E. in water as:

g mol P.E./500 g mol Water Differential molar heat of solution

| Section and the | K cal/gwol solute |
|-----------------|-------------------|
| 0,381           | - 5.45            |
| 1,216           | ~ 5.17            |
| 2.117           | - 5.25            |
| 3,025           | - 5.34            |

Where the thermochemical sign convention is used, i.e. the minus sign means absorption of heat.

Berlow et al (65) have recorded the variously reported melting points of P.E. as ranging from  $256^{\circ}$ C to  $265.5^{\circ}$ C. They state that P.E. exhibits a polymorphic transformation variously reported between  $180^{\circ}$ C and  $192^{\circ}$ C. Wyler and Wernett (80) report that P.E. forms eutectic with 35% Di - P.E. melting at  $190^{\circ}$ C.

In the previous work (1) this eutectic was found with 40% Di - P.E. at  $185.5^{\circ}$ C, and the binary melting system is shown in figure 3.3. where the temperature (°C) is the correct temperature after the thermometar calibration. The discrepancy in the eutectic point could possibly be due to the 4% Formal analysed chromatographically as being present in the Di - P.E. source.

The Binary melting system Formal/Pure P.E. studied in the previous work (1) after extraction with n - propanol to obtain a 15% Formal composition is shown in figure 3.4. It was found that the Pure P.E. containing < 0.1% Formal and < 0.1% Di P.E. melted at 259°C, and with

- 46 -



FIGURE 3.4.

FORMAL/P.E. MELTING SYSTEM



the 15% Formal present the melting point was depressed to 240.5°C.

Figure 3.5 shows the theoretical fluidisation and transport velocities for monodisperse spheres of density 1.4g/cm<sup>3</sup> in water. Although corrections are necessary to allow for the P.E. crystal shape and the solution properties, it serves as an indication of P.E. crystal fluidisation characteristics.

## 3.4 Chaical Analysis

### 3.4.1. Introduction

Berlow et al (65) state that the analysis of technical P.E. generally includes the following determinations: P.E. content, melting range, hydroxyl content, ash content, acidity, moisture content, water solubility, colour and physical state. The method given for the determination of P.E. content is the Benzal method based on the formation of the di- benzylidere acetal, a crystalline compound which is relatively insoluble in a dilute aqueous methavolic solution of hydrochloric acid containing benzaldehyde. The acetal precipitate is flitered off and the % P.E. calculated from the weight of filtrate. However the method is known to be inaccurate, and the analysis obtained for P.E. from the manufacturer's normally includes the main impurity concentrations Di - P.M. and Formal found by the acetal chromatographic method (section 3.4 2) and the P.E. content is then found by difference.

## 3.4.2. Acetal Chromatographic Analysia

This method of analysis involved acetylation of the P.E. and examination of the resulting product by high temperature gas

- 47 -



chromatography. Acetylation of the P.E. is carried out by first refluxing the sample with anhydrous sodium acetate and acetic anhydride, washing with warm distilled water and then extracting the product with analar benzene. The benzene extracts are then dehydrated by shaking with anhydrous sodium sulphate, filtered and the benzene evaporated off. The resulting crystalline product is ground, dried in a desiccator and transferred to a gas-liquid chromatograph for examination of the isolated acetylated impurities. The chromatograph has a preheater temperature of  $300^{\circ}$ C and a column packed with silicone gum E 301/Embacel, at a temperature of  $305^{\circ}$ C. The analysis gives a direct measurement of the Di - P.E. content, but as the Formal has not been obtained in a pure state to calibrate the chromatograph, the response factor is taken to be the same as that for Di - P.E. and so the amount present stated in terms of the equivalent amount of Di - P.E. (Table LAppendix A ).

## 3.4. 3. Formaldehyde Content

In the absence of a high temperature chromatograph a method was established in the previous work (1) for analysing the Formal content of P.E. in the absence of other formal impurities. This was done by finding the 'formaldehyde content' of P.E. by a colorimetric method based on the reaction of formaldehyde with chromotropic acid in concentrated sulphuric acid when, on heating, an intense violet colour is formed. As this reaction is the result of both free formaldehyde adsorbed on the solid, and also of combined formaldehyde in the Formal an allowance was made for the effect of the adsorbed free formaldehyde by using the Sodium Sulphite method for the formaldehyde determination. As this

- 48 -

method involves the use of a very dilute acid only in the final titration, and as no heat is applied it was considered that this would not be sufficient to break down the Formal present.

The total formaldehyde content was first obtained by accurately weighing 1.000 g of the P.E. sample and dissolving in 100m of distilled water. 1 cm<sup>3</sup> of this solution was transferred with a pipette to a 50 cm<sup>3</sup> volumetric flask. 1 cm<sup>3</sup> of the chromotropic reagent was added and then 10 cm<sup>3</sup> of 95% sulphuric acid while cooling the flask in ice. The flask was heated in an oil bath at 90°C for 1 hour, cooled in cold water and made up to 50 cm<sup>3</sup> with distilled water, continually mixing and cooling during dilution. The effect of heat was found critical and the calibration was standardised for a heating time of 1 hour at 90°C.

The optical density was measured by comparison with a reagent blank treated in the same way, measured at a wavelength of  $570m_{f^{\pm}}$  in  $\frac{1}{2}$  cm cells using a "SPEKKER" absorptioneter with Kodak No. 6 filters.

The absorptiometer was calibrated by treating 1 cm<sup>3</sup> of known concentration formaldehyde solutions in the same way as the 1 cm<sup>3</sup> of P.E. solution. The calibration is shown in figure 3.6.

The adsorbed free formaldehyde was then found using the Sodium Sulphite method, 50 cm<sup>3</sup> of the sodium sulphite solution were placed in a 500 cm<sup>3</sup> Erlenmeyer flask. A few drops of thymolphthalein indicator were added and the solution neutralised with <u>N</u> hydrochloric acid until the blue colour had disappeared. The 99 cm<sup>3</sup> of the original 1 g P.E./100cm<sup>3</sup>  $H_2O$  solution remaining after the colorimetric test were transferred to the flask. The formaldehyde present reacts with the sodium sulphite to

- 49 -



form the formaldehyde - bisulphite addition product : HCHO + Na<sub>2</sub> SO<sub>3</sub> + H<sub>2</sub>O  $\longrightarrow$  NaOH + CH<sub>2</sub> (NaSO<sub>3</sub>) OH

The resulting mixture was titrated slowly with the standard  $\frac{N}{100}$  hydrochloric acid to complete discoloration. One cm<sup>3</sup> of normal acid is equivalent to 0.03003 g Formaldehyde. The per cent formaldehyde in the sample is hence given by the equation:

% HCHO =  $\frac{\text{acid titer x Normality of acid x 3.003}}{\text{weight of sample}}$ and HCHO mg/cm<sup>3</sup> solution = % HCHO X 1

The formaldehyde equivalent of the optical density obtained for the total formaldehyde content in the colorimetric test is known from the formaldehyde calibration of the instrument, figure 5.6. The effect of the adsorbed formaldehyde, found from the sodium sulphite method, on the optical density is the product of theratic of the absorbed formaldehyde to equivalent formaldehyde and the optical density. If this is subtracted from the optical density the corrected optical density is assumed to be due to Formal composition only, in the absence of other formals. The calibration of the Formal in terms of the corrected optical density is shown in figure 3.7.

This method however relies on the manufacturer's chromatographic analysis for Formal content for calibration, which itself is not a true concentration, being relative to Di - P.E. Also any other formal impurities present in the P.E. would give a reaction which would be attributed to the presence of the usual Formal,


## 3.4. 4. T. M. S. Chromatographic analysis

Suchanec (81) has proposed an improved chromatographic analysis for P.E. using the trimethylsilyl (T.M.S.) ether derivatives. The P.E. sample is mixed with a known weight of mannitol and placed in a flask together with pyridine and hexamethyldisilazane. The flask is placed on a hot plate and heated almost to boiling for 10 minutes. After cooling below 50°C trimethylchlorosilane is added, and mixed while warming before cooling to room temperature. The precipitate of ammonium chloride and pyridinium chloride is allowed to settle, and a sample is taken and introduced into the chromatographic column at 125°C. The column temperature is programmed at a rate of 13°C per minute to a maximum temperature of 326 C, and held isothermally for 3 minutes at 326°C. Although the 'Formal' in the P.E. sample has not yet been isolated the response factor for the chromatograph can be found by using the known additions of mannitol as a reference, and thus finding the mass % composition of Formal impurity, A similar impurity was found by Suchanec which he labelled bis- P.E. monoformal (as did Salkind et al (71) and Wiersma et al (72).

## 3.5. Crystal Growth

During the final production stages in the manufacture of P.E. the process solution is cooled in a batch crystalliser. This results in a product consisting of agglomerates of a few large crystals and a large number of very small ones, making it 'dusty' and unpleasant to handle. In the previous work (1) it was found that the product could be greatly

- 51 -

improved even with batch crystallisations by controlling the growth temperature. This was developed to obtain good crystals with few agglomerates which were classified into sieve fractions for use as seed in the seeded stirred cell growth experiments. The method used was to cool a hot concentrated solution to its nucleation temperature, stir at this temperature for 2 hours and filter off the product crystals. These were washed with ice cold water and then with acetone before drying in an oven at 100°C.

Attempts to obtain growth rate data from small scale fluidised beds in the previous work (1) failed, mainly because of agglomeration occuring during the experiments, This was probably because too small a seed size was used, (64 - 75µ) for which it was difficult to obtain satisfactory fluidisation conditions in the  $\frac{5}{8}$  in I, D, crystalliser tube. The method used, therefore, was to follow the decrease in solution concentration of stirred cells seeded with crystals of a known weight and size analysis. This was done using an immersion refractometer graduated in % sugar in intervals of 1% (which could be estimated to 0.1% with ease). The growth rate constants, K, for each interest were calculated assuming a first order growth with respect to supersaturation (c - cos), where  $\frac{dc}{dt} = -KA (c - c_{eff})$ . For this purpose the approximation  $A_2 = A_1 \left(\frac{M_2}{M_2}\right)^3$ was used which is only true for a monodisperse system, where the average crystal size equals the size of the crystal of average area, which also equals the size of the crystal of average weight. Although a narrow sievefraction of crystals was used as seed, the initial size analysis used was that after the first five minutes attrition under the

- 52 -

conditions of the experiment in a saturated solution: It was found that for the seed crystals in a saturated solution all the attrition occured during this first five minutes. The size analysis carried out with the Coulter Counter then showed a fairly wide size distribution, so the area determinations for each interval can only be regarded as an approximation. The results for the Batch A and Purified Batch A solutions seeded with 2 g of seed stirred at 500 r.p.m. are shown in Table 149 , Appendix E .

The values of the growth rate constant K were averaged with the exception of:

- a) Results including the first 25% increment on the initial mass, because these were considered due to a repairing process of damaged attrited crystals.
- b) Results where the refractive index scale,  $n \langle n_{00} + 0.5 \rangle$ Indicated % Sugar, as the accuracy would be too dependent on the accuracy of the equilibrium value.
- c) Results where the time, t, > 1500 minutes as the crystals could not be assumed to undergo no further attrition after this time.

Average results,  $\overline{K}$ , are plotted as log  $\overline{K}$  vs  $\frac{1}{\overline{T}}$  in figure 3.8. and are correlated by the following equations for  $80^{\circ}C > T_{0} > 50^{\circ}C$ : Batch A (4.7% Formal,  $\langle 0.1\%$  Di - P.E.)

$$\log_{10} \bar{K} = 13.401 - \frac{6710}{T}$$

where T is in degrees Kelvin.

with an activation energy for growth of 30.65 K cal /g mol, and





Purified Batch A (< 0.1% Formal, < 0.1% Di. - P.E.)

 $\log_{10} \tilde{K} = 5.770 - \frac{4025}{T}$ 

with an activation energy for growth of 18.4 K cal/ g mol.

These indicated surface integration control for both materials under these conditions.

- 54 -

The limitations of this work were realised however as being mainly due to the limitations of the refractometer, and a more accurate refractometer would be necessary to obtain more reliable results. It was also realised that many parameters needed to be studied, particularly low crystal/solution relative velocities, temperatures  $\langle 50^{\circ}$ C, effect of seed size distribution, and impurity content, and effect of Di - P.E. in the mother liquor.

## - 55 -

#### SECTION FOUR.

### BENCH SCALE CRYSTALLISATION APPARATUS.

### 4.1. Introduction.

In most crystallisation processes the crystal growth proceeds by the two consecutive steps: diffusion of molecules to the crystal surface, and integration of the molecules into the crystal lattice. In order to study these steps individually it is necessary to try to eliminate one of them. If the solution is stirred sufficiently vigorously the repeated acceleration and deceleration in the turbulent eddies can give a laminar film around the crystal considerably thinner than that due to terminal velocity under gravity, so that in the limit the growth process should be controlled only by the surface integration step. Stirred cells (section 4.4) were used to examine this process.

The diffusional resistance when significant can be studied by varying the crystal/solution relative velocity in a controlled manner. One method of doing this used by Mullin and Garside ( 50 ), is to hold a single crystal stationary in a tube and to meter the solution rate through it. However it was not found possible to grow single crystals of reasonable size from the impure mother solutions of interest. This problem with P.E. crystals was also encountered by Whetstone ( 82 ). The method used, therefore, to study the effect of the relative crystal/ solution velocity on the growth rate was to meter the solution flow through a fluidised bed of crystals (Section 4.2.)

As indicated above crystals in a vigorously stirred suspension are not at a relative velocity equal to their terminal falling velocity, and

Bransom et al (47 ) found that this increase in growth rate with stirrer speed in the diffusion controlled regime was independent of seed size. This was attributed to "homogeneous isotropic turbulent eddies". In a transition from diffusion to surface integration growth rate control in a stirred cell, a critical stirrer speed might be obtained for this transition point for which the particular crystal/solution relative velocity would be unknown. Although this transition point might be observed also in the fluidised bed of crystals, the relative velocities studied will, in general, be considerably lower than in a stirred vessel and if the transition occurs at a high relative velocity a large seed size would be necessary with a fluidised bed. A possible method of obtaining higher known relative velocities is to utilise the terminal velocity of crystals under "free fall" conditions and to study the growth rate with respect to crystal size which is a known function of velocity (figure 3.5.). A critical crystal size equivalent to the terminal falling velocity at the transition relative velocity should then be obtained. Ideally this would require an extremely long sedimentation tube, but in practice an attempt was made to overcome this problem by constructing a "Repetitive Inversion Sedimentometer" (section 4.3.).

4. 2. Fluidised Bed Apparatus.

#### 4. 2. 1. Preliminary Design

The apparatus is shown in figure 4.1. and as far as possible was built from "Quick-fit" ground glass parts. The internal diameter of the

- 56 -

# FIGURE 4. I.

Preliminary Fluidised Bed Apparatus



•

crystalliser (C) was 1.80 in and the included angle of the cone base was ca. 90°. The downcomer in the crystalliser was fitted with a flexible seal and knee joint at Run No. F.C.19. which enabled agglomeration of crystals to be broken up. The capacity of the feed tank (A) was 1 dm<sup>3</sup> and contained a submerged glandless pump (P) fitted with a nylon filter over its intake. The solution flow rate was indicated by a Metric Series Rotameter (7K) and a Bellingham and Stanley Immersion Refractometer (R./I.) indicated the solution concentration at the temperature measured by a thermometer (T.I) on the inlet line to the crystalliser. Temperature controlled water was circulated around the feed tank with the Townson and Mercer T.E.3 thermostat circulator (T.C.1) which controlled to  $\pm$  0.01°C and around the crystalliser body (C) with a second T.U.3 circulator (T.C.2).

A Hoffman clip on a rubber tube fitted to the crystalliser base allowed the crystal product to be discharged for examination, in order to measure the growth obtained.

## 4. 2. 2. Solution concentration decay.

Because of the success of the refractive index change method for the growth rate study used in the agitated cells, and the previous difficulty of establishing a method for the increase in crystal size in a fluidised bed (1), it was thought that a method of concentration change using the property of refractive index should be possible using a fluidised bed with a closed system of circulating mother liquor. For this a crystal/mother liquor ratio of about 10g/500 cm3 would be necessary to obtain a reasonable rate of concentration decrease, with

the the stand of the states of

- 57 -

the slow growth rate of P.E. The system shown in figure 4.1 Was therefore adapted to reduce the mother liquor hold up. The feed vessel (A) was changed to a jacketed vessel of 500 cm3 capacity and the crystalliser (C) to a jacketed glass tube of 1¼ in I.D. with a sintered glass disc as a support and distributor. The immersion (glandless) pump was used as before so as to prevent any contamination with grease from pump glands. The system was unsuccessful however due to the difficulty of having an air tight system with an immersion pump. It was found that with such a small hold up and slow growth rate, the evaporation loss was such that it more than compensated for the change in concentration due to crystal growth.

#### 4. 2. 3. Modified Design.

The fluidised bed apparatus after final modification is shown in figure 4. 2. and 4. 3. Although measurement of growth rates from the solution concentration change proved unsuccessful it showed the advantage of using a glass sintered disc as a fluidised bed support and fluid distributor as opposed to the downcomer method used in the preliminary experiments. A uniform flow was obtained through the crystal bed with the sintered glass disc, whereas the downcomer had produced uneven flow with a moving bed portion at the walls making the system more susceptible to agglomeration. The preliminary experiments showed the method of measuring the crystal mass increase preferable to measuring the increase of crystal size, but the discharge of product crystals after an experiment had proved inefficient. Cell (C), figure 4. 2. was therefore designed so that all limbs could be easily detached and the product crystals could be

- 58 -



# FIGURE 4.3.

# MODIFIED FLUIDISED BED APPARATUS



weighed in-situ. The cell was jacketed and fitted with three B.14 ground glass sockets; two in the cell jacket and one for the solution inlet to the tube. A rubber bung was fitted into the top of the tube, containing the outlet line, a stainless steel probe (D) to prevent agglomeration and a thermometer (T.I.3). A small reservoir was made within the cell jacket for the feed solution to attain the required cell temperature, which was controlled by a Townson and Mercer T.U.3 circulating thermostat unit (T.C.2).

The feed vessel (A) of 2dm3 capacity was contained in a water bath (E) controlled with an immersion coil attached to a Townson and Mercer T.U.3 circulating thermostat unit (T.C.1). The water bath (E) was placed on a magnetic stirrer and hot plate unit (F) which maintained circulation in the bath and provided supplementary heat. The feed vessel (A) was fitted with a feed funnel, a vacuum line, an inlet line, a thermometer (T.I.1) and an immersion pump (P). Three metric rotameters (B) 584345/E, 7K and 14K were fitted with glass air jackets and three way glass valves served to direct the solution flow. A Bellingham and Stanley immersion refractometer (P/I) with prism 1B, indicated the solution concentration at the temperature measured by the thermometer (T.I.2). Heating tape controlled with a voltage regulator was used on lines between A and B, and B and C and all lines were well lagged. The immersion pump (P) was connected via a voltage regulator to a voltage stabiliser improving the flow control.

4. 3. Repetitive Inversion Sedimentometer.

A jacketed brass cell was built, 2 in. internal diameter and

- 59 -

12 in. long with a refractometer fitted centrally through the side of the cell, to measure the change in concentration of a supersaturated solution containing growing crystals maintained essentially at their terminal falling velocity. As the water jacket was connected to a thermostatically controlled circulator it was necessary to invert the cell reversibly, and for this the pneumatic control, figure 4.4. was thought most suitable.

The operation of Cycle 1 is initiated when the tappet of the three way poppet value B.1. is struck by the piston rod A.1. The main line air previously exhausting through B.1. is directed via the air flow regulator C.1. to dwell unit D.1. When the pressure in D.1. builds up to about 50 p.s.i.g. it is sufficient to operate the three way poppet value E.1. This in turn directs the main line air previously exhausting through E.1. to operate the pilot piston of the Four Way Piston Value, F.

Air enters the pilot chamber of F moving the piston over and thereby reversing the main valve. Main line air is then directed to the rear-cushioned piston cylinder A.1. Operation of A.1. closes Cycle 1 and the main air lines in this cycle exhaust to atmosphere.

As the chain attached to the piston rod A.1. passed via a 4 in. pulley to rod A.2, the 6 in. stroke of the piston is sufficient to reverse the pulley one half a revolution and to operate the tappet valve B.2. and subsequently Cycle 2. The pulley was attached to a 12 in. cylindrical jacketed vessel of 2 in. bore with a refractometer fitted centrally. This enabled repetitive inversion of the cell at time intervals controlled by the air flow regulators C.

- 60 -



## 4. 4. Stirred Cells.

## 4. 4. 1. Cell A.

This consisted of the standard Bellingham and Stanley in-line refractometer housing of Cell A of the previous work (1), which was a stainless steel cone frustum internal design mounted with the axis horizontal and having a water jacket fitted round this housing supplied with water from a Townson and Mercer T.U.3 thermostat circulating unit. The refractometer used in the previous work (1) which indicated 0-40% sugar and estimated to 0.1% sugar, was replaced with the more accurate Bellingham and Stanley immersion refractometer fitted with a 1A prism with an arbitrary scale 0-105 in intervals of 0.1 divisions (range  $n_{D}$  = 1.3254 to 1.3664 which made it possible to read solution concentrations to ca. 0.025% P.E. without the need for estimation. The refractometer was screwed into a circular brass plate, designed so that the prism was off-centre in the cell and the light source from the illuminating window at the back of the cell was incident to the plane of the prism face and clamped to the front of the cell. It was found that water could leak past the prism/stainless sleeve joint and condense on the scale making it impossible to read. The joint was therefore sealed with a layer of epoxy resin glue. The cell was mounted in a frame with a sodium lamp behind. The lower port of the cell was sealed with a rubber bung having a glass tube and plug for draining purposes, fitted flush with the inside of the cell casting. A rubber bung fitted with a thermometer and with a hole large enough to accommodate a small stirrer with a three blade marine impeller 1 in. diameter inserted in the top

port of the cell. The capacity of the cell was about 300 cm3. 4. 4. 2. Cell C

Although Cell A reproduced the hydrodynamic conditions of the previous work (1) and care was taken to obtain the optimum angle of incidence of the light source, it suffered from the de fect of having a long light path and consequently the image became obscured even with relatively low suspension densities. Also crystals could settle on the horizontal ledge by the illuminating window thus reducing the effective surface area available for growth. Cell C was therefore constructed (figure 4.5) with the smallest practical light path through the suspension to avoid obscurity of light being caused by crystals, and the only horizontal surface being a small part of the annular gap where the glass prism joins the stainless steel sleeve. The cell was constructed of a 2 in. internal diameter copper tube with a conical base surrounded with a water jacket through which water was pumped from a Townson and Mercer T.U.3. thermostat circulating unit. A Bellingham and Stanley immersion refractometer was used with a 1B prism sealed to the stainless sleeve with an impact adhesive. The windows and refractometer were sealed to the tube by O-rings of neoprene. A plug was used to permit drainage of the cell, and a rubber bung fitted with a thermometer with a teflon bush for a stirrer fitted with a three blade marine impeller 1 in. diameter, was placed in the top.

## 4. 4. 3. Cell S

Repeated heating and cooling of CellC frequently weakened the seams of the water jacket causing leaking. CellS was therefore constructed,

- 62 -

FIGURE 4.5.



(Half Full Size)

FIGURE 4.6

CELL S



figure 4. 6., from solid brass of the same design as Cell C but of an overall length of 12 in. to accommodate larger volumes of solution if required. The water jacket consisted of a slot about 2in x 1 in bored down one side of the cell through which water was circulated from a Townson and Mercer T.U.3 thermostat circulating unit. A thermometer pocket was sealed into the side of the cell opposite the water jacket, and this, as with the refractometer and illuminating window, was placed about 3 in. from the base so as to be covered when 250 cm3 volumes of solution were used. A conical copper base with a draining plug was soldered to the cell base. A rubber bung was placed in the top with a teflon bush to accommodate a stirrer with a three blade marine type impeller of about 1 in. diameter. The stirrer motor was fixed rigidly to the cell brass housing. A Bellingham and Stanley immersion refractometer was used with a 1B prism sealed to the stainless sleeve with an epoxy resin. The cell was well lagged.

## 4. 4. 4. Cell G.

Cell G, figure 4.7, was made with similar dimensions to Cell C to obtain the same hydrodynamic conditions to observe suspension characteristics. However, because of the difficulty of clamping the refractometer horizontally to the glass cell a Y piece was made, as shown, to accommodate the prism such that the prism face was vertical and had the minimum of suspension to reduce the light transmission to the prism face. The height of the Y piece was such that the 250 cm<sup>3</sup> of solution covered the prism but did not reach the top, so that the prism/cell junction had only to minimise evaporation and need not be

- 63 -



water tight. Allowance therefore had to be made for the solution expansion with temperature and also the hydrodynamic fluctuations with stirrer speeds up to 2000 r.p.m. The optimum position was found by trial and error.

Because of the construction difficulties involved with an enclosed glass water jacket, an open water jacket was used with a Churchill constant volume thermostat circulator. A Bellingham and Stanley immersion refractometer was used with a 1A prism sealed to the stainless sleeve with an epoxy resin. A rubber bung was placed in the top of the cell with a thermometer fitted and a teflon bush to accommodate a stirrer with a 1 in. diameter 3 blade marine type impeller. Illumination was supplied by a sodium lamp and reflected at the optimum angle through the base of the glass water jacket by means of a mirror.

#### 4. 5. Discussion.

Although it was originally thought necessary to construct the inverting sedimentometer to investigate the effect of the crystal terminal falling velocity on the crystal growth rate, it was found however that results with the fluidised bed apparatus were in reasonable agreement with those found in the stirred cells. This was so even at the higher temperature up to 70°C where the integration rate/diffusion rate ratio would be greatest. As diffusion control would be immediately apparent with a slower growth rate for the lower relative velocities in the fluidised bed, this indicated surface integration rate control for all conditions studied. So although the sedimentometer was constructed it was not used in this project as no extra information was thought to be obtainable by this method for P.E.

- 64 -

#### SECTION FIVE

- 65 --

#### PENTAERYTHRITOL EQUILIBRIUM IN AQUEOUS SOLUTION

## 5. 1. Previous Work.

As the "Formal" impurity could be synthesised with formaldehyde and P.E. in aqueous solution, and in view of the sequence of reversible reactions proposed by Salkind et al (71) for the formation of bis - P.E. monoformal, the stability of the Formal in aqueous solution was studied (1). Any decomposition might be expected to affect the equilibrium (solubility) results. This was done by purging a concentrated P.E. (Batch A containing 4.73% Formal) aqueous solution, held at 90°C, with a steady stream of nitrogen at 3 ft<sup>3</sup>/h to drive off any formaldehyde formed. The solution concentration was kept constant by periodically adding water. Samples of the solution were taken after 10, 60 and 200 ft<sup>3</sup> of nitrogen had been used respectively (i.e. after about 70 hours total) and analysed by the "Formaldehyde content" method described in section 3.4.3. The results all agreed to within the limits of analytical accuracy (i.e. approx. + 0.2% Formal), whence it was concluded that the Formal does not readily decompose in aqueous solution up to at least 90°C.

Equilibrium solubility of solute in solvent can either be achieved from undersaturation or from supersaturation. Attempts at achieving equilibrium quickly using ultrasonic irradiation in the previous work (1) failed because of the heat evolved from the ultrascnic probe raising the solution temperature. The ultrasonic probe could not be used, therefore, to attain equilibrium from undersaturation, but it was found to be a very effective nucleator for supersaturated solutions. Supersaturated solutions were therefore nucleated by ultrasonic irradiation and then stirred. Three methods of measurement of solution concentration were used: Specific gravity; refractive index; and weighing before and after evaporation of solvent.

Specific gravity measurements were found to be the most sensitive although they were limited to measurements essentially at room temperature. This technique was used to study the effect of the impurities on the rate of approach to equilibrium of a solution in a jacketed stirred vessel held at 25.0°C. Aqueous solutions of ca. 17 mass % were made up and cooled to 25°C. The supersaturated solutions were nucleated, stirred and periodic measurements of the solution specific gravity showed that equilibrium for both Pure P.E., and Pure P.E. + 2.0% Di-P.E. solutions was achieved in less than 2 It also indicated an enhanced solubility effect of Di-P.E. at hours. this temperature of about 0.5 mass % increase for 2.0 mass % Di-P.E. Batch A (4.73% Formal, <0.1% Di-P.E.) solutions, however, nucleated and stirred in the same way took at least 8 hours to attain equilibrium and the value obtained differed by about 0.1 mass % concentration from the value obtained from undersaturation. It was difficult to decide which was the actual equilibrium concentration as the values obtained overlapped according to whether they were approached from undersaturation or supersaturation. But it was noted that the presence of this 4.73% Formal enhanced the solubility at this temperature by about 2% compared with Pure P.E.

- 66 -

This "overlap" phenomenon was further studied using refractive index measurements of nucleated, stirred solutions using an immersion refractometer capable of measuring concentrations of 0.1% P.E. with ease and estimating to  $\pm$  0.05% P.E. The overlap of about 0.1% solution concentration was again observed with Batch A solutions approached from undersaturation and supersaturation, at 70°C and 80°C. However attempts to correlate the results using the 4 component system P.E. / Di-P.E. / Formal / Water were unsuccessful and the results appeared to depend on the nucleation temperature, the degree of supersaturation, and whether the equilibrium was approached from supersaturation or undersaturation.

The other method used for the determination of the equilibrium solution concentration was the more conventional method of weighing the amount of solvent evaporated from a known weight of solution. Supersaturated solutions were nucleated and stirred in a thermostatically controlled oil bath for about 12 hours. Approximately 10 cm<sup>3</sup> of solution was withdrawn through an immersion filter, weighed, evaporated in an oven, and reweighed. The method was unsatisfactory at high temperatures due to crystallisation occuring on transference to the crucible. Also readings were inaccurate due to the inherent difficulties involved in weighing hot liquid samples.

The equilibrium results for the three methods of solution concentration measurement were collected and plotted as  $\log x \ vs \frac{1}{T}$ where x = mass % and T = degrees Kelvin. A good agreement was found between the results for Pure P.E. with those of Cocke (75) who used P.E. of "better than 99.6% purity". A favourable agreement was also found with the results of the impure P.E.  $> 50^{\circ}$ C. These results could be correlated by the equation (figure 3.2.)

$$\log_{10} x = 5.072 - \frac{1266}{T}$$

However below about 50°C the results for inpure P.E. showed a marked deviation from the above correlation indicating an enhanced solubility compared with Pure P.E. although the scatter was too great to obtain any correlation for the impurity effect.

# 5. 2. Refractometer Calibrations.

#### 5.2.1. Reading Accuracy.

In the previous work (1) the refractometers were capable of measuring solution concentrations to ca. 0.1% P.E. and estimating to ca  $\pm$  0.05% P.E. The refractometers used in this work however were the more accurate Bellingham and Stanley immersion refractometers with an arbitrary scale 0 - 105 in intervals of 0.1 divisions (range n<sub>0</sub> = 1.3254 to 1.3664). This enabled concentrations of ca. 0.025% P.E. to be measured ( $\equiv$ 0.1 divisions) and of ca.0.012% P.E. to be estimated. In order to take full advantage of these new refractometers a new calibration was carried out.

The thermometers used were graduated in O.l deg. C and could be estimated to about O.O5 deg. C which was sufficiently accurate compared with the refractometer accuracy and the slope of the calibration curve (figure 5.2)

The steam point and the transition point of hydrated sodium sulphate were checked for one test thermometer and this found to be within the reading accuracy of the expected values for total immersion of the thermometer. All thermometers used in the experimental work were checked against this test thermometer. The correction for partial immersion of the thermometers, as used with the refractometers, is shown in figure 5.1., the results having been found experimentally in a stirred cylinder of water by comparison of a partially immersed and a totally immersed thermometer. Also shown (figure 5.1) is the calculated correction obtained from the equation

$$y = e' (T_o - T_s) L'$$

assuming  $T_s$  varies between 22°C and 30°C. Where  $T_s$  is the mean temperature of the emergent stem;  $T_o = \text{observed temperature °C};$ e' = 0.000156 (apparent expansion of Hg in glass);  $\angle = \text{length of}$ emergent mercury column expressed in degrees; and y is the correction to be added to  $T_o$ .

As  $T_s$  had to be estimated, corrections, y, for converting  $T_o$  to actual temperature are obtained by interpolating from the curve drawn through the experimental points.

## 5. 2. 2. Calibration.

Batch D material containing 1.0% Di-P.E. and 5.5% Formal was used for the calibration of "impure P.E.". Known concentrations (% m/v) were made up by accurately weighing out  $(< \pm 0.0005g)$  the required amount of P.E. and washing this into a 250 cm<sup>3</sup> pyrex volumetric flask. The volume was made up to 250 cm<sup>3</sup> with distilled water taking care to eliminate air bubbles. The flask was warmed until the P.E. had dissolved and cell C was brought up to above  $80^{\circ}$ C. The hot solution was transferred to the cell and stirred at above  $80^{\circ}$ C to ensure dissolution of any nuclei formed during the addition of the solution. The solution was cooled while stirring at a rate of about 1 deg. C/min and readings of the refractometer scale (S) and temperature (T<sub>o</sub>) were taken at intervals of about 0.5 scale divisions.

Solution concentrations (c, % m/v) were used in multiples of 2.5% for Batch D material and the experimental points plotted as observed, temperature T, vs Scale S are shown in figure 5.2. Interpolated data at 5 deg. C intervals of T from 20 to 75°C were computed to obtain isothermal correlations by the least mean squares method, the correlations found together with the standard deviations of the points are shown in table 2, appendix A. It can be seen that the second order polynomial,  $c = F + B.S. + G.S^2$  fits the data well for these temperatures with an average standard deviation of ca.  $\pm$  0.04% m/v. Linear equations could be used with little loss of accuracy at the lower temperatures but the standard deviation at the higher temperatures increased to ca. 0.09%. The second order polynomial was therefore considered necessary and sufficiently accurate for the present work. These calibrations were used with all the impure commercial batches of P.E. used. The chemical analyses of these materials are shown in table 1, appendix A and are considered sufficiently comparable not to require individual calibrations.

A general overall equation for use at intermediate temperatures which fitted the data well in the metastable zone was obtained, but being inverted it is necessary to solve a quadratic in

- 70 -



order to extract c:

 $S = 20.3646 + 3.5622c + 0.0002313 c^2 - 0.1697 T_0 - 0.0035888 T_0^2$ 

where  $T_9$  is the observed temperature (°C), S is the refractometer scale of cell C, and c is the solution concentration (% m/v).

The standard deviation of this expression from the data points in the metastable zone is  $\pm$  0.171 scale divisions, or ca.  $\pm$  0.04 % m/v.

The calibration was repeated with purified P.E. ( < 0.1 %Di-P.E., < 0.1 % Formal) using solution concentrations in 5.0% m/v intervals. The number of points  $< 40^{\circ}$ C were limited due to the higher nucleation temperature of the pure solutions, so the impure P.E. calibration was considered more accurate below this temperature. The results were plotted as  $T_o(^{\circ}C)$  vs refractometer scale (S) (figure 5.3) and the isothermal data at 5 deg. C intervals of  $T_o$ interpolated. These interpolated values were used to compute the first and second order polynomial equations, by the method of least mean squares. The results are shown in table 3, appendix A.

It should be noted that all calibrations are in terms of the observed temperature  $T_0^{o}C$  (i.e. partially immersed thermometer) and scale S (i.e. the refractometer scale of cell C). This was found to be the most convenient for use with the growth experiments, and corrections for partial immersion of the thermometer were carried out where necessary.



## 5. 2. 3. Instrument Calibrations.

The refractometer calibration in terms of % m/v P.E. was carried out using cell C with a 1 B prism in refractometer No.602905, i.e. scale S. In order to calibrate the readings in terms of actual refractive index to make them more universally applicable further calibration was necessary. The refractometer with the 1 B prism of cell C was calibrated against water (n<sub>p</sub> at 20.0°C = 1.33300) and acetone (n<sub>p</sub> at 19.4°C = 1.35890) and found to have a 1.20 scale division zero displacement, i.e. Scale S  $\equiv$  Zeroed 1 B + 1.20.

All refractometers used on other apparatus were zeroed using distilled water and then readings converted to scale S using the equivalence table 4, appendix A. This then enabled use of the refractometer calibrations for conversion to P.E. concentration. Prisms used for the experimental apparatus are shown below:-

| APPARATUS                          | PRISM                               |
|------------------------------------|-------------------------------------|
| Cell C                             | Scale $S \equiv Zeroed \ lB + 1.20$ |
| Cells A and G                      | Zeroed 1 A                          |
| Cell S and Fluidised bed apparatus | Zeroed 1 B                          |

## 5. 3. Equilibrium Results.

#### 5.3.1. Impure P.E.

In view of the anomalous results obtained with the impure P.E. in the previous work (1), where equilibrium values obtained from undersaturation and supersaturation appeared to overlap, this investigation was continued with the more accurate refractometers simulating growth experiments (section 7.2) by using the same total quantities of P.E. and water, and approaching equilibrium from dissolution of the P.E. No "surface reaction" of the type encountered by the integration of the molecules into the crystal lattice during crystal growth would be expected in a dissolution process. It was often observed during growth experiments that growth apparently ceased some 0.5% m/v from the equilibrium concentration, and these "apparent equilibrium values" were dependent on the growth rate of the experiment. Dissolution, however, is thought to be only a diffusional procets, and equilibrium should therefore be attained more rapidly than from growth, without the inhibiting surface reaction effect.

Tests were done primarily to find the equilibrium value relevant to a particular growth experiment and for this purpose the exact amounts of solute and solvent are required to obtain the right impurity concentration. Batches D (1.0 % Di-P.E., 5.5% Formal) and F(<0.1 % Di-P.E., 5.5% Formal) were used to find the effects with and without Di-P.E. respectively. All solutions in the seeded growth experiments were made up to 250 cm<sup>3</sup> total volume with distilled water at 20°C. The required mass of P.E. for the dissolution test was therefore found from the equivalent initial growth run concentration,  $c_0\%$  m/v; (i.e.  $m_0 = 2.50 \times c_0$ ) and adding the seed mass used for that particular growth test (usually 2.0 g).

. Mass of P.E. =  $2.50 c_0 + Seed$ .

The required volume of water to simulate the growth experiment

- 73 -

is then found from

$$V = 250 - \frac{2.50 c_0}{1.396} cm^3$$

- 74 -

where 1.396 is the P.E. density.

The exact weight of P.E. was washed into cell S held at the required temperature using the measured volume of water required (Vcm<sup>2</sup>). The mixture was stirred and readings of the refractometer scale against time were taken after the solution attained the temperature of the experiment (this usually took about 20 min.). The readings were usually found to go through a maximum before attaining an equilibrium value. This was studied in more detail at 60°C. The results are shown in figure 5.4. Batch F with <0.1 % Di-P.E. is shown to attain a markedly enhanced solution concentration initially which then decreases slowly to an equilibrium value. The enhanced value obtained and the equilibrium value were both found to depend on the solute concentration present (cf.D.F.2 and D.F.3.). However with Batch D containing 1.0% Di-P.E. the degree of initial enhancement was very much reduced and the equilibrium value was attained very much more rapidly. Again the equilibrium concentration was found to depend on the total P.E. concentration present, but it was found that the equilibrium value attained was the same for both Batches D and F for equivalent total P.E. concentrations. It was therefore decided to use Batch D for all equilibrium concentrations required.

An isothermal dissolution test was therefore carried out, D.F.4, a repeat of D.F.2, by first warming the water to the test temperature and then adding the P.E. However a very similar result was obtained to D.F.2. As the P.E. could not be washed into the


cell with the isothermal test it was not as accurate as the previous method and dissolution tests were continued as before using Batch D material to obtain equilibrium quickly. At the lower temperatures this concentration enhancement was greater than at  $60^{\circ}C$  (for Batch D) and the maximum values attained (where recorded) are given in table 5, appendix A.

The equilibrium values obtained at 60°C, recorded as refractometer scale S, are plotted vs total P.E. % mass fraction in figure 5.5. Other values of the equilibrium scale, for use with the growth rate experiments at this temperature have been interpolated. The equilibrium results for all the impure P.E. dissolution tests are shown in table 6, appendix A. As the equilibrium values depend on the amount of P.E. present the results for an equivalent initial growth run supersaturation of about  $c_0 - c_{\infty} = -\frac{4}{3}$  (the usual supersaturation used) have been plotted in figure 5.6. It can be seen that below about  $48^{\circ}$ C the results are greater than that expected from the  $\log_{10}x$  vs  $\frac{1}{T}$  correlation. The results  $\geq 50^{\circ}$ C only, for a supersaturation of about  $\Delta c = -4\%$ , were correlated using a least mean squares analysis by the equation:

$$\log_{10} x = 5.073 - \frac{1265}{T}$$

where x = equilibrium concentration mass %; T = degrees Kelvin.

# 5. 3. 2. Pure P.E.

Although results in the previous work (1) were in good agreement with Cooke's data (75), a more accurate determination was

- 75 -

# FIGURE 5.5

EQUILIBRIUM VALUES OF IMPURE P.E. SOLUTION AT 60°C

(Solution Equilibrium Concentration -20% m/v)



FIGURE 5.6.

P.E. EQUILIBRIUM IN AQUEOUS SOLUTION



TEMPERATURE OC

necessary for use with the more accurate refractometers used in this work. At first dissolution tests were done as for the impure material but the equilibrium results obtained were found to apparently depend on the amount of material used, which was inexplicable.

A method was devised, therefore, carried out on the same samples as used for the Pure P.E. calibration, using the nucleated solutions and approaching equilibrium first by growth at one temperature and then by dissolution at a higher temperature. This was done by lowering the solution temperature after nucleation to the nearest decade (e.g. 70, 60°C etc.) and utilising the high surface area of the prolific nuclei to rapidly deplete the available After equilibrium was attained the temperature was supersaturation. raised and the equilibrium values at higher temperatures obtained by dissolution. By repeated tests from growth and dissolution at different temperatures using the calibration solutions (at 5% concentration intervals) it was shown that the equilibrium value was the same approached from growth or dissolution and regardless of the amount of P.E. used. The original dependence on the amount of material found in the early dissolution tests was thought to be due to an "Ostwald ripening" effect, i.e. an enhanced solubility of fine particles (section 2,1.). This was likely as the Pure P.E. used was finely ground with a pestle and mortar for easy handling, creating a lot of fine material. Whereas the nucleation tests would produce a fairly uniform macro-crystal product.

The results are shown in table 7, appendix A, and have been

- 76 -

correlated using a least mean squares analysis (figure 5.6):

$$\log_{10} x = 4.980 - \frac{1242}{T}$$

where x = equilibrium concentration, mass %; T = degrees Kelvin.

#### SECTION SIX

#### EXPERIMENTAL AND COMPUTATIONAL METHODS

#### 6. 1. Shape Factor.

As there is some discrepancy in the literature on the crystal structure of P.E., it was thought necessary to grow and measure single P.E. crystals and to show the effect of the occasionally occuring (001) faces and of the impurities on the shape factors. Figure 6.1A shows a sketch of a P.E. crystal with the indices of the main faces marked and also of the minor ones which sometimes appear.

#### 6. 1. 1. Measurements on Pure P.E. Crystals.

There was little difficulty in growing P.E. crystals on the end of a wire in mother solution which was chromatographically pure, and measurements were made on crystals of ca. 0.25 inches grown under various conditions of super saturation and temperature. These crystals were transparent and often had a slightly rectangular, as opposed to square, bipyramid base which resulted in rectangular (001) faces which were often observed. When the (001) faces were absent these crystals then had knife edges at their tops and bottoms. The (110) faces were hardly ever observed and the (100) and (010) and (111) faces, although theoretically possible, were never observed. It was assumed that trace impurities were the cause of these erratic occurrences.

A typical crystal grown in "pure" P.E. at 60°C is shown in



shape of one face

Figure 6.2. The departure from squareness of the base was  $\pm 1.2\%$  and  $c/a = 1.39 \pm 2.5\%$  (i.e. 1.356 to 1.426). This gives the lengths of the pyramid edges as 0.99 and the (normal) angle between the (101) and (107) faces as  $71.5 \pm 1.3^{\circ}$ . For practical purposes and within experimental error the crystal may therefore be considered to be of the cubic system section 3. 1., with the (100) faces taken as true equilateral triangles with the normal angle between any two faces of  $70.53^{\circ}$ . This has been done in Figure 6.1B which also gives the crystal lying in its stable position as it would appear under a microscope: i.e. a regular pentagon of unit size across the pyramid base and 1.154 units across any pair of opposite corners.

### 6. 1. 2. Impure P.E. Crystals.

When crystals grown from impure (Batch C) P.E. were examined under the microscope there was no apparent departure from the square base bipyramid shape. Crystals larger than ca. 0.1 mm of good quality were rare and the faces of these usually appeared to have smaller crystals growing from them (as opposed to simple agglomeration). This is presumably due to faults in the lattice caused by impurity inclusions. An attempt to grow an impure crystal to reasonable size proved to be very difficult; the product was always opaque and it was not possible to prevent prolific outcrops of small crystals from the faces by temperature cycling.

### 6. 1. 3. Shape Factors.

Taking the characteristic crystal dimensions, L , as the

- 79 -

FIGURE 6.2. "PURE" P.E. CRYSTAL (grown at 60°C)





length of the pyramid base, (Figure 6.1B), then for the ideal crystal:

crystal volume, 
$$v_p = \sqrt{\frac{2}{3}} L^3 = 0.4714 L^3$$

crystal surface, 
$$a_p = 2\sqrt{3}$$
  $L^2 = 3.4644$   $L^2$ 

For the crystal Figure 6.2, allowing for the missing points(which average ca  $0.12 \angle$  at each end of the c - axis):

crystal volume, 
$$v_p = (0.4714 - 0.0023) \angle^{3}$$
  
= 0.4691  $\angle^{3}$ 

crystal surface, 
$$a_p = (3.4644 - 0.0422) \angle ^2$$
  
= 3.4222  $\angle ^2$ 

Hence the missing points caused by the (001) faces represent 0.5% of the "ideal" crystal volume and 1.2% of the surface area. As this error is variable but small, shape factors will hereafter be based on the ideal crystal.

The Volume shape factor,  $\emptyset$ , will be defined by:

The Area shape factor, &, will be defined by:

 $a_{p} = \overline{11} \leftrightarrow \angle^{2}$ Then  $\overline{11} \leftrightarrow = 3.4644$   $\Theta = 1.101$ 

#### 6. 2. Size Analysis.

The Coulter Counter size analyser as used in the previous work (1) proved to be a useful method of size analysis. The basic assumption in its operation being that if the particle diameter is kept <40% of the orifice diameter, then the electrical response due to the particle is directly proportional to the volume of the particle. However, in fact it is shown, section 6.2.1.2., that a significant correction is necessary depending on the particle / crifice diameter ratio even below the stipulated limit. It is also shown in 6.2.1.2. that the effect of the particle shape is very small, and the error involved in obtaining an equivalent spherical diameter for attrited seed crystals from a stirred growth cell due to variable shape factors is considered minimal. This instrument also had the advantage of being able to measure small samples of suspension without the need for filtration of the suspension. However for crystal products it was often necessary to examine samples to determine the amount of agglomeration, and in the event of secondary nucleation or excessive attrition to obtain a size analysis over a wide range. For this purpose an Image Shear Microscope was used. As this involved a visual measurement of some chosen characteristic dimension the method

was unsuitable for attrited seed crystals with morphological variations. The Coulter Counter size analyser was therefore used for seed crystals and the Image Shear Microscope for product crystal measurements.

6. 2. 1. The Coulter Counter size analyser.

# 6. 2. 1. 1. Description.

The Coulter Counter determines the number and size of particles suspended in an electrically conductive liquid by passing a measured volume of suspension through a small orifice having an immersed electrode on either side of it.



Consider an element of cross-sectional area, a, thickness  $\delta \ell$ , of a particle length 2  $\ell$  as it is orientated in the axis of the orifice. Then the change in resistance  $\delta \Delta R_c$  due to this element is given by (83):

$$S \Delta R_{c} = -\frac{\Omega_{a} S l}{A_{c}^{2}} / \left(1 - \frac{a}{A_{c}}\right) \cdots 6.1.$$

where  $A_c$  is the orifice area normal to the flow axis, and  $\Omega_o$  is the electrolyte resistivity.

The basic assumption of the Coulter Counter principle is that if the particle diameter is kept <40% of the orifice diameter then the electrical response can be considered to be directly proportional to the particle volume,  $\nabla_{c}$ 

i.e. 
$$\Delta R = \frac{\Omega_0}{A_c^2} v_c$$
 ..... 6.2.

and an equivalent spherical diameter  $D_c$  can then be calculated. The necessary correction for this simplifying assumption is shown, section 6.2.1.2.

As the particles pass through the orifice the voltage pulses they produce are amplified and fed to a threshold circuit having an adjustable threshold level. If this level is reached or exceeded by a pulse, the pulse is counted. By pre-calibrating the threshold circuit and taking a series of counts at selected threshold levels, data are obtained for plotting a cumulative size distribution. Before plotting the counts are corrected for coincident particle passages and for the background count due to the extraneous particles already present in the electrolyte. To keep the coincidence corrections at a moderate level it is necessary to have a very high dilution. For the P.E. crystals counted this was found to be approximately 0.01g of crystals in 250 cm<sup>3</sup> of electrolyte. The electrolyte used was first filtered through a 0.45 µ porosity Millipore membrane filter to keep the background count as low as possible. An aqueous saline solution saturated with P.E. at 25°C was used as electrolyte and the calibration done over a temperature range of 14°C to 25°C (appendix B ) to allow for room temperature variations.

### 6.2.1.2. Particle Size Effect.

The simplified integration of equation 6.1.to give equation 6.2. gives rise to an error dependent on the particle size and shape. Allen (84) has shown that for a rod-shaped particle integration of equation 6.1. gives:

$$\Delta R = -\frac{1}{A_c^2} / \left(1 - \frac{a}{A_c}\right) \qquad 6.3$$

where  $v_p$  is the volume of the rod  $(v_p = 2a \cdot l)$ . The true equivalent spherical diameter, D, of the rod given as  $D_c = 40\mu$  with a 100 $\mu$  orifice (i.e. the 40% diameter ratio limit) is therefore 37.1 $\mu$ , i.e. 7.8% error. Similarly for spherical particles Allen (84) showed an error in D of 3.6% at the 40% diameter limit with the 100 $\mu$  orifice diameter tube. The following adjustment is therefore made to the calculated Coulter Counter diameter D<sub>c</sub> to allow for the size and shape of the P.E. tetragonal bipyramid crystal. Two possible crystal orientations were considered:

ORIENTATION A: Pyramid Base perpendicular to Orifice Axis.



- 84 -

Consider an element of side h, area a, and thickness Sl perpendicular to the orifice axis at a distance l from the pyramid base.

$$\frac{h}{L} = \frac{0.707 L - l}{0.707 L}$$

$$\therefore h = \frac{0.707 L - l}{0.707}$$

$$2 \left( l - l \right)$$

$$a = h^2 = \left( L - \frac{l}{0.707} \right)^2$$

From equation 6.1  $\Delta R = \frac{-2 - n_0}{A_c^2}$   $\begin{pmatrix} l = 0.707L \\ 0 & \frac{h^2}{1 & -\frac{h^2}{A_c}} dl \\ l = 0 & \frac{h^2}{A_c} dl \end{pmatrix}$ 



$$\therefore \Delta R = -\frac{r_{o}}{A_{c}^{2}} \left( 0.707 A_{c} \ln \left( \frac{1 + \frac{L}{JA_{c}}}{1 - \frac{L}{JA_{c}}} \right) - 1.414 A_{c} L \right) \dots 6.4$$

- 86 -

and equating with equation 6.2

$$v_{c} = 0.707 A_{c}^{2} ln \left( \frac{1 + \frac{1}{\sqrt{A_{c}}}}{1 - \frac{1}{\sqrt{A_{c}}}} \right) - 1.414 A_{c}^{2} \dots 6.5$$

$$\frac{\mathbf{v}_{c} + \mathbf{1.414} \mathbf{A}_{c} \mathbf{\angle}}{\mathbf{0.707} \mathbf{A}_{c}^{\frac{3}{2}}} = \ln \left( \frac{1 + \mathbf{\angle}}{\sqrt{A_{c}}} - \frac{1 + \mathbf{\angle}}{\sqrt{A_{c}}} \right)$$

Put 
$$Y = \frac{v_c + 1.414 A_c}{0.707 A_c^{\frac{3}{2}}}$$

Then 
$$1 + Y + \frac{y^2}{2!} + \frac{y^3}{3!} + \dots = \frac{1 + \frac{1}{\sqrt{A_c}}}{\frac{1}{\sqrt{A_c}}}$$
  
 $1 - \frac{1}{\sqrt{A_c}}$ 

As  $v_c = \frac{\Pi D_c^3}{6}$ , the solution of this equation for any given

 $D_c$  and orifice area  $A_c$  is conveniently found by computation of the Newton-Raphson approximation method (85). This involves equating the function to zero, differentiating the function,  $f' \perp$ , and obtaining the more approximate solution  $\angle (2)$  from  $\angle (2) = \angle (0) - \frac{f(\angle)}{f'(\angle)}$ 

In this case the initial L tried is the original Coulter Counter

diameter  $D_c$  which serves as an approximate solution. The polynomial is terminated at the 9<sup>th</sup> term.

Hence 
$$f(L) = \frac{1 + \frac{L}{\sqrt{A_c}}}{1 - \frac{L}{\sqrt{A_c}}} - 1 - y - \frac{y^2}{2!} - \dots - \frac{-y^8}{8!}$$

If B, a constant = 
$$\frac{1.414 \quad A_c}{0.707 \quad A_c^{\frac{3}{2}}}$$

$$f'(\underline{L}) = \frac{2}{\sqrt{A}} - B - YB - \left(\frac{Y^2}{2!}\right) B - \left(\frac{Y^3}{3!}\right) B \cdots \left(\frac{Y^3}{7!}\right) B$$

$$L(2) = L(1) - \frac{f(L)}{f'(L)}$$

which is repeated until  $\frac{f(L)}{r'(L)} < 0.01\mu$ . The computer program for a 280  $\mu$  orifice to find  $\angle$  from values of D<sub>c</sub> at l $\mu$  intervals is shown appendix C.

Hence assuming  $\oint = 0.900$ 

D, the true equivalent spherical volume diameter = 
$$(0.900 \angle 3)^{\frac{3}{2}}$$

#### ORIENTATION B:

Pyramid Base parallel to Orifice Axis and one

edge perpendicular to it.



Consider A Quarter segment of the crystal; with the origin at the



- 88 -

 $BR = -\frac{2}{A_c^2} \int_{l=0}^{l=\frac{1}{2}L} \frac{a dR}{1 - \frac{a}{A_c}}$ 

From equation 6.1

$$= \frac{-2 - n_0}{A_c^2} \int_{0}^{\frac{1}{2}} \frac{0.707 L^2 - 2.828 l^2}{1 - \frac{(0.707 L^2 - 2.828 l^2)}{A_c}}$$

$$\therefore \Delta R = -\frac{A_{c}}{A_{c}^{2}} \left\{ -\frac{A_{c}}{L} + \frac{A_{c}^{2}}{0.707 L} \tan^{-1} \left( \frac{1}{\sqrt{\frac{A_{c}}{A_{c}} - 1}} \right) \right\}$$

and equating with equation 6.2:



As  $v_c = \frac{\text{II } D_c^3}{6}$  the solution of this equation for any given

 $D_c$  and orifice area  $A_c$  is again conveniently found by computation of the Newton-Raphson approximation method as used with Orientation A.

Hence 
$$f(L) = \frac{0.707 \text{ V}_{c} L}{A_{c}^{2}} \left(\frac{A_{c}}{0.7L^{2}} - 1\right)^{\frac{1}{2}} + \frac{0.707 L^{2}}{A_{c}} \left(\frac{A_{c}}{0.707 L^{2}} - 1\right)^{\frac{1}{2}}$$

 $\left(\frac{A_c}{2074^2}-1\right)^2$ 

tan-1

$$: f'(\mathcal{L}) = \frac{0.707 V_{c} \mathcal{L}}{A_{c}^{2}} \left( \frac{-A_{c}}{0.707 \mathcal{L}^{3}} \right) \left( \frac{A_{c}}{0.707 \mathcal{L}^{2}} - 1 \right)^{-\frac{1}{2}} - \frac{0.707 V_{c}}{A_{c}^{2}} \left( \frac{A_{c}}{0.707 \mathcal{L}^{2}} - 1 \right)^{\frac{1}{2}} + \frac{0.707 V_{c}}{A_{c}^{2}} \left( \frac{A_{c}}{0.707 \mathcal{L}^{2}} - 1 \right)^{\frac{1}{2}} + \frac{0.707 V_{c}}{A_{c}^{2}} \left( \frac{A_{c}}{0.707 \mathcal{L}^{2}} - 1 \right)^{\frac{1}{2}} + \frac{1.4 \mathcal{L}}{A_{c}} \left( \frac{A_{c}}{0.707 \mathcal{L}^{2}} - 1 \right)^{\frac{1}{2}} + \frac{1.4 \mathcal{L}}{A_{c}} \left( \frac{A_{c}}{0.707 \mathcal{L}^{2}} - 1 \right)^{\frac{1}{2}} + \frac{1}{\mathcal{L}} \left( \frac{A_{c}}{0.707 \mathcal{L}^{2}} - 1 \right)^{\frac{1}{2}} + \frac{1}{\mathcal{L}} \left( \frac{A_{c}}{0.707 \mathcal{L}^{2}} - 1 \right)^{\frac{1}{2}} + \frac{1}{\mathcal{L}} \left( \frac{A_{c}}{0.707 \mathcal{L}^{2}} - 1 \right)^{\frac{1}{2}} \right)^{\frac{1}{2}}$$

$$which reduces to:$$

$$f'(\mathcal{L}) = \left( \frac{A_{c}}{0.707 \mathcal{L}^{2}} - 1 \right)^{\frac{1}{2}} \left( \frac{0.707 V_{c}}{A_{c}} + 1.414 \mathcal{L} \right) - \left( \frac{V_{c}}{A_{c} \mathcal{L}} + 2 \right) - \frac{V_{c}}{\mathcal{L}} \left( \frac{A_{c}}{0.707 \mathcal{L}^{2}} - 1 \right)^{\frac{1}{2}} \right)^{\frac{1}{2}}$$

- 90 -

If D<sub>c</sub> is put as the initial approximate solution for L

then

which is repeated until 
$$\frac{f(L)}{f'(L)} < 0.01 \mu$$
.

 $L(2) = L(1) - \frac{f(L)}{f'(L)}$ 

C

The computer program, 4, for a 280 µ orifice to find L from values of D<sub>c</sub> at 1 µ intervals is shown appendix C. D can again be found from  $D = (0.900 \angle 3)^{\frac{1}{3}}$ 

The comparison of corrected sizes using Orientation A and Orientation B respectively, with the 280 µ orifice, is:

|       | ORIENTATION A |        | ORIENTATION B |        |
|-------|---------------|--------|---------------|--------|
| Dep   | 47            | Dy     | Ly            | Dp     |
| 10.0  | 10.33         | 9.98   | 10.36         | 9.99   |
| 50.0  | 51.34         | 49.57  | 51.37         | 49.60  |
| 100.0 | 100.03        | 96.58  | 100.27        | 96.81  |
| 150.0 | 143.36        | 138.66 | 144.54        | 139.56 |

As would be expected from the theory the variation of D from  $D_c$  becomes more significant at the larger values of the ratio particle diameter,  $D_c /$  orifice diameter D'. Similarly the larger this diameter ratio, the greater the difference between orientations A and B.

Because of the difficulty of growing a large perfect P.E. crystal it was decided to use a perspex model crystal in oil to simulate conditions of a small P.E. crystal in electrolyte, in order to find the stable orientation of a settling P.E. crystal.

For a P.E. crystal of D = 0.01 cm.

Terminal Falling velocity, ut = 0.2 cm/s.

0,2

- 91 -

Simulation with large model:



If a perspex model crystal is used  $\beta_s = 1.2$ 

If Shell Voluta Oil 45 is used at about 70°F

$$\mu = 4.13 \text{ Poise} \qquad \int^{2} = 0.906 \text{ g/cm}^{3}$$
$$D = \left(\frac{0.00367 \text{ x } 4.13^{2}}{(1.2 - 0.906) \ 0.906}\right)^{\frac{1}{3}}$$
$$= 0.62 \text{ cm}.$$

Due to the acceleration conditions in a stirred beaker during a Coulter Counter size analysis, the crystal/solution relative velocity will be greater than u<sub>t</sub> and therefore Reynolds number will be rather larger than 0.2, permitting a slightly larger model crystal.

A perspex model crystal was made having a pyramid base length

L of about 1 cm. Each pyramid was painted a different colour and the model repeatedly and randomly dropped into a 1 dm<sup>3</sup> graduated cylinder filled with Shell Voluta Oil 45. The model invariably orientated on settling into the stable orientation B, with the pyramid base parallel to the cylinder axis.

Corrections for  $D_c$  were therefore computed for each of the Coulter Counter orifices used i.e. 50  $\mu$ , 280  $\mu$  and 560  $\mu$ , using the Orientation B program, 4, with the appropriate Ac values. The results are shown Tables 15, 16, 17, appendix B.

#### 6.2.1.3. Discussion.

Allen (84) did considerable work on the accuracy of a Coulter Counter. Investigation of the coincidence correction showed a tendency to overcount at low dilutions for counts of less than 5% of the maximum permitted count for 10% coincidence. However on a numerical basis the error was small. Edmundson (86) suggested a more accurate method of coincidence correction, but this involved serial dilutions of the sample at every threshold level, for each size analysis. The theoretical improvement of accuracy was thought unlikely to compensate for the practical errors involved. Allen (84) has also criticised this method on the basis that the linear correlation assumed is not necessarily correct. The coincidence correction method of Mattern (87) recommended by Coulter Electronics Ltd. is therefore used with the appropriate dilution limits.

Allen (84) showed a discrepancy of experimentally determined  $F_c$  factors with those published by Coulter Electronics (83).

- 93 -

Lines (88) considered this to be a result of experimental error and also a symptom of a badly adjusted set, which seemed to need a zero adjustment of 2 or 3 threshold divisions. This was also indicated by the fact that Allen showed a variation of  $F_c$  factors with Gain setting which is not feasible. Lines considered the published  $F_c$ factors to be accurate to better than 1%. As the model A Coulter Counter used was regularly serviced, the published  $F_c$  factors were used.

Allen further found that the thermal effects during analysis and background noise made a lower size limit of 0.8 µ or even higher, impossible. This had also been experienced in the previous work ( 1 ) when it had been found necessary to switch off all external electrical motors in the vicinity. The Coulter Counter was therefore placed in a metal cabinet, figure 6.3, which acted as an effective shield from external interference.

In the previous work (1) an ultrasonic probe was used for semple dispersion. This had been compared with shaking the sample and dispersing in a paste with a brush and found to give reproducible results for Batch A seed crystals. This method was further investigated with Batch D seed crystals, 1.0% di-P.E., and found to cause crystal attrition. A comparison of stirring and ultrasonics, table 18, for various degrees of agitation and for various periods of time showed an increase of the amount of attrition with both time and power using the ultrasonic probe, but a good reproducibility, regardless of time or stirrer speed, using a marine impeller type stirrer. Stirring was therefore used for sample dispersion for all Coulter Counter size analyses throughout this work, and the ultrasonic

- 94 -

# FIGURE 6.3.

# THE COULTER COUNTER PARTICLE SIZE ANALYSER



disperser dispensed with.

Size analyses of three samples of Batch E prepared seed seve fraction 89 - 105 µ are shown tables 19, 20, 21, appendix B. The collected and averaged sample analyses together with the corrected diameters are shown table 22 . It can be seen that the maximum deviation of ZNo % x D from the average is about 7% and the maximum deviation of  $\sum No \% \times D^2$  from the average is about 12%. Because of the practical difficulties involved in using a two-tube technique, as in the previous work (1), with small seed crystals, a larger seed size was in general used throughout this work. The collected size analyses of seed materials after attrition at 2000 r.p.m. in the stirred cell C are shown table (24). A size analysis comparison of Batch C seed after attrition in cells A and C at different stirrer speeds is shown table (23). Collected size analyses of seed materials used in the modified fluidised bed experiments are shown table (25), and some crystal product size analyses are shown table (26), after growth in the stirred cell C. All these respective size analyses are the averaged result of three samples analysed with the Coulter Counter, each sample itself being the averaged result of three samples.

Calibration of the Coulter Counter, diameter corrections and all size analyses are shown appendix B.

# 6.2.2. The Image Shear Microscope.

The Image Shear Miscroscope described by Dyson ( 89 ) is an attachment which may be fitted to any microscope eyepiece and contains

- 95 -

two prism blocks which are rotated with respect to each other about a vertical axis by means of a micrometer drive. This results in the image, as seen through the eyepiece, being split into two complete images which may be sheared across each other in any direction by operation of the micrometer drive. The amount of shear involved is strictly proportional to the micrometer reading. If the two images are set edge to edge, the shear is proportional to the distance across that particular axis of the object, and can be calibrated using a microscope graticule. As this is only an eyepiece modification no restriction is placed on the method of microscopy or the magnification used.

A size analysis with the image shear microscope involves measuring a characteristic dimension for a number of particles. Figure 6.1B shows a P.E. tetragonal bipyramid crystal lying in its stable position as it would appear under a microscope. A convenient characteristic dimension is the size across any pair of opposite corners, = 1.154 where  $\angle$  is the length of the pyramid base. This is then readily converted to the equivalent spherical volume diameter, D, using the shape factor  $\emptyset = 0.900$ .

Then 
$$D = \left(0.900 \angle 3\right)^{\frac{3}{2}}$$

To avoid selective sampling of good crystals, the microscope slide was moved at regular intervals under the microscope and all crystals under each view measured until a total of 50 had been counted for that particular slide. The slide sample was then renewed and the procedure repeated for four slide samples until a total of 200 crystals

- 96 -

had been sized. The calibration of the micrometer scale with a microscope graticule showed a linear relation over the range of the scale of 2.28 micrometer scale divisions =  $10.0 \mu$ .

Size analysis of attrited seed used for the stirred cells showed a poor agreement with that done with the Coulter Counter. This was attributed to the morphological variations caused by attrition a constant shape factor being essential for this method of analysis. However reasonable agreement was found . with the product of pure P.E. growth with little attrition, and the results of the product size analyses done are shown tables 27, 28, appendix B.

#### 6. 3. Fluidised Bed Experiments.

### 6.3.1. Preliminary Fluidisation Experiments.

The apparatus is described in section 4.2.1. The temperature control units were switched on: T.C.2 being set to the required test temperature and T.C.1 to a temperature found from experience, which depended on the setting of T.C.2., the ambient temperature and the flow rate to be used in the particular test. The apparatus which contained diluted solution from a previous test took about 1 h to reach equilibrium and T.C.1. was then adjusted until the thermometer T.I. indicated the same temperature as T.C.2. The dilute solution was then purged from the system and made up with fresh concentrated solution until mother liquor of the required temperature and supersaturation (indicated by the refractometer) was obtained. A known weight of carefully sieved seed crystals (prepared in small batch crystallisations) was added to cold saturated solution in the feed funnel and the slurry quickly run into the crystalliser. The superficial velocity was usually of the order of 0.2 cm/s, representing for most seed sizes a very high degree of fluidisation (Figure 3.5.). However agglomeration of the growing crystals always occured and complete solidification of the bed had to be prevented by fitting the downcomer with a flexible seal and knee joint which could be used to break up agglomeration. After a suitable time depending on the temperature and supersaturation used the bed was dropped out of the crystalliser onto a Buchner filter and immediately washed with acetone. The product was weighed and examined. The size of the seed and product crystals was measured with a vernier microscope as the Image Shear Microscope was not available at this time. The characteristic dimension measured in this case was the distance across the crystal pyramid base, i.e. 2. The average of 10 crystals was taken in each case with a standard deviation of the seed from the average being about 7 µ. This was considered reasonable as the vernier only read to The increase of bed mass was usually a more accurate method 10 11. although it was often difficult to remove all the bed from the crystalliser.

6.3.2. Fluidisation experiments with modified apparatus (section 4.2.3)

6.3.2.1. Procedure.

T.C.l. was set to a temperature about 20°C above the required cell operating temperature. The system was filled with distilled

- 98 -

water and the glass taps set for flow through the appropriate rotameter. T.C.2. was set to a temperature slightly above the required cell temperature, and the immersion pump then switched on. The pump was controlled with a voltage regulator to give the estimated velocity required for fluidisation, indicated by the rotameter. The magnetic stirrer and hot-plate were switched on and controlled to give sufficient supplementary heat to the feed vessel to maintain the feed in an undersaturated condition about 15°C above the cell temperature. The heating tape on the transfer lines was then used as a fine control of the temperature in the cell. When the conditions were set with distilled water, the system was emptied using a vacuum pump and the hot undersaturated solution poured into the feed vessel. This solution of known concentration having previously been prepared in a 2 litre pyrex graduated flask.

When temperature conditions were stable with the circulating solution, the pump was stopped, the jubilee clip on the outlet line of the cell closed, the rubber bung removed and the seed crystals poured into the cell. The pump was immediately started and the heating tape temperature raised to compensate for the cold crystals. The bed was fluidised for a specific time with any hint of agglomeration being removed with the probe. As the crystals grew, the solution velocity had to be increased to maintain fluidisation, and each change in solution flow necessitated a corresponding change in heat input with the heating tape to maintain the cell temperature.

At the end of a run, the pump was stopped, the inlet and outlet lines to the cell removed and a vacuum line applied to the

- 99 -

inlet cone to remove the solution. The jacket connections were then removed, the jacket drained, acetone rinsed and finally air blown to dryness. The cell complete with crystals wet with the mother liquor was then weighed. The cell was dried for 24 h in an oven at  $100^{\circ}C$ and reweighed. This enabled the weight of the solid due to the mother liquor to be calculated and knowing the weight of the empty cell, the crystal product weight derived. The rate of mass increase for this particular supersaturation and temperature is thus calculated. As the initial size distribution is known from a Coulter Counter size analysis, this can be converted to linear growth velocity, g, as shown below.

# 6.3.2.2. Analysis of Results.

In the previous work (1) it was assumed that for a group of crystals of narrow size distribution, the average crystal size equals the size of the crystal of average area, which also equals the size of the crystal of average weight.

Therefor Assuming a constant shape factor throughout growth:

$$\frac{A_2}{A_1} = \left(\frac{M_2}{M_1}\right)^2$$

However, this is invalid for a crystal size distribution. Although a narrow sieve fraction of seed crystals was used with a sieve aperture ratio of approximately 1.19, a more accurate size analysis is obtained using the Coulter Counter size analyser.

McCabe's A Llaw (53 ) states that if a known mass of seed

crystals of known size distribution is grown under given conditions of supersaturation, then the size analysis of the product is given by:

$$M(2) = \int_{0}^{M(1)} \left(1 + \frac{\Delta D}{D(1)}\right)^{3} d M(1)$$

where M(2) is the product mass obtained from M(1) seed, D(1) is the seed size and  $\triangle$  D the increase in size. The assumptions made are (a) a constant shape factor throughout growth and (b) the crystal size has no effect on growth rate.

For the present study the assumption of a constant shape factor appears reasonable. If, however, the rate of diffusion to the crystal surface controls the growth rate process, the variation of the relative crystal/solution velocity throughout the fluidised bed with crystal size distribution would cause a faster growth rate for the larger crystals, making this law invalid. As the preliminary experiments in a fluidised bed indicated integration rate control under the conditions examined, integration rate control will be assumed for these experiments in order to apply McCabe's  $\Delta \angle$  law to obtain a more accurate growth velocity, g, for comparison with the stirred cell experiments.

From the Coulter Counter size analysis, the % No (J) of a mean equivalent spherical volume diameter D (1,J) is obtained for the crystal seed size distribution J, where J = 1 : P, the number of mean diameters in the analysis.

Volume of a crystal of diameter  $D(1,J) = \frac{TT}{6} \times D(1,J)^3$ Total volume of seed =  $\frac{M(1)}{6}$ 

- 101 -

Actual No. of crystals, No.(J), of diameter D(1,J) · · ·

= % No.(J) x   

$$\frac{M(1)}{\int s \times \sum (\% No.(J) \times \frac{TT}{6} \times D(1,J)^3)}$$
 .... 6.7

$$M(1) = \sum_{a} \sum_{B} x \operatorname{No.}(J) x \frac{T}{6} x D(1,J)^{3} \qquad \dots \qquad 6.8$$

Now assuming McCabe's A Llaw, and that no attrition or agglomeration occurs during growth: D (2,J), the product size = D(1,J) +  $\triangle$  D

$$M(2) = \sum_{n} \rho_{s} \times No.(J) \times \frac{TT}{6} \times (D(1,J) + \Delta D)^{3}$$

$$M(2) - M(1) = \int_{0}^{8} x \operatorname{TT} \sum_{0}^{7} \left[ \operatorname{No}(1) \left\{ \left( D(1,1) + \Delta D \right)^{3} - D(1,1) \right\}^{3} \right\}^{4} \cdots \\ + \operatorname{No}(2) \left\{ \left( D(1,2) + \Delta D \right)^{3} - D(1,2)^{3} \right\}^{4} \cdots \\ + \operatorname{No}(P) \left\{ \left( D(1,P) + \Delta D \right)^{3} - D(1,P)^{3} \right\}^{3} \right\}^{2} \cdots \\ = \int_{0}^{8} x \operatorname{TT} \left[ \Delta D^{3} \sum_{0}^{7} \operatorname{No}(J) + 3 \Delta D^{2} \sum_{0}^{7} \left( \operatorname{No}(J) \times D(1,J) \right) \\ + 3 \Delta D \sum_{0}^{7} \left( \operatorname{No}(J) \times D(1,J)^{2} \right) \right] \cdots 6.10$$

Let 
$$U = \sum No.(J)$$
  
 $R = \sum (3 \times No.(J) \times D(1,J))$   
 $Y = \sum (3 \times No.(J) \times D(1,J)^2)$   
 $Q = \frac{M(2) - M(1)}{\int s \times \frac{TT}{6}}$   
Then  $U(\Delta D)^3 + R(\Delta D)^2 + Y(\Delta D) - Q = 0$  ......6.11

This can be solved for  $\triangle D$  by the Newton-Raphson approximation method where  $f(\triangle D) =$  Equation 6.11

Then 
$$f'(\Delta D) = 3 U (\Delta D)^2 + 2 R (\Delta D) + Y \dots 6.12$$

Try as a first approximation (D = 0.0001 cm.

If  $\frac{f \Delta D}{f' \Delta D}$  is less than 0.0000001 cm, the solution is sufficiently accurate, and  $D(2,J) = D(1,J) + \Delta D$  for each seed diameter.

Otherwise a more accurate solution  $\Delta D(2)$  is obtained from:

$$\Delta D(2) = \Delta D(1) - \frac{f(\Delta D)}{f'(\Delta D)} \quad \text{where } \Delta D(1) \text{ is the previous}$$

value. The iteration is repeated until the required accuracy is obtained.

The growth velocity of a crystal face, g, is then obtained

from:

$$s = \frac{\Delta D}{2(\Delta t)}$$

where  $\Delta t$  is the time of the experiment in minutes.

In order to find a rate constant, Km, for the rate of crystal mass increase it is necessary to know the mean area during growth. This can now be obtained as the final size distribution is known:

Volume of a single crystal,  $v_p = II \not = \frac{1}{6} = \frac{1}{6} D^3$ 

$$\therefore L = \frac{D}{g^{\frac{1}{3}}}$$

#### PROGRAM 1 : CRYSTALLISATION IN A FLUIDISED BED



Surface area of a single crystal,  $a_p = TT \oplus L^2$ 

$$= \Pi \Theta D^2$$

For a tetragonal bipyramid crystal of P.E.  $\frac{\Theta}{\sigma^3}$  = 1.181

... Total Seed Area,  $A(1) = \sum TT \times 1.181 \times No.(J) \times D (1,J)^2$ Total Product Area,  $A(2) = \sum TT \times 1.181 \times No.(J) \times D (2,J)^2$ 

Mean Area, 
$$A = \underline{A(1) + A(2)}$$

As the mother liquor concentration, c, can be found from the refractometer reading and calibration, the rate constant  $K_m$  can be found from  $\frac{d m}{d t} = -K_m A (c - c_{co})$  assuming a first order integration rate.  $c_{co}$  is the equilibrium concentration.

The computation of this analysis of the fluidisation results is shown in computer program 1 (appendix C ) written in Elliott 803 version of Algol 60.

### 6.4. Stirred Cell Experiments.

# 6.4.1. Introduction.

In the previous work (1) growth rates were obtained by following the decrease in concentration of seeded solutions by refractometry. Some preliminary results with nucleation tests seemed to suggest that the growth rate was dependent on seed source. This was thought to be due to the possible variation of impurity partition
coefficient with temperature and hence a variation of seed impurity concentration. A simplified method of studying this phenomenon was tried by cooling a hot solution until nucleation occured, then stirring the suspension at this temperature, following the growth of the nuclei with the decrease in concentration of the solution. The product was discharged into acetone, filtered and size analysed. A mono-sized product was expected from the growth of the nuclei which would enable a growth rate constant to be calculated. However, size analysis of the product with both the Image Shear microscope and the Coulter Counter showed not only agglomeration of the crystals but also a surprisingly wide size distribution. This was attributed to non-instantaneous nucleation of the solution. Attempts to avoid this product size distribution by cooling the mother liquor into the metastable zone and inducing prolific nucleation with an ultrasonic probe, and also by adding a small amount of the dispersant NONIDET P40, were unsuccessful.

## 6.4.2. Seeded Solutions.

## 6.4.2.1. Seed.

Because of the possible sensitivity of P.E. growth rate to seed impurity concentration, care was taken to record conditions of all seed preparations. It had been found in the previous work (1) that a better quality seed containing many discreet well formed crystals in the lower size ranges was obtained by controlling the growth temperature in the preparation and washing the product with acetone. In general

- 105 -

this was done with the material to be used for the growth rate experiments and a 30% m/v solution was cooled to the nucleation temperature and stirred at this temperature for 3h. The resulting crystals were filtered, acetone washed and dried in an oven at 60°C. The dry product was then sieved and classified into close-cut sieve fractions. A sample of the sieve cut to be used as seed was placed in the growth cell filled with saturated solution at room temperature. This was then stirred under the hydrodynamic conditions to be used in a growth run and the attrited seed size analysed with the Coulter Counter after 15 minutes attrition. The analysis of each was checked after a further 12 h or so, stirring and it was found, as in the previous work (1), that all the attrition occured in the first few minutes of stirring. The smallest sieve fraction, 44 - 64 µ, was often found unsatisfactory because of the necessity to use a two-tube technique for analysis with the Coulter Counter with its inherent practical difficulties, and a larger sieve fraction was then used. The size analyses of the attrited seed used in the growth rate experiments are shown in appendix B.

The optimum mass of seed crystals was chosen as 2g after the following considerations:

a This involved a relatively small solid/solution ratio for a period of a run and consequently did not over obscure the refractometer image.

(b) The heat of crystallisation was small and the solution temperature could be easily controlled with the thermostatically

- 106 -

controlled circulator.

As the refractometer scale could only be read to 0.1 divisions and estimated to 0.05 divisions, the smallest interval considered consistent with the required accuracy of the experiment was 0.5 divisions. The average time taken for this concentration change using 2g of seed was usually of the order of 5 to 50 minutes. This is considered to be the optimum time interval for the experiment as at least half a minute is necessary to accurately read a scale partly obscured by suspension and longer runs would be unnecessarily laborious.

## 6.4.2.2. Procedure.

The cells used were as shown in section 4.4. In order to obtain a more accurate analysis of results especially as the concentration approached equilibrium, evaporation tests were done for cells C and S under the stirred experimental conditions for growth by measuring the concentration decrease of an unsaturated solution over a period of time at constant temperature. The results for various temperatures are shown Fig.6.4. App endix C on a log evaporation vs  $\frac{1}{T}$  plot with linear correlations drawn according to the Clausius -Clapeyron relation. Interpolated values from these correlations for the required growth experiment temperatures are shown table 29

Although instantaneous nucleation would not be expected (Fig. 3.2.) with a supersaturation less than about 7% m/m for pure P.E. and 10% m/m for impure P.E., it was found in the previous work (1) that in an agitated cell a 6% m/m supersaturation impure solution would nucleate in about 9 h and a 4% m/m supersaturation solution would

- 107 -

nucleate in about 50 h. It was therefore considered safe to work at initial supersaturations of about 4% m/m. The required amount of P.E. was accurately weighed out and washed into a 250 cm<sup>3</sup> pyrex volumetric flask with a screw cap which had been selected for having the volume line very low on the neck to allow for solution expansion on heating. The volume was made up to 250 cm<sup>3</sup> with distilled water taking care to eliminate air bubbles, the flaskwas warmed until the P.E. had dissolved the cap secured and the solution shaken. The solution was poured into the dry growth cell held at the temperature of the run. The cell had previously been well washed with hot distilled water. The solution was stirred at the required stirrer speed for the run, set with a tachometer, until the required run temperature was obtained and the refractometer reading was then taken. The required weight of seed crystals was weighed into a clean sample bottle and poured into the solution simultaneously starting the stirrer and the stop clock. The sample bottle was reweighed and the seed weight derived. Readings of time for fixed intervals of concentration change were taken over the period of the run.

An optimum was required of the two conflicting considerations:

- 1. The larger  $\triangle$  c taken the more accurate that particular reading for the mean concentration.
- 2. The smaller  $\triangle$  c taken the easier to detect the growth rate dependence on supersaturation.

It was decided to use intervals of 0.5 divisions scale reading, i.e. ca 0.14 % P.E. As the refractometer scale could only

- 108 -

be estimated to 0.05 divisions, reading errors of + 10% can be expected, but should be largely self-compensating for any individual run as results are taken consecutively.

At the end of a run the drain plug was removed and the suspension dropped into a beaker of acetone. The product was filtered, dried and occasionally size analysed with the Image Shear microscope.

### 6.4.2.3. Analysis of Results:

The actual number of crystals, No.(J), of diameter D(1,J) can be found from the intial size distribution of the attrited seed, as in the fluidised bed experiments from equation 6.7, where M(1) is the initial seed mass.

Now assuming McCabe's  $\Delta \angle law$ , which should be true for a well stirred vessel, and provided no attrition, agglomeration or new nuclei occur during a growth experiment, then the number of crystals of any diameter D(I,J) at any time t(I) is No.(J) and the size distribution can be calculated from D(I,J) = D(1,J) +  $\Delta$  D(I)

|              |   | TIME  | I | COT | CNU | TER   |         |        |
|--------------|---|-------|---|-----|-----|-------|---------|--------|
|              | D | (1,1) |   |     | D   | (I,1) |         | D(N,1) |
|              | • |       |   |     | •   |       |         | •      |
| STZE         | • |       |   |     | •   |       |         | •      |
| DISTRIBUTION | • |       |   |     | •   |       |         | •      |
| J            | D | (1,J) |   |     | D   | (I,J) |         | D(N,J) |
| COUNTER      | • |       |   |     |     |       |         |        |
|              |   |       |   |     | •   |       |         | • *    |
|              | • |       |   |     | •   |       |         | •      |
|              | D | (1,P) |   |     | D   | (I,P) | ******* | D(N,P) |

Where N is the number of readings of time.

P is the number of mean diameters of the size distribution.

A crystal growth velocity can therefore be determined by computation of the results of refractometer scale, hence solution concentration, against time in a similar method to that used for the fluidised bed experiments, for each time interval.

As a number of readings are obtained for different supersaturation for each run, the rate constant K assuming a first order integration rate as suggested by the previous work (1) can be calculated from  $\frac{dc}{dt} = -KA(c - c_{cr})$  which when integrated gives:

$$K = \frac{1}{\Delta t(I) \overline{A}(I)} \ln \frac{(c(I) - c_{co})}{(c(I+1) - c_{co})} \dots 6.13$$

where  $\triangle t(I)$  is the time interval t(I + 1) - t(I) for the concentration decrease c(I) to  $c(I \neq 1)$ ,  $\overline{A}(I)$  is the mean crystal area over this time interval, and  $c_{co}$  is the equilibrium concentration at the temperature of the run.

K can be related to  $K_{\perp}$  of the first order growth velocity equation:

$$g = \frac{dr}{dt} = K_L (c - c_{oo}) \qquad 6.14$$

where r is the equivalent spherical volume radius, by the conversion shown appendix C

As the final time interval to reach equilibrium is not measurable, the computation is terminated at the penultimate concentration value of c(N). The equilibrium value  $c_{CD}$  is calculated from the input refractometer scale data for c(N + 1). All concentrations are derived from the isothermal refractometer correlations for the particular material and temperature, tables 2 and 3

$$c(I) = F + B S(I) + G S(I)^2$$
 ..... 6.15

As the total volume of solution used initially is 250 cm<sup>3</sup> at ca.25°C and the only loss of solvent throughout a run is through evaporation, the volume of solvent V(I) at any time (I) is given by:

$$V(I) = 250 - \underline{m(1)} - t(I) \times Evapn.$$

where m(1) is the mass of solute initially in solution and the evaporation rate in cm<sup>3</sup> / min is given in table 29 appendix C But m(1) = 2.5 c(1) and c = 1.396 for P.E.

••• V (I) = 250 - 1.7908 c(1) - t (I) x Evapn .... 6.16.

$$c = \frac{100 \text{ m}}{\frac{\text{m}}{\rho} + \text{V}}$$
  
$$\therefore dm = \frac{dc}{100 \text{ V}} \left(\frac{\text{m}}{\rho s} + \text{V}\right)^2$$
  
But  $\cdot \hat{m}$  (I) = c(1) x 2.5 - (M(I) - H)  
where H is the initial seed mass = M(1)

After any time interval  $\Delta t(I)$ , knowing M(I) which when I = 1, equals H, M(I+1) can be calculated from:

$$M(I+I) = M(I) + c(I) - c(I+I) \left( \frac{c(I) \times 2.5 - M(I) + H}{1.396} + V(I+I) \right)$$
  
.... 6.17.

 $\Delta$  D (I) for this time interval  $\Delta$ t (I) can now be calculated

- 112 -

using a similar equation to 6.10:

$$M(I+1) - M(I) = \int_{S} x \frac{TT}{6} \left[ \Delta D(I)^{3} \sum No.(J) + 3 \Delta D(I)^{2} \sum No.(J) \right] \\ x D(I,J) + 3 \Delta D(I) \sum \left( No.(J) \times D(I,J)^{2} \right) \\ \dots 6.18$$

This is solved for  $\triangle$  D(I) using the Newton-Raphson approximation method as before:

$$f \Delta D(I) = U \Delta D(I)^{3} + R(I) \Delta D(I)^{2} + Y(I) \Delta D(I) - Q(I) = 0$$
.... 6.19

where 
$$U = \sum No.(J)$$
  

$$R(I) = \sum (3 \times No.(J) \times D(I,J))$$

$$Y(I) = \sum (3 \times No.(J) \times D(I,J)^{2})$$

$$Q(I) = \frac{M(I+1) - M(I)}{1.396 \times \frac{11}{6}}$$

 $f' \Delta D(I) = 3 U \Delta D(I)^2 + 2 R \Delta D(I) + Y(I) \dots 6.20$ 

The first approximation used is  $\Delta D(I) = 0.0001$  cm and the iteration repeated until  $\frac{f \Delta D(I)}{f' \Delta D(I)} \leq 0.0000001$ 

Then  $D(I+1, J) = D(I,J) + \Delta D(I)$ 

The growth velocity g(I) is now obtained from

$$g(I) = \Delta D(I) \qquad 6.21$$

$$2 \times \Delta t(I)$$

Mean Area A(I) over this growth interval is given by

$$\overline{A}(I) = \underline{A(I+1) + A(I)}_{2}$$

- 113 -

where 
$$A(I+1) = \sum II \times 1.181 \times No.(J) \times D(I+1,J)^2$$
  
 $A(I) = \sum II \times 1.181 \times No.(J) \times D(I,J)^2$ 

Hence K(I) can be calculated from equation 6.13.

In order to compare results with Chernov's correlation (46) equation 2.22, where:

$$g = k \sum s^{b}$$

the mean supersaturation s (I) of this interval is given by:

$$s(I) = \frac{c(I+1) + c(I)}{2} - c(N+1)$$
  
c (N+1)

the computation of this analysis for each interval of refractometer scale has been done, computer program 2, using the Elliott 803 version of Algol 60.

## PROGRAM 2 : CRYSTALLISATION RATE OF P.E. IN A SEEDED CELL



## - 114 -

## TABLE: 30

## EXPERIMENTAL LEGEND

| SUFFIX | SOLUTION        | ADDITIONAL<br>TREATMENT<br>OF MATERIAL | EXPLANATION                                                                                                                                                                                    |
|--------|-----------------|----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| D      |                 |                                        | DISSOLUTION experiments simulating<br>growth experimental conditions to<br>obtain equilibrium values.                                                                                          |
| F      |                 |                                        | FLUIDISED bed experiments to obtain growth rate data.                                                                                                                                          |
| R      |                 |                                        | RUNS of seeded solutions in a stirred cell to obtain growth rate data.                                                                                                                         |
|        | A to G          |                                        | I Different bags and batches of production I material labelled Batches A to G.                                                                                                                 |
|        | P.A. to<br>P.G. |                                        | Batches A to G purified of di-P.E. and<br>formal! by HCl reflux.                                                                                                                               |
|        | D.P.E.          |                                        | A synthetic mixture of di-P.E. and Purified<br>Batch E.                                                                                                                                        |
|        |                 | F                                      | The preceeding material having been made into a 10% solution, filtered through a $0.45\mu$ filter, and evaporated to dryness before use .                                                      |
|        |                 | М                                      | The preceeding material having been made<br>into a 10% solution and stirred for 2 hours<br>with 10% m/v Molecular Sieve Type 13X<br>before filtering and evaporating to<br>dryness before use. |

## VARIOUS COMBINATIONS OF THE ABOVE HAVE BEEN USED.

## EXAMPLES:

| RUN No.    | EXPLANATION                                                                                                                                                                     |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| D.D. 4     | The fourth dissolution experiment using BATCH D solution.                                                                                                                       |
| F.E. 1     | The first fluidised bed experiment using BATCH E solution.                                                                                                                      |
| R.P.G.M. 2 | The second run of a seeded solution of purified BATCH G in<br>a stirred cell. The purified Batch G having previously<br>been stirred in solution with Molecular Sieve Type 13X. |
| R.E.F. 3   | The third run of a seeded solution of BATCH E in a stirred cell. The BATCH E having previously been filtered in solution through a $0.45\mu$ filter.                            |

#### SECTION SEVEN

#### RESULTS

The experimental legend is shown on the previous page. 7. 1. Growth Rates in a Fluidised Bed.

## 7. 1. 1. Preliminary Experiments.

Runs F.C.1 to F.C.6 were unsuccessful as too small a seed size was used, presenting difficulties of agglomeration and transport of small crystals into the feed vessel. From Runs F.C.7 about 4g. of seed crystals (-120+150 mesh) were added as a slurry in a small amount of cold saturated solution. After a suitable time the product crystals were discharged and examined. The crystal size, L, measured before and after growth was the average of 10 crystals measured across the pyramid base and gave a standard deviation from the average of about  $7\mu$ . As the vernier microscope only read to 10 $\mu$  this was considered reasonable. The size L was converted to the equivalent spherical volume diameter, D, using a  $\phi L^3 = D^3$  and so D = 0.9655L and the growth velocity,  $g = \frac{dr}{dt}$ , was calculated.

With the exception of F.C. 1 3. it was not possible to remove all the bed for weighing until F.C.19. when the flexible seal and knee joint was fitted to the downcomer. With this modification it was possible to give the bed a stir periodically, to prevent agglomeration building up and permit the ready discharge of the crystal product. As the average seed size was known, the growth velocity could then be derived by calculating the product size from the increase of crystal mass assuming

### FIGURE 7.1.

#### RESULTS OF PRELIMINARY FLUIDISED BED EXPERIMENTS



SUPERSATURATION s

spherical crystals.

The results for these preliminary fluidised bed experiments, with the growth velocity, g, derived both from the direct measurement and using the mass increase basis are shown, Table 31 , Appendix D . As the growth rate is later shown (Section 7.2) to deviate from first order with respect to supersaturation, the results are shown in figure 7. 1 with growth velocities, g, plotted against supersaturation, s, and compared with the least mean squares correlation found for Batch C material in the seeded cell experiments stirred at 2000 r.p.m. The numbers beside points indicate the temperatures of the fluidised bed experiments.

In comparison with the stirred cell experiments, results on average give growth velocities as would be expected from experiments about 7° C higher than that indicated. This could be because of an unconscious tendency towards selective sampling of good large crystals for product measurements. In general the results calculated on a mass basis are nearer to that expected from the stirred cell experiments, assuming no diffusional effect. Although these results, particularly those measured directly, are of limited accuracy they indicate a faster growth rate than with the stirred cells. This is not feasible even if the system was diffusion controlled and it appears that the surface integration step is rate controlling even for the low relative solution/ crystal velocities and high temperatures of the fluidised bed. 7. 1. 2. Results with Modified Fluidised Ded Apparatus.

Assuming surface integration rate control the computer program 1 using McCabe's AL Law (Section 6.3.2.2.) was used to calculate the

- 116 -

results of the experiments with the modified fluidised bed apparatus shown in section 4.2.3. An example experimental data sheet is shown for run R.E.l in Table 32, Appendix D. The size analyses of the seed batches used are shown in Table 25. Appendix B. Although the mean srystal area  $\overline{A}$  has been calculated Km, the rate constant, based on a first order growth rate is not shown as the stirred cell experiments showed a first order assumption to be invalid. The following results were obtained:

| RUN<br>No. | D.O.T | SEED         | SEED<br>MASS(g) | PROD.<br>MASS(g) | TIME<br>MINS | S     | DD<br>M | Ma<br>om <sup>2</sup> | cm/min.    |
|------------|-------|--------------|-----------------|------------------|--------------|-------|---------|-----------------------|------------|
| FC28       | 70.0  | 124-130µC    | 8.0             | 11.26            | 90           | 0.026 | 16.71   | 3 308                 | 9.283x10-6 |
| FC29       | 70.0  | 124-150,0C   | 8.0             | 14.55            | 50           | 0.141 | 30.48   | 3662                  | 3.048x10-5 |
| F.C30      | 40.0  | 124-150×C    | 8.0             | 8.03             | 90           | 0.224 | 0.17    | 2926                  | 9.636x108  |
| F.C.31     | 40.0  | 124-150µC    | 8.0             | 8.60             | 50           | 0.406 | 3.39    | 2997                  | 3.388x10.6 |
| F.E. 1     | 70.0  | 124-1.50 JE  | 7.96            | 14.04            | 60           | 0.110 | 24.21   | 4284                  | 2.018x10-5 |
| FPEL       | 70.0  | 124-15 OUPE. | 7.91            | 17.63            | 35           | 0.129 | 43.43   | 3841                  | 6.204x10-5 |
|            |       |              |                 |                  |              |       |         |                       |            |

These results have been plotted as g vs s in figure 7.2. and compared with the least mean squares correlations obtained from the stirred cell experiments. As the orystal seed dispenser was not reweighed after use with runs F.C.28 to F.C.31 these results are not as accurate as they could otherwise have been. F.C.30 and F.C.31 at  $40^{\circ}$ C are particularly susceptible to this error as the crystal mass increase was so small.

- 117 -

FIGURE 7.2. RESULTS OF MODIFIED FLUIDISED BED EXPERIMENTS



0.1 SUPERSATURATION S

1.0

F.C.28 shows a growth rate very much higher than expected. However, for runs F.C. 29, F.E.1 and F.P.E.1, where the crystal mass was about doubled throughout an experiment, all the growth rate velocities were very much the same as the stirred cells with the same materials at  $70^{\circ}$ C. As this was the highest temperature practical with this apparatus no further experiments were attempted. This indicated surface integration control under all the experimental conditions up to  $70^{\circ}$ C for Batches C, E and purified E. - 119 -

TABLT: 33

PREVIOUS WORK(1) - APPENDIX E

SEEDED CELL A EXPERIMENTS AT 500 R.P.M.

| RUN No.             | RUN No.      | SO     | LUTION     | SEED      |                   |
|---------------------|--------------|--------|------------|-----------|-------------------|
| PREVIOUS<br>WORK(1) | PRESENT TEXT | TEMPOC | CONC .%m/v | SIEVE CUT | ватсн             |
| R.14                | R.A.l        | 60.0   | 24.0       | 44 - 53   | A <sup>H</sup>    |
| R.20                | R.A.2        | 70.0   | 30.0       | 44 - 53   | A <sup>32</sup>   |
| R.21                | R.A.3        | 55.0   | 21.5       | 44 - 53   | A <sup>32</sup>   |
| R.23                | R.A.4        | 80.0   | 37.0       | 44 - 53   | Aze               |
| R.27                | R.P.A.l      | 60.0   | 24.0       | 44 - 53   | P.A <sup>36</sup> |
| R.29                | R.P.A.2      | 70.0   | 29.0       | 44 - 53   | P.A.M             |
| R.30                | R.P.A.3      | 80.0   | 36.0       | 44 - 53   | P.A.              |
| R.31                | R.C.l        | 60.0   | 24.0       | 44 - 53   | C <sub>26</sub>   |
| R.32                | R.P.A.4      | 50.0   | 18.5       | 44 - 53   | P.A <sup>™</sup>  |
| R.33                | R.A.5        | 50.0   | 19.5       | 44 - 53   | A <sup>32</sup>   |
| R.34                | R.P.A.5      | 80.0   | 36.0       | 44 - 53   | A <sup>H</sup>    |

TABLE: 34

CHRONOLOGICAL SUMMARY OF EXPERIMENTS IN SEEDED CELLS - APPENDIX D

ALL EXPERIMENTS AT 2000 R.P.M. UNLESS OTHERWISE STATED

| EXPT. | RUN   | SOLU | UTION |       | SEED   |                 |      |                 | TABLE |
|-------|-------|------|-------|-------|--------|-----------------|------|-----------------|-------|
| No.   | No.   | ToC  | 0%m/v | SIEVE | CUT(m) | BATCH           | CELL | COMMENT         | No.   |
| 1     | R.B.1 | 60.0 | 24.0  | 44 -  | 64     | B <sup>™</sup>  | A    | NO GROWTH 412h. |       |
| 2     | R.B.2 | 60.0 | 24.0  | 44 -  | 64     | B <sup>36</sup> | C    | NO GROWTH 4불h.  |       |
| 3     | R.B.3 | 60.0 | 24.3  |       | -      | В               | C    |                 | 7     |
| 4     | R.B.4 | 60.0 | 25.3  |       | -      | A               | C    |                 | 36    |
| 5     | R.A.6 | 60.0 | 24.0  |       | -      | A               | C    |                 |       |
| 6     | R.B.5 | 60.0 | 24.0  |       | -      | В               | C    |                 | S     |

\* SPECIALLY PREPARED SEED

- 120 -TABLE: 34 (CONT.)

| EXPT. | RUN    | SOLI | UTION | SEED         |                  |      |                 | TABLE |
|-------|--------|------|-------|--------------|------------------|------|-----------------|-------|
| No.   | No.    | ToC  | 0%m/v | SIEVE CUT(1) | BATCH            | CELL | COMMENT         | No.   |
| 7     | R.C.2  | 60.0 | 24.0  | -            | С                | C    |                 | 35    |
| 8     | R.C.3  | 60.0 | 24.0  | 75 - 89      | C™               | C    |                 | 38    |
| 9     | R.C.4  | 60.0 | 24.0  | 75 - 89      | CH               | C    | NONIDET ADDN.   | 39    |
| 10    | R.C.5  | 60.0 | 24.0  | 44 - 64      | C,™              | A    | POOR IMAGE      | 40    |
| 11    | R.C.6  | 60.0 | 24.0  | 44 - 64      | C <sub>₩</sub>   | C    | Delle sur delle | 41    |
| 12    | R.C.7  | 50.0 | 19.5  | 44 - 64      | C <sup>™</sup> . | с    |                 | 42    |
| 13    | R.C.8  | 40.0 | 17.5  | 44 - 64      | C <sub>36</sub>  | C    |                 | 43    |
| 14    | R.C.9  | 60.0 | 24.0  | 44 - 64      | C.               | A    | 500 R.P.M.      | 44    |
| 15    | R.C.10 | 60.0 | 24.0  | 44 - 64      | C 36             | C    | 500 R.P.M.      | 45    |
| 16    | R.C.11 | 40.0 | 14.0  | 44 - 64      | C. <sup>™</sup>  | C    | 500 R.P.M.      | 46    |
| 17    | R.C.12 | 70.0 | 30.0  | 44 - 64      | C.               | A    | 500 R.P.M.      | 47    |
| 18    | R.C.13 | 70.0 | 30.0  | 44 - 64      | C.36             | С    | 500 R.P.M.      | 48    |
| 19    | R.C.14 | 70.0 | 30.0  | 44 - 64      | C.™              | C    | 2000 R.P.M.     | 49    |
| 20    | R.C.15 | 30.0 | 12.5  | 44 - 64      | C.36             | С    | 2000 R.P.M.     | 50    |
| 21    | R.C.16 | 70.0 | 30.0  | 44 - 64      | C.36             | C    | 1000 R.P.M.     | 51    |
| 22    | R.C.17 | 40.0 | 1525  | 44 - 64      | C <sub>36</sub>  | C    | 2000 R.P.M.     | 52    |
| 23    | R.D.1  | 70.0 | 30.0  | 44 - 64      | D.H              | C    |                 | 53    |
| 24    | R.D.2  | 70.0 | 30.0  | 44 - 64      | D.18             | A    |                 | 54    |
| 25    | R.D.3  | 70.0 | 30.0  | 44 - 64      | DH               | A    |                 | 55    |
| 26    | R.D.4  | 70.0 | 30.0  | 75 - 89      | C.H              | S    |                 | 56    |
| R7    | R.D.5  | 70.0 | 30.0  | 75 - 89      | DR               | S    |                 | 57    |
| 28    | R.D.6  | 70.0 | 30.0  | 75 - 89      | C.M              | c    |                 | 58    |
|       |        |      |       | 1            | 1                |      | Sector states   |       |

M SPECIALLY PREPARED SEED

TABLE: 34 (CONT.)

- 121 -

3

| EXPT. | RUN     | SOLU | JTION | SEED         |                |      |                                          | TABLE |
|-------|---------|------|-------|--------------|----------------|------|------------------------------------------|-------|
| . No. | No.     | TOC  | c%m/v | SIEVE CUT(4) | BATCH          | CELL | COMMENT                                  | No.   |
| 29    | R.D.7   | 70.0 | 30.0  | 64 - 75      | P.G.#          | S    |                                          | 59    |
| 30    | R.P.G.1 | 70.0 | 30.0  | 64 - 75      | P.G.H          | C    | NO GROWTH 5h.                            |       |
| 31    | R.P.G.2 | 70.0 | 30.0  | 64 - 75      | P.G.           | S    | NO GROWTH 5h.                            |       |
| 32    | R.P.G.3 | 70.0 | 30.0  | 89 - 105     | P.Ģ.           | S    |                                          | 60    |
| 33:   | R.E.1   | 70.0 | 30.0  | 89 - 1.05    | Exe            | C    |                                          | 61    |
| 34    | R.E.2   | 70.0 | 27.5  | 89 - 105     | E              | C    |                                          | 62    |
| 35    | R.E.3   | 60.0 | 27.5  | 89 - 105     | E.H            | С    |                                          | 63.   |
| 36    | R.E.4   | 60.0 | 24.5  | 89 - 105     | E.             | C    | 10-10-10-10-10-10-10-10-10-10-10-10-10-1 | 64    |
| 37    | R.E.5   | 60.0 | 26.0  | 89 - 105     | E.             | C    |                                          | 63    |
| 38    | R.E.6   | 50.0 | 24.0  | 89 - 105     | E.             | C    |                                          | 66    |
| 39    | R.E.7   | 70.0 | 30.0  | 89 - 105     | E <sup>R</sup> | S    |                                          | 67    |
| 40    | R.P.G.4 | 70.0 | 30.0  | 89 - 105     | P.G.           | C    |                                          | 68    |
| 41    | R.G.l   | 70.0 | 30.0  | -            | G              | C    | QUALITATIVE                              | 37    |
| 42    | R.G.2   | 70.0 | 30.0  | -            | G,             | S    | QUALITATIVE                              | 37    |
| 43    | R.P.G.5 | 70.0 | 30.0  | 89 - 105     | P.G.           | C    |                                          | 69    |
| 4:4:  | R.P.G.6 | 70.0 | 30.0  | 89 - 105     | ;P.G.*         | S    |                                          | 70    |
| 45    | R.P.D.1 | 70.0 | 30.0  | 89 - 105     | 'P.G.K         | C    | A willing                                | 71    |
| 46    | R.F.1   | 70.0 | 30.0  | 75 - 89      | F <sup>H</sup> | C    | NO GROWTH 3h.                            |       |
| 47    | R.F.2   | 70.0 | 30.0  | 89 - 105     | F              | C    | QUALITATIVE                              | 37    |
| 48    | R.E.8   | 70.0 | 30.0  | 89 - 105     | E              | C    |                                          | 72    |
| 49    | R.F.3   | 70.0 | 30.0  | 89 - 105     | F              | C    |                                          | 73    |
|       |         |      |       |              | 1              |      |                                          |       |

\* SPECIALLY PREPARED SEED

# TABLE: 34 (CONT.)

| EXPT. | RUN       | SOLU | JTION | SEED          |                   |      |               | TABLE |
|-------|-----------|------|-------|---------------|-------------------|------|---------------|-------|
| No.   | No.       | ToC  | c%m/v | SIEVE CUT(µ.) | BATCH             | CELL | COMMENT       | No.   |
| 50    | R.F.4     | 70.0 | 30.0  | 89 - 105      | F <sup>36</sup>   | С    |               | 74    |
| 51    | R.F.5     | 70.0 | 30.0  | 89 - 105      | F                 | C    | QUALITATIVE   | 37    |
| 52    | R.E.9     | 70.0 | 30.0  | 89 - 105      | E <sup>R</sup>    | C    |               | 75    |
| 53    | R.P.G.7   | 70.0 | 30.0  | 89 - 105      | P.G               | C    |               | 76    |
| 54    | R.G.3     | 森0.0 | 30.0  | 89 - 105      | P.G. <sup>K</sup> | C    |               | 77    |
| 55    | R.G.4     | 70.0 | 30.0  | 89 - 105      | E <sup>H.</sup> . | C    |               | 78    |
| 56    | R.P.E.1   | 70.0 | 30.0  | 89 - 105      | P.G               | С    |               | 79    |
| 57    | R.P.G.T.1 | 70.0 | 30.0  | 89 - 1.05     | P.G               | C    |               | 80    |
| 58    | R.P.E.2   | 70.0 | 30.0  | 89 - 105      | P.G.*             | С    |               | 81    |
| 59    | R.P.E.3   | 70.0 | 27.5  | 89 - 105      | P.G.3             | C    |               | 82    |
| 60    | R.P.G.8   | 70.0 | 27.5  | 89 - 105      | P.G. <sup>R</sup> | C    | NO GROWTH 5h. |       |
| 61    | R.P.E.4   | 70.0 | 27.5  | 89 - 105      | F. <sup>HE</sup>  | C    | of. 59 seed   | 83    |
| 62    | R.P.G.K.1 | 70.0 | 27.5  | 89 - 105      | E.                | S    | CELL SCOURED  | 84    |
| 63    | R.P.G.B.1 | 70.0 | 27.5  | 89 - 105      | E.                | S    |               | 85    |
| 64    | R.P.D.2   | 70.0 | 27.5  | 89 - 105      | E.                | C    |               | 86    |
| 65    | R.P.G.M.1 | 70.0 | 27.5  | 89 - 105      | E                 | S    | anne (tery)   | 87    |
| 66    | R.P.E.5   | 70.0 | 27.5  | 89 - 105      | E                 | C    | Ner-Ser       | 88    |
| 67    | R.P.E.6   | 70.0 | 27.5  | 89 - 105      | E.                | S    |               | 89    |
| 68    | R.P.E.7   | 70.0 | 27.5  | 89 - 105      | E.                | C    | -             | 90    |
| 69    | R.P.E.8   | 70.0 | 27.5  | 89 - 105      | E                 | S    |               | 91    |
| 70    | R.P.D.3   | 70.0 | 27.5  | 89 - 105      | E                 | S    |               | 92    |
| 71    | R.E.10    | 70.0 | 30.0  | 89 - 105      | E,                | C    |               | 93    |

\* SPECIALLY PREPARED SEED

TABLE: 34 (CONT.)

| EXPT.      | RUN       | SOLU | TION  | SEED         |                  |      | ter and a second se | TABLE |
|------------|-----------|------|-------|--------------|------------------|------|----------------------------------------------------------------------------------------------------------------|-------|
| No.        | No.       | ToC  | c%m/v | SIEVE CUT(4) | BATCH            | CELL | COMMENT                                                                                                        | No.   |
| 72         | R.E.11    | 70.0 | 30.0  | 89 - 105;    | E <sup>M</sup>   | S    |                                                                                                                | 94    |
| 73         | R.P.E.M.1 | 70.0 | 27.5  | 89 - 105     | E. <sup>36</sup> | S    |                                                                                                                | 95    |
| 74         | R.P.D.4   | 70.0 | 27.5  | 89 - 105     | E.               | A    |                                                                                                                | 96    |
| 75         | R.P.D.5   | 70.0 | 27.5  | 89 - 105     | E.               | C    |                                                                                                                | 97    |
| 76         | R.P.D.6   | 70.0 | 27.5  | 89 - 105     | E                | S    |                                                                                                                | 98    |
| 77         | R.E.12    | 70.0 | 30.0  | 89 - 105     | E.               | S    |                                                                                                                | 99    |
| 78         | R.E.13    | 70.0 | 30.0  | 89 - 105     | E.H              | C    |                                                                                                                | 100   |
| 79         | R.E.14    | 70.0 | 30.0  | 89 - 105     | E. <sup>38</sup> | С    | CELL CLEANED                                                                                                   | 101   |
| 80         | R.E.15    | 70.0 | 30.0  | 89 - 105     | E.               | C    | CELL POLISHED                                                                                                  | 102   |
| 81         | R.E.16    | 70.0 | 30.0  | 89 - 105     | E36              | C    | 0.5g Zn ADDN.                                                                                                  | 103   |
| 82         | R.E.17    | 70.0 | 30.0  | 89 - 105     | E.H              | C    | 0.5g Cu ADDN.                                                                                                  | 104   |
| 83         | R.E.18    | 70.0 | 30.0  | 89 - 105     | E.               | -    | QUALITATIVE                                                                                                    |       |
| 84         | R.E.19    | 70.0 | 30.0  | 89 - 105     | E.               | C    | CELL POLISHED                                                                                                  | 109   |
| 85         | R.E.20    | 70.0 | 30.0  | 89 - 1.05    | E.               | C    | 2500 R.P.M.                                                                                                    | 106   |
| 86         | R.E.21    | 70.0 | 30.0  | 89 - 105     | E                | С    |                                                                                                                | 107   |
| 87         | R.E.22    | 70.0 | 30.0  | 89 - 105     | E.               | G    | DISSOLUTION                                                                                                    |       |
| 88         | R.E.23    | 70.0 | 30.0  | 89 - 105     | E.               | G    |                                                                                                                | 108   |
| 89         | R.E.24    | 70.0 | 30.0  | 89 - 105     | E                | G    |                                                                                                                | 109   |
| 90         | R.E.25    | 70.0 | 30.0  | 89 - 1.05    | E                | C    |                                                                                                                | 110   |
| 91         | R.E.26    | 70.0 | 30.0  | 89 - 105     | E                | C    |                                                                                                                | 111   |
| <u>9</u> 2 | R.E.27    | 70.0 | 33.5  | 89 - 105     | E.               | C    |                                                                                                                | 112   |
| 93         | R.E.28    | 60.0 | 27.5  | 89 - 105     | E                | G    |                                                                                                                | 113   |
| 1          |           |      | 1     |              | 1                | 1    |                                                                                                                | 1     |

.

- 124 -TABLE: 34 (CONT.)

| EXPT. | RUN       | SOL  | UTION | SEED         |                   |      |                              | TABLE |
|-------|-----------|------|-------|--------------|-------------------|------|------------------------------|-------|
| No.   | No.       | ToC  | o%m/v | SIEVE CUT(H) | BATCH             | CELL | COMMENT                      | No.   |
| 94    | R.E.29    | 60.0 | 27.5  | 89 - 105     | EH                | С    |                              | 114   |
| 95    | R.E.30    | 60.0 | 27.5  | 89 - 105     | P.E.K             | С    | of. 94 seed                  | 115   |
| 96    | R.P.G.M.2 | 70.0 | 27.5  | 89 - 105     | P.E.*             | C    | NO GROWTH 24h.               |       |
| 97    | R.P.G.M.3 | 70.0 | 27.5  | 89 - 105     | P.E.E             | C    | Zn+Cu ADDN.                  |       |
| 98    | R.P.E.9   | 70.0 | 27.5  | 89 - 105     | P.E.R             | C    | NO GROWTH 6h.                | 116   |
| 99    | R.P.G.9   | 70.0 | 27.5  | 89 - 105     | P.E.*             | C    | NONIDET ADDN.                |       |
| 100   | R.P.G.10  | 70.0 | 27.5  | 89 - 105     | P.E.K             | С    | NO GROWTH<br>0.5g BRASS ADDI |       |
| 1.01  | R.P.G.11  | 70.0 | 27.5  | 89 - 105     | P.E. <sup>K</sup> | G    | NO GROWTH 25h.<br>HCl ADDN.  |       |
| 102   | R.E.31    | 70.0 | 30.0  | 89 - 105     | E                 | C    | NO GROWTH                    | 117   |
| 103   | R.P.E.10  | 30.0 | 12.5  | 89 - 105     | P.E. <sup>M</sup> | C    | NUCLEATION?                  | 118   |
| 104   | R.E.32    | 60.0 | 27.5  | 89 - 105     | En                | C    | 1.0g SEED                    | 119   |
| 105   | R.E.33    | 60.0 | 27.5  | 89 - 105     | E                 | C    | 0.5g SEED                    | 120   |
| 1.06  | R.E.34    | 60.0 | 26.0  | 89 - 105     | E                 | C    | 1.0g SEED                    | 121   |
| 107   | R.E.35    | 60.0 | 26.0  | 89 - 105     | E                 | C    | 0.5g SEED                    | 122   |
| 108   | R.E.36    | 60.0 | 24.5  | 89 - 105     | E.36              | C    | 1.0g SEED                    | 123   |
| 109   | R.E.37    | 60.0 | 24.5  | 89 - 105     | E.                | c    | 0.5g SEED                    | 124   |
| 110   | R.C.F.1   | 60.0 | 27.5  | 89 - 105     | E                 | C    |                              | 125   |
| 111   | R.C.18    | 60.0 | 27.5  | 89 - 105     | E <sup>re</sup> . | c    |                              | 126   |
| 112   | R.P.E.11  | 60.0 | 24.0  | 89 - 105     | P.E.R             | C    | NUCLEATION?                  | 127   |
| 113   | R.P.E.12  | 60.0 | 22.0  | 89 - 105     | P.E. H            | C    |                              | 128   |
| 114   | R.P.E.13  | 60.0 | 20.0  | 89 - 105     | P.E.H             | C    | NO GROWTH 8th                |       |
|       | l         |      |       |              |                   |      | 1                            |       |

- 125 -TABLE: 34 (CONT.)

| EXPT. | RUN        | SOLU | JTION | 1      | SEED    |                    |      |                                 | TABLE |
|-------|------------|------|-------|--------|---------|--------------------|------|---------------------------------|-------|
| No.   | No.        | ToC  | 0%m/v | SIEVE  | CUT(j1) | BATCH              | CELI | COMMENT                         | No.   |
| 115   | R.P.E.14   | 60.0 | 22.0  | 89 -   | - 105   | P.E. <sup>K</sup>  | С    | 1. og SEED                      | 129   |
| 116   | R.P.E.15   | 60.0 | 20.0  | 89 .   | - 105   | P.E.               | C    | 5.0g SEED                       |       |
| 117   | 3. P.D.M.1 | 60.0 | 20.0  | 89 .   | - 105   | P.E.               | C    | NO GROWTH 23h.<br>NO GROWTH 5h. |       |
| 118   | 8.P.E.16   | 50.0 | 17.75 | 89 .   | - 105   | P.E.               | C    |                                 | 130   |
| 119   | P.E.17     | 40.0 | 13.75 | 89     | - 105   | P.E.               | C    |                                 | 131   |
| 120   | R.P.E.18   | 75.0 | 31.5  | 89 .   | - 105   | P.E.*              | C    | Biosel Street                   | 132   |
| 121   | R.P.E.19   | 40.0 | 13.75 | 89 .   | - 105   | P.E.               | C    |                                 | 133   |
| 122   | R.P.E.20   | 70.0 | 28.5  | . 89 . | - 105   | P.E.               | C    |                                 | 134   |
| 123   | E.F.1      | 70.0 | 28.5  | 89     | - 105   | P.Ę. <sup>w</sup>  | C    | NO GROWTH 7h.                   |       |
| 124   | R.E.38     | 50.0 | 19.5  | 89 .   | - 105   | E <sup>W</sup> .   | C    |                                 | 135   |
| 125   | R.P.E.F.2  | 7D.0 | 28.5  | 89 .   | - 105   | P.Ę. <sup>36</sup> | C    |                                 | 136   |
| 126   | R.E.39     | 60.0 | 27.5  | 75     | - 89    | D                  | C    |                                 | 137   |
| 127   | R.A.7      | 70.0 | 30.0  | 89     | - 105   | P.Ę. <sup>ℋ</sup>  | C    |                                 | 138   |
| 128   | R.E.F.1    | 70.0 | 30.0  | 75     | - 89    | D.30               | C    |                                 | 139   |
| 129   | R.E.F.2    | 60.0 | 27.5  | 89     | - 105   | E                  | C    | Section of the                  | 140   |
| 130   | R.E.F.3    | 40.0 | 15.25 | 75     | - 89    | D.36               | C    | NO GROWTH 24h.                  |       |
| 131   | R.E.F.4    | 60.0 | 24.5  | 39     | - 105   | E                  | C    |                                 | 141   |
| 132   | R.E.F.5    | 50.0 | 19.5  | 75     | - 89    | D <sup>12</sup> .  | C    |                                 | 142   |
| 133   | R.P.E.F.3  | 40.0 | 13.75 | 89     | - 105   | P.E.               | C    | NO GROWTH 22h.                  |       |
| 134   | R.P.E.F.4  | 70.0 | 27.5  | 89     | - 105   | P.E.*              | C    |                                 | 143   |
|       |            |      |       |        |         |                    |      |                                 |       |

\* SPECIALLY PREPARED SEED

TABLE: 34 (CONT.)

| EXPT. | RUN       | SOLUTION |       | SEED         |                   |      |                            | TABLE |
|-------|-----------|----------|-------|--------------|-------------------|------|----------------------------|-------|
| No.   | No.       | ToC      | o%m/v | SIEVE CUT(M) | ВАТСН             | CELL | COMMENT                    | No.   |
| 135   | R.P.E.F.5 | 60.0     | 22.0  | 89 - 105     | P.G. <sup>R</sup> | C    |                            | 144   |
| 136   | R.T.E.F.6 | 70.0     | 27.5  | 89 - 1.05    | P.E.*             | C    |                            | 145   |
| 137   | R.P.E.D.1 | 70.0     | 28.5  | 89 - 105     | P.E.              | С    |                            | 146   |
| 138   | E.P.E.D.2 | 50.0     | 17.75 | 89 - 105     | P.G. <sup>M</sup> | C    | a second                   | 147   |
| 139   | R.E.40    | 70.0     | 30.0  | 89 - 105     | Ex                | С    | 0.5gBRASS<br>FILINGS ADDN. | 148   |

\* SPECIALLY PREPARED SEED

#### 7. 2. Seeded Solutions in stirred cells

### 7. 2. 1. Experimental Data.

An example experimental data sheet for a stirred cell run is shown in Table 35 , Appendix D , for R.P.E.16. The size analyses of the specially prepared seeds of the various materials and sieve fraction. after attrition in a saturated solution under the experimental conditions as done by the Coulter Counter size analyser are shown in Table 24 , Appendix B . The computer data being presented as the number percentage of a particular mean diameter, D, cm. The refractometer readings are presented as scale S as would be obtained in Cell C. Scale readings obtained in other cells were converted to scale S, which was the calibration scale, by means of the Table 4 in Appendix A . The computer data for this refractometer scale array included the equilibrium refractometer scale as the final reading as found for the particular equivalent P.E. concentration in the equilibrium experiments, Appendix Δ . The equivalent time readings for the refractometer scales were recorded in minutes. The reading of the 'apparent equilibrium' value after which no further concentration decrease was observed was rejected for computation purposes as the time to reach this value was indeterminate.

The calibration coefficients for the concentration based on the refractometer scale, S, i.e. B,F and G where  $c = F + B.S. + G.S^2$  were recorded for the particular solution material and temperature involved (from Tables 2 and 3 , Appendix A ). The initial seed mass,Hg was also recorded, and although the seed dispenser was not reweighed

after use until Experiment 25, the error involved should be very small. Finally the evaporation rate in  $cm^3/min$ . for the particular cell and temperature used was recorded from Table 29 Appendix C . As Cells A and G were only used for growth rate comparisons, and the evaporation rate only becomes effective as c approaches  $c_{oo}$ , evaporation losses for these cells are assumed zero.

All temperatures are recorded as the observed temperatures  $T_0^{\circ}$  C and can be converted to actual temperatures by means of Figure 5.1., Appendix A . This has been done in Section 8 for the purpose of the Activation Energy calculations.

7. 2. 2. Pentaerythritol materials.

The chemical analyses of the materials used are shown in Table 1 Appendix  $\Lambda$  .

7. 2. 2. 1. Batch A. (<0.1% Di - P.E and 4.73% Formal)

This was the material used in the previous crystallisation work (1). The growth rate constants K were calculated then assuming a first order growth rate with respect to supersaturation and using the approximation  $\frac{A2}{A_1} = \left(\frac{M_2}{M_1}\right)^{\frac{2}{3}}$  for the area calculations for each interval of growth. A summary of the results is shown in Table 149 , Appendix E . This work has now been analysed using the more accurate method which allows for a crystal size distribution, (program 2), and with the refractometer readings converted to refractometer scale S for use with the more accurate calibrations. The runs at  $60^{\circ}$ C could not be analysed by this method as the calibrations in this work were not carried out at this temperature. The effects of the Coulter Counter size correction and

In order to compare this material with the essentially similar Batch A material of the previo us work (1), Experiment 1 was carried out in the old Cell A with the more accurate refractometer. This unexpectedly showed no growth for the 42 hours of the test. At first this was thought to be due to an impurity incorporated in the cell. but when the experiment was repeated (R.B.2) in the new Cell C there was again no growth for  $4\frac{1}{2}$  hours. The most probable cause was then thought to be an impurity picked up in the seed preparation or sieving process. Tests R.B.3 and 4 were carried out with 2g of unclassified Batches B and A seed respectively and indicated growth rates similar to each other but very slow in comparison with the previo us work (1). A check on this Batch A material containing <0.1% Di-P.E and 4.73% Formal, (R.A.6) with 2g unclassified Batch A seed indicated a growth rate very much faster than R.B.3 or 4. To check that this was not because the impurity had been washed out of the cell, R.B. 5 was carried out, a repeat of R.B.3, with a similar result. To check that this very slow growth rate could not be a Di-P.E. effect not shown in the chemical analysis R.C.2. was carried out with 2g unclassified Batch C seed (containing 1.0% Di-P.E. and 4.3% Formal). This gave a growth rate even faster than R.A.6. This indicated an unknown additional impurity present in Batch B far more effective in slowing growth than either Di-P.E. or Formal, and no further tests were carried out with this material.

7. 2. 2. 3. Batch C (1.0% Di-P.E., 4.3% Formal)

Experimental work was started on Eatch C material for comparison with Batch A of the previous work (1) to find the effect of the Di-P.E. impurity. Using R.C.3. as a control an incidental test (R.C.4.) was carried out with the addition of 5 drops of a non-ionic detergent dispersing agent NONIDET P.40. As there was no apparent effect on the growth rate this additive was then tried, without success, in nucleation tests to attempt to restrict the product size distribution, thought to be due to agglomeration.

It was realised at this stage that the stirrer speed was set at 2000 r.p.m. for experiments 1 to 9, due to an error in the stroboscope reading, whereas the previous work (1) had been carried out at 500 r.p.m. This was checked hereafter with a portable tachometer. R.C.5 was carried out at 2000 r.p.m. in Cell A for comparison with the previous work; the image however was poorly defined and R.C.6 in Cell C was found more accurate.

To find the temporature effect R.C.7 and R.C.8 were carried out at 50°C and 40°C in Cell C with the well-defined image, at 2000 r.p.m. R.C.8. shows a very high growth rate compared with R.C.17 (which had a lower initial supersaturation). This phenomenon appeared completely anomalous until the detailed study on Batch E, (Section 7.2.2.5) was performed.

Tests R.C.9 and R.C.10 were carried out at 500 r.p.m. in Cells A and C respectively for speed and cell comparison with R.C.5 and R.C.6. The image of R.C.9 (CellA) was again poorly defined, but R.C.10 indicated a

- 130 -

slower growth rate in the latter stages. Test R.C. 11. at 40°C was carried out at a low initial concentration and the growth was very slow. Test R.C.12 in Cell A at 70°C showed a better refractometer image and indicated a growth rate similar to R.C.13 in Cell C.forThis it mas concluded that cells A and C gave essentially the same results.

The size analyses of B atch C seed material attrited under the different hydrodynamic conditions of Cells A and C toth stirred at 500 r.p.m. and 2000 r.p.m. showed very similar degrees of attrition (Table 23 , Appendix B ). On this evidence R.C.16 at 1000 r.p.m. was calculated using the size analysis for 2000 r.p.m. which would be within the limits of experimental error. Experiments 18, 21 and 19 at 500, 1000 and 2000 r.p.m. respectively showed the effect of stirrer speed to be that of maintaining the larger crystals in suspension. (as described in Section 7. 2. 4) and 2000 r.p.m. was considered necessary to achieve this.

All further experiments were done at 2000 r.p.m. and experiments 11, 12, 19. 20 and 22 show the effect of temperature on the crystal growth of Batch C maintained at this stirrer speed in Cell C. 7. 2. 2. 4. Batch D (1.0% Di-P.E., 5.5% Formal)

Experiments 23 to 29 were carried out with 30% m/v Batch D material, (which contained 28% more Formal than Batch C), at 70°C to compare the cells at 2000 r.p.m. and to find the effect of seed size and composition Two dm<sup>3</sup> batches of 22% m/v C, D and P.G. solutions were cooled and mucleated at 40°c. The solutions were stirred for 2 hours and sieve fractions of the resulting crystals, after filtering with an acetone wash and drying, used as seed. A comparison of seed Batches C and D with approximately 4.3% and 5.5% Formal respectively should indicate the sensitivity of the growth rates to the impurity in the seed material or possibly preparation nucleation temperature, if the impurity partition coefficient varies significantly with temperature.

In order to compare cells, test R.D.2 in Cell A was carried out but found difficult to follow because of the poorly defined image. However, R.D.3 (a repeat of R.D.2) showed an overall growth very similar to R.D.1 in Cell C, although individual readings were more erratic. Test R.D.4. in Cell S also showed a very similar growth rate to R.D.1. indicating that cell type is not critical in determining the crystal growth rate.

R.D.5. in Cell S with 75 - 89 Batch D seed showed a faster growth rate overall than R.D.4. Because of the good comparison between R.D.4. and R.D.1., this was attributed to an incorrect size analysis of the attrited seed. Size analyses of the attrited seed for the computation of results with Cell S were taken as those found for Cell C as both cells had similar internal dimensions. This was because sampling of attrited seed suspensions was very difficult due to the Cell S construction. The high growth rate of R.D.5 could be due to additional attrition of this seed in Cell S, possibly because of a different stirrer position.

Runs R.D.1. and R.D.6. with  $44 - 64\mu$  Batch D seed and  $75 - 89\mu$ . Batch C seed respectively, in Cell C showed a very good agreement, indicating that small differences with impure seed composition are not critical to crystal growth rates. Therefore nucleation temperatures with impure seed preparation need not be noted. Test R.D.7. with  $64 - 75\mu$  P.G. seed however showed a faster growth rate than R.D.4. particularly in the early stages. This could be due to an impurity diffusion into the seed to achieve an equilibrium partition with the mother liquor, enchancing the rate of growth.

A comparison of Runs R.C.14. and R D.1. shows a favourable agreement between Batches C and D, with Batch D showing a slower growth rate as would be expected from the chemical analysis. 7. 2. 2. 5. 1. Batch E. (0.9% Di - P.E. 5.2\% Formal)

A considerable amount of Batch E seed was prepared from Batch E mother liquor in a number of batch crystallisations by nucleating 22% m/v solutions. The collected sieve fraction  $89 - 105\mu$  was then size analysed, after attrition at 2000 r.p.m. in Cell C, for a more detailed study with Batch E mother liquor.

R.E.1. at 70°C, Experiment 33, showed a very similar growth rate to R.C.14. but rather faster than R.D.1. This indicated complete suspension of the rather larger  $89 - 105\mu$  sieve fraction crystals. The suspension characteristics were studied in more detail in later experiments (Section 7.24).

Using R.E.1. (30%) as control R.E.2 with 27.5% initial concentration was carried out to find the effect of starting the growth experiment at a different initial concentration. Although it indicated a slower growth than R.E.1. for equivalent supersaturations, the number of readings obtainable were too limited to obtain an accurate analysis. R.E. 3, 4 and 5 were therefore carried out at 60°C to study this effect further. Equivalent supersaturations for these runs should give the same growth rate regardless of the initial supersaturation. The fact that these results do not concur must be due to one of the following reasons:-

- (a) The normal growth velocity of a crystal is dependent on the crystal size (i.e. contrary to McCabe's AL law)
- (b) The initial seed size distribution is incorrect.
- (c) The increase in crystal area throughout a run is not simply due to the increase in crystal size due to growth.

Of these possibilities (c) seemed to be the most feasible. It was thought possible that a surface "roughness" effect might exist which would be proportional to the mass of solute deposited per unit crystal seed area, possibly caused by growth of numerous screw dislocations. This was therefore studied further in Experiments 104 to 109 with different initial seed masses at these different initial supersaturations in an attempt to obtain the quantitative effect. The runs at first seemed to further substantiate the "roughness" hypothesis, with smaller initial seed masses undergoing faster normal growth velocities under equivalent conditions. However on examination of the crystal products (Table 28 , Appendix B ) for these runs it could be seen that in fact the increase in surface area throughout these runs, in addition to that calculated, was due to attrition occuring during growth. Although a quantitative attrition effect is not possible from the limited data obtained, it appears that there exists a critical time (i.e. diameter increase) for each growth velocity (which is dependent on supersaturation) which if exceeded will cause excessive brittleness of the growing crystal resulting in attrition under certain hydrodynamic conditions. Examination of R.E.15. product using 2g of seed grown in 30% m/v initial concentration solution at  $70^{\circ}$ C, where the high temperature will produce the fastest growth velocity and weakest crystals, showed a product size almost as predicted (Table 26 , Appendix B ) with some apparent agglomeration but no sign of any attrition. It was therefore considered safe to work with solution supersaturations up to about Ac = 4% with 2g of seed.

Batch E was also used to establish the effect of heterogeneous particles on the growth velocity (Section 7.2.3.) and to study the effect of the stirrer position on the suspension characteristics of a run (Section 7.2.4.). Having established that absolute cleanliness of a cell is essential, and found the optimum stirrer position, R.E.31, Experiment 102, was carried out in this position showing a good comparison with R.E.19. and ascertaining an efficient cleaning of Cell C after the previous particle additions.

R.E. 6 at 50°C was carried out at too high an initial concentration while establishing the attrition effect, resulting in erroneous high results. However tests R.E.19, R.E.4 and R.E.38 at 70°C, 60°C and 50°C respectively, compare favourably, although with somewhat faster growth rates, with R.C.14, R.C.6 and R.C.7 at the same temperatures. As it was possible that each batch of material might have contained some small amount of contaminant as was found in Batches B, F and G, this suggested that Batch E was the batch which contains the least.

#### 7. 2. 2. 5. 2. Filtered Batch E

As an enhanced growth rate was found with the presence of heterogeneous particles (Section 7.2.3), the effect of filtering production material through a fine filter was studied. A 10% m/v solution of the material was prepared, filtered through a 0.45 µ membrane filter, and slowly evaporated to dryness. The filtered material amounted to 0.030 mass% of the P.E. As the stability of Formal in solution at high temperatures has been demonstrated in the previous work (1) the impurity content should remain constant. Experiments 110 and 111 were carried out on Batch C material to find the effect of filtration, However as the products of Experiments 104 to 109 had not been size analysed at this time it was anticipated that the effect would be more pronounced with the higher initial concentration of 27.5% m/v at 60°C. Although this effect is masked therefore by attrition occuring during growth, it was surprising to note that R.C.F.1 with the filtered material showed a faster growth than R.C.18 . This was contrary to expectations, having established (Section 7.2.3) that heterogeneous particles enhance crystal growth.

It was considered that a study of filtered Batch E material would give more relevent growth rate and activation energy data for the impure material than the normal production material with an unknown quantity of heterogeneous particles. Experiments 128 to 132 were therefore carried out with the filtered material. Test R.E.F. 2 with 27.5% initial concentration is again irrelevent as it was carried out for a comparison with R.E.F.4. to find the proposed"roughness" effect of using different initial supersaturations and simply illustrates the amount of attrition which occured during growth. However tests R.E.F.1. and R.E.F.4 showed growth rates ca. 75% faster than R.E. 19 and R.E.4 (at 70°C and 60°C respectively) whereas R.E.F.5 at 50°C showed a growth rate essentially the same as R.E.38 at the same temperature. Product examination of R.E.F.4. (Table 27-, Appendix B) showed this to be due to attrition occuring during the growth process and it is to be assumed therefore that heterogeneous particles are beneficial in establishing a less brittle crystal when grown at higher growth rates (i.e. in this case at higher temperatures). Test R.E.F.3 (at 40°C) exhibited no growth for the 24 hours of the experiment and this was at first thought to be completely anomalous. However test R.P.E.F.3 at 40°C, Experiment 133, also showed complete growth inhibition in contrast to R.P.E. 19 under the same conditions. This appears a real effect at this temperature, therefore, and it is possible that heterogeneous particles are necessary for growth at a lower temperature, possibly to produce the required dislocations on the crystal surface.

#### 7. 2. 2. 5. 3. Purified Batch E.

Tests R.P.E.1. to R.P.E.9 at 70°C were carried out for a comparison with purified Batch G material, and also to establish the enhancing effect of heterogeneous particles (Section 7.2.3.) Test R.P.E.10. (at 30°C) showed a faster growth rate than R.P.E.9 (at 70°C) which must have been due to nucleation induced at the start of the run (although the initial  $\Delta c$  was only about 4.3%). Test R.P.E.11 at 60°C with an initial supersaturation at  $\Delta c = 5.4\%$  indicated a growth velocity more than an order of magnitude faster than R.P.E.12 at the same temperature with an

- 137 -
initial supersaturation of Ac=3.2% which again must have been due to nucleation. Test R.P.E. 13 at 60°C however with an initial supersaturation of only Ac=1.4% showed complete growth inhibition for the 81 hours of the test. There was therefore a very limited metastable region within which this system could be studied, and a comparison with different initial concentrations to observe the 'brittleness' effect of the Pure P.E. crystals was impractical. Test R.P.E. 14 however was done with 1g of seed with A c=3.2% and resulted in a growth rate slower by about half than R.P.E. 12. This would either indicate agglomeration during growth or an impurity in the solution being absorbed on the crystal surface more slowly with the smaller amount of seed. This latter explanation would also account for the growth inhibition of test R.P.E. 13., since growth at this low supersaturation was observed (tests R.P.E.12. and R.P.E.14.) once started at a higher supersaturation.

A seed mass of 5 g was therefore used for R.P.E.15, which would have approximately the same crystal surface area as R.P.E.12 when the supersaturation had fallen to  $\Delta c=1.4\%$ . However growth inhibition persisted. The possibility of contaminant could not be overuled as R.P.E.12 would have a depleted contaminant concentration in solution, assuming the contaminant built into the crystal lattice, after the growth to a solution supersaturation of  $\Delta c=1.4\%$ .

A comparison of tests R.P.E.7 and R.P.D.5 at 70°C Experiments 68 and 75, show a similar growth rate but with R.P.D.5. apparently about 20% slower until about  $\Delta c=1.2\%$  when approximately 4g of solute had been deposited. This could be due to Batch D being slightly contaminated,

- 138 -

which would also account for the slow growth of R.D.1. compared with . R.E.19.

An extraction of purified Batch D was therefore carried out with Molecular Sieve Type 13X in the method described in Section 7.2.2.7.2. Experiment 117 with a 20% solution of this material (Ac=1.4%) however still showed complete growth inhibition. It was considered possible that a much higher degree of purity was necessary to initiate growth at this very low supersaturation; not only would this be very difficult to obtain however, but a means of analysing very low impurity concentrations had not been established nor had the critical impurity been isolated.

Experiments 118 to 122 inclusive were carried out, which together with Experiment 113 at 60°C show the effect of temperature on the growth rate for this nominally pure material, purified Eatch E.

As anticipated the results show purification to improve the growth rate at all temperatures; for example at 60°C, R.P.E.12 has a rate ca. x 5 faster than R.E.4 and of the same order as R.E.19 at 70°C. However it can be seen that the increase of growth rate with temperature increases with supersaturation, with little difference below about 0.05 supersaturation. R.P.E.17 at 40°C ( $\Delta c=3\%$ ) showed a low growth rate initially, but the rate then increased. This test was repeated (R.P.E.19) to obtain intermediate valves with the same result. It can be seen that the growth rates a maximum at a supersaturation, <sup>s</sup>, of about 0.1 where the value of approximately 1.8 x 10<sup>-5</sup> is higher than that obtained with R.P.E.12 at 60°C, at an equivalent supersaturation. There seems to be no logical explanation for this other than it being the progressive depletion of some contaminant in the mother solution,

### 7. 2. 2. 5. 4. Filtered Purified Batch E

A 10% m/v solution of Batch P.E. was filtered through a 0.45µ membrane filter and evaporated to dryness. Test R.P.E.F.1. at 70°C showed no growth for the 7 hours of the test. The filtration process was therefore repeated using a completely new set of apparatus washed with distilled water. Test R.P.E.F.2. (a repeat of R.P.E.F.1) now showed a similar growth rate to R.P.E.20 under the same conditions. The first filtered batch must have, therefore, picked up some contaminant in the filtering process. T est R.P.E.F.3 was carried out at 40°C and showed no growth for 22 hours, which, in view of the growth inhibition of R.E.F.3 at this temperature, appeared to be a real effect.

- 140 -

A comparison of R.P.E.7. and R.P.E.20 (70°C) with initial supersaturations of  $\Delta c=2.5\%$  and  $\Delta c=3.8\%$  respectively showed a faster growth rate with R.P.E.20. As no attrition is expected under these conditions, it is possible that the discrepancy is due to a 'roughness' effect caused by heterogeneous particles. Test R.P.E.F.4. ( $\Delta c=2.7\%$ ) was therefore carried out and showed a similar growth rate to R.P.E.7 indicating that filtration had no effect. It was therefore unlikely that this could be a roughness effect due to heterogeneous particles and appeared to indicate a contaminant being adsorbed at the beginning of the test with the higher supersaturation (R.P.E.20).

R.P.E.F.5. was then carried out at 60°C and showed a growth rate much slower than R.P.E.12 at this temperature, suggesting that catalytic particles had been removed.

Test R.P.E.F.4 was repeated, (R.P.E.F.6) to find the reproducibility and it was found that the growth rate was much slower initially but after about 0.7g of solute had been deposited the growth rate became faster than R.P.E.F.4. This is possibly due to the adsorption of contaminant. Reproducibility with filtered material proves to be very poor therefore, whereas with the "naturally occuring" heterogeneous particles present the reproducibility was good. This is possibly due to growth occuring by adsorption on dislocations in the crystal surface which are readily 'poisoned' by traces of contaminant, whereas heterogeneous particles help recreate adsorption sites.

# 7. 2. 2. 6. Batch F ((0.1% Di-P.E, 5.5% Formal)

Test R.F.1. showed no growth for  $\frac{3}{4}$  hour. To check whether an impurity had been picked up in the seed preparation, unprepared Eatch F was sieved and the same sieve fraction used for the qualitative experiment 47. This still showed a very slow growth considering far more attrition would be expected with this unprepared seed which would provide a relatively large surface area available for growth.

Control test R.E.8. was therefore carried out which gave a similar growth rate to R.E.1. confirming that there was no impurity in the cell or glassware used for solution preparation.

R.F.3. a repeat of R.F.1 was left overnight to see the extent of the growth inhibition and by morning a reasonable growth had been obtained. The more detailed study R.F.4. showed that in fact most of the inhibition was in the first  $\frac{3}{4}$  hour, although growth after this was still slow in comparison with R.A.2. which could hardly be accounted for by the difference in Formal composition.

To check the possibility of sieve contamination as found for the

finer sieves 200-350 mesh in the earlier experiments with P.G. material (Section 7.2.2.7) another qualitative experiment was carried out, 51, using a completely different set of sieves to those used in Experiment 47. but the result was the same.

To confirm that no impurity could have been picked up in the seed preparation, a small batch of Eatch E seed was prepared in the same way as the Eatch F seed using the same apparatus. The sieve fraction  $89 - 105\mu$  was used as seed, and in the computation of this test (R.E.9) the same size analysis was assumed as found for the bulk of the prepared seed of this Eatch. This appears to be a reasonable approximation in view of the rate of concentration decrease found. This test R.E.9. gave growth rates an order of magnitude greater than test R.F.4 which confirmed that Eatch F must contain some impurity more effective than that attributed to Di-P.E. or Formal, possibly the same impurity as that inhibiting growth in Eatch B.

#### 7. 2. 2. 7. 1. Purified Batch G

Batch G was purified by the HCl refluxing method described Section 3.2 and this material then investigated in order to obtain a more complete and accurate study than the previous work (1). Experiment 30 (R.P.G.1) exhibited no growth over a period of five hours. This was repeated in Cell S with the same result it was realised that this anomalous phenomenon could possibly be due to an impurity contracted from the sieves. The 200, 240, 300, 350 mesh sieves had inadvertently been used to sieve a catalyst of vanadium pentoxide on a silica base. The material < 350 mesh was remixed with the bulk material before use, and although the sieves had been washed with detergent they could still have contaminated the material.

To check this R.P.G.3 was carried out with material collected in the larger sieves used for the solution and sieve cut  $89 - 105\mu$ , i.e. >170 mesh, used for seed. This gave a growth rate of the expected order in comparison with previous work (1), and so these four contaminated sieves were discarded and a new set used.

A further quantity of Batch G material was purified. Because of the hazards involved with chipping crystallised material from a glass vessel, a high density polyethylene bucket was now used for the recrystallisations involved. Experiment 40 with this new batch of purified material showed a slower growth than R.P.G.3. In case this could be an unevenly distributed impurity in Batch G, qualitative experiments were carried out, 41 and 42. with Batch G solution and unclassified seed in Cells C and S, which being of the same order, confirmed that the cells were not causing the inhibition. Also as the unclassified seed would be expected to have a larger specific surface than the sieve fractions usually used for seed, this growth appeared to be normal. A repeat experiment R.P.G.5 again gave a similarly slow growth to R.P.G.4. To check Cell C again, this was repeated in Cell S and found to show an even slower growth rate. However, it was noted that some insoluble pieces of material were present in this experiment suspected to be chips from the polyethylene bucket. A small batch of purified Batch D was therefore purified using all glassware and Experiment 45 with this material showed a very fast growth. Although this confirmed that the polyethylene bucket had affected an inhibition of growth in Experiments 40, 43 and 44,

- 143 -

this growth was far faster than R.P.G.3., which had not involved polyethylene. Another batch of P.G. was therefore prepared using all glassware. R.P.G.7 with this material showed a growth rate of the same order as R.P.G.3. i.e., faster than Experiments 40, 43 and 44 but still not as fast as R.P.D.1. The discrepancy between R.P.G.3 and R.P.G.7 is possibly because of the higher initial supersaturation used in R.P.G.3. causing preferential adsorption of an impurity into the crystal lattice.

Runs R.G.3 and R.G.4. were carried out with Batch G solution using 89 - 105µ sieve fraction P.G. and E seed respectively. These showed an inhibited growth of the same order as R.F.4. Both Batches F and G contained <0.1% Di-P.E. and a high Formal concentration and so although, (as with Batch B,) it seemed inconceivable that this growth inhibition could be an effect of Di-P.E. or Formal, the only conclusive proof of an unknown impurity lay with the comparison of the purified material with R.P.D.1. To confirm that this was not a freak run Batch E was carefully purified and test R.P.E.l again showed a very fast growth. The rate of decrease in concentration was so great however that it appeared that nucleation had been induced. This theory was strengthened when R.P.E.1. was repeated, Experiment 58 showing a very poor reproducibility. R.P.E.3, therefore, was done using a lower initial supersaturation and still showed a relatively fast growth rate. R.P.G.8 however, with the same conditions and the same seed showed no growth at all for five hours. This confirmed that Batch G. contained some other impurity than Di-P.E. or Formal, which was a very effective crystal growth inhibitor, was not destroyed by refluxing with hydrochloric acid,

- 144 -

and was not detected by the usual gas chromatographic analysis.

### 7. 2. 2. 7. 2. Attempted Extractions of unknown impurity

As any extraction of production material would be likely to change the concentrations of the known impurities Di-P.E. and Formal and hence the growth rate, P.G. was used for the extractions where any increase of growth rate after an extraction would indicate the effectiveness of the extraction. As this impurity had seemingly not been obvious in the chromatographic analysis, and as previous work (1) had shown that a trace amount of oil could completely inhibite crystal growth, the nature of this impurity was suspected to be an oil or grease. A possible source is from silicone grease used in plug cocks and valves on the production plant. The recommended solvent (90) for silicone grease was Toluene.

One litre of 30% m/v P.G.aqueous solution was made up and stirred in a flask, fitted with a water condenser, with one litre of toluene at 80°C for two hours. The aqueous layer was separated, cooled, filtered and the P.G.T. material dried in an oven. However, Experiment 57 with this material showed a slower growth rate than R.P.G.7. The only explanation for this is that a further impurity was added from the toluene. As only G.P.R. toluene was available, and trace amounts of 'oil' are apparently very effective inhibitors this was quite possible.

At this stage to make completely sure that no impurity was being presented by the cells, possibly as the result of previous impure experiments. Cell S was thoroughly cleared by scouring with a wire brush on an electric motor. The cell was then washed with a water hose and finally by filling with distilled water and stirring under experimental conditions for about an hour.

One litre of 12 mass P.G. aqueous solution was made up and held at  $50^{\circ}$ C in a one litre flask by means of an isomantle. 5.0g of acid washed Kiesulguhr were added and stirred for 3 hours. The solution was then filtered first through a No. 1. Whatman paper (approximately 100  $\mu$  porosity) and then through a 0.45  $\mu$  Millipore membrane filter. The P.G.K. material was carefully evaporated to dryness and Experiment 62 in Cell S with this material under the same conditions as R.P.G.8. which had shown no growth for five hours, grew very slowly. However the growth rate was still much slower than R.P.E.3.

One litre of 12% mass fraction P.G. aqueous solution was again made up and stirred in a 3 litre flask fitted with a water condenser with one litre of analar benzene at 50°C, maintained by an isomantle, for two hours. The aqueous layer was then carefully separated off and the P.G.B. material carefully evaporated to dryness. This showed a growth rate, Experiment 63, faster but of the same order as R.P.E.3. after the initial stages. But these initial stages were very much slower than R.P.E.3. As these experiments, 62 and 63, were carried out with Batch E seed, a check test R.P.D.2. was done in Cell C with Batch E seed. This showed a growth rate of the same order as R.P.E.3.

One litre of 10% mass fraction P.G. aqueous solution was stirred in a one litre flask, maintained at 40°C, with 10g Molecular Sieve (Type 13X) for two hours. The solution was then filtered first through a

No. 1 Whatman paper and then a 0.45 Millipore membrane filter. The P.G.M. material was carefully evaporated to dryness and Experiment 65 at 700C showed a growth rate slower in the initial stages but subsequently faster than R.P.E.3. Test R.P.E.5 with Batch E seed in Cell C again showed a growth rate of the same order as R.P.E.3 and R.P.D.2. Test R.P.E.6 was carried out under the same conditions in Cell S and showed a growth rate about an order of magnitude greater than R.P.E.5. This was eventually shown Section 7.2.3.1. to be due to an enhancing effect of extraneous particles in Cell S. Reproducibility, however, was shown to be very good (Experiments 67 and 69) under these enhanced conditions. So although Experiments 62, 63, 65 and 67 do not show realistic growth rates under normal conditions, they are comparable in themselves and Experiment 65 shows adsorption in aqueous solution with 10% molecular sieve type 13X to be the most effective method tried of extraction of the unknown impurity. However, comparison with Experiment 67 shows the extraction to be by no means complete. Experiment 73, with purified Batch E material after adsorption with molecular sieve, showed on comparison with Experiment 69 that molecular sieving had no effect on the purity of purified Batch E material. Therefore six successive extractions with 10% m/v molecular sieve type 13X were done on a 10 mass %. P.G. aqueous solutions as described above.

In an attempt to obtain aquantitative estimate of the amount of impurity present, a known weight of sieve was taken from each extract, dried in an oven at 100°C, reweighed and then calcined in an open muffle furnace at about 850°C for three days. The resulting sieve was again weighed enabling the amount of impurity burnt off to be calculated. Elank tests showed a loss in weight due to the dry sieve only and also with adsorbed purified Batch E which could not be accounted for with the 10% m/m mother liquor allowance. This was attributed to molecular sieve composition and preferential adsorption of P.E. molecules respectively. Compensation for both was made in the impurity content estimates. The results of these extractions are shown Appendix F and although only the first two extractions showed a measurable decrease in impurity content, within the accuracy of this method, the theoretical impurity content after six extractions, based on a constant partition coefficient consideration has been calculated as 0.0329ppm(AppendixF). The original impurity concentration was estimated to be 0.26%.

Run R.P.G.M.2, Experiment 96, after two molecular sieve extractions showed no growth for 24 hours, and R.P.G.M.3, Experiment 97, with purified Batch G material after six successive extractions and an estimated.03ppm.impurity content showed no growth for six hours. Attempts at inducing growth by the addition of zinc and copper particles failed. Although these were under conditions of low initial super saturation ( $\Delta c=1.2\%$ ) Experiment 98 with purified Batch E material under the same conditions showed a reasonable growth. Complete extraction of the impurity was therefore considered unsuccessful. 7. 2. 2. 7. 3. Attempted neutralisation of the unknown impurity

On the assumption that the impurity might be grease or oil an attempt was made to neutralise the effect by adding detergent

- 148 -

to separate the 'grease' molecules. This was done, Experiment 99, by adding successive 0.1 cm<sup>3</sup> aliquots of 10% non-ionic detergent (Nonidet P.40) which had previously been shown (R.C.4.) to have no effect on the growth of Batch C material, in twenty minute intervals. For 0.3% contaminant present in 27.5% P.E. solution this would require about 1.8 cm<sup>3</sup> of the diluted detergent to give an equal mass. 2.5cm<sup>3</sup> of 0.1 cm<sup>3</sup> aliquots were added with no effect on the growth inhibition. 1cm<sup>3</sup> of undiluted 'Nonidet' was then added and finally when no growth was apparent after a further hour, 1.5 cm<sup>3</sup> of 'Teepol' detergent was added. This was stirred for a further 14 hours, but again complete growth inhibition persisted.

As it had been found that heterogeneous particles enchanced the growth rate in Cell S, it was thought possible that this might be due to the effect of the particles adsorbing the impurity. Experiment 100 was therefore carried out in Cell C with the addition of 0.5 g brass filings cut from Cell S. However there was still complete growth inhibition for  $2\frac{1}{2}$  hours.

McCartney and Alexander ( 63 ) found that the crystal growth of calcium sulphate was markedly retarded by the presence of polycarboxylic materials but that the retarding action was largely destroyed in the presence of HCL. As the impurity was unidentified in this case, HCL was added in an attempt to nullify the growth inhibition. This experiment 101 was carried out in the glass cell, G and as the required pH necessary was unknown 0.1 cm<sup>3</sup> aliquots of 10%HClwere added in 20 minute intervals until a total of 1.0 cm<sup>3</sup> 10% HClhad been added. Five successive aliquots of 0.5 cm<sup>3</sup> of 10% HCl were then added every half hour, and finally 1cm<sup>3</sup>,

- 149 -

2 cm<sup>3</sup> and 5 cm<sup>3</sup> of concentrated HCl added at hourly intervals, however this had no effect on the growth inhibition.

As complete removal or neutralisation of the contaminant seemed extremely difficult it was decided to work on Batches C, D and E only these being comparable with each other and apparently not contaminated (as indicated by Experiment 73 where it was found that molecular sieving, the most effective extraction process found for the contaminant, had no effect with purified Batch E).

# 7. 2. 2. 8. Purified Batch E + 1.0% Di-P.E. (P.E.D)

A synthetic mixture was prepared of purified Batch E with 1.00% Di - P.E. added in the form of commercial DiPE chromatographically analysed as containing 4.0% Formal and no detectable quantity of Pentaerythritol. Tests R.P.E.D.1 and 2 were carried out, (Experiments 137 and 138,) at 70°C and 50°C respectively. The calibrations and equilibrium concentrations were taken to be the same as for Fure P.E. which seemed a reasonable approximation as only 1.0% impurity was added. In each case the growth rate was found to be slower than for Furified Batch E, R.P.E.20 and R.P.E.16, but of the same order as found for Batch E, R.E.19 and R.E.38. However, as the Di-P.E. could also contain some contaminant as effective as that in batch G, this is not necessarily an inhibiting effect of Di - P.E. As no analytical method, other than an indication from the effect on growth rate was available for this unknown contaminant it could not be definitely ascertained that the reduced growth rates were due entirely to the Di - P.E.

#### 7. 2. 3. Enhancing effect of heterogeneous particles.

### 7. 2. 3. 1. Establishing the effect.

As indicated above, it was found that heterogeneous particles present in Cell S after cleaning with a wire brush just prior to Experiment 62, caused a very effective growth rate enhancement. The experiments leading to this conclusion are outlined below.

Experiments 62, 63 and 65 all indicated a partial removal of the impurity causing growth inhibition of P.G. material. However Experiment 67, R.P.E.6, in Cell S, gave a growth rate very much faster than R.P.E.5, under the same conditions in Cell C. R.P.E.5 was therefore repeated, Experiment 68, with a similar result. R.P.E.6 was now also repeated, Experiment 69, in Cell S, again with the same result and very much faster than R.P.E.5 and 7 in Cell C. R.P.D.3 in Cell S also showed a very much faster growth than R.P.D.2, in Cell C under the same conditions.). At this stage it was thought possible that Cell C had aquired some impurity which was inhibiting growth, possibly from the impure Batches G and F in the previous Experiments 40 to 60.

Experiment 71, R.E.10, with 30% m/v Batch E solution at 70°C was carried out in Cell C to compare the result with R.E.1, Experiment 33 under the same conditions in Cell C. R.E.10 showed a similar growth rate although it was faster in the final stages. This was also similar to R.E.7, Experiment 39, carried out in Cell S. The discrepancy in the final stages of growth with R.E.1 being slower than both R.E.7 and R.E.10, could possibly be explained by different hydrodynamic conditions. Experiment 72, R.E.11. in Cell S confirmed that either both cells C and S were previously inhibited and the inhibiting purity had been removed from Cell S when cleaned prior to Experiment 62, or Cell S now contained a crystal growth accelerator.

A comparison was made R.P.D.4 in Cell A which was first dismantled and thoroughly cleaned and polished. This then showed a growth rate at first slower, but of the same order as R.P.D.2, but nevertheless much slower than R.P.D.3. Although accurate reproducible results were difficult with Cell A because of a poorly defined image, this run showed a definite enhancing effect of Cell S. Cell C was now cleaned with a wire brush and then polished with water soaked paper. R.P.D.5 again showed a growth rate of the same order as R.P.D.2. It was realised that although Cell S had been cleaned with a wire brush prior to Experiment 62, and washed out with a jet of water under experimental conditions, the interior had not been polished.

Cell S, therefore, was again cleaned with a wire brush attached to an electric motor and this time polished with paper soaked in distilled water. The cleaning operation was made difficult, however, by the thermometer pocket projection into the cell interior. Efficient cleaning around this pocket was impractical. Experiment 76, R.P.D.6 with this cell now showed a growth rate faster, but of the same order as R.P.D.5. although very much slower than R.P.D.3 in the same cell before polishing. Also R.E.12 in Cell S and R.E.13 in Cell C with the same conditions as R.E.1 and R.E.7 before the cells were cleaned, showed very similar growth rates. This was conclusive proof that the heterogeneous particles of swarf from Cell S, on the first cleaning had very effectively enhanced the subsequent crystal growth experiments. This could possibly be a catalytic effect of the metal ions from the brass, or creation of secondary nuclei or else adsorption of the heterogeneous particles into the crystal surface creating "growth sites" for crystal growth.

Cell C was now given the same treatment as Cell S prior to Experiment 62 i.e. it was thoroughly cleaned with a wire brush on an electric motor, washed with a jet of water and stirred with distilled water. Experiment 79, R.E.14 in Cell C after this treatment showed a growth rate enhanced by about 15%. To confirm that this was due to the presence of copper particles, and obviate the possibility of it being due to the removal of trace amounts of impurity, Cell C was thoroughly polished with paper, soaked with distilled water, and R.E.15 carried out after this polishing showed a similar growth to R.E.13 before cleaning with the wire brush.

0.5 g zinc powder having an average particle size of about  $3\mu$  was added to Cell C at the start of R.E.16 and resulted in growth of seed approximately 20% faster than R.E.15. 0.5 g copper powder having an average size of about 50 $\mu$  but containing many particles  $<10\mu$  was added to R.E.17 resulting in a growth of seed slower than R.E.16 but still about 10% faster than R.E.15.

Although this confirmed that heterogeneous particles enhanced crystal growth, the degree of enhancement was considerably more in Cell S (e.g. R.E. 11 about three times as fast as R.E. 15). This could be either due to the larger number of heterogeneous particles in the swarf produced by the wire brush, or else an additional catalytic effect of some metallic ion, other than copper or zinc present in the brass. To

- 153 -

distinguish between these possibilities, 0.5 g of brass filings were taken from Cell S, consisting of flat jagged plates which when measured across an average dimension on a microscope slide and assumed spherical, gave a surface area of 215 cm<sup>2</sup> for 0.5 g which would be of the same order as the smooth internal surface of Cell S in contact with the mother liquor during a run. However due to the particle shape the actual surface area of filings would be well in excess of this figure. These filings were added in Experiment 139, R.E.40 in Cell C giving a growth rate of seed about 30% faster than R.E. 15. On examination of products after these metallic particle additions it was observed that they were incorporated into the crystals. Also with each of these runs, the particle additions were made before the introduction of seed, and after stirring for about 15 minutes no decrease in concentration was observed. It was therefore concluded that heterogeneous particles present during crystal growth enhance the growth rates, possibly by adsorption onto the crystal surface causing dislocations in the crystal structure and making available more growth sites for deposition of solute molecules. 7. 2. 3. 2. Absolute cleanliness of Cell C

In view of this enhancing effect of extraneous particles it was essential to have a cell completely free of foreign particles. This was impractical with Cell S due to the thermometer pocket obstruction making absolute cleanliness around this pocket very difficult. At this stage it was considered necessary to check Cell C with a clean glass cell. As a first approximation a jacketed beaker thoroughly cleaned with chromic acid, benzene and distilled water, of approximately 400 cm<sup>3</sup> capacity was

- 154 -

used. It was fitted with a large rubber bung, a thermometer, and a stirrer positioned centrally.

Experiment 83 (R.E.18) was carried out with this beaker filled with 250 cm<sup>3</sup> of 30.0% m/v Batch E solution and 2 g of Batch E 89-105 $\mu$ seed and stirred for 3 hours at 70.00C. The resulting solution was poured into Cell C held at 70.0°C and the refractive index read. The result was of the order expected from R.E.15.

Cell C was again dismantled and thoroughly cleaned and polished. As the prism on this cell had a contact adhesive sealing the refractometer prism and the Cell S had an epoxy resin seal, to obviate the possibility of either effecting crystallisation, the contact adhesive was removed and replaced with epoxy resin. R.E.19 done with this cell showed a very similar growth to R.E.15 except in the final stages below 0.06 super saturation where it was rather faster, but this is accounted for in the next section.

A glass cell, with similar dimensions to Cell C, Cell G, was made with the light path through a suspension kept to a minimum for ease of use. An enclosed jacket proved difficult in construction so a constant volume type water circulator was used and the jacket left open. Experiment 87 with the first glass cell at first indicated a very fast growth rate with a rapid decrease in concentration. However this proved to be due to an interchange of suspension and circulating water around the lip of the glass refractometer socket, and eventual dissolution of crystals. Further investigation showed the height of this lip to be critical. A water-tight seal was difficult, involving a refractometer clamped to the glass cell, and undesirable. So the refractometer socket

- 155 -

lip had to be of such a height to allow for solution expansion with temperature, the hydrodynamic fluctuations at 2000 r.p.m. stirrer speed but still to largely cover the prism face. Such a cell was constructed but difficulty was experienced (R.E.23) in obtaining a well defined image, so the accuracy of this run was suspect, although, overall of the same order as R.E.19. The optimum position of the light source was found to be beneath the cell and R.E.24 (a repeat of R.E.23) was more successful and showed a similar growth to R.E.19 in Cell C. A further comparison of Cells G and C, R.E.28 and R.E.29 respectively, at 60.00C again showed very similar growth rates. So as the Cell C was more robust and easier to use than Cell G, all further experiments were carried out in Cell C. Experiments enhanced by heterogeneous particles were: Experiment No: 62, 63, 65, 67, 69, 70, 72, 73, 76, 77, 79, 81, 82, 139. *1.2.4.* Hydrodynamic Considerations

Experiment 18, 21 and 19 with Batch C at 500 r.p.m, 1000 and 2000rpm. respectively, showed the effect of stirrer speed to be that of holding the particles in suspension. Each showed a similar growth rate until 0.09 supersaturation when the growth rate of R.C.13 at 500 r.p.m. (with a crystal mass at this point of about 6g) started to fall off in comparison with R.C.14 at 2000 r.p.m. However, R.C.16 at 1000 r.p.m. remained the same until a supersaturation of about 0.075 when (at a crystal mass of about 8g) it started to fall off in comparison with R.C.14. These critical crystal masses seemed to indicate the point at which settling of crystals began for a particular stirrer speed. It is of interest to note that although an increase of stirrer speed maintained the crystal suspension, the calculated growth rate constant K based on first order integration assumption, still decreased progressively with supersaturation.

On the basis of these results 2000 r.p.m. seemed quite adequate to maintain the crystal suspension and so all runs after Experiment 22 were done at this stirrer speed. It was noted however on comparison of runs with Batch E material with different cells and particularly after reassembly after the various cleaning operations, that there was an unexpected variation in the final stages of the runs as the concentration approached equilibrium (e.g. R.E.19 was faster than R.E.13 below about 0.06 supersaturation). This was attributed to different hydrodynamic conditions. Experiment 85, R.E.20 was therefore carried out at 2500 r.p.m., the maximum speed attainable with the particular motor used. However growth appeared much faster throughout the run, using the size analysis after attrition at 2000 r.p.m. for the basis of calculation, even in the initial stages. In view of the comparison of Experiments 18, 19 and 21 this must have been due to additional attrition. The stirring was also quite violent at this speed, so 2000 r. p.m. was again used and a study of the stirrer position made.



The above three positions were tried with the rubber bung in each

- 157 -

case made to accomodate the stirrer shaft and thermometer. In position 1 the shaft was placed vertical and central such that the impeller blades had about 4 inch clearance with the cone of the cell. This was about as low as vibrations of the stirrer would allow, without the blades touching the sides. R.E.21 in this position at 2000 r.p.m. showed an increased swirling of solution than in previous experiments, which caused seepage in the mother liquor arround the rubber bung. Growth rates were calculated to be about 10% faster in this run down to a supersaturation of about 0.05, which was attributed to this seepage of mother liquor and hence a greater crystal/solution ratio than calculated. However below 0.05 supersaturation when the crystal mass had increased to about 9 g the growth rates were much slower than in previous experiments (c.f. R.E. 19). This was thought to be due to the crystals having grown large enough to fall past the stirrer blade settling in the 'dead-pocket' below.

Run R.E.24 in Cell G was carried out with the stirrer in an off-set position as in R.E.19 and previous experiments with Cell G. Growth rate results were shown to be similar with no settling observed in the glass cell.

Although it had been noted that the stirrer had been off-set in the previous experiments in Cell C, the exact position had not been noted.

R.E.25 was carried out in Cell C with the stirrer in position 2 i.e. the stirrer was off-set with the impeller/shaft union being on a level with the cone/cylinder junction of the cell, and the impeller blade about  $\frac{1}{4}$  in from the cell wall. The growth rate results were. similar to R.E.19 until 0.045 supersaturation but slower after this . . value when the seed mass was about 9.5g. The stirrer

- 158 -

was again changed, with the impeller moved lower and off-set further, so the tip was on a level with and almost touching the cone/cylinder junction, as shown - position 3. R.E.26 done at 2000 r.p.m. in this position showed a growth rate faster than R.E.25 and similar to R.E.19.

To test the suspension of large crystals a 33.5% m/v Batch E solution was made up for test R.E.27 at 70°C. The initial refractometer reading was off-scale but estimated at 110 which gave an initial concentration of 33.3% m/v. Growth rates for this test below 0.08 supersaturation were of the same order as R.E.19 indicating complete suspension even with 20 g of crystals of which about 20 No% >110/4 equivalent spherical diameter.

R.E.28 with 27.5% m/v Batch E solution at 60°C in a glass cell was examined carefully for any settling towards the end of the run. Fut orystals remained in complete suspension. R.E.29 under the same ochditions in Cell C showed a very similar growth rate. This stirrer position was therefore adopted as producing satisfactory hydrodynamic conditions for suspension of orystals of the size to be examined at 2000 r.p.m.

Although the off-set stirrer position had not been noted accurately, in experiments prior to Experiment 85, a comparison of R.E.3 and R.E.29 shows some scatter in individual growth rate values due to the small time intervals involved but similar rates overall even for low supersaturations with a crystal mass of 20 g. The earlier experiments in Cell C must have, therefore, been under similar hydrodynamic conditions.

- 159 -

#### - 160 -

#### SECTION EIGHT

#### DISCUSSION.

#### 8.1. Equilibrium in aqueous solution.

Equilibrium of a solute in contact with a solvent may either be achieved by growth of the solute in a supersaturated solution of the solute in solvent (i.e. crystallisation) or dissolution of excess solute in the solvent. Crystallisation processes are thought to proceed by the two consecutive steps: diffusion of molecules to the crystal surface and then integration of the molecules into the crystal This latter integration step is often so slow as to be lattice. rate controlling. Dissolution however is thought to proceed only by a diffusion process of molecules into solution. Equilibrium values for use with the growth experiments were therefore obtained from dissolution in the absence of the possibly inhibiting surface integration step. It was observed in the growth experiments that growth usually ceased at a concentration greater than the equilibrium concentration found from the dissolution tests. Burton et al (42) also reported this phenomenon of a lack of crystal growth even when the solution in contact with the crystal had a supersaturation as high as s\_0.1. They attributed this either to the absence of dislocations in the crystal surface, or else to the presence of so many of them that the mean distance between them is too small for the particle integration. As this would require of the order of 1012 dislocations per cm<sup>2</sup>, they favoured the former explanation. In this

work it was observed that this "apparent equilibrium" value, where the crystal growth ceased depended on the rate of growth in the particular experiment.

Although no account was taken of these final readings for use with the growth experiments, occasionally the experiment was continued to ascertain that there was no further decrease in solution concentration. These final readings representing an "apparent equilibrium obtained from crystal growth are recorded in the table on p.162 , together with the time for which this particular concentration value was observed. The longer times sometimes include an increase in solution concentration due to evaporation.

| Growth<br>Run. | Toc  | Apparent Equilibrium. |          | Time observed         | Equilibrium                                            |
|----------------|------|-----------------------|----------|-----------------------|--------------------------------------------------------|
|                |      | Scale S               | c % m/v. | at this conc.<br>Min. | obtained from<br>dissolution<br>c <sub>00</sub> % m/v. |
| R.D. 5.        | 70.0 | 87.3                  | 26.998   | 660                   | 26.310                                                 |
| R.E. 1.        | 70.0 | 86.9                  | 26.886   | 1200                  | 26.310                                                 |
| R.E. 7         | 70.0 | 85.8                  | 26.576   | 1460                  | 26.310                                                 |
| R.G. 1         | 70.0 | 88.2                  | 27.251   | 840                   | 26.310                                                 |
| R.E.11.        | 70.0 | 84.9                  | 26.323   | 2400                  | 26.310                                                 |
| R.E.16.        | 70.0 | 85.4                  | 26.464   | 760                   | 26.310                                                 |
| R.P.G.3.       | 70.0 | 81.6                  | 25.597   | 720                   | 24.771                                                 |
| R.P.E.6.       | 70.0 | 80.2                  | 25.184   | 110                   | 24.771                                                 |
| R.P.E.7.       | 70.0 | 81.4                  | 25.538   | 720                   | 24.771                                                 |
| R.E. 5.        | 60.0 | 70.5                  | 20.523   | 6000                  | 20.067                                                 |
| R.E.29.        | 60.0 | 70.3                  | 20.466   | 880                   | 20.181                                                 |
| R.P.E.14       | 60.0 | 65.0                  | 19.011   | 720                   | 18.634                                                 |
| R.C. 7         | 50.C | 59.0                  | 15.676   | 1500                  | 15.106                                                 |
| R.E. 6         | 50.0 | 59.0                  | 15.676   | 2400                  | 15.277                                                 |
| R.P.E.16       | 50.0 | 53.7                  | 14.729   | 600                   | 14.116                                                 |
| R.P.E.17       | 40.0 | 46.2                  | 10.812   | 720                   | 10.610                                                 |

It can be seen that R.G.l. with a relatively slower growth rate due to contamination of Batch G material indicated a higher "apparent equilibrium" value than experiments with Batches D and E at the same temperature. It can also be seen that R.E.ll carried out in the scoured cell S with the enhancing effect of the heterogeneous particles indicated a much lowcr equilibrium value than R.E.7. under the same conditions in the clean cell C. However when 0.5 g Zn dust was added to the solution in cell C, R.E.16, the growth rate was enhanced and the apparent equilibrium attained was lower than R.E.7. although not as low as R.E.ll. This effect was noted also with purified Batch E, being the "purest" material obtained. Growth still ceased at some value higher than the equilibrium value and the enhancing effect of the heterogeneous particles in cell S depressed the "apparent" equilibrium" value obtained (R.P.E.6.) compared with that in the clean cell C (R.P.E.7.). The actual equilibrium values obtained for Pure P.E. (section 5.) were obtained both by dissolution and by growth of nucleated solutions where a large surface area is available for growth, and found to agree. It appears therefore that the cessation of growth depends on the growth rate and is probably due to the lack of dislocation sites. However heterogeneous particles enhance crystal growth, possibly by increasing the number of growth sites, and permit growth at lower supersaturations.

As the presence of Formal enhances the P.E. solubility the exact concentration of impure P.E. solutions is required for the equilibrium (solubility) determination. Nucleation of the solutions of the required concentration would be difficult if an attempt was made to obtain equilibrium from growth, and so equilibrium was achieved from dissolution of the required solute concentration simulating a growth experiment. The results obtained were considered to be more reliable than any determination from growth. The results were well correlated by the conventional log x vs  $\frac{1}{T}$  plot above  $50^{\circ}$ C, but below this temperature the solubility was enhanced (by about 1 mass % at  $30^{\circ}$ C) compared with that expected from the correlation. Although this might be due to a sudden change in the impurity partition coefficient the difference at  $30^{\circ}$ C could hardly be accounted for by the amount of impurity present unless the chromatographic chemical analysis (table 1) is considerably different from the actual mass concentrations.

An unusual phenomenon was observed in the dissolution results of the impure materials. It was found that an enhanced solubility was obtained initially which then decreased gradually to a limit at which it remained constant. This was assumed to be the equilibrium value. The same value was attained whether the impure material contained Di-P.E. or not, but the degree of initial enhanced solubility was severely restrained with the presence of Di-P.E. (figure 5.4).

A possible cause of this temporarily enhanced solubility effect could be the non-homogeneous distribution of the Formal within the crystal in the initial batch of P.E. material used. If this contained more Formal in the outer extremes of the crystal than in the core (possibly as a result of the method of preparation) then since the diffusivity in the liquid would be expected to be greater than in the solid an initially high Formal concentration in the liquid would give an enhanced solubility. Equilibrium is then achieved by diffusion of the excess Formal into the remaining crystals from the solution thus resulting in a slightly lower solubility due to the purer mother liquor. This might also account for the enhanced values at  $\leq 50^{\circ}$ C where the solid diffusivity and mobility in the crystal lattice might be too low to attain impurity equilibrium, resulting in mother liquor of relatively high Formal concentration.

The effect of the Di-P.E. appears to be that of arresting the initial enhanced solubility which might be the effect of the Di-P.E. on the equilibrium system at this temperature, or possibly the effect on the original crystal preparation creating a more homogeneous impurity distribution.

It would be interesting to note the effect of annealing the original solid P.E. at a high temperature. This might allow impurity diffusion in the solid creating a homogeneous crystal and prevent the initial solubility enhancement on dissolution.

### 8. 2. Results of Previous Work (1) on Crystal Growth.

In the previous work (1) growth rates were calculated from measurements of solution refractive index change in seeded cells, assuming a first order dependence on supersaturation  $(c - c_{co})$  such that  $\frac{dc}{dt} = -KA(c - c_{co})$ . In order to do this the area after

each concentration change had to be calculated and the approximation

 $\frac{A_2}{A_1} = \left(\frac{M_2}{M_1}\right)^{\frac{2}{3}}$  was used. Results for K excluding the initial and final few readings were averaged and the activation energies found. A summary of the results found for Batch A and purified Batch A are shown in table 149 appendix E. The activation energies for growth of Batch A and purified Batch A were found to be 30.65 and 18.4 K cal / g mole respectively. A number of improvements to this method have been used in this work: A more accurate refractometer has been used; the area determination has been made allowing for the crystal size distribution; the Coulter Counter size analysis has been corrected to obtain a true equivalent spherical volume diameter; the calibrations and equilibrium determinations have been redone for greater accuracy.

The refractometer readings of the previous work were as accurate as the apparatus allowed. These were converted to the equivalent refractometer scale S readings of this work to enable the more accurate calibrations to be used and for use with the computer program 2 to allow for the size distribution of the attrited seed for the area determinations. This has been done, tables 150 and 151 with R.P.A.l. and R.A.5. using the equilibrium refractometer readings of the previous work and the uncorrected Coulter Counter size analyses (i.e. D\_) for a direct comparison. It can be seen that the effect of the average area approximation used in the previous work is accumulative throughout the calculation and R.P.A.l. shows an error of about x 2 in the final K determination with a final area of 9164 cm<sup>2</sup> as opposed to 5030 previously calculated. However readings are too few and over too limited a supersaturation range in these two experiments to accurately show the dependence on supersaturation. Tables 152 and 153 show the same two experiments calculated using the corrected equilibrium values found from dissolution in this work (section 5). The growth velocities g are, of course, as calculated in the previous tables, but when plotted against the

- 166 -

supersaturation s showed the sensitivity of the correlation on the equilibrium value. A comparison of the growth rate constants K also showed the sensitivity of these values on the equilibrium concentration which becomes more pronounced for the lower supersaturations. The correction was made for the Coulter Counter equivalent spherical diameters (i.e. D as opposed to D\_) and all the results for Batch A and purified Batch A (P.A.) calculated using the new equilibrium values and computation for area determination. The results are shown tables 154 to 160, appendix E. It can be seen from a comparison of R.P.A.l. and R.A.5. before and after correction that the Coulter Counter diameter correction makes only about 1% difference in the growth rates in this case. The most significant difference of these corrections is that of allowing for the crystal size distribution of the attrited seed as opposed to calculating the attrited seed area and assuming a monodisperse crystal system.

The growth rate velocities, g (cm / min) have been plotted figures 8.1 and 8.2 as log g vs log s and the values of  $k_{\perp}$  and b found for the correlation  $g = k_{\perp} s^{b}$  by the method of least mean squares. The values are shown below. The results at  $80^{\circ}$ C could not be calculated by this method as the calibrations had not been done at this temperature.

| B | <b>L</b> A | CH | A |
|---|------------|----|---|
|   |            |    |   |

| Run<br>No. | ToC  | Corrected<br>Temp. °C. | k         | b     |
|------------|------|------------------------|-----------|-------|
| R. A. 1.   | 60.0 | 60.1                   | 0.000183  | 2.701 |
| R. A. 2.   | 70.0 | 70.2                   | 0.000458  | 1.977 |
| R. A. 3.   | 55.0 | 55.1                   | 0.00116   | 4.375 |
| R. A. 5.   | 50.0 | 50.1                   | 0.0000357 | 3.408 |

- 167 -



SUPERSATURATION S 1.0

FIGURE 8.2.

PURIFIED BATCH & GROWTH RATE



SUPERSATURATION 3

| Run<br>No. | T°C  | Corrected<br>Temp. <sup>o</sup> C. | k                     | Ъ     |
|------------|------|------------------------------------|-----------------------|-------|
| R.P.A.1    | 60.0 | 60.1                               | 0.000303              | 3.319 |
| R.P.A.2    | 70.0 | 70.2                               | 0.000395              | 2.115 |
| R.P.A.4    | 50.0 | 50.1                               | 8.3 x 10 <sup>8</sup> | 25.97 |

Purified BATCH A (P.A.).

It should be possible to correlate the growth rate constants  $k_{\perp}$  using the Arrhenius correlation of  $\frac{d}{dT} \frac{d n}{dT} = \frac{E}{R^{T}T^{2}}$ 

and hence 
$$\ln k_{\perp} = \ln A - \frac{E}{R'T}$$

where T is degrees Kelvin; R' the Universal Gas Constant; A is a constant and E the activation energy for growth. This was done with apparent success in the previous work (1) for the averaged growth rate constants K based on a first order supersaturation dependence.

However values of  $k_{\perp}$  are extremely sensitive to the slope (exponent of s) b. In the previous work as the growth rate was assumed to be first order with respect to supersaturation, not many readings were taken and the supersaturation range was often very limited. Very few readings were taken at low supersaturations as the results were known to be more sensitive to the equilibrium value which, for the impure material, was suspect. It is fortuitous that R.A.5. at 50°C with only three readings over a very limited supersaturation range gives an exponent b of the same order as the other runs. Only four results were obtained with R.P.A.4 however and due to the very limited supersaturation range they gave an exponent b of 26 and consequently an extremely magnified  $k_{\perp}$  of  $8.3 \times 10^8$ . The data for most of this previous work is therefore too limited to obtain overall correlations of the type  $g = k_{\perp} s^b$ , and the Arrhenius correlation cannot be applied to  $k_{\perp}$  values determined. However over the range studied the actual growth velocities, g, are as accurate as the previous refractometer readings allowed, and can be compared with the present work.

Although the stirrer speed was only 500 r.p.m. in the previous work as compared with 2000 r.p.m. used in this work, the seed used (especially after attrition) was smaller than that used for most of this work, and as it has been shown that the function of stirrer speed is merely that of maintaining the crystals in suspension the results should be comparable in this respect. A visual suspension test had also been carried out with this seed in the previous work, and 500 r.p.m. had appeared satisfactory.

### 8. 3. Crystal Growth.

### 8.3.1. Relative Velocity Effect.

The effect of the relative crystal / solution velocity was investigated using a fluidised bed of crystals and also by varying the stirrer speed in a suspension. In the fluidised bed experiments growth rate determinations were made using direct measurements of seed and product crystals, and also by measuring the crystal mass increase.

Attempts were also made to follow the concentration decrease of the circulating mother liquor of the fluidised bed experiments. However, because of the slow growth rate of P.E. and the difficulty of obtaining an air-tight seal using a submerged impeller pump, the evaporation rate tended to compensate for the solution concentration decay due to growth. This method might be developed to overcome this problem, possibly by using a magnetically operated pump to avoid grease from glands. Measurements of the crystal mass increase in situ in the fluidised bed cell proved to be the most reliable used, and it was found that results were in reasonable agreement with those of the stirred cell experiments. It was also found that the only effect of stirrer speed in the stirred cell experiments, apart from that of crystal attrition, was that of maintaining the crystals in suspension. It was therefore concluded that the crystal growth rate of P.E. was surface integration rate controlled for all conditions investigated up to 70°C. A'repetitive inversion sedimentometer" built to investigate the relative velocity effect of crystals under terminal. velocity conditions, although constructed was therefore not used as no more useful information was thought to be obtainable by this method for P.E.

#### 8.3.2. Seeded Solutions in stirred cells.

#### 8.3.2.1. Experimental Testing of Mathematical Model.

Figure 8.3. shows a selection of product crystals after growth in the stirred cells, obtained by filtering the suspension after an experiment through a No.1 Whatman filter and washing with

- 170 -

# FIGURE 8.3.

Magnification x 240



8.3.a Attrited Batch E Seed 89 - 105 m



8.3.b R.E.15 Product 2g Seed 70°C Initial Ac -4%



8.3.c R.P.E.12 Product 2g Seed 8.3.d R.P.E.12 Product 2g Seed 60°C Initial ∆c-3.2%



Initial Ac-3.2% 60°C
# FIGURE 8.3. (CONT.)

Magnification x 240



8.3.e R.E.36 Product 1.0g Seed 60°C ∆ c - 4.5%



8.3.f R.E.37 Product 0.5g Seed 60°C ∆c ± 4.5%



8.3.g R.E.34 Product 1.0g Seed 8.3.h R.E.35 Product 0.5g Seed 60°C 1 c ≤ 6%



60°C 1c= 6%

## FIGURE 8.3. (CONT.)

Magnification x 240



8.3.i R.E.33 Product 0.5g Seed 60°C △c <u>→</u>7.5%



8.3.j R.E.32 Product 1.0g Seed 60°C Δc-7.5%



8.3.k R.E.16 Product 2g Seed 70°C △c-3.5% 0.5g Zn DUST ADDED



8.3.1 R.E.F.4 Product 2g Seed 60°C Ac-4.5%

acetone to avoid agglomeration. 8.3a shows a typical seed (Batch E 89 - 105 µ sieve fraction) after attrition in a saturated solution with a stirrer speed of 2000 r.p.m. As expected the attrited crystals were irregular with a wide size distribution. Figure 8.3b shows a typical Batch E product grown under the usual experimental. conditions in the stirred cells of initial  $\triangle$  c  $\triangle$  4% with 2 g of As this had been carried out at 70°C, growth was faster than seed. at lower temperatures and crystals would be expected to be weaker than if grown at a lower temperature. However, although the product was irregular in shape, as might have been expected after the attempts to grow impure single crystals, there appears to have been very little attrition. Figure 8.4. shows graphically the analyses of attrited Batch E seed and R.E.15 product which was analysed by both the Image Shear and Coulter Counter techniques. The Coulter Counter analysis of the attrited seed only is shown as the Image Shear analysis (table 27) showed a marked deviation attributed to the irregular crystal shapes. The Coulter Counter analysis of the product was also considered more accurate than the Image Shear method because of the dependence of the Image Shear method on a characteristic dimension. The largest diameter visible on the microscope slide was normally taken with agglomerates which would account for the oversizing of the larger crystals. The dotted line indicates the calculated product size analysis with an overall diameter increase of 43 µ (from R.E.15).

Figures 8.3 c and d show the product crystals of R.P.E.12 using refracted and reflected light respectively. The crystals are more regular than with the impure material and are transparent.

- 171 -



Some large agglomerates are formed which were also indicated in the size analyses (figure 8.5). As the analysis is on a number % oversize basis, agglomerates deplete the number % of the smaller sizes and might account for the deviation from the calculated product size analysis. Although agglomerates look well formed as though a result of growth, agglomeration might also occur in the filtration process. However there was no method of distinguishing between these possibilities.

For an absolute experimental proof of the method of computation of results runs were carried out at different initial supersaturations and with different amounts of seed, at 60°C. However, results did not concur at equivalent supersaturations: faster growth rates being indicated with higher initial supersaturations and also with smaller amounts of seed. At first this was attributed to a surface roughness effect proportional to the mass deposited per unit surface area, but examination of the products shows it in fact to be a result of attrition. It appears that there is a critical time or size increase (for a particular growth velocity) beyond which the crystals grown become too fragile for the particular hydrodynamic conditions, resulting in attrition. The products of some of these experiments with size analyses shown in table 28 are shown in figures 8.3 e to j. It was therefore concluded necessary to limit initial supersaturations to ca.  $\triangle$  c - 4% and use at least 2 g seed.

R.E.16 was carried out with the addition of 0.5 g Zn particles of about 3 µ average size and resulted in a 20% increase in growth rate . Examination of the product, figure 8.3 g, showed these particles to be integrated into the crystals. It was thought

- 172 -



that this growth rate enhancement was a result of an increased number of adsorption sites caused by the particles since the particles did not themselves create nucleation. The effect of filtering solutions through a 0.45 µ filter (the finest available) was therefore examined. Results were anomalous and showed a poor reproducibility. Examination of R.E.F.4 product, figure 8.31, table 27, showed this to be due to attrition. It was concluded that brittle crystals were caused by growth free of heterogeneous particles.

#### 8.3.2.2. Batches B, F and G.

These three materials were all found to show crystal growth inhibition far greater than that expected due to the known impurities indicated by the gas chromatographic analysis. The conclusive proof of an unknown contaminant was made by comparison of P.G. and P.E. materials (i.e. purified of known impurities) when P.G. was found to be greatly inhibited. Attempts to neutralise the contaminant were unsuccessful and although benzene was found to extract a certain amount of the contaminant the most efficient extraction was made using Molecular Sieve Type X. An estimation of the contaminant content made by burning off the molecular sieve extract and finding the loss in weight with six successive extractions indicated an original contaminant concentration of 0 \$26% in Batch P.G., and 0.0329 p.p.m. contaminant left in solution after the sixth successive extraction. However even after these 6 extractions, experiment 97 showed complete growth inhibition with  $\triangle c = 1.2\%$  at 70°C whereas purified Batch E grew at a reasonable rate under these same conditions. A comparison

- 173 -

of purified Batch A with purified Batch E, indicates that Batch A was also contaminated, and it seems fortuitous that these materials (A, B, F and G) all contain  $\langle 0.1\%$  Di-P.E. It was thought possible that the contaminant might inhibit this side reaction for the formation of Di-P.E. and therefore be present early in the manufacturing process.

The nature of this contaminant is still unknown. Although it was found in the previous work (1) that a trace of oil completely inhibited crystal growth, P.E. has since been found to be hypersensitive to other impurities. Further growth inhibition was found (a) when the material was sieved through a sieve which had been used for a  $\frac{5i0}{2}\sqrt{V_20_5}$  catalyst, and (b) when a polythene bucket was used in the preparation of pure P.E.

As the exact amount of contaminant was unknown for these materials, growth rates obtained were only relative and were not studied in detail.

#### 8.3.2.3. Batches C. D and E.

These materials had reasonably comparable chemical analyses. The growth rates obtained were of the same order and the differences could possibly be attributed to the differences in the known impurity contents. The results were fitted to the correlation

 $g = k_{\perp} s^{b}$  by the method of least mean squares, and the following results obtained:-

BATCH D:

| Run<br>No.        | ToC  | Corrected<br>Temp. C. | ĸz      | b     |
|-------------------|------|-----------------------|---------|-------|
| R. D. 1           | 70.0 | 70.2                  | 0.00161 | 2.386 |
| R.D.1 + 3 + 4 + 6 | 70.0 | 70.2                  | 0.00126 | 2.266 |
| R. D. 7           | 70.0 | 70.2                  | 0.0127  | 2.723 |

#### BATCH. C:

| Run<br>No. | To°C | Corrected<br>Temp. C. | к∠         | Ъ     |
|------------|------|-----------------------|------------|-------|
| R. C. 6    | 60.0 | 60.1 0.000847         |            | 2.851 |
| R. C. 7    | 50.0 | 50.1                  | 0.0000325  | 1.814 |
| R. C.14    | 70.0 | 70.2 0.00193          |            | 2.261 |
| R. C.15    | 30.0 | 30.0                  | 0.00000267 | 1.438 |
| R. C.17    | 40.0 | 40.0                  | 0.00000541 | 1.497 |

#### BATCH E:

| Run<br>No. | ToC  | Corrected<br>Temp. C. | ky_       | b     |  |
|------------|------|-----------------------|-----------|-------|--|
| R. E. 4    | 60.0 | 60.1                  | 0.000194  | 1.908 |  |
| R E.19     | 70.0 | 70.2                  | 0.000623  | 1.693 |  |
| R. E.38    | 50.0 | 50.1                  | 0.0000403 | 1.696 |  |

R.D.l. with Batch D  $44 - 64 \mu$  seed at 70°C showed a comparable growth rate with R.D.3, 4 and 6 using different seed size and Batches, and carried out in different cells. The results are





shown in figure 8.6. The  $k_{\perp}$  values for R.D.L. and the combined tests R.D.L, 3, 4 and 6 compare better than appears at first sight, e.g. g values calculated from the given correlations at s = 0.1 are  $6.6 \times 10^{-6}$  and  $6.8 \times 10^{-6}$  respectively. The exaggerated  $k_{\perp}$ difference is due to its sensitivity to the exponent b. For better accuracy a wider supersaturation range should be used, but this is not possible for P.E. without causing attrition of seed crystals or creating nucleation.

R.D.7 with P.G. seed is also shown for comparison but has a very much higher growth rate than with the impure seed materials. This phenomenon of enhanced growth using pure seed with impure solution was also found with Batch G solution (experiments 54 and 55). It could possibly be due to both depleted impurity content in the solution due to the impurity diffusion into the crystal to achieve equilibrium and this causing dislocations in the crystals.

Growth results of Batch C over the temperature range  $30^{\circ}$ C to  $70^{\circ}$ C are shown in figure 8.7 together with the least mean squares correlations. With the exception of R.C.6 at  $60^{\circ}$ C the exponent b decreases progressively with temperature. This could possibly be due to a contaminant having a different equilibrium partition coefficient at different temperatures. Batch C however showed a similar growth rate to Batch E which was thought to be contaminant free, as extraction with molecular sieve had shown no effect on the growth rate. The growth results for Batch E are shown in figure 8.8. The sensitivity of the  $k_{\perp}$  value on b is further demonstrated by a comparison of Batches C, D and E at  $70^{\circ}$ C. Although Batch E has the



FIGURE 8.8.

#### BATCH E GROWTH RATE



SUPERSATURATION 8



lowest  $k_{\perp}$  value, growth rates over the supersaturation range measured were in fact faster than either Batch C or D.  $\int k_{\perp} k_{\perp}$  values have been plotted vs  $\frac{1}{T}$  where T = degrees Kelvin, in figure 8.9. Batch E can be correlated for  $50 > T_0 > 70^{\circ}$ C by the equation:

$$\log_{10} k_{\perp} = 14.07 - \frac{5938}{T}$$

with an Activation Energy of 27.2 Kcal./g.mole., and an overall equation for Batches C. D and E for  $30 > T_0 > 70^{\circ}$ C is:

$$\log_{10} k_{L} = 17.04 - \frac{6892}{T}$$

with an Activation Energy of 31.5 Kcal./g.mole.

The deviation of the points from this latter correlation is large, but if a contaminant is present having a changing partition coefficient with temperature this would make the simple Arrhenius type correlation invalid.

#### 8.3.2. 4. Funified Batch E.

Batch E with the highest growth rate of the impure Batches was thought to have the least (if any) contaminant, and crystal growth rates for the purified material were determined. The results obtained were unexpected. Figure 8.10 shows the results of R.P.E.7 ( $\Delta c = 2.6\%$ ) and R.P.E.20 ( $\Delta c = 3.8\%$ ) both at 70°C. Both show an apparent break point in the correlation with the growth rates obtained displaced from each other. R.P.E.18 at 75°C (figure 8.11) also suggests this apparent break point, but it is not present at the lower temperatures of 60°C and 50°C. R.P.E.17 and



#### FIGURE 8.11.



SUPERSATURATION S

the repeat experiment R.P.E.19, at 40°C (figure 8.12) both show an <u>increase</u> in crystal growth rate with decreasing supersaturation to a maximum value (higher than that at 60°C for an equivalent supersaturation) before decreasing. This growth rate after achieving the maximum value then remains higher than equivalent values at 60°C.

The only explanation thought possible is that of a contaminant effect. Any roughness effect to explain the break point at the higher temperatures (i.e. by achieving a constant roughness) would be expected to be consistent at all temperatures. If it is assumed however that the system contains a contaminant which will achieve an equilibrium partition between the crystals in suspension and the solution, then:

(a) At high temperatures the break point might be explained by the contaminant gradually being adsorbed on the crystal surface and rapidly decreasing the crystal growth rate by blocking adsorption sites until (at the break point) contaminant equilibrium is achieved when the growth will proceed at a slower rate than in the absence of contaminant.

(b) At low temperatures (e.g. 40°C) the maximum value might be explained by assuming a different contaminant partition coefficient whereby all the contaminant was soon adsorbed on the crystal surface almost completely inhibiting growth initially and then as growth proceeded the inhibiting regions gradually became covered by layers of purer crystal. Eventually at the maximum value the solution was purified of contaminant and growth proceeded from pure solution onto pure crystal surface.

#### FIGURE 8.12.

PURIFIED BATCH E GROWTH RATE AT 40°C



SUPERSATURATION S

.

It is thought that the reason this contaminant effect was not so peculiar for the impure solution (Batch E) was because of the greater relative number of adsorption sites. It can be seen from examination of the product crystals figure 8.3b and d that the surfaces of pure crystals are far smoother than those of impure crystals. It was therefore thought that although the same contaminant partition coefficient exists, there were many more adsorption sites with impure P.E. crystals and the percentage effected by contaminant was less and therefore did not have such a pronounced effect on the growth rate.

The results of kg for  $75 > T_0 > 50^{\circ}C$  obtained from all the data points for each experiment are shown below:

| Run<br>No. | To°C | Corrected<br>Temp. C. | ke        | b     |
|------------|------|-----------------------|-----------|-------|
| R.P.E. 7   | 70.0 | 70.2                  | 1.066     | 4.528 |
| R.P.E.12   | 60.C | 60.1                  | 0.000674  | 1.774 |
| R.P.E.16   | 50.0 | 50.1                  | 0.0000195 | 0.449 |
| R.P.E.18   | 75.0 | 75.3                  | 0.300     | 3.530 |
| R.P.E.20   | 70.0 | 70.2                  | 0.0457    | 3.002 |

Although the contaminant markedly effects the above correlations these overall  $k_{\perp}$  values have been plotted vs  $\frac{1}{T}$  (figure 8.13) to give an indication of the activation energy of the pure P.E. in the presence of this trace amount of contaminant. The results can be correlated by:

 $\log_{10} k_{L} = 54.0 - \frac{19030}{T}$ 



indicating an activation energy for growth of 87.0 Kcal./g.mole.

#### 8.4. Suggestions for Future Work.

Because of the overlap phenomenon observed with the dissolution experiments it would be interesting to investigate further the cause of this initially enhanced concentration. It has been suggested that it might be due to the method of preparation of the crystals used in the test, producing a non-homogeneous impurity distribution. The effect of isothermal batch preparations of crystals at different temperatures before dissolution could be investigated to find if there is a partition coefficient effect. It would also be interesting to check the effect after annealing the crystals to induce diffusion of the impurity within the crystal lattice and so create homogeneous composition.

The effect of temperature on the partition coefficient of the known impurities Formal and Di-P.E. should be studied, particularly below  $50^{\circ}$ C, to see if this could explain the enhanced solubility of the impure material at the low temperatures above that suggested by the correlation (for above  $50^{\circ}$ C). Equilibrium should be approached from dissolution with only a small excess of solute present.

In order to obtain further information on the growth rate of P.E. and to correlate the data obtained in this work which is at present only related to the particular Batches of material with suspected unknown quantities of an unknown contaminant, this unknown contaminant should be identified, analysed and removed in order that realistic growth rates might be obtained. Although extraction with molecular sieve type 13X was found effective for higher contaminant concentrations, it had no apparent effect with the extremely small concentrations thought to be influencing the crystal growth of the "purest" material (i.e. P.E.). Purification might possibly be achieved by repeated extraction with redistilled Analar benzene. The only method for the determination of the presence of the contaminant resulting from this work is by comparison of the crystal growth rates. As it appears that the effective contaminant concentration is <1 p.p.m. quantitative analysis might prove difficult. However as it has such a pronounced effect on crystal growth it is possible that the effect on the surface energy of the system would be It is therefore possible that a simple quick test might be large. devised studying the effect on the surface energy by measuring the contact angle of the solution/crystal interface.

Although a preliminary investigation with Batch E at  $60^{\circ}$ C to find the safe working limits showed that one condition necessary to avoid attrition was an initial supersaturation of  $(c - c_{\infty}) \leq 4\%$  with 2 g of seed, this should be studied in more detail. Each material with associated impurities ought to be studied individually, as the impurities could be expected to effect the brittleness of the crystal. Each system could then be examined to find the effect of time, supersaturation and the amount of seed on the attrition occuring during the process. If carried out at near room temperature samples of suspension could be taken periodically and analysed with the Coulter

- 181 -

Counter. Any deviations from the mathematical model used in this work, assuming simply growth of the seed according to the  $\Delta \angle$  law could then be predicted under any growth rate conditions. Another parameter which appears to effect crystal strength is the amount of heterogeneous material present. It was found in this work that crystals grown from a solution free of heterogeneous particles >0.45 µ were abnormally brittle. Although the safe working limits to avoid attrition are known and were observed for these batch crystallisations, the strength or hardness characteristics of crystals grown under any conditions should be known before operating conditions of a crystalliser can be specified.

It has also been shown that heterogeneous particles enhance crystal growth, possibly by creating dislocations in the crystal surface. The effect of the number and size of heterogeneous particles on the degree of enhancement of the growth rate should be studied in more detail.

If the contaminant can be removed the original problem may be approached, that is the effect of the two individual main impurities on the growth rate of P.E., the evaluation of the optimum crystalliser conditions and the testing of these conditions on a pilot plant crystalliser.

# - 183 -CONCLUSIONS

The immersion refractometer used with scale S was correlated for impure P.E. solution (concentration c % m/v) in the metastable zone by the equation:

$$s = 20.365 + 3.5622 c + 0.0002313 c^2$$
  
- 0.16974 T\_ - 0.0035888 T\_2

where  $T_{o}$  is the observed temperature of a partially immersed thermometer  $^{\circ}C_{\circ}$ .

The isothermal correlations for pure and impure solutions were well represented by the equation  $c = F + BS + GS^2$  with an average standard deviation of ca.  $\pm 0.04(\% \text{ m/v})$  and are shown in tables 3 and 2 respectively, appendix A.

3. The equilibrium of Pure P.E. in aqueous solution between  $30^{\circ}$ C and  $75^{\circ}$ C is given by the equation:

$$\log_{10} x = 4.980 - \frac{1242}{T}$$

where x = P.E. mass %; T = degrees Kelvin.

The equilibrium of impure P.E. (with ca. 5% Formal) in aqueous solution  $\gg 50^{\circ}$ C with solids present equivalent to a supersaturation of about  $(c - c_{\infty}) = 4\%$  is given by the equation:  $\log_{10} x = 5.073 - \frac{1265}{T}$ 

1.

2.

4.

- 5. Bolow 50°C the solubility of impure P.E. is greater than that expected from the above correlation.
- The presence of the Formal impurity in P.E. enhances the solubility.
- 7. Di-P.E. does not appear to affect the equilibrium value at the concentrations used but with the materials used it accelerated the rate of attainment of equilibrium from dissolution.
- 8. A correction was necessary to the Coulter Counter Theory to allow for particle shape and size of a P.E. crystal during size analysis. This correction amounted to about 5% of the equivalent spherical volume diameter at the recommended 40% particle/orifice diameter ratio limit with a 280 µ orifice tube.
- 9. Computer program 1 may be used to predict the product size analysis of crystals of a known seed size distribution, by measuring the mass increase when grown at constant supersaturation and when suface integration rate controls.
- 10. Computer program 2 may be used to calculate the crystal growth rate of seed crystals of known size distribution, grown in a batch crystalliser, by following the decrease in solution concentration with time.
- 11. The surface integration rate was crystal growth rate controlling for the conditions studied (i.e.  $T_0 < 70^{\circ}$ C).

- 13. The absence of heterogeneous particles for the crystallisation of P.E. results in brittle crystals.
- 14. P.E. material Batches A, B, F and G were contaminated with an unknown impurity not analysed on the gas chromatograph, which inhibited crystal growth.
- 15. This contaminant could be partially extracted using Molecular Sieve Type 13X. The total concentration of contaminant in Batch G was estimated to be 0.26%.
- 16. Correlations of the type  $g = k_{f_{a}} s^{b}$  were fitted to the results of Batches C, D and E and the exponent b was found to vary according to material and temperature, with an average value of about 2.
- 17.  $k_{\perp}$  values for Batch E,  $50^{\circ}C > T_{o} > 70^{\circ}C$  were correlated by:

 $\log_{10} k_{\perp} = 14.07 - \frac{5938}{T}$ 

with an activation energy of 27.2 Kcal./g.mole.

18. The overall correlation for Batches C, D and E  $30^{\circ}C > T > 70^{\circ}C$  was:

 $\log_{10} k_{\perp} = 17.04 - \frac{6892}{T}$ 

with an activation energy of 31.5 Kcal./g.mole.

19.

Purified Batch E, thought to be the purest material used,

showed unusual growth rates with respect to supersaturation. At high temperatures there is an apparent break in the log g vs log s correlation with two apparent straight lines of different slopes b.

At low temperatures the growth rate increased to a maximum for decreasing values of supersaturation before decreasing on further decrease of supersaturation with an enhanced growth rate to that anticipated. These phenomena were attributed to the presence of a trace amount of contaminant (< 0.01 p.p.m.) and a changing contaminant partition coefficient with temperature.

20. An average overall correlation for purified Batch E of the type  $g = k_{\perp} s^{b}$  was found at each temperature  $\gg 50^{\circ}$ C and the k, values obtained correlated by the equation

 $\log_{10} k_{\perp} = 54.0 - \frac{19030}{T}$ 

indicating an activation energy of 87.0 Kcal / g.mole.

APPENDIX A - CALIBRATION AND EQUILIBRIUM



FIGURE 5.1.

MANUFACTURER'S CHROMATOGRAPHIC CHEMICAL ANALYSIS

| MATERIAL BATCH     | DI-PENTAERYTHRITOL % | FORMAL 7 |
|--------------------|----------------------|----------|
| A                  | <0.1                 | 4.73     |
| В                  | <0.1                 | 4.98     |
| C                  | 1.0                  | 4.3      |
| D                  | 1.0                  | 5.5      |
| E                  | 0.9                  | 5.2      |
| F                  | ζ 0.1                | 5.5      |
| G                  | NONE                 | 5.2      |
| DEPE               |                      | 4.0      |
| PURIFIED MATERIALS | <0.1                 | <0.1     |

\* COMPARATIVE ONLY (NOT MASS %)

## - 188 -

# TABLE:2

ISOTHERMAL REFRACTOMETER CALIBRATION CORRELATIONS

| BATCH D : 1.0% Di-P.E., 5.5% FORMAL |                                            |                       |  |  |  |  |  |
|-------------------------------------|--------------------------------------------|-----------------------|--|--|--|--|--|
| T, Č                                | LEAST MEAN SQUARES FIT<br>c = % m/v        | STANDARD<br>DEVIATION |  |  |  |  |  |
| 20.0                                | c = -4.194 + 0.27825                       | +0.044                |  |  |  |  |  |
| 20.0                                | $c = -4.124 + 0.2754S + 0.0000247S^2$      | +0.044                |  |  |  |  |  |
| 25.0                                | c = -3.727 + 0.2779S                       | ±0.060                |  |  |  |  |  |
| 25.0                                | $c = -4.095 + 0.2917S - 0.0001186S^2$      | ±0.048                |  |  |  |  |  |
| 30.0                                | o = -3.346 + 0.2800S                       | +0.058                |  |  |  |  |  |
| 30.0                                | $a = -3.743 + 0.2951S - 0.0001337S^2$      | -0.042                |  |  |  |  |  |
| 35.0                                | o = -2.876 + 0.2813S                       | +0.055                |  |  |  |  |  |
| 35.0                                | $\circ = -3.208 + 0.29405 - 0.00010705^2$  | +0.037                |  |  |  |  |  |
| 40.0                                | c = -2.330 + 0.2820S                       | -0.055 .              |  |  |  |  |  |
| 40.0                                | $o = -2.635 + 0.29355 - 0.00009305^2$      | -0.032                |  |  |  |  |  |
| 45.0                                | o = -1.794 + 0.2836S                       | -0.064                |  |  |  |  |  |
| 45.0                                | $c = -2.116 + 0.29625 - 0.00010655^2$      | -0.037                |  |  |  |  |  |
| 50.0                                | o = -1.168 + 0.2844S                       | -0.069                |  |  |  |  |  |
| 50.0                                | $\sigma = -1.479 + 0.2966S - 0.0000990S^2$ | -0.036                |  |  |  |  |  |
| 55.0                                | c = -0.499 ÷ 0.2858S                       | +0.072                |  |  |  |  |  |
| 55.0                                | $c = -0.918 + 0.30105 - 0.00012045^2$      | +0.043                |  |  |  |  |  |
| 60.0                                | c = 0.234 + 0.2865S                        | +0.093                |  |  |  |  |  |
| 60.0                                | $c = -0.299 + 0.3058S - 0.0001482S^2$      | +0.036                |  |  |  |  |  |
| 65.0                                | c = 0.983 + 0.28795                        | +0.099                |  |  |  |  |  |
| 65.0                                | $c = 0.473 + 0.30755 - 0.00015765^2$       | -0.038                |  |  |  |  |  |
| 70.0                                | c = 1.758 + 0:2895S                        | -0.092                |  |  |  |  |  |
| 70.0                                | $c = 1.319 + 0.3075S - 0.0001529S^2$       | +0.030                |  |  |  |  |  |
| 75.0                                | c = 2.714 + 0.28895                        | +0.089                |  |  |  |  |  |
| 75.0                                | $\circ = 2.222 + 0.30685 - 0.00013875^2$   | -0.041                |  |  |  |  |  |
|                                     |                                            |                       |  |  |  |  |  |

1

## TABLE:3

## ISOTHERMAL REFRACTOMETER CALIBRATION CORRELATIONS

#### PURE PENTAERYTHRITOL

| ToC  | LEAST MEAN SQUARES FIT                    | STANDARD<br>DEVIATION |
|------|-------------------------------------------|-----------------------|
| 40.0 | c = -2.437 + 0.2852S                      | +0.064                |
| 40.0 | $c = -2.935 + 0.30725 - 0.00020885^2$     | ±0.864                |
| 45.0 | o = -1.930 + 0.2883S                      | +0.063                |
| 45.0 | $c = -2.343 + 0.3076S - 0.0001918S^2$     | -0.017                |
| 50.0 | c = -1.316 + 0.2895S                      | -0.045                |
| 50.0 | $c = -1.643 + 0.3058S - 0.0001699S^2$     | ±0.004                |
| 55.0 | c = -0.549 + 0.2890S                      | ±0.001                |
| 60.0 | o = 0.116 + 0.2907S                       | +0.001                |
| 65.0 | c = 0.777 + 0.2932S                       | -0.027                |
| 65.0 | $c = 0.558 + 0.3019S - 0.0000756S^2$      | ±0.016                |
| 70.0 | a = 1.692 + 0.2927S                       | +0.028                |
| 70.0 | $c = 1.820 + 0.2873S + 0.0000502S^2$      | +0.019                |
| 75.0 | c = 2.342 + 0.29715                       | +0.030                |
| 75.0 | $c = 2.400 \div 0.2944S \pm 0.0000262S^2$ | ±0.030                |

TABLE 4 : EQUIVALENT REPRACTOMETER SCALES

| no                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | SCALE<br>ZERCED<br>1A PRISM | SCALE<br>ZEROPD<br>1B PRISM | CALIBRATION<br>SCALE S<br>UNZEROED 1B<br>( 1B+1.20) | np      | SCALE<br>ZEROED<br>1A PRISM | SCALE<br>ZEROED<br>1B PRISM | CALIBRATION<br>SCALE S<br>UNZEROED 1B<br>( 1B+1.20) |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-----------------------------|-----------------------------------------------------|---------|-----------------------------|-----------------------------|-----------------------------------------------------|
| 1.32548                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -5.00                       | -4.65                       | -3.45                                               | 1.33633 | 23.00                       | 23.25                       | 24.45                                               |
| 1.32587                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -4.00                       | -3.65                       | -2.45                                               | 1.33672 | 24.00                       | 24.25                       | 25.45                                               |
| 1.32626                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -3.00                       | -2.70                       | -1.50                                               | 1.33710 | 25.00                       | 25.25                       | 26.45                                               |
| 1.32665                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -2.00                       | -1.70                       | -0.50                                               | 1.33748 | 26.00                       | 26.25                       | 27.45                                               |
| 1.32704                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -1.00                       | -0.70                       | 0.50                                                | 1.33786 | 27.00                       | 27.25                       | 28.45                                               |
| 1.32744                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.00                        | 0.30                        | 1.50                                                | 1.33824 | 28.00                       | 28.25                       | 29.45                                               |
| 1.32783                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1,00                        | 1.30                        | 2,50                                                | 1.33862 | 29.00                       | 29.25                       | 30.45                                               |
| 1.32822                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.00                        | 2.30                        | 3.50                                                | 1.33900 | 30.00                       | 30.20                       | 31.40                                               |
| 1.32861                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.00                        | 3.30                        | 4.50                                                | 1.33937 | 31.00                       | 31.20                       | 32.40                                               |
| 1.32900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4.00                        | 4.30                        | 5.50                                                | 1.33975 | 32.00                       | 32.20                       | 33.40                                               |
| 1.32939                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.00                        | 5.30                        | 6.50                                                | 1.34013 | 33.00                       | 33.20                       | 34.40                                               |
| 1.32978                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6.00                        | 6.30                        | 7.50                                                | 1.34051 | 34.00                       | 34.20                       | 35.40                                               |
| 1.33016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7.00                        | 7.25                        | 8.45                                                | 1.34089 | 35.00                       | 35.20                       | 36.40                                               |
| 1.33055                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8.00                        | 8.25                        | 9.45                                                | 1.34127 | 36.00                       | 36.20                       | 37.40                                               |
| 1.33094                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9.00                        | 9.25                        | 10.45                                               | 1.34164 | 37.00                       | 37.20                       | 38.40                                               |
| 1.33133                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10.00                       | 10.25                       | 11.45                                               | 1.34202 | 38.00                       | 38.20                       | 39.40                                               |
| 1.33171                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11.00                       | 11.25                       | 12.45                                               | 1.34239 | 39.00                       | 39.15                       | 40.35                                               |
| 1.33210                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 12.00                       | 12.25                       | 13.45                                               | 1.34277 | 40.00                       | 40.15                       | 41.35                                               |
| 1.33249                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 13.00                       | 13.35                       | 14.45                                               | 1.34315 | 41.00                       | 41.15                       | 42.35                                               |
| 1.33287                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 14.00                       | 14.25                       | 15.45                                               | 1.34352 | 42.00                       | 42.15                       | 43.35                                               |
| 1.33326                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 15.00                       | 15.25                       | 16.45                                               | 1.34390 | 43.00                       | 43.15                       | 44.35                                               |
| 1.33364                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 16.00                       | 16.25                       | 17.45                                               | 1.34427 | 44.00                       | 44.15                       | 45.35                                               |
| 1.33403                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 17.00                       | 17.25                       | 18.45                                               | 1.34465 | 45.00                       | 45.15                       | 46.35                                               |
| 1.33441                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 18.00                       | 18.25                       | 19.45                                               | 1.34502 | 46.00                       | 46.15                       | 47.35                                               |
| 1.33480                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 19.00                       | 19.25                       | 20.45                                               | 1.34539 | 47.00                       | 47.15                       | 48.35                                               |
| 1.33518                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 20.00                       | 20.25                       | 21.45                                               | 1.34577 | 48.00                       | 48.15                       | 49.35                                               |
| 1.33556                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 21.00                       | 21.25                       | 22.45                                               | 1.34614 | 49.00                       | 49.15                       | 50.35                                               |
| 1.33595                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 22.00                       | 22.25                       | 23.45                                               | 1.34651 | 50.00                       | 50,15                       | 51.35                                               |
| and the second se | 1                           |                             |                                                     |         |                             |                             |                                                     |



# TABLE: 4 (CONTINUED)

| Barran and Charles and | P               | ······································ |                        |         | 1               | for a comparison of the second | ()<br>1                |
|------------------------|-----------------|----------------------------------------|------------------------|---------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
|                        | SCALE<br>ZEROED | SCALE<br>ZEROED                        | CALIBRATION<br>SCALE S |         | SCALE<br>ZEROED | SCALE<br>ZEROED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CALIBRATION<br>SCALE S |
| nþ                     | 1A PRISM        | 1B PRISM                               | (1B+1.20)              | no      | 1A PRISM        | 1B PRISM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (1B+1.20)              |
| 1.34688                | 51.00           | 51.15                                  | 52.35                  | 1.35712 | 79.00           | 79.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 80.25                  |
| 1.34725                | 52.00           | 52.15                                  | 53.35                  | 1.35748 | 80.00           | 80.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 81.25                  |
| 1.34763                | 53.00           | 53.15                                  | 54.35                  | 1.35784 | 81.00           | 81.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 82.25                  |
| 1.34800                | 54.00           | 54.15                                  | 55.35                  | 1.35820 | 82.00           | 82.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 83.25                  |
| 1.34837                | 55.00           | 55.15                                  | 56.35                  | 1.35856 | 83.00           | 83.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 84.25                  |
| 1.34874                | 56.00           | 56.15                                  | 57.35                  | 1.35892 | 84.00           | 84.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 85.25                  |
| 1.34910                | 57.00           | 57.15                                  | 58.35                  | 1.35928 | 85.00           | 85.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 86.25                  |
| 1.34947                | 58.00           | 58.15                                  | 59.35                  | 1.35964 | 86.00           | 86.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 87.25                  |
| 1.34984                | 59.00           | 59.15                                  | 60.35                  | 1.35999 | 87.00           | 87.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 88.25                  |
| 1.35021                | 60.00           | 60.15                                  | 61.35                  | 1.36035 | 88.00           | 88.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 89.25                  |
| 1.35057                | 61.00           | 61.15                                  | 62.35                  | 1.36070 | 89.00           | 89.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 90.25                  |
| 1.35094                | 62.00           | 62.15                                  | 63.35                  | 1.36106 | 90.00           | 90.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 91.25                  |
| 1.35131                | 63.00           | 63.15                                  | 64.35                  | 1.36141 | 91.00           | 91.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 92.25                  |
| 1.35167                | 64.00           | 64.10                                  | 65.30                  | 1.36177 | 92.00           | 92.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 93.25                  |
| 1.35204                | 65.00           | 65.10                                  | 66.30                  | 1.36212 | 93.00           | 93.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 94.20                  |
| 1.35240                | 66.00           | 66.10                                  | 67.30                  | 1.36248 | 94.00           | 94.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 95.20                  |
| 1.35277                | 67.00           | 67.10                                  | 68.30                  | 1.36283 | 95.00           | 95.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 96.20                  |
| 1.35313                | 68.00           | 68.10                                  | 69.30                  | 1.36318 | 96.00           | 96.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 97.20                  |
| 1.35350                | 69.00           | 69.10                                  | 70.30                  | 1.36353 | 97.00           | 97.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 98.20                  |
| 1.35386                | 70.00           | 70.05                                  | 71.25                  | 1.36389 | 98.00           | 98.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 99.20                  |
| 1.35422                | 71.00           | 71.05                                  | 72.25                  | 1.36424 | 99.00           | 99.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 100.20                 |
| 1.35459                | 72.00           | 72.05                                  | 73.25                  | 1.36459 | 100.00          | 100.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 101.20                 |
| 1.35495                | 73.00           | 73.05                                  | 74.25                  | 1.36494 | 101.00          | 101.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 102.20                 |
| 1.35532                | 74.00           | 74.05                                  | 75.25                  | 1.36529 | 102.00          | 102.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 103.20                 |
| 1.35568                | 75.00           | 75.05                                  | 76.25                  | 1.36565 | 103.00          | 103.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 104.20                 |
| 1.35604                | 76.00           | 76.05                                  | 77.25                  | 1.36600 | 104.00          | 104.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 105.20                 |
| 1.35640                | 77.00           | 77.05                                  | 78.25                  | 1.36635 | 105.00          | 105.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                        |
| 1.35676                | 78.00           | 78.05                                  | 79.25                  |         |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |
|                        |                 |                                        |                        | 1       |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |
# BATCHES D AND F DISSOLUTION TESTS

|                                                   | pro-   |        |        |        |        |        |        |        |        |
|---------------------------------------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
|                                                   |        |        |        | BATCH  | D      |        |        | BA     | TCH F  |
| DISSOLUTION TEST No.:                             | D.D.4. | D.D.5. | D.D.6. | D.D.7. | D.D.14 | D.D.9. | D.D.13 | D.F.2. | D.F.3. |
| T <sub>o</sub> (°C)                               | 60.0   | 60.0   | 60.0   | 60.0   | 55.0   | 50.0   | 40.0   | 60.0   | 60.0   |
| EQUIVALENT RUN<br>INITIAL CONCN.co(/m/v)          | 27.50  | 24.5   | 26.0   | 23.0   | 21.5   | 24.0   | 15.25  | 24.0   | 27.5   |
| $P.E. = (c_0 \ge 2.5 + SEED)g$                    | 70.75  | 63.25  | 67.0   | 59.5   | 55.75  | 62.0   | 40.12  | 62.0   | 70.75  |
| $H_20 = 250 - \frac{2.50c_0}{1.396} \text{ cm}^3$ | 201    | 206    | 203.5  | 209    | 211.5  | 207.5  | 223    | 207    | 201    |
| TOTAL MASS % (fraction)                           | 26.05  | 23.5   | 24.75  | 22.15  | 20.9   | 23.0   | 15.3   | 23.0   | 26.05  |
| MAXIMUM VALUE (SCALE S)                           | 69.9   | 69.6   | 69.7   | 69.8   | 65.6   | 63.2   | 56.2   | 73.8   | 74.2   |
| EQUILIBRIUM VALUE (SCALE S)                       | 69.3   | 68.7   | 68.9   | 68.6   | 62.0   | 57.6   | 49.0   | 68.7   | 69.3   |
| MAXIMUM CONCN. c(%m/v)                            | 20.352 | 20.267 | 20.295 | 20.324 | 18.309 | 16.871 | 13.566 | 21.462 | 21.575 |
| EQUILIBRIUM CONCN. c(%m/v)                        | 20.181 | 20.010 | 20.067 | 19.981 | 17.281 | 15.277 | 11.602 | 20.010 | 20.181 |

APPENDIX B - SIZE ANALYSIS

#### - 193 -

#### TABLE: 6

#### BATCHES D AND F EQUILIBRIUM RESULTS

## (OBTAINED FROM DISSOLUTION)

|                   |                   |           | TOTAL P.E. CONCE                           | Ι.       | EQUIL  | BRIUM       |
|-------------------|-------------------|-----------|--------------------------------------------|----------|--------|-------------|
| TEST              | T <sub>o</sub> °C | CORRECTED | EQUIVALENT GROWTH<br>RUN INFTIAL CONCH/m/v | +SEED(g) | c %m/v | x<br>MASS % |
| D.D.1.            | 30.0              | 30.0      | 12.5                                       | 2        | 9.124  | 8.911       |
| D.D.10            | 40.0              | 40.0      | 14.0                                       | 2        | 11.552 | 11.205      |
| D.D.13            | 40.0              | 40.0      | 15.25                                      | 2        | 11.602 | 11.253      |
| D.D.12            | 40.0              | 40.0      | 17.5                                       | 2        | 11.751 | 11.393      |
| .D.11             | 50.0              | 50.1      | 19.5                                       | 2        | 15.106 | 14.512      |
| D.D.9.            | 50.0              | 50.1      | 24.0                                       | 2        | 15.277 | 14.668      |
| HD.D.14           | 55.0              | 55.1      | 21.5                                       | 2        | 17.281 | 16.502      |
| HD.F.2.           | 60.0              | 60.1      | 24.0                                       | 2        | 20.010 | 18.969      |
| +                 | 60.0              | 60.1      | 26.0                                       | 1        | 20.039 | 18.994      |
| D.D.6.            | 60.0              | 60.1      | 26.0                                       | 2        | 20.067 | 19.019      |
| +                 | 60.0              | 60.1      | 27.5                                       | 0.5      | 20.096 | 19.045      |
| +                 | 60.0              | 60.1      | 27.5                                       | 1        | 20.153 | 19.095      |
| D.D.4             | 60.0              | 60.1      | 27.5                                       | 2        | 20,181 | 19.122      |
| D.F.3.<br>D.D.3.  | 70.0              | 70.2      | 27.5                                       | 2        | 26.211 | 24.437      |
| 动。D.22<br>. D.F.1 | 70.0              | 70.2      | 30.0                                       | 2        | 26.311 | 24.523      |

+ INTERPOLATED VALUES FROM FIGURE 5.5.

LEAST MEAN SQUARES CORRELATION OF (#) RESULTS (FOR T > 50°C AND  $(o-q_{o})$  4%)  $\log_{10} x = 5.073 - \frac{1265}{T}$ 

| T <sub>o</sub> (°C) | CORRECTED<br>TEMP.( <sup>o</sup> C) | 0(/m/v) | x(MASS %) |
|---------------------|-------------------------------------|---------|-----------|
| ,30.0               | 30.0                                | 7.904   | 7.745     |
| 40.0                | 40.0                                | 10.610  | 10.319    |
| 50.0                | 50.1                                | 14.116  | 10.597    |
| 60.0                | 60.1                                | 18.634  | 17.716    |
| 70.0                | 70.2                                | 24.771  | 23,183    |
| 75.0                | 75.3                                | 28.421  | 26.345    |

### PURE P.E. EQUILIBRIUM RESULTS

LEAST MEAN SQUARES CORRELATION:

and the second second

 $\log_{10} x = 4.980 - \frac{1242}{T}$ 

· ....

where x = mass %, T = degrees Kelvin

#### APPENDIX B .- COULTER COUNTER

#### B.l. Operation

It has been shown in section 6.2.1.2. that the response of the Coulter Counter is almost proportional to the particle volume. The deviation from proportionality and the dependence of particle shape on the responce increases with the particle/orifice ratio. For each sample analysis, therefore, a suitable orifice tube was chosen for the Coulter Counter, so that the size range of particles in the sample would be within about  $l_2^{\pm}$  to 40% of the aperture diameter. An aqueous electrolyte was used of 0.9g NaCl/100g H<sub>2</sub>O + 8.5g Pure P.E./100g H<sub>2</sub>O. This was such that the solution was saturated with P.E. at 25°C and the small degrees of supersaturation involved during an analysis at room temperature would not effect the particle size during the short time required for analysis,

A small amount of sample (about 0.01g) was placed in about 250 cm<sup>3</sup> of electrolyte proviously filtered with a 0.45<sup>H</sup> porosity membrane filter. A few drops of non-ionic dispersant (NONIDET P40) were added and the suspension stirred at about 1000 r.p.m. for about one minute. The suspension was then analysed by placing the beaker under the orifice tube and keeping it well stirred during an analysis to prevent settling. A controled external vacuum was applied indicating flow from the beaker through the orifice and unbalancing a mercury syphon. Releasing the external vacuum caused a syphoning action of the balancing mercury column continuing the sample flow. The advancing mercury column contacted start and stop probes, at a fixed volume apart, activating the electronic counter. Equal volumes of suspension were passed through the orifice at preset threshold levels of the electronic counter. After each count the reset switch was depressed which zeroed the counting units and changed the polarity of the electrodes to prevent excess polarization. For each threshold level an average of a number of counts was taken depending on the statistical variation.

#### B.2. Coincidence

The possibility that two or more particles are in the sensing zone at the same time leads to what is called coincidence error. This can be of two forms, primary and secondary coincidence. Primary coincidence is the lose of count which results from only one pulse being generated for the passage of two or more particles. Secondary coincidence is the counting of a particle whose size is the sum of two or more particles. For secondary coincidence caused by a doublet a narrow size range of both particles is required; i.e. two particles larger than 8 microns diameter are neeled to give a count equivalent of 10 microns diameter. Also close proximity of the particles is required. So secondary coincidence is negligible for the low concentration used and primary coincidence correction only was required.

The primary coincidence correction is the addition of a number of  $n_o^{''}$  to the actual count  $n_o^{'}$ . If the coincidence level lies between 1% and 10% i.e. 0.01  $n_o^{'} < n_o^{''} < 0.1 n_c^{'}$ .

Then 
$$n_0'' = P_0\left(\frac{n_0}{1000}\right)'$$

Where the coincidence factor P is obtained from the formula:

$$P_c = 2.5 \left(\frac{D'}{100}\right)^3 \left(\frac{500}{V'}\right)$$
  
where D' is the aperture diameter in microns, and V' is the metering  
manometer volume in microlitres. The factor 2.5 was obtained experimentally

by Coulter Electronics Limited using a 100 micron aperture and a 500 microlitre manometer volume at successive dilutions of counting on a monosized system. In order to avoid exceeding the 10% coincidence level n must be less than  $\frac{10^5}{D}$ .

the netering

| ORIFICE<br>DIAMETER<br>MICRONS | MANOMETER<br>VOLUME<br>MLS. | COINCIDENCE<br>FACTOR | MAXIMUM COUNT<br>FOR 10%<br>COINCIDENCE |
|--------------------------------|-----------------------------|-----------------------|-----------------------------------------|
| 560                            | 2                           | 109.76                | 910                                     |
| 280                            | 2                           | 13.72                 | 7,288                                   |
| 50                             | 0.5                         | 0.3125                | 320,000                                 |
| 50                             | 0.05                        | 3.125                 | . 32,000                                |

#### B.3. Calibration

mano

The calibration factor, K is used for conversion of threshold settings to particle volumes, or their cube roots to equivalent spherical diameters. The calibration factor is constant for a given aperture diameter and electrolyte resistivity.

A quantity of nonosized particles, between 5% and 20% of the orifice diameter, such that the count obtained did not give more than 2% coincidence was dispersed in the electrolyte. The suspension was drawn through the orifice with the threshold dial set on zero and the amplifier gain index

on 3. The aperture current switch was adjusted to a value  $I_c^{*}$  where the pulses on the oscilloscope occupied about one quarter of the screen height. The threshold dial  $t_c'$  was varied until the shadow line coincided with the height of the majority of pulses, and a count taken. Counts were taken at  $\frac{1}{2} t_c'$  and  $l\frac{1}{2} t_c'$  and averaged. The threshold value  $t_c^{*}$  was found by trial and error which corresponded to the average of  $\frac{1}{2} t_c^{*}$  and  $l\frac{1}{2} t_c^{*}$ .

The aperture resistance was measured by measuring the voltage,  $V_c$  between the outer electrode and earth, and calculating the aperture resistance from  $R_c = \frac{r_c \times V_c}{300 - V_c}$  ohms where  $r_c$  is the resistance of the aperture current switch in the position used. Values of  $r_c$  are:-

| Aperture | Current S | Setting | r <sub>o</sub> ( | ohms) |
|----------|-----------|---------|------------------|-------|
|          | 10        |         | 65,000           |       |
|          | 9         |         | 115,000          |       |
|          | 8         |         | 215,000          |       |
|          | 7         |         | 415,000          |       |
|          | 6         |         | 815,000          |       |

From the Scale Expansion Factor,  $F_c$ , tables supplied by Coulter Electronics,  $F_c$  was found for this aperture resistance at current setting  $I_c^{\mathbb{H}}$  and on Gain 3.

The Calibration factor  $K_c$  was then found from  $K_c = D/(t_c^{\Re} F_c)^{\frac{1}{3}}$ where D was the diamter of the monosized particles. The diameter corresponding to any threshold level  $t_c'$  can then be calculated from  $D_c = K_c (\sqrt[3]{t_c F_c})$ . The appropriate interpolated  $F_c$  values for particular current settings on Gain 3 are shown in the following pages, Tables 11, 12 and 13. For each consecutive lower gain index the  $F_c$  factor was multiplied by  $\sqrt{2}$ . Similarly for each consecutive higher gain index the  $F_c$  factor was divided by  $\sqrt{2}$ .

As the electrolyte resistivity changed with temperature the  $F_c$  factors are shown for the aperture resistances encountered and the calibrations were done over the temperature range expected.

#### B. 4. Size Analysis

For each size analysis thereafter the temperature of the electrolyte was taken and so the calibration known. The chart showing the Coulter Counter Data representation is shown on Table 14. The first three columns show the threshold settings. Column four shows the Scale Expansion Factors F<sub>c</sub> for the particular gain index and aperture current. The product of this and the threshold setting t' gives the relative particle volume t, column 12. Then using the calibration factor K, the diameter for this threshold is found from  $D_c = K_c \frac{3}{t_c} (column 13)$  The average of a number of counts, nc, is taken above this diameter, and is shown for three different samples (columns 5,6 and 7) The average of these reading n is taken, (column 8) and the coincidence error n calculated. The size analysis of particles present in the electrolyte as background count is shown (column 10) and the count  $n_c$  then corrected by  $n_c = n'_c + n'_c - /(column 11)$  Finally the number percentage greater than D<sub>c</sub> is calculated (Column 14).

# TALLE: 8 - CALIBRATION 50M TUBE

ELECTROLYTE: 0.9g NaCl/100g H<sub>2</sub>0 + 8.5g Pure P.E./100g H<sub>2</sub>0 MONOSIZED FARTICLES : PUFF BALL SPORES d = 3.62.~

 $I^{\#} = 5$  t = 54 at 15°C to 25°C

| Temp. <sup>o</sup> C          | 14      | 15      | 16      | 17      | 18      | 19      | 20      | 21      | 22      | 23      | 24      | 25      |
|-------------------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| Voltage<br>I <sub>c</sub> = 8 | 53      | 52      | 51      | 50      | 50      | 49      | 48      | 47      | 46      | 46      | 45      | 44      |
| Resistance<br>Kn              | 46.1    | 45.1    | 44.1    | 43.1    | 43.1    | 42.0    | 40.9    | 40.0    | 39.0    | 39.0    | 38.0    | 36.9    |
| F55                           | 0.06616 | 0.06610 | 0.06604 | 0.06598 | 0.06598 | 0.06592 | 0.06586 | 0.06580 | 0.06574 | 0.06574 | 0.06568 | 0.06562 |
| Kc                            | 2.37    | 2.37    | 2.37    | 2.37    | 2.37    | 2.37    | 2.37    | 2.37    | 2.37    | 2.37    | 2.37    | 2.37    |
|                               |         |         |         |         |         |         | 1       |         |         |         | 1       |         |

- 200 .

# TABLE: 9 CALIBRATION 2804 TUBE

ELECTROLYTE: 0.9g NaCl/100g H<sub>2</sub> $^{\circ}$  = 8.5g Pure P.E./100g H<sub>2</sub>0 MONOSIZED PARTICLES: LYCOPODIUM POWDER d = 28.04  $I^{*}=5$  t = 52 at 14°C to 25°C

| Temp. <sup>o</sup> C          | 14      | 15      | 16      | 17       | 18       | 19      | 20      | 21      | 22      | 23      | 24      | 25      |
|-------------------------------|---------|---------|---------|----------|----------|---------|---------|---------|---------|---------|---------|---------|
| Voltage<br>I <sub>c</sub> = 8 | 12.7    | 12.6    | 12.4    | 12.3     | 12.1     | 12.0    | 11.8    | 11.7    | 11.5    | 11.4    | 11.3    | 11.1    |
| Resistance                    | 9.53    | 9.43    | 9.28    | 9.20     | 9.04     | 8.96    | 8.78    | 8.71    | 8.56    | 8.48    | 8.41    | 8.26    |
| F.5                           | 0.06376 | 0.06375 | 0.06374 | 0::06373 | 30.06372 | 0.06371 | 0.06370 | 0.06369 | 0.06368 | 0.06368 | 0.06367 | 0.06365 |
| K <sub>c</sub>                | 18.8    | 18.8    | 18.8    | 18.8     | 18.8     | 18.8    | 18.8    | 18.8    | 18.8    | 18.8    | 18.8    | 18.8    |

· 201

# TABLE: 10 CALIBRATION 560 JUBE

ELECTROLYTE: 0.9 & NaCl/100g H<sub>2</sub> + 8.5g Pure P.E./100g H<sub>2</sub> MONOSIZED PARTICLES : LYCOPODIUM POWDER d = 28.0 m

 $I^* = 9$  t = 36 at 14°C to 25°C

Ŧ

| Temp. <sup>O</sup> C          | 14      | 15      | 16      | 17      | 18      | 19      | 20      | 21      | 22      | 23      | 24      | 25      |
|-------------------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| Voltage<br>I <sub>c</sub> = 8 | 8.8     | 8.6     | 8.4     | 8.3     | 8.1     | 8.0     | 7.8     | 7.7     | 7.5     | 7•4     | 7.3     | 7.2     |
| Resistance<br>Kr              | 6.50    | 6.35    | 6.20    | 6.13    | 5.97    | 5.90    | 5.74    | 5.65    | 5.50    | 5.44    | 5.36    | 5.28    |
| E9                            | 0.00507 | 0.00505 | 0.00504 | 0.00503 | 0.00502 | 0.00501 | 0.00499 | 0.00498 | 0.00497 | 0.00496 | 0.00496 | 0.00495 |
| K <sub>c</sub>                | 49•4    | 49•5    | 49•5    | 49.5    | 49.5    | 49.5    | 49.6    | 49.6    | 49.6    | 49.6    | 49.6    | 49.7    |

- 202

## COULTER COUNTER 'F' SCALE EXPANSION FACTORS - FOR USE WITH 504 TUBE

|                               | A       | A       | A       | R       | Concernation of the second | A construction of the second |         | here and an and an and the second | And the second second second |         | A       |
|-------------------------------|---------|---------|---------|---------|----------------------------|------------------------------|---------|-----------------------------------|------------------------------|---------|---------|
| Resist<br>-ance<br>K <b>A</b> | 37      | 38      | 39      | 40      | 41                         | 42                           | 43      | 44                                | 45                           | 46      | 47      |
|                               |         |         |         |         |                            |                              |         |                                   |                              |         |         |
| Fl                            | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000                    | 1.00000                      | 1.00000 | 1.00000                           | 1.00000                      | 1.00000 | 1.00000 |
| F <sub>2</sub>                | 0.50200 | 0.502.0 | 0.50200 | 0.50200 | 0.50200                    | 0.50200                      | 0.50200 | 0.50200                           | 0.50200                      | 0.50200 | 0.50200 |
| F3                            | 0.25240 | 0.25260 | 0.25280 | 0.25300 | 0.25300                    | 0.25300                      | 0.25300 | 0.25300                           | 0.25300                      | 0.25300 | 0.25300 |
| F <sub>4</sub>                | 0.12782 | 0.12788 | 0.12794 | 0.12800 | 0.12806                    | 0.12812                      | 0.12818 | 0.12824                           | 0.12830                      | 0.12836 | 0.12842 |
| F5                            | 0.06562 | 0.06568 | 0.06574 | 0.06580 | 0.06586                    | 0.06592                      | 0.06598 | 0.06604                           | 0.06610                      | 0.06616 | 0.06622 |
| F <sub>6</sub>                | 0.03452 | 0.03458 | 0.03464 | 0.03470 | 0.03476                    | 0.03482                      | 0.03488 | 0.03494                           | 0.03500                      | 0.03506 | 0.03512 |
| F7                            | 0.01899 | 0.01906 | 0.01913 | 0.01920 | 0.01927                    | 0.01934                      | 0.01941 | 0.01948                           | 0.01954                      | 0.01960 | 0.01966 |
| F8                            | 0.01139 | 0.01146 | 0.01154 | 0.01161 | 0.01169                    | 0.01176                      | 0.01183 | 0.01191                           | 0.01198                      | 0.01205 | 0.01212 |
| F9                            | 0.00782 | 0.00791 | 0.00800 | 0.00809 | 0.00818                    | 0.00827                      | 0.00836 | 0.00845                           | 0.00854                      | 0.00863 | 0.00872 |
| F10                           | 0.00655 | 0.00667 | 0.00679 | 0.00691 | 0.00703                    | 0.00715                      | 0.00727 | 0.00739                           | 0.00751                      | 0.00763 | 0.00775 |
|                               |         |         |         |         |                            |                              |         |                                   |                              |         |         |

INTERPOLATED FROM COULTER ELECTRONICS LTD. DATA.

- 203

1

# COULTER COUNTER 'F' SCALE EXPANSION FACTORS - FOR USE WITH 280, TUBE

| Resi<br>tand   | .s<br>9.5 | 9•4     | 9.3     | 9.2     | 9.1     | 9.0     | 8.9     | 8.8     | 8.7     | 8.6     | 8.5     | 8.4     | 8.3     | 8.2     |
|----------------|-----------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| F              | 1.00000   | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 |
| F              | 0.50090   | 0.50088 | 0.50086 | (       | 0.50082 | 0.50080 | 0.50078 | 0.50076 | 0.50074 | 0.50072 | 0.50070 | 0.50068 | 0.50066 | 0.50064 |
| Fz             | 0.25100   | 0.25100 | 0.25100 | 0.25100 | 0.25100 | 0.25100 | 0.25100 | 0.25100 | 0.25100 | 0.25100 | 0.25100 | 0.25100 | 0.25100 | 0.25100 |
| F              | 0.12617   | 0.12616 | 0.12615 | 0.12615 | 0.12614 | 0.12614 | 0.12613 | 0.12612 | 0.12612 | 0.12611 | 0.12611 | 0.12610 | 0.12610 | 0.12609 |
| F <sub>5</sub> | 0.06376   | 0.06375 | 0.06374 | 0.06373 | 0.06372 | 0.06372 | 0.06371 | 0.06370 | 0.06369 | 0.06368 | 0.06368 | 0.06367 | 0.06366 | 0.06365 |
| F              | 0.03256   | 0.03255 | 0.03254 | 0.03253 | 0.03253 | 0.03252 | 0.03251 | 0.03251 | 0.03250 | 0.03249 | 0.03248 | 0.03247 | 0.03246 | 0.03245 |
| F7             | 0.01695   | 0.01694 | 0.01593 | 0.01653 | 0.01692 | 0.01691 | 0.01690 | 0.01689 | 0.01688 | 0.01687 | 0.01687 | 0.01686 | 0.01685 | 0.01684 |
| F              | 0.00916   | 0.00915 | 0.00914 | 0.00913 | 0.00912 | 0.00912 | 0.00911 | 0.00910 | 0.00910 | 0.00909 | 0.00908 | 0.00907 | 0.00906 | 0.00905 |
| F              | 0.00530   | 0.00529 | 0.00528 | 0.00528 | 0.00527 | 0.00526 | 0.00525 | 0.00524 | 0.00524 | 0.00523 | 0.00522 | 0.00521 | 0.00520 | 0.00520 |
| F10            | 0.00345   | 0.00344 | 0.00343 | 0.00342 | 0.00341 | 0.00340 | 0.00339 | 0.00338 | 0.00337 | 0.00336 | 0.00335 | 0.00334 | 0.00333 | 0.00332 |

INTERPOLATED FROM COULTER ELECTRONICS LTD. DATA.

- 204

# COULTER COUNTER 'F' SCALE EXPANSION FACTORS - FOR USE WITH 560, TUBE

| Resi<br>and<br>K.n. | st<br>5.2 | 5.3     | 5•4     | 5•5     | 5.6     | 5•7     | 5.8     | 5.9     | 6.0     | 6.1     | 6.2     | 6.3     | 6.4     | 6.5     |
|---------------------|-----------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| F                   | 1.00000   | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 |
| F2                  | 0.50004   | 0.50006 | 0.5008  | 0.50(10 | 0.50012 | 0.50014 | 0.50016 | 0.50018 | 0.50020 | 0.50022 | 0.50024 | 0.50026 | 0.50028 | 0.50030 |
| Fz                  | 0.25100   | 0.25100 | 0.25100 | 0-25100 | 0.25100 | 0.25100 | 0.25100 | 0.25100 | 0.25100 | 0.25100 | 0.25100 | 0.25100 | 0.25100 | 0.25100 |
| FA                  | 0.12591   | 0.12591 | 0.12592 | 0.12592 | 0.12593 | 0.12593 | 0.12594 | 0.12594 | 0.12595 | 0.12595 | 0.12596 | 0.12596 | 0.12597 | 0.12597 |
| F5                  | 0.06342   | 0.06343 | 0.06344 | 0.06345 | 0.06346 | 0.06347 | 0.06348 | 0.06349 | 0.06350 | 0.06351 | 0.06352 | 0.06353 | 0.06354 | 0.06355 |
| F <sub>6</sub>      | 0.03222   | 0.03223 | 0.03224 | 0.03225 | 0.03226 | 0.03227 | 0.03228 | 0.03229 | 0.03230 | 0.03231 | 0.03232 | 0.03233 | 0.03234 | 0.03235 |
| F <sub>7</sub>      | 0.01661   | 0.01662 | 0.01663 | 0.01664 | 0.01665 | 0.01666 | 0.01667 | 0.01668 | 0.01669 | 0.01670 | 0.01671 | 0.01672 | 0.01673 | 0.01674 |
| F <sub>8</sub>      | 0.00882   | 0.00883 | 0.00884 | 0.00885 | 0.00886 | 0.00887 | 0.00888 | 0.00889 | 0.00890 | 0.00891 | 0.00892 | 0.00893 | 0.00894 | 0.00895 |
| F9                  | 0.00494   | 0.00495 | 0.00496 | 0.00497 | 0.00498 | 0.00499 | 0.00500 | 0.00501 | 0.00502 | 0.00503 | 0.00504 | 0.00505 | 0.00506 | 0:00507 |
| 10                  | 0.00302   | 0.00303 | 0.00304 | 0.00305 | 0.00305 | 0.00307 | 0.00308 | 0.00309 | 0.00310 | 0.00311 | 0.00312 | 0.00313 | 0.00314 | 0.00315 |

INTERPOLATED FROM COULTER ELECTRONICS LTD. DATA

- 205

1 .

#### TABLE:14 COULTER COUNTER DATA

# SAMPLE: SOURCE:

ATTRITION:

APERTURE DIAMETER:

MANOMETER VOLUME:

COINCIDENCE FACTOR(P):

CALIBRATION FACTOR (X):

## DISPERSANT:

TEMFERATURE:

TURE: APERTURE RESISTANCE:

ELECTROLYTE:

| GAIN<br>INDEX          | t'                     | l                        | F                       | n¹                  | n <sup>r</sup>      | n'                  | 'n                    | $n'' = \frac{P\left(\frac{\bar{n}'}{10.0}\right)^2}{P\left(\frac{\bar{n}'}{10.0}\right)^2}$ | /                                        | $n = \bar{n}^{\dagger} + n^{\dagger \dagger} - \sqrt{2}$ | t =<br>t'(F)             | $d = k^3/t$       | CUM<br>No%<br>OVERSIZE                   |
|------------------------|------------------------|--------------------------|-------------------------|---------------------|---------------------|---------------------|-----------------------|---------------------------------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------|--------------------------|-------------------|------------------------------------------|
| 1                      | 2                      | 3                        | 4                       | 5                   | 6                   | 7                   | 8                     | 9                                                                                           | 10                                       | 11                                                       | 12                       | 13                | 14                                       |
| AMPLIFIER GAIN SETTING | THRESHOLD DIAL SETTING | APERTURE CURRENT SETTING | SCALE EXPANSION FACTORS | RAW COUNTS SAMPLE 1 | RAW COUNTS SAMPLE 2 | RAW COUNTS SAMPLE 3 | AVERAGE OF RAW COUNTS | COINCIDENCE CORRECTION                                                                      | BACKGROUND COUNT ON BLANK<br>ELECTROLYTE | CORRECTED COUNT                                          | RELATIVE PARTICLE VOLUME | PARTICLE DIAMETER | CUMULATIVE NUMBER % ABOVE<br>STATED SIZE |

- 206

COULTER COUNTER DIAMETER CORRECTION FOR 280, TUBE. ORIENTATION B.

| <br>Deje                                                           | Lμ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Dju                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Dep                                                         | Ly                                                                           | Dju                                                                                                                                                                                                                                                                                                                   | Dep                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Lju                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Dµ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
|--------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 56 78 9011234 56 78 9012234 56 78 901234 56 78 9012444444444444555 | 5.1851<br>6.2219<br>7.2583<br>9.0.359<br>11.3894<br>12.3894<br>12.3894<br>12.3894<br>12.3894<br>12.3894<br>12.3894<br>12.3894<br>12.3894<br>12.3894<br>12.3894<br>12.3894<br>12.3894<br>12.3894<br>12.3894<br>12.3894<br>12.3896<br>12.2234<br>22.2348<br>22.2222<br>22.22995<br>23.3335<br>13.33575<br>13.335756<br>13.335756<br>13.335756<br>13.335756<br>13.335756<br>13.335756<br>13.335756<br>13.335756<br>13.335756<br>13.335756<br>13.335756<br>13.3357566<br>13.3357566<br>13.3357566<br>13.3357566<br>13.3357566<br>13.3357566<br>13.3357566<br>13.3357566<br>13.3357566<br>13.3357566<br>13.3357566<br>13.3357566<br>13.3357566<br>13.3357566<br>13.3357566<br>13.3357566<br>13.3357566<br>13.3357566<br>13.3357566<br>13.3357566<br>13.3357566<br>13.3357566<br>13.3357566<br>13.3357566<br>13.3357566<br>13.3357566<br>13.3357566<br>13.3357566<br>13.3357566<br>13.3357566<br>13.3357566<br>13.3357566<br>13.33575666<br>13.33575666<br>13.335757666<br>13.335757666<br>13.335757666<br>13.335757666<br>13.3357576666<br>13.3357576666<br>13.33575766666<br>13.33575766666666666666666666666666666666 | 5.0062<br>6.0072<br>7.9989<br>9.99974<br>10.99983<br>9.99974<br>11.9995<br>12.9994<br>13.9996<br>17.9996<br>17.9995<br>16.9982<br>19.9771<br>18.97751<br>18.97751<br>18.97751<br>18.99751<br>12.9942<br>21.9955<br>21.9955<br>22.9956<br>23.9550<br>23.9550<br>23.9550<br>23.9550<br>23.9550<br>23.9550<br>23.9555<br>23.9555<br>23.9555<br>23.9555<br>23.9555<br>23.9555<br>23.9555<br>23.9555<br>23.9555<br>23.9555<br>23.9555<br>23.9555<br>23.9555<br>23.9555<br>23.9555<br>23.9555<br>23.9555<br>23.9555<br>23.9555<br>23.9555<br>23.9555<br>23.9555<br>23.9555<br>23.9555<br>23.9555<br>23.9555<br>23.9555<br>23.9555<br>23.9555<br>23.9555<br>23.9555<br>23.9555<br>23.9555<br>23.9555<br>23.9555<br>23.9555<br>23.9555<br>23.9555<br>23.9555<br>23.9555<br>23.9555<br>23.9555<br>23.9555<br>23.9555<br>23.9555<br>23.9555<br>23.9555<br>23.9555<br>23.9555<br>23.9555<br>23.9555<br>23.9555<br>23.9555<br>23.9555<br>23.9555<br>23.9555<br>23.9555<br>23.933<br>33.333<br>33.333<br>33.333<br>33.333<br>33.333<br>33.333<br>33.333<br>33.355<br>33.333<br>33.333<br>33.333<br>33.335<br>33.335<br>33.335<br>33.335<br>33.335<br>33.335<br>33.335<br>33.335<br>33.335<br>33.355<br>33.355<br>33.355<br>33.355<br>33.355<br>33.355<br>33.355<br>33.355<br>33.355<br>33.355<br>33.355<br>33.355<br>33.355<br>33.355<br>33.355<br>33.355<br>33.355<br>33.355<br>33.355<br>33.355<br>33.355<br>33.355<br>33.355<br>33.355<br>33.355<br>33.355<br>33.355<br>33.355<br>33.355<br>33.355<br>33.355<br>33.355<br>33.355<br>33.355<br>33.355<br>33.355<br>33.355<br>33.355<br>33.355<br>33.355<br>33.355<br>33.355<br>33.355<br>33.355<br>33.355<br>33.355<br>33.355<br>33.355<br>33.355<br>33.355<br>33.355<br>33.355<br>33.355<br>33.355<br>33.355<br>33.355<br>33.355<br>33.355<br>33.355<br>33.355<br>33.355<br>33.355<br>33.355<br>33.355<br>33.355<br>33.355<br>33.355<br>33.355<br>33.355<br>33.355<br>33.355<br>33.355<br>33.355<br>33.355<br>33.355<br>33.355<br>33.355<br>33.355<br>33.355<br>33.355<br>33.355<br>33.355<br>33.355<br>33.355<br>33.355<br>33.355<br>33.355<br>33.355<br>33.355<br>33.355<br>33.355<br>33.355<br>33.355<br>33.355<br>33.355<br>33.355<br>33.355<br>33.355<br>33.355<br>33.355<br>33.355<br>33.355<br>33.355<br>33.355<br>33.355<br>33.355<br>33.355<br>33.355<br>33.355<br>33.355<br>33.355<br>33.355<br>33.35 | 55555567890123456678977777777777878888888888889991234567890 | 555408<br>555408<br>555408<br>556408<br>555555555555555555555555555555555555 | 52.518<br>53.490<br>54.462<br>556.469<br>57.369<br>59.301<br>62.191<br>65.028<br>67.028<br>67.028<br>69.392<br>67.028<br>69.392<br>67.028<br>69.392<br>67.028<br>69.392<br>67.028<br>69.392<br>67.028<br>69.392<br>67.028<br>69.392<br>67.028<br>69.392<br>67.028<br>69.392<br>77.72777777777777777777777777777777777 | 102 334 556 788 900 112 334 556 788 900 132 334 556 788 900 112 112 112 112 122 334 556 788 900 132 334 556 788 900 132 334 556 788 900 132 334 556 788 900 132 334 556 788 900 132 334 556 788 900 132 334 556 788 900 132 334 556 788 900 132 334 556 788 900 132 334 556 788 900 132 334 556 788 900 132 334 556 788 900 132 334 556 788 900 132 334 556 788 900 132 334 556 788 900 132 334 556 788 900 132 334 556 788 900 132 334 556 788 900 132 334 556 788 900 132 334 556 788 900 132 334 556 788 900 132 334 556 788 900 132 334 556 788 900 132 334 556 788 900 132 334 556 788 900 132 334 556 788 900 132 334 556 788 900 132 334 556 788 900 132 334 556 788 900 132 334 556 788 900 132 334 556 788 900 132 334 556 788 900 132 334 556 788 900 132 334 556 788 900 132 334 556 788 900 132 334 556 788 900 132 334 556 788 900 132 334 556 788 900 132 334 556 788 900 132 334 556 788 900 132 334 556 788 900 132 334 556 788 900 132 334 556 788 900 132 334 556 788 900 132 334 556 788 900 132 334 556 788 900 132 334 556 788 900 132 334 556 788 900 132 334 556 788 900 132 334 556 788 900 132 334 556 788 900 132 334 556 788 900 132 334 556 788 900 132 334 556 788 900 132 334 556 788 900 132 334 556 788 900 132 334 556 788 900 132 334 556 788 900 132 334 556 788 900 132 334 556 788 900 132 334 556 788 900 132 334 556 788 900 132 334 556 788 900 132 334 556 788 900 132 334 556 788 900 132 334 556 788 900 132 334 556 788 900 132 334 556 788 900 132 334 556 788 900 132 334 556 788 900 132 900 132 900 132 900 132 900 132 900 132 900 132 900 132 900 132 900 132 900 132 900 132 900 132 900 132 900 132 900 132 900 132 900 132 900 132 900 132 900 132 900 132 900 132 900 132 900 132 900 132 900 132 900 132 900 132 900 132 900 132 900 132 900 132 900 132 900 132 900 132 900 132 900 132 900 132 900 132 900 132 900 132 900 132 900 132 900 132 900 132 900 132 900 132 900 132 900 132 900 132 900 132 900 132 900 132 900 132 900 132 900 132 900 132 900 132 900 132 900 132 900 132 900 132 900 132 900 132 900 132 900 132 900 132 900 132 900 132 900 132 900 10 | $\begin{array}{c} 101.20\\ 102.14\\ 103.07\\ 104.00\\ 104.93\\ 105.86\\ 106.79\\ 107.71\\ 108.63\\ 109.55\\ 110.47\\ 111.39\\ 112.30\\ 113.22\\ 114.13\\ 115.93\\ 116.74\\ 119.53\\ 120.43\\ 121.32\\ 122.21\\ 123.10\\ 123.98\\ 124.87\\ 125.63\\ 129.25\\ 130.12\\ 130.99\\ 132.78\\ 134.43\\ 135.29\\ 130.12\\ 130.99\\ 132.78\\ 136.69\\ 137.68\\ 139.53\\ 134.43\\ 135.21\\ 136.99\\ 137.68\\ 139.53\\ 141.25\\ 138.69\\ 139.53\\ 144.25\\ 138.69\\ 139.53\\ 144.25\\ 138.69\\ 139.53\\ 144.25\\ 142.88\\ 139.53\\ 144.25\\ 142.88\\ 139.53\\ 144.25\\ 138.69\\ 139.53\\ 144.25\\ 142.88\\ 139.53\\ 144.25\\ 142.68\\ 142.88\\ 144.25\\ 142.68\\ 139.53\\ 144.25\\ 142.68\\ 139.53\\ 144.25\\ 142.68\\ 139.53\\ 144.25\\ 142.68\\ 139.53\\ 144.25\\ 138.69\\ 139.53\\ 144.25\\ 142.88\\ 144.25\\ 142.88\\ 144.25\\ 142.68\\ 144.25\\ 142.88\\ 144.25\\ 144.25\\ 144.25\\ 144.25\\ 144.25\\ 144.25\\ 144.25\\ 144.25\\ 144.25\\ 144.25\\ 144.25\\ 144.25\\ 144.25\\ 144.25\\ 144.25\\ 144.25\\ 144.25\\ 144.25\\ 144.25\\ 144.25\\ 144.25\\ 144.25\\ 144.25\\ 144.25\\ 144.25\\ 144.25\\ 144.25\\ 144.25\\ 144.25\\ 144.25\\ 144.25\\ 144.25\\ 144.25\\ 144.25\\ 144.25\\ 144.25\\ 144.25\\ 144.25\\ 144.25\\ 144.25\\ 144.25\\ 144.25\\ 144.25\\ 144.25\\ 144.25\\ 144.25\\ 144.25\\ 144.25\\ 144.25\\ 144.25\\ 144.25\\ 144.25\\ 144.25\\ 144.25\\ 144.25\\ 144.25\\ 144.25\\ 144.25\\ 144.25\\ 144.25\\ 144.25\\ 144.25\\ 144.25\\ 144.25\\ 144.25\\ 144.25\\ 144.25\\ 144.25\\ 144.25\\ 144.25\\ 144.25\\ 144.25\\ 144.25\\ 144.25\\ 144.25\\ 144.25\\ 144.25\\ 144.25\\ 144.25\\ 144.25\\ 144.25\\ 144.25\\ 144.25\\ 144.25\\ 144.25\\ 144.25\\ 144.25\\ 144.25\\ 144.25\\ 144.25\\ 144.25\\ 144.25\\ 144.25\\ 144.25\\ 144.25\\ 144.25\\ 144.25\\ 144.25\\ 144.25\\ 144.25\\ 144.25\\ 144.25\\ 144.25\\ 144.25\\ 144.25\\ 144.25\\ 144.25\\ 144.25\\ 144.25\\ 144.25\\ 144.25\\ 144.25\\ 144.25\\ 144.25\\ 144.25\\ 144.25\\ 144.25\\ 144.25\\ 144.25\\ 144.25\\ 144.25\\ 144.25\\ 144.25\\ 144.25\\ 144.25\\ 144.25\\ 144.25\\ 144.25\\ 144.25\\ 144.25\\ 144.25\\ 144.25\\ 144.25\\ 144.25\\ 144.25\\ 144.25\\ 144.25\\ 144.25\\ 144.25\\ 144.25\\ 144.25\\ 144.25\\ 144.25\\ 144.25\\ 144.25\\ 144.25\\ 144.25\\ 144.25\\ 144.25\\ 144.25\\ 144.25\\ 144.25\\ 144.25\\ 144.25\\ 144.25\\ 144.25\\ 144.25\\ 144.25\\ 144.25\\ 144.25\\ 144.25\\ 144.25\\ 144.25\\ 144.25\\ 144.25\\ 144.25\\$ | 97.712<br>98.615<br>99.516<br>100.41<br>101.31<br>102.21<br>103.99<br>104.88<br>105.66<br>107.54<br>108.43<br>109.31<br>110.19<br>111.93<br>112.80<br>113.67<br>114.54<br>115.41<br>115.41<br>116.27<br>117.99<br>120.56<br>121.41<br>123.95<br>124.79<br>125.63<br>124.79<br>125.63<br>124.79<br>125.63<br>124.79<br>125.63<br>124.79<br>125.63<br>125.63<br>124.79<br>125.63<br>124.79<br>125.63<br>125.63<br>125.63<br>125.63<br>125.63<br>125.63<br>125.63<br>125.63<br>125.63<br>125.63<br>125.63<br>125.63<br>125.63<br>125.63<br>125.63<br>125.63<br>125.63<br>125.63<br>125.63<br>125.63<br>125.63<br>125.63<br>125.63<br>125.63<br>125.63<br>125.63<br>125.63<br>125.63<br>125.63<br>125.63<br>125.79<br>135.653<br>137.95 |  |

TABLE: 16 - 208 -

COULTER COUNTER DIAMETER CORRECTION FOR 50 TUBE. OR IENTATION B.

A . Materia in

| D< /             | Lµ     | Dji    | Deji | Lju    | Dµ     | Den | Lμ.    | Dja.   |
|------------------|--------|--------|------|--------|--------|-----|--------|--------|
| 1 2 34 56 780 90 | 1.0370 | 1.0012 | 11   | 11.259 | 10.871 | 21  | 20.801 | 20.083 |
|                  | 2.0733 | 2.0018 | 12   | 12.253 | 11.830 | 22  | 21.700 | 20.951 |
|                  | 3.1083 | 3.0010 | 13   | 13.239 | 12.782 | 23  | 22.589 | 21.809 |
|                  | 4.1412 | 3.9982 | 14   | 14.217 | 13.726 | 24  | 23.452 | 22.643 |
|                  | 5.1713 | 4.9929 | 15   | 15.186 | 14.662 | 25  | 24.311 | 23.472 |
|                  | 6.1981 | 5.9842 | 16   | 16.146 | 15.589 | 26  | 25.157 | 24.288 |
|                  | 7.2209 | 6.9717 | 17   | 17.098 | 16.507 | 27  | 25.988 | 25.091 |
|                  | 8.2390 | 7.9547 | 18   | 18.039 | 17.416 | 28  | 26.806 | 25.881 |
|                  | 9.2519 | 8.9326 | 19   | 18.970 | 18.315 | 29  | 27.609 | 26.657 |
|                  | 10.259 | 9.9048 | 20   | 19.891 | 19.204 | 30  | 28.398 | 27.418 |

TABLE: 17

COULTER COUNTER DIAMETER CORRECTION FOR 560 TUBE. ORIENTATION B.

| Dep                 | Lµ                                                                                                                                                                                                                                                                         | Dja                                                                                                                                                                                                                                                                                            | Deg                                | Lyn                                                                                                                                                                          | Dja                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Depi                                                                                         | Lµ                                                                                                                                                                                                                       | Dja                                                                                                                                                                                                                                                              |
|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5678901123456789012 | 5.1859<br>6.2226<br>7.2594<br>8.2863<br>9.3218<br>10.358<br>11.393<br>12.428<br>13.464<br>14.499<br>15.534<br>16.570<br>17.605<br>19.675<br>20.710<br>21.744<br>22.779<br>23.813<br>24.848<br>25.882<br>26.916<br>27.950<br>28.984<br>30.018<br>31.051<br>32.055<br>33.118 | 5.0069<br>6.0078<br>7.0089<br>8.0003<br>9.0001<br>10.000<br>11.000<br>11.999<br>12.999<br>13.999<br>14.998<br>15.998<br>16.997<br>17.997<br>18.996<br>19.995<br>20.994<br>21.993<br>22.992<br>23.990<br>24.989<br>25.987<br>25.987<br>26.986<br>27.984<br>28.982<br>29.980<br>30.978<br>31.975 | 3533333444444444445678901234567890 | 34.151<br>35.184<br>36.217<br>38.250<br>38.314<br>40.346<br>41.340<br>41.340<br>43.441<br>45.535<br>55.5555<br>51.685<br>51.685<br>55.55555<br>55.5555555<br>55.555555555555 | 32.973<br>33.970<br>34.964<br>35.964<br>36.961<br>37.958<br>39.950<br>40.942<br>43.933<br>44.942<br>43.933<br>44.928<br>43.933<br>44.928<br>45.923<br>45.923<br>45.913<br>45.923<br>46.913<br>45.923<br>46.913<br>49.901<br>551.888<br>52.885<br>551.888<br>551.888<br>551.888<br>551.888<br>551.888<br>551.888<br>551.888<br>551.888<br>551.888<br>551.888<br>551.888<br>551.888<br>551.888<br>551.888<br>551.888<br>551.888<br>551.888<br>551.888<br>551.888<br>551.888<br>551.888<br>551.888<br>551.888<br>551.888<br>551.888<br>551.888<br>551.888<br>551.888<br>551.888<br>551.888<br>551.888<br>551.888<br>551.888<br>551.888<br>551.888<br>551.888<br>551.888<br>551.888<br>551.888<br>551.888<br>551.888<br>551.888<br>551.888<br>551.888<br>551.888<br>551.888<br>551.888<br>551.888<br>551.888<br>551.888<br>551.888<br>551.888<br>551.888<br>551.888<br>551.888<br>551.888<br>551.888<br>551.888<br>551.888<br>551.888<br>551.888<br>551.888<br>551.888<br>551.888<br>551.888<br>552.888<br>551.888<br>552.888<br>552.888<br>553.888<br>553.888<br>553.888<br>553.888<br>553.888<br>553.888<br>553.888<br>553.888<br>553.888<br>553.888<br>553.888<br>553.888<br>553.888<br>553.888<br>553.888<br>553.888<br>553.888<br>553.888<br>553.888<br>553.888<br>553.888<br>553.888<br>553.888<br>553.888<br>553.888<br>553.888<br>553.888<br>553.888<br>553.888<br>553.888<br>553.888<br>553.888<br>553.888<br>553.888<br>553.888<br>553.888<br>553.888<br>553.8885<br>553.8885<br>553.8885<br>553.8885<br>553.8885<br>553.8885<br>553.8855<br>553.8855<br>553.8855<br>553.8855<br>553.88555<br>553.88555<br>553.885555<br>555.885555555555 | 61<br>62<br>63<br>66<br>66<br>66<br>66<br>66<br>67<br>77<br>77<br>77<br>77<br>77<br>77<br>77 | 62.992<br>64.018<br>65.044<br>66.070<br>67.095<br>68.120<br>69.145<br>70.169<br>71.193<br>72.216<br>73.240<br>74.262<br>77.329<br>79.371<br>80.392<br>81.412<br>83.451<br>84.470<br>85.489<br>87.524<br>89.559<br>90.575 | 60.818<br>61.809<br>62.800<br>63.790<br>64.780<br>65.769<br>65.769<br>65.769<br>65.736<br>69.724<br>70.712<br>72.687<br>73.674<br>74.660<br>75.646<br>76.632<br>77.617<br>78.602<br>78.602<br>79.587<br>81.555<br>83.521<br>84.504<br>85.486<br>85.486<br>87.449 |

TABLE: 17 (CONT.) - 209 -COULTER COUNTER DIAMETER CORRECTION FOR 560, TUBE. ORIENTATION B.

| <br>Dep                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Lye                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | D pr.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Deji                                                                              | Lju                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Dyr.                                                                                                                                                                                                                                                                                                                                | Dig                                                                                                                                                           | Lp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Dju                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 89<br>90<br>92<br>93<br>45<br>67<br>89<br>90<br>102<br>34<br>567<br>89<br>90<br>102<br>34<br>567<br>89<br>90<br>102<br>34<br>567<br>89<br>90<br>102<br>34<br>567<br>89<br>90<br>102<br>34<br>567<br>89<br>90<br>102<br>34<br>567<br>89<br>90<br>102<br>34<br>567<br>89<br>90<br>102<br>34<br>567<br>89<br>90<br>102<br>34<br>567<br>89<br>90<br>102<br>34<br>567<br>89<br>90<br>102<br>34<br>567<br>89<br>90<br>102<br>34<br>567<br>89<br>90<br>102<br>34<br>567<br>89<br>90<br>102<br>34<br>567<br>89<br>90<br>102<br>34<br>567<br>89<br>90<br>102<br>34<br>567<br>89<br>90<br>102<br>34<br>567<br>89<br>90<br>102<br>34<br>567<br>89<br>90<br>102<br>34<br>567<br>89<br>90<br>102<br>34<br>567<br>89<br>90<br>102<br>34<br>567<br>89<br>90<br>102<br>34<br>567<br>89<br>90<br>102<br>34<br>567<br>89<br>90<br>102<br>34<br>567<br>89<br>90<br>102<br>34<br>567<br>89<br>90<br>102<br>34<br>567<br>89<br>90<br>102<br>34<br>567<br>890<br>102<br>102<br>102<br>102<br>102<br>102<br>102<br>102<br>102<br>10 | $\begin{array}{c} 91.591\\ 92.607\\ 93.622\\ 94.636\\ 95.651\\ 95.651\\ 95.651\\ 95.651\\ 95.651\\ 95.651\\ 95.651\\ 95.651\\ 95.678\\ 95.678\\ 95.678\\ 98.690\\ 99.703\\ 100.71\\ 101.73\\ 102.74\\ 103.75\\ 104.76\\ 105.77\\ 105.77\\ 105.77\\ 105.77\\ 105.77\\ 105.77\\ 105.77\\ 105.83\\ 115.83\\ 115.83\\ 115.83\\ 115.83\\ 115.83\\ 115.83\\ 115.83\\ 115.83\\ 115.83\\ 115.83\\ 115.83\\ 115.83\\ 115.83\\ 115.83\\ 115.83\\ 115.83\\ 115.83\\ 115.83\\ 115.83\\ 115.83\\ 115.83\\ 115.83\\ 115.83\\ 115.83\\ 115.83\\ 115.83\\ 115.83\\ 115.83\\ 115.83\\ 115.83\\ 115.83\\ 125.84\\ 125.84\\ 125.84\\ 125.84\\ 125.84\\ 125.84\\ 125.84\\ 125.84\\ 125.84\\ 125.84\\ 125.84\\ 125.84\\ 125.84\\ 125.84\\ 125.84\\ 125.84\\ 125.84\\ 125.84\\ 125.84\\ 125.84\\ 125.84\\ 125.84\\ 125.84\\ 125.84\\ 125.84\\ 125.84\\ 125.84\\ 125.84\\ 125.84\\ 125.84\\ 125.84\\ 125.84\\ 125.84\\ 125.84\\ 125.84\\ 125.84\\ 125.84\\ 125.84\\ 125.84\\ 125.84\\ 125.84\\ 125.84\\ 125.84\\ 125.84\\ 125.84\\ 125.84\\ 125.84\\ 125.84\\ 125.84\\ 125.84\\ 125.84\\ 125.84\\ 125.84\\ 125.84\\ 125.84\\ 125.84\\ 125.84\\ 125.84\\ 125.84\\ 125.84\\ 125.84\\ 125.84\\ 125.84\\ 125.84\\ 125.84\\ 125.84\\ 125.84\\ 125.84\\ 125.84\\ 125.84\\ 125.84\\ 125.84\\ 125.84\\ 125.84\\ 125.84\\ 125.84\\ 125.84\\ 125.84\\ 125.84\\ 125.84\\ 125.84\\ 125.84\\ 125.84\\ 125.84\\ 125.84\\ 125.84\\ 125.84\\ 125.84\\ 125.84\\ 125.84\\ 125.84\\ 125.84\\ 125.84\\ 125.84\\ 125.84\\ 125.84\\ 125.84\\ 125.84\\ 125.84\\ 125.84\\ 125.84\\ 125.84\\ 125.84\\ 125.84\\ 125.84\\ 125.84\\ 125.84\\ 125.84\\ 125.84\\ 125.84\\ 125.84\\ 125.84\\ 125.84\\ 125.84\\ 125.84\\ 125.84\\ 125.84\\ 125.84\\ 125.84\\ 125.84\\ 125.84\\ 125.84\\ 125.84\\ 125.84\\ 125.84\\ 125.84\\ 125.84\\ 125.84\\ 125.84\\ 125.84\\ 125.84\\ 125.84\\ 125.84\\ 125.84\\ 125.84\\ 125.84\\ 125.84\\ 125.84\\ 125.84\\ 125.84\\ 125.84\\ 125.84\\ 125.84\\ 125.84\\ 125.84\\ 125.84\\ 125.84\\ 125.84\\ 125.84\\ 125.84\\ 125.84\\ 125.84\\ 125.84\\ 125.84\\ 125.84\\ 125.84\\ 125.84\\ 125.84\\ 125.84\\ 125.84\\ 125.84\\ 125.84\\ 125.84\\ 125.84\\ 125.84\\ 125.84\\ 125.84\\ 125.84\\ 125.84\\ 125.84\\ 125.84\\ 125.84\\ 125.84\\ 125.84\\ 125.84\\ 125.84\\ 125.84\\ 125.84\\ 125.84\\ 125.84\\ 125.84\\ 125.84\\ 125.84\\ 125.84\\ 125.84\\ 125.84\\ 125.84\\ 125.84\\ 125.84\\ 125.84\\ 125.84\\ 125.84\\ 125.84\\ 125.84\\$ | 88.430<br>89.411<br>90.391<br>91.370<br>92.350<br>93.328<br>94.307<br>95.284<br>96.262<br>97.239<br>98.215<br>99.191<br>100.17<br>101.14<br>102.12<br>103.09<br>104.06<br>105.04<br>105.04<br>105.04<br>105.04<br>105.04<br>105.04<br>105.04<br>105.04<br>105.04<br>105.04<br>105.04<br>105.04<br>105.04<br>105.04<br>105.04<br>105.04<br>105.04<br>105.04<br>105.04<br>105.04<br>105.04<br>105.04<br>105.04<br>105.04<br>105.04<br>105.04<br>105.04<br>105.04<br>105.04<br>105.04<br>105.04<br>105.04<br>105.04<br>105.04<br>105.04<br>105.04<br>105.04<br>105.04<br>105.04<br>105.04<br>105.04<br>105.04<br>110.86<br>111.83<br>112.80<br>113.77<br>114.74<br>115.70<br>122.46<br>123.42<br>123.42<br>124.38<br>125.34<br>125.34<br>125.34<br>125.34<br>126.31<br>127.27<br>128.22<br>129.18<br>130.14<br>131.10<br>132.06<br>133.01<br>133.97<br>134.92 | 138<br>1390<br>141<br>142<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144 | $\begin{array}{c} 140.73\\ 141.72\\ 143.76\\ 144.142.71\\ 144.142.70\\ 144.144.145.664\\ 147.867\\ 144.149.051.255\\ 1551.5567.83\\ 165.255.556\\ 161.165.255\\ 1551.5567.83\\ 161.165.252\\ 165.166.12\\ 165.222\\ 191.162\\ 167.16\\ 168.99\\ 171.9952\\ 171.75\\ 177.38\\ 182.35\\ 183.455\\ 183.182\\ 183.182\\ 183.182\\ 183.182\\ 183.182\\ 183.182\\ 183.182\\ 183.182\\ 183.182\\ 183.182\\ 183.182\\ 183.182\\ 183.182\\ 183.182\\ 183.182\\ 183.182\\ 183.182\\ 183.182\\ 183.182\\ 183.182\\ 183.182\\ 183.182\\ 183.182\\ 183.182\\ 183.182\\ 183.182\\ 183.182\\ 183.182\\ 183.182\\ 183.182\\ 183.182\\ 183.182\\ 183.182\\ 183.182\\ 183.182\\ 183.182\\ 183.182\\ 183.182\\ 183.182\\ 183.182\\ 183.182\\ 183.182\\ 183.182\\ 183.182\\ 183.182\\ 183.182\\ 183.182\\ 183.182\\ 183.182\\ 183.182\\ 183.182\\ 183.182\\ 183.182\\ 183.182\\ 183.182\\ 183.182\\ 183.182\\ 183.182\\ 183.182\\ 183.182\\ 183.182\\ 183.182\\ 183.182\\ 183.182\\ 183.182\\ 183.182\\ 183.182\\ 183.182\\ 183.182\\ 183.182\\ 183.182\\ 183.182\\ 183.182\\ 183.182\\ 183.182\\ 183.182\\ 183.182\\ 183.182\\ 183.182\\ 183.182\\ 183.182\\ 183.182\\ 183.182\\ 183.182\\ 183.182\\ 183.182\\ 183.182\\ 183.182\\ 183.182\\ 183.182\\ 183.182\\ 183.182\\ 183.182\\ 183.182\\ 183.182\\ 183.182\\ 183.182\\ 183.182\\ 183.182\\ 183.182\\ 183.182\\ 183.182\\ 183.182\\ 183.182\\ 183.182\\ 183.182\\ 183.182\\ 183.182\\ 183.182\\ 183.182\\ 183.182\\ 183.182\\ 183.182\\ 183.182\\ 183.182\\ 183.182\\ 183.182\\ 183.182\\ 183.182\\ 183.182\\ 183.182\\ 183.182\\ 183.182\\ 183.182\\ 183.182\\ 183.182\\ 183.182\\ 183.182\\ 183.182\\ 183.182\\ 183.182\\ 183.182\\ 183.182\\ 183.182\\ 183.182\\ 183.182\\ 183.182\\ 183.182\\ 183.182\\ 183.182\\ 183.182\\ 183.182\\ 183.182\\ 183.182\\ 183.182\\ 183.182\\ 183.182\\ 183.182\\ 183.182\\ 183.182\\ 183.182\\ 183.182\\ 183.182\\ 183.182\\ 183.182\\ 183.182\\ 183.182\\ 183.182\\ 183.182\\ 183.182\\ 183.182\\ 183.182\\ 183.182\\ 183.182\\ 183.182\\ 183.182\\ 183.182\\ 183.182\\ 183.182\\ 183.182\\ 183.182\\ 183.182\\ 183.182\\ 183.182\\ 183.182\\ 183.182\\ 183.182\\ 183.182\\ 183.182\\ 183.182\\ 183.182\\ 183.182\\ 183.182\\ 183.182\\ 183.182\\ 183.182\\ 183.182\\ 183.182\\ 183.182\\ 183.182\\ 183.182\\ 183.182\\ 183.182\\ 183.182\\ 183.182\\ 183.182\\ 183.182\\ 183.182\\ 183.182\\ 1$ | $\begin{array}{c} 135.88\\ 136.78\\ 139.69\\ 140.59\\ 142.54\\ 142.54\\ 142.54\\ 143.44\\ 145.33\\ 147.28\\ 147.28\\ 148.17\\ 151.00\\ 152.94\\ 1552.94\\ 1555.76\\ 1555.76\\ 1555.26\\ 161.39\\ 162.326\\ 164.12\\ 166.98\\ 167.70\\ 176.70\\ 176.70\\ 176.70\\ 177.62\\ 177.4\\ 32\\ 177.7\\ 178.09\\ 179.93\\ 180.86\end{array}$ | 187<br>188<br>190<br>191<br>192<br>193<br>194<br>195<br>197<br>198<br>199<br>200<br>203<br>205<br>205<br>205<br>205<br>205<br>205<br>205<br>205<br>205<br>205 | $\begin{array}{c} 188.27\\ 189.22\\ 190.17\\ 191.11\\ 192.06\\ 193.00\\ 193.95\\ 194.89\\ 195.84\\ 196.78\\ 197.72\\ 198.66\\ 199.60\\ 200.54\\ 201.47\\ 202.41\\ 203.34\\ 204.28\\ 205.21\\ 203.34\\ 204.28\\ 205.21\\ 203.34\\ 209.87\\ 210.80\\ 208.94\\ 209.87\\ 210.80\\ 215.42\\ 209.87\\ 210.80\\ 215.42\\ 212.65\\ 213.57\\ 214.50\\ 215.42\\ 216.35\\ 217.27\\ 218.19\\ 220.94\\ 221.86\\ 222.78\\ 223.69\\ 224.61\\ 225.51\\ 226.42\\ 225.51\\ 226.42\\ 227.33\\ 228.24\\ 229.15\\ 230.96\\ 231.36\\ 232.77\end{array}$ | $\begin{array}{c} 181.77\\ 182.69\\ 183.60\\ 184.52\\ 185.43\\ 186.34\\ 187.26\\ 188.17\\ 188.34\\ 187.26\\ 189.09\\ 190.89\\ 190.89\\ 192.71\\ 193.61\\ 194.52\\ 195.42\\ 195.42\\ 195.42\\ 195.42\\ 195.61\\ 194.52\\ 201.62\\ 203.42\\ 205.20\\ 207.99\\ 200.82\\ 205.20\\ 207.99\\ 208.87\\ 210.66\\ 211.55\\ 212.32\\ 209.66\\ 211.55\\ 212.43\\ 209.66\\ 211.55\\ 212.43\\ 209.66\\ 211.55\\ 212.43\\ 209.66\\ 211.55\\ 212.43\\ 209.66\\ 211.55\\ 212.43\\ 209.66\\ 211.55\\ 212.43\\ 209.66\\ 211.55\\ 212.43\\ 209.66\\ 211.55\\ 212.43\\ 209.66\\ 211.55\\ 212.43\\ 209.66\\ 211.55\\ 212.43\\ 209.66\\ 211.55\\ 212.43\\ 209.66\\ 211.55\\ 212.43\\ 209.66\\ 211.55\\ 212.43\\ 209.66\\ 211.55\\ 224.74\\ 222.36\\ 224.74\\ 222.36\\ 224.74\\ 222.36\\ 224.74\\ 222.36\\ 224.74\\ 222.36\\ 224.74\\ 222.36\\ 224.74\\ 222.36\\ 224.74\\ 222.36\\ 224.74\\ 222.36\\ 224.74\\ 222.56\\ 224.74\\ 222.56\\ 224.74\\ 222.56\\ 224.74\\ 222.56\\ 224.74\\ 222.56\\ 224.74\\ 222.56\\ 224.74\\ 222.56\\ 224.74\\ 222.56\\ 224.74\\ 222.56\\ 224.74\\ 222.56\\ 224.74\\ 222.56\\ 224.74\\ 222.56\\ 224.74\\ 222.56\\ 224.74\\ 222.56\\ 224.74\\ 222.56\\ 224.74\\ 222.56\\ 224.74\\ 222.56\\ 224.74\\ 222.56\\ 224.74\\ 222.56\\ 224.74\\ 222.56\\ 224.74\\ 222.56\\ 224.74\\ 222.56\\ 224.74\\ 222.56\\ 224.74\\ 222.56\\ 224.74\\ 222.56\\ 224.74\\ 222.56\\ 224.74\\ 222.56\\ 224.74\\ 222.56\\ 224.74\\ 222.56\\ 224.74\\ 222.56\\ 224.74\\ 222.56\\ 224.74\\ 222.56\\ 224.74\\ 222.56\\ 224.74\\ 222.56\\ 224.74\\ 222.56\\ 224.74\\ 222.56\\ 224.74\\ 225.56\\ 224.74\\ 225.56\\ 224.74\\ 225.56\\ 224.74\\ 225.56\\ 224.74\\ 225.56\\ 224.74\\ 225.56\\ 224.74\\ 225.56\\ 224.74\\ 225.56\\ 224.74\\ 225.56\\ 224.74\\ 225.56\\ 224.74\\ 225.56\\ 224.74\\ 225.56\\ 224.74\\ 225.56\\ 224.74\\ 225.56\\ 224.74\\ 225.56\\ 224.74\\ 225.56\\ 224.74\\ 225.56\\ 224.74\\ 225.56\\ 224.74\\ 225.56\\ 224.74\\ 225.56\\ 224.74\\ 225.56\\ 224.74\\ 225.56\\ 224.74\\ 225.56\\ 224.74\\ 225.56\\ 224.74\\ 225.56\\ 224.74\\ 225.56\\ 224.74\\ 225.56\\ 224.74\\ 225.56\\ 225.56\\ 225.56\\ 225.56\\ 225.56\\ 225.56\\ 225.56\\ 225.56\\ 225.56\\ 225.56\\ 225.56\\ 225.56\\ 225.56\\ 225.56\\ 225.56\\ 225.56\\ 225.56\\ 225.56\\ 225.56\\ 225.56\\ 225.56\\ 225.56\\ 225.56\\ 225.56\\ 225.56\\ 225.56\\ 225.56\\ 225.56\\ 225.56\\ 225.56\\ 225.56\\ 225.56\\ 225.56\\ 225.56\\ 225.56\\ 225.56\\$ |  |

# COMPARISON OF DISPERSING TECHNIQUES WITH BATCH D SEED 44-64

### PRIOR TO COULTER COUNTER ANALYSIS

|                |      |            |            | Cl          | JMULAT      | CIVE 1        | No. %                    | OVERS      | SIZE          |            |      |      |             |      |
|----------------|------|------------|------------|-------------|-------------|---------------|--------------------------|------------|---------------|------------|------|------|-------------|------|
|                |      | S          | FIRRI      | IG          |             |               | τ                        | JLTRAS     | SONICS        | 3          |      |      |             |      |
| AGIT:<br>ATION | NONE | 800<br>RPM | 800<br>RPM | 1200<br>RPM | POV<br>POSI | VER<br>I.a. 2 | POV<br>POSI              | VER<br>1.4 | POV<br>POSI   | VER<br>1.6 |      | PON  | WER<br>I. 8 |      |
| (MIN):         |      | 0.5        | 2.0        | 2.0         | 0.5         | 2.0           | 0.5                      | 2.0        | 0.5           | 2.0        | 0.17 | 0.33 | 0.5         | 2.0  |
| Des            |      |            |            |             |             |               |                          |            |               |            |      |      |             |      |
| 82.3           | 0    | 0          | 0          | 0           | 0           | 0             | 0                        | 0          | 0             | 0          | 0    |      |             |      |
| 72.2           | 0.03 | 0.07       | 0.06       | 0.06        | 0.02        | 0.02          | 0.02                     | 0.01       | 0.01          | 0.01       | 0    | 0    | 0           | 0    |
| 57.8           | 1.12 | 0.79       | 0.80       | 0.99        | 0.40        | 0.33          | 0.60                     | 0.10       | 0.12          | 0.04       | 0.10 | 0.02 | 0.01        | 0    |
| 46.1           | 3.63 | 3.92       | 3.60       | 4.11        | 3.11        | 1.56          | 1.82                     | 0.31       | 0.82          | 0.06       | 0.45 | 0.19 | 0.05        | 0.01 |
| 36.8           | 10.7 | 11.6       | 10.1       | 9.65        | 7.40        | 5.15          | 5.48                     | 1.81       | 2.88          | 0.10       | 1.43 | 0.82 | 0.23        | 0.03 |
| 29.3           | 20.9 | 21.8       | 20.4       | 18.8        | 16.1        | 11.5          | 12.3                     | 3.15       | 6.44          | 0.46       | 4.60 | 2.38 | 1.13        | 0.07 |
| 23.5           | 35.5 | 35.8       | 33.8       | 35.9        | 28.6        | 21.8          | 22.0                     | 8.15       | 13.8          | 2.08       | 10.8 | 6.48 | 4.44        | 0.20 |
| 18.9           | 53.2 | 51.4       | 51.3       | 47.8        | 42.3        | 31.5          | 36.3                     | 17.8       | 25.0          | 7.18       | 21.4 | 14.8 | 15.8        | 1.04 |
| 15.4           | 66.3 | 69.0       | 63.2       | 65.5        | 57.8        | 47.2          | 52.1                     | 35.2       | 41.2          | 16.7       | 34.4 | 27.2 | 23.7        | 4.00 |
| 12.8           | 80.4 | 82.9       | 79.3       | 78.9        | 72.0        | 62.6          | 68.4                     | 53.6       | 54.6          | 30.8       | 47.5 | 41.4 | 38.7        | 10.3 |
| 11.0           | 90.9 | 92.0       | 92.4       | 91.0        | 84.5        | 71.5          | 85.6                     | 66.1       | 66.4          | 42.3       | 59.6 | 50.8 | 49.2        | 20.4 |
| 8.78           | 100  | 100        | 100        | 100         | 96.3        | 89.5          | 93.3                     | 76.8       | 84.5          | 64.8       | 77.8 | 69.0 | 68.6        | 40.0 |
| 7.79           |      |            |            |             | 100         | 96.0          | 100                      | 92.8       | 90.5          | 75.4       | 86.2 | 81.3 | 79.1        | 57.9 |
| 6.95           |      |            |            |             |             | 100           |                          | 98.3       | 100           | 85.6       | 94.1 | 93.0 | 91.5        | 75.4 |
| 6.20           |      |            |            |             |             |               |                          | 100        |               | 100        | 100  | 100  | 100         | 100  |
| -              | C    | AVER       | AGED       |             | 1           |               | Not the Enversion of the | ¥          | Chipmenton de | 36         | ¥    | ¥    | ¥           | X    |

\* LOWER LIMIT OF SIZE DISTRIBUTION NOT ATTAINED

#### - 210 -

#### TABLE: 19 COULTER COUNTER DATA

SAMPLE: 1 SOURCE: BATCH E PREPARED SEED 89-105/ ATTRITION: 20 MINS. AT 2000 R.P.M. NEW CELL

APERTURE DIAMETER: 280, MINCHEER VOLUME: 2mls. COINCIDENCE FACTOR(P): 13.72 CALIBRATION FACTOR(K): 18.8

DISPERSANT: NONIDET P40+STIRRING TEMPERATURE: 21°C APERTURE RESISTANCE: 8.71K ELECTROLYTE: AQUEOUS 0.9% NaC1+8.5%PE

| GAIN<br>INDEX  | t                                                                                         | l                                                                     | F                                                                                                                                                                 | n"                                                                                                                                 | n'                                                                                                       | n'                                                                                                       | n'                                                                                                       | $n'' = \frac{1}{P\left(\frac{n'}{1000}\right)^2}$                       | ~                                                                                                | $n = \frac{1}{n! + n!! - \sqrt{n!}}$                                                                    | t =<br>t'(F)                                                                                                              | $d = k^3 \sqrt{t}$                                                                                                        | CUM<br>NO%<br>OVERSIZE                                                                                                       |  |
|----------------|-------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|--|
| 33333333333334 | 300<br>210<br>150<br>90<br>60<br>60<br>60<br>60<br>60<br>60<br>60<br>60<br>60<br>30<br>30 | 1<br>1<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>10<br>10 | 1.00000<br>1.00000<br>1.00000<br>1.00000<br>0.56074<br>0.25100<br>0.12612<br>0.06369<br>0.03250<br>0.01688<br>0.00910<br>0.00524<br>0.00337<br>0.00337<br>0.00238 | $ \begin{array}{c} 1\\ 4\\ 22\\ 44\\ 80\\ 149\\ 241\\ 362\\ 496\\ 684\\ 826\\ 959\\ 1039\\ 1039\\ 1130\\ 1160\\ 1005 \end{array} $ | 1<br>5<br>23<br>44<br>72<br>126<br>198<br>301<br>406<br>552<br>706<br>817<br>971<br>1021<br>1119<br>1064 | 2<br>5<br>23<br>53<br>76<br>130<br>210<br>318<br>444<br>598<br>772<br>864<br>988<br>1165<br>1176<br>1104 | 1<br>5<br>23<br>47<br>76<br>135<br>216<br>327<br>449<br>611<br>768<br>880<br>999<br>1105<br>1152<br>1058 | 0<br>0<br>0<br>0<br>1<br>1<br>3<br>5<br>8<br>11<br>14<br>17<br>18<br>15 | 1<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 | 0<br>3<br>21<br>45<br>74<br>133<br>215<br>323<br>446<br>606<br>762<br>870<br>965<br>1055<br>1073<br>964 | 300<br>210<br>150<br>90<br>60<br>30<br>15.1<br>7.57<br>3.82<br>1.95<br>1.012<br>0.546<br>0.315<br>0.202<br>0.101<br>0.071 | 126<br>112<br>100<br>84.2<br>73.5<br>58.4<br>46.4<br>36.9<br>29.4<br>23.5<br>18.9<br>15.4<br>12.8<br>11.0<br>8.78<br>7.79 | 0<br>0.28<br>1.96<br>4.18<br>6.88<br>12.40<br>20.00<br>30.00<br>41.50<br>56.40<br>70.90<br>81.10<br>89.80<br>98.40<br>100.00 |  |

#### TABLE:20 COULTER COUNTER DATA

SAMPLE: 2 SOURCE: BATCH E PREPARED SEED 89-105/ ATTRITION :: 20 MINS. AT 2000 R.P.M. NEW CELL

APERTURE DIAMETER: 280 MANOMETER VOLUME: 2mls. COINCIDENCE FACTOR(P): 13.72 CALIBRATION FACTOR(K):18.8

DISPERSANT: NONIDET P40+STIRRING TEMPERATURE: 23°C APERTURE RESISTANCE: 8.48KA ELECTROLYTE: AQUEOUS 0.9% NaC1+8.5%P.E.

| GAIN<br>INDEX    | ť                                                                                               | 1                                                                     | F                                                                                                                                                                 | n*                                                                                                    | n'                                                                                                        | n'                                                                                                       | n'                                                                                                      | $n^{\text{ii}} = \frac{1}{P\left(\frac{\vec{n}^{\text{i}}}{1000}\right)^2}$ | ~                                                                                           | n =<br>ñ'+n''→√                                                                                       | t =<br>t <sup>r</sup> (F)                                                                                                 | $d = k^3 \sqrt{t}$                                                                                                        | CUM<br>No%<br>OVERSIZE                                                                                             |  |
|------------------|-------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|--|
| 3333333333333334 | 300<br>210<br>150<br>90<br>60<br>60<br>60<br>60<br>60<br>60<br>60<br>60<br>60<br>60<br>30<br>30 | 1<br>1<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>10<br>10 | 1.00000<br>1.00000<br>1.00000<br>1.00000<br>0.50070<br>0.25100<br>0.12611<br>0.06368<br>0.03248<br>0.01687<br>0.00908<br>0.00522<br>0.00335<br>0.00335<br>0.00237 | 2<br>3<br>20<br>43<br>63<br>103<br>172<br>265<br>341<br>424<br>533<br>643<br>768<br>868<br>884<br>918 | 2<br>7<br>27<br>61<br>88<br>155<br>253<br>338<br>473<br>636<br>777<br>862<br>1038<br>1076<br>1195<br>1127 | 2<br>6<br>19<br>42<br>77<br>103<br>191<br>298<br>413<br>528<br>657<br>858<br>910<br>1007<br>1178<br>1162 | 2<br>5<br>22<br>49<br>76<br>120<br>205<br>300<br>409<br>529<br>656<br>788<br>905<br>984<br>1086<br>1069 | 0<br>0<br>0<br>0<br>0<br>1<br>1<br>2<br>4<br>6<br>8<br>11<br>13<br>16<br>16 | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 | 0<br>3<br>20<br>47<br>74<br>118<br>204<br>294<br>397<br>500<br>624<br>729<br>830<br>905<br>996<br>938 | 300<br>210<br>150<br>90<br>60<br>30<br>15.1<br>7.57<br>3.82<br>1.95<br>1.012<br>0.545<br>0.314<br>0.201<br>0.10.<br>0.071 | 126<br>112<br>100<br>84.2<br>73.5<br>58.4<br>46.4<br>36.9<br>29.4<br>23.5<br>18.9<br>15.4<br>12.8<br>11.0<br>8.78<br>7.79 | 0<br>0.30<br>2.01<br>4.72<br>7.47<br>11.9<br>20.5<br>29.5<br>29.9<br>50.2<br>62.7<br>73.3<br>83.4<br>90.0<br>100.0 |  |

212

#### TABLE:21 COULTER COUNTER DATA

SAMPLE: 3 SOURCE: BATCH E PREPARED SEED 89-105 ATTRITION: 20 MINS. AT 2000 R.P.M. NEW CELL

APERTURE: 280 MANOMETER VOLUME: 2mls. COINCIDENCE FACTOR(P):13.72 CALIBRATION FACTOR(K): 18.8

DISPERSANT: MONIDET P40+STIRRING IMMPERATURE: 22°C APERTURE RESISTANCE: 8.48K ELECTROLYTE: AQUEOUS 0.9% NaC1+8.5% P.E.

| GAIN<br>INDEX      | t'                                                                                        | 1                                                                    | F                                                                                                                                                      | n a                                                                                            | n'                                                                                                                     | n'                                                                                                 | ñ'                                                                                               | $n'' = \frac{P\left(\frac{\bar{n}}{1000}\right)^2}{P\left(\frac{\bar{n}}{1000}\right)^2}$ | ~                                                                           | $n = \frac{1}{n! + n!}$                                                                          | t =<br>t'(F)                                                                                                     | $\frac{d}{k^3} = \frac{3}{t}$                                                                                     | CUM<br>NO%<br>OVERSIZE                                                                                   | - 212 |
|--------------------|-------------------------------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-------|
| 333333333333333333 | 300<br>210<br>150<br>90<br>60<br>60<br>60<br>60<br>60<br>60<br>60<br>60<br>60<br>60<br>30 | 1<br>1<br>1<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>10 | 1.0000)<br>1.00000<br>1.00000<br>1.00000<br>0.50070<br>0.25100<br>0.12611<br>0.06368<br>0.03248<br>0.01687<br>0.00908<br>0.00522<br>0.00335<br>0.00335 | 1<br>4<br>33<br>64<br>93<br>128<br>233<br>321<br>401<br>516<br>639<br>714<br>833<br>898<br>874 | $ \begin{array}{c} 1\\ 10\\ 28\\ 75\\ 105\\ 177\\ 253\\ 388\\ 470\\ 662\\ 745\\ 869\\ 1039\\ 1097\\ 1085 \end{array} $ | 1<br>12<br>20<br>66<br>99<br>159<br>260<br>355<br>486<br>673<br>771<br>909<br>1069<br>1075<br>1073 | 1<br>9<br>27<br>68<br>99<br>155<br>249<br>354<br>452<br>617<br>718<br>831<br>980<br>1027<br>1011 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>1<br>2<br>3<br>5<br>7<br>9<br>13<br>14<br>14           | 1<br>2<br>2<br>2<br>2<br>4<br>4<br>4<br>9<br>17<br>9<br>26<br>33<br>6<br>53 | 0<br>7<br>25<br>66<br>97<br>151<br>246<br>352<br>- 446<br>605<br>706<br>814<br>960<br>991<br>972 | 300<br>210<br>150<br>90<br>60<br>30<br>15.1<br>7.57<br>3.82<br>1.95<br>1.012<br>0.545<br>0.314<br>0.201<br>0.101 | 126<br>112<br>100<br>84.2<br>73.5<br>58.4<br>46.4<br>36.9<br>29.4<br>23.5<br>18.9<br>15.4<br>12.8<br>11.0<br>8.78 | 0<br>0.71<br>2.52<br>6.65<br>9.79<br>15.2<br>24.8<br>35.5<br>45.0<br>61.1<br>71.1<br>82.2<br>96.9<br>100 | 5 -   |

- 214 -

BATCH E PREPARED SEED SIEVE FRACTION 89-105

CUMULATIVE No. % OVERSIZE

| COULTER<br>DIAMETER<br>D <sub>c</sub>                                                                             | SAMPLE<br>1                                                                                                      | SAMPLE<br>2                                                                                                      | SAMPLE<br>3                                                                                              | AVERAGE<br>OF 12&3                                                                                               | CORRECTED<br>D                                                                                                         | MEAN<br>D                                                                                                      | AVERAGE<br>No% F<br>MEAN D                                                                               |
|-------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| 126<br>112<br>100<br>84.2<br>73.5<br>58.4<br>46.4<br>36.9<br>29.4<br>23.5<br>18.9<br>15.4<br>12.8<br>11.0<br>8.78 | 0<br>0.28<br>1.96<br>4.18<br>6.88<br>12.4<br>20.0<br>30.0<br>41.5<br>56.4<br>70.9<br>81.1<br>89.8<br>98.4<br>100 | 0<br>0.30<br>2.01<br>4.72<br>7.47<br>11.9<br>20.5<br>29.5<br>39.9<br>50.2<br>62.7<br>73.3<br>83.4<br>90.8<br>100 | 0<br>0.71<br>2.52<br>6.65<br>9.79<br>15.2<br>24.8<br>35.5<br>45.0<br>61.1<br>71.1<br>82.2<br>96.9<br>100 | 0<br>0.43<br>2.16<br>5.18<br>8.05<br>13.2<br>21.8<br>31.7<br>42.1<br>55.9<br>68.2<br>78.9<br>90.0<br>96.4<br>100 | 119.7<br>107.5<br>96.8<br>82.3<br>72.2<br>57.8<br>46.1<br>36.8<br>29.3<br>23.5<br>18.9<br>15.4<br>12.8<br>11.0<br>8.78 | 113.6<br>102.2<br>89.6<br>77.3<br>65.0<br>51.9<br>41.5<br>33.1<br>26.4<br>21.2<br>17.2<br>14.1<br>11.9<br>9.89 | 0.43<br>1.73<br>3.02<br>2.90<br>5.15<br>8.6<br>9.9<br>10.4<br>13.8<br>12.3<br>10.7<br>11.1<br>6.4<br>3.6 |
| ZN0% 2D<br>ZN0% 2D<br>ZN0% 2D                                                                                     | 100.0<br>3,295<br>154,789                                                                                        | 100.0<br>3,155<br>151,273                                                                                        | 100.0<br>3,580<br>182,830                                                                                | 100.0<br>3,353<br>163,117                                                                                        |                                                                                                                        |                                                                                                                | ·                                                                                                        |

# SIZE ANALYSIS COMPARISON OF BATCH C SEED SIEVE FRACTION 44-64 AFTER

# ATTRITION IN CELLS A AND C AT DIFFERENT STIRRER SPEEDS

|                                                                                                                                                                                    | CELL                                                                                         | 3                                                                                    |                                                                                  |                                                                          | A                                                                                        |                                                                                  |                                                                                   |                                                                              | C                                                                                |                                                                            |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|--------------------------------------------------------------------------|------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------|
| ST                                                                                                                                                                                 | IRRER                                                                                        | SPEED                                                                                | 500 R.1                                                                          | P.M.                                                                     | 2000 R.                                                                                  | •P•M•                                                                            | 500 R.1                                                                           | P•M•                                                                         | 2000 R                                                                           | .P.M.                                                                      |
| Doll                                                                                                                                                                               | Dje                                                                                          | MEAN Du                                                                              | No% OVER                                                                         | No%                                                                      | No% OVER                                                                                 | No%                                                                              | No%OVER                                                                           | No%                                                                          | No% OVER                                                                         | N0%                                                                        |
| <ul> <li>84.2</li> <li>73.5</li> <li>58.4</li> <li>46.4</li> <li>36.9</li> <li>29.4</li> <li>23.5</li> <li>18.9</li> <li>15.4</li> <li>12.8</li> <li>11.0</li> <li>8.75</li> </ul> | 82.3<br>72.2<br>57.8<br>46.1<br>36.8<br>29.3<br>23.5<br>18.9<br>15.4<br>12.8<br>11.0<br>8.75 | 77.3<br>65.0<br>51.9<br>41.5<br>33.1<br>26.4<br>21.2<br>17.2<br>14.1<br>11.9<br>9.89 | 0<br>1.18<br>24.5<br>48.3<br>59.6<br>69.0<br>73.5<br>85.9<br>97.0<br>98.0<br>100 | 1.18<br>23.3<br>23.8<br>11.3<br>9.4<br>4.5<br>12.5<br>11.1<br>1.0<br>2.0 | 0<br>0.26<br>8.34<br>19.9<br>28.4<br>42.2<br>53.2<br>62.1<br>81.0<br>92.8<br>99.1<br>100 | 0.26<br>8.08<br>11.5<br>8.5<br>13.8<br>11.0<br>8.9<br>18.9<br>11.8<br>6.3<br>0.9 | 0<br>0.41<br>10.65<br>24.1<br>35.2<br>45.0<br>56.3<br>67.8<br>82.2<br>96.5<br>100 | 0.41<br>10.24<br>13.45<br>11.1<br>9.8<br>11.3<br>11.5<br>14.4<br>14.3<br>3.5 | 0<br>1.48<br>11.0<br>25.4<br>36.9<br>46.4<br>56.9<br>67.7<br>82.9<br>94.5<br>100 | 1.48<br>9.52<br>14.4<br>11.5<br>9.5<br>10.5<br>10.8<br>15.2<br>11.6<br>5.5 |

# COLLECTED SIZE ANALYSES OF SEED MATERIALS

## ATTRITED AT 2000R.P.M. IN STIRRED CELL C

| SEI                                                                                                                                      | ED BA<br>E FRA                                                                                                                            | TCH:<br>CTION:                                                                                                                           | 44                                                                               | с<br>-64 м                                                                  | 75                                                                                                                               | с<br>-89л                                                                                                        | 44                                                                                       | D<br>-64ju                                                                   | 1<br>75                                                                                  | 0<br>-89,µ                                                              | 89-                                                                                                                      | E<br>105 مر                                                                                              |
|------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| Don                                                                                                                                      | Dyn                                                                                                                                       | MEAN                                                                                                                                     | No .%<br>OVER                                                                    | No.%                                                                        | No.%<br>OVER                                                                                                                     | No.%                                                                                                             | No.%<br>OVER                                                                             | No.%                                                                         | No.%<br>OVER                                                                             | No.%                                                                    | No.%<br>OVER                                                                                                             | No .%                                                                                                    |
| 141<br>126<br>112<br>100<br>84.2<br>73.5<br>58.4<br>46.4<br>36.9<br>29.4<br>23.5<br>18.9<br>15.4<br>12.8<br>11.0<br>8.78<br>7.79<br>6.95 | 132<br>120<br>108<br>96.8<br>82.3<br>72.2<br>57.8<br>46.1<br>36.8<br>29.3<br>23.5<br>18.9<br>15.4<br>12.8<br>11.0<br>8.78<br>7.79<br>6.05 | Dyn<br>126<br>114<br>102<br>89.6<br>77.3<br>65.0<br>51.9<br>41.5<br>33.1<br>26.4<br>21.2<br>17.2<br>14.1<br>11.9<br>9.89<br>8.29<br>7.37 | 0<br>1.48<br>11.0<br>25.4<br>36.4<br>46.4<br>56.9<br>67.7<br>82.9<br>94.5<br>100 | 1.48<br>9.52<br>14.4<br>11.0<br>10.0<br>10.5<br>10.8<br>15.2<br>11.6<br>5.5 | OVER<br>0<br>0.16<br>0.92<br>1.67<br>2.71<br>3.57<br>5.38<br>8.63<br>14.2<br>21.4<br>30.6<br>40.8<br>48.7<br>71.2<br>76.2<br>100 | 0.16<br>0.76<br>0.75<br>1.04<br>0.86<br>1.81<br>3.25<br>5.57<br>7.2<br>9.2<br>10.2<br>7.9<br>22.5<br>5.0<br>23.8 | 0<br>0.05<br>0.93<br>3.66<br>10.5<br>20.5<br>35.2<br>50.9<br>66.0<br>80.4<br>91.6<br>100 | 0.05<br>0.88<br>2.73<br>6.84<br>10.0<br>14.7<br>15.7<br>15.1<br>14.4<br>11.2 | OVER<br>0<br>0.50<br>6.85<br>39.6<br>58.0<br>61.5<br>68.5<br>75.2<br>82.3<br>95.0<br>100 | 0.50<br>6.35<br>32.8<br>18.4<br>3.5<br>7.0<br>6.7<br>7.1<br>12.7<br>5.0 | OVER<br>0<br>0.43<br>2.16<br>5.18<br>8.05<br>13.2<br>21.8<br>31.7<br>42.1<br>55.9<br>68.2<br>78.9<br>90.0<br>96.4<br>100 | 0.43<br>1.73<br>3.02<br>2.90<br>5.15<br>8.6<br>9.9<br>10.4<br>13.8<br>12.3<br>10.7<br>11.1<br>6.4<br>3.6 |
| 6.20                                                                                                                                     | 6.20                                                                                                                                      | 6.58                                                                                                                                     |                                                                                  |                                                                             |                                                                                                                                  |                                                                                                                  |                                                                                          |                                                                              |                                                                                          |                                                                         |                                                                                                                          | 1                                                                                                        |

## - 217 -

# TABLE: 24 (CONTINUED)

### COLLECTED SIZE ANALYSES OF SEED MATERIALS

#### ATTRITED AT 2000 R.P.M. IN STIRRED CELL C

| SIEVI | ED BAS | ICH:<br>CTION | F<br>89-10 | )5,12 | P.E.<br>89-10 | )5,u | P.G.<br>64-75µ |      | P.G.<br>89-10 | 05 ju |
|-------|--------|---------------|------------|-------|---------------|------|----------------|------|---------------|-------|
| Dom   | Dµ     | MEAN          | No%OVER    | No%   | No%OVER       | No%  | No%OVER        | No%  | No%OVER       | No%   |
| 141   | 132    | 126           |            |       | 0             | 4.24 | ,              |      | 0             | 0.39  |
| 1126  | 108    | 114           | 0          |       | 4.24          | 8.46 | 0.39           | 0.39 | 2.22          | 1.83  |
| 100   | 96.8   | 1.02          | 0.22       | 0.22  | 26.6          | 13.9 | 1.96           | 1.57 | 4.26          | 2.04  |
| 84.2  | 82.3   | 89.6          | 0:56       | 0.34  | 31.0          | 4.4  | 37:4           | 32.6 | 5.52          | 1.26  |
| 73.5  | 72.2   | 65.0          | 0.91       | 0.22  | 34.4          | 5.1  | 70.0           | 14.2 | 5.71          | 0.78  |
| 158.4 | 46.1   | 51.9          | 1.13       | 0.23  | 39.5          | 13.4 | 84.2           | 2.3  | 6.49          | 1.07  |
| 36.9  | 36.8   | 41.5          | 1.98       | 0.62  | 62.1          | 9.2  | 88.2           | 1.7  | 8.42          | 0.86  |
| 29.4  | 29.3   | 33.1          | 2.71       | 0.73  | 66.7          | 4.6  | 91.3           | 3.1  | 9.49          | 1,07  |
| 23.5  | 23.5   | 21.2          | 5.55       | 1.53  | 72.1          | 1.7  | 96.2           | 1.4  | 11.5          | 3.5   |
| 18.9  | 18.9   | 17.2          | 7.08       | 8.22  | 73.8          | 8.7  | 97.6           | 2.4  | 19.9          | 4.9   |
| 12.8  | 12.8   | 14.1          | 23.1       | 7.8   | 96.0          | 13.5 |                |      | 32.0          | 12.1  |
| 11.0  | 11.0   | 11.9          | 30.8       | 7.7   | 98.1          | 2.1  |                |      | 37.6          | 5.6   |
| 8.78  | 8.78   | 8.29          | 46.6       | 17.2  | 100           |      |                |      | 54.7          | 8.7   |
| 17.79 | 7.79   | 7.37          | 63.8       | 16.4  |               |      |                |      | 82.8          | 19.4  |
| 6.20  | 6.20   | 6.58          | 100        | 19.8  |               |      |                |      | 100           | 17.2  |

3E

\* LOWER LIMIT OF SIZE DISTRIBUTION NOT ATTAINED.

Æ

# COLLECTED SIZE ANALYSES OF SEED MATERIALS

| SEED I<br>SIEVE FI                                                                                                                                                                                      | 124-1                                                    | С Е<br>-150 124-150 р                    |                                    | P.E.<br>124=150,4                                        |                                                      |                                                          |                                                    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|------------------------------------------|------------------------------------|----------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------|
| Doth Dia                                                                                                                                                                                                | MEAN Du                                                  | No% OVER                                 | No%                                | No% OVER                                                 | No%                                                  | No% OVER                                                 | Ne%                                                |
| 222       213         194       188         154       151         122       121         97.3       96.6         77.5       77.1         61.8       61.6         49.6       49.5         40.2       40.2 | 201<br>170<br>136<br>109<br>86.9<br>69.4<br>55.6<br>44.9 | 0<br>13.6<br>75.0<br>85.9<br>90.5<br>100 | 13.6<br>61.4<br>10.9<br>4.6<br>9.5 | 0<br>6.90<br>22.3<br>37.6<br>50.6<br>69.3<br>84.4<br>100 | 6.90<br>15.4<br>15.3<br>13.0<br>18.7<br>15.1<br>15.1 | 0<br>1.30<br>28.6<br>50.1<br>67.3<br>87.0<br>95.3<br>100 | 1.30<br>27.3<br>21.5<br>17.2<br>19.7<br>8.3<br>4.7 |

## USED IN FLUIDISED BED EXPERIMENTS

# COULTER COUNTER PRODUCT SIZE ANALYSES

|                | SIZE    |      | CUMULATIVE No. % OVERSIZE |                  |  |  |
|----------------|---------|------|---------------------------|------------------|--|--|
| D <sub>o</sub> | Lyu Dyu |      | R.E.15 PRODUCT            | R.P.E.12 PRODUCT |  |  |
| 332            | 315     | 304  |                           | 0                |  |  |
| 295            | 285     | 275  |                           | 0.4              |  |  |
| 264            | 258     | 250  |                           | 1.3              |  |  |
| 222            | 221     | 213  | 0                         | 3₌7              |  |  |
| 194            | 195     | 188  | 0.6                       | 8.0              |  |  |
| 154            | 156     | 151  | 4.0                       | 16.6             |  |  |
| 122            | 125     | 121  | 6.2                       | 19.2             |  |  |
| 97.3           | 100     | 96.5 | 14.5                      | 37.1             |  |  |
| 77.5           | 79.9    | 77.1 | 28.8                      | 62.7             |  |  |
| 61.8           | 63.8    | 61.6 | 51.5                      | 95.0             |  |  |
| 49.6           | 51.2    | 49.5 | 88.3                      | 100              |  |  |
| 40.2           | 41.6    | 40.2 | 91.2                      |                  |  |  |
| 33.1           | 34.2    | 33.1 | 96.7                      |                  |  |  |
| 28.1           | 29.1    | 28.1 | 100                       |                  |  |  |
| 19.9           | 20.6    | 19.9 |                           |                  |  |  |

- 219 -

# - 220 -

# TABLE: 27

# IMAGE SHEAR SIZE ANALYSES

|           |                     |      | CUMULATIVE No. % OVERSIZE              |                     |                    |                                                       |  |  |
|-----------|---------------------|------|----------------------------------------|---------------------|--------------------|-------------------------------------------------------|--|--|
| SIZE      |                     |      | R.E.15<br>PRODUCT                      | R.P.E.12<br>PRODUCT | R.E.F.4<br>PRCDUCT | ATTRITED<br>BATCH<br>E SEED<br>89 - 105 A<br>FRACTION |  |  |
| 1.154 Lyn | 1.154 Lyn Liger Der |      |                                        |                     |                    |                                                       |  |  |
| 5         | 4.33                | 4.18 |                                        |                     | 99.5               | 100                                                   |  |  |
| 10        | 8.65                | 8.37 |                                        | 100                 | 94.0               | 99.0                                                  |  |  |
| 15        | 13.0                | 12.5 |                                        |                     | 89.5               | 97.5                                                  |  |  |
| 20        | 17.3                | 16.7 | 100                                    | 99.5                | 83.0               | 95.5                                                  |  |  |
| 25        | 21.6                | 20.9 | 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |                     | 76.0               | 91.0                                                  |  |  |
| 30        | 26.0                | 25.0 | 98                                     | 98.0                | 69.0               | 86.5                                                  |  |  |
| 35        | 30.4                | 29.4 |                                        |                     | 59.0               | 80.5                                                  |  |  |
| 40        | 34.7                | 33.5 | 96                                     | 96.0                | 54.5               | 76.0                                                  |  |  |
| 45        | 38.9                | 37.5 | 94                                     |                     | 49.0               | 66.0                                                  |  |  |
| 50        | 43.4                | 41.9 | 90                                     | 92.0                | 43.0               | 63.5                                                  |  |  |
| 55        | 47.6                | 46.0 | 82                                     |                     |                    | 54.5                                                  |  |  |
| 60        | 52.0                | 50.2 | 72                                     | 86.5                | 41.5               | 48.5                                                  |  |  |
| 65        | 56.3                | 54.4 | 69                                     |                     |                    | 44.5                                                  |  |  |
| 70        | 60.5                | 58.2 | 62                                     | 75.0                | 35.0               | 36.5                                                  |  |  |
| 75        | 64.9                | 62.6 | 56                                     |                     |                    | 30.0                                                  |  |  |
| 80        | 69.2                | 66.8 | 52                                     | 61.5                | 29.5               | 23.0                                                  |  |  |
| 85        | 73.6                | 71.1 |                                        | Con Lastras         |                    | 16.0                                                  |  |  |
| 90        | 78.0                | 75.3 | 49                                     | 46.0                | 27.0               | 13.0                                                  |  |  |
| 95        | 82.4                | 79.6 |                                        |                     |                    | 8.5                                                   |  |  |
| 100       | 86.6                | 83.6 | 40                                     | 35.5                | 21.5               | 8.0                                                   |  |  |
| 120       | 104                 | 100  | 36                                     | 22.0                | 16.0               | 2.5                                                   |  |  |
| 140       | 122                 | 118  | 22                                     |                     |                    | .0                                                    |  |  |
| 150       | 130                 | 126  | 12                                     | 18.0                | 8.5                |                                                       |  |  |
| 160       | 139                 | 135  | 5                                      |                     |                    |                                                       |  |  |
| 200       | 173                 | 167  | 0.                                     | 7.5                 | 3.5                |                                                       |  |  |
| 250       | 216                 | 209  |                                        | 1.5                 | 0.                 |                                                       |  |  |
| 300       | 260                 | 251  |                                        | 0                   | 1                  |                                                       |  |  |

## - 221 -

# TABLE: 28

## IMAGE SHEAR PRODUCT SIZE ANALYSES

# BATCH E SEEDED GROWTH EXPERIMENTS AT 60.0°C

|              |                                            |      |           | CUMUI                       | LATIVE 1                    | No. % 01                     | VERSIZE                     |                               |                             |                             |
|--------------|--------------------------------------------|------|-----------|-----------------------------|-----------------------------|------------------------------|-----------------------------|-------------------------------|-----------------------------|-----------------------------|
|              | RUN No.<br>INITIAL<br>SEED MAS<br>CALCULAT |      | n/v<br>), | R.E.28<br>27.5<br>2.0<br>66 | R.E.32<br>27.5<br>1.0<br>91 | R.E.33<br>27.5<br>0.5<br>124 | R.E.34<br>26.0<br>1.0<br>75 | R.E.35<br>26.0<br>0.5<br>108, | R.E.36<br>24.5<br>1.0<br>61 | R.E.37<br>24.5<br>0.5<br>88 |
|              | 1.154Lµ                                    | Lµ   | Du        |                             |                             |                              |                             |                               |                             |                             |
|              | 5                                          | 4.33 | 4.18      | 99.0                        |                             |                              | 93.5                        | 99.0                          |                             |                             |
|              | 10                                         | 8.65 | 8.37      | 93.5                        | 100                         | 100                          | 83.0                        | 87.0                          | 99.0                        | 98.0                        |
|              | 15                                         | 13.0 | 12.5      | 76.0                        |                             | 95.0                         | 64.5                        | 71.5                          | 90.5                        |                             |
|              | 20                                         | 17.3 | 16.7      | 69.0                        | 89.0                        | 92.0                         | 55.0                        | 62.0                          | 86.5                        | :91.5                       |
|              | 25                                         | 21.6 | 20.9      |                             |                             | 88.0                         | 43.0                        | 52.5                          | 72.5                        |                             |
|              | 30                                         | 26.0 | 25.0      | 56.0                        | 80.0                        | 86.0                         | 39.5                        | 49.5                          | 62.0                        | 83.0                        |
|              | 35                                         | 30.4 | 29.4      |                             |                             |                              |                             |                               | 53.0                        | 75.0                        |
|              | 40                                         | 34.7 | 33.5      | 51.0                        | 72.0                        | 83.5                         | 31.0                        | 39.0                          | 47.5                        | 66.5                        |
|              | 45                                         | 38.9 | 37.5      |                             |                             |                              |                             |                               |                             | 62.5                        |
|              | 50                                         | 43.4 | 41.9      | 43.5                        | 68.5                        | 82.5                         | 26.0                        | 32.5                          | 43.5                        | 54.0                        |
|              | 55                                         | 47.6 | 46.0      |                             |                             | 76:0                         |                             |                               |                             |                             |
|              | 60                                         | 52.0 | 50.2      | 33.5                        | 62.5                        | 73.5                         | 22.0                        | 29.0                          | 40.5                        | 49.5                        |
|              | 65                                         | 56.3 | 54.4      |                             |                             | 68.5                         |                             |                               |                             |                             |
|              | 70                                         | 60.5 | 158.2     | 26.5                        | 56.0                        | 64.5                         | 16.5                        | 26.5                          | 35.5                        | 40.5                        |
|              | 75                                         | 64.9 | 62.6      |                             |                             | 57.0                         |                             |                               |                             | 36.5                        |
| and a second | 80                                         | 69.2 | 66.8      | 20.0                        | 50.0                        | 48.5                         | 11.0                        | 25.0                          | 27.0                        | 27.5                        |
|              | 85                                         | 73.6 | 71.1      |                             |                             | 43.5                         |                             |                               |                             | 20.0                        |
| ***          | 90                                         | 78.0 | 75.3      | 16.5                        | 38.0                        | 36.0                         | 8.5                         | 20.0                          | 22.5                        | 15.0                        |
|              | 100                                        | 86.6 | 83.6      | 14.0                        | 33.5                        | 24.5                         | 5.0                         | 14.0                          | 19.5                        | 10.0                        |
|              | 110                                        | 95.3 | 92.0      |                             | 25.0                        | 16.0                         |                             |                               |                             |                             |
|              | 120                                        | 104  | 100       |                             | 22.0                        | 15.0                         |                             | 9.5                           | 13.0                        | 7.0                         |
|              | 130                                        | 113  | 109       |                             | 20.0                        | 10.0                         |                             |                               |                             |                             |
|              | 150                                        | 130  | 126       | 6.5                         | 16.0                        | 4.5                          | 1.5                         | 4.5                           | 7.0                         | 3.5                         |
|              | 200                                        | 173  | 167       | 1.0                         | 8.0                         | 2.0                          | 0.5                         | 0.5                           | 1.5                         | 1.5                         |
|              | .250                                       | 216  | 209       | 0                           | 1.5                         | 0.5                          | 0                           | .0                            | 0                           |                             |
|              | 300                                        | 260  | 251       |                             | 0.5                         |                              |                             |                               |                             | 0                           |

APPENDIX C - REFERRING TO SECTION SIX

$$\frac{do}{dt} = -KA (o - q)$$
but  $o = \frac{100m}{\frac{m}{P} + V} = \frac{100m}{250} g/om^3$ 

$$\therefore do = \frac{100V dm}{(\frac{m}{P} + V)^2}$$

$$\therefore \frac{100V dM}{(\frac{m}{P} + V)^2} = KA (o - q)$$
But  $\frac{dr}{dt} = K_L (o - q)$ 

$$\therefore dM = \frac{KA (\frac{m}{P} + V)^2}{V K_L \times 100} dx$$
But  $\frac{dM}{dx} = \rho_s 4\pi^2$ 

$$\rho_s 4\pi^2 = \frac{K}{K_L} \frac{4\pi^2 (250)^2}{(250 - \frac{m}{P}) 100}$$

$$K_L = K \frac{250^2}{(250 \rho_s - m) 100}$$
Similarly, where  $\frac{dm}{dt} = -K_M (o - q)$ 

$$K_m = K \frac{250^2}{\rho_s}$$

PROGRAM 1. ELLIOTT 803 VERSION OF ALGOL 60.

CRYSTALLISATION RATE OF PENTAERYTHRITOL IN A FLUIDISED BED! READ PS BEGIN INTEGER J,PI BEGIN REAL ARRAY PERCENTNO, NO, VOL, SIGMA1, SIGMA2, SIGMA3(1:P), D(1:2,1:P),M(1:2) REAL SUM FACTOR, U,R, Y, Q, FUNCTION, DIFFUNCTION, DELTAD, DELTAT, MEANA, VEL! SWITCH S = RETURN, CONTINUE REAL PROCEDURE AREA(Z) VALUE Z' INTEGER Z: A := 01 BEGIN REAL A' FOR J =1 STEP 1 UNTIL P DO A == A+(22/7)\*1=181\*NO(J)\*D(Z,J)\*\*2\* END 8 AREA :=A \* FOR J =1 STEP 1 UNTIL P DO READ PERCENTNO(J) S FOR J =1 STEP 1 UNTIL P DO READ D(1,J) \$ READ M(1) M(2) DELTAT : SUM == 05 FOR J = STEP 1 UNTIL P DO BEGIN VOL(J) == PERCENTNO(J)\*(11/21)\*D(1,J)\*\*31 SUM == SUM+VOL(J) END FACTOR = M(1) / (1.396\*SUM) \$ FOR J == 1 STEP 1 UNTIL P DO NO(J) =FACTOR\*PERCENTNO(J) U=03 FOR J =1 STEP 1 UNTIL P DO BEGIN  $S[GMA1(J) := NO(J)^{c}$ END 1 U == SIGMA1(J)+U! 12:=03 FOR J=1 STEP 1 UNTIL P DO BEGIN SIGMA2(J) =3\*NO(J)\*D(1,J)\* R == R+S [GMA2(J) 1 Y =01 END FOR J == 1 STEP 1 UNTIL P DO BEGIN SIGMA3(J) =3\*NO(J)\*D(1,J)\*\*2  $Y := Y + S | GMA3(J)^{*}$ ENDI  $Q := (M(2) - M(1)) / (1 - 396 + (11/21))^{3}$ DELTAD := 0,00011 RETURN :FUNCTION := U\* (DELTAD) \*\*3+R\* (DELTAD) \*\*2+Y\*DELTAD-Q\* DIFFUNCTION == (3\*U\*(DELTAD) \*\*2+2\*R\*DELTAD-+Y) \* IF ABS(FUNCTION/DIFFUNCTION) LESS .0000001 THEN GOTO CONTINUE ELSE BEGIN DELTAD == DELTAD -- ((FUNCTION)/(DIFFUNCTION)) \$ END 8 GOTO RETURN! CONTINUE :FOR J == 1 STEP 1 UNTIL P DO  $D(2,J) := D(1,J) + DELTAD^{2}$ MEANA := (AREA(1)+AREA(2))/2" VEL == DELTAD/(2\*DELTAT) \* PRINT FREEPOINT(7) ,DELTAD, SAMELINE, EES5??, FREEPOINT(5), MEANA, EES??, SCALED(4) VEL END SEND END

PROGRAM 2. ELLIOTT 803 VERSION OF ALGOL 60.

CRYSTALLISATION RATE OF PENTAERYTHRITOL IN A SEEDED CELL

```
BEGIN INTEGER 1, J, P, N<sup>1</sup>
READ P,N'
BEGIN REAL ARRAY PERCENTNO, NO, VOL, SIGMA1, SIGMA2, SIGMA3(1:P),
TIME ,M,V(1:N)
SCALE, C(1:N+1),
FUNCTION, DIFFUNCTION, DELTAD, MEANA, DELTAT, K, VEL, SUPERSATURATION (1:N-1),
D(1:N,1:P)
REAL B, F, G, H, SUM, FACTOR, U, EVAPN
SWITCH S = RETURN, CONTINUE
REAL PROCEDURE AREA(Z) 1
VALUE Z! INTEGER Z!
BEGIN REAL A'
A == 01
FOR J =1 STEP 1 UNTIL P DO
A := A + (22/7) * 1.181 * NO(J) * D(Z_J) * * 2^{I}
AREA :==A !
END!
FOR J == 1 STEP 1 UNTIL P DO READ PERCENTNO(J)
FOR 1 =1 DO
FOR J == 1 STEP 1 UNTIL P DO READ D(1, J)
FOR 1 =1 STEP 1 UNTIL N+1 DO READ SCALE(1)
FOR I =1 STEP 1 UNTIL N DO READ TIME(1)
READ B, F, G, H, EVAPN
SUM:=01
FOR 1 := 1 DO
FOR J =1 STEP 1 UNTIL P DO BEGIN
VOL(J) := PERCENTNO(J) * (11/21) * D(1,J) * 3^{T}
SUM == SUM+VOL(J) 1
END
M(1) := H^{1}
FACTOR := M(1) /(1.396*SUM) *
FOR J := 1 STEP 1 UNTIL P DO
NO(J) := FACTOR*PERCENTNO(J)
FOR 1 =1 STEP 1 UNTIL NH1 DO
C(1) := F + B * SCALE(1) + G * SCALE(1) * * 2^{1}
FOR I =1 STEP 1 UNTIL N DO
V(1) := 250 - 1.7908 C(1) - TIME(1) EVAPN^{1}
PRINT £
                     TABLE :
                                              RUN NO.:
                   TEMP:
                      C CELL:
                                       STIRRER SPEED: R.P.M.
              -----
                            -----
                                         SEED: BATCH
                                        SIEVE FRACTION:
```

PROGRAM 2. (CONT.)

```
GROWTH RATE
        TOTAL CRYSTAL
                                                                                 GROWTH
                            INCREASE OF
                                               MEAN
                                                                        MEAN
 CONCN.
  %M/V
                  MASS
                             CRYSTAL EQUIV. AREA
                                                         CONSTANT
                                                                        SUPER- RATE
          TIME
                                                         K(MIN CM)
                                                                        SATN.
                                                                                 CM/MIN.
          MINS. (GRAMS) DIAMETER(CM)
                                               CM
                                                                                             FOR 1 =1 STEP 1 UNTIL N-1 DO BEGIN
M(1+1) := M(1) + ((C(1) - C(1+1)) / (100*V(1+1)))*((C(1)*2.5 - M(1)+H) / 1.396+V(1+1))**2!
U:=01
FOR J =1 STEP 1 UNTIL P DO BEGIN
SIGMA1(J) := NO(J)
U := SIGMA1(J) + U^{1}
END!
R(1) := 01
FOR J =1 STEP 1 UNTIL P DO BEGIN
SIGMA2(J) := 3*NO(J)*D(I,J)
R(1) := R(1) + SIGMA2(J)
END
Y(1) :=01
FOR J =1 STEP 1 UNTIL P DO BEGIN
SIGMA3(J) := 3*NO(J)*D(I,J)**21
Y(1) := Y(1) + SIGMA3(J)
ENDI
Q(1) := (M(1+1) - M(1)) / (1.396*(11/21))
DELTAD(1) =0.0001
RETURN: FUNCTION(1) == U*(DELTAD(1))**3+R(1)*(DELTAD(1))**2+Y(1)*DELTAD(1)-Q(1)*
DIFFUNCTION(1) := (3*U*(DELTAD(1))**2+2*R(1)*DELTAD(1)+Y(1))^{1}
IF ABS(FUNCTION(1)/DIFFUNCTION(1)) LESS .0000001
THEN GOTO CONTINUE
ELSE BEGIN DELTAD(1) := DELTAD(1) - ((FUNCTION(1))/(DIFFUNCTION(1))) *
GOTO RETURNI
ENDI
CONTINUE : FOR J :== 1 STEP 1 UNTIL P DO
D(1+1,J) == D(1,J) + DELTAD(1) 1
MEANA(1) := (AREA(1+1) + AREA(1))/2^{1}
DELTAT(1) := TIME(1+1) - TIME(1) 1
K(1) := (1/(MEANA(1)*DELTAT(1)))*LN((C(1)-C(N+1))/(C(1+1)-C(N+1)))
VEL(1) := DELTAD(1) / (2*DELTAT(1))^{1}
SUPERSATURATION(1) = ((c(1+1)+c(1))/2-c(N+1))/c(N+1)

PRINT FREE POINT(5), c(1), SAMELINE, ££S??, FREE POINT(5), TIME(1), ££S??, FREE POINT(4), M(1)
££LS26??, FREE POINT(7), DELTAD(1), SAMELINE, ££S5??, FREE POINT(5), MEANA(1), ££S??, SCALED(5), K(1), ££S2??, FREE POINT(4), SUPERSATURATION(1), ££S2??, SCALED(4), VEL(1)
END!
PRINT FREEPOINT(5), C(N), SAMELINE, ££S??, FREEPOINT(5), TIME(N), ££S??, FREEPOINT(4), M(N)
PRINT £
PRINT££L?EQUILIBRIUM CONCENTRATION = ?, SAMELINE, FREEPOINT(5), C(N+1)
END END END
END END!
```
```
- 2.6 -
 PROGRAM 3: ELLIOTT 803 VERSION OF ALGOL 60.
COULTER COUNTER DIAMETER CORRECTION FOR 280 TUBE ORIENTATION A
BEGIN INTEGER DI
REAL V, F, B, L, Y, FUNCTION, DIFFUNCTION, E, TRUED
SWITCH S == RETURN, CONTINUE
FOR D =5 STEP 1 UNTIL 150 DO BEGIN
V == (11/21) * (D**3) 1
F == V/10809400!
B == 87102/108094001
L=DI
RETURN:Y:=F+(B*L) !
FUNCTION := (1+L/248.2)/(1-L/248.2)-1-Y-(Y**2)/2-(Y**3)/6
-(Y^{**4})/24-(Y^{**5})/120-(Y^{**6})/720-(Y^{**7})/5040-(Y^{**8})/40320!
DIFFUNCTION:=(2/248.2)/((1-(1/248.2)*L)^{**2})-B-(Y^{**8})-(Y^{**2})^{*}(B/2)
-(Y**3)*(B/6)-(Y**4)*(B/24)-(Y**5)*(B/120)-(Y**6)*(B/720)-(Y****)*(B/5040)*
IF ABS(FUNCTION/DIFFUNCTION) LESS .01
 THEN GOTO CONTINUE
ELSE BEGIN L := L-(FUNCTION/DIFFUNCTION)
GOTO RETURN
END
CONTINUE :E := 0.900*(L**3) $
TRUED :=(E) **(1/3) $
PRINT FREEPOINT(3), D, SAMELINE, ££S??, FREEPOINT(5), L, ££S??,
FREEPOINT(5), TRUED
END, END, END !
PROGRAM 4: ELLIOTT 803 VERSION OF ALGOL 60.
COULTER COUNTER DIAMETER CORRECTION FOR 2804 TUBE ORIENTATION B
BEGIN INTEGER D
REAL V, G, L, FUNCTION, DIFFUNCTION, E, A, TRUED
SWITCH S = RETURN, CONTINUE
FOR D =5 STEP 1 UNTIL 150 DO BEGIN
V := (11/21) * (D**3)
A == (22/7)*(140**2)
L=D3
```

```
RETURN: G = SQRT((A/(0.707*L**2))-1)

FUNCTION:=(0.707*V*L*G)/A**2+(((L**2)*0.707*G)/A)-ARCTAN(1/G)<sup>1</sup>

DIFFUNCTION:=(G/A)*((0.707*V)/A+1.414*L)-(V/(A*L)+2)/(L*G)^{1}

IF AES(FUNCTION/DIFFUNCTION) LESS .01

THEN GOTO CONTINUE

ELSE BEGIN L:=L- (FUNCTION/DIFFUNCTION)<sup>1</sup>

GOTO RETURN<sup>1</sup>

END<sup>1</sup>

CONTINUE: E = 0.900*(L**3)<sup>1</sup>

TRUED = (E)**('/3)<sup>1</sup>

FREIPOINT(3), D,

SAMELINE, ££S??,

FREEPOINT(5), L, ££S??,

FREEPOINT(5), TRUED<sup>1</sup>

END, END<sup>1</sup>
```

#### APPENDIX: C

#### Evaporation in Stirred Cells

#### Procedure

Evaporation rates for Cells C and S under experimental conditions were obtained as follows. A solution of a known approximate concentration of Batch C, chosen to be undersaturated under experimental conditions, was accurately made up in a 250cm<sup>3</sup> pyrex graduated flask and dissolved by heating. The cell was heated to the temperature to be studied and the solution poured in. When the temperature was stable the refractometer scale was read and the concentration obtained from the isothermal calibration correlation. The mass of solute, m, in this 250cm3 of solution was therefore found. The solution was stirred at 2000 r.p.m. and the time taken for suitable increases of. the solution concentration. The total solution volume, v, for this particular concentration, o, was obtained from  $v = \underline{m} \times 100$  where m remains constant throughout. From the decrease in total volume over a period of time the evaporation rate is calculated in om<sup>2</sup>/min. This is checked at different intervals to guard against errors of scale reading, but the greatest concentration difference should be the most accurate. It was usually found to take many days to obtain an appreciable concentration increase.

#### Example

Cell C

 $T_{0} = 70.0^{\circ}C$ 

Stirrer Speed = 2000r.p.m.

| Time (mins) | Scale Reading S | 0 % m/v |
|-------------|-----------------|---------|
| 0           | 63.75           | 20.301  |
| 130         | 64.25           | 20.445  |
| 900         | 66.80           | 21.178  |
| 1020        | 67.25           | 21.307  |
| 1260        | 68,40           | 21.637  |
|             |                 |         |

 $m = 2.50 \times 20.301$ 

= 50.753• •  $v_1 = 250$   $v_2 = 248.2$   $v_3 = 239.6$   $v_4 = 238.1$   $v_5 = 234.5$ z

Evaporation Rates cm<sup>3</sup>/min

$$\begin{array}{c} v_{1}/v_{2} = 0.01384 \\ v_{2}/v_{3} = 0.01116 \\ v_{3}/v_{4} = 0.01250 \\ v_{4}/v_{5} = 0.01500 \end{array} \right\} \quad v_{1}/v_{5} = 0.0123$$

Experimental Results

|      | Evaporation cm <sup>3</sup> /min. |            |  |  |  |
|------|-----------------------------------|------------|--|--|--|
| т°с  | Cell C                            | Cell S     |  |  |  |
| 45.0 | 0.0030                            | 0.000238   |  |  |  |
| 50.0 | 0.0063                            |            |  |  |  |
| 55.0 | 0.0083                            |            |  |  |  |
| 60.0 | 0.0101                            |            |  |  |  |
| 65.0 | 0.0123                            | 0.000.5000 |  |  |  |
| 70.0 | 0.0123                            | 0.000595   |  |  |  |
| 75.0 | 0.0173                            |            |  |  |  |
|      |                                   |            |  |  |  |

#### Discussion

On the assumption that the loss of solvent is proportional to the difference in vapour pressure between the cell solution and the ambient, the experimental values were plotted figure 6.4, as log (evaporation) vs  $(\frac{1}{T})$  where T is absolute temperature (<sup>o</sup>K), as is suggested for vapour pressure for pure substances by the Clausius-Clapeyron equation. It can be seen that the rate of evaporation in the Cell S is far less than that of Cell C under the same conditions. This would be expected as the teflon bush was less worn with Cell S, being high on the stirrer shaft near the motor, whereas the motor was less rigid with Cell C and the bush lower on the shaft which was inclined to whip.



## TABLE: 29

Evaporation values interpolated from figure 6.4.

|     | Evaporation | om <sup>3</sup> /min |
|-----|-------------|----------------------|
| Toc | Cell S .    | Cell C               |
| 20  | 0.00009     | 0.0018               |
| 25  | 0.00010     | 0.0022               |
| 30  | 0.00013     | 0.0028               |
| 35  | 0.00016     | 0.0035               |
| 40  | 0.00019     | 0.0043               |
| 45  | 0.00024     | 0.0053               |
| 50  | 0.00029     | 0.0064               |
| 55  | 0.00035     | 0.0078               |
| 60  | 0.00042     | 0.0094               |
| 65  | 0.00050     | 0.0112               |
| 70  | - 0.00060   | • 0.0135             |
| 75  | 0.00080     | 0.0160               |

APPENDIX D - CRYSTAL GROWTH RATE RESULTS

## - 231 -

. ....

#### TABLE: 31.

## PRELIMINARY FLUIDISED BED RESULTS

|            |      |       | CETT | PPOD | PROD. TIME |        | GROWTH VEL            | OCITY<br>6    |
|------------|------|-------|------|------|------------|--------|-----------------------|---------------|
| RUN<br>No. | C.   | om/s  | DM   | Dµ   | MIN.       | S      | DIRECT<br>MEASUREMENT | MASS<br>BASIS |
| F.C.7      | 59.5 | 0.180 | 94   | 111  | 112        | 0.124  | 7.60                  |               |
| F.C.8      | 56.7 | 0.175 | 94   | 122  | 313        | 0.113  | 4.47                  |               |
| F.C.9      | 46.9 | 0.215 | 111  | 137  | 322        | 0,220  | 4.04                  |               |
| F.C.10     | 43.4 | 0.203 | 111  | 129  | 292        | 0.231  | 3.08                  |               |
| F.C.11     | 39.9 | 0.165 | 94   | 1.05 | 296        | 0.302  | 1.86                  |               |
| F.C.12     | 37.9 | 0.167 | 111  | 121  | 273        | 0.430  | 1.83                  |               |
| F.C.13     | 35.6 | 0.268 | 132  | 157  | 226        | 0.545  | 5.50                  | 2.45          |
| F.C.14     | 51.6 | 0.149 | 79   | 97   | 50         | 0.333; | 18.0                  |               |
| F.C.15     | 51.7 | 0.181 | 82   | 102  | 132        | 0,262  | 7.60                  |               |
| F.C.16     | 32.7 | 0.163 | 111  | 139  | 1800       | 0.558  | 0.78                  |               |
| F.C.17     | 65.5 | 0.241 | 132  | 150  | 140        | 0.066  | 6.42                  |               |
| F.C.18     | 68.9 | 0.210 | 111  | 172  | 132        | 0.132  | 23.1                  |               |
| F.C.19     | 71.1 | 0.600 | 163  | 217  | 136        | 0.101  | 19.8                  | 19.8          |
| F.C.20     | 67.0 | 0.208 | 110  | 152  | 208        | 0.082  | 10.1                  | 5.14          |
| F.C.21     | 63.0 | 0.195 | 114  | 140  | 254        | 0.138  | p 5.10                | 6.11          |
| F.C.22     | 54.4 | 0.211 | 111  | 144  | 383        | 0,184  | 4.31                  | 2.75          |
| F.C.23     | 70.2 | 0.318 | 159  | 172  | 147        | 0.076  | 4.42                  | 7.94          |
| F.C.24     | 58.4 | 0.210 | 132  | 151  | 1.22       | 0,200  | 7.80                  | 7.86          |
| F.C.25     | 29.5 | 0.210 | 160  | 161  | 1144       | 0.485  |                       | 1.12          |
| F.C.26     | 34.0 | 0.210 | 122  | 135  | 1212       | 0.326  | 0.57                  |               |
| F.C.27     | 37.6 | 0.090 | 94   | 123  | 1284       | 0.372  | 1.13                  | 2.34          |

## TABLE:32 EXAMPLE FLUIDISED BED DATA WITH MODIFIED APPARATUS

| RUN: F                                                                    | 7.96g BATCH               | TEMP70.<br>E PREH          | O <sup>O</sup> C 2 LITRES SC<br>PARED SIEVE FRA | DEUTION 30.00      | % m/v   | BATCH E                       |                  |
|---------------------------------------------------------------------------|---------------------------|----------------------------|-------------------------------------------------|--------------------|---------|-------------------------------|------------------|
| MAGNETIC STIRRER POSN. 2 HEATER POSN. 3.5 T.U.3. 1 = .86°C T.U.3. 2 =73°C |                           |                            |                                                 |                    |         |                               |                  |
| TIME<br>MINS                                                              | ROTAMETER<br>METRIC NO.7K | CELL<br>TEMP. C            | RESERVOIR<br>TEMP. C                            | REFRACT<br>SCALE   | TEMP. C | HEATING TAPE<br>CONTROL VOLTS | MAKE UP<br>WATER |
| 0                                                                         | 1.2                       | 70.4                       | 80                                              | 92.0               | 72.8    | 70                            | _                |
| 5                                                                         | 1.2                       | 69.0                       | 80                                              |                    | 71.2    | 80                            | -                |
| 8                                                                         | 1.1 '                     | 69.5 ·                     | 80                                              |                    | 74.2    | 70                            | -                |
| 10                                                                        | 1.1                       | 70.0                       | 80                                              | 90.7               | 73.6    | 60                            | -                |
| 13                                                                        | 1.1                       | 70.4                       | 80                                              | 90.8               | 73.7    | 50                            | -                |
| 15                                                                        | 1.1                       | 70.2                       | 80                                              | 92.3               | 72.0    | 50                            | -                |
| 19                                                                        | 1.1                       | 70.0                       | 80                                              | 92.6               | 71.5    | 60                            | -                |
| 24                                                                        | 2.4                       | 70.4                       | 80                                              |                    |         | 40                            |                  |
| 32                                                                        | 3.2                       | 69.4                       | 80                                              | 91.9               | 72.8    | 50                            | -                |
| 36                                                                        | 3.2                       | 70.2                       | 80                                              | 91.9               | 72.8    | 50                            | -                |
| 41                                                                        | 2.8                       | 70.0                       | 80                                              |                    | 72.3    | 50                            | -                |
| 45                                                                        | 2.8                       | 70.0                       | 80                                              | 92.3               | 72.0    | 50                            | -                |
| 55                                                                        | 2.8                       | 70.0                       |                                                 |                    |         | 50                            | -                |
| 60                                                                        | RUN COM                   | LETED                      |                                                 |                    |         |                               |                  |
| WEIG                                                                      | WEIGHT OF DRY             | EMPTY CELL<br>RODUCT CRYST | = 2<br>TALS (WET) = 3                           | 286.88g<br>109.26g |         |                               | 1                |
| WEIGH                                                                     | T OF CELL + PI            | RODUCT CRYST               | TALS (DRY) =                                    | 303.13g            |         |                               |                  |

- 232 -

## - 233 -

## TABLE:35

#### EXAMPLE EXPERIMENTAL DATA FOR STIRRED CELLS

| EXPT.                                              | . No. 118                                                   | RUN 1                                                                                                                                     | No. : R.P.E.16                                                                |  |  |
|----------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|--|--|
| CELL C                                             | TEMP. 50.0°C                                                | ŝ                                                                                                                                         | STIRRER SPEED: 2000 R.P.M.                                                    |  |  |
| SOLUTION:                                          | 17.75%m/v P.E.                                              | SEED: 89                                                                                                                                  | -105 P.E. PREPARED                                                            |  |  |
|                                                    | DATA                                                        | -                                                                                                                                         | DESCRIPTION                                                                   |  |  |
|                                                    | 15<br>20                                                    |                                                                                                                                           | P = No. of Mean Diameters<br>of size analysis<br>N = No. ef readings of time  |  |  |
| 4.24, 8.46, 13<br>9.2, 4.6, 5.4,                   | ·9, 4.4, 3.4, 5.1<br>1.7, 8.7, 13.5,                        | Array of % No. of Mean<br>Diameters of size analysis.                                                                                     |                                                                               |  |  |
| 0.0126,0.0114,<br>0.0065,0.00519<br>0.00212,0.0017 | 0.0102,0.00896,0.<br>,0.00415,0.00331,<br>2,0.00141,0.00119 | Array of Mean diameters of size analysis (cm.).                                                                                           |                                                                               |  |  |
| 65.1, 64.5, 64<br>60, 59.5, 59,<br>56, 55.5, 55,   | , 63, 62.5, 62, 6<br>58.5, 58, 57.5, 5<br>54.3, 53,1        | 51,5, 60.5,<br>57, 56.5,                                                                                                                  | Array of readings of<br>refractometer scale S, +<br>equilibrium scale reading |  |  |
| 0, 37, 133, 15<br>282, 295, 310,<br>408, 465       | 8, 180, 198, 240,<br>326, 344, 360, 3                       | , 258, 270,<br>374, 393,                                                                                                                  | Array of readings of time, t.                                                 |  |  |
|                                                    | 0.3058<br>-1.643<br>-0.0001699                              | $ \begin{array}{c} B \\ F \\ F \\ G \end{array} $ Calibration coefficients<br>$ \begin{array}{c} e = F + B.S. + G.S.^{2} \\ \end{array} $ |                                                                               |  |  |
|                                                    | 1.969                                                       |                                                                                                                                           | H Initial seed mass (g).                                                      |  |  |
|                                                    | 0.0064                                                      |                                                                                                                                           | Evaporation rate cm.3/min.                                                    |  |  |

I

## TABLE: 36

# QUALITATIVE RESULTS OF SEEDED BATCH B SOLUTIONS

# STIRRED AT 2000 R.P.M. IN CELL C AT 60.0°C

| RUN NO: |                            | R.B.3                      |                |                            | R.B.4                      |               |                                                                      | R.A.6                                                                                  |                                                         |  |
|---------|----------------------------|----------------------------|----------------|----------------------------|----------------------------|---------------|----------------------------------------------------------------------|----------------------------------------------------------------------------------------|---------------------------------------------------------|--|
| SEED :  | 2g UNCLASSIFIED<br>BATCH B |                            |                | 2g UNCLASSIFIED<br>BATCH A |                            |               | 2g UNCLASSIFIED<br>BATCH A                                           |                                                                                        |                                                         |  |
|         | SCALE<br>S                 | o<br>%m/v                  | TIME<br>MIN.   | SCALE                      | o<br>Jom/v                 | TIME<br>MIN.  | SCALE<br>S                                                           | 0<br>%m/v                                                                              | TIME<br>MIN.                                            |  |
|         | 83.8<br>83.0<br>82.5       | 24.286<br>24.061<br>23.921 | 0<br>60<br>160 | 87.4<br>86.0<br>85.0       | 25.296<br>24.904<br>24.623 | 0<br>32<br>63 | 82.9<br>82.0<br>81.0<br>80.0<br>79.0<br>78.2<br>77.0<br>75.8<br>75.0 | 24.033<br>23.780<br>23.498<br>23.217<br>22.934<br>22.708<br>22.369<br>22.029<br>21.802 | 0<br>16<br>51<br>110<br>155<br>190<br>265<br>320<br>370 |  |

| RUN NOS | R.B.5                        |                            |                 |                                      | R.C.2                                         |                            |
|---------|------------------------------|----------------------------|-----------------|--------------------------------------|-----------------------------------------------|----------------------------|
| SEED :  | 2g UNCLASS IF IED<br>BATCH B |                            |                 | 2g UNCLASSIFIED<br>BATCH C           |                                               |                            |
|         | SCALE<br>S                   | o<br>%m/v                  | TIME<br>MIN.    | SCALE                                | o<br>%m/v                                     | TIME<br>MIN.               |
|         | 82.8<br>82.0<br>81.0         | 24.005<br>23.780<br>23.498 | 0<br>145<br>330 | 82.9<br>82.0<br>81.0<br>79.0<br>78.0 | 24.033<br>23.78<br>23.498<br>22.934<br>22.651 | 0<br>7<br>35<br>110<br>145 |

- 234 -

#### - 235 -

#### TABLE: 37

QUALITATIVE RESULTS OF SEEDED SOLUTIONS STIRRED AT

| RUN NO: |                            | R.G.1     |              |                            | R.G.1 R.G.2 |              |  |
|---------|----------------------------|-----------|--------------|----------------------------|-------------|--------------|--|
| SEED:   | 2g UNCLASSIFIED<br>BATCH G |           |              | 2g UNCLASSIFIED<br>BATCH G |             |              |  |
| CELL    |                            | C BATCH G |              |                            | S           |              |  |
| P       | SCALE<br>S                 | %m/v      | TIME<br>MIN. | SCALE<br>S                 | o<br>%m/v   | TIME<br>MIN. |  |
|         | 98.4                       | 30.097    | 0            | 97.6                       | 29.875      | 0            |  |
|         | 98.0                       | 29.986    | 7            | 96.7                       | 29.624      | 30           |  |
|         | 97.5                       | 29.847    | 35           | 96.2                       | 29.485      | 50           |  |
|         | 97.0                       | 29.708    | 50           | 95.7                       | 29.346      | 70           |  |
|         | 96.5                       | 29.569    | 65           | 93.2                       | 28.650      | 150          |  |
|         | 96.0                       | 29.430    | 85           |                            |             | 2            |  |
|         | 95.0                       | 29.152    | 120          |                            |             |              |  |
|         |                            | 1         |              | 1                          | 1           | 1            |  |

2000 R.P.M. AT 70.0°C

| RUN NO:        | R.F.2      |        |              | R.F.5      |           |              |
|----------------|------------|--------|--------------|------------|-----------|--------------|
| SEED:          | 2g 89-105  |        |              | 2g 89-105p |           |              |
| CELL           | C          |        |              | C          |           |              |
|                | SCALE<br>S | %m/v   | TIME<br>MIN. | SCALE<br>S | °<br>%m/∨ | TIME<br>MIN. |
|                | 97.0       | 29.708 | 0            | 97.3       | 29.791    | 0            |
| -              | 96.5       | 29.569 | 40           | 97.0       | 29.708    | 14           |
|                | 96.0       | 29.430 | 68           | 96.5       | 29.569    | 42           |
| and the second | 95.1       | 29.179 | 120          | 96.0       | 29.430    | 65           |
| service and    | -          |        |              | 95.5       | 29.291    | 90           |
|                |            |        |              | 95.0       | 29.152    | 120          |

|                                    |                        | TABLE :                    | 38                            |                                 | RUN NOS: R.                                         | C.3                              |                                               |  |
|------------------------------------|------------------------|----------------------------|-------------------------------|---------------------------------|-----------------------------------------------------|----------------------------------|-----------------------------------------------|--|
|                                    | TEMP                   | 60.0°C                     | CELL: C                       | STIRR                           | ER SPEED:2000                                       | RePette                          |                                               |  |
|                                    | SEED                   | BATCH C                    | PREPARED                      | SIEVE                           | FRACTION: 75                                        | -89ju                            |                                               |  |
| CONCN.<br>%M/V                     | TOTAL<br>TIME<br>MINS. | CRYSTAL<br>MASS<br>(GRAMS) | D IAMETER<br>INCREASE<br>(CM) | MEAN<br>AREA<br>CM <sup>2</sup> | GROWTH RATE<br>CONSTANT<br>K(MIN <sup>-CM-2</sup> ) | MEAN<br>SUPER=<br>SATN:          | GROWTH<br>RATE<br>CM/MIN.                     |  |
| 24-033                             | .00000                 | 2:000                      | 0005 001                      | 2605-0                          | 6=2387@=07                                          | =1947                            | 6-2520-06                                     |  |
| 23:780                             | 40.000                 | 2:764                      | -0004060                      | 3532-1                          | 3.6637@-07                                          | -1814                            | 3-3840-06                                     |  |
| 23.498                             | 100-00                 | 3=608                      | -0003215                      | 4427-4                          | 2-9284@-07                                          | -1673                            | 2-473@-06                                     |  |
| 23-217                             | 165.00                 | 4.448                      | =0002691                      | 5254-8                          | 2-9223@=07                                          | -1532                            | 2-242@-06                                     |  |
| 22:934                             | 225:00                 | 5-282                      | =0002330                      | 6028-6                          | 2-10680-07                                          | -1391                            | 1.456@-06                                     |  |
| 22.652                             | 305:00                 | 6.112                      |                               | annue and billing and the       |                                                     | 1 100 cm ant ant ant ant ant ant | a can any may the and our any any any any any |  |
| EQUILIBRIUM CONCENTRATION = 20,010 |                        |                            |                               |                                 | INITIAL                                             | SEED ARE                         | A = 2145                                      |  |

|                                   | TABLE: 39              |                            |                              |                                 |                                      |                         |                           |   |
|-----------------------------------|------------------------|----------------------------|------------------------------|---------------------------------|--------------------------------------|-------------------------|---------------------------|---|
|                                   | TEMP:60.0°C            |                            | CELL: C                      | STIRRER SPEED:2000 R.P.M.       |                                      |                         |                           |   |
|                                   | SEED                   | BATCH C                    | PREPARED                     | SIEVE                           | FRACTION: 75                         | -89,11                  |                           |   |
| CONCN.<br>%M/V                    | TOTAL<br>TIME<br>MINS. | CRYSTAL<br>MASS<br>(CRAMS) | DIAMETER<br>INCREASE<br>(CM) | MEAN<br>AREA<br>CM <sup>2</sup> | GROWTH RATE<br>CONSTANT<br>K(MIN CM) | MEAN<br>SUPER-<br>SATN: | GROWTH<br>RATE<br>CM/MIN: |   |
| 24.033                            | .00000                 | 2.000                      | 0000 000                     | 0 m 4                           |                                      |                         | 0.0000 0                  |   |
| 23.780                            | 30.000                 | 2.764                      | -0005003                     | 2005.01                         | 0.31/90-01                           | · 194 /                 | 0-3300-00                 |   |
| 23-498                            | 100.00                 | 3-608                      | .0004060                     | 3532-3                          | 3-1401@-07                           | -1814                   | 2;900@-06                 |   |
| 22-217                            | 165-00                 | 1                          | -0003215                     | 4427.6                          | 2.9283@-07                           | -1673                   | 2.473@-06                 |   |
| c) = c ]                          | 10).00                 |                            | .0002690                     | 5255.0                          | 2.6974@-07                           | • 1532                  | 2-0708-06                 |   |
| 22;934                            | 230:00                 | 5-202                      | = 0002330                    | 6028-8                          | 2-5929@-07                           | =1391                   | 1.793@-06                 |   |
| 22.652                            | 295.00                 | 6:112                      |                              |                                 |                                      |                         | 120                       |   |
| QUILIBRIUM CONCENTRATION = 20,010 |                        |                            |                              |                                 | INITIAL                              | SEED ARE                | A = 2145                  | 1 |

|                |                        | TABLE :                    | 40                            |                                 |                                                                  |                          |                           |   |
|----------------|------------------------|----------------------------|-------------------------------|---------------------------------|------------------------------------------------------------------|--------------------------|---------------------------|---|
|                | TEMP                   | :60.0°C                    | CELL: A                       | STIRR                           |                                                                  |                          |                           |   |
|                | SEED                   | BATCH C                    | PREPARED                      | SIEVE                           | FRACTION: 44                                                     | -64pa                    |                           |   |
| CONCN.<br>%M/V | TOTAL<br>TIME<br>MINS: | CRYSTAL<br>MASS<br>(GRAMS) | D IAMETER<br>INCREASE<br>(CM) | MEAN<br>AREA<br>CM <sup>2</sup> | GROWTH RATE<br>CONSTANT<br>K(MIN <sup>*</sup> CM <sup>*2</sup> ) | MEAN<br>SUPER -<br>SATN: | GROWTH<br>RATE<br>CM/MIN. |   |
| 24:216         | :00000                 | 2:000                      |                               | 0001 0                          |                                                                  | 2016                     | 2 5070 06                 |   |
| 23-991         | 70.000                 | 2.680                      | :0005036                      | 2291.9                          | 3-42700-01                                                       | -2040                    | 3.59/0-00                 |   |
| 23-850         | 120:00                 | 3-104                      | .0002652                      | 2706.2                          | 2.6587@-07                                                       | :1954                    | 2:652@-06                 |   |
|                | 120000                 | J                          | :0002383                      | 3005-0                          | 4-9700@-07                                                       | -1884                    | 4-766@-06                 |   |
| 23: (10        | 145:00                 | 3:521                      | :0002171                      | 3291.6                          | 4-7158@-07                                                       | -1814                    | 4.342@-06                 |   |
| 23-569         | 170:00                 | 3.949                      | - 0001999                     | 3567-5                          | 3-2352@-07                                                       | -1743                    | 2-8560-06                 |   |
| 23-428         | 205:00                 | 4.371                      |                               | 2)0[0]                          | 70-77-0 01                                                       |                          |                           |   |
| ECUILIBR       | IUM CON                | CENTRATIO                  | N = 20.01                     | 0                               | INITIAL                                                          | SEED ARE                 | A = 2030                  | - |

- 238 -

|               |                        | TABLE :                    | 41                           | •                               | RUN NO. : R.                                       | 3.6                      | t.                        |
|---------------|------------------------|----------------------------|------------------------------|---------------------------------|----------------------------------------------------|--------------------------|---------------------------|
|               | TEMP                   | 60.0°C                     | CELL: C                      | STIRR                           | ER. SPEED :2000                                    | R.P.M.                   |                           |
|               | SEED                   | BATCH C                    | PREPARED                     | SIEVE                           | FRACTION: 44                                       | -64pe                    |                           |
| CONCN.<br>M/V | TOTAL<br>TIME<br>MINS. | CRYSTAL<br>MASS<br>(GRAMS) | DIAMETER<br>INCREASE<br>(CM) | MEAN<br>AREA<br>CM <sup>2</sup> | GROWTH RATE<br>CONSTANT<br>K(MIN CM <sup>2</sup> ) | MEAN<br>SUPER -<br>SATN: | GROWTH<br>RATE<br>CM/MIN. |
| 24-146        | 00000                  | 2:000                      | -0002025                     | 2121-1                          | 6 111500-06                                        | -2046                    | 6-7510-05                 |
| 24.061        | 1.5000                 | 2:255                      | .0002.02.)                   | 2202.2                          | 8.)12020-07                                        | -1000                    | 8-5820-06                 |
| 23.921        | 19:000                 | 2.679                      |                              | 239282                          |                                                    | 1010                     | 5.)1800 cc                |
| 23:865        | 29:000                 | 2-849                      | -0001096                     | 2014-5)                         | 5.54300-01                                         | -1940                    | 5-4000-00                 |
| 23: 780       | 41-000                 | 3-102                      | -0001552                     | 2766.9                          | 6.6707@-07                                         | .1905                    | 6-465@-06                 |
| 22.620        | 68-000                 | 3-524                      | •0002379                     | 3003-4                          | 4-6932@-07                                         | -1849                    | 4.405@-06                 |
| 23:037        | 86.000                 | 2 0)15                     | .0002166                     | 3289-2                          | 6.6859@-07                                         | •1779                    | 6-018@-06                 |
| 23-490        | 00:000                 | 3-947                      | -0001215                     | 3510-9                          | 4-3678@-07                                         | -1722                    | 3-798@-06                 |
| 23:414        | 102.00                 | 4-197                      | .0000779                     | 3646.0                          | 5=0901@=07                                         | .1687                    | 4-330@-06                 |
| 23:358        | 111-00                 | 4-365                      | -0001850                     | 3830-0                          | 4.6818@-07                                         | -1638                    | 3-855@-06                 |
| 23-217        | 135:00                 | 4-784                      | .0001729                     | 4087-2                          | 4-4036@-07                                         | :1567                    | 3-459@-06                 |
| 23:075        | 160.00                 | 5-201                      | -0001625                     | 4336-8                          | 4-0259@-07                                         | -1497                    | 3-0100-06                 |
| 22:934        | 187-00                 | 5-618                      |                              | 15 70-5                         | 3-60300-07                                         | -1426                    | 2:5580-06                 |
| 22: 793       | 217:00                 | 6=033                      | 0001)5)                      | 1915 0                          | 2.25)110-07                                        | 1256                     | 1.5150-06                 |
| 22:652        | 265:00                 | 6-447                      | -0001454                     | 4015-59                         | 662)41000                                          | 1330                     | 0.)(10.0                  |
| 22-369        | 320-00                 | 7-272                      | -0002708                     | 5158-1                          | 3-9915@=07                                         | -1250                    | 2.4010-00                 |
| 22-227        | 340-00                 | 7-683                      | :0001265                     | 5492-8                          | 5.6321@-07                                         | •1144                    | 3.162@~05                 |
| 22 086        | 278.00                 | 8.002                      | :0001214                     | 5708-7                          | 3-0419@-07                                         | -1073                    | 1-597@-06                 |
| 22:000        | 310:00                 | 0.092                      | -0001167                     | 5920.4                          | 2:8429@-07                                         | -1002                    | 1-389@-06                 |
| 21:944        | 420.00                 | 0=500                      | :0001123                     | 6128.0                          | 2.7601@-07                                         | -0931                    | 1-248@-06                 |
| 21.802        | 465:00                 | 8-907                      | -0001504                     | 6371-4                          | 1:7552@-07                                         | . 0846                   | 7=164@-07                 |
| 21.604        | 570.00                 | 9-473                      |                              |                                 |                                                    |                          |                           |

|                | TABLE: 42              |                            |                              |                                 |                                                                   |                       |                          |
|----------------|------------------------|----------------------------|------------------------------|---------------------------------|-------------------------------------------------------------------|-----------------------|--------------------------|
|                | TEMP:50.0°C CELL:C     |                            | STIRR                        | STIRRER SPEED: 2000 R.P.M.      |                                                                   |                       |                          |
|                | SEED                   | BATCH C                    | PREPARED                     | SIEVE                           | FRACTION: 44-                                                     | -64 ju                |                          |
| CONCN-<br>%M/V | TOTAL<br>TIME<br>MINS: | CRYSTAL<br>MASS<br>(GRAMS) | DIAMETER<br>INCREASE<br>(CM) | MEAN<br>AREA<br>CM <sup>2</sup> | GROWTH RATE<br>CONSTANT<br>K(MIN <sup>-1</sup> CM <sup>-2</sup> ) | MEAN<br>SUPER<br>SATN | GROWTH<br>RATE<br>CM/MIN |
| 19:462         | .00000                 | 2.000                      | 0002266                      | 2142-5                          | 4-2815@-07                                                        | =2851                 | 4:5320-06                |
| 19=363         | 25:000                 | 2.287                      | -0002872                     | 2410-6                          | 2-5438@-07                                                        | :2772                 | 2.611@-06                |
| 19:222         | 80:000                 | 2.696                      | 0002545                      | 2711-5                          | 3:2193@=07                                                        | =2678                 | 3-181@-06                |
| 19=081         | 120,00                 | 3-103                      | .0002201                     | 2008-8                          | 2-4130@-07                                                        | -2585                 | 2-2940-06                |
| 18-939         | 170.00                 | 3:510                      | -0002095                     | 327/1)1                         | 3-2779@=07                                                        | -2491                 | 2-993@=06                |
| 18-798         | 205:00                 | 3-915                      |                              | 3530-8                          | 3:1516@-07                                                        | -2398                 | 2.7600-06                |
| 18.657         | 240:00                 | 4-319                      | .00017952                    | 3706-3                          | 2=6768@=07                                                        | -2304                 | 2-246@-06                |
| 18,515         | 280:00                 | 4:722                      | -0001681                     | 1011-7                          | 2-61980-07                                                        | -2210                 | 2-101@-06                |
| 18-374         | 320:00                 | 5-124                      | .0002079                     | 101102-0                        | 2-28740-07                                                        | -2070                 | 1-7110-06                |
| 18.090         | 410.00                 | 5=924                      | -0001/110                    | 117/10-8                        | 2-01710-07                                                        | 1020                  | 1-4190-06                |
| 17-949         | 460:00                 | 6-323                      | 0001419                      | 5010.)                          | 2-00260-07                                                        | -1712                 | 1-2780-06                |
| 17:438         | 640.00                 | 7-748                      | 00000000                     | 6/120-2                         | 1-5 02)/@-07                                                      | -11)10                | 5-7860-07                |
| 16-245         | 1380.0                 | 11:00                      |                              | 1043,962                        | 1-12708-07                                                        |                       | 2.7210-07                |
| 16:103         | 1540.0                 | 11-38                      | 200000 /4                    | (330=3                          | 1.07080.07                                                        | 0612                  | 2                        |
| 15:961         | 1730.0                 | 11-75                      | .0000040                     | 1204.9                          | 1.01200-01                                                        |                       | 10-5752-01               |

|                |                        | TABLE :                    | 43.                          |                    | RUN NO .: R.                                                      | C.8                         | - 241 -                   |
|----------------|------------------------|----------------------------|------------------------------|--------------------|-------------------------------------------------------------------|-----------------------------|---------------------------|
|                | TEMP                   | :40.0°c                    | CELL: C                      | STIRR              | ER SPEED : 2000                                                   | R.P.M.                      |                           |
|                | SEED                   | BATCH C                    | PREPARED                     | SIEVE              | FRACTION: 44                                                      | -64jn                       |                           |
| CONCN:<br>%M/V | TOTAL<br>TIME<br>MINS. | CRYSTAL<br>MASS<br>(GRAMS) | DIAMETER<br>INCREASE<br>(CM) | MEAN<br>AREA<br>CM | GROWTH RATE<br>CONSTANT<br>K(MIN <sup>-1</sup> CM <sup>-2</sup> ) | MEAN<br>SUPER-<br>SATN:     | GROWTH<br>RATE<br>CM/MIN. |
| 17=1:54        | .00000                 | 2.000                      | 0008259                      | 2478-0             | 6-18540-07                                                        | .)1675                      | 8-2500-06                 |
| 17:033         | 50,000                 | 3-202                      | -0002100                     | 3062-8             | 6-76320-07                                                        | 1)126                       | 8-)1580-06                |
| 16-893         | 63-000                 | 3.600                      | -0002018                     | 2221.6             | 5-02710-07                                                        | .)1216                      | 7.2060.06                 |
| 16:753         | 77:000                 | 3.997                      | .0002010                     | 2500-1             | 5.95/10-07                                                        | 1107                        | 7 1860 00                 |
| 16-612         | 90:000                 | 4.393                      | 0001000                      | 3390.1             |                                                                   | 191                         |                           |
| 16-471         | 104:00                 | 4:789                      | .0001 (43                    | 3040-3             | 5-4564@=07                                                        | :40//                       | 6-224@=06                 |
| 16-331         | 117.00                 | 5-183                      | -0001635                     | 4003-1             | 5.09570-07                                                        | -3958                       | 6.2903-06                 |
| 16-190         | 130-00                 | 5.577                      | :0001543                     | 4319:3             | 5-5540-07                                                         | -3838                       | 5-933@-06                 |
| 16.050         | 141.00                 | 5-970                      | .0001462                     | 4549-4             | 6-4346@-07                                                        | -3718                       | 6-643@-06                 |
| 15:909         | 165:00                 | 6.362                      | -0001390                     | 4773-9             | 2.90502-07                                                        | •3599                       | 2:895@-06                 |
| 15.768         | 178.00                 | 6-753                      | :0001326                     | 4993:3             | 5-3057@-07                                                        | -3479                       | 5.098@-06                 |
| 15-486         | 215-00                 | 7.534                      | -0002487                     | 5312.3             | 3:6985@-07                                                        | :3299                       | 3-360@-06                 |
| 15.345         | 240.00                 | 7.922                      | :0001169                     | 5625-0             | 2.7343@-07                                                        | -3119                       | 2-338@-06                 |
| 15-205         | 256-00                 | 8-310                      | .0001126                     | 5827.4             | 4.2903@-07                                                        | :2999                       | 3.519@-06                 |
| 15-064         | 278-00                 | 8.697                      | .0001086                     | 6026-1             | 3.1441@-07                                                        | .2879                       | 2:4690-06                 |
| 14-022         | 306-00                 | 0.083                      | .0001050                     | 6221.5             | 2.4977@-07                                                        | .2759                       | 1.874@-06                 |
| 14-640         | 26)1-00                | 0.852                      | :0002002                     | 6507.5             | 2.4693@-07                                                        | -2579                       | 1-725@-06                 |
| 1)1.070        | 160-00                 | 10.85                      | -0002429                     | 6934-2             | 2.0417@-07                                                        | -2303                       | 1:265@-06                 |
| 19.613         | 100:00                 | 10:0)                      | .0009646                     | 8200-9             | 1.5783@-07                                                        | .1400                       | 5-2420-07                 |
| 12:511         | 1300-0                 | 15:51                      | -0000659                     | 9305-5             | 3-6651@-08                                                        | :0592                       | 5-495@-08                 |
| 12:370         | 1980.0                 | 15:07                      | .0000891                     | 9483-7             | 4.4845@-08                                                        | -0447                       | 4-949@-08                 |
| 12:177         | 2000-0                 | 16:37                      |                              |                    | a) and business strikers are the instance and says and u          | a 500 000am are Milary (100 |                           |

|                                                                    | TABLE: 44                                                          |                                                             |                                                                      |                                                          |                                                                                  |                                                      |                                                                            |
|--------------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------------------------|
|                                                                    | TEMP :                                                             | 60.02                                                       | CELL: A                                                              | STIRR                                                    | ER SPEED: 500                                                                    | R.P.M.                                               |                                                                            |
|                                                                    | SEED :                                                             | BATCH C                                                     | PREPARED                                                             | SIEVE                                                    | FRACTION: 44-                                                                    | -64µ                                                 |                                                                            |
| CONCN:<br>%M/V                                                     | TOTAL<br>TIME<br>MINS:                                             | CRYSTAL<br>MASS<br>(GRAMS)                                  | DIAMETER<br>INCREASE<br>(CM)                                         | MEAN<br>AREA<br>CM <sup>2</sup>                          | GROWTH RATE<br>CONSTANT<br>K(MIN <sup>-</sup> CM <sup>-</sup> )                  | MEAN<br>SUPER<br>SATN-                               | GROWTH<br>RATE<br>CM/MIN                                                   |
| 24-188                                                             | .00000                                                             | 2.000                                                       |                                                                      | 2007.0                                                   | 0-2251@=07                                                                       | 2074                                                 | 9 796@=06                                                                  |
| 24-132                                                             | 7:0000                                                             | 2.170                                                       | -0003.001                                                            | 2327-7                                                   | 8-2835@-07                                                                       | -2025                                                | 8-586@=06                                                                  |
| 23:991                                                             | 25:000                                                             | 2,595                                                       | -0002715                                                             | 26111-2                                                  | 5-44200-07                                                                       | -1954                                                | 5-429@=06                                                                  |
| 23:850                                                             | 50:000                                                             | 3:019                                                       | -0002432                                                             | 2045-8                                                   | 3-6214@-07                                                                       | -1884                                                | 3-474@-06                                                                  |
| 23:710                                                             | 85.000                                                             | 3-442                                                       | -0002210                                                             | 3234-6                                                   | 3-9990@=07                                                                       | -1814                                                | 3-683@-06                                                                  |
| 23:569                                                             | 115.00                                                             | 3-864                                                       | -0002081                                                             | 3512-5                                                   | 2-8751@=07                                                                       | -1743                                                | 2-539@=06                                                                  |
| 23-428                                                             | 155=00                                                             | 4.286                                                       | 00002001                                                             |                                                          |                                                                                  |                                                      | ag di anan un da di 1600 m 60a                                             |
| 24-188<br>24-132<br>23-991<br>23-850<br>23-710<br>23-569<br>23-428 | .00000<br>7.0000<br>25.000<br>50.000<br>85.000<br>115.00<br>155.00 | 2.000<br>2.170<br>2.595<br>3.019<br>3.442<br>3.864<br>4.286 | •0001371<br>•0003091<br>•0002715<br>•0002432<br>•0002210<br>•0002031 | 2097.9<br>2327.7<br>2644.2<br>2945.8<br>3234.6<br>3512.5 | 9.2251@-07<br>8.2835@-07<br>5.4420@-07<br>3.6214@-07<br>3.9990@-07<br>2.8751@-07 | 2074<br>2025<br>1954<br>1884<br>1814<br>1814<br>1743 | 9:796@-06<br>8:586@-06<br>5:429@-06<br>3:474@-06<br>3:683@-06<br>2:539@-06 |

|               |                        | TABLE :                    | +5                            |                                 | RUN NO.: R.O                                                      | 2.10                    |                           |
|---------------|------------------------|----------------------------|-------------------------------|---------------------------------|-------------------------------------------------------------------|-------------------------|---------------------------|
|               | TEMP :                 | 50.0°C                     | CELL: C                       | STIRRE                          | R.P.M.                                                            |                         |                           |
|               | SEED :                 | BATCH C                    | PREPARED                      | SIEVE                           | FRACTION: 44.                                                     | -64 ju                  |                           |
| CONCN.<br>M/V | TOTAL<br>TIME<br>MINS. | CRYSTAL<br>MASS<br>(GRAMS) | D IAMETER<br>INCREASE<br>(CM) | MEAN<br>AREA<br>CM <sup>2</sup> | GROWTH RATE<br>CONSTANT<br>K(MIN <sup>-7</sup> CM <sup>-2</sup> ) | MEAN<br>SUPER-<br>SATN. | GROWTH<br>RATE<br>CM/MIN: |
| 24.146        | -00000                 | 2.000                      | 0002 025                      | 2131-1                          | 1-9338@-06                                                        | -2046                   | 2=025@=05                 |
| 24:061        | 5-0000                 | 2:255                      | 0003.003                      | 2392-1                          | 7-38450-07                                                        | -1990                   | 7:-508@=06                |
| 23-921        | 25.000                 | 2.679                      | 0002648                       | 2705-0                          | 6-1574@-07                                                        | -1919                   | 6-019@-06                 |
| 23.780        | 47:000                 | 3:102                      | -0002278                      | 5005-3                          | 5-06870-07                                                        | -1849                   | 4-7570-06                 |
| 23-639        | 72-000                 | 3-524                      | .0002370                      | 2280-2                          | 6-017)0-07                                                        | -1770                   | 5-415@=06                 |
| 23.498        | 92.000                 | 3-945                      | 000100)                       | 256)1.2                         | 5-00 (50-07                                                       | •1708                   | 122/10-06                 |
| 23-358        | 115:00                 | 4-365                      | 0001994                       | 330452                          | 2 80008-07                                                        | 1628                    | 2-2120-06                 |
| 23:217        | 155:00                 | 4.783                      | 0001049                       | 3029:1                          | 2.00930-01                                                        | 1030                    | 2.3120-00                 |
| 23-075        | 190-00                 | 5.201                      | =0001/20                      | 4000-01                         | 3-14500-01                                                        | 1001                    | 2:4000:00                 |
| 22-934        | 240.00                 | 5-617                      | -0001623                      | 4336.0                          | 2.51744@=07                                                       | =1497                   | 1-6230-06                 |
| 22:793        | 280,00                 | 6-031                      | :0001532                      | 4578.3                          | 2-70309-07                                                        | -1426                   | 1-915@-06                 |
| 22.652        | 330-00                 | 6.444                      | ;0001452                      | 4814.3                          | 2.1647@-07                                                        | -1356                   | 1.452@=06                 |
| 22-510        | 395:00                 | 6-856                      | .0001380                      | 5044-4                          | 1=6775@-07                                                        | -1285                   | 1:062@-06                 |
| 22-454        | 425=00                 | 7-020                      | :0000534                      | 5202.7                          | 1-4663@-07                                                        | -1235                   | 8-895@-07                 |
| EQUILIBR      | IUM CONC               | ENTRATIO                   | N = + 20.0                    | 10                              | INITIAL                                                           | SEED AR                 | EA = 2030                 |

|                |                        | TABLE                      | : 46                         |                                  |                                                                  |                          |                           |
|----------------|------------------------|----------------------------|------------------------------|----------------------------------|------------------------------------------------------------------|--------------------------|---------------------------|
|                | ТЕМР: 40.02            |                            | CELL: C                      | STIRR                            | ER SPEED: 500                                                    | RePoMe                   |                           |
|                | SEED                   | BATCH                      | C 1REPARED                   | SIEVE                            | FRACTION: 44.                                                    | -64je                    |                           |
| CONCN-<br>%M/V | TOTAL<br>TIME<br>MINS. | CRYSTAL<br>MASS<br>(GRAMS) | DIAMETER<br>INCREASE<br>(CM) | MEAN<br>AREA<br>CM <sup>2-</sup> | GROWTH RATE<br>CONSTANT<br>K(MIN <sup>-I</sup> CM <sup>2</sup> ) | MEAN<br>SUPER -<br>SATN: | GROWTH<br>RATE<br>CM/MIN= |
| 13-877         | .00000                 | 2-000                      | 0000520                      | 2061.5                           | 1-00020-08                                                       | 2001                     | 5918@08                   |
| 13-849         | 540.00                 | 2:078                      | 0001208                      | 201.)                            | 1-28680-08                                                       | -1064                    | 6700@==08                 |
| 13:792         | 1440.0                 | 2-231                      | 0000180                      | 2175-1                           | 1 61210-08                                                       | .1801                    | 7-0.000-08                |
| 13:679         | 2820.0                 | 2:532                      |                              | 2320.2                           | 1.01318-00                                                       | .1091                    | 1.9095-00                 |
| EQUILIBR       | IUM CON                | CENTRATIC                  | ON = 11.55                   | INITIAL                          | SEED ARE                                                         | A = 2030                 |                           |

.

- 244 -

|                | TABLE: 47              |                            |                              |                          |                                        |                         |                           |
|----------------|------------------------|----------------------------|------------------------------|--------------------------|----------------------------------------|-------------------------|---------------------------|
|                | TEMP                   | :70.0°C                    | CELL: A                      | STIRRER SPEED:500 R.P.M. |                                        |                         |                           |
|                | SEED                   | BATCH C                    | PREPARED                     | SIEVE                    | FRACTION: 44                           | -64 ju                  |                           |
| CONCN.<br>%M/V | TOTAL<br>TIME<br>MINS: | CRYSTAL<br>MASS<br>(GRAMS) | DIAMETER<br>INCREASE<br>(CM) | MEAN<br>AREA<br>CM       | GROWTH RATE<br>CONSTANT_<br>K(MIN CM ) | MEAN<br>SUPER-<br>SATN: | GROWTH<br>RATE<br>CM/MIN: |
| 29-986         | -00000                 | 2:000                      | 0002102                      | 2125-0                   | 3-57740-06                             | -1381                   | 3-5040-05                 |
| 29:902         | 3:0000                 | 2:265                      | .0002102                     | 2132.0                   | ). 68010-06                            |                         | 1.1200-15                 |
| 29:763         | 6.5000                 | 2.707                      | .0003101                     | 2700 0                   | 2 21080-06                             | -1286                   | 2-1010-05                 |
| 29-624         | 13:000                 | 3-147                      | -0002/31                     | 2 (30:9                  | 2-31200=00                             | -1200                   | 201010-0                  |
| 29-485         | 21-000                 | 3.587                      | :0002448                     | 3040-3                   | 1.7612@-06                             | 1234                    | 1:5300-05                 |
| 29-346         | 29:500                 | 4-026                      | 0002226                      | 3336-5                   | 1.5789@-06                             | <del>-</del> 1181       | 1-309@-05                 |
| 20-207         | 26-000                 | 1-1162                     | :0002047                     | 3621-5                   | 1-9926@-06                             | <u>∍</u> 1128           | 1-574@-05                 |
| 29.201         | 1- 000                 | 1.001                      | :0001898                     | 3896.6                   | 1-1488@-06                             | -1075                   | 8.628@-06                 |
| 29:000         | 4 ( = 000              | 4.901                      | -0001601                     | 4150-1                   | 7-0053@-07                             | -1025                   | 5-0020-06                 |
| 28-943         | 63:000                 | 5-293                      | .0001676                     | 4396-1                   | 5-89110-07                             | -0974                   | 3-9910-06                 |
| 28,803         | 84.000                 | 5-729                      | :0001582                     | 4648.4                   | 4-7615@-07                             | -0921                   | 3-0420-06                 |
| 28,664         | 110.00                 | 6-163                      | -0001500                     | 4894-2                   | 4-6235@-07                             | - 0868                  | 2-177@-06                 |
| 28-524         | 137:00                 | 6-597                      | -0001427                     | 5134-1                   | 4-2273@-07                             | =0815                   | 2-3780-06                 |
| 28.385         | 167:00                 | 7:030                      | -0001262                     | 5268.6                   | )1.18720-07                            | -0762                   | 2-1060-06                 |
| 28-245         | 198:00                 | 7-462                      | 0001302                      | 5300-0                   | 4.10/20-01                             |                         | 1 2000 00                 |
| 28,105         | 245.00                 | 7:893                      | ÷0001303                     | 5590-1                   | 2:0406@=07                             | =0/09                   | 1-3000-00                 |
| 27-965         | 310.00                 | 8-323                      | :0001251                     | 5823-1                   | 2-1420@-07                             | -0656                   | 9-6268-07                 |
| 27:825         | 370=00                 | 8-753                      | -0001203                     | 6043-7                   | 2-4345@-07                             | :0603                   | 1-003@-06                 |
| 27.686         | 450.00                 | 9-181                      | -0001159                     | 6260-3                   | 1-9346@-07                             | 0550                    | 7-243@-07                 |

INITIAL SEED AREA = 2030

hile.

|                |                        | TABLE :                    | 48                           | RUN NO.: R.C.13    |                                      |                                        |                           |  |
|----------------|------------------------|----------------------------|------------------------------|--------------------|--------------------------------------|----------------------------------------|---------------------------|--|
|                | TEMP:                  | 70.0°C                     | CELL: C                      | STIRR              | STIRRER SPEED: 500 R.P.M.            |                                        |                           |  |
|                | SEED :                 | BATCH                      | PREPARED                     | SIEVE              | FRACTION: 44                         | -64pr                                  |                           |  |
| CONCN-<br>%M/V | TOTAL<br>TIME<br>MINS: | CRYSTAL<br>MASS<br>(GRAMS) | DIAMETER<br>INCREASE<br>(CM) | MEAN<br>AREA<br>CM | GROWTH RATE<br>CONSTANT<br>K(MIN CM) | MEAN<br>SUPER-<br>SATN:                | GROWTH<br>RATE<br>CM/MIN. |  |
| 29-930         | .00000                 | 2,000                      |                              |                    |                                      | 1060                                   |                           |  |
| 29-847         | 2.5000                 | 2.265                      | -0002101                     | 2135:0             | 4-30 00 -00                          | ÷1300                                  | 4-203@=05                 |  |
| 29-708         | 9-5000                 | 2.706                      | -0003105                     | 2405;0             | 2.3702@-06                           | =1318                                  | 2-2189-05                 |  |
| 29.569         | 15:000                 | 3-146                      | :0002729                     | 2730.5             | 2.78000-06                           | -1265                                  | 2.481@-05                 |  |
| 29-430         | 21-000                 | 3=585                      | ;0002446                     | 3039-6             | 2:3903@-06                           | -1212                                  | 2-038@-05                 |  |
| 20-201         | 28-000                 | 4-024                      | :0002224                     | 3335=5             | 1-9533@-06                           | -1160                                  | 1.5880-05                 |  |
| 20-152         | 22,000                 | 1. 161                     | :0002044                     | 3620-1             | 2:6416@-06                           | :1107                                  | 2.044@-05                 |  |
| 296172         | 33:000                 | 4 90 T                     | -0001895                     | 3894.8             | 1=4333@-06                           | :1054                                  | 1-053@-05                 |  |
| 29:012         | 42000                  | 4:097                      | :0001770                     | 4160.7             | 1.4135@-06                           | -1001                                  | 9-834@-06                 |  |
| 28.873         | 51:000                 | 5-332                      | :0001663                     | 4418.7             | 1-2656@-06                           | -0948                                  | 8.313@-06                 |  |
| 28,734         | 61:000                 | 5-766                      | -0001569                     | 4669-7             | 1-0577@-06                           | - 0895                                 | 6-539@-06                 |  |
| 28.594         | 73-000                 | 6:200                      | = 0001487                    | 4914-1             | 6-7518@-07                           | -0842                                  | 3-914@-06                 |  |
| 28.454         | 92:000                 | 6.631                      | - 0001/11/1                  | 5152-5             | 4-50540-07                           | -0789                                  | 2-4380-06                 |  |
| 28.315         | 121.00                 | 7:062                      | .00012)18                    | 5285-2             | 2.00050-07                           | .0726                                  | 1.0820-06                 |  |
| 28,175         | 155:00                 | 7:491                      | :0001340                     | 2300.02            | 3.94490=07                           | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | 1.6110                    |  |
| 28-035         | 195:00                 | 7-919                      | :0001209                     | 501201             | 3:40950-01                           |                                        | 1.0110-00                 |  |
| 27-895         | 250,00                 | 8.344                      | .0001235                     | 5835-2             | 2.6337@-07                           | :0629                                  | 1:123@-05                 |  |
| 27:756         | 297:00                 | 8.768                      |                              | 6053-1             | 3-2474@-07                           | -0576                                  | 1:262@-06                 |  |
| 27-615         | 370-00                 | 9-190                      | .0001140                     | 6266-5             | 2-2266@-07                           | -0523                                  | 7-8050-07                 |  |
| 27-)10         | 560.00                 | 0-775                      | -0001519                     | 6515-7             | 1-3148@-07                           | -0459                                  | 3-997@-07                 |  |
| -10719         | 100.00                 | 20112                      |                              |                    |                                      |                                        |                           |  |

INITIAL SEED AREA = 2030'5

|                |                        | TABLE :                    | 49                            | RUN NO.: R.C.14                 |                                                                   |                        |                           |
|----------------|------------------------|----------------------------|-------------------------------|---------------------------------|-------------------------------------------------------------------|------------------------|---------------------------|
|                | TEMP: 70.0° CELL: C    |                            |                               | STIRR                           | STIRRER SPEED: 2000 R.P.M.                                        |                        |                           |
|                | SEED                   | BATCH C                    | PREPARED                      | SIEVE                           | FRACTION: 44                                                      | -64pa                  |                           |
| CONCN-<br>%M/V | TOTAL<br>TIME<br>MINS: | CRYSTAL<br>MASS<br>(GRAMS) | D IAMETER<br>INCREASE<br>(CM) | MEAN<br>AREA<br>CM <sup>2</sup> | GROWTH RATE<br>CONSTANT<br>K(MIN <sup>-1</sup> CM <sup>-2</sup> ) | MEAN<br>SUPER<br>SATN: | GROWTH<br>RATE<br>CM/MIN. |
| 30:097         | .00000                 | 2.000                      | 0005 789                      | 2334-3                          | 3-65410-06                                                        | -1392                  | 3-6180-05                 |
| 29:-847        | 8.0000                 | 2.796                      | :0002668                      | 2794-7                          | 2=8664@=06                                                        | -1318                  | 2-668@-05                 |
| 29-708         | 13:000                 | 3.236                      | 0002399                       | 3101-2                          | 2-6925@=06                                                        | -1265                  | 2-399@-05                 |
| 29:569         | 18,000                 | 3.676                      | -0002186                      | 2205-0                          | 2.1)1010-06                                                       | -1212                  | 1-8220-05                 |
| 29-430         | 24.000                 | 4-114                      | 0002100                       | 3397:0                          | 2.14010=00                                                        | 1160                   | 1.6780-05                 |
| 29-291         | 30,000                 | 4.552                      | -0002013                      | 30/100                          | 1 70000 0                                                         | 1107                   | 1.00 00000                |
| 29-152         | 37=000                 | 4-988                      | -0001010                      | 3950.0                          | 1 00000 0                                                         | 1001                   | 1:3300-0                  |
| 29:012         | 48.000                 | 5-424                      | =0001740                      | 4215-3                          | 1:0036@=05                                                        | 1054                   | (-940@=00                 |
| 28-873         | 58.000                 | 5.858                      | 0001644                       | 4472-1                          | 1;1036@=05                                                        | -1001                  | 0.2198-00                 |
| 28:734         | 69:000                 | 6-291                      | ;0001553                      | 4721-9                          | 1.0766@-06                                                        | ÷0948                  | 7:0590-06                 |
| 28-594         | 80,000                 | 6-724                      | -0001473                      | 4965-3                          | 1=0051@-06                                                        | -0895                  | 6.697@-06                 |
| 28-454         | 91:000                 | 7-155                      | -0001403                      | 5202-9                          | 1-1015@-06                                                        | -0842                  | 6=375@=06                 |
| 28-315         | 105:00                 | 7:585                      | -0001339                      | 5435-2                          | 8-8472@-07                                                        | =0789                  | 4-783@-06                 |
| 28-175         | 120-00                 | 8-014                      | ÷0001282                      | 5662.4                          | 8.5033@-07                                                        | • 0736                 | 4:274@=06                 |
| 27-895         | 153-00                 | 8-870                      | :=0002416                     | 5993-2                          | 8,2122@-07                                                        | 0656                   | 3-660@-06                 |
| 27:-756        | 170-00                 | 9-295                      | =0001140                      | 6317-6                          | 8,6021@-07                                                        | :0576                  | 3=354@=06                 |
| 27-615         | 192-00                 | 9:-720                     | :0001100                      | 6527-9                          | 7:0925@=07                                                        | •0523                  | 2.501@-06                 |
| 27.)175        | 220-00                 | 10-14                      | =0001063                      | 6734-4                          | 6.0185@-07                                                        | =0470                  | 1.898@-06                 |
| 27 225         | 255.00                 | 10.56                      | :0001028                      | 6937-3                          | 5-2762@-07                                                        | -0416                  | 1-469@-06                 |
| 21:332         | 255:00                 | 10.00                      | 0000996                       | 7136-8                          | 4-12100-07                                                        | :0363                  | 9-956@-07                 |
| 2/0195         | 305:00                 | 10.90                      | .0000965                      | 7333-0                          | 5-8834@-07                                                        | :0310                  | 1:207@-06                 |
| 27:055         | 345=00                 | 11:40                      |                               |                                 |                                                                   |                        |                           |

- 247 -

EQUILIBRIUM CONCENTRATION = 26.310

|                |                      | TABLE :                    | 50                          |                                 | RUN NO.: R.                                                       | C.15                        |                                           |
|----------------|----------------------|----------------------------|-----------------------------|---------------------------------|-------------------------------------------------------------------|-----------------------------|-------------------------------------------|
|                | TEMP :               | 50.0°C                     | CELL: C                     | STIRR                           | ER SPEED :2000                                                    | R.P.M.                      |                                           |
|                | SEED :               | BATCH C                    | PREPARED                    | SIEVE                           | FRACTION: 44                                                      | -64 µ                       |                                           |
| CONCN-<br>%M/V | TOTAL OTIME<br>MINS: | CRYSTAL<br>MASS<br>(GRAMS) | CIAMETER<br>NCREASE<br>(CM) | MEAN<br>AREA<br>CM <sup>2</sup> | GROWTH RATE<br>CONSTANT<br>K(MIN <sup>-7</sup> CM <sup>-2</sup> ) | MEAN<br>SUPER-<br>SATN:     | GROWTH<br>RATE<br>CM/MIN:                 |
| 12:531         | -00000               | 2.000                      |                             | 2061-2                          | 4-00330-07                                                        | 3719                        | 3-1560-06                                 |
| 12-503         | 10.000+              | 2.077                      | 0000031                     | 20106                           | 1-18050-07                                                        | -2627                       | 00650=07                                  |
| 12-363         | 170.00               | 2.461                      | 0002901                     | 2240.0                          | 1. (2280.08                                                       | .)021                       | 1.2160-07                                 |
| 12:335         | 390.00               | 2:537                      | -0000535                    | 2410:2                          | 1.03200-00                                                        | -3232                       | 2 6180 07                                 |
| 11-887         | 1380.0               | 3-748                      | 30007164                    | 2873-2                          | 5-29000-00                                                        | :32 (4                      | 3:0100=07                                 |
| 11.803         | 1515:0               | 3-974                      | -0001131                    | 3373-6                          | 6=7953@-08                                                        | -2902                       | 4-1000-01                                 |
| 11-648         | 1740-0               | 4-385                      | -0001947                    | 3580-0                          | 7-3715@-08                                                        | -2051                       | 4:327@=07                                 |
| 11-578         | 1860-0               | 4.572                      | -0000838                    | 3770-8                          | 6-2348@-08                                                        | -2728                       | 3-491@-07                                 |
| 11 016         | 2700.0               | 6.050                      | -0005870                    | 4269-1                          | 6.55559-08                                                        | -2381                       | 3-156@-07                                 |
| 11:010         | 2190:0               | Colo                       | .0001034                    | 4791.5                          | 6-5682@-08                                                        | ;2011                       | 2.651@-07                                 |
| 10,903         | 2905-0               | 6-343                      | 0000996                     | 4955-4                          | 7=3330@-08                                                        | 1888                        | 2.7680-07                                 |
| 10.790         | 3165=0               | 6:635                      | -0000485                    | 5076-6                          | 9:0326@-08                                                        | -1795                       | 3-234@-07                                 |
| 10:734         | 3240.0               | 6-780                      | -0000476                    | 5156-4                          | 3-8381@-08                                                        | -1734                       | 1-323@-07                                 |
| 10.678         | 3420=0               | 6:925                      | -0004354                    | 5574-3                          | 6-7428@-08                                                        | -1394                       | 1-814@-07                                 |
| 10.114         | 4620.0               | 8-359                      | -0002862                    | 6216-4                          | 6-5151@-08                                                        | :0852                       | 1-037@-07                                 |
| 9.6901         | 6000.0               | 9-410                      | 0001569                     | 6630=0                          | 5-1343@-08                                                        | -0481                       | 4-4700-08                                 |
| 9.4355         | 7755:0               | 10:02                      | -0000334                    | 6812-2                          | 2-9297@-08                                                        | -0310                       | 1.663@-08                                 |
| 9.379          | 8760-0               | 10.16                      |                             | 6868.1                          | 2:01020=08                                                        | -0256                       | 9-265@-09                                 |
| 9-3365         | 10080                | 10.26                      | 0000249                     | 60222                           | 2.11010-08                                                        | -02.02                      | 1-104@=08                                 |
| 9-2799         | 11520                | 10:39                      | 50000310                    | 092302                          |                                                                   | 9 100 MB 100 MB 40 40 40 40 | a tables the pay we can us on our and the |

|                |                        | • •                        |                              |                                 |                                                                   |                          |                           |  |
|----------------|------------------------|----------------------------|------------------------------|---------------------------------|-------------------------------------------------------------------|--------------------------|---------------------------|--|
|                |                        | TABLE :                    | 51                           | 1201                            | RUN NO.: R.                                                       | C.16                     |                           |  |
|                | TEMP                   | 70.0°C                     | CELL: C                      | STIRRE                          | ER SPEED:1000                                                     | R.P.M.                   |                           |  |
|                | SEED :                 | BATCH C                    | PREPARED                     | SIEVE                           | FRACTION: 44                                                      | -6414                    |                           |  |
| CONCN:<br>%M/V | TOTAL<br>TIME<br>MINS: | CRYSTAL<br>MASS<br>(GRAMS) | DIAMETER<br>INCREASE<br>(CM) | MEAN<br>AREA<br>CM <sup>2</sup> | GROWTH RATE<br>CONSTANT<br>K(MIN <sup>-1</sup> CM <sup>-2</sup> ) | MEAN<br>SUPER -<br>SATN. | GROWTH<br>RATE<br>CM/MIN. |  |
| 30-152         | . 00000                | 2.000                      | -000/1023                    | 2236-3                          | 4-40102-06                                                        | -1429                    | 4-4700-05                 |  |
| 29:986         | 4.5000                 | 2-531                      |                              | 2603-6                          | 2-68800-06                                                        | -1371                    | 2-608@-05                 |  |
| 29-847         | 10,000                 | 2.972                      |                              | 2018-8                          | 2-40510=06                                                        | -1318                    | 2-321@-05                 |  |
| 29.708         | 15:500                 | 3-412                      | 0002555                      | 2220.1                          | 2.50210-06                                                        | -1265                    | 2-309@=05                 |  |
| 29:569         | 20,500                 | 3:851                      | 0002309                      | 3500-2                          | 2.070/10-06                                                       | .1212                    | 1-7610-05                 |  |
| 29.430         | 26.500                 | 4-289                      | -0002113                     | 3709.5                          | 2.010780-06                                                       | -1160                    | 1-0520-05                 |  |
| 29-291         | 31.500                 | 4-727                      | -0001933                     | 3100.2                          | 1 81280-06                                                        | -1107                    | 1.1000-05                 |  |
| 29:152         | 38:000                 | 5-163                      | -0001019                     | 40) (00                         | 1-01200-00                                                        | 100                      | 1.7000-05                 |  |
| 29:012         | 47-000                 | 5-598                      | .0001705                     | 4319-2                          | 1-29258-00                                                        | 1004                     | 8 000 06                  |  |
| 28-873         | 57:000                 | 6:032                      | :0001607                     | 4573=2                          | 1-15 (40-00                                                       | -1001                    |                           |  |
| 28-734         | 65:000                 | 6-465                      | -0001521                     | 4820-5                          | 1-4501@-06                                                        | :0940                    | 9-5040-00                 |  |
| 28.594         | 75:000                 | 6.898                      | ;0001445                     | 5061.7                          | 1.1709@-06                                                        | = 0095                   | 7=224@=00.                |  |
| 28-454         | 86.000                 | 7-329                      | -0001377                     | 5297-3                          | 1-0819@-06                                                        | :0842                    | 6-2600-06                 |  |
| 28-315         | 100-00                 | 7:759                      | .0001316                     | 5527-6                          | 8-6993@-07                                                        | :0789                    | 4-702@-06                 |  |
| 28-175         | 117:00                 | 8-188                      | 0001261                      | 5753-0                          | 7-3846@-07                                                        | •0736                    | 3-710@-06                 |  |
| 20.10          | 150.00                 | 8-615                      | ÷0001211                     | 5973-9                          | 3-95110-07                                                        | - 0683                   | 1-836@-06                 |  |
| 20.05          | 105-00                 | 0-041                      | -0001164                     | 6190.4                          | 3.0342@-07                                                        | -0629                    | 1-294@-06                 |  |
| 21:05          | 195:00                 | 0.165                      | :0001122                     | 6402.7                          | 4-8098@-07                                                        | -0576                    | 1.870@-06                 |  |
| 27-615         | 280-00                 | 9.888                      | -0001 082                    | 6610-9                          | 2.8014@-07                                                        | =0523                    | 9-835@-07                 |  |
| 610017         | 200.00                 | 9.000                      |                              |                                 |                                                                   |                          |                           |  |

-

INITIAL SEED AREA = 2030

|                | TABLE: 52              |                            |                              |                                 | 0.17                                                             |                         |                           |
|----------------|------------------------|----------------------------|------------------------------|---------------------------------|------------------------------------------------------------------|-------------------------|---------------------------|
|                | TEMP                   | 40.0°C                     | CELL: C                      | STIRR                           | ER SPEED 2000                                                    | RoPoMo                  |                           |
|                | SEED                   | ватсн с                    | PREPARED                     | SIEVE                           | FRACTION: 44                                                     | -64 ju                  |                           |
| CONCN.<br>%M/V | TOTAL<br>TIME<br>MINS: | CRYSTAL<br>MASS<br>(GRAMS) | DIAMETER<br>INCREASE<br>(CM) | MEAN<br>AREA<br>CM <sup>2</sup> | GROWTH RATE<br>CONSTANT<br>K(MIN <sup>-</sup> CM <sup>-2</sup> ) | MEAN<br>SUPER-<br>SATN- | GROWTH<br>RATE<br>CM/MIN: |
| 15-389         | .00000                 | 2.000                      | -000/1102                    | 22)15.5                         | 8-56280-08                                                       |                         | 7.)1870.07                |
| 15:190         | 280.00                 | 2.555                      | 0011005                      | 2150 8                          | 0.87570.08                                                       | :31 (9                  | 7.)1560.07                |
| 14.452         | 1020.0                 | 4.591                      | -0011035                     | 3150.0                          | 9.000000                                                         | 6/120                   | (-4500-07                 |
| 14-395         | 1080.0                 | 4=745                      | -0000673                     | 3000.9                          | 8,6303@-08                                                       | -2433                   | 5-609@-07                 |
| 14-282         | 1160.0                 | 5-054                      | -0001296                     | 4031.0                          | 1-2882@-07                                                       | :2359                   | 8-102@-07                 |
| 14-196         | 1275-0                 | 5-285                      | .0000931                     | 4194.4                          | 6-7041@-08                                                       | :2273                   | 4:049@-07                 |
| 14-125         | 1220-0                 | 5-1177                     | -0000752                     | 4320-3                          | 1-4287@-07                                                       | :2206                   | 8.355@-07                 |
| 1)1 006        | 1005 0                 |                            | -0001019                     | 4455-4                          | 1.2041@-07                                                       | -2132                   | 6-791@-07                 |
| 14:020         | 1395:0                 | 27 (42                     | -0000844                     | 4599-7                          | 8-6563@-08                                                       | -2053                   | 4.688@-07                 |
| 13-940         | 1405=0                 | 5:975                      | :0000548                     | 4709-1                          | 1-1622@-07                                                       | :1991                   | 6-0900-07                 |
| 13.884         | 1530-0                 | 6-127                      | .0006270                     | 5280-9                          | 7:-8589@-08                                                      | -1648                   | 3-318@-07                 |
| 13-143         | 2475-0                 | 8-081                      | -0000536                     | 5857-2                          | 7-6944@-08                                                       | -1298                   | 2-5510-07                 |
| 13-072         | 2580.0                 | 8-266                      | -0000421                     | 5942-9                          | 7-3933@-08                                                       | -1243                   | 2-3410-07                 |
| 13-015         | 2670-0                 | 8.414                      |                              | 6027.0                          | 0.52700-08                                                       | 1188                    | 2.8708-07                 |
| 12.944         | 2760.0                 | 8.599                      | 00000000                     | (101)                           | 9.93190=00                                                       | 1100                    | 2:0199-01                 |
| 12-872         | 2910-0                 | 8.783                      | -0000500                     | 6121:4                          | 5-9439@-00                                                       | -1120                   | 1.0950-07                 |
| 12.516         | 3870=0                 | 9.687                      | 0002395                      | 6392.1                          | 5:3671@-08                                                       | :0942                   | 1-248@-07                 |
| 12-459         | 3990.0                 | 9-831                      | .0000366                     | 6651-2                          | 8-0779@-08                                                       | :0763                   | 1-523@-07                 |
| 12.387         | 4260-0                 | 10,01                      | -0000449                     | 6729.4                          | 4.7844@=08                                                       | •0708                   | 8-320@-08                 |

INITIAL SEED AREA = 2030

- 250 -

|                |                        | TABLE :                    | 53                           | RUN NO.: R.D.1                   |                                                                   |                                     |                                             |  |
|----------------|------------------------|----------------------------|------------------------------|----------------------------------|-------------------------------------------------------------------|-------------------------------------|---------------------------------------------|--|
|                | TEMP                   | :70.0°C                    | CELL: C                      | STIRR                            | ER SPEED : 2000                                                   | R.P.M.                              |                                             |  |
|                | SEED                   | BATCH D                    | PREPARED                     | SIEVE                            | FRACTION: 44                                                      | -64 pe                              |                                             |  |
| CONCN:<br>%M/V | TOTAL<br>TIME<br>MINS: | CRYSTAL<br>MASS<br>(GRAMS) | DIAMETER<br>INCREASE<br>(CM) | MEAN<br>AREA<br>CM <sup>2-</sup> | GROWTH RATE<br>CONSTANT<br>K(MIN <sup>-/</sup> CM <sup>-2</sup> ) | MEAN<br>SUPER-<br>SATN:             | GROWTH<br>RATE<br>CM/MIN®                   |  |
| 29-986         | .00000                 | 1-968                      |                              | 32001                            | 2-00810-06                                                        | 1371                                | 3-8889-05                                   |  |
| 29-847         | 3-0000                 | 2.410                      | .0002333                     | 2707-2                           | 1.5/250-06                                                        | -1218                               | 1.1200-05                                   |  |
| 29-708         | 10,000                 | 2.851                      | 0002014                      | )1177 h                          | 1 11050-06                                                        | -1265                               | 00020-05                                    |  |
| 29-569         | 19:000                 | 3-291                      | -0001/03                     | 41 / 104                         | 1 21669 06                                                        | 1010                                | 1 1)178 05                                  |  |
| 29-430         | 26.000                 | 3:-729                     | -0001000                     | 4024: (                          | 1=3400@=00                                                        | 1160                                | 7 0000                                      |  |
| 29-291         | 36.000                 | 4-167                      | =0001467                     | 50,2.0                           | 9-0259@-07                                                        | -1100                               | (-3330-00                                   |  |
| 29=152         | 46-000                 | 4.604                      | -0001353                     | 5464-4                           | 8:7499@-07                                                        | .1107                               | 6.764@-06                                   |  |
| 28-873         | 72:000                 | 5-475                      | 0002438                      | 6051-1                           | 6-5579@-07                                                        | -1027                               | 4.688@-06                                   |  |
| 28,734         | 87:000                 | 5:909                      | ÷0001108                     | 6619;6                           | 5-63200-07                                                        | -0948                               | 3-695@-06                                   |  |
| 28=454         | 107:00                 | 6.774                      | :0002045                     | 7157=0                           | 8.5447@-07                                                        | ,0868                               | 5-113@-06                                   |  |
| 28-315         | 120-00                 | 7-204                      | -0000948                     | 7681:0                           | 6-74200-07                                                        | ÷0789                               | 3.647@-06                                   |  |
| 20.175         | 125-00                 | 7-622                      | -0000906                     | 8017-8                           | 6:0052@-07                                                        | :0736                               | 3:0200-06                                   |  |
| 20.10          | 150.00                 | 8.061                      | .0000868                     | 8347.4                           | 6-2209@-07                                                        | . 0683                              | 2:894@-06                                   |  |
| 20:035         | 190:00                 | 0.001                      | :=0001636                    | 8826.9                           | 4.4538@-07                                                        | :0603                               | 1.818@-06                                   |  |
| 27:150         | 195:00                 | 0.914                      | -0000772                     | 9297:0                           | 3-9128@-07                                                        | ;0523                               | 1=379@-06                                   |  |
| 27:615         | 223:00                 | 9-339                      | =0000745                     | 9601-3                           | 3-1946@-07                                                        | :0470                               | 1.007@-06                                   |  |
| 27.475         | 260:00                 | 9-762                      | -0000720                     | 9900-0                           | 3.2351@-07                                                        | :0416                               | 9:000@-07                                   |  |
| 27=335         | 300-00                 | 10-18                      | -0000697                     | 10193                            | 3-2058@-07                                                        | .0363                               | 7=740@-07                                   |  |
| 27=195         | 345-00                 | 10.60                      | -0000407                     | 10425                            | 2,1299@-07                                                        | :0321                               | 4.523@-07                                   |  |
| 27:111         | 390:00                 | 10.85                      |                              |                                  | a 129 the est may ten         | s (#15 tass of \$10,400 fill og \$1 | n on an we an |  |

EQUILIBRIUM CONCENTRATION = 26.310 INITIAL SEED AREA = 2952

. . . .

|               | TABLE: 54              |                            |                              |                                 | RUN NO.: R.                                                       | D.2                     |                           |
|---------------|------------------------|----------------------------|------------------------------|---------------------------------|-------------------------------------------------------------------|-------------------------|---------------------------|
|               | TEMP                   | :70.0°C                    | CELL: A                      | STIRRER SPEED 2000 R.P.M.       |                                                                   |                         |                           |
|               | SEED: BATCH D PREPARED |                            |                              | SIEVE                           | FRACTION: 44                                                      |                         |                           |
| CONCN.<br>M/V | TOTAL<br>TIME<br>MING. | CRYSTAL<br>MASS<br>(GRAMS) | DIAMETER<br>INCREASE<br>(CM) | MEAN<br>AREA<br>CM <sup>a</sup> | GROWTH RATE<br>CONSTANT<br>K(MIN <sup>-1</sup> CM <sup>-2</sup> ) | MEAN<br>SUPER-<br>SATN: | GROWTH<br>RATE<br>CM/MIN: |
| 28.748        | .00000                 | 2,000                      |                              | 2155 5                          | 2-21280-06                                                        | 0911                    | 1-4130-05                 |
| 28,664        | 5:0000                 | 2.263                      | 0001413                      | 313303                          | 6 87150 07                                                        | 0968                    | 1.1770-06                 |
| 28.524        | 30,000                 | 2:702                      | -0002009                     | 30000                           | 0.01190-01                                                        | 0815                    | 4.1/1e=00                 |
| 28.385        | 60,000                 | 3.140                      | :0001037                     | 4035-2                          | 5-3 (0) -0 (                                                      | -0015                   | 3.0010-00                 |
| 28.245        | 110.00                 | 3-577                      | .0001647                     | 4489-9                          | 3.1041@-07                                                        | -0762                   | 1:647@=06                 |
| 28-105        | 180-00                 | 4-013                      | :0001499                     | 4924.4                          | 2.1743@-07                                                        | •0709                   | 1.071@-06                 |
| 27.065        | 255.00                 | )1.)1)18                   | .0001379                     | 5341.8                          | 2.0236@-07                                                        | • 0656                  | 9-192@-07                 |
| 27:825        | 310-00                 | 4-882                      | .0001280                     | 5744.3                          | 2.7942@-07                                                        | -0603                   | 1-163@-06                 |

|               | TABLE: 55              |                            |                               |                                 | ).3                                  |                         |                           |
|---------------|------------------------|----------------------------|-------------------------------|---------------------------------|--------------------------------------|-------------------------|---------------------------|
|               | TEMP                   | 70.02                      | CELL: A                       | STIRR                           | ER SPEED: 2000                       | OR . P.M.               |                           |
|               | SEED                   | BATCH D                    | PREPARED                      | SIEVE                           | -64 ju                               |                         |                           |
| CONCN.<br>M/V | TOTAL<br>TIME<br>MINS: | CRYSTAL<br>MASS<br>(GRAMS) | D IAMETER<br>INCREASE<br>(CM) | MEAN<br>AREA<br>CM <sup>2</sup> | GROWTH RATE<br>CONSTANT<br>K(MIN CM) | MEAN<br>SUPER-<br>SATN- | GROWTH<br>RATE<br>CM/MIN. |
| 29:930        | :00000                 | 1.967                      |                               | 2257-0                          | 2-11080-06                           |                         | 2                         |
| 29.763        | 6:0000                 | 2.497                      | 0012000                       | 2801 0                          | 1 70070 06                           | 1086                    | 1 (0(0 ~                  |
| 29.624        | 12.000                 | 2:938                      | =0001963                      | 3001-9                          | 1. 199 10-00                         | ÷1200                   | 1-0300-05                 |
| 29-485        | 22:000                 | 3-378                      | -0001745                      | 4267-3                          | 1-:0038@-06                          | -1234                   | 8.725@-06                 |
| 29-207        | 47:000                 | 4:256                      | -0003025                      | 4919-6                          | 7-4547@-07                           | .1154                   | 6.0510-06                 |
| 29-068        | 62,000                 | 4.693                      | :0001334                      | 5545-9                          | 5-9193@-07                           | -1075                   | 4.448@-06                 |
| 28-0/12       | 71.000                 | 5-086                      | -0001123                      | 5921-9                          | 8.7277@-07                           | -1025                   | 6-238@-06                 |
| 20:943        | 11.000                 | 5:000                      | :0001174                      | 6286-2                          | 7-86510-07                           | -0974                   | 5-334@-06                 |
| 20:003        | 02:000                 | 5:522                      | -0001105                      | 6659-1                          | 7-2015@-07                           | .0921                   | 4.6050-06                 |
| 28,664        | 94.000                 | 5=957                      | .0001046                      | 7021.9                          | 7:9099@-07                           | :0868                   | 4.753@-06                 |
| 28.524        | 105-00                 | 6-391                      | - 0000994                     | 7375-4                          | 5-8853@-07                           | -0815                   | 3-312@-06                 |
| 28,385        | 120.00                 | 6-824                      | -0001855                      | 7888-0                          | 1-22240-06                           | -0736                   | 6-1850-06                 |
| 28:105        | 135-00                 | 7-688                      |                               | 9290 5                          | 0 ((070 07                           | .0150                   |                           |
| 27-965        | 145.00                 | 8.119                      | -0000009                      | 0309.5                          | 9:003 10-01                          | .0050                   | 4.344@=00                 |
| 27:825        | 167.00                 | 8.549                      | -0000835                      | 8713.4                          | 4.6053@-07                           | .06.03                  | 1-8980-06                 |
| 27:545        | 230=00                 | 9=406                      | .0001581                      | 9186.0                          | 3-5293@-07                           | - 0523                  | 1-2540-06                 |
| 27-265        | 270.00                 | 10.26                      | :0001476                      | 9799-9                          | 6-5635@-07                           | •0416                   | 1.845@-06                 |

INITIAL SEED AREA = 2951

- 253 -

|               |                        | TABLE :                    | 56                           |                                 | D.4                                                              |                         |                           |
|---------------|------------------------|----------------------------|------------------------------|---------------------------------|------------------------------------------------------------------|-------------------------|---------------------------|
|               | TEMP                   | 70.0°C                     | CELL: S                      | STIRR                           | R.P.M.                                                           |                         |                           |
|               | SEED                   | BATCH C                    | PREPARED                     | SIEVE                           | FRACTION: 75                                                     | -89m                    |                           |
| CONCN.<br>M/V | TOTAL<br>TIME<br>MINS. | CRYSTAL<br>MASS<br>(GRAMS) | DIAMETER<br>!NCREASE<br>(CM) | MEAN<br>AREA<br>CM <sup>2</sup> | GROWTH RATE<br>CONSTANT<br>K(MIN <sup>-</sup> CM <sup>-2</sup> ) | MEAN<br>SUPER-<br>SATN. | GROWTH<br>RATE<br>CM/MIN3 |
| 30:235        | .00000                 | 1.955                      | 000)1266                     | 2)172-)1                        | 2)11020-06                                                       | 1)155                   | 2.5550.05                 |
| 30.041        | 6.0000                 | 2.575                      | 0004200                      | 24 / 264                        | 3:41920=00                                                       | 1000                    | 3.000                     |
| 29:902        | 12:000                 | 3-016                      | -0002412                     | 3100-9                          | 2:03/00=00                                                       | :1392                   | 2-0100-05                 |
| 29-763        | 20,000                 | 3=456                      | .0002076                     | 3593.5                          | 1.3710@-06                                                       | -1339                   | 1-297@-05                 |
| 20.62)        | 27.000                 | 2806                       | .0001831                     | 4063-3                          | 1.4434@-05                                                       | -1286                   | 1.308@-05                 |
| 29:024        | 27.000                 | 3.090                      | .0001645                     | 4513-3                          | 1.0546@-06                                                       | .1234                   | 9-1400-06                 |
| 29-485        | 36:000                 | 4-334                      | .0001498                     | 4946.0                          | 1-00600-06                                                       | -1181                   | 8.323@-06                 |
| 29-346        | 45.000                 | 4-772                      | 0001379                      | 5363-5                          | 8-74540-07                                                       | -1128                   | 6-893@-06                 |
| 29:207        | 55.000                 | 5.209                      | 0000608                      |                                 | 0.07088.07                                                       | 1000                    | 6 6810 06                 |
| 28.789        | 82.000                 | 6-518                      | -0003608                     | 0149-9                          | 9-3 1900-01                                                      | .1022                   | 0.001@-00                 |
|               |                        |                            | .0001061                     | 6914-4                          | 6-4395@-07                                                       | -0916                   | 4-0800-06                 |

| 29-485 | 36:000  | 4.334                          | .000104)  | CoCI(+                                 | 1.0)405-00 | •12)7  | 9.1405-00 |
|--------|---------|--------------------------------|-----------|----------------------------------------|------------|--------|-----------|
|        | 1- 000  | 1                              | .0001498  | 4946.0                                 | 1:00600-06 | -1181  | 8.323@-06 |
| 29.346 | 45:000  | 4. [ [2                        | -0001379  | 5363-5                                 | 8-7454@-07 | .1128  | 6-893@-06 |
| 29:207 | 55.000  | 5.209                          | -00026.08 | 61)10-0                                | 0-27080-07 | 1022   | 6-6810-06 |
| 28.789 | 82-000  | 6-518                          | .0003000  | 0149.9                                 | 9.51903-01 | . JULL | 0.0010-00 |
| 28-650 | 05.000  | 6-051                          | .0001061  | 6914-4                                 | 6-4395@-07 | -0916  | 4-0800-06 |
| 20.090 | 9).000  | 0.991                          | :0003766  | 7792-6                                 | 6.36308-07 | .0783  | 3-424@-06 |
| 28:091 | 150.00  | 8:683                          | 0000840   | 8652-2                                 | 5-5573@=07 | - 0651 | 2.4709-06 |
| 27-951 | 167-00  | 9-112                          |           | 0.01                                   | 1. 001001  |        |           |
| 27:811 | 190-00  | 9.540                          | 8080000   | 8978-4                                 | 4-3134@-07 | • 597  | 1-756@-06 |
| -10011 | .,      | <b>J</b> • <b>J</b> • <b>C</b> | -0001530  | 9454.9                                 | 8-7310@-07 | -0518  | 3-061@-06 |
| 27:531 | 215:00  | 10.39                          | =0000726  | 9923-2                                 | 4-54720-07 | -0438  | 1-344@-06 |
| 27-391 | 242.00  | 10.82                          |           | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | h adomo om | 00.0)  | 1 0/10 0/ |
| 27:251 | 275=00  | 11:25                          | -0000703  | 10228                                  | 4-1137@-07 | .0384  | 1:065@-06 |
| -10-51 | -154-54 |                                | -0001344  | 10674                                  | 3.90160-07 | .0305  | 7-909@-07 |
| 26.970 | 360.00  | 12:09                          |           |                                        |            |        |           |

|               | TABLE: 57              |                            |                               | RUN NO.: R.D.5                  |                                                                 |                         |                           |
|---------------|------------------------|----------------------------|-------------------------------|---------------------------------|-----------------------------------------------------------------|-------------------------|---------------------------|
|               | TEMP                   | : 70.02                    | CELL: S                       | STIRRE                          | ER SPEED: 2000                                                  | OR.P.M.                 |                           |
|               | SEED                   | BATCH D                    | PREPARED                      | SIEVE                           | FRACTION: 75                                                    | 5-89µ                   |                           |
| CONCN.<br>M/V | TOTAL<br>TIME<br>MINS. | CRYSTAL<br>MASS<br>(GRAMS) | D IAMETER<br>INCREASE<br>(CM) | MEAN<br>AREA<br>CM <sup>2</sup> | GROWTH RATE<br>CONSTANT<br>K(MIN <sup>®</sup> CM <sup>®</sup> ) | MEAN<br>SUPER-<br>SATN: | GROWTH<br>RATE<br>CM/MIN. |
| 30.069        | .00000                 | 1.945                      |                               | 1205-7                          | 6-00220-06                                                      |                         | 6-0280-05                 |
| 29-902        | 5-0000                 | 2.476                      | 0000930                       | 129501                          | 2-76520-06                                                      | .1220                   | 2-5670-05                 |
| 29-763        | 12.000                 | 2.917                      | -0004994                      | 1495:4                          | J: 10520 00                                                     | 1286                    | 3.50 10-05                |
| 29.624        | 18-000                 | 3:357                      |                               | 1000:3                          | 4.1003@=00                                                      | 1200                    | 3; 12 10=0                |
| 29-485        | 25-000                 | 3-796                      | :0004065                      | 1029:4                          | 3-34500-06                                                      | ÷1234                   | 2;903@-05                 |
| 29:207        | 42.000                 | 4.673                      | -0007210                      | 2060,2                          | 2=6178@=06                                                      | -1154                   | 2-121@-05                 |
| 29:068        | 50,000                 | 5-110                      | -0003237                      | 2282-9                          | 2.6963@-06                                                      | -1075                   | 2.023@-05                 |
| 28-929        | 62.000                 | 5-546                      | :0003042                      | 2424-2                          | 1.7814@-06                                                      | -1022                   | 1-2680-05                 |
| 28.789        | 73:000                 | 5-981                      | -0002873                      | 2561-5                          | 1-9408@-06                                                      | 0969                    | 1-306@-05                 |
| 28:650        | 84:000                 | 6.415                      | -0002725                      | 2695-2                          | 1-9524@-06                                                      | -0916                   | 1-239@-05                 |
| 28-510        | 95-000                 | 6-848                      | :0002594                      | 2825-7                          | 1:9778@-06                                                      | -0863                   | 1-179@-05                 |
| 28-271        | 100-00                 | 7.280                      | -0002477                      | 2953-1                          | 1.5853@-06                                                      | .0810                   | 8-848@-06                 |
| 20.001        | 109.00                 | 7.712                      | :0002372                      | 3077-7                          | 1-9002@-06                                                      | -0757                   | 9-885@-06                 |
| 20:231        | 121:00                 | 8 1)12                     | .0002277                      | 3199.8                          | 1.8155@-06                                                      | =0704                   | 8-759@-06                 |
| 20:091        | 134:00                 | 0.143                      | -0002191                      | 3319-5                          | 1-29600-06                                                      | -0651                   | 5-765@-06                 |
| 2(:9)1        | 153:00                 | 0.5) (2                    | -0002112                      | 3436-9                          | 1-2341@-06                                                      | • 0597                  | 5-028@-06                 |
| 27-811        | 174:00                 | 9-001                      | .0002039                      | 3552-2                          | 1-3117@-06                                                      | -0544                   | 4-855@-06                 |
| 27.672        | 195.00                 | 9:429                      | -0001972                      | 3665-5                          | 1.1843@-06                                                      | -0491                   | 3.944@-06                 |
| 27-531        | 220,00                 | 9-856                      | -0001910                      | 3777:0                          | 5-8647@-07                                                      | -0438                   | 1-736@-06                 |
| 27-391        | 275.00                 | 10.28                      | .0001852                      | 3886-7                          | 7-1444@-07                                                      | .0384                   | 1-8520-06                 |
| 27-251        | 325-00                 | 10.71                      | .0001798                      | 3994-7                          | 8-0791@-07                                                      | -0331                   | 1.798@-06                 |
| 27-111        | 375.00                 | 11:13                      |                               | 5                               |                                                                 |                         |                           |

EQUILIBRIUM CONCENTRATION = 26.310 INITIAL SEED AREA = 1184

|                | TABLE: 58              |                            |                              |                                 | RUN NO. : R.I                                                     | D.6                      |                           |
|----------------|------------------------|----------------------------|------------------------------|---------------------------------|-------------------------------------------------------------------|--------------------------|---------------------------|
|                | TEMP                   | 70.0°C                     | CELL: C                      | STIRR                           | ER SPEED :2000                                                    | R.P.M.                   |                           |
|                | SEED :                 | BATCH C                    | PREPARED                     | SIEVE                           | FRACTION: 75                                                      | -89µ                     |                           |
| CONCN.<br>%M/V | TOTAL<br>TIME<br>MINS. | CRYSTAL<br>MASS<br>(GRAMS) | DIAMETER<br>INCREASE<br>(CM) | MEAN<br>AREA<br>CM <sup>2</sup> | GROWTH RATE<br>CONSTANT<br>K(MIN <sup>-1</sup> CM <sup>-2</sup> ) | MEAN<br>SUPER -<br>SATN: | GROWTH<br>RATE<br>CM/MIN- |
| 30,263         | .00000                 | 1.970                      | 0000150                      | 2282 7                          |                                                                   | 4)1                      |                           |
| 30-124         | 3:0000                 | 2:413                      | :0003152                     | 230301                          | 4-99240-00                                                        | ·14/0                    | 5=253@=05                 |
| 29:986         | 10,000                 | 2.854                      | -0002570                     | 2912-8                          | 1.8168@-06                                                        | -1424                    | 1:836@-05                 |
| 29-847         | 17:000                 | 3-295                      | .0002185                     | 3415-5                          | 1.6099@-06                                                        | :1371                    | 1-561@-05                 |
| 29-708         | 24=000                 | 3-734                      | .0001911                     | 3894-3                          | 1.4693@-06                                                        | :1318                    | 1-365@-05                 |
| 20.560         | 22000                  | )1-172                     | :0001706                     | 4352.1                          | 1.0659@-06                                                        | -1265                    | 9-1476@-06                |
| 296309         | 33:000                 | Cl ter                     | .0001546                     | 4791.5                          | 1.1373@-06                                                        | :1212                    | 9.659@-06                 |
| 29:430         | 41.000                 | 4.010                      | :0002730                     | 5416-6                          | 9=0774@-07                                                        | :1133                    | 7-184@-06                 |
| 29.152         | 60,000                 | 5.483                      | .0001221                     | 6021-3                          | 5=9601@-07                                                        | -1054                    | 4-3600-06                 |
| 29:012         | 74.000                 | 5-917                      | -0001145                     | 6406-3                          | 8-2624@-07                                                        | -1001                    | 5-726@-06                 |
| 28-873         | 84:000                 | 6.351                      | 0002102                      | 6961-5                          | 7-87940-07                                                        | 0921                     | 5-0050-06                 |
| 28.594         | 105-00                 | 7:215                      | 0001807                      | 7675 5                          | 7-28/1/10-07                                                      | -0815                    | 1-1210-06                 |
| 28-315         | 128.00                 | 8-075                      | :0001097                     | 00-0                            | 1.30448-01                                                        | -0015                    | 4.1249-00                 |
| 28-035         | 160.00                 | 8-931                      | :0001733                     | 0350-1                          | 5-6126@-07                                                        | .0709                    | 2.7070-05                 |
| 27:895         | 180.00                 | 9.356                      | :0000814                     | 8854-3                          | 4:77309-07                                                        | :0629                    | 2-036@-06                 |
| 27: 756        | 200-00                 | 9-781                      | .0000783                     | 9175-5                          | 5:0344@-07                                                        | :0576                    | 1-957@-06                 |
| 27.615         | 22500                  | 10.20                      | .0000754                     | 9490-6                          | 3-0664@-07                                                        | •0523                    | 1-077@-06                 |
| 1.01)          | 200.00                 | 11 0                       | -0001432                     | 9950-8                          | 3-7352@-07                                                        | :0443                    | 1.1020-06                 |
| ~(=335         | 300:00                 | 11:05                      | .0000681                     | 10403                           | 3-5338@-07                                                        | .0363                    | 8-512@-07                 |
| 27:195         | 340.00                 | 11-46                      | -0000658                     | 10697                           | 1.6982@-07                                                        | .0310                    | 3-465@-07                 |
| 27:055         | 435:00                 | 11.88                      |                              |                                 |                                                                   |                          |                           |

EQUILIBRIUM CONCENTRATION = 26.310 INITIAL SEED AREA = 2112

|                | TABLE: 59              |                            |                              |                                 | RUN NO.: R.                            | D.7                     |                           |
|----------------|------------------------|----------------------------|------------------------------|---------------------------------|----------------------------------------|-------------------------|---------------------------|
|                | TEMP                   | 70.0°C                     | CELL: S                      | STIRR                           | ER SPEED : 2.000                       | R.P.M.                  |                           |
|                | SEED                   | BATCH I                    | .G.PREPARE                   | D SIEVE                         | FRACTION: 64                           | -75%                    |                           |
| CONCN-<br>%M/V | TOTAL<br>TIME<br>MINS. | CRYSTAL<br>MASS<br>(GRAMS) | DIAMETER<br>INCREASE<br>(CM) | MEAN<br>AREA<br>CM <sup>2</sup> | GROWTH RATE<br>CONSTANT<br>K(MIN CM-2) | MEAN<br>SUPER-<br>SATN. | GROWTH<br>RATE<br>CM/MIN. |
| 29-902         | .00000                 | 1.955                      |                              | 1202.4                          | 1-51210-05                             |                         | 1-1260-04                 |
| 29:763         | 2.0000                 | 2:397                      |                              | 1)180.0                         | 02)1660-06                             | -1286                   | 8.11060-05                |
| 29.624         | 5-0000                 | 2-838                      | 000)1500                     | 16)17 7                         | 5 Juncéa cé                            | 1200                    | 5 6510-05                 |
| 29.485         | 9.0000                 | 3-278                      | :0004520                     | 104/0/                          | 0.49900-00                             | 1234                    |                           |
| 29-207         | 28-000                 | 4-156                      | .0007905                     | 1002.4                          | 2.5635@-06                             | -1154                   | 2:0000-05                 |
| 29.068         | 38-000                 | 4-593                      | .0003512                     | 2107-7                          | 2::3363@06                             | -1075                   | 1.756@-05                 |
| 28-929         | 56.000                 | 5:030                      | .0003283                     | 2249.7                          | 1-2797@-06                             | -1022                   | 9-1200-06                 |
| 28-650         | 69-000                 | 5:901                      | -006014                      | 2453.3                          | 3-5296@-06                             | :0943                   | 2-3130-05                 |
| 28-510         | 79:000                 | 6-335                      | .0002769                     | 2651-2                          | 2.3187@-06                             | :0863                   | 1-3850-05                 |
| 28-271         | 00.000                 | 6768                       | .0002638                     | 2778.0                          | 2.14480-06                             | .0810                   | 1.199@-05                 |
| 20.001         | 100.000                | 7 000                      | :0002520                     | 2901-7                          | 2.0154@-06                             | •0757                   | 1.500-05                  |
| 20:231         | 102-00                 | 1.200                      | .0002414                     | 3022-8                          | 1-2492@-06                             | .0704                   | 6.036@-06                 |
| 28-091         | 122:00                 | 7=632                      | .0002319                     | 3141:2                          | 1.8587@-06                             | -0651                   | 8.281@-06                 |
| 27-951         | 136.00                 | 8:062                      | :0002232                     | 3257.3                          | 2.2788@-06                             | • 597                   | 9-2980-06                 |
| 27.811         | 148.00                 | 8.492                      | .0002152                     | 3371=3                          | 1-31920-05                             | .0544                   | 4.8910-06                 |
| 27.672         | 170.00                 | 8.921                      | -0002079                     | 3483-1                          | 1-2464@-06                             | =0491                   | 4-1570-06                 |
| 27-531         | 195:00                 | 9-348                      |                              | 2646.7                          | 8-03510-07                             | -0411                   | 2-14770-06                |
| 27-251         | 275:00                 | 10.20                      | .0003304                     | 2010.1                          | 0.33)18-01                             |                         | 201110-00                 |

INITIAL SEED AREA = 1211

- 257 -

|               |                        | TABLE : 60                 |                              |                                 | RUN NO .: R.                                                      | P.G.3                   |                                             |
|---------------|------------------------|----------------------------|------------------------------|---------------------------------|-------------------------------------------------------------------|-------------------------|---------------------------------------------|
|               | TEMP                   | : 70.02                    | CELL: S                      | STIRR                           | ER SPEED 2000                                                     | R.P.M.                  |                                             |
|               | SEED                   | BATCH P                    | .G.PREPARE                   | D SIEVE                         | FRACTION: 89                                                      | -105µ                   |                                             |
| CONCN.<br>M/V | TOTAL<br>TIME<br>MINS: | CRYSTAL<br>MASS<br>(GRAMS) | DIAMETER<br>INCREASE<br>(CM) | MEAN<br>AREA<br>CM <sup>2</sup> | GROWTH RATE<br>CONSTANT<br>K(MIN <sup>-1</sup> CM <sup>-2</sup> ) | MEAN<br>SUPER-<br>SATN: | GROWTH<br>RATE<br>CM/MIN.                   |
| 31-319        | .00000                 | 2.000                      | 00000                        |                                 |                                                                   |                         | the fit later co the cost of an and the set |
| 31:111        | 2.5000                 | 2.671                      | -0008205                     | 1399-1                          | 9-23620-06                                                        | 26 02                   | 1-641@-04                                   |
| 30-963        | 4.0000                 | 3:148                      | -0004464                     | 1813-9                          | 8.7201@-06                                                        | 2530                    | 1.488@-04                                   |
| 30.814        | 6.0000                 | 3.624                      | =0003749                     | 2151-3                          | 5-6476@-06                                                        | :2470                   | 9-374@-05                                   |
| 30.665        | 7.5000                 | 4.099                      | .0003246                     | 2476-1                          | 6.7039@-06                                                        | -2410                   | 1-082@-04                                   |
| 30,517        | 9-5000                 | 4-572                      | .0002873                     | 2788.6                          | 4.5779@-06                                                        | :2350                   | 7:183@-05                                   |
| 30-368        | 11-500                 | 5-044                      | .0002585                     | 3089.4                          | 4-2396@-06                                                        | -2290                   | 6.463@-05                                   |
| 30-330        | 12.500                 | 5.51)                      | .0002356                     | 3379.7                          | 3-97900-06                                                        | .2230                   | 5-8900-05                                   |
| 20.071        | 16.000                 | 5.092                      | :0002169                     | 3660.6                          | 3-0197@-06                                                        | .2170                   | 4-338@-05                                   |
| 30-001        | 10.000                 | 5.903                      | .0002013                     | 3932-9                          | 2.8900@-06                                                        | :2110                   | 4-025@-05                                   |
| 29:923        | 10,500                 | 6:451                      | -0001880                     | 4197-3                          | 2.7866@-06                                                        | -2050                   | 3-761@-05                                   |
| 29:774        | 21:000                 | 6.917                      | .0003439                     | 4578-9                          | 2,6716@-06                                                        | -1960                   | 3-439@-05                                   |
| 29:477        | 26:000                 | 7=847                      | - 0003 087                   | 5069.6                          | 2-5693@-06                                                        | -1840                   | 3=087@-05                                   |
| 29:180        | 31,000                 | 8.772                      | -0004132                     | 5650-5                          | 2-3529@-06                                                        | -1690                   | 2-5830-05                                   |
| 28:736        | 39:000                 | 10.15                      | 0001265                      | 6101-1                          | 1-5617@=06                                                        | - 1571                  | 1-5810-05                                   |
| 28,587        | 43:000                 | 10.61                      | .0001218                     | 6217.7                          | 1.56760.06                                                        | 1511                    | 1 5000 05                                   |
| 28,439        | 47:000                 | 11.06                      | 0001175                      | 6520 5                          | 1.06010 06                                                        | a ]u= 4                 | 1.170 0                                     |
| 28.291        | 52.000                 | 11.51                      | :00011/5                     | 653055                          | 1.20310-00                                                        | -1451                   | 1-1 /5@=05                                  |
| 27-994        | 59:000                 | 12-42                      | .0002235                     | 6041-9                          | 1.0363@-06                                                        | •1361                   | 1.597@-05                                   |
| 27-846        | 64-000                 | 12.87                      | .0001064                     | 7148.3                          | 1.3162@-06                                                        | •1272                   | 1.064@-05                                   |

|               |                        | TABLE : 6                  | ( CONTD .)                     |                                 | RUN NO. :R.P.G3(CONTD.)              |                          |                           |  |
|---------------|------------------------|----------------------------|--------------------------------|---------------------------------|--------------------------------------|--------------------------|---------------------------|--|
| CONCN.<br>M/V | TOTAL<br>TIME<br>MINS: | CRYSTAL<br>MASS<br>(GRAMS) | DIAMETER<br>INCREASE<br>(CM)   | MEAN<br>AREA<br>CM <sup>2</sup> | GROWTH RATE<br>CONSTANT<br>K(MIN CM) | MEAN<br>SUPER -<br>SATN. | GROWTH<br>RATE<br>CM/MIN. |  |
| 27:846        | 64.000                 | 12.87                      |                                |                                 |                                      | - Andrewski              |                           |  |
| 27-550        | 74-000                 | 12-76                      | 0002036                        | 7445.5                          | 1-3601@-06                           | -1182                    | 1-018@-05                 |  |
| -10))0        | 00000                  | 12010                      | :0000974                       | 7738-4                          | 1.1790@-06                           | -1092                    | 8.118@-06                 |  |
| 27:402        | 80,000                 | 14.21                      | - 0000948                      | 7929-4                          | 1-04320-06                           | -1032                    | 6-7720-06                 |  |
| 27-254        | 87-000                 | 14.65                      | 0000000                        | 011-0                           |                                      |                          |                           |  |
| 27:106        | 92:000                 | 15-10                      | :0000923                       | 0117-0                          | 1:5141@=06                           | • 0973                   | 9-235@-06                 |  |
| 26-058        | 101-00                 | 15-5)                      | .0000900                       | 8303-8                          | 8-7601@-07                           | :0913                    | 5:002@-06                 |  |
| 20.990        | 101-00                 | 12:574                     | .0000878                       | 8487-4                          | 9-16960-07                           | .0853                    | 4-8800-06                 |  |
| 26-810        | 110,00                 | 15-98                      | Tue 63 08 50 10550 56 45 46 40 |                                 |                                      |                          |                           |  |
| EQUILIBR      | RIUM CON               | CENTRATIC                  | N = 24.77                      | 1                               | INITIAL                              | SEED ARE                 | A = 1156                  |  |

.

- 259 -
|                |                        | TABLE                      | <b>:</b> 61                  |                                 | .E.1                                                             | 1                        |                           |
|----------------|------------------------|----------------------------|------------------------------|---------------------------------|------------------------------------------------------------------|--------------------------|---------------------------|
|                | TEMP                   | 70.0°C                     | CELL: C                      | STIRR                           | ER SPEED: 200                                                    | OR.P.M.                  |                           |
|                | SEED                   | BATCH                      | E PREPARED                   | SIEVE                           | FRACTION: 89                                                     | -105pc                   |                           |
| CONCN.<br>%M/V | TOTAL<br>TIME<br>MINS: | CRYSTAL<br>MASS<br>(GRAMS) | DIAMETER<br>INCREASE<br>(CM) | MEAN<br>AREA<br>CM <sup>3</sup> | GROWTH RATE<br>CONSTANT<br>K(MIN <sup>-1</sup> CM <sup>2</sup> ) | MEAN<br>SUPER -<br>SATN. | GROWTH<br>RATE<br>CM/MIN: |
| 29:986         | :00000                 | 1:982                      |                              | 1720 -2                         | 1-10660-05                                                       | 1271                     | 1-0770-04                 |
| 29.847         | 2.0000                 | 2.424                      | .0007577                     | 202)1-2                         | 2.81200-06                                                       | -1218                    | 2-6220-05                 |
| 29:708         | 9:0000                 | 2.865                      | :00030 (2                    | 2034:2                          | 2:0129@=00                                                       | 10/5                     | 1 7000 0                  |
| 29.569         | 18:000                 | 3-305                      | :0003210                     | 2314.0                          | 2.00420-00                                                       | -1205                    |                           |
| 29:430         | 28-000                 | 3:744                      | -0002877                     | 2582.5                          | 1-6001@=06                                                       | -1212                    | 1.4300-05                 |
| 29-291         | 37:000                 | 4.181                      | .0002610                     | 2839.4                          | 1.7847@-06                                                       | :1160                    | 1-450@-05                 |
| 29-152         | 45:000                 | 4.618                      | -0002395                     | 3086-9                          | 1-9361@-06                                                       | -1107                    | 1-497@-05                 |
| 29-012         | 53-000                 | 5=054                      | -0002218                     | 3326:0                          | 1.8883@-06                                                       | -1054                    | 1-386@-05                 |
| 28-873         | 63-000                 | 5-489                      | :0002068                     | 3557.6                          | 1-4878@-06                                                       | :1001                    | 1.034@-05                 |
| 28.72)         | 72-000                 | 5-022                      | =0001941                     | 3782.5                          | 1:6427@-06                                                       | -0948                    | 1=078@-05                 |
| 20. []         | 82.000                 | 6.255                      | 0001830                      | 4001-3                          | 1-3466@-06                                                       | -0895                    | 8-318@06                  |
| 200994         | 03:000                 | 6 787                      | :0001733                     | 4214.6                          | 1=4957@-06                                                       | 0842                     | 8.666@-06                 |
| 20:454         | 93-000                 | 0.0101                     | -0001647                     | 4422.8                          | 1-1709@-06                                                       |                          | 6-336@-06                 |
| 28,315         | 105-00                 | 1=211                      | -0001571                     | 4626.2                          | 9-7573@-07                                                       | -0736                    | 4-909@-06                 |
| 28-175         | 122.00                 | 7:647                      | :0002944                     | 4921.9                          | 8-6839@-07                                                       | -0656                    | 3-874@-06                 |
| 27:895         | 160.00                 | 8,503                      | :0002716                     | 5304-6                          | 8.7186@-07                                                       | :0550                    | 3-233@-06                 |
| 27:615         | 202,00                 | 9.354                      | -0001283                     | 5583-4                          | 8-8373@-07                                                       | -0470                    | 2.7900-06.                |
| 27:475         | 225:00                 | 9.778                      | +0001239                     | 5764-1                          | 4-4451@-07                                                       | -0416                    | 1.239@-06                 |
| 27-335         | 275-00                 | 10.20                      | -0001197                     | 5941-6                          | 4-9499@-07                                                       | -0363                    | 1-197@-06                 |
| 27=195         | 325=00                 | 10.62                      | . 0002272                    | 6200-6                          | 2-81/120-07                                                      | -0283                    | 7-103@-07                 |
| 26-914         | 485.00                 | 11:45                      | .00022 [3                    | 020000                          | 3.01136-01                                                       |                          | 1.1000-01                 |

INITIAL SEED AREA = 1588

EQUILIBRIUM CONCENTRATION = 26-310

|                |                        | TABLE :                    | 62                           | RUN NO.: R.E.2     |                                                                 |                         |                                           |  |
|----------------|------------------------|----------------------------|------------------------------|--------------------|-----------------------------------------------------------------|-------------------------|-------------------------------------------|--|
|                | TEMP                   | 70.0°C                     | CELL: C<br>PREPARED          | STIRR              |                                                                 |                         |                                           |  |
| CONCN:<br>%M/V | TOTAL<br>TIME<br>MINS: | CRYSTAL<br>MASS<br>(GRAMS) | DIAMETER<br>INCREASE<br>(CM) | MEAN<br>AREA<br>CM | GROWTH RATE<br>CONSTANT<br>K(MIN <sup>-</sup> CM <sup>-</sup> ) | MEAN<br>SUPER-<br>SATN. | GROWTH<br>RATE<br>CM/MIN:                 |  |
| 27.419         | .00000                 | 1-986                      | -0011184                     | 2023-2             | 17797@-07                                                       | :0375                   | 4-335@-07                                 |  |
| 26-970         | 1290,0                 | 3-310                      | -0000557                     | 2480-1             | 1=0130@=07                                                      | -0284                   | 1.856@-07                                 |  |
| 26:-942        | 1440.0                 | 3=391                      | 0000540                      | 2529:1             | 6-4525@-08                                                      | -0274                   | 1-125@-07                                 |  |
| 26-914         | 1630:0                 | 3:472                      |                              |                    |                                                                 |                         | and any sup loss ball and sup one sup the |  |
| EQUILIBR       | IUM CON                | CENTRATIO                  | N = 26-21                    | INITIAL            | SEED ARE                                                        | A = 1591                |                                           |  |

|               |                        | TABLE :                    | 63                           |                                  | RUN NO. : R.I                                                     | .3                      |                           |
|---------------|------------------------|----------------------------|------------------------------|----------------------------------|-------------------------------------------------------------------|-------------------------|---------------------------|
|               | TEMP                   | 50.0°C                     | CELL: C                      | STIRRE                           | R SPEED :2000                                                     | R.P.M.                  |                           |
|               | SEED :                 | BATCH E                    | PREPARED                     | SIEVE                            | FRACTION: 89                                                      | -105,                   |                           |
| CONCN.<br>M/V | TOTAL<br>TIME<br>MINS. | CRYSTAL<br>MASS<br>(GRAMS) | DIAMETER<br>INCREASE<br>(CM) | MEAN<br>AREA<br>CM <sup>22</sup> | GROWTH RATE<br>CONSTANT<br>K(MIN <sup>-1</sup> CM <sup>-2</sup> ) | MEAN<br>SUPER-<br>SATN- | GROWTH<br>RATE<br>CM/MIN. |
| 27.276        | .00000                 | 1.985                      | 0007818                      | 1870-1                           | 1-41700-05                                                        | -3447                   | 2-606@=04                 |
| 26:-998       | 1.5000                 | 2.849                      | -0003163                     | 23.02-0                          | 5-97002-06                                                        | -3343                   | 1-054@-04                 |
| 26.859        | 3.0000                 | 3:279                      | .0003833                     | 2561.6                           | 8-21160-06                                                        | -3274                   | 1=416@=04                 |
| 26-719        | 4.0000                 | 3-708                      | -0002033                     | 2816-8                           | 7.64140-06                                                        | -3205                   | 1-287@-04                 |
| 26-580        | 5.0000                 | 4:136                      | -00025 (4<br>00025 )1        | 2010-0                           | 7-10202-06                                                        |                         | 1-1820-04                 |
| 26-141        | 6.0000                 | 4.563                      | -0002304                     | 309-9                            | F )16700-06                                                       | 2067                    | 8.7650-05                 |
| 26.302        | 7=2500                 | 4.990                      | -0002191                     | 3294:9                           | 5-40 /20-00                                                       | 1006                    | 8-1810-05                 |
| 26-162        | 8.5000                 | 5:416                      | -0002045                     | 352201                           | 5-2342G=00                                                        |                         |                           |
| 26-023        | 10:000                 | 5-841                      | •0001920                     | 3744-1                           | 4-20300-06                                                        | ÷2929                   |                           |
| 25-883        | 11-250                 | 6-265                      | -0001812                     | 3959-6                           | 4-88700-06                                                        | -2060                   | 7-249@=05                 |
| 25-743        | 12:500                 | 6:688                      | -0001718                     | 4169-8                           | 4.7583@-06                                                        | -2791                   | 6-870@-05                 |
| 25-604        | 14=000                 | 7-110                      | -0001634                     | 4375=0                           | 3-8774@-06                                                        | =2721                   | 5-446@-05                 |
| 25-464        | 15-670                 | 7-532                      | 0001559                      | 4575-8                           | 3-4187@-06                                                        | :2652                   | 4.668@-05                 |
| 25-324        | 17-330                 | 7:953                      | .0001492                     | 4772-3                           | 3-38800-06                                                        | -2583                   | 4-493@-05                 |
| 25.18)        | 10-220                 | 8.373                      | -0001431                     | 4965:0                           | 2.77890-06                                                        | -2514                   | 3-578@-05                 |
|               | 21.000                 | 8.702                      | .0001376                     | 5154.0                           | 3-2988@-06                                                        | .2444                   | 4-119@-05                 |
| c) out        | 21.000                 | 0.010                      | 0001325                      | 5339-5                           | 3=12910=06                                                        | -2375                   | 3-787@-05                 |
| 24.904        | 220 (30                | 9:210                      |                              | 5522-0                           | 2-8424@-06                                                        | -2305                   | 3-334@-05                 |
| 24.764        | 24.670                 | 9.621                      | :0002436                     | 5789-1                           | 2.2600@-06                                                        | -2201                   | 2.522@-05                 |
| 24-483        | 29:500                 | 10.46                      | -0001160                     | 6052-0                           | 2-7418@-06                                                        | -2097                   | 2-901@05                  |
| 24-343        | 31-500                 | 10,88                      | -0001126                     | 6223-2                           | 2-7594@-06                                                        | :2027                   | 2.8150-05                 |
| 24:202        | 33:500                 | 11-29                      | -0001094                     | 6391-9                           | 2.47430-06                                                        | -1958                   | 2-432@-05                 |
| 24.061        | 35-750                 | 11.70                      |                              |                                  |                                                                   |                         |                           |

- 262 -

| CONCN.<br>M/V | TOTAL (<br>TIME<br>MINS: ( | CRYSTAL<br>MASS<br>(GRAMS) | DIAMETER<br>INCREASE<br>(CM) | MEAN<br>AREA<br>CM <sup>2</sup> | GROWTH RATE<br>CONSTANT<br>K(MIN CM ) | MEAN<br>SUPER-<br>SATN. | GROWTH<br>RATE<br>CM/MIN: |
|---------------|----------------------------|----------------------------|------------------------------|---------------------------------|---------------------------------------|-------------------------|---------------------------|
| 24.061        | 35 • 750                   | 11:70                      |                              | (== 0 0                         | 0 50100 0                             | 4 0 0 0                 | 0.0(50.05                 |
| 23-921        | 38,000                     | 12.12                      | .0001084                     | 6550;2                          | 2.50190-00                            | ÷1000                   | 2.3050-05                 |
| 23:780        | 40.750                     | 12:53                      | -0001036                     | 6722.3                          | 2-0747@=06                            | -1010                   | 1:0040-05                 |
| 23-639        | 43-750                     | 12.94                      | -0001010                     | 6884-2                          | 1.9322@=06                            | e1748                   | 1-6830-05                 |
| 23-498        | 47.000                     | 13:35                      | -0000985                     | 7044-1                          | 1-8165@-06                            | -1679                   | 1.515@-05                 |
| 23-217        | 54:000                     | 14-17                      | .0001903                     | 7279.7                          | 1-74309-06                            | •1574                   | 1-359@-05                 |
| 23-075        | 57-000                     | 14-57                      | :0000918                     | 7512.6                          | 2-11180-06                            | -1469                   | 1-5300-05                 |
| 22.02)        | 60.750                     | 1)1.08                     | .0000898                     | 7665-0                          | 1-7395@-06                            | :1399                   | 1-197@-05                 |
| 22:934        | 60.00                      | 14.90                      | .0000879                     | 7815.7                          | 1.58540-06                            | •1329                   | 1.034@-05                 |
| 22: (93       | 65-000                     | 15:39                      | . 0000861                    | 7964-8                          | 1.0743@-06                            | . 1259                  | 6-621@-06                 |
| 22-652        | 71.500                     | 15:79                      | .0000843                     | 8112-3                          | 9-6854@-07                            | :1189                   | 5-6220-06                 |
| 22.510        | 79:000                     | 16=20                      | -0000827                     | 8258-2                          | 1.0116@-06                            | -1119                   | 5-5110-06                 |
| 22.369        | 86.500                     | 16.60                      | -0000811                     | 8402.7                          | 1-2245@-06                            | .1049                   | 6-237@-06                 |
| 22:227        | 93:000                     | 17-00                      |                              | 8545-7                          | 1-29100-06                            | -0979                   | 6-1200-06                 |
| 22:086        | 99:500                     | 17-40                      | -0000781                     | 8687-2                          | 8-0889@-07                            | ::0909                  | 3-5500-06                 |
| 21-944        | 110,50                     | 17.80                      | 0000767                      | 8827.5                          | 1-11710-06                            |                         | 1.5120-06                 |
| 21-802        | 119-00                     | 18.20                      |                              | 002(0)                          |                                       | .0050                   | - 6010 K                  |
| 21-661        | 133-00                     | 18.60                      | :0000/53                     | 0900-3                          | (=2929@=01                            | -0100                   | 2.0910-00                 |
| 21.519        | 148.00                     | 19-00                      | •0000740                     | 9103-9                          | 7-3841@-07                            | -0698                   | 2.468@.06                 |
| 21-235        | 194-00                     | 19.79                      | .0001443                     | 9307-3                          | 5-5755@-07                            | -0592                   | 1.568@06                  |
| 21:093        | 220-00                     | 20-19                      | :0000703                     | 9508.8                          | 5-86189-07                            | -0487                   | 1-353@-06                 |
| 20-050        | 260-00                     | 20-58                      | .0000692                     | 9641-3                          | 4-3988@-07                            | -0416                   | 8-645@-07                 |
| 20.751        | 220.00                     | 21-12                      | .0000948                     | 9798-3                          | 4-3702@-07                            | ÷0332                   | 6.768@-07                 |
| 20:01         | 330.00                     | 01.07                      | -0000399                     | 9927-9                          | 2-7257@-07                            | :0261                   | 3-324@-07                 |
| 20.000        | 390-00                     | 21:31                      |                              |                                 |                                       |                         |                           |

- 264 -

|                | TABLE: 64              |                            |                              | RUN NO. :R.E.4                  |                                                                  |                         |                           |
|----------------|------------------------|----------------------------|------------------------------|---------------------------------|------------------------------------------------------------------|-------------------------|---------------------------|
|                | TEMP                   | :60.0°C                    | CELL: C                      | STIRR                           | ER · SPEED :2000                                                 | R.P.M.                  |                           |
|                | SEED                   | BATCH E                    | PREPARED                     | SIEVE                           | FRACTION: 89                                                     | -105 µ                  |                           |
| CONCN-<br>%M/V | TOTAL<br>TIME<br>MINS. | CRYSTAL<br>MASS<br>(GRAMS) | DIAMETER<br>INCREASE<br>(CM) | MEAN<br>AREA<br>CM <sup>2</sup> | GROWTH RATE<br>CONSTANT<br>K(MIN <sup>-</sup> CM <sup>-2</sup> ) | MEAN<br>SUPER-<br>SATN: | GROWTH<br>RATE<br>CM/MIN. |
| 24-371         | .00000                 | 1.985                      |                              | 1764-4                          | 2-07010-06                                                       | -2137                   | 3-271@=05                 |
| 24:202         | 7-5000                 | 2=495                      |                              | 2075-8                          | 7.6)1100-07                                                      | -2060                   | 8-0180-06                 |
| 24.061         | 29-000                 | 2:920                      | 000000                       | 2010.0                          | 7.02220-07                                                       | .1000                   | 8-0100-06                 |
| 23-921         | 48.000                 | 3-343                      | .0003000                     | 2344.1                          | 7 000000                                                         | 1010                    | 6 8670 06                 |
| 23:780         | 68:000                 | 3=765                      | -0002 /4 /                   | 2000;9                          | (=0443@=01                                                       | 1919                    | 6-0-0                     |
| 23.639         | 87:000                 | 4.186                      | :0002502                     | 204 (50                         | (=0340@=07                                                       | :1049                   | 6.509@-06                 |
| 23-498         | 105:00                 | 4.606                      | :0002303                     | 3005-6                          | 7.1271@-07                                                       | ÷1779                   | 6.398@-06                 |
| 23:-358        | 124-00                 | 5:024                      | -0002138                     | 3315-7                          | 6.5459@-07                                                       | -1708                   | 5.626@-06                 |
| 23-217         | 141:00                 | 5-442                      | .0001998                     | 3538-9                          | 7=1534@-07                                                       | ÷1638                   | 5=877@-06                 |
| 23-075         | 162-00                 | 5-859                      | -0001878                     | 3755-8                          | 5-7050@-07                                                       | -1567                   | 4-4720-06                 |
| 22-02/1        | 181-00                 | 6-275                      | :0001774                     | 3966-9                          | 6-2546@-07                                                       | -1497                   | 4.667@-06                 |
| 22.0557        | 210.00                 | 7-101                      | :0003285                     | 4272-3                          | 6-2586@-07                                                       | -1391                   | 4-323@-06                 |
| 00.000         | 219:00                 | 7.000                      | 0002393                      | 4666.2                          | 6.5587@-07                                                       | -1250                   | 4.044@-06                 |
| 22:309         | 250:00                 | 1-929                      | -0002754                     | 5044-0                          | 5-1732@07                                                        | -1108                   | 2.8100-06                 |
| 22-000         | 305:00                 | 0: 10                      | .0001299                     | 5319-1                          | 4.43000-07                                                       | -1002                   | 2-165@-06                 |
| 21:944         | 335:00                 | 9-158                      | -0001254                     | 5497:4                          | 4-3266@-07                                                       | -0931                   | 1-959@-06                 |
| 21-802         | 367.00                 | 9.565                      | -0001211                     | 5672.7                          | 4-4034@-07                                                       |                         | 1-835@-06                 |
| 21-661         | 400.00                 | 9:971                      | .0001172                     | 5845:0                          | 4-3940@-07                                                       | 0789                    | 1.674@-06                 |
| 21-519         | 435:00                 | 10.38                      | .0001135                     | 6014.5                          | 3-2864@-07                                                       | .0718                   | 1-135@-06                 |
| 21-377         | 485.00                 | 10-78                      | :0001100                     | 6181-2                          | 3.2280@-07                                                       | . 0648                  | 1-000@-06                 |
| 21-:235        | 540.00                 | 11.18                      | -0000751                     | 6321-1                          | 3-35 06@-07                                                      | -0587                   | 9-391@-07                 |
| 21-135         | 580.00                 | 11:46                      | - 0000736                    | 6434-8                          | 3-5976@-07                                                       | :0537                   | 9-202@-07                 |
| 21:036         | 620.00                 | 11:74                      | 0000120                      | 0131.0                          | 10 001                                                           | 0001                    | Jerror of                 |

EQUILIBRIUM CONCENTRATION = 20.010

-----

|                |                        | TABLE :                    | 65                           |                                 | RUN NO. R.I                                                      | 5.5                      |                           |
|----------------|------------------------|----------------------------|------------------------------|---------------------------------|------------------------------------------------------------------|--------------------------|---------------------------|
|                | TEMP                   | 60.02                      | CELL:C                       | STIRR                           | ER SPEED: 2000                                                   | DR.P.M.                  |                           |
|                | SEED                   | BATCH I                    | PREPARED                     | SIEVE                           | FRACTION: 89                                                     | 9-105 je                 |                           |
| CONCN-<br>%M/V | TOTAL<br>TIME<br>MINS. | CRYSTAL<br>MASS<br>(GRAMS) | DIAMETER<br>INCREASE<br>(CM) | MEAN<br>AREA<br>CM <sup>2</sup> | GROWTH RATE<br>CONSTANT<br>K(MIN <sup>*</sup> CM <sup>-2</sup> ) | MEAN<br>SUPER -<br>SATN: | GROWTH<br>RATE<br>CM/MIN. |
| 25-827         | ÷00000                 | 1.986                      | 0002591                      | 1680-1                          | 5-81620-06                                                       |                          | 8-6260-05                 |
| 25-743         | 1.5000                 | 2.243                      | 0003793                      | 1911:6                          | 2-60810-06                                                       | -2704                    | 3-7030-05                 |
| 25:604         | 6.5000                 | 2.671                      | 00033 03                     | 2180-6                          | 2-12/102-06                                                      | 1072)1                   | 2-0020-05                 |
| 25-464         | 12:000                 | 3.098                      | .00030303                    | 2109.0                          | 2,12400-00                                                       | 265)                     | 1 1009 05                 |
| 25-324         | 15-500                 | 3.524                      | 0002939                      | 2400 6                          | 3:0000-00                                                        | -20 <u>9</u> 4           | 4.1996-05                 |
| 25:184         | 20,000                 | 3-950                      | :000205 (                    | 2/09:0                          | 2:2133@=06                                                       | :2505                    | 2-9520-05                 |
| 25:044         | 24-500                 | 4-374                      | ·0002432                     | 2954-6                          | 2:0872@=06                                                       | -2515                    | 2:702@-05                 |
| 24:904         | 28.500                 | 4.798                      | :0002246                     | 3191-2                          | 2:2373@-06                                                       | -2445                    | 2.808@-05                 |
| 24-764         | 33.000                 | 5-220                      | -0002092                     | 3420.4                          | 1-9110@-06                                                       | :2375                    | 2-324@-05                 |
| 24.623         | 37-500                 | 5.642                      | :0001960                     | 3642.9                          | 1-8497@-06                                                       | :2305                    | 2-177@-05                 |
| 24-483         | 42=000                 | 6-063                      | -0001846                     | 3859-3                          | 1-8015@-06                                                       | -2236                    | 2-051@-05                 |
| 24-343         | 47:000                 | 6-483                      | -0001747                     | 4070-2                          | 1-5878@-06                                                       | -2166                    | 1=747@-05                 |
| 24-202         | 51-000                 | 6-903                      | -0001659                     | 4276-1                          | 1-9534@-06                                                       | -2096                    | 2.074@-05.                |
| 24-061         | 55-000                 | 7-321                      | -0001581                     | 4477-4                          | 1-9311@-06                                                       | -2026                    | 1-977@-05                 |
| 22-021         | 50-500                 | 7-720                      | .0001512                     | 4674-3                          | 1.70402-06                                                       | -1955                    | 1-6800-05                 |
| 23.780         | 6) 000                 | (• ())<br>8 155            | .0001449                     | 4867-3                          | 1-69820-06                                                       | -1885                    | 1:6100-05                 |
| 23:100         | 64:000                 | 0:100                      | .0001392                     | 5056-5                          | 1-3899@-06                                                       | 1815                     | 1-265@-05                 |
| 23:039         | 69.500                 | 0,5)[1                     | .0001339                     | 5242.2                          | 1.27900-06                                                       | -1745                    | 1-116@-05                 |
| 23:490         | (5:500                 | 0:900                      | -0001292                     | 5424-7                          | 1.1894@-06                                                       | . 1675                   | 9:936@-06                 |
| 23-358         | 82:000                 | 9.400                      | :0001248                     | 5604-1                          | 1-2024@-06                                                       | -1605                    | 9:604@-06                 |
| 23-217         | 88.500                 | 9-814                      | -0001208                     | 5780.5                          | 9-3274@-07                                                       | -1534                    | 7-103@-06                 |
| 23:075         | 97-000                 | 10,23                      | -0001169                     | 5954-2                          | 7:3374@-07                                                       | .1464                    | 5-316@-06                 |
| 22-934         | 108-000                | 10.64                      | -                            |                                 |                                                                  |                          |                           |

• -

## TABLE:65 (CONTD.)RUN NO.: R.E.5 (CONTD.) ----

| CONCN-<br>%M/V | TOTAL<br>TIME<br>MINS. | CRYSTAL<br>MASS<br>(GRAMS) | DIAMETER<br>INCREASE<br>(CM)        | MEAN<br>AREA<br>CM <sup>2</sup> | GROWTH RATE<br>CONSTANT<br>K(MIN <sup>-7</sup> CM <sup>-2</sup> ) | MEAN<br>SUPER -<br>SATN. | GROWTH<br>RATE<br>CM/MIN: |
|----------------|------------------------|----------------------------|-------------------------------------|---------------------------------|-------------------------------------------------------------------|--------------------------|---------------------------|
| 22.934         | 108.00                 | 10.64                      | out off the set we are the set of a |                                 |                                                                   |                          | 0-0-0                     |
| 22:793         | 116.00                 | 11.05                      | :0001134                            | 6125.2                          | 1.0308@-06                                                        | •1394                    | 7=089@=06                 |
| 22-652         | 127-00                 | 11.16                      | .0001101                            | 6293-7                          | 7-6885@-07                                                        | -1323                    | 5.000-06                  |
| 22:00)2        | 12/000                 | 11.00                      | .0001071                            | 6459-7                          | 7-9164@-07                                                        | .1253                    | 4.866@-06                 |
| 22:510         | 138-00                 | 11.87                      | .0001042                            | 6623.5                          | 9-00400-07                                                        | -1182                    | 5=209@-06                 |
| 22:369         | 148.00                 | 12-27                      | -0002005                            | 6864-3                          | 5-9751@-07                                                        | -1077                    | 3-133@-06                 |
| 22.086         | 180:00                 | 13.09                      | 0001008                             | 7170 0                          | 6 02070 07                                                        | 0005                     | 0 7050-06                 |
| 21-802         | 215-00                 | 13:90                      | -0001900                            | 1119:3                          | 0.02010-01                                                        | -0935                    | 2; [2] 900                |
| 21-661         | 235-00                 | 14.30                      | -0000920                            | 7411-0                          | 5-7524@-07                                                        | -0829                    | 2-299@=06                 |
| 01 510         | 255 00                 | 1)-70                      | -0000899                            | 7562-6                          | 6.16620-07                                                        | •0759                    | 2.248@-06                 |
| 216319         | 277:00                 | 146 10                     | -0001740                            | 7786-0                          | 3-9949@-07                                                        | -0653                    | 1-243@-06                 |
| 21-235         | 325-00                 | 15:50                      | - 0000842                           | 8006-8                          | 5-40340-07                                                        | :0546                    | 1.403@-06                 |
| 21:093         | 355:00                 | 15:90                      | 0000824                             | 8151.4                          | 3-3295@-07                                                        | -0476                    | 7-490@-07                 |
| 20.950         | 410.00                 | 16.30                      | 0000010-                            | 00/10                           | 1 80150 07                                                        | 0):10                    | 2 7220-07                 |
| 20,865         | 475.00.                | 16:53                      | ;0000405                            | 0200 - 0                        | 1.09150-07                                                        | ····                     | 2.6 (22.8 m)              |

EQUILIBRIUM CONCENTRATION = 20:067 INITIAL SEED AREA = 1591

|                |                        | TABLE :                    | 66                           |                                 |                                                                   |                         |                           |
|----------------|------------------------|----------------------------|------------------------------|---------------------------------|-------------------------------------------------------------------|-------------------------|---------------------------|
|                | TEMP :                 | 50.0°C                     | CELL: C                      | STIRRE                          | ER SPEED :2000                                                    | R.P.M.                  |                           |
|                | SEED :                 | BATCH E                    | PREPARED                     | SIEVE                           | FRACTION: 89                                                      | -105 ju                 |                           |
| CONCN-<br>%M/V | TOTAL<br>TIME<br>MINS. | CRYSTAL<br>MASS<br>(GRAMS) | DIAMETER<br>INCREASE<br>(CM) | MEAN<br>AREA<br>CM <sup>2</sup> | GROWTH RATE<br>CONSTANT_<br>K(MIN <sup>T</sup> CM <sup>-2</sup> ) | MEAN<br>SUPER-<br>SATN: | GROWTH<br>RATE<br>CM/MIN: |
| 23-855         | .00000                 | 1.990                      |                              | 2008-0                          | 1-995 02-05                                                       | -5478                   | 4-299@-04                 |
| 23-436         | 1-2500                 | 3=253                      | 0010100                      | 25)17-5                         | 5-21600-06                                                        | -5295                   | 1-069@-04                 |
| 23-296         | 2.5500                 | 3-672                      | .0002100                     | 270)1-2                         | 1.01510-05                                                        | -5204                   | 2-039@-04                 |
| 23:157         | 3:1700                 | 4.089                      | 0002329                      | 2002.2                          | 7-11550-05                                                        | -5112                   | 1.401@-04                 |
| 23-017         | 4.0000                 | 4.506                      | 0002325                      | 30363.5                         | 1-11820-05                                                        | -5021                   | 2-157@-04                 |
| 22:-877        | 4.5000                 | 4-922                      | 1 (12000                     | 320207                          | 1-06650-05                                                        | .)1020                  | 2-01/10-04                |
| 22:737         | 5:0000                 | 5-336                      | 0002014                      | 3407:1                          | 7.62710-06                                                        | 1828                    | 1.1120-04                 |
| 22:597         | 5:6700                 | 5=751                      | ·0001092                     | 310201                          | 7)17870 06                                                        | )17)16                  | 1.252@_0]                 |
| 22-457         | 6-3300                 | 6.164                      | 101 1000                     | 3913:9                          | 10000                                                             | )(60)                   | 1.26/10-0/1               |
| 22-317         | 7-0000                 | 6.576                      | :0001694                     | 4119:9                          | (-13900-00                                                        | 1-60                    | 1 07) 0.01                |
| 22:177         | 7-7500                 | 6-988                      | ;0001611                     | 4321-2                          | 6-20,00-06                                                        | -4302                   | 1.1190 01                 |
| 22:036         | 8.4200                 | 7:398                      | -0001538                     | 4518-0                          | 6-78202-06                                                        | -4471                   | 1:1400-04                 |
| 21.896         | 9-1700                 | 7-808                      | :0001472                     | 4710.8                          | 5-9346@-06                                                        | -4379                   | 9:014@-05                 |
| 21-615         | 10-750                 | 8.626                      | -0002774                     | 4991-8                          | 5:4932@-06                                                        | -4241                   | 8-7780-05                 |
| 21-335         | 12,330                 | 9-441                      | -0002574                     | 5356-5                          | 5=3550@-06                                                        | -4057                   | 8.146@-05                 |
| 21-053         | 14-250                 | 10.25                      | :0002405                     | 5708-8                          | 4-3341@-06                                                        | -3873                   | 6-264@-05                 |
| 20.772         | 16-250                 | 11-06                      | 0002260                      | 6050-2                          | 4-1248@-06                                                        | •3689                   | 5-651@-05                 |
| 20-250         | 10.820                 | 12.27                      | -0003162                     | 6462.0                          | 3-4559@-06                                                        | -3459                   | 4-416@-05                 |
| 20.350         | 21.670                 | 12.67                      | :0000997                     | 6784.6                          | 2-2554@-06                                                        | -3275                   | 2:7102-05                 |
| 20.209         | 21.010                 | 12:01                      |                              |                                 |                                                                   |                         |                           |

| TABLE: 66 (CONTD.) RUN NO.: R.E.6 (CONTD.) |                        |                            |                               |                                  |                                                            |                         |                           |
|--------------------------------------------|------------------------|----------------------------|-------------------------------|----------------------------------|------------------------------------------------------------|-------------------------|---------------------------|
| CONCN.<br>%M/V                             | TOTAL<br>TIME<br>MINS; | CRYSTAL<br>MASS<br>(GRAMS) | D IAMETER<br>INCREASE<br>(CM) | MEAN<br>AREA<br>CM <sup>2</sup>  | GROWTH RATE<br>CONSTANT<br>K(MIN'CM <sup>2</sup> )         | MEAN<br>SUPER-<br>SATN: | GROWTH<br>RATE<br>CM/MIN: |
|                                            | 90 FW 64 63 54 WE 68 F | u ani an an an an an an an |                               | un ann ine litt ann hiù Albann i | he Ally Col A.1 Into Col Col Col (of any Sile Col And Sile |                         |                           |
| 20:209                                     | 21.670                 | 12.67                      | ,0001165                      | 6957-0                           | 3:0204@-06                                                 | .3173                   | 3-509@-05                 |
| 20.040                                     | 23.33                  | 0 13-15                    | .0000758                      | 7112:0                           | 1-8308@-06                                                 | -3081                   | 2:061@-05                 |
| 19.927                                     | 25:170                 | 13-46                      | .0000928                      | 7249.6                           | 2-12340-06                                                 | ,2998                   | 2-3190-05                 |
| 19.786                                     | 27:170                 | 13-86                      | -0000907                      | 7400-8                           | 2-14690-06                                                 | :2906                   | 2.267@-05                 |
| 19.645                                     | 29:170                 | 14.26                      |                               | 7550-4                           | 2-01310-06                                                 | -2813                   | 2:053@-05                 |
| 19:504                                     | 31-330                 | 14.65                      | -0000868                      | 7698-3                           | 1-76450-06                                                 | .2721                   | 1.737@-05                 |
| 19.363                                     | 33.830                 | 15:05                      |                               | 7844-5                           | 1.4141@-06                                                 | -2629                   | 1-3410-05                 |
| 19-222                                     | 37:000                 | 15:44                      | -0000833                      | 7989-2                           | 1-1915@-06                                                 | :2536                   | 1-088@-05                 |
| 19:081                                     | 40.830                 | 15.84                      | -0000817                      | 8132-5                           | 1-21210-06                                                 | -2444                   | 1.0640-05                 |
| 18.939                                     | 44:670                 | 16:23                      | 0000801                       | 827/1-2                          | 1.2/100-06                                                 | -2351                   | 1-046@-05                 |
| 18-798                                     | 48.500                 | 16.62                      | 00000786                      | 8)11)1.6                         | 1-008/10-06                                                |                         | 8-1410-06                 |
| 18.657                                     | 53-330                 | 17:01                      | .0000700                      | 0414:00                          | 1.)106)10-06                                               | -2166                   | 1-1560-05                 |
| 18.515                                     | 56-670                 | 0 17:40                    | -0000772                      | 9601                             | 1 18700-06                                                 | -2073                   | 8-757@-06                 |
| 18-374                                     | 61-000                 | 17:79                      | ÷0000/50                      | 009100                           | 1 00510 06                                                 | 1081                    | 7-2070-06                 |
| 18-232                                     | 66-170                 | 18.18                      | -0000745                      | 0027-0                           | 1-023 10-00                                                | 1888                    | 7-2250-06                 |
| 18.090                                     | 71-170                 | 18.57                      | -0000732                      | 8962.7                           | 1:09560-00                                                 | 17/10                   | 1.8160-06                 |
| 17:807                                     | 86.000                 | 0 19-34                    | :0001429                      | 9162-7                           | 7.81089-07                                                 | #1 (49<br>#FC)          | 1. 0180.06                |
| 17:524                                     | 100-00                 | 20:11                      | -0001383                      | 9425-7                           | 9-0580-07                                                  | ÷1564                   | 4-9300-00                 |
| 17-382                                     | 110-00                 | 0 20.49                    | :0000674                      | 9620.4                           | 6-77820-07                                                 | ,1424                   | 3-3/20-06                 |
| 17-240                                     | 122:00                 | 0 20:88                    | -0000664                      | 9748.4                           | 5-9655@-07                                                 | -1331                   | 2:7670=06                 |
| 17-098                                     | 136-0                  | 0 21-26                    | :0000654                      | 9875-3                           | 5-4284@-07                                                 | -1239                   | 2-3360-06                 |
| 16:956                                     | 139-0                  | 0 21-64                    | -0000644                      | 10001                            | 2.70540-06                                                 | 1146                    | 1:0740-05                 |

í.

-

|               |                        | TABLE : 6                  | 6 (CONTD.)                                       | RUN NO. : R.E.6 (CONTD.)        |                                                                   |                         |                                      |
|---------------|------------------------|----------------------------|--------------------------------------------------|---------------------------------|-------------------------------------------------------------------|-------------------------|--------------------------------------|
| CONCN-<br>M/V | TOTAL<br>TIME<br>MINS: | CRYSTAL<br>MASS<br>(GRAMS) | DIAMETER<br>INCREASE<br>(CM)                     | MEAN<br>AREA<br>CM <sup>2</sup> | GROWTH RATE<br>CONSTANT<br>K(MIN <sup>-1</sup> CM <sup>-2</sup> ) | MEAN<br>SUPER-<br>SATN: | GROWTH<br>RATE<br>CM/MIN:            |
| 16-056        | 12000                  | 21-64                      |                                                  |                                 |                                                                   |                         |                                      |
| 10.990        | 199.00                 | 21.01                      | -0000635                                         | 10126                           | 3-7948@-07                                                        | .1053                   | 1.3800-06                            |
| 16.814        | 162.00                 | 22:02                      | -0000626                                         | 10250                           | 4-50600-07                                                        | .0960                   | 1-4900-06                            |
| 16:672        | 183.00                 | 22.40                      | 0000(17                                          | 10272                           |                                                                   | 0867                    | 1.2/10-06                            |
| 16-530        | 206-00                 | 22.78                      | -000061/                                         | 103 (3                          | 4-5)0420-01                                                       | 10001                   | 1:3410-00                            |
|               |                        |                            | :0000608                                         | 10494                           | 4-78250-07                                                        | +6770                   | 1-267@-06                            |
| 16-387        | 230,00                 | 23-15                      | -0000599                                         | 10615                           | 3-22710-07                                                        | . 0681                  | 7-492@-07                            |
| 16-245        | 270:00                 | 23-53                      | 0000001                                          | 10705                           | 1 20800 (7                                                        | 05.87                   | R_)1)120-07                          |
| 16=103        | 305-00                 | 23-91                      | -0000591                                         | 10/35                           | 4-22099-01                                                        | :001                    | 0                                    |
|               |                        |                            | -0000583                                         | 10854                           | 2-9032@-07                                                        | -0494                   | 4-855@-07                            |
| 15:-961       | 365:00                 | 24-20                      | T Gold gate With diff. And Safe gate and over ou |                                 | and the case and and and and and and and and and                  |                         | a ou cas me mé au me au est au au au |

|                |                        | TABLE :                    | 67                           | RUN NO.: R.E.7                  |                                                                   |                          |                           |  |
|----------------|------------------------|----------------------------|------------------------------|---------------------------------|-------------------------------------------------------------------|--------------------------|---------------------------|--|
|                | TEMP:                  | 70.0°C                     | CELL: S                      | STIRR                           | ER SPEED:2000                                                     | R.P.M.                   |                           |  |
|                | SEED                   | BATCH E                    | PREPARED                     | SIEVE                           | FRACTION: 89                                                      | -105                     |                           |  |
| CONCN-<br>%M/V | TOTAL<br>TIME<br>MINS: | CRYSTAL<br>MASS<br>(GRAMS) | DIAMETER<br>INCREASE<br>(CM) | MEAN<br>AREA<br>CM <sup>2</sup> | GROWTH RATE<br>CONSTANT<br>K(MIN <sup>-1</sup> CM <sup>-2</sup> ) | MEAN<br>SUPER -<br>SATN; | GROWTH<br>RATE<br>CM/MIN: |  |
| 30:041         | .00000                 | 1:937                      |                              | 1703-1                          | 4-4505@-06                                                        | -1392                    | 4.4000-05                 |  |
| 29-902         | 5:0000                 | 2-379                      | -0003741                     | 1007-0                          | 3-5869@-06                                                        | =1339                    | 3-401@-05                 |  |
| 29-763         | 10.500                 | 2.820                      | .0002272                     | 2278-0                          | 2-10200-06                                                        | -1286                    | 2-1820-05                 |  |
| 29.624         | 18.000                 | 3:261                      | .0003275                     |                                 | 1 52000 06                                                        | 100                      | 1.2280.05                 |  |
| 29.485         | 29:000                 | 3:700                      | -0002923                     | 2)45.5                          | 1.53000=00                                                        | 1234                     | 1.3200-05                 |  |
| 29-346         | 40.000                 | 4=139                      | -0002649                     | 2801-8                          | 1-4530@=06                                                        | -1101                    | 1.204@=05                 |  |
| 29-207         | 50.000                 | 4.576                      | -0002430                     | 3048-7                          | 1-5385@-06                                                        | -1128                    | 1-215@-05                 |  |
| 28-929         | 69-000                 | 5:450                      | -0004351                     | 3401.3                          | 1-5639@-06                                                        | ÷1048                    | 1:145@-05                 |  |
| 28.780         | 80-000                 | 5-885                      | :0001967                     | 3743-3                          | 1-3281@-06                                                        | .0969                    | 8.9400-06                 |  |
| 20. 109        | 00,000                 |                            | - 0003616                    | 4067:0                          | 1-5446@-06                                                        | ÷0890                    | 9.515@-06                 |  |
| 20.510         | 99:000                 | 00004                      | .0001670                     | 4382-8                          | 1-3595@-06                                                        | .0810                    | 7:590@-06                 |  |
| 20,371         | 110.00                 | 7-186                      | -0001593                     | 4585-9                          | 1-3912@06                                                         | =0757                    | 7-239@-06                 |  |
| 28-231         | 121-00                 | 7-618                      | -0001523                     | 4784-8                          | 9-8648@-07                                                        | -0704                    | 4-7600-06                 |  |
| 28-091         | 137-00                 | 8-048                      | 0001461                      | 4979-6                          | 1-1725@-06                                                        | - 2651                   | 5-217@-06                 |  |
| 27-951         | 151.00                 | 8.478                      | -0001404                     | 5170-7                          | 1-0766@=06                                                        | -0597                    | 4-387@-06                 |  |
| 27:-811        | 167.00                 | 8.907                      | 0001252                      | 5258.)                          | 0-12020-07                                                        |                          | 2-2800-06                 |  |
| 27:672         | 187-00                 | 9-336                      | :0001352                     | 7370.4                          | 5-13020-01                                                        | 0)101                    | 2 (2):0 0                 |  |
| 27-531         | 205:00                 | 9=763                      | -0001305                     | 554201                          | 1.00/00=00                                                        | -0491<br>alia0           | 3:024@=00                 |  |
| 27-391         | 228.00                 | 10-19                      | -0001262                     | 5724-0                          | 9-2540@-07                                                        | -0438                    | 2.742@-06                 |  |
| 27=251         | 253:00                 | 10-61                      | .0001221                     | 5902-4                          | 9:4091@-07                                                        | -0384                    | 2-441@-06                 |  |

|                 |                        | TABLE : 6                  | 7 (CONTD .)                  | 9 017 m3 648 648 648 648 648 64 | RUN NO. : R.E                                                    | .7 (CONTD               | ·•)                       |
|-----------------|------------------------|----------------------------|------------------------------|---------------------------------|------------------------------------------------------------------|-------------------------|---------------------------|
| CONCN .<br>%M/V | TOTAL<br>TIME<br>MINS. | CRYSTAL<br>MASS<br>(GRAMS) | DIAMETER<br>INCREASE<br>(CM) | MEAN<br>AREA<br>CM <sup>2</sup> | GROWTH RATE<br>CONSTANT<br>K(MIN <sup>-</sup> CM <sup>-2</sup> ) | MEAN<br>SUPER-<br>SATN: | GROWTH<br>RATE<br>CM/MIN. |
| 27:251          | 253:00                 | 10.61                      |                              | <i>( )</i>                      | 0.64                                                             |                         |                           |
| 27-195          | 270-00                 | 10-78                      | :0000477                     | 6025-8                          | 5-9986@-07                                                       | :0347                   | 1-403@-06                 |
| -101)           | -10000                 | 10010                      | :0000354                     | 6086-9                          | 5-3348@-07                                                       | -0329                   | 1-1800-06                 |
| 27.153          | 285:00                 | 10-91                      | -0001499                     | 6224-8                          | 7-8346@-07                                                       | - 0286                  | 1-4990-06                 |
| 26-970          | 335:00                 | 11.46                      | e coolilie                   | (ama (                          |                                                                  | colio                   |                           |
| 26:914          | 375=00                 | 11-63                      | 0000449                      | 6370-6                          | 3-4863@-07                                                       | 0240                    | 5-617@-07                 |
|                 | 515000                 |                            | .0000665                     | 6455-1                          | 6-6446@-07                                                       | .0214                   | 9-495@-07                 |
| 26-830          | 410.00                 | 11:89                      | - 0000654                    | 6555-8                          | 3=3704@=07                                                       | -0182                   | 4-0850-07                 |
| 26-746          | 490-00                 | 12.14                      |                              |                                 | Sestere of                                                       |                         |                           |
| 26.689          | 550.00                 | 12:31                      | 0000430                      | 6639-1                          | 3:4653@-07                                                       | ····0155                | 3-581@-07                 |
| EQUILIBR        | IUM CON                | ENTRATIO                   | N = 26-31                    | INITIAL                         | SEED ARE                                                         | A = 1552                |                           |

| TABLE: $68$ RUN NO.: R.P.G.4TEMP:70.0°CCELL: CSTIRRER SPEED:2000 R.P.M.SEED: BATCH P.G. PREPARED SIEVE FRACTION: $89-105\mu$ CONCN.TOTAL<br>TIME<br>MINS.CRYSTAL<br>MASS<br>(GRAMS)DIAMETER<br>INCREASE<br>(CM)MEAN<br>CM2GROWTH RATE<br>K(MIN'CM2)MEAN<br>SUPER-<br>SATN.GROWTH<br>RATE<br>CM/MIN.30.101.00000<br>2.00002.000<br>2.0000.00038311257.7<br>1257.76.7017@-06<br>3.1267@-06.2134<br>2.20849.578@-05<br>9.578@-0530.0122.0000<br>2.00002.2844<br>.0005238.00032831532.0<br>3.1267@-06.2086<br>2.20864.365@-05<br>4.365@-0529.26638.0000<br>2.756<br>.00042601872.7<br>.00036063.1267@-06<br>2.026.2086<br>1.502@-054.365@-05<br>2.02629.56648.000<br>3.696<br>.0005930.0005930<br>2671.92671.9<br>6.6418@-07<br>6.0088@-07.1876<br>.18768.237@-06<br>6.804@-0628.825135.006.019.0005940<br>.3398.73.98.7<br>6.0088@-07.1726<br>.17266.804@-06 |        |                        |                            |                             |                                  |                                                                  |                                        |                                                 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|------------------------|----------------------------|-----------------------------|----------------------------------|------------------------------------------------------------------|----------------------------------------|-------------------------------------------------|
| TEMP $70 \cdot 0^{\circ}$ CCELL: CST IRRER SPEED $2000$ R.P.M.SEED: BATCH P.G. PREPARED SIEVE FRACTION: $89-105\mu$ CONCN.TOTALCRYSTALDIAMETERMEAN<br>(CM)GROWTH RATE<br>(CM)MEAN<br>SUPER-<br>(CM)GROWTH RATE<br>(CM/MIN*CM2)MEAN<br>SUPER-<br>SATN.GROWTH<br>RATE<br>CM/MIN.30.101 $00000$ $2.000$ $0003831$ $1257.77$ $6.7017@-06$ $.2134$ $9.578@-05$ $30.101$ $00000$ $2.284$ $0003831$ $1257.77$ $6.7017@-06$ $.2134$ $9.578@-05$ $29.2863$ $8.0000$ $2.756$ $0003283$ $1532.00$ $3.1267@-06$ $.2086$ $4.365@-05$ $29.715$ $36.000$ $3.227$ $0003606$ $2203.33$ $1.1529@-06$ $.1966$ $1.502@-05$ $29.5766$ $48.000$ $3.696$ $0005930$ $2671.9$ $6.6418@-07$ $.1876$ $8.237@-06$ $29.270$ $84.000$ $4.629$ $0005930$ $2671.9$ $6.0088@-07$ $.1726$ $6.804@-06$                                                                                       |        |                        | TABLE :                    | 68                          |                                  | RUN NO .: R.                                                     |                                        |                                                 |
| SEED: BATCH P.G. PREPARED SIEVE FRACTION: $89-105\mu$ CONCN.TOTALCRYSTALDIAMETERMEANGROWTH RATEMEANSUPER-<br>CONSTANT<br>K(MIN*CM <sup>2</sup> )GROWTH<br>RATE<br>CM/MIN. $30.101$ .00000 $2.000$ .0003831 $1257.7$ $6.7017@-06$ .2134 $9.578@-05$ $30.012$ $2.0000$ $2.284$ .0005238 $1532.0$ $3.1267@-06$ .2086 $4.365@-05$ $29.863$ $8.0000$ $2.756$ .0004260 $1872.7$ $5.6422@-07$ .2026 $7.607@-06$ $29.715$ $36.000$ $3.227$ .0003606 $2203.3$ $1.1529@-06$ .1966 $1.502@-05$ $29.5566$ $48.000$ $3.696$ .0005930 $2671.9$ $6.6418@-07$ .1876 $8.237@-06$ $29.270$ $84.000$ $4.629$ .0005940 $3398.7$ $6.0088@-07$ .1726 $6.804@-06$                                                                                                                                                                                                                |        | TEMP                   | :70.0°C                    | CELL: C                     | C STIRRER SPEED 2000 R.P.M.      |                                                                  |                                        |                                                 |
| CONCN.<br>$M/V$ TOTAL<br>TIME<br>MINS.CRYSTAL<br>MASS<br>(GRAMS)DIAMETER<br>INCREASE<br>(CM)MEAN<br>AREA<br>CM-GROWTH RATE<br>CONSTANT<br>$K(MIN^{-}CM^{-2})$ MEAN<br>SUPER-<br>SATN.GROWTH<br>RATE<br>CM/MIN. $30.101$ $00000$ $2.000$<br>$2.0000$ $0003831$ $1257.7$<br>$0003831$ $6.7017@-06$<br>$3.61267@-06$ $2134$<br>$9.578@-05$ $9.578@-05$<br>$9.578@-05$ $30.012$ $2.0000$ $2.2844$<br>$10005238$ $0005238$<br>$1532.00$ $3.1267@-06$<br>$3.61267@-06$ $2086$ $4.365@-05$<br>$4.365@-05$ $29.715$ $36.0000$ $2.7756$<br>$10003606$ $1872.7$<br>$2.003606$ $3.626-07$<br>$2.0005930$ $2671.9$ $6.6418@-07$<br>$3.398.7$ $1.966$ $1.502@-05$<br>$3.608@-07$ $29.270$ $84.0000$ $4.629$<br>$0005930$ $2671.9$ $6.6418@-07$<br>$3.398.7$ $6.0088@-07$<br>$1.726$ $6.804@-06$                                                                        |        | SEED                   | BATCH P                    | .G. PREPAR                  | ED SIEVE                         | FRACTION: 89                                                     | -105 µ                                 |                                                 |
| 30.101 $.00000$ $2.000$ $.0003831$ $1257.7$ $6.7017@-06$ $.2134$ $9.578@-05$ $30.012$ $2.0000$ $2.284$ $.0003831$ $1257.7$ $6.7017@-06$ $.2134$ $9.578@-05$ $29.863$ $8.0000$ $2.756$ $.0005238$ $1532.0$ $3.1267@-06$ $.2086$ $4.365@-05$ $29.715$ $36.000$ $3.227$ $.0003606$ $1872.7$ $5.6422@-07$ $.2026$ $7.607@-06$ $29.566$ $48.000$ $3.696$ $.0005930$ $2671.9$ $6.6418@-07$ $.1876$ $8.237@-06$ $29.270$ $84.000$ $4.629$ $.0005930$ $2671.9$ $6.0088@-07$ $.1726$ $6.804@-06$                                                                                                                                                                                                                                                                                                                                                                   | CONCN. | TOTAL<br>TIME<br>MINS; | CRYSTAL<br>MASS<br>(GRAMS) | DIAMETER<br>NCREASE<br>(CM) | MEAN<br>AREA<br>CM <sup>2-</sup> | GROWTH RATE<br>CONSTANT<br>K(MIN <sup>-</sup> CM <sup>-2</sup> ) | MEAN<br>SUPER<br>SATN-                 | GROWTH<br>RATE<br>CM/MIN.                       |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 30.101 | .00000                 | 2.000                      |                             | a constant and sea and sea and   | ligas and follows welling welling welling out and and and        | ************************************** | a constructions and has delived and our delived |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 30,012 | 2:0000                 | 2.284                      | .0003831                    | 1257-7                           | 6.7017@06                                                        | -2134                                  | 9.5780-05                                       |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 20-863 | 8-0000                 | 2-756                      | :0005238                    | 1532:0                           | 3-1267@-06                                                       | -2086                                  | 4-365@-05                                       |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 29.000 | 0.0000                 | 2.00                       | :0004260                    | 1872-7                           | 5.6422@-07                                                       | -2026                                  | 7-6070-06                                       |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 29-715 | 36:000                 | 3-227                      | -0003606                    | 2203-3                           | 1-1529@-06                                                       | - 1966                                 | 1-5020-05                                       |
| 29-270 84-000 4-629<br>28-825 135-00 6-019<br>-0005930 2671-9 6-6418@-07 -1876 8-237@-06<br>-0006940 3398-7 6-0088@-07 -1726 6-804@-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 29-566 | 48.000                 | 3.696                      | ,,                          |                                  |                                                                  |                                        | 1.0)020-0)                                      |
| 28-825 135.00 6.019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 29-270 | 84=000                 | 4-629                      | :0005930                    | 2671-9                           | 6.6418@-07                                                       | :1876                                  | 8.237@-06                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 28-825 | 135:00                 | 6.019                      | -0005940                    | 3398.7                           | 6.0088@-07                                                       | •1726                                  | 6.804@-06                                       |

|                |                        | TABLE :                    | 69                           |                                 | RUN NO.: R.                                                       |                                       |                                               |
|----------------|------------------------|----------------------------|------------------------------|---------------------------------|-------------------------------------------------------------------|---------------------------------------|-----------------------------------------------|
|                | TEMP                   | :70.0°C                    | CELL: C                      | STIRR                           |                                                                   |                                       |                                               |
|                | SEED                   | BATCH F                    | .G. PREPAR                   | ED SIEVE                        | FRACTION: 89                                                      | -105 p                                |                                               |
| CONCN-<br>%M/V | TOTAL<br>TIME<br>MINS: | CRYSTAL<br>MASS<br>(GRAMS) | DIAMETER<br>INCREASE<br>(CM) | MEAN<br>AREA<br>CM <sup>1</sup> | GROWTH RATE<br>CONSTANT<br>K(MIN <sup>-1</sup> CM <sup>-2</sup> ) | MEAN<br>SUPER-<br>SATN.               | GROWTH<br>RATE<br>CM/MIN=                     |
| 29-953         | .00000                 | 2.000                      | 0002825                      | 1257.6                          | 2.7581@.06                                                        | -2074                                 | 3-825@-05                                     |
| 29-863         | 5-0000                 | 2.,283                     | -000302)                     | 1600-7                          | 8-82520-07                                                        | 1996                                  | 1-187@=05                                     |
| 29-567         | 45-000                 | 3.225                      | -0009492                     | 2201-9                          | 5-7105@-07                                                        | -1906                                 | 7-199@-06                                     |
| 29.418         | 70.000                 | 3.693                      | -0066669                     | 5041-8                          | 3-8874@=07                                                        | =1200                                 | 2-821@-06                                     |
| 26-071         | 720.00                 | 13-94                      | .0050009                     | JOIL 0                          |                                                                   | and and some and second second second | the second second to a cost of the second sec |
| QUILIBR        | IUM CON                | CENTRATIC                  | N = 24.77                    | INITIAL SEED AREA = 1156        |                                                                   |                                       |                                               |

| EQUILIBRIUM | CONCENTRAT | ION = | 24:771 |
|-------------|------------|-------|--------|
|-------------|------------|-------|--------|

|          |                                                            | TABLE :                    | 70                           |                                 | RUN NO. : R.                                                    | P.G.6                  |                           |  |  |  |
|----------|------------------------------------------------------------|----------------------------|------------------------------|---------------------------------|-----------------------------------------------------------------|------------------------|---------------------------|--|--|--|
|          | TEMP                                                       | 70.0°C<br>BATCH P          | CELL: S                      | STIRR<br>D SIEVE                | ER SPEED :2000<br>FRACTION: 89                                  | R.Р.М.                 |                           |  |  |  |
| CONCN-   | TOTAL<br>TIME<br>MINS:                                     | CRYSTAL<br>MASS<br>(GRAMS) | DIAMETER<br>INCREASE<br>(CM) | MEAN<br>AREA<br>CM <sup>2</sup> | GROWTH RATE<br>CONSTANT<br>K(MIN <sup>C</sup> CM <sup>2</sup> ) | MEAN<br>SUPER<br>SATN: | GROWTH<br>RATE<br>CM/MIN: |  |  |  |
| 30.338   | .00000                                                     | 2.000                      |                              | 1258.0                          | 6.4137@-07                                                      | .2230                  | 9.600@-06                 |  |  |  |
| 30:249   | 20,000                                                     | 2.285                      | -0031495                     | 2972-9                          | 1-8189@-07                                                      | -1888                  | 2-461@-06                 |  |  |  |
| 28.647   | 660.00                                                     | 7::390                     | ••••                         | ->1-0>                          |                                                                 |                        |                           |  |  |  |
| EQUILIBR | QUILIBRIUM CONCENTRATION = 24.771 INITIAL SEED AREA = 1156 |                            |                              |                                 |                                                                 |                        |                           |  |  |  |

- 273 -

. .

|                |                        | TABLE                                            | 71                           |                                 |                                      |                         |                          |  |  |  |  |
|----------------|------------------------|--------------------------------------------------|------------------------------|---------------------------------|--------------------------------------|-------------------------|--------------------------|--|--|--|--|
|                | TEMP                   | :70.0°C                                          | CELL: C                      | STIRF                           |                                      |                         |                          |  |  |  |  |
|                | SEED                   | SEED: BATCH P.G. PREPARED SIEVE FRACTION: 89-105 |                              |                                 |                                      |                         |                          |  |  |  |  |
| CONCN-<br>tm/V | TOTAL<br>TIME<br>MINS: | CRYSTAL<br>MASS<br>(GRAMS)                       | DIAMETER<br>INCREASE<br>(CM) | MEAN<br>AREA<br>CM <sup>2</sup> | GROWTH RATE<br>CONSTANT<br>K(MIN CM) | MEAN<br>SUPER-<br>SATN: | GROWTH<br>RATE<br>CM/MIN |  |  |  |  |
| 30.041         | 00000                  | 2.000                                            | 0021878                      | 2012.6                          | 7-86770-05                           | 1072                    | 1                        |  |  |  |  |
| 29-270         | 1.0000                 | 4.459                                            |                              | 2012.0                          | [.00][340]                           | 19/2                    | 1:0940-03                |  |  |  |  |
| 28.973         | 2.5000                 | 5:-390                                           | 0005000                      | 3158:7                          | 1.4399@-05                           | =1756                   | 1:667@-04                |  |  |  |  |
| 28-083         | 11-000                 | 8,168                                            | :0011205                     | 4223-1                          | 6-6257@-06                           | •1517                   | 6-591@-05                |  |  |  |  |
| 27.101         | 18,000                 | 0.087                                            | :0005652                     | 5455-4                          | 5-16002-06                           | 1218                    | 4=0370=05                |  |  |  |  |
| 2[049]         | 10,000                 | 9:901                                            | -0002484                     | 6127-8                          | 2-3508@-06                           | -1038                   | 1-553@-05                |  |  |  |  |
| 27=195         | 26:000                 | 10-89                                            |                              | 6550.5                          | 2-2089@-06                           | -0919                   | 1-283@-05                |  |  |  |  |
| 26-899         | 35:000                 | 11.78                                            | -0008106                     | 7057-8                          | 1-01020-06                           |                         | 02008-06                 |  |  |  |  |
| 26-455         | 52.000                 | 13-11                                            | .0003190                     | 101.0                           | 1.97923-00                           | .0110                   | 9.3993-00                |  |  |  |  |
| 25:864         | 95:000                 | 14.87                                            | :0003848                     | 7737=0                          | 1=2999@-06                           | :0561                   | 4-474@-06                |  |  |  |  |
| 25:332         | 260.00                 | 16-43                                            | .0003116                     | 8439-52                         | 4.7885@-07                           | -0334                   | 9-1444@-07               |  |  |  |  |

INITIAL SEED AREA = 1156

- 274 -

|                |                                                                | TABLE :                    | 72                           |                                                       |                                      |                         |                           |  |  |  |  |
|----------------|----------------------------------------------------------------|----------------------------|------------------------------|-------------------------------------------------------|--------------------------------------|-------------------------|---------------------------|--|--|--|--|
|                | TEMP                                                           | : FATCH E                  | CELL: C                      | STIRRER SPEED: 2000 R.P.M.<br>SIEVE FRACTION: 89-105/ |                                      |                         |                           |  |  |  |  |
| CCNCN-<br>%M/V | TOTAL<br>TIME<br>MINS:                                         | CRYSTAL<br>MASS<br>(GRAMS) | DIAMETER<br>INCREASE<br>(CM) | MEAN<br>AREA<br>CM <sup>2</sup>                       | GROWTH RATE<br>CONSTANT<br>K(MIN CM) | MEAN<br>SUPER-<br>SATN. | GRCWTH<br>RATE<br>CM/MIN: |  |  |  |  |
| 29:819         | -00000                                                         | 2:000                      | 0000)171                     | 1000 0                                                | F 22000 0                            | 1010                    | 1 0580 05                 |  |  |  |  |
| 29.708         | 3-5000                                                         | 2:353                      | =00034/1                     | 1 (23:9                                               | 5-33220-00                           | -13!3                   | 4:59)03-09                |  |  |  |  |
|                | 10,000                                                         | 0.70)                      | -0003751                     | 1990.6                                                | 3-2267@-06                           | -1265                   | 2.885@-05                 |  |  |  |  |
| 29:569         | 10-000                                                         | 20 (94                     | :0003274                     | 2273-7                                                | 1-9173@-06                           | :1212                   | 1-637@-05                 |  |  |  |  |
| 29:5430        | 20,000                                                         | 3-234                      | 0000010                      |                                                       | 1.00100-06                           | -1160                   | 1-6220-05                 |  |  |  |  |
| 29:291         | 29:000                                                         | 3:672                      | -0002919                     | 2744:0                                                | 1.99190-00                           | -1100                   | 1.022.0=0)                |  |  |  |  |
| FOILI IBR      | OUTLIBRIUM CONCENTRATION = $26.310$ INITIAL SEED AREA = $1602$ |                            |                              |                                                       |                                      |                         |                           |  |  |  |  |

|                            | TEMP                                                         | TABLE :<br>: 70.0°C<br>: BATCH F | 73<br>CELL: C                | RUN NO.: R.F.3<br>STIRRER SPEED: 2000 F. P.M.<br>SIEVE FRACTION: 89-105/2 |                                        |                         |                           |  |  |
|----------------------------|--------------------------------------------------------------|----------------------------------|------------------------------|---------------------------------------------------------------------------|----------------------------------------|-------------------------|---------------------------|--|--|
| CONCN.<br>%M/V             | TOTAL<br>TIME<br>MINS.                                       | CRYSTAL<br>MASS<br>(GRAMS)       | DIAMETER<br>INCREASE<br>(CM) | MEAN<br>AREA<br>CM <sup>2-</sup>                                          | GROWTH RATE<br>CONSTANT<br>K(MIN'CM'') | MEAN<br>SUPER-<br>SATN, | GROWTH<br>RATE<br>CM/MIN: |  |  |
| 30,235<br>27,784<br>27,615 | =00000<br>675=00<br>810=00                                   | 2.000<br>9.618<br>10.11          | -0020588<br>-0000707         | 6990 <b>.</b> 3<br>11871                                                  | 2-0761@-07<br>7-5524@-08               | ≈1026<br>≈0528          | 1.525@=06<br>2.618@=07    |  |  |
| EQUILIBR                   | QUILIBRIUM CONCENTRATION = 26.310 INITIAL SEED AREA = 2347-2 |                                  |                              |                                                                           |                                        |                         |                           |  |  |

- 275 -

|                |                        | TABLE :                    | 74                           |                             |                                      |                         |                           |
|----------------|------------------------|----------------------------|------------------------------|-----------------------------|--------------------------------------|-------------------------|---------------------------|
|                | TEMP:70.0°C CELL: C    |                            |                              | STIRRER SPEED: 2000 R. P.M. |                                      |                         |                           |
|                | SEED                   | BATCH F                    | PREPARED                     | SIEVE                       | FRACTION: 89                         | -105µ                   |                           |
| CONCN.<br>%M/V | TOTAL<br>TIME<br>MINS. | CRYSTAL<br>MASS<br>(GRAMS) | DIAMETER<br>INCREASE<br>(CM) | MEAN<br>AREA<br>CM          | CRONTH RATE<br>CONSTANT<br>K(MIN CM) | MEAN<br>SUPER-<br>SATN. | GROWTH<br>RATE<br>CM/MIN: |
| 29-902         | 00000                  | 1:985                      | -0001205                     | 2)170-2                     | 1-2062@-07                           | 1255                    | 1-2200-06                 |
| 29-847         | 45:000                 | 2.161                      | -00025.01                    | 2088.)                      | 2-8206@-07                           | -1318                   | 3-5730-06                 |
| 29:708         | 80,000                 | 2.601                      | 0002)01                      | 2900.7                      | S.02306-07                           | 128)                    | 8-0620-07                 |
| 29.666         | 120.00                 | 2.733                      |                              | 3450.5                      | 1 09000 07                           | 1204                    |                           |
| 29-527         | 175:00                 | 3.170                      | -0001900                     | 3003:1                      | 1.90000-01                           | 11-49                   | 1= (35@=00                |
| 29-291         | 210.00                 | 3-911                      | 0002656                      | 4733-1                      | 4.000 (0-0)                          | 0111                    | 3- 1940-00                |
| 29-152         | 238.00                 | 4.345                      | -0001325                     | 5541-5                      | 3:0815@-07                           | =1107                   | 2-366@-06                 |
| 29-012         | 275:00                 | 4=777                      | -0001199                     | 6103-5                      | 2.2248@-07                           | -1054                   | 1.6200=06                 |
| 28-873         | 315-00                 | 5-208                      | -0001098                     | 6643:3                      | 1-9919@-07                           | -1001                   | 1-372@-06                 |
| 28-734         | 360.00                 | 5-637                      | -0001014                     | 7163-6                      | 1:7348@-07                           | -0948                   | 1-126@-06                 |
| 28-594         | 405=00                 | 6-064                      | :0000944                     | 7666-3                      | 1=7180@-07                           | -0895                   | 1=049@-06                 |
| 28-454         | 445:00                 | 6-490                      | -0000884                     | 8153-7                      | 1-9329@-07                           | :0842                   | 1-105@-06                 |
| 28.175         | 555-00                 | 7227                       | 0001619                      | 8853-7                      | 1-4328@-07                           | -0762                   | 7-357@-07                 |
| 20.10          | 12/10.0                | 0-707                      | :0003955                     | 10551                       | 8-2778@-08                           | - 0549                  | 2-887@-07                 |
| 27.222         | 1500-0                 | 10-12                      | -0000453                     | 11940                       | 3=7320@-08                           | -0369                   | 8=719@-08                 |
|                |                        | mas en sonn an ittan us    |                              |                             |                                      |                         |                           |

INITIAL SEED AREA = 2329

- 276 -

|                |                        | TABLE :                    | 75                           |                                     |                                                 |                         |                                          |
|----------------|------------------------|----------------------------|------------------------------|-------------------------------------|-------------------------------------------------|-------------------------|------------------------------------------|
|                | TEMP:70.0°C            |                            | CELL: C                      | STIRRER SPEED :2000 R.P.M.          |                                                 |                         |                                          |
|                | SEED                   | BATCH E                    | PREPARED                     | SIEVE                               | FRACTION: 89                                    | -105pl                  |                                          |
| CONCN:<br>%M/V | TOTAL<br>TIME<br>MINS. | CRYSTAL<br>MASS<br>(GRAMS) | DIANETER<br>INCREASE<br>(CM) | MEAN<br>AREA<br>CM <sup>2</sup>     | GROUTH RATE<br>CONSTANT<br>K(MIN CM2)           | MEAN<br>SUPER-<br>SATN: | GROWTH<br>RATE<br>CM/MIN-                |
| 29:763         | .00000                 | 2000                       | 0001 706                     | 1662 7                              | 1. 87)109-06                                    | -12.02                  | )_)_)1000-05                             |
| 29-708         | 2.0000                 | 2:177                      | :0001/90                     | 1003-1                              | 4-01400-00                                      | -1302                   | 4;4900=0)                                |
| 29-569         | 9-0000                 | 2.617                      | -0003989                     | 1873-2                              | 3-18400-06                                      | -1265                   | 2:049@-05                                |
| 20, 201        | 21 000                 | 2 1107                     | -0006503                     | 2296-6                              | 3-2366@-06                                      | .1186                   | 2.709@-05                                |
| 29:291         | 21-000                 | 3:491                      | -0007568                     | 2945-8                              | 1-5532@-06                                      | -1054                   | 1.147@-05                                |
| 28-873         | 54.000                 | 4-811                      |                              | All also del any soid any fait data | altana am dal Piu lag og dag Willing sad talaan |                         | 00 100 100 100 00 00 00 00 00 00 00 00 0 |
|                |                        |                            |                              | ~                                   | BATP PP FAI                                     |                         | 1 1600                                   |

INITIAL SEED AREA = 1602

.

|                |                        | TABLE :                    | 76                                    | RUN NOS: R.P.G.7                |                                       |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
|----------------|------------------------|----------------------------|---------------------------------------|---------------------------------|---------------------------------------|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                | TEMP                   | :70.0°C                    | CELL: C                               | STIRR                           | ER SPEED : 2000                       | R.P.M.                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
|                | SEED                   | BATCH F                    | .G.PREPARE                            | D SIEVE                         | FRACTION: 89                          | )-105µ                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| CONCN.<br>ZM/V | TOTAL<br>TIME<br>MINS. | CRYSTAL<br>MASS<br>(GRAMS) | DIAMETER<br>INCREASE<br>(CM)          | MEAN<br>AREA<br>CM <sup>®</sup> | GROWTH RATE<br>CONSTANT<br>K(MIN CM?) | MEAN<br>SUPER-<br>SATN: | GROWTH<br>RATE<br>CM/MIN.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| 30-041         | -00000                 | 1.990                      | -00071)16                             | 1255-6                          | 1.068=0-0=                            | 2002                    | 1 -78-76 A)I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| 29:863         | 2.0000                 | 2.558                      | 000/140                               | 1302.0                          | 1.2000-0                              | 20096                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| 29.715         | 5.5000                 | 3=029                      | 0004010                               | 1/3100                          | 4.00190=00                            | 10((                    | 0.0110 ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| 29.566         | 11.500                 | 3.499                      | :0003053                              | 2000-1                          | 2:45020=06                            | :1966                   | 3-2110-05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| 29.418         | 15:000                 | 3:967                      | 0003319                               | 2390-1                          | 1.7537@=06                            | -1906                   | 2.213@-05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| 29:270         | 30.000                 | 4:434                      | -0002926                              | 2700.9                          | 1:09220=06                            | 1846                    | 1-3300-05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| 29-121         | 39:000                 | 4.899                      | :0002625                              | 3000-1                          | 1-2419@-06                            | 1786                    | 1.459@-05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| 28:973         | 47.500                 | 5-363                      | -0002387                              | 3288.7                          | 1-24100-06                            | -1726                   | 1-404@-05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| 28-825         | 58-000                 | 5-825                      | 0002193                               | 3567.7                          | 9-5915@-07                            | •1666                   | 1.0440-05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| 28-676         | 73-500                 | 6-286                      | -0002031                              | 3838-0                          | 6-26400-07                            | •1607                   | 6-5520-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| 28-528         | 87=000                 | 6-745                      | - 0001895                             | 4100-3                          | 6-9913@-07                            | •1547                   | 7:018@-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| 28-082         | 120-00                 | 8.115                      | -0005050                              | 4598-4                          | 6-3694@-07                            | -1427                   | 5-8720-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| 27. 787        | 155.00                 | 0                          | .0002947                              | 5198.8                          | 7-20900-07                            | -1278                   | 5-894@-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| 27.620         | 175 00                 | 9.021                      | 0001373                               | 5542-3                          | 4.54202-07                            | -1188                   | 3-14320-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| 27.0.39        | 187.00                 | 964 10                     | -0001316                              | 5764-1                          | 7.0634@-07                            | -1128                   | 5-482@-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| C ( + 491      | 10/000                 | 93910                      | and the case and and and allowing the |                                 |                                       |                         | neward we reserve the second |  |

INITIAL SEED AREA = 1150

- 278 -

|        |                        | TABLE :                    | 77                           | RUN NO.: R.G.3                  |                                                                   |                          |                           |
|--------|------------------------|----------------------------|------------------------------|---------------------------------|-------------------------------------------------------------------|--------------------------|---------------------------|
|        | TEMP                   | :70.0°c                    | CELL: C                      | STIRR                           |                                                                   |                          |                           |
|        | SEED                   |                            |                              |                                 |                                                                   |                          |                           |
| CONCN. | TOTAL<br>TIME<br>MINS. | CRYSTAL<br>MASS<br>(GRAMS) | D AMETER<br>INCREASE<br>(CM) | MEAN<br>AREA<br>CM <sup>2</sup> | GROWTH RATE<br>CONSTANT<br>K(MIN <sup>-1</sup> CM <sup>-2</sup> ) | MEAN<br>SUPER -<br>SATN: | GROWTH<br>RATE<br>CM/MIN: |
| 29-819 | .00000                 | 1.975                      | =0004715                     | 1268-1                          | 2-81900-07                                                        | -1313                    | 2-6200-06                 |
| 29-708 | 90,000                 | 2:327                      | -0004787                     | 1554-6                          | 4-8827@-07                                                        | -1265                    | 4-3520-06                 |
| 29.569 | 145.00                 | 2:765                      | -0010328                     | 2166-8                          | 6-0221@-07                                                        | -1160                    | 4-918@-06                 |
| 29-152 | 250,00                 | 4-073                      | -0002652                     | 2759-0                          | 3-6421@-07                                                        | -1054                    | 2=652@=06                 |
| 29-012 | 300-00                 | 4.505                      | -0002403                     | 3033-8                          | 4-3618@-07                                                        | :1001                    | 3-003@-06                 |
| 28-873 | 340.00                 | 4.936                      | -0002201                     | 3299.5                          | 4-2371@-07                                                        | -0948                    | 2-7510-06                 |
| 28-734 | 380.00                 | 5:365                      |                              | 2556-8                          | 3-0207@=07                                                        | - 0895                   | 1-8480-06                 |
| 28.594 | 435-00                 | 5:792                      | .0012033                     | )1572.7                         | 1-82760-07                                                        |                          | 7-655@=07                 |
| 27-475 | 1240-0                 | 9:097                      | -0001221                     | T) [ Lo ]                       | 8.8=070-08                                                        | -0/116                   | 2-2100-07                 |
| 27:335 | 1500.0                 | 9-499                      | 6000600                      | 5718.8                          | 2 82820 08                                                        |                          | 8.0560-08                 |
| 27:251 | 1890:0                 | 9:735                      | :000099                      | 2(10:0                          | 2.0302000                                                         | -150-                    |                           |

INITIAL SEED AREA = 1141

- 279 -

|                |                        | TABLE :                    | 78                                     |                                 |                                                                   |                         |                                    |
|----------------|------------------------|----------------------------|----------------------------------------|---------------------------------|-------------------------------------------------------------------|-------------------------|------------------------------------|
|                | TEMP                   | :70.0°C                    | CELL: C                                | STIRR                           |                                                                   |                         |                                    |
|                | SEED                   | : BATCH E                  | PREPARED                               | SIEVE                           | FRACTION: 89                                                      | )-105M                  |                                    |
| CONCN.<br>%M/V | TOTAL<br>TIME<br>MINS. | CRYSTAL<br>MASS<br>(GRAMS) | DIAMETER<br>INCREASE<br>(CM)           | MEAN<br>AREA<br>CM <sup>2</sup> | GROWTH RATE<br>CONSTANT<br>K(MIN <sup>-1</sup> CM <sup>-2</sup> ) | MEAN<br>SUPER-<br>SATN: | GROWTH<br>RATE<br>CM/MIN.          |
| 29.791         | :                      | 1-970                      | -0002680                               | 1660-7                          | 2-111840-07                                                       |                         | 2.2220-06                          |
| 29-708         | 60,000                 | 2.234                      | .0002000                               | 1009-1                          | 2.41046-01                                                        | 1201                    | 2:233@***                          |
| 29:569         | 135.00                 | 2.673                      | -0003898                               | 1906-9                          | 2,9193@-07                                                        | -1265                   | 2:5980-06                          |
| 20.201         | 225 00                 | 2 =)=                      | .0006374                               | 2323-1                          | 4-2664@-07                                                        | -1186                   | 3-541@-06                          |
| 298291         | 223:00                 | 56747                      | .0002699                               | 2720.2                          | 4-3943@-07                                                        | -1107                   | 3-374@-06                          |
| 29.152         | 265:00                 | 3-979                      | -0004739                               | 3086-4                          | 4-1786@-07                                                        | -1027                   | 2-9620-06                          |
| 28:873         | 345.00                 | 4.843                      | 0000111                                |                                 | 2 (10(2 07                                                        | a) or 1                 |                                    |
| 28.734         | 390,00                 | 5:272                      | -0002111                               | 3439-9                          | 3-0120@-01                                                        | :0940                   | 2:345@-06                          |
| 27.615         | 1110-0                 | 8-603                      | -0013030                               | 4353.7                          | 1.9731@-07                                                        | ÷0709                   | 9-048@-07                          |
| -[-01)         | 111000                 | 0.005                      | -0001299                               | 5242.6                          | 6-01302-08                                                        | -0470                   | 1-805@-07                          |
| 27-475         | 1470.0                 | 9:005                      | em ena diverso con con con tem bia enh |                                 |                                                                   |                         | nt mana 1 aa ma 10 KG mi maag boks |

|                                    |                        | TABLE                      | : 79                         |                                 | RUN NO. R.P.E.1                                                   |                                |                                                           |
|------------------------------------|------------------------|----------------------------|------------------------------|---------------------------------|-------------------------------------------------------------------|--------------------------------|-----------------------------------------------------------|
|                                    | TEMP                   | :70.0%                     | CELL: C                      | STIRF                           | RER SPEED : 200                                                   |                                |                                                           |
|                                    | SEED                   | BATCH P                    | .G.PREPARE                   | D SIEVE                         | FRACTION: 8                                                       | 9-105,4                        |                                                           |
| CONCN-                             | TOTAL<br>TIME<br>MINS: | CRYSTAL<br>MASS<br>(GRAMS) | DIAMETER<br>INCREASE<br>(CM) | MEAN<br>AREA<br>CM <sup>2</sup> | GROWTH RATE<br>CONSTANT<br>K(MIN <sup>-1</sup> CM <sup>-2</sup> ) | MEAN<br>SUPER-<br>SATN:        | GROWTH<br>RATE<br>CM/MIN:                                 |
| 30,012                             | .00000                 | 1.980                      | 00282.01                     |                                 |                                                                   | 9 cm 04 49 49 49 59 59 59 59 5 | 10 m cs m cs an cs an |
| 28,083                             | 1.0000                 | 8-121                      | -0030201                     | 305-3                           | 1-5015@-04                                                        | -1727                          | 1-910@-03                                                 |
| 27-935                             | 1.5000                 | 8.576                      | -0001516                     | 5083-6                          | 1-8001@-05                                                        | •1307                          | 1-516@-04                                                 |
| 27-787                             | 2-5000                 | 9-030                      | -0001445                     | 5315.7                          | 9=0187@-06                                                        | -1248                          | 7=226@-05                                                 |
| 27-491                             | 5-0000                 | 0-025                      | -0002710                     | 5653-7                          | 7-31240-06                                                        | -1158                          | 5.4200-05                                                 |
| 27.105                             | 8.5000                 | 10 8)                      | :0002501                     | 6091-6                          | 5-40510-06                                                        | -1038                          | 3-5729-05                                                 |
| 2(019)                             | 0,5000                 | 10,04                      | 0002325                      | 6513.9                          | 3=3319@=06                                                        | :0919                          | 1-937@-05                                                 |
| 26:099                             | 14-500                 | 11-73                      | -0003216                     | 7020.6                          | 2-66490-06                                                        | .0770                          | 1=286@=05                                                 |
| 26:-455                            | 27-000                 | 13:06                      | -0001085                     | 7511-8                          | 1-82500-06                                                        | -0620                          | 7.0010.06                                                 |
| 26-159                             | 41.000                 | 13-95                      |                              | Direo                           | 1:03399                                                           | 1020                           | 1.0910=00                                                 |
| 25:864                             | 59-000                 | 14.82                      | 0001878                      | 7890,2                          | 1-6856@-06                                                        | :0501                          | 5-217@-06                                                 |
| EQUILIBRIUM CONCENTRATION = 24-771 |                        |                            |                              |                                 | INITIAL                                                           | SEED ARE                       | A == 1144                                                 |

|                |                        | TABLE                                             | 80                                          |                                 | RUN NO. : R.                                      |                                  |                                                  |  |  |
|----------------|------------------------|---------------------------------------------------|---------------------------------------------|---------------------------------|---------------------------------------------------|----------------------------------|--------------------------------------------------|--|--|
|                | TEMP                   | : 70.02                                           | CELL: C                                     | STIRRER SPEED: 2000R.P.M.       |                                                   |                                  |                                                  |  |  |
|                | SEED                   | SEED: BATCH P.G. PREPARED SIEVE FRACTION: 89-105p |                                             |                                 |                                                   |                                  |                                                  |  |  |
| CONCN-<br>%M/V | TOTAL<br>TIME<br>MINS: | CRYSTAL<br>MASS<br>(GRAMS)                        | DIAMETER<br>INCREASE<br>(CM)                | MEAN<br>AREA<br>CM <sup>2</sup> | GROWTH RATE<br>CONSTANT<br>K(MIN'CM2)             | MEAN<br>SUPER-<br>SATN-          | GROWTH<br>RATE<br>CM/MIN.                        |  |  |
| 30-012         | .00000                 | 1.980                                             |                                             |                                 | tope and the out has solved and the stands and th | 5 555 cc) A25 pes (1) CR 200 (0) | a bea-mitano dua una risto at sun ano habarto an |  |  |
| 29:863         | 2.0000                 | 2-453                                             | -0006123                                    | 1315-2                          | 1-0926@-05                                        | -2086                            | 1-531@-04                                        |  |  |
| 29-715         | 8=0000                 | 2-924                                             | -0004828                                    | 1657-2                          | 2.97550-06                                        | =2026                            | 4-023@-05                                        |  |  |
| 20-566         | 20-000                 | 2.20)                                             | .0003994                                    | 1994-2                          | 1.2738@-06                                        | :1966                            | 1.664@-05                                        |  |  |
| 20. 1140       | 20.000                 | 2.000                                             | -0003418                                    | 2319-6                          | 6-16000-07                                        | -1906                            | 7.7680-06                                        |  |  |
| 29:410         | 42.000                 | 3:062                                             | .0008128                                    | 2922-9                          | 6-3783@-07                                        | -1786                            | 7-526@-06                                        |  |  |
| 28-973         | 96:000                 | 5:259                                             |                                             | 2628-0                          | 5-01750-07                                        | 1627                             | 6 21/10 0                                        |  |  |
| 28.676         | 130,00                 | 6-181                                             |                                             | 3030.0                          | 2.91/28-01                                        |                                  | 0:314@=00                                        |  |  |
| 28-380         | 180.00                 | 7-096                                             |                                             | 4164-8                          | 3-7913@-07                                        | =1517                            | 3-7200-06                                        |  |  |
| 28-082         | 225-00                 | 8.000                                             | 0003295                                     | 4662-7                          | 3-3415@-07                                        | :1397                            | 2.9960-06                                        |  |  |
| 20.005         | 235:00                 | 0:003                                             | -0018409                                    | 6534-4                          | 1-6748@-07                                        | -0848                            | 7-6390-07                                        |  |  |
| 25:657         | 1440-0                 | 15:03                                             | 1 1050 (Magage (Profess) (2014-09) and 2014 |                                 |                                                   | Ward Kill of Shard Street        |                                                  |  |  |
|                |                        |                                                   |                                             |                                 |                                                   |                                  |                                                  |  |  |

|                |                        | TABLE                      | 81                           |                                 | RUN NO.: R                                                        | .P.E.2                  |                           |
|----------------|------------------------|----------------------------|------------------------------|---------------------------------|-------------------------------------------------------------------|-------------------------|---------------------------|
|                | TEMP                   | :70.0%                     | CELL: C                      | STIRR                           |                                                                   |                         |                           |
|                | SEED                   | BATCH                      | P.G.PREPARE                  | D SIEVE                         | FRACTION: 89                                                      | -1.05µ                  |                           |
| CONCN.<br>%M/V | TOTAL<br>TIME<br>MINS: | CRYSTAL<br>MASS<br>(GRAMS) | DIAMETER<br>INCREASE<br>(CM) | MEAN<br>AREA<br>CM <sup>2</sup> | GROWTH RATE<br>CONSTANT<br>K(MIN <sup>-1</sup> CM <sup>-2</sup> ) | MEAN<br>SUPER-<br>SATN: | GROWTH<br>RATE<br>CM/MIN. |
| 29:774         | -00000                 | 1:990                      |                              | 1722)1                          | 1.86020-01                                                        |                         | 2.)(7)(0.00               |
| 29-270         | -33000                 | 3-593                      | -0006.087                    | 2601-0                          | E 22800.05                                                        | 176                     | 6 08-70 01                |
| 28:973         | -83000                 | 4.528                      | 1000000                      | 2004-9                          | 5=23000=05                                                        | 1 100                   | 0=00/0=04                 |
| 28.676         | 1.8300                 | 5-456                      | .0004919                     | 3199-9                          | 2,2874@-05                                                        | 1637                    | 2.4600-04                 |
| 28-380         | 3.5800                 | 6-380                      | -0004165                     | 3755-6                          | 1-2013@-05                                                        | -1517                   | 1-190@-04                 |
| 28-083         | 6-5000                 | 7-208                      | -0003633                     | 4278-8                          | 6-85860-06                                                        | -1397                   | 6-221@-05                 |
| 27.707         | 0,5000                 | 9 010                      | :0003236                     | 4774-9                          | 6-5409@-06                                                        | -1278                   | 5-393@05                  |
| 21:101         | 9.5000                 | 0-210                      | .0002927                     | 5248.0                          | 4.9235@-06                                                        | .1158                   | 3-658@-05                 |
| 27-491         | 13.500                 | 9=118                      | 0002678                      | 5701-2                          | 3-6751@-06                                                        | -1038                   | 2-435@-05                 |
| 27:195         | 19:000                 | 10.02                      | -0002473                     | 6137-0                          | 3-03130-06                                                        | - 0919                  | 1-7660-05                 |
| 26:899         | 26:000                 | 10.92                      |                              | (                               | 2 28209 0                                                         |                         | 1 1500 05                 |
| 26-603         | 36-000                 | 11-81                      | :0002300                     | 055 (=4                         | 2.20300-00                                                        | -0199                   | 1:1500-05                 |
| 26-307         | 49.000                 | 12.69                      | 0002153                      | 6963-8                          | 1-9448@-06                                                        |                         | 8,280@-06                 |
| 26:012         | 70-000                 | 13:57                      | -0002024                     | 7357-6                          | 1-3834@-06                                                        | <del>, 05</del> 61      | 4-8208-06                 |
| 25.864         | 81:000                 | 14-01                      | •0000968                     | 7646-1                          | 1.5080@-06                                                        | -0471                   | 4,401@=06                 |

INITIAL SEED AREA = 1150

- 283 -

|   |                                                             |                        | TABLE                      | 82                           |                    | RUN NO.: R.                          | P.E.3                    |                           |   |  |
|---|-------------------------------------------------------------|------------------------|----------------------------|------------------------------|--------------------|--------------------------------------|--------------------------|---------------------------|---|--|
|   |                                                             | TEMP                   | 70.0°C                     | CELL: C                      | STIRR              |                                      |                          |                           |   |  |
|   |                                                             | SEED                   | BATCH I                    | P.G. PREPARE                 | D SIEVE            | FRACTION: 89                         | -105 ju                  |                           |   |  |
|   | CONCN.                                                      | TOTAL<br>TIME<br>MINS: | CRYSTAL<br>MASS<br>(GRAMS) | DIAMETER<br>INCREASE<br>(CM) | MEAN<br>AREA<br>CM | GROWTH RATE<br>CONSTANT<br>K(MIN CM) | MEAN<br>SUPER -<br>SATN: | GROWTH<br>RATE<br>CM/MIN: |   |  |
|   | 27.343                                                      | .00000                 | 1-983                      | 00000071                     | 1010.0             | 2.25.8)10-05                         | -1008                    | 1)1020-01                 |   |  |
|   | 27:195                                                      | 2.0000                 | 2.443                      |                              | 1312.5             | 2.2)040=0)                           |                          | 1.0-956-04                |   |  |
|   | 27-047                                                      | 7-0000                 | 2-902                      | 0004733                      | 1645-2             | 7.6583@-06                           | :0949                    | 4-733@-05                 |   |  |
|   | -100.1                                                      | 1.0000                 | 0.000                      | .0003927                     | 1973-9             | 2-7246@-06                           |                          | 1.571@-05                 |   |  |
|   | 26:099                                                      | 19:500                 | 3=359                      | -0003368                     | 2291-5             | 1-3381@-06                           |                          | 7-1650-06                 |   |  |
|   | 26-751                                                      | 43:000                 | 3-815                      | 0002957                      | 2596-9             | 7-4745@-07                           | 0770                     | 3-6970-06                 |   |  |
|   | 26.603                                                      | 83:000                 | 4-268                      |                              |                    |                                      | 0710                     | 2 1/180 06                |   |  |
|   | 26.455                                                      | 125.00                 | 4.720                      | .0002644                     | 2090-1             | 0:93200-07                           | :0/10                    | 3-1400-00                 |   |  |
|   | 26-307                                                      | 165-00                 | 5-160                      | -0002397                     | 3173-7             | 7-2386@-07                           | -0650                    | 2.9960-06                 |   |  |
|   | 20.301                                                      | 10,000                 | ))                         | - 0002195                    | 3446-9             | 4-8924@-07                           | -0590                    | 1-829@-06                 |   |  |
|   | 26-159                                                      | 225:00                 | 5-616                      | -0002028                     | 3711.0             | 5-0553@-07                           | -0531                    | 1.6900-06                 |   |  |
|   | 26:012                                                      | 285-00                 | 6.061                      | -0001885                     | 3066-8             | 376170-07                            | -0471                    | 1-1000-06                 |   |  |
|   | 25:864                                                      | 370-00                 | 6.503                      | .000:00)                     | 3900.0             | Pelotlenol                           |                          | 1.1090-00                 |   |  |
|   | 25-716                                                      | 430.00                 | 6-942                      | -0001765                     | 4214:59            | 5-7442@-07                           | :0411                    | 1:470@=06                 |   |  |
|   | 25.568                                                      | 560.00                 | 7:378                      | • 0001655                    | 4455-7             | 2-9346@-07                           | :0352                    | 6:-366@-07                |   |  |
| - | QUILIBR                                                     | IUM CONC               | ENTRATIC                   | N = 24-77                    | 1                  | INITIAL                              | SEED ARE                 | A = 1146                  | - |  |
|   | CULLIDRIUM CONCENTRATION = 240 [[] INTITAL SEED AREA = 1140 |                        |                            |                              |                    |                                      |                          |                           |   |  |

- 284 -

|                | TABLE: 83              |                            |                               |                                 |                                                                   |                         |                           |
|----------------|------------------------|----------------------------|-------------------------------|---------------------------------|-------------------------------------------------------------------|-------------------------|---------------------------|
|                | TEMP                   | :70.0°C                    | CELL: C                       | STIRRER SPEED: 2000 R.P.M.      |                                                                   |                         |                           |
|                | SEED                   | BATCH F                    | PREPARED                      | SIEVE                           | FRACTION: 89                                                      | -105je                  |                           |
| CONCN-<br>2M/V | TOTAL<br>TIME<br>MINS. | CRYSTAL<br>MASS<br>(GRAMS) | D IAMETER<br>INCREASE<br>(CM) | MEAN<br>AREA<br>CM <sup>2</sup> | GROWTH RATE<br>CONSTANT<br>K(MIN <sup>-1</sup> CM <sup>-2</sup> ) | MEAN<br>SUPER-<br>SATN: | GROWTH<br>RATE<br>CM/MIN. |
| 27.343         | -00000                 | 1-987                      | 0002882                       | 2715-7                          | 1-45510-05                                                        | -1008                   | 9-6070-05                 |
| 27:195         | 1.5000                 | 2.447                      | 00002002                      | 2/1001                          | 1.19910-09                                                        |                         | 9.0010-05                 |
| 27:047         | 14.000                 | 2.906                      | -0002249                      | 3459-0                          | 1=4570@=06                                                        | •0949                   | 8-9980-06                 |
| 26-899         | 44=000                 | 3-363                      | 0001863                       | 4154-8                          | 5-3933@-07                                                        | := 0889                 | 3.105@-06                 |
| 26.751         | 85.000                 | 2.817                      | 0001601                       | 4809:3                          | 3-6544@-07                                                        | -0829                   | 1-953@-06                 |
| 20:0 []]       | 05:000                 | 3:011                      | -0001412                      | 5429-2                          | 4-08600-07                                                        | -0770                   | 2-017@-06                 |
| 26-603         | 120,00                 | 4-270                      | -0001268                      | 6019-9                          | 4.6605@-07                                                        | :0710                   | 2-1140-06                 |
| 26:455         | 150.00                 | 4-721                      | 0001 155                      | 6586-0                          | 4-36020-07                                                        | -0650                   | 1-8050-06                 |
| 26:307         | 182:00                 | 5=170                      | 0001011                       | 7120.1                          | 0.000000                                                          |                         | 1.0000                    |
| 26-159         | 232-00                 | 5.617                      |                               | [130:1                          | 2:0302@-01                                                        | :0590                   | 1.001@~00                 |
| 26:012         | 275:00                 | 6-062                      | :0000984                      | 7654.5                          | 3=4199@-07                                                        | :0531                   | 1.144@-06                 |
| 25-716         | 110.00                 | 6-0)1)1                    | -0001777                      | 8402-8                          | 2-3987@-07                                                        | -0441                   | 6.583@-07                 |
| 25:627         | 540.00                 | 7:206                      | 0000490                       | 9034.5                          | 8-3859@-08                                                        | •0364                   | 1-385@-07                 |

|                | TEMP                   | TABLE :<br>70.0°C<br>BATCH E | 84<br>CELL: S<br>PREPARED     | STIRR                           |                                                                 |                         |                           |
|----------------|------------------------|------------------------------|-------------------------------|---------------------------------|-----------------------------------------------------------------|-------------------------|---------------------------|
| CONCN.<br>ZM/V | TOTAL<br>TIME<br>MINS. | CRYSTAL<br>MASS<br>(GRAMS)   | D IAMETER<br>INCREASE<br>(CM) | MEAN<br>AREA<br>CM <sup>2</sup> | GROWTH RATE<br>CONSTANT<br>K(MIN <sup>T</sup> CM <sup>2</sup> ) | MEAN<br>SUPER-<br>SATN: | GROWTH<br>RATE<br>CM/MIN: |
| 27-461         | -00000                 | 1-928                        |                               |                                 |                                                                 | 4.0-1                   | 1 0000 0                  |
| 27.402         | 5:0000                 | 2.112                        | -0001939                      | 1600.7                          | 25 10 120-00                                                    | =10/4                   | 1-939@-0                  |
|                | 165-00                 | 2.20)                        | 0000914                       | 1704-2                          | 4-1501@-08                                                      | 1056                    | 2:856@-07                 |
| 6/03/6         | 103:00                 | 2.204                        | -0003353                      | 1858.0                          | 3-3431@-07                                                      | -1026                   | 2-235@-06                 |
| 27:254         | 240.00                 | 2.572                        | -0002654                      | 2126-1                          | 2-10880-07                                                      | 0973                    | 1-523@-06                 |
| 27:106         | 360,00                 | 3=031                        |                               |                                 |                                                                 |                         |                           |
| EQUILIBR       | IUM CONC               | ENTRATIO                     | V = 24-77                     | INITIAL                         | SEED AREA                                                       | A = 1545                |                           |

|        |                        | TABLE :                    | 85                           | RUN NO.: R.P.G.B.1              |                                                                   |                         |                           |
|--------|------------------------|----------------------------|------------------------------|---------------------------------|-------------------------------------------------------------------|-------------------------|---------------------------|
|        | TEMP                   | :70.0°c                    | CELL: S                      | STIRR                           |                                                                   |                         |                           |
|        | SEED                   | BATCH E                    | PREPARED                     | SIEVE                           | FRACTION: 89                                                      | -105 ju                 |                           |
| CONCN. | TOTAL<br>TIME<br>MINS: | CRYSTAL<br>MASS<br>(GRAMS) | DIAMETER<br>INCREASE<br>(CM) | MEAN<br>AREA<br>CM <sup>2</sup> | GROWTH RATE<br>CONSTANT<br>K(MIN <sup>-1</sup> CM <sup>-2</sup> ) | MEAN<br>SUPER-<br>SATN- | GROWTH<br>RATE<br>CM/MIN. |
| 27:491 | 00000                  | 1.960                      |                              | 16650                           | 2.08620.06                                                        |                         | 2.8110.05                 |
| 27-402 | 5-0000                 | 2.237                      | 0002011                      | 1003.9                          | 5.90030=00                                                        | .1000                   | 4.0110-05                 |
| 27.254 | 62:000                 | 2.697                      | :0004074                     | 1913-9                          | 5:30700-07                                                        | :1032                   | 3.573@-06                 |
| 27-106 | 80,000                 | 3-155                      | 0003514                      | 2210.8                          | 1-5443@-06                                                        | ···0973                 | 9:762@-06                 |
| 26-058 | 00-000                 | 2.612                      | .0003107                     | 2493-2                          | 1-3821@-06                                                        | •0913                   | 8.175@-06                 |
| 20.990 | 100.00                 | 3.013                      | .0002795                     | 2763.0                          | 1:0563@-06                                                        | :0853                   | 5-822@-06                 |
| 20:010 | 123:00                 | 4.009                      | -0002548                     | 3022.2                          | 1-1327@-06                                                        | .0793                   | 5-7900-06                 |
| 26-662 | 145-00                 | 4:524                      | -0006577                     | 3506-7                          | 1=2295@=06                                                        | -0674                   | 5-3040-06                 |
| 26-218 | 207.00                 | 5-884                      | 000101)                      | 2076 1                          | 7 10000 07                                                        |                         | 0.5100 0                  |
| 26-071 | 245.00                 | 6.334                      | -0001914                     | 39/0=1                          | 1=1292@-01                                                        | ~0555                   | 2.5100-06                 |
| 25-923 | 290-00                 | 6-782                      | -0001808                     | 4197-1                          | 6-3913@-07                                                        | -0495                   | 2-009@-06                 |
| 25775  | 255-00                 | 7.220                      | -0001715                     | 4412.6                          | 4-7865@-07                                                        | -0435                   | 1-319@-06                 |
| 4).10  | 555:00                 | 1:230                      | -0001632                     | 4622.9                          | 4-4709@-07                                                        | .0376                   | 1-0600-06                 |
| 25-627 | 432.00                 | 7:675                      |                              |                                 |                                                                   |                         |                           |

EQUILIBRIUM CONCENTRATION = 24.771 INITIAL SEED AREA = 1570

|                |                        | TABLE :                    | 86                           |                                 | RUN NO.: R.                                                     | P.D.2                   |                          |
|----------------|------------------------|----------------------------|------------------------------|---------------------------------|-----------------------------------------------------------------|-------------------------|--------------------------|
|                | TEMP                   | :70.02                     | CELL: C                      | STIRR                           | ER SPEED:2000                                                   | R.P.M.                  |                          |
|                | SEED                   | BATCHE                     | PREPARED                     | SIEVE                           | FRACTION: 89                                                    | -105 pc                 |                          |
| CONCN-<br>%M/V | TOTAL<br>TIME<br>MINS. | CRYSTAL<br>MASS<br>(GRAMS) | DIAMETER<br>INCREASE<br>(CM) | MEAN<br>AREA<br>CM <sup>2</sup> | GROWTH RATE<br>CONSTANT<br>K(MIN <sup>T</sup> CM <sup>2</sup> ) | MEAN<br>SUPER-<br>SATN. | GROWTH<br>RATE<br>CM/MIN |
| 27:076         | -00000                 | 1-975                      | 0005 270                     | 1760.7                          | 28707@-05                                                       |                         | 2-2560-04                |
| 26-899         | 1-1700                 | 2.526                      | 0005219                      | 109.1                           | 2.01018-0)                                                      |                         |                          |
| 26-751         | 27:000                 | 2-983                      | 0003679                      | 2104-1                          | 1.3259@=06                                                      | 0829                    | 7-1210-06                |
|                | 69 000                 | 0 100                      | .0003222                     | 2390.6                          | 7-9216@-07                                                      | 0770                    | 3-929@-06                |
| 20:003         | 00,000                 | 3-430                      | :0005481                     | 2791-3                          | 5.2562@-07                                                      | -0680                   | 2:284@-06                |
| 26:307         | 188.00                 | 4.340                      | -0002382                     | 3175-1                          | 2-9782@-07                                                      | -0590                   | 1-1130-06                |
| 26-159         | 295:00                 | 4.787                      |                              | J. [J.                          | h soshe a                                                       | 0521                    | 1 )16-70 06              |
| 26:012         | 370.00                 | 5-231                      | 0002200                      | 3410-1                          | 4.39340-07                                                      | -031                    | 1-40 10-00               |
| 25:568         | 1245.0                 | 6.510                      | .0005617                     | 3858-3                          | 1.3095@-07                                                      | -0411                   | 3-2100-07                |

|        | TABLE: 87              |                            |                              | RUN NO.: R.P.G.M.1              |                                                                 |                         |                                     |
|--------|------------------------|----------------------------|------------------------------|---------------------------------|-----------------------------------------------------------------|-------------------------|-------------------------------------|
|        | TEMP                   | 70.02                      | CELL:S                       | STIRRER SPEED: 2000 R.P.M.      |                                                                 |                         |                                     |
|        | SEED                   | BATCHE                     | PREPARED                     | SIEVE FRACTION: 89-105          |                                                                 | -105 ju                 |                                     |
| CONCN. | TOTAL<br>TIME<br>MINS. | CRYSTAL<br>MASS<br>(GRAMS) | DIAMETER<br>INCREASE<br>(CM) | MEAN<br>AREA<br>CM <sup>2</sup> | GROWTH RATE<br>CONSTANT<br>K(MIN <sup>7</sup> CM <sup>2</sup> ) | MEAN<br>SUPER-<br>SATN. | GROWTH<br>RATE<br>CM/MIN:           |
| 27:461 | .00000                 | 1-964                      | 0001905                      | 1637-5                          | 2-7184@-06                                                      | -1074                   | 1-905@-05                           |
| 27:402 | 5.0000                 | 2.148                      | -0004204                     | 1855-7                          | 1-2481@-06                                                      | -1032                   | 8=407@=06                           |
| 27.254 | 30.000                 | 2.609                      |                              | 2155-8                          | 1-7817@-06                                                      | -0973                   | 1-127@-05                           |
| 27-106 | 46.000                 | 3:067                      | -0003174                     | 2440.9                          | 1.7881@-06                                                      | .0913                   | 1.058@-05                           |
| 26:958 | 61-000                 | 3-525                      | .0002847                     | 2713.1                          | 1=9123@-06                                                      | -0853                   | 1-055@-05                           |
| 26.810 | 74.500                 | 3-981                      | :0002589                     | 2974-3                          | 1.7462@-06                                                      | .0793                   | 8-929@-06                           |
| 26.662 | 89.000                 | 4-436                      | -0002381                     | 3225-9                          | 1.9418@-06                                                      | .0734                   | 9-156@-06                           |
| 26-514 | 102-00                 | 4.890                      | -0002208                     | 3468-9                          | 2.3229@-06                                                      | -0674                   | 1.003@-05                           |
| 26-366 | 113-00                 | 5=343                      | -0002061                     | 3704-3                          | 1-3817@-06                                                      | .0614                   | 5-424@-06                           |
| 26-218 | 132.00                 | 5=794                      | -0001936                     | 3932-9                          | 1-3042@-06                                                      | - 0555                  | 4.609@-06                           |
| 26-071 | 153-00                 | 6-244                      | -0003563                     | 4262.5                          | 1:0259@-06                                                      | -0465                   | 3-0200-06                           |
| 25-775 | 212:00                 | 7-141                      | -0001647                     | 4583-9                          | 1-3353@-06                                                      | -0376                   | 3-167@-06                           |
| 25-627 | 238.00                 | 7-587                      | -0001571                     | 4790.6                          | 2.7831@-07                                                      | -0316                   | 5-532@-07                           |
| 25-480 | 380-00                 | 8-032                      |                              | 109 AD 00 per 640 00 00 m       | en Alless au 25 Alless en 40 Alles Alles                        |                         | un an an on on an an an an an an an |

|                |                        | TABLE :                    | 88                           | RUN NO.: R.P.E.5                |                                                                   |                         |                           |
|----------------|------------------------|----------------------------|------------------------------|---------------------------------|-------------------------------------------------------------------|-------------------------|---------------------------|
|                | TEMP:70.0°C CELL: C    |                            |                              | STIRRER SPEED :2000 R.P.M.      |                                                                   |                         |                           |
|                | SEED                   | BATCH E                    | PREPARED                     | SIEVE                           | FRACTION: 8                                                       | 9-105 pc                |                           |
| CONCN.<br>ZM/V | TOTAL<br>TIME<br>MINS: | CRYSTAL<br>MASS<br>(GRAMS) | DIAMETER<br>INCREASE<br>(CM) | MEAN<br>AREA<br>CM <sup>2</sup> | GROWTH RATE<br>CONSTANT<br>K(MIN <sup>-1</sup> CM <sup>-2</sup> ) | MEAN<br>SUPER-<br>SATN. | GROWTH<br>RATE<br>CM/MIN: |
| 27-402         | .00000                 | 1.987                      | -0006 046                    | 1810-1                          | 6.0428@-05                                                        | -1020                   | 4-031@-04                 |
| 27-195         | •75000                 | 2.632                      | -0003572                     | 2174-5                          | 5.5185@-06                                                        | -0949                   | 3-402@-05                 |
| 27-047         | 6-0000                 | 3-090                      | -0003146                     | 2459.6                          | 1-6077@-06                                                        | -0889                   | 9-2520-06                 |
| 26-899         | 23:000                 | 3.547                      | -0002821                     | 2731-8                          | 1-0551@-06                                                        | - 0829                  | 5-642@-06                 |
| 26.751         | 48.000                 | 4.002                      | = 0002564                    | 2992.7                          | 9-2657@-07                                                        | .0770                   | 4-579@-06                 |
| 26-603         | 76:000                 | 4-456                      | -0004539                     | 3362-9                          | 6-2326@-07                                                        | -0680                   | 2-702@-06                 |
| 26-307         | 160.00                 | 5:357                      |                              | 3832-1                          | 6-1971@-07                                                        | -0561                   | 2-191@-06                 |
| 26-012         | 250.00                 | 6-249                      | 0001707                      | )1168 1                         | 10-01/0-07                                                        | -0)171                  | 1-2820-06                 |
| 25-864         | 320:00                 | 6.692                      |                              | 4100-1                          | 2 )190)10 07                                                      | 0111                    | 8.0220-07                 |
| 25-716         | 415:00                 | 7=132                      | :0001697                     | 4302-3                          | 3-4094@=01                                                        | .0411                   | 0.9320-01                 |

|                                      |                        | TABLE :                    | 89                                    | RUN NO.: R.P.E.6                |                                                                   |                                        |                                                     |
|--------------------------------------|------------------------|----------------------------|---------------------------------------|---------------------------------|-------------------------------------------------------------------|----------------------------------------|-----------------------------------------------------|
|                                      | TEMP                   | :70.0°C                    | CELL: S                               | STIRR                           | ER SPEED :2000                                                    | R.P.M.                                 |                                                     |
|                                      | SEED                   | BATCH L                    | PREPARED                              | SIEVE                           | FRACTION: 8                                                       | -105 مر                                |                                                     |
| CONCN-<br>‰M/V                       | TOTAL<br>TIME<br>MINS: | CRYSTAL<br>MASS<br>(GRAMS) | DIAMETER<br>INCREASE<br>(CM)          | MEAN<br>AREA<br>CM <sup>2</sup> | GROWTH RATE<br>CONSTANT<br>K(MIN <sup>-1</sup> CM <sup>-2</sup> ) | MEAN<br>SUPER-<br>SATN:                | GROWTH<br>RATE<br>CM/MIN.                           |
| 27-461                               |                        | 1-975                      |                                       | 1800-6                          | )1_)15200-05                                                      |                                        | 2 0110-01                                           |
| 27=254                               | 1.0000                 | 2.620                      | ,000002                               | 1000-0                          | - ) ~ ( 0 ~                                                       | 0070                                   | 2.0418-04                                           |
| 27-106                               | 6:2500                 | 3-079                      | 0003590                               | 2105:0                          | 5-4060-06                                                         | ······································ | 3-4200-05                                           |
| 26:958                               | 13:000                 | 3-537                      | 0003162                               | 2450-3                          | 3-9583@-06                                                        | • 0913                                 | 2.343@-05                                           |
| 26-810                               | 18-000                 | 3-993                      | -0002837                              | 2722.8                          | 5-14500-06                                                        | 0853                                   | 2.837@-05                                           |
| 26.662                               | 22.000                 | )1)1)18                    | -0002581                              | 2984-2                          | 6-3089@-06                                                        | •0793                                  | 3-226@-05                                           |
| 20:002                               | 22:000                 | 4.440                      | .0002373                              | 3236-0                          | 6-2909@-06                                                        | -0734                                  | 2-967@-05                                           |
| 26.514                               | 26:000                 | 4.902                      | -0002201                              | 3479-3                          | 6-3689@-06                                                        |                                        | 2. 7520-05                                          |
| 26-366                               | 30-000                 | 5=354                      | -0002056                              | 3715-1                          | 5-2354@-06                                                        | -0614                                  | 2-056@-05                                           |
| 26-218                               | 35:000                 | 5-806                      | 0001552                               | 2021-6                          | 1-24650-06                                                        | 0561                                   | 1-5530-05                                           |
| 26-100                               | 40.000                 | 6-166                      | .0001)))                              | J921.0                          | T 01(10 0                                                         |                                        | 1. (000 05                                          |
| 25-923                               | 46.500                 | 6-705                      | -0002200                              | 4144-3                          | 5-3161@-06                                                        | -0,01                                  | 1.6920-05                                           |
| 25-775                               | 53:000                 | 7-152                      | 0001728                               | 4383.6                          | 4-8181@-06                                                        | -0435                                  | 1-329@-05                                           |
| 25-627                               | 59-500                 | 7-598                      | -0001643                              | 4595.5                          | 5-32800-06                                                        | -0376                                  | 1-264@-05                                           |
| 25)180                               | 70-000                 | 8-012                      | .0001568                              | 4802-5                          | 3-7545@-06                                                        | -0316                                  | 7-467@-06                                           |
| 25-400                               | 10.000                 | 0.1.0-                     | -0001500                              | 5005-1                          | 3-1128@-06                                                        | - 0256                                 | 5-001@-06                                           |
| 25:332                               | 000                    | 8-487                      | -0001439                              | 5203-5                          | 2-9352@-06                                                        | -0197                                  | 3-5980-06                                           |
| 25-184                               | 105:00                 | 8-930                      | ag ant log dit nit our Midges dit wit |                                 | nd AC 1 pag bill without our did bill and dig with the            | nya ma-ma labasa ma ana ana            | 005 som mitt som atte som dån gjög sjög som som att |
| EQUILIBRIUM CONCENTRATION = $24.771$ |                        |                            |                                       | INITIAL                         | SEED ARE                                                          | A 1582                                 |                                                     |

- 291 -

|        |                        | TABLE :                    | 90                           |                           |                                                                 |                          |                           |
|--------|------------------------|----------------------------|------------------------------|---------------------------|-----------------------------------------------------------------|--------------------------|---------------------------|
|        | TEMP                   | 70.0°C                     | CELL: C                      | STIRRER SPEED 2000 R.P.M. |                                                                 | R.P.M.                   |                           |
|        | SEED                   | BATCH E                    | PREPARED                     | SIEVE                     | FRACTION: 89                                                    | -105 µ                   |                           |
| CONCN. | TOTAL<br>TIME<br>MINS: | CRYSTAL<br>MASS<br>(GRAMS) | DIAMETER<br>INCREASE<br>(CM) | MEAN<br>AREA<br>CM        | GROWTH RATE<br>CONSTANT<br>K(MIN <sup>7</sup> CM <sup>2</sup> ) | MEAN<br>SUPER -<br>SATN: | GROWTH<br>RATE<br>CM/MIN. |
| 27:343 | .00000                 | 1-993                      | -0004447                     | 1754-1                    | 3::3791@=05                                                     | -1008                    | 2-224@-04                 |
| 27:195 | 1-0000                 | 2.453                      |                              | 2060.7                    | 6-11/120-06                                                     | 0100-                    | 2.7720-05                 |
| 27:047 | 6.0000                 | 2;912                      |                              | 2000-1                    | 1 0(1)0 0                                                       | .0979                    | 5. [ [23=0]               |
| 26.899 | 27.000                 | 3-369                      | 0003292                      | 2351.4                    | 1.3614@=06                                                      | :0889                    | 7:0309-06                 |
| 26-751 | 58,000                 | 3.824                      | : 0002932                    | 2628.4                    | 8.8438@-07                                                      | . 0829                   | 4.7309-06                 |
| 26.602 | 88.000                 | )1-278                     | .0002653                     | 2893.4                    | 8.9449@-07                                                      | •0770                    | 4.421@-06                 |
| 20.005 | 00,000                 | 7.210                      | -0002428                     | 3148.1                    | 1.0695@-06                                                      | .0710                    | 4.857@-06                 |
| 26-455 | 113:00                 | 4:729                      | .0006289                     | 3623.8                    | 7-2086@-07                                                      | .0590                    | 2.687@-06                 |
| 26.012 | 230,00                 | 6-074                      | -0001836                     | 4084-5                    | 4.4361@-07                                                      | .0471                    | 1-3110-06                 |
| 25.864 | 300.00                 | 6.517                      | 0001722                      | 1001 1                    | 2 2020 07                                                       | 0111                     | 0 6200 07                 |
| 25-716 | 390.00                 | 6:957                      |                              | +301-1                    | 2 · [] < [8 · 0]                                                |                          | 7:0228-01                 |

|                                    | TABLE: 91              |                            |                              | RUN NO: : R. P.E.8              |                                                                   |                          |                           |
|------------------------------------|------------------------|----------------------------|------------------------------|---------------------------------|-------------------------------------------------------------------|--------------------------|---------------------------|
|                                    | TEMP 70.0° C           |                            | CELL: S                      | ST IRRER SPEED 2000 R.P         |                                                                   | R.P.M.                   |                           |
|                                    | SEED                   | BATCH E                    | PREPARED                     | SIEVE                           | FRACTION: 89-                                                     | -105 JL                  |                           |
| CONCN:<br>%M/V                     | TOTAL<br>TIME<br>MINS. | CRYSTAL<br>MASS<br>(GRAMS) | DIAMETER<br>INCREASE<br>(CM) | MEAN<br>AREA<br>CM <sup>2</sup> | GROWTH RATE<br>CONSTANT<br>K(MIN <sup>-1</sup> CM <sup>-2</sup> ) | MEAN<br>SUPER -<br>SATN: | GROWTH<br>RATE<br>CM/MIN= |
| 27.402                             | . 00000                | 1-955                      | 000/1520                     | 1722.7                          | 5-01280-05                                                        | 1022                     | 3-3800-04                 |
| 27-254                             | .67000                 | 2.415                      | -0002822                     | 2020-2                          | 7-902/0=05                                                        | . 0973                   | 5-002@-05                 |
| 27.106                             | 4.5000                 | 2.875                      |                              | 2020.7                          | 5.6)1200-06                                                       | . 0012                   | 2-2/10-05                 |
| 26-958                             | 9.5000                 | 3.333                      | .0003341                     | 2507.6                          | -2-27060-06                                                       | . 0952                   | -1-8600-05                |
| 26-810                             | 1.5000                 | 3-789                      | 0002910                      | 299700                          | 1 )12202 05                                                       |                          | 7.0760-06                 |
| 26.662                             | 20:000                 | 4.245                      | 0002092                      | 2002:0                          | 1.42200=00                                                        |                          | 1.2100-00                 |
| 26.514                             | 25:000                 | 4.699                      | 0002465                      | 311 (                           | 5:223/@=00                                                        | ···/34                   | 2.4050-05                 |
| 26.366                             | 29:000                 | 5.151                      | .0002278                     | 3363.7                          | 6.50700-06                                                        | .06 /4                   | 2.0400-05                 |
| 26-218                             | 34.000                 | 5.603                      | :0002122                     | 3601-8                          | 5.4001@-06                                                        | .0614                    | 2.1220-05                 |
| 26:071                             | 39:000                 | 6.053                      | .0001988                     | 3832.7                          | 5.6209@-06                                                        | • 0555                   | 1-9888-05                 |
| 25.923                             | 46.000                 | 6.502                      | 0001873                      | 4057.2                          | 4-2504@-06                                                        | 0495                     | 1-3388-05                 |
| 25:332                             | 92.000                 | 8.293                      | 0006615                      | 4586-4                          | 3.4102@-06                                                        | -0346                    | 7:191@-06                 |
| EQUILIBRIUM CONCENTRATION = 24.771 |                        |                            |                              | INITIAL SEED AREA = 1566        |                                                                   |                          |                           |

|                | TABLE: 92              |                            |                              | RUN NO. : R.P.D.3               |                                                                   |                                        |                           |  |  |
|----------------|------------------------|----------------------------|------------------------------|---------------------------------|-------------------------------------------------------------------|----------------------------------------|---------------------------|--|--|
|                | TEMP                   | TEMP: 70.0°C CELL: S       |                              |                                 | STIRRER SPEED: 2000 R. P.M.                                       |                                        |                           |  |  |
|                | SEED                   | BATCH E                    | PREPARED                     | SIEVE                           |                                                                   |                                        |                           |  |  |
| CONCN.<br>%M/V | TOTAL<br>TIME<br>MINS. | CRYSTAL<br>MASS<br>(GRAMS) | DIAMETER<br>INCREASE<br>(CM) | MEAN<br>AREA<br>CM <sup>2</sup> | GROWTH RATE<br>CONSTANT<br>K(MIN <sup>-1</sup> CM <sup>-2</sup> ) | MEAN<br>SUPER-<br>SATN-                | GROWTH<br>RATE<br>CM/MIN- |  |  |
| 27.402         | -00000                 | 1-935                      |                              | 1707.7                          | 1                                                                 | . 1022                                 | 8 2120 00                 |  |  |
| 27.254         | 2:7500                 | 2.395                      | -00009 /2<br>00009 /2        | 1000                            | 1:23300=0                                                         | 1032                                   | 0;3120=0)                 |  |  |
| 27-106         | 6:7500                 | 2.855                      | .0003063                     | 2014:0                          | (:0204@=00                                                        | -0973                                  | 4.8290-05                 |  |  |
| 26-958         | 11-500                 | 3-313                      | 0003365                      | 2304:2                          | 5-9815@-06                                                        | -0913                                  | 3-542@-05                 |  |  |
| 26-810         | 16-500                 | 3: 769                     | :0002995                     | 2580.7                          | 5-4282@-06                                                        | .0853                                  | 2.995@-05                 |  |  |
| 26-662         | 21-000                 | 1-224                      | -0002709                     | 2845-5                          | 5-8814@-06                                                        | .0793                                  | 3-010@-05                 |  |  |
| 26 = 1)1       | 26.000                 | 1 670                      | 0002479                      | 3100.0                          | 5=2537@-06                                                        | -0734                                  | 2-479@-05                 |  |  |
| 20 0) 14       | 20.000                 | 4.0 19                     | .0002291                     | 3345.5                          | 5.88780-06                                                        | .0674                                  | 2-545@-05                 |  |  |
| 26:365         | 30,500                 | 5-131                      | .0002133                     | 3583.0                          | 6-78540-06                                                        | :0614                                  | 2.666@-05                 |  |  |
| 26.218         | 34:500                 | 5:583                      | -0001998                     | 3813-4                          | 6.2769@-06                                                        | - 0555                                 | 2-2209-05                 |  |  |
| 26:071         | 39:000                 | 6:033                      | -0001882                     | )1027.)1                        | 2.72720-06                                                        | 0/105                                  | 1.1760_05                 |  |  |
| 25:923         | 47.000                 | 6-482                      | 2001002                      | 403/64                          | 3:12 13:00 00                                                     |                                        | 1.100-0                   |  |  |
| 25=775         | 53:000                 | 6-930                      | :0001 780                    | 4255-5                          | 5-37689-06                                                        | :0435                                  | 1=4840=05                 |  |  |
| 25 627         | 59:500                 | 7-376                      | 0001691                      | 4468.2                          | 5-4797@-06                                                        | ······································ | 1-301@-05                 |  |  |
| 25-480         | 70.000                 | 7:822                      | .0001611                     | 4676:0                          | 3-8561@-06                                                        | :0316                                  | 7-673@-06                 |  |  |

INITIAL SEED AREA = 1550

- 294 -

|               | TABLE: 93              |                            |                              | RUN NO.: R.E.10                 |                                                                   |                         |                           |
|---------------|------------------------|----------------------------|------------------------------|---------------------------------|-------------------------------------------------------------------|-------------------------|---------------------------|
|               | TEMP :70.0°C           |                            | CELL: C                      | STIRRER SPEED 2000 R.P.M.       |                                                                   |                         |                           |
|               | SEED                   | BATCH E                    | PREPARED                     | SIEVE                           | FRACTION: 89                                                      | -1.05 ju                |                           |
| CONCN.<br>M/V | TOTAL<br>TIME<br>MINS: | CRYSTAL<br>MASS<br>(GRAMS) | DIAMETER<br>INCREASE<br>(CM) | MEAN<br>AREA<br>CM <sup>2</sup> | GROWTH RATE<br>CONSTANT<br>K(MIN <sup>-7</sup> CM <sup>-2</sup> ) | MEAN<br>SUPER-<br>SATN: | GROWTH<br>RATE<br>CM/MIN: |
| 29-708        | -00000                 | 1.988                      | 000/1280                     | 17/12.8                         | 6-84050-06                                                        |                         | 6                         |
| 29:569        | 3.5000                 | 2.429                      | 0007650                      | 2008.)                          |                                                                   | 1010                    | 0.1210-05                 |
| 29.430        | 10,500                 | 2.869                      | .0003059                     | 2030.4                          | 3:05510-00                                                        | 51212                   | 2.0130-05                 |
| 29:291        | 25:000                 | 3.309                      | :0003207                     | 2318.5                          | 1-3566@-06                                                        | ;1160                   | 1:106@-05                 |
| 29:152        | 37.000                 | 3=747                      | 0002868                      | 2586.0                          | 1.5407@-06                                                        | -1107                   | 1.195@-05                 |
| 29=012        | 48-000                 | 4-184                      | 0002602                      | 2842.7                          | 1.6068@-06                                                        | -1054                   | 1-183@-05                 |
| 28-175        | 118.00                 | 6707                       | :0012201                     | 3648.2                          | 1=4516@-06                                                        | .0868                   | 8-715@-06                 |
| 2031 []       | 110,000                | 0.191                      | 0001640                      | 4430.5                          | 9-7672@-07                                                        | . 0683                  | 4.556@-06                 |
| 28:035        | 136.00                 | 7:226                      | .0001564                     | 4633.5                          | 1.1401@-06                                                        | -0629                   | 4-8880-06                 |
| 27:895        | 152:00                 | 7=654                      | -0001206                     | 4832-2                          | 1-4707@-06                                                        | -0576                   | 5-7540-06                 |
| 27:756        | 165-00                 | 8-082                      | = 0001434                    | 5026-8                          | 1-1919@-06                                                        | - 0523                  | 4-2180-06                 |
| 27.615        | 182:00                 | 8.508                      |                              | 5017.5                          | 1.208/10.06                                                       | 07170                   | 2.8280.06                 |
| 27:475        | 200-00                 | 8-933                      | 0001310                      | 521(0)                          | 1.20048=00                                                        | :0110                   | 5-0200-00                 |
| 27:195        | 250:00                 | 9:779                      | •0002607                     | 5495-9                          | 1=0013@=06                                                        | ;0390                   | 2.607@=06                 |
| 26-914        | 350.00                 | 10.62                      | -0002426                     | 5857-0                          | 6.5118@-07                                                        | - 0283                  | 1.213@~06                 |
| 26-774        | 480-00                 | 11-03                      | <del>.</del> 0001150         | 6120.2                          | 3-3234@-07                                                        | -0203                   | 4.422@-07                 |
| 26:633        | 590,00                 | 11.45                      | .0001111                     | 6290.6                          | 5:2133@-07                                                        | -0150                   | 5.0500-07                 |

INITIAL SEED AREA = 1593

- 295 -
|               | TABLE: 94              |                            |                                        | RUN NO.: R.E.11    |                                                                   |                                        |                           |
|---------------|------------------------|----------------------------|----------------------------------------|--------------------|-------------------------------------------------------------------|----------------------------------------|---------------------------|
|               | TEMP                   | : 70.02                    | CELL: S                                | STIRR              | ER SPEED: 200                                                     | OR P.M.                                |                           |
|               | SEED                   | BATCH I                    | E PREPARED                             | SIEVE              | FRACTION: 89                                                      | -105/4-                                | • • •                     |
| CONCN.<br>M/V | TOTAL<br>TIME<br>MINS: | CRYSTAL<br>MASS<br>(GRAMS) | DIAMETER<br>INCREASE<br>(CM)           | MEAN<br>AREA<br>CM | GROWTH RATE<br>CONSTANT<br>K(MIN <sup>-1</sup> CM <sup>-2</sup> ) | MEAN<br>SUPER-<br>SATN:                | GROWTH<br>RATE<br>CM/MIN: |
| 29.875        | .00000                 | 1=958                      |                                        | 1600.2             | 1.2)1860-05                                                       |                                        | 11810                     |
| 29:763        | 1.5000                 | 2=311                      | -0003942                               | 1056.8             | 5.00/120.06                                                       | 1286                                   |                           |
| 29:624        | 5-0000                 | 2:5752                     | 0003010                                | 19000              | ( )=)<br>( )=)<br>( )= (                                          | 100                                    | 5-4940-09                 |
| 29-485        | 8.0000                 | 3:192                      | .0003320                               | 2239%              | 0.3/540-00                                                        | ÷1234                                  | 5-5460-05                 |
| 29.346        | 11.500                 | 3.632                      | -0002963                               | 2509.6             | 5.09810-06                                                        | -1101                                  | 4-233@-05                 |
| 29-207        | 15:000                 | 4:070                      | ······································ | 2768-3             | 4.84109-06                                                        | -1128                                  | 3-829@-05                 |
| 29:068        | 18.000                 | 4.508                      | ;0002454                               | 3017-3             | 5.4399@-06                                                        | .1075                                  | 4.090@-05                 |
| 28.929        | 20,500                 | 4:944                      | 0002268                                | 3257.8             | 6.3629@-06                                                        | .1022                                  | 4.537@-05                 |
| 28-789        | 23-000                 | 5=380                      | .0002113                               | 3490.6             | 6-2666@-06                                                        | :0969                                  | 4-225@=05                 |
| 28-650        | 25:500                 | 5-815                      | a0001980                               | 3716-7             | 6.2295@-06                                                        | :0916                                  | 3.960@-05                 |
| 28-510        | 28-500                 | 6.249                      | .0001866                               | 3936.6             | 5.2055@-06                                                        | .0863                                  | 3-110@-05                 |
| 28-271        | 22000                  | 6-682                      | .0001766                               | 4150.9             | 4-5113@-06                                                        | :0810                                  | 2.523@-05                 |
| 20.511        | 10,000                 | 7 =)17                     | :0003281                               | 4461.5             | 4.0822@-06                                                        | :0730                                  | 2:051@-05                 |
| 20:091        | 40,000                 | 1.079                      | .0001529                               | 4765.2             | 3-8119@-06                                                        | -0651                                  | 1.699@-05                 |
| 2/051         | 44.500                 | (=9/0                      | :0001466                               | 4961-3             | 3-9897@-06                                                        | ······································ | 1-629@-05                 |
| 27:5811       | 49:000                 | 8.407                      | -0004082                               | 5339-7             | 4.55300-06                                                        | .0491                                  | 1-512@-05                 |
| 27:391        | 62.500                 | 9.695                      | .0001264                               | 5711.5             | 3-24120-06                                                        | -0384                                  | 8-427@-06                 |
| 27:251        | 70.000                 | 10,12                      | .0001223                               | 5891-0             | 4.5654@-06                                                        | :0331                                  | 1-019@-05                 |
| 27:111        | 76.000                 | 10.55                      | .0002336                               | 6154-0             | 2.6974@-06                                                        | .0251                                  | 4-493@-06                 |
| 26-830        | 102-00                 | 11.40                      | :0001116                               | 6413-2             | 2-72710-06                                                        | -0171                                  | 3-1010-06                 |
| 26.689        | 120.00                 | 11-82                      |                                        |                    | -01-110 00                                                        | tent t                                 |                           |

INITIAL SEED AREA = 1569

EQUILIBRIUM CONCENTRATION = 26.310

---

|                |                        | TABLE                      | 95                           | RUN NO.: R.P.E.M.1              |                                                                   |                         |                           |  |
|----------------|------------------------|----------------------------|------------------------------|---------------------------------|-------------------------------------------------------------------|-------------------------|---------------------------|--|
|                | TEMP                   | :70.0°C                    | CELL: S                      | ST IRRER SPEED : 2000 R.P.M.    |                                                                   |                         |                           |  |
|                | SEED                   | BATCH                      | E PREPARED                   | SIEVE                           | FRACTION: 89                                                      | -105 m                  | S. Sec. a                 |  |
| CONCN-<br>źM/V | TOTAL<br>TIME<br>MINS. | CRYSTAL<br>MASS<br>(GRAMS) | DIAMETER<br>INCREASE<br>(CM) | MEAN<br>AREA<br>CM <sup>2</sup> | GROWTH RATE<br>CONSTANT<br>K(MIN <sup>-1</sup> CM <sup>-2</sup> ) | MEAN<br>SUPER-<br>SATN: | GROWTH<br>RATE<br>CM/MIN. |  |
| 27.432         | .00000                 | 1.942                      | 00000000                     | 1 m) 1 0 0                      |                                                                   | 1000                    |                           |  |
| 27:254         | .75000                 | 2.495                      | :0005310                     | 1 (43:0                         | 5-20310-05                                                        | -1030                   | 3:505@=04                 |  |
| 27:106         | 5:0000                 | 2.954                      | -0003740                     | 2079-2                          | 69546@06                                                          | · 0973                  | 4-4002-05                 |  |
| 26-958         | 10-000                 | 3412                       | :0003275                     | 2366-7                          | 5.5325@-06                                                        | -0913                   | 3-2750-05                 |  |
| 26 810         | 1= 000                 | 2 868                      | 0002926                      | 2640.9                          | 5-3046@-06                                                        | -0853                   | 2-926@-05                 |  |
| 20:010         | 15:000                 | 3:000                      | -0002654                     | 2903.7                          | 5-1871@-06                                                        | .0793                   | 2.6540-05                 |  |
| 26.662         | 20,000                 | 4:323                      | :0002434                     | 3156-5                          | 5-1596@-06                                                        | -0734                   | 2.4340-05                 |  |
| 26.514         | 25.000                 | 4.777                      |                              | 3400.6                          | 5-21310-06                                                        | -0674                   | 2-253@=05                 |  |
| 26-366         | 30.000                 | 5:230                      | 0000100                      | 2626.0                          | 5 2)1700 0                                                        | ~ 1)                    | 2.1000 05                 |  |
| 26:218         | 35.000                 | 5.681                      |                              | 3030-9                          | 5-34 198-00                                                       | . 00 14                 | 2.1000-05                 |  |
| 26.071         | 40.000                 | 6.131                      | 0001970                      | 3866=2                          | 5-5722@-06                                                        | -0555                   | 1-970@-05                 |  |
| 25-923         | 46:000                 | 6-580                      | .0001858                     | 4089-1                          | 4-9201@-06                                                        | -0495                   | 1-5480-05                 |  |
| 2.627          | 60.000                 | 7)175                      | 0003435                      | 4411.3                          | 4-7999@-06                                                        | -0405                   | 1-227@-05                 |  |
| 5021           | 00,000                 | (** ()                     | :0003122                     | 4826-3                          | 3-50600-06                                                        | - 0286                  | 6-244@-06                 |  |
| 25-332         | 85,000                 | 8:366                      |                              | 5127-3                          | 3-3098@-06                                                        | -0197                   | 4-0580-06                 |  |
| 25-184         | 103:00                 | 8-808                      |                              |                                 |                                                                   |                         | -                         |  |

INITIAL SEED AREA = 1556

- 297 -

|                | TABLE: 96              |                            |                               |                                 |                                                                   |                          |                           |
|----------------|------------------------|----------------------------|-------------------------------|---------------------------------|-------------------------------------------------------------------|--------------------------|---------------------------|
|                | TEMP: 70.0°C           |                            | CELL: A                       | STIRRER SPEED: 2000 R.P.M.      |                                                                   |                          |                           |
|                | SEED                   | : BATCH E                  | PREPARED                      | SIEVE                           | FRACTION: 89-                                                     | -105 ju                  |                           |
| CONCN.<br>2M/V | TOTAL<br>TIME<br>MINS: | CRYSTAL<br>MASS<br>(GRAMS) | D JAMETER<br>1NCREASE<br>(CM) | MEAN<br>AREA<br>CM <sup>2</sup> | GROWTH RATE<br>CONSTANT<br>K(MIN <sup>-1</sup> CM <sup>-2</sup> ) | MEAN<br>SUPER -<br>SATN. | GROWTH<br>RATE<br>CM/MIN. |
| 27:446         | .00000                 | 1.946                      | 0000068                       | 1717 0                          | 0 00000                                                           | 1011                     |                           |
| 27:269         | 4.0000                 | 2-499                      | .0005300                      | 1 (4 (=0                        | 9:0309@=00                                                        | .1044                    | 0.0100-05                 |
| 27-121         | 45.000                 | 2-958                      | -0003735                      | 2082.5                          | 7-1537@-07                                                        | - 0979                   | 4.555@-06                 |
| 26.072         | 00.000                 | 2.)116                     | 0003271                       | 2370.1                          | 6:0985@-07                                                        | •0919                    | 3.635@-06                 |
| 20.915         | 90,000                 | 3:410                      | -0002923                      | 2644.4                          | 4-7824@-07                                                        | :0859                    | 2.657@-06                 |
| 26:-825        | 145:00                 | 3:872                      | -0005088                      | 3031-8                          | 3-7997@-07                                                        | - 0770                   | 1-885@-06                 |
| 26-529         | 280.00                 | 4-783                      | 0000050                       |                                 |                                                                   | 06.90                    |                           |
| 26:381         | 330.00                 | 5-236                      | -0002290                      | 3405.1                          | 5:1009@=01                                                        |                          | 2.2900-00                 |
| 26:-233        | 360.00                 | 5.687                      | 0002098                       | 3641-5                          | 8.8161@-07                                                        | .0620                    | 3-497@-06                 |

|         |                        | TABLE                      | 97                                    |                                 |                                                                   |                        |                           |
|---------|------------------------|----------------------------|---------------------------------------|---------------------------------|-------------------------------------------------------------------|------------------------|---------------------------|
|         | TEMP                   | :70.0°c                    | CELL:C                                | STIRF                           |                                                                   |                        |                           |
|         | SEED                   | BATCH I                    | E PREPARED                            | SIEVE                           | FRACTION:89                                                       | -105 ju                |                           |
| CONCN.  | TOTAL<br>TIME<br>MINS: | CRYSTAL<br>MASS<br>(GRAMS) | DIAMETER<br>INCREASE<br>(CM)          | MEAN<br>AREA<br>CM <sup>2</sup> | GROWTH RATE<br>CONSTANT<br>K(MIN <sup>-1</sup> CM <sup>-2</sup> ) | MEAN<br>SUPER<br>SATN- | GROWTH<br>RATE<br>CM/MIN. |
| 27.461  | .00000                 | 1.987                      |                                       | 17/18.7                         | 17)1620-05                                                        | 1062                   |                           |
| 27:343  | 1.5000                 | 2:-356                     | .0005054                              | 1110-1                          | 1: 1403@=05                                                       | 1002                   | 1.2110-04                 |
| 27-195  | 11.500                 | 2.815                      | ;0003900                              | 1996.3                          | 2-9692@-06                                                        | -1008                  | 1-950-05                  |
| 27:047  | 40,000                 | 3-273                      | -0003385                              | 2290-1                          | 9-6525@-07                                                        | :0949                  | 5-938@-06                 |
| 26.800  | 6)000                  | 2.720                      | -0003004                              | 2569-6                          | 1:0900@-06                                                        | :0889                  | 6-2580-06                 |
| 20.099  | 04:000                 | 5-149                      | :0002709                              | 2836-9                          | 7-0556@-07                                                        | .0829                  | 3-762@-06                 |
| 20:751  | 100.00                 | 4-183                      | -0002473                              | 3093-5                          | 7.1711@-07                                                        | .0770                  | 3-533@-06                 |
| 26.603  | 135.00                 | 4.635                      | 0002281                               | 3340-6                          | 7-87250-07                                                        |                        | 2.56)10-06                |
| 26-455  | 167.00                 | 5.085                      | .0002201                              | 3370.0                          | 1:01336=01                                                        | .0/10                  | 3.7049=00                 |
| 26.307  | 205.00                 | 5-533                      | 0002119                               | 3579.4                          | 6.7559@-07                                                        | 6650                   | 2.788@-06                 |
| 26.012  | 295=00                 | 6-424                      | :0003845                              | 3921-2                          | 6-0566@-07                                                        | :0561                  | 2.136@-06                 |
| 25-86)1 | 255:00                 | 6.865                      | .0001757                              | 4253-1                          | 4.9704@-07                                                        | .0471                  | 1.464@-06                 |
| 2).004  | 399:00                 | 0,000                      | 0001664                               | 4465-1                          | 4-3379@-07                                                        | -0411                  | 1-109@-06                 |
| 25.716  | 430-00                 | 7-304                      | -0000958                              | 4631-0                          | 4-2535@-07                                                        | :0364                  | 9-577@-07                 |
| 25.627  | 480:00                 | 7-567                      | nt our day concept and had believe of |                                 |                                                                   |                        |                           |

TABLE: 98 RUN NO .: R. P.D.6 TEMP: 70.0° STIRRER SPEED : 2000R .P.M. CELL: S -----SEED : BATCH E PREPARED SIEVE FRACTION: 89-1054 CONCN-TOTAL CRYSTAL DIAMETER MEAN GROWTH RATE MEAN GROWTH 2M/V TIME MASS INCREASE AREA CONSTANT SUPER-RATE MINS: (GRAMS) (CM) CM2 K(MIN'CM2) CM/MIN. SATN: 27.609 .00000 1:910 .0006273 1748.6 1-4456@-05 -1104 1.046@-04 27:402 3-0000 2.556 :0003685 2112-8 1-8271@-06 1-2280-05 -1032 27:254 18:000 3:016 -0003237 1-2817@-06 2397.4 8-0920-06 :0973 38-000 27-106 3:474 2668-9 -0002899 1-7521@-06 :0913 1-035@-05 26:958 3-931 52:000 1-1386@-06 -0002633 .0853 6-2700-06 2929.3 26:810 73-000 4.387 -0002419 3179-9 1-2465@-06 :0793 6-365@-06 4.841 26-662 92:000 .0008176 3760.0 9.9742@-07 :0644 4.0880-06 26.071 6.653 192,00 :0003425 1-0046@-06 4427=7 -0465 2-953@-06 7.549 25.775 250.00 4739:7 :0001590 6.7156@-07 .0376 1-5900-06 25-627 300-00 7-994 4940.6 3-4837@-07 :0001521 6-914@-07 .0316 25.480 410:00 8.438

EQUILIBRIUM CONCENTRATION = 24-771

TABLE : ..... RUN NO. : R.E: 12 99 TEMP: 70.02 STIRRER SPEED: 2000R .P.M. CELL: S SIEVE FRACTION: 89-105# SEED : BATCH E PREPARED CONCN. TOTAL CRYSTAL MEAN GROWTH RATE **D** IAMETER MEAN GROWTH %M/V TIME MASS INCREASE CONSTANT AREA SUPER -RATE K(MIN CM2) (GRAMS) (CM) CM/MIN-MINS . CM2 SATN: 30:235 .00000 1:923 1750.4 7-2444@-06 .0006009 -1455 7.511@-05 30:041 2.543 4:0000 4-00880-06 3-953@-05 .0003558 2100.9 :1392 2-984 29:902 8.5000 1-846@-05 -0003139 1-9519@-06 -1339 2375-7 17:000 3-424 29:763 3-03680-06 -0005394 2762:5 -1260 2.697@-05 29-485 27:000 4-303 1-576@-05 :0002364 3134-7 1-90470-06 -1181 29-346 34:500 4.741 1-155@-05 -0002194 3370:0 1.46510-06 -1128 29-207 44.000 5:178 3598-2 1-52060-06 -1075 1-139@-05 -0002051 5-614 29:068 53-000 -0001928 3819-9 1-69580-06 -1022 1-2058-05 28-929 61:000 6-049 1-301@-05 :0969 .0001821 4035-8 1-9357@-06 28:789 68,000 6.484 1-3631@-06 8-636@-06 ;0001727 4246-4 -0916 28-650 78-000 6-917 -0863 5-8720-06 -0001644 4452-1 9-86300-07 28.510 92:000 7:350 5-5200-06 4847-1 1-06290-06 :0004527 :0757 28:091 8.645 133:00 :0571 3-942@-06 .0005282 1-02210-06 5507.7 200.00 10.36 27:531

EQUILIBRIUM CONCENTRATION = 26.310

INITIAL SEED AREA = 1541

- 301 -

|                | TABLE: 100             |                            |                              | RUN NO. : R.E.13                |                                                                   |                         |                           |  |
|----------------|------------------------|----------------------------|------------------------------|---------------------------------|-------------------------------------------------------------------|-------------------------|---------------------------|--|
|                | TEMP:70.0°C CELL:C     |                            |                              | STIRR                           | STIRRER SPEED: 2000 R.P.M.                                        |                         |                           |  |
|                | SEED : BATCH E         |                            | PREPARED                     | REPARED SIEVE FRACTION: 89-105µ |                                                                   | -105µ                   |                           |  |
| CONCN.<br>%M/V | TOTAL<br>TIME<br>MINS. | CRYSTAL<br>MASS<br>(GRAMS) | DIAMETER<br>INCREASE<br>(CM) | MEAN<br>AREA<br>CM              | GROWTH RATE<br>CONSTANT<br>K(MIN <sup>-1</sup> CM <sup>-2</sup> ) | MEAN<br>SUPER-<br>SATN: | GROWTH<br>RATE<br>CM/MIN: |  |
| 29:902         | .00000                 | 1-971                      | 0005868                      | 1788.7                          | 5-02/120-06                                                       |                         | 5-5800-05                 |  |
| 29:708         | 5.2500                 | 2-589                      | 000000                       | 1100-1                          | 2 00100-06                                                        | 1065                    | 1.7880-05                 |  |
| 29.569         | 15:000                 | 3:030                      | -0003400                     | 2139:0                          | 2.00198=00                                                        | 1205                    | 1 7100 05                 |  |
| 29-430         | 24.000                 | 3-469                      | -0003081                     | 2413:0                          | 2.000 10-00                                                       | EIZIZ                   | 10/12000                  |  |
| 29-291         | 34-000                 | 3-907                      | -0002771                     | 2676:8                          | 1-7038@-06                                                        | :=1160                  | 1:300@-05                 |  |
| 29-152         | 43.000                 | 4-344                      | 0002526                      | 2929:5                          | 1.8135@-06                                                        | -1107                   | 1-403@-05                 |  |
| 29-012         | 53-000                 | 4-780                      | 0002326                      | 3173-1                          | 1-5834@-06                                                        | .=1054                  | 1-163@-05                 |  |
| 28-872         | 65-000                 | 5-215                      | -0002160                     | 3408.7                          | 1-2940@-06                                                        | -1001                   | 9-000@-06                 |  |
| 20.015         | 77.000                 | 5.610                      | 0002019                      | 3637:1                          | 1-2813@-06                                                        | -0948                   | 8.414@-06                 |  |
| 20: (34        | 11=000                 | 5:049                      | -0003696                     | 3966-0                          | 1-4685@-06                                                        | -0868                   | 8:800@-06                 |  |
| 28-454         | 98:000                 | 6.515                      | -0003323                     | 4388-4                          | 1.4454@-06                                                        | .0762                   | 7-553@-06                 |  |
| 28-175         | 120,00                 | 7=377                      | -0001545                     | 4694.0                          | 1.0371@-06                                                        | . 0683                  | 4-829@-06                 |  |
| 28-035         | 136-00                 | 7-805                      | -0001479                     | 4890-9                          | 9:0957@-07                                                        | :0629                   | 3-892@-06                 |  |
| 27-895         | 155-00                 | 8-233                      | -0001419                     | 5083-9                          | 1=2115@-06                                                        | -0576                   | 4-731@-06                 |  |
| 27:756         | 170.00                 | 8.659                      |                              | 5/155-0                         | 8-9920@-07                                                        | -0470                   | 2-8230-06                 |  |
| 27=335         | 240.00                 | 9-933                      | 0001205                      | 5821.2                          | 07150@-07                                                         | - 0962                  | 2-2570-06                 |  |
| 27.195         | 266.00                 | 10:35                      | 600012C)                     | JU21-3                          | 9.11990-07                                                        | .0303                   | 1)1100-06                 |  |
| 27:055         | 308=00                 | 10-77                      | -0001105                     | 599 (64                         | 6                                                                 | -0310                   | 1.1000 0                  |  |
| 26-914         | 360:00                 | 11.19                      | =0001147                     | 61/0.6                          | 0.50/90.00/                                                       | -0290                   |                           |  |
| 26.830         | 450.00                 | 11:44                      | :0000669                     | 6307:0                          | 2-6446@-07                                                        | 0214                    | 3. (160-07                |  |

| - 303 -       |                          |                              |                               |                                 |                                                                 |                         |                           |  |
|---------------|--------------------------|------------------------------|-------------------------------|---------------------------------|-----------------------------------------------------------------|-------------------------|---------------------------|--|
|               |                          | TABLE :                      | 101                           |                                 |                                                                 |                         |                           |  |
|               | TEMP                     | 70.0°C                       | .CELL: C                      | STIRR                           |                                                                 |                         |                           |  |
|               | SEED.                    | BATCH E                      | PREPARED                      | SIEVE                           | FRACTION:89-                                                    | -105 ju                 |                           |  |
| CONCN.<br>M/V | TOTAL .<br>TIME<br>MINS: | CRYSTAL .<br>MASS<br>(GRAMS) | D.IAMETER<br>INCREASE<br>(CM) | MEAN<br>AREA<br>CM <sup>2</sup> | GROWTH RATE<br>CONSTANT<br>K(MIN <sup>*</sup> CM <sup>2</sup> ) | MEAN<br>SUPER-<br>SATN: | GROWTH<br>RATE<br>CM/MIN= |  |
| 30-041        | 00000                    | .1.96.0                      | -0005001                      | 1780-0                          | 5.00720-06                                                      | 1281                    | 1-0180-05                 |  |
| 29.847        | 6.0000                   | 2.579                        | 00009901                      | 0100.0                          | 2 12260-06                                                      | 1218                    | 2 0108-05                 |  |
| 29.708        | 12,000                   | 3.019                        |                               | 2130-4                          | 3=13300=00                                                      | -1310                   | 209190-05                 |  |
| 29.569        | 19:000                   | 3-459                        | 0003095                       | 2405=3                          | 2.4 /96@=05                                                     | 1205                    | 2.2100-05                 |  |
| 29-430        | 29:000                   | 3.898                        | 0002782                       | 2668.3                          | 1.6338@06                                                       | -1212                   | 1.391@-05                 |  |
| 29-291        | 35:000                   | 4-335                        | 0002536                       | 2920-9                          | 2,6023@=06                                                      | 1160                    | 2-113@-05                 |  |
| 29.152        | 43.000                   | 4.772                        | 0002335                       | 3164.6                          | 1.88860-06                                                      | -1107                   | 1=459@=05                 |  |
| 29-012        | 51,000                   | 5-208                        | ,0002168                      | 3400-2                          | 1.8471@-06                                                      | =1054                   | 1-355@05                  |  |
| 28-873        | 60-000                   | 5-642                        | 0002027                       | 3628.6                          | 1:6208@06                                                       | 1001                    | 1.126@-05                 |  |
| 20:01)        | 70-000                   | 6.076                        | 0001905                       | 3850.6                          | 1-45230-06                                                      | .0948                   | 9.527@-06                 |  |
| 20: [34       | 80.000                   | 6.500                        | 0001800                       | 4066-7                          | 1-4574@-06                                                      | -0895                   | 8.9999@-06                |  |
| 20:594        | 00-000                   | 6.500                        | 0001707                       | 4277-4                          | 1-6375@-06                                                      | -0842                   | 9-4840-06                 |  |
| 20:454        | 89.000                   | 6:940                        | 0001625                       | 4483.3                          | 1-50160-06                                                      | -0789                   | 8-1240-06                 |  |
| 28:315        | 99:000                   | 7=370                        | -0001551                      | 4684.5                          | 1-4016@-06                                                      | .0736                   | 7=051@-06                 |  |
| 28:175        | 110.00                   | 7.800                        | =0001485                      | 4881.6                          | 1.77290-06                                                      | -0683                   | 8.2510-06                 |  |
| 28:035        | 119:00                   | 8-228                        | -0004122                      | 5261=0                          | 1-1039@-06                                                      | =0576                   | 4-294@-06                 |  |
| 27-615        | 167.00                   | 9.509                        | =0001275                      | 5633-5                          | 1-6787@-06                                                      | -0470                   | 5-3110-06                 |  |
| 27=475        | 179:00                   | 9=933                        | -0001221                      | 5812-0                          | 9.58180-07                                                      | =0416                   | 2-677@-06                 |  |
| 27-335        | 202.00                   | 10=36                        | -0001101                      | 5080.6                          | 1-16010-06                                                      | - 0262                  | 2-8270-06                 |  |
| 27-195        | 223.00                   | 10.78                        | 0001151                       | 6162.0                          | 0.65500.07                                                      | -0210                   | 1.0000-06                 |  |
| 27:055        | 252:00                   | 11-20                        | 0001154                       | 6103.52                         | 7:00000                                                         | :0310                   | 1.0010                    |  |
| 26:914        | 295:00                   | 11.62                        | .0001119                      | 6334-0                          | 1.00/10-07                                                      | 0250                    | 1.3010-00                 |  |
| 26-633        | 408-00                   | 12-45                        | 0002138                       | 6584.0                          | 8-4029@=07                                                      | 0176                    | 9=4600=07                 |  |

|               |                        | TABLE :                    | 102                          | RUN NO.: R.E.15                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                         |                           |
|---------------|------------------------|----------------------------|------------------------------|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|---------------------------|
|               | TEMP:70.0°C CELL: C    |                            |                              | STIRRER SPEED: 2000 R.P.M.      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                         |                           |
|               | SEED                   | BATCH E                    | PREPARED                     | SIEVE                           | FRACTION: 89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1-105µ                  |                           |
| CONCN.<br>M/V | TOTAL<br>TIME<br>MINS. | CRYSTAL<br>MASS<br>(GRAMS) | DIAMETER<br>INCREASE<br>(CM) | MEAN<br>AREA<br>CM <sup>2</sup> | GROWTH RATE<br>CONSTANT<br>K(MIN <sup>-7</sup> CM <sup>-2</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | MEAN<br>SUPER-<br>SATN: | GROWTH<br>RATE<br>CM/MIN: |
| 29-847        | 00000                  | 1.970                      | 0004328                      | 1729-5                          | 7-1262@-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -1318                   | 6-6580-05                 |
| 29-708        | 3:2500                 | 2.412                      | -0003687                     | 2024-1                          | 1-9187@-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -1265                   | 1-715@-05                 |
| 29.569        | 14,000                 | 2:852                      | -0003230                     | 2304-2                          | 1-8919@-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | =1212                   | 1.615@-05                 |
| 29:430        | 24:000                 | 3.292                      | -0002886                     | 2571-6                          | 1.7735@=06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -1160                   | 1.4430-05                 |
| 29:291        | 34.000                 | 3.730                      | -0002600                     | 2828-1                          | 1-77060=06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -1107                   | 1-3780-05                 |
| 29-152        | 43.500                 | 4.167                      | .0002010                     | 2075-1                          | 1-62200-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -1054                   | 1-201@-05                 |
| 29:012        | 53-500                 | 4.604                      | 0002402                      | 30/201                          | 1.=2120-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -1001                   | 1-0500-05                 |
| 28,873        | 64,000                 | 5:039                      |                              | 3313-1                          | 1.01050 06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Biloo                   | 7-0720-05                 |
| 28-734        | 77:000                 | 5-473                      | =0002013                     | 3544-0                          | 1-21370-00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -0940<br>0805           | 1.9/30=00                 |
| 28.594        | 87:000                 | 5=906                      | -0001945                     | 3/09:2                          | 1.5 (2)@=00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0095                   | 9 1000 0                  |
| 28.315        | 109-00                 | 6:770                      | -0003574                     | 4092-8                          | 1.4470@~06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | :0015                   | 0-1230-00                 |
| 28-175        | 122:00                 | 7.200                      | -0001651                     | 4408-3                          | 1-2603@-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -0736                   | 6:3400-06.                |
| 28.055        | 137:00                 | 7.629                      | .0001574                     | 4611-3                          | 1,1261@-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | := 0683                 | 5-246@=06                 |
| 27-615        | 191.00                 | 8-911                      | .0004340                     | 5000-9                          | 1:0323@=06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -0576                   | 4.019@-06                 |
| 27-335        | 248-00                 | 9-759                      | 0002620                      | 5473-8                          | 7-7432@-07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <u>=0443</u>            | 2,298@-06                 |
| 27-105        | 270-00                 | 10-18                      | -0001242                     | 5746-8                          | 1,1631@-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | - 0363                  | 2:822@-06                 |
| 27-055        | 205-00                 | 10.60                      | :0001200                     | 5924-1                          | 8-32302-07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | :0310                   | 1-715@-06                 |
| 26-01)        | 30,00                  | 11.02                      | 0001161                      | 6098-2                          | 5-7071@-07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | :0256                   | 9-672@-07                 |
| 20.914        | 100 00                 | 11.02                      | :0000676                     | 6235-4                          | 2.0935@-07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | = 0214                  | 2-939@-07                 |
| 20.030        | 400-00                 | 11:21                      |                              |                                 | and the second se |                         |                           |

|                |                        |                            | - 305                        | -                               |                                        |                         |                           |
|----------------|------------------------|----------------------------|------------------------------|---------------------------------|----------------------------------------|-------------------------|---------------------------|
|                |                        | TABLE :                    | 103                          |                                 | RUN NO. : R.                           | E.16                    |                           |
|                | TEMP:                  | 70.0°c                     | CELL: C                      | STIRRE                          | R SPEED 2000                           | R.P.M.                  | :                         |
|                | SEED :                 | BATCH E                    | PREPARED                     | SIEVE                           | FRACTION: 89                           | -105 µ                  |                           |
| CONCN.<br>%M/V | TOTAL<br>TIME<br>MINS. | CRYSTAL<br>MASS<br>(GRAMS) | DIAMETER<br>INCREASE<br>(CM) | MEAN<br>AREA<br>CM <sup>2</sup> | GROWTH RATE<br>CONSTANT<br>K(MIN CM-2) | MEAN<br>SUPER-<br>SATN: | GROWTH<br>RATE<br>CM/MIN: |
| 29:875         | .00000                 | 1.974                      | 0005100                      | 1762-0                          | 1.08680-05                             | 1323                    | 1:0202-04                 |
| 29-708         | 2.5000                 | 2.504                      | .0005102                     | 1/02:0                          | 2 6702-06                              | 1265                    | 2.2860-05                 |
| 29.569         | 10,000                 | 2.944                      |                              | 2004.                           | 1 50700-06                             | .120)                   | 1.2120-05                 |
| 29.430         | 22.000                 | 3-384                      |                              | 2302.2                          | 1.53190.00                             | 1100                    | 1.0280-05                 |
| 29-152         | 36-000                 | 4-261                      | -0005399                     | 2752.0                          | 2-42420=00                             | 1133                    | 1.1000 05                 |
| 28.873         | 55.000                 | 5-133                      | .0004556                     | 3245-1                          | 1.6734@=06                             | 1021                    | 1. 1990-05                |
| 28-734         | 65.000                 | 5.568                      | -0002044                     | 3595-8                          | 1=5552@=06                             | :0940                   | 1.0220-05                 |
| 28-594         | 75:000                 | 6=001                      | .0001920                     | 3819.1                          | 1.5519@-06                             | -0895                   | 9.599@=06                 |
| 28-454         | 84.000                 | 6-433                      | ÷0001812                     | 4036.5                          | 1.7353@=06                             | .0842                   | 1=007@=05                 |
| 28-175         | 104-00                 | 7:295                      | -0003355                     | 4350-9                          | 1:6036@-06                             | :0762                   | 8=388@=06                 |
| 28-035         | 114:00                 | 7:725                      | :0001559                     | 4658;1                          | 1.6722@06                              | : 0683                  | 7.795@-06                 |
| 27-805         | 124-00                 | 8-153                      | .0001492                     | 4856.1                          | 1.7406@-06                             | :0629                   | 7-460@-06                 |
| 21009)         | 120.00                 | 8-580                      | :0001431                     | 5050-1                          | 1-2196@-06                             | -0576                   | 4.7708-06                 |
| 2 (° ())       | 159.00                 | 0.006                      | :0001375                     | 5240:3                          | 1-2958@-06                             | · <b>523</b>            | 4.5850-06                 |
| 2/2017         | 178 00                 | 9.000                      | .0001324                     | 5427-0                          | 8-7132@-07                             | -0470                   | 2:759@-06                 |
| 2(=4)          | 1/0:00                 | 96430                      | .0002513                     | 5699-7                          | 1.1494@-06                             | :0390                   | 2:992@-06                 |
| 27:195         | 220-00                 | 10,20                      | =0001194                     | 5967-7                          | 7:8155@-07                             | ÷0310                   | 1-613@-06                 |
| 27-55          | 257:00                 | 10:10                      | -0001 156                    | 6141.8                          | 9-7142@-07                             | ÷0256                   | 1.651@-06                 |
| 26.914         | 292.00                 | 11-12                      | -0002208                     | 6396-8                          | 1-2530@-06                             | .0176                   | 1.415@-06                 |
| 25.622         | 270-00                 | 11.06                      |                              |                                 |                                        |                         |                           |

26.633 370.00 11.95 EQUILIBRIUM CONCENTRATION = 26.310

|                |                        | TABLE                      | 104                          |                                 | RUN NO. : R.                                       | E.17                    |                           |
|----------------|------------------------|----------------------------|------------------------------|---------------------------------|----------------------------------------------------|-------------------------|---------------------------|
|                | TEMP                   | :70.0°C                    | CELL:C                       | STIR                            | RER SPEED: 200                                     | OR.P.M.                 |                           |
|                | SEED                   | BATCHE                     | PREPARED                     | SIEVE                           | FRACTION: 89                                       | -105 "                  |                           |
| CONCN.<br>%M/V | TOTAL<br>TIME<br>MINS: | CRYSTAL<br>MASS<br>(GRAMS) | DIAMETER<br>INCREASE<br>(CM) | MEAN<br>AREA<br>CM <sup>2</sup> | GROWTH RATE<br>CONSTANT<br>K(MIN'CM <sup>2</sup> ) | MEAN<br>SUPER-<br>SATN- | GROWTH<br>RATE<br>CM/MIN: |
| 29:930         | 00000                  | 1.970                      | 00066.00                     | 1.816 6                         |                                                    |                         |                           |
| 29=708         | 6-5000                 | 2.677                      | 0000009                      | 1010-0                          | 5:30320-06                                         | • 1334                  | 5=084@-05                 |
| 29-569         | 15:000                 | 3-117                      | :0003397                     | 2194-4                          | 2.2383@-06                                         | :1265                   | 1:998@-05                 |
| 29,430         | 23.000                 | 3-556                      | -0003014                     | 2466-8                          | 2:2091@-06                                         | 1212                    | 1-884@-05                 |
| 29-291         | 32,500                 | 3-994                      | .0002719                     | 2727.6                          | 1.7600@-06                                         | =1160                   | 1-431@-05                 |
| 29-152         | 39:000                 | 4-431                      | .0002484                     | 2978-4                          | 2.4697@-06                                         | 1107                    | 1=911@-05                 |
| 29.012         | 49:000                 | 4-867                      | -0002292                     | 3220-4                          | 1.5601@-06                                         | =1054                   | 1-146@-05                 |
| 28-873         | 59-000                 | 5-302                      | 0002131                      | 3454.6                          | 1-5322@-06                                         | -1001                   | 1-066@-05                 |
| 28.734         | 69-000                 | 5727                       | -0001995                     | 3681-8                          | 1.5189@-06                                         | -0948                   | 9-975@-06                 |
| 28.50)         | 81.000                 | 5-160                      | . 0001877                    | 3902.6                          | 1.2656@-06                                         | -0895                   | 7-8220-06                 |
| 28 )1-)1       | 01.000                 | 6.601                      | -0001775                     | 4117-7                          | 1-7011@-06                                         |                         | 9=862@-06                 |
| 20:474         | 90,000                 | 5.001                      | 0003293                      | 4429.0                          | 1-5753@-06                                         | = 0762                  | 8-233@06                  |
| 20:10          | 110-00                 | 7:403                      | : 0001533                    | 4733-4                          | 1:0285@-06                                         | - 0683                  | 4-7900-06                 |
| 28:035         | 126.00                 | 7:092                      | -0001468                     | 4929.6                          | 1.0086@-06                                         |                         | 4-317@-06                 |
| 27.895         | 143.00                 | 8-319                      | -0001409                     | 5122.0                          | 1.3875@-06                                         | -0576                   | 5-4200-06                 |
| 27: 756        | 156:00                 | 8.746                      | -0001355                     | 5310.6                          | 1.1987@-06                                         | -0523                   | 4-236@-06                 |
| 27-615         | 172-00                 | 9-171                      |                              | 5674-9                          | 8-7802@-07                                         | 0416                    | 2-11200-06                |
| 27:195         | 250,00                 | 10-44                      | -0001170                     | 602-8                           | 1.02160-06                                         |                         | 2.1000                    |
| 27:055         | 278.00                 | 10.86                      |                              | 6280 8                          | 6 100000                                           | .0310                   | 2.100000                  |
| 26-774         | 395.00                 | 11.70                      | 0002246                      | 6209:0                          | 0.0430/0-07                                        | :0230                   | 9-5900-07                 |
| 26-633         | 490.00                 | 12.11                      | -0001071                     | 6542-3                          | 5:0042@-07                                         | 0150                    | 5-635@-07                 |

-----

um tits one dilluse

EQUILIBRIUM CONCENTRATION = 26.310

en ....

|                |                        | TABLE :                    | 105                                    | -                               | RUN NOS:R.                                                       | E.19                    | · ·                       |
|----------------|------------------------|----------------------------|----------------------------------------|---------------------------------|------------------------------------------------------------------|-------------------------|---------------------------|
|                | TEMP                   | : 70.02                    | CELL: C                                | STIRR                           | ER SPEED: 200                                                    | OR P.M.                 |                           |
|                | SEED                   | BATCH E                    | PREPARED                               | SIEVE                           | FRACTION: 6                                                      | 19-105/-                |                           |
| CONCN.<br>%M/V | TOTAL<br>TIME<br>MINS: | CRYSTAL<br>MASS<br>(GRAMS) | DIAMETER<br>INCREASE<br>(CM)           | MEAN<br>AREA<br>CM <sup>2</sup> | GROWTH RATE<br>CONSTANT<br>K(MIN <sup>*</sup> CM <sup>-2</sup> ) | MEAN<br>SUPER-<br>SATN- | GROWTH<br>RATE<br>CM/MIN. |
| 29-902         | - 00000                | 1-980                      | -0005 8)15                             | 1705-0                          | 7.7)1)120-06                                                     |                         | 7-2060-05                 |
| 29:708         | 4.0000                 | 2.598                      |                                        | 1(5)09                          | 2 16120 06                                                       | 1065                    | 1.0200 05                 |
| 29:569         | 13-000                 | 3:039                      | ······································ | 2140.3                          | 1 5000 0                                                         | 1010                    | 1,09300-07                |
| 29:430         | 25:000                 | 3:478                      | .0003071                               | 2421-3                          | 1.0030-00                                                        | 51212                   | 1-2008-05                 |
| 29-291         | 34-000                 | 3-916                      | -0002763                               | 2504-4                          | 1:0077@==06                                                      | 1160                    | 1-535@-05                 |
| 29-152         | 46.000                 | 4-353                      | ;0002519                               | 2937-3                          | 1=3565@06                                                        | .1107                   | 1=0500=05                 |
| 29-012         | 55:000                 | 4-789                      | -0002320                               | 3181-1                          | 1-7549@-06                                                       | -1054                   | 1=289@=05                 |
| 28-873         | 67-000                 | 5-224                      | 0002155                                | 3416-9                          | 1-2909@-06                                                       | -1001                   | 8,978@-06                 |
| 28-734         | 78:000                 | 5:658                      | -0002015                               | 3645-5                          | 1-3945@-06                                                       | -0948                   | 9-157@-06                 |
| 28-594         | 88-000                 | 6-091                      | 0001894                                | 3867.7                          | 1.5324@-06                                                       | . 0895                  | 9:471@-06                 |
| 28.454         | 97-000                 | 6-522                      | 0001790                                | 4084-0                          | 1-7151006                                                        | -0842                   | 9-943@-06                 |
| 28.215         | 108.00                 | 6.05)                      | 0001698                                | 4295:0                          | 1.42490-06                                                       | 0789                    | 7-716@-06                 |
| 20,515         | 100.00                 | 7 910                      | 0003162                                | 4600-9                          | 1-2549@-06                                                       | -0709                   | 6.080@-06                 |
| 20:035         | 134.00                 | (2013                      | -0001477                               | 4900-2                          | 1-5681@-06                                                       | :0629                   | 6-713@-06                 |
| 2(:095         | 145:00                 | 0,241                      | -0001417                               | 5093.5                          | 1-0077@-06                                                       | :0576                   | 3-936@-06                 |
| 27:756         | 163:00                 | 8-668                      |                                        | 5283-1                          | 1-20500-06                                                       | -0523                   | 4-258@-06                 |
| 27:615         | 179.00                 | 9:=093                     | -0001313                               | 5469-1                          | 1-2969@-06                                                       | -0470                   | 4-1020-06                 |
| 27:475         | 195:00                 | 9-517                      | -0001268                               | 5651.9                          | 1-3333@-06                                                       | -0416                   | 3-729@-06                 |
| 27-335         | 212.00                 | 9-941                      | -0002409                               | 5919-2                          | 8-5711@-07                                                       | .0337                   | 1-912@-06                 |
| 27:055         | 275:00                 | 10,78                      | -0002257                               | 6266-5                          | 7-5519@-07                                                       | =0230                   | 1-1280-06                 |
| 26:774         | 375:00                 | 11:62                      |                                        |                                 |                                                                  |                         |                           |

- 307 -

EQUILIBRIUM CONCENTRATION = 26-310

|         |                        | TABLE :                    | 106                          |                             |                                                                   |                           |                           |
|---------|------------------------|----------------------------|------------------------------|-----------------------------|-------------------------------------------------------------------|---------------------------|---------------------------|
|         | TEMP: 70.02 CELL: C    |                            |                              | STIRR                       | OR P.M.                                                           |                           |                           |
|         | SEED                   | BATCH E                    | PREPARED                     | SIEVE                       | FRACTION: 89                                                      | -105,4                    |                           |
| CONCN-  | TOTAL<br>TIME<br>MINS: | CRYSTAL<br>MASS<br>(GRAMS) | DIAMETER<br>INCREASE<br>(CM) | MEAN<br>AREA<br>CM          | GROWTH RATE<br>CONSTANT<br>K(MIN <sup>-1</sup> CM <sup>-2</sup> ) | MEAN<br>SUPER-<br>SATN:   | GROWTH<br>RATE<br>CM/MIN. |
| 29-902  | .00000                 | 1.967                      | 0005870                      | 1785-5                      | 6-22170-06                                                        |                           | 58700-05                  |
| 29:708  | 5-0000                 | 2,585                      | .0000019                     | 110,00                      |                                                                   | 1329                      | 2:0120=0                  |
| 29-569  | 11.000                 | 3=026                      | -0003492                     | 2135-7                      | 3.25810-06                                                        | -1265                     | 2-9100-05                 |
| 29-430  | 18-000                 | 3-465                      | 0003086                      | 2410.6                      | 2-5835@-06                                                        | -1212                     | 2,204@-05                 |
| 20201   | 27.000                 | 2.000                      | -0002775                     | 2573.5                      | 1-8954@-06                                                        | -1160                     | 1-5420-05                 |
| -Jehyl  | 21.000                 | 2.905                      | .0009076                     | 3276-1                      | 3-7151@-06                                                        | :1027                     | 2.669@-05                 |
| 20= 134 | 44.000                 | 5-053                      | -0001901                     | 3859.5                      | 3:0713@-06                                                        | -0895                     | 1-901@-05                 |
| 28.594  | 49:000                 | 6.087                      | -0011016                     | 4673-6                      | 3-3239@=06                                                        | -0682                     | 1-5302-05                 |
| 27.615  | 85:000                 | 9-117                      | 0005.000                     | 5708 0                      | 1 7900 0                                                          | 00002                     | 1.0)500 0)                |
| 27:055  | 140.00                 | 10.82                      | 0005022                      | 5 (30.9                     | 10/1000-00                                                        | 0390                      | 4.5000-00                 |
| 26-689  | 240-00                 | 11-91                      | -0002925                     | 6321-3                      | 1.0658@-06                                                        | -0214                     | 1.463@-06                 |
| 26 622  | 200.00                 | 10.08                      | :0000429                     | 6576-1                      | 4.06108-07                                                        | -0134                     | 3-574@-07                 |
| 20.033  | 200-00                 |                            |                              | and and and the and the bas | ang                           | 10 100 100 MB 000 100 100 |                           |

EQUILIBRIUM CONCENTRATION = 26-310 INITIAL SEED AREA = 1576

|                               |                              | TABLE                      | 107                          |                                 | RUN NO. : R.I                                                     | E.21                     |                           |
|-------------------------------|------------------------------|----------------------------|------------------------------|---------------------------------|-------------------------------------------------------------------|--------------------------|---------------------------|
|                               | TEMP                         | :70.0°C                    | CELL:C                       | STIR                            |                                                                   |                          |                           |
|                               | SEED                         | BATCH I                    | PREPARED                     | SIEVE                           | FRACTION: 8                                                       | 9-105 µ                  |                           |
| CONCN-<br>%M/V                | TOTAL<br>TIME<br>MINS.       | CRYSTAL<br>MASS<br>(GRAMS) | DIAMETER<br>INCREASE<br>(CM) | MEAN<br>AREA<br>CM <sup>2</sup> | GROWTH RATE<br>CONSTANT<br>K(MIN <sup>-1</sup> CM <sup>-2</sup> ) | MEAN<br>SUPER -<br>SATN: | GROWTH<br>RATE<br>CM/MIN; |
| 29:902                        | . 00000                      | 1-938                      |                              | 1-26-0 9                        |                                                                   | 1000                     | )                         |
| 29:708                        | 7:0000                       | 2.556                      | :000551                      | 1/02:1                          | 4.571020-00                                                       | -1329                    | 4-255@-05                 |
| 29.569                        | 15:000                       | 2:-997                     | -0003531                     | 2112:0                          | 2.47100-06                                                        | :1265                    | 2=207@-05                 |
| 29-430                        | 24-000                       | 3-436                      | 0003116                      | 2386:4                          | 2:0297@=06                                                        | -1212                    | 1-7310-05                 |
| 29:152                        | 40.000                       | 4-312                      | 0005357                      | 2772-7                          | 2:1058@-06                                                        | -1133                    | 1=674@-05                 |
| 29:012                        | 47.000                       | 4.748                      | 0002348                      | 3144-3                          | 2-2827@-06                                                        | =1054                    | 1.677@-05                 |
| 28-873                        | 55,000                       | 5-184                      | -0002180                     | 3379=2                          | 1-95800-06                                                        | ÷1001                    | 1:362@-05                 |
| 28-734                        | 63-000                       | 5-618                      | :=0002037                    | 3607-0                          | 1-93800-06                                                        | =0948                    | 1-273@-05                 |
| 28-1151                       | 79-000                       | 6-118/1                    | .0003728                     | 3934-8                          | 1.94270-06                                                        | -0868                    | 1-165@-05                 |
| 28.215                        | 80.000                       | 6.016                      | =0001715                     | 4254-2                          | 158240-06                                                         | :0789                    | 8.576@-06                 |
| 20:313                        | 09:000                       | 0.910                      | 0001632                      | 4459-4                          | 1.6196@-06                                                        | -0736                    | 8-1620-06                 |
| 20:10                         | 99:000                       | 1=346                      | -0001558                     | 4660,0                          | 1-3929@-06                                                        | -0683                    | 6:493@-06                 |
| 28,035                        | 111:00                       | 7:775                      | .0002925                     | 4951:7                          | 1-1525@-06                                                        |                          | 4-717@-06                 |
| 27=756                        | 142-00                       | 8.631                      | -0001375                     | 5237-7                          | 1-08040-06                                                        | -0523                    | 3-8210-06                 |
| 27-615                        | 160,00                       | 9:056                      | 0001324                      | 5422-7                          | 7-21660-07                                                        | 0470                     | 2.2820-06                 |
| 27:475                        | 189:00                       | 9-481                      | ~0001278                     | 5604.5                          | 6-72210-07                                                        | 0116                     | 1.8700 0                  |
| 27:335                        | 223:00                       | 9-904                      | 0001000                      | 5004.5                          |                                                                   |                          | 1-0199-00                 |
| 27:195                        | 270:00                       | 10.32                      | 0001233                      | 5 102.59                        | )                                                                 | -0303                    | 1-312@==05                |
| 27-055                        | 330.00                       | 10.74                      |                              | 222052                          | 4:0273@-07                                                        | -0310                    | 9-929@-07                 |
| With some states where she is | And the second second second |                            |                              |                                 |                                                                   |                          |                           |

|                |                        | TABLE :                    | 108                          | RUN NO. :R.E.23                 |                                                                   |               |                                           |
|----------------|------------------------|----------------------------|------------------------------|---------------------------------|-------------------------------------------------------------------|---------------|-------------------------------------------|
|                | TEMP                   | :70.0°C                    | CELL:G                       | STIRRER SPEED: 2000 R.P.M.      |                                                                   |               |                                           |
|                | SEED                   | BATCH E                    | PREPARED                     | SIEVE                           | FRACTION: 89                                                      | 9-105µ        |                                           |
| CONCN.<br>%M/V | TOTAL<br>TIME<br>MINS: | CRYSTAL<br>MASS<br>(GRAMS) | DIAMETER<br>INCREASE<br>(CM) | MEAN<br>AREA<br>CM <sup>2</sup> | GROWTH RATE<br>CONSTANT<br>K(MIN <sup>-7</sup> CM <sup>-2</sup> ) | MEAN<br>SUPER | GROWTH<br>RATE<br>CM/MIN:                 |
| 29:611         | :00000                 | 1-930                      | 0021260                      |                                 | 0 15000 C                                                         |               | 1 (( 0 0 00 000 00 00 00 00 00 00 00 00 0 |
| 28.664         | 64.000                 | 4-934                      | -0021300                     | 245351                          | 2-15308-00                                                        | :105          | 1.009@=05                                 |
| 28-245         | 84.000                 | 6.240                      | 0005993                      | 3693-5                          | 2:-6519@-06                                                       | . 0815        | 1-498@-05                                 |
| 28,105         | 93:000                 | 6-673                      | =0001771                     | 4132.2                          | 2.0153@-06                                                        | 0709          | 9-841@-06                                 |
| 28-077         | 110-00                 | 6-759                      | .0000343                     | 4258.2                          | 2-16802-07                                                        | = 0677        | 1.009@-06                                 |
| 27.065         | 120.00                 | 7 10                       | =0001340                     | 4360.9                          | 7-49600-07                                                        |               | 3=349@-06                                 |
| 21:0905        | 130:00                 | (=104                      | :0001605                     | 4543.5                          | 9.7151@-07                                                        | -0503         | 4.012@-06                                 |
| 27:825         | 150,00                 | 7.535                      | -0004429                     | 4934-4                          | 2-63140-06                                                        | -0496         | 8-8590-06                                 |
| 27=405         | 175:00                 | 8-826                      | 0000676                      | 5)100 )1                        | 1 65660 0                                                         | ~~~~~         | h m ha x                                  |
| 27:125         | 208:00                 | 9.681                      | 00020 10                     | 5409-4                          | 1.07000-00                                                        | -0303         | 4.094@=00                                 |
| EQUILIBR       | IUM CONC               | ENTRATIO                   | N = 26-31                    | 0                               | INITIAL SEED AREA = 1546                                          |               |                                           |

- 310 -

|                |                        | TABLE: 109                 |                              |                                 | RUN NO. : R.E.24                                                   |                         |                           |  |
|----------------|------------------------|----------------------------|------------------------------|---------------------------------|--------------------------------------------------------------------|-------------------------|---------------------------|--|
|                | TEMP                   | : 70.02                    | CELL: G                      | STIRRER SPEED: 2000 R.P.M.      |                                                                    |                         |                           |  |
|                | SEED                   | BATCH E                    | PREPARED                     | SIEVE                           | FRACTION: 89                                                       | -105 p.                 |                           |  |
| CONCN.<br>ZM/V | TOTAL<br>TIME<br>MINS: | CRYSTAL<br>MASS<br>(GRAMS) | DIAMETER<br>INCREASE<br>(CM) | MEAN<br>AREA<br>CM <sup>2</sup> | GROWTH RATE<br>CONSTANT_<br>K(MIN <sup>-1</sup> CM <sup>-2</sup> ) | MEAN<br>SUPER-<br>SATN: | GROWTH<br>RATE<br>CM/MIN- |  |
| 29:958         | -00000                 | 1.935                      |                              | 1750.8                          | 6-2220-06                                                          |                         | E-0680-05                 |  |
| 29.763         | 5-0000                 | 2:554                      | 0000500                      | 1/29:0                          | 2 80160 0                                                          | 1096                    | 2 5250 05                 |  |
| 29.624         | 10,000                 | 2:994                      | -0003537                     | 2109.9                          | 3:09100=00                                                         | ÷1200                   | 3=53/@=05                 |  |
| 29:485         | 17:000                 | 3-434                      | -0003123                     | 2384-5                          | 2.5664@=06                                                         | -1234                   | 2-2300-05                 |  |
| 29-346         | 25-000                 | 3-873                      | :0002807                     | 2647-2                          | 2-1145@-06                                                         | -1181                   | 1-754@-05                 |  |
| 29-207         | 34-000                 | 4.211                      | 0002557                      | 2899.6                          | 1-7974@-06                                                         | 1128                    | 1-4210-05                 |  |
| 20.068         | 111.000                | 11 -110                    | 0002354                      | 3142.9                          | 1.5668@-06                                                         | .1075                   | 1-177@-05                 |  |
| 29:000         | 44 000                 | 4. (40                     | .0004035                     | 3479-8                          | 1-8123@-06                                                         | -0998                   | 1:261@-05                 |  |
| 28-803         | 60,000                 | 5.577                      | -0001932                     | 3806-8                          | 1.6796@-06                                                         | :0921                   | 1.073@-05                 |  |
| 28,664         | 69-000                 | 6.012                      | -0003559                     | 4128=0                          | 1-3897@-06                                                         | -0842                   | 8-0800-06                 |  |
| 28:385         | 91-000                 | 6.880                      |                              | h=)11.                          | 1. 22/108.05                                                       | 0706                    | 6 1069 06                 |  |
| 28:105         | 117:00                 | 7=744                      | - OUJ3222                    | 4741.64                         | 1-22490=00                                                         | 0130                    | 0-1900-00                 |  |
| 27.686         | 200.00                 | 9:=036                     | 0004347                      | 5031-9                          | 6-3749@-07                                                         | -0603                   | 2.619@-06                 |  |
| 26-703         | 270.00                 | 12.04                      | :0008560                     | 5941-7                          | 3-0074@-06                                                         | :•0336                  | 6.114@-06                 |  |

EQUILIBRIUM CONCENTRATION = 26.310 INITIAL SEED AREA = 1550

|               | TABLE: 110             |                            |                              |                                  |                                                                   |                          |                           |
|---------------|------------------------|----------------------------|------------------------------|----------------------------------|-------------------------------------------------------------------|--------------------------|---------------------------|
|               | TEMP                   | :70.0°C                    | CELL: C                      | STIRR                            | STIRRER SPEED: 2000 R. P.M.                                       |                          |                           |
|               | SEED                   | BATCHE                     | PREPARED                     | SIEVE                            | FRACTION: 89                                                      | -105μ                    |                           |
| CONCN.<br>M/V | TOTAL<br>TIME<br>MINS: | CRYSTAL<br>MASS<br>(GRAMS) | DIAMETER<br>INCREASE<br>(CM) | MEAN<br>AREA<br>CM <sup>22</sup> | GROWTH RATE<br>CONSTANT<br>K(MIN <sup>-1</sup> CM <sup>-2</sup> ) | MEAN<br>SUPER -<br>SATN. | GROWTH<br>RATE<br>CM/MIN. |
| 29-763        | .00000                 | 1.962                      | - 0005 888                   | 1781-2                           | 1.61000-06                                                        | 1276                     | 1-2060-05                 |
| 29:569        | 7:0000                 | 2.580                      | 000000                       | 2121.2                           | 2.01550.06                                                        | 1212                     | 1.7)180 05                |
| 29.430        | 17.000                 | 3:020                      | 0003490                      | 213122                           | 2:04550=00                                                        | 1100                     | 1 71(0 0                  |
| 29-291        | 26.000                 | 3-459                      |                              | 2405-1                           | 2.1004@=00                                                        | 1160                     | 1. (16@-05                |
| 29-152        | 36-000                 | 3:897                      | .0002778                     | 2668-4                           | 1.7918@-06                                                        | :1107                    | 1-389@-05                 |
| 29-012        | 46.000                 | 4-333                      | .0002531                     | 2920.7                           | 1.7202@-06                                                        | 1054                     | 1-266@-05                 |
| 28-873        | 57-000                 | 4.769                      | -0002331                     | 3163-9                           | 1.5209@-06                                                        | -1001                    | 1.060@-05                 |
| 28-734        | 67.000                 | 5.204                      | .0002164                     | 3399:2                           | 1.6451@-06                                                        | =0948                    | 1-082@-05                 |
| 28-594        | 78.000                 | 5:637                      | .0002023                     | 3627-3                           | 1-4854@-06                                                        | . 0895                   | 9.197@-06                 |
| 28-454        | 89:000                 | 6=070                      | 0001902                      | 3848.9                           | 1-48900-06                                                        | ;0842                    | 8-646@-06                 |
| 28.215        | 100.00                 | 6.502                      | .0001797                     | 4064-7                           | 1.5057@-06                                                        |                          | 8=167@-06                 |
| 20.31         | 11), 00                | 6.000                      |                              | 4275-1                           | 1-2067@-06                                                        | .0736                    | 6-085@-06                 |
| 20:10         | 114:00                 | 0:5932                     | :0001622                     | 4480.5                           | 1-24180-06                                                        | -0683                    | 5-791@-06                 |
| 28:035        | 128.00                 | 7-362                      | -0001547                     | 4681.4                           | 7-5231@-07                                                        | -0629                    | 3-224@-06                 |
| 27-895        | 152-00                 | 7-790                      | .0001481                     | 4877.9                           | 9-0189@-07                                                        | .0576                    | 3.526@-06                 |
| 27:756        | 173:00                 | 8.217                      |                              | 5070-4                           | 1-1817@-06                                                        | -0523                    | 4-179@-06                 |
| 27.615        | 190,00                 | 8.642                      | -0001366                     | 5259-2                           | 1-1988@-06                                                        | -0470                    | 3-795@-06                 |
| 27-475        | 208,00                 | 9:067                      | -0001215                     | 5)1)1)1.5                        | 7.25210-07                                                        | -0416                    | 2-0550-06                 |
| 27:335        | 240.00                 | 9.490                      | .0001313                     | 5606 0                           | 1. 25610 07                                                       | 0060                     | 1 0570 06                 |
| 27-195        | 300.00                 | 9-911                      | 0001200                      | 2020:3                           | 4-33010-0(                                                        | -0303                    |                           |

EQUILIBRIUM CONCENTRATION = 26.310 INITIAL SEED AREA = 1572

|                | TABLE: 111             |                            |                              |                                 | E.26                                                              |                         |                           |
|----------------|------------------------|----------------------------|------------------------------|---------------------------------|-------------------------------------------------------------------|-------------------------|---------------------------|
|                | TEMP                   | :70.0°C                    | CELL: C                      | STIRRER SPEED :2000 R.P.M.      |                                                                   |                         |                           |
|                | SEED                   | BATCH E                    | PREPARED                     | SIEVE                           | FRACTION: 89                                                      | -105 µ                  |                           |
| CONCN.<br>%M/V | TOTAL<br>TIME<br>MINS: | CRYSTAL<br>MASS<br>(GRAMS) | DIAMETER<br>INCREASE<br>(CM) | MEAN<br>AREA<br>CM <sup>2</sup> | GROWTH RATE<br>CONSTANT<br>K(MIN <sup>-1</sup> CM <sup>-2</sup> ) | MEAN<br>SUPER-<br>SATN: | GROWTH<br>RATE<br>CM/MIN. |
| 29:708         | .00000                 | 1-953                      | 20001250                     | 1-71- 7                         | 6 08050 06                                                        | 1065                    |                           |
| 29:569         | 4.0000                 | 2-394                      | 0004359                      | 1(12))                          | 0:0039@=00                                                        | 1203                    | 5-4490=0                  |
| 29.430         | 13.000                 | 2-834                      | 0003710                      | 2010-0                          | 2.40980-06                                                        | 1212                    | 2.0610-05                 |
| 29:291         | 23:000                 | 3-274                      | =0003248                     | 22.89.7                         | 1.9918@-06                                                        | 1160                    | 1.624@-05                 |
| 29:012         | 44-000                 | 4:150                      | 0005536                      | 2682.4                          | 1-7407@-06                                                        | 1080                    | 1-318@-05                 |
| 28-872         | 52.000                 | 1.586                      | 0002412                      | 3059-7                          | 1-9222@-06                                                        | 1001                    | 1.340@-05                 |
| 20:0015        | 53.000                 | - )-(                      | -0004319                     | 3411.5                          | 1-6079@-06                                                        | .0921                   | 1-028@-05                 |
| 20:594         | (4:000                 | 5=450                      | -0013193                     | 4460.4                          | 1-37110-06                                                        | -0656                   | 5-997@-06                 |
| 27:475         | 184.00                 | 8.912                      | -0001336                     | 5370-7                          | 9-9389@-07                                                        | .0416                   | 2.,782@-06                |
| 27:335         | 208=00                 | 9:335                      | =0001287                     | 5553-6                          | 8-2746@-07                                                        | -0363                   | 2-011@-06                 |
| 27-195         | 240.00                 | 9=758                      |                              | 5722-2                          | 8-60000-07                                                        | -0210                   | 1                         |
| 27:055         | 275.00                 | 10-18                      | 0001243                      | 2 (22)                          |                                                                   | .0510                   | 1.1100-00                 |
| 26:-914        | 340-00                 | 10.60                      | -0001500                     | 5909-7                          | 5-43620-07                                                        | 0256                    | 9-234@-07                 |
| 26-774         | 415:00                 | 11.02                      | 0001160                      | 6082-9                          | 5.79602-07                                                        | :0203                   | 7=734@-07                 |

|                | TABLE: 112             |                            |                              | RUN NO.: R.E.27                 |                                                     |                         |                           |
|----------------|------------------------|----------------------------|------------------------------|---------------------------------|-----------------------------------------------------|-------------------------|---------------------------|
|                | TEMP                   | :70.0°c                    | CELL: C                      | STIRRER SPEED :2000 R.P.M.      |                                                     |                         |                           |
|                | SEED                   | BATCH E                    | PREPARED                     | SIEVE                           | FRACTION: 89                                        | -105 µ                  |                           |
| CONCN.<br>%M/V | TOTAL<br>TIME<br>MINS: | CRYSTAL<br>MASS<br>(GRAMS) | DIAMETER<br>INCREASE<br>(CM) | MEAN<br>AREA<br>CM <sup>2</sup> | GROWTH RATE<br>CONSTANT<br>K(MIN'CM <sup>-2</sup> ) | MEAN<br>SUPER-<br>SATN: | GROWTH<br>RATE<br>CM/MIN: |
| 33-294         | .00000                 | 1.960                      |                              | 10105-8                         | 6-00800-06                                          |                         | 1-0510-01                 |
| 29:-708        | 23:670                 | 13-72                      | 0001016                      | 7101 6                          | 2 2008 0                                            | 1973                    | 0 7190 0                  |
| 29:430         | 27:250                 | 14.57                      | 0001946                      | 1401-0                          | 3:22000-06                                          | 1239                    | 2. (100=0)                |
| 28.594         | 44-000                 | 17-12                      | 0005370                      | 8023-2                          | 2:3200@~06                                          | •1027                   | 1-603@-05                 |
| 28.454         | 45:750                 | 17:54                      | 0000828                      | 8558.2                          | 4-2092@-06                                          | ÷0842                   | 2,365@-05                 |
| 28=315         | 51-000                 | 17-95                      | :0000812                     | 8704.7                          | 1-4731@-06                                          | •0789                   | 7733@06                   |
| 28-175         | 56-000                 | 18.27                      | -0000797                     | 8849=7                          | 1.6322@-06                                          | =0736                   | 7-9700-06                 |
| 20.10          | 50.000                 | 10.51                      | .0000783                     | 8993-3                          | 1-5747@-06                                          | -0683                   | 7-115@-06                 |
| 20-035         | 61.500                 | 10.19                      | -0001525                     | 9205-8                          | 1-60140-06                                          | -0603                   | 6-354@-06                 |
| 27:756         | 73:500                 | 19.62                      | -0000743                     | 9416-2                          | 1.6642@-06                                          | -0523                   | 5-713@-06                 |
| 27-615         | 80.000                 | 20.03                      | -0000730                     | 9554-6                          | 1-3197@-06                                          | -0470                   | 4-057@-06                 |
| 27-475         | 89:000                 | 20,44                      | -0000718                     | 0601-7                          | 1-10150-06                                          | -0416                   | 2.003@-06                 |
| 27:335         | 101-00                 | 20.85                      |                              | 0007 5                          | 1 101/0-00                                          |                         | 2.7793-00                 |
| 27-195         | 114-00                 | 21-26                      |                              | 902 ()                          | 1-15100-00                                          | :0303                   | 20 (100=00                |
| 27:055         | 135-00                 | 21.67                      | -0000695                     | 9962-1                          | 8-2489@-07                                          | :0310                   | 1-655@-06                 |
| 26:914         | 160.00                 | 22.08                      | 0000684                      | 10095                           | 8.2738@-07                                          | -0256                   | 1-368@-06                 |

EQUILIBRIUM CONCENTRATION = 26:310 INITIAL SEED AREA = 1570

|                |                        | TABLE :                    | 113                            |                                 | .E.28                                              |                         |                           |
|----------------|------------------------|----------------------------|--------------------------------|---------------------------------|----------------------------------------------------|-------------------------|---------------------------|
|                | TEMP                   | 60.0°C                     | CELL: C                        | STIRRER SPEED :2000 R.P.M.      |                                                    |                         |                           |
|                | SEED                   | BATCHE                     | PREPARED                       | SIEVE                           | FRACTION: 89                                       | 9-105 ju                |                           |
| CONCN -<br>M/V | TOTAL<br>TIME<br>MINS: | CRYSTAL<br>MASS<br>(GRAMS) | D IAMETER<br>I NCREASE<br>(CM) | MEAN<br>AREA<br>CM <sup>2</sup> | GROWTH RATE<br>CONSTANT<br>K(MIN CM <sup>2</sup> ) | MEAN<br>SUPER-<br>SATN. | GROWTH<br>RATE<br>CM/MIN5 |
| 27.623         | 00000                  | 1.960                      | -0021265                       | 2486-2                          | 1-25220-05                                         | -3446                   | 2-3630-04                 |
| 26.650         | 4-5000                 | 4.992                      | .002120)                       | 26222                           | 1.2)220-0)                                         | -2126                   | 7-076@-05                 |
| 26.371         | 7-0000                 | 5-845                      | *0003900                       | 1000                            | 1. =)1860 cf                                       | 2008                    | 7.0000.05                 |
| 26-092         | 9-5000                 | 6.695                      | -0003549                       | 4054.2                          | 4-574000=00                                        |                         | 6 1600 05                 |
| 25-534         | 14.500                 | 8.390                      | -0006163                       | 465 (=9                         | 4.20310-00                                         | -2/91                   | 0. 1030-05                |
| 25-254         | 18-000                 | 9-230                      | -0002715                       | 5237:0                          | 2.9291@-06                                         | + .2503                 | 3-879@=05                 |
| 25-114         | 20:000                 | 9.648                      | :0001284                       | 5512-4                          | 2.5387@-06                                         | -2479                   | 3-211@-05                 |
| 24.974         | 22-500                 | 10,07                      | -0001242                       | 5691:3                          | 2.0248@-06                                         | -2409                   | 2-484@05                  |
| 24-834         | 25-250                 | 10-48                      | -0001202                       | 5867:4                          | 1-8395@-06                                         | -2340                   | 2-186@-05                 |
| 2)1.602        | 27-500                 | 10-90                      | -0001165                       | 6040-8                          | 2.2517@-06                                         | -2271                   | 2-590@-05                 |
| 21.095         | 22.000                 | 1172                       | -0002233                       | 6295-2                          | 2-2671@-06                                         | -2166                   | 2.481@-05                 |
| C+++13         | 32.000                 | 11.05                      | -0002112                       | 6627:6                          | 2:0734@-06                                         | -2027                   | 2-112@-05                 |
| 24:132         | 3/-000                 | 12:50                      | ;0001014                       | 6871-8                          | 1-3184@-06                                         | -1923                   | 1-268@-05                 |
| 23:991         | 41:000                 | 12:97                      | :0000990                       | 7031-3                          | 1.7835@-06                                         | -1853                   | 1-649@-05                 |
| 23:050         | 44.000                 | 13-38                      | -0001912                       | 7266:5                          | 1-3735@-06                                         | -1748                   | 1:195@-05                 |
| 23:569         | 52,000                 | 14-20                      | :0000923                       | 7498.9                          | 9-4415@-07                                         | . 1644                  | 7-688@-06                 |
| 23-428         | 58.000                 | 14.61                      | -0000903                       | 7651-0                          | 1-1603@-06                                         | =1574                   | 9-026@-06                 |
| 23:287         | 63-000                 | 15:02                      | -0000884                       | 7801-5                          | 1-3239@-06                                         | -1504                   | 9-817@-06                 |
| 23-146         | 67.500                 | 15-42                      |                                | 795.0-3                         | 1=7526@=06                                         | -1434                   | 1-236@-05                 |
| 23:005         | 71-000                 | 15-83                      | .00008)18                      | 8007.6                          | 1.10770-06                                         | -1264                   | 9-4230-06                 |
| 22.864         | 75-500                 | 16.24                      |                                | 0091:0                          | 1.40/1840                                          | . 1307                  | 101230-00                 |

| CONCN.<br>%M/V                                                                                                       | TOTAL<br>TIME<br>MINS:                                                                                               | CRYSTAL<br>MASS<br>(GRAMS)                                                                                                 | DIAMETER<br>INCREASE<br>(CM)                                                                                                                                                                                                                          | MEAN<br>AREA<br>CM <sup>2</sup>                                                                            | GROWTH RATE<br>CONSTANT<br>K(MIN <sup>-1</sup> CM <sup>-2</sup> )                                                                                      | MEAN<br>SUPER -<br>SATN:                                                                        | GROWTH<br>RATE<br>CM/MIN:                                                                                                                   |
|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| 22.864<br>22.722<br>22.581<br>22.440<br>22.298<br>22.157<br>22.015<br>21.873<br>21.590<br>21.448<br>21.306<br>21.164 | 75:500<br>82:000<br>88:000<br>95:000<br>103:50<br>116:50<br>126:00<br>137:00<br>163:00<br>185:00<br>215:00<br>240.00 | 16:24<br>16:64<br>17:05<br>17:45<br>17:45<br>17:85<br>18:25<br>18:66<br>19:06<br>19:06<br>19:86<br>20:25<br>20:65<br>21:05 | <ul> <li>(CM)</li> <li>0000832</li> <li>0000816</li> <li>0000801</li> <li>0000786</li> <li>0000786</li> <li>0000772</li> <li>0000759</li> <li>0000746</li> <li>0000746</li> <li>0000746</li> <li>0000710</li> <li>0000699</li> <li>0000689</li> </ul> | 8243:4<br>8387:7<br>8530:6<br>8672:1<br>8812:3<br>8951:2<br>9088:9<br>9292:7<br>9494:7<br>9627:6<br>9759:5 | 1.0097@-06<br>1.1371@-06<br>1.0171@-06<br>8.7769@-07<br>6.0415@-07<br>8.7493@-07<br>8.0446@-07<br>7.5942@-07<br>5.0853@-07<br>4.1176@-07<br>5.5364@-07 | •1294<br>•1224<br>•1154<br>•1084<br>•1014<br>•0944<br>•0768<br>•0768<br>•0663<br>•0592<br>•0522 | 6.397@-06<br>6.798@-06<br>5.719@-06<br>4.625@-06<br>2.970@-06<br>3.994@-06<br>3.391@-06<br>2.800@-06<br>1.614@-06<br>1.166@-06<br>1.377@-06 |
| 21.021                                                                                                               | 270:00                                                                                                               | 0 21.44                                                                                                                    | - 0000b 77                                                                                                                                                                                                                                            | 9890.2                                                                                                     | 5-20010-07                                                                                                                                             | -0452                                                                                           | 1 - 1290 - 00                                                                                                                               |

|               |                        |                            |                               |                                 |                                                                   | -                       | 317 -                     |
|---------------|------------------------|----------------------------|-------------------------------|---------------------------------|-------------------------------------------------------------------|-------------------------|---------------------------|
|               |                        | TABLE :                    | 114                           |                                 | RUN NO:: R.                                                       | E.29                    |                           |
|               | TEMP                   | :60.0°C                    | CELL: C                       | STIRR                           | ER SPEED :2000                                                    | R.P.M.                  | •                         |
|               | SEED                   | BATCH E                    | PREPARED                      | SIEVE                           | FRACTION: 89                                                      | -105µ                   |                           |
| CONCN-<br>M/V | TOTAL<br>TIME<br>MINS: | CRYSTAL<br>MASS<br>(GRAMS) | D IAMETER<br>INCREASE<br>(CM) | MEAN<br>AREA<br>CM <sup>2</sup> | GROWTH RATE<br>CONSTANT<br>K(MIN <sup>-7</sup> CM <sup>-2</sup> ) | MEAN<br>SUPER-<br>SATN. | GROWTH<br>RATE<br>CM/MIN. |
| 27=331        | .00000                 | 1.984                      |                               | 170)1.6                         | 1.52670-05                                                        | 2)105                   | 2-8500-04                 |
| 27-137        | 1.0000                 | 2.589                      | 0000)112                      | 2127.7                          | 1-25020-05                                                        | -2)112                  | 2.27/10-01                |
| 26:998        | 1.7500                 | 3.019                      | 0003412                       | 213/07                          | 9 = (210 0                                                        | 22/12                   | 1 5110 0                  |
| 26:-859       | 2.7500                 | 3:449                      | -0003022                      | 240/04                          | 0,50310-0                                                         | *3343                   | 1.000 0                   |
| 26.719        | 3:6700                 | 3-878                      | .0002724                      | 2665-7                          | 8-58730-06                                                        | •3274                   | 1.4809-04                 |
| 26-580        | 4.5000                 | 4.306                      | -0002486                      | 2914:2                          | 8-8990@-06                                                        | •3205                   | 1-498@-04                 |
| 26.441        | 5.5000                 | 4733                       | -0002293                      | 3153:9                          | 6-9785@-06                                                        | -3136                   | 1.146@-04                 |
| 26-302        | 6-5000                 | 5:160                      | -0002131                      | 3386.0                          | 6-6500@-06                                                        | :3067                   | 1.066@-04                 |
| 26.162        | 7-6700                 | 5585                       | -0001994                      | 3611.2                          | 5-4550@-06                                                        | -2998                   | 8.522@-05                 |
| 20.102        | 8 75 00                | 5.010                      | .0001876                      | 3830.2                          | 5-7062@-06                                                        | -2929                   | 8.687@-05                 |
| 20:023        | 0. 500                 | C. hal                     | -0001774                      | 4043.6                          | 5-5388@-06                                                        | -2860                   | 8-212@-05                 |
| 25:003        | 9=0300                 | 6:434                      | .0001684                      | 4251.8                          | 4-1079@-06                                                        | -2791                   | 5-928@-05                 |
| 25:743        | 11-250                 | 6-857                      | -0001604                      | 4455-2                          | 4-5692@-06                                                        | -2721                   | 6-414@-05                 |
| 25.604        | 12:500                 | 7=279                      | -0001532                      | 4654-3                          | 3-2074@-06                                                        | -2652                   | 4-377@-05                 |
| 25.464        | 14.250                 | 7.700                      | -0001467                      | 4849.3                          | 3-8977@-06                                                        | -2583                   | 5-167@-05                 |
| 25-324        | 15:670                 | 8.121                      | -0001409                      | 5040.5                          | 3-465.00-06                                                       | :2514                   | 4-459@-05                 |
| 25.184        | 17:250                 | 8.541                      |                               | 5228-1                          | 2-10220-06                                                        |                         | 3-8740-05                 |
| 25:044        | 19.000                 | 8.959                      | .0001300                      | slito li                        | 2 70110 06                                                        | 0075                    | 2.2680.05                 |
| 24:904        | 21-000                 | 9-378                      | -0001307                      | 5412.4                          |                                                                   | • - 3 []                | 3-2000-0                  |
| 24.764        | 23.000                 | 9=795                      | :0001263                      | 5593-0                          | 2:693/@=06                                                        | :2305                   | 3-1500-05                 |
| 24.623        | 25.000                 | 10.21                      | -0001221                      | 5771-9                          | 2-6931@-06                                                        | .2236                   | 3.530-05                  |
| 24:343        | 28.750                 | 11.04                      | -0002332                      | 6033-2                          | 2-88580-06                                                        | -2132                   | 3-109@-05                 |
| 24.202        | 30-250                 | 11-46                      | .0001114                      | 6290.6                          | 3-6397@-06                                                        | :2027                   | 3-712@-05                 |
| 24.061        | 32=000                 | 11.87                      | :0001082                      | 6458.4                          | 3-1484@-06                                                        | .1958                   | 3-093@-05                 |

TABLE 114 (CONTD.) RUN NO.: R.E.29 (CONTD.)

| CONCN.<br>%M/V | TOTAL<br>TIME<br>MINS. | CRYSTAL<br>MASS<br>(GRAMS) | DIAMETER<br>INCREASE<br>(CM) | MEAN<br>AREA<br>CM <sup>2</sup>            | CONSTANT<br>K(MIN <sup>-</sup> CM <sup>-2</sup> ) | MEAN<br>SUPER-<br>SATN: | GROWTH<br>RATE<br>EM/MIN: |
|----------------|------------------------|----------------------------|------------------------------|--------------------------------------------|---------------------------------------------------|-------------------------|---------------------------|
| 24:061         | 32.000                 | 11-87                      |                              | ((00.0                                     | 1 85-780 06                                       | 1888                    | 1-750-05                  |
| 23-921         | 35-000                 | 12.28                      | -0001053                     | 6023.9                                     | 1.00/00=00                                        | 1010                    | 1 7109 05                 |
| 23:780         | 38.000                 | 12.69                      | •0001026                     | 6787.1                                     | 1:0036@=06                                        | · 1010                  | 1. (100-0)                |
| 23.639         | 40.500                 | 13:10                      | 0001000                      | 6948-3                                     | 2:2972@=06                                        | •1748                   | 2.0000-05                 |
| 23-498         | 44.500                 | 13:51                      | .0000976                     | 7107-4                                     | 14628@==06                                        | •1679                   | 1-2200-05                 |
| 22             | 48-000                 | 13-92                      | :0000953                     | 7264.5                                     | 1.7075@06                                         | :1609                   | 1-361@-05                 |
| 23.075         | 56.500                 | 1)17)1                     | .0001843                     | 7496.3                                     | 1.4596@-06                                        | =1504                   | 1.084@-05                 |
| 23:015         | 506500                 |                            | :0000891                     | 7725-4                                     | 1=4383@-06                                        | -1399                   | 9-895@-06                 |
| 22:5934        | 61.000                 | 15:15                      | .0000872                     | 7875-4                                     | 8-9157@-07                                        | .1329                   | 5.812@-06                 |
| 22.793         | 68.500                 | 15:55                      | .0000854                     | 8023.9                                     | 1:9805@-06                                        | :1259                   | 1-220@-05                 |
| 22.652         | 72:000                 | 15:96                      | -0000837                     | 8170.8                                     | 1=20200=06                                        | -1189                   | 6-974@-06                 |
| 22.510         | 78.000                 | 16.36                      | 0000821                      | 8316-1                                     | 8.8634@-07                                        | -1119                   | 4.827@-06                 |
| 22:-369        | 86:500                 | 16:576                     | -0000805                     | 8460.0                                     | 1.1293@-06                                        | -1049                   | 5-7500-06                 |
| 22.227         | 93-500                 | ) 17-17                    |                              | 8602-4                                     | 1.2825@-06                                        | ÷0979                   | 6-077@-06                 |
| 22,086         | 100.00                 | ) 17:57                    | 0001538                      | 8813-1                                     | 9-1410-07                                         | 0874                    | 3-845@-06                 |
| 21-802         | 120.00                 | 18=37                      | .00007)18                    | 0021-7                                     | 7-2482@-07                                        | .0768                   | 2-673@-06                 |
| 21.661         | 134.00                 | 18.77                      | 0000706                      | 0158.7                                     | 6-8811@-07                                        | 06.98                   | 2-299@-06                 |
| 21-519         | 150.00                 | 0 19-17                    | -0000/30                     | 9190.1                                     | 6.00680-07                                        | 0628                    | 1-8080-06                 |
| 21.377         | 170.00                 | 0 19.56                    | :0000723                     | 92946)                                     | 6.00000-01                                        | .0020                   | 1-6160-06                 |
| 21-235         | 192:00                 | 0 19:96                    | :0000711                     | 9429:0                                     | 6:09 [00=0]                                       | 0)197                   | 1.5200-06                 |
| 21-093         | 215.00                 | 0 20,35                    | .0000699                     | 9562-3                                     | 5.5093@-01                                        | =0407                   | 1.0-00 06                 |
| 20-950         | 240-0                  | 0 20.75                    | ÷0000688                     | 9694.4                                     | 6-9995@-07                                        | .0416                   | 1.3 100.00                |
| 20-808         | 285.0                  | 0 21-14                    | .0000676                     | 9825 - 1                                   | 4-6261@-07                                        | 0346                    | 7=506@=07                 |
| 20.000         | 200.00                 | 0 21.52                    | :0000664                     | 9954.5                                     | 3-6964@-07                                        | :0275                   | 4.743@-07                 |
| 20,000         | 222.00                 | 6 61.93                    |                              | a pur lives and third shift and case first |                                                   |                         |                           |

EQUILIBRIUM CONCENTRATION = 20.181

INITIAL SEED AREA = 1589

- 318 -

|         | - )1    | -       |     |        |
|---------|---------|---------|-----|--------|
|         |         |         |     |        |
| TABLE : | 115     | I       | RUN | NO.:   |
|         |         |         |     |        |
|         | CELL: C | STIRRER | SPE | ED :20 |

|               | TABLE: 115              |                            |                              | RUN NO.: R.E.30                 |                                                                   |                         |                           |
|---------------|-------------------------|----------------------------|------------------------------|---------------------------------|-------------------------------------------------------------------|-------------------------|---------------------------|
|               | TEMP                    | 60.0°C                     | CELL: C                      | STIRF                           | STIRRER SPEED: 2000 R.P.M.                                        |                         |                           |
|               | SEED                    | BATCH E                    | PREPARED                     | SIEVE                           | FRACTION: 89                                                      | )-105µ                  |                           |
| CONCN.<br>M/V | TOTAL.<br>TIME<br>MINS. | CRYSTAL<br>MASS<br>(GRAMS) | DIAMETER<br>INCREASE<br>(CM) | MEAN<br>AREA<br>CM <sup>2</sup> | GROWTH RATE<br>CONSTANT<br>K(MIN <sup>-1</sup> CM <sup>-2</sup> ) | MEAN<br>SUPER-<br>SATN: | GROWTH<br>RATE<br>CM/MIN. |
| 27.414        | 00000                   | 1.972                      |                              | 1120.0                          | 2)12270-05                                                        | 2550                    | 6 11820 01                |
| 27.276        | .50000                  | 2.404                      | 0000403                      | 1129:0                          | 1 20000 05                                                        | 3550                    | 0.403@-04                 |
| 27.137        | 1.6700                  | 2.835                      | .0005019                     | 1299.4                          | 1.3009@-05                                                        | :3401                   | 2.401@-04                 |
| 26.998        | 3.0000                  | 3-265                      | .0004982                     | 1462-3                          | 1=03800-05                                                        | -3412                   | 1.873@-04                 |
| 26-859        | 4.5000                  | 3.695                      | -0004491                     | 1618.5                          | 8.4913@-06                                                        | •3343                   | 1.497@04                  |
| 26.580        | 6,2500                  | 4.552                      | .0007892                     | 1840.5                          | 1.32210-05                                                        | .3240                   | 2.255@-04                 |
| 26-441        | 7-25.00                 | 4.079                      | • 00035 15                   | 2055.2                          | 1.0709@-05                                                        | -3136                   | 1.758@-04                 |
| 26.202        | 0-0000                  | 5.)105                     | .0003290                     | 2191.8                          | 5.8706@-06                                                        | -3067                   | 9.399@-05                 |
| 20.302        | 10.050                  | 5.900                      | :0003095                     | 2324.6                          | 7-9319@-06                                                        | 2998                    | 1.238@-04                 |
| 20:102        | 10:290                  | 5:030                      | .0002926                     | 2454-1                          | 7.6948@-06                                                        | .2929                   | 1-1700-04                 |
| 26:023        | 11,500                  | 6:255                      | - 201 04 04                  | 2760.9                          | 6.9377@-06                                                        | .2756                   | 9-909@-05                 |
| 25.464        | 16:750                  | 7=950                      | -0004563                     | 3117-8                          | 5-8197@-06                                                        | :2548                   | 7-605@-05                 |
| 25-184        | 19:750                  | 8-790                      | - 2004240                    | 3342-2                          | 5.30580-06                                                        | -2409                   | 6-5220-05                 |
| 24-904        | 23000                   | 9-628                      | - 0003965                    | 3559-1                          | 4-91498-06                                                        | -2271                   | 5-665@-05                 |
| 24.623        | 26:500                  | 10-46                      | -0005521                     | 2820.2                          | 1 17200-06                                                        | 2007                    | 11170=05                  |
| 24.202        | 32:750                  | 11.71                      | 0001705                      | 1001002                         | 1. 112080-06                                                      | 1058                    | 1.2200 (5                 |
| 24.061        | 34.750                  | 12.12                      | :0001 (35)                   | 4024.0                          | 4:42000-00                                                        | 1900                    | 4.3399-09                 |
| 23-921        | 37.000                  | 12.53                      | .0001690                     | 4123-9                          | 3:91010-00                                                        | •1000                   | 3. 1960-09                |
| 23.780        | 40.500                  | 12,94                      | .0001648                     | 4221.8                          | 2.5956@-06                                                        | .1818                   | 2.354@-05                 |
| 23.639        | 42.000                  | 13:35                      | .0001608                     | 4318.6                          | 6.1602@-06                                                        | .1748                   | 5.359@-05                 |
| 23-498        | 45.000                  | 13-76                      | 0001570                      | 4414.1                          | 3-1403@-06                                                        | • 1679                  | 5.616@-05                 |

TABLE : 11 (CONTD.) RUN NO. : R.E. 30(CONTD.)

|                |                         |                            | ·                            |                                  |                                                                 |                         |                           |
|----------------|-------------------------|----------------------------|------------------------------|----------------------------------|-----------------------------------------------------------------|-------------------------|---------------------------|
| CONCN:<br>%M/V | TOTAL<br>TIME<br>MINS . | CRYSTAL<br>MASS<br>(GRAMS) | DIAMETER<br>INCREASE<br>(CM) | MEAN<br>AREA<br>CM <sup>22</sup> | GROWTH RATE<br>CONSTANT<br>K(MIN <sup>T</sup> CM <sup>2</sup> ) | MEAN<br>SUPER-<br>SATN. | GROWTH<br>RATE<br>CM/MIN: |
| 23-498         | 45.000                  | 13.76                      |                              |                                  |                                                                 |                         |                           |
| 23.358         | 18.500                  | 14.17                      | -0001534                     | 4508.6                           | 2.75120-06                                                      | :1609                   | 2-1910-05                 |
| 23-217         | 52,000                  | 14.58                      | ÷0001500                     | 4601:9                           | 2.8193@-06                                                      | . 1539                  | 2.1420-05                 |
| 22.02)         | 60.500                  | 1520                       | .0002907                     | 4739.7                           | 2.42250-06                                                      | -1434                   | 1-7102-05                 |
| 26.934         | 60.900                  | 17:39                      | 0001407                      | 4875-9                           | 2.40010-06                                                      | .1329                   | 1.563@-05                 |
| 22.793         | 65:000                  | 15.80                      | .0001380                     | 4965.3                           | 2.63570-06                                                      | -1259                   | 1.623@-05                 |
| 22.652         | 69:250                  | 16:20                      | .0002680                     | 5097.3                           | 1-73470-06                                                      | -1154                   | 9-7470-06                 |
| 22:369         | 83:-000                 | 17.01                      | -0001302                     | 5228.0                           | 2-13209-06                                                      | -1049                   | 1=085@-05                 |
| 22.227         | 89.000                  | 17:41                      |                              | 5212.0                           | 1.)10050-06                                                     |                         | 7-0009-06                 |
| 22.086         | 98.000                  | 17.81                      | .0001210                     | 2212.9                           | 1.4999.0                                                        | :0919                   | 1.0990-00                 |
| 21.944         | 109.00                  | 18.22                      | .0001255                     | 5390.0                           | 1-30160-06                                                      | :0909                   | 5.703@-00                 |
| 21-802         | 119-00                  | 18.61                      | :0001233                     | 5483-0                           | 1.52880-06                                                      | -0838                   | 6.163@-06                 |
| 21-519         | 147:00                  | 19-41                      | -0002404                     | 5607.5                           | 1-2253@-06                                                      | .0733                   | 4-293@-05                 |
| 21225          | 180.00                  | 20.20                      | -0002324                     | 5771-3                           | 1-2534@-06                                                      | .0592                   | 3-522@-06                 |
| 61.600         | 100,00                  | 20.20                      | :0001133                     | 5892.4                           | 1-8919@-06                                                      | .0487                   | 4-3590-06                 |
| 21:093         | 193:00                  | 20.60                      | .0001115                     | 5972.1                           | 8-87670-07                                                      | .0416                   | 1.7420-06                 |
| 20,950         | 225:00                  | 20-99                      | .0001097                     | 6051-0                           | 9-6577@-07                                                      | :0346                   | 1.567@-06                 |
| 20.808         | 260,00                  | 21-38                      | -0001080                     | 6129-1                           | 1-05060-06                                                      | -0275                   | 1-3490-06                 |
| 20.666         | 300.00                  | 21.78                      | -0001050                     | 6206-)                           | 1-21270-07                                                      | -0205                   | 1.075@-07                 |
| 20.523         | 430.00                  | 22.16                      |                              | 020004                           | 10-01 212 0-01                                                  | .020)                   | 1.0198-01                 |
|                |                         |                            |                              |                                  |                                                                 |                         |                           |

EQUILIBRIUM CONCENTRATION = 20.181

|                | TABLE : 116            |                            |                                     |                                 | RUN NO. R.I                                                     | P.E.9                   |                                        |
|----------------|------------------------|----------------------------|-------------------------------------|---------------------------------|-----------------------------------------------------------------|-------------------------|----------------------------------------|
|                | TEMP                   | :70.0°C                    | CELL:C                              | STIRR                           | ER SPEED: 2000                                                  | R.P.M.                  |                                        |
|                | SEED                   | BATCH P                    | .E.PREPARE                          | D SIEVE                         | FRACTION: 89-                                                   | -105 µ                  |                                        |
| CONCN-<br>%M/V | TOTAL<br>TIME<br>MINS: | CRYSTAL<br>MASS<br>(GRAMS) | DIAMETER<br>INCREASE<br>(CM)        | MEAN<br>AREA<br>CM <sup>2</sup> | GROWTH RATE<br>CONSTANT<br>K(MIN <sup>1</sup> CM <sup>2</sup> ) | MEAN<br>SUPER-<br>SATN. | GROWTH<br>RATE<br>CM/MIN;              |
| 27:461         | .00000                 | 1.957                      | -0005633                            | 1108-6                          | 2-7074@-05                                                      | -1062                   | 1-878@-04                              |
| 27:343         | 1.5000                 | 2:.326                     | -0006118                            | 1272-3                          | 7:1674@-06                                                      | .1008                   | 4.706@-05                              |
| 27-195         | 8.0000                 | 2:785                      | -0005363                            | 1446-3                          | 3-1114@-06                                                      | . 0949                  | 1-915@-05                              |
| 27:047         | 22,000                 | 3-243                      | .0004793                            | 1612-4                          | 2-7794@-06                                                      | -0889                   | 1-598@-05                              |
| 26-899         | 37:000                 | 3:700                      | =0004347                            | 1771.8                          | 3.6972@-06                                                      | :0829                   | 1.976@-05                              |
| 26.751         | 48.000                 | 4.155                      | .0011130                            | 2069.0                          | 2.4524@-06                                                      | :0710                   | 1-113@-05                              |
| 26.307         | 98.000                 | 5.513                      | =0003222                            | 2356-7                          | 2.6834@-06                                                      | -0590                   | 1.007@-05                              |
| 26.159         | 114.00                 | 5:961                      | - 0003 036                          | 2491.9                          | 2-15100-06                                                      | -0531                   | 7-228@-06                              |
| 26-012         | 135.00                 | 6.408                      | -0002870                            | 2623.5                          | 1-2086@-06                                                      | -0471                   | 3-588@-06                              |
| 25.864         | 175.00                 | 6.853                      | -0002724                            | 2751-8                          | 1-3197@-06                                                      | .0411                   | 3.405@-06                              |
| 25-716         | 215.00                 | 7:296                      | =0002594                            | 2877:0                          | 1-4771@-06                                                      | .0352                   | 3-243@-06                              |
| 25.568         | 255-00                 | 7=737                      | : 0002477                           | 2999-2                          | 1-51800-06                                                      | :0292                   | 2.752@-06                              |
| 25.420         | 300.00                 | 8.176                      | ::0002359                           | 3118-5                          | 5-1691@-07                                                      | -0232                   | 7.372@-07                              |
| 25:273         | 460.00                 | 8.611                      | 1 mg an dis 400 mg colung Mitore 10 |                                 | and ma the seq and and and out out the                          |                         | u minere and some integration and some |

|                | TABLE: 117              |                            |                              | RUN NO.: R.E.31                 |                                                                   |                                        |                           |
|----------------|-------------------------|----------------------------|------------------------------|---------------------------------|-------------------------------------------------------------------|----------------------------------------|---------------------------|
|                | TEMP                    | :70.02                     | CELL:C                       | STIRR                           | ER SPEED: 2000                                                    | RoPoMo                                 |                           |
|                | SEED                    | BATCH E                    | PREPARED                     | SIEVE                           | FRACTION: 89-                                                     | -105μ                                  |                           |
| CONCN.<br>%M/V | TOTAL<br>TIME<br>MINS . | CRYSTAL<br>MASS<br>(GRAMS) | DIAMETER<br>INCREASE<br>(CM) | MEAN<br>AREA<br>CM <sup>2</sup> | GROWTH RATE<br>CONSTANT<br>K(MIN <sup>-7</sup> CM <sup>-2</sup> ) | MEAN<br>SUPER-<br>SATN:                | GROWTH<br>RATE<br>CM/MIN. |
| 29:708         | .00000                  | 1.952                      |                              | 171)0                           | 6.08620-06                                                        | 1265                                   | 5-)1520-05                |
| 29:569         | 4.0000                  | 2-393                      |                              | 1/14:59                         | 1 07010 0                                                         | 1010                                   | 1 (870 05                 |
| 29:430         | 15.000                  | 2.833                      | .0003 (11                    | 2009.2                          | 1.9/240-00                                                        | 01212                                  |                           |
| 29.291         | 27:000                  | 3:273                      | :0003249                     | 2288.8                          | 1.6605@-06                                                        | :1160                                  | 1:354@-05                 |
| 29-152         | 38-000                  | 3:711                      | ;0002902                     | 2555-7                          | 1.7007@-06                                                        | •1107                                  | 1-319@05                  |
| 20-012         | 18-000                  | 1148                       | .0002631                     | 2811.7                          | 1-7869@-06                                                        | =1054                                  | 1-315@-05                 |
| 00 0-0         | TO.000                  | 1 90                       | .0002413                     | 3058-1                          | 1-5735@-06                                                        | -1001                                  | 1.097@-05                 |
| 20:013         | 59-000                  | 4.503                      | .0004320                     | 3409-9                          | 1.8767@-06                                                        | .0921                                  | 1.200@-05                 |
| 28,594         | 77.000                  | 5-453                      | -0001953                     | 3751-0                          | 1.6806@-06                                                        | :0842                                  | 9-764@-06                 |
| 28.454         | 87.000                  | 5.886                      | -0001841                     | 3968-8                          | 1-54200-06                                                        | .0789                                  | 8-369@-06                 |
| 28:315         | 98.000                  | 6-318                      | 0201743                      | 4181-0                          | 1=4395@-06                                                        | -0736                                  | 7-264@-06                 |
| 28.175         | 110.00                  | 6.749                      |                              | 1288-0                          | 1-2655@-06                                                        | - 0683                                 | 6-373@-06                 |
| 28.035         | 123:00                  | 7=178                      | .0001580                     | 1500.0                          | 0.60120.07                                                        |                                        | )                         |
| 27:895         | 142:00                  | 7-607                      | .0001500                     | 4590.4                          | 9.09120-01                                                        | -w29                                   |                           |
| 27:756         | 162.00                  | 8-034                      | =0001510                     | 4788.3                          | 9-6471@-07                                                        | :05/0                                  | 3-110-00                  |
| 27:615         | 174.00                  | 8-460                      | .0001448                     | 4982-2                          | 1.7037@-06                                                        | . (523                                 | 6.032@-06                 |
| 27-1175        | 192-00                  | 8-886                      | .0001391                     | 5172.2                          | 1.2190@-06                                                        | ······································ | 3,863@-06                 |
| 07 005         | 210.00                  | 0.200                      | .0001339                     | 5358-7                          | 1.3282@-06                                                        | 0416                                   | 3.719@-06                 |
| 2/0335         | 210:00                  | 9.309                      | .0001290                     | 5541.7                          | 8.8452@-07                                                        | :0363                                  | 2.1500-06                 |
| 27.195         | 240.00                  | 9:732                      | .0001246                     | 5721.5                          | 7.5405@-07                                                        | .0310                                  | 1-557@-06                 |
| 27:055         | 280:00                  | 10,15                      | .0001203                     | 5898-1                          | 5-9008@-07                                                        | :0256                                  | 1.0023-06                 |
| 26:0914        | 340.00                  | 10,57                      |                              |                                 |                                                                   |                                        |                           |

- 322 -

0 INITIAL SEED AREA = 1564

EQUILIBRIUM CONCENTRATION =  $26_{-310}$ 

----

|                | TABLE: 118             |                            |                              | RUN NO.: R.P.E.10               |                                                                   |                          |                           |  |
|----------------|------------------------|----------------------------|------------------------------|---------------------------------|-------------------------------------------------------------------|--------------------------|---------------------------|--|
|                | TEMP                   | :30.0°C                    | CELL: C                      | STIRR                           | ER SPEED : 2000                                                   | R.P.M.                   |                           |  |
|                | SEED                   | BATCH F                    | .E.PREPARE                   | D SIEVE                         | FRACTION: 89                                                      | )-105µ-                  |                           |  |
| CONCN.<br>2M/V | TOTAL<br>TIME<br>MINS. | CRYSTAL<br>MASS<br>(GRAMS) | DIAMETER<br>INCREASE<br>(CM) | MEAN<br>AREA<br>CM <sup>2</sup> | GROWTH RATE<br>CONSTANT<br>K(MIN <sup>-7</sup> CM <sup>-2</sup> ) | MEAN<br>SUPER -<br>SATN: | GROWTH<br>RATE<br>CM/MIN: |  |
| 12.251         | .00000                 | 1-991                      |                              | 4 [ ] })                        |                                                                   | 1000                     |                           |  |
| 11-241         | 1.0000                 | 4.760                      | -0030030                     | 1555.4                          | 1. 10102-04                                                       | -4001                    | 1-542@-03                 |  |
| 11.100         | 10.000                 | 5-140                      | 0003028                      | 2119.9                          | 2:2570@-06                                                        | -4133                    | 1.682@-05                 |  |
| 10.959         | 15,000                 | 5.518                      | -0002860                     | 2240,4                          | 4-01902-06                                                        | •3955                    | 2.8600-05                 |  |
| 10.819         | 17,500                 | 5.896                      | .0002712                     | 2358.0                          | 8-0009@-06                                                        | •3777                    | 5.424@-05                 |  |
| 10.678         | 20=000                 | 6-274                      | 0002581                      | 2473.1                          | 8-0103@-06                                                        | -3598                    | 5-163@-05                 |  |
| 10.206         | 22000                  | 7.027                      | ,0004830                     | 2640.4                          | 2.0292@-05                                                        | •3331                    | 1-207@-04                 |  |
| 10.11)         | 22,000                 | 1.021                      | -0004447                     | 2857.3                          | 3-2348@-05                                                        | .2974                    | 1-711@-04                 |  |
| 10-114         | 23:300                 | (= ( (0                    | .0008007                     | 3166.4                          | 1.3324@-04                                                        | -2438                    | 5-719@-04                 |  |
| 9.5487         | 24.000                 | 9-275                      | .0003629                     | 3465.8                          | 1.0893@-04                                                        | -1902                    | 3-629@-04                 |  |
| 9-2658         | 24.500                 | 10.02                      | 0005079                      | 3702-8                          | 1-55300-04                                                        | -1454                    | 3-907@-04                 |  |
| 8.8409         | 25-150                 | 11.13                      | -000)1709                    | 2078.1                          | 1.70050 01                                                        |                          | 2.7670 01.                |  |
| 8.4154         | 26:000                 | 12-23                      | 0007105                      | 3910-1                          | 1. 1900 e-04                                                      | · 0910                   | 2. 10 10-04               |  |
| 8.1314         | 27-300                 | 12-97                      | .0002953                     | 4200-6                          | 1.4042@=04                                                        | 0467                     | 1-136@-04                 |  |
| 7-9892         | 28.500                 | 13-33                      | -0001427                     | 4330-8                          | 1.8868@-04                                                        | •0198                    | 5-945@-05                 |  |

|                |                        |                            |                              |                                 |                                                    |                         | - 324 -                   |
|----------------|------------------------|----------------------------|------------------------------|---------------------------------|----------------------------------------------------|-------------------------|---------------------------|
|                |                        | TABLE :                    | 119                          | *                               | . RUN NO. R.E                                      | .32                     |                           |
|                | TEMP                   | :60.0°C                    | CELL: C                      | STIRF                           | RER SPEED :2000                                    | R.P.M.                  |                           |
|                | SEED                   | BATCH E                    | PREPARED                     | SIEVE                           | FRACTION: 89                                       | -105µ                   |                           |
| CONCN-<br>%M/V | TOTAL<br>TIME<br>MINS: | CRYSTAL<br>MASS<br>(GRAMS) | DIAMETER<br>INCREASE<br>(CM) | MEAN<br>AREA<br>CM <sup>+</sup> | GROWTH RATE<br>CONSTANT<br>K(MIN'CM <sup>2</sup> ) | MEAN<br>SUPER-<br>SATN: | GROWTH<br>RATE<br>CM/MIN. |
| 27:248         | :00000                 | -9920                      |                              | 011 00                          |                                                    |                         |                           |
| 27:137         | 1:0000                 | 1-337                      | 0000434                      | 911:34                          | 1 15000-05                                         | =3493                   | 3=21/0=04                 |
| 26:998         | 2:5000                 | 1-768                      | -0000293                     | 1101-0                          | 1=1536@=05                                         | -3431                   | 2:098@-04                 |
| 26.859         | 4-2500                 | 2:198                      | :0005134                     | 1419-5                          | 8:2634@-06                                         | -3362                   | 1-4670-04                 |
| 26-580         | 7:2500                 | 3=057                      | .0008237                     | 1769-2                          | 7=9882@-06                                         | -3258                   | 1=373@-04                 |
| 26-441         | 8-7500                 | 3-484                      | -0003447                     | 2099-7                          | 6.95700-06                                         | •3155                   | 1.149@-04                 |
| 26-302         | 10.250                 | 3011                       | .0003134                     | 2304-3                          | 6-4846@-06                                         | -3086                   | 1.0450-04                 |
| 26-162         | 12-000                 | 1-227                      | -0002882                     | 2500.9                          | 5.2417@-06                                         | =3017                   | 8.233@-5                  |
| 26.022         | 12,500                 | 1000                       | :0002673                     | 2690:3                          | 5.8212@-06                                         | -2947                   | 8-911@-05                 |
| 20:023         | 155500                 | 4 102                      | -0002498                     | 2873-6                          | 5-5840@-06                                         | -2878                   | 8-326@-05                 |
| 25:003         | 15:000                 | .5:100                     | .0004570                     | 3136-8                          | 3.9842@-06                                         | :2774                   | 5-713@-05                 |
| 25:004         | 19:000                 | 6:033                      | -0002103                     | 3392-9                          | 5-1059@-06                                         | :2670                   | 7=009@-05                 |
| 25:464         | 20,500                 | 6.454                      | -0002002                     | 3557-2                          | 5.0028@-06                                         | -2601                   | 6-6720-05                 |
| 25-324         | 22.5000                | 6:875                      | :0001912                     | 3717.6                          | 5-90490-06                                         | -2531                   | 7-646@-05                 |
| 25-184         | 23:250                 | 7:295                      | -0001830                     | 3874-6                          | 4-1633@-06                                         | -2462                   | 5-2300-05                 |
| 25:044         | 25:000                 | 7=714                      | =0001757                     | 4028-4                          | 3-6076@-06                                         | -2302                   | 4-393@-05                 |
| 24-904         | 27:000                 | 8-132                      | -0001600                     | 1170-2                          | 2-58250-06                                         |                         | 1.2260-05                 |
| 24:764         | 29:000                 | 8.550                      | 0001600                      | 11/207 0                        | 2 17210 0                                          | -4343                   | - (010 m                  |
| 24-623         | 31:250                 | 8.967                      | -0001029                     | 432/02                          | 3=1 (310=00                                        | =22)3                   | 3:0210-05                 |
| 24.483         | 33-500                 | 9=382                      | :00015 (3                    | 44 (20)                         | 3-16950-06                                         | 2104                    | 3:5496@=05                |
| 24-343         | 35=750                 | 9-797                      | -0001521                     | 4615-4                          | 3:1743@-06                                         | -2114                   | 3-381@-05                 |
| 24-202         | 38.000                 | 10,21                      | -0001474                     | 4755=9                          | 3:1872@-06                                         | :2044                   | 3=275@-05                 |
| 24.061         | 40.000                 | 10,62                      | =0001429                     | 4894-2                          | 3-6093@-06                                         | =1974                   | 3-573@-05                 |
| 23-921         | 42-750                 | 11-04                      | •0001388                     | 5030.5                          | 2.6488@-06                                         | •1905                   | 2-523@-05                 |

|               |                        | TABLE :1                   | 19(CONTD:)                    | ) RUN NO.: R.E.32 (CONTD.)      |                                                                 |                           |                                    |  |
|---------------|------------------------|----------------------------|-------------------------------|---------------------------------|-----------------------------------------------------------------|---------------------------|------------------------------------|--|
| CONCN.<br>M/V | TOTAL<br>TIME<br>MINS: | CRYSTAL<br>MASS<br>(GRAMS) | D IAMETER<br>INCREASE<br>(CM) | MEAN<br>AREA<br>CM <sup>2</sup> | GROWTH RATE<br>CONSTANT<br>K(MIN <sup>7</sup> CM <sup>2</sup> ) | MEAN<br>SUPER -<br>SATN.  | GROWTH<br>RATE<br>CM/MIN.          |  |
| 23.921        | 42:750                 | 11-04                      |                               |                                 |                                                                 | and the set of and set of | and taken an out on an out of an a |  |
| 23:780        | 45-500                 | 11:45                      | ;0001349                      | 5164.7                          | 2.6795@-06                                                      | -1835                     | 2:452@-05                          |  |
| 23:639        | 47.750                 | 11-86                      | -0001313                      | 5297:1                          | 3-3213@06                                                       | :1765                     | 2-919@-05                          |  |
| 23-498        | 51-000                 | 12:27                      | :0001279                      | 5427.7                          | 2-3378@-06                                                      | =1695                     | 1-968@-05                          |  |
| 23:358        | 55=000                 | 12-68                      | -0001247                      | 5556.5                          | 1-9363@-06                                                      | -1625                     | 1-5580-05                          |  |
| 23-217        | 58-500                 | 12.00                      | :0001216                      | 5683-7                          | 2-2619@-06                                                      | -1555                     | 1-738@-05                          |  |
| 22.075        | 62.750                 | 12.50                      | -0001187                      | 5809-2                          | 1-9094@-06                                                      | -1485                     | 1-397@-05                          |  |
| 23:015        | 66 500                 | 13:50                      | .0001160                      | 5933-2                          | 2.22480-06                                                      | -12:15                    | 1-547@-05                          |  |
| 22:5934       | 00.500                 | 13:90                      | -0001134                      | 6055-8                          | 1-7209@-06                                                      | -1345                     | 1-134@-05                          |  |
| 22:793        | 71-500                 | 14-31                      | -0001110                      | 6176.8                          | 1-7809@-06                                                      | -1275                     | 1-1102-05                          |  |
| 22.652        | 76.500                 | 14.71                      | - 0001086                     | 6296-6                          | 1.6816@-06                                                      | -1205                     | 9-876@-06                          |  |
| 22.510        | 82,000                 | 15-12                      | -0001064                      | 6414-9                          | 1-2056@-06                                                      | -1135                     | 6-6500-06                          |  |
| 22-369        | 90.000                 | 15-52                      | - 0001 043                    | 6532-0                          | 1:-6837@-06                                                     | -1065                     | 8-6900-06                          |  |
| 22:227        | 96-000                 | 15.92                      | 0001022                       | 66)17.0                         | 8-50600-07                                                      |                           | 1-0800-06                          |  |
| 22:086        | 108-50                 | 16:33                      | 0001022                       | 67625                           | 1 18170 0                                                       | . 0991                    | F 0770 06                          |  |
| 21:944        | 118-00                 | 16-73                      | -0001003                      | (0-20)                          | 1-104 10-00                                                     | -0924<br>                 | 5=2110=00                          |  |
| 21-802        | 127-50                 | 17-13                      | :0000984                      | 6015-9                          | 1-2619@=06                                                      | -0054                     | 5-179@-05                          |  |
| 21-661        | 140.00                 | 17.52                      | •0000966                      | 6988,2                          | 1=0291@-06                                                      | -0783                     | 3-864@-06                          |  |
| 21-519        | 160-00                 | 17-92                      | .0000948                      | 7099-4                          | 6-9605@-07                                                      | -0713                     | 2-371@-06                          |  |
| 21=377        | 180-00                 | 18-32                      | ;0000932                      | 7209.4                          | 7=6109@-07                                                      | - 0543                    | 2:-329@-06                         |  |
| 21-225        | 200-00                 | 18-72                      | -0000915                      | 7318-4                          | 8-1277@-07                                                      | =0572                     | 2:289@-06                          |  |
| 20.050        | 200.00                 | 10.12                      | -0001785                      | 7479-5                          | 7-1508@-07                                                      | ·· 02:66                  | 1-566@-06                          |  |
| 20.950        | <i>c</i> ) [=00        | 19:50                      | -0000869                      | 7639-1                          | 6-7675@-07                                                      | :0361                     | 1-144@-06                          |  |
| 20.008        | 295:00                 | 19.90                      |                               |                                 |                                                                 |                           |                                    |  |

..

|                                                              |                        | TABLE 1                    | 19 (CONTD.)                  | 1.000 and 400 and 100 and 400 and | RUN NO. R.E.32 (CONTD .)                                        |                         |                           |  |
|--------------------------------------------------------------|------------------------|----------------------------|------------------------------|-----------------------------------|-----------------------------------------------------------------|-------------------------|---------------------------|--|
| CONCN.<br>M/V                                                | TOTAL<br>TIME<br>MINS. | CRYSTAL<br>MASS<br>(GRAMS) | DIAMETER<br>INCREASE<br>(CM) | MEAN<br>AREA<br>CM <sup>2</sup>   | GROWTH RATE<br>CONSTANT<br>K(MIN <sup>7</sup> CM <sup>2</sup> ) | MEAN<br>SUPER-<br>SATN. | GROWTH<br>RATE<br>CM/MIN. |  |
| 2.0.808                                                      | 295:00                 | 19-90                      |                              |                                   |                                                                 |                         |                           |  |
| 20,666                                                       | 350-00                 | 20-29                      | .0000855                     | 7743-9                            | 5=7491@-07                                                      | :0290                   | 7-768@-07                 |  |
| 20,523                                                       | 460.00                 | 20,68                      | ÷0000839                     | 7847.5                            | 3.76680-07                                                      | .0219                   | 3-812@-07                 |  |
| EQUILIBRIUM CONCENTRATION = 20,153 INITIAL SEED AREA = 794.7 |                        |                            |                              |                                   |                                                                 |                         |                           |  |

|               | TABLE: 120             |                            |                              | RUN NO. :R.E.33                 |                                                                  |                         |                           |
|---------------|------------------------|----------------------------|------------------------------|---------------------------------|------------------------------------------------------------------|-------------------------|---------------------------|
|               | TEMP                   | 60.0°C                     | CELL:C                       | STIRR                           | ER SPEED :2000                                                   | R.P.M.                  |                           |
|               | SEED                   | BATCHE                     | PREPARĘD                     | SIEVE                           | FRACTION:89-                                                     | 105 ju                  |                           |
| CONCN.<br>M/V | TOTAL<br>TIME<br>MINS: | CRYSTAL<br>MASS<br>(GRAMS) | DIAMETER<br>INCREASE<br>(CM) | MEAN<br>AREA<br>CM <sup>2</sup> | GROWTH RATE<br>CONSTANT<br>K(MIN <sup>°</sup> CM <sup>-2</sup> ) | MEAN<br>SUPER-<br>SATN: | GROWTH<br>RATE<br>CM/MIN. |
| 27:5276       | .00000                 | :4920                      |                              | 52222                           | 1-62170-05                                                       |                         | 3-0060-01                 |
| 27:137        | 2-2500                 | :-9236                     |                              | 1085-0                          | 8-66/150-06                                                      |                         | 1-5810-01                 |
| 26-580        | 11.000                 | 2.648                      | -002/003                     | 15.88 1                         | 6-82720-06                                                       | -2102                   | 1-1200-01                 |
| 26:441        | 13-000                 | 3=075                      | -000/1100                    | 1757-0                          | 1-01120-05                                                       |                         | 1-6)010-01                |
| 26:302        | 14-250                 | 3-502                      | 0004109                      | 1018.2                          | 6 76000 06                                                       | -3123<br>2(E)           | 1.0700 0                  |
| 26.162        | 16:000                 | 3:927                      | -0003 [55                    | 1910-3                          | 6 700/0 0                                                        | ·3034                   | 1 0 30 01                 |
| 26:023        | 17:670                 | 4.352                      | 0003460                      | 20/3-2                          | 6 - 12040-00                                                     | 62004                   | 1.0000 01                 |
| 25 -883       | 19:250                 | 4.776                      | 0003220                      | 2222.0                          | 6.00000                                                          | -2915                   | 1-0220-04                 |
| 25-743        | 20:750                 | 5-199                      | :0003025                     | 236 / 1                         | 6:0000-00                                                        | .2045                   | 1-0000-04                 |
| 25:604        | 22.500                 | 5-621                      | 0002850                      | 2507-2                          | 5-7105@-06                                                       | :2776                   | 8-144@=05                 |
| 25-464        | 24.000                 | 6:043                      | :0002698                     | 2643-4                          | 6-48489-06                                                       | .2706                   | 8-993@-05                 |
| 25-324        | 25:500                 | 6-464                      | ÷0002564                     | 2776-1                          | 63412@-06                                                        | -2636                   | 8-546@-05                 |
| 25:044        | 28,500                 | 7:303                      | .0004789                     | 2968-3                          | 6.1814@-06                                                       | =2532                   | 7=981@-05                 |
| 24-764        | 33-500                 | 8-140                      | .0004401                     | 3216-4                          | 3.6262@-06                                                       | :=2393                  | 4-401@-05                 |
| 24.623        | 36-750                 | 8.556                      | -0002075                     | 3396-7                          | 2:7637@-06                                                       | -2288                   | 3-192@-05                 |
| 24.483        | 38.000                 | 8-972                      |                              | 3513-4                          | 7:1695@-06                                                       | -2218                   | 8-007@-05                 |
| 24.343        | 39:500                 | 9:387                      | .0001935                     | 3628-1                          | 5-9771@-06                                                       | -2148                   | 6-449@-05                 |
| 24-202        | 42-170                 | 9-801                      | -0001873                     | 3740-8                          | 3-3681@-06                                                       | 2078                    | 3-507@-05                 |
| 24-061        | 45-500                 | 10-21                      | 0001815                      | 3851.6                          | 2.7156@-06                                                       | -2008                   | 2-725@-05                 |
| 23-021        | 47-750                 | 10.63                      | .0001762                     | 3960.7                          | 4:0516@-06                                                       | •1938                   | 3-915@-5                  |
| 23-780        | 1.0.500                | 11-04                      | -0001712                     | 4068.2                          | 5-2643@-06                                                       | -1868                   | 4-891@-05                 |
| -2.100        | 190900                 | 11001                      |                              |                                 |                                                                  |                         |                           |

TABLE :120(CONTD.) RUN NO. : R.E. 33 CONTD.)

| CONCN.<br>%M/V | TOTAL<br>TIME<br>MINS. | CRYSTAL<br>MASS<br>(GRAMS) | DIAMETER<br>INCREASE<br>(CM) | MEAN<br>AREA<br>CM <sup>2</sup> | GROWTH RATE<br>CONSTANT<br>K(MIN <sup>®</sup> CM <sup>®</sup> ) | MEAN<br>SUPER-<br>SATN: | GROWTH<br>RATE<br>CM/MIN; |
|----------------|------------------------|----------------------------|------------------------------|---------------------------------|-----------------------------------------------------------------|-------------------------|---------------------------|
| 23-780         | 49.500                 | 11.04                      |                              | hank                            | 0                                                               |                         |                           |
| 23:639         | 52.750                 | 11:45                      | 0001665                      | 4174-1                          | 2:-8719@=06                                                     | .1798                   | 2-561@-05                 |
| 23-498         | 57:000                 | 11-86                      | :0001621                     | 4278-5                          | 2-2306@-06                                                      | .1728                   | 1-907@-05                 |
| 22258          | 50.500                 | 12.07                      | .0001580                     | 4381-5                          | 3-8616@-06                                                      | -1658                   | 3-159@-05                 |
| 23,330         | 59.500                 | 12:21                      | -0003048                     | 4533.0                          | 2.8505@-06                                                      | -1553                   | 2:177@-05                 |
| 23:075         | 66-500                 | 13-08                      | -0001469                     | 4682.6                          | 1.7273@-06                                                      | -1448                   | 1.224@-05                 |
| 22:5934        | 72:500                 | 13-49                      | -0001436                     | 4780-5                          | 2-13500-06                                                      | -1377                   | 1-436@-05                 |
| 22:793         | 77:500                 | 13:90                      | 0001405                      | 1877-1                          | 1-82870-06                                                      | -1207                   | 1-1710-05                 |
| 22-652         | 83:500                 | 14.30                      |                              | 101101                          |                                                                 | 1007                    | 1.0100.07                 |
| 22.510         | 88.750                 | 14-71                      | -0001376                     | 49 [20]                         | 2:1/94@=06                                                      | =1231                   | 1-3100-05                 |
| 22-369         | 95:000                 | 15-11                      | -0001347                     | 5067:2                          | 1;59060@=06                                                     | -1166                   | 1:078@-05                 |
| 22:227         | 102-00                 | 15-51                      | -0001320                     | 5160.7                          | 1-7793@-06                                                      | :1096                   | 9-428@-06                 |
| 02 086         | 11), 00                | 15 01                      | -0001294                     | 5253-1                          | 1:0903@-06                                                      | .1026                   | 5-390@-06                 |
| 22.000         | 114:00                 | 15-91                      | .0002515                     | 5389-6                          | 1-3574@-06                                                      | ·'0920                  | 5.988@-06                 |
| 21,802         | 135-00                 | 16:71                      | -0001221                     | 5524.6                          | 1-1216@-06                                                      | -0814                   | 4-362@-06                 |
| 21:661         | 149-00                 | 17=11                      | -0001199                     | 5613-2                          | 1-3025@-06                                                      | -0743                   | 4-613@-06                 |
| 21-519         | 162.00                 | 17:51                      | -0002337                     | 57111-2                         | 1-01000-06                                                      | 0627                    | 3-075@-06                 |
| 21-235         | 200-00                 | 18.30                      | 0001107                      | 5972 0                          | 7 56000 07                                                      |                         | 1 8050 06                 |
| 21-093         | 230.00                 | 18.70                      | -0001131                     | 2013:9                          | [=]029=01                                                       | -031                    | 1:090@~00                 |
| 20:950         | 265-00                 | 19:09                      | =0001117                     | 5959.0                          | 7-3765@-07                                                      | :0461                   | 1-596@-06                 |
| 20-808         | 305-00                 | 19-48                      | -0001098                     | 6043-3                          | 7.5316@-07                                                      | :0390                   | 1-373@-06                 |
| 20.666         | 260-00                 | 10.87                      | =0001079                     | 6126-6                          | 6.6144@-07                                                      | -0319                   | 9-811@-07                 |
| 20,000         | 300.00                 | 19:01                      | .0001050                     | 6208-7                          | 1-2182@-07                                                      | .0248                   | 1-3810-07                 |
| 20-523         | 740:00                 | 20,26                      |                              |                                 |                                                                 |                         |                           |

INITIAL SEED AREA = 394-2

EQUILIBRIUM CONCENTRATION = 20.096

|                |                        | TABLE :                    | 121                            |                                 | .34                                                             |                         |                           |
|----------------|------------------------|----------------------------|--------------------------------|---------------------------------|-----------------------------------------------------------------|-------------------------|---------------------------|
|                | TEMP                   | 60.0°C                     | CELL:C                         | STIRR                           | ER SPEED :2000                                                  | RePeMa                  |                           |
|                | SEED                   | BATCH E                    | PREPARED                       | SIEVE                           | FRACTION:89-                                                    | 105 ju                  |                           |
| CONCN-<br>%M/V | TOTAL<br>TIME<br>MINS: | CRYSTAL<br>MASS<br>(GRAMS) | D IAMETER<br>I NCREASE<br>(CM) | MEAN<br>AREA<br>CM <sup>2</sup> | GROWTH RATE<br>CONSTANT<br>K(MIN <sup>T</sup> CM <sup>2</sup> ) | MEAN<br>SUPER-<br>SATN. | GROWTH<br>RATE<br>CM/MIN. |
| 25=743         | .00000                 | •9950                      |                                | 0)10-)15                        | 5-27)1/10-06                                                    |                         | 7-7)170-05                |
| 25,604         | 5.0000                 | 1-423                      | .0007141                       | 101) 6                          | 2 702/10 06                                                     | 27/12                   |                           |
| 25:464         | 12-500                 | 1.851                      | -0009900                       | 1214:0                          | 2: 19340-00                                                     | 62/42                   | 3-9 (90-0)                |
| 25-324         | 19-500                 | 2.277                      | -0004927                       | 1466.7                          | 2-5446@=06                                                      | -2672                   | 3-519@-05                 |
| 25:184         | 27.000                 | 2.703                      | . 0004235                      | 1701-9                          | 2.1027@=06                                                      | :26 03                  | 2:823@-05                 |
| 25-04)         | 31:000                 | 3-127                      | 0003738                        | 1923-8                          | 3-5859@-06                                                      | -2533                   | 4-672@-05                 |
| 24-904         | 37:000                 | 3-551                      | :0003361                       | 2134-8                          | 2-2167@-06                                                      | =2463                   | 2-8000-05                 |
| 21.761         | 111-000                | 2-07/1                     | .0003063                       | 2336-6                          | 1:7876@-06                                                      | -2393                   | 2.188@-05                 |
| 01 600         | 50.000                 | 2.206                      | 0002822                        | 2530.5                          | 1-98480-06                                                      | -2323                   | 2-352@-05                 |
| 24:023         | 50.000                 | 4:390                      | .0002623                       | 2717.6                          | 2.5421@-06                                                      | -2253                   | 2.914@-05                 |
| 24; 483        | 54-500                 | 4.817                      | - 0002454                      | 2898-7                          | 2.46110-06                                                      | -2183                   | 2.726@-05                 |
| 24-343         | 59.000                 | 5:238                      | -0002308                       | 3074.5                          | 1-79900-06                                                      | -2113                   | 1:924@-05                 |
| 24:202         | 65:000                 | 5.657                      | -0002182                       | 3245=4                          | 2-1165@-06                                                      | -2043                   | 2-1820-05                 |
| 24:061         | 70,000                 | 6.076                      | -0002072                       | 3411-9                          | 2-08590-06                                                      | -1972                   | 2=072@=05                 |
| 23-921         | 75:000                 | 6-493                      | 0001072                        | 257)1 )1                        | 1.87700_06                                                      | 1002                    | 1.70/10-05                |
| 23-780         | 80,500                 | 6-910                      | 30001975                       | 5) [4:4                         | 1-0/190-00                                                      | 1902                    | 1. 1946-0)                |
| 23.639         | 87-000                 | 7-326                      | :0001005                       | 3 (33:2                         | 1.500,0-00                                                      | :1032                   | 1-4500-05                 |
| 23:358         | 102:00                 | 8.156                      | ;0003544                       | 3964-2                          | 1-3705@=06                                                      | •1727                   | 1-181@05                  |
| 23-217         | 108,00                 | 8.569                      | • 0001669                      | 4190.5                          | 1.7267@-06                                                      | -1621                   | 1-391@-05                 |
| 23-075         | 117:50                 | 8-982                      | :0001609                       | 4337:0                          | 1-10210-06                                                      | •1551                   | 8.468@-06                 |

| CONCN-<br>%M/V | TOTAL<br>TIME<br>MINS. | CRYSTAL<br>MASS<br>(GRAMS) | D IAMETER<br>INCREASE<br>(CM) | MEAN<br>AREA<br>CM <sup>®</sup> | GROWTH RATE<br>CONSTANI<br>K(MIN <sup>2</sup> CM <sup>-2</sup> ) | MEAN<br>SUPER -<br>SATN:       | GROWTH<br>RATE<br>CM/MIN:                       |
|----------------|------------------------|----------------------------|-------------------------------|---------------------------------|------------------------------------------------------------------|--------------------------------|-------------------------------------------------|
| 23.075         | 117-50                 | 8-982                      | -0001554                      | 4480.9                          | 1-4162@-06                                                       | -1480                          | 1-0360-05                                       |
| 22:,934        | 125:00                 | 9-393                      | -00015.02                     | 1622.11                         | 0.82270.07                                                       | 1):10                          | 6 8000 06                                       |
| 22:793         | 136-00                 | 9-804                      | 30001303                      | 4026.4                          | 9:033 10=01                                                      | a1410                          | 0-0328-00                                       |
| 22.652         | 146:00                 | 10,21                      | -0001456                      | 4761-5                          | 1.10609=06                                                       | -1339                          | 7-279@-06                                       |
| 22-510         | 157-00                 | 10.62                      | .0001412                      | 4898-4                          | 1-0322@-06                                                       | -1269                          | 6-418@-06                                       |
| 22.00          | 1)1000                 | 10,02                      | -0001371                      | 5033-3                          | 8-3626@-07                                                       | -1198                          | 4.896@-06                                       |
| 22-369         | 171-00                 | 11=03                      | :0001333                      | 5166-1                          | 8.6626@-07                                                       | -1128                          | 4-7590-06                                       |
| 22:5227        | 185.00                 | 11-44                      | -0001207                      | 5207-1                          | 1-05210-06                                                       | -1057                          | 5-11060-06                                      |
| 22:086         | 197-00                 | 11-84                      | .0001291                      | 1-2/01                          | 1.0)210-00                                                       | 101                            | 1.7005-00                                       |
| 21-944         | 214:00                 | 12:25                      | :0001263                      | 5426-3                          | 7=7741@=07                                                       | -0986                          | 3-716@-06                                       |
| 21.661         | 25.7-00                | 12.06                      | .0002433                      | 5616-1                          | 6-6718@-07                                                       | 0880                           | 2:829@-06                                       |
| 21.001         | 2) [                   | 13.00                      |                               | 5803-5                          | 6.85850-07                                                       | -0774                          | 2.547@-06                                       |
| 21-519         | 280-00                 | 13-46                      | -0001144                      | 5925-9                          | 6-30220-07                                                       | .0703                          | 2.119@-06                                       |
| 21-377         | 307-00                 | 13-86                      |                               | 6016.8                          | 5.62270-07                                                       |                                | 1-6010-06                                       |
| 21-235         | 340.00                 | 14-26                      |                               | 0010.0                          | 2.02319-01                                                       | ·wjr                           | 1.0948-00                                       |
| 21-093         | 375:00                 | 14-66                      | -0001093                      | 6166-2                          | 5-86100-07                                                       | =0561                          | 1-561@-06                                       |
| 20.050         | 115.00                 | 15.05                      | -0001069                      | 6284-1                          | 5-7654@-07                                                       | -0490                          | 1-336@-06                                       |
| 20,950         | 412:00                 | 13:03                      | -0001045                      | 6400.5                          | 3-7863@-07                                                       | -0420                          | 7-466@-07                                       |
| 20-808         | 485:00                 | 15-45                      |                               |                                 |                                                                  | No.218 Jr Do ine Officer and i | an Arif wa are and fill tay was fill-wai and an |

INITIAL SEED AREA = 797-1

- 330 -

TABLE 121 (CONTD:) RUN NO: :RE.34 (CONTD:)

|                | TABLE: 122             |                            |                              |                                 |                                                    |                         |                                                     |
|----------------|------------------------|----------------------------|------------------------------|---------------------------------|----------------------------------------------------|-------------------------|-----------------------------------------------------|
|                | TEMP                   | :60.0°C                    | CELL:C                       | STIRR                           | ER SPEED :2000                                     | R.P.M.                  |                                                     |
|                | SEED                   | BATCH E                    | PREPARED                     | SIEVE                           | FRACTION:89-                                       | 105µ                    |                                                     |
| CONCN-<br>%M/V | TOTAL<br>TIME<br>MINS. | CRYSTAL<br>MASS<br>(GRAMS) | DIAMETER<br>INCREASE<br>(CM) | MEAN<br>AREA<br>CM <sup>2</sup> | GROWTH RATE<br>CONSTANT<br>K(MIN CM <sup>2</sup> ) | MEAN<br>SUPER-<br>SATN: | GROWTH<br>RATE<br>CM/MIN.                           |
| 25-687         | 00000                  | -4900                      |                              | ) (                             |                                                    |                         | These west and Allipse Calleng Silling Bay pair all |
| 25-604         | 6-5000                 | -7469                      | 0009165                      | 477=65                          | 4.8172@-06                                         | :2798                   | 7=0502=05                                           |
| 25:464         | 22.000                 | 1-174                      | :0010601                     | 686,86                          | 2-3901@-06                                         | :2742                   | 3.4200-05                                           |
| 25-324         | 31-500                 | 1.601                      | :0007860                     | 920-75                          | 2-9866@-06                                         | -2672                   | 4-137@-05                                           |
| 25-184         | 39-000                 | 2-026                      | :0006378                     | 1130-7                          | 3-1649@-06                                         | :2603                   | 4-252@-05                                           |
| 2)1-00/1       | 50.000                 | 2-876                      | -0010210                     | 1412-1                          | 3-6044@-06                                         | -2498                   | 4.6410-05                                           |
| 21.600         | 61.000                 | 2.010                      | 0008162                      | 1756-4                          | 2-4145@-06                                         | -2358                   | 2-915@-05                                           |
| 24:023         | 64.000                 | 30/22                      | :0003571                     | 1996-1                          | 3-1149@-06                                         | :2253                   | 3-571@-05                                           |
| 24.483         | 69-000                 | 4.143                      | -0003314                     | 2146.5                          | 2:9913@-06                                         | -2183                   | 3-314@-05                                           |
| 24-343         | 74:000                 | 4.563                      | -0003097                     | 2291=7                          | 2-89620-06                                         | -2113                   | 3-097@-05                                           |
| 24.202         | 79:000                 | 4-983                      | 0002912                      | 2432-4                          | 2-56710-06                                         | -2043                   | 2-6470-05                                           |
| 24:061         | 84.500                 | 5-401                      | 0005268                      | 26210                           | 2.00/10-00                                         | 1007                    | 2.0710-0)                                           |
| 23:780         | 94.000                 | 6.237                      |                              | 2034.9                          | 2:09090-00                                         | -1937                   | 2:0290-09                                           |
| 23-498         | 106-00                 | 7=069                      | :0004865                     | 2894.8                          | 2:25200-06                                         | -1797                   | 2=027@=05                                           |
| 23-217         | 118:00                 | 7:-898                     | :0004462                     | 3143-0                          | 2-2537@-06                                         | -1656                   | 1:859@-05                                           |
| 23:-075        | 123-50                 | 8-310                      | :0002100                     | 3323-2                          | 2.4844@-06                                         | -1551                   | 1-909@-05                                           |
| 22.02)         | 121.00                 | 8.722                      | .0002025                     | 3439-8                          | 1-8449@-06                                         | -1480                   | 1=350@-05                                           |
| 22:934         | 131:00                 | 0.122                      | -0001955                     | 3554-2                          | 1-2789@-06                                         | -1410                   | 8.888@-06                                           |
| 22.5 793       | 142:00                 | 9-132                      | -0003727                     | 3721-6                          | 1-4548@-06                                         | -1304                   | 9-317@-06                                           |
| 22.510         | 162.00                 | 9:952                      | -0001776                     | 3886-2                          | 1-1664@-06                                         | -1198                   | 6-8320-06                                           |
| 22.369         | 175:00                 | 10:36                      |                              | 12                              |                                                    |                         |                                                     |
|                                                              |                        | TABLE :1                   | 22 ( CONTD -)                                       | tage and out that building the build | RUN NO. R.E. 35 (CONTD.)                                        |                                           |                                                     |  |
|--------------------------------------------------------------|------------------------|----------------------------|-----------------------------------------------------|--------------------------------------|-----------------------------------------------------------------|-------------------------------------------|-----------------------------------------------------|--|
| CONCN-<br>%M/V                                               | TOTAL<br>TIME<br>MINS. | CRYSTAL<br>MASS<br>(GRAMS) | DIAMETER<br>INCREASE<br>(CM)                        | MEAN<br>AREA<br>CM <sup>2</sup>      | GROWTH RATE<br>CONSTANT<br>K(MIN <sup>1</sup> CM <sup>2</sup> ) | MEAN<br>SUPER<br>SATN:                    | GROWTH<br>RATE<br>CM/MIN:                           |  |
| . 2260                                                       | 175-00                 | 10.26                      | and the set of the set of the set of the set of the |                                      | nag kila munak kag ka gus jua na kila gus gus gus an            | 9 Grid Anna Guid Guig para Dura hang Anna | ING SIS DID ING MO CHI SHI JING SIS SIS SIS JING SI |  |
| 2.009                                                        | 1).00                  | 10.50                      | -0003404                                            | 4045-7                               | 1-2314@-06                                                      | 1092                                      | 6-547@-06                                           |  |
| 22.006                                                       | 201:00                 | 11-17                      | .0003222                                            | 4253-7                               | 8.9822@-07                                                      | = 0951                                    | 4-1300-06                                           |  |
| 21-802                                                       | 240,00                 | 11-98                      | -0003060                                            | 10155-0                              | 0-82020-07                                                      |                                           | 2-8250-06                                           |  |
| 21.519                                                       | 280.00                 | 12:-79                     |                                                     | 100 ×                                | 9.03928-01                                                      | .0009                                     | 5-02)@=00                                           |  |
| 21-377                                                       | 310.00                 | 13-19                      | =0001473                                            | 4604-4                               | 7.2999@~07                                                      | =0703                                     | 2-455@-06                                           |  |
| 21225                                                        | 250-00                 | 12.50                      | .0001438                                            | 4701-4                               | 5-9672@-07                                                      | -0632                                     | 1.798@-06                                           |  |
| 210233                                                       | 390,00                 | 13:039                     | -0001405                                            | 4797-1                               | 5-8596@-07                                                      | =0561                                     | 1.561@-06                                           |  |
| 21:093                                                       | 395:00                 | 13:99                      | -0001374                                            | 4891-6                               | 6-5837@-07                                                      | -0490                                     | 1-527@-06                                           |  |
| 20,,950                                                      | 440.00                 | 14-38                      |                                                     |                                      |                                                                 |                                           |                                                     |  |
| 2011LIBRIUM CONCENTRATION = 20,039 INITIAL SEED AREA = 392.5 |                        |                            |                                                     |                                      |                                                                 |                                           |                                                     |  |

- 332 -

|                | TABLE: 123             |                            |                              |                                 |                                                                 |                         |                           |
|----------------|------------------------|----------------------------|------------------------------|---------------------------------|-----------------------------------------------------------------|-------------------------|---------------------------|
|                | TEMP                   | 60.0°C                     | CELL:C                       | STIRRE                          | R SPEED :2000                                                   | R.P.M.                  |                           |
|                | SEED                   | BATCH E                    | PREPARED                     | SIEVE                           | FRACTION:89-                                                    | 10514                   |                           |
| CONCN-<br>%M/V | TOTAL<br>TIME<br>MINS: | CRYSTAL<br>MASS<br>(GRAMS) | DIAMETER<br>INCREASE<br>(CM) | MEAN<br>AREA<br>CM <sup>2</sup> | GROWTH RATE<br>CONSTANT<br>K(MIN <sup>1</sup> CM <sup>2</sup> ) | MEAN<br>SUPER-<br>SATN: | GROWTH<br>RATE<br>CM/MIN. |
| 24.258         | .00000                 | -9920                      |                              | 852.21                          | 1.)11800-06                                                     | 2100                    | 1-52)10-05                |
| 24-202         | 11-000                 | 1.162                      | 0005372                      | 10/18.7                         | 0-85520-07                                                      | -2060                   | 1-0410-05                 |
| 24.061         | 44=000                 | 1.586                      | -000012                      | 1010-1                          | 1.07780-06                                                      | .1000                   | 1.00)10-05                |
| 23.921         | 69:000                 | 2.010                      | 000)472                      | 151151                          | 2.61000-06                                                      |                         | 2.5580-05                 |
| 23:780         | 78-000                 | 2.432                      | 0004004                      | 1781 7                          | 7.01110.07                                                      | 18/10                   | 7.)1120-05                |
| 23:639         | 105-00                 | 2:853                      |                              | 1007.0                          | 1 50)60 06                                                      | 1770                    | 1.2702.05                 |
| 23-498         | 118:00                 | 3-273                      | 0003562                      | 199/02                          | 1-52400=00                                                      | 1709                    | 1.3/00-05                 |
| 23-358         | 134-00                 | 3.692                      | 0003221                      | 2202.5                          | 1.1 (020-06                                                     | 1/00                    | 1.00/0=05                 |
| 23-217         | 148.00                 | 4-111                      | 0002950                      | 2399:3                          | 1=2812@=06                                                      | • 1638                  | 1=054@=05                 |
| 23:075         | 162,00                 | 4.528+                     | -0002728                     | 2588-7                          | 1.2415@-06                                                      | =1567                   | 9-742@=06                 |
| 22-934         | 178.00                 | 4.944                      | :0002541                     | 2771 -7                         | 1:06300-06                                                      | .1497                   | 7=942@==06                |
| 22.793         | 193:00                 | 5=359                      | :0002383                     | 2948.9                          | 1-1191@-06                                                      | -1426                   | 7.943@-06                 |
| 22-652         | 216:00                 | 5:773                      | -0002246                     | 3121-0                          | 7=2590@-07                                                      | : 1356                  | 4-882@-06                 |
| 22,369         | 255-00                 | 6-599                      | :0004150                     | 3369-1                          | 8.6181@-07                                                      | ;1250                   | 5-321@-06                 |
| 22227          | 284-00                 | 7=010                      | .0001926                     | 3611-1                          | 5-9081@-07                                                      | -1144                   | 3320@06                   |
| 22.086         | 202-00                 | 7-120                      | -0001841                     | 3766-7                          | 9-2204@-07                                                      | -1073                   | 4-846@-06                 |
| 21.800         | 303.00                 | 8.227                      | 0003462                      | 3992-9                          | 5-4874@-07                                                      | :0967                   | 2-584@-06                 |
| 21.002         | 310:00                 | 8 6)12                     | ;0001631                     | 4214.6                          | 5:7526@-07                                                      | :0860                   | 2-399@=06                 |
| 21:001         | 404:00                 | 0.043                      | -0001572                     | 4358.0                          | 4-4841@-07                                                      | -0789                   | 1.709@-06                 |
| 21-519         | 450.00                 | 9:040                      | .0001517                     | 4498.7                          | 3-6615@-07                                                      | .0718                   | 1.264@-06                 |
| 21:377         | 510.00                 | 9-452                      | .0001467                     | 4636-8                          | 4-7335@-07                                                      | . 0648                  | 1.467@-06                 |
| 21225          | hh(1-00                | 0ch4                       |                              |                                 |                                                                 |                         |                           |

INITIAL SEED AREA = 794.7

EQUILIBRIUM CONCENTRATION = 20.010

------

| TEMP $60.0^{\circ}$ CCELL: CST IRRER SPEED 2000 R.P.M.SEED: BATCH E PREPAREDSIEVE FRACTION 39-105 $\mu$ CONCN:TOTAL CRYSTALDIAMETERMEANGROWTH RATEMEANGROWTH RATEM/VTIMEMASSINCREASEAREACONSTANTSUPER-GROWTH24.343.00000.4900.0013799528.521.0753@-CG.21301.190@-C524.20258.000.9147.0009212781.231.3643@-CG.20601.439@-C5.24.06190.0001.338.00071421002.81.7616@-CG.19901.785@-C5.23.921110.001.761.0071421002.81.7616@-CG.19901.785@-C5                                                                                                                                                                                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SEED:       BATCH E       PREPARED       SIEVE       FRACTION: $39-105\mu$ CONCN:       TOTAL       CRYSTAL       DIAMETER       MEAN       GRCWTH RATE       MEAN       GRCWTH $M/V$ TIME       MASS       INCREASE       AREA       CONSTANT       NUPER-       GRCWTH $24.343$ .00000       .4900       .0013799 $528.52$ $1.0753@-06$ .2130 $1.190@-05$ $24.202$ $58.000$ .9147       .0009212 $781.23$ $1.3643@-06$ .2060 $1.439@-05$ $24.061$ $90.000$ $1.338$ .00007142 $1002.8$ $1.7616@-06$ .1990 $1.785@-05$ $23.921$ $110.00$ $1.761$ .0013.799 $1.010.00$ $1.761$ .0009212 $781.23$ $1.3643@-06$ .2060 $1.439@-05$ |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $\begin{array}{c} 24.202  58.000  .9147 \\ 24.061  90.000  1.338 \\ 23.921  110.00  1.761 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 24.061 90.000 1.338<br>23.921 110.00 1.761<br>23.921 110.00 1.761                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 23-921 110-00 1-761                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 23.780 130.00 2.182                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 23.498 160.00 3.022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| -0004086 1733-0 1-8305@-06 -1708 1-572@-05<br>23-358 173-00 3-441                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 0003734 1892-0 1-7497@-06 -1638 1-436@-05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| -0006661 2116-9 1:4508@-06 -1532 1-110@-05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| =0005840 2402=1 1=0317@-06 =1291 7=121@-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 22:652 257:00 5:519 :0002677 2606:2 1:2414@=06 :1285 7:874@=06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 22.510 274.00 5.932 .0007295 2861.1 9.16100-07 .1143 5.1370-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 22.086 345.00 7.164 .0002219 3110.1 7.5766@-07 .1002 3.699@-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 21-944 375-00 7-572 -0002132 3228-9 7-8573@-07 -0931 3-553@-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 21-802 405-00 7-979                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 21.661 435.00 8.385                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 21.519 475.00 8.789                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 21-377 515:00 9:192                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 21-235 565:00 9-594                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

EQUILIBRIUM CONCENTRATION = 20,010

INITIAL SEED AREA = 392.5

|                |                        | TABLE                      | 125                          | RUN NO:: R.C.F.1                |                                                    |                         |                           |  |
|----------------|------------------------|----------------------------|------------------------------|---------------------------------|----------------------------------------------------|-------------------------|---------------------------|--|
|                | TEMP                   | :60.0°C                    | CELL: C                      | STIRF                           | RER SPEED :2000                                    | R.P.M.                  |                           |  |
|                | SEED                   | BATCH E                    | PREPARED                     | SIEVE                           | FRACTION: 89                                       | -105µ                   |                           |  |
| CONCN:<br>%M/V | TOTAL<br>TIME<br>MINS: | CRYSTAL<br>MASS<br>(GRAMS) | DIAMETER<br>INCREASE<br>(CM) | MEAN<br>AREA<br>CM <sup>2</sup> | GROWTH RATE<br>CONSTANT<br>K(MIN'CM <sup>2</sup> ) | MEAN<br>SUPER-<br>SATN- | GROWTH<br>RATE<br>CM/MIN. |  |
| 27-276         | 00000                  | 1-992                      | -000/1106                    | 17/12 0                         | 1 10/10 05                                         |                         |                           |  |
| 27-137         | 1:0000                 | 2.424                      | 0004190                      | 1 (43:59                        | 1:13410-05                                         | -3401                   | 2:090@04                  |  |
| 26-859         | 3:0000                 | 3-285                      | 0006 /53                     | 2166.9                          | 9.4147@=05                                         | :3378                   | 1.688@=04                 |  |
| 26-719         | 4.0000                 | 3-715                      | 0002826                      | 2570.5                          | 8-1927@-06                                         | -3274                   | 1-413@-04                 |  |
| 26:580         | 5.1700                 | 4.143                      | 0002568                      | 2822:59                         | 6.5171@-06                                         | -3205                   | 1-097@04                  |  |
| 26.441         | 6.6700                 | 4-570                      | 0002359                      | 3066-1                          | 4-7857@-06                                         | •3136                   | 7-865@-05                 |  |
| 26-302         | 8-2500                 | 4-997                      | 0002187                      | 3301-2                          | 4-31700-06                                         | -3067                   | 6-9209-05                 |  |
| 26-023         | 11-330                 | 5-849                      | 0003963                      | 3638.7                          | 4.1628@-06                                         | 2964                    | 6-434@-05                 |  |
| 25-712         | 15-000                 | 6.607                      | -0003527                     | 4071-1                          | 3-2789@-06                                         | .2825                   | 4.806-05                  |  |
| 25.601         | 16.750                 | 7,110                      | .0001631                     | 4383-2                          | 3-3174@-06                                         | -2721                   | 4-659@-05                 |  |
|                | 10,000                 | 10119                      | •0001556                     | 4584.0                          | 2-2089@-06                                         | -2652                   | 3:015@-05                 |  |
| 2)=404         | 19-330                 | (5)41                      | -0004301                     | 4970.5                          | 2-14362@-06                                        | -2514                   | 3-144@-05                 |  |
| 27:044         | 20:170                 | 0,003                      | -0001323                     | 5349-6                          | 2-1184@-06                                         | -2375                   | 2.563@-05                 |  |
| 24-904         | 28:750                 | 9-221                      | -0001277                     | 5532-2                          | 2-25100-06                                         | -2305                   | 2.639@-05                 |  |
| 24-764         | 31-170                 | 9-639                      | -0001235                     | 5711.7                          | 1-4211@-06                                         | -2236                   | 1.612@-05                 |  |
| 24-623         | 35:000                 | 10.06                      | -0002355                     | 5974-7                          | 1-8213@-06                                         | -2132                   | 1-9620-05                 |  |
| 24-343         | 41-000                 | 10.89                      | =0001124                     | 6233-7                          | 1-57410-06                                         | -2027                   | 1-6060-05                 |  |
| 24.202         | 44-500                 | 11.30                      | -0001092                     | 6402-5                          | 1-58800-06                                         | -1058                   | 1-5600-05                 |  |
| 24.061         | 48.000                 | 11-71                      | -0001062                     | 6568.0                          | 112)100.06                                         | 1888                    | 1-0600 05                 |  |
| 23:921         | 53:000                 | 12.13                      | -000100)                     | 6722 1                          | 1 00570 0                                          | 1910                    |                           |  |
| 23-780         | 58,500                 | 12-54                      | 0001034                      | 0 133-1                         | 1:033 10:00                                        | 1010                    | 9-4008-06                 |  |

|                |                        | are diti sus article brea  |                               |                                 |                                                                   | na his situation and defined of |                           |
|----------------|------------------------|----------------------------|-------------------------------|---------------------------------|-------------------------------------------------------------------|---------------------------------|---------------------------|
| CONCN -<br>M/V | TOTAL<br>TIME<br>MINS. | CRYSTAL<br>MASS<br>(GRAMS) | D IAMETER<br>INCREASE<br>(CM) | MEAN<br>AREA<br>CM <sup>2</sup> | GROWTH RATE<br>CONSTANT<br>K(MIN <sup>-1</sup> CM <sup>-2</sup> ) | MEAN<br>SUPER-<br>SATN:         | GROWTH<br>RATE<br>CM/MIN. |
| 23.780         | 58.500                 | 12-54                      | 00000056                      | 7052.6                          | 1 )11660 06                                                       | 1670                            | 1 1800 05                 |
| 23-358         | 71:000                 | 13-77                      |                               | 103:0                           | 1.1-0/0.00                                                        | 10 19                           | 1.1020-05                 |
| 23-217         | 76-250                 | 14-18                      | 0000937                       | 7370-1                          | 1.1736@=06                                                        | :1539                           | 8=923@=06                 |
| 22-934         | 88-000                 | 14-99                      | -0001813                      | 7600.2                          | 1.0929@-06                                                        | =1434                           | 7-717@-06                 |
| 22-703         | 01-000                 | 15.40                      | .0000877                      | 7827.7                          | 1.1213@06                                                         | -1329                           | 7-306@-06                 |
| 220 (7)        | 101 00                 | 15 90                      | .0000859                      | 7976.8                          | 9-9609@-07                                                        | -1259                           | 6-133@-06                 |
| 22:072         | 101-00                 | 15:00                      | 0000841                       | 8124-3                          | 1.2089@-06                                                        | 1189                            | 7-0110-06                 |
| 22-510         | 107:00                 | ) 16-21                    | -0002431                      | 8413.6                          | 8.5425@-07                                                        | -1049                           | 4-341@-06                 |
| 22.086         | 135:00                 | 17:42                      | -0000779                      | 8700-0                          | 8-0771@07                                                         | -0909                           | 3.541@-06                 |
| 21:944         | 146-00                 | 17-82                      | -0000765                      | 8840-1                          | 9-48200-07                                                        | 8580-                           | 3-8250-06                 |
| 21-802         | 156.00                 | 18.21                      |                               |                                 | 7 08700 07                                                        | .0030                           | 2)1820 0                  |
| 21-519         | 186.00                 | 19:01                      |                               | 904 (04                         | 100/90m0/                                                         | =0133                           | 2-4030-00                 |
| 21-235         | 240,00                 | 19.80                      | .0001438                      | 9319-9                          | 4-7431@-07                                                        | :0592                           | 1-332@-06                 |
| 21-093         | 265-00                 | 20-20                      | :0000701                      | 9521-3                          | 6:0883@-07                                                        | -0487                           | 1-4030-06                 |
| 20.050         | 200-00                 | 20.50                      | .0000690                      | 9653-7                          | 5-0207@-07                                                        | -0416                           | 9-955@-07                 |
| 20.990         | 200.00                 | 20.99                      | -0000677                      | 9784.7                          | 4.6452@-07                                                        | .0346                           | 7-5260-07                 |
| 20.000         | 345:00                 | 20.90                      | -000:065                      | 9914.3                          | 2-7347@-07                                                        | .0275                           | 3.501@-07                 |
| 20.666         | 440.00                 | 21-37                      |                               |                                 |                                                                   |                                 |                           |

TABLE : 12 (CONTD.)

RUN NO .: R.C.F1 (CONTD.)

- 336 -

EQUILIBRIUM CONCENTRATION = 20,181

|                |                        | TABLE :                    | 126                           |                                 | RUN NO.: R.                                                     | .C.18                                  |                           |
|----------------|------------------------|----------------------------|-------------------------------|---------------------------------|-----------------------------------------------------------------|----------------------------------------|---------------------------|
|                | TEMP:                  | 60.0°C                     | CELL:C                        | STIRR                           | ER SPEED : 2000                                                 | R.P.M.                                 |                           |
|                | SEED :                 | ВАТСН Е                    | PREPARED                      | SIEVE                           | FRACTION: 89                                                    | -105/*                                 |                           |
| CONCN.<br>%M/V | TOTAL<br>TIME<br>MINS. | CRYSTAL<br>MASS<br>(GRAMS) | D IAMETER<br>INCREASE<br>(CM) | MEAN<br>AREA<br>CM <sup>2</sup> | GROWTH RATE<br>CONSTANT<br>K(MIN <sup>7</sup> CM <sup>2</sup> ) | MEAN<br>SUPER-<br>SATN.                | GROWTH<br>RATE<br>CM/MIN. |
| 27:248         | .00000                 | 1-945                      | 0003487                       | 1677-1                          | 1-2604@-05                                                      | -3474                                  | 2-325@-04                 |
| 27-137         | •75000                 | 2-290                      | -0003766                      | 1027-7                          | 8-22470-06                                                      | -3412                                  | 1.5060-04                 |
| 26:998         | 2.0000                 | 2.721                      | .0003386                      | 221)1-2                         | 7.)01780                                                        |                                        | 1-2150-01                 |
| 26-859         | 3-2500                 | 3-151                      | 0003200                       | 0178 0                          | F 66500 06                                                      | נדכני                                  | 0.7600.05                 |
| 26.719         | 4.7500                 | 3-579                      | -0002920                      | 24 10:3                         | 5.00520-00                                                      | ······································ | 9.1020-05                 |
| 26:580         | 6:5000                 | 4-007                      | :0002650                      | 2731-4                          | 4,5031@~06                                                      | -3205                                  | 7=572@=05                 |
| 26-441         | 8:7500                 | 4-433                      | -0002427                      | 2974-9                          | 3-2882@-06                                                      | -3136                                  | 5-393@-05                 |
| 26-302         | 11-500                 | 4-859                      | .0002243                      | 3210-0                          | 2.5508@~06                                                      | -3067                                  | 4.078@-05                 |
| 26-162         | 12-250                 | 5.282                      | -0002089                      | 3437-6                          | 3-8313@-06                                                      | -2998                                  | 5-969@-05                 |
| 20.102         | 1). 70                 | 5.205                      | -0001958                      | 3658-5                          | 4-3014@-06                                                      | -2929                                  | 6-527@-05                 |
| 20:023         | 14:150                 | 5-101                      | -0001844                      | 3873=3                          | 2:2709@-06                                                      | -2860                                  | 3-353@-05                 |
| 25-883         | 17:500                 | 6-129                      | - 2003406                     | 4183-6                          | 2-82600-06                                                      | -2756                                  | 4.007@-05                 |
| 25-604         | 21-750                 | 6-971                      | -0001580                      | 4486-6                          | 1-9474@-06                                                      | -2652                                  | 2-6410-05                 |
| 25:464         | 24.740                 | 7:389                      | -0004251                      | 11860-11                        | 1.01170-06                                                      | -2514                                  | 2-118/10-05               |
| 25:044         | 33-500                 | 8.641                      | 000100                        |                                 | 1 17070 06                                                      | 007                                    | 1 1060 05                 |
| 24-904         | 38-250                 | 9=055                      | -0001335                      | 5244.07                         | 1-1/3/0-00                                                      | 623 ()                                 | 1-400-0                   |
| 24.764         | 42.500                 | 9-467                      | 0001287                       | 5424-7                          | 1-3071@-06                                                      | :2305                                  | 1.514@-05                 |
| 24-623         | 45:-750                | 9-879                      | -0001243                      | 5601.7                          | 1.7077@-06                                                      | 2236                                   | 1-913@-05                 |
| 24-483         | 49-500                 | 10,29                      | .0001202                      | 5775.7                          | 1.4822@-06                                                      | .2166                                  | 1.603@-05                 |
| 24-343         | 52-500                 | 10,70                      | 0001164                       | 5946-8                          | 1.8602@-06                                                      | :2097                                  | 1-940@-05                 |

|                |                         | TABLE : 1                  | 126( CONTD)                  | RUN NO. : R.C. 18 (CONTD.)      |                                                    |                          |                           |
|----------------|-------------------------|----------------------------|------------------------------|---------------------------------|----------------------------------------------------|--------------------------|---------------------------|
| concn-<br>%M/V | TOTAL<br>TIME<br>MINS . | CRYSTAL<br>MASS<br>(GRAMS) | DIAMETER<br>INCREASE<br>(CM) | MEAN<br>AREA<br>CM <sup>2</sup> | GROWTH RATE<br>CONSTANT<br>K(MIN'CM <sup>2</sup> ) | MEAN<br>SUPER -<br>SATN: | GROWTH<br>RATE<br>CM/MIN: |
| 24.343         | 52:500                  | 10,70                      | .0002222                     | 6197-3                          | 9:8118@-07                                         | :=1992                   | 9.660@-06                 |
| 23-217         | 93-000                  | 11:51                      | -0005979                     | 6832-7                          | 1-2394@-06                                         | •1713                    | 1-031@-05                 |
| 23=075         | 102-00                  | 14-32                      | .0000908                     | 7376-7                          | 7.1689@-07                                         | •1469                    | 5:043@-06                 |
| 22-934         | 108.00                  | 14.71                      | -0000887                     | 7524-4                          | 1-1075@-05                                         | •1399                    | 7-3880-06                 |
| 22.227         | 160.00                  | 16.65                      | -0001526                     | 8434-6                          | 7.6811@-07                                         | = 0944                   | 3-317@-06                 |
| 21-944         | 183.00                  | 17.41                      | -0000738                     | 8634.5                          | 5-1094@-07                                         | . 0338                   | 1.942@-06                 |
| 21-661         | 202:00                  | 17:79                      | •0000721                     | 8765.0                          | 5.8026@~07                                         | .0768                    | 2.004@-05                 |
| 21.519         | 243.00                  | 18.53                      | .0000704                     | 8893-4                          | 4.9297@-07                                         | .0698                    | 1.531@-06                 |
| 21-377         | 270.00                  | 18.89                      | ::0000687                    | 9019.6                          | 4.6079@-07                                         | - 0628                   | 1=271@=06                 |
| 20,808         | 460-00                  | 20,-26                     | 00024 /8                     | 9311-8                          | 3:0409@-07                                         | •0451                    | 6-5202-07                 |

EQUILIBRIUM CONCENTRATION = 20.181

|          |                                                             | TABLE :                    | 127                          |                                 | P.E.11                                                           |                         |                           |  |
|----------|-------------------------------------------------------------|----------------------------|------------------------------|---------------------------------|------------------------------------------------------------------|-------------------------|---------------------------|--|
|          | TEMP                                                        | 50.0°C                     | CELL: C                      | STIRR                           | ER SPEED :2000                                                   | R-P-M-                  |                           |  |
|          | SEED                                                        | BATCH P                    | •E • PREPAREI                | SIEVE                           | FRACTION: 89                                                     | -105 M                  |                           |  |
| CONCN.   | TOTAL<br>TIME<br>MINS:                                      | CRYSTAL<br>MASS<br>(GRAMS) | DIAMETER<br>INCREASE<br>(CM) | MEAN<br>AREA<br>CM <sup>2</sup> | GROWTH RATE<br>CONSTANT<br>K(MIN <sup>-</sup> CM <sup>-2</sup> ) | MEAN<br>SUPER-<br>SATN. | GRCWTH<br>RATE<br>CM/MIN= |  |
| 24-012   | .00000                                                      | 1-972                      | 000)1502                     | 2060-6                          | 1-10680-04                                                       | 222)1                   | 1-7060-02                 |  |
| 21-919   | -58000                                                      | 8.292                      | 0054592                      | 2009:0                          | 7.00110 07                                                       | 1500                    | T. (000-0)                |  |
| 21.047   | 1.8300                                                      | 10.83                      | :0012552                     | 342 (=0                         | (=2011@=05                                                       | -1529                   | 5:0210-04                 |  |
| 20:756   | 2.5000                                                      | 11:66                      | -0003654                     | 3861-1                          | 4-9627@-05                                                       | -1217                   | 2-727@-04                 |  |
|          | 2 (700                                                      | 10 10                      | .0003454                     | 4063.8                          | 3.0985@-05                                                       | -1061                   | 1.476@-04                 |  |
| 20:405   | 3.0100                                                      | 12.49                      | -0009420                     | 4449.8                          | 1.3115@-05                                                       | .0749                   | 4.2510-05                 |  |
| 19:593   | 14:750                                                      | 14-97                      | 0005594                      | 4915-2                          | 5-5336@-06                                                       | - 0359                  | 8-166@-06                 |  |
| 19:012   | 49.000                                                      | 16.59                      |                              | -107 0                          |                                                                  | 01()                    |                           |  |
| 18,866   | 75.000                                                      | 17-00                      | -0001324                     | 5137.9                          | 3-0347@-08                                                       | .0104                   | 2-5740@=00                |  |
| EQUILIBR | EQUILIBRIUM CONCENTRATION = 18,634 INITIAL SEED AREA = 1042 |                            |                              |                                 |                                                                  |                         |                           |  |

|                |                        | TABLE :                    | 128                          |                                 | P.E.12                                                          |                          |                           |
|----------------|------------------------|----------------------------|------------------------------|---------------------------------|-----------------------------------------------------------------|--------------------------|---------------------------|
|                | TEMP                   | :60.0°C                    | CELL: C                      | STIRR                           | ER SPEED: 200                                                   | OR . P.M.                |                           |
|                | SEED                   | BATCH P                    | .E.PREPARE                   | D SIEVE                         | FRACTION: 89                                                    | -105 µ                   |                           |
| CONCN-<br>%M/V | TOTAL<br>TIME<br>MINS. | CRYSTAL<br>MASS<br>(GRAMS) | DIAMETER<br>INCREASE<br>(CM) | MEAN<br>AREA<br>CM <sup>2</sup> | GROWTH RATE<br>CONSTANT<br>K(MIN <sup>2</sup> CM <sup>2</sup> ) | MEAN<br>SUPER -<br>SATN: | GROWTH<br>RATE<br>CM/MIN: |
| 21.890         | .00000                 | 1-962                      | 0000 077                     | 1106 E                          | 1 00560 05                                                      | 1-716                    |                           |
| 21.773         | 3:0000                 | 2.307                      | 0005277                      | 1100-5                          | 1-11000-05                                                      | •1(10                    | 0; (9)                    |
| 21-628         | 25.000                 | 2:736                      | :0005 / 10                   | 1200.0                          | 1. (1003-06                                                     | :1646                    | 1:313@-05                 |
| 21-483         | 35.000                 | 3-165                      | -0005097                     | 1423.6                          | 3.4954@=06                                                      | - 1568                   | 2.549@-05                 |
| 21.337         | 44.500                 | 3.592                      | :0004578                     | 1580.3                          | 3.4881@-06                                                      | •1490                    | 2.4102-05                 |
| 21-192         | 55,000                 | 4.019                      | -0004168                     | 1731-0                          | 3.0405@-06                                                      | -1412                    | 1-985@-05                 |
| 21-047         | 64.000                 | 4-444                      | :0003834                     | 1876-3                          | 3.46402-06                                                      | -1334                    | 2;130@-05                 |
| 20-901         | 75-000                 | 4-868                      | .0003557                     | 2016.9                          | 2,8005@-06                                                      | .1256                    | 1.617@-05                 |
| 20.756         | 85-000                 | 5200                       | :0003322                     | 2153-2                          | 3-0768@-06                                                      | .1178                    | 1.661@-05                 |
| 20.611         | 08-000                 | 5712                       | .0003121                     | 22.85.6                         | 2-3879@-06                                                      | -1100                    | 1.2000-05                 |
| 20.011         | 112 00                 | 5 100                      | .0002945                     | 2414.5                          | 2.1087@-06                                                      | -1022                    | 9-817@-06                 |
| 20,405         | 113:00                 | 0.132                      | -0002791                     | 2540-2                          | 1-91490-06                                                      | -0944                    | 8.2090-06                 |
| 20,320         | 130.00                 | 0.551                      | -0005191                     | 2722-3                          | 1.8788@-06                                                      | .0827                    | 7-016@-06                 |
| 20:029         | 167:00                 | 7:300                      | .0002422                     | 2900-5                          | 1.8963@-06                                                      | .0710                    | 6.055@-06                 |
| 19:884         | 187.00                 | 7-801                      | .0002322                     | 3015-4                          | 1.51830-06                                                      | -0632                    | 4.3000-06                 |
| 19-739         | 214:00                 | 8-215                      | .0002231                     | 3128.1                          | 1.3265@-06                                                      | -0554                    | 3-2800-06                 |
| 19.593         | 248.00                 | 8.627                      | .0002147                     | 3238-6                          | 1.6911@-06                                                      | 0476                     | 3.579@-06                 |
| 19-448         | 278.00                 | 9:038                      | .0002070                     | 3347-0                          | 1-4693@-06                                                      | .0398                    | 2-587@-06                 |
| 19-303         | 318-00                 | 9.448                      | -0001008                     | 3452.5                          | 12005@_06                                                       | -0320                    | 1-8160-06                 |
| 19:157         | 373.00                 | 9-855                      |                              | נ•ננינ                          |                                                                 | .0520                    | 1.0108-00                 |

EQUILIBRIUM CONCENTRATION = 18.634 INITI

|               | TABLE: 129             |                            |                              |                                 |                                                                   |                         |                           |  |
|---------------|------------------------|----------------------------|------------------------------|---------------------------------|-------------------------------------------------------------------|-------------------------|---------------------------|--|
|               | TEMP                   | 60.0°C                     | CELL: C                      | STIRRER SPEED : 2000 R.P.M.     |                                                                   |                         |                           |  |
|               | SEED                   | BATCH P                    | .E.PREPARE                   | D SIEVE                         | FRACTION: 89                                                      | -105μ                   |                           |  |
| CONCN.<br>M/V | TOTAL<br>TIME<br>MINS. | CRYSTAL<br>MASS<br>(GRAMS) | DIAMETER<br>INCREASE<br>(CM) | MEAN<br>AREA<br>CM <sup>2</sup> | GROWTH RATE<br>CONSTANT<br>K(MIN <sup>-1</sup> CM <sup>-2</sup> ) | MEAN<br>SUPER-<br>SATN. | GROWTH<br>RATE<br>CM/MIN: |  |
| 21-890        | .00000                 | .9650                      | 0005250                      | 5)1)176                         | 8-260.00-06                                                       | -1722                   | 6.6000-05                 |  |
| 21-832        | 4.0000                 | 1-137                      | .000)17/10                   | (12 a)                          | 2 11690 07                                                        | 1700                    |                           |  |
| 21-773        | 100,00                 | 1-309                      | .0004 /40                    | 013:24                          | 3-11000-01                                                        | ÷1/00                   | 2:4090-00                 |  |
| 21:628        | 158.00                 | 1.737                      | :0010006                     | 725-61                          | 1:1263@-06                                                        | •1646                   | 8.626@-06                 |  |
| 21-337        | 255::00                | 2.588                      | ;0015294                     | 946.11                          | 1-1128@-06                                                        | 1529                    | 7-884@-06                 |  |
| 21 102        | 200.00                 | 2 011                      | :0006214                     | 1152.6                          | 1.0654@-06                                                        | .1412                   | 6-904@-06                 |  |
| 21:192        | 300:00                 | 3:011                      | .0010663                     | 1338.6                          | 1-5019@-06                                                        | -1295                   | 8.886@-06                 |  |
| 20.901        | 360.00                 | 3-854                      | -0004672                     | 1516.8                          | 1.4559@-06                                                        | -1178                   | 7.786@-06                 |  |
| 20.756        | 390:00                 | 4.272                      | : 0004335                    | 1628-8                          | 1-45200-06                                                        | -1100                   | 7-2260-06                 |  |
| 20,611        | 420.00                 | 4:690                      | 000/10=1                     | 1707 1                          | 1 25620 06                                                        | 1.000                   | E 7870 06                 |  |
| 20.465        | 455.00                 | 5-105                      | :0004051                     | 1/3/01                          | 1-27020-00                                                        | · 1022                  | 5=1010=00                 |  |
| 20,320        | 485:00                 | 5-520                      | -0003807                     | 1842-0                          | 1.4964@-06                                                        | -0944                   | 6-344@-06                 |  |
| 20=175        | 517:00                 | 5-933                      | -0003594                     | 1944.0                          | 1-4492@-06                                                        | -0866                   | 5-616@-06                 |  |
| 20.020        | 5)12.00                | 6 2)1)1                    | :0003409                     | 2043-2                          | 1-8653@-06                                                        | -0788                   | 6-555@-06                 |  |
| 19:942        | 575.00                 | 6.590                      | <b>≈0001963</b>              | 2121-0                          | 9-50903-07                                                        | • 0725                  | 3-067@-06                 |  |

EQUILIBRIUM CONCENTRATION = 18.634

INITIAL SEED AREA = 509.8

|               |                                                                                                                 | TABLE :                    | 130                          |                                 | P.E.16                                                          |                          |                           |
|---------------|-----------------------------------------------------------------------------------------------------------------|----------------------------|------------------------------|---------------------------------|-----------------------------------------------------------------|--------------------------|---------------------------|
|               | TEMP                                                                                                            | 50.0°C                     | CELL: C                      | STIRR                           | ER SPEED :2000                                                  | RoPoMa                   |                           |
|               | SEED                                                                                                            | BATCH P                    | E. PREPAREI                  | ) SIEVE                         | FRACTION: 89-                                                   | -105 µ                   |                           |
| CONCN.<br>M/V | TOTAL<br>TIME<br>MINS:                                                                                          | CRYSTAL<br>MASS<br>(GRAMS) | DIAMETER<br>INCREASE<br>(CM) | MEAN<br>AREA<br>CM <sup>2</sup> | GROWTH RATE<br>CONSTANT<br>K(MIN <sup>T</sup> CM <sup>2</sup> ) | MEAN<br>SUPER -<br>SATN: | GROWTH<br>RATE<br>CM/MIN. |
| 17:545        | -00000                                                                                                          | 1.969                      |                              | 1128.1                          | 1-20060-06                                                      |                          | 9780@-06                  |
| 17-374        | 37:000                                                                                                          | 2.455                      | 0005212                      | 1010.7                          | 1.25650-06                                                      | -2258                    | 1.0120-05                 |
| 17-232        | 62:000                                                                                                          | 2.860                      | 0009212                      | 1313-1                          | 8 7= 860-07                                                     | .2107                    | 6-2580-06                 |
| 16.948        | 133.00                                                                                                          | 3:666                      | 1000000                      | 153/09                          | 1 17520 06                                                      | 1056                     | 7 7)170-06                |
| 16-806        | 158.00                                                                                                          | 4.067                      | -0003074                     | 1/53.0                          | 1.00000                                                         | 1950                     | 8 1)100 06                |
| 16.664        | 180.00                                                                                                          | 4.468                      | ÷0003506                     | 1090:2                          | 1.30/3@-00                                                      | 1000                     | 0.1496-00                 |
| 16.521        | 198.00                                                                                                          | 4.867                      | :0003344                     | 2022.6                          | 1.5000-06                                                       | ·1/54                    | 9.2000-00                 |
| 16:236        | 240.00                                                                                                          | 5:665                      | -0005100                     | 2213-2                          | 1:35 (20=00                                                     | * 1003                   | (:2020-00                 |
| 16:093        | 258.00                                                                                                          | 6.062                      | 0002800                      | 2399:0                          | 1:6132@=06                                                      | :1451                    | 1.1000.00                 |
| 15.951        | 270.00                                                                                                          | 6.458                      | 0002662                      | 2518.3                          | 2-4794@-06                                                      | :1350                    | 1.109@-05                 |
| 15-808        | 282.00                                                                                                          | 6.853                      | ;0002539                     | 2635-1                          | 2-5631@-06                                                      | -1249                    | 1:0500-05                 |
| 15.665        | 295:00                                                                                                          | 7-248                      | -0002429                     | 2749.4                          | 2-4693@-06                                                      | -1148                    | 9-342@-06                 |
| 15-522        | 310-00                                                                                                          | 7.642                      | -0002329                     | 2861.5                          | 2.2568@-06                                                      | -1047                    | 7:763@-06                 |
| 15-379        | 326-00                                                                                                          | 8.035                      | ,0002238                     | 2971.4                          | 2:.2576@-06                                                     | .0945                    | 6-994@-06                 |
| 15-236        | 344.00                                                                                                          | 8-427                      | :0002155                     | 3079-4                          | 2.1709@-06                                                      | :0844                    | 5-986@-06                 |
| 15-092        | 360.00                                                                                                          | 8,818                      | -0002079                     | 3185.5                          | 2.6861@-06                                                      | :0742                    | 6496@06                   |
| 11010         | 374.00                                                                                                          | 9-209                      | .0002009                     | 3289-8                          | 3-4472@-06                                                      | - 0641                   | 7.174@-06                 |
| 1)1.806       | 202.00                                                                                                          | 0.500                      | .0001944                     | 3392.5                          | 2.9314@-06                                                      | • 0539                   | 5-115@-06                 |
| 1)1.660       | 108-00                                                                                                          | 0-088                      | -0001884                     | 3493.5                          | 4.4524@-06                                                      | :0438                    | 6:279@-06                 |
| 11.161        | 165.00                                                                                                          | 10.52                      | :0002543                     | 3612.6                          | 2.2296@-06                                                      | .0316                    | 2:231@-06                 |
|               | the second se |                            |                              |                                 |                                                                 |                          |                           |

INITIAL SEED AREA = 1040

EQUILIBRIUM CONCENTRATION = 14.116

- 342 -

|                |                        | TABLE :                    | 131                          |                                 | RUN NO.: R.                                                      | P.E.17                 |                           |
|----------------|------------------------|----------------------------|------------------------------|---------------------------------|------------------------------------------------------------------|------------------------|---------------------------|
|                | TEMP                   | :40.0°c                    | CELL: C                      | C STIRRER SPEED: 2000 R.P.M.    |                                                                  | R.P.M.                 |                           |
|                | SEED                   | BATCH P                    | .E. PREPARE                  | D SIEVE                         | FRACTION: 89                                                     | )-105 ju               |                           |
| CONCN:<br>%M/V | TOTAL<br>TIME<br>MINS: | CRYSTAL<br>MASS<br>(GRAMS) | DIAMETER<br>INCREASE<br>(CM) | MEAN<br>AREA<br>CM <sup>2</sup> | GROWTH RATE<br>CONSTANT<br>K(MIN <sup>-</sup> CM <sup>-2</sup> ) | MEAN<br>SUPER<br>SATN: | GROWTH<br>RATE<br>CM/MIN. |
| 13.613         | .00000                 | 1-983                      |                              | 1070-8                          | 220020-06                                                        | 2801                   | 1                         |
| 13-557         | 8.0000                 | 2.140                      |                              | 10/9-0                          | 2.2093000                                                        | 2007                   | 1.7390-07                 |
| 13.471         | 255:00                 | 2.367                      | -0003313                     | 115 (-5                         | 1.02620=07                                                       | -2(3)                  | 6.706@-07                 |
| 13-358         | 540.00                 | 2-655                      | :0003872                     | 1259-2                          | 1.1294@-07                                                       | -2643                  | 6-794@-07                 |
| 11-220         | 1240-0                 | 7.186                      | .0038345                     | 2054-5                          | 9-3195@-07                                                       | -1634                  | 2-739@-06                 |
| 11.100         | 1055 0                 | 7.100                      | .0001845                     | 2837.5                          | 5-2342@-06                                                       |                        | 6.151@-06                 |
| 11-100         | 1255:0                 | (=496                      | -0001782                     | 2924-5                          | 5.77920-06                                                       | -0475                  | 5.2400-06                 |
| 11.042         | 1272.0                 | 7.803                      | -0001717                     | 3009-8                          | 4-0786@-06                                                       | -0339                  | 2.6020-06                 |
| 10.898         | 1305.0                 | 8,109                      |                              |                                 |                                                                  |                        |                           |

EQUILIBRIUM CONCENTRATION = 10,610

|                | ,                      | TABLE :                    | 132                          |                                 | RUN NO.: R.                                                      | P.E.18                                 |                           |
|----------------|------------------------|----------------------------|------------------------------|---------------------------------|------------------------------------------------------------------|----------------------------------------|---------------------------|
|                | TEMP                   | 75.0°C                     | CELL: C                      | STIRRE                          | ER SPEED: 2000                                                   | R.P.M.                                 |                           |
|                | SEED                   | BATCH I                    | ·E.PREPARE                   | D SIEVE                         | FRACTION:89-                                                     | 105 µ                                  |                           |
| CONCN.<br>AM/V | TOTAL<br>TIME<br>MINS. | CRYSTAL<br>MASS<br>(GRAMS) | DIAMETER<br>INCREASE<br>(CM) | MEAN<br>AREA<br>CM <sup>3</sup> | GROWTH RATE<br>CONSTANT<br>K(MIN <sup>-</sup> CM <sup>-2</sup> ) | MEAN<br>SUPER -<br>SATN:               | GROWTH<br>RATE<br>CM/MIN. |
| 31-578         | .00000                 | 1.919                      |                              | 1157.0                          | 2-81600-05                                                       |                                        | 2-1860-04                 |
| 31-353         | 1.6700                 | 2.645                      | -007-861                     | 1202-0                          | 1.2200-05                                                        | -1006                                  | 1.0260-01                 |
| 31.204         | 4.5000                 | 3:126                      | :000,001                     | 1392.0                          | 1.550,0-0)                                                       | .1000                                  | 1.0000-01                 |
| 30.904         | 15.500                 | 4.087                      | :0009866                     | 1650-0                          | 6-2724@-00                                                       | ÷0927                                  | 4-4098-09                 |
| 30-754         | 22-000                 | 4.564                      | :0004257                     | 1897-3                          | 5.0415@-06                                                       | - 0848                                 | 3-275@-05                 |
| 30.17          | 00 = 00                |                            | .0003922                     | 2052.8                          | 4-9683@-06                                                       | .0795                                  | 3-017@-05                 |
| 30.00          | 20.500                 | 5:040                      | .0003643                     | 2203.1                          | 3-7912@-06                                                       | .0742                                  | 2-143@-05                 |
| 30.455         | 37:000                 | 5.514                      | .0003405                     | 2348-7                          | 3-8277@-06                                                       | - 0689                                 | 2-003@-05                 |
| 30-305         | 45:500                 | 5-986                      |                              | 2)100-2                         | 2-88010-06                                                       | -0627                                  | 12020-05                  |
| 30-156         | 57:000                 | 6.457                      | 0005201                      | 2790.2                          | 2.00910-00                                                       |                                        | 1.5920-09                 |
| 30,006         | 66-500                 | 6-927                      | -0003024                     | 2627-8                          | 3=6130@=06                                                       | -004                                   | 1.5910-05                 |
| 20856          | 82 -000                | 7-305                      | -0002866                     | 2761.9                          | 2-17540-06                                                       | :0532                                  | 8.686@-06                 |
| 29.000         | 03.000                 | 1.000                      | -0002727                     | 2892-7                          | 2.3777@-06                                                       | ······································ | 8.5210-06                 |
| 29-707         | 99:000                 | 7-061                      | -0002602                     | 3020.5                          | 2.5587@-06                                                       | .0426                                  | 8-1310-06                 |
| 29:557         | 115:00                 | 8-325                      | -0002485                     | 3145-4                          | 7-8713@-07                                                       | .0374                                  | 2,1800-06                 |
| 29.408         | 172:00                 | 8.787                      |                              | 5                               | 19-1-20-1                                                        |                                        |                           |

EQUILIBRIUM CONCENTRATION = 28.421

|               | TABLE : 133            |                            |                              |                                 |                                                                   |                         |                           |
|---------------|------------------------|----------------------------|------------------------------|---------------------------------|-------------------------------------------------------------------|-------------------------|---------------------------|
|               | TEMP                   | 40.0°c                     | CELL:C                       | STIRRER SPEED: 2000 R.P.M.      |                                                                   |                         |                           |
|               | SEED                   | BATCH I                    | P.E.PREPARE                  | D SIEVE                         | FRACTION: 89                                                      | -105μ                   |                           |
| CONCN.<br>M/V | TOTAL<br>TIME<br>MINS. | CRYSTAL<br>MASS<br>(GRAMS) | DIAMETER<br>INCREASE<br>(CM) | MEAN<br>AREA<br>CM <sup>2</sup> | GROWTH RATE<br>CONSTANT<br>K(MIN <sup>-1</sup> CM <sup>-2</sup> ) | MEAN<br>SUPER-<br>SATN: | GROWTH<br>RATE<br>CM/MIN. |
| 13.585        | .00000                 | 1.987                      |                              | 1062.7                          | 1.67200-07                                                        | - 2616                  | 1 0810 06                 |
| 13:187        | 680.00                 | 3.077                      | 0014 04                      | 120201                          | 1.0/200-07                                                        |                         |                           |
| 13.045        | 770.00                 | 3-464                      | :0004237                     | 1545.9                          | 4.0019@-07                                                        | :2362                   | 2-3540-06                 |
| 12.903        | 840.00                 | 3.850                      | -0003878                     | 1684-3                          | 5-11120-07                                                        | .2227                   | 2.7702-06                 |
| 12.760        | 940.00                 | 4-235                      | -0003581                     | 1818.0                          | 3-5299@-07                                                        | .2093                   | 1-791@-06                 |
| 12-617        | 1000-0                 | 4.619                      | .0003335                     | 1947.6                          | 5-8729@-07                                                        | •1959                   | 2.779@-06                 |
| 12.222        | 1055-0                 | 5281                       | .0006077                     | 2134.2                          | 1.30700-06                                                        | -1757                   | 5.525@-06                 |
| 10 180        | 1055.0                 | 5.76                       | .0002788                     | 2316-1                          | 1.8706@-06                                                        | -1555                   | 6-969@-06                 |
| 12:109        | 10/5=0                 | 50 (00                     | -0002649                     | 2433.0                          | 2.6017@-06                                                        | .1421                   | 8.830@-06                 |
| 12-046        | 1090-0                 | 6-147                      | -0002526                     | 2547:3                          | 4-1219@-06                                                        | -1286                   | 1-263@-05                 |
| 11-903        | 1100.0                 | 6.527                      | -0004736                     | 2713-8                          | 7-1029@-06                                                        | -1083                   | 1.822@-05                 |
| 11.616        | 1113.0                 | 7=287                      | 0002225                      | 2877-2                          | 8-9085@-06                                                        | -0881                   | 1-854@-05                 |
| 11.473        | 1119.0                 | 7.665                      | 0002143                      | 2983-0                          | 6-7775@-06                                                        | -0745                   | 1-1908-05                 |
| 11.330        | 1128-0                 | 8-043                      | -0002067                     | 2087.1                          | )-81100-06                                                        | .0610                   | 6-8000-06                 |
| 11-186        | 1143-0                 | 8.420                      | 0002007                      | 2180 F                          | - 60mg of                                                         | 010                     |                           |
| 11:042        | 1159-0                 | 8.796                      | .0001997                     | 3109.5                          | 5:03030=00                                                        | .0415                   | 0.2410-00                 |
| 10-898        | 1200.0                 | 9-172                      | ;0001932                     | 3290.2                          | 3:0031@=06                                                        | •0339                   | 2:356@-06                 |

EQUILIBRIUM CONCENTRATION = 10.610 INITIAL SEED AREA = 1050

|                | TABLE: 134             |                            |                                |                                 |                                      |                         |                           |
|----------------|------------------------|----------------------------|--------------------------------|---------------------------------|--------------------------------------|-------------------------|---------------------------|
|                | TEMP                   | 70.0°C                     | CELL: C                        | STIRR                           | ER SPEED :2000                       | R.P.M.                  |                           |
|                | SEED                   | BATCH P                    | .E. PREPAREI                   | SIEVE                           | FRACTION: 89                         | -105 µ                  |                           |
| CONCN-<br>%M/V | TOTAL<br>TIME<br>MINS: | CRYSTAL<br>MASS<br>(GRAMS) | D IAMETER<br>I NCREASE<br>(CM) | MEAN<br>AREA<br>CM <sup>2</sup> | GROWTH RATE<br>CONSTANT<br>K(MIN CM) | MEAN<br>SUPER-<br>SATN: | GROWTH<br>RATE<br>CM/MIN: |
| 28.587         | .00000                 | 1:950                      | -00005)11                      | 1160-2                          | 7-10170-05                           | 1400                    | 7-1200-04                 |
| 28.380         | -67000                 | 2.602                      | -0005705                       | 1277.0                          | 3-01350-02                           | -1427                   | 2-8530-04                 |
| 28.232         | 1.6700                 | 3.067                      | .0005 (0)                      | 15/107                          | 1.5)1200-05                          | 1267                    | 12820-01                  |
| 28-083         | 3.5000                 | 3.529                      | 0005059                        | 1710 6                          | 8 00570 06                           | 1207                    | 7.6000-05                 |
| 27-935         | 6.5000                 | 3:991                      | =0004501                       | 1960.0                          | - 999-0 K                            | 1018                    | ()0020-0)<br>()070 (F     |
| 27.787         | 9.7500                 | 4-451                      | -0004164                       | 1009:9                          | (=000)@=00                           | 1100                    | - 1960 C                  |
| 27.639         | 13-250                 | 4.910                      | :0003840                       | 2021-1                          | 7-11510-06                           | 00110                   | 5:4000-05                 |
| 27-491         | 17.250                 | 5-367                      | .0003569                       | 2168-6                          | 6-1109@-06                           | -1120                   | 4.401@-05                 |
| 27-343         | 21-750                 | 5-823                      | :0003339                       | 2310.9                          | 5:3817@-06                           | -1000                   | 3.7102-05                 |
| 27-195         | 26-750                 | 6-277                      | :0003141                       | 2449-3                          | 4.8401@~06                           | -1008                   | 3:141@-05                 |
| 27:047         | 31-750                 | 6-731                      | -0002968                       | 2584.0                          | 4-8761@-06                           | .0949                   | 2:5968@-05                |
| 26.899         | 37-000                 | 7-183                      | -0002816                       | 2715.3                          | 4-7157@-06                           | .0889                   | 2.6820-05                 |
| 26.751         | 46:000                 | 7-633                      | -0002680                       | 2843.6                          | 2.8157@-06                           | -0829                   | 1-489@-05                 |
| 26-455         | 64.000                 | 8.531                      | -0005014                       | 3029-7                          | 2.96710-06                           | -0740                   | 1-393@-05                 |
| 26-307         | 76.000                 | 8-977                      | .0002350                       | 3212-0                          | 2.3841@-06                           | , 6650                  | 9:-792@-06                |
| 26-159         | 87.500                 | 9-421                      | -0002259                       | 3329-8                          | 2.6423@-06                           | -0590                   | 9-824@-06                 |
| 26-012         | 99-000                 | 9-864                      | .0002177                       | 3445-4                          | 2-8409@-06                           | -0531                   | 9.463@-06                 |
| 25-864         | 122:00                 | 10-31                      | 0002099                        | 3558-8                          | 1.5496@-06                           | :0471                   | 4.563@-06                 |
| 25: 716        | 138-00                 | 10:75                      | 0002028                        | 3670-3                          | 2.4737@-06                           | .0411                   | 6-339@-06                 |
| 25-120         | 270-00                 | 11.62                      | 0003852                        | 3832.9                          | 7=4091@-07                           | -0322                   | 1-459@-06                 |
| 25.361         | 315.00                 | 11-79                      | .0000740                       | 3961.3                          | 5-3486@-07                           | .0250                   | 8-226@-07                 |
|                |                        | 1.                         |                                | and the second second           |                                      |                         |                           |

EQUILIBRIUM CONCENTRATION = 24.771

|                |                        | TABLE :                    | 135                         | RUN NO.: R.E.38                  |                                                                  |                         |                           |  |
|----------------|------------------------|----------------------------|-----------------------------|----------------------------------|------------------------------------------------------------------|-------------------------|---------------------------|--|
|                | TEMP                   | 50.0°c                     | CELL: C                     | STIRRER SPEED: 2000 R.P.M.       |                                                                  |                         |                           |  |
|                | SEED                   | BATCH E                    | PREPARED                    | SIEVE                            | FRACTION:89-                                                     | 105 pt                  |                           |  |
| CONCN-<br>%M/V | TOTAL<br>TIME<br>MINS. | CRYSTAL<br>MASS<br>(GRAMS) | DIAMETER<br>NCREASE<br>(CM) | MEAN<br>AREA<br>CM <sup>2-</sup> | GROWTH RATE<br>CONSTANT<br>K(MIN <sup>*</sup> CM <sup>*2</sup> ) | MEAN<br>SUPER-<br>SATN. | GROWTH<br>RATE<br>CM/MIN. |  |
| 19.307         | 00000                  | 1-973                      | 0002497                     | 1665-8                           | 5-5505@=07                                                       |                         | 5.6750-06                 |  |
| 19:222         | 22.000                 | 2,219                      | .0002660                    | 1887.2                           | 1.5127@=07                                                       | ())                     | 1-1-110-06                |  |
| 19:081         | 63.000                 | 2.627                      | .0003009                    | 0150.0                           | 2 18209 07                                                       | 2010                    | 2.0700.06                 |  |
| 18-939         | 140.00                 | 3:035                      | -0003202                    | 2153.2                           | 2. 10300-01                                                      | -2705<br>alian          | 2.0198.00                 |  |
| 18-798         | 185.00                 | 3-440                      | .0002855                    | 2407.3                           | 3.46780=07                                                       | -2491                   | 3-1720-06                 |  |
| 18.657         | 225.00                 | 3-845                      | .0002585                    | 2650-9                           | 3,6823@-07                                                       | :2398                   | 3-231@-06                 |  |
| 18.515         | 260.00                 | 4-249                      | .0002368                    | 2885.5                           | 4.0248@-07                                                       | :2304                   | 3-383@-06                 |  |
| 18:232         | 305-00                 | 5-054                      | .0004234                    | 322.0.5                          | 5-9800@-07                                                       | -2163                   | 4.705@-06                 |  |
| 18-090         | 337.00                 | 5                          | .0001912                    | 3545-2                           | 4.0852@-07                                                       | :2023                   | 2:988@-06                 |  |
| 17.010         | 276.00                 | 5-8=)                      | .0001801                    | 3752.5                           | 3-3219@-07                                                       | :1929                   | 2-309@-06                 |  |
| 17.949         | 310.00                 | 5:004                      | .0001705                    | 3954.5                           | 5-3862@-07                                                       | .1835                   | 3-552@-06                 |  |
| 1/500/         | 400-00                 | 6:23                       | -0001619                    | 4151.6                           | 3-2453@-07                                                       | -1742                   | 2:024@-06                 |  |
| 17:665         | 440.00                 | 6.650                      | .0001543                    | 4344.1                           | 2.6235@-07                                                       | -1648                   | 1.543@-06                 |  |
| 17.524         | 490.00                 | 7.046                      | -0001474                    | 4532-5                           | 3-3343@-07                                                       | . 1554                  | 1.843@-06                 |  |
| 17-382         | 530,00                 | 7=441                      | .0002770                    | 4806-4                           | 2-7710@-07                                                       | -1413                   | 1-385@-06                 |  |
| 17.098         | 630.00                 | 8.227                      | - 0001305                   | 5075-0                           | 2-9137@-07                                                       | :1272                   | 1-305@-06                 |  |
| 16-956         | 680.00                 | 8.619                      | -0008071                    | 5811-8                           | 2-2036@-07                                                       | -0648                   | 6-021@=07                 |  |
| 15.818         | 1425.0                 | 11.69                      | .0000070                    | 6525 0                           | 1.2)100-07                                                       | 0/125                   | 1-7670-07                 |  |
| 15.676         | 1700.0                 | 12:07                      | .00009 [2                   | 0333.9                           | 1.24000-01                                                       | .042)                   | 1. 010-01                 |  |

EQUILIBRIUM CONCENTRATION = 15.106

INITIAL SEED AREA = 1581

-10-

- 347 -

|                |                        | TABLE :                    | 136                          |                                 |                                                                  |                         |                           |
|----------------|------------------------|----------------------------|------------------------------|---------------------------------|------------------------------------------------------------------|-------------------------|---------------------------|
|                | TEMP                   | :70.0°C                    | CELL: C                      | STIR                            | RER SPEED : 2000                                                 | OR-P.M.                 | -                         |
|                | SEED                   | BATCH P                    | E.PREPARE                    | D SIEVE                         | FRACTION:89                                                      | -105 ju                 |                           |
| CONCN-<br>%M/V | TOTAL<br>TIME<br>MINS. | CRYSTAL<br>MASS<br>(GRAMS) | DIAMETER<br>INCREÁSE<br>(CM) | MEAN<br>AREA<br>CM <sup>2</sup> | GROWTH RATE<br>CONSTANT<br>K(MIN <sup>-</sup> CM <sup>-2</sup> ) | MEAN<br>SUPER-<br>SATN: | GROWTH<br>RATE<br>CM/MIN. |
| 28.602         | .00000                 | 1:944                      | .0010177                     | 1166 1                          |                                                                  | 10.00                   | 1 01 00 00                |
| 28.380         | .50000                 | 2.643                      | .00101111                    | 1100.1                          | 1:02340=04                                                       | -1502                   | 1.010@=03                 |
| 28:232         | 1.2500                 | 3-107                      | -0005646                     | 1392.2                          | 4.0158@-05                                                       | -1427                   | 3.764@-04                 |
| 28,083         | 2:2500                 | 3.570                      | 0005015                      | 1562-4                          | 2.8008@-05                                                       | :1367                   | 2:507@-04                 |
| 27-935         | 3.7500                 | 4.031                      | :0004527                     | 1725-4                          | 1.7679@-05                                                       | •1307                   | 1:509@-04                 |
| 27: 787        | 5.5000                 | 4-491                      | :0004138                     | 1882-1                          | 1-4555@-05                                                       | -1248                   | 1.1820-04                 |
| 27-639         | 7:7500                 | 4-950                      | 0003818                      | 2033:4                          | 1.1005@-05                                                       | 1188                    | 8-485@-05                 |
| 27-1101        | 10.250                 | 5-408                      | .0003551                     | 2179.7                          | 9-72740-06                                                       | -1128                   | 7=103@=05                 |
| 21.2/12        | 12.000                 | 5.86)                      | :0003324                     | 2321.6                          | 8.76580-06                                                       | -1068                   | 6.044@-05                 |
| 21073          | 19                     | 5.004                      | .0006094                     | 2526.1                          | 8-4181@-06                                                       | -0979                   | 5-299@-05                 |
| 2/04/          | 10- 150                | 0:13                       | .0002807                     | 2725-3                          | 7=0477@-06                                                       | -0889                   | 4-0100-05                 |
| 20:099         | 22:250                 | 7:225                      | - 0002673                    | 2853-2                          | 4.5918@-06                                                       | .0829                   | 2-4300-05                 |
| 26.751         | 27:750                 | 7:676                      | .0002553                     | 2978.3                          | 4.5338@-06                                                       | .0770                   | 2.2200-05                 |
| 26.603         | 33.500                 | 8.125                      | .0002445                     | 3100-7                          | 4-5241@-06                                                       | .0710                   | 2-0370-05                 |
| 26-455         | 39:500                 | 8.573                      | -0002346                     | 3220-7                          | 3-80430-06                                                       | -0650                   | 1-564@-05                 |
| 26:307         | 47:000                 | 9:020                      | -0002256                     | 3338-3                          | 3:3677@=06                                                       | -0590                   | 1.2540-05                 |
| 26.159         | 56.000                 | 9:465                      | -000/1276                    | 2510-0                          | 2.02120-06                                                       | .0501                   | 0-500-06                  |
| 25.864         | 78.500                 | 10.35                      | 0002007                      | 2678 7                          | 2.03130=00                                                       | 0)11                    | 6 2250 0                  |
| 25.716         | 94.500                 | 10.79                      | 0002027                      | 30 10:1                         |                                                                  | 0411                    | 6 7 5 6 6                 |
| 25-568         | 109.00                 | 11-23                      | .0001962                     | 3/00.2                          | 3.0946@-06                                                       | :0352                   | 0.000000                  |
| 25-480         | 136.00                 | 11.49                      | :0001147                     | 3074.6                          | 1.1264@-06                                                       | -0304                   | 2:123@-06                 |

EQUILIBRIUM CONCENTRATION = 24.771 INITIAL SEED AREA = 1027

- 348 -

|                | TABLE : 137            |                            |                              |                                 |                                      |                         |                           |
|----------------|------------------------|----------------------------|------------------------------|---------------------------------|--------------------------------------|-------------------------|---------------------------|
|                | TEMP                   | :60.0°C                    | CELL: C                      | STIRR                           | ER SPEED :2000                       | R.P.M.                  |                           |
|                | SEED                   | BATCH D                    | PREPARED                     | SIEVE                           | FRACTION: 75                         | -89µ                    |                           |
| CONCN-<br>%M/V | TOTAL<br>TIME<br>MINS. | CRYSTAL<br>MASS<br>(GRAMS) | DIAMETER<br>INCREASE<br>(CM) | MEAN<br>AREA<br>CM <sup>2</sup> | GROWTH RATE<br>CONSTANT<br>K(MIN'CM) | MEAN<br>SUPER-<br>SATN. | GROWTH<br>RATE<br>CM/MIN: |
| 27.303         | .00000                 | 1-968                      | 000 715                      | 10.077 0                        | 1 81100 00                           | 2)188                   | 2 2570 04                 |
| 27.137         | 1:0000                 | 2.486                      | -0000 /15                    | 130/02                          | 1-01198-05                           | -3400                   | 3-35 /0-04                |
| 26:859         | 2.6700                 | 3-348                      | 0009220                      | 1584-5                          | 1-54200-05                           | -3378                   | 2.7602-04                 |
| 26-719         | 3:8300                 | 3:777                      | .0003967                     | 1830-5                          | 9-9180@-06                           | •3274                   | 1-710@-04                 |
| 26-580         | 4.7500                 | 4.205                      | 0003652                      | 1984.2                          | 1:1791@-05                           | -3205                   | 1-985@-04                 |
| 26-302         | 7-0000                 | 5-060                      | :0006572                     | 2203.0                          | 8.98302-06                           | -3102                   | 1-460@-04                 |
| 26.162         | 8.25.00                | 5.)185                     | .0002983                     | 2415.0                          | 7-6351@-06                           | -2998                   | 1-193@-04                 |
| 20.000         | 0.200                  | 5.40                       | .0002819                     | 2550.1                          | 7.4051@-06                           | -2929                   | 1.128@-04                 |
| 20:023         | 9.5000                 | 5-910                      | .0005230                     | 2745-3                          | 7-13809-06                           | :2825                   | 1-046@-04                 |
| 25-743         | 12:000                 | 6.758                      | -0004771                     | 2996.8                          | 5-7362@-06                           | -2687                   | 7-952@-05                 |
| 25-464         | 15-000                 | 7:603                      | -0002239                     | 3179-2                          | 5-6281@-06                           | -2583                   | 7-463@-05                 |
| 25:324         | 16.500                 | 8-024                      | -0002154                     | 3207-1                          | 4-57340-06                           | -2514                   | 5-8860-05                 |
| 25-184         | 18.330                 | 8.444                      | .0002171                     | 2)112.8                         | 6.20860-06                           |                         | 7.7510-05                 |
| 25:044         | 19:670                 | 8.863                      | .0002011                     | 3412:0                          |                                      | 00                      |                           |
| 24.904         | 21-750                 | 9-281                      | -,0002006                    | 3520-5                          | 3-9061@=06                           | -2315                   | 4.023@-05                 |
| 24.483         | 28,250                 | 10-53                      | -0005658                     | 3746.8                          | 3-83210-06                           | -2236                   | 4-3520-05                 |
| 24-343         | 29-750                 | 10,95                      | -0001771                     | 3963.6                          | 5.5818@-06                           | .2097                   | 5-903@-05                 |
| 24.202         | 31-500                 | 11-36                      | .0001722                     | 4068.6                          | 4-8235@-06                           | -2027                   | 4.9200-05                 |
| 21.061         | 2)1.000                | 11.78                      | .0001676                     | 4172-1                          | 3-4117@-06                           | .1958                   | 3-352@-05                 |
| 22.001         | 34.000                 | 10.10                      | .0001633                     | 4274-2                          | 3.8388@-06                           | 1888                    | 3-628@-05                 |
| 5)=761         | 10.270                 | 16019                      |                              |                                 |                                      |                         |                           |

- 349 -

|                |                        | TABLE :1                   | 57 (CONTD -)                   |                                 | RUN NO. R.E.                         | •)                      |                           |
|----------------|------------------------|----------------------------|--------------------------------|---------------------------------|--------------------------------------|-------------------------|---------------------------|
| CONCN:<br>%M/V | TOTAL<br>TIME<br>MINS: | CRYSTAL<br>MASS<br>(GRAMS) | D I AMETER<br>INCREASE<br>(CM) | MEAN<br>AREA<br>CM <sup>2</sup> | GROWTH RATE<br>CONSTANT<br>K(MIN CM) | MEAN<br>SUPER-<br>SATN; | GROWTH<br>RATE<br>CM/MIN. |
| 23:921         | 36:250                 | 12:19                      | 0001502                        | 0-1(751                         | 1-28210-06                           |                         | 3-0800-05                 |
| 23:780         | 38.250                 | 12.60                      | .0001992                       | Cerl Cr                         | +                                    | .1010                   |                           |
| 23-498         | 42.25.0                | 13-42                      | :0003074                       | 4523-2                          | 4.50402-06                           | =1714                   | 3-043@-05                 |
| 22.258         | 15-500                 | 12.82                      | -0001482                       | 4669-7                          | 2.8606@-06                           | :1609                   | 2.281@-05                 |
| 23:390         | +)•)00                 | 13.03                      | -0001450                       | 4765-5                          | 2.11750-06                           | -1539                   | 1-611@-05                 |
| 23-217         | 50.000                 | 14:24                      | :0005521                       | 4999-1                          | 2.9416@-06                           | -1364                   | 1-972@-05                 |
| 22.652         | 64.000                 | 15-87                      | -0002593                       | 5274-8                          | 1-77300-06                           | -1154                   | 9-9740-06                 |
| 22:369         | 77-000                 | 16.68                      | 80(0002)                       | 5)152.6                         | 2.11810-06                           |                         | 1. 0410-05                |
| 22:086         | 89:000                 | 17.48                      | -0002490                       | 54560                           | 2.11010-00                           | 61014                   | 1.0416-0)                 |
| 21-944         | 100.00                 | 17,88                      | 0001215                        | 5583-9                          | 1-2584@-06                           | :0909                   | 5-5210-06                 |
| 21.802         | 110-00                 | 18.28                      | :0001193                       | 5670.1                          | 1-4783@-06                           | ÷0838                   | 5-967@-06                 |
| 61:002         | 110,00                 | 10:20                      | .0001173                       | 5755-5                          | 1.44600-06                           | -0768                   | 5-332@-06                 |
| 21.661         | 121,00                 | 18,68                      | .0003409                       | 5923-3                          | 1-2196@-06                           | - 0628                  | 3-627@-06                 |
| 21-235         | 168.00                 | 19-88                      | -0001098                       | 6089-6                          | 1-13320-06                           | -0487                   | 2-6140-06                 |
| 21-093         | 189.00                 | 20.27                      | 0001090                        | (174 4                          | 0 06                                 | 0116                    | 1 7/100 06                |
| 20,950         | 220-00                 | 20,66                      | -0001000                       | 01/151                          | 0.00 00-01                           | -0410                   | 1.5 (420-00               |

EQUILIBRIUM CONCENTRATION = 20,181

INITIAL SEED AREA = 1198

- 350 -

|               | TABLE: 138             |                            |                                      | RUN NO.:R.A.7                    |                                                                   |                         |                           |
|---------------|------------------------|----------------------------|--------------------------------------|----------------------------------|-------------------------------------------------------------------|-------------------------|---------------------------|
|               | TEMP: 70.0°C CELL: C   |                            |                                      | STIRRER SPEED: 2000 R.P.M.       |                                                                   |                         |                           |
|               | SEED                   | BATCH P                    | • E • PREPARE                        | D SIEVE                          | FRACTION: 89-                                                     | -105 µ                  |                           |
| CONCN.<br>M/V | TOTAL<br>TIME<br>MINS. | CRYSTAL<br>MASS<br>(GRAMS) | D IAMETER<br>INCREASE<br>(CM)        | MEAN<br>AREA<br>CM <sup>2_</sup> | GROWTH RATE<br>CONSTANT<br>K(MIN <sup>-1</sup> CM <sup>-2</sup> ) | MEAN<br>SUPER-<br>SATN. | GROWTH<br>RATE<br>CM/MIN. |
| 29.736        | .00000                 | 1-920                      | 0008007                              | 1100 5                           | 1 9                                                               | 10 - 7 4                | 1 ((00 ~~                 |
| 29.569        | 24.000                 | 2.449                      |                                      | 1120-5                           | 1.05520=00                                                        | .12/1                   | 1.0000-05                 |
| 29.430        | 54.000                 | 2.889                      | :00056 /9                            | 1310.5                           | 1-10000-05                                                        | .1212                   | 9.464@=06                 |
| 29-291        | 77:000                 | 3-327                      | .0005031                             | 1474.4                           | 1-3449@-06                                                        | :1160                   | 1.094@-05                 |
| 29.152        | 95:000                 | 3-764                      | :0004534                             | 1631.3                           | 1-6283@-06                                                        | =1107                   | 1-259@-05                 |
| 29:012        | 113.00                 | 4.199                      | :0004138                             | 1782.3                           | 1.5661@-06                                                        | -1054                   | 1.150@-05                 |
| 28:873        | 133.00                 | 4.634                      | :0003815                             | 1927-9                           | 1-3727@-06                                                        | :1001                   | 9-537@-06                 |
| 28=734        | 155.00                 | 5:067                      | -0003544                             | 2068-9                           | 1.2286@-06                                                        | -0948                   | 8-056@-06                 |
| 28,594        | 176.00                 | 5.499                      | .0003315                             | 2205.6                           | 1:2796@-06                                                        | .0895                   | 7-893@-06                 |
| 28-454        | 195-00                 | 5-930                      | .0003118                             | 2338-4                           | 1:4189@-06                                                        | .0842                   | 8.206@-06                 |
| 28-315        | 216-00                 | 6-360                      | :0002946                             | 2467.8                           | 1.2990@-06                                                        | .0789                   | 7-015@-06                 |
| 28.175        | 210.000                | 6 788                      | -0002794                             | 2593.9                           | 1.0709@-06                                                        | .0736                   | 5-374@-06                 |
| 20.10         | 272.00                 | 0.00                       | :0002659                             | 2717-1                           | 8.6871@-07                                                        | - 0683                  | 4-029@-06                 |
| 20.035        | 2/5:00                 | (=215                      | .0002536                             | 2837.4                           | 6-6198@-07                                                        | .0629                   | 2.818@-06                 |
| 27.895        | 320.00                 | 7=640                      | :0002426                             | 2955-1                           | 6-9474@-07                                                        | :0576                   | 2.695@-06                 |
| 27:756        | 365.00                 | 8.064                      | it set are and felling att ing 20.4m |                                  | tes and and pulsion was assumed and and making and                |                         |                           |

EQUILIBRIUM CONCENTRATION = 26-310

|               | TABLE: 139             |                            |                              | RUN NO.: R.E.F.1   |                                                                  |                         |                                                 |  |
|---------------|------------------------|----------------------------|------------------------------|--------------------|------------------------------------------------------------------|-------------------------|-------------------------------------------------|--|
|               | TEMP                   | 70.0°C                     | CELL: C                      | STIRRE             | R SPEED :2000                                                    | R.P.M.                  |                                                 |  |
|               | SEED :                 | BATCH D                    | PREPARED                     | SIEVE              | FRACTION: 75                                                     | -89µ                    |                                                 |  |
| CONCN-<br>M/V | TOTAL<br>TIME<br>MINS: | CRYSTAL<br>MASS<br>(GRAMS) | D'AMETER<br>INCREASE<br>(CM) | MEAN<br>AREA<br>CM | GROWTH RATE<br>CONSTANT<br>K(MIN <sup>-</sup> CM <sup>-2</sup> ) | MEAN<br>SUPER-<br>SATN: | GROWTH<br>RATE<br>CM/MIN:                       |  |
| 29.833        | .00000                 | 1.948                      | ~ 0005 299                   | 1270-2             | 1-2639@-05                                                       | -1315                   | 1.177@-04                                       |  |
| 29.708        | 2.2500                 | 2.345                      | -0005168                     | 1443-8             | 4-6266@-06                                                       | .1265                   | 4-135@-05                                       |  |
| 29.569        | 8.5000                 | 2:786                      | -0004602                     | 1617-1             | 2-99520-06                                                       | 1212                    | 2,557@-05                                       |  |
| 29.430        | 17.500                 | 3-226                      | -0004166                     | 1782-2             | 2.8433@-06                                                       | -1160                   | 2.314@-05                                       |  |
| 29-291        | 26.500                 | 3.664                      | -0003817                     | 1940-3             | 2.8991@-06                                                       | .1107                   | 2.245@-05                                       |  |
| 29-152        | 35:000                 | 4.102                      | -0003531                     | 2092.4             | 2-66800-06                                                       | .1054                   | 1-962@-05                                       |  |
| 29:012        | 44000                  | 4.538                      | -0006387                     | 2309-4             | 2.61850-06                                                       | .0974                   | 1-774@-05                                       |  |
| 28:734        | 62.000                 | 5.409                      | :0002911                     | 2519-9             | 2.7671@-06                                                       | - 0895                  | 1:712@-05                                       |  |
| 28.594        | 70.500                 | 5-843                      |                              | 2654-2             | 2=7942@-06                                                       | - 0842                  | 1.622@-05                                       |  |
| 28,454        | 79:000                 | 6.275                      | :0005127                     | 2848.5             | 2-3328@-06                                                       | .0762                   | 1-221@-05                                       |  |
| 28,175        | 100.00                 | 7=138                      | - 0002392                    | 3038-2             | 2.8486@-06                                                       | . 0683                  | 1-329@-05                                       |  |
| 28.035        | 109.00                 | 7.568                      | -0002293                     | 3160-4             | 1.3372@-06                                                       | -0629                   | 5-732@-06                                       |  |
| 27.895        | 129.00                 | 7:996                      |                              | 3280.2             | 2-1666@-06                                                       | -0576                   | 8.475@-06                                       |  |
| 27:756        | 142.00                 | 8.423                      |                              | 3397.6             | 2-4983@-06                                                       | .0523                   | 8.8420-06                                       |  |
| 27-615        | 154.00                 | 8-849                      | -000/1020                    | 3569-0             | 2-1154@-06                                                       | - 0443                  | 6-295@-06                                       |  |
| 27-335        | 186.00                 | 9.699                      | -0001013                     | 3737-4             | 1-3568@-06                                                       | -0363                   | 3-298@-06                                       |  |
| 27:195        | 215:00                 | 10,12                      |                              | 3846-7             | 1.4954@-06                                                       | =0310                   | 3.088@-06                                       |  |
| 27:055        | 245.00                 | 10.54                      | 0001705                      | 205).1             | 1.17260-06                                                       | . 0256                  | 1-995@-06                                       |  |
| 26.914        | 290.00                 | 10.96                      | C61 1000                     | 37)461             |                                                                  |                         | NIL DAY MAY DAY MAY MAY AND AND MAY MAY MAY MAY |  |

EQUILIBRIUM CONCENTRATION = 26.310

----

|               | TABLE: 140             |                            |                                         | RUN NO.: R.E.F.2                |                                                                   |                         |                           |
|---------------|------------------------|----------------------------|-----------------------------------------|---------------------------------|-------------------------------------------------------------------|-------------------------|---------------------------|
|               | TEMP                   | :60.02                     | CELL:C                                  | STIRR                           | DR.P.M.                                                           |                         |                           |
|               | SEED                   | BATCH I                    | E PREPARED                              | SIEVE                           | FRACTION: 89.                                                     | -105 µ                  |                           |
| CONCN:<br>M/V | TOTAL<br>TIME<br>MINS: | CRYSTAL<br>MASS<br>(GRAMS) | DIAMETER<br>INCREASE<br>(CM)            | MEAN<br>AREA<br>CM <sup>2</sup> | GROWTH RATE<br>CONSTANT<br>K(MIN <sup>-1</sup> CM <sup>-2</sup> ) | MEAN<br>SUPER-<br>SATN: | GROWTH<br>RATE<br>CM/MIN. |
| 27:192        | .00000                 | 1.970                      |                                         | 1021.)                          | 228280.05                                                         | 2201                    |                           |
| 26:859        | •75000                 | 3:006                      | 0009109                                 | 1921.4                          | 1 (2200 0                                                         | -3391                   | 0.00-0.04                 |
| 26-580        | 1.7500                 | 3.865                      | -0005 ( J)                              | 2)22:0                          | 1.00000-05                                                        | -3240                   | 2.00 (@=04                |
| 26.302        | 2.5000                 | 4.721-                     | .0004001                                | 3020.6                          | 1-9655@-05                                                        | -3102                   | 3-201@-04                 |
| 25:883        | 4.0000                 | 6.000                      | ;0006032                                | 3593.6                          | 1.3142@-05                                                        | -2929                   | 2.0110-04                 |
| 25.604        | 5-2500                 | 6.847                      | :0003470                                | 4134.9                          | 9;7217@-06                                                        | .2756                   | 1-388@-04                 |
| 25.464        | 5-8300                 | 7.269                      | .0001607                                | 4443-1                          | 1.0137@-05                                                        | -2652                   | 1-3850-04                 |
| 25:184        | 7.0000                 | 8.112                      | :0003010                                | 4738.2                          | 9.8191@-06                                                        | .2548                   | 1-286@-04                 |
| 25.044        | 8.0000                 | 8.531                      | .0001412                                | 5027.4                          | 5-6477@-06                                                        | .2444                   | 7.0600-05                 |
| 24-904        | 9.0000                 | 8-950                      | .0001359                                | 5214.6                          | 5.6071@-06                                                        | -2375                   | 6.793@-05                 |
| 24-623        | 11-250                 | 9-786                      | .0002578                                | 5488.2                          | 4-95800-06                                                        | :2271                   | 5=728@-05                 |
| 21. 2/12      | 12.500                 | 10.62                      | .0002411                                | 5844-3                          | 4.9651@-06                                                        | :2132                   | 5-358@-05                 |
| 2), 161       | 15.500                 | 11.)15                     | ::0002268                               | 6189.5                          | 3.7660@-06                                                        | .1992                   | 3-7800-05                 |
| 24:001        | 10.500                 | 10.07                      | -0002143                                | 6524.7                          | 3-8454@-06                                                        | .1853                   | 3-571@-05                 |
| 23:100        | 19:500                 | 12:21                      | -0001028                                | 6770.8                          | 2-9468@-06                                                        | .1748                   | 2.570@-05                 |
| 23:639        | 21:500                 | 12:69                      | -0001983                                | 7010.6                          | 4.0415@-06                                                        | . 1644                  | 3-304@-05                 |
| 23-358        | 24.500                 | 13:51                      | -0000955                                | 7247.5                          | 3-1327@-06                                                        | -1539                   | 2.387@-05                 |
| 23:217        | 26:500                 | 13.92                      | .0001847                                | 7478.7                          | 3-0705@-06                                                        | .1434                   | 2-173@-05                 |
| 22:934        | 30.750                 | 14-73                      | :0001768                                | 7782.0                          | 2.2263@-06                                                        | -1294                   | 1.415@-05                 |
| 22.652        | 37:000                 | 15.55                      | .0000856                                | 8005:5                          | 2.4536@-06                                                        | -1189                   | 1:427@-05                 |
| 22,510        | 40,000                 | 15:95                      | · 0000839                               | 8152-1                          | 2-5618@-06                                                        | -1119                   | 1-398@-05                 |
| 22:369        | 43.000                 | 16-36                      | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |                                 |                                                                   |                         |                           |

RUN NO .: R.E.F2(CONTD.)

-

| CONCN.<br>%M/V                     | TOTAL<br>TIME<br>MINS: | CRYSTAL<br>MASS<br>(GRAMS) | DIAMETER<br>INCREASE<br>(CM) | MEAN<br>AREA<br>CM <sup>2-</sup> | GROWTH RATE<br>CONSTANT<br>K(MIN <sup>-1</sup> CM <sup>-2</sup> ) | MEAN<br>SUPER-<br>SATN:               | GROWTH<br>RATE<br>CM/MIN:                                 |
|------------------------------------|------------------------|----------------------------|------------------------------|----------------------------------|-------------------------------------------------------------------|---------------------------------------|-----------------------------------------------------------|
| 22:369                             | 43.000                 | 16.36                      |                              |                                  | ting are me and and our was not and and any one                   | a men stra dela sut esta ille ena del | 2 122 009 005 004 005 005 009 009 009 009 009 009 009 009 |
| 22.227                             | 46.500                 | 16.76                      | -0000823                     | 8297-2                           | 2-30309-06                                                        | -1049                                 | 1.175@-05                                                 |
| 22-086                             | 49-500                 | 17-16                      | .0000807                     | 8440.8                           | 2:83200-06                                                        | • 0979                                | 1.345@-05                                                 |
| 01 900                             | .,,,,,,,,,             | 17.00                      | .0001571                     | 8653-2                           | 2-4826@-06                                                        | .0874                                 | 1.048@-05                                                 |
| 21:002                             | 57.000                 | 17:90                      | :0001516                     | 8932.4                           | 1.95800-06                                                        | .0733                                 | 6.8900-06                                                 |
| 21:519                             | 68,000                 | 18.76                      | -0001465                     | 9206.4                           | 2-35710-06                                                        | - (592                                | 6-6580-06                                                 |
| 21.235                             | 79.000                 | 19.56                      |                              |                                  | 1 10100 0                                                         | - 0)92                                |                                                           |
| 21.093                             | 92.000                 | 19:96                      | :0000/14                     | 9409-1                           | 1.1040@-06                                                        | -0487                                 | 2.747@05                                                  |
| 20,808                             | 109:00                 | 20:75                      | :0001394                     | 9608.2                           | 2.2908@-06                                                        | 0381                                  | 4.1002-06                                                 |
| 20 666                             | 100.00                 | C1                         | 0000681                      | 9805.6                           | 2.3880@-06                                                        | .0275                                 | 3:096@-06                                                 |
| 20,000                             | 120,00                 | 21.14                      | .0001591                     | 10025                            | 2.4402@-06                                                        | .0155                                 | 1.591@-06                                                 |
| 20.324                             | 170.00                 | 22-09                      | -0000516                     | 10230                            | 1-57310-06                                                        | 0042                                  | 2-5780-07                                                 |
| 20,210                             | 270:00                 | 22,40                      |                              |                                  | 10/10/00                                                          |                                       |                                                           |
| EQUILIBRIUM CONCENTRATION = 20,181 |                        |                            |                              |                                  | INITIAL                                                           | SEED ARE                              | A = 1578                                                  |

|                | TABLE : 141            |                            |                               |                                 |                                      |                                   |                           |
|----------------|------------------------|----------------------------|-------------------------------|---------------------------------|--------------------------------------|-----------------------------------|---------------------------|
|                | TEMP                   | :60.0°C                    | CELL: C                       | STIRR                           |                                      |                                   |                           |
|                | SEED                   | BATCH E                    | PREPARED                      | SIEVE                           | FRACTION:89                          | -105 µ                            |                           |
| CONCN:<br>%M/V | TOTAL<br>TIME<br>MINS. | CRYSTAL<br>MASS<br>(GRAMS) | D IAMETER<br>INCREASE<br>(CM) | MEAN<br>AREA<br>CM <sup>2</sup> | GROWTH RATE<br>CONSTANT<br>K(MIN CM) | MEAN<br>SUPER-<br>SATN.           | GROWTH<br>RATE<br>CM/MIN: |
| 24-483         | :00000                 | 1.988                      |                               |                                 |                                      | ng ana ang ini katang ini kang in |                           |
| 24:343         | 7.0000                 | 2.414                      | :0004150                      | 1730.6                          | 2.6207@-06                           | :2200                             | 2,964@-05                 |
| 24.202         | 24.000                 | 2.838                      | :00035555                     | 2023:-3                         | 9.5837@-07                           | -2130                             | 1.045@-05                 |
| 24.061         | 31-000                 | 3-262                      | 0003127                       | 2294-3                          | 2.1236@-06                           | -2060                             | 2.233@-05                 |
| 23-921         | 47.000                 | 3-685                      | 0002802                       | 2553-5                          | 8.6471@-07                           | •1990                             | 8.756@-06                 |
| 22.780         | 57-000                 | 1.10                       | :0002547                      | 2802-5                          | 1.3075@-06                           | .1919                             | 1.274@-05                 |
| 23.100         | 51:000                 | 4.100                      | .0002341                      | 3042.5                          | 1.0424@-06                           | .1849                             | 9-753@-06                 |
| 23:039         | 69:000                 | 4:527                      | -0002170                      | 3274.5                          | 1:09900-06                           | .1779                             | 9-863@-06                 |
| 23:498         | 80, 000                | 4.947                      | .0002026                      | 3499.5                          | 9-82020-07                           | .1708                             | 8.4400-06                 |
| 23-358         | 92:000                 | 5.366                      | -0001902                      | 3718=0                          | 1-0523@-06                           | - 1638                            | 8-6470-06                 |
| 23.217         | 103-00                 | 5.784                      | 0001 795                      | 2020-7                          | 0-52020-07                           | 1567                              | 7.11802 06                |
| 23:075         | 115:00                 | 6-201                      | 0001701                       | 1100 0                          | 9.55928-01                           | 1901                              | 104000=00                 |
| 22-934         | 128.00                 | 6.617                      | -0001701                      | 4130-2                          | 0. 10290-01                          | 1497                              | 6-543@-06                 |
| 22.793         | 140.00                 | 7:032                      | -0001618                      | 4340=7                          | 9-5032@-07                           | -1426                             | 6;742@-06                 |
| 22.652         | 154.00                 | 7:446                      | :0001544                      | 4538.8                          | 8.2003@-07+                          | •1356                             | 5.514@-06                 |
| 22.510         | 166-00                 | 7-859                      | .0001477                      | 4732.6                          | 9.6848@-07                           | .1285                             | 6.155@-06                 |
| 22-369         | 179-00                 | 8-271                      | =0001417                      | 4922.6                          | 9-1001@-07                           | -1214                             | 5.4500-06                 |
| 22227          | 106.00                 | 8.682                      | .0001362                      | 5109.0                          | 7-1237@-07                           | -1144                             | 4.006@-06                 |

|                |                        | TABLE :1                                                 | 41 (CONTD.)                  | and white total and data data water we | RUN NO. R.E.F4(CONTD.)                                            |                                     |                                                   |  |
|----------------|------------------------|----------------------------------------------------------|------------------------------|----------------------------------------|-------------------------------------------------------------------|-------------------------------------|---------------------------------------------------|--|
| CONCN.<br>%M/V | TOTAL<br>TIME<br>MINS. | CRYSTAL<br>MASS<br>(GRAMS)                               | DIAMETER<br>INCREASE<br>(CM) | MEAN<br>AREA<br>CM <sup>2</sup>        | GROWTH RATE<br>CONSTANT<br>K(MIN <sup>-1</sup> CM <sup>-2</sup> ) | MEAN<br>SUPER-<br>SATN.             | GROWTH<br>RATE<br>CM/MIN.                         |  |
| 22:227         | 196.00                 | 8-683                                                    |                              |                                        | lang una mis Cali ana bas ana ang ang ang ang ang ang             | NOT AND MID AND AND AND AND AND AND | ero un erf nei êta na teu erê eta tak na da       |  |
| 22-086         | 212-00                 | 0-002                                                    | :0001312                     | 5291.9                                 | 7-7936@-07                                                        | 1073                                | 4:099@-06                                         |  |
| 22.000         | L1L.00                 | 9.095                                                    | .0002491                     | 5559-3                                 | 6-77100-07                                                        | -0967                               | 3-193@-06                                         |  |
| 21:002         | 251.00                 | 9=911                                                    | .0002332                     | 5907-1                                 | 6-6300@-07                                                        | -0825                               | 2-6500-06                                         |  |
| 21-519         | 295:00                 | 10.73                                                    | -0001112                     | 6161-8                                 | 7-20060-07                                                        | .0718                               | 2.5280.06                                         |  |
| 21-377         | 317-00                 | 11-13                                                    | .0001112                     | 0101.0                                 | [22900000]                                                        | .0110                               | 2:7200=00                                         |  |
| 21:093         | 382-00                 | 11.94                                                    | 0002131                      | 6408-7                                 | 5-5956@-07                                                        | :0612                               | 1-639@-06                                         |  |
| 20.950         | 415.00                 | 12:34                                                    | :0001021                     | 6652-1                                 | 6.4149@-07                                                        | :0505                               | 1.547@-06                                         |  |
|                |                        | the same produced and and and and and and and and and an |                              | and and and but have sup but and       | and and and and and not believe and and and and                   |                                     | own pay little and we way little and little day i |  |

EQUILIBRIUM CONCENTRATION = 20.010

INITIAL SEED AREA = 1593

- 356 -

|               |                        | TABLE :                    | 142                          | RUN NO.: R.E.F.5                |                                                                   |                         |                           |  |
|---------------|------------------------|----------------------------|------------------------------|---------------------------------|-------------------------------------------------------------------|-------------------------|---------------------------|--|
|               | TEMP                   | :50.0°c                    | CELL: C                      | STIRR                           | ER SPEED :2000                                                    | RoPoMo                  |                           |  |
|               | SEED                   | BATCH D                    | PREPARED                     | SIEVE                           | FRACTION: 75                                                      | -89µ                    |                           |  |
| CONCN.<br>M/V | TOTAL<br>TIME<br>MINS: | CRYSTAL<br>MASS<br>(GRAMS) | DIAMETER<br>INCREASE<br>(CM) | MEAN<br>AREA<br>CM <sup>2</sup> | GROWTH RATE<br>CONSTANT<br>K(MIN <sup>-1</sup> CM <sup>-2</sup> ) | MEAN<br>SUPER-<br>SATN: | GROWTH<br>RATE<br>CM/MIN. |  |
| 19-278        | -00000                 | 1-985                      |                              | 17090                           | 1-2/1220-07                                                       | -2725                   | 1-2550-06                 |  |
| 19-165        | 120,00                 | 2.312                      | .0003291                     | 1807.2                          | 2.70660-07                                                        | .2660                   | 2-6270-06                 |  |
| 19:081        | 150.00                 | 2:556                      |                              | 109705                          | 2.1000-01                                                         | .2000                   | 5.0510-00                 |  |
| 18-939        | 208-00                 | 2:963                      | ÷0003264                     | 2109.7                          | 2-9579@-07                                                        | .2505                   | 2:014@-06                 |  |
| 18-798        | 247-00                 | 3,369                      | .0002902                     | 2365.7                          | 4-0716@-07                                                        | -2491                   | 3-720@06                  |  |
| 18.657        | 280.00                 | 2.772                      | .0002622                     | 2611.2                          | 4-5313@-07                                                        | -2398                   | 3-972@-06                 |  |
| 10:057        | 200,00                 | 20112                      | .0002397                     | 2847.5                          | 4.7583@-07                                                        | :2304                   | 3-996@-06                 |  |
| 18.515        | 310,00                 | 4.176                      | .0002213                     | 3075-6                          | 3-7247@-07                                                        | .2210                   | 2-991@-06                 |  |
| 18-374        | 347.00                 | 4.579                      | .0002060                     | 3296-4                          | 5-3728@-07                                                        | 2117                    | 4-119@-06                 |  |
| 18:232        | 372-00                 | 4-980                      | 8501000                      | 3510.7                          | 3-3003@-07                                                        | -2023                   | 2-4100-06                 |  |
| 18:090        | 412.00                 | 5.380                      | 0001920                      | 2710 1                          |                                                                   | 1000                    | 0.700 06                  |  |
| 17-949        | 445.00                 | 5=779                      | -0001015                     | 3(19=1                          | 3:9013@-01                                                        | ÷1929                   | 2.000-00                  |  |
| 16:046        | 1085:0                 | 11-05                      | :0017972                     | 5015.8                          | 3-4464@-07                                                        | :1252                   | 1-404@-06                 |  |
| 15-061        | 1140-0                 | 11-28                      | -0000619                     | 6256-5                          | 2-7667@-07                                                        | -0594                   | 5.628@-07                 |  |
| 1- 0          | 1015 0                 | 11 -1                      | :00006 08                    | 6349-7                          | 2.2102@-07                                                        | • 0538                  | 4.0540-07                 |  |
| 12:00         | 1215:0                 | 11:51                      | -0001535                     | 6514.8                          | 4.5482@-08                                                        | .0434                   | 6.477@-08                 |  |
| 15:647        | 2400.0                 | 12.10                      |                              |                                 |                                                                   |                         |                           |  |

EQUILIBRIUM CONCENTRATION = 15-106

INITIAL SEED AREA = 1590

- 357 -

|                |                        | TABLE :                    | 143                                |                                 | RUN NO: :R.P.E.F.4                                                |                         |                           |  |  |
|----------------|------------------------|----------------------------|------------------------------------|---------------------------------|-------------------------------------------------------------------|-------------------------|---------------------------|--|--|
|                | TEMP                   | :70.0°C                    | CELL:C                             | STIRR                           |                                                                   |                         |                           |  |  |
|                | SEED                   | BATCH F                    | .E.PREPARE                         | D SIEVE                         | FRACTION: 89-                                                     | -105 µ                  |                           |  |  |
| CONCN-<br>%M/V | TOTAL<br>TIME<br>MINS: | CRYSTAL<br>MASS<br>(GRAMS) | DIAMETER<br>INCREASE<br>(CM)       | MEAN<br>AREA<br>CM <sup>2</sup> | GROWTH RATE<br>CONSTANT<br>K(MIN <sup>-1</sup> CM <sup>-2</sup> ) | MEAN<br>SUPER-<br>SATN: | GROWTH<br>RATE<br>CM/MIN. |  |  |
| 27.491         | .00000                 | 1:970                      | - 0006886                          | 1133-6                          | 3-65700-06                                                        | -1068                   | 2.5500-05                 |  |  |
| 27-343         | 13.500                 | 2-431                      | ~0005913                           | 1314-6                          | 1-91860-06                                                        | -1008                   | 1-2580-05                 |  |  |
| 27:195         | 37.000                 | 2:890                      | 0005200                            | 1486-8                          | 7-9947@=07                                                        | - 0949                  | 4-9060-06                 |  |  |
| 27:047         | 90.000                 | 3-346                      | .000/200                           | 1651.2                          | 8-118180-07                                                       |                         | 4-8530-06                 |  |  |
| 26-899         | 138.00                 | 3-801                      | 000/1000                           | 1808.8                          | 7.66120-07                                                        |                         | 1.0500-06                 |  |  |
| 26.751         | 190:00                 | 4-253                      | 0004232                            | 1000-0                          | 7.00120-07                                                        | 0770                    | 2 88-0 06                 |  |  |
| 26:603         | 240.00                 | 4.703                      | 0003005                            | 1960.4                          | (-92130-01                                                        | -0110                   | 3:00,0=0                  |  |  |
| 26-455         | 355-00                 | 5-149                      | -0003588                           | 2106-5                          | 3-4745@-07                                                        | .0710                   | 1.5600-06                 |  |  |
| 26-307         | 430-00                 | 5-503                      | -coo3342                           | 2247.6                          | 5.4514@-07                                                        | .0650                   | 2:228@=06                 |  |  |
| 20.001         | 100.00                 | 5,000                      | .0002212                           | 2364.2                          | 4.9163@-07                                                        | -0599                   | 1-843@-06                 |  |  |
| 26-204         | 490.00                 | 5 5902                     | ana antir sona antres ma ord maren | -                               | 1.000 (000 400 000 (00) 000 400 400 400 400 400 400 400 400       |                         |                           |  |  |

EQUILIBRIUM CONCENTRATION = 24.771

|                 |                        | P.E.F.5                    |                              |                                 |                                                                 |                         |                           |
|-----------------|------------------------|----------------------------|------------------------------|---------------------------------|-----------------------------------------------------------------|-------------------------|---------------------------|
|                 | TEMP                   | 50.0°C                     | CELL: C                      | STIRR                           | ER SPEED 2000                                                   | R.P.M.                  |                           |
|                 | SEED                   | BATCH P                    | .G.PREPARE                   | D SIEVE                         | FRACTION: 89                                                    | -105 µ                  |                           |
| CONCN-<br>7/M/V | TOTAL<br>TIME<br>MINS: | CRYSTAL<br>MASS<br>(GRAMS) | DIAMETER<br>INCREASE<br>(CM) | MEAN<br>AREA<br>CM <sup>2</sup> | GROWTH RATE<br>CONSTANT<br>K(MIN <sup>T</sup> CM <sup>2</sup> ) | MEAN<br>SUPER-<br>SATN. | GROWTH<br>RATE<br>CM/MIN. |
| 21:744          | .00000                 | 1-995                      | 0004580                      | 12768                           | 8-52550-06                                                      | 1628                    | 6.5)120-05                |
| 21.628          | 3.5000                 | 2:339                      | 2001/670                     | 10.0                            | 1)18600 0                                                       | 1030                    | 1 0000 0                  |
| 21:482          | 25:000                 | 2.769                      | :0004019                     | 100 (00                         | 1-40020-00                                                      | : 1500                  | 1.0000-05                 |
| 21-337          | 65:000                 | 3-196                      | -0003884                     | 1867:0                          | 7-01220-07                                                      | -1490                   | 4.854@-06                 |
| 21-192          | 120,00                 | 3.622                      | .0003328                     | 2168.0                          | 4.6346@-07                                                      | -1412                   | 3-025@-06                 |
| 21-046          | 22500                  | 4-046                      | .0002917                     | 2458.2                          | 2.2664@-07                                                      | •1334                   | 1-3890-06                 |
| 20.001          | 210.00                 | 1. 1.67                    | ;0002605                     | 2737-5                          | 2.6702@-07                                                      | -1256                   | 1-533@-06                 |
| 20,901          | 310.00                 | 4.401                      | -0002360                     | 3006:9                          | 2.75410-07                                                      | .1178                   | 1-475@-06                 |
| 20:756          | 390-00                 | 4.886                      | .0003377                     | 3341-9                          | 2-8943@-07                                                      | -1076                   | 1-407@-06                 |
| 20,523          | 510.00                 | 5-552                      | -0011312                     | 4339-4                          | 2-6384@-07                                                      | =0737                   | 8-197@-07                 |
| 19-491          | 1200.0                 | 8.434                      |                              | 5225-2                          | 1.75080-07                                                      | 0105                    | 2,2109,07                 |
| 19:360          | 1380.0                 | 8.790                      | .0001190                     | )                               |                                                                 | ······                  |                           |

EQUILIBRIUM CONCENTRATION = 18.634

|                |                        | TABLE                      | 145                          |                                                     | RUN NO. : R.P.E.F.6                                |                         |                           |  |
|----------------|------------------------|----------------------------|------------------------------|-----------------------------------------------------|----------------------------------------------------|-------------------------|---------------------------|--|
|                | TEMP                   | :70.0°C                    | CELL:C                       | STIRR                                               | ER SPEED:2000                                      | R.P.M.                  |                           |  |
|                | SEED                   | BATCH I                    | P.E.PREPARE                  | D SIEVE                                             | FRACTION:89-                                       | -105 µ                  |                           |  |
| CONCN-<br>%M/V | TOTAL<br>TIME<br>MINS. | CRYSTAL<br>MASS<br>(GRAMS) | DIAMETER<br>INCREASE<br>(CM) | MEAN<br>AREA<br>CM <sup>2</sup>                     | GROWTH RATE<br>CONSTANT<br>K(MIN CM <sup>2</sup> ) | MEAN<br>SUPER-<br>SATN- | GROWTH<br>RATE<br>CM/MIN. |  |
| 27:580         | -00000                 | 1-944                      |                              | 10822                                               | 2-06670-06                                         |                         | 2-1620-05                 |  |
| 27:491         | 10,000                 | 2:221                      | -0006220                     | 1220.)                                              | 5.05820-07                                         | 1068                    | 2 = 110 0                 |  |
| 27-343         | 100,00                 | 2.679                      |                              | 122904                                              | 1 71)100 00                                        |                         | 3-3110-00                 |  |
| 27-047         | 148.00                 | 3-592                      | -0010420                     | 1400-2                                              | 10/1402=06                                         | ÷0919                   | 1.005@-05                 |  |
| 26-751         | 205:00                 | 4.498                      | .0008491                     | 1807-2                                              | 1-3521@-06                                         | :0059                   | 7-448@-06                 |  |
| 26-307         | 310-00                 | 5-843                      | -0010490                     | 2173-1                                              | 1-1119@-06                                         | :0710                   | 4-9950-06                 |  |
| 26-160         | 370-00                 | 6-286                      | -0003061                     | 2451-6                                              | 6-8787@-07                                         | :0590                   | 2.551@-06                 |  |
| 25805          | 520.00                 | 7.210                      | -0006686                     | 2670-3                                              | 7-3651@-07                                         | :0489                   | 2-229@-06                 |  |
| 2):00)         | 520,000                | - 060                      | -0003049                     | 2895-3                                              | 7-22080-07                                         | .0382                   | 1:694@-06                 |  |
| 25:527         | 1190.0                 | 8-791                      | -0005083                     | 3093-8                                              | 2.65890-07                                         | .0280                   | 4-3820-07                 |  |
|                |                        | TATOAT IN                  | N                            | 213 1121110 119 219 119 119 119 119 119 119 119 119 | د من من من منه منه من من منه من منه منه م          |                         |                           |  |

EQUILIBRIUM CONCENTRATION = 24.771

|                |                        | TABLE :                    | 146                          |                                 | .E.D.1                                                            | 1                        |                           |
|----------------|------------------------|----------------------------|------------------------------|---------------------------------|-------------------------------------------------------------------|--------------------------|---------------------------|
|                | TEMP                   | 70.0°C                     | CELL:C                       | STIRR                           | ER SPEED :2000                                                    | R.P.M.                   |                           |
|                | SEED                   | BATCH P                    | .E. PREPARE                  | D SIEVE                         | FRACTION:89-                                                      | 105 p                    |                           |
| CONCN.<br>%M/V | TOTAL<br>TIME<br>MINS: | CRYSTAL<br>MASS<br>(GRAMS) | DIAMETER<br>INCREASE<br>(CM) | MEAN<br>AREA<br>CM <sup>2</sup> | GROWTH RATE<br>CONSTANT<br>K(MIN <sup>-7</sup> CM <sup>-7</sup> ) | MEAN<br>SUPER -<br>SATN: | GRCWTH<br>RATE<br>CM/MIN. |
| 28,528         | . 00000                | 1.964                      | -0006076                     | 1121)                           | 2-81600-05                                                        | -1)187                   | 2-7000-04                 |
| 28.380         | 1:2500                 | 2:430                      | 0000970                      | 121)1                           | 1_82209_05                                                        | 1107                     | 1. 7100-01                |
| 28:232         | 3.0000                 | 2.894                      | 00090                        | 1314.4                          | 1.1700.05                                                         | 1967                     | 1 (700 0)                 |
| 28.084         | 5.5000                 | 3:357                      | -0005201                     | 1400.0                          | 101 (79000)                                                       | 1007                     | 1:030=04                  |
| 27:935         | 9:7500                 | 3-819                      | ;0004 /22                    | 1055:1                          | 6-5046@-05                                                        | 1307                     | 5.5550-05                 |
| 27:787         | 15:250                 | 4.279                      | :0004292                     | 1015-0                          | 4,0026@=05                                                        | 1240                     | 3:902@=05                 |
| 27:491         | 32-000                 | 5-196                      | 00076.06                     | 2042-3                          | 3=0213@=06                                                        | -1158                    | 2:271@=05                 |
| 27-195         | 46:500                 | 6-108                      | -0006620                     | 2331.4                          | 3-4089@-06                                                        | :1038                    | 2:283@-05                 |
| 27:047         | 56.000                 | 6.561                      | :0003020                     | 2538.7                          | 2.6122@-06                                                        | 0949                     | 1-589@-05                 |
| 26.899         | 65-000                 | 7.012                      | -0002861                     | 2671-3                          | 2.7961@-06                                                        | - 0889                   | 1.589@-05                 |
| 26:=751        | 80.000                 | 7.462                      | :0002719                     | 2800.7                          | 1-71520-06                                                        | - 0829                   | 9:063@-06                 |
| 26-603         | 91.000                 | 7.911                      | -0002593                     | 2927:2                          | 2.4114@-06                                                        | .0770                    | 1-179@-05                 |
| 26-307         | 125-00                 | 8-804                      | -0004860                     | 3110.9                          | 1.6646@-06                                                        |                          | 7-147@-06                 |
| 26-160         | 142-00                 | 9-248                      | -0002282                     | 3290.8                          | 1:8086@-06                                                        | -0590                    | 6-713@-06                 |
| 26-012         | 165-00                 | 9-690                      | -0002196                     | 3407.1                          | 1-4364@-06                                                        | :0531                    | 4.774@-06                 |
| 25-864         | 215-00                 | 10-13                      | ÷0002114                     | 3521-2                          | 7-2043@-07                                                        | -0471                    | 2.114@-06                 |
| 25716          | 280.00                 | 10.57                      | 0002038                      | 3633-0                          | 6-1516@-07                                                        | .0411                    | 1.568@-06                 |
| 25 607         | 1050.0                 | 10.97                      | 0001151                      | 3720-1                          | 3-4384@-08                                                        | .0364                    | 7-477@-08                 |
| 2):02 (        | 10,0.0                 | 10:02                      | .0001096                     | 3782.2                          | 4.1863@-08                                                        | -0328                    | 7-941@-08                 |
| 42:039         | 1/40.0                 | 11:07                      |                              |                                 |                                                                   |                          |                           |

EQUILIBRIUM CONCENTRATION = 24.771

|                |                        | TABLE :                    | 147                                        |                                 | RUN NO. R.P                                                       |                                              |                                                        |  |  |
|----------------|------------------------|----------------------------|--------------------------------------------|---------------------------------|-------------------------------------------------------------------|----------------------------------------------|--------------------------------------------------------|--|--|
|                | TEMP                   | : 50.02                    | CELL: C                                    | STIRR                           | ER SPEED: 200                                                     | SPEED: 2000R:P.M.                            |                                                        |  |  |
|                | SEED                   | BATCH P                    | .G. PREPARE                                | D SIEVE                         | FRACTION: 89                                                      | -105 JA                                      |                                                        |  |  |
| CONCN -<br>M/V | TOTAL<br>TIME<br>MINS. | CRYSTAL<br>MASS<br>(GRAMS) | DIAMETER<br>INCREASE<br>(CM)               | MEAN<br>AREA<br>CM <sup>2</sup> | GROWTH RATE<br>CONSTANT<br>K(MIN <sup>-1</sup> CM <sup>-2</sup> ) | MEAN<br>SUPER-<br>SATN.                      | GROWTH<br>RATE<br>CM/MIN;                              |  |  |
| 17:516         | .00000                 | 1-994                      | .0005301                                   | 1298.4                          | 3.2832@-07                                                        | -2359                                        | 2.651@-06                                              |  |  |
| 17-374         | 100.00                 | 2:399                      | .0004298                                   | 1591-3                          | 2.7999@-07                                                        | .2258                                        | 2.149@-06                                              |  |  |
| 17.232         | 200.00                 | 2.802                      | .0003616                                   | 1881.8                          | 2.0663@-07                                                        | -2157                                        | 1.506@-06                                              |  |  |
| 17:090         | 320-00                 | 3:203                      | 0002535                                    | 2136-7                          | 2.0272@-07                                                        | -2067                                        | 1.408@-06                                              |  |  |
| 16.977         | 410.00                 | 3.523                      | .0025852                                   | 3894.3                          | 3-1173@07                                                         | -1288                                        | 1.202@-06                                              |  |  |
| + 14.892       | 1485.                  | 0 9.237                    | .0001135                                   | 5634.0                          | 1.6132@-07                                                        | .0499                                        | 2.522@-07                                              |  |  |
| 14-748         | 1710.0                 | 9:615                      | a and and out that any was that for our of |                                 | 0.05 849 005 649 681 148 663 683 P05 669 669 669 669              | a 400 Alba Sel <sub>190</sub> eta sui 200 tu | 9.99 100 02 02 03 03400 000 000 000 000 000 000 000 00 |  |  |
| FOILI IBR      | LIM CON                | CENTRATIC                  | M = 14.11                                  | 6                               | INITIAL                                                           | SEED ARE                                     | A = 1152                                               |  |  |

|                |                        | E.40                       |                              |                                 |                                                                   |                         |                           |
|----------------|------------------------|----------------------------|------------------------------|---------------------------------|-------------------------------------------------------------------|-------------------------|---------------------------|
|                | TEMP                   | 70.08                      | CELL:C                       | STIRR                           | ER SPEED: 2000                                                    | DR.P.M.                 |                           |
|                | SEED                   | BATCH E                    | PREPARED                     | SIEVE                           | FRACTION: 89-                                                     | -105 ju                 |                           |
| CONCN:<br>%M/V | TOTAL<br>TIME<br>MINS. | CRYSTAL<br>MASS<br>(GRAMS) | DIAMETER<br>INCREASE<br>(CM) | MEAN<br>AREA<br>CM <sup>2</sup> | GROWTH RATE<br>CONSTANT<br>K(MIN <sup>-'</sup> CM <sup>-2</sup> ) | MEAN<br>SUPER-<br>SATN: | GROWTH<br>RATE<br>CM/MIN: |
| 29.708         | -00000                 | 1:976                      |                              | 172)1.2                         | 1.815.00-06                                                       | 1265                    | )                         |
| 29.569         | 5.0000                 | 2.417                      | 0004312                      | 2028 7                          | 2 06080-06                                                        | 1210                    | 2.6260-05                 |
| 29.430         | 12,000                 | 2.857                      | -0003070                     | 2020-1                          | 3:00900=00                                                        | 1212                    | 2:0200=05                 |
| 29.291         | 19.500                 | 3.297                      | .0003222                     | 2308.6                          | 2.6340@=06                                                        | .1160                   | 2.1409-05                 |
| 29:152         | 28,000                 | 3.735                      | .0002880                     | 2576.0                          | 2.1836@-06                                                        | .1107                   | 1.694@-05                 |
| 28-873         | 47.000                 | 4.609                      | -0005014                     | 2954.1                          | 1.8382@-06                                                        | -1027                   | 1.3200-05                 |
| 28 50)         | 65.000                 | 5.)170                     | :0004293                     | 3432.9                          | 1.8642@-06                                                        | -0921                   | 1-193@-05                 |
| 200394         | 03:000                 | 2.0719                     | .0010276                     | 4292.2                          | 1.6394@-06                                                        | .0709                   | 7.904@-06                 |
| 27:756         | 130.00                 | 0,076                      | -0001439                     | 5016-5                          | 1-4503@-06                                                        | .0523                   | 5-1410-06                 |
| 27.615         | 144:00                 | 8.502                      | -0001383                     | 5207-2                          | 1-3621@-06                                                        | -0470                   | 4-3220-06                 |
| 27-475         | 160,00                 | 8-928                      |                              | 5575-3                          | 1-2355@06                                                         | -0363                   | 2-970@-06                 |
| 27:055         | 225.00                 | 10.20                      |                              | 5027.0                          | 12027@_06                                                         | 0256                    | 2.2210-06                 |
| 26-914         | 252.00                 | 10.62                      | .0001199                     | ) 95 (00<br>(111 F              | 1.01110                                                           | .02)0                   | 1 700 06                  |
| 26-774         | 285.00                 | 11-04                      | .0001161                     | 01110)                          | 1.3111@-00                                                        | .0203                   | 1. 090-00                 |
| 26:633         | 340.00                 | 11-46                      | -0001124                     | 6283-1                          | 1-0439@-06                                                        | :0150                   | 1.0220-06                 |

EQUILIBRIUM CONCENTRATION = 26.310

INITIAL SEED AREA = 1583

- 363 -

APPENDIX E - ANALYSIS OF PREVIOUS WORK (1)

## TABLE: 149

SUMMARY OF PREVIOUS WORK (1) ON SEEDED CELLS STIRRED AT 500 R.P.M.

| OLD RUN NO:         R.14         R.20         R.21           NEW RUN NO:         R.A.1         R.A.2         R.A.3 $T_0^{\circ}C$ 60.0         70.0         55.0           SEED         44-53, $h^{3e}$ 44-53, $h^{3e}$ 44-53, $h^{3e}$ 44-53, $h^{3e}$ $Q^{0}m/v$ TIME         Kx10 <sup>7</sup> $0^{0}m/v$ $0^{0}m/v$ TIME         Kx10 <sup>7</sup> $0^{0}m/v$ $0^{0}m/v$ TIME         Kx10 <sup>7</sup> $0^{0}m/v$ < |             |                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                          | And the second state of th |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | OLD RUN NO: | R.14                                                                                                                                                                                                                    | R.20                                                                                                                                                                                                                                                                                     | R.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NEW RUN NO: | R.A.l                                                                                                                                                                                                                   | R.A.2                                                                                                                                                                                                                                                                                    | R.A.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | T °C        | 60.0                                                                                                                                                                                                                    | 70.0                                                                                                                                                                                                                                                                                     | 55.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SEED        | 44-53 JA №                                                                                                                                                                                                              | 44-53, AM                                                                                                                                                                                                                                                                                | 44-53 p. A.*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <b> </b>    | V TIME Kx10/<br>MINS min-lom                                                                                                                                                                                            | c/m/v TIME Kx1C 7<br>MINS min-lom-2                                                                                                                                                                                                                                                      | c%m/v TIME Kx10 7<br>MINS min-lom-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             | 00       0       13.95         88       9       1.71         77       80       1.71         65       130       1.69         .54       195       2.335         .43       240       1.70         .31       300       2.05 | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                    | 21.50       0       126         21.41       10       77.5         21.29       25       77.5         21.78       110       7.37         21.06       255       8.02         20.26       1110       8.01         20.15       1230       4.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | i           | .08 400 1.17                                                                                                                                                                                                            | 28.96 75 1.097 28.84 86                                                                                                                                                                                                                                                                  | 19.46 2550<br>4.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| 28.07       300       0.275         28.07       300       0.313         27.94       350       0.169         27.18       1230       0.147         27.05       1560       1560                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             | .71 1500<br>.60 1800                                                                                                                                                                                                    | 28.71       96       0.428         28.58       125       0.395         28.45       158       0.359         28.33       195       0.275         28.07       300       0.313         27.94       350       0.169         27.18       1230       0.147         27.05       1560       0.147 | 19.35 2790<br>19.23 3090<br>4.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |

TABLE: 149 (CONT.)

| DID RUN NO:<br>NEW RUN NO:<br>T <sup>O</sup> C<br>SEED | R.23<br>R.A.4<br>80.0<br>44-53µA <sup>№</sup>                                                                              |                                                                                  |                                                                                       | 4                                                                     | R.27<br>R.P.A.1<br>60.0<br>44-53 JP.A. <sup>™</sup> |                                              |                                                                                                                   | R.29<br>R.P.A.2<br>70.0<br>44-53µP.A. <sup>™</sup>                                 |                                                                                                 |  |
|--------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------|----------------------------------------------|-------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|--|
|                                                        | c/m/v                                                                                                                      | TIME                                                                             | Kx107<br>min <sup>-1</sup> cm <sup>-2</sup>                                           | c%m/v                                                                 | TIME                                                | Kx107<br>min <sup>-1</sup> cm <sup>-2</sup>  | c%m/v                                                                                                             | TIME<br>MINS                                                                       | Kx107<br>min <sup>-1</sup> cm <sup>-2</sup>                                                     |  |
|                                                        | c/m/v<br>37.00<br>36.81<br>36.68<br>36.56<br>36.43<br>36.31<br>35.68<br>35.57<br>35.45<br>35.45<br>35.20<br>34.95<br>34.82 | MINS<br>0<br>2.5<br>4.5<br>8<br>15<br>24<br>74<br>90<br>105<br>150<br>210<br>243 | 7.4<br>7.79<br>4.22<br>2.15<br>1.65<br>1.55<br>1.07<br>1.225<br>0.94<br>0.895<br>1.06 | cyam/v<br>24.00<br>23.88<br>23.77<br>23.65<br>23.45<br>23.20<br>22.63 | 0<br>7<br>26<br>140<br>165<br>190<br>270            | 15.3<br>5.08<br>0.78<br>6.79<br>6.47<br>4.79 | 29.00<br>28.70<br>28.64<br>28.39<br>27.75<br>27.62<br>27.50<br>27.24<br>27.11<br>26.99<br>26.48<br>26.35<br>26.22 | 0<br>3<br>95<br>115<br>150<br>163<br>175<br>200<br>215<br>230<br>310<br>325<br>375 | 49.0<br>2.94<br>12.18<br>16.05<br>9.44<br>10.3<br>10.5<br>9.31<br>9.82<br>9.01<br>15.55<br>5.46 |  |
|                                                        |                                                                                                                            |                                                                                  |                                                                                       |                                                                       |                                                     |                                              | 26.09                                                                                                             | 425                                                                                | 6.70<br>7.93                                                                                    |  |

TABLE: 149 (CONT.)

| OLD RUN NO:<br>NEW RUN NO:<br>T <sup>O</sup> C<br>SEED | R.30<br>R.P.A.3<br>80.0<br>44-53 µ.P.A. <sup>™</sup>                                   |                                                              |                                                                        | 44                                                                                     | R.31<br>R.C.1<br>60.0<br>44-53 Jap A. <sup>38</sup>            |                                                                      |                                           | R. 32<br>R. P.A.4<br>50.0<br>44-53 MP.A. <sup>36</sup> |                                              |  |
|--------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------|--------------------------------------------------------|----------------------------------------------|--|
| L                                                      | c‰m/v                                                                                  | TIME<br>MINS                                                 | Kx10-7<br>min <sup>-1</sup> cm <sup>-2</sup>                           | o%m/v                                                                                  | TIME                                                           | Kx10-7<br>min <sup>-1</sup> cm <sup>-2</sup>                         | c%m/v                                     | TIME                                                   | Kx10-7<br>min <sup>-1</sup> cm <sup>-2</sup> |  |
|                                                        | 36.00<br>35.19<br>34.94<br>34.56<br>34.44<br>34.19<br>33.94<br>33.82<br>33.57<br>33.44 | 0<br>26<br>45<br>85<br>97<br>120<br>160<br>170<br>215<br>270 | 2.82<br>1.53<br>1.17<br>1.42<br>1.635<br>1.13<br>2.75<br>1.62<br>0.983 | 24.00<br>23.88<br>23.77<br>23.20<br>22.97<br>22.85<br>22.63<br>22.51<br>22.28<br>22.17 | 0<br>25<br>40<br>100<br>145<br>170<br>220<br>250<br>290<br>315 | 5.70<br>5.17<br>10.5<br>5.63<br>5.20<br>5.31<br>4.78<br>7.44<br>6.52 | 18.50<br>18.18<br>18.06<br>17.95<br>17.84 | 0<br>25<br>60<br>120<br>300                            | 4.82<br>3.38<br>1.78<br>0.860                |  |

M SPECIALLY PREPARED SEED
TABLE: 149 (CONT.)

| OLD RUN NO:<br>NEW RUN NO:<br>T <sup>O</sup> C<br>SEED | F<br>F<br>5<br>44-                            | 2.33<br>2.4.5<br>50.0<br>-53 Ju A <sup>38</sup>          |                                                                                                                                              | R.34<br>R.P.A.5<br>80.0<br>44-53µ.A <sup>32</sup>                                 |                                                                                                          |  |
|--------------------------------------------------------|-----------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|--|
|                                                        | o%m/v MIN                                     | NE Kx107<br>NS min-lom-2                                 | c%m/v                                                                                                                                        | TIME<br>MINS                                                                      | Kx107<br>min-lom-2                                                                                       |  |
|                                                        | 19.50 (<br>19.08 96<br>18.96 114<br>18.85 138 | 0       4.22         50       5.16         40       3.74 | 36.00<br>35.56<br>35.44<br>35.31<br>35.19<br>35.06<br>34.94<br>34.69<br>34.69<br>34.69<br>34.56<br>34.44<br>34.32<br>34.19<br>34.07<br>34.07 | 0<br>4<br>7.5<br>11<br>20<br>28<br>36<br>45<br>52<br>59<br>68<br>95<br>114<br>124 | 8.4<br>4.21<br>4.19<br>1.60<br>1.835<br>1.837<br>3.41<br>2.315<br>2.44<br>2.01<br>0.723<br>1.125<br>1.22 |  |

|                | COMPUTED PREVIOUS RESULTS (1) WITH PREVIOUS SIZE ANALYSES (D ) AND<br>PREVIOUS EQUILIBRIUM VALUES |                                  |                              |                                 |                                                                  |                         |                           |  |  |  |  |
|----------------|---------------------------------------------------------------------------------------------------|----------------------------------|------------------------------|---------------------------------|------------------------------------------------------------------|-------------------------|---------------------------|--|--|--|--|
|                |                                                                                                   | TABLE :                          | 150                          |                                 | RUN NO. R.                                                       | P.A.2                   | -                         |  |  |  |  |
|                | TEMP                                                                                              | б0.0 <sup>0</sup> с<br>: ВАТСН Р | CELL: A                      | STIRR<br>ED SIEVE               | ER SPEED: 50<br>FRACTION: 44                                     | OR. P.M.                |                           |  |  |  |  |
| CONCN.<br>%M/V | TOTAL<br>TIME<br>MINS.                                                                            | CRYSTAL<br>MASS<br>(GRAMS)       | DIAMETER<br>INCREASE<br>(CM) | MEAN<br>AREA<br>CM <sup>2</sup> | GROWTH RATE<br>CONSTANT<br>K(MIN <sup>°</sup> CM <sup>°2</sup> ) | MEAN<br>SUPER-<br>SATN- | GROWTH<br>RATE<br>CM/MIN. |  |  |  |  |
| 24:021         | .00000                                                                                            | 2:000                            |                              | 22)12.0                         | 1222)10-06                                                       | 2)101                   | 1.5120-05                 |  |  |  |  |
| 23:887         | 7.0000                                                                                            | 2.404                            | 0001700                      | 10110                           | 2 8-0-0-07                                                       | 0/100                   | 1.7120-05                 |  |  |  |  |
| 23:750         | 26:000                                                                                            | 2.815                            | :0001/39                     | 4014-9                          | 3:0000000                                                        | .2420                   | 4.5 100-00                |  |  |  |  |
| 23-616         | 140,00                                                                                            | 3-217                            | -0001430                     | 4761-1                          | 5-4683@=08                                                       | -2350                   | 6=273@=07                 |  |  |  |  |
| 23-349         | 165:00                                                                                            | 4-019                            | :0002346                     | 5803-4                          | 4-2830@-07                                                       | -2245                   | 4.692@-06                 |  |  |  |  |
| 23-082         | 100-00                                                                                            | 4.817                            | .0001901                     | 7116-2                          | 3=7244@=07                                                       | -2106                   | 3-802@-06                 |  |  |  |  |
| 22-419         | 270.00                                                                                            | 6.787                            | :0003653                     | 9164-2                          | 2:5378@-07                                                       | .1863                   | 2-283@-06                 |  |  |  |  |
| 01111 100      |                                                                                                   |                                  |                              |                                 |                                                                  |                         |                           |  |  |  |  |

EQUILIBRIUM CONCENTRATION = 19-177

INITIAL SEED AREA = 2856

|                 |                        | TABLE :                    | 151                          |                                  |                                                                 |                         |                           |  |
|-----------------|------------------------|----------------------------|------------------------------|----------------------------------|-----------------------------------------------------------------|-------------------------|---------------------------|--|
|                 | TEMP: 50.0° CEL        |                            | CELL: A                      | ELL: A STIRRER SPEED: 500 R.P.M. |                                                                 |                         |                           |  |
|                 | SEED                   | BATCH                      | A PREPARED                   | SIEVE                            | FRACTION: 44                                                    | -53 µ                   |                           |  |
| CONCN -<br>%M/V | TOTAL<br>TIME<br>MINS: | CRYSTAL<br>MASS<br>(GRAMS) | DIAMETER<br>INCREASE<br>(CM) | MEAN<br>AREA<br>CM <sup>®</sup>  | GROWTH RATE<br>CONSTANT<br>K(MIN <sup>1</sup> CM <sup>2</sup> ) | MEAN<br>SUPER-<br>SATN. | GROWTH<br>RATE<br>CM/MIN: |  |
| 19-380          | :00000                 | 2.000                      | 0000010                      | 1005 (                           |                                                                 | 07.01                   | 2 1209 07                 |  |
| 18.880          | 960-00                 | 3-452                      | -0000010                     | 422):0                           | 3-22310-00                                                      | -2701                   | 3-1300-01                 |  |
| 18-753          | 1140-0                 | 3-818                      | .0001052                     | 5896-2                           | 3-4119@-08                                                      | -2296                   | 2:922@-07                 |  |
| 10-100          | 1110.0                 | 2.010                      | .0000928                     | 6523-2                           | 2-3463@-08                                                      | -2214                   | 1-9339-07                 |  |
| 18-628          | 1380-0                 | 4.175                      |                              |                                  | unt ans process thin 479 me age Pideans the one 200             |                         |                           |  |
| QUILIBR         | IUM CON                | CENTRATIO                  | N = 15.30                    | 2                                | INITIAL                                                         | SEED ARE                | A = 2877                  |  |

- 368 -

COMPUTED PREVIOUS RESULTS (1) WITH PREVIOUS SIZE ANALYSES (D,

|                                     |                               | 1                          |                              |                                 |                                                                 |                         |                           |
|-------------------------------------|-------------------------------|----------------------------|------------------------------|---------------------------------|-----------------------------------------------------------------|-------------------------|---------------------------|
|                                     |                               | TABLE :                    | 152                          |                                 | RUN NO. : R.I                                                   | P.A.1                   |                           |
|                                     | TEMP                          | R.P.M.                     |                              |                                 |                                                                 |                         |                           |
|                                     | SEED                          | BATCH P.                   | A . PREPARED                 | SIEVE                           | FRACTION: 44                                                    | -53 pc                  |                           |
| CONCN.<br>M/V                       | TOTAL<br>TIME<br>MINS:        | CRYSTAL<br>MASS<br>(GRAMS) | DIAMETER<br>INCREASE<br>(CM) | MEAN<br>AREA<br>CM <sup>2</sup> | GROWTH RATE<br>CONSTANT<br>K(MIN <sup>-</sup> CM <sup>2</sup> ) | MEAN<br>SUPER-<br>SATN: | GROWTH<br>RATE<br>CM/MIN: |
| 24-021                              | :00000                        | 2.000                      | 0002117                      | 22/12 0                         | 1.107/0-06                                                      |                         | 1-5120-05                 |
| 23.887                              | 7:0000                        | 2.404                      |                              | 3242.9                          | 2 10148-07                                                      |                         | 1.5760-06                 |
| 23:750                              | 26:000                        | 2.815                      | :0001/39                     | 4014.9                          | 3.47400-07                                                      | 0710                    | 6.0708.07                 |
| 22.616                              | 140.00                        | 3.217                      | .0001430                     | 4761.1                          | 4.8795@=08                                                      | \$2710                  | 6.2/3@-0/                 |
| 23:010                              | 140.00                        | Jeril                      | .0002346                     | 5803.4                          | 3.8026@-07                                                      | .2602                   | 4.692@-06                 |
| 23.349                              | 165.00                        | 4.019                      | 0001901                      | 7116-2                          | 3-2822@-07                                                      | -2459                   | 3-802@-06                 |
| 23-082                              | 190.00                        | 4.817                      |                              |                                 | 0.00109.07                                                      | 02.00                   | 2 2820 06                 |
| 22-419                              | 270.00                        | 6.787                      | •0003653                     | 9164-2                          |                                                                 | •CC 09                  |                           |
| ant pay Alle with Suffranciale Alle | 1 mik and end end and and and |                            |                              |                                 |                                                                 |                         | A - 2856                  |

EQUILIBRIUM CONCENTRATION = 18.634

INITIAL SEED AREA = 2856

|               |                        | TABLE                      | 153                                           |                                 | 5                                                  |                         |                           |
|---------------|------------------------|----------------------------|-----------------------------------------------|---------------------------------|----------------------------------------------------|-------------------------|---------------------------|
|               | TEMP                   | : 50.0°C                   | CELL: A<br>Marine Marine Marine<br>A PREPARED | STEVE                           | ER SPEED: 500<br>FRACTION: 44-                     | RoPoMo<br>53m           |                           |
| CONCN-<br>M/V | TOTAL<br>TIME<br>MINS: | CRYSTAL<br>MASS<br>(GRAMS) | DIAMETER<br>INCREASE<br>(CM)                  | MEAN<br>AREA<br>CM <sup>2</sup> | GROWTH RATE<br>CONSTANT<br>K(MIN'CM <sup>2</sup> ) | MEAN<br>SUPER-<br>SATN- | GROWTH<br>RATE<br>CM/MIN. |
| 19-380        | .00000                 | 2.000                      |                                               | 1225-6                          | 32036@-08                                          | -2522                   | 3-130@-07                 |
| 18,880        | 960,00                 | 3:452                      | 0001052                                       | F8062                           | 22871@_08                                          | 2217                    | 2-922@-07                 |
| 18:753        | 1140.0                 | 3.818                      | -0001052                                      | 5090:5                          | 2.2286@-08                                         |                         | 1.022@_07                 |
| 18,628        | 1380.0                 | 4.175                      | :0000920                                      | 0523.2                          | 2:3200@=00                                         | :263)                   | 1.9336-01                 |
| FOUILIBR      | IUM CON                | CENTRATI                   | ON = 15.27                                    | 7                               | INITIAL                                            | SEED ARE                | A = 2877                  |

- 369 -

AND EQUILIBRIUM VALUES

|                |                        | TABLE                      | 154                          |                                 |                                                                   |                         |                                               |
|----------------|------------------------|----------------------------|------------------------------|---------------------------------|-------------------------------------------------------------------|-------------------------|-----------------------------------------------|
|                | TEMP                   | : 50.00                    | CELL: A                      | STIRR                           |                                                                   |                         |                                               |
|                | SEED                   |                            |                              |                                 |                                                                   |                         |                                               |
| CONCN-<br>%M/V | TOTAL<br>TIME<br>MINS. | CRYSTAL<br>MASS<br>(GRAMS) | DIAMETER<br>INCREASE<br>(CM) | MEAN<br>AREA<br>CM <sup>2</sup> | GROWTH RATE<br>CONSTANT<br>K(MIN <sup>-1</sup> CM <sup>-2</sup> ) | MEAN<br>SUPER-<br>SATN- | GROWTH<br>RATE<br>CM/MIN.                     |
| 19-380         | .00000                 | 2.000                      |                              | licchio                         |                                                                   |                         | All 400 mg Bia say ma bin top day any day any |
| 18,880         | 960.00                 | 3.452                      | -0005954                     | 4264.9                          | 3-17409-08                                                        | .2522                   | 3-101@-07                                     |
| 18.753         | 1140.0                 | 3-818                      | .0001043                     | 5946-4                          | 3-35850-08                                                        | .2317                   | 2.897@-07                                     |
| 18,628         | 1380.0                 | 4-175                      | .0000920                     | 6577-1                          | 2,3095@-08                                                        | -2235                   | 1:918@-07                                     |
| QUILIBR        | IUM CONC               | ENTRATIO                   | N = 15-27                    | 7                               | INITIAL                                                           | SEED ARE                | A = 2907                                      |

|               | TABLE : 155            |                            |                               |                                 |                                                                   |                         |                           |
|---------------|------------------------|----------------------------|-------------------------------|---------------------------------|-------------------------------------------------------------------|-------------------------|---------------------------|
|               | TEMP                   | 60.0°C                     | CELL: A                       | STIRR                           | ER SPEED: 500                                                     | RoPoMo                  |                           |
|               | SEED                   | BATCH A                    | PREPARED                      | SIEVE                           | FRACTION:44-5                                                     | i3µ                     |                           |
| CONCN.<br>M/V | TOTAL<br>TIME<br>MINS. | CRYSTAL<br>MASS<br>(GRAMS) | D IAMETER<br>!NCREASE<br>(CM) | MEAN<br>AREA<br>CM <sup>2</sup> | GROWTH RATE<br>CONSTANT<br>K(MIN <sup>-I</sup> CM <sup>-2</sup> ) | MEAN<br>SUPER-<br>SATN: | GROWTH<br>RATE<br>CM/MIN. |
| 23.845        | ÷00000                 | 2.000                      | .0002027                      | 3275-6                          | 1-1652@-06                                                        | -1884                   | 1-126@-05                 |
| 23:716        | 9:0000                 | 2.390                      | 0001680                       | 4022-6                          | 1-2737@-07                                                        | -1819                   | 1,183@-06                 |
| 23.583        | 80,000                 | 2:789                      | .000128)                      | 1762.1                          | 1.55150-07                                                        | .1752                   | 1.2810-06                 |
| 23:454        | 130,00                 | 3-178                      | .0001304                      | +102.1                          | 1.070-0.07                                                        | •1())                   |                           |
| 23:324        | 195.00                 | 3.566                      | .0001201                      | 54 15-1                         | 1.0705@-07                                                        | :1000                   | 9.2400-07                 |
| 23.194        | 240.00                 | 3-954                      | :0001065                      | 6165-6                          | 1:4395@-07                                                        | -1624                   | 1-183@-06                 |
| 23-064        | 300-00                 | 4-341                      | :0000959                      | 6833-2                          | 1.0152@-07                                                        | -1559                   | 7-990@-07                 |
| 22.802        | )100.00                | 5, 122                     | .0001698                      | 7796-1                          | 1.1533@07                                                         | -1461                   | 8.4900-07                 |
| 22,002        | 400.00                 | 20126                      | .0006098                      | 11270                           | 5-6616@-08                                                        | :1057                   | 2-932@-07                 |
| 21-448        | 1440.0                 | 9=131                      | -0000407                      | 14329                           | 1.0074@-07                                                        | -0689                   | 3-396@-07                 |
| 21.329        | 1500.0                 | 9-476                      | +0000395                      | 14768                           | 2-1415@-08                                                        | .0629                   | 6-579@-08                 |
| 21.209        | 1800-0                 | 9.821                      |                               |                                 |                                                                   |                         |                           |

EQUILIBRIUM CONCENTRATION = 20,010

INITIAL SEED AREA = 2907

- 371 -

|               | <b>TABLE :</b> 156     |                            |                              |                                 | A.2                                                             |                         |                           |
|---------------|------------------------|----------------------------|------------------------------|---------------------------------|-----------------------------------------------------------------|-------------------------|---------------------------|
|               | TEMP                   | 70.0°C                     | CELL:A                       | STIRRER SPEED: 500 R.P.M.       |                                                                 |                         |                           |
|               | SEED                   | BATCH A                    | PREPARED                     | SIEVE                           | FRACTION: 44                                                    | -53 ju                  |                           |
| CONCN.<br>M/V | TOTAL<br>TIME<br>MINS: | CRYSTAL<br>MASS<br>(GRAMS) | DIAMETER<br>INCREASE<br>(CM) | MEAN<br>AREA<br>CM <sup>2</sup> | GROWTH RATE<br>CONSTANT<br>K(MIN <sup>1</sup> CM <sup>2</sup> ) | MEAN<br>SUPER-<br>SATN. | GROWTH<br>RATE<br>CM/MIN. |
| 29-424        | .00000                 | 2.000                      |                              | 2000 )                          |                                                                 |                         |                           |
| 29.294        | 5.0000                 | 2.414                      | :0002137                     | 3290:4                          | 2.0000-00                                                       | :1159                   | 2.13 10-05                |
| 29-163        | 14.000                 | 2.828                      | :0001719                     | 4082.2                          | 1=2203@-06                                                      | •1109                   | 9:548@-06                 |
| 29.032        | 25-000                 | 3.240                      | :0001440                     | 4857-3                          | 8.7898@07                                                       | .1060                   | 6-545@-06                 |
| 28-898        | 37:000                 | 3-661                      | :0001269                     | 5617.3                          | 7-4742@-07                                                      | .1009                   | 5:286@-06                 |
| 28.778        | 216.000                | 1.027                      | .0001007                     | 6321-5                          | 8-3348@-07                                                      | .0961                   | 5.597@-06                 |
| 20.110        | 40.000                 | 1 2007                     | -0000913                     | 6965.0                          | 5-1077@-07                                                      | •0916                   | 3-261@-06                 |
| 20,050        | 60,000                 | 4.413                      | -0001611                     | 7888.4                          | 9-1115@-07                                                      | ,0847                   | 5.369@-06                 |
| 28.418        | 75:000                 | 5-163                      | .0000720                     | 8785-9                          | 6-0682@-07                                                      | .0779                   | 3-271@-06                 |
| 28.298        | 86.000                 | 5-536                      | -000674                      | 9360-3                          | 6-6592@-07                                                      | -0733                   | 3-3720-06                 |
| 28-178        | 96:000                 | 5.909                      | .0000625                     | 0000 7                          | 0.01170.07                                                      | ·· []]                  | 1.0050                    |
| 28.058        | 125:00                 | 6.281                      | :0000035                     | 9920:1                          | 2:311/0=0/                                                      | 1000                    | 1.0990-00                 |
| 27:915        | 158.00                 | 6:722                      | - 0000709                    | 10518                           | 2.4526@-07                                                      | .0637                   | 1.075@-06                 |
| 27.712        | 195-00                 | 7:162                      | .0000668                     | 11151                           | 2.2568@-07                                                      | • 0583                  | 9-023@-07                 |
| 27-487        | 300-00                 | 8-041                      | .0001232                     | 12068                           | 1.7151@-07                                                      | :0502                   | 5:868@-07                 |
| 27 2)1)       | 250.00                 | 8 11-79                    | :0000571                     | 12964                           | 1-9980@-07                                                      | :0420                   | 5:709@-07                 |
| 2/0344        | 350.00                 | 0.4 10                     | :0002781                     | 14789                           | 1.1249@-07                                                      | .0242                   | 1.5800-07                 |
| 26:549        | 1230.0                 | 10,90                      | .0000398                     | 16555                           | 1.4256@-07                                                      | -0066                   | 6:029@-08                 |
| 26:419        | 1560.0                 | 11.29                      |                              |                                 |                                                                 |                         |                           |

EQUILIBRIUM CONCENTRATION = 26.310

INITIAL SEED AREA = 2907

- 372 -

|                | TABLE: 157             |                            |                              |                                 | .3                                    |                         |                           |
|----------------|------------------------|----------------------------|------------------------------|---------------------------------|---------------------------------------|-------------------------|---------------------------|
|                | TEMP                   | 55.0°C                     | CELL: A                      | STIRR                           |                                       |                         |                           |
|                | SEED                   | BATCH A                    | PREPARED                     | SIEVE                           | FRACTION: 44                          | -53 ju                  |                           |
| CONCN.<br>%M/V | TOTAL<br>TIME<br>MINS. | CRYSTAL<br>MASS<br>(GRAMS) | DIAMETER<br>INCREASE<br>(CM) | MEAN<br>AREA<br>CM <sup>2</sup> | GROWTH RATE<br>CONSTANT<br>K(MIN CM-) | MEAN<br>SUPER-<br>SATN. | GROWTH<br>RATE<br>CM/MIN. |
| 21-358         | .00000                 | 2.000                      |                              | 2277.2                          | 1.01080.06                            | 2221                    | 1 01 70 00                |
| 21:225         | 10,000                 | 2.392                      | .0002055                     | 541105                          | 1:0100=00                             | \$6361                  | 1:01/0=05                 |
| 21-104         | 25.000                 | 2:750                      | .0001523                     | 3988.1                          | 5-2341@07                             | .2247                   | 5.076@-06                 |
| 20-085         | 110.00                 | 2000                       | .0001271                     | 4655.0                          | 7-9790@08                             | .2178                   | 7.476@-07                 |
| 20.90)         |                        | 5.099                      | .0001139                     | 5305-9                          | 4-3416@08                             | -2108                   | 3-928@-07                 |
| 20:003         | 255:00                 | 3450                       | .0005511                     | 7632.7                          | 4.0719@-08                            | -1831                   | 3-223@-07                 |
| 20.027         | 1110-0                 | 5=903                      | 0000629                      | 9909-1                          | 1-00/120-08                           | -1552                   | 2.6220-07                 |
| 19:900         | 1230.0                 | 6.272                      |                              | , ), o), , ,                    | 1.00130-00                            | 2((1.                   | 2.0238-01                 |
| 19.772         | 1470.0                 | 6.640                      | :0000596                     | 10451                           | 1-9940@08                             | •1478                   | 1.241@-07                 |
| 19-138         | 2550.0                 | 8-461                      | -0002579                     | 11977                           | 2.2701@-08                            | -1258                   | 1.194@-07                 |
| 10 016         |                        | 0.000                      | .0000437                     | 13463                           | 2.1093@-08                            | .1039                   | 9-110-08                  |
| 19-016         | 2/90.0                 | 0.009                      | .0000422                     | 13916                           | 1.7526@-08                            | .0969                   | 7-038@-08                 |
| 18.893         | 3090.0                 | 9-156                      |                              |                                 |                                       |                         | 1                         |

EQUILIBRIUM CONCENTRATION = 17:281

INITIAL SEED AREA = 2907

|                |                        | TABLE :                    | 158                          |                                 | RUN NO. R.I                                                       |                         |                           |
|----------------|------------------------|----------------------------|------------------------------|---------------------------------|-------------------------------------------------------------------|-------------------------|---------------------------|
|                | TEMP                   | :60.0°c                    | CELL:A                       | STIRR                           | ER SPEED:500                                                      |                         |                           |
|                | SEED                   | BATCH B                    | .A. PREPARE                  | D SIEVE                         | FRACTION:44-                                                      | -53µ                    |                           |
| CONCN:<br>%M/V | TOTAL<br>TIME<br>MINS: | CRYSTAL<br>MASS<br>(GRAMS) | DIAMETER<br>INCREASE<br>(CM) | MEAN<br>AREA<br>CM <sup>2</sup> | GROWTH RATE<br>CONSTANT<br>K(MIN <sup>-1</sup> CM <sup>-2</sup> ) | MEAN<br>SUPER-<br>SATN- | GROWTH<br>RATE<br>CM/MIN: |
| 21-021         | 00000                  | 2.000                      |                              | 0000 0                          | 1 00000 0                                                         |                         | a jio a O oue             |
| 23.887         | 7:0000                 | 2:404                      | :0002000                     | 3200-0                          | 1-0922@=06                                                        | :2055                   | 1-491@-05                 |
| 23-750         | 26-000                 | 2-815                      | •0001717                     | 4065-9                          | 3-4115@-07                                                        | -2782                   | 4.519@-06                 |
|                | 1)10,00                | 2 017                      | 0001413                      | 4817.6                          | 4-82220-08                                                        | -2710                   | 6-199@-07                 |
| 23:010         | 140.00                 | 3:211                      | -0002320                     | 5867.7                          | 3.7609@-07                                                        | -2602                   | 4=6400=06                 |
| 23-349         | 165-00                 | 4=019                      | 0001882                      | 7190-3                          | 3-24840-07                                                        | -2450                   | 37630-06                  |
| 23:082         | 190,00                 | 4-817                      |                              | 11,000                          | 5.21010-01                                                        | 627)9                   | 5.1030-00                 |
| 22:419         | 270.00                 | 6.787                      | ;0003618                     | 9254.1                          | 2.1797@-07                                                        | :2209                   | 2-261@-06                 |
| EQUILIBR       | IUM CONC               | ENTRATIO                   | N = 18.63                    | )]                              | INITIAL                                                           | SEED ARE                | A = 2898                  |

|               |                        | TABLE                      | 159                          |                                 | RUN NO. R.I                                        |               |                           |
|---------------|------------------------|----------------------------|------------------------------|---------------------------------|----------------------------------------------------|---------------|---------------------------|
|               | TEMP                   | :50.0°c                    | CELL :A                      | STIRR                           | RER SPEED :500                                     | R.P.M.        |                           |
|               | SEED                   | BATCH F                    | .A. PREPARE                  | D SIEVE                         | FRACTION:44-                                       | 53µ           |                           |
| CONCN.<br>M/V | TOTAL<br>TIME<br>MINS. | CRYSTAL<br>MASS<br>(GRAMS) | DIAMETER<br>INCREASE<br>(CM) | MEAN<br>AREA<br>CM <sup>2</sup> | GROWTH RATE<br>CONSTANT<br>K(MIN'CM <sup>2</sup> ) | MEAN<br>SUPER | GROWTH<br>RATE<br>CM/MIN: |
| 18.151        | .00000                 | 2-000                      | 0001707                      | 2008 2                          |                                                    |               |                           |
| 18.032        | 25.000                 | 2.342                      |                              | 3220-3                          | 3:1020-01                                          | .2016         | 3-593@-0                  |
| 17-013        | 60-000                 | 2.683                      | :0001489                     | 3882-7                          | 2-2694@-07                                         | :2732         | 2.128@-06                 |
| 110115        |                        | 2.0005                     | .0001276                     | 4520-1                          | 1-1739@-07                                         | -2648         | 1-064@-06                 |
| 17=794        | 120,00                 | 3:023                      | 0001096                      | 5129-5                          | 3-4772@-08                                         | 2564          | 3-046@-07                 |
| 17.678        | 300.00                 | 3::355                     |                              | )                               | 7                                                  |               | 7.0100 01                 |
| EQUILIBR      | IUM CONC               | ENTRATIO                   | N == 14-11                   | 6                               | INITIAL                                            | SEED ARE      | A = 2898                  |

|                                     |                        | TABLE                      | 160                          |                                      |                                                                  |                           |                                                      |
|-------------------------------------|------------------------|----------------------------|------------------------------|--------------------------------------|------------------------------------------------------------------|---------------------------|------------------------------------------------------|
|                                     | TEMP                   | :70.0°C                    | CELL:A                       | STIRR                                |                                                                  |                           |                                                      |
|                                     | SEED                   | BATCH I                    | A. PREPARE                   | D SIEVE                              | FRACTION:44-                                                     | 53 m                      |                                                      |
| CONCN-<br>%M/V                      | TOTAL<br>TIME<br>MINS: | CRYSTAL<br>MASS<br>(GRAMS) | DIAMETER<br>INCREASE<br>(CM) | MEAN<br>AREA<br>CM <sup>2</sup>      | GROWTH RATE<br>CONSTANT<br>K(MIN <sup>*</sup> CM <sup>2*</sup> ) | MEAN<br>SUPER             | GROWTH<br>RATE<br>CM/MIN;                            |
| 28.848                              | ,00000                 | 2.000                      |                              | 000/ 1                               |                                                                  | 1 Co co co co co co co co | a first distance and this net gas are use and so set |
| 28:721                              | 3:0000                 | 2.402                      | .0002019                     | 3206.1                               | 3-2231@-06                                                       | -1620                     | 3-464@-05                                            |
| 28.466                              | 95:000                 | 3-204                      | 0003094                      | 4415-9                               | 1-6426@-07                                                       | = 1543                    | 1-682@-06                                            |
| 28,178                              | 115-00                 | 4-103                      | 0002580                      | 5924-6                               | 6-8366@~07                                                       | -1434                     | 6.451@-06                                            |
| 27:435                              | 150,00                 | 6-418                      | -0004686                     | 8432.4                               | 8-3412@-07                                                       | -1226                     | 6.695@-06                                            |
| 27-205                              | 16200                  | 6.8)16                     | :0000691                     | 10467                                | 3-94300-07                                                       | •1047                     | 2.658@-06                                            |
| 2 (02))                             | 103.00                 | 0.070                      | -0000653                     | 11049                                | 4-2754@-07                                                       | -0991                     | 2-721@-06                                            |
| 2/= 150                             | 1 15:00                | 102/2                      | -0001198                     | 11886                                | 4.1259@-07                                                       | -0908                     | 2-396@-06                                            |
| 26-881                              | 200.00                 | 8.113                      | .0000563                     | 12704                                | 3.5775@-07                                                       | :0824                     | 1-878@-06                                            |
| 26:742                              | 215.00                 | 8.537                      | 0000494                      | 13213                                | 3-3659@-07                                                       | 0770                      | 1-6480-06                                            |
| 26.615                              | 230,00                 | 8-923                      |                              | 1)1276                               | -78720-07                                                        | :0()12                    | 1 1070 0                                             |
| 26:109                              | 310.00                 | 10.45                      | .0001003                     | 14310                                | 2: 10 [3@=0]                                                     |                           | 1.12/0-00                                            |
| 25.982                              | 325:00                 | 10.84                      | -0000416                     | 15519                                | 4-2877@-07                                                       | •0515                     | 1.366@-06                                            |
| 25-858                              | 375-00                 | 11-21                      | .0000394                     | 15954                                | 1-3557@-07                                                       | •0464                     | 3-942@-07                                            |
| 25-716                              | 425-00                 | 11-63                      | 0000437                      | 16408                                | 1-7046@-07                                                       | -0410                     | 4-370@-07                                            |
| 25.580                              | 480.00                 | 12.04                      | 0000405                      | 16875                                | 1.6729@-07                                                       | -0354                     | 3-6920-07                                            |
| - One clas Mile carp chap ship sage | naus in an in an an    |                            |                              | It ges his tore ore can are fille or | al 410 mah wata aya dini bini yan ma any ang mg tang t           |                           | And she do no an con set on an an see for on         |

EQUILIBRIUM CONCENTRATION = 24.771 INITIAL SEED AREA = 2898

APPENDIX F - IMPURITY EXTRACTION WITH MOLECULAR SIEVE

## APPENDIX F

## Impurity extraction with Molecular Sieve (Type 13X)

#### Extraction Procedure:

l litre of 10.00% mass fraction purified Batoh G (P.G.) solution was made up and held at  $40^{\circ}$ C in a flask, heated with an isomantle, controlled with a voltage regulator. 10.00g of molecular sieve (type 13X) 1/16%n pellets were added and stirred for 2 hours. The solution was filtered through a No. 1. Whatman paper and a sample of the wet sieve weighed, dried at 100°C, reweighed and then calcined in an open muffle furnace maintained between 700°C and 900°C for 3 days. The resulting sieve was again weighed enabling the amount of vaporised material to be calculated. The solution was filtered through a 0.45 $\mu$  millepore filter to remove attrited sieve and placed in the flask at 40°C for the second extraction.

## Example Calculation: 1st Extraction

#### Readings:

- 1) Weight of empty, dry crucible = 26.0189g.
- 2) Weight of orucible + wet sieve = 38.4380g.
- 3) Weight of orucible + dry sieve = 34.38 52g.
- 4) Weight of crucible .\* calcined

sieve = 32.5320g. after 3 days heating = 32.5324g. after 6 days heating Blank Test on Dry Molecular sieve

|          | Loss of weight per 10.000g. sieve |
|----------|-----------------------------------|
| lst Test | 0.690g.                           |
| 2nd Test | 0.680g.                           |
| 3rd Test | 0.672g.                           |
| Average: | 0.682g./ 10.000g.sieve            |

#### Calculation:

Weight of water in sieve sample = Weight (2) - Weight (3) = 4.0528g. 10.0% P.E. mass fraction in solution = 11.1% mass ratio . Weight of attached P.E. in sieve from dried mother liquor  $= 4.0528 \times 0.111 = 0.4499g$ Total Weight of vapourised adsorbent = Weight (3) - Weight (4) = 1.8532g.Weight of dry sieve sample = (Weight(4) - Weight(1)) + 0.682(Wt.(4)-W\*(1)) = 6.9571g.Weight of adsorbed contamir@nt = 1.8532-0.4499-0.0682x6.9571 = 0.9285g.Extract = 0.9285 x 10.00 6.9571

= 1.33g./10.00g sieve ie per 100.0gP.G.

## Summary of Results

| Sample |            |      |          |       | Extract (g / 100 g. solute) |      |
|--------|------------|------|----------|-------|-----------------------------|------|
| lst    | Extraction | of   | Purified | Batch | Ģ.                          | 1.33 |
| 2nd    | u          | 11   | 11       | n     | 11                          | 1.15 |
| 3rd    | n          | 11   | n        | 11    | 11                          | 1.11 |
| 4th    | n          | 11   | n        | u     | 11                          | 1.13 |
| 5th    | u          | 11   | "        | 11    | 11                          | 1.11 |
| 6th    | u          | 19   | H        | u     | 11                          | 1.13 |
| lst    | Extraction | of   | Purified | Batch | D                           | 1.11 |
| 2nd    | u          | 11   | u        | 11    | ===                         | 1.12 |
|        | Extraction | of 1 | Batch E  |       |                             | 1.09 |

It is apperent from the results that a datum exists at about 1.11g. extract / 100g. solute even for P.D. with little or no expected contaminant. As the growth studies showed no effect of molecular sieve extraction on purified Batch D, this is assumed to be an absorption of Pentaerythritol molecules in the sieve. The disappointing scatter of results about this datum of 1.11g. / 100g. solute is attributed to the difficulty of weighing a wet sample in an eveporating crucible with any acouracy.

The contaminant extractions are assumed to be above this datum for P.G. material and indicate 0.22g. contaminant / 100g. P.G. removed

with the first extraction, 0.04g contaminant / 100g P.G. removed with the second extraction but an immeasurable effect with each successive extraction. This indicates a total of about 0.26g. contaminant per 100g. P.G. extracted.

# Estimation of remaining contaminant after 6 successive extractions of P.G.

Assume a partition coefficient (K') exists of the contaminant with  $x_{w}$  mass fraction in solution and  $x_{s}$  mass fraction in the molecular sieve  $K' = \frac{X}{W}$ such that:

If the mass of solution is W, the mass of molecular sieve S', and the ratio S' = V

Then on the 1st extraction  $W_{x_{W_0}} = W_{x_{W_1}} + S_{x_{S_1}}$ where Wx wo is the original mass of contaminant.

. Contaminant left in solution, Wxw = Wxwo  $(1 + \frac{1}{2})$  $W_{\mathbf{X}_{W_1}} = W_{\mathbf{X}_{W_2}} + S' \mathbf{x}_{S_2} \dots \dots (2)$ On 2nd extraction  $= W_{X_{W_{2}}} + \frac{S'_{X_{W_{2}}}}{K'_{W_{2}}}$  $= \operatorname{Wix}_{W_2}(1 + \frac{x}{V_1})$ . Contaminant left in solution,  $W_{X_{W_2}} = \frac{W_{X_{W_1}}}{(1+\frac{W}{K_1})} = \frac{W_{X_{W_0}}}{(1+\frac{W}{K_1})^2}$ 

Wxwn  $(1 + \frac{y}{K^{t}})^{n}$ From (1)  $x_{W_1} = \frac{W_{X_{W_0}} - S^{t} x_{S_{t}}}{W_{W_0} - S^{t} x_{S_{t}}} = x_{W_0} - Y_{X_{S_{t}}}$  $K_{1}^{i} = \frac{x_{W_{1}}}{x_{S_{1}}} = \frac{x_{W_{0}}}{x_{S_{1}}} - \frac{x_$ From (2)  $x_{w_2} = Wx_{w_1} - S'x_{s_2} = x_{w_1} - Yx_{s_2}$  $K_2' = \underline{x_{W_2}} = \underline{x_{W_1}}$ ••• xs2 xs2  $x_{W_{i}} = \frac{x_{W_{0}}}{\binom{1+\frac{N}{2}}{K^{i}}}$ but  $K_{2}^{1} = \frac{x_{WO}}{x_{S2}(1+\frac{3}{K})} - \frac{3}{K^{1}}$ (5) . .

Hence, Contaminant left in solution after 'n' extractions:

For each extraction S = 10.0g and W = 1000gContaminant 1st extraction = 0.22g / 100g P.G. / 10g sieve  $x_{S_1} = 0.22$ Contaminant 2nd extraction = 0.04g / 100g P.G. / 10g sieve  $x_{S_2} = 0.004$ 

Now 
$$W_{K_{WO}} = S_{XS_1} + S_{XS_2} + S_{XS_3} + \cdots$$
  
 $X_{WO} = \frac{S}{W} (0.022 + 0.004)$   
 $= 0.00026$   
 $Y = \frac{S}{W} = 0.01$   
 $K^{I} = \frac{0.00026}{0.022} - 0.01$  .....from (4)  
 $= 0.0118 - 0.01$   
 $= 0.0018$   
 $K^{I} = \frac{0.00026}{0.004} - 0.01$  .....from (5)  
 $2 = 0.0093 - 0.01$ 

This gives a negative K' which is impossible, however if  $x_{s_2}$  is taken 2 to be 0.003, which is within experimental error.

> Then K' = 0.00025 - 0.012 0.003(1 + 0.01)= 0.0127 - 0.01= 0.0027

However K' should equal K', and K' is of the expected order with the 2 2 accuracy of this experiment and the value of 0.00018 will be used in thecalculations. Hence in (3):

After 6 extractions  $x_{W_6} = \frac{0.00026}{(1 + 0.01)6} 6$ 

= 0.00026

79000

= 0.0000000329 g / g solution

. . Contaminant in P.G. = 0.000000329 g / g P.G.

or

0.0329 p.p.m. P.G. after 6 successive extractions.

# - 383 -

## NOMENCLATURE

| SYMBOL  | MEANING                                                                                                                                     | UNITS                   |
|---------|---------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| A       | Total surface area of crystals.                                                                                                             | cm <sup>2</sup>         |
| Ā       | Mean surface area of crystals over a time interval.                                                                                         | om <sup>2</sup>         |
| Ar      | Arrhenius equation constant.                                                                                                                |                         |
| Ac      | The Coulter Counter orifice area normal to the flow axis.                                                                                   | om <sup>2</sup>         |
| a       | The projected area, parallel to the orifice axis,<br>of the particle as it is orientated in passing<br>through the Coulter Counter orifice. | cm <sup>2</sup>         |
| ap      | The surface area of a crystal.                                                                                                              | cm <sup>2</sup>         |
| a'      | Molecular spacing of the adsorbed layer on the crystal surface.                                                                             |                         |
| В       | Calibration constant in $c = F + B.S. + G.S.^2$<br>or Constant $\Rightarrow 2$                                                              |                         |
| ъ       | Index in equation $g = k s^{b}$                                                                                                             |                         |
| C       | A general constant.                                                                                                                         |                         |
| a       | Concentration % Mass/Volume (fraction) ( = $m/v$ ).                                                                                         | g/(100cm) <sup>3</sup>  |
| 0.00    | Concentration % Mass/Volume (fraction) at                                                                                                   | 'g/(100cm) <sup>3</sup> |
| Ac<br>D | c = c - c.o.<br>Equivalent Spherical Diameter of Crystal.                                                                                   | micron or cm            |
| D:      | The Coulter Counter orifice diameter                                                                                                        | mioron                  |
| Do      | Indicated Coulter Counter Equivalent spherical diameter.                                                                                    | micron                  |
| DT      | Diffusion coefficient.                                                                                                                      | om <sup>2</sup> /s      |
| Dm      | Molar Diffusivity.                                                                                                                          | mole/cm.s               |
| đ       | Distance between layers of a double layer condenser                                                                                         |                         |

### SYMBOL

#### MEANING

## UNITS

E Activation energy for growth.

e Crystalliser bed voidage.

e' Apparent expansion of Hg in glass = 0.000156

F Calibration constant in  $c = F + B.S. + G.S.^2$ or Constant =  $v_{a}$ 

# V. 3 0.707A 2

Fe Coulter Counter Scale expansion factor.

G Calibration constant in  $c = F + B.S. + G.S.^2$ 

- $\triangle G$  Excess free energy between a particle and the solute in solution.
- $\Delta G^{\mathbb{M}}$  Free energy of formation of a nucleus of the critical size  $r^{\mathbb{M}}$
- $\Delta G^{\mathbb{H}^{I}}$  Free energy of formation of the critical nucleus for heterogeneous nucleation.

 $\Delta G_{\mathbf{A}}$  Free energy of activation of diffusion.

- $\Delta G_S$  Surface excess free energy between the surface of the particle and the bulk of the particle.
- $\Delta G_V$  Excess free energy per unit volume between a very large particle and the solute in solution.
- g Crystal growth velocity  $(= \frac{dr}{dt})$
- H Initial orystal seed mass.
- H' Heat of adsorption
- h The side of a particle element, (Coulter Counter Theory)
- I Integer counter for the time dimension (in Computer Program 2).

I The Coulter Counter aperture current setting.

g

cm/min

cm

Koal/g mol

# SYMBOL

# MEANING

## UNITS

| I <sub>C</sub> <sup>M</sup> | The Coulter Counter aperture current setting used in calibration.                        |                                   |
|-----------------------------|------------------------------------------------------------------------------------------|-----------------------------------|
| J                           | Integer Counter for size distribution dimension.<br>in Computer Programs 1 and 2.        |                                   |
| 1,                          | Growth flux.                                                                             | mol/cm <sup>2</sup> s             |
| j                           | Rate of nucleation.                                                                      | 1/cm <sup>2</sup> s               |
| K                           | Growth rate constant in equation $\frac{dc}{dt} = -KA(o - c_{co})$                       | $1/cm_{min}^{2}$                  |
| K,                          | Contaminant Partition coefficient (= $x_w$ )                                             | -,                                |
| K                           | Average value of K.                                                                      | 1/cm <sup>2</sup> min             |
| K <sub>c</sub>              | The Coulter Counter calibration factor.                                                  |                                   |
| ĸa                          | Coefficient of Mass transfer by diffusion.                                               | ~                                 |
| KL                          | Growth rate constant (linear basis) where $\frac{dr}{dt} = K_L(0-0)$                     | cm/min(g/<br>100cm <sup>2</sup> ) |
| KM                          | Growth rate constant (mass basis)<br>where $\frac{dm}{dt} = -K_{M}^{A}(c - q_{2})$       | g/minom <sup>2</sup> (g/          |
| Kr                          | A rate constant for the surface integration step.                                        | TOOOTU )                          |
| kB                          | Boltzman constant = $1.3805 \times 10^{-16}$                                             | ergs/degK mol                     |
| k <sub>L</sub>              | Growth rate constant where $g = k_L^{s}$                                                 |                                   |
| L                           | Characteristic crystal dimension of the P.E. pyramid base.                               | om or<br>micron                   |
| L'                          | Length of emergent Hg column of thermometer expressed in degrees.                        |                                   |
| l                           | Half the particle length as it is orientated in the axis of the Coulter Counter orifice. | om                                |
| M                           | Crystal mass.                                                                            | g                                 |
| Mm                          | Mean mclecular weight of the solution.                                                   |                                   |
| m                           | Mass of solute in solution.                                                              | g                                 |

### SYMBOL

r

#### MEANING

UNITS

## Number of crystals of a particular size D. No. Number of time readings of Experimental Data. N The Coulter Counter corrected count. na The average of counts of a particular sample using n ' the Coulter Counter. n The average number of counts on the Coulter Counter, n ' of each sample. The Coulter Counter coincidence correction. n Refractive Index for mean sodium D Lines. nD Refractive Index for mean sodium D lines at neo equilibrium. Number of size readings of size distribution. P Pressure difference in a droplet. ΔP The Coulter Counter coincidence factor. P $Q = \frac{M(I + 1) - M(I)}{1.396 \times (\frac{11}{21})}$ Defined by:om<sup>3</sup> Q (Computer Program 2 ). The electric charge on a particle. q Defined by:- $R = \sum 3 x (No.) x D$ at any particular R time. cal/(g.mole) K Universal Gas constant. RI ohms The Coulter Counter aperture resistance. R The charge in the Coulter Counter aperture AR ohms resistance produced by the particle. Reynold's Number. Re om Equivalent spherical volume radius.

| C | VA | TD | 0  | Γ. |
|---|----|----|----|----|
| 5 | TT | D  | U. | ч  |

## MEANING

| U | NI                    | TS |
|---|-----------------------|----|
| - | and the second second |    |

| r <sub>c</sub>  | The resistance of the Coulter Counter aperture current switch in the position used.            | ohms                            |
|-----------------|------------------------------------------------------------------------------------------------|---------------------------------|
| S               | Refractometer scale used in calibration<br>(Equivalent to zeroed prism 1B + 1.20)              |                                 |
| SI              | Mass of Molecular Sieve.                                                                       | g                               |
| 8               | Supersaturation c - c                                                                          |                                 |
|                 | Ceo                                                                                            | 0                               |
| Т               | Absolute temperature.                                                                          | K                               |
| То              | Observed temperature                                                                           | °C                              |
| Ts              | Mean temperature of thermometer emergent stem.                                                 | oc                              |
| t               | Time                                                                                           | min                             |
| to              | The Coulter Counter relative particle volume $(=t_{c}'F_{c})$                                  |                                 |
| to!             | The Coulter Counter threshold level.                                                           |                                 |
| t <sup>M</sup>  | The Coulter Counter threshold value found for the monosized particles used in the calibration. |                                 |
| υ               | $\Sigma$ (No.) at any particular time.                                                         |                                 |
| u               | Relative crystal / solution velocity.                                                          |                                 |
| ut              | Terminal Falling Velocity.                                                                     | cm/s                            |
| V               | Volume of solvent.                                                                             | om <sup>3</sup>                 |
| Δı              | The Coulter Counter metering manometer volume. 1                                               | 0 <sup>-6</sup> am <sup>3</sup> |
| vo              | The voltage between the outer electrode of the Coulter                                         | Volto                           |
|                 | Counter and the earth, when immersed in the electrolyt                                         | 9.<br>VOI 65                    |
| .v <sub>m</sub> | Molar Volume of Solute.                                                                        | 7                               |
| v               | Total volume of Solution.                                                                      | om                              |
| Vo              | Indicated Coulter Counter Particle Volume.                                                     | cm <sup>2</sup>                 |
| v               | Volume of particle.                                                                            | am                              |

- 388 -

| C | KT. | m  | $\sim$ | T  |
|---|-----|----|--------|----|
| D | LI  | 15 | U      | 11 |
| - | -   | -  | -      | -  |

W

W

Х

x

xg

xw Y

Y

у

Уо

Z

z

zs

d

β β'

8

## MEANING

UNITS

| Mass of solution                                                                                                     | g               |
|----------------------------------------------------------------------------------------------------------------------|-----------------|
| Work required to form a droplet from its vapour.                                                                     |                 |
| % Mass Ratio.                                                                                                        | g/100g          |
| % Mass Fraction.                                                                                                     | g/100g          |
| Mass fraction of contaminant in sieve.                                                                               |                 |
| Mass fraction of contaminant in solution.                                                                            |                 |
| Defined by: $Y = \sum 3 \times (No.)D^2$ at any particular<br>time (Computer Program 2)                              | om <sup>2</sup> |
| Defined by:- $Y = \ln 1 + L$ in Computer Program 3                                                                   | om              |
| · l - L                                                                                                              |                 |
| Correction to be added to T to correct partially                                                                     | °C              |
| immersed thermometer.                                                                                                |                 |
| Distance apart of ledges on orystal surface.                                                                         |                 |
| Dummy integer (Computer Programs 1 and 2).                                                                           |                 |
| The height of the crystal pyramid apex above the projected side of an element.                                       |                 |
| Average diffusion distance of adsorbed molecules.                                                                    |                 |
| Background count of blank electrolyte.                                                                               |                 |
| Angle of contact between crystalline deposit and                                                                     |                 |
| a foreign solid surface.                                                                                             |                 |
| The factor by which G <sup>32</sup> for homogeneous nucleation<br>is greater than that for heterogeneous nucleation. |                 |
| A reflection coefficient.                                                                                            |                 |

Ratio of Molecular Sieve to Solution Masses (S')

| SYMBOL   | MEANING                                               | UNITS             |
|----------|-------------------------------------------------------|-------------------|
| 8        | Film thickness surrounding a crystal.                 | om.               |
| θ        | Area Shape Factor ( = $\frac{a_p}{\tau \Gamma L^2}$ ) |                   |
| μ        | Solution viscosity.                                   | Poise             |
| $\nabla$ | The energy of attachment of a molecule.               |                   |
| P        | Density.                                              | g/om <sup>3</sup> |
| Ps       | Density of Solute.                                    | g/cm <sup>3</sup> |
| Pw       | Density of Solvent.                                   | g/om <sup>3</sup> |
| 0        | Surface energy per unit area of crystal.              |                   |
| ø        | Volume shape factor ( $= \frac{6v_p}{11L^3}$ )        |                   |
| -TU      | Dielectric constant.                                  |                   |
| A        | The particle resistivity.                             | microhms/om       |

. The electrolyte resistivity used for the Coulter Counter.

microhms/cm<sup>3</sup>

## REFERENCES

| 1. ROGERS, J.F. M.Sc. Thesis University of Aston | in Birmingham (1967). |
|--------------------------------------------------|-----------------------|
|--------------------------------------------------|-----------------------|

2. OSTWALD, W., "Lehrbuck", Vol.II, Leipzig, Englemann, 1896 - 1902.

3. MIERS, H.A., J. Inst. Metals, 37, 331, 1927.

4. SPALDING, D.B., Chem. Eng. Sci. II, 183,225 (1959).

 FREUNDLICH, H. "Colloid and Capillary Chemistry", p.155, New York, Dutton & Co., 1922.

 KNAPP, L.F. The Solubility of small particles and the stability of Colloids, Trans. Faraday Soc., <u>17</u>, 457, (1922).

7. DUNDON, M.L., Surface Energy of Several Salts,

J. Amer. Chem. Soc., 45 2658, (1923).

8. ROLLER, J. Phys. Chem. 35, 1133, 1931.

9. VAN HOOK, A., and FRULLA, F., Ind. Eng. Chem., 44, 1305, No.6. (1952).

10. GIBBS, J.W., Collected Works, London: Longmans Green. 1928.

11. CORMIA, R.L., PRICE, F.P., TURNBULL, D.

J. Chem. Phys. 37, 1333 (1962).

12. BECKER, R., and DOERING, W. Ann. Physik, 24, 719, 1935.

13. VAN HOOK, A., "Crystallisation": Theory and Practice,

(New York: Rheinbold Publishing Corporation). 1961. 14. BECKER, R., Ann. Phys., 32, 128, (1938).

- 15. UHLMANN, D.R., and CHALMERS, B., The Energetics of Nucleation. Ind. Eng. Chem., 57, 9, 19 - 31, 1965.
- 16. MELIA, T.P., Crystal Nucleation from Aqueous Solutions. J. Appl. Chem. 15, 345, 1965.
- 17. VOLMER, M., Kinetik der Phasenbildung, Dresden, T. Steinkopff, 1939.
- PRECKSHOT, G.W., and BROWN, G.G., Ind. Eng. Chem. 44, No.6, p.1314, 1952.
- 19. TEIKES, M., Ybid. p.1308.
- 20. MULLIN, J.W., and RAVEN, K.D., Nature, 195, p.35, 1962.
- 21. MIERS, H.A., J. Oxford Junior Sci. Club (June 1911).
- 22. STRICKLAND-CONSTABLE, R. F. and MASON, R.E.A.,

Nature, London, 197, 897, 1963.

- 23. McCABE, W. L. Ind. Eng. Chem. 21, 30,112. (1929).
- 24. MELIA, T.P. and MOFFITT, W.P. I. & E.C. Fundamentals. Vol. 3, No.4, p.313, 1964.
- 25. TING, H.H., and McCABE, W.L. Ind. Eng. Chem. 26, 1201, (1934).

26. CAYEY, N.W., and ESTKIN, J. Ind. Eng. Chem. Fund.

6 (1), 13 - 20, (1967).

27. NOYES, A.A. and WHITNEY, W.R. J. Amer. Chem. Soc., 19,

930, (1897). Z. Phys. Chem., 23, 689, (1897).

- 28. NERNST, W., Z. Phys. Chem, 47, 52, (1904).
- 29. MIERS, H.A., Phil. Trans. A.202, 492, (1904).
- 30. MULLIN, J.W., Crystallisation, London: Butterworths. 1961.
- 31. BERTHOUD, A., J. Chim. Phys., 10, 624, (1912).
- 32. VALETON, J.J.P., Z.Kristallogr., 59, 135, 335, (1923); 60, 1(1924)

33. MARC, R., Uber die Kristallisation aus Wässerigen Lösungen,

Z. Phys. Chem., 61, 385 (1908); 67, 470 (1909).

34. BUCKLEY, H.E., Crystal Growth, London: Chapman & Hall, 1952.

35. CURIE, P. Bull. Soc. Franc Mineral, 8, 145-150 (1885).

36. VOLMER, M., Z. Physik, Chem., 102, 267-275, 1922.

37. BRANDES, H., Z. Physik, Chem., 126, 196-210, 1927.

38. BRAVAIS, A., Etudes Cristallographiques, Paris,

Gauthier Villars, 1866.

39. KOSSELL, W., in FALKENHAGEN, Quantentheorie und Chemie, Leipzig, 46pp, 1928.

- 40. STRANSKI, I.N., Z. Physik, Chem, 136, 259-278, 1928.
- 41. NEILSEN, A.E., Kinetics of Precipitation, Pergamon Press (1964)

42. BURTON, W.K., CABRERA, N., and FRANK, F.C.

Phil. Trans. Roy. Soc. A.243, 299 (1951).

43. FRANK, F.E., The Influence of Dislocations on Crystal Growth, Ref. 4, p.48.

44. STRICKLAND-CONSTABLE, R.F., Kinetics & Mechanism of Crystallisation, Academic Press, London & New York, (1968)

45. REICH, R., "Zur Kinetik des Kristallwachstums in Wässerigen Lösungen", Thesis, Göttingen (1965).

46. CHERNOV, A.A. Soviet Phys. Usp., 4, 116, (1961)

47. BRANSOM, S.H., BROWN, D.E., and WATTS, P.

The Effect of impelled speed on Growth Rates in a stirred vessel Crystalliser Symposium on Industrial Crystallisation, Inst. Chem. Eng. 1969.

48. CARTIER, R., PINDZOLA, D. and BRUINS, P.F. Ind.Eng.Chem. <u>51</u> 1409 (1959).

- 49. AMELINCKX, S., J. Chim. Phys., 47, 213 (1950).
- 50. MULLIN, J.W. and GARSIDE, J.

Trans. Inst. Chem. Eng. Vol.45, No.7, (1967)
51. DAVIES, C.W and JONES A.L. Trans. Faraday Soc. <u>51</u>, 812 (1955).
52. SCHIERHOLTZ., O.J. Canadian J. Chem. <u>36</u>, 1057, (1958).
53. McCABE, W.L., Crystallisation, in Chem. Eng. Handbook J.H. Perry (Ed.), <u>3rd</u> ed., New York, McGraw-Hill, 1950.
54. HOOKS, I.J. and KERZE, F., Nomograph for crystal size prediction, Chem. Metall., Eng. <u>53</u> (7) 140, (1946).
55. VAN HOOK, A., Kinetics of Crystallisation, "Principles of

- Sugar Technology", Vol. 2, P. Honig, 1959.
- 56. RUMFORD, F., and BAIN, J., Trans. Inst. Chem. Eng. Vol. 38, 1960.
- 57. McCABE, W.L., and STEPHENS, R.P. Chem. Eng. Prog., 47, No.4, pp.168. (1951).
- 58. HIXON, A.W., and KNOX, K.L. Ind.Eng.Chem. 43, 2144, (1951).
- 59. BRANSOM, S.H., Brit. Chem. Eng., December 1960.
- 60. BRANSOM, S.H., and PALMER, A.G.C., Brit. Chem. Eng.

9, No.10, 1964.

- 61. BENNETT, R.C., Chem. Eng. Prog., 58, No.9, 1962.
- 62. BENNETT, M.C. and FENTIMAN, Y.L. Growth Rate of Sucrose Crystals related to Krypton Surface area of Seeds. (in ref. 47).
- McCARTNEY, E.R., and ALEXANDER, A.E.J. Coll. Sci., 13,383(1958)
   BOTSARIS, and Co-Workers. Paper 12D,
   61st Nat. Meeting of Am. Chem. Eng., Houston, (1967).

- 65. BERLOW, E., BARTH, R.H., and SNOW, J.E., The Pentaerythritols, A.C.S. Monograph No.136, Rheinhold, New York, 1958.
- 66. VON GROIH, P., Chemische Krystallographie, Vol.3., 385, Leipzig, 1915.
- 67. BISHOP, A.C. Outline of Crystal Morphology. Hutchinson, (1967)
- 68. PORTER, M.W., and SPILLER, R.C. Barker Crustal Index, Heffer, (1951)
- 69. WYCKOFF, R.W.G., Crystal Structures, Vo.5, Interscience (1966).
- 70. NITTA, I. and WATANABE, T. Bull. Chem. Soc. Jap. 13, 28 (1938)
- 71. SALKIND, M., AHERN, H.F. and ALBERT, A.A. Ind. Eng. Chem., 50, No.8, 1106 - 14, 1958.
- 72. WIERSMA, D.S., HOYLE, R.E. and REMPIS, H., Anal. Chem. Vol. 34, No.12, 1533, (1962)
- 73. BARTH, R.H. and SNOW, J.E. U.S. Patent 2,464,430.
- 74. WALKER, J.F. "Formaldehyde", 3rd Ed., A.C.S. Monograph,

No.159, Reinhold.

- 75. COOKE, E.G. Paint Manufacture, 18, 125 (1948).
- 76. International Critical Tables, 5, 70.
- 77. BRADLEY, R.S. and COTSON, S., J. Chem. Soc. 1984 88, 1953.
- 78. NITTA, I., SEKI, S. and SUZUKI, K. Bull. Chem. Soc.

Vap. 2463 (1951)

- 79 BRIGHT and CARSON, I.C.I. Report: R1.5067, The Heats of Aqueous Solutions and Dilution of P.E. and Other Salts.
- WULER, J.A., WERNETT, E.A. (Trojan Powder Company),
   U.S. Patent (2,299,048), 1942.

- 81. SUCHANEC, R.R. An. Chem. 37, No.11, 1361, (1965)
- 82. WHETSTONE, J. Research 2, 194 (1949).
- 83. Coulter Counter Instruction Manual. COULTER ELECTRONICS LTD., Dunstable, Bedfordshire.
- 84. ALLEN, T. Particle Size Analysis p. 110, Soc. Amal. Chem. (London) 1966.
- 85. HENRICI, P. Elements of Numerical Analysis. Wiley & Sons Inc. New York. 1962.
- 86. EDMUNDSON, I.C. Nature 212, 1450, (1966).
- 87. MATTERN, BRACKETT and OLSEN. J. of Applied Physiology, Vol. 10, No.1 (1957). (Referred to in reference 83).
- 88. LINES, R.W. Private Communication Coulter Electronics Ltd. Dunstable. (1967)
- 89. DYSON, J. Nature 184, 1561, (1959).
- 90. MIDLAND SILICONES LTD., Private Communication. (1968).