by

John Frederick Rogers

942

A Thesis submitted to the University of Aston in Birmingham as a requixement for the Degree of Doctor of Philosophy.

Department of Chemical Engineering University of Aston in Birmingham

September, 1969.

SUMSARY

The growth rate of Pentaerythritol orystals in aqueous solution has been measured over the temperature range 30 to $75^{\circ} \mathrm{C}$ by following the decrease in solution concentration of stirred crystal suspensions by refxactometry. Measurements have also been made of the crystal mass increase in a fluidised bed for comparison at low relative crystal/ solution velocities.

Thro methods of crystal size analysis have been used : the Coulter Counter method and the image shear microscope method. The Coultex Counter theory has been corrected to allow for crystal shape and size, and the seed size distributions determined allowed for in the computation of crystal growth rateso

Commeroial material containing two major impurities Di-P.E. and a Formal, exhibited an unusual transient overlap effect in the equilibrius solubility determination. The solubility approached from dissolution first obtained a peak enhanced concentration before attaining equilibrium. The equilibrium relationship for purified materiel was found to be represented by :

$$
\log _{10} x=4.980-\frac{1242}{T}
$$

where $x=\%$ mass fraction and T is in ${ }^{\circ} \mathrm{K}$.
Growth rates (g), which ranged from about $10^{-8} \mathrm{~cm} / \mathrm{min}$ to 10^{-3} $\mathrm{cm} /$ ruin were correlated vith supersaturation (s) by the equation $g=k_{I} s^{b}$. It was found that b varied with the amount of impurity and temperature but had an average value of ca. 2. Values of k_{l} increased with temperature and the activation energy for commeroial material was
found to be about $30 \mathrm{kcal} /$ grol. It was conoluded that surface integration was the rate controlling process.

Heterogeneous particles were found to enhance growth rates bu't the absence of particles >0.45 micron resulted in brittle orystals. Although it was found that purification from Formal also enhanced the growth rate, the rate was very sensitive to traces ($<0_{0}$ l lppin level) of an unidentified third impuxity which could not be easily removed.

ACKNOWLEDGEMMENTS

The author would like to express his sincere thanks to the following: -

Dr. D.E. Creasy for his constant assistance and stimulating advice throughout the entire period of this research.

My wife for her invaluable help with the computational and clerical details.

The University of Aston for the use of its research facilities.

Professor G.V. Jeffreys for his interest and encouragement.

Mr.N. Roberts and the technical staff of the Chemical Engineering Department for their co-operation at all times.

British Petroleum Company Limited for financial assistance during the latter stages of this research.

Miss E. Powis for typing the thesis.

CONTENTS

PAGE
Section One - Introduotion -1
Section Two - Survey of Literatume on Crystallisation 3
2.1. Solubility 3
2.2. Nucleation , 8
2.2.1. Primary Nucleation 9
2.2.1.1. Homogeneous Nuoleation 9
2.2.1.2. Heterogeneous Nucleation 23
2.2.1.3. Induced Nuoleation 14
2.2.2. Secondaxy Nucleation 15
2.3. Cxystal Growth 17
2.3.1. Diffusion Theories 18
2.3.2. Surface Integration 20
2.3.3. Experimental Data 26
2.3.4. Impurities in Crystal Growth 35
2.3.4.1. Effect of Impurities 35
2.3.4.2. Equilibrium and non-equilibrium oapture of Impurities in Crysta]. Growth 37
Seotion Three - Previous Work done on Pentaerythritol 39
3.1. Crystal Struoture 39
3.2. Impurities 40
3.2.1. Nature of Impurities 40
3.2.2. Preparation of Formal 42
3.2.3. Purification of P.E. 44

PAGE

3.3. Physical Properties 44
3.4. Chemioal Analysis 47
3.4.1. Intr-duction 47
3.4.2. Ace tal Chromatographio Analysis 47
3.4.3. Formaldehyde Content 48
3.4.4. T.M.S. Chromatographio Analysis 51
3.5. Crystal Growth 51.
Section Four - Bench Soale Crystallisation Apparatus 55
4.1. Introduotion 55
4.2. Fluidised Bed Apparatus 56
4.2.1. Preliminary Design 56
4.2.2. Solution Concentration Decay 57
4.2.3. Modified Design 58
4.3. Repetitive Inversion Sedimentometer 59
4.4. Stirred Cells 61
4.4.1. Cell A 61
4.4.2. Cell C 62
4.4.3. Cell S 62
4.4.4. Cell G 63
4.5. Disoussion 64
Section Five - P.E. Equilibrium in Aqueous Solution 65
5.1. Previous Work 65
5.2. Refractometer Calibrations 68
PAGE
5.2.1. Reading Accuraoy 68
5.2.2. Calibration 69
5.2.3. Instrument Calibrations 72
5.3. Equilibrium Results 72
5.3.1. Impire P.E. 72
5.3.2. Pure P.E. 75
Section Six - Experimental and Computational Methods 78
6.1. Shape Factor 78
6.1.1. Measurements on Pure P.E. Crystals 78
6.1.2. Impure P.E. Crystals 79
6.1.3. Shape Factcrs 79
6.2. Size Analysis 82
6.2.1. The Coulter Counter Size Analyser 82
6.2.1.1. Desoription 82
6.2.1.2. Particle Size Effect 84
6.2́.1.3. Discussion 93
6.2.2. The Image Shear Microscope 95
6.3. Fluidised Bed Experiments 97
6.3.1. Preliminary Fluidisation Experiments 97
6.3.2. Fluidisation Experiments with Modified Apparatus 98
6.3.2.1. Prooedure 98
6.3.2.2. Analysis of Results 100
6.4. Stirred Cell Experiments 104
6.4.1. Introduction 104
6.4.2. Seeded Solutions 105
6.4.2.1. Seed 105
6.4.2.2. Procedure 107
6.4.2.3. Analysis of Results 109
Section Seven - Results 115
Experimental Legend 114
7.1. Growth Rates in a Fluidised Bed 115
7.1.1. Preliminary Experiments 115
7.1.2. Results with Modified Fluidised Bed Apparatus 116
Table 33 - Conditions of Previous Work Growth Experiments 119
Table 34 - Chronological Summaxy of Experiments in Seeded Cells 119
7.2. Seeded Solutions in Stirred Cells 127
7.2.1. Experimental Data 127
7.2.2. P.E. Materials 128
7.2.2.1. Batoh A 128
7.2.2.2. Batoh B 129
7.2.2.3. Batch C 130
7.2.2.4. Batoh D 131
7.2.2.5.1. Betch E 133
7.2.2.5.2. Filtered Batoh E 136
7.2.2.5.3. Purified Batoh E 137
7.2.2.5.4. Filtered Purified Batch E 140
7.2.2.6. Batch F 141
7.2.2.7.1. Purified Batoh G 142
7.2.2.7.2. Attempted Extraotions of Unknown 145
7.2.2.7.3. Attempted neutralisations of Unknown Impurity 148
7.2.2.8. Purified Batoh E + 1.0\% Di-P.E. 150
7.2.3. Enhancing effect of Heterogeneous Particles 151
7.2.3.1. Establishing the effeot 151
7.2.3.2. Absolute oleanliness of Cell C 154
7.2.4. Hydrodynamio Considerations 156
Section Eight - Discussion 160
8.1. Equilibrium in Aqueaus 160
8.2. Results of Previous Work on Crystal Growth 165
8.3. Crystal Growth 169
8.3.1. Relative Velocity Effect 169
8.3.2. Seeded Solutions in Stirred Cells 1.70
8.3.2.1. Experimental Testing of Mathematioal Model 170
8.3.2.2. Batches B, F and G 173
8.3.2.3. Batches C, D and E 174
8.3.2.4. Purified Batoh E 177
8.4. Suggestions for Future Work 180
Conclusions 183
Appendix A - Calibration and Equilibrium 187
Appendix B - Size Analysis 195
Appendix C - Referring to Section 6 222
Appendix D - Crystal Growth Rate Results 231
Appendix E - Analysis of Previous Work (1) 364
Appendix F - Impurity Extraction with Molecular Sieve 376
Nomencla ture 383
References 390

LTST OF TABLES

TABLE PAGE
1 P.E. Batch Chemical Analyses 187
2 Isothermal Correlations Batch D 188
3 Isothermal Correlations Pure P.E. 189
4 Refractometer Equivalence Table 190
5 Equilibrium and Maximum Values obtained for Impure P.E. from Dissolution 192
6 Equilibrium Results of Impure P.E. 193
7 Equilibrium Results of Pure P.E. 194
8 Coulter Counter Calibration 50μ tube 200
9 Coulter Counter Calibration 280μ tube 201
10 Coulter Counter Calibration 560μ tube 202
11 Coulter Counter 'F' Factors 50μ tube 203
12 Coulter Counter ' Ft Faotors 280μ tube 204
13 Coulter Counter 'F' Factors 560μ tube 205
14 Coulter Counter Data Chart Explanation 206
15 Coulter Counter Diameter Correction for 280 tube 207
16 Coulter Counter Diameter Correotion for 50 tube 208
17 Coulter Counter Diameter Correction for 560 tube 209
18 Comparison of Dispersing Teohniques for Coulter Counter 210
19 Example Coulter Counter Data Batch E , Sample I 211
20 Example Coulter Counter Data Batch E, Sample 2 212
21 Example Coulter Counter Data Batch E , Sample 3 213
22 Averaged Coulter Counter Batch E Sample Analyses 214
23 Size Analyses Comparison of Batch C Seed after attrition in Cells \triangle and C at Different Stirrer Speeds 215
24 Colleoted Size Analyses of Seed Materials attrited at $2000 \mathrm{r} . \mathrm{p} . \mathrm{m}$. in stirred Cell C
25 Colleoted Size Analyses of Seed Materials used in Fluidised Bed Experiments 218
26 Coulter Tounter Produot Size Analyses 219
27 Image Shear Size Analyses 220
28 Image Shear Product Size Analyses Batch E Seeded Growth Experiments at $60^{\circ} \mathrm{C}$ 221
29 Evaporation Interpolated Values 230
30 Experimental Legend 114
31 Preliminary Fluidised. Bed Results 231
32 Example Experimental Data Sheet Modified Fluidised Bed Results 232
33 Conditions of Previous Work Growth Experiments 119
34 Chronological Summaxy of Experiments in Seoded Cells 119
35 Example Expenimental Data for Stirred Cells 233
36 Qualitative Results of Seeded Solutions at $60^{\circ} \mathrm{C}$ 234
37 Qualitative Results of Seeded Solutions at $70^{\circ} \mathrm{C}$ 235
$38-148$ Growth Rate Results in Seeded Cells 236 363
149 Surmary of Previous Work (1) on Seeded Cells Stirred at 500 r.p.m. 364
150 Computed R.P.A.I with Previous Size Analysis D_{0} and Previous Equlibrium Value 368
151 Computed R. 1.5 with Previous Size Analysis D_{C} and Previous Equilibrium Value 368
152 R.P.A. 1 with Previous Size Analysis D_{c} but Correoted Equilibrium Value 369
153 R. 1.5 with Previous Size Analysis D_{o} but Corrected. Equilibrium Value 369
TABLE PAGE
254 370
155 371
156 372
157 Computed Previous Results with Vorrected Size 373
158 Analyses D and Equilibrium Values 374
159 374
160 375

LIST OF FIGURES

Figure
No.
Following Page
2.1. Phase Equilibrium Diagram 3
3.1. Von Groth's Crystal Morphology 39
3.2. Solubility and Nucleation of P.E. 45
3.3. Di - P.E./Pure P.E. Melting Sys tem 46
3.4. Formal/Pure P.E. Melting System 46
3.5. Fluidisation of P.E. Crystals in Water 47
3.6. Spekker Formaldehyde Calibration 49
3.7. Corrected Optical Densities of P.E. Solutions 50
3.8. Variation of Growth Rate Constants with Temperature 53
4.1. Preliminary Fluidised Bed Apparatus 56
4.2. Modified Fluidised Bed. Apparatus 58
4.3. Modified Fluidised Bed Apparatus 58
4.4. Repetitive Inversion Sedimentometer 60
4.5. Cell C 62
4.6. Cell S 62
4.7. Cell G 63
5.1. Temperature Correction for Partially Immersed 186 Thermometer
5.2. Refractometer Calibration. Impure P.E. 70
5.3. Refractometer Calibration. Pure P.E. 71
5.4. Attainment of Equilibrium of Impure P.E. 74 Solutions at $60^{\circ} \mathrm{C}$
Figure Following No. Page
5.5. Equilibrium Values of Impure P.E. at $60^{\circ} \mathrm{C}$ 75
5.6. P.E. Equilibrium in Aqueous Solution 75
5.7. Concentration Conversions 190
6.1. P.E. Crystal Morphology 78
6.2. "Pure" P.E. Crystal 79
6.3. The Coulter Counter Partiole Size Analyser 94
6.4. Evaporation Rates in Growth Cells 229
7.1. Results of Preliminary Fluidised Bed Experiments 115
7.2. Results of Modified Fluidised Bed Experiments 117
8.1. Batch A Growth Velocities 167
8.2. Purified Batch A Growth Velocities 167
8.3. Batch E Seed and Selected Products 170
8.4. R.E. 15 Seed and Product Size Analyses 171
8.5. R.P.E. 12 Seed and Product Size Anllyses 172
8.6. Batch D Growth Velocities $70^{\circ} \mathrm{C}$ 175
8.7. Batoh C Growth Velocities 176
8.8. Batch E Growth Velocities 176
8.9. Impure P.E. k_{\beth} vs $\frac{1}{T}$ 176
8.10 Purified Batch E Growth Velocities $70^{\circ} \mathrm{C}$ 177
8.11 Purified Batoh E Growth Velocities $50^{\circ} \mathrm{C}, 60^{\circ} \mathrm{C}$ 177 and $75^{\circ} \mathrm{C}$
8.12 Purified Batch E Grovth Velocities $40^{\circ} \mathrm{C}$ 178
8.13 Purified Batch E k_ vs $\frac{1}{\text { T }}$ 179

SECTION ONE

INTRODUCTION

Pentaerythritol, $\mathrm{C}\left(\mathrm{CH}_{2} \mathrm{OH}\right)_{4}$ sheferred to hereafter as P.E. for convenienoe) is a polyhydrio alcohol produced as a white orystalline compound by the reaction of acetaldehyde and formaldehyde in the presenoe of an alkaline condensing agent. First discovered in 1882 it was not manufaotured on a commeroial soale until the early 1930's when it was nsed for the production of the explosive PETN (pentaexythritol tetranitrate). It was used extensively fow this purpose during World War II, but its use has since grown rapidly in the manufacture of resins for surface ooatings.

Side reactions of ten occur in the manufacture of P.E. yielding a product containing up to about 2% of the ether, Di-Pentaerythritol, and about 4% of an unidentified complex formal derivative, labelled the 'Formal' hereafter, These impuxities are acceptable for the present market requirements, but are suspeot in causing crystallisation difficulties duxing manufacture. During the final production stages the P.E. process solution is cooled in a batch oxystalliser and this results in a P.E. product consisting of agglomerates of a few large orystals and a large number of small ones. The amount of this fine material is such (18 mass $\%<350$ mesh) that it is very "dusty" and unpleasant to handie. The object of the present study was to obtain the data necessary for the design of a crystalliser oapeble of produoing a dust free uniform sized produot。

The usual prooedure for the study of a orystallisation process is
to study the pure analar material, occasionally with the effeots of known additions of impurities. The nature of this projeot is such that it necessitates a reverse approach.

A number of batches of P.E. were obtained oontaining varying amounts of the impurities di-P.E. and Formal. In the earier work (I) on P.E. orystallisation it was suggested that the 'formal' inhibited crystal growth below about $67^{\circ} \mathrm{C}$. However no account was taken of the di-P.E. impurity, and it was realised that many parameters would have to be investigated before an understanding of the process to the extent of the evaluation of design oriteria could be achieved.

SURVEY OF IITEERATURE ON CRYSTALIISATION

2. 1. Solubility

The first requirement for the study of any crystallisation process is a knowledge of the phase equilibrium diagram. A typical example of the type of diagram obtained for the system pure solute dissolved in pure solvent is shown by the line IBDG, called the "solubility" curve, in Figure2.1. This curve defines the mass of solute which is in equilibrium with a given mass of solvent at various temperatures; the solvent is then said to be saturated with respect to the solute. For systems of more than one solute each must be studied individually.

A solution which contains more dissolved solute than that represented by tie saturation composition is termed "supersaturated". Ostwald (2) seems to have been the first to introduce the terms "Labile" and "Metastable" zones which refer to the supersaturated solutions in which homogeneous nucleation may, and may not occur respectively.

Miers (3) did considerable research on this subject by studying the refractive index of solutions. Although he realised that factors such as the rate of cooling had an effect on the limits of supersaturation, he believed that supersolubility was a real property of solutions and melts under ordinary conditions. The supersolubility curve is shown in Figure 2.1 by the broken line KCEP.

FIGURE 2.1.

CONTENTSED PHASE DIAGRAM.

TEMPERATURE.

For the purpose of illustration Figure2. Ifs considered as a "conserved property diagram" to a first approximation so that straight lines and the "lever-rule" may be used to show the effect of mixing solutions. This strictly requires that temperature is proportional to enthalpy per unit mass of mixture, and that the units of concentration are mass fraction (Spalding (4)).

If a solution in state A is cooled it remains undersaturated until temperature B is reached on the solubility curve. If further cooled it becomes supersaturated until temperature C on the supersolubility curve is reached; any further attempted cooling will produce spontaneous nucleation. The region between the solubility and supersolubility curves is the metastable supersaturated solution in which crystals (if present) are able to grow, but homogeneous nucleation does not normally occur. It is possible to produce supersaturation not only by cooling but also by evaporation or sometimes by the addition of another solute soluble in the solvent. The concentration then follows line A D E, Figure 2.1. The supersaturation curve is affected by many variables and is now considered to be a region of supersaturation rather than a definite curve, which is roughly parallel to the solubility curve.

Systems with appreciable increase of solubility with temperature are often crystallised industrially by means of a continuous cooling crystalliser. Two methods of adding the concentrated feed to a continuous cooling crystalliser are shown in Figure 2., 1. where the solution conditions entering and leaving the crystalliser bed are represented by points M and N respectively. The conventional method
is the feed addition to the mother liquor leaving the bed (point N) before entering the cooler (dashed line LM). Alternatively the feed may be added after the mother liquor has been cooled (point J) prior to the mixture entering the bed (point M). This latter method gives the shortest residence time for what is probably the highest supersaturation. For the successiful control of a continuous industrial crystalliser additional equipment is also needed for the removal (and redissolving) of fines generated in the system.

The phenomenon of supersolubility can be explained by the enhanced solubility of fine particles. Ostwald (2) found that if a solute was finely ground before dissolving in water, a solubility greater than the normal solubility was obtainable. He derived the equation which was later corrected by Freundlich (5) to the OstwaldFreundlich equation:

$$
\ln \frac{c_{r}}{c_{\infty}}=\frac{2 \sigma v_{m}}{R^{1} T_{r x}} \quad \ldots \ldots \ldots 2.1
$$

where c_{r} and c_{∞} are the solubilities of the spherical particles of radius r and ∞ respectively, σ is the surface energy of the solid particle in contact with the solution, V_{m} is the molar volume of solute, T is the absolute temperature and R^{\prime} is the gas constant. In the derivation of this equation it was assumed that the particles were spherical, the dissolved solid obeyed the gas laws, and that σ and V_{m} were independent of particle size. A number of workers have postulated corrections to the Ostwald-Freundlich equation; e.g. consideration of the energy contributions of edges and corners to
the total surface anergy; allowance for the degree of dissociation or ionisation of the dissolved solid; and the variation of surface energy with particle size. However the equations deduced all postulated a continual increase in solubility with reduction in particle size.

Knapp (6) showed that, if the opposing effect of the electric charge on the surface tension of a particle was considered, the particles being assumed to be isolated charged spheres and their charge independent of size, then the Ostwald-Freundlich equation was modified to:-

$$
\ell_{n} \frac{c_{r}}{c_{\infty}}=\frac{V_{m}}{R^{\prime} T}\left(\frac{2 \sigma}{r}-\frac{q^{2}}{8 I \Psi r^{4}}\right) \ldots \ldots \ldots \quad 2.2
$$

where q is the particle charge and ψ the dielectric constant of the medium in which they are dispersed. From 2.2 the solubility can be shown to have a maximum when

$$
r^{*}=\left(\frac{q^{2}}{4 I I \psi_{\sigma}}\right)^{\frac{1}{3}} \ldots \ldots \ldots \quad 2.3
$$

PARTICLE SIZE r
where r^{*} is the critical radius for maximum solubility c_{r}^{*}

However according to Helmholtz's theory there arises at the interface of disperse particles and the dispersion medium an electrical "double-layer". If then each particle is regarded as a double layer condenser, its electrical energy is given by

$$
\frac{q^{2} d}{2 \psi r(r+d)}
$$

where q is the electrical charge on each layer and d is the distance between the layers. If d is negligible compared with r this reduces to $\frac{q^{2} d}{}$ - The Ostwald-Freundlich equation then becomes:-

$$
\ell_{n} \frac{c_{r}}{c_{\infty}}=\frac{V_{m}}{R^{1} T}\left(\frac{2 \sigma}{r}-\frac{q^{2} d}{2 I \Psi r^{5}}\right) \ldots \ldots \quad 2.4
$$

and the solubility is then a maximum when:-

$$
r^{*}=\left(\frac{5 q^{2} d}{8 I I \psi \sigma}\right)^{\frac{1}{4}}
$$

Dundon (7) found appreciable increases in the solubilities of 0.2μ to 0.5μ diameter particles of $\mathrm{PbI}_{2}, \mathrm{Ag}_{2} \mathrm{Cr} \mathrm{O}_{4}, \mathrm{PbF}_{2}$, $\mathrm{SrSO}_{4}, \mathrm{BaSO}_{4}, \mathrm{CaF}_{2}$, and he found that the solubility rose to a maximum on decreasing the particle size further. Roller (8) studied the solubility of gypsum and found that the solubility rate was proportional to the specific area at sizes above 25μ, that between 25μ and 2.8μ the solubility rate increased more rapidly than the surface exposed and that below 2.8μ the solubility rate began to decrease again.

2.2. Nucleation.

Crystallisation is a two step process involving first nucleation and then the growth of the nucleus to macro size. Nucleation involves the activation of smaller unstable particles called embryos. An embryo formed in the metastable region is very small and will dissolve on account of the increased solution potential. As the degree of supersaturation is increased the size of the embryo which can be tolerated by the solution decreases to a critical size where the embryo becomes a nucleus possessing sufficient excess surface nnergy to form a new phase and growth begins.

Two types of nucleation are apparent, Primary nucleation and Secondary nucleation. Most Primary nucleation processes occur heterogeneously as it is extremely difficult if not impossible to avoid extraneous nuclei. Van Hook and Frulla (9) found that by carefully preparing samplas of 1 to $5 \mathrm{~cm}^{3}$ of sucrose solution the metastable limit was raised to a supersaturation of about $s=0.6$, where $s=c-c_{\infty} \quad$ at ordinary temperatures as compared with the previously accepted limit of 0.2 . The samples had to be prepared by careful dissolution followed by deactivation of latent nuclei by heating at temperatures at least $20^{\circ} \mathrm{C}$ above saturation, and sealing in closed tubes. They also averaged the observations of at least 50 droplets of solution and found that nucleation rate decreased to a limiting value of about one half the rate observed in the carefully prepared larger samples in the sealed tubes. These results seem to imply that this phenomenon is due to the diminished probability of smaller
samples containing foreign nuclei, indicating that heterogeneous nucleation probably occurs in most practical cases. The primary nuclei then grow in the supersaturated solution.

The growth of the primary nuclei in the supersaturated solution may be accompanied by the formation of fresh nuclei which is then termed secondary nucleation. This phenomenon of secondary nucleation has also occasionally been observed during the growth process of seeded supersaturated solutions, at a supersaturation below that required for primary nucleation.

2.2.1. Primary Nucleation.

2.2.1.1. Homogeneous Nucleation.

When nucleation occurs the transition from the metastable phase to the stable phase represents a decrease in the degree of molecular mobility, a decrease in the free energy of the system and so demands expenditure of energy to create the stable phase. The total quantity of work required to form the stable nucleus is the sum of the work required to form the surface and the work required to form the bulk of the particle.

Gibbs (10) was the first to show that the work of formation of a droplet from its vapour equals one third of that required to form the surface of the droplet. He showed that the total work required to form a droplet from its vapour, $\quad w=a_{p} \sigma-v_{p} \Delta p$ where σ is the surface energy per unit area of a droplet of radius r

$$
\begin{aligned}
& a_{p}=\text { surface area of the droplet }=4 \pi r^{2} \\
& v_{p}=\text { droplet volume }=\frac{4 \pi r^{3}}{3}
\end{aligned}
$$

$\Delta P=$ Pressure difference in the droplet $=\frac{2 \sigma}{r}$

$$
\therefore \quad w=\frac{4 \pi r^{2} \sigma}{3}
$$

Similarly, for the homogeneous nucleation of a small particle from a solution, the excess free energy ΔG between the particle and the solute in solution is equal to the sum of the surface excess free energy ΔG_{s}, i.e. the excess free energy between the surface of the particle and the bulk of the particle, and the volume excess free energy. If ΔG_{r} is defined as the excess free energy per unit volume between a very large particle and the solute in solution,

$$
\text { then, } \quad \Delta G=\Delta G_{s}-v_{p} \Delta G_{v}
$$

and for the spherical particle,

$$
\Delta G=4 I I r^{2} \sigma-\frac{4}{3} I I r^{3} \Delta_{G}
$$

The maximum value of ΔG, designated ΔG^{*}, occurs at a critical size r^{*} (i.e. a critical number of molecules in the embryo) and represents the free energy of formation of the critical nucleus.

From equation 2.7, when $\frac{d \Delta G}{d r}=0$

$$
r^{*}=\frac{2 \sigma}{\Delta G_{v}}
$$

and $\Delta G^{*}=\frac{4}{3} \operatorname{II} \sigma\left(r^{*}\right)^{2}$
This derivation assumes a spherical nucleus and consequently an isotropic of Cormia et al (11) have modified this assuming a cylindrical nucleus with different surface energies for the side and end. A spherical nucleus appears more reasonable in most cases, however, and for this the Ostwald-Freundlich equation (2.1) relates the supersaturation expressed as $\frac{c_{r}}{c_{\infty}}$ to the radius by:

$$
\ln \frac{c_{r}}{c_{80}}=\frac{2 \sigma V_{m}}{R^{i} T r}
$$

and so for the critical nucleus:

$$
r^{*}=\frac{2 \sigma V_{m}}{R^{\prime} T \ln \left(\frac{c_{r}}{c_{0}}\right)}
$$

and the free energy of formation of the critical nucleus becomes:

$$
\Delta G^{*}=\frac{16 \pi \sigma^{3} V_{\mathrm{m}}{ }^{2}}{3\left(R^{\prime}\right)^{2} T^{2}\left(\ln \left(\frac{{ }_{r}}{c_{\infty 0}}\right)\right)^{2}} \ldots \ldots .
$$

Kinetically the formation of nuclei can be assumed to be a series of bimolecular reactions of the form

$$
\begin{aligned}
& A_{1}+A_{1} \rightleftharpoons A_{2} \\
& A_{i}+A_{1} \rightleftharpoons A_{i}+1 \\
& A_{i}+1+A_{1} \rightleftharpoons \text { critical nucleus. }
\end{aligned}
$$

The rate of nucleation, j, i.e. the number of nuclei formed per unit time per unit volume may, since it is due to a random process, be expressed in terms of an Arrhenius type velocity equation:

$$
j=c \exp \left(\frac{-\Delta G}{R^{\prime} T}\right)
$$

where C is a constant of proportionality.
Therefore for spherical nuclei:

$$
j=c \exp \left(\frac{-16 I I o^{3} V_{m}^{2}}{3\left(R^{1}\right)^{3} T^{3}\left(\sum_{n} \frac{c_{r}}{c_{\infty}}\right)^{2}}\right) \quad \ldots \ldots .2 .11
$$

Becker and Doering (12) proposed an equation of the form of Equation 2.11 with an analysis of the frequency factor or pre-exponential term C. They assumed that embryos of all sizes up to critical size achieve a non-equilibrium steady-state distribution by growth and decay rrocesses, and introduced a non-equilibrium factor into the term C to allow for the backflux and decrease in embryo population caused by the growth of nuclei. This theory has been summarised by Van Hook (13).

Becker (14) proposed the nucleation rate equation:

$$
j=c \exp \left(\frac{-\Delta G_{d}}{K_{b} T}-\frac{\Delta G^{*}}{K_{b}^{T}}\right) \ldots .2 .12
$$

Where K_{b} is the Boltzmann constant and ΔG_{d} is the free energy of activation of diffusion. The alternative equations for the nucleation rate have been reviewed (13) (15) (16), but are generally
of the form of equation 2.11, $\widehat{\Delta G}$ being assumed constant over a limited temperature range.
2.2.1.2. Heterogeneous Nucleation.

The presence of a solid impurity in a supersaturated solution can act as a catalyst for nucleation and it has been shown that homogeneous nucleation is very difficult if not impossible to produce in practice. However, not all impurities in a particular system will act as accelerators and it is in fact possible for some to act as nucleation inhibitors.

The free energy of formation of the critical nucleus for heterogeneous nucleation $\Delta \mathrm{G}^{\prime \prime}$ is related to the free energy of formation of the critical nucleus for homogeneous nucleation ΔG^{*} by:

$$
\Delta \mathrm{G}^{* \prime}=\beta \Delta \mathrm{G}^{*}
$$

where β is a fastor less than unity. Volmer (17) has relatod β to α (the angle of contact between the crystalline deposit and the foreign solid surface) which is analogous to the angle of wetting in liquid-solid systems:

$$
\beta=\frac{(2+\cos \alpha)(1-\cos \alpha)^{2}}{4}
$$

When $\alpha=180^{\circ}, \beta=1$ and $\Delta G^{* \prime}$ is the same as for homogeneous nucleation.
When $\alpha=0^{\circ}, \beta=0$ and $\Delta \mathrm{G}^{* \prime}=0$ and nucleation is spontaneous. When \propto lies between 0° and $180^{\circ} \Delta \mathrm{G}^{*}<\Delta \mathrm{G}^{*}$ and so the impurity acts as a nucleation accelerator.

Preckshot and Brown (18) have studied the effect of
crystallographically similar, but insoluble, ionic crystals in nucleating quiet supersaturated solutions of potassium chloride. The time required for nucleation for various fixed degrees of supersaturation were measured conductometrically. They found that for the same time necessary for nucleation, lead sulphide promoted nucleation at a lower degree of supersaturation than an unseeded solution; lead telluride required even less supersaturation; and lead selenide was the most effective.

Telkes (19), working on the nucleation of supersaturated inorganic salt solutions, has contributed data to strengthen the theory that an additive will accelerate nucleation only if its orystallographic structure and that of the aalt to be crystallised agree to within 15%.

2.2.1.3. Induced Nucleation.

Nucleation can be induced in supersaturated solutions free of extraneous material, below the supersaturation necessary for homogeneous nucleation. This can be done by the effects of external influences such as electric and magnetic fields, ultra-violet light, X-rays, sonic and ultrasonic radiation, cavitations produced by stirring and even the mechanical impact of a stirrer with the vessel walls. Of these ultrasonic radiation seems to be the most effective nucleator. Ultrasonics, when applied to liquids, cause cavitations in the liquid alternately producing areas of high and low pressure. The frequency and power of the ultrasonic waves have to be carefully controlled for a particular process, as while the low pressure areas cause embryo coagulation, high intensity ultrasonics break up suspended
particles.
Van Hook and Frulla (9) found this effect in the nucleation of sugar solutions. They found that at a supersaturation ratio of 1.1 for which homogeneous nucleation would not occur, a sugar solution would nucleate on momentary irradiation of ultrasonics at a frequency of $8 \mathrm{k} . c$. and a minimum power input of $10 \mathrm{~W} / \mathrm{cm}^{2}$, yielding a prolific crop of crystals. However, at $340 \mathrm{k} . c$. very few crystals developed in the same time.

Mullin and Raven (20) also showed this phenomenon with stirred solutions. They found that the degree of supersaturation necessary for nucleation decreased with increasing stirrer speed only over a limited range, after which there was an increase before again decreasing with further increase in stirrer speed. They suggested that this increase was probably due to the fracture of nuclei at this critical stirrer speed yielding fragments of less than nucleic size.

2.2.2. Secondary Nucleation.

Miers (21) in 1911 observed that if a crystal was introduced into a supersaturated solution which was in a metastable state below that required for spontaneous nucleation, it may cause crystals to grow not only in contact with it but also at some distance from it. This phenomenon of nucleation occuring at a supersaturation below that required for spontaneous nucleation by the presence of other growing crystals is terined secondary nucleation.

Strickland - Constable and Mason (22) working on $\mathrm{MgSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$ distinguished four classes of breeding of nuclei:-
(i) "Initial breeding" which occured when a seed crystal yielded a shower of small crystals, which were originally attached to it, after immersion in a supersaturated solution.
(ii) "True breeding" which resulted from broken portions of the dendritic or needle-like growth on the original seed.
(iii) "Splinter breeding" which occured when a needle broke off a mother crystal accompanied by a shower of small crystallites.
(iv) "Attrition breeding" which was that which resulted from agitation.

McCabe (23) investigating the growth of stirred, seeded supersaturated solutions of potassium chloride and copper sulphate found that the size distribution plots of seed and product crystals differed only by a displacement along the diameter axis, indicating no agglomeration or secondary nucleation.

Melia and Moffitt (24) however observed secondary nucleation with potassium chloride solutions although it did not normally occur until dendritic type growths appeared on the crystal surface. They suggested that it was produced by the shearing action of the solution on the crystals. This hypothesis was further strengthened when they worked on sodium chloride solutions in the presence of additives which promoted dendritic growth of the sodium chloride crystals. A large increase in the number of secondary nuclei produced was observed in the presence of the additives. They also found that these secondary nuclei were themselves capable of producing fresh nuclei.

Ting and McCabe (25) investigated the secondary nucleation characteristics of continuously cooled, stirred seeded solutions of
magnesium sulphate. They found that on cooling a solution a first crop of nuclei were produced at a certain temperature with insufficient heat release to change the cooling rate; then on further cooling a temperature was reached when prolific nucleation occured, completely obscuring the stirrer and accompanied by sufficient heat release to appreciably retard the rate of cooling. It appears therefore that there is a "supersaturation curve" for both primary and secondary nucleation. Both of these "supersaturation curves" were qffected by seed size and weight, stirring and cooling rate.

Cayey and Estrin (26) studied the secondary nucleation period for magnesium sulphate and counted nuclei photographically after different conditions of seeding. They suggested (in contradiction to Melia and Moffitt (24)) that the secondary nucleation was dependent on the number and size of seed crystals, and on the level of supersaturation。

Secondary nucleation is a phenomenon which is, still not fully understood. It appears that it only accurs for some particular systems and then only if a certain supersaturation level is exceeded. The experimental data available is limited and in certain cases conflicting.

2.3. Crystal Growth.

The following consecutive steps are required in any heterogeneous reaction:-

1. Transport from the medium to the reaction environment. 2. Absorption on the surface.
2. Orientation in the surface (reaction).
3. Desorption of products of reaction.
4. Dissipation of products of reaction.

For crystal growth from solution the last two steps consist of the dissipation of the heat of crystallisation which will be rapid compared with the relatively slow growth rate, and so step 1 is more likely to be rate controlling with respect to 4 or 5. A molecule on arriving at the crystal surface is not necessarily immediately incorporated into the crystal lattice because it may either diffuse away or it may not be at a favourable site. As the orientation of the molecule for the greater part of the entropy change step 3 is more likely to be rate controlling than step 2. So the two most likely rate controlling steps are:

1. Transport from the medium to the growing environment.
2. Orientation in the surface.

2.3.1. Diffusion Theories.

Noyes and Whitney (27) assumed that the liquid in contact with the crystal was saturated, and that crystallisation was the reverse of dissolution. They assumed that the rate at which a substance dissolves in its own solution was proportional to the difference between the concentration of that solution and the concentration of the saturated solution. Nernst (28) assumed that the crystal was surrounded by a laminar film of liquid of thickness, δ, through which the solute had to diffuse Then:

$$
\frac{d \dot{m}}{d t}=\frac{D_{C} A}{\delta}\left(c-\infty_{\infty}\right) \quad \ldots \ldots \ldots \quad 2.14
$$

where $m=$ mass of solute deposited in time t
$A=$ surface area of the crystals.
$c=$ solute concentration in the bulk of the solution.
$c_{\infty}=$ solute concentration of saturated liquor.
$D_{L}=$ coefficient of diffusion of the solute.
However, this equation suffers from the defect that it assumes the liquid in contact with the crystal is saturated, whereas it was found by Miens (29) to be supersaturated.

Mullin (30) has shown how Berthoud (31) and Valeton (32) suggested that there were two steps involved in crystal growth: diffusion to the crystal surface and then an "integration" reaction (assumed to be first order) when the solute was incorporated into the crystal lattice.

These two stages can then be represented by

$$
\begin{align*}
\frac{d m}{d t} & =K_{d} A\left(c-c_{i}\right) \\
\text { and } \quad \frac{d m}{d t} & =K_{r} A\left(c_{i}-c_{\infty}\right)
\end{align*}
$$

where K_{d} is a coefficient of mass transfer by diffusion, K_{r} the integration rate constant and c_{i} the solute concentration at the crystal/solution interface.
c_{i} can be eliminated to present an overall crystal growth equation:

$$
\begin{align*}
& \frac{d m}{d t}=\frac{A\left(c-\varepsilon_{0}\right)}{\frac{1}{K_{d}}+\frac{1}{K_{r}}} \\
& \text { or } \frac{d m}{d t}=K A\left(c-c_{\infty}\right) \\
& 2.18 \\
& \text { where } \\
& \frac{1}{\mathrm{~K}}=\frac{1}{\mathrm{~K}_{\mathrm{d}}}+\frac{1}{\mathrm{~K}_{r}}
\end{align*}
$$

Marc (33) found that as the stirring rate was increased the velocity of growth increased until after a critical rate was reached it remained constant. He considered that at this stage the crystal was covered with an adsorbed layer of molecular dimensions. Crystal. growth is then assumed to be controlled by the surface integration step, equation 2.16 , and $K \leadsto K_{r}$, equation 2.18 .
2.3.2. Surface Integration.

The following theories have given significance to the " K_{r} rate constant", equation 2.17 , which makes allowance for the facility
with which a surface may incorporate a particle adjacent to it.
The first theories on crystal growth concerned the morphology of the crystals and an historical account of these earlier theories has been made by Buckley (34), from which the following has been abstracted:
"Curie (35) proposed that there was an intimate connection between the crystalline form and the surface energy of the solid. Bach face has a specific free energy and the crystal will assume the habit giving minimum surface energy, such that

$$
\sum_{i=1}^{i=n} A_{i} \sigma_{i}=\text { minimum }
$$

" Volmer (36) based his theory on the existence of an absorbed layer around the crystal surface of molecular dimensions. While studying the growth of mercury crystals from the vapour state at low temperatures he observed the crystals growing layer by layer. He proposed that a molecule arriving at a crystal surface lost only a portion of its latent heat and was thus bound to the surface but had complete mobility on the surface. The adsorbed layer consists then of such molecules frequently colliding with each other forming larger two dimensional particles. When a particle becomes of nucleus dimensions it would attach itself to the crystal lattice. This is called Two Dimensional Nucleation. Volmer assumed that the transfer of the particle from the adsorbed layer to the lattice would be instantaneously made up from the solution. He proposed that the relationship between the growth velocities g_{1} and g_{2} of two differing lattice planes was given by:

$$
\frac{g_{1}}{g_{2}}=c \exp \left(\left(H_{1}^{\prime}-H_{2}^{\prime}\right) n / R^{\prime} T\right) \ldots \ldots \quad 2.19
$$

where C is a constant, n a factor $\geqslant 1$, and $H_{1}{ }^{\prime}$ and $H_{2}{ }^{\prime}$ are the heats of adsorption of the two planes. He assumed that the heat of adsorption of a particular lattice plane was proportional to the specific surface energy.
" Brandes (37) making similar assumptions to Volmer considered the surface free energy to have little influence on crystal growth. He considered that the work of formation of the two dimensional nucleus was the controlling factor for growth, since the growth of the nucleus to complete the lattice plane was very rapid compared with the nucleus formation. The ratio of the growth velocities g_{1} and g_{2} on planes 1 and 2 , where the work of formation of the nucleus is w_{1}, and w_{2} was. given by:

$$
\frac{g_{2}}{g_{1}}=\exp \left(-\left(w_{2}-w_{1}\right) / K_{b} T\right) \ldots \ldots .2 .20
$$

where K_{b} is the Boltzmann constant.
"The work of formation was derived on a basis analogous to three dimensional nucleation.
"Bravais (38) postulated that the velocities of growth on lattice planes depends on the densities of the lattice points on the planes. However there are many criticisms to this theory.
" Both Kossel (39) and Stranski (40) proposed theories to account for the way in which atoms or molecules attach themselves to the crystal face. Kossel (39) assumed the crystal to build itself up by the indefinitely continued repetition of the most probable equivalent steps. He showed that it was immaterial to his theory whether the molecular attachments occured in rows parallel to a cube
edge or the diagonal. He expressed the attachment energy ∇_{o} as being made up of three components

$$
\nabla_{0}=\nabla^{\prime}+\nabla^{\prime \prime}+\nabla^{\prime \prime \prime} \text { of which } \nabla^{\prime} \text { and } \nabla^{\prime \prime} \text { were }
$$ tangential to the growth direction and $\nabla^{\prime \prime \prime}$ was at right angles to the lattice plane. Thus for the original two dimensional nucleus on a new plane the energy release was that due to $\nabla^{\prime \prime \prime}{ }_{\text {only }}$. For this particular nucleus he found that for a homopolar crystal the most probable position of attachment is the interior of the plane, followed by the edge and the corner in lower degrees of probability; whereas for an ionic crystal the probability was in the reverse order, i.e. corner $>$ edge $>$ interior. Kossel stated that once the initial nucleus was attached the plane would build up rapidly to completion. " Stranski (40) working independently and considering the relative work of separation necessary to remove molecules from various positions in the lattice plane came to the same basic conclusions as Kosse?".

Nielson (41) also considers this two-dimensional nucleation mechanism of growth. He classified two types of mechanism:
(i) The"mononuclear layer" mechanism where the time between two consecutive nucleations is greater than the time it takes for a surface nucleus to grow such that it covers the crystal surface.
(ii) The "polynuclear layer" mechanism where the surface nucleation is so fast that each molecular layer of the crystal is the result of intergrowth of numerows individually nucleated surface crystals.

However the probability of the formation of these twodimensional nuclei is a very sensitive function of supersaturation,
and Burton, Cabrera and Frank (42) have shown that if reasonable values of the edge energy of the two-dimensional nuclei are assumed, a critical supersaturation of about $s=50 \%$, where $s=\frac{c-c_{\infty} \text { is necessary for }}{c}$ the formation of two-dimensional nuclei. Whereas growth has been known at very low supersaturations of $s=1 \%$ and lower.

Frank (43) recognised that growing crystals are not perfect flat plane faces, and that their imperfections will provide the steps required for growth making two-dimensional nucleation unnecessary. The face containing a "screw dislocation", j.ee. the one in which the displacement is parallel to the dislocation line will then grow perpetually "up a spiral staircase". If there are two such dislocations on a face, growth will occur if the supersaturation is raised to a value such that the size of the critical two-dimensional nucleus correctly orientated will pass between two points in the positions of the two dislocations.

Burton, Cabrera and Frank (42) based their theory on the existence of these screw dislocations and considered the crystal growth process from the vapour to be a result of three separate processes, (i) exchange of molecules between adsorbed layer and vapour, (ii) diffusion of adsorbed molecules towards the steps and exchange with them and (iii) diffusion of adsorbed molecules in the edge of the steps toward the kinks (or growth sites along the steps) and exchange with them.

Strickland - Constable (44) has summarised this theory of Burton et al (42) for crystal growth from the vapour and shown that a
similar approach can be made for growth from solution, and the flux J^{\prime} (mass transferred per unit area and unit time) is then given by:

$$
J^{\prime}=\frac{\beta^{\prime} D_{L}}{a^{\prime}} \frac{\tanh \left(\frac{y_{0}}{\sqrt{2 z_{s}}}\right)}{\left(\frac{y_{0}}{\sqrt{z_{\delta}}}\right)}\left(c-c_{\infty}\right) \ldots \ldots \ldots .2 .21
$$

where β^{\prime} is a reflection coefficient of the molecules, D_{L} the diffusion coefficient, a^{\prime} is the molecular spacing in the adsorbed layer, y_{0} is the distance apart of the steps and Z_{s} is the average diffusion distance of adsorbed molecules.

If y_{0} is assumed inversely proportional to $\left(c-c_{0}\right)$ then for high supersaturations, y_{0} is small, and $J^{\prime} \rightarrow \frac{D_{L} \beta^{\prime}}{a^{\prime}}(c-c)$ whereas for Iow supersaturations, y_{0} is large, and $J^{\prime} \rightarrow \frac{D_{L} \beta^{\prime}}{a^{\prime}}\left(c-c_{0}\right)^{2}$

Strickland - Constable (44) has reported that Reich (45) found a second order growth rate dependence on supersaturation for well stirred seeded solutions of $\mathrm{MgC}_{2} \mathrm{C}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$, $\mathrm{BaC}_{2} \mathrm{O}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$, and T Q Br 。

Chernov (46) adopted a similar approach to Burton et al (42) and came to the same conclusion for the dependence of the normal (perpendicular) growth velocity, g, of a crystal face growing from a vapour being proportional to s^{2} for low supersaturations and being linearly dependent on s for higher supersaturations. He showed the non-linear dependence on supersaturation to be obtained for $0.05<\mathrm{s} 0.80$ when crystals of β - methyl naphthalene and p-toluidene were grown from the vapour. For the normal growth velocity from
solution Chernov assumed that matter is transferred to the crystal only on the end faces of steps and only by diffusion within the volume of a fixed boundary layer of thickness, δ adjacent to the crystal.
He found that for the interval $0.01<s<0.2$ the following approximation was true:

$$
g=k_{L} s^{b} \quad \ldots \ldots \ldots \ldots
$$

and at very low supersaturations $\mathrm{b}=2$. The exponent b increased as δ decreases, and the region of thequadratic equation is enlarged as the solution is stirred more vigorously.

Burton et al (42) have observed that in some cases a crystal surface will not grow at all, in spite of the fact that it is in contact with a supersaturated solution of $\mathrm{s} \bumpeq 0.1$. This could either be due to the absence of dislocations in the crystal surface, or else to the presonoo of so many of ther that the mean cistance between them is too small for the particle integration. As this would require of the order of 10^{12} dislocations per cm^{2} which is high, the former explanation is more probable.

2.3.3. Experimental Data.

In order to assess the contribution of the surface integration and the diffusional resistance respectively on the growth process it is necessary to try to eliminate one of them. As the relative crystal/ solution velocity is increased the laminar filn thickness, δ decreases until in the limit the surface integration step should control. Marc (33) found this effect with stirred suspensions of potash alum,
NH_{3} alum $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{D}_{7}$ and AgOA_{c} when after a certain stirrer speed was attained no further increase in growth rate was observed. He then found the growth rate to be proportional to the square of the degree of supersaturation.

Bransom et al (47) however found no such limit with the growth rate of seeded solutions of magnesium sulphate heptahydrate stirred between $100 \mathrm{revs} / \mathrm{min}$. and $1000 \mathrm{revs} / \mathrm{min}$. They found a continual increase in the mass transfer coefficient, up to an experimental limit of $30^{\circ} \mathrm{C}$, with stirrer speed which was independent of seed size. They attributed this to "homogeneous isotropic turbulent eddies".

Cartier et al (48) modified an equation by Amelinckx (49) for the resistance to crystallisation due to the surface integration. The particle integration rate was based on a statistical determination of the rates of particle attachment and detachment at a crystal face. They obtained the equation

$$
\begin{aligned}
& \frac{d m}{d t}=K_{r}^{\prime} A\left(\exp \left(Z\left(c_{i}-c_{0}\right)\right)-1\right) \ldots 2.23 \\
& \text { where } \quad Z=-\frac{1}{k_{b} T} \frac{d \nabla}{d c} \\
& K_{r}^{\prime}=\text { Particle Integration Factor } \\
& \nabla=\text { Attachment energy of the crystallising } \\
& \text { particles. } \\
& c_{i}=\text { Solution concentration at the interface } \% m / v \\
& k_{b}=\text { Boltzmann constant. }
\end{aligned}
$$

Hence a plot of $\ln \left(\frac{d m}{d t}+K_{r}^{\prime} A\right)$ against $\left(x_{i}-x_{\infty}\right)$ which are the concentrations in mass $\%$, should give a straight line of slope ρZ where ρ is the solution density. A value of K_{r}^{\prime} las to be determined by trial and error which will give an intercept of $\ell_{n} K_{1},{ }^{\prime}$. It was found that K_{r}^{\prime} and Z could be expressed in terms of the absolute temperature:-

$$
\begin{aligned}
& K_{x}^{\prime}=\alpha T^{\frac{3}{2}}-\beta \\
& p Z=B-\frac{A}{T}
\end{aligned}
$$

where \propto, β, A and B are constants. Cartier et al studied the effect of relative crystal/solution velocity (u) on growth rate by direct measurements of a single crystal with a microscope. They found for citric and itaconic acids the diffusional resistance was insignificant at sufficiently high relative velocities and equation 2.23 then satisfactorily correlated their results.

Mullin and Garside (50) worked on the crystallisation of aluminium potassium sulphate using single crystal measurements as used by Cartier et al and measurements of weight and sieve analysis in a fluidised bed. They found a good agreement with the growth rates obtained by the two methods. They found that the growth rate was proportional to $u^{0.65}$ and that the dependence on supersaturation $\left(c-c_{\infty}\right)$ varied between $\left(c-c_{\infty}\right)^{1.4}$ and $\left(c-c_{\infty}\right)^{1.62}$ within the supersaturation limits $0.003<\left(c-c_{00}\right)<0.015$. However the exponent 1.62 remained fairly constant above a certain relative velocity. Davis and Jones (51) used conductivity measurements to
determine the rate of growth of seoded stirred suspensions of silver chloride. They found that the growth rate was independent of stirrer speed between $100 \mathrm{r} . \mathrm{p} . \mathrm{m}$. and $500 \mathrm{r} . \mathrm{p} . \mathrm{m}$. and so assumed integration control, for which they found the dependence on supersaturation to be second order. No account was taken of the increase of crystal area during these experiments, but conditions were chosen such that the total change was only 0.1% of the original total surface area of the seed crystals.

Schierholtz (52) nucleated stirred solutions of calcium sulphate at $25^{\circ} \mathrm{C}$ and followed the decrease in concentration using titration measurements of samples of solution at regular intervals. He found that the crystallisation rate was first order with respect to (c - c_{∞}) with the exception of the early and final stages. No allowance was made for the effect of change of crystal area, but as the product crystals were of an acricular nature he suggested that the effective area available for crystal growth throughout this period would be constant.

McCabe (53) has proposed a method for the prediction of the size analysis of a mass of crystals grown from a mass of crystals of known size analysis, which is known as "McCabe's $\Delta L_{\text {law"。 This states }}$ that if a known mass of seed crystals of known size distribution is grown under given conditions of supersaturation then the size analysis of the product is given by:

$$
M_{2}=\int_{0}^{M_{1}}\left(1+\frac{\Delta D}{D_{1}}\right)^{3} d M_{1} \ldots \ldots .2 .24
$$

where M_{2} is the product mass obtained from M_{1} seed, D_{1} is the seed size and ΔD the increase in size.

Solution of equation 2.24 involves tedious trial and error methods. A nomograph by Hooks and Kerye (54) has eased the solution by giving the ratio $\left(1+\frac{\Delta D}{D_{1}}\right)^{3}$ for trial values of ΔD for any seed size D_{1} 。

McCabe (23) added experimental validification to equation 2.24 by crystallising potassium chloride and copper sulphate by means of a seeded water cooled crystalliser tube agitated by rubber strips attached to a central shaft and revolved inside the centre of the tube. He showed that for these seeded suspensions over a wide number of variables, e.g. agitator speed, weight ratio of product to seed, temperature, etc., the size distribution plots of cumulative number percentage over size, D, for product and seed crystals, obtained from a sieve analysis differed only by a displacement along the diameter aris. This indicated that neither agglomeration nor secondary nucleation occured during the growth process, and that the linear velocity of growth was independent of crystal size. However this has since been shown to be true only for surface integration control. As temperature has a greater influence on the kinetics of a reaction than on the physical property of the solution, the extent of the resistance to crystallisation presented by the surface integration can be seen by studying the effect of temperature on the growth rate. The effect is indicated by the value of the activation energy involved.

Van Hook (55) compared the activation energies of sugar solutions of $/$ viscosity and diffusion with growth with the conclusion
that the former two were considerably less than the third over the normal temperature range. The comparison was made at a constant supersaturation of $s=0.05$ and the three values approached a common low level only at high temperatures. The high activation energy associated with growth was of the order normally associated with purely chemical reactions rather than physical processes (i.e. greater than $10 \mathrm{Kcal} / \mathrm{g}$. mole).

Rumford and Bain (56) determined the rate of growth of sodium chloride crystals in a fluidised bed for different supersaturations over the range 26 to $73^{\circ} \mathrm{C}$. Below $50^{\circ} \mathrm{C}$ the rate of growth plotted against supersaturation was non-linear showing the growth sate to be surface integration control. Above $50^{\circ} \mathrm{C}$ the growth rate was linearly dependent on supersaturation. This could either be a first order surface integration or diffusion controlled growth. As the activation energy for crystallisation was found to be $5.4 \mathrm{~K} \mathrm{cal} / \mathrm{mole}$, they considered the growth rate to be diffusion controlled above $50^{\circ} \mathrm{C}$. Cooke, however, in a discussion (56) disagreed with this conclusion and suggested that the growth rate was diffusion controlled at all temperatures, but the contribution of the surface integration is greater at lower temperatures and supersaturations. He suggested that if the authors had continued their work for higher supersaturations the curves would have become linear for all temperatures.

McCabe and Stevens (57) found that equation 2.24 is inapphitcable with low relative velocities in a diffusion controlled process with a crystal size distribution. They studied the rate of growth of copper sulphate pentahydrate crystals in an agitated solution following the
decrease in solution concentration using a conductivity cell. They found that the rate of growth g could be expressed in terms of relative velocity, u, between crystals and solution, the interfacial growth rate g_{j}, and the growth rate at zero velocity, g_{0}, by the empirical equation:

$$
\frac{1}{g}=\frac{1}{g_{0}+C u}+\frac{1}{g_{i}}
$$

where C is a constant.
They found that the growth rate was not affected directly by crystal size, but, at low values of u, g is markedly influenced by the crystal - solution relative velocity. As u increases, the effect of velocity on growth rate diminishes and finally becomes negligibly small. This is consistent with the view that the growth process consists of a diffusion process and a surface integration in series.

Hixon and Knox (58) found the rate of growth coefficients to depend both upon the mass transfer coefficients wich varied with fluid velocity and the rate coefficient of the surface integration. They measured the increase of woight of single crystals of copper s12?.phate and magnesium sulphate and calculated the product area from

$$
A_{2}=\left(\frac{M_{2}}{M_{1}}\right)^{\frac{2}{3}} A_{1}
$$

They correlated their results on a dimensionless basis to allow the mass transfer coefficients to be compared with mass transfer coefficients or heat transîer coefficients of other systems:

$$
\frac{K_{d} D}{D_{m}}=c\left(\frac{\rho_{u} D}{\mu}\right)^{0.6}\left(\frac{\rho^{3-}}{M_{m} D_{m}}\right)^{0.3} \quad \ldots .02 .26
$$

These are the Sherwood, Reynolds and Schmidt numbers respectively:

$$
\text { where } \begin{aligned}
D_{m} & =\text { Molar Diffusivity } \\
D & =\text { Equivalent Diameter of the crystal. } \\
K_{d} & =\text { Coefficient of mass transfer by diffusion. } \\
M_{m} & =\text { mean molicular weight of the solution. } \\
\rho & =\text { density of the solution. } \\
\mu & \text { viscosity of solution. }
\end{aligned}
$$

$u=$ crystal / solution relative velocity.
$\mathrm{C}=\mathrm{a}$ constant.
To correlate the data on this basis, it was necessary to assume that a resistance i.e. $\left(\frac{1}{K_{r}}\right)$ was being presented by a surface reaction of firs' order for magnesium sulphate and of second order for copper sulphate.

Bransom (59) has shown that for a fluidised bed the growth velocity g can be correlated in terms of a modified Reynolds number Re^{\prime} :

$$
g=\frac{d r}{d t}=c\left(R e^{\prime}\right)^{n}(c-c \infty)^{b}
$$

where $R e^{\prime}=\frac{2 r \rho u}{\mu^{\prime}}, r=$ crystal equivalent radius, \mid $\rho=$ solution density and $C=$ specific growth rate.

Using the data of Hixon and Cox (58) he found $\mathrm{b}=1$ for both copper and magnesium sulphate, $n=0.65$ for copper sulphate and $\mathrm{n}=0.3$ for magnesium sulphate. He further showed that for a given
continuous crystallisation process, μ and ρ are constant and u varies very little so that:

$$
g=c r^{n}\left(c-8_{0}\right)^{b} \quad \ldots \ldots \quad 2.27
$$

and when the growth rate of crystals is expressed in this form most of the important operating parameters can be predicted.

Bransom and Palmer (60) working on an Oslo type of crystalliser found the exponent $n=1.0$ when calculating average growth rates for a bed of crystals. However when size anafses were done on the incividual beds before and after growth it was found that $n=1.5$. This was explained by the size classification occuring in the bed. Bennett (61) has used the data of Rumford and Bain (56) to sbtain a value of $n=0.171$ for the same correlation, equation 2.27 .

However the exponents b and n will vary according to the type of system and the material used.

Bennett and Fentiman (62) found for the crystallisation of sucrose crystals that the rate constant differed for three different size fractions of seed used by a factor of two. After washing the seed in aqueous methanol the rate constants were reduced and the three size fractions then gave a similar value. When the specific surface area of each type of seed was measured, however, by the krypton adsorption method this showed that the difference was due to the surface roughness of the seed caused by adhering dust particles. The ratio of surface areas then measured for each type of seed, before washing, was similar to the ratio of the rate constants. They also pointed out that the relationship between total mass, or total volume,
and total surface area for a polydisperse system of normal distribution undergoing crystal growth is probably not M or $A^{1.5}$ but is closer to $M \propto A^{1.3}$. However this relationship will depend on the size distribution of the original seed.

2.3.4. Impurities in Crystal Growth.

2.3.4.1. Effect of Impurities.

The interaction of growing crystals with impurities is thought to give rise to effects such as change of growth rate, impurity capture and crystal defect formation, e.g. internal strains and dislocations.

The presence of an impurity usually causes a lowering of the growth rate. Buckley (34) has stated that the strongest effect is usually produced by organic substances of high molecular weight. An important characteristic of this kind of impurity is its inability to influence appreciably the dissolution rate of crystals. Certain inorganic ions are also effoctive when present in very small quantities. Increases in growth rate have been experienced in a few cases, and accounted for either by the catalytic effect of an impurity or by lowered surface energy, the smaller size of the critical nucleus and the ennanced probability of two-dimensional nucleation.

McCartney and Alexander (63) worked on the crystallisation of calcium sulphate by following the concentration change of seeded solutions using adip-type conductivity cell. They found a second order dependence on supersaturation for both pure and impure solutions, regardless of the amount of inhibition of growth. They also found
that the additives which interact with calcium sulphate are those with polar groups on a chain structure, particularly proteinaceous and polycarboxylic materials. Also the retarding power increased markedly vith molecular weight. Polyacrylic acid, for instance, completelir inhibited growth at a concentration of 1.3 p.p.mo, and even in 0.33 p.p.m. it retarded the growth rate by 74% compared with that of fure calcium sulphate. They found that if a strong acid was added to one of the polycarboxylic materials, the latter's ionization was suppressed and the retarding action largely destroyed. Although : O (HCl and $\mathrm{H}_{2} \mathrm{SO}_{4}$ the crystallisation rate was still retarded by the action of chese acids themselves.

Chernov (46) attempted to explain the effects of impurities on the ssiral growth of crystals, and based his treatment on the layer growth ef crystals resulting from the motion of steps. He considered two possisible mechanisms of inhibited crystal growth:
(a) Strongiy adsorbed impurities captured by a growing crystal.
(b) Impurity poisoning of active growth sites (kinks).

He suggested that an impurity slows the advance of elementary stepis whose heights are comparable with that of the adsorbed impurity molecules, aut, that this effect becomes less noticeable as the step height incresses. The influence of impurities on the normal growth . rata must thorefore depend particularly on the mean step height.

Chernov stated that when adsorbed impurities have a short lisotime on the crystal surface, the impurity poisoning of active sites beccres important and it is then practically impossible to
incorporate new particles into the crystal in the poisoned kinks. He mentioned that kinks in a step are poisoned by impurities in both groving or dissolving cystals.

Impurity molecules captured by a growing crystal differ in size from the crystal constituents and therefore induce tensile sitrains in the lattice.
2.3.4.2. Equilibrium and non-equilibrium capture of

impurities in crystal growth.

Chernov (46) stated that when the system consisting of a crystal and the surrounding medium contains an impurity, the impurity concentration x_{s} in the crystal and x_{w} in the medium, under equilibrium conditions are related to the phase diagram. The equilibrium coefficient of distribution (or capture) K^{\prime} is then given by :

$$
K^{\prime}=\frac{x_{S}}{x_{w}}
$$

If a crystal grows very slowly its impurity concentration is determined by the equilibrium capture coefficient, and by X_{w}^{*} at the interface. When K^{\prime} is less than unity (crystal rejects impurity) x_{w}^{*} will increase with growth rate. Therefore the equilibrium capture coefficient increases effectively with the growth rate. Chernov mentioned that the equilibrium impurity concentration is not constant throughout a crystal, since a difference exists between its value near the surface and that in the bulk. He added that the equilibrium concentration can be characterized approximately by three quantities: the concentration in the bulk of the crystal,
that in the surface layer, and that in the steps, and that these can differ considerably from each other. If a crystal grows very slowly an equilibrium concentration exists in all three quantities. At high growth rates equilibrium is not established in the bulk, but it may be in the surface layer and the steps, or only in the steps. However each surface layer becomes an interior layer with an equilibrium impurity concentration. This also applies to the line of atorns forming the end face of a crystal. At still higher growth rates none of the three equilibrium concentrations is achieved. Therefore when new layers are deposited on the crystal surface the impurity concentration in these layers will not generally be in equilibrium, and impurity diffusion from or to the crystal will begin.

Although it is usually assumed that in the solution the ratio of impurities to the substance being crystallised is greater than in the crystal (i.e. "purification") Botsaris et al (64) showed that this is not always the case. They investigated the incorporation of lead molecules in crystals of KCl and concluded that a possible mechanism is one of non-equilibrium capture of impurity, the magnitudes of the distribution coofficient depending on the rate of crystal growth, and the rate of diffusion of impurity through the lattice structure.

PREVIOUS WORK DONE ON PENTAERYTHRITOT

3.7e Crysta Structure.

Berlow, Barth and Snow (65) state that P.E. has a body centred lattice of tetragonal symmetry with two molecules in the unit cell. The crystal has a four fold alternating axis of symmeiry parallel to its c axis. The central carbon atom of one molecule in the unit cell is at $(0,0,0)$ and that of the other at $\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$. The molecular units are so arranged that the oxygen atoms are in planes perpendioular to the verifical c- axis. The oxygen atoms of four neighbouring molecules are arranged in the form of a square whose sides are inclined 10° to the a and b axes. In P.E. the $\mathrm{C}-\mathrm{C}$ bond length is $1.50 \AA$, the $\mathrm{C}-0$ bond length is 1.46 \& and the $0-0$ distance is 2.69 A.

Von Groth (66) states that P.E. arystals should be tetragonal bipyramids on (001). He showed the morphology as figure 3.1. where the Miller indices of the main faces are marked. This is a I st order (h h Q) class $4 / \mathrm{mmm}$ tetragonal bipyramid, as shown by Bishop (67). Von Groth give the ratio of the unit cell axes as $\frac{\underset{a}{a}}{6}=1.0236$, and this ratio is also recorded in the Barker Crystal Index (68). If however the bipyramid base is orientated at 45° to the a, b axes, this 2nd order orientation sives the equivalent axes ratio of $\frac{c}{a}=1.447$, which is almost in ageeement with Berlow et al (65) who recorded the values a $=6.10, c=8.73$ and hence $\frac{c}{a}=1.43$. Wrokoff (69) also records values which give a similar ratio, of $a=6,083 \pm 0.002 \AA$ and $c=8.726 \pm$ $0.002 \AA$ and hence $\underset{a}{\underset{a}{c}}=1.4345$. The melting point has been recorded
P. E. CRYSTAL MORPHOLOGY............. VON GROTH

as $260.5^{\circ} \mathrm{C}$ by Wyckoff (69) which comperes favorrably with the value of $259^{\circ} \mathrm{C}$ found for Pure P.E. in the previous work (1), whereas Von Groth (66) records the melting point as $253^{\circ} \mathrm{C}$ and so the deta of Wyckoff is taken to be more accurate,

Figure 6.1.A shows a sketch of the tetragonal bipyramid in the 2nd order (h o 1) orientation with the indices of the main faces marked and also of the minor ones which sometimes appear. For the Wyckuff ratio of $\underset{\varepsilon}{c}=1.4345$ if the bipyramid base is taken as unit lensth, the length of the remaining (1 01) sides become 1.0074 and the normal angle between the (1.01) and (101) faces is 69.67°. For practical purposes and within cxperimental error therefore, the external goometry may be considered as if the crystal is of the cubic system with each (1 0 I) face an equilateral triangle and the normal. angle between any two faces being 70.53°. This has been done in section 6 , figure 6.1 , B_{0}

Wyckoff (69) also states that there is a phase change at $179.5^{\circ} \mathrm{C}$ above which the unit cell becomes cubic and tetramolecular with $a=8.963 \AA$. This cubic modification of $P_{\&} E$. was al o found by Nitta and Watenabe (70) at $180^{\circ} \mathrm{C}$ using X-iray diffection measurements.
2.2. Impurities
2.2.1. Nature of the impurities

Two main impurities (0.1%) were analysed chromatographically in the commercial Pentaerythritol. These were the ether Di Pentaerythritol, and a complex unidentified by-product of
formaldelyyde and P.E. which, for the purpose of this work is labelled the "Formal". The amount of Di-P.E. present varies from 0% to about 2% wherees the Formal present is usually about 4%. As the Formal identity is unknown this analysis figure is only comparative in relation to Di - P.E., obtained by giving the Formal the same chromatograph response factor as $\mathrm{Di}-\mathrm{P}_{\mathrm{s}} \mathrm{E}$.

Di - Pentraerythritol is a white odourless crystalline ether, having the formula:

with a molecular weight of 254.
Sinilan compounds to the unidentified Formal have been reported in the literature as being present in commercial P.E.

Salkind et al (71) and Wiersma et al (72) consider this to be the compound Bis \rightarrow pentaerythritol monoformal with a moleculen weight of 284 and a hydroxyl value of 35.9%.

Berth and Snow (73) however have reported the detection of a similar impurity which they identified by carbon and hydrogen determinations, hydroxyl value, molecular weight and saponification value as formaldehyde bipentaerythritol acetal having the formula:
-42

$$
\mathrm{HOCH}_{2}-\int_{\mathrm{CH}_{2} \mathrm{OH}}^{\mathrm{CH}_{2} \mathrm{OH}}-\mathrm{O}-\mathrm{CH}_{2}-\mathrm{O}-\mathrm{CH}_{2}-\left.\right|_{\mathrm{CH}_{2} \mathrm{OH}} ^{\mathrm{C}}-\mathrm{CH}_{2} \mathrm{OH}
$$

with a molecular weight of 270 and hydroxyl content of 37.8%

3.22, Proparation of Forma1.

The degree of polymerisation of formaldehyde in the aqueous: solution can be expressed in the form of the following reactions:
$\mathrm{CH}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O}$
$\rightleftharpoons \mathrm{HOCH}_{2} \mathrm{OH}$
Methylene glycol
$2 \mathrm{HOCH}_{2} \mathrm{OH}$
$\mathrm{HOCH}_{2} \mathrm{OH}+\mathrm{HO}\left(\mathrm{CH}_{2} \mathrm{O}\right)_{2} \mathrm{H}$
$\longmapsto \mathrm{HO}\left(\mathrm{CH}_{2} \mathrm{O}\right)_{2} \mathrm{H}+\mathrm{H}_{2} \mathrm{O}$
dimex

irimer

Salkind et al (7I) have proposed two possible sequences of reactions which account for the formation of di- P.E and bis - PoE. monoformal. The first is based on the fact that very little formaldehyde exists in aqueous solution as free HCHO but it is mostily in the hydrated form. The reaction proceeds by splitting out water betweon these polymers and acetaldehyrde. In the sequence of reaotions methylene glycol forms P.E., the hydrated dimer forms Di - P.E. and the trimer by a similar sequence forms bis - P。E. monoformal. The other proposed sequence recognises the low conceniration of $H C H O$ in aqueous solutions but considers its high reactivity compared to that of its polymers. The formaldehyde reacts with acetaldehyde to form acrolein, two moleoules of which then react with methylene glycol to form bis - P.E, nonoformai,

In the previous work (1) the attempted extraction of Formal with n - provanol using the method of Barth and Snow (73) gave a product which ancilysed chromatographically as containirg only 15% Formal. In view of Sa:kind's (71) suggested sequence of reactions for the formation of the impurities, an attempt was made (1) to synthes:-se the Formal using P, J_{0}, and Formaldehyde. At first the formaldehyde was used in the form of the commercial 40% aqueous $F_{\text {ormaldehyde solution, but after }}$ refluxing with impure P。E. (Batch A) this resulted in a decrease in Formal content. This was attributed to an inhibiting effect of the metharol present as a stabliser in the formaldehyde solution,

The formaldehyde was therefore added in the form of paxaformaldehyde (a mixtuce of low molecular weight polyoxymethylene glycols) to aqueous P.E. solutions. Walker (74) recorded various equilibria occuring in dilute and cooncentrated aqueous formaldehyde solutions for different pH ranges, and reported that good yields of formals were obtained by heating alcciols with paraformaldehyde at $100^{\circ} \mathrm{C}$ in the presence of ferric chloride. Experiments were therfore carried ou: (1) under different conditions o? pH and formaldehyde concentration, and with Cerric chloride sometimes added in an attempt to synthesise the compound. All solutions were found to be cloudy at first but cleared after about 20 minutes, which was attributed to the slow depolymerisation rate of the paraformaldehyde. During the reaction the solubility of P.E. was fourd to be greatly enhanced and concentrations of ca. 58 mass \% were often used. The pH of the solution did not appear to ocfect the formation of the Formal although the presence of ferric chloride
seemed to favour the formation of $\mathrm{Di}_{\mathrm{i}}-\mathrm{P} . E$. It was found that the critical condition for the synthesis of the formal by the reaotion of P.E. with formaldehyde is a long refluxing time. 70 g of Batch A (with 4.73% Formal and $<0.1 \%$ Di - P.E.) refluxed with 10 g of Paraformaldehyde in $50 \mathrm{~cm}^{3}$ water for 40 hours yielded on oooling to room temperature and filtering, 21 g of product orystals analysed chromatographically as oontaining 25% Formal and 0.5% Di - P.E. However this produot oontained other by-products ofreaction and i.t was deoided to study the effeots of Formal on the crystallisation of P.E. by using mixtures of the batches of material with known impurities, with the purified P.S., thus limiting the impurity content usable to about 5\% Formal.

3.2.3. Purifioation of P.E.

The oomneroial batches of P.L. were purified by dissolving sufficient material in $10 \%(\mathrm{w} / \mathrm{v})$ HCl to form a saturated solution at its boiling point. The solution was refluxed for 1 hour, oooled to $0^{\circ} \mathrm{C}$, fillered and wawhed in ice cold water. This procedure was then repeated. and the resulting P.E. recrystallised from distilled water. The product was then washed with suocessive quantities of ice cold water and dried in an oven. The chromatographically "Pure P.E." analysed as containing $<0.1 \% \mathrm{Di}$ - P.E. and $<0.1 \%$ Formal will be referred to as Pure P.E. hereafter.
3.3. Physioal Properties

$$
\text { PENTAERYTHRITOL: } \mathrm{HOCH}_{2}-\stackrel{\mathrm{CH}_{2} \mathrm{OH}}{\substack{\mathrm{C}_{2} \\ 1 \\ \mathrm{CH}_{2} \mathrm{OH}}} \mathrm{CH}_{2} \mathrm{OH}
$$

Berlow et al (65) state that P.E. is a polyhydrio alcohol with four primary hydroxyl groups arranged compactly around a central carbon atom. It is an odourless, white crystalline compound which is non-hygroscopic, practically non-volatile and stable in air. Its density is $1.396 \mathrm{~g} / \mathrm{cm}^{3}$. The entropy of transition of P.I. is $22 ; 8$ e. ú, its entropy of fusion is $3.2 \mathrm{e}, \mathrm{u}$, , and its entropy of sublimation is 60.8 e, u_{0}

The diffusion coefficient of $P_{0} E$. in water at $20^{\circ} \mathrm{C}$ is $0.573 \mathrm{~cm}^{2} / \mathrm{s}$ at a normality of 0.4 and $0.589 \mathrm{~cm}^{2} / \mathrm{s}$ at a nornality of 0.2 .
P.E. is moderately soluble in cold water and freely soluble in hot water. Values of 5.6 mass $\%$ and 30.5 mass $\%$ were found in the previous work (1) at $20^{\circ} \mathrm{C}$ and $80^{\circ} \mathrm{C}$ respectively. The solubilities in aqueous solution found for Pure P.E. and for impure P.E. above $50^{\circ} \mathrm{C}$ were in good agreement with Cooke's data (75) and were correlated by the equation $\log _{10} x=5.072-\frac{1266}{T}$ where $x=$ mass $\%$ and $T=$ degrees Kelvin, which is shown in figure 3.2. Berlow et al (65) report that P,E. is only slightly soluble in alcohols and other organic liquids. The nucleation correlations (figure 3.2) of PaE in aqueous solution were found to be (1) :

Pure P.E. $\log _{10} x=2.289-\frac{633}{T}$
Impure P.E. $\log _{10} x=3.112-\frac{545}{T}$
I.C.T. (76) has reported the heat of combustion as $66 \mathrm{I} \mathrm{Kcal} / \mathrm{mol}$ and the equivalent conductance as 1.71 at $25^{\circ} \mathrm{C}$ and $0.06 \mathrm{~g} \mathrm{moI}. / \mathrm{dm}^{3}$.

According to Bradley and Cotson (77) the vapour pressure of P.E. ranges from $2.12 \times 10^{-5} \mathrm{~cm} \mathrm{Hg}$ at $106.4^{\circ} \mathrm{C}$ to $52.4 \times 10^{-5} \mathrm{~cm} \mathrm{Hg}$ at $135.1^{\circ} \mathrm{C}$ and is represented by the equation $\log p=15.17-\frac{7528}{\mathrm{~T}}$.

FIGURE 3.2.

EQUILIBRIUM AND NUCLEATION OF P.E. IN AQUEOUS SOLUTION (1)

trapzranure ${ }^{\circ} \mathrm{C}$

Nitta et al (78) stated the vapour pressure of P.E. is given by $\log p=14.525-\frac{6861}{T}$. Bright and Carson (79) give the heats of solution of P.E. in water as:
g mol P.E. $/ 500 \mathrm{~g}$ mol Water Differential molar heat of solution K cal/grol solute

0.381	-5.45
1.216	-5.17
2.117	-5.25
3.025	-5.34

Where the thermochemical sign convention is used, 1 ,e, the minus sign means absorption of heat.

Berlow et al (65) have recorded the variously reported melting points of P.E. as ranging from $256^{\circ} \mathrm{C}$ to $265.5^{\circ} \mathrm{C}$. They state that $\mathrm{P}_{\mathrm{o}} \mathrm{E}_{\text {。 }}$ exhibits a polymorphic transformation variously reported between $180^{\circ} \mathrm{C}$ and $192^{\circ} \mathrm{C}$. Wyier and Wernett (80) report that P.E. forms eutectic with $35 \% \mathrm{Di}-$ P.E. melting at $190^{\circ} \mathrm{C}$ 。

In the previous work (1) this eutectic was found with $40 \% \mathrm{Di}-$ P. $^{\text {. }}$. at $185.5^{\circ} \mathrm{C}$, and the binary melting system is show in figure 3.3 . where the temperature $\left({ }^{\circ} \mathrm{C}\right)$ is the correct temperature after the thermometar calibration. The discrepancy in the eutectic point could possibly be due to the 4% Formal analysed chromatographically as being present in

$$
\text { the } D_{i}-P_{c} E_{2} \text { source. }
$$

The Binary melting system Formal/Pure P.E. studied in the previous work (1) after extraction with n - propanol to obtain a 15% Formal composition is shown in figure 3.4. It was fownd that the Pure Ps. containing $<0.1 \%$ Formal and $<0.1 \%$ Di P.I. melted at $259^{\circ} \mathrm{C}$, and with

the 15% Formal present the melting point was depressed to $240.5^{\circ} \mathrm{C}$ ．
Pigure 3.5 shows the theoretical fluidisation and transport velocities for monodisperse spheres of density $1.48 / \mathrm{cm}^{3}$ in water． Although carections are necessary to allow for the P．E．crystal shepe and the solution properties，it serves as an indication of P．E．crystal fluidisation characteristios，

3.4 Ch iical Analysis

2.47^{9} introduction
Berlow et al（65）state that the analysis of technioal Pom。 generally includes the following determinations：E．E．content，melting range，hydroxyl content，ash content，acidity，moisture content，water solubility，colour and physical state．The method given for the determination of $P_{0} E$ ，content is the Benzel method based on the formation of the di－benzylidene aceial，a crystalline compound which is relatively insoluble in a dilute aqueous methamolic solution of hywochloric acid containing benzaldehyde．The aceral precipitate is flitered off and the $\% \mathrm{P}_{n} \mathrm{~F}_{0}$ ，calculated from the weight of filtrate．However the method is known to be inaccurate，and the analysis obtained for P。E．from the manufacturer＇s normally includes the main impurity concentrations Di－Pols anu Formal found by the acetal chromatographic method （section 3.4 2）and the P．E．content is then found by difference．

3．$厶_{2} 2$ Acetal Chomatographio Analysis

This method of analyois involved acetylation of the $P_{\Omega} D_{0}$ and examination of the resulting product by high temperature gas

FIGURE 3.5 Theoretical Fluidisation and Transport Velocities for Sphorea (Monodisperso)

chromatography. Acetylation of the P.T. is carried out by first refluxing the sample with anhydrous sodium acetate and acetic anhydride, washing with warm distilled water and then extracting the product with analar benzene. The benzene extracts are then dehydrated by shaking with anhydrous sodium sulphate, filtered and the benzene evaporated off. The resulting crystalline product is ground, dried in a desiccator and transferred to a gas-liquid chromatograph for examination of the isolated acetylated impurities. The chromatograph has a preheater temperature of $300^{\circ} \mathrm{C}$ and a column packed with silicone gurn E $301 / \mathrm{Embacel}$, ata temperature of $305^{\circ} \mathrm{C}$. The analysis gives a direct measurement of the Di - P.E. content, but as the Formal has not been obtained in a pure state to calibrate the chromatograph, the response factor is taken to be the same as that for Di - P. T. and so the amount present stated in terms of the equivalent amount of Di - P.E. (TablelAppendix A) a

3.4. 3. Formaldehyde Content

In the absence of a high teaperature chromatograph a' method was established in the previous work (1) for analysing the Formal content of P.E. in the absence of other formal impurities. This was done by finding the 'formaldehyde content' of P.E. by a colorimetric method based on the reaction of formaldehyde with chromotropic acid in concentrated. sulphuric acid when, on heating, an intense violet colour is formed. As this reaction is the result of both free formaldehyde adsorbed on the solid, and also of combined formaldehyde in the Formal an allowance was made for the effect of the adsorbed free formaldehyde by using the Sodium Sulphite method for the formaldehyde determination. As this
method involves the use of a very dilute acid only in the final titration, and as no heat is applied it was considered that this would not be sufficient to break down the Formal present.

The total formaldehyde content was first obtained by accurately weighing 1.000 g of the P.E. sample and dissolving in $100 \mathrm{~m}^{3}$ of distilled water. $1 \mathrm{~cm}^{3}$ of this solution was transferred with a pipette to a $50 \mathrm{om}^{3}$ volumetric flask, $1 \mathrm{~cm}^{3}$ of the cincomotropic reagent was added and then $10 \mathrm{~cm}^{3}$ of 95% sulphuric acid while cooling the flask in ice. The flask was heated in an oil bath at $90^{\circ} \mathrm{C}$ for 1 hour, cooled in cold water and made up to $50 \mathrm{~cm}^{3}$ with distilled water, continually mixing and cooling during dilution. The effect of heat was found critical and the calibration was standardised for a heating time of I hour at $90^{\circ} \mathrm{C}$.

The optical density was measured by comparison with a reagent blank treated in the same way, measured at a wavelength of 570 mgs in $\frac{1}{2} \mathrm{~cm}$ cells using a "SPEKKER" absorptiometer with Kodak No. 6 filters.

The absorptiometer was calibrated by treating $1 \mathrm{~cm}^{3}$ of known concentration formaldehyde solutions in the same way as the $1 \mathrm{~cm}^{3}$ of P,E. solution. The calibration is shown in figure 3.6.

The adsorbed free formaldehyde was then found using the Sodium Sulphite method, $50 \mathrm{~cm}^{3}$ of the sodium sulphite solution were placed in_a $500 \mathrm{~cm}^{3}$ Erlenmeyer flask. A few drops of thymolphthalein indicator were added and the solution neutralised with $\frac{N}{3100}$ hydrochloric acid until the blue colour had disappeared. The $99 \mathrm{~cm}^{3}$ of the original 1 g P.E. $/ 100 \mathrm{~cm}^{3}$ $\mathrm{H}_{2} \mathrm{O}$ solution remaining after the colorimetric test were transferred to the flask. The formaldehyde present reacts with the sodium sulphite to

form the formaldehyde - bisulphite addition product :
$\mathrm{HCHO}+\mathrm{Na}_{2} \mathrm{SO}_{3}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{NaOH}+\mathrm{CH}_{2}\left(\mathrm{NaSO}_{3}\right) \mathrm{OH}$
The resulting mixture was titrated slowly with the standard $\frac{N}{100}$ hydrochloric acid to complete discoloration. One cm^{3} of normal acid is equivalent to 0.03003 g Formaldehyde. The per cent formaldehyde in the sample is hence given by the equation:
$\%$ HCHO $=\frac{\text { acid titer } \times \text { Normality of acid } \times 3.003}{\text { weight of sample }}$
and HCHO $\mathrm{mg} / \mathrm{cm}^{3}$ solution $=\%$ НСНО $\times \frac{1}{10}$
The formaldehyde equivalent of the optical density obtained for the total formaldehyde content in the colorimetric test is known from the formaldehyde calibration of the instrument, figure 3.6. The effect of the adsorbed formaldehyde, found from the sodium sulphite method, on the optical density is the product of theratio of the absorbed formaldehyde to equivalent formaldehyde and the optical density. If this is subtracted from the optical density the corrected optical density is assumed to be due to Formal composition only, in the absence of other formals. The calibration of the Formal in terms of the corrected optical density is shown in figure 3.7.

This method however relies on the manufacturer's chromatographic analysis for Formal content for calibration, which itself is not a true concentration, being relative to Di -. P.E. Also any other formal _ impurities present in the P.E. would give a reaction which would be attributed to the presence of the usual Formal,

3.4.4. T. M. S. Chromatographic analysis

Suchanec (81) has proposed an improved chromatographic analysis for P.E. using the trimethylsilyl (T.M.S.) ether derivatives. The P.E. sample is mixed with a known weight of mannitol and placed in a flask together with pyridine and hexamethyldisilazane. The flask is placed on a hot plate and heated almost to boiling for 10 minutes. After cooling below $50^{\circ} \mathrm{C}$ trimethylchlorosilane is added, and mixed while warming before cooling to room temperature. The precipitate of ammonium chloride and pyridinium chloride is allowed to settle, and a sample is taken and introduced into the chromatographic column at $125^{\circ} \mathrm{C}$. The column temperature is programned at a rate of $13^{\circ} \mathrm{C}$ per minute to a maximum temperature of $326{ }^{\circ}$, and held isothermally for 3 minutes at $326^{\circ} \mathrm{C}$ 。 Although the 'Formal' in the P.E. sample has not yet been isolated the response factor for the chromatograph can be found by using the known additions of mannitol as a reference, and thus finding the mass $\%$ composition of Formal impurity, A similar impurity was found by Suchanes which he labelled bis- P.E. monoformal (as did Salkind et al (71) and Wiersma et a. (72).

3.5. Geystal Growth

During the final production stages in the manufacture of P.I. the process solution is cooled in a batch crystaliiser. This results in a product consisting of agglomerates of a few large crystals and a large number of very small ones, making it 'dusty' and unpleasant to handle. In the previous work (1) it was found that the product could be greatly
improved even with batch crystallisations by controlling the growth temperature. This was developed to obtain good crystals with few agglomerates which were classified into sieve fractions for use as seed in the seeded stirred cell growth experiments. The method used was to cool a hot concentrated solution to its nucleation temperature, stir at this temperature for 2 hours and filter off the product crystals. These were washed with ice cold water and then with acetone before drying in an oven at $100^{\circ} \mathrm{C}$.

Attempts to obtain growth rate data from small scale fluidised beds in the previous work (1) failed, mainly because of agglomeration occuring during the experiments. This was probably because too small a seed size was used, $(64-75 \mu)$ for which it was difficult to obtain satisfactory fluidisation conditions in the $\frac{5}{8}$ in $I_{a} D_{e}$ crystalliser tube. The method used, therefore, was to follow the decrease in solution concentration of stirred cells seeded with crystals of a known veight and size analysis. This was done using an immersion refractometer graduated in \% sugar in intervals of 1% (which could be estimated to 0.1% with ease). The growth rate constante, K, for each interest were calculated assuming a first order growth with respect to supersaturation (c-cos), where $\frac{d c}{d t}=-\mathbb{K A}\left(c-c_{\infty}\right)$. For this purpose the approximation $A_{2}=A_{1}\left(\frac{M_{2}}{M_{1}}\right)^{\frac{2}{3}}$ was used which is only true for a monodisperse system, where the average crystal size equals the size of the crystal of average area, which also equals the size of the crystal of average weight. Although a narrow sieve fraction of crystals was used as seed, the initial size analysis used was that after the first five minutes atirition under the
conditions of the experiment in a saturated solution: It was found that for the seed crystals in a saturated solution all the attrition occured during this first five minutes. The size analysis carried out with the Coulter Counter then showed a fairly wide size distribution, so the area determinations for each interval can only be regarded as an approximation. The results for the Batch A and Purified Batch A solutions seeded with 2 g of seed stixred at 500 r.p.m, are shown in Table 149 , Appendixe E The values of the growth rate constant K were averaged with the exception of:
a) Results including the first 25% increment on the initial mass, because these were considered due to a. repairing process of damaged attrited crystals.
b) Results where the refractive index scale, $n<n_{80}+0.5$ Indicated \% Sugar, as the accuracy would be too dependent on the accuracy of the equilibrium value.
c) Results where the time, $t,>1500$ minutes as the crystals could not be assumed to undergo no further attrition after this time.

Average results, $\overline{\mathrm{K}}$, are plotted as $\log \overrightarrow{\mathrm{K}}$ vs $\frac{1}{\mathrm{~T}}$ in figure 3.8 . and are correlated by the following equations for $80^{\circ} \mathrm{C}>T_{0}>50^{\circ} \mathrm{C}$: Batoh A (4.7% Formal, < 0.1% Di - P.E.)

$$
\log _{10} \overline{\mathrm{~K}}=13.401-\frac{6710}{\mathrm{~T}}
$$

where \mathbb{T} is in degrees Kelvin.
with an activation energy for growth of $30.65 \mathrm{~K} \mathrm{cal} / \mathrm{g} \mathrm{mol}$, and

FIGURE 3.8.

Purifi.ed Batch A (<0.1\% Formal, < 0.1% Di. - P.E.)

$$
\log _{1.0} \widetilde{\mathrm{~K}}=5.770-\frac{4025}{T}
$$

with an activation energy for growth of 18.4 K cal/ g mol.
These indicated surface integration control for both materials under these conditions.

The limitations of this work were realised however as being mainly due to the limitations of the refractometer, and a more accurate rerraciometer would be necessary to obtain more reliable results. It was also realised that many parameters needed to be studied, particularly low crystal/solution relative velocities, temperatures $\left\langle 50^{\circ} \mathrm{C}\right.$, effect of seed size distribution, and impurity content, and effect of $\mathrm{Di}-\mathrm{P} . \mathrm{E}_{\text {. }}$ in the mother liquor.

SECTION FOUR.

BBMCH SCAIE CRYSTALIISATION APPARATUS.

4.1. Introduction.

In most crystallisation processes the crystal growth proceeds by the two consecutive steps: diffusion of molecules to the crystal surface, and integration of the molecules into the crystal lattice. In order to study these steps individually it is necessary to try to eliminate one of them. If the solution is stirred sufficiently vigorously the repeated acceleration and deceleration in the turbulent eddies can give a laminar film around the crystal considerably thinner than that due to terminal velocity under gravity, so that in the limit the growth process should be controlled only by the surface integration step. Stirred cells (section 4.4) were used to examine this process.

The diffusional resistance when significant can be studied by varying the crystal/solution relative velocity in a controlled manner. One method of doing this used by Mullin and Garside (50), is to hold a single crystal stationary in a tube and to meter the solution rate through it. However it was not found possible to grow single orystals of reasonable size from the impure mother solutions of interest. This problem with P.E. crystals was also encountered by Whetstone (82). The method used, therefore, to study the effect of the relative crystal/ solution velocity on the growth rate was to meter the solution flow through a fluidised bed of crystals (Section 4.2.)

As indicated above crystals in a vigorously stirred suspension are not at a relative velocity equal to their terminal falling velocity, and

Bransom et 2.1 (47) found that this increase in growth rate with stirrer speed in the diffusion controlled regime was independent of seed size. This was attributed to "homogeneous isotropic turbulent eddies". In a transition from diffusion to surface integration growth rate control in a. stirred cell, a critical stirrer speed might be obtcined for this transition point for which the particular crystal/solution relative velocity would be unknown. Although this transition point might be observed also in the fluidised bed of crystals, the relative velocities studied will, in general, be considerably lower than in a stirred vessel and if the transition occurs at a high relative velocity a large seed size would be necessary with a fluidised bed. A possible method of obtaining higher know relative velocities is to utilise the terminal velocity of crystals under "free fall" conditions and to study the growth rate with respect to crystal size which is a known function of velocity (figure 3.5.). A critical crystal size equivalent to the terminal falling velocity at the transition relative velocity should then be obtained. Ideally this would require an extremely long sedimentation tube, but in practice an attempt was made to overcome this problem by constructing a "Repetitive Inversion Sedimentometer" (section 4.3.).
4. 2. Fluidised Bed Apparatus.
4.2. 1. Preliminary Design

The apparatus is shown in figure 4.1. and as far as possible was built from "Quick-fit" ground glass parts. The internal diameter of the

FIGURE 4.1.
Preliminary Fluidised Bed Apparatus

crystalliser (C) was 1.80 in and the included angle of the cone base was ca. 90°. The downcomor in the crystalliser was fitted with a flexible seal and knee joint at Run No. F.C.19. which enabled agglomeration of crystals to be broken up. The capacity of the feed tank (A) was 1 dm 3 and contained a submerged glandless pump (P) fitted with a nylon filter over its intake. The solution flow rate was indicated by a Metric Series Rotameter (7 K) and a Bellingham and Stanley Immersion Refractometer (R./I.) indicated the solution concentration at the temperature measured by a thermometer (T.I) on the inlet line to the crystalliser. Temperature controlled water was circulated around the feed tank with the Townson and Mercer T.E. 3 thermostat circulator (I.C.1) which controlled to $\pm 0.01^{\circ} \mathrm{C}$ and around the crystalliser body (C) with a second T.U. 3 circulator (T.C.2).

A Hoffman clip on a rubber tube fitted to the crystalliser base allored the crystal product to be discharged for examination, in order to measure the growth obtained.
4. 2. 2. Solution concentration decay.

Because of the success of the refractive index change method for the growth rate study used in the agitated cells, and the previous difficulty of establishing a method for the increase in crystal size in a fluidised bed (1), it was thought that a method of concentration change using the property of refractive index should be possible using a fluidised bed with a closed system of circulating mother liquor. For this a crystal/mother liquor ratio of about $10 \mathrm{~g} / 500 \mathrm{~cm} 3$ would be necessary to obtain a reasonable rate of concentration decrease, with
the slow growth rate of P.E. The system shown in figure 4.1 was therefore adented to moduce the mother liquor hold up. The feed vessel (A) was changed to a jacketed vessel of 500 cm 3 capacity and the crystalliser (C) to a jacketed glass tube of $1 \frac{1}{4}$ in I.D. With a sintered gless disc as a support and distributor. The imersion (glandless) pump was used as before so as to prevent any contamination with grease from pumb glinds. The system was unsuccessful however due to the difficuity of having an air tight system with an immersion pump. It was found that with such a small hold up and slow growth rate, the evaporation loss was such that it more than compensated for the change in concentration due to crystal growth.

4. 2. 3. Modified Design.

The fluidised bed apparatus after final modification is shown in figure 4. 2. and 4. 3. Although measurement of growth rates from the solution concentration change proved unsuccessful it showed the advantage of using a glass sintered disc as a fluidised bed support and fluid distributor as opposed to the downcomer method used in the preliminary experiments. A uniform flow was obtained through the crystal bed with the sintered glass disc, whereas the downcomer had produced uneven flow with a moving bed portion at the walls making the system more susceptible to agglomeration. The preliminary experiments showed the method of meesuring the crystal mass increase preferable to measuring the increase of crystal size, but the discharge of product crystals after an experiment hed proved inefficient. Cell (C), figure 4. 2. was therefore designed so that all limbs could be easily detached and the product crystals could be

FIGURE 4.2.

weighed in-situ. The cell was jacketed and fitted with three B. 14 ground glass sockets; two in the cell jacket and one for the solution inlet to the tube. A rubber bung was fitted into the top of the tube, containing the outlet line, a stainless steel probe (D) to prevent agglomeration and a thermometer (T.I.3). A small reservoir was made within the cell jacket for the feed solution to attain the required cell temperature, which was controlled by a Townson and Mercer T.U. 3 circulating thermostat unit (T.C.2).

The feed vessel (A) of $2 \mathrm{dm}^{3}$ capacity was contrined in a water bath (E) controlled with an immersion coil attached to a Townson and Mercer T.U. 3 circulating thermostat unit (T.C.1). The water bath (E) was placed on a magnetic stirrer and hot plate unit (F) which maintained circulation in the bath and provided supplementary heat. The feed vessel (A) was fitted with a feed funnel, a vacuum line, an inlet line, a thermometer (T.I.1) and an immersion pump (P). Three metric rotameters (B) $584345 / \mathrm{E}, 7 \mathrm{~K}$ and 14 K were fitted with glass air jackets and three way glass valves served to direct the solution flow. A Bellingham and Stanley immersion refractometer (B / I) with prism $1 B$, indicated the solution concentration at the temperature mee.sured by the thermometer (T.I.2) . Heating tape controlled with a voltage regulator was used on lines between A and B, and B and C and all lines were well lagged. The inmersion pump (P) was connected via a voltage regulator to a voltage stabiliser improving the flow control. 4. 3. Repetitive Inversion Sedimentometer.

A jacketed brass cell was built, 2 in. internal diameter and

12 in. long with a refractometer fitted centrally through the side of the cell, to measure the change in concentration of a supersaturated solution containing growing crystals maintained essentially at their terminal falling velocity. As the water jacket was connected to a thermostatically controlled circulator it was necessary to invert the cell reversibly, and for this the pneumatic control, figure 4.4. was thought most suitable.

The operation of Cycle 1 is initiated when the tappet of the three way poppet valve B.1. is struck by the piston rod A.1. The main line air previously exhausting through $B_{0} 1$. is directed via the air flow regulator C.1. to dwell unit D.1. When the pressure in D.1. builds up to about 50 p.s.i.g. it is sufficient to operate the three way poppet valve ‥1. This in turn directs the main line air previously exhausting through E. 1. to operate the pilot piston of the Four Vay Piston Valve, F.

Air enters the pilot chamber of F moving the piston over and thereby reversing the main valve. Main line air is then directed to the rear-cushioned piston cylinder A.1. Operation of A.1. closes Cycle 1 and the main air lines in this cycle exhaust to atmosphere.

As the chain attached to the piston rod A.1. passed via a 4 in. pulley to rod A.2, the 6 in . stroke of the piston is sufficient to reverse the pulley one half a revolution and to operate the tappet valve B.2. and subsequently Cycle 2. The pulley was attached to a 12 in. cylindricol jacketed vessel of 2 in. bore with a refractometer fitted centrally. This enabled repetitive inversion of the cell at time intervals controlled by the air flow regulators C.

4. 4. Stirred Cells.

$$
\text { 4. 4. 1, Ce? } 1 \mathrm{~A} \text {. }
$$

This consisted of the standard Bellingham and Stanley in-line refractometer housing of Cell A of the previous work (1), which was a stainless steel cone frustum internal design mounted with the axis horizontal and having a water jacket fitted round this housing supplied with water from a Townson and Mercer T.U. 3 thermostat circulating unit. The refractometer used in the previous work (1) which indicated 0-40\% sugar and estimated to 0.1% sugar, was replaced with the more accurate Bellingham and Stanley immersion refractometer fitted with a 1 A prism with an arbitrary scale $0-105$ in intervals of 0.1 divisions (range $n_{D}=$ 1.3254 to 1.3664 which made it possible to read solution concentrations to ca. 0.025% P.E. without the need for estimation. The refractometer was screwed into a circular brass plate, designed so that the prism was off-centre in the cell and the light source from the illuminating window a.t the back of the cell was incident to the plane of the prism face and clamped to the front of the cell. It was found that water could leak past the prism/stainless sleeve joint and condense on the scale making it impossible to read. The joint was therefore sealed with a layer of epoxy resin glue. The cell was nounted in a frame with a sodium lamp behind. The lower port of the cell was sealed with a rubber bung having a glass tube and plug for draining purposes, fitted flush with the inside of the cell casting. A rubber bung fitted with a thermometer and with a hole large enough to accommodate a small stirrer with a three blade marine impeller 1 in. diameter ${ }^{\text {was }}$ inserted in the top人
port of the cell. The capacity of the cell was about 300 cm 3 . 4. 4. 2. Cell C

Although Cell A reproduced the hydrodynamic conditions of the previous work (1) and care was taken to obtain the optirmum angle of incidence oif the light source, it suffered from the de fect of having a long lignt path and consequently the image became obscured even with relatively low suspension densities. Also crystals could settle on the horizontal ledge by the illuminating window thus reducingthe effective surface area available for growth. Cell C was therefore constructed (figure 4.5) with the smallest practical light path through the suspension to avoid obscurity of light being caused by crystals, and the only horizontal surface being a small part of the annular gap where the glass prism joins the stainless steel sleeve. The cell was constructed of a 2 in. internal diameter copper tube with a conical base surrounded with a water jacket through which water was pumped from a Tormson and Mercer T.U.3. thermostat circulating unit. A Bellingham and Stanley imersion refractometer was used with a 1 B prism sealed to the stainless sleeve with an impact adhesive. The windows and refractometer were sealed to the tube by 0-rings of neoprene. A plug wes used to permit drainage of the cell, and a rubber bung fitted with a thermometer with a teflon bush for a stirrer fitted with a three blade marine impeller 1 in. diameter, was placed in the top. 4. 4. 3. Cell S

Repeated heating and cooling of CellC frequently weakened the seams of the water jacket causing leaking. Cells was therefore constructed,

Sectional Plan on $A-A$

(Half Full Size)

FIGURE 4.6
CBLL S

figure 4. 6., from solid brass of the same design es Cell C but of an overall longth of 12 in . to accommodate larger volumes of solution if required. The water jacket consisted of a slot about 2 in $x 1$ in bored dorm one side of the cell through which water was circulated from a Tomson and Mercer T. 0.3 thermostat circulating unit. A thermometer pocket was sealed into the side of the cell opposite the water jacket, and this, as with the refractometer and illuminating windor, was placed about 3 in . from the base so as to be covered when 250 cm 3 volumes of solution were used. A conical copper base with a draining plug was soldered to the cell base. A rubber bung was placed in the top with a teflon bush to acconmodate a stirrer with a three blade narine type impeller of about 1 in . diameter. The stirrer motor was fixed rigidly to the cell brass housing. A Bellingham and Stanley immersion refractometer was used with a 1 B prism sealed to the stainless sleeve with an epoxy resin. The cell was well lagged. 4. 4. 4. Cell G.

Cell G, figure 4.7, was made with similar dimensions to Cell C to obtain the same hydrodynamic conditions to observe suspension characteristics. However, because of the difficulty of clamping the refractometer horizontally to the glass cell a Y piece was made, as shown, to accomodate the prism such that the prism face was vertical and had the minimum of suspension to reduce the light transmission to the prism face. The height of the Y piece was such that the 250 cm 3 of solution covered the prism but did not reach the top, so that the prism/cell junction had only to minimise evaporation and need not be

GLASS CELL G
HALP FULL SIZE
water tisht. Allowance therefore had to be made for the solution expansion with temperature and also the hydrodynamic fluctuations with stirrer speeds up to 2000 r.p.m. The optimum position was found by tria. and error.

Because of the construction difficulties involved with an enclosed glass water jacket, an open water jacket was used with a Churchill constant volume thermostat circulator. A Bellingham and Stanley irmersion refractometer was used with a 1 A prism sealed to the stainless sleeve with an epoxy resin. A rubber bung was placed in the top of the cell with a thermometer fitted and a teflon bush to accommodate a stirrer with a 1 in. diameter 3 blade marine type impeller. Illumination was supplied by a sodium lamp and reflected at the optimum angle through the base of the glass water jacket by means of a mirror.

4. 5. Discussion.

Although it was originally thought necessary to construct the inverting sedimentometer to investigate the effect of the crystal terminal falling velocity on the crystal growth rate, it wes, found however that results with the fluidised bed apparatus were in reasonable agreement with those found in the stirred cells. This was so even at the higher temperature up to $70^{\circ} \mathrm{C}$ where the integration rate/diffusion rate ratio would be greatest. As diffusion control would be immediately apparent with a slower growth rate for the lower relative velocities in the fluidised bed, this indicated surface integration rate control for all conditions studied. So although the sedimentometer was constructed it was not used in this project as no extra information: was thought to be obtainable by this method for P.E.

SECTION FIVE

PENTAERYTHRITOL EQUILTBRIUM IN AQUEOUS SOLUTION

5. 1. Previous Work.

As the "Formal" impurity could be synthesised with
formaldehyde and P.E. in aqueous solution, and in view of the sequence of reversiole reactions proposed by Salkind et al (71) for the formation of bis - P.E. monoformal, the stability of the Formal in aqueous solution was studied (1). Any decomposition might be expected to affect the equilibrium (solubility) results. This was done by purging a concentrated P.E. (Batch A containing 4.73% Formal) aqueous solution, held at $90^{\circ} \mathrm{C}$, with a steady stream of nitrogen at $3 \mathrm{ft}^{3} / \mathrm{h}$ to drive off any formaldehyde formed. The solution concentration was kept constant by periodically adding water. Samples of the solucion were taken after 10,60 and $200 \mathrm{ft}^{3}$ of nitrogen had been used respectively (i.e. a cer about 70 hours total) and analysed by the "Formaldehyde content" method described in section 3.4.3. The results all agreed to within the limits of analytical accuracy (i.e. approx. $\pm 0.2 \%$ Formal.), whence it was concluded that the Formal does not readily decompose in aqueous solution up to at least $90^{\circ} \mathrm{C}$.

Equilibrium solubility of solute in solvent can either be achieved from undersaturation or from supersaturation. Attempts at achieving equilibrium quickly using ultrasonic irradiation in the previous work (1) failed because of the heat evolved from the ultrascnic probe raising the solution temperature. The ultrasonic
probe could not be used, therefoe, to attain equilibrium from undersaturation, but it was found to be a very effective nucleator for supersaturated solutions. Supersaturated solutions were therefore nucleated by ultrasonic irradiation and then stirred. Three methods of measurement of solution concentration were used: Specific gravity; refractive index; and weighing before and after evaporation of solvent. Spocific gravity measurements were found to be the most sensicive although they were limited to measurements essentially at room temporature. This technique was used to study the effect of the impurities on the rate of approach to equilibrium of a solution in a jacketed stirred vessel held at $25.0^{\circ} \mathrm{C}$. Aquevus solutions of ca. 17 mass $\%$ were made up and cooled to $25^{\circ} \mathrm{C}$. The supersaturated solutions were nucleated, stirred and periodic measurements of the solution specific gravity showed that equilibrium for both Fure P.E., and Pure P.E. + 2.0\% Di-P.E. solutions was achieved in less than 2 hours. It also indicated an enuanced solubility effect of Di-P.E. at this temperature of about 0.5 mass \% increase for 2.0 mass \% Di-P.E. Batch A (4.73\% Formal, <0.1\% Di-P.E.) solutions, however, nucleated and stirred in the same way took at least 8 hours to attain equilibrium and the value obtained differed by about 0.1 mass $\%$ concentration from the value cbtained from undersaturation. It was difficult to decide which was the actual equilibrium concentration as the values obtained overlapped according to whether they were approached from undersaturation or supersaturation. But it was noted that the presencs of this 4.73% Formal enhanced the solubility at this temperaiure by about 2% compared with Pure P.E.

This "overlap" phenomenon was further studied using refractive incex measurements of nucleated, stirred solutions using an imnersion refractometer capable of measuring concentrations of 0.1% P.E. with ease and estimating to $\pm 0.05 \%$ P.E. The overlap of about 0.1% solution concentration was again observed with Batch A solutions approached from undersaturation and supersaturation, at $70^{\circ} \mathrm{C}$ and $80^{\circ} \mathrm{C}$. However attempts to correlate the results using the 4 component system PoE./Di-PoE./Formal/Water were unsmccessful and the results appeared to depend on the nucleation temperature, the degree of supersatvacation, and whether the equilibrium was approached from supersaturation or undersaturation.

The other method used for the determination of the equilibrium solution concentration was the more conventional method of weighing the amount of solvent evaporated from a known weight of solution. Supersatureted solutions were nucleated and stirred in a thermostatically controlled oil bath for about 12 hours. Approximately $10 \mathrm{~cm}^{3}$ of solution was withdrawn through on immersion filter, weighed, evaporated in an oven, and reweighed. The method was unsatisfactory at high temperatures due to crystallisation occuring on transference to the crucible. Also readings were inaccurate due to the inherent difficuities involved in weighing hot liquid samples.

The equilibrium results for the three methods of solution concentration measurement were collected and plotted as log x vs $\frac{1}{T}$ where $\mathrm{x}=$ mass $\%$ and $\mathrm{T}=$ degrees Kelvin. A good agreement was found between the results for Pure P.E. with those of Cooke (75) who used P.E. of "better than 99.6% purity". A favourable agreement was also
found with the resul.ts of the impure P.E. $>50^{\circ} \mathrm{C}$. These results could be correlated by the equation (figure 3.2.)

$$
\log _{10} x=5.072-\frac{1266}{T}
$$

However below about $50^{\circ} \mathrm{C}$ the results for $i n_{1}$ ure $\mathrm{P} . \mathrm{E}_{\text {. showed }}$ a marked deviation from the above correlation indicating an enhanced solubility compared with Pure P.E. although the scatter was too great to obtain any correlation for the impurity effect.
5. 2. Refractometer Calibrations.

5.2.1. Reading Accuracy.

In the previous work (1) the refractometers were capable of measuring solution concentrations to ca. 0.1% P.E. and estimating to $\mathrm{ca} \pm 0.05 \%$ P.E. The refractometers used in this work however were the more accurate Bellingham and Stanley immersion refractometers with an arbitrary scale 0-105 in intervals of 0.1 divisions (range $n_{D}=1.3254$ to 1.3664). This enabled concentrations of ca. 0.025% P.E. to be measured ($\equiv 0.1$ divisions) and of ca. 0.012% P.E. to be estimated. In order to take full advantage of these new refractometers a new calibration was carried out.

The thermometers used were graduated in 0.1. deg. C and could be estimated to about 0.05 deg. C which was sufficiently accurate compared with the refractometer accuracy and the siope of the calibration curve (figure 5.2)

The steam point and the transition point of hydrated sodium sulphate were checked for one test thermometer and this found to be
within the reading accuracy of the expected values for total immersion of the thermometer. A.ll thermometers used in the experimental work were checked against this test thermometer. The correction for partial immersion of the thermometers, as used with the refractometers, is shown in figure 5.1., the results having been found experimentally in a stirred cylinder of water by comparison of a partially immersed and a totally irmessed thermometer. Also shown (figure 5.1) is the calculated correction obtained from the equation

$$
y=e^{\prime}\left(T_{0}-T_{s}\right) L^{\prime}
$$

assuming T_{s} varijes between $22^{\circ} \mathrm{C}$ and $30^{\circ} \mathrm{C}$. Where T_{s} is the mean temperature of the emergent stem; $\quad T_{0}=$ observed temperature ${ }^{\circ} \mathrm{C}$; $e^{\prime}=0.000156$ (apparent expansion of Hg in glass); $L^{\prime}=$ length of emergent mercury column expressed in degrees; and y is the correction to be added to T_{0}.

As T_{s} had to be estimated, corrections, y , for converting T_{0} to actual temperature are obtained by interpolating from the curve drawn through the experimental points.
5. 2. 2. Calibration.

Batch D material containing 1.0\% Di-P.E. and 5.5\% Formal was used for the calibration of "impure P.E.". Known concentrations ($\% \mathrm{~m} / \mathrm{v}$) were made up by accurately weighing out $(\angle \pm 0.0005 \mathrm{~B})$ the required amount of P.E. and washing this into a $250 \mathrm{~cm}^{3}$ pyrex volumetric flask. The volume was made up to $250 \mathrm{~cm}^{3}$ with distilled water taking care to eliminate air bubbles. The flask was warmed
until tlie P.E. had dissolved and cell C was brought up to above $80^{\circ} \mathrm{C}$. The hot solution was transferred to the cell and stirred at above $80^{\circ} \mathrm{C}$ to ensure dissolution of any nuclei formed during the acidition of the solution. The solution was cooled while stirring at a rate of about 1 deg. C / \min and readings of the refractometer scale (S) and temperature (T_{0}) were taken at intervals of about 0.5 scale divisions. Solution concentrations $(c, \% \mathrm{~m} / \mathrm{v})$ were used in multiples of 2.5\% for Batch D material and the experimental points plotted as observed, temperature T_{o}, vs Scale S are shown in figure 5.2. Interpolated data at 5 deg. C intervals of T_{0} from 20 to $75^{\circ} \mathrm{C}$ were computed to obtain isothermal correlations by the least mean squares method, the correlations found together with the standard deviations of the points are shown in table 2, appendix A. It can be seen that the second order polynomial, $c=F+B_{0} S_{0}+G_{0} S^{2}$ fits the data well for these temperatures with an average standard deviation of ca. $\pm 0.04 \% \mathrm{~m} / \mathrm{v}$. Iinear equations could be used with little loss of accuracy at the lower temperatures but the standard deviation at the higher temperatures increased to ca. 0.09%. The second order polynomial was therefore considered necessary and sufficiently accurate for the present work. These calibrations were used with all the impure comercial batches of P.E. used. The chemical analyses of these materials are shown in table 1 , appendix A and are considered sufficlently comparable not to require individual calibrations.

A general overall equation for use at intermediate
temperatures which fitted the data well in the metastable zone was obtained, but being inverted it is necessary to solve a quadratic in

order to extract $c:$

$$
S=20.3646+3.5622 c+0.0002313 c^{2}-0.1697 T_{0}-0.0035888 T_{0}^{2}
$$

where T_{Q} is the observed temperature $\left({ }^{\circ} \mathrm{C}\right), \mathrm{S}$ is the refractometer scale of cell C , and c is the solution concentration ($\% \mathrm{~m} / \mathrm{v}$).

The standard deviation of this expression from the data points in the metastable zone is ± 0.171 scale divisions, or ca. $\pm 0.04 \% \mathrm{~m} / \mathrm{v}$.

The calibration was repeated with purified P.E. (<0.1\% Di-P.E., < 0.1% Formal) using solution concentrations in $5.0 \% \mathrm{~m} / \mathrm{v}$ intervals. The number of points $\angle 40^{\circ} \mathrm{C}$ were limitec due to the higher nucleation temperature of the pure solutions, so the impure P.E. calibration was considered more accurate below this temperature. The results were plotted as $T_{0}\left({ }_{C}\right)$ vs refractometer scale (S) (figure 5.3) and the isothermal data at 5 deg. C intervals of T_{0} interpolated. These interpolated values were used to compute the first and second order polynomial equations, by the method of least mean squares. The results are show in table 3, appendix A.

It should be noted that all calibrations are in terms of the observed temperature $T_{0}{ }^{\circ} \mathrm{C}$ (i.e. partially immersed thermometer) and scale S (i.e. the refractometer scale of cell C). This was found to be the mosi convenient for use with the growth experiments, and corrections for partial immersion of the thermometer were carried out where necessary,

5. 2. 3. Instrument Calibrations.

The refractometer calibration in terms of $\% \mathrm{~m} / \mathrm{v}$ P.E. was carsied out using cell C with a 1 B prism in refractometer No. 602905 , i.e. scale S. In order to caljbrate the readings in terms of actual refractive index to make them more universally applicable further calibration was necessary. The refractometer with the 1 B prism of cell C was calibrated against water (n_{D} at $20.0^{\circ} \mathrm{C}=1.33300$) and acetone (n_{D} at $19.4^{\circ} \mathrm{C}=1.35890$) and found to have a 1.20 scale division zero displacement, i.e. Scale S 范Zeroed I B + 1.20.
A.l. refractometers used on other apparatus were zeroed using distilled water and then readings converted to scale S using the equivalence table 4 , appendix A. This then enabled use of the refractometer calibrations for conversion to P.E. concentration. Prisms used for the experimental apparatus are shown below:-

APPARATUS	PRISM
Cell C	Scale S \equiv Zeroed $1 B+1.20$
Cells A and G	Zeroed 1 A
Cell S and Fluidised bed appanatus	Zeroed 1 B

5. 3. Equilibrium Results.

5.3.1. Impure P.E.

In view of the anomalous results obtained with the impure P.E. in the previous work (1), where equilibrium values obtained from undersaturation and supersaturation appeared to overlap, this
investigation was continued with the more accurate refractometers simulating growth experiments (section 7.2) by using tine same total. quantities of P.E. and water, and approaching equilibrium from dissolutiow of the P.E. No "surface reaction" of the type encountered by the integration of the molecules into the crystal lattice during crystal growth would be expected in a dissol tion process. It was often observed during growth experiments that growth apparently ceased some $0.5 \% \mathrm{~m} / \mathrm{v}$ from the equilibrium concentration, and these "apparent equilibrium values" were dependent on the growth rate of the experiment. Dissolution, however, is thought to be only a diffusional process, and equilibrium should therefore be attained more rapidly than from growth, without the inhibiting surface reaction effect.

Tests were done primarily to find the equilibrium value relevant to a particular growth experiment and for this purpose the exact amcunts of solute and solvent are required to obtain the right impurity concentration. Batches D (1.0% Di-P.E., 5.5% Formal $)$ and F $(<0.1 \%$ Di-P.E., 5.5% Formal) were used to find the effects with and without Di-P.E. respectively. All solutions in the seeded growth experiments were made up to $250 \mathrm{~cm}^{3}$ total volume with distilled water at $20^{\circ} \mathrm{C}$. The required mass of P.E. for the dissolution lest was therefore found from the equivalent initial growth un concentration, $c_{0} \% \mathrm{~m} / \mathrm{v}$, (i.e. $\mathrm{m}_{0}=2.50 \times \mathrm{c}_{0}$) and adding the seed mass used for that particular growth test (usually 2.0 g).

$$
\therefore \text { Mass of P.E. }=2.50 c_{0}+\text { Seed. }
$$

is then found from

$$
V=250-\frac{2.50 c_{o}}{1.396} \mathrm{~cm}^{3}
$$

where 1.396 is the P.E. density.
The exact weight of P.E. was washed into cell S held at the required temperature using the measured volume of water required (Vcm^{3}). The mixture was stirred and readings of the refractometer scale against time were taken after the solution attained the temperature of the experiment (this usually took about 20 min .). The readings were usually found to go through a maximum before attaining an equilibrium value. This was studied in more detail at $60^{\circ} \mathrm{C}$. The results are shown in figure 5.4. Batch F with $<0.1 \%$ D:-P.E. is shown to attain a markedly enhanced solution concentration initially which then decreases slowly to an equilibrium value. The enhanced value obtained and the equilibrium value were both found to depend on the solute concentration present (cf.D.F. 2 and D.F.3.). However with Batch D containing 1.0\% Di-P.E. the degree of initial enhancement was very much reduced and the equilibrium value was attained very much more rapidly. Again the equilibrium concentration was found to depend on the total P.E. concentration present, but it was found that the equilikium value attained was the same for both Batches D and F for equivalent total P.E. concentrations. It was therefore decided to use Batch D for all equilibrium concentrations required.

An isothermal dissolution test was therefore carried out, D.F.4, a repeat of D.F.2, by first warming the water to the test temperature and then adding the P.E. However a very similar result was obtained to D.F.2. As the P.E. could not be washed into the
cell with the isothermal test it was not as accurate as the previous method and dissolution tests were continued as before using Batch D material to obtain equilibrium quickly. At the lower temperatures this concentration enhancement was greater than at $60^{\circ} \mathrm{C}$ (for Batch D) and the maximum values attained (where recorded) are given in table 5, appendix A.

The equilibrium values obtained at $60^{\circ} \mathrm{C}$, recorded as refractometer scale S, are plotted ∇ s total P.E. \% mass fraction in figure 5.5. Other values of the equilibrium scale, for use with the growth rate experiments at this temperature have been interpolated. The equilibrium results for all the impure P.E. dissolution tests are shown in table 6, appendix A. As the equilibrium values depend on the amount of P.E. present the results for an equivalent initial growth run supersaturation of about $c_{0}-c_{\infty} \bumpeq 4 \%$ (the usual supersaturation used) have been plotted in figure 5.6. It can be seen that below about $48^{\circ} \mathrm{C}$ the results are greater than that expected from the $\log _{10} x$ vs $\frac{7}{T}$ correlation. The results $\geqslant 50^{\circ} \mathrm{C}$ only, for a supersaturation of about $\Delta \mathrm{c}=4 \%$, were correlatec. vising a least mean squares analysis by the equation:

$$
\log _{10} x=5.073-\frac{1.265}{T}
$$

where $x=$ equilibrium concentration mass $\% ; T=$ degrees Kelvin.

> 5. 3. 2. Pure P.E.

Although results in the previous work (1) were in good agreement with Cooke's data (75), a more accurate determination was (Solution Equilibrium Concentration $\bumpeq 20 \% \mathrm{~m} / \mathrm{v}$)

P.E. EQUILIBRIOM TN AQUEOUS SOLUTION
CONCHNTRATION x (\% MASS FRACTION)
10

necessary for use with the more accurate refractometers used in this work. At first dissolution tests were done as for the impure material but the equilibrium results obtained were found to apparently depend on the amount of material used, which was inexplicable.

A method was devised, therefore, carried out on the same samples as used for the Pure P.E. calibration, using the nucleated solutions and approaching equilibrium first by growth at one temperature and then by dissolution at a higher temperature. This was done by lowering the solution temperature after nucleation to the nearest decade (e.g. $70,60^{\circ} \mathrm{C}$ etc.) and utilising the high surface area of the prolific nuclei to rapidly deplete the available supersaturation. After equilibrium was attained the temperature was raised and the equilibrium values at higher temperatures obtained by dissolution. By repeated tests from growth and dissolution at different temperatures using the calibration solutions (at 5\% concentration intervals) it was shown that the equilibrium value was the same approached from growth or dissolution and regardless of the amount of P.E. used. The original dependence on the amount of material found in the early dissolution tests was thought to be due to an "Ostwald ripening" effect, i.es an enhanced solubility of fine particles (section 2,.1.). This was likely as the Pure P.E. used was finely ground with a pestle and mortar for easy handling, creating a lot of fine material. Whereas the nucleation tests would produce a fairly uniform macro-crystal product.

The results are shown in table 7, appendix A, and have been
correlated using a least mean squares analysis (figure 5.6):

$$
\log _{10} x=4.980-\frac{1242}{T}
$$

where $x=$ equilibrium concentration, mass $\% ; T=$ degre gh $_{k} K e l v i n$.

SECTION SIX

EXPERIMENTAL AND COMPUTATIONAL METHODS

6. 7. Shape Factor.

As there is some discrepancy in the literature on the crystal structure of P.E., it was thought necessary to grow and measure single P.E. crystals and to show the effect of the occasionally occuring (001) faces and of the impurities on the shape factors. Figure 6.1A shows a sketch of a P.E. crystal with the indices of the main faces marked and also of the minor ones which sometimes appear.

6. 1. 1. Measurements on Pure P.E. Crystals.

There was little difficulty in growing P.E. crystals on the end of a wire in mother solution which was chromatographically pure, and measurements were made on crystals of ca. 0.25 inches grown under various conditions of super saturation and temperature. These crystals were transparent and often had a slightly rectangular, as opposed to square, bipyramid base which resulted in rectangular (001) faces which were often observed. When the (001) faces were absent these crystals then had knife edges at their tops and bottoms. The (110) faces were hardly ever observed and the (100) and (010) and (111) faces, although theoretically possible, were never observed. It was assumed that trace impurities were the cause of these erratic occurrences.

A typical crystal grown in "pure" P.E. at $60^{\circ} \mathrm{C}$ is shown in

FIG. 6.I.A: PICTORIAL PROJECTION

Figure 6.2. The departure fromsquareness of the base was $\pm 1.2 \%$ and $c / a=1.39 \pm 2.5 \%$ (i.e. 1.356 to 1.426). This gives the lengths of the pyramid edges as 0.99. and the (normal) angle between the (101) and (107) faces as $71.5 \pm 1 \cdot 3^{\circ}$. For practical purposes and within experimental error the crystal may therefore be considered to be of the cubic system section 3. 1., with the (100) faces taken as true equilateral triangles with the normal angle between any two faces of 70.53°. This has been done in Figure 6.1B which also gives the crystal lying in its stable position as it would appear under a microscope: 亡.e. a regular pentagon of unit size across the pyramid base and 1.154 units across any pair of opposite corners.

6. 1. 2. Impure P.E. Crystals.

When crystals grown from impure (Batch C) P.E. were examined under the microscope there was no apparent departure from the square base bipyramid shape. Crystals larger than ca. 0.1 mm of good quality were rare and the faces of these usually appeared to have smaller crystals growing from them (as opposed to simple agglomeration). This is presumably due to faults in the lattice caused by impurity inclusions. An attempt to grow an impure civstal to reasonable size prowed to be very difficult; the product was always opaque and it was not possible to prevent prolific outcrops of small crystals from the faces by temperature cycling.
6. 1. 3. Shape Factors.

Taking the characteristic crystal dimensions, L, as the

FIGURE 6.2.
"PURE" P.E. CRYSTAL
(grown at $60^{\circ} \mathrm{C}$)

length of the pyramid base, (Figure 6.1B), then for the ideal crystal:

$$
\begin{aligned}
& \text { crystal volume, } v_{p}=\sqrt{\frac{2}{3}} L^{3}=0.4714 L^{3} \\
& \text { crystal surface, } a_{p}=2 \sqrt{3} L^{2}=3.4644 L^{2}
\end{aligned}
$$

For the crystal Figure 6.2, allowing for the missing points(which average ca $0.12 \angle$ at each end of the c - axis):

$$
\text { crystal volume, } \begin{aligned}
v_{p} & =(0.4714-0.0023) \angle^{3} \\
& =0.4691 \angle^{3} \\
\text { crystal surface, } a_{p} & =(3.4644-0.0422) \angle^{2} \\
& =3.4222 \angle^{2}
\end{aligned}
$$

Hence the missing points caused by the (001) faces represent 0.5% of the "ideal" crystal volume and 1.2% of the surface area. As this error is variable but small, shape factors will hereafter be based on the ideal crystal.

The Volume shape factor, \varnothing, will be defined by:

$$
v_{p}=\pi 1 \varnothing \frac{L^{3}}{6}
$$

Then $\frac{\overline{11}}{6} \varnothing=0.4714$.

$$
\phi=0.900
$$

The Area shape factor, $\hat{\theta}$, will be defined by:

$$
a_{p}=I I \theta L^{2}
$$

Then $\overline{I I} \theta=3.4644$

$$
\theta=1.101
$$

6. 2. Size Analysis.

The Coulter Counter size analyser as used in the previous work (1) proved to be a useful method of size analysis. The basic assumption in its operation being that if the particle diameter is kept $<40 \%$ of the orifice diameter, then the electrical response due to the particle is directly proportional to the volume of the particle. However, in fact it is show, section 6.2.1.2., that a significant correction is necessary depending on the particle / crifice diameter ratio even below the stipulated limit. It is also shown in 6.2.1.2. that the effect of the particle shape is very small, and the error involved in obtaining an equivalent spherical diameter for attrited seed crystals from a stirred growth cell due to variable shape factors is considered minimal. This instrument also had the advantage of being able to measure small samples of suspension without the need for filtration of the suspension. However for crystal products it was often necessary to examine samples to determine the amount of agglomeration, and in the event of secondary nucleation or excessive attrition to obtain a size analysis over a wide range. For this purpose an Image Shear Microscope was used. As this involved a visual measurement of some chosen characteristic dimension the method
was unsuitable for attrited seed crystals with morphological variations. The Coulter Counter size analyser was therefore used for seed crystals and the Image Shear Microscope for product crystal measurements.

6. 2. 1. The Coulter Counter size analyser.

> 6. 2. 1. 1. Description.

The Coulter Counter determines the number and size of particles suspended in an electrically conductive liquid by passing a measured volume of suspension through a small orifice having an immersed electrode on either side of it.

Consider an element of cross-sectional area, a, thickness $8 f$, of a particle length $2 \mathscr{C}$ as it is orientated in the axis of the orifice. Then the change in resistance $\delta \Delta R_{c}$ due to this element is given by (83):

$$
\delta \Delta R_{c}=\frac{-\Omega_{0} a \delta L}{A_{c}^{2}} /\left(1-\frac{a}{A_{c}}\right) \quad \ldots \quad 6.1
$$

where A_{c} is the orifice area normal to the flow axis, and Ω_{0} is the electrolyte resistivity.

The basic assumption of the Coulter Counter principle is that if the particle diameter is kept $<40 \%$ of the orifice diameter then the
electrical response can be considered to be directly proportional to the particle volume, v_{c}

$$
\text { i.e. } \Delta R_{\Omega} \bumpeq-\frac{\Omega}{0}_{A_{c}^{2}}{ }^{v_{c}} \text {...... }
$$

and an equivalent spherical diameter D_{C} can then be calculated. The necessary correction for this simplifying assumption is shown, section 6.2.1.2.

As the particles pass through the orifice the voltage pulses they produce are amplified and fed to a threshold circuit having an adjustable threshold level. If this level is reached or exceeded by a pulse, the pulse is counted. By pre-calibrating the threshold circuit and taking a series of counts at selected threshold levels, data are obtained for plotting a cumulative size distribution. Before plotting the counts are corrected for coincident particle passages and for the background count due to the extraneous particles already present in the electrolyte. To keep the coincidence corrections at a moderate level it is necessary to have a very high dilution. For the PoE. crystals counted this was found to be approximately 0.01 g of crystals in $250 \mathrm{~cm}^{3}$ of electrolyte. The electrolyte used was first filtered through a 0.45μ porosity Millipore membrane filter to keep the background count as low as possible. An aqueous saline solution saturated with P.E. at $25^{\circ} \mathrm{C}$ was used as electrolyte and the calibration done over a temperature range of $14^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$ (appendix B) to allow for room temperature variations.

6.2.1.2. Particle Size Effect.

The simplified integration of equation 6.1.to give equation 6.2. Gives rise to an error dependent on the particle size and shape. Allen (84) has shown that for a rod-shaped particle integration of equation 6.1. gives:

$$
\Delta R=-\frac{\sim_{0} v_{p}}{A_{c}^{2}} /\left(1-\frac{a}{A_{c}}\right)
$$

where v_{p} is the volume of the rod $\left\langle v_{p}=2 a \cdot l\right)$. The true equivalent spherical diameter, D, of the rod given as $D_{c}=40 \mu$ with a 100μ orifice (ie. the 40% diameter ratio limit) iss therefore 37.1μ, ie. 7.8% error. Similarly for spherical particles Allen (84) showed an error in D of 3.6% at the 40% diameter limit with the 100 j orifice diameter tube. The following adjustment is therefore made to the calculated Coulter Counter diameter D_{c} to allow for the size and shape of the P.E. tetragonal bipyramid crystal. Two possible crystal orientations were considered:

ORIENTATION A: Pyramid Base perpendicular to Orifice Axis.

Consider an element of side h, area a, and thickness $\delta \ell$ perpendicular to the orifice axis at a distance \mathscr{C} from the pyramid base.

$$
\begin{gathered}
\frac{h}{L}=\frac{0.707 L-l}{0.707 L} \\
\therefore h=\frac{0.707 L-l}{0.707} \\
a=h^{2}=\left(L-\frac{l}{0.707}\right)^{2} \\
l=0.707 L
\end{gathered}
$$

From equation $6.1 \quad \Delta R=\frac{-2 \Omega_{0}}{A_{c}^{2}} \int_{0}^{\ell=0.707 L} \frac{h^{2}}{1-\frac{h^{2}}{A_{c}}} d \ell$

$$
\begin{aligned}
& \text { i.e. } \Delta R=\left.\frac{-2 \Omega_{0}}{A_{c}^{2}} \int_{\ell=0}^{\ell=0.707 L} \frac{(L-\ell}{0.707}\right)^{2} d \ell \\
&\left(1-\frac{\left(L-\frac{l}{0.707}\right)^{2}}{A_{c}}\right)
\end{aligned}
$$

and equating with equation 6.2

$$
\left.\begin{array}{rl}
v_{c} & =0.707 A_{c}^{\frac{3}{2}} \ln \left(\frac{1+\frac{L}{\sqrt{A_{c}}}}{1-\frac{L}{\sqrt{A_{c}}}}\right)-1.414 A_{c} L \ldots 66 \\
\therefore \frac{v_{c}+1.414 A_{c} L}{0.707} A_{c}^{\frac{3}{2}} & =\ln \left(1+\frac{L}{\sqrt{A_{c}}}\right. \\
1-\frac{L}{\sqrt{A_{c}}}
\end{array}\right)
$$

Put $Y=\frac{v_{c}+1.414 A_{c} L}{0.707 A_{c}{ }^{\frac{3}{2}}}$
\qquad
As $v_{c}=\frac{I D_{c}^{3}}{6}$, the solution of this equation for any given
D_{c} and orifice area A_{c} is conveniently found by computation of the Newton-Raphson approximation method (85). This involves equating the function to zero, differentiating the function, $f^{\prime} L$, and obtaining the more approximate solution $\angle(2)$ from $L(2)=L(1)-\frac{f(L)}{f^{\prime}(L)}$ In this case the initial \angle tried is the original Coulter Counter
diameter D_{c} which serves as an approximate solution. The polynomial is terminated at the $9^{\text {th }}$ term.

Hence $f(L)=\frac{1+\frac{L}{\sqrt{A_{c}}}}{1-\frac{L}{\sqrt{A_{c}}}}-1-Y-\frac{Y^{2}}{2!}-\ldots \ldots \frac{-Y^{8}}{8!}$

If B, a constant $=\frac{1.414 A_{c}}{0.707 \mathrm{~A}_{\mathrm{c}}{ }^{\frac{3}{2}}}$
$f^{\prime}(L)=\frac{\frac{2}{v^{\prime}}}{\left(1-\frac{L}{\sqrt{A}}\right)^{2}}-B-X B-\left(\frac{x^{2}}{2!}\right) B-\left(\frac{x^{3}}{3!}\right) B \ldots\left(\frac{x^{2}}{7!}\right) B$

$$
L(2)=L(1)-\frac{f(L)}{f^{\prime}(L)}
$$

which is repeated until $\frac{f(L)}{z^{\prime}(L)}<0.01 \mu$. The computer program for a 280μ orifice to find \angle from values of D_{c} at 1η intervals is shown appendix C.

Hence assuming $\phi=0.900$
D, the true equivalent spherical volume diameter $=\left(0.900 L^{3}\right)^{\frac{1}{3}}$

ORIENTATION B: Pyramid Base parallel to Orifice Axis and one edge perpendicular to it.

Consider A Quarter segment of the crystal; with the origin at the crystal centre as below:-

$$
\begin{gathered}
\frac{a}{2}=\frac{1}{2} L .0 .707 L-\quad \frac{1}{2} Z_{h} \\
\frac{Z}{h}=\frac{0.707 L}{L} \quad \therefore \quad h=\frac{Z}{0.707} \\
\frac{Z}{0.707 L}=\frac{\ell .2}{L} \quad \therefore \quad Z=1.414 \ell \\
\therefore \quad Z_{h}=2.828 \ell^{2} \\
\therefore a=0.707 L^{2}-2.828 \ell^{2}
\end{gathered}
$$

From equation 6.1

$$
\begin{aligned}
& R=\frac{-2 n_{0}}{A_{c}^{2}} \int_{\ell=0}^{\frac{1}{2} L} \frac{a d \theta}{1-\frac{a}{A_{c}}} \\
& =\frac{-2 n_{0}}{A_{c}^{2}} \int_{0}^{\frac{L}{2}} \frac{0.707 L^{2}-2.828 \ell^{2} d \ell}{1-\frac{\left(0.707 L^{2}-2.828 \ell^{2}\right)}{A_{c}}}
\end{aligned}
$$

$$
\therefore \Delta R=-\frac{\Omega_{0}}{A_{c}^{2}}\left\{-A_{c} L+\frac{A_{c}^{2}}{0.707 L \sqrt{\frac{A_{c}}{0.707 L^{2}}-1}} \tan ^{-1}\left(\frac{1}{\sqrt{\frac{A_{c}}{0.707 L^{2}}}}\right)\right\}
$$

and equating with equation 6.2 :

$$
v_{c}=-A_{c} L+\frac{A_{c}^{2}}{0.707 \angle \sqrt{\frac{A_{c}}{0.707 L^{2}}-1}} \tan ^{-1} \frac{1}{\sqrt{\frac{A_{c}}{0.707 L^{2}}-1}}
$$

As $\nabla_{c}=\frac{I I D_{c}^{3}}{6}$ the solution of this equation for any given D_{c} and orifice area A_{c} is again conveniently found by computation of the Newton-Raphson approximation method as used with Orientation A.

$$
\begin{aligned}
\text { Hence } f(L)=\frac{0.707 V_{c} L}{A_{c}^{2}} & \left(\frac{A_{c}}{0.7 L^{2}}-1\right)^{\frac{1}{2}}+\frac{0.707 L^{2}}{A_{c}}\left(\frac{A_{c}}{0.707 L^{2}}-1\right)^{\frac{1}{2}} \\
& -\tan ^{-1}
\end{aligned} \frac{1}{\left(\frac{A_{c}}{0.707 L^{2}}-1\right)^{\frac{1}{2}}}
$$

$$
\begin{aligned}
\therefore f^{\prime}(L) & =\frac{0.707 V_{c} L}{A_{c}^{2}}\left(\frac{-A_{c}}{0.707 L^{3}}\right)\left(\frac{A_{c}}{0.707 L^{2}}-1\right)^{-\frac{1}{2}}-\frac{0.707 V_{c}}{A_{c}^{2}}\left(\frac{A_{c}}{0.707 L^{2}}-1\right)^{\frac{1}{2}} \\
& +\frac{0.707}{A} L^{2}\left(\frac{-A_{c}}{0.707 L^{3}}\right)\left(\frac{A_{c}}{0.707 L^{2}}-1\right)^{-\frac{1}{2}}+\frac{1.4}{A_{c}} L\left(\frac{A_{c}}{0.707 L^{2}}-1\right)^{\frac{1}{2}} \\
& +\frac{1}{2}\left(\frac{A_{c}}{0.707 L^{2}}-1\right)^{-\frac{1}{2}}
\end{aligned}
$$

which reduces to:

$$
f^{\prime}(L)=\frac{\left(\frac{A_{c}}{0.707 L^{2}}-1\right)^{\frac{1}{2}}}{A_{c}}\left(\frac{0.707 V_{c}}{A_{c}}+1.414 L\right)-\frac{\left(\frac{V_{c}}{A_{c} L_{c}}+2\right)}{\left(\frac{A_{c}}{0.707 L^{2}}-1\right)^{\frac{A_{c}}{2}}}
$$

If D_{c} is put as the initial approximate solution for L
then $L(2)=L(1)-\frac{f(L)}{f^{\prime}(L)}$
which is repeated until $\frac{f(L)}{f^{\prime}(L)}<0.01 \mu_{0}$
The computer program, 4, for a 280μ orifice to find \angle from values of D_{c} at $1, \mu$ intervals is shown appendix $C . \quad D$ can again be found from

$$
D=(0.900<3)^{\frac{1}{3}}
$$

The comparison of corrected sizes using Orientation A and Orientation B respectively, with the 280μ orifice, is:

	ORIENTATION A		ORIENTATION B	
$\mathrm{D}_{6} \mathrm{y}^{\text {y }}$	4	Dy	$L \mu$	Dr
10.0	10.33	9.98	10.36	9.99
50.0	51.34	49.57	51.37	49.60
100.0	100.03	96.58	100.27	96.81
150.0	143.36	138.66	144.54	139.56

As would be expected from the theory the variation of D from D_{c} becomes more significant at the larger values of the ratio particle diameter, $D_{c} /$ orifice diameter D^{\prime}. Similarly the larger this diameter ratio, the greater the difference between orientations A and B.

Because of the difficulty of growing a large perfect P.E. crystal it was decided to use a perspex model crystal in oil to simulate conditions of a small P.E. crystal in electrolyte, in order to find the stable orientation of a settling P.E. crystal.

$$
\begin{aligned}
& \text { For a P.E. crystal of } D=0.01 \mathrm{~cm} \\
& \text { Terminal Falling velocity, } u_{t}=0.2 \mathrm{~cm} / \mathrm{s} \\
& \therefore \operatorname{Re} \\
& \therefore \frac{0.2 \times 0.01 \times 1.0}{0.01} \\
&
\end{aligned} \begin{aligned}
& =\frac{0.2}{}
\end{aligned}
$$

Simulation with large model:

$$
u_{t}=\frac{981 D^{2}\left(\rho_{s}-\beta\right)}{18 / \mu}
$$

$\therefore \frac{\text { 981 } D^{3}\left(\rho_{s}-\rho\right) \rho}{18 \mu^{2}}+0.2$
$\therefore \frac{D^{3}\left(\rho_{S}-\rho\right) \rho}{\mu^{2}}=0.00367$
If a perspex model crystal is used $\rho_{s}=1.2$
If Shell Voluta 0 il 45 is used at about $70^{\circ} \mathrm{F}$

$$
\left.\begin{array}{rl}
\mu & =4.13 \text { Poise } \quad \rho=0.906 \mathrm{~g} / \mathrm{cm}^{3} \\
D & =\left(\frac{0.00367 \times 4.13^{2}}{(1.2-0.906)}\right)^{\frac{1}{3}} 0.906
\end{array}\right)
$$

Due to the acceleration conditions in a stirred beaker during a Coulter Counter size analysis, the crystal/solution relative velocity will be greater than u_{t} and therefore Reynolds number will be rather larger than 0.2 , permitting a slightly larger model crystal.

A perspex model crystal was made having a pyramid base length
\angle of about 1 cm . Each pyramid was painted a different colour and the model repeatedly and randomly dropped into a $1 \mathrm{dm}^{3}$ graduated cylinder filled with Shell Voluta oil 45. The model invariably orientated on settling into the stable orientation B, wi.th the pyramid base parallel to the cylinder axis.

Corrections for D_{C} were therefore computed for each of the Coulter Counter orifices used i.e. $50 \mu, 280 \mu$ and 560μ, using the Orientation B program, 4, with the appropriate Ac values. The results are shown Tables $15,16,17$, appendix B.

6.2.1.3. Discussion.

Allen (84) did considerable work on the accuracy of a Coulter Counter. Investigation of the coincidence correction showed a tendency to overcount at low dilutions for counts of less than 5% of the maximum permitted count for 10% coincidence. However on a numerical basis the error was small. Edmundson (86) suggested a more accurate method of coincidence correction, but this involved serial dilutions of the sample at every threshold level, for each size analysis. The theoretical improvement of accuracy was thought unlikely to compensate for the practical errors involved. Allen (84) has also criticised this method on the basis that the linear correlation assumed is not necessarily correct. The coincidence correction method of Mattern (87) recommended by Coulter Electronics Itd. is therefore used with the appropriate dilution limits. Allen (84) showed a discrepancy of experimentally determined F_{c} factors with those published by Coulter Electronics (83).

Iines (88) considered this to be a result of experimental error and . also a symptom of a badly adjusted set, which seemed to need a zero adjustment of 2 or 3 threshold divisions . This was also indicated by the fact that Allen showed a variation of F_{c} factors with Gain setting which is not feasible. Iines considered the published F_{c} factors to be accurate to better than 1%. As the model A Coulter Counter used was regularly serviced, the published F_{c} factors were used. Allen further found that the thermal effects during analysis and background noise made a lower size limit of $0.8 \mu^{\mu}$ or even higher, impossible. This had also been experienced in the previous work (1) when it had been found necessary to switch off all external. electrical motors in the vicinity. The Coulter Counter was therefore placed in a metal cabinet, figure 6.3 , which acted as an effective shield from external interference.

In the previous worle (1) an ultrasonic probe was used for sample disporsticn. This bad been compared with shaking the sample and dispersing in a paste witin a brush and found to give reproducible results for Batch A seed crystals. This method was further investigated with Batch D seed crystals, 1.0\% di-P.E., and found to cause crystal attrition. A comparison of stirring and ultrasonics, table 18 , for various degrees of agitation and for various periods of time showed an increase of the amount of attrition with both time and power using the ultrasonic probe, but a good reproducibility, regardless of time or stirrer speed, using a marine impeller type stirrer. Stirxing was therefore used for sample dispersion for all Coulter Comiter size analyses throughout this wark, and the ultrasonic

disperser dispensed with.
Size analyses of three samples of Batch E prepared seed sieve fraction $89-105 \mu$ are show tables $19,20,21$, appendix B. The collected and averaged sample analyses together with the corrected diameters are shown table 22 . It can be seen that the maximum deviation of $\sum N o \% \times D$ from the average is about 7% and the maximum deviation of \sum No $\% \times D^{2}$ from the average is about 12%. Because of the practical difficulties involved in using a two-tube technique, as in the previous work (1), with small seed crystals, a larger seed size was in general used throughout this work. The collected size analyses of seed materials after attrition at 2000 r.p.m. in the stirxed cell C are shown table (24). A size analysis comparison of Batch C seed after attrition in cells A and C at different stirrer speeds is shown table (23). Collected size analyses of seed materials used in the modified fluidised bed experiments are shown table (25), and some crystal product size analyses are shown table (26), after growth in the stirred cell C. All these respective size analyses are the averaged result of three samples analysed with the Coulter Counter, each sample itself being the averaged result of three samples.

Calibration of the Coulter Counter, diameter corrections and all size analyses are shown appendix B.

6.2.2. The Image Shear Microscope.

The Image Shear Miscroscope described by Dyson (89) is an attachment which may be fitted to any microscope eyepiece and contains
two prism blocks which are rotated with respect to each other about a vertical axis by means of a micrometer drive. This results in the image, as seen through the eyepiece, being split into two complete images which may be sheared across each other in any direction by operation of the micrometer drive. The amount of shear involved is strictly proportional to the micrometer reading. If the two images are set edge to edge, the shear is proportional to the distance across that particular axis of the object, and can be calibrated using a microscope graticule. As this is only an eyepiece modification no restriction is placed on the method of microscopy or the magnification used.

A size analysis wi.th the image shear microscope involves measuring a characteristic dimension for a number of particles. Figure 6.1B shows a P.E. tetragonal bipyramid crystal lying in its stable position as it would appear under a microscope. A convenient characteristic dimension is the size across any pair of opposite corners, $=1.154 \angle$ where \angle is the length of the pyramid base. This is then readily converted to the equivalent spherical volume diameter, D, using the shape factor $\varnothing=0.900$.

Then

$$
D=(0.900 \angle 3)^{\frac{7}{3}}
$$

To avoid selective sampling of good crystals, the microscope slide was moved at regular intervals under the microscope and all crystals under each view measured until a total of 50 had been counted for that particular slide. The slide sample was then renewed and the procedure repeated for four slide samples until a total of 200 crystals
had been sized. The calibration of the micrometer scale with a microscope graticule showed a linear relation over the range of the scale of 2.28 micrometer scale divisions $=10.0 \mu$ 。

Size analysis of attrited seed used for the stirred cells showed a poor agreement with that done with the Coulter Counter. This was attributed to the morphological variations caused by attrition a constant shape factor being essential for this method of analysis. However reasonable agreement was found , with the product of pure P.E. growth with little attrition, and the results of the product size analyses done are shown tables 27,28 , appendix B_{0}

6. 3. Fluidised Bed Experiments.

6.3.1. Preliminary Fluidisation Experiments.

The apparatus is described in section 4.2.1. The temperature control units were switched on: T.C. 2 being set to the required test temperature and T.C.I to a temperature found from experience, which depended on the setting of T.C.2., the ambient temperature and the flow rate to be used in the particular test. The apparatus which contained diluted solution from a previous test took about I h to reach equilibrium and T.C.I. was then adjusted until the thermometer T.I. indicated the same temperature a.s T.C.2. The dilute solution was then purged from the system and made up with fresh concentrated solution until mother liquor of the required temperature and supersaturation (indicated by the refractometer) was obtained. A known weight of carefully sieved seed crystals (prepared in small
batch crystallisations) was added to cold saturated solution in the feed funnel and the slurry quickly run into the crystalliser. The superficial velocity was usually of the order of $0.2 \mathrm{~cm} / \mathrm{s}$, representing for most seed sixes a very high degree of fluidisation (Figuxe 3.5.). However agglomeration of the growing crystals always occured and complete solidification of the bed had to be prevented by fitting the downcomerwith a flexible seal and knee joint which could be used to break up agglomeration. After a suitable time depending on the temperature and supersaturation used the bed was dropped out of the crystalliser onto a Buchner filter and immediately washed with acetone. The product was weighed and examined. The size of the seed and product crystals was measured with a vernier microscope as the Image Shear Microscope was not available at this time. The characteristic dimension measured in this case was the distance across the crystal pyramid base, i.e. L. The average of 10 crystals was taken in each case with a standard deviation of the seed from the average being about 7μ. This was considered reasonable as the vernier only read to $10 \mu_{\text {. }}$ The increase of bed mass was usually a more accurate method although it was often difficult to remove all the bed from the crystalliser.
6.3.2. Fluidisation experiments with modified apparatus (section 4.2.3)

6.3.2.1. Procedure.

T.C.I. was set to a temperature about $20^{\circ} \mathrm{C}$ above the required cell operating temperature. The system was filled with distilled
water and the glass taps set for flow through the appropriate rotameter. T.C.2. was set to a temperature slightly above the required cell temperature, and the immersion pump then switched on. The pump was controlled with a voltage regulator to give the estimated velocity required for fluidisation, indicated by the rotameter. The magnetic stirrer and hot-plate were switched on and controlled to give sufficient supplementary heat to the feed vessel to maintain the feed in an undersaturated condition about $15^{\circ} \mathrm{C}$ above the cell temperature. The heating tape on the transfer lines was then used as a fine control of the temperature in the cell. When the conditions were set with distilled water, the system was emptied using a vacuum pump and the hot undersaturated solution poured into the feed vessel. This solution of known concentration having previously been prepared in a 2 litre pyrex graduated flask.

When temperature conditions were stable with the circulating solution, the pump was stopped, the jubilee clip on the outlet line of the cell closed, the rubber bung removed and the seed crystals poured into the cell. The pump was immediately started and the heating tape temperature raised to compensate for the cold crystals. The bed was fluidised for a specific time with any hint of agglomeration being removed with the probe. As the crystals grew, the solution velocity had to be increased to maintain fluidisation, and each change in solution flow necessitated a corresponding change in heat input with the heating tape to maintain the cell temperature.

At the end of a run, the pump was stopped, the inlet and outlet lines to the cell removed and a vacuum line applied to the
inlet cone to remove the solution. The jacket connections were then removed, the jacket drained, acetone rinsed and finally air blown to dryness. The cell complete with crystals wet with the mother liquor was then weighed. The cell was dried for 24 h in an oven at $100^{\circ} \mathrm{C}$ and reweighed. This enabled the weight of the solid due to the mother liquor to be calculated and knowing the weight of the empty cell, the crystal product weight derived. The rate of mass increase for this particular supersaturation and temperature is thus calculated. As the initial size distribution is known from a Coulter Counter size analysis, this can be converted to linear growth velocity, g, as shown below.

6.3.2.2. Analysis of Results.

In the previous work (1) it was assumed that for a group of crystals of narrow size distribution, the average crystal size equals the size of the crystal of average area, which also equals the size of the crystal of average weight.

Assuming a constant shape factor throughout growth:

$$
\frac{A_{2}}{A_{1}}=\left(\frac{M_{2}}{M_{1}}\right)^{\frac{2}{3}}
$$

However, this is invalid for a crystal size distribution. Although a narrow sieve fraction of seed crystals was used with a sieve aperture ratio of approximately 1.19 , a more accurate size analysis is obtained using the Coulter Counter size analyser. McCabe's \triangle law (53) states that if a known mass of seed
crystals of known size distribution is grown under given conditions of supersaturation, then the size analysis of the product is given by:

$$
M(2)=\int_{0}^{M(1)}\left(1+\frac{\Delta D}{D(1)}\right)^{3} d M(1)
$$

where $M(2)$ is the product mass obtained from $M(1)$ seed, $D(1)$ is the seed size and ΔD the increase in size. The assumptions made are (a) a constant shape factor throughout growth and (b) the crystal size has no effect on growth rate.

For the present study the assumption of a constant shape factor appears reasonable. If, however, the rate of diffusion to the crystal surface controls the growth rate process, the variation of the relative crystal/solution velocity throughout the fluidised bed with crystal size distribution would cause a faster growth rate for the larger crystals, making this law invalid. As the preliminary experiments in a fluidised bed indicated integration rate control under the conditions examined, integration rate control will be assumed for these experiments in order to apply McCabe's $\triangle L$ law to obtain a more accurate growth velocity, g , for comparison with the stirred cell experiments.

From the Coulter Counter size analysis, the \% No (J) of a mean equivalent spherical volume diameter $D(I, J)$ is obtained for the crystal seed size distribution J, where $J=1: P$, the number of mean diameters in the analysis.

Volume of a crystal of diameter $D(1, J)=\frac{\Pi I}{6} \times D(1, J)^{3}$
Total volume of seed $=\frac{M(1)}{\rho_{s}}$
\therefore Actual No. of crystals, No. (J), of diameter $D(1, J)$

$$
\begin{align*}
& =\% \text { No. }(J) \times \frac{M(1)}{\rho_{S} \times \sum\left(\% N o .(J) \times \frac{\Pi}{6} \times D(1, J)^{3}\right)} \\
& M(I)=\sum p_{s} \times N O_{0}(J) \times \frac{\pi}{6} \times D(1, J)^{3}
\end{align*}
$$

Now assuming McCabe's $\Delta \angle l a w$, and that no attrition or agglomeration occurs during growth: $D(2, J)$, the product size $=D(I, J)+\Delta D$

$$
\begin{aligned}
& M(2)=\sum \rho_{s} \times N o .(J) \times \frac{I I}{6} \times(D(1, J)+\Delta D)^{3} \\
& \therefore M(2)-M(1)=p_{s} \times \frac{\pi}{6} \sum\left[N o(1)\left\{(D(1,1)+\Delta D)^{3}-D(1,1)^{3}\right\}+\ldots\right. \\
& \ldots+\text { No. (2) }\left\{(D(1,2)+\Delta D)^{3}-D(1,2)^{3}\right\}+ \\
& \left.\ldots .+N_{0}(P)\left\{(D(1, P)+\Delta D)^{3}-D(1, p)^{3}\right\}\right] \\
& \begin{aligned}
&=\rho_{s} \times \frac{\pi}{6}\left[\Delta D^{3} \sum N o(J)+3 \Delta D^{2} \sum(N o(J) \times D(I, J)\right. \\
&\left.+3 \Delta D \sum\left(N O(J) \quad x \quad D(I, J)^{2}\right)\right] \ldots 6.10
\end{aligned} \\
& \text { Let } \mathrm{U}=\sum \mathrm{NO}(J) \\
& R=\sum(3 \times N O .(J) \times D(1, J)) \\
& Y=\sum\left(3 \times \text { No. }(J) \times D(1, J)^{2}\right) \\
& Q=\frac{M(2)-M(1)}{\rho s \times \frac{I I}{6}}
\end{aligned}
$$

Then $U(\Delta D)^{3}+R(\Delta D)^{2}+Y(\Delta D)-Q=0$

This can be solved for ΔD by the Newton-Raphson approximation method where $f(\Delta D)=$ Equation 6.11

$$
\text { Then } f^{\prime}(\Delta D)=3 U(\Delta D)^{2}+2 R(\Delta D)+Y \ldots 6.12
$$

Try as a first approximation $A D=0.0001 \mathrm{~cm}$. If $\frac{f \Delta D}{f^{\prime} \Delta D}$ is less than $0,0000001 \mathrm{~cm}$, the solution is sufficiently accurate, and $D(2, J)=D(1, J)+\Delta D$ for each seed diameter. Otherwise a more accurate solution $\triangle D(2)$ is obtained from:

$$
\Delta D(2)=\Delta D(1)-\frac{f(\Delta D)}{f^{\prime}(\Delta D)} \text { where } \Delta D(1) \text { is the previous }
$$

value. The iteration is repeated until the required accuracy is obtained.

The growth velocity of a crystal face, g, is then obtained from:

$$
g=\frac{\Delta D}{2(\Delta t)}
$$

where Δt is the time of the experiment in minutes.
In order to find a rate constant, Km , for the rate of crystal mass increase it is necessary to know the mean area during growth. This can now be obtained as the final size distribution is know:

$$
\text { Volume of a single crystal, } \tau_{p}=I I \phi \frac{L^{3}}{6}=\frac{I I D^{3}}{6}
$$

$$
\therefore \quad \angle=\frac{D}{\phi^{\frac{1}{3}}}
$$

Surface area of a single crystal, $a_{p}=$ II θL^{2}

$$
=\frac{I I \theta}{\phi^{3}} D^{2}
$$

For a tetragonal bipyramid crystal of P.E. $\frac{\theta}{\phi^{\frac{2}{3}}}=1.181$
\therefore Total Seed Area, $A(1)=\sum I I \times 1.181 \times N o .(J) \times D(1, J)^{2}$ Total Product Area, $A(2)=\sum \Pi \times 1.181 \times$ No. $(J) \times D(2, J)^{2}$

$$
\text { Mean Area, } A=\frac{A(1)+A(2)}{2}
$$

As the mother liquor concentration, c, can be found from the refractometer reading and calibration, the rate constant K_{m} can be found from $\frac{d m}{d t}=-K_{m} A\left(c-c_{\infty}\right)$ assuming a first order integration rate. C_{∞} is the equilibrium concentration.

The computation of this analysis of the fluidisation results is show in computer program 1 (appendix C) written in Elliott 803 version of Algol 60 .

6.4. Stirred Cell Experiments.

6.4.1. Introduction.

In the previous work (1) growth rates were obtained by following the decrease in concentration of seeded solutions by refractometry. Some preliminary results with nucleation tests seemed to suggest that the growth rate was dependent on seed source. This was thought to be due to the possible variation of impurity partition
coefficient with temperature and hence a variation of seed impurity concentration. A simplified method of studying this phenomenon was tried by cooling a hot solution until nucleation occured, then stirring the suspension at this temperature, following the growth of the nuclei with the decrease in concentration of the solution. The product was discharged into acetone, filtered and size analysed. A mono-sized product was expected from the growth of the nuclei which would enable a growth rate constant to be calculated. However, size analysis of the product with both the Image Shear microscope and the Coulter Counter showed not only agglomeration of the crystals but also a surprisingly wide size distribution. This was attributed to non-instantaneous nucleation of the solution. Attempts to avoid this product size distribution by cooling the mother liquor into the metastable zone and inducing prolific nucleation with an ultrasonic probe, and also by adding a small amount of the dispersant NONIDET P40, were unsuccessful.

6.4.2. Seeded Solutions.

6.4.2.1. Seed.

Because of the possible sensitivity of P.E. growth rate to seed impurity concentration, care was taken to record conditions of all seed preparations. It had been found in the previous work (1) that a better quality seed containing many discreet well formed crystals in the lower size ranges was obtained by controlling the growth temperature in the preparation and washing the product with acetone.

In general
this was done with the material to be used for the growth rate experiments and a $30 \% \mathrm{~m} / \mathrm{v}$ solution was cooled to the nucleation temperature and stirred at this temperature for 3 h. The resulting crystals were filtered, acetone washed and dried in an oven at $60^{\circ} \mathrm{C}$. The dry product was then sieved and classified into close-cut sieve fractions. A sample of the sieve cut to be used as seed was placed in the growth cell filled with saturated solution at room temperature. This was then stirred under the hydrodynamic conditions to be used in a growth run and the attrited seed size analysed with the Coulter Counter after 15 minutes attrition. The analysis of each was checked after a further 12 h or so, stirring and it was found, as in the previous work (1), that all the attrition occured in the first few minutes of stirring. The smallest sieve fraction, $44-64 \mu$, was often found unsatisfactory because of the necessity to use a two-tube technj.que for analysis with the Coulter Counter with its inherent practical difficulties, and a larger sieve fraction was then used. The size analyses of the attrited seed used in the growth rate experiments are shown in appendix B.

The optimum mass of seed crystals was chosen as 2 g after the following considerations:
(a) This involved a relatively small solid/solution ratio for a period of a run and consequently did not over obscure the refractometer image.
(b) The heat of crystallisation was smail and the solution temperature could be easily controlled with the thermostatically
controlled circulator.
(c) As the refractometer scale could only be read to 0.1 divisions and estimated to 0.05 divisions, the smallest interval considered consistent with the required accuracy of the experiment was 0.5 divisions. The average time taken for this concentration change using 2g of seed was usually of the order of 5 to 50 minutes. This is consicesed to be the optimum time interval for the experiment as at least half a minute is necessary to accurately read a scale partly obscured by suspension and longer runs would be unnecessarily laborious.

6.4.2.2. Procedure.

The cells used were as shown in section 4.4. In order to obtain a more accurate analysis of results especially as the concentration approached equilibrium, evaporation tests were done for cells C and S under the stirred experimental conditions for growth by measuring the concentration decrease of an unsaturated solution over a peritod of tine at constant temperature. The results for various terpsratures are show FSG.6.4. Appendix C on a log evaporation vs $\frac{1}{\text { T }}$ plot with linear correlations drawn according to the Clausius Clapeyron relation. Interpolated values from these correlations for the required growth experiment temperatures are shown table 29

Although instantaneous nucleation would not be expected (Fig. 3.2.) with a supersaturation less than about $7 \% \mathrm{~m} / \mathrm{m}$ for pure P.E. and $10 \% \mathrm{~m} / \mathrm{m}$ for impure D.E., it was found in the previous work (1) that in an agitated cell a $6 \% \mathrm{~m} / \mathrm{m}$ supersaturation impure solution would nucleate in about 9 h and a $4 \% \mathrm{~m} / \mathrm{m}$ supersaturation solution would
nucleate in about 50 h . It was therefore considered safe to work at initial supersaturations of about $4 \% \mathrm{~m} / \mathrm{m}$. The required amount of P.E. was accurately weighed out and washed into a $250 \mathrm{~cm}^{3}$ pyrex volumetric flask with a screw cap which had been selected for having the volume line very low on the neck to allow for solution expansion on heating. The volume was made up to $250 \mathrm{~cm}^{3}$ with distilled water taking care to eliminate air bubbles, the flaskwas warmed until the P.E. had dissolved the cap secured and the solution shaken. The solution was poured into the dry growth cell held at the temperature of the run. The cell had previously been well washed with hot distilled water. The solution was stirred at the required stirrer speed for the run, set with a tachometer, until the required run temperature was obtained and the refractometer reading was then taken. The required weight of seed crystals was weighed into a clean sample bottle and poured into the solution simultaneously starting the stirrer and the stop clock. The sample bottle was reweighed and the seed weight derived. Readings of time for fixud intervals of concentration change were taken over the period of the run.

An optimum was required of the two conflicting considerations:

1. The larger Δc taken the more accurate that particular reading for the mean concentration.
2. The smaller Δc taken the easier to detect the growth rate dependence on supersaturation.

It was decided to use intervals of 0.5 divisions scale reading, i.e. ca 0.14% P.E. As the refractometer scale could only
be estimated to 0.05 divisions, reading errors of $\pm 10 \%$ can be expected, but should be largely self-compensating for any individual sun as results ar e taken consecutively.

At the end of a run the drain plug was removed and the suspension dropped into a beaker of acetone. The product was filtered, dried and occasionally size analysed with the Image Shear microscope.

6.4.2.3. Analysis of Results:

The actual number of crystals, No.(J), of diameter $D(1, J)$ can be found from the intial size distribtuion of the attritied seed, as in the fluidised bed experiments from equation 6.7 , where $M(1)$ is the initial seed mass.

Now assuming McCabe's $\triangle \angle$ law, which should be true for a well stirred vessel, and provided no attrition, agglomeration or new nuclei occur during a growth experiment, then the number of crystals of any diameter $D(I, J)$ at any time $t(I)$ is $N o .(J)$ and the size distribution can be calculated from $D(I, J)=D(I, J)+\Delta D(I)$

Where \mathbb{N} is the number of readings of time.
P is the number of mean diameters of the size distribution.
A crystal growth velocity can therefore be determined by computation of the results of refractometer scale, hence solution concentration, against time in a similar method to that used for the fluidised bed experiments, for each time interval.

As a number of readings are obtained for different supersaturation for each run, the rate constant K assuming a first order integration rate as suggested by the previous work (1) can be calculated from $\frac{d c}{d t}=-K A\left(c-c_{\infty}\right)$ which when integrated gives:

$$
K=\frac{1}{\Delta t(I) \bar{A}(I)} \ln \frac{\left(c(I)-c_{\infty}\right)}{\left(c(I+I)-q_{\infty}\right)} \ldots 6.13
$$

where $\Delta t(I)$ is the time interval $t(I+1)-t(I)$ for the concentration decrease $c(I)$ to $c(I+1), \vec{A}(I)$ is the mean crystal area over this time interval, and c_{∞} is the equilibrium concentration at the temperature of the run.

$$
\mathrm{K} \text { can be related to } \mathrm{K}_{L} \text { of the first order growth velocity }
$$ equation:

$$
g=\frac{d r}{d t}=K_{L}\left(c-c_{\infty}\right) \quad \ldots \ldots \ldots
$$

where r is the equivalent spherical volume radius, by the conversion show appendix C

As the final time interval to reach equilibrium is not measurable, the computation is terminated at the penultimate concentration value of $c(N)$. The equilibrium value c_{∞} is calculated from the input refractometer scale data for $c(N+12$.

All concentrations are derived from the isothermal refractometer correlations for the particular material and temperature, tables 2 and 3

$$
c(I)=F+B S(I)+G S(I)^{2}
$$

As the total volume of solution used initially is $250 \mathrm{~cm}^{3}$ at ca. $25^{\circ} \mathrm{C}$ and the only loss of solvent throughout a run is through evaporation, the volume of solvent $V(I)$ at any time (I) is given by:

$$
V(I)=250-\frac{m(I)}{\rho_{s}}-t(I) x \text { Evan. }
$$

where $m(1)$ is the mass of solute initially in solution and the evaporation rate in $\mathrm{cm}^{3} / \mathrm{min}$ is given in table 29 appendix C But $m(1)=2.5 c(1)$ and $\rho s=1.396$ for P.E.
$\therefore V(I)=250-1.7908 c(1)-t(I) \times$ Evapn $\ldots .6 .16$.

$$
\begin{gathered}
c=\frac{100 \mathrm{~m}}{\frac{\mathrm{~m}}{\rho_{\mathrm{S}}}+\mathrm{V}} \\
\therefore \mathrm{dm}=\frac{\mathrm{dc}}{100 \mathrm{~V}}\left(\frac{\mathrm{~m}}{\rho \mathrm{~s}}+\mathrm{V}\right)^{2} \\
\text { But - M }(I)=c(I) \times 2.5-(M(I)-H)
\end{gathered}
$$

\therefore After any time interval $\Delta t(I)$, knowing $M(I)$ which when $I=1$, equals $H, M(I+1)$ can be calculated from:
$M(I+1)=M(I)+\frac{c(I)-c(I+1)}{100 V}\left(\frac{c(I) \times 2.5-M(I)+H}{1.396}+V(I+I)\right)_{\ldots 6.17}$
$\Delta D(I)$ for this time interval $\Delta t(I)$ can now be calculated
using a similar equation to 6.10 :

$$
\begin{aligned}
& M(I+1)-M(I)=\rho_{s} \times \frac{\pi}{6} {\left[\Delta D(I)^{3} \sum N o \cdot(J)+3 \Delta D(I)^{2} \sum N o \cdot(J)\right.} \\
&\left.x D(I, J)+3 \Delta D(I) \sum\left(N o \cdot(J) \times D(I, J)^{2}\right)\right]
\end{aligned}
$$

This is solved for $\triangle D(I)$ using the Newton-Raphson approximation method as before:
$f \Delta D(I)=U \Delta D(I)^{3}+R(I) \Delta D(I)^{2}+Y(I) \Delta D(I)-Q(I)=0$

$$
\text { where } \begin{aligned}
U & =\sum N o_{0}(J) \\
R(I) & =\sum(3 \times N o \cdot(J) \times D(I, J)) \\
Y(I) & =\sum\left(3 \times N o .(J) \times D(I, J)^{2}\right) \\
Q(I) & =\frac{M(I+I)-M(I)}{1.396 \times \frac{I I}{6}}
\end{aligned}
$$

$$
f^{\prime} \Delta D(I)=3 U \Delta D(I)^{2}+2 R \Delta D(I)+Y(I)
$$

The first approximation used is $\Delta D(I)=0.0001 \mathrm{~cm}$ and the iteration repeated until $\frac{f \Delta D(I)}{f^{\prime} \Delta D(I)}<0.0000001$

Then $D(I+1, J)=D(I, J)+\Delta D(I)$
The growth velocity $g(I)$ is now obtained from

$$
g(I)=\frac{\Delta D(I)}{2 \times \Delta t(I)} \quad \ldots \ldots . \quad 6.21
$$

Mean Area $\bar{A}(I)$ over this growth interval is given by

$$
\bar{A}(I)=\frac{A(I+I)+A(I)}{2}
$$

$$
\text { where } \begin{aligned}
A(I+1) & =\sum I I \times 1.181 \times \text { No. }(J) \times D(I+I, J)^{2} \\
A(I) & =\sum I I \times 1.181 \times \text { No. }(J) \times D(I, J)^{2}
\end{aligned}
$$

Fence $K(I)$ can be calculated from equation 6.13 .
In order to compare results with Chernov's correlation (46) equation 2.22, where:

$$
g=k_{L} s^{b}
$$

the mean sipersaturation $s(I)$ of this interval is given by:

$$
s(I)=\frac{\frac{c(I+I)+c(I)}{2}-c(N+I)}{c(N+1)}
$$

the computation of this analysis for each interval of refractometer scale has been done, computer program 2, using the Elliott 803 version of Algol 60.

TABLE: 30
EXPERTMENTAL LEGEND

SUFFIX	SOLUTION\|	ADDITIONAL TREAIMENT OF MATERIAL	EXPLANATION
D			DISSOLUTION experiments simulating growth experimental oonditions to obtain equilibrium values.
F			FLUIDISFD bed experiments to obtain growh rate data.
R			RUNS of seeded solutions in a; stirred cell to obtain growth rate data.
	A to G		I Different bags and batches of production material labelled Batches A to G.
	$\begin{gathered} P \cdot A_{n} \text { to } \\ \text { P.G. } \end{gathered}$		Ba.tches Λ to G purified of di-P.E. and 'formal' by HCl reflux.
	D.P.E.		A synthetic mixture of di-P.E. and Purified Batch F.,
		F	The preceeding material having been made into a 10% solution, filtered through a 0.45μ filter, and evaporated to dryness before use .
		M	The precoeding material having been made into a 10% solution and stirred for 2 hours witt $10 \% \mathrm{~m} / \mathrm{v}$ Molecular Sieve Type 13X before filtering and evaporating to dryness before use.

Various combinations of the above have been used.
EXAMPLES:

RUN No.	EXPLANATION
D.D. 4	The fourth dissolution experiment using BATCH D solution.
F.E.I	The first fluidised bed experiment using BMTCH E solution。
R.P.G.M. 2	The second run of a seeded solution of purified BATCH G in a stirred cell. The purified Batch G having previously been stirred in solution with Moleoular Sieve Type 13X.
R.E.F. 3	The third run of a seeded solution of BATCH E in a stirred cell. The BATCH E having previously been filtered in solution through a 0.45, filter.

RESULTS

The experimental legend is shown on the previous page. 7. 1. Growth Rates in a Fluidised Bed.

7. 1. 1. Preliminary Experiments.

Runs F.C. 1 to F.C. 6 were unsuccessful as too small a seed size was used, presenting difficulties of agglomeration and transport of small crystals into the feed vessel. From Runs F.C. 7 about 4 g . of seed crystals $(-120+150$ mesh) were added as a slurry in a small amount of cold saturated solution. After a suitable time the product crystals were discharged and examined. The crystal size, L, measured before and after growth was the average of 10 crystals measured across the pyramid base and gave a standard deviation from the average of about 7μ. As the vernier microscope only read to 10μ this was considered reasonable. The size I was converted to the equivalent spherical volume diameter, D, using a $Q I 3=D^{3}$ and so $D=0.9655 \perp$ and the growth velocity, $g=\frac{d r}{d t}$, was calculated.

With the exception of F.C. 1 3. it was not possible to remove all the bed for weighing until F.C.19. when the flexible seal and knee joint was fitted to the downomer. With this modification it was possible to give the bed a stir periodically, to prevent agglomeration building up and permit the ready discharge of the crystal product. As the average seed size was know, the growth velocity could then be derived by calculating the product size from the increase of crystal mass assuming

spherical crystals.
The results for these preliminary fluidised bed experiments, with the growth velocity, g, derived both from the direct measuremen $\frac{1}{}$ and using the mass increase basis are shown, Table 31 , Appendix D . As the growth rate is later shown (Section 7.2) to deviate from first order with respect to supersaturation, the results are shown in figure 7. 1 with growth velocities, g, plotted against supersaturation, s, and compared with the least mean squares correlation found for Batch C material in the seeded cell experiments stirred at 2000 r.p.m. The numbers beside points indicate the temperatures of the fluidised bed experiments.

In comparison with the stirred cell experiments, results on average give growth velocities as would be expected from experiments about $7^{\circ} \mathrm{C}$ higher than that indicated. This could be because of an unconscious tendency towards selective sampling of good large crystals for product measuremonts. In general the results calculated on a mass basis are nearer to that expected from the stirred cell experiments, assuming no diffusional effect. Although these results, particularly those measured directly, are of limited accuracy they indicate a faster growth rate than with the stirred cells. This is not feasible even if the system was diffusion controlled and it appears that the surface integration step is rate controlling even for the low relative solution/ crystal velocities and high temperatures of the fluidised bed. 1. 1. 2. Results with Modified Fluidised Ped Apparatus.

Assuming surface integration rate control the computer program 1 using MCCabe's ΔL Law (Section 6.3.2.2.) was used to calculate the
results of the experiments with the modified fluidised bed apparatus show in section 4.2 .3 . An example experimental data sheet is shorm for run R.E.l in Table 32 , Appendix D . The size analyses of the seed batches used are show in Table 25 . Appendix B . Although the mean srystal area, $\overline{\mathrm{A}}$ has been calculated Km , the rate oonstant, based on a first order growth rate is not shown as the stirred oell experiments showed a first order assumption to be invalid. The following results were obtained:

$\begin{array}{\|l} \mathrm{RWN} \\ \mathrm{No} \end{array}$	$\mathrm{T}_{0}{ }^{\circ} \mathrm{C}$	SEERD	$\begin{array}{\|c\|c\|} \text { SEED } \\ \text { MASS }(\mathrm{g}) \end{array}$	$\underset{\operatorname{PROD}}{\mathrm{MASS}(\mathrm{~g})} \mid$	$\left\|\begin{array}{\|c\|} \mid T I M E \\ \text { MTINS } \end{array}\right\|$	s	$\Delta \mathrm{D}$	$\stackrel{\rightharpoonup}{4}_{\text {om }}$	$\mathrm{cm} / \mathrm{min}$.
PC28	70.0	$124-1.90{ }_{4} \mathrm{C}$	8.0	21.26	90	0.026	16.71	3308	9.283×10^{-6}
F.C29	70.0	124-150 ${ }^{-1}$	8.0	14.55	50	0.141	30.48	3662	3.048×10^{-5}
F.C30	40.0	124-150 $/ \mathrm{C}$	8.0	8.03	90	0.224	0.17	2926	9.636×10^{-8}
FC31	40.0	124-150 ${ }^{\text {C }}$	8.0	8.50	50	0.406	3.39	2997	3.388×10^{-6}
F.E. 1	70.0	124-1.50 ${ }^{\text {E }}$	7.96	14.04	60	0.110	24.21	4284	2.018×10^{-5}
FPEP 1	70.0	124-150رPE.	7.91	17.63	35	0.129	43.43	3841	6.204×10^{-5}

These results have been plotted as g vs s in figure 7.2. and compared with the least mean squares correlations obtained from the stirred oell experiments. As the orystal seed dispenser was not reweighed after use with runs F.C. 28 to F.C. 31 these results are not as aocurate as they oould otherwise have been. F.C. 30 and F.C. 31 at $40^{\circ} \mathrm{C}$ are partioularly susoeptible to this error as the orystal mass inorease was so small.

FIGURE 7.2.

RESULIS OF MODIFIED FLUIDISED BED EXPERIMENTS

F.C. 28 shows a growth rate very much higher than expected. However, for runs F.C. 29, F.E. 1 and F.P.E.1, where the crystal mass was about doubled throughout an experiment, all the growth rate velocities were very much the same as the stirred cells with the same materials at $70^{\circ} \mathrm{C}$. As this was the highest temperature practical with this apparatus no further experiments were attempted. This indicated surface integration control under all the experimental conditions up to $70^{\circ} \mathrm{C}$ for Batches C, E and purified E.

SEETDED CELI A EXPERIMENTS AT 500 R.P.M.

RUN No.	RUN No.	SOLUTION		SEEED	
$\begin{aligned} & \text { PREVIOUS } \\ & \text { WORK(1) } \end{aligned}$	PRESENT TEXT	ITPMP ${ }^{\circ} \mathrm{C}$	CONC. $\% \mathrm{~m} / \mathrm{v}$	STEVE CUT ${ }^{\text {M }}$	BATCH
R. 14	R.A. 1	60.0	24.0	44-53	A^{39}
R. 20	R.A. 2	70.0	30.0	44-53	$A^{33^{3}}$
R. 21.	R.A. 3	55.0	21.5	44-53	A^{35}
R. 23	R.A. 4	80.0	37.0	44-53	$A^{\text {\% }}$
R. 27	R.P.A.1	60.0	24.0	44-53	$P \cdot A^{35}$
R. 29	R.P.A.2	70.0	29.0	44-53	P. $A^{3{ }^{\text {P }}}$
R. 30	R.P.A. 3	80.0	36.0	44-53	P. A^{35}
R. 31	R.C. 1	60.0	24.0	44-53	$C^{\text {T5 }}$
R. 32	R.P.A.4	50.0	18.5	44-53	P. Λ^{35}
R. 33	R.A. 5	50.0	19.5	44-53	A^{35}
R.34	R.P.A. 5	80.0	36.0	44-53	$A^{3 \%}$

TABLE: 34
CHRONOLOGICAT SURAMRY OF EXPERIMENTS IN SBEDED CELTS - APPENDIX D
МI工 EXPFRRIMTHTS AT 2000 R.P. $1 /$. UNLESS OTHERWISE STATED

BXPT. No.	$\begin{aligned} & \text { RUN } \\ & \text { No. } \end{aligned}$	SOLUTION		SEEED		CELL	COMMITIT	TABTENo.
		$\mathrm{T}_{0}{ }^{\circ} \mathrm{C}$	0\%m/v	$\operatorname{SIEVE} \operatorname{CUT}(\mu)$	BATCH			
1	R.B.I	60.0	24.0	44-64	B^{3}	A	NO GROWTH $4 \frac{1}{2} h$.	-
2	R.B. 2	60.0	24.0	44-64	$B^{3 \pi}$	C	NO GROWTEH 4 $4 \frac{1}{2} \mathrm{~h}$.	
3	R. B. 3	60.0	24.3	-	B	C		
4	R.B. 4	60.0	25.3	-	A	C		
5	R.A. 6	60.0	24.0	-	A	C		
6	R.B. 5	60.0	24.0	-	B	C		

- 120 -

TABLE: 34 (CONT.)

$\begin{gathered} \text { EXPT. } \\ \text { No. } \end{gathered}$	$\begin{aligned} & \text { RUN } \\ & \text { No. } \end{aligned}$	SOLUTION		SEFED		CELL	Comarint	TABLE No.
		$\mathrm{T}_{0} \mathrm{C}$	0\%m/v	SIEVE CUT(μ)	BARCH			
7	R.C. 2	60.0	24.0	-	c	C		36
8	R.C. 3	60.0	24.0	75-89	$\mathrm{C}^{\text {³}}$	c		38
9	R.C. 4	60.0	24.0	75-89	C^{32}	C	ITONIDETP ADDN.	39
10	R.C. 5	60.0	24.0	44-64	C^{3}	A	POOR IMAGE	40
32	R.C. 6	60.0	24.0	44-64	C^{38}	c		41
12	R.C. 7	50.0	19.5	44-64	C^{3}.	C		42
13	R.C. 8	40.0	17.5	44-64	C^{37}	c		43
14	R.C. 9	60.0	24.0	44-64	$\mathrm{C}^{\text {II }}$	A	$500 \mathrm{R} . \mathrm{P}$:M.	44
15	R.C. 10	60.0	24.0	44-64	c^{35}	C	$500 \mathrm{R} . \mathrm{P} . \mathrm{M}$.	45
1.6	R.C. 11	40.0	14.0	44-64	C^{3}	C	500 R.P.M.	46
17	R.C. 12	70.0	30.0	44-64	C^{3}	A	500 R.P.M.	47
18	R.C. 13	70.0	30.0	44-64	$\mathrm{C}^{3 \mathrm{~m}}$	c	$500 \mathrm{R} . \mathrm{P} . \mathrm{M}$.	48
19	R.C. 14	70.0	30.0	44-64	C^{3}	C	2000 R.P.IT.	49
20	R.C. 15	30.0	12.5	44-64	C^{3}	C	2000 R.P.M.	50
21	R.C. 16	70.0	30.0	44-64	$\mathrm{c}^{\text {2 }}$	C	1000 R.P.M.	51
22	R.C. 17	40.0	1525	44-64	c^{35}	C	2000 R.P.M.	52
23	R.D. 1	70.0	30.0	44-64	$D^{\text {F\% }}$	C		53
24	R.D. 2	70.0	30.0	44-64	D^{3} \%	A		54
25	R.D. 3	70.0	30.0	44-64	D^{3}	A		55
26	R.D. 4	70.0	30.0	75-89	C^{3}	S		56
27	R.D. 5	70.0	30.0	75-89	D^{3}	5		57
28	R.D. 6	70.0	30.0	75-89.	C^{3}	C		58

- 121 -

TABIE: 34 (CONT.)

	RUN	SOLU	UTION	SEEP				TABIE
- No.	No.	${ }_{0}^{T_{0}^{\text {O }} \text { C }}$	\%\%m/v	SIEVE CUT(μ)	BATCH	CELL	COMENT	No.
29	R.D. 7	70.0	30.0	64-75	P.G. ${ }^{\text {JF }}$	S		59
30	R.P.G.I	70.0	30.0	64-75	P.G. ${ }^{\text {If }}$	C	NO GROWIH 5h.	
31	R.P.G. 2	70.0	30.0	64-75	P.G $6^{3 /}$	S	NO GROWTH 5h.	
32	R.P.G. 3	70.0	30.0	89-105	P.G.	S		60
33	R.E. 1	70.01	30.0	89-105	m^{36}	C		61
34	R.E. 2	70.0	27.5	89-105	E^{3}	C		62
35	R.E. 3	60.0	27.5	89-105	E^{3} \%	c		63
36	R.E. 4	60.0	24.5	89-105	E^{38}	C		64
37	R.E. 5	60.0	26.0	89-105	$E^{3 \%}$	C		68
38	R.E. 6	50.0	24.0	89-105	E^{3}.	C		66
39	R.E. 7	70.0	30.6	89-105	$\mathrm{E}^{\text {x }}$	S		67
40	R.P.G. 4	70.0	30.0	89-105	PP.G. ${ }^{\text {²7 }}$	C		68
41	R.G.I	70.0	30.0	-	G	C	QUailmative	37
42	R.G. 2	70.0	30.0	-	G	S	Qualitative	37
43	R.P.G. 5	70.0	30.0	89-105	P.G. ${ }^{38}$	C		69
44	R.P.G.6	70.0	30.0	89-105	;P.Go. ${ }^{\text {W }}$	S		70
45	R.P.D. 1	70.0	30.0	89-105	P. G . ${ }^{\text {P }}$	C		71
46	R.F. 1	70.0	30.0	$75-89$	F^{39}	C	NO GROWIH ${ }_{\text {3 }}^{3} \mathrm{~h}$.	
47	R.F. 2	$70.0 \mid$	30.0	89-105	F.	C	QUALITATIVE	37
48	R.E. 8	70.0	30.0	89-105	$\mathrm{E}^{3 \mathrm{~T}}$.	C		72
49	R.F. 3	70.0	30.0	89-105	$\mathrm{F}^{3{ }^{36}}$	C		73

- 122. -

TABLE: 34 (CONT.)

$\begin{aligned} & \text { EXPT. } \\ & \text { No. } \end{aligned}$	$\begin{aligned} & \text { RUN } \\ & \text { No. } \end{aligned}$	SOLUTION		SEEED		CELL	COMMENT	$\left\{\begin{array}{c} \text { TABLE } \\ \text { No. } \end{array}\right.$
		$\mathrm{T}_{0}{ }^{\circ} \mathrm{C}$	c\%m/v	SIEVE CUT(μ.	BATCH			
50	R.F. 4	70.0	30.0	89-105	F^{3}	C		74
51	R.F. 5	70.0	30.0	89-105	F	C	qualitative	37
52	R.E. 9	70.0	30.0	89-105	E^{3}	C		75
53	R.P.G. 7	70.0	30.0	89-105	P.G. ${ }^{35}$	C		76
54	R.G. 3	\% 9.0	30.0	89-105	P.G. ${ }^{\text {a }}$.	C		77
55	R.G. 4	70.0	30.0	89-105	$\mathrm{E}^{\text {20 }}$	C		78
56	R.P.E.I	70.0	30.0	89-105	P.G. ${ }^{38}$	C		79
57	R.P.G.T.I	70.0	30.0	89-105	P.Go. ${ }^{\text {P1 }}$	C		80
58	R.P.E. 2	70.0	30.0	89-105	P.G. ${ }^{\text {P/ }}$	C		81
59	R.P.E. 3	70.0	27.5	89-105	P.G. ${ }^{\text {P }}$	C		82
60	R.P.G. 8	70.0	27.5	89-105	P.G. ${ }^{3}$	C	NO GROWTH 5h.	
61	R.P.E. 4	70.0	27.5	89-105	F^{3}	C	of. 59 seed	83
62	R.P.G.K.1	70.0	27.5	89-105	$\mathrm{E}^{3 \mathrm{~F}}$	S	CELL SCOURED	84
63	R.P.G.B.1	70.0	27.5	89-105	$\mathrm{E}^{3 \mathrm{~m}}$	S		85
64	R.P.D. 2	70.0	27.5	89-105	E^{75}	C		86
65	R.P.G.M.1	70.0	27.5	89-105	$\mathrm{E}^{\text {\% }}$	S		87
66	R.P.E. 5	70.0	27.5	89-105	E^{20}	C		88
67	R.P.E. 6	70.0	27.5	89-105	E^{77}	S		89
68	R.P.E. 7	70.0	27.5	89-105	E^{3}.	C		90
69	R.P.E. 8	70.0	27.5	89-105	$\mathrm{E}^{\text {3 }}$	S		91.
70	R.P.D. 3	70.0	27.5	89-105	E^{3}	S		92
71	R.E. 10	70.0	30.0	89-105	E^{36}	C		93

TABLE: 34 (CONT.)

$\begin{gathered} \text { EXPI. } \\ \text { No. } \end{gathered}$	$\begin{aligned} & \text { RUN } \\ & \text { No. } \end{aligned}$	SOLUTITON		SEEID		CELL	COMMENT	TABLE No.
		To ${ }^{\circ} \mathrm{C}$	c\%m/v	$\|\operatorname{SIEVE} \operatorname{CUT}(\mu)\|$	BATCH\|			
72	R.E. 11	70.0	30.0	89-105;	E^{33}	S		94
73	R.P.E.M. 1	70.0	27.5	89-105	E^{3}.	S		95
74	R.P.D. 4	70.0	27.5	89-105	$\mathrm{E}^{3 \mathrm{~s}}$	A		96
75	R.P.D. 5	7 O .0	27.5	89-105	E^{3}	c		97
76	R.P.D. 6	70.0	27.5	89-105	E^{3}	S		98
77	R.E. 12	70.0	30.0	89-105	E^{3}.	S		99
78	R.E. 23	70.0	30.0	89-105	E^{39}	C		100
79	R.E. 14	70.0	30.0	89-105	B^{3} ?	C	CELI CLEANED	101
80	R.E. 15	70.0	30.0	89-105	E^{3}.	C	CELL POLISHED	102
81.	R.E. 16	70.0	30.0	89-105	E^{3}	C	0.5 g 2n ADDN.	103
82	R.E. 17	70.0	30.0	89-105	E^{3}	C	$0.5 \mathrm{~g} \mathrm{Cu} \mathrm{ADDN}$.	104
83	R.E. 18	70.0	30.0	89-105	E^{3}.	-	QUALITATIVE	
84	R.E. 19	70.0	30.0	89-105	E^{3}.	C	CELL POLISHED	109
85	R.E. 20	70.0	30.0	89-105	E^{3}	C	2500 R.P.M.	106
86	R.E. 21	70.0	30.0	89-105	$E^{\text {IT }}$.	C		107
87	R.E. 22	70.0	30.0	89-105	E^{3}.	G	DISSOLUTION	
88	R.E. 23	70.0	30.0	89-105	E^{3}.	G		108
89	R.E. 24	70.0	30.0	89-105	E^{3}	G		109
90	R.E. 25	70.0	30.0	89-105	$\mathrm{E}^{\frac{10}{6}}$	C		110
91	R.E. 26	70.0	30.0	89-105	$\mathrm{E}^{3 \mathrm{sm}}$	C		111
县	R.E. 27	70.0	33.5	89-105	E^{33}	C		112
93	R.E. 28	60.0	27.5	89-105	E^{38}	G		113

- 124 -

TABIE: 34 (CONT.)

EXPIT.	RUN	SOLU	UTION	SEEED				TABIE
No.	No.	$\mathrm{T}_{0}{ }^{\text {c }}$	\%\%m/v	SIEVE CUT(μ)	BATCH	CELI	COMMENT	No
94	R.E. 29	60.0	27.5	89-105	$\mathrm{E}^{3 \mathrm{~T}}$	C		114
95	R.E. 30	60.0	27.5	89-105	P.E. ${ }^{3 F}$	C	of. 94 seed	115
96	R.P.G.M. 2	7).0	27.5	89-105	P.E. ${ }^{3+}$	C	NO GROWTH 24 h .	
97	R.P.G.M. 3	70.0	27.5	89-105	P.E. ${ }^{3 /}$	C	$\mathrm{Zn}+\mathrm{Cu}$ ADDN.	
98	R.P.E. 9	70.0	27.5	89-105	P.E. ${ }^{\text {² }}$	C		116
99	R.P.G. 9	70.0	27.5	89-105	P.E. ${ }^{\text {² }}$	C	NONIDET ADDN. NO GROWM	
100	R.P.G. 10	70.0	27.5	89-105	P.E. ${ }^{3}$	C	0.58 BRASS ADDI	
101	R.P.G. 11	70.0	27.5	89-105	P.E.E ${ }^{\text {² }}$	G	$\begin{aligned} & \text { NO GROXIH } 2 \frac{1}{2} h . \\ & \text { HCI } A D D N . \end{aligned}$	
102	R.E. 31	70.0	30.0	89-105	E^{35}	C	NO GROWP.H	117
103	R.P.E. 10	30.0	12.5	89-105	P.E. ${ }^{\text {T }}$	C	NUCLEATION?	118
104	R.E. 32	6\%.0	27.5	89-105	E^{3}	C	1.0 g SEED	119
105	R.E. 33	60.0	27.5	89-105	$E^{\text {mi }}$	C	0.5 g SEED	120
106	R.E. 34	60.0	26.0	89-105	E^{3}	C	1.0 g SEES	121
107	R.E. 35	60.0	26.0	89-105	E^{3}	C	0.5 g SEIED	122
108	R.E. 36	60.0	24.5	89-105	E^{38}	C	1.0 g SEED	123
109	R.E. 37	60.0	24.5	89-105	E^{3}	C	0.5 g SEED	124
110	R.C.F. 1	60.0	27.5	89-105	E^{3}	C		125
111.	R.C. 18	60.0	27.5	89-105	E^{39}	C		126
112	R.P.E. 11	60.0	24.0	89-105	P.E. ${ }^{\text {3 }}$.	C	NUCLPATION?	127
113	R.P.E. 12	60.0	22.0	89-105	P.E. ${ }^{\text {P }}$	C		128
114	R.P.E. 1.3	60.0	20.0	89-105		C	NO GROWTH $8 \frac{1}{2} \mathrm{~h}$	

- 125 -

TABLE: 34 (CONT.)

EXPT.	RUN	SLU	TIIM	SEEED				Table
No.	No.	To ${ }^{\text {c }}$	0\%m/v	SIEVE $\operatorname{CUT}\left(y^{\prime}\right)$	BATCH	CELI	COMMENT	No.
115	R.P.E. 14	50.0	22.0	89-105	P.E. ${ }^{\text {W }}$	C	1.0 g SEED	129
116	R.P.E. 15	6 C .0	20.0	89-105	P.Es,	C	5.0 g SBED	
117	3. P.D.M. 1	60.0	20.0	89-105	P.E. ${ }^{\text {e }}$	C	$\begin{aligned} & \text { NO GROWIM } 23 \mathrm{~h} . \\ & \text { NO GROWIE 5h. } \end{aligned}$	
118	Q.P.E. 16	50.0	17.75	89-105	P.E. ${ }^{\text {T }}$	C		130
119	- P. T. 17	40.0	13.75	89-105	P.E. ${ }^{38}$	C		131
120	R.P.E. 18	75.0	31.5	89-105	P.E. ${ }^{3}$	C		132
121	R.P.E. 19	40.0	13.75	89-105	P.E. ${ }^{\text {a }}$	C		133
122	R.P.E. 20	70.0	28.5	89-105	P.E. ${ }^{\text {² }}$	C		134
123	勺\% E.E.I	70.0	28.5	89-105	P.E. ${ }^{\text {I }}$	C	NO GROWIH 7 h .	
124	R. 2.38	50.0	19.5	89-105	E^{3}	C		135
125	R.P.E.F. 2	79.0	28.5	89-105	P.P. 0^{38}	C		136
126	R.E. 39	60.0	27.5	$75-89$	D^{3}	C		137
127	R.A.?	70.0	30.0	89-105	P.E. ${ }^{\text {² }}$	c		138
128	R.E.F.I	70.0	30.0	75-89	D^{3}	C		139
129	R.E.F. 2	62.0	27.5	89-105	E^{39}	C		140
130	R.E.F. 3	40.0	15.25	75-89	D^{36}	C	NO GROWIH 24h.	
131	R.E.F. 4	60.0	24.5	39-105	$E^{\text {7 }}$	C		141
132	R.E.F. 5	50.0	19.5	$75-89$	D^{38}	c		142
133	R.P.E.F. 3	40.0	13.75	89-105	P.E. ${ }^{\text {P3 }}$	C	NO GRCVITH 22h.	
134	R.P.E.F. 4	70.0	27.5	89-105	P.E. ${ }^{39}$	c		143

TABLE: 34 (CONT.)

EXPT. No.	$\begin{aligned} & \text { RUN } \\ & \text { No. } \end{aligned}$	SOLUTION		SEEED		CELL	COMMENT	TABLE No.
		$\mathrm{T}_{0} \mathrm{C}^{\text {C }}$	$0 \% \mathrm{~mm} / \mathrm{v}$	SIEVE CUT $\left(\mu_{0}\right)$	BATCH			
135	R.P.E.T. 5	60.0	22.0	89-105	P.G. ${ }^{3}$	C		144
136	R, 工.E.F. 6	7.).	27.5	89-105	P.E. 3	C		145
137	E.P.S.D. 1	70.0	28.5	89-105	P.E. ${ }^{\text {m }}$	C		146
138	2, L, P, D. 2	50.0	17.75	89-105	P.G* ${ }^{\text {明 }}$	C		147
139	R.E. 40	70.0	30.0	$89-105$	E^{23}	C	O. 5 gBRASS FIIJINGS ADDN.	148

IE SPEGTATITY PREPARED SEEFD

7. 2. Seeded Solutions in stirred cells

1. 2. 3. Experimental Data.

An example experimental data sheet for a stirred cell run is shown in Table 35 , Appendix D , for R.P.E.16. The size analyses of the specially prepared seeds of the various materials and sieve fraction, after attrition in a saturated solution under the experimental conditions as done by the Coulter Counter size analyser are shown in Table 24 , Appendix B . The computer data being presented as the number percentage of a particular mean diameter, $D, \mathrm{~cm}$. The refractometer readings are presented as scale S as would be obtained in Cell C. Scale readins: obtained in other cells were converted to scale S, which was the calibration scale, by means of the Table 4 in Appendix A. The computer data for this refractometer scale array included the equilibrium refractometer scale as the final reading as found for the particular equivalent P.E. concentration in the equilibrium experiments, Appendix Λ. The equivalent time readings for the refractometer scales were recorded in minutes. The reading of the'apparent equilibrium' value after which no further concentration decrease was observed was rejected for computation purposes as the time to reach this value was indeterminate.

The calibration coefficients for the concentration based on the refractometer scale, S, i.e. B, F and G where $c=F+B . S .+G_{0} S^{2}$ were recorded for the particular solution material and temperature involved (from Tables 2 and 3 , Appendix A). The initial seed mass, H_{g} was also recorded, and although the seed dispenser was not reweighed
after use until Experiment 25, the error involved should be very small. Finally the evaporation rate in $\mathrm{cm}^{3} / \mathrm{min}$. for the particular cell and temperature used was recorded from Table 29 Appendix C. As Cells A and G were only used for growth rate comparisons, and the evaporation rate only becomes effective as c approaches c_{∞}, evaporation losses for these cells are assumed zero.

All temperatures are recorded as the observed temperatures $\underline{T}_{0}{ }^{\circ} \mathrm{C}$ and can be converted to actual temperatures by means of Figure 5.1., Appenaix A. This has been done in Section 8 for the purpose of the Activation Energy calculations. 7. 2. 2. Pentaerythritol materials.

The chemical analyses of the materials used are shown in Table 1 Appendix 4 .
7. 2. 2. 1. Batch A. ($<0 \cdot 1 \% \mathrm{Di}-$ P.E and 4.73% Formal)

This was the material used in the previous crystallisation work (1). The growth rate constants K were calculated then assuming a first order growth rate with respect to supersaturation and using the approximation $\frac{A_{2}}{A_{1}}=\left(\frac{M_{2}}{M_{1}}\right)^{\frac{2}{3}}$ for the area calculations for each interval of growth. A sumnary of the results is shown in Table 149 , Appendix E. This work has now been analysed using the more accurate method which allows for a crystal size distribution, (program 2), and with the refractometer readings converted to refractometer scale S for use with the more accurate calibrations. The runs at $80^{\circ} \mathrm{C}$ could not be analysed by this method as the calibrations in this work were not carried out at this temperature. The effects of the Coulter Counter size correction and
the new equilibrium valves are also shown (Appendix E). 7. 2. 2. 2. Batch B ($\langle 0.1 \% \mathrm{Di}$ - P.E. , 4.98% Formal $)$

In order to compare this material with the essentially similar Batch A material of the previo us work (1), Experiment 1 was carried out in the old Cell A with the more accurate refractometer. This unexpectedly showed no growth for the $4 \frac{1}{2}$ hours of the test. At first this was thought to be due to an impurity incorporated in the cell, but when the experiment was repeated (R . B.2) in the new Cell C there was again no growth for $4 \frac{1}{2}$ hours. The most probable cause was then thought to be an impurity picked up in the seed preparation or sieving process. Tests R.B. 3 and 4 were carried out with 2 g of unclassified Batches B and A seed respectively and indicated growth rates similar to each other but very slow in comparison with the previo us work (1). A check on this Batch A material containing $<0.1 \%$ Di-P.E and 4.73% Formal, (R,A.6) with $2 g$ unclassified Batch A seed indicated a growth rate very much faster than R.B.3 or 4. To check that this was not because the impurity had been washed out of the cell, R.B. 5 was carried out, a repeat of R.B.3, with a similar result. To check that this very slow growth rate could not be a Di-P.E. effect not shown in the chemical analysis R.C.2. was carried out with 2 g unclassified Batch C seed (containing $1.0 \% \mathrm{Di}-\mathrm{P}$. . . and 4.3% Formal). This gave a growth rate even faster than R.A.6. This indicated an unknown additional impurity present in Batch B far more effective in slowing growth than either Di-P.E. or Formal, and no further tests were carried out with this material.

7. 2. 2. 3. Batch C ($1 \cdot 0 \%$ Di-P.E., $4 \cdot 3 \%$ Formal)

Experimental work was started on Batch C material for comparison with Batch A of the previous work (1) to find the effect of the Di-P.E. impurity. Using R.C.3. as a control an incidental test (R.C.4.) was carried out with the addition of 5 drops of a non-ionic detergent dispersing agent NONIDET P.40. As there was no apparent effect on the growth rate this additive was then tried, without success, in nucleation tests to attempt to restrict the product size distribution, thought to be due to agglomeration.

It was realised at this stage that the stirrer speed was set at $2000 \mathrm{r} . \mathrm{p} . \mathrm{m}$. for experiments 1 to 9, due to an error in the stroboscope reading, whereas the previous work (1) had been carried out at 500 r.p.m. This was checked hereafter with a portable tachometer, R.C. 5 was carried out at 2000 r.p.m. in Cell A for comparison with the previous work; the image however was poorly defined and R.C. 6 in Cell C was found more accurate.

To find the temporature effect R.C. 7 and R.C. 8 were carried out at $50^{\circ} \mathrm{C}$ and $40^{\circ} \mathrm{C}$ in Cell C with the well-defined image, at $2000 \mathrm{r} . \mathrm{p} . \mathrm{m}_{\text {. }}$ R.C.8. shows a very high growth rate compared with R.C. 17 (which had a lower initial supersaturation). This phenomenon appeared completely anomalous until the detailed study on Batch E, (Section 7.2.2.5) was performed.

Tests R.C. 9 and R.C. 10 were carried out at 500 r.p.m. in Cells A and C respectively for speed and cell comparison with R.C. 5 and R.C.6. The image of R.C. 9 (CellA) was again poorly defined, but R.C. 10 indicated a
slower growth rate in the latter stages. Test R.C. 11, at $40^{\circ} \mathrm{C}$ was carried out at a low initial concentration and the growth was very slow. Test R.C. 12 in Cell A at $70^{\circ} \mathrm{C}$ showed a better refractometer image and indicated a growth rate similar to R.C. 13 in Cell C.frowthis if ras concluded that cells A and C gave essentially the same results.

The size analyses of B atch C seed material attrited under the different hydrodynamic conditions of Cells A and C both stirred at $500 \mathrm{r} . \mathrm{p} . \mathrm{m}$. and $2000 \mathrm{r} . \mathrm{p} . \mathrm{m}$. showed very similar degrees of attrition (Table 23 , Appendix B). On this evidence R.C. 16 at 1000 r.p.m. was calculated using the size analysis for 2000 r.p.m. Which would be within the limits of experimental error. Experiments 18,21 and 19 at 500,1000 and 2000 r.p.m. respectively showed the effect of stirrer speed to be that of maintaining the larger crystals in suspension. (as described in Section 7. 2. 4) and 2000 r.p.m. was considered necessary to achieve this.

All further experiments were done at 2000 r.p.m. and experiments 11, 12, 19. 20 and 22 show the effect of temperature on the crystal growth of Batch C maintained at this stirrer speed in Cell C. 7. 2. 2. 4. Batch D (1.0\% Di-P.E. , 5.5\% Formal)

Experiments 23 to 29 were carried out with $30 \% \mathrm{~m} / \mathrm{v}$ Batch D material, (which contained 28% more Formal than Batch C), at $70^{\circ} \mathrm{C}$ to compare the cells at 2000 r.p.m. and to find the effect of seed size and composition Two dm^{3} batches of $22 \%_{0} \mathrm{~m} / \mathrm{v} \mathrm{C} ,\mathrm{D} \mathrm{and} \mathrm{P.G}$. nucleated at $40^{\circ} \mathrm{C}$. The solutions were stirred for 2 hours and sieve fractions of the resulting crystals, after filtering with an acetone
wash and drying, used as seed. A comparison of seed Batches C and D with approximately $4 \cdot 3 \%$ and $5 \cdot 5 \%$ Formal respectively should indicate the sensitivity of the growth rates to the impurity in the seed material or possibly preparation nucleation temperature, if the impurity partition coefficient varies significantly with temperature.

In order to compare cells, test R.D. 2 in Cell 4 was carried out but found difficult to follow because of the poorly defined image. However, R.D. 3 (a repeat of R.D.2) showed an overall growth very similar to R.D. 1 in Cell C, although individual readings were more erratic. Test R.D.4. in Cell S also showed a very similar growth rate to R.D.1. indicating that cell type is not critical in determining the crystal growth rate.
R.D.5. in Cell S with $75-89 \mu$ Batch D seed showed a faster growth rate overall than R.D.4. Because of the good comparison between R.D.4. and R.D.1., this was attributed to an incorrect size analysis of the attrited seed. Size analyses of the attrited seed for the computation of results with Cell S were taken as those found for Cell C as both cells had similar internal dimensions. This was because sampling of attrited seed suspensions was very difficult due to the Cell S construction. The high growth rate of R.D. 5 could be due to additional attrition of this seed in Cell S, possibly because of a different stirrer position.

Runs R.D.1. and R.D.6. with $44-64 \mu$ Batch D seed and $75-89 \mu$ Batch C seed respectively, in Cell C showed a very good agreement, indicating that small differences with impure seed composition are not
critical to crystal growth rates. Therefore nucleation temperatures with impure seed preparation need not be noted. Test R.D.7. with $64-75 \mu$ P.G. seed however showed a faster growth rate than R.D. 4 . particularly in the early stages. This could be due to an impurity diffusion into the seed to achieve an equilibrium partition with the mother liquor, enchancing the rate of growth.

A comparison of Runs R.C.14. and R D.1. shows a favourable agreement between Batches C and D, with Batch D showing a slower growth rate as would be expected from the chemical analysis. 7. 2. 2. 5. 1. Batch E. ($0.9 \% \mathrm{Di}$ - P.E. 5.2% Formal)

A considerable amount of Batch E seed was prepared from Batch E mother liquor in a number of batch crystallisations by nucleating 22% m / v solutions. The collected sieve fraction $89-105 \mu$ was then size analysed, after attrition at 2000 r.p.m. in Cell C, for a more detailed study with Batch E mother liquor.
R.E.1. at $70^{\circ} \mathrm{C}$, Experiment 33 , showed a very similar growth rate to R.C.14. but rather faster than R.D.1. This indicated complete suspension of the rather larger 89-105 sieve fraction crystals. The suspension characteristics were studied in more detail in later experiments (Section 7.24).

Using R.E.1. (30%) as control R.E. 2 with 27.5% initial concentration was carried out to find the effect of starting the growth experiment at a different initial concentration. Although it indicated a slower growth than R.E.1. for equivalent supersaturations, the number of readings obtainable were too limited to obtain an accurate analysis.
R.E. 3, 4 and 5 were therefore carried out at $60^{\circ} \mathrm{C}$ to study this effect further. Equivalent supersaturations for these runs should give the same growth rate regardless of the initial supersaturation. The fact that these results do not concur must be due to one of the following reasons:-
(a) The normal growth velocity of a crystal is dependent on the crystal size (i.e. contraxy to McCabe's AL law)
(b) The initial seed size distribution is incorrect.
(c) The increase in crystal area throughout a run is not simply due to the increase in crystal size due to growth.

Of these possibilities (c) seemed to be the most feasible. It was thought possible that a surface "roughness" effect might exist which would be proportional to the mass of solute deposited per unit crystal seed area, possibly caused by growth of numerous screw dislocations. This was therefore studied further in Experiments 104 to 109 with different initial seed masses at these different initial supersaturations in an attempt to obtain the quantitative effect. The runs at first seemed to further substantiate the "roughness" hypothesis, with smaller initial seed masses undergoing faster normal growth velocities under equivalent conditions. However on examination of the crystal products (Table 28 , Appendix B) for these runs it could be seen that in fact the increase in surface area throughout these runs, in addition to that calculated, was due to attrition occuring during growth. Although a quantitative attrition effect is not possible from the limited data obtained, it appears that there exists a critical time (i.e. diameter
increase) for each growth velocity (which is dependent on supersaturation) which if exceeded will cause excessive brittleness of the growing crystal resulting in attrition under certain hydrodynamic conditions. Examination of R.E.15. product using $2 g$ of seed grown in $30 \% \mathrm{~m} / \mathrm{v}$ initial concentration solution at $70^{\circ} \mathrm{C}$, where the high temperature will produce the fastest growth velocity and weakest crystals, showed a product size almost as predicted (Table 26 , Appendix B) with some apparent agglomeration but no sign of any attrition. It was therefore considered safe to work with solution supersaturations up to about $\Delta c=4 \%$ with $2 g$ of seed. Batch E was also used to establish the effect of heterogeneous particles on the growth velocity (Section 7.2.3.) and to study the effect of the stirrer position on the suspension characteristics of a run (Section 7.2.4.). Having established that absolute cleanliness of a. cell is essential, and found the optimum stirrer position, R.E.31, Experiment 102, was carried out in this position showing a good comparison with R.E.19, and ascertaining an efficient cleaning of Cell C after the previous particle additions.
R.E. 6 at $50^{\circ} \mathrm{C}$ was carried out at too high an initial concentration while establishing the attrition effect, resulting in erroneous high results. However tests R.E.19, R.E. 4 and R.E. 38 at $70^{\circ} \mathrm{C}, 60^{\circ} \mathrm{C}$ and $50^{\circ} \mathrm{C}$ respectively, compare favourably, although with somewhat faster growth rates, with R.C. 14, R.C. 6 and R.C. 7 at the same temperatures. As it was possible that each batch of material might have contained some small amount of contaminant as was found in Batches B, F and G, this suggested that Batch E was the batch which contains the least.

7. 2. 2. 5. 2. Filtered Batch E

As an enhanced growth rate was found with the presence of heterogeneous particles (Section 7.2.3), the effect of filtering production material through a fine filter was studied. A. $10 \% \mathrm{~m} / \mathrm{v}$ solution of the material was prepared, filtered through a 0.45μ membrane filter, and slowly evaporated to dryness. The filtered material amounted to 0.030 mass \% of the P.E. As the stability of Formal in solution at high temperatures has been demonstrated in the previous work (1) the impurity content should remain constant. Experiments 110 and 111 were carried out on Batch C material to find the effect of filtration, However as the products of Experiments 104 to 109 had not been size analysed at this time it was anticipated that the effect would be more pronounced with the higher initial concentration of $27.5 \% \mathrm{~m} / \mathrm{v}$ at $60{ }^{\circ} \mathrm{C}$. Although this effect is masked therefore by attrition occuring during growth, it was surprising to note that R.C.F. 1 with the filtered material showed a faster growth than R.C. 18 . This mas contrary to expectations, having established (Section 7.2.3) that heterogeneous particles enhance crystal growth.

It was considered that a study of filtered Batch E material would give more relevent growth rate and activation energy data for the impure material than the normal production material with an unknown quantity of heterogeneous particles. Experiments 128 to 132 were therefore carried out with the filtered material. Test R.E.F. 2 with 27.5% initial concentration is again irrelevent as it was carried out for a comparison with R.E.F.4. to find the proposed"roughness" effect of using different initial supersaturations and simply illustrates the amount of attrition
which occured during growth. However tests R.E.F.1. and R.E.F.4 showed growth rates ca. 75% faster than R.E. 19 and R.E. 4 (at 700 C and $60^{\circ} \mathrm{C}$ respectively) whereas R.E.F. 5 at $50^{\circ} \mathrm{C}$ showed a grovith rate essentially the same as R.E. 38 at the same temperature. Product examination of R.E.F.4. (Table 27-, Appendix B) showed this to be due to attrition occuring during the growth process and it is to be assumed therefore that heterogeneous particles are beneficial in establishing a less brittle crystal when grown at higher growth rates (i.e. in this case at higher temperatures). Test R.E.F. 3 (at $40^{\circ} \mathrm{C}$) exhibited no growth for the 24 hours of the experiment and this was at first thought to be completely anomalous. However test R.P.E.F. 3 at $40^{\circ} \mathrm{C}$, Experiment 133, also showed complete growth inhibition in contrast to R.P.E. 19 under the same conditions. This appears a real effect at this temperature, therefore, and i.t is possible that heterogeneous particles are necessary for growth at a lower temperature, possibly to produce the required dislocations on the crystal surface. 7. 2. 2. 5. 3. Purified Batch E.

Tests R.P.E.1. to R.P.E. 9 at $70^{\circ} \mathrm{C}$ were carried out for a comparison with purified Batch G material, and also to establish the enhancing effect of heterogeneous particles (Section 7.2.3.) Test R.P.E. 10. (at 300C) showed a faster growth rate than R.P.E. 9 (at $70^{\circ} \mathrm{C}$) which must have been due to nucleation induced at the start of the run (although the initial Δc was only about 4.3%) Test R.P.E. 11 at 600 C with an initial supersaturation at $\Delta c=5.4 \%$ indicated a growth velocity more than an order of magnitude faster than R.P.E. 12 at the same temperature with an
initial supersaturation of $\Delta c=3.2 \%$ which again must have been due to nucleation. Test R.P.E. 13 at 600 C however with an initial supersaturation of only $\Delta \mathrm{c}=1.4 \%$ showed complete growth inhibition for the $8 \frac{1}{2}$ hours of the test. There was therefore a very limited metastable region within which this system could be studied, and a comparison with different initial concentrations to observe the 'brittleness' effect of the Pure P.E. crystals was impractical. Test R.P.E. 14 however was done with 1 g of seed with $\Delta \mathrm{c}=3.2 \%$ and resulted in a growth rate slower by about half than R.P.E.12. This would either indicate agglomeration during growth or an impurity in the solution being absorbed on the crystal surface more slowly with the smaller amount of seed. This latter explanation would also account for the growth inhibition of test R.P.E.13., since growth at this low supersaturation was observed (tests R.P.E.12. and R.P.E.14.) once started at a higher supersaturation.

A seed mass of 5 g was therefore used for R.P.E.15, which would have approximately the same crystal surface area as R.P.E. 12 when the supersaturation had fallen to $\Delta c=1.4 \%$. However growth inhibition persisted. The possibility of contaminant could not be overuled as R.P.E. 12 would have a depleted contaminant concentration in solution, assuming the contaminant built into the crystal lattice, after the growth to a solution supersaturation of $\Delta c=1.4 \%$.

A comparison of tests R.P.E. 7 and R.P.D. 5 at $70^{\circ} \mathrm{C}$ Experiments 68 and 75, show a similar growth rate but with R.P.D.5. apparently about 20% slower until about $\Delta_{c=1} .2 \%$ when approximately $4 g$ of solute had been deposited. This could be due to Batch D being slightly contaminated,
which would also account for the slow growth of R.D.1. compared with R.E. 19.

An extraction of purified Batch D was therefore carried out with Molecular Sieve Type 13X in the method described in Section 7.2.2.7.2. Experiment 117 with a 20% solution of this material ($4 . c=1.4 \%$) however still showed complete growth inhibition. It was considered possible that a much higher degree of purity was necessary to initiate growth at this very low supersaturation; not only would this be very difficult to obtain however, but a means of analysing very low impurity concentrations had not been established nor had the critical impurity been isolated.

Experiments 118 to 122 inclusive were carried out, which together with Experiment 113 at $60^{\circ} \mathrm{C}$ show the effect of temperature on the growth rate for this nominally pure material, purified Batch E.

As anticipated the results show purification to improve the growth rate at all temperatures; for example at $60^{\circ} \mathrm{C}$, R.P.E. 12 has a rate ca. x 5 faster than R.E. 4 and of the same order as R.E. 19 at $70^{\circ} \mathrm{C}$. However it can be seen that the increase of growth rate with temperature increases with supersaturation, with little difference below about 0.05 supersaturation, R.P.E. 17 at $40^{\circ} \mathrm{C}(\Delta c=3 \%)$ showed a low growth rate initially, but the rate then increased. This test was repeated (R.P.E. 19) to obtain intermediate valves with the same result. It can be seen that the growth radesa maximum at a supersaturation, s, of about 0.1 where the value of approximately 1.8×10^{-5} is higher than that obtained with R.P.E. 12 at 600 C , at an equivalent supersaturation. There seems to be no logical explanation for this other than it being the progressive depletion of some contaminant in the mother solution,

A $10 \% \mathrm{~m} / \mathrm{v}$ solution of Batch P.E. was filtered through a 0.45μ membrane filter and evaporated to dryness. Test R.P.E.F.1. at 700C showed no growth for the 7 hours of the test. The filtration process was therefore repeated using a completely new set of apparatus washed with distilled water. Test R.P.E.F.2. (a repeat of R.P.E.F.1) now showed a similar growth rate to R.P.E. 20 under the same conditions. The first filtered batch must have, therefore, picked up some contaminant in the filtering process. T est R.P.E.F. 3 was carried out at $40^{\circ} \mathrm{C}$ and showed no growth for 22 hours, which, in view of the growth inhibition of R.E.F. 3 at this temperature, appeared to be a real effect.

A comparison of R.P.E.7. and R.P.E. $20\left(70^{\circ} \mathrm{C}\right.$) with initial supersaturations of $\Delta c=2.5 \%$ and $\Delta c=3.8 \%$ respectively showed a faster growth rate with R.P.E.20. As no attrition is expected under these conditions, it is possible that the discrepancy is due to a 'roughness' effect caused by heterogeneous particles. Test R.P.E.F.4. ($(10=2.7 \%)$ was therefore carried out and showed a similar growth rate to R.P.E. 7 indicating that filtration had no effect. It was therefore unlikely that this could be a roughness effect due to heterogeneous particles and appeared to indicate a contaminant being adsorbed at the beginning of the test with the higher supersaturation (R.P.E.20).
R.P.E.F.5. was then carried out at $60^{\circ} \mathrm{C}$ and showed a growth rate much slower than R.P.E. 12 at this temperature, suggesting that catalytic particles had been removed.

Test R.P.E.F. 4 was repeated, (R.P.E.F.6) to find the reproducibility and it was found that the growth rate was much slower initially but after
about 0.7 g of solute had been deposited the growth rate became faster than R.P.E.F.4. This is possibly due to the adsorption of contaminant. Reproducibility with filtered material proves to be very poor therefore, whereas with the "naturally occuring" heterogeneous particles present the reproducibility was good. This is possibly due to growth occuring by adsorption on dislocations in the crystal surface which are readily 'poisoned' by traces of contaminant, whereas heterogeneous particles help recreate adsorption sites.

7. 2. 2. 6. Batch F $(<0.1 \%$ Di-P.E, 5.5% Formal)

Test R.F.1. showed no growth for $\frac{3}{4}$ hour. To check whether an impurity had been picked up in the seed preparation, unprepared Batch F was sieved and the same sieve fraction used for the qualitative experiment 47. This still showed a very slow growth considering far more attrition would be expected with this unprepared seed which would provide a relatively large surface area available for growth.

Control test R.E.8. was therefore carried out which gave a similar growth rate to R.E.1. confirming that there was no impurity in the cell or glassware used for solution preparation.
R.F.3. a repeat of R.F. 1 was left overnight to see the extent of the growth inhibition and by morning a reasonable growth had been obtained. The more detailed study R.F.4. showed that in fact most of the inhibition was in the first $\frac{3}{4}$ hour, although growth after this was still slow in comparison with R.A.2. which could hardly be accounted for by the difference in Formal composition,

To check the possibility of sieve contamination as found for the
finer sieves 200-350 mesh in the earlier experiments with P.G. material (Section 7.2.2.7) another qualitative experiment was carried out, 51, using a completely different set of sieves to those used in Experiment 47, but the result was the same.

To confirm that no impurity could have been picked up in the seed preparation, a small batch of Batch E seed was prepared in the same way as the Batch F seed using the same apparatus. The sieve fraction $89-105 \mu$ was used as seed, and in the computation of this test (R.E.9) the same size analysis was assumed as found for the bulk of the prepared seed of this Batch. This appears to be a reasonable approximation in view of the rate of concentration decrease found. This test R.E.9. gave growth rates an order of magnitude greater than test R.F. 4 which confirmed that Batch F must contain some impurity more effective than that attributed to Di-P.E. or Formal, possibly the same impurity as that inhibiting growth in Batch B.

7. 2. 2. 7. 1. Purified Batch G

Batch G was purified by the HCl refluxing method described Section 3.2 and this material then investigated in order to obtain a more complete and accurate study than the previous work (1). Experiment 30 (R.P.G.1) exhibited no growth over a period of five hours. This was repeated in Cell S with the same result it was realised that this anomalous phenomenon could possibly be due to an impurity contracted from the sieves. The 200, 240, 300, 350 mesh sieves had inadvertently been used to sieve a catalyst of vanadium pentoxide on a silica base . The material< 350 mesh was remixed with the bulk material before use,
and although the sieves had been washed with detergent they could still have contaminated the material.

To check this R.P.G. 3 was carried out with material collected in the larger sieves used for the solution and sieve cut $89-105 \mu$, i.e. >170 mesh, used for seed. This gave a growth rate of the expected order in comparison wi.th previous work (1), and so these four contaminated sieves were discarded and a new set used.

A further quantity of Batch G material was purified. Because of the hazards involved wi.th chipping crystsllised material from a glass vessel, a high density polyethyiene bucket was now used for the recrystallisations involved. Experiment 40 with this new batch of purified material showed a slower growth than R.P.G.3. In case this could be an unevenly distributed impurity in Batch G, qualitative experiments were carried out, 41 and 42, with Batch G solution and unclassified seed in Cells C and S, which being of the same order, confirmed that the cells were not causing the inhibition. Also as the unclassified seed mould be expected to have a larger specific surface than the sieve fractions usually used for seed, this growth appeared to be normal. A repeat experiment R.P.G. 5 again gave a similarly slow growth to R.P.G.4. To check Cell C again, this was repeated in Cell S and foun d to show an even slower growth rate. However, it was noted that some insoluble pieces of material were present in this experiment suspected to be chips from the polyethylene bucket. A small batch of purified Batch D was therefore purified using all glassware and Experiment 45 with this material showed a very fast growth. Although this confirmed that the polyethylene bucket had affected an inhibition of growth in Experiments 40, 43 and 44,
this growth was far faster than R.P.G.3., which had not involved polyethylene. Another batch of P.G. was therefore prepared using all glassware. R.P.G. 7 with this material showed a growth rate of the same order as R.P.G.3. i.e., faster than Experiments 40,43 and 44 but still not as fast as R.P.D.1. The discrepancy between R.P.G. 3 and R.P.G. 7 is possibly because of the higher initial supersaturation used in R.P.G.3. causing preferential adsorption of an impurity into the crystal lattice.

Runs R.G. 3 and R.G.4. were carried out with Batch G solution using $89-105 \mu$ sieve fraction P.G. and E seed respectively. These showed an inhibited growth of the same order as R.F.4. Both Batches F and G contained $\langle 0.1 \%$ Di-P.E. and a high Formal concentration and so although, (as with Batch B,) it seemed inconceivable that this growth inhibition could be an effect of Di-P.E. or Formal, the only conclusive proof of an unknown impurity lay with the comparison of the purified material with R.P.D.1. To confirm that this was not a freak run Batch \mathbb{E} was carefully purified and test R.P.E.l again showed a very fast growth. The rate of decrease in concentration was so great however that it appeared that nucleation had been induced. This theory was strengthened when R.P.E.1. was repeated, Experiment 58 showing a very poor reproducibility. R.P.E.3, therefore, was done using a lower initial supersaturation and still showed a relatively fast growth rate. R.P.G. 8 however, with the same conditions and the same seed showed no growth at all for five hours. This confirmed that Batch G. contained some other impurity than Di-P.E, or Formal, which was a very effective crystal growth inhibitor, was not destroyed by refluxing with hydrochloric acid,
and was not detected by the usual gas chromatographic analysis.

7. 2. 2. 7. 2. Attempted Extractions of unknown impurity

As any extraction of production material would be likely to change the concentrations of the known impurities Di-P.E. and Formal and hence the growth rate, P.G. was used for the extractions where any increase of growth rate after an extraction would indicate the effectiveness of the extraction. As this impurity had seemingly not been obvious in the chromatographic analysis, and as previous work (1) had shown that a trace amount of oil could completely inhibite crystal growth, the nature of this impurity was suspected to be an oil or grease. A possible source is from silicone grease used in plug cocks and valves on the production plant. The recommended solvent (90) for silicone grease was Toluene.

One litre of $30 \% \mathrm{~m} / \mathrm{v}$ P.G.aqueous solution was made up and stirred in a flask, fitted with a water condenser, with one litre of toluene at $80^{\circ} \mathrm{C}$ for two hours. The aqueous layer was separated, cooled, filtered and the P.G.T. material dried in an oven. However, Experiment 57 with this material showed a slower growth rate than R.P.G.7. The only explanation for this is that a further impurity was added from the toluene. As only G.P.R. toluene was available, and trace amounts of 'oil' are apparently very effective inhibitors this was quite possible.

At this stage to make completely sure that no impurity was being presented by the cells, possibly as the result of previous impure experiments, Cell S was thoroughly cleared by scouring with a wire
brush on an electric motor. The cell was then washed with a water hose and finally by filling with distilled water and stirring under experimental conditions for about an hour.

One litre of 12 mass\% P.G. aqueous solution was made up and held at $50^{\circ} \mathrm{C}$ in a one litre flask by means of an isomantle. 5.0 g of acid vashed Kiesulguhr were added and stirred for 3 hours. The solution was then filtered first through a No. 1. Whatman paper (approximately 100μ porosity) and then through a 0.45μ Millipore membrane filter. The P.G.K. material was carefully evaporated to dryness and Experiment 62 in Cell S with this material under the same conditions as R.P.G.8. which had shown no growth for five hours, grew very slowly. However the growth rate was still much slower than R.P.E.3.

One litre of 12% mass fraction P.G. aqueous solution was again made up and stirred in a 3 litre flask fitted with a water condenser With one litre of analar benzene at $50^{\circ} \mathrm{C}$, maintained by an isomantle, for two hours. The aqueous layer was then carefully separated off and the P.G.B. material carefully evaporated to dryness. This showed a growth rate, Experiment 63, faster but of the same order as R.P.E.3. after the initial stages. But these initial stages were very much slower than R.P.E.3. As these experiments, 62 and 63, were carried out with Batch E seed, a check test R.P.D.2. was done in Cell C with Batch E seed. This showed a growth rate of the same order as R.P.E.3.

One litre of 10% mass fraction P.G. aqueous solution was stirred in a one litre flask, maintained at $40^{\circ} \mathrm{C}$, with 10 g Molecular Sieve (Type 13X) for two hours. The solution was then filtered first through a

No. 1 Whatman paper and then a 0.45μ Millipore membrane filter. The P.G.i. material was carefully evaporated to dryness and Experiment 65 at 700 C showed a growth rate slower in the initial stages but subsequently faster than R.P.E.3. Test R.P.E. 5 with Batch E seed in Cell C again showed a growth rate of the same order as R.P.E. 3 and R.P.D.2. Test R.P.E. 6 was carried out under the same conditions in Cell S and showed a growth rate about an order of magnitude greater than R.P.E.5. This was eventually shown Section 7.2.3.1. to be due to an enhancing effect of extraneous particles in Cell S. Reproducibility, however, was shown to be very good (Experiments 67 and 69) under these enhanced conditions. So although Experiments 62, 63, 65 and 67 do not show realistic growth rates under normal conditions, they are comparable in themselves and Experiment 65 shows adsorption in aqueous solution with 10% molecular sieve type 13 X to be the most effective method trjed of extraction of the unknown impurity. However, comparison with Experiment 67 shows the extraction to be by no means complete. Experiment 73, with purified Batch E material after adsorption with molecular sieve, showed on comparison with Experiment 69 that molecular sieving had no effect on the purity of purified Batch E material. Therefore six successive extractions with $10 \% \mathrm{~m} / \mathrm{v}$ molecular sieve type 13X were done on a 10 mass \%. P.G. aqueous solutions as described above.

In an attempt to obtain aquantitativeestimate of the amount of impurity present, a known weight of sieve was taken from each extract, dried in an oven at 1000 C , reweighed and then calcined in an open muffle furnace at about $850^{\circ} \mathrm{C}$ for three days. The resulting sieve
was again weighed enabling the amount of impurity burnt off to be calculated. Blank tests showed a loss in weight due to the dry sieve only and also with adsorbed purified Batch E which could not be accounted for with the $10 \% \mathrm{~m} / \mathrm{m}$ mother liquor allowance. This was attributed to molecular sieve composition and preferential adsorption of P.E. molecules respectively. Compensation for both was made in the impurity content estimates. The results of these extractions are shown Appendix F and although only the first two extractio ns showed a measurable decrease in impurity content, within the accuracy of this method, the theoretical impurity content after six extractions, based on a constant partition coefficient consideration has been calculated as 0.0329 ppm (AppondixF). The original impurity concentration was estimated to be 0.26%.

Run R.P.G.M.2, Experiment 96, after two molecular sieve extractions showed no growth for 24 hours, and R.P.G.M.3. Experiment 97, with purified Batch G material after six successive extractions and an estimated. 03 ppm .impurity content showed no growth for six hours. Attempts at inducing growth by the addition of zinc and copper particles failed. Although these were under conditions of low initial super saturation ($\Delta c=1.2 \%$) Experiment 98 with purified Batch Ematerial under the same conditions showed a reasonable growth. Complete extraction of the impurity was therefore considered unsuccessful. 7. 2. 2. 7. 3. Attempted neutralisation of the unknown impurity

On the assumption that the impurity might be grease or oil an attempt was made to neutralise the effect by adding detergent
to separate the 'grease' molecules. This was done, Experiment 99, by adding successive $0.1 \mathrm{~cm}^{3}$ aliquots of 10% non-ionic detergent (Nonidet P.40) which had previously been shown (R.C.4.) to have no effect on the growth of Batch C material, in twenty minute intervals. For 0.3\% contaminant pressnt in 27.5% P.E. solution this would require about $1.8 \mathrm{~cm}^{3}$ of the diluted deter gent to give an equal mass. $2.5 \mathrm{~cm}^{3}$ of $0.1 \mathrm{~cm}^{3}$ aliquots mere added with no effect on the growth inhibition. 1 cm 3 of undiluted 'Nonidet' was then added and finally when no growth was apparent after a further hour, 1.5 cm 3 of 'Teepol' detergent was added. This was stirred for a further 14 hours, but again complete growth inhibition persisted.

As it had been found that heterogeneous particles enchanced the growth rate in Cell S, it was thought possible that this might be due to the effect of the particles adsorbing the impurity. Experiment 100 was therefore carried out in Cell C with the addition of 0.5 g brass filings cut from Cell S. However there was still complete gronth inhibition for $2 \frac{1}{2}$ hours.

McCartney and Alexander (63) found that the crystal growth of calciun sulphate was markedly retarded by the presence of polycarboxylic materials buf that the retarding action was largely destroyed in the presence of Hicl. As the impurity was unidentified in this case, HCl was added in an attempt to nullify the growth inhibition. This experiment 101 was carried out in the glass cell, G and as the required pH necessary was unknown 0.1 cm 3 aliquots of $10{ }^{\prime} \mathrm{c}_{\mathrm{H}} \mathrm{HCl}$ were added in 20 minute intervals until a total of $1.0 \mathrm{~cm}^{3} 10 \%$ HClhad been added. Five successive aliquots of $0.5 \mathrm{~cm}^{3}$ of $10 \% \mathrm{HCl}$ were then added every half hour, and finally $1 \mathrm{~cm}^{3}$,
$2 \mathrm{~cm}^{3}$ and $5 \mathrm{~cm}^{3}$ of concentrated HCl added at hourly intervals, however this had no effect on the growth inhibition.

As complete removal or neutralisation of the contaminant seemed extremely difficult it was decided to work on Batches C, D and E only these being comparable with each other and apparently not contaminated (as indicated by Experiment 73 where it was found that molecular sieving, the most effective extraction process found for the contaminant, had no effect with purified Batch E).

7. 2. 2, 8. Purified Batch E $+1.0 \%$ Di-P.E. (P.E.D)

A synthetic mixture was prepared of purified Batch E with 1.00% Di - P.E. added in the form of commercial Di-PE chromatographically analysed as containing 4.0% Formal and no detectable quantity of Pentaerythritol. Tests R.P.E.D. 1 and 2 were carried out, (Experiments 137 and 138 , at $700^{\circ} \mathrm{C}$ and $50^{\circ} \mathrm{C}$ respectively. The calibrations and equilibrium concentrations were taken to be the same as for Pure P.E. which seemed a reasonable approximation as only 1.0% impurity was added. In each case the growth rate was found to be slower than for Purified Batch E, R.P.E. 20 and R.P.E.16, but of the same order as found for Batch E, R.E. 19 and R.E.38. However, as the Di-P.E. could also contain some contaminant as effective as that in batch G, this is not necessarily an inhibiting effect of Di - P.E. As no analytical method, other than an indication from the effect on growth rate was available for this unknown contaminant it could not be definitely ascertained that the reduced growth rates were due entirely to the Di - P.E.
7. 2. 3. Enhancing effect of heterogeneous particles.

1. 2. 3. 4. Establishing the effect.

As indicated above, it was found that heterogeneous particles present in Cell S after cleaning with a wire brush just prior to Experiment 62, caused a very effective growth rate enhancement. The experiments leading to this conclusion are outlined below.

Experiments 62, 63 and 65 all indicated a partial removal of the impurity causing growth inhibition of P.G. material. However Experiment 67. R.P.E.6, in Cell S, gave a growth rate very much faster than R.P.E.5, under the same conditions in Cell C. R.P.E. 5 was therefore repeated, Experiment 68, with a similar result. R.P.E. 6 was now also repeated, Experiment 69, in Cell S, again with the same result and very much faster than R.P.E. 5 and 7 in Cell C. R.P.D. 3 in Cell S also showed a very much faster growth than R.P.D.2, in Cell C under the same conditions.). At this stage it was thought possible that Cell C had aquired some impurity which was inhibiting growth, possibly from the impure Batches G and F in the previous Experiments 40 to 60 .

Experiment 71 , R.E. 10 , wi.th $30 \% \mathrm{~m} / \mathrm{v}$ Batch E solution at $70^{\circ} \mathrm{C}$ was carried out in Cell C to compare the result with R.E.1, Experiment 33 under the same conditions in Cell C. R.E. 10 showed a similar growth rate although it was faster in the final stages. This was also similar to R.E.7, Experiment 39, carried out in Cell S. The discrepancy in the final stages of growth with R.E. 1 being slower than both R.E. 7 and R.E. 10 , could possibly be explained by different hydrodymamic conditions.

Experiment 72, R.E.11. in Cell S confirmed that either both cells C and S were previously inhibited and the inhibiting purity had been removed from Cell S when cleaned prior to Experiment 62, or Cell S now contained a crystal growth acceleratox.

A comparison was made R.P.D. 4 in Cell A which was first dismantled and thoroughly cleaned and polished. This then showed a growth rate at first slower, but of the same order as R.P.D.2, but nevertheless much slower than R.P.D.3. Although accurate reproducible results were difficult with Cell A because of a poorly defined image, this run showed a definite enhancing effect of Cell S . Cell C सas now cleaned with a wire brush and then polished with water soaked paper. R.P.D. 5 again showed a growth rate of the same order as R.P.D.2. It was realised that al though Cell S had been cleaned with a wire brush prior to Experiment 62, and washed out with a jet of water under experimental conditions, the interior had not been polished.

Cell S, therefore, was again cleaned with a wire brush attached to an electric motor and this time polished with paper soaked in distilled water. The cleaning operation was made difficult, however, by the thermometer pocket projection into the cell interior. Efficient cleaning around this pocket was impractica1. Experiment 76, R.P.D. 6 with this cell now showed a growth rate faster, but of the same order as R.P.D.5. although very much slower than R.P.D. 3 in the same cell before polishing. Also R。E。12 in Cell S and R.E. 13 in Cell C with the same conditions as R.E. 1 and R.E. 7 before the cells were cleaned, showed very similar growth rates. This was conclusive proof that the heterogeneous particles of swarf from Cell S, on the first oleaning had very
effectively enhanced the subsequent crystal growth experiments. This could possibly be a catalytic effect of the metal ions from the brass, or creation of secondary nuclei or else adsorption of the heterogeneous particles into the crystal surface creating "growth sites" for crystal growth.

Cell C was now given the same treatment as Cell S prior to Experiment 62 i.e. it was thoroughly cleaned with a wire brush on an electric motor, washed with a jet of water and stirred with distilled water. Experiment 79, R.E. 14 in Cell C after this treatment showed a growth rate enhanced by about 15\%. To confirm that this was due to the presence of copper particles, and obviate the possibility of it being due to the removal of trace amounts of impurity, Cell C was thoroughly polished with paper, soaked with distilled water, and R.E. 15 carried out after this polishing showed a similar growth to R.E. 13 before cleaning with the wire brush.
0.5 g zinc powder having an average particle size of about 3μ was added to Cell C at the start of R.E. 16 and resulted in growth of seed approximately 20% faster than R.E. 15.0 .5 g copper powder having an average size of about 50μ but containing many particles $<10 \mu$ was added to R.E. 17 resulting in a growth of seed slower than R.E. 16 but still about 10% faster than R.E. 15 .

- Although this confirmed that heterogeneous particles enhanced crystal growth, the degree of enhancement was considerably more in Cell S (e.g. R.E. 11 about three times as fast as R.E.15). This could be either due to the larger number of heterogeneous particles in the swarf produced by the wire brush, or else an additional catalytic effect of some metallic ion, other than copper or zinc present in the brass. To
distinguish between these possibilities, 0.5 g of brass filings were taken from Cell S, consisting of flat jagged plates which when measured across an average dimension on a microscope slide and assumed spherical, gave a surface area of $215 \mathrm{~cm}^{2}$ for 0.5 g which would be of the same order as the smooth internal surface of Cell S in contact with the mother liquor during a run. However due to the particle shape the actual surface area of filings would be well in excess of this figure. These filings were added in Experiment 139, R.E. 40 in Cell C giving a growth rate of seed about 30% faster than R.E. 15 . On examiration of products after these metallic particle additions it was cbserved that they were incorporated into the crystals. Also with each of these muns, the particle additions were made before the introduction of seed, and after stirring for about 15 minutes no decrease in concentration was observed. It was therefore concluded that heterogeneous particles present during crystal growth enhance the growth rates, possibly by adsorption onto the crystal surface causing dislocations in the crystal strudume and making available more growth sites for deposition of solute molecules. 7. 2. 3. 2. Absolute cleanliness of Cell C

In view of this enhancing effect of extraneous particles it was essential to have a cell completely free of foreign particles. This was impractical with Cell S due to the thermometer pocket obstruction making absolute cleanliness around this pocket very difficult. At this stage it was considered necessary to check Cell C with a clean glass cell. As a first approximation a jacketed beaker thoroughly cleaned with chromic acid, benzene and distilled water, of approximately $400 \mathrm{~cm}^{3}$ capacity was
used. It was fitted with a large rubber bung, a thermometer, and a stirrer positioned centrally.

Experiment 83 (R.E.18) was carried out with this beaker filled with $250 \mathrm{~cm}^{3}$ of $30.0 \% \mathrm{~m} / \mathrm{v}$ Batch E solution and 2 g of Datch E $89-105 \mu$ seed and stirred for 3 hours at 70.00 C . The resulting solution was poured into Cell C held at $70.0^{\circ} \mathrm{C}$ and the refractive index read. The result was of the order expected from R.E. 15.

Cell c was again dismantled and thoroughly cleaned and polished. As the prism on this cell had a contact adhesive sealing the refractometer prism and the Cell S had an epoxy resin seal, to obviate the possibility of either effecting crystallisation, the contact adhesive was removed and replaced with epoxy resin. R.E. 19 done with this cell showed a very similar growth to R.E. 15 except in the final stages below 0.06 super saturation where it was rather faster, but this is accounted for in the next section.

A glass cell, with similar dimensions to Cell C, Cell G, was made with the light path through a suspension kept to a minimum for ease of use. An enclosed jacket proved difficult in construction so a constant volume type water circulator was used and the jacket left open. Experiment 87 with the first glass cell at first indicated a very fast growth rate with a rapid decrease in concentration. However this proved to be due to an interchange of suspension and circulating water around the lip of the glass refractometer socket, and eventual dissolution of crystals. Further investigation showed the height of this lip to be critical. A water-tight seal was difficult, involving a refractometer clamped to the glass cell, and undesirable. So the refractometer socket
lip had to be of such a height to allow for solution expansion with temperature, the hydrodynamic fluctuations at 2000 r.p.m. stirrer speed but still to largely cover the prism face. Such a cell was constructed but difficulty was experienced (R.E.23) in obtaining a well defined image, so the accuracy of this run was suspect, although, overall of the same order as R.E.19. The optimum position of the light source was found to be beneath the cell and R.E. 24 (a repeat of R.E.23) was more successful and showed a similar growth to R.E. 19 in Cell C. A further comparison of Cells G and C, R.E. 28 and R.E. 29 respectively, at 60.00 C again showed very similar growth rates. So as the Cell C was more robust and easier to use than Cell G, all further experiments were carried out in Cell C. Experiments enhanced by heterogeneous partioles were: Experiment No: $62,63,65,67,69,70,72,73,76,77,79,81,82,139$. 1.2.4. Hydrodynamio Considerations

Experiment 18, 21 and 19 with Batch C at 500 r.p.m, 1000 and 2000rpm, respectively, showed the effect of stirrer speed to be that of holding the particles in suspension. Each showed a similar growth rate until 0.09 supersaturation when the growth rate of R.C. 13 at 500 r.p.m. (with a crystal mass at this point of about 6 g) started to fall off in comparison with R.C. 14 at 2000 r.p.m. However, R.C. 16 at 1000 r.p.m. remained the same until a supersaturation of about 0.075 when (at a crystal mass of about 8 g) it started to fall off in comparison with R.C.14. These critical crystal masses seemed to indicate the point at which settling of crystals began for a particular stirrer speed. It is of interest to note that although an increase of stirrer speed maintained the crystal suspension, the calculated growth rate constant K based on
first order integration assumption, still decreased progressively wi th supersaturation.

On the basis of these results $2000 \mathrm{r} . \mathrm{p} . \mathrm{m}$. seemed quite adequate to maintain the crystal suspension and so all runs after Experiment 22 were done at this stirrer speed. It was noted however on comparison of runs with Batoh E material with different cells and particularly after reassembly after the various cleaning operations, that there was an unexpected variation in the final stages of the runs as the concentration approached equilibrium (e.g. R.E. 19 was faster than R.E. 13 below about 0.06 supersaturation). This was attributed to different hydrodynamic conditions. Experiment 85, R.E. 20 was therefore carried out at 2500 r.p.m., the maximum speed attainable with the partioular motor used. However growth appeared much faster throughout the run, using the size analysis after attrition at 2000 r.p.m. for the basis of oaloulation, even in the initial stages. In view of the comparison of Experiments 18, 19 and 21 this must have been due to additional attrition. The stirring was also quite violent at this speed, so 2000 r.p.m. was again used and a study of the stirrer position made.

The above three positions were tried with the rubber bung in each
case made to accomodate the stirrer shaft and thermometer. In position 1 the shaft was placed vertical and central such that the impeller blades had about $\frac{1}{4}$ inch clearance with the cone of the cell. This was about as low as vibrations of the stirrer would allow, without the blades touching the sides. R.E. 21 in this position at 2000 r.p.m. showed an increased swirling of solution than in previous experiments, which caused seepage in the mother liquor arround the rubber bung. Growth rates were calculated to be about 10% faster in this run down to a supersaturation of about 0.05 , which was attributed to this seepage of mother liquor and hence a greater crystal/solution ratio than calculated. However below 0.05 supersaturation when the crystal mass had increased to about 9 g the growth rates were much slower than in previous experiments (c.f. R.E.19). This was thought to be due to the crystals having grown large enough to fall past the stirrer blade settling in the 'dead-pocket' below.

Run R.E. 24 in Cell G was carried out with the stirrer in an off-set position as in R.E. 19 and previous experiments with Cell G. Growth rate results were shown to be similar with no settling observed in the grimss cell.

Although it had been noted that the stirrer had been off-set in the previous experiments in Cell C, the exact position had not been noted.
R.E. 25 was carried out in Cell C with the stirrer in position 2 i.e. the stirrer was off-set with the impeller/shaft union being on a level with the cone/cylinder junction of the cell, and the impeller blada about $\frac{1}{4}$ in from the cell wall. The growth rate results were. similar to R.E. 19 until 0.045 supersaturation but slower after this .. value when the seed mass was about 9.5 g . The stirrer
was again changed, wi.th the impeller moved lower and off-set further, so the tip was on a level with and almost touching the cone/cylinder junction, as shown - position 3. R.E. 26 done at 2000 r.p.m. in this position showed a growth rate faster than R.E. 25 and similar to R.E.19.

To test the suspension of large crystals a $33.5 \% \mathrm{~m} / \mathrm{v}$ Batch E solution was made up for test R.E. 27 at $70^{\circ} \mathrm{C}$. The initial refractometer reading was off-scale but estimated at 110 which gave an initial concentration of $33.3 \% \mathrm{~m} / \mathrm{v}$. Growth rates for this test below 0.08 supersaturation were of the same order as R.E. 19 indicating complete suspension even with 20 g of crystals of which about $20 \mathrm{No} \%>110 \mu$ equivalent spherical diameter.
R.E. 28 with $27.5 \% \mathrm{~m} / \mathrm{v}$ Batch E solution at $60^{\circ} \mathrm{C}$ in a glass cell was examined carefully for any settling towards the end of the run. Eut orystals remained in complete suspension. R.E. 29 under the same ocriditions in Coll C showed a very similar growth rate. This stirrer position was therefore adopted as producing satisfactoxy hydrodynamio: conditions for suspension of orystale of the size to be examined at 2000 r.p.m.

Although the off-set stirrer position had not been noted accurately, in experiments prior to Experiment 85, a comparison of R.E. 3 and R.E. 29 shows some scatter in individual growth rate values due to the small time intervals involved but similar rates overall even for low supersaturations with a crystal mass of 20 g . The earlier experiments in Cell C must have, therefore, been under similar hydrodynamic conditions.

8.1. Equilibrium in aqueous solution.

Equilibrium of a solute in contact with a solvent may either be achieved by growth of the solute in a supersaturated solution of the solute in solvent (i.e. crystallisation) or dissolution of excess solute in the solvent. Crystallisation processes are thought to proceed by the two consecutive steps: diffusion of molecules to the crystal surface and then integration of the molecules into the crystal lattice. This latter integration step is often so slow as to be rate controlling. Dissolution however is thought to proceed only by a diffusion process of molecules into solution. Equilibrium values for use with the growth experiments were therefore obtained from dissolution in the abseace of the possibly inhibiting surface integration step. It was ovserved in the growth experiments that growth usually ceased at a. concentration greater than the equilibrium concentration found from the dissolution tests. Burton et al (42) also reported this phenomenon of a lack of crystal growth even when the solution in contact with the crystal had a supersaturation as high as $s \bumpeq 0.1$. They attributed this either to the absence of dislocations in the crystal surface, or else to the presence of so many of them that the mean distance between them is too small for the particle integration. As this would require of the order of 10^{12} dislocations per cm^{2}, they favoured the former explanation. In this
work, it was observed that this "apparent equilibrium" value, where the crystal growth ceased, depended on the rate of growth in the particular experiment.

Although no account was taken of these final readings for use with the growth experiments, occasionally the experiment was continued to ascertain that there was no further decrease in solution concentration. These final readings representing an "apparent equilibrium obtained from crystal growth are recorded in the table on p. 162 , together with the time for which this particular concentration value was observed. The longer timessometimes include an increase in solution concentration due to evaporation.

Growth Run.	$\mathrm{T}_{0}{ }^{\circ} \mathrm{C}$	Apparent Equilibrium.		Time observed at this conc. Min.	Equilibrium obtained from dissolution $c_{\infty} \% \mathrm{~m} / \mathrm{v}$.
		Scale S	c \% m/v.		
R.D. 5.	70.0	87.3	26.998	660	26.310
R.E. 1.	70.0	86.9	26.886	1200	26.310
R.E. ?	70.0	85.8	26.576	1460	26.310
R.G. 1	70.0	88.2	27.251	840	26.310
R.E.11.	70.0	84.9	26.323	2400	26.310
R.E.16.	70.0	85.4	26.464	760	26.310
R.P.G.3.	70.0	81.6	25.597	720	24.771
R.P.E.6.	70.0	80.2	25.184	110	24.771
R.P.E. 7.	70.0	81.4	25.538	720	24.771
R.E. 5.	60.0	70.5	20.523	6000	20.067
R.E.29.	60.0	70.3	20.466	880	20.181
R.P.E. 14	60.0	65.0	19.012	720	18.634
R.C. 7	$50 . C$	59 ?	15.676	1500	15.106
R.E. 6	50.0	59.0	15.576	2400	15.277
R.P.E. 16	50.0	53.7	24.729	600	14.116
R.P.E. 17	40.0	46.2	10.812	720	10.610

It can be seen that R.G.I. with a relatively slower growth rate due to contamination of Batch G material indicated a higher "apparent equilibrium" value than experiments with Batches D and E at the same temperature. It can also be seen that R.E. 11 carried out in the scoured cell S with the enhancing effect of the heterogeneous particles
indicated a much lowor equilibrium value than R.E.7. under the same conditions in the clean cell C. However when 0.5 g Zn dust was added to the solution in cell C, R.E.16, the growth rate was enhanced and the apparent equilibrium attained was lower than R.E.7. although not as low as RoE.ll. This effect was noted also with purified Batch $\mathrm{E}_{\text {o }}$ being the "purest" material obtained. Growth still ceased at some value higher than the equilibrium value and the enhancing effect of the heterogensous particles in cell S depressed the "apparent" equilibrium" value obtained (R.P.E.6.) compared with that in the clean cell. C (R.P.E.7.). The actual equilibrium values obtained for Pure P.E. (section 5.) were obtained both by dissolution and by growth of nucleated solutions where a large surface area is available for growth, and found to agree. It appears therefore that the cessation of growth depends on the growth rate and is probably due to the lack of dislocation sites. Kowsror heterogeneous particles enhance crystal. growth, possibly by increasing the number of growth sites, and permit growth at lower supersaturations.

As the presence of Formal enhances the P.E. solubility the exact concentration of impure P.E. solutions is required for the equilibrium (solubility) determination. Nucleation of the solutions of the required concentration would be difficult if an attempt was made to obtain equilibrium from growth, and so equilibrium was achieved from dissolution of the required solute concentration simulating a growth experiment. The results obtained were considered to be more reliable than any determination from growth. The results were well correlated by the conventional $\log x$ vs $\frac{l}{T} p l o t$
above $50^{\circ} \mathrm{C}$, but below this temperature the solubility was enhanced (by about I mass $\%$ at $30^{\circ} \mathrm{C}$) compared with that expected from the correlation. Although this might be due to a sudden change in the impurity partition coefficient the difference at $30^{\circ} \mathrm{C}$ could hardly be accounted for by the amount of impurity present unless the chromatograpüis:c chemical analysia (table l) is considerably different from the actual mass concentrations.

An unusual phenomenon was observed in the dissolution results of the impure materials. It was found that an enhanced solubility was obtained initially which then decreased gradually to a limit at which it remained constant. This was assumed to be the equilibrium value. The same value was attained whether the impure material contained Di-P.E. or not, but the degree of initial enhanced solubility was severely restrained with the presence of Di-P.E. (figure 5.4). A possible cause of this temporarily enhanced solubility effect could be the non-honogeneous distribution of the Formal within the crystal in the initial. batch of P.E. material used. If this contained more formal in the outer extremes of the crystal than in the core (possibly as a result of the method of preparation) then since the diffusivity in the liquid would be expected to be greater than in the solid an initially high Formal concentration in the liquid would give an enhanced solubility. Equilibrium is then achieved by diffusion of the excess Formal into the remaining crystals from the solution thus resulting in a slightly lower solubility due to the purer mother liquor. This might also account for the enhanced values at $<50^{\circ} \mathrm{C}$ where the solid diffusivity and mobility in the crystal
lattice might be too low to attain impurity equilibrium, resulting in mother liquor of relatively high Formal concentration.

The effect of the Di-P.E. appears to be that of arresting the initial enhanced solubility which might be the effect of the Di-P.E. on the equilibrium system at this temperature, or possibly the effect on the original crystal preparation creating a more homogeneous impurity distribution.

It would be interesting to note the effect of annealing the original solid P.E. at a high temperature. This might allow impurity diffusion in the solid creating a homogeneous crystal and prevent the initial solubility enhancement on dissolution.
8. 2. Results of Previous Work (1) on Crystal Growth.

In the previous work (1) growth rates were calculated from measurements of solution refractive index change in seeded cells, assuming a first order depondence on supersaturation $\left(c-c_{\infty}\right)$ such that $\frac{d c}{d t}=-K A\left(c-c_{\infty}\right)$. In order to do this the area after each concentration change had to be calculated and the approximation $\frac{A_{2}}{A_{1}}=\left(\frac{M_{2}}{M_{1}}\right)^{\frac{2}{3}}$ was used. Results for K excluding the initial and final few readings were averaged and the activation energies found. A summary of the results found for Batch A and purified Batch A are shown in table 149 appendix E. The activation energies for growth of Batch A and purified Batch A were found to be 30.65 and 18.4 K cal / g mole respectively. A number of improvements to this
method have been used in this work: A more accurate refractometer has been used; the area determination has been made allowing for the crystal size distribution; the Coulter Counter size analysis has been corrected to obtain a true equivalent spherical volume diameter; the calibrations and equilibrium determinations have been redone for greater accuracy.

The refractometer readings of the previous work were as accurate as the apparatus allowed. These were converted to the equivalent refractometer scale S readings of this work to enable the more accurate calibrations to be used and for use with the computer program 2 to allow for the size distribution of the attrited seed for the area determinations. This has been done, tables 150 and 151 with R.P.A.I. and R.A.5. using the equilibrium refractometer readings of the previous work and the uncorrected Coulter Counter size analyses (i.e. D_{c}) for a direct comparison. It can be seen that the effect of the average area approximation used in the previous work is accumulative throughect as calculation and R.P.A.I. shows an error of about $\times 2$ in the final K determination with a final area of $9164 \mathrm{~cm}^{2}$ as opposed to 5030 previously calculated. However readings are too few and over too limited a supersaturation range in these two experiments to accurately show the dependence on supersaturation. Tables 152 and 153 show the same two experiments calculated using the corrected equilibrium values found from dissolution in this work (section 5). The growth velocities g are, of course, as calculated in the previous tables, but when plotted against the
supersaturation s showed the sensitivity of the correlation on the equilibrium value. A comparison of the growth rate constants K also showed the sensitivity of these values on the equilibrium concentration which becomes more pronounced for the lower supersaturations. The correction was made for the Coulter Counter equivalent spherical diameters (i.e. D as opposed to D_{c}) and all the results for Batch A and purified Batch A (P.A.) calculated using the new equilibrium values and computation for area determination. The results are shown tables 154 to 160 , appendix E. It can be seen from a comparison of R.P.A.I. and R.A.5. before and after correction that the Coulter Counter diameter correction makes only about 1% difference in the growth rates in this case. The most significant difference of these corrections is that of allowing for the crystal size distribution of the attrited seed as opposed to calculating the attrited seed area and assuming a monodisperse crystal system.

The growth rate velocities, $g(\mathrm{~cm} / \mathrm{min})$ have been plotted figures 8.1 and 8.2 as $\operatorname{lo} g \mathrm{~g}$ vs $\log s$ and the values of k_{L} and b found for the correlation $g=k_{L} a^{b}$ by the method of least mean squares. The values are shown below. The results at $80^{\circ} \mathrm{C}$ could not be calculated by this method as the calibrations had not been done at this temperature.

BATCH A.

Run No.	$\mathrm{T}_{0}{ }^{\circ} \mathrm{C}$	Corrected Temp. ${ }^{\circ} \mathrm{C}$.	k_{L}	b
R.A.1.	60.0	60.1	0.000183	2.701
R.A.2.	70.0	70.2	0.000458	1.977
R.A.3.	55.0	55.1	0.00116	4.375
R.A.5.	50.0	50.1	0.0000357	3.408

FIGURE 8.2.

PURTFIED BATCH A GROWTH RATE

Purified BATCH A (P.A.).

Run No.	$\mathrm{T}_{0}{ }^{\circ} \mathrm{C}$	Corrected Temp. ${ }^{\circ} \mathrm{C}$.	k	b
R.P.A.1	60.0	60.1	0.000303	3.319
R.P.A.2	70.0	70.2	0.000395	2.115
R.P.A.4	50.0	50.1	8.3×10^{8}	25.97

It should be possible to correlate the growth rate constants k_{L} using the Arrhenius correlation of $\frac{d \ln k_{L}}{d T}=\frac{E}{R^{1} T^{2}}$
and hence

$$
\ln k_{L}=\ln A-\frac{E}{R^{\prime} T}
$$

where T is degrees Kelvin; R^{\prime} the Universal Gas Constant; A is a constant and E the activation energy for growth. This was done with apparent success in the previous work (1) for the averaged growth rate nonstants \bar{K} based on a first order supersaturation dependence.

However values oi k_{L} are extremely sensitive to the slope (exponent of s) b. In the previous work as the growich rate was assumed to be first order with respect to supersaturation, not many readings were taken and the supersaturation range was often very limited. Very few readings were taken at low supersaturations as the results were known to be more sensitive to the equilibrium value which, for the impure material, was suspect. It is fortuitous that R.A.5. at $50^{\circ} \mathrm{C}$ with only three readings over a very limited supersaturation range gives an exponent b of the same order as the
other runs. Only four results were obtained with R.P.A. 4 however and due to the very limited supersaturation range they gave an exponent b of 26 and consequently an extremely magnified k_{L} of 8.3×10^{8}. The data for most of this previous work is therefore too limited to obtain overall correlations of the type $g=k_{L} s^{b}$, and the Arrhenius correlation cannot be applied to k_{L} values determined. However over the range studied the actual growth velocities, g, are as accurate as the previous refractoneter readings allowed, and can be compared with the present work.

Although the stirrer speed was only 500 r.p.m. in the previous work as compared with 2000 r.p.m. used in this work, the seed used (especially after attrition) was smaller than that used for most of this work, and as it has been shown that the function of stirrer speed is merely that of maintaining the crystals in suspension the results should be comparable in this respect. A visual suspension test had also been carried out with this seed in the previous work, and 500 r.p.m. had appeaied satisfactory.
8. 3. Crystal Growth.

8.3.1. Relative Velocity Effect.

The effect of the relative crystal / solution velocity was investigated using a fluidised bed of crystals and also by varying the stirrer speed in a suspension. In the fluidised bed experiments growth rate determinations were made using direct measurements of seed and product crystals, and also by measuring the crystal mass increase.

Attempts were also made to follow the concentration decrease of the circulating mother liquor of the fluidised bed experiments. However, because of the slow growth rate of P.E. and the difficulty of obtaining an air-tight seal using a submerged impeller pump, the evaporation rate tended to compensate for the solution concentration decay due to growth. This method might be developed to overcome this problem, possibly by using a magnetically operated pump to avoid grease from glands. Measurements of the crystal mass increase in situ in the fluidised bed cell proved to be the most reliable used, and it was found that results were in reasonable agreement with those of the stirred cell experiments. It was also found that the only effect of stirrer speed in the stirred cell experiments, apart from that of crystal attrition, was that of maintaining the crystals in suspension. It was therefore concluded that the crystal growth rate of P.E. was surface integration rate controlled for all conditions investigated up to $70^{\circ} \mathrm{C}$. A repetitive inversion sedimentometer" built to investigate the relative velocity effect of crystals under terminal velocity conditions, although constructed was therefore not used as no more useful information was thought to be obtainable by this method for P.E.

8.3.2. Seeded Solutions in stirred cell.1s.

8.3.2.1. Experimental Testing of Mathematical Model.

Figure 8.3. shows a selection of product crystals after growth in the stirred cells, obtained by filtering the suspension after an experiment through a No.l Whatman filter and washing with

FIGURE 8.3.

Magnification x 240

8.3.a Attrited Batch E Seed $89-105 \mu$

$$
\begin{array}{ll}
\text { 8.3.c R.P.E. } 12 \text { Product } 2 \mathrm{~g} \text { Seed } \\
& 60^{\circ} \mathrm{C} \text { Initial } \triangle \mathrm{c} \bumpeq 3.2 \%
\end{array}
$$

8.3.b R.E. 15 Product 2g Seed $70^{\circ} \mathrm{C}$ Initial $\triangle c \bumpeq 4 \%$

8.3.d R.P.E. 12 Product $2 g$ Seed Initial $\triangle \mathrm{c} \bumpeq 3.2 \% \quad 60^{\circ} \mathrm{C}$

FIGURE 8.3. (CONT.)
Maynlification x 240

8.3.e R.E. 36 Product 1.0 g Seed $60^{\circ} \mathrm{C} \Delta \mathrm{c} \Omega 4.5 \%$

8.3.f R.E. 37 Product 0.5 g Seed $60^{\circ} \mathrm{C} \Delta c \bumpeq 4.5 \%$

8.3.g R.E. 34 Product l. Og seed
$60^{\circ} \mathrm{C} \Delta \mathrm{c} \bumpeq 6 \%$

8.3.h R.E. 35 Product 0.5 g Seed $60^{\circ} \mathrm{C} \Delta \mathrm{c} \Omega 6 \%$

FIGURE 8.3. (CONT.)

Magnification x 240

8.3.i R.E. 33 Product 0.5 g Seed $60^{\circ} \mathrm{C} \Delta_{C} \bumpeq 7.5 \%$

8.3.j R.E. 32 Product l.0g Seed $60^{\circ} \mathrm{C} \Delta c=7.5 \%$

$\begin{array}{ll}\text { 8.3.k R.E. } 16 \text { Product } 2 g \text { Seed } \\ & 70^{\circ} \mathrm{C} \Delta_{\mathrm{C}} \bumpeq 3.5 \%\end{array}$
0.5 g Zn DUST ADDED

8.3.1 R.E.F. 4 Product 2 g Seed
$60^{\circ} \mathrm{C} \Delta \propto 4.5 \%$
acetone to avoid agglomeration. 8.3a shows a typical seed (Batch E . 89-105 μ sieve fraction) after attrition in a saturated solution with a stirrer speed of 2000 r.p.m. As expected the attrited crystal.s were irregular with a wide size distribution. Figure 8.3b shows a typical Batch E product grown under the usual experimental conditions in the stirred cells of initial $\Delta \mathrm{c} \bumpeq 4 \%$ with $2 g$ of seed. As this had been carried out at $70^{\circ} \mathrm{C}$, growth was faster than at lower temperatures and crystals would be expected to be weaker than if grown at a lower temperature. However, although the product was irregular in shape, as might have been expected after the aittempts to grow impure single crystals, there appears to have been very little attrition. Figure 8.4. shows graphically the analyses of attrited Batch E seed and R.E. 15 product which was analysed by both the Image Shear and Coulter Counter techniques. The Coulter Counter analysis of the attrited seed only is shown as the Image Shear analysis (table 27) showed a marked deviation attributed to the irregular crystal shapes. The Coulter Counter analysis of the product was also considered more accurate than the Image Shear method because of the dependence of the Image Shear method on a characteristic dimension. The largest diameter visible on the microscope slide was normally taken with agglomerates which would account for the oversizing of the larger crystals. The dotted line indicates the calculated product size analysis with an overall diameter increase of 43μ (from R.E.15). Figures 8.3 c and d show the product crystals of R.P.E. 12 using refracted and reflected li.ght respectively. The crystals are more regular than with the impure material and are transparent.

Some large agglomerates are formed which were also indicated in the size analyses (figure 8.5). As the analysis is on a number \% oversize basis, agglomerates deplete the number $\%$ of the smaller sizes and might account for the deviation from the calculated product size analysis. Although agglomerates look well formed as though a result of growth, agglomeration might also occur in the filltration process. However there was no method of distinguishing between these possibilities.

For an absolute experimental proof of the method of computation of results runs were carried out at different initial supersaturations and with different amounts of seed, at $60^{\circ} \mathrm{C}$. However, results did not concur at equivalent supersaturations: faster growth rates being indicated with higher initial supersaturations and also with smaller amounts of seed. At first this was attributed to a surface roughness effect proportional to the mass deposited per unit surface area, but examination of the products shows it in fact to be a result of attrition. It appears that there is a critical time or size increase (for a particular growth velocity) beyond which the crystals grown become too fragile for the particular hydrodynamic conditions, resulting in attrition. The products of some of these experiments with size analyses show in table 28 are show in figures 8.3 e to j. It was therefore concluded necessary to limit initial supersaturations to $c a . \Delta c=4 \%$ and use at least $2 g$ seed.

$$
\text { R.E. } 16 \text { was carried out with the addition of } 0.5 \mathrm{~g} \text { Z } \mathrm{n}
$$

particles of about 3μ average size and resulted in a 20% increase in growth rate . Examination of the product, figure 8.3 g , showed these particles to be integrated into the crystals. It was thought

that this growth rate enhancement was a result of an increased number of adsorption sites caused by the particles since the particles did not themselves create nucleation. The effect of filtering solutions through a 0.45μ filter (the finest available) was therefore examined. Results were anomalous and showed a poor reproducibility. Examination of R.E.F. 4 product, figure 8.31, table 27, showed tris to be due to attrition. It was concluded that brittle crystals were caused by growth free of heterogeneous particles.
8.3.2.2. Batches B, F and G.

These three materials were all found to show crystal growth inhibition $f_{Q r}$ greater than that expected due to the known impurities indicated by the gas chromatographic analysis. The conclusive proof of an unknown contaminant was made by comparison of P.G. and P.E. materials (i.e. purified of known impurities) when P.G. was found to be greatly inhibited. Attempts to neutralise the contaminant were unsuccessful anc although benzene was found to extract a certain amount of the contaminant the most efficient extraction was made using Molecular Sieve Type ix. An estimation of the contaminant content made by burning off th molecular sieve extract and finding the loss in weight with six successive extractions indicated an original contaminant concentration of 0.26% in Batch P.G., and 0.0329 p.p.m. contaminant left in solution after the sixth successive extraction. However even after these 6 extractions, experiment 97 showed complete growth inhibition with $\Delta \mathrm{c}=1.2 \%$ at $70^{\circ} \mathrm{C}$ whereas purified Batch E grew at a reasonable rate under these same conditions. A comparison
of purified Batch A with purified Batch E, indicates that Batch A was al.so contaminated, and it seems fortuitous that these materials (A, B, F and G) all contain $<0.1 \%$ Di-P.E. It was thought possible that the contaminant might inhibit this side reaction for the formation of $\mathrm{Di}-\mathrm{P} . E$. and therefore be present early in the manufacturing process. The nature of this contaminant is still unknown. Although it was found in the previous work (1) that a trace of oil completely inhibited crystal growth, P.E. has since been found to be hypersensitive to other impurities. Further growth inhibition was found (a) when the material was sieved through a sieve which had been used for a $\mathrm{SiO}_{2} / \mathrm{V}_{2} \mathrm{O}_{5}$ catalyst, and (b) when a polythene bucket was used in the preparation of pure P.E.

As the exact amount of contaminant was unknow for these materials, growth rates obtained were only relative and were not studied in detail.

8.3.2.3. Batches C. D and E.

These materials had reasonably comparable chemical analyses. The growth rates obtained were of the same order and the differences could possibly be attributed to the differences in the known impurity contents. The results were fitted to the correlation
$g=k_{L} s^{b}$ by the method of least mean squares, and the following results obtained:-

BATCH D:

Run No.	$T_{0}{ }^{\circ} \mathrm{C}$	Corrected Temp. ${ }^{{ }^{C}}{ }^{C}$	k_{L}	b
R.D.1	70.0	70.2	0.00161	2.386
R.D.1 +3+4+6	70.0	70.2	0.00126	2.266
R.D.7	70.0	70.2	0.0127	2.723

BATCH: C:

Run No.	$T_{0}{ }^{\circ} \mathrm{C}$	Corrected Temp. ${ }^{\text {C. }}$	k_{L}	b
R.C.6	60.0	60.1	0.000847	2.851
R.C. 7	50.0	50.1	0.0000325	1.814
R.C.14	70.0	70.2	0.00193	2.261
R.C.15	30.0	30.0	0.00000267	1.438
R. C.17	40.0	40.0	0.00000541	1.497

BATCH E:

Run No.	$\mathrm{T}_{{ }_{0}{ }^{0} \mathrm{C}}$	Corrected Temp. ${ }^{{ }_{C}}$	k_{L}	b
R.E.4	60.0	60.1	0.000194	1.908
R..E.19	70.0	70.2	0.000623	1.693
R.E.38	50.0	50.1	0.0000403	1.696

R.D.I. with Batch D $44-64 \mu$ seed at $70^{\circ} \mathrm{C}$ showed a comparable growth rate with R.D.3, 4 and 6 using different seed size and Batches, and carried out in different cells. The results are

FIGURE 8.6
BATCH D GROWTH RATE ATP $70^{\circ} \mathrm{C}$

shown in figure 8.6. The k_{L} values for R.D.I. and the combined tests R.D.I, 3, 4 and 6 compare better than appears at first sight, e.g. g values calculated from the given correlations at $s=0.1$ are 6.6×10^{-6} and 6.8×10^{-6} respectively. The exaggerated k_{L}. difference is due to its sensitivity to the exponent b. For better accuracy a wider supersaturation range should be used, but this is not possible for P.E. without causing attrition of seed crystals or creating nucleation.
R.D. 7 with P.G. seed is also shown for comparison but has a very much higher growth rate than with the impure seed materials. This phenomenon of enhanced growth using pure seed with impure solution was also found with Batch G solution (experiments 54 and 55). It could possibly be due to both depleted impurity content in the solution due to the impurity diffusion into the crystal to achieve equilibrium and this causing dislocations in the crystals.

Growth resuits of Batch C over the temperature'range $30^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ are shown in figure 8.7 together with the least mean squares correlations. With the exception of R.C. 6 at $60^{\circ} \mathrm{C}$ the exponent b decreases progressively with temperature. This could possibly be due to a contaminant having a different equilibrium partition coefficient at different temperatures. Batch C however showed a similar growth rate to Batch E which was thought to be contaminant free, as extraction with molecular sieve had shown no effect on the growth rate. The growth results for Batch \mathbb{E} are shown in figure 8.8. The sensitivity of the k_{L} value on b is further demonstrated by a comparison of Batches C, D and E at $70^{\circ} \mathrm{C}$. Although Batch E has the
GROWTH VELOCITY $\mathrm{g} \mathrm{cm} / \mathrm{min}$
$\stackrel{\leftrightarrow}{G}$

FIGURE 8.7.
GROWTH RATE BATCH C
Q R.C. $1470^{\circ} \mathrm{C}$
(-) R.C. $660^{\circ} \mathrm{C}$
\times R.C. $750^{\circ} \mathrm{C}$

- R.C. $1740^{\circ} \mathrm{C}$
\triangle R.C. $1530^{\circ} \mathrm{C}$

BATCH E GROWIH RATE

10^{-2}
ACTIVATION ENERGY OF TMPURE P.E.

lowest k_{L} value, growth rates over the supersaturation range measured were in fact faster than either Batch C or D. $L_{g_{/ ~}}$ values have been plotted vs $\frac{l}{T}$ where $T=$ degrees Kelvin, in figure 8.9. Batch E can be correlated for $50>\mathrm{T}_{0}>70^{\circ} \mathrm{C}$ by the equation:

$$
\log _{10} k_{L}=14.07-\frac{5938}{T}
$$

with an Activation Energy of $27.2 \mathrm{Kcal} . / \mathrm{g}$.mole., and an overall equation for Batches $C . D$ and E for $30>T_{0}>70^{\circ} \mathrm{C}$ is:

$$
\log _{10} k_{L}=17.04-\frac{6892}{T}
$$

with an Activation Energy of 31.5 Kcal./g.mole.
The deviation of the points from this latter correlation is large, but if a contaminant is present having a changing partition coefficient with temperature this would make the simple Arrhenius type correlation invalid.

8.3.2. 4. Fuaified Batch E.

Batch E with the highest growth rate of the impure Batches was thought to have the least (if any) contaminant, and crystal growth rates for the purified material were determined. The results obtained were unexpected. Figure 8.10 shows the results of R.P.E. $7(\Delta c=2.6 \%)$ and R.P.E. $20(\Delta c=3.8 \%)$ both at $70^{\circ} \mathrm{C}$. Both show an apparent break point in the correlation with the growth rates obtained displaced from each other. R.P.E. 18 at $75^{\circ} \mathrm{C}$ (figure 8.11) also suggests this apparent break point, but it is not present at the lower temperatures of $60^{\circ} \mathrm{C}$ and $50^{\circ} \mathrm{C}$. R.P.E. 17 and
GROWTH VELOCITY $\mathrm{g} \mathrm{cm} / \mathrm{min}$
10^{-3}
10^{-4}

PURIFIED BATCH E GROWTH RATE $70^{\circ} \mathrm{C}$

\triangle R.P.E. $7 \Delta c=2.6 \%$
© R.P.E. $20 \Delta 0=3.8 \%$
--.. imast mban squares fit

the repeat experiment R.P.E.19, at $40^{\circ} \mathrm{C}$ (figure 8.12) both show an increase in crystal growth rate with decreasing supersaturation to a maximum value (higher than that at $60^{\circ} \mathrm{C}$ for an equivalent supersaturation) before decreasing. This growth rate after achieving the maximum value then remains higher than equivalent values at $60^{\circ} \mathrm{C}$.

The only explanation thought possible is that of a contaminant effect. Any roughness effect to explain the break point at the higher temperatures (i.e. by achieving a constant roughness) would be expected to be consistent at all temperatures. If it is assumed however that the system contains a contaminant which will achieve an equilibrium partition between the crystals in suspension and the solution, then:
(a) At high temperatures the break point might be explained by the contaminant gradually being adsorbed on the crystal surface and rapidly decreasing the crystal growth rate by blocking adsorption sites until (at the break point) contaminant equilibrium is achieved when the growth will proceed at a slower rate than in the absence of contaminant.
(b) At low temperatures (e.g. $40^{\circ} \mathrm{C}$) the maximum value might be explained by assuming a different contaminant partition coefficient whereby all the contaminant was soon adsorbed on the crystal surface almost completely inhibiting growth initially and then as growth proceeded the inhibiting regions gradually became covered by layers of purer crystal. Eventually at the maximum value the solution was purified of contaminant and growth proceeded from pure solution onto pure crystal surface.

PURIFIED BATCH E GROWPH RATP AT $40^{\circ} \mathrm{C}$

It is thought that the reason this contaminant effect was not so peculiar for the impure solution (Batch E) was because of the greater relative number of adsorption sites. It can be seen from examination of the product crystals figure 8.3 b and d that the surfaces of pure crystals are far smoother than those of impure crystals. It was therefore thought that although the same contaminant partition coefficient exists, there were many more adsorption sites with impure P.E. crystals and the percentage बffected by contaminant was less and therefore did not have such a pronounced effect on the growth rate. The results of $k \nu$ for $75>T_{0} \geqslant 50^{\circ} \mathrm{C}$ obtained from all the data points for each experiment are shown below:

$\begin{aligned} & \text { Run } \\ & \text { No. } \end{aligned}$	$T_{0}{ }^{\circ} \mathrm{C}$	Corrected	k_{C}	b
R.P.E. 7	70.0	70.2	1.066	4.528
R.P.E. 12	$60 . C$	60.1	0.000674	1.774
R.P.E. 16	50.0	50.1	0.0000195	0.449
R.P.E. 18	75.0	75.3	0.300	3.530
R.P.E. 20	70.0	70.2	0.0457	3.002

Although the contaminant markedly effects the above correlations these overall k_{L} values have been plotted vs $\frac{1}{T}$ (figure 8.13) to give an indication of the activation energy of the pure P.E. in the presence of this trace amount of contaminant. The results can be correlated by:

$$
\log _{10} k_{L}=54.0-\frac{19030}{T}
$$

indicating an activation energy for growth of $87.0 \mathrm{Kcal} . / \mathrm{g} . \mathrm{mole}$.
8.4. Suggestions for Future Work.

Because of the overlap phenomenon observed with the dissolution experiments it would be interesting to investigate further the cause of this initially enhanced concentration. It has been suggested that it might be due to the method of preparation of the crystals used in the test, producing a non-homogeneous impurity distribution. The effect of isothermal batch preparations of crystals at different temperatures before dissolution could be investigated to find if there is a partition coefficient effect. It would also be interesting to check the effect after annealing the crystals to induce diffusion of the impurity within the crystal lattice and so create homogeneous composition.

The effect of temperature on the partition coefficient of the known impurities Formal and Di-P.E. should be studied, particularly below $50^{\circ} \mathrm{C}$, to see if this could explain the enhanced solubility of the impure material at the low temperatures above that suggested by the correlation (for above $50^{\circ} \mathrm{C}$). Equilibrium should be approached from dissolution with only a small excess of solute present.

In order to obtain further information on the growth rate of P.E. and to correlate the data obtained in this work which is at present only related to the particular Batches of material with suspected unknown quantities of an unknown contaminant, this unknown contaminant should be identified, analysed and removed in order that
realistic growth rates might be obtained. Although extraction with molecular sieve type 13 X was found effective for higher contaminant concentrations, it had no apparent effect with the extremely small concentrations thought to be influencing the crystal growth of the "purest" material (i.e. P.E.). Purification might possibly be achieved by repeated extraction with redistilled Analar benzene. The only method for the determination of the presence of the contaminant resulting from this work is by comparison of the crystal growth rates. As it appears that the effective contaminant concentration is $\langle 1$ p.p.m. quantitative analysis might prove difficult. However as it has such a pronounced effect on crystal growth it is possible that the effect on the surface energy of the system would be large. It is therefore possible that a simple quick test might be devised studying the effect on the surface energy by measuring the contact angle of the solution/crystal interface.

Although a preliminary investigation with Batch E at $60^{\circ} \mathrm{C}$ to find the safe working limits showed that one condition necessary to avoid attrition was an initial supersaturation of $\left(c-c_{\infty}\right)<4 \%$ with 2 g of seed, this should be studied in more detail. Each material with associated impurities ought to be studied individually, as the impurities could be expected to effect the brittleness of the crystal. Each system could then be examined to find the effect of time, supersaturation and the amount of seed on the attrition occuring during the process. If carried out at near room temperature samples of suspension could be taken periodically and analysed with the Coulter

Counter. Any deviations from the mathematical model used in this work, assuming simply growth of the seed according to the ΔL law could then be predicted under any growth rate conditions. Another parameter which appears to effect crystal strength is the amount of heterogeneous material present. It was found in this work that crystals grown from a solution free of heterogeneous particles $>0.45 \mu$ were abnormally brittle. Although the safe working limits to avoid attrition are known and were observed for these batch crystallisations, the strength or hardness characteristics of crystals grown under any conditions should be known before operating conditions of a crystalliser can be specified.

It has also been shown that heterogeneous particles enhance crystal growth, possibly by creating dislocations in the crystal surface. The effect of the number and size of heterogeneous particles on the degree of enhancement of the growth rate should be studied in more detail.

If the contaminant can be removed the original problem may be approached, that is the effect of the two individual main impurities on the growth rate of P.E., the evaluation of the optimum crystalliser conditions and the testing of these conditions on a pilot plant crystalliser.
1.
2.
3.

$$
\log _{10} x=4.980-\frac{1242}{T}
$$

where $\mathrm{x}=$ P.E. mass \%; $\mathrm{T}=$ degrees Kelvin.

The equilibrium of impure P.E. (with ca. 5\% Formal) in aqueous solution $\geqslant 50^{\circ} \mathrm{C}$ with solids present equivalent to a aupersaturation of about $\left(c-c_{\infty}\right)=4 \%$ is given by the equation:

$$
\log _{10} x=5.073-\frac{1265}{T}
$$

Bolow $50^{\circ} \mathrm{C}$ the solubility of impure P.E. is greator then that expected from the above correlation.
6. The presence of the Formal impurity in P.E. enhances the solubility.

Di-P.E. does not appear to affect the equilibrium value at the concentrations used but with the materials used it accelerated the rate of attainment of equilibrium from dissolution.

A correction was necessary to the Coulter Counter Theory to allow fur paticte chape and size of a PoE. crystal during size analysis. This correction arounted to about 5% of the equivalent spherical volume diametor at the recommended 40% particle/orifice diameter ratio limit with a 280μ orifice tube.

Computer program 1 may be used to predict the product size analysis of crystals of a known seed size distribution, by measuring the mass increase when grown at constant supersaturation and waen suface integration nats control.s.
10. Computer program 2 may be used to calculate the crystal growth rate of seed crystals of known size distribution, grown in a batch crystalliser, by following the decrease in solution concentration with time.
11. The surfocc integeation rate was owstal growth rate controlling for the conditions studied (i.e. $\mathrm{T}_{\mathrm{o}}<70^{\circ} \mathrm{C}$).
12. Heterogeneous particles enhanced crystal growth rate.
13. The absence of heterogeneous particles for the crystallisation of P.E. results in brittle crystals.
14. P.E. material Batches A, B, F and G were contaminated with. an unknown impurity not analysed on the gas chromatograph, which inhibited crystal growth.

This contaminant could be partially extracted using Molecular Sieve Type 13X. The total concentration of contaminarit in Batch G was estimated to be 0.26%.

Correlations of the typo $g=k_{f f} s^{b}$ were fitted to the results of Batches C, D and E and the exponent b was found to vary according to material and temperature, with an average value of about 2 .

$$
\log _{10} \mathrm{k} / \mathrm{L}=24.07-\frac{5938}{工}
$$

with an activation energy of $27.2 \mathrm{Kcal} . / \mathrm{g}$ mole.

The overall correlation for Batches C, D and E $30^{\circ} \mathrm{C}>\mathrm{T}_{0}>70^{\circ} \mathrm{C}$ was:

$$
\log _{10} k_{2}=17.0^{4} 4-\frac{6892}{5}
$$

with an activation energy of $32.5 \mathrm{Kcal} . / \mathrm{g}$ mole.
showed unusual growth rates with respect to supersaturation. At high temperatures there is an apparent break in the $\log g$ vs $\log s$ correlation with two apparent straight lines of different slopes b.

At low temperatures the growth rate increased to a maximum for decreasing values of supersaturation before decreasing on further decrease of supersaturation with an enhanced growth rate to that anticipated. These phenomena were attributed to the presence of a trace amount of contaminant ($\langle 0.01$ p.p.m.) and a changing contaminant partition coefficient with temperature.
20.

An average overall correlation for purified Batch E of the type $g=k_{L} s^{b}$ was found at each temperature $\geqslant 50^{\circ} \mathrm{C}$ and the k_{1} values obtained correlated by the equation

$$
\log _{10} k_{L}=54.0-\frac{19030}{T}
$$

indicating an antivation energy of $87.0 \mathrm{Kcal} / \mathrm{g}$.mole.

```
APPENDIX A - CALIBRATION AND EQUILIBRIUM
```


TABLE: 1
MANUFACTURERES CHROMATOGRAPHTC CHEMICAL ANALYS IS

MATERTAL BATCH	DI-PENTAERYMHRITOL \%	FORMAL \% \%
A	<0.1	4.73
B	<0.1	4.08
C	1.0	4.3
D	1.0	5.5
E	0.9	5.2
F	<0.1	5.5
G	NONE	5.2
DIFPE		4.0
PURIFIED MATERTALS	<0.1	<0.1
天 COMPARATIVE ONLY (NOT MASS \%)		

TABLE: 2

ISOTHERMAL REFRACTOMETER CALIBRATION CORRELATIONS
BATCH D : 1.0% Di-P.E., 5.5% FORMAL

T, ${ }^{\circ} \mathrm{C}$	LEAST MEAN SQUARES FIT $c=\% \mathrm{~m} / \mathrm{v}$	STANDARD DEVIATION
20.0	$0=-4.194+0.27825$	± 0.044
20.0	$c=-4.124+0.2754 \mathrm{~S}+0.0000247 \mathrm{~S}^{2}$	\pm
25.0	$c=-3.727+0.2779 \mathrm{~S}$	± 0.060
25.0	$c=-4.095+0.2917 S-0.0001186 S^{2}$	± 0.048
30.0	$0=-3.346+0.2800 \mathrm{~S}$	± 0.058
30.0	$0=-3.743+0.2951 S-0.0001337 S^{2}$	± 0.042
35.0	$0=-2.876+0.2813 \mathrm{~S}$	± 0.055
35.0	$c=-3.208+0.2940 S-0.0001070 S^{2}$	± 0.037
40.0	$0=-2.330+0.2820 S$	± 0.055
40.0	$0=-2.635+0.2935 S-0.0000930 S^{2}$	± 0.032
45.0	$0=-1.794+0.2836 \mathrm{~S}$	± 0.064
45.0	$c=-2.116+0.2962 S-0.0001065 S^{2}$	± 0.037
50.0	$0=-1.168+0.2844 \mathrm{~S}$	± 0.069
50.0	$c=-1.479+0.2966 S-0.0000990 \mathrm{~S}^{2}$	± 0.036
55.0	$c=-0.499+0.2858 S$	$\pm .072$
55.0	$c=-0.918+0.3010 S-0.0001204 S^{2}$	± 0.043
60.0	$0=0.234+0.2865 S$	± 0.093
60.0	$c=-0.299+0.3058 S-0.0001482 S^{2}$	± 0.036
65.0	$c=0.983+0.2879 \mathrm{~S}$	± 0.099
65.0	$c=0.473+0.3075 S-0.0001576 S^{2}$	± 0.038
70.0	$0=1.758+0.2895 \mathrm{~S}$	± 0.092
70.0	$c=1.319+0.3075 S-0.00015295^{2}$	± 0.030
75.0	$0=2.714+0.2889 \mathrm{~S}$	± 0.089
75.0	$c=2.222+0.3068 S-0.0001387 \mathrm{~S}^{2}$	± 0.041

SABLE: 3

ISOTHERMAL REFRRACTOMETER CALIBRATIOF: CORRELATIONS
PURE PENTAERYTHRTTTOL

$\mathrm{T}_{0}{ }^{\circ} \mathrm{C}$	LEAST MEAN SQUARES FIT	STANDARD DEVIATION
40.0	$c=-2.437+0.2852 S$	± 0.064
40.0	$c=-2.935+0.3072 S-0.0002088 S^{2}$	± 0.864
45.0	$0=-1.930+0.2883 \mathrm{~S}$	± 0.063
45.0	$c=-2.343+0.3076 S-0.0001918 S^{2}$	± 0.017
50.0	$c=-1.316+0.2895 \mathrm{~S}$	± 0.045
50.0	$c=-1.643+0.3058 S-0.0001699 S^{2}$	± 0.004
55.0	$c=-0.549+0.28905$	± 0.001
60.0	$0=0.116+0.2907 \mathrm{~S}$	± 0.001
65.0	$c=0.777+0.2932 \mathrm{~S}$	± 0.027
65.0	$c=0.558+0.3019 S-0.0000756 S^{2}$	± 0.016
70.0	$0=1.692+0.2927 \mathrm{~S}$	± 0.028
70.0	$c=1.820+0.2873 S+0.0000502 S^{2}$	± 0.019
75.0	$0=2.342+0.29715$	± 0.030
75.0	$c=2.400+0.2944 S+0.0000262 S^{2}$	± 0.030

TABLE4 : EQUIVALEIT RTPRACTOMETGR SCALES

n_{0}	SCALE Z ROR 1A PRISM	$\begin{array}{\|c\|} \text { SCALE } \\ \text { ZBRODD } \\ \text { IB PRISM } \end{array}$		n_{0}	$\left\lvert\, \begin{aligned} & \text { SCALE } \\ & \text { ZEROED } \\ & \text { IA PRISM } \end{aligned}\right.$	SCAL? ZEROED 1B PRISM	$\left\lvert\, \begin{gathered} \text { CALTBRADTM } \\ \text { SCALE S } \\ \text { UNZBROED } 1 B \\ (1 B+1.20) \end{gathered}\right.$
1.32548	-5.00	-4.65	-3.45	1.33633	23.00	23.25	24.45
1.32587	-4.00	-3.65	-2.45	1.33672	24.00	24.25	25.45
1.32626	-3.00	-2.70	-1.50	1.33710	25.00	25.25	26.45
1.32665	-2.00	-1.70	-0.50	1.33748	26.00	26.25	27.45
1.32704	-1.00	-0.70	0.50	1.33786	27.00	27.25	28.45
1.32744	0.00	0.30	1.50	1.33824	28.00	28.25	29.45
1.32783	1.00	1.30	2.50	1.33862	29.00	29.25	30.45
1.32822	2.00	2.30	3.50	1.33900	30.00	30.20	31.40
1.32861	3.00	3.30	4.50	1.33937	31.00	31.20	32.40
1.32900	4.00	4.30	5.50	1.33975	32.00	32.20	33.40
1.32939	5.00	5.30	6.50	1.34013	33.00	33.20	34.40
1.32978	6.00	6.30	7.50	1.34051	34.00	34.20	35.40
1.33016	7.00	7.25	8.45	1.34089	35.00	35.20	36.40
1.33055	8.00	8.25	9.45	1.34127	36.00	36.20	37.40
1.33094	9.00	9.25	10.45	1.34164	37.00	37.20	38.40
1.33133	10.00	10.25	11.45	1.34202	38.00	38.20	39.40
1.33171	11.00	11.25	12.45	1.34239 !	39.00	39.15	40.35
1.33210	12.00	12.25	13.45	1.34277	40.00	40.15	41.35
1.33249	13.00	13.35	14.45	1.34315	41.00	41.15	42.35
1.33287	14.00	14.25	15.45	1.34352	42.00	42.15	43.35
1.33326	15.00	15.25	16.45	1.34390	43.00	43.15	44.35
1.33364	16.00	16.25	17.45	1.34427	44.00	44.15	45.35
1.33403	17.00	17.25	18.45	1.34465	45.00	45.15	45.35
1.33441	18.00	18.25	19.45	1.34502	46.00	46.15	47.35
1.33480	19.00	19.25	20.45	1.34539	47.00	47.15	48.35
1.33518	20.00	20.25	21.45	1.34577	48.00	48.15	49.35
1.33556	21.00	21.25	22.45	1.34614	49.00	49.15	50.35
1.33595	22.00	22.25	23.45	1.34651	50.00	50,15	51.35

TABLE: 4 (CONTINUED)

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline n \& SCALE
ZIROED
IA PRISM \& SCALE
ZEROED
IB PRISM \& CALIBRARION
SCALE S
UNZEROED 1 B
$(1 \mathrm{~B}+1.20)$ \& n_{0} \& SCALE
ZEROED

IA PRISM \& SCALE
ZEROED

IB PRISM \& $$
\begin{aligned}
& \text { CALIBRATI N } \\
& \text { SCALE S } \\
& \text { UNZEROED 1B } \\
& (1 \mathrm{~B}+1.20)
\end{aligned}
$$

\hline 1.34688 \& 51.00 \& 51.15 \& 52.35 \& 1.35712 \& 79.00 \& 79.05 \& 80.25

\hline 1.34725 \& 52.00 \& 52.15 \& 53.35 \& 1.35748 \& 80.00 \& 80.05 \& 81.25

\hline 1.34763 \& 53.00 \& 53.15 \& 54.35 \& 1.35784 \& 81.00 \& 81.05 \& 82.25

\hline 1.34800 \& 54.00 \& 54.15 \& 55.35 \& 1.35820 \& 82.00 \& 82.05 \& 83.25

\hline 1.34837 \& 55.00 \& 55.15 \& 56.35 \& 1.35855 \& 83.00 \& 83.05 \& 84.25

\hline 1.34874 \& 56.00 \& 56.15 \& 57.35 \& 1.35892 \& 84.00 \& 84.05 \& 85.25

\hline 1.34910 \& 57.00 \& 57.15 \& 58.35 \& 1.35928 \& 85.00 \& 85.05 \& 86.25

\hline 1.34947 \& 58.00 \& 58.15 \& 59.35 \& 1.359641 \& 86.00 \& 86.05 \& 87.25

\hline 1.34984 \& 59.00 \& 59.15 \& 60.35 \& 1.35999 \& 87.00 \& 87.05 \& 88.25

\hline 1.35021 \& 60.00 \& 60.15 \& 61.35 \& 1.36035 \& 88.00 \& 88.05 \& 89.25

\hline 1.35057 \& 61.00 \& 61.15 \& 62.35 \& 1.36070 \& 89.00 \& 89.05 \& 90.25

\hline 1.35094 \& 62.00 \& 62.15 \& 63.35 \& 1.36106 \& 90.00 \& 90.05 \& 91.25

\hline 1.35131 \& 63.00 \& 63.15 \& 64.35 \& 1.36141 \& 91.00 \& 91.05 \& 92.25

\hline 1.35167 \& 64.00 \& 64.10 \& 65.30 \& 1.36177 \& 92.00 \& 92.05 \& 93.25

\hline 1.35204 \& 65.00 \& 65.10 \& 66.30 \& 1.36212 \& 93.00 \& 93.00 \& 94.20

\hline 1.35240 \& 66.00 \& 66.10 \& 67.30 \& 1.36248 \& 94.00 \& 94.00 \& 95.20

\hline 1.35277 \& 67.00 \& 67.10 \& 68.30 \& 1.36283 \& 95.00 \& 95.00 \& 96.20

\hline 1.35313 \& 58.00 \& 68.10 \& 69.30 \& 1.36318 \& 96.00 \& 96.00 \& 97.20

\hline 1.35350 \& 69.00 \& 69.10 \& 70.30 \& 1.36353 \& 97.00 \& 97.00 \& 98.20

\hline 1.35386 \& 70.00 \& 70.05 \& 71.25 \& 1.36389 \& 98.00 \& 98.00 \& 99.20

\hline 1.35422 \& 71.00 \& 71.05 \& 72.25 \& 1.36424 \& 99.00 \& 99.00 \& 100.20

\hline 1.35459 \& 72.00 \& 72.05 \& 73.25 \& 1.36459 \& 100.00 \& 100.00 \& 101.20

\hline 1.35495 \& 73.00 \& 73.05 \& 74.25 \& 1.36494 \& 101.00 \& 101.00 \& 102.20

\hline 1.35532 \& 74.00 \& 74.05 \& 75.25 \& 1.36529 \& 102.00 \& 102.00 \& 103.20

\hline 1.35568 \& 75.00 \& 75.05 \& 76.25 \& 1.36565 \& 103.00 \& 103.00 \& 104.20

\hline 1.35604 \& 76.00 \& 76.05 \& 77.25 \& 1.36600 \& 104.00 \& 104.00 \& 105.20

\hline 1.35640 \& 77.00 \& 77.05 \& 78.25 \& 1.36635 \& 105.00 \& 105.00 \&

\hline 1.35676 \& 78.00 \& 78.05 \& 79.25 \& \& \& \&

\hline
\end{tabular}

BATCHES D AND F DISSOLUTION TESTS

	BATCH D							BATCH F	
JISSOLUTION TEST NO.:	D.D.4.	D.D.5.	D.D.6.	D.D.7.	D.D. 14	D.D.9.	D.D. 13	D.F.2.	D.F.3.
$\mathrm{T}_{0}\left({ }^{\mathrm{C}}\right)$	60.0	60.0	60.0	60.0	55.0	50.0	40.0	60.0	60.0
ERUIVALEITT RUN INITIAL CONCI. $0_{0}(\% \mathrm{~mm} / \mathrm{v})$	27.50	24.5	26.0	23.0	21.5	24.0	15.25	24.0	27.5
$P_{\text {P }} \mathrm{E}_{0}=\left(\mathrm{c}_{0} \times 2.5+\mathrm{SEEPD}\right) \mathrm{g}$	70.75	63.25	67.0	59.5	55.75	62.0	40.12	62.0	70.75
$\mathrm{H}_{2} \mathrm{O}=250-\frac{2.50 \mathrm{c}_{\mathrm{O}}}{1.396} \mathrm{~cm}^{3}$	201	206	203.5	209	211.5	207.5	223	207	201
TOTAL MASS \% (fraction)	26.05	23.5	24.75	22.15	20.9	23.0	15.3	23.0	26.05
MAXIMMM VALUE (SCALE S)	69.9	69.6	69.7	69.8	65.6	63.2	56.2	73.8	74.2
EQUILIBRIUM VATJE (SCAIE S)	69.3	68.7	68.9	68.6	62.0	57.6	49.0	68.7	69.3
MAXIMTM CONCN. $\mathrm{c}(\% / \mathrm{m} / \mathrm{v})$	20.352	20.267	20.295	20.324	18.309	16.871	13.566	21.462	21.575
EQUILIBRIUM CONCN. $\mathrm{c}(\% \mathrm{~m} / \mathrm{v})$	20.181	20.010	20.067	19.981	17.281	15.277	11.602	20.010	20.181

APPENDIX B - SIZE ANALYSIS

TABLE: 6

BATCHES D AND F ERUILIBRIUM RESULTS

(OBTATNED FROM DISSOLUTITON)

TEST	$\mathrm{T}_{0}{ }^{\text {C }}$ C	$\begin{gathered} \text { CORRECTED } \\ \text { TEMP. }{ }^{\circ} \mathrm{C} \end{gathered}$	TOTAL P.E. CONCN.		EQUILIBRIUM	
			EQUIVALENT GROWMH RUN INITITAL CONCNM/m/v	+SEEP (g)	0 \% m $/ \mathrm{v}$	($\begin{gathered}x \\ \text { MASS }\end{gathered}$
D.D.I.	30.0	30.0	12.5	2	9.124	8.911
D.D. 10	40.0	40.0	14.0	2	11.552	11.205
D.D. 13	40.0	40.0	15.25	2	11.602	11.253
D.D. 12	40.0	40.0	17.5	2	11.751	11.393
河, D. 11	50.0	50.1	19.5	2	15.106	14.512
D.D.9.	50.0	50.1	24.0	2	15.277	14.668
35D.D. 14	55.0	55.1	21.5	2	17.281	16.502
3 ED . F.2.	60.0	60.1	24.0	2	20.010	18.969
+	60.0	60.1	26.0	1.	20.039	18.994
D.D.6.	60.0	60.1	26.0	2	20.067	19.019
+	60.0	60.1	27.5	0.5	20.096	19.045
+	60.0	60.1	27.5	1	20.153	19.095
D.D. 4	60.0	60.1	27.5	2	20.181	19.122
$\begin{aligned} & \text { D.F.3. } \\ & \text { D.D.3. } \end{aligned}$	70.0	70.2	27.5	2	26.211	24.437
	70.0	70.2	30.0	2	26.311	24.523

+ INTERPOLATED VAIUES FROM FIGURE 5.5.
IFAST MEAN SQUARES CORRELATION OF (30) RESUIMS (FOR T $\geqslant 50^{\circ} \mathrm{C}$ AND ($0-\mathrm{q}_{80}$) $\because 4 \%$) $\log _{10} x=5.073-\frac{1265}{T}$

TABLE: 7

PURE P.E. EQUILIBRIUM RESULIS

$T_{0}\left({ }^{\circ} \mathrm{C}\right)$	CORRECTEA) TEMP. $\left({ }^{\circ} \mathrm{C}\right)$	$0(\% \mathrm{~m} / \mathrm{v})$	$x($ MSS \% $)$
130.0	30.0	7.904	7.745
40.0	40.0	10.610	10.319
50.0	50.1	14.116	10.597
60.0	60.1	18.634	17.716
70.0	70.2	24.771	23.183
75.0	75.3	28.421	26.345

LEAST MEAN SQUARES CORRELATION: \because,

$$
\log _{10} x=4.980-\frac{1242}{T}
$$

where $\mathrm{x}=$ mass $\%, T=$ degrees Kelvin

APPENDIX B .- COULTER COUNTER

B.1. Operation

It has been shown in section 6.2.1.2. that the response of the Coulter Counter is almost proportional to the partiole volume. The deviation from proportionality and the dependenoe of particle shape on the responoe inoreases with the partiole/orifice ratio. For eaoh sample analysis, therefore, a suitable orifice tube was ohosen for the Coulter Eounter, so that the size range of partioles in the sample would be within about $I_{\frac{1}{2}}$ to 40% of the aperture diamater. Δn aqueous electrolyte was used of $0.9 \mathrm{~g} \mathrm{NaCl} / 100 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}+8.5 \mathrm{~g}$ Pure P.E. $/ 100 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$. This was such that the solution was saturated with P.E. at $25^{\circ} \mathrm{C}$ and the small degrees of supersaturation involved during an ana.jsis at room temperature would not effeot the partiole size during the shont time required for analysis.
Λ small amount of sample (about 0.01 g) was plaoed in about $250 \mathrm{om}^{3}$ of eleotrolyte previously filtered with a 0.45μ porosity membrane filter. \triangle few drops of non-ionic dispersant (NONDDET P4O) were added and the suspension stirred at about $1000 \mathrm{r} \cdot \mathrm{p} \cdot \mathrm{m}$. for about one minute. The suspension was then analysed by plaoing the beaker under the orifice tube and keeping it well stirred during an analysis to prevent settling. A contrated external vacuum was applied indioating flow from the beaker through the orifioe and unbalancing a meroury syphon. Releasing the external vaouum caused a syphoning aotion of the balanoing mexoury oolumn continuing the sample flow. The advanoing mercury column contaoted start and stop probes, at a fixed volume apart, aotivating the electronio counter. Equal volumes of suspension were passed through the oxifice at
presot threshold levels of the eleotronic counter. After each count the reset switch was depressed which zeroed the oounting units and changed the polarity of the eleotrodes to prevent excess polarization. For each threshold level an average of a number of oounts was taken depending on the statistioal variation.

B.2. Coinoiaence

The possibility thet two or more partioles are in the sensing zone at the same tins leais: to what is oalled coinoidence error. This oan be of two forms, primary and secondery coinoidence. Primary coinoidence is the loss of ciunt which results from ouly one pulse being generated for the passage of two or more partioles. Secondary coincidence is the counting of a partiole whose size is the sum of two or more partioles. For secondary coinctuence caused by a doublet a narrow size range of both partioles is required; i.e. two partioles larger than 8 miorons diameter are neeled to give a count equivalent of 10 miorons diameter. Also close proximity of the partioles is required. So seoondary coincidence is negligible for the low conoentration used and primary ooincidence correction only was required.

The primary coincidence correction is the addition of a number of $n_{0}^{1 \%}$ to the actual count n_{0}^{\prime}. If the ooinoidence level lies between 1% and 10% i.e. $0.01 n_{0}^{\prime}<n_{0}^{\prime \prime}<0.1 n_{0}^{\prime}$ 。

Then

$$
n_{0}^{\prime \prime}=P_{0}\left(\frac{n_{0}^{1}}{1000}\right)^{2}
$$

Where the ooincidenoe faotor P_{c} is obtained from the formula:

$$
P_{c}=2.5\left(\frac{D^{\prime}}{100}\right)^{3}\left(\frac{500}{V^{\prime}}\right)
$$

where D^{\prime} is the aperture dimeter in microns, and V^{\prime} is the netering manometer volune in nicrolitres. The factor 2.5 was obtained experinentally by Coulter Electronics Limited using a 100 micron operture and a 500 microlitre manometer volune at successive dilutions of counting on a monosized syster. In order to avoid exceeding the 10% coincidence level n_{c}^{\prime} must be less than $\frac{10^{5}}{D_{c}}$.

ORIFICE DIAMIETER MICRONS	MANOMETTRR VOLUME MLS.	COINCIDENCE FACTOR	isAXIMUM COUNT FOR 10\% COINCIDENCE
560	2	109.76	910
280	2	13.72	7,288
50	0.5	0.3125	320,000
50	0.05	3.125	- 32,000

B.3. Calibration

The calibration factor, K_{c} is used for conversion of threshold settings to particle volunes, or their cube roots to equivalent spherical diameters. The calibration factor is constont for a given aperture diameter and electrolyte resistivity.

A quantity of nonosized particles, between 5% and 20% of the orifice dianeter, such that the count obtained did not give more thon 2% coincidence was dispersed in the electrolyte. The suspension ras drawn through the orifice with the threshold dial set on zero and the arplifier gain index
on 3. The aperture current switoh was adjusted to a value $I_{c}^{3 \%}$ where the pulses on the oscillosoope ocoupied about one quarter of the soreen height. The threshold dial t_{Q}^{\prime} was varied until the shadow line ooincided wi th the height of the majority of pulses, and a count taken. Counts were taken at $\frac{1}{2} t_{c}^{\prime}$ and $1 \frac{1}{2} t_{c}^{\prime}$ and averaged. The threshold value $t_{c}^{3 F}$ was found by trial and orror which corresponded to the average of $\frac{1}{2} t_{c}^{{ }^{\pi 4}}$ and $1 \frac{1}{2} t_{c}^{3 \pi}$. The aperture resistance was measuxed by measuring the voltage, V_{o} between the outer electrode and earth, and caloulating the aperture resistance from $R_{c}=\frac{r_{0} \times V_{c}}{300-V_{0}}$ ohms where r_{c} is the resistance of the aperture current switch in the position used. Values of r_{0} are:-

Aperture Current Setting	r_{0} (ohms)
10	65,000
9	115,000
8	215,000
7	415,000
6	815,000

From the Soale Expansion Faotor, F_{o}, tables supplied by Coulter Electronics, F_{c} was found for this aperture resistance at current setting $I_{c}^{\text {FI }}$ and on Gain 3 .

The Calibration faotor K_{C} was then found from $K_{c}=D /\left(t_{c}^{3 E} F_{o}\right)^{\frac{1}{3}}$ where D was the diamter of the monosized particles. The diameter corresponding to any threshold level t_{c}^{\prime} can then be calculated from $D_{c}=K_{c}\left(\sqrt[3]{t_{c} F_{c}}\right)$. The appropriate interpolated F_{c} values for particular ourrent settings on Gain 3 are shown in the following pages, Tables 11, 12 and 13. For eaoh consecutive lower gain index the F_{o} factor was
multiplied by $\sqrt{2}$ Sinilaxly for each consecutive higher gain index the F_{c} factor was divided by $\sqrt{2}$.

As the electrolyte resistivity chnnged with temperature the F_{c} factors are shom for the aperture resistances encountered and the calibrations were done over the temperature range expected.

B.4. Size Analysis

For each size analysis thereafter the temperature of the electrolyte was token and so the calibration known. The chart showing the Coulter Counter Data representation is shown on Table 14 . The first three colurns show the threshold settings. Column four shows the Scale Expansion Factors F_{c} for the particular gain index and aperture current. The product of this and the threshold setting t_{c}^{\prime} gives the relative particle volume t_{c}, column 12. Then using the calibration factor K_{c}, the diameter for this threshold is found from $D_{c}=K_{c} \sqrt[3]{t_{c}}(\operatorname{colum} 13)$ The average of a number of counts, n_{c}^{\prime}, is taken above this diameter, and is shown for three different samples (colurns 5,6 and 7) The average of these reading $\bar{n}_{c}^{\prime \prime}$ is taken, (column 8) and the coincidence error $n_{c}^{\prime \prime}$ calculated. The size analysis of particles present in the electrolyte as background count is shown (column 10) and the count \bar{n}_{c}^{1} then corrected by $n_{c}=\bar{n}_{c}^{\prime}+n_{c}^{\prime \prime}-J($ colurn 11) Finolly the number percentage greater thon D_{c} is colculated (Column 14).

TAFIE: 8 - CALIBRATION 50μ TUBE

EIECTROLYTE: $0.9 \mathrm{~g} \mathrm{NaCl} / 100 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}+8.5 \mathrm{~g}$ Pure P.E. $/ 100 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$ MONOSTZED FARTICLES : PUFF BALL SPORES $\mathrm{d}=3.62 \mathrm{w}$

$$
F^{*}=5 \quad t=54 \text { at } 15^{\circ} \mathrm{C} \text { to } 25^{\circ} \mathrm{C}
$$

TABLE: 9 CALIBRATION 280 μ TUBE

EJ,ECIROLYIT: $0.9 \mathrm{~g} \mathrm{NaCl} / 100 \mathrm{~g} \mathrm{H}_{2} 0=8.5 \mathrm{~g}$ Pure P.E. $/ \mathrm{IOOg} \mathrm{H}_{2} \mathrm{O}$ MOIOSIZED PARTICLES: LYCOPODIUM POWDERR $d=28.0 \mu$

$$
I^{*}=5 \quad t=52 \text { at } 14^{\circ} \mathrm{C} \text { to } 25^{\circ} \mathrm{C}
$$

Temp. ${ }^{\circ} \mathrm{C}$	14	15	16	17	18	19	20	21	22	23	24	25
Voltage $I_{c}=8$	12.7	12.6	12.4	12.3	12.1	12.0	11.8	11.7	11.5	11.4	11.3	11.1
Resistance $K \Omega$	9.53	9.43	9.28	9.20	9.04	8.96	8.78	8.71	8.56	8.48	8.41	8.26
F_{5}	0.06376	06375	. 06374	0.06373	0.06372	0.06371	0.06370	0.06369	0.06368	0.06368	0.06367	. 0636
K_{C}	18.8	18.8	18.8	18.8	18.8	18.8	18.8	18.8	18.8	18.8	18.8	18.8

ELECTROLYTE: $0.9 \varepsilon \mathrm{NaCl} / 100 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}+8.5 \mathrm{~g}$ Pure P.E. $/ 100 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$ MONOSIZED PARTICLES : LYCOPCDIUM POVDER $\alpha=28.0 \mu$

$$
I^{*}=9 \quad t=36 \text { at } 14^{\circ} \mathrm{C} \text { to } 25^{\circ} \mathrm{C}
$$

| Temp. ${ }^{\circ} \mathrm{C}$ | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Voltage | 8.8 | 8.6 | 8.4 | 8.3 | 8.1 | 8.0 | 7.8 | 7.7 | 7.5 | 7.4 | 7.3 | 7.2 |
| $I_{C}=8$ | | | | | | | | | | | | |$|$

TABLE: 11
COULTSR COUNTER 'F' SCALE EXPANSION FACTORS - FOR USE WITH 50; TUBE

$\left\lvert\, \begin{array}{r} \text { Resist } \\ \text {-ance } \\ \mathrm{K} \Omega \end{array}\right.$	37	38	39	40	41	42	43	44	45	46	47
F_{1}	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000
F_{2}	0.50200	$0.502) 0$	0.50200	0.50200	0.50200	0.50200	0.50200	0.50200	0.50200	0.50200	0.50200
F_{3}	0.25240	0.25260	0.25280	0.25300	0.25300	0.25300	0.25300	0.25300	0.25300	0.25300	0.25300
F_{4}	0.12782	0.12788	0.12794	0.12800	0.12806	0.12812	0.12818	0.12824	0.12830	0.12836	0.12842
F_{5}	0.06562	0.06568	0.06574	0.06580	0.06586	0.06592	0.06598	0.06604	0.06610	0.06616	0.06622
F_{6}	0.03452	0.03458	$0.03<64$	0.03470	0.03476	0.03482	0.03488	0.03494	0.03500	0.03506	0.03512
F_{7}	0.01899	0.01906	0.01913	0.01920	0.01927	0.01934	0.01941	0.01948	0.01954	0.01960	0.01966
F_{8}	0.01139	0.01146	0.01154	0.01161	0.01169	0.01176	0.01183	0.01191	0.01198	0.01205	0.01212
F_{9}	0.00782	0.00791	0.00800	0.00809	0.00818	0.00827	0.00836	0.00845	0.00854	0.00863	0.00872
F_{10}	0.00655	0.00667	0.00679	0.00691	0.00703	0.00715	0.00727	0.00739	0.00751	0.00763	0.00775

INTERPOLATED FROM COULTER ELECTRONICS LID. DATA.

TABLE: 12

COULTER C(UNTER 'F' SCALE EXPANSION FACTORS - FOR USE WITH 280, 2 TUBE

INTERPOLATED FROM COULTER BLECTRONICS LTD. DATA.

COULTER CNUNTER 'F' SCALE EXPANSION FACTORS - FOR USE WITH 560, TUBE

SAMPIE: SOURCE: ATTRITION:

APERIURE DIAMETER

DISPERSLNT:

MANOMEIER VOLUME:

TEMEERATURE:
APERTURE RES ISTAITCE:

CMIBRATTON FACMOR(n):

TABLE:

COULTER COUNTER DIAMETER CORRECTION FOR 280 , TUBE. ORIENTATION B.

Dep	L μ	D μ	人¢	L	D μ	Dcp	L μ	μ
	7.2219	6.0072 7.0081				102	102.14	
8	8.2848	7.9989		5. 413		104	104	99.5 100.
9	9.3199	8.9983	57			15	[104.93	101.31
10	10.	9.99				106		102
11		10.996	59			107	106	103.10
12	12.424	11.995		61.421				
13 14 14	13.458	12.994	61			109		
15			63					
16	16.5	15.	64	165.410		112	111	
17	17.5	16.98	65	166.404	64.112	113	112.30	
18	18.6	17.982	66			114	113	
19	19.	18.979	67	68.388		115	114.13.	110
21	20.6	19.975	68		66	116	115	111.07
21	21.721	20.971	69			117		111.93
22		21.967 22.962	70			118	1116	
		22.962				119		
2			72	74		121		
26	26.872		74			122		116.
			5	76.272		123	121.	117.
28	28.928					124	122.21	
30						125	1	11
31	32.009				170.4		124.87	
32					78.352	128		121.41
3				82,124		29		122.26
						30		123.10
$\begin{aligned} & 35 \\ & 36 \end{aligned}$					81.161	31	1128.38	
					83		130.1	
39								
41	41	793	89		8.8.821			128.14
42	43.	41.76	90	90.802	87.669	138	134.4	
43		42.	91	O. 07	88.590	139	135.	
			92			40	136.1	131.44
45			93					
47	40	,	95	4.69	92.2	143	138.6	33
48			96					34.72
			97		94	145	140.3	
51							1241.2	
52	53:38		100	100.27	96.807	148	142.88;	137.95

COULTER COUNTER DIAMETER CORRECTION FOR 50μ TUBE, ORIENTATION B.

D	L μ	D μ	Dc.	L	Dr	DC.	L μ	D μ
1	1.0370	1.0012	11	11.259	10.871	21	20.801	20.083
2	2.0733	2.0018	12	12.253	11.830	22	21.700	20.951
3	3.1083	3.0010	13	13.239	12.782	23	22.589	21.809
4	4.1412	3.9982	14	14.217	13.726	24	23.452	22.643
5	5.1713	4.9929	15	15.186	14.662	25	24.311	23.472
6	6.1981	5.9842	16	16.146	15.589	26	25.157	24.288
7	7.2209	6.9717	17	17.098	16.507	27	25.988	25.091
8	8.2390	7.9547	18	18.039	17.416	28	26.806	25.881
9	9.2519	8.9326	19	18.970	18.315	29	27.609	26.657
10	10.259	9.9048	20	19.891	19.204	30	28.398	27.418

TABLE: 17

COULTER COUNTER DIAMETER CORRECTIONFOR 560μ TUBE. ORIENTATION B.

D. μ	L μ	D μ	Dc	\%	D μ	DC	L μ	0 μ
	5.1859	5.0069	33	34.151	32.	61	62.992	60.818
6	6.2226	6.0078	33	35.184	33.970	62	64.018	61.809
7	7.2594	7.0089	35	36.217	34.967	63	65.044	62.800
8	8.2863	8.0003	36	37.250	35.964	64	66.070	63.790
9	9.3218	9.0001	37	38.282	36.961	65	67.095	64.780
10	10.358	10.000	38	39.314	37.958	66	68.120	65.769
11	11.393	11.000	39	40.346	38.954	67	69.145	$66.1{ }^{8}$
12	12.428	11.999	40	41.378	39.950	68	70.169	67.747
13	13.464	12.999	421	42.410	40.946	69	71.193	68.736
14	14.499	13.999	42	43.441	41.942	70	72.216	69.724
15	15.534	14.998	43	44.473	42.938	71	73.240	70.712
16	16.570	15.998	44	45.504	43.933	72	74.262	71.700
17	17.65	16.997	45	46.534	44.928	73	51.285	72.687
18	18.640	17.997	46	47.565	45.923	74	76.307	73.674
19	19.675	18.996	47	48.595	46.918	5	77.329	74.660
20	20.710	19.995	48	49.625	47.913	76	78.350	75.646
21	21.744	20.994	49	50.655	48.907	77	79.371	76.632
22	22.779	21.993	50	51.685	49.901	78	80.392 81.412	77.617 78.602
23	23.813	22.992	51	52.714	50.895 51.888	79 80	81.412 82.432	78.602
25	25.882	24.989	53	54.7	52.882	81	83.451	80.571
26	26.916	25.987	54	55.800	53.8 万	82	84.470	81.555
27	27.950	26.986	55	56.829	54.867	83	85.489	82.538
28	28.984	27.984	56	57.857	55.860	84	86.507	83.521
29	30.018	28.982	57	58.884	56.82	8	87.524	84.504
30	31.01	29.980	58	59.912	57.844	86	88.542	8.486
31	32.08	30.978	59	60.939	58.836	8	89.559	86. 468
32	33.118	31.975	60	61.966	59.827	88	90.57	87.449

COULTER COUNTER DIAMETER CORRECTION FOR 560μ TUBE. ORIENTATION B.

Dcy	Lu	D			D μ			D μ
89	91, 591	88.430	138	140.73	135.88	187	188.27	
90	92.607	89.411	139	141.72	136.83	188	189.22.	
91	93.622	90.391	140	142.71	137.7^{8}	189	190.17	183.60
92	94.636	91.370	141	143.70	138.74	190	191.11	184.52
	95.6	92.350	142		139.69	191	192.06	185.43
94	95.664	93.328	143		140.64	192	193.00	186.34
95	197.678	94.307	144		141.59	193	193.95	187.26
96	98.690	95.284	145	147.64		194	194.80	188.17
97	99.703	96.262	146	148.62		195	195.84	189.08
	100.71	97.239	147	149.60	144.	196	196.78	189.99
0	101.73	98.215	148	150.58	145.39	197	$197 \cdot{ }^{2}$	190.89
100	102.74	99.191	149	151.56	146.33	198	198.66	191.80
101	103.75	100.17	150	152.54	147.28	199	199.60	192.71
102	104.76	101.14	151	153.52	148.22	200	200.54	193.61
103	15.77	102.12	152	154.50	149.17	201	201.4	194.52
104	106.7	103.09	153	155.48	150.11	202	202.41	195.42
15	107.73	104.06	154	156.46	151.06	203	203.34	196.33
106	108. 79	105.04	155	157.43	152.00	204	204.28	197.23
107	109.80	106.01	156	158.41	152.94	20	20.21	198.13
108	110.80	106.98	157	159.38	153.88	206	206.15	199.03
109	111.81	107.95	-158	160.36	154.82	207	207.08	199.93
110	112.82	108.92	159	161.33	155.76	208	208,00	200.82
11	113.82	109.89	160	162.30	156.70	209	208.94	201.73
112	114.83	110.86	161	163.28	157.64	210	209.87	202.62
113	115.83	111.83	162	164.25	158.58	211	210.80	203.52
114	116.83	112.80	163	165.22	159.52	212	211.72	204.42
115	117.84	113.77	164	166.19	160.45	213	212.65	25.31
116	118.84	114.74	165	167.16	161.39	214	213.57.	206.20
117	119.84	115.70	166	168.12	162.32	215	214.50	207.10
118	120.84	116.67	167	169.09	163.26	216	215.42	207.99
119	121.84	117.64	168	170.06	164.19	217	216.35	208.88
120	122.84	118.60	169	171.02	165.12	218	217.27	
121	123.84	119.57	170	171.99	166.0	219	218.19	210.66
122	124.84	120.53	171	172.95	166.98	220	219.	211.55
124	126.84	122.46	172		167.	221		
125	127	123.42	174	175.84	169.77	223	221.86	214.20
126	128	124.38	15	176.80	170.70	224	222.78	215.09
127	129	125.34	176	177.76	171.62	225	223.69	215.97
128	130.82	126.31	177	178.72	172.55	226	224.61	216.86
129	131.81	127.27	178	179.68	173.18	227	22.51	217.73
130	132.81	128.22	179	180.63	174.40	228	226.42	218.61
131	133.80	129.18	180	181.59	175.32	229	227.33	219.49
132	134.79	130.14	181	182.55	176.25	230	228.24	220.36
133	135.79	131.10	182	183.50	177.17	231	229.15	221.24
134	136.78	132.06	183	184.45	178.09	232	230.0	222.11
1	137.77	133.01	184	185.41	179.01	233	230.96	222.99
136	13.76	133.97	185	186.36	179.93	234	231.86:	223.86
137	139.75	134.92	186	187.32	180.86	235	232.77.	224.74

TABLE: 18

COMPARISON OF DISPERSING TECHNIQUES WITH BATCH D SEED 44-64

PRIOR TO COULIER COUNIER ANALYSIS

※ LOWER LIMIT OF SIZE DISTRIBUTION NOT ATTAINED

TABLE: 19 CCULTER COUNTER DATA

SAMPLE: 1 SOURCE: BATCH E PREPARED SEED $89-105 / \mu$ ATTRITION: 20 NINS. AT 2000 R.P.M. NEW CELL

APERTURT DIAFETH: 280 : MINLTCER VOLUME: 2 mls . COINCIDENCE FACTOR(P): 13.72 CALIBRATION FACTOR (K): 18.8 DISPERSANT: NONIDET P4O+STIRRTN TENPERATURE: $21^{\circ} \mathrm{C}$ APERTURE RESISTANCE: 8.71 K ELACTROLYTE: AQUEOUS $0.9 \% \mathrm{NaCl}+8.5 \% \mathrm{PE}$

$\begin{aligned} & \text { GAIN } \\ & \text { INDEX } \end{aligned}$	t	1	F	n ${ }^{\text {l }}$	n'	n'	\bar{n}^{\prime}	$\begin{gathered} n^{\prime \prime}= \\ \left(\frac{\bar{n}^{\prime}}{1000}\right)^{2} \end{gathered}$	ν	$\begin{gathered} n= \\ \bar{n}^{\prime}+n^{\prime \prime}- \end{gathered}$	$\begin{gathered} t= \\ t^{\prime}(F) \end{gathered}$	$\begin{gathered} d= \\ x^{3} \sqrt{t} \end{gathered}$	CUM No\% OVERSIZE
3	300	1	1.00000	1	1	2	1	0	1	0	300	126	0
3	210	1	1.00000	4	5	5	5	0	2	3	210	112	0.28
3	150	1	1.00000	22	23	23	23	0	2	21	150	100	1.96
3	90	1	1.00000	44	44	53	47	0	2	45	90	84.2	4.18
3	60	1	1.00000	80	72	76	76	0	2	74	60	73.5	6.88
3	60	2	0.56074	149	126	130	135	0	2	133	30	58.4	12.40
3	60	3	0.25100	241	198	210	216	1	2	215	15.1	46.4	20.00
3	60	4	0.12612	362	301	318	327	1	5	323	7.57	36.9	30.00
3	60	5	0.05369	496	406	444	449	3	6	446	3.82	29.4	41.50
3	60	6	0.03250	684	552	598	611	5	10	606	1.95	23.5	56.40
3	60	7	0.01688	826	706	772	768	8	14	762	1.012	18.9	70.90
3	60	8	0.00910	959	817	864	880	11	21	870	0.546	15.4	81.10
3	60	9	0.00524	1039	971	988	999	14	48	965	0.315	12.8	89.80
3	60	10	0.00337	1130	1021	1165	1105	17	67	1055	0.202	11.0	98.40
3	30	10	0.00337	1160	1119	1176	1152	18	97	1073	0.101	8.78	100.00
4	30	10	0.00238	1005	1064	1104	1058	15	109	964	0.071	7.79	

SAMPLE: 2 SOURCE: BATCH E PR\#PARED SERD $89-105 \mu$ ATTRITION::20 NTNS. AT 2000 R.P.M. NEW CELL APERTURE DIAMETER: 280μ MANOMETER VOIUME: 2 mls COINCIDENCE FACTOR $(P): 13.72$ CAIITBRATION FACTOR (K):18. 8 DISPERSANT: NONIDET P4O STIRRIING TEMPTRATURE: $23^{\circ} \mathrm{C}$ APERTURE RBSISTANCE: $8 \cdot 48 \mathrm{~K} \Omega$ ETECTROIYTE: AQUEOUS $0.9 \% \mathrm{NaCl}+8.5 \%$.E.

SAMPLE: 3 SOURCE: $3 A T C H$ E PABPARED SEED 89-105 μ ATrIRITION: 20 MINS. AT 2000 R.P.M. NEW CELI

APERTURE: 280 MANOIETER VOLUNE: 2 mls COINCIDENCE FACTOR $(P): 13.72$ CALIBRATION FACTOR(K): 18.8

DISPERSANT: FONTDET P40+STIRRITG 1FTPERATURE: $22^{\circ} \mathrm{C}$ APERTURE RESISTANCE: $8.48 \mathrm{~K} \Omega$ EL ECTROLYTE: AQUEOUS 0.9% NaCl+8. 5% P.E.

TABLE: 22

BATCH E PREPARED SEED SIEVE FRACTION 89-105 μ

TABLE: 23

SIZE ANALYSIS COMPARISON OF BATCH C SEED SIEVE FRACTION 44-64 AFIER

ATTRITTION IN CELLS A AND C AT DIFFERENT STIRRER SPEEDS

STIRRER SPEED			500 R.P.M.		2000 R.P.M.		500 R.P.M.		2000 R.P.M.	
D c 火		and $\mathrm{D}^{\prime} \mu$	No\% OVER	No\%	No\% OVER	No\%	No\% V VR?	N0\%	No\% OVER	No\%
84.2	82.3	77.3	0	1.18	0	0.26	0	0.41	0	3.48
73.5	72.2		1.18		0.26	8.08	0.41		1.48	
58.4	57.8	65.0	24.5		8.34		10.65		11.0	9.52
46.4	46.1	51.9		23.8		11.5		13.45		14.4
		41.5	48.3	11.3	19.9	8.5	24.1	11.1	25.4	
36.9	36.8		59.6		28.4		35.2		36.9	
29.4	29.3	33.1	69.0	9.4	42.2	13.8		9.8	46.4	9.5
		26.4		4.5		11.0	45.0	11.3	56.9	10.5
23.5	23.5		73.5		53.2		56.3			
18.9	18.9	21.2		12.5	62.1	8.9		11.5	67.7	10.8
		17.2	85.9	11.1		18.9	67.8	114.4		15.2
15.4	15.4		97.0		81.0		82.2		82.9	
12.8	12.8	14.1	98.0	1.0	92.8	11.8		14.3		11.6
11.0		11.9	100	2.0	99.1 6.3		100	3.5	94.5	5.5
	11.0	9.89					100			
8.75	8.75				100					

TABLE: 24

COLLECTED SIZE ANALYSES OF SEED MATERIALS

ATMRITED AT 2000R.P.M. IN STIRRED CELL C

COLLECTED SIZE ANALYSES OF SEFR MATERIALS

ATTRITED AT 2000 R.P.M. IN STITRRED CELL C

TABLE: 25

COLLECTED SIZE ANALYSES OF SHED MATERTALS

USED IN FLUIDISED BED EXPERIMENTS

SEED BATCH: SIEVE FRACTION:			$\frac{\mathrm{C}}{124-150 \mu}$		$\begin{gathered} \mathrm{E} \\ 124-150 \end{gathered}$		$\begin{gathered} \text { P.E. } \\ 124-150 \text { / } \end{gathered}$	
Dor	D/L	MEAN Du	No\% OVER	No\%	NO\% OVER	No\%	No\% OVER	N0\%
222	213						0	
194	188	201	0		0		. 30	1.30
		170		13.6		6.90	, 30	27.3
154	151		13.6		6.90		28.6	
122	121	136	75.0	61.4	22.3	15.4	50.1	21.5
		109		10.9		15.3		17.2
97.3	96.6		85.9		37.6		67.3	
77.5	77.1	86.9	90.5	4.6	50.6	13.0	8่7.0	19.7
		69.4		9.5		18.7		8.3
61.8	61.6	. 6	100		69.3		95.3	
49.6	49.5				84.4		100	4.7
40.2	40.2	$44 * 9$			100	15.6		

TABLE: 26

COULTER COUNTER PRODUCT SIZE NNALYSES

SIZE			CUMULATIVE No. \% OVERSIZE	
D_{0}	I μ	D μ	R.E. 15 PRODUCT	R.P.E. 12 PRODUCT
332	315	304		0
295	285	275		0.4
264	258	250		1.3
222	22.1	213	0	3.7
194	195	188	0.6	8.0
154	156	151	4.0	16.6
122	125	121	6.2	19.2
97.3	100	96.5	14.5	37.1
77.5	79.9	77.1	28.8	62.7
61.8	63.8	61.6	51.5	95.0
49.6	51.2	49.5	88.3	100
40.2	41.6	40.2	91.2	
33.1	34.2	33.1	96.7	
28.1	29.1	28.1	100	
19.9	20.6	19.9		

TABLIE: 27

TMAGE SHEAR SIZE ANALYSES

SIZE			CUMULATIVE NO. \% OVERSIZE			
			R.E. 15 PRODUCT	$\begin{aligned} & \text { R.P.E. } 12 \\ & \text { PRODUCT } \end{aligned}$	R.E.F. 4 PRCDUCT	ATIRITED BATCH E SEETD $89-105 \mu$ FRACTION
1.154L μ	If ${ }_{\text {es }}$	$D \mu$				
5	4.33	4.18			99.5	100
10	8.65	8.37		100	94.0	99.0
15	13.0	12.5			89.5	97.5
20	17.3	16.7	100	99.5	83.0	95.5
25	21.6	20.9			76.0	91.0
30	26.0	25.0	98	98.0	69.0	86.5
35	30.4	29.4			59.0	80.5
40	34.7	33.5	96	96.0	54.5	76.0
45	38.9	37.5	94		49.0	66.0
50	43.4	41.9	90	92.0	43.0	63.5
55	47.6	46.0	82			54.5
60	52.0	50.2	72	86.5	41.5	48.5
65	56.3	54.4	69			44.5
70	60.5	58.2	62	75.0	35.0	36.5
75	64.9	62.6	56			30.0
80	69.2	66.8	52	61.5	29.5	23.0
85	73.6	71.1				16.0
90	78.0	75.3	49	46.0	27.0	13.0
95	82.4	79.6				8.5
100	86.6	83.6	40	35.5	21.5	8.0
120	104	100	36	22.0	16.0	2.5
240	122	118	22			0
150	130	126	12	18.0	8.5	
160	139	135	5			
200	173	167	0	7.5	3.5	
250	216	209		1.5	0	
300	260	251		0		

TABLE: 28

IMAGE SHEAR PRODJCT SIZE ANALYSES

BATCH E SEEDED GROWTH EXPERTMENTS $\triangle T$ 60.0 ${ }^{\circ} \mathrm{C}$

CUMJLATIVE No. \% OVERS IZE

RUN No. INITIAL $\mathrm{c} \% \mathrm{~m} / \mathrm{v}$ SEIED MASS g CAICUTATRED $\triangle D \mu$		$\begin{gathered} \text { R.E. } 28 \\ 27.5 \\ 2.0 \\ 66 \end{gathered}$	R.E. 32	$\begin{gathered} \text { R.E. } 33 \\ 27.5 \\ 0.5 \\ 124 \end{gathered}$	$\begin{gathered} \text { R.E. } 34 \\ 26.0 \\ 1.0 \\ 75 \end{gathered}$	$\begin{gathered} \text { R.E. } 35 \\ 26.0 \\ 0.5 \\ 108, \end{gathered}$	$\begin{gathered} \text { R.E. } 36 \\ 24.5 \\ 1.0 \\ 61 \end{gathered}$	$\begin{gathered} \text { R.E. } 37 \\ 24.5 \\ 0.5 \\ 88 \end{gathered}$
		$\begin{gathered} 1.52 \\ 27.5 \\ 1.0 \\ 91 \end{gathered}$						
1.154. μ	$L \mu ; D \mu$							
5	14.33 4.18	99.0			93.5	99.0		
10	8.65 ¢8.37	93.5	100	100	83.0	87.0	99.0	98.0
15	$13.0 \mid 12.5$	76.0		95.0	64.5	71.5	90.5	
20	17.3 116.7	69.0	89.0	92.0	55.0	62.0	86.5	:91.5
25	21.6 20.9			88.0	43.0	52.5	72.5	
30	26.0:25.0	56.0	80.0	86.0	39.5	49.5	62.0	83.0
35	30.429 .4						53.0	75.0
40	34.733 .5	51.0	72.0	83.5	31.0	39.0	47.5	66.5
45	138.9 37.5							62.5
50	43.4 41.9	43.5	68.5	82.5	26.0	32.5	43.5	54.0
55	147.6 146.0			76.0				
60	$52.0 \mid 50.2$	33.5	62.5	73.5	22.0	29.0	40.5	49.5
65	56.3154 .4			68.5				
70	60.5158 .2	26.5	56.0	64.5	16.5	26.5	35.5	40.5
75	64.9 62.6			57.0				36.5
80	69.2 66.8	20.0	50.0	48.5	11.0	25.0	27.0	27.5
85	73.6 71.1			43.5				20.0
90	78.0175.3	16.5	38.0	36.0	8.5	20.0	22.5	15.0
100	$86.6 \mid 83.6$	14.0	33.5	24.5	5.0	14.0	19.5	10.0
110	95.3 92.0		25.0	16.0				
120	104100		22.0	15.0		9.5	13.0	7.0
130	113109		20.0	10.0				
150	130 126	6.5	16.0	4.5	1.5	4.5	7.0	3.5
200	173167	1.0	8.0	2.0	0.5	0.5	1.5	1.5
250	216209	0	2.5	0.5	0	. 0	0	
300	260251		0.5					0

APPENDIX C - REFERRING TO SECTION SIX

$$
\begin{aligned}
\frac{d o}{d t} & =-K A(c-q) \\
\text { but } o & =\frac{100 \mathrm{~m}}{\frac{m}{\rho}+V}=\frac{100 \mathrm{~m}}{250} \quad \mathrm{~g} / \mathrm{cm}^{3}
\end{aligned}
$$

$$
\therefore \quad \mathrm{do}=100 \mathrm{~V} \mathrm{dm}
$$

$$
\left(\frac{m}{p}+V\right)^{2}
$$

$$
\cdot \frac{100 V d M}{d t\left(\frac{m}{p}+V\right)^{2}}=K A\left(0-c_{\infty}\right)
$$

$$
\begin{aligned}
\text { But } \frac{d r}{d t} & =K_{L}\left(0-g_{0}\right) \\
\therefore \Delta M & =\frac{K A}{V K_{L} x 100}\left(\frac{m}{2}+V\right)^{2} d r \\
\text { But } \frac{d M}{d r} & =\rho_{S} 4 \pi r^{2} \\
\rho_{S} 4 \pi r^{2} & =\frac{K}{K_{I}} \frac{4 \pi r^{2}(250)^{2}}{\left(250-\frac{m}{\rho_{S}}\right) 100} \\
K_{L} & =K \frac{250^{2}}{\left(250 \rho_{S} \cdots m\right) 100}
\end{aligned}
$$

Similarly, where $\frac{d m}{d t}=-K_{m} A\left(0-c_{\infty}\right)$

$$
K_{m}=K \frac{250^{2}}{\left(250-\frac{m}{\rho_{s}}\right) 100}
$$

```
BEGIN INTEGER J,P! READ P'
BEGIN REAL ARRAY PERCENTNO,NO,VOL,SIGMA1,SIGMA2,SIGMA3(1:P),
D(1:2,1:P),M(1:2)'
REAL SUM_FACTOR,U,R,Y,Q,FUNCTION,DIFFUNCTION,DELTAD ,DELTAT,MEANA ,VEL'
SWITCH S:=RETURN,CONTINUE!
REAL PROCEDURE AREA(Z):
VALUE Z? INTEGER Z:
BEGIN REAL A3 A:=03
FOR J:=1 STEP 1 UNTIL P DO
A:=A*(22/7)*1.181*HO(J)*D(Z,J)**2!
AREA :=A $ END '
FOR J}:=1\mathrm{ STEP 1 UNTIL P DO READ PERCENTNO(J)s
FOR J:=1 STEP 1 UNTIL P DO READ D(1,J):
READ M(1) gM(2),DELTTAT:
SUM:=0s
FOR J:=i STEP }1\mathrm{ UNTIL P DO BEGIN
VOL(J) =PERCENTNO(J)*(11/2i)*D(1,J)**3'
SUM:=SUMFVOL(J)'
END:
FACTOR:=M(1)/(1.395*SLM )
FOR J:==1 STEP 1 UITIL P DO
NO(J):FFACTOR*PERCENTM'(J):
U:=0
FOR J:=1 STEP 1 UNTIL P DO BEGIN
SIGMA1(J):=NO(J)!
U:=SIGMA1(J)+U: END:
R:=03
FOR J:=1 STEP 1 UNTIL P DO BEGIN
SIGMAZ(J):=3*NO(J)*D(1,J)?
R:=R+SIGMA2(J):
END'
    Y:=08
FOR J:=1 STEP 1 UNTIL P DO BEGIN
SIGMA3(J):=3*NO
Y:=Y&SIGMA3(J):
Q:=(M(2)-M(1))/(1.396*(11/21))!
DELTAD:=0,0001'
RETURN:FUNCTION:= %*(DELTAD)**3*R*(DELTAD)**2+Y*DELTAD-Q3
DIFFUNCTION:=(3*U*(DELTAD)**2+2*R*DELTAD-Y)'
IF ABS(FUNCTION/DIFFUNCTION) LESS %0000001 THEN GOTO CONTINUE
ELSE BEGIN DELTAD &DELTAD -((FUNCTION)/(DIFFUNCTION)):
GOTO RETURN:
                                    END:
CONTINUE FFOR J:=1 STEP }1\mathrm{ UNTIL P DO
D (2,J):=D(1,J)-1DELTAD'
MEANA:=(AREA (1) +AREA (2))/2:
VEL:=DELTAD/(2*DELTAT):
PRINT FREEPOINT(7) ,DELTAD ,SAMELINE, &{S5??,FREEPOINT(5) ,MEANA ,&{S??,
SCALED(4),VEL'
END 'END 'END'
```

PROGRAM 2. ELLIOTT 803 VERSION OF ALGOL 60.

CRYSTALLISATION RATE OF PENTAERYTHRITOL IN A SEEDED CELL' ${ }^{\text {t }}$

```
BEGIN INTEGER I,J,P,N'
READ P,N'
BEGIN REAL ARRAY PERCENTNO,NO,VOL,SIGMA1,SIGMA2,SIGMA3(1:P),
TIME,M,V(1:N),
SCALE,C(1:N+1),
R,Y,Q,FUNCTION,DIFFUNCTION,DELTAD,MEANA ,DELTAT,K,VEL,SUPERSATURATION(1:N-1),
D(1:N,1:P)'
REAL B,F,G,H,SUM,FACTOR,U,EVAPN'
SWITCH S:=RETURN,CON:INUE:
REAL PROCEDURE AREA(Z):
VALIE Z! INTEGER Z'
BEGIN REAL A'
A=0,
FOR J:=1 STEP 1 UNTIL P DO
A:=A+(22/7)*1.181*NO(J)*D(Z,J)**2'
AREA :=A'
END'
FOR J:=1 STEP 1 UNTIL P DO READ PERCENTNO(J)'
FOR |:=1 DO
FOR J:=1 STEP 1 UNTIL P DO READ D ( }1,\textrm{J})\mathrm{ ''
FOR I:=1 STEP 1 UNTIL N+1 DO READ SCALE(1):
FOR I:=1 STEP 1 UNTIL N DO READ TIME(I)'
READ B,F,G,H,EVAPN'
SUM:=01
FOR |:=1 DO
FOR J:=1 STEP 1 UNTIL P DO BEGIN
VOL(J):=PERCENTNO(J)*(11/21)*D(1,J)**3'
SUM:=SUM+VOL(J)'
END'
M(1) :=H'
FACTOR:=M(1)/(1.396*SUM)'
FOR J:=1 STEP 1 UNTIL P DO
NO(J):=FACTOR*PERCENTNO(J) '
FOR 1:=1 STEP 1 UNTIL N+1 DO
C(1):=F+B*SCALE (1)+G*SCALE (1)**2'
FOR I:=1 STEP 1 UNTIL N DO
V(1):=250-1.7908*C(1) -TIME(1)*EVAPN 3
PRINT &
```

TABLE:

| TEMP: C CELL: STIRRER SPEED: R.P.M. | |
| :--- | :--- | :--- |
| SEED: BATCH | |

PROGRAM 2. (CONT.)

CONCN. TOTAL CRYSTAL INCREASE OF MEAN GROWTH RATE MEAN GROWTH क M / V TIME MASS CRYSTAL EQUIV. AREA CONSTANT SUPER- RATE MINS. (GRAMS) DIAMETER(CM) CM K(MIN CM) SATN. CM/MIN.

FOR I:=1 STEP 1 UNTIL N-1 DO BEGIN
$M(1+1):=M(1)+((c(1)-C(1+1)) /(100 * V(1+1))) *((C(1) * 2.5-M(1)+H) / 1 \cdot 396+V(1+1)) * 2^{1}$
$\mathrm{U}:=0^{1}$
FOR $J:=1$ STEP 1 UNTIL P DO BEGIN
SIGMA1(J): $=\operatorname{NO}(J)^{\prime}$
$U:=S \operatorname{IGMA} 1(J)+U^{\prime}$
END'
$R(1):=08$
FOR $J=1$ STEP 1 UNTIL P DO BEGIN
SIGMA2 (J) $:=3 * \operatorname{NO}(J) * D(1, J)$ '
$R(1):=R(1)+S \operatorname{IGMA2}(J)$:
END
$Y(1):=0^{1}$
FOR $\mathrm{J}:=1$ STEP 1 UNTIL P DO BEGIN
SIGMA3(J): $=3 * \operatorname{NO}(J) * D(1, J) * * 2^{\prime}$
$Y(1):=Y(1)+S \operatorname{IGMA3}(\mathrm{~J})^{\prime}$
END ${ }^{1}$
$Q(1):=(M(1+1)-M(1)) /(1.396 *(11 / 21))^{t}$
DELTAD (1) : $=0.0001^{1}$
RETURN:FUNCTION(1) $=U *(\operatorname{DELTAD}(1)) * * 3+R(1) *(\operatorname{DELTAD}(1)) * * 2+Y(1) * \operatorname{DELTAD}(1)-Q(1)$ '
DIFFUNCTION(1): $=\left(3 * U^{*}(\operatorname{DELTAD}(1)) * * 2+2 * R(1) * \operatorname{DELTAD}(1)+Y(1)\right)^{1}$
IF ABS(FUNCTION(1)/DIFFUNCTION(1)) LESS . 0000001
THEN GOTO CONTINUE
ELSE BEGIN DELTAD(1): $=\operatorname{DELTAD}(1)-((\operatorname{FUNCTION(1))/(DIFFUNCTION(1))):~}$
GOTO RETURN ${ }^{1}$
END'
CONTINUE:FOR $J:=1$ STEP 1 UNTIL P DO
$D(1+1, J)=D(1, J)+D E \operatorname{LTAD}(1)^{1}$
MEANA $(1):=(\operatorname{AREA}(1+1)+\operatorname{AREA}(1)) / 2^{1}$
$\operatorname{DELTAT}(1):=\operatorname{TIME}(1+1)-\operatorname{TIME}(1)$
$K(1):=(1 /(\operatorname{MEANA}(1) * \operatorname{DELTAT}(1))) * \operatorname{LN}((C(1)-C(N+1)) /(c(1+1)-C(N+1)))^{3}$
$\operatorname{VEL}(1):=\operatorname{DELTAD}(1) /(2 * \operatorname{DELTAT}(1)){ }^{1}$
SUPERSATURATION(1) $=((C(1+1)+C(1)) / 2-C(N+1)) / C(N+1)^{\prime}$
PRINT FREEPOINT(5) , C(1), SAMELINE, £ES??, FREEPOINT(5), TIME (1), ££S??, FREEPOINT(4), M(1) ££LS26??, FREEPOINT(7) ,DELTAD(1) ,SAMELINE, ££S5?? ,FREEPOINT(5) ,MEANA(1), ££S??, $\operatorname{SCALED}(5), K(1), £ £ S 2 ? ?$, FREEPOINT (4) , SUPERSATURATION(1), ££S2?? ,SCALED(4), VEL(i): END ${ }^{\prime}$
PRINT FREEPOINT(5) , $C(N)$,SAMELINE, $£ £ S ? ?$, ,FREEPOINT(5), $\operatorname{TIME}(N), £ £ S ?\}$, FREEPOINT (4) ,M(N)
PRINT £
PRINT££L?EQUILIBRIUM CONCENTRATION $=?$, SAMELINE ,FREEPOINT(5) , $C(N+1){ }^{\prime}$
END ${ }^{\prime} E N D^{3} E D^{\prime}$
End 'End'

PROGRAM 3: ELLIOTT 803 VERSION OF ALGOL 60.

COULTER COUNTER DIAMETER CORRECTION FOR 280 μ TUBE ORIENTATION A BEGIN INTEGER D!
REAL $\mathrm{V}, \mathrm{F}, \mathrm{B}, \mathrm{L}, \mathrm{Y}, \mathrm{FUNCTION,DIFFUNCTION,E,TRUED:}$
SWITCH S:=RETURN,CONTINUE'
FOR D:=-5 STEP 1 UNTIL 150 DO BEGIN
$V:=(11 / 21) *(D * * 3)^{1}$
$F:=V / 10809400^{1}$
$B:=87102 / 108094001$
L: \Rightarrow
RETURN:Y: $=F+(B * L)$ '
FUNCTION: $=(1+L / 248.2) /(1-L / 248.2)-1-Y-(Y * * 2) / 2-(Y * 3) / 6$
$-(Y * * 4) / 24-(Y * * 5) / 120-(Y * * 6) / 720-(Y * * 7) / 5040-(Y * * 8) / 40320$!
DIFFUNCTION: $=(2 / 248.2) /((1-(1 / 248,2) * L) * * 2)-B-(Y * B)-(Y * * 2) *(B / 2)$
$\left.-(Y * 3) *(B / 6)-(Y * * 4) *(B / 24)-(Y * 5) *(B / 120)-(Y * * 6) *(B / 720)-(Y * * /)^{*}\right) *(B / 5040)$!
IF ABS(FUNCTION/DIFFUNCTION) LESS . 01
THEN GOTO CONTINUE
ELSE BEGIN L: $=$ L-(FUNCTION/DIFFUNCTION)'
GOTO RETLRN
END:
CONTINUE :E $:=0.900 *\left(L^{* *} 3\right)^{8}$
TRUED : $=(E) *=(1 / 3)$?
PRINT FREEPOINT(3) ,D SAMELINE, £LS? , FREEPOINT(5) ,L, \&\&S?? ,
FREEPOINT(5), TRUED
END ,END EEN:

PROGRAM 4: ELLIOTT 803 VERS ION OF ALGOL 60.
COULTER COUNTER DIAMETER CORRECTION FOR 28Q μ TUBE ORIENTATION B'
BEGIN INTEGER D:

SWITCH S:=RETLRN,CONTINUE?
FOR D: $=5$ STEP 1 UNTIL 150 DO BEGIN
$V:=(11 / 21) *(D * 3)$?
$A \approx=(22 / 7) *(140 * * 2)^{3}$
$\mathrm{L}:=\mathrm{D}^{\text {? }}$
RETURN:G: $=$ SORT $\left(\left(A /\left(0.707 * L^{* *} 2\right)\right)-1\right)$ '
FUNCTION: $\left.=\left(0.707^{*} V^{*} L^{*} G\right) / A * * 2+\left(\left(L^{* * 2}\right) * 0.707^{*} G\right) / A\right)-\operatorname{ARCTAN}(1 / G)^{2}$
DIFFUNCTION: $=(\mathrm{G} / \mathrm{A}) *\left(\left(0.707^{*} \mathrm{~V}\right) / \mathrm{A}+1.414 * \mathrm{~L}\right)-\left(\mathrm{V} /\left(\mathrm{A}^{*} \mathrm{~L}\right)+2\right) /\left(\mathrm{L}^{*} \mathrm{G}\right)^{\text {t }}$
IF ABS(FUNCTION/DIFFUNCTION) LESS . 01
THEN GOTO CONTINUE
ELSE BEGIN L:=L- (FUNCTION/DIFFUNCTION)?
GOTO RETURN ${ }^{3}$
END:
CONTINUE :E $=0.900 *\left(L^{*} * 3\right)^{3}$
TRUED $=(E) * *(1 / 3)$ '
PRTNT FREEPOINT (3) ,D,
SAMELINE, ££S??,
FREEPOINT(5), L, ££5 ? ,
FREEPOINT(5), TRUED
END,END END:

APPEND IX: C

Evaporation in Stirred Cells

Procedure

Evaporation rates for Cells C and S unders experimental conditions were obtained as follows. A solution of a known approximate conoentration of Batch C , ohosen to be undersaturated under experimental conditions, was aoourately made up in a $250 \mathrm{~m}^{3}$ pyrex graduated flask and dissolved by heating. The cell was heated to the temperature to be studied and the solution poured in. When the temperature was stable the refractometer scale was read and the concentration obtained from the isothermal oalibration correlation. The mass of solute, m, in this $250 \mathrm{~cm}^{3}$ of solution was therefore found. The solution was stirred at $2000 \mathrm{r} . \mathrm{p} \cdot \mathrm{m}$. and the time taken for suitable increases of the solution conoentration. The total solution volume, v, for this particular conoentration, 0 , was obtained from $v=\frac{m}{c} x 100$ where m remains constant throughout. From the decrease in total volume over a period of time the evaporation rate is calculated in om ${ }^{3} / \mathrm{min}$. This is checked at different intervals to guard against errors of scale reading, but the greateat concentration difference should be the most acourate. It was usually found to take many days to obtain an appreciable concentration inorease.

Example

Cell C
$T_{0}=70.0^{\circ} \mathrm{C}$
Stirrer Speed $=2000$ r.p.m.

Time (ming)	Scale Reading S	$0 \% \mathrm{~m} / \mathrm{v}$
0	63.75	23.301
130	64.25	20.445
900	66.80	21.178
1020	67.25	21.307
1260	68.40	21.637

$$
\begin{aligned}
\mathrm{m} & =2.50 \times 20.301 \\
& =50.753 \\
\therefore v_{1} & =250 \\
\nabla_{2} & =248.2 \\
v_{3} & =239.6 \\
v_{4} & =238.1 \\
v_{5} & =234.5
\end{aligned}
$$

Evaporation Rates $\mathrm{cm}^{3} / \mathrm{min}$

$$
\left.\begin{array}{l}
v_{1} / v_{2}=0.01384 \\
v_{2} / v_{3}=0.01116 \\
v_{3} / v_{4}=0.01250 \\
v_{4} / v_{5}=0.01500
\end{array}\right\} \quad v_{1} / v_{5}=0.0123
$$

$\mathrm{T}_{0}{ }^{\text {c }}$ C	Evaporation $\mathrm{cm}^{3} / \mathrm{min}$.	
	Cell C	Cell s
45.0	0.0030	0.000238
50.0	0.0063	
55.0	0.0083	
60.0	0.0101	
65.0	0.0123	0.000 .5000
7.0	0.0123	0.000595
75.0	0.0173	

Disoussion

On the assumption that the loss of solvent is proportional to the difference in vapour pressure between the cell solution and the ambient, the experimental values were plotted figure 6.4, as log (evaporation) vs $\left(\frac{1}{T}\right)$ where T is absolute temperature (${ }^{\circ} \mathrm{K}$), as is suggested for vapour pressure for pure substances by the Clausius-Clapeyron equation. It can be seen that the rate of evaporation in the Cell S is far less than that of Cell C under the same conditions. This would be expeoted as the teflon bush was less worn with Cell S, being high on the stirrer shaft near the motor, whereas the motor was less rigid with Cell C and the bush lower on the shaft which was inclined to whip.

TABLE: 29

Evaporation values interpolated from figure 6.4.

	Evaporation $\mathrm{om}^{3} / \mathrm{min}$	
$T_{0}{ }^{\circ} \mathrm{C}$	Cell S	Cell C
20	0.00009	0.0018
25	0.00010	0.0022
30	0.00013	0.0028
35	0.00016	0.0035
40	0.00019	0.0043
45	0.00024	0.0053
50	0.00029	0.0064
55	0.00035	0.0078
60	0.00042	0.0094
65	0.00050	0.0112
70	0.00060	0.0135
75	0.00080	0.0160

```
APPENDIX D - CRYSTAL GROWTH RATW RESULTS
```


PRELIMINARY FLUIDISED BED RESULTS

$\begin{aligned} & \text { RUN } \\ & \text { No. } \end{aligned}$	${ }^{\text {THEMP }} .$	$\underset{\mathrm{om} / \mathrm{s}}{\mathrm{u}}$	$\begin{aligned} & \text { SEED } \\ & D \mu \end{aligned}$	$\begin{aligned} & \text { PROD. } \\ & D_{\mu} \end{aligned}$	$\begin{aligned} & \text { TTME } \\ & \text { MTN. } \end{aligned}$	s	GROWTH VELOCITY$g \times 106$	
							$\frac{\mathrm{S}}{\mathrm{DIRCT}}$	$\begin{aligned} & \text { MASS } \\ & \text { BASIS } \end{aligned}$
F.C. 7	59.5	0.180	94	111	112	0.124	7.60	
F.C. 8	56.7	0.175	94	122	313	0.113	4.47	
F.C. 9	46.9	0.215	111	137	322	0.220	4.04	
F.C. 10	43.4	0.203	111	129	292	0.231	3.08	
F.C. 11	39.9	0.165	94	105	296	0.302	1.86	
F.C. 12	37.9	0.167	121	121	273	0.430	1.83	
F.C. 13	35.6	0.268	132	257	226	0.545	5.50	2.45
F.C. 14	51.6	0.149	79	97	50	0,333:	18.0	
F.C. 15	51.7	0.181	82	102	132	0.262	7.60	
F.C. 16	32.7	0.163	111	139	1800	0.558	0.78	
F.C. 17	65.5	0.241	132	150	140	0.066	6.42	
F.C. 18	68.9	0.210	121	172	132	0.132	23.1	
F.C. 19	71.1	0.600	163	227	136	0.101	19.8	19.8
F.C. 20	67.0	0.208	110	152	208	0.082	10.1	5.14
F.C. 21	63.0	0.195	114	140	254	0.138	5.10	6.11
F.C. 22	54.4	0.211	111	244	383	0.184	4.31	2.75
F.C. 23	70.2	0.318	159	172	147	0.076	4.42	7.94
F.C. 24	58.4	0.210	132	151	222	0.200	7.80	7.86
F.C. 25	29.5	0.210	160	161	1144	0.485		1.12
F.C. 26	34.0	0.210	122	235	1212	0.326	0.57	
F.C. 27	37.6	0.090	94	123	1284	0.372	1.13	2.34

TABIE:32 EXAMPLE FLUIDISED BED DATA WITH MOD IF IED APPARATUS

EXZMPLE EXPGRTIURTTAL DATA FOR STIRRED CELLS

TABLE:
 36

QUALITATIVE RESULTS OF SEFDED BATCF B SOIUTIONS

STIRREED AT 2000 R.P.M. IN CELL C AT $60.0^{\circ} \mathrm{C}$

RUN NO:	R.B. 3			R.B. 4			R,A. 6		
SEEED:	$\begin{aligned} & 2 g \text { UNCLASSIFIED } \\ & \text { BATCH B } \end{aligned}$			$\begin{aligned} & 2 \mathrm{~g} \text { UNCLASSIFIED } \\ & \text { BATCH A } \end{aligned}$			2g UNCLASS IFIEDBATCH A		
	SCAIE	$\% \stackrel{0}{\% m}$	$\begin{aligned} & \text { TME } \\ & \text { MLN. } \end{aligned}$	${ }_{\text {SCALI }}$	$\%{ }^{\circ} \mathrm{m} / \mathrm{v}$	$\begin{aligned} & \mathrm{TTME} \\ & \text { MTN. } \end{aligned}$	SCALE	$\%{ }_{\text {\% }} / \mathrm{v}$	$\begin{aligned} & \text { PTME } \\ & \text { MTN. } \end{aligned}$
	83.8 83.0	24.286 24.061	0 60	87.4 86.0	25.296 24.904	\%	82.9 82.0	24.033 23.780	16
		23.921	160	85.0	24.623	63	81.0	23.498	51
							80.0	23.217	110
							79.0	22.934	155
							78.2	22.708	190.
							77.0	22.369	265
							75.8	22.029	320
							75.0	21.802	370

RUN NOS	R.B. 5			R.C. 2		
SEFED:	2 g UNCTASS IFIEDBATCH B			$2 \mathrm{~g} \text { UNCLASSIFIFD }$ BATCH C		
	SCALIS S	$\%{ }^{\circ} \mathrm{mm} / \mathrm{v}$	TIME MIN.	SCALE S	$\% \mathrm{~m} / \mathrm{v}$	TIME MIN.
	82.8	24.005	0	82.9	24.033	0
	82.0	23.780	145	82.0	23.78	7
	81.0	23.498	330	81.0	23.498	35
				79.0	22.934	110
				78.0	22.651	145

TABLE: 37
QUALITAITVE RESULTS OF SEFRED SOLUTIONS STIRRED AT $2000 \mathrm{R} . \mathrm{P} . \mathrm{M} \cdot \operatorname{AT} 70.0^{\circ} \mathrm{C}$

RUN NO:	R.G. 1			R.G. 2		
SEED:	$2 g$ UNCLASS TFTEN BATCH G			2 g UNCILASS IFIED BATCH G \qquad		
CELI	C					
	SCALE S	$\% \mathrm{~cm} / \mathrm{v}$	TIME MIN.	SCALE	$\% \mathrm{~m} / \mathrm{v}$	$\begin{aligned} & \text { TIME } \\ & \text { MIN. } \end{aligned}$
	98.4	30.097	0	97.6	29.875	0
	98.0	29.986	7	96.7	29.624	30
	97.5	29.847	35	96.2	29.485	50
	97.0	29.708	50	95.7	29.346	70
	96.5	29.569	65	93.2	28.650	
	96.0	29.430	85			
	95.0	29.152	120			

RUN NO:	R.F. 2			R.F. 5		
SEFED:	2 g 29-105 m^{2}			$2 g 89-105 \mu$		
CELL	C			C		
	SCALE	\% $\mathrm{m}^{0} \mathrm{v}$	TIME MLN。	$\begin{gathered} \text { SCALE } \\ \mathrm{S} \end{gathered}$	\% $\%$ / c	TIME MTN.
	97.0	29.708	0	97.3	29.791	0
	96.5	29.569	40	97.0	29.708	14
	96.0	29.430	68	96.5	29.569	42
	95.1	29.179	120	96.0	29.430	65
				95.5	29.291	90
				95.0	29.152	120

TABLE: 38

TEMP: $60.0^{\circ} \mathrm{C}$ CELL: C

SEED: BATCH C PREPARED

RUN NO:: R.C. 3
STIRRER SPEED:2000 R.PoMo

SIEVE FRACTION: 75-89, μ
CONAN: TOTAL CRYSTAL DIAMETER MEAN GROWTH RATE MEAN GROWTH $\% M / V$ TIME MASS INCREASE AREA CONSTANT SUPER- RATE MINE: (GRAMS) (CM) CM^{2} K $\left(M_{I} N^{-1} \mathrm{CM}^{-2}\right)$ SATE: CM/MIN.
$24.033: 00000 \quad 2.000$
$.000001 \quad 260.0 \quad 6.2387 \mathrm{Q}-07 \quad .1947 \quad 6.252 \mathrm{C}-06$ $.0004060 \quad 3532.1 \quad 3.66370-07 \quad .1814 \quad 3.3840-06$ $.0003215 \quad 4427.4 \quad 2.9284 \mathrm{e}-07 \quad .1673 \quad 2.473 \mathrm{e}-06$ $.0002691 \quad 5254.8 \quad 2.9223 @-07 \quad .1532 \quad 2.242 @-06$ $.0002330 \quad 6028.6 \quad 2.10689-07 \quad .1391 \quad 1.456 @-06$
$22.652 \quad 35.00 \quad 6.112$

TABLE: 39

RUN NO: R.C. 4

STIRRER SPEED:2000 R.P.M.

--".-m"

SIEVE FRACTION: $75-89 \mu$

CONCN: \%M/V	TOTAL TIME MINS.	CRYSTAL MASS (CRAMS)	DIAMETER INCREASE (CM)	MEAN AREA CM^{2}	GROWTH RATE CONSTANT $K\left(M I N^{-1} C M^{-2}\right)$	MEAN SUPER SATN.	GROWTH RATE $\mathrm{CM} / \mathrm{MIN}$ 。
24.033	.00000	2.000	$\bigcirc 000003$	265.1	8.31790-07	.1947	8.3380-06
23.780	30.000	2.764					
23.70	30.000	2.764	.0004060	3532.3	3.14010-07	$\because 1814$	2.9000-06
23.498	100.00	3.608		4427.6	$2.9283 @-07$	$\because 1673$	
23.217	165:00	4.448	$\because 0003215$				$2.4730 \sim 06$
			. 00002690	5255:0	2.6974 - 07	-1532	$2.0708=06$
22.93	230.00	5.282	$\because 0002330$	6028.8	2.5929@-07	- 1391	1.793@-06
22.652	295.00	$6 \% 112$					

CONCN:	TOTAL	CRYSTAL	DIAMETER	MEAN	GROWTH RATE	MEAN	GR
SM/V	TIME	MASS	INCREASE	AREA	CONSTAN	SUPER-	RATE
	MINS.	(GRAMS)	(CM)	CM^{2}	K	SATN.	CM/

$24.146 \div 00000 \quad 2.000$ $24.051 \quad 1.5000 \quad 2.255$ $23.921 \quad 19.000 \quad 2.679$ $23.865 \quad 29.000 \quad 2.849$ $23.780 \quad 41.000 \quad 3.102$ $23.639 \quad 68.000 \quad 3.524$ $23.498 \quad 86.000 \quad 3.945$ $23.414 \quad 102.00 \quad 4.197$ $23.358 \quad 111.00 \quad 4.365$ $23.217 \quad 135.00 \quad 4.784$ $23.075 \quad 160.00 \quad 5.201$ $22.934 \quad 187.00 \quad 5.618$ $22.793 \quad 217.00 \quad 6.033$ $22.652 \quad 265.00 \quad 6.447$ $22.369 \quad 320.00 \quad 7.272$ $22.227 \quad 340.00 \quad 7.683$ $22.086 \quad 378.00 \quad 8.092$ $21.944 \quad 420.00 \quad 8.500$ $21.802 \quad 465.00 \quad 8.907$ $21.604 \quad 570.00 \quad 9.473$
.0002025 2131.1 6.44590-06 . $2046 \quad 6.7510 .05$ $.0003004 \quad 2392.28 .4393 @-07 \quad .1990 \quad 8.582 @-06$ $.0001096 \quad 2614.5 \quad 5.5438 \mathrm{Q}-07 \quad .1940 \quad 5.4800-06$ $.0001552 \quad 2766.9 \quad 6.67070-07 \quad .1905 \quad 6.465 @ .06$ $.00023793003 .4 \quad 4.6932 \mathrm{C}-07 \quad .1849 \quad 4.40 \mathrm{O}-06$.0002166 3289.2 6.6859@-07 $\quad .1779 \quad 6.018$ @ -06 $.0001215 \quad 3510.9 \quad 4.36780-07 \quad .1722 \quad 3.7980-06$ $.0000779 \quad 3646.0 \quad 5.0901 @-07 \quad .1687 \quad 4.3309-06$ $.0001850 \quad 3830.0 \quad 4.6818 @-07 \quad .1638 \quad 3.855 @-06$ $.0001729 \quad 4087.2 \quad 4.40360-07 \quad .1567 \quad 3.4590-06$ $.0001625 \quad 4336.8 \quad 4.02590-07 \quad .1497 \quad 3.0100-06$ $.0001535 \quad 4579.5 \quad 3.60300-07 \quad .1426 \quad 2.558 @-06$ $.0001454 \quad 4815.9 \quad 2.25410 \mathrm{O} 07 \quad .1356 \quad 1.5150 \mathrm{CO}$ $\because 0002708 \quad 5158.1 \quad 3.99150-07 \quad .1250 \quad 2.24610-06$ $.0001265 \quad 5492.8 \quad 5.6321 巴-07 \quad .1144 \quad 3.1620 \sim 06$ $.0001214 \quad 5708.7$ 3.04190-07 $.1073 \quad 1.5970 \sim 06$ $.0001167 \quad 5920.4 \quad 2.84290-07 \quad .1002 \quad 1.3890-06$.0001123 6128.0 2.7601@-07 .0931 1.248@-06 $.0001504 \quad 6371.4 \quad 1.75520-07 \quad .0846 \quad 7.1640 \mathrm{~m} 07$

TABLE: 42
TEMP:50.0 ${ }^{\circ} \mathrm{C}$ CELI:C

SEED: BATCH C PREPARED

RUN NO: :R.C. 7
STIRRER SPEED: 2000 R. Po_{0} Mo
SIEVE FRACTION: $44-64 \mu$

CONCN: TOTAL CRYSTAL CIAMETER MEAN GRONTH RATE MEAN GROWTH GM/V TIME MASS INCREASE AREA CONSTANT SUPER- RATE MINS: (GRAMS) (CM) Ci ${ }^{2}$ K $\left(M I N^{-1} C M^{-2}\right)$ SATN: CM/MIN.
$19.363 \quad 25.000 \quad 2.287$ $19.222 \quad 80.000 \quad 2.696$ $19.081 \quad 120.00 \quad 3.103$ $18.939 \quad 170.00 \quad 3.510$ $18.798 \quad 20.00 \quad 3.915$ $18.657 \quad 240.00 \quad 4.319$ $18.515 \quad 280.00 \quad 4.722$ $18.374320 .00 \quad 5.124$ $18.090 \quad 410.00 \quad 5.924$ $17.949 \quad 460.00 \quad 6.323$ $17.438 \quad 640.00 \quad 7.748$ $16.245 \quad 1380.0 \quad 11.00$ $16.103 \quad 1540.0 \quad 11.38$ $\begin{array}{llll}15.961 & 1730.0 & 11.7\end{array}$
$.0002266 \quad 2143.5 \quad 4.2815 @-07 \quad .2851 \quad 4.532 @-06$ $.0002872 \quad 2410.6 \quad 2.5438 @-07 \quad .2772 \quad 2.611 @ \omega 0$ $.0002545 \quad 2711.5 \quad 3.2193 @-07 \quad .2678 \quad 3.181 @-06$ $\because 0002294 \quad 2998.8 \quad 2.4139 @-07 \quad \because 2585 \quad 2.2940-06$ $.0002053274 .24 \quad 3.2779 @-07 \quad .2491 \quad 2.993 @-06$ $.0001932 \quad 3539.8 \quad 3.1516 \mathrm{@}-07 \quad .2398 \quad 2.7600-06$ $.0001796 \quad 3796.3 \quad 2.6768$ @-07 $\quad .2304 \quad 2.246 @-06$ $.00016814044 .7 \quad 2.61980-07 \quad .2210 \quad 2.1010-06$.0003079 4402.0 $2.28740-07 \quad .2070 \quad 1.7110-06$ $\because 0001 \div 9 \quad 4749.8 \quad 2.0471 \mathrm{Q}-07 \quad .1929 \quad 1.4190-06$ $.000160052249 .42 .09360-07 \quad .1713 \quad 1.2780-06$ $.0003564 \quad 6439.2 \quad 1.50340-07 \quad .1149 \quad 5.786 \mathrm{O}-07$ $.0 .0003 j^{4 .} 7330.3 \quad 1.13700-07 \quad .0707 \quad 2.7310-07$.0000848 万04.9 1.0798@-07 . $0613 \quad 2.232 \mathrm{C}-07$

TABLE： 4.3.

RUN NO：：R．C． 8
$-241-$

SEED ：BATCH C PREPARED SIEVE FRACTION：44－64 μ

17.0 .54	.00000	2.000
17.033	50.000	3.202
16.893	63.000	3.600

16．733 $\quad 77.000 \quad 3.997$ $16.612 \quad 90.000 \quad 4.393$ $16.471 \quad 104.00 \quad 4.789$ $\begin{array}{llll}16.331 & 117.00 & 5.183\end{array}$ $\begin{array}{llll}16.190 & 130.00 & 5.577\end{array}$ $16.050141 .00 \quad 5.970$ $15.909 \quad 165.00 \quad 6.362$ $\begin{array}{lll}15.768 & 178.00 & 6.753\end{array}$ $15.0486 \quad 215.00 \quad 7.534$ $15.345 \quad 240.00 \quad 7.922$ $15.25 \quad 256.00 \quad 8.310$ $\begin{array}{llll}15.064 & 278.00 & 8.697\end{array}$ $14.922305 .00 \quad 9.083$ $14.640 \quad 364.00 \quad 9.82$ $14.273 \quad 460.00 \quad 10.85$ $\begin{array}{lllll}12.517 & 1380.0 & 15.51\end{array}$ $12.376 \quad 1980.0 \quad 15.87$ $\begin{array}{lllll}.0008259 & 2478.9 & 6.1854 \mathrm{e}-07 & .4675 & 8.259 @-06 \\ .0002199 & 3063.8 & 6.7632 @-07 & .4436 & 8.458 巴-06 \\ .0002018 & 3331.6 & 5.9371 \mathrm{e}-07 & .4316 & 7.206 @-06 \\ .0001868 & 3590.1 & 6.1046 @-07 & .4197 & 7.186 @-06\end{array}$ $.00017^{43} \quad 3840.3 \quad 5.4564 \mathrm{em} 07 \quad .4077 \quad 6.2240-06$ $.0001635 \quad 4083.1 \quad 5.6957^{0}-07 \quad .3958 \quad 6.2900-06$ $.0001543 \quad 4319.3 \quad 5.55400-07 \quad .3838 \quad 5.933 @-06$ $.0001462 \quad 4549.4 \quad 6.43460-07 \quad .3718 \quad 6.6430-06$ $.0001390 \quad 4773.9 \quad 2.9000-07 \quad .3599 \quad 2.8950 \mathrm{O} 06$ $.0001326 \quad 4993.3 \quad 5.357 巴-07 \quad .3479 \quad 5.098 @-06$ $.0002487 \quad 5312.3 \quad 3.69850-07 \quad .3299 \quad 3.3600-06$ $.0001169 \quad 5625.0 \quad 2.7343 @-07 \quad .3119 \quad 2.338 @-\infty$ $.0001126 \quad 5827.4 \quad 4.2903 @-07 \quad .2999 \quad 3.5190-06$ $.0001086 \quad 6026.1 \quad 3.14410-07 \quad .2879 \quad 2.469 @ \cdots 06$ $.0001506221 .5 \quad 2.4977$＠－07 ．2759 1．8740－06 $.00020026507 .5 \quad 2.4693 @-07 \quad .2579 \quad 1.725$＠－06 $.0002429 \quad 6934.2 \quad 2.0417 巴-07 \quad .2303 \quad 1.265 @-06$.0009646 8200．9 1．5783＠－07 ． $1400 \quad 5.242 \mathrm{C}-07$ $.0000659 \quad 935.5 \quad 3.66510-08 \quad .092 \quad 5.4950-08$ $.0000891 \quad 9483.7 \quad 4.48450-08 \quad .0447 \quad 4.9490-08$

12．177－2880．0 16.37

TABLE: 44 TEMP: 60.0 ${ }^{\circ}$ CELL. \triangle STIRRER SPEED: 500 R.PoM\% SEED: BATCHC PREPARED SIEVE FRACTION: $44-64 \mu$

CONCN: TOTAL CRYSTAL DIAMETER MEAN GROWTH RATE MEAN GROWTH $\%$ TMME MASS INCREASE AREA CONSTANT SUPER- RATE MINS: (GRAMS) (CM) CM \quad K $\left(M^{2} N^{-1} C M^{-1}\right)$ SATN: CM/MIN.

TABLE: 45
 RUN NO.: R.C. 10

$24.146 \quad .00000 \quad 2.000$
$24.061 \quad 5.0000 \quad 2.255$
.0002025 2131.1 1.93380-06 .2046 2.025@m $.0003003 \quad 2392.1 \quad 7.38450-07 \quad .1990 \quad 7.508 \mathrm{Q}-06$ $23.921 \quad 25.000 \quad 2.679$ $23.780 \quad 47.000 \quad 3.102$ $23.639 \quad 72.000 \quad 3.524$ $23.498 \quad 92.000 \quad 3.945$ $23.358 \quad 115.00 \quad 4.365$ $23.217 \quad 155.00 \quad 4.783$ $23.07 \quad 190.00 \quad 5.201$ $22.934 \quad 240.00 \quad 5.617$ $22.793 \quad 280.00 \quad 6.031$ $22.652 \quad 330.00 \quad 6.2444$ $22.510 \quad 395.00 \quad 6.856$ $22.2454 \quad 425.00 \quad 7.020$

TABLE: 47
TEMP: $70.0^{\circ} \mathrm{C}$ CELL: A
 SEED: BATCH C PREPARED

RUN NO:: R.C. 12

STIRRER SPEED:500 R.P.M.
SIEVE FRACTION: $44-64 \mu$
CONCN: TOTAL CRYSTAL DIAMETER MEAN GRONTH RATE MEAN GROWTH g M $/ v$ TIME MASS INCREASE AREA CONSTANT SUPER- RATE MINS: (GRAMS) (CM) CM^{2} K $\left(\mathrm{MIN}^{-1} \mathrm{CM}^{-2}\right)$ SATN. CM/MIN:
$29.986 .00000 \quad 2.000$ $29.902 \quad 3.0000 \quad 2.265$ $29.763 \quad 6.5000 \quad 2.707$ $29.624 \quad 13.000 \quad 3.147$ $29.485 \quad 21.000 \quad 3.587$ $29.346 \quad 29.500 \quad 4.026$ $29.207 \quad 36.000 \quad 4.463$ $29.068 \quad 47.000 \quad 4.901$ $28.943 \quad 63.000 \quad 5.293$ $28.803 \quad 84.000 \quad 5.729$ $28.664 \quad 110,00 \quad 6.163$ $28.524 \quad 137.00 \quad 6.597$ $28.385 \quad 167.00 \quad 7.030$ $28.245 \quad 198.00 \quad 7.462$ $28.105 \quad 245.00 \quad 7.893$ $27.965 \quad 310.00 \quad 8.323$ $27.825 \quad 370.00 \quad 8.753$ $27.686 \quad 450.00 \quad 9.181$
$.0003107 \quad 2406.2 \quad 4.68010-06 \quad .1339 \quad 4.4390-\sigma$ $.0002731 \quad 2730.9 \quad 2.3128 巴-06 \quad .1286 \quad 2.101 @-\sigma$ $.0002448 \quad 3040.3 \quad 1.76120 .06 \quad .1234 \quad 1.5300-0$ $.0002226 \quad 3336.5 \quad 1.57890-06 \quad .1181 \quad 1.309 巴-0$ $\because 0002047 \quad 3621.5 \quad 1.99250006 \quad .1128 \quad 1.5740-05$ $.0001898 \quad 3896.6 \quad 1.14880-06 \quad .1075 \quad 8.628 \mathrm{@m} 06$ $.0001601 \quad 4150.1 \quad 7.0053 \mathrm{e}-07 \quad .1025 \quad 5.002 \varrho \sim 06$ $.0001676 \quad 4396.1 \quad 5.89110-07 \quad .0974 \quad 3.9910-06$ $.00015824648 .4 \quad 4.76150-07 \quad .0921 \quad 3.042 \mathrm{C} \sim 06$ $.0001500 \quad 4894.2 \quad 4.6235 @-07 \quad .0868 \quad 2.777{ }^{-106}$ $.0001427 \quad 5134.1 \quad 4.22730-07 \quad .0815 \quad 2.3780-06$. $\because 0001362 \quad 5368.6 \quad 4.18720-07 \quad .0762 \quad 2.1960-06$. $.0001303 \quad 5598.1 \quad 2.84860 \cdots 07 \quad .0709 \quad 1.3860 \cdots 06$ $.0001251 \quad 5823.1 \quad 2.14200-07 \quad .0656 \quad 9.6260-07$ $.00012036043 .7 \quad 2.4345 \mathrm{Q}-07 \quad .0603 \quad 1.003 \mathrm{e}-06$ $.0001159 \quad 6260.3 \quad 1.93460-07 \quad .0550 \quad 7.2430-07$

CONCN．覔／V	TABLE： 48			RUN $\mathrm{NO}_{\mathbf{-}}:$ ：R．C． 13			
				STIRRER SPEED： 500 RoPoMo			
	TOTAL TIME MINS：	$\begin{aligned} & \text { CRYSTAL } \\ & \text { MASS } \\ & \text { (GRAMS) } \end{aligned}$	DIAMETER INCREASE （CM）	$\begin{aligned} & \text { MEAN } \\ & \text { AREA } \\ & C M^{2} \end{aligned}$	GROWTH RATE CONSTANT $\mathrm{K}\left(\mathrm{MIN}^{-1} \mathrm{CM}^{-2}\right)$	NEAN SUPER－ SATN．	GROWTH RATE CM／MIN。
29．930	.00000	2.000	.0002101	2135：0	4．3606＠－06	.1360	4．203＠－5
29.847	5000	2.265					
2．8．7			.000310	2406．0	$2.3782 \mathrm{e}-06$	$\bigcirc 1318$	2．2180－5
29．708	9.5000	2.706	．0002729	2730.5	$2.78000-66$	－1265	2．4810－5
29.569	15：000	3.146	．0002446	3039.6	2．39030－06	.1212	2．038＠－9
29．430	21．000	3.585					
29.291	28．000	4.024	.000222	3335	1．9533＠－06	． 1160	1．5880－5
			． 0002044	3620．1	2．64160－06	.1107	2．0440－05
			． 0001895	3894．8	1．4333＠－06	.1054	1．53＠－0
29：012	000	4	$\therefore 0001770$		1．41350－06	． 1001	9．8340－06
28.873	51．000	5.332		4160.7			
28.73	61．000	5．766	． 0001	4418.7	$656 \bigcirc$	． 09	$8.3130 \sim 06$
28.594	73．000	6.200	.0001569	4669.7	1．ら77＠－め	． 0895	6.5390 .06
			.0001487	4914．1	6．75180－07	.0842	3．9140．06
			.0001414	5152.5	4.50540 .07	.0789	$2.43380-06$
28.315	121．00	7.062		5385.2	$3.94450-07$	$.0736$	
28.175	155.00	7.491	． 0001348				1．983＠－06
28.035	195．00	7.9	.0001289	5612.7	3．4695＠－07	． .0883	1．6110－06
			． 0001235	5835.2	2.63370007	． 0629	1．1230m6
			－0001186	653.1	3.2474 －07	． 0.576	1．262＠－06
27.	297．00	8.768	.0001140			$\begin{aligned} & .023 \\ & .0459 \end{aligned}$	
27.615	370．00	9.190		6266.5	2．2266＠－07		7.8050 .07
27.4419	560．00	9.75	.0001519	6515.7	$1.31480-07$		$3.9970-07$

TABLE: 49 TEMP: $70.0^{\circ} \mathrm{C}$ CELL: C

RUN NO:-: R.C. 14 STIRRER SPEED: 2000 R. $\mathrm{P}_{0} M_{0}$ -m-n--".......-.... SIEVE FRACTION: 44-64 μ CONCN: TOTAL CRYSTAL DIAMETER MEAN GRONTH RATE MEAN GROWTH GMM TV TIME MASS INCREASE AREA CONSTANT SUPER- RATE MINS: (GRAMS) (CM) CM^{2} K $\left(\mathrm{MIN}^{-1} \mathrm{CM}^{-2}\right)$ SATN: CM/MIN. $30.097 \quad .00000 \quad 2.000$ $29.847 \quad 8.0000 \quad 2.796$ $29.708 \quad 13.000 \quad 3.236$ $29.569 \quad 18.000 \quad 3.676$ $29.430 \quad 24.000 \quad 4.114$ 29.2.91 30.000 4.552 $29.152 \quad 37.000 \quad 4.988$ $29.012 \quad 48.000 \quad 5.424$ $28.873 \quad 58.000 \quad 5.888$ $28.734 \quad 69.000 \quad 6.291$ $28.594 \quad 80,000 \quad 6.724$ $28.454 \quad 91.000 \quad 7.155$ $28.315 \quad 15.00 \quad 7.585$ $28.175 \quad 120.00 \quad 8.014$ $27.895 \quad 153.00 \quad 8.870$ $27.756 \quad 170.00 \quad 9.295$ $27.615 \quad 192.00 \quad 9.720$ 27.4 . $220.00 \quad 10.14$ $27.335 \quad 255.00 \quad 10.56$ $27.195 \quad 35.00 \quad 10.98$ $27.055 \quad 345.00 \quad 11.40$

TABLE: TEMP:30.0 $0^{\circ} \mathrm{C}$ CELL: C SEED: BATCH C PREPARED

RUN NO:: R.C. 15 STIRRER SPEED :2000 R.P.M. SIEVE FRACTION: 44-64 μ

CONCN. TOTAL CRYSTAL CIAMETER MEAN GROWTH RATE MEAN GROWTH GM/V TIME MASS :NCREASE AREA CONSTANT SUPER-RATE MINS: (GRAMS) (CM) CM^{2} K $\left(\mathrm{MIN}^{-1} \mathrm{CM}^{-2}\right)$ SATN: CM/MIN:
$12.50310 .000+2.077$ $12.363 \quad 170.00 \quad 2.461$ $\begin{array}{llll}12.335 & 390.00 & 2.537\end{array}$ $\begin{array}{llll}11.887 & 1380.0 & 3.748\end{array}$ $11.803 \quad 1515.0 \quad 3.97^{4}$ $11.648 \quad 1740.0 \quad 4.385$ $11.578 \quad 1860.0 \quad 4.57^{2}$ $11.016 \quad 2790.0 \quad 6.50$ $10.903 \quad 2985.0 \quad 6.343$ $10.790 \quad 3165.0 \quad 6.635$ $10.734 \quad 3240.0 \quad 6.780$ $10.678 \quad 3420.0 \quad 6.925$ $10.114 \quad 4620.0 \quad 8.359$ $9.6901 \quad 6000.0 \quad 9.410$ $9.4355 \quad 7755.0 \quad 10.02$ $9.3790 \quad 8760.0 \quad 10.16$ $9.3365 \quad 10080 \quad 10.26$ $9.2799 \quad 11520 \quad 10.39$
$.0000631 \quad 2051.2 \quad 4.0033 \mathrm{e}-07 \quad .3719 \quad 3.156 \mathrm{e}-06$ $.0002901 \quad 2240.6 \quad 1.18050 \cdots 07 \quad .3627 \quad 9.0650-07$ $.0000535 \quad 2418.2 \quad 1.6328 @-08 \quad .3535 \quad 1.216 @-07$ ${ }_{\square} 0007164 \quad 2873.2 \quad 5.29000-08 \quad .3274 \quad 3.618 @-07$ $.0001131 \quad 3373.6 \quad 6.79530-08 \quad .2982 \quad 4.1880-07$ $.0001947 \quad 3580.0 \quad 7.3715 @-08 \quad .2851 \quad 4.3270-07$ $. .0000838 \quad 3770.8 \quad 6.23480-08 \quad .2728 \quad 3.4910 \sim 07$ $.0005870 \quad 4269.1 \quad 6.5555 \mathrm{C}-08 \quad .2381 \quad 3.1560-07$ $.00010344791 .5 \quad 6.56820 \sim 08 \quad .2011 \quad 2.6510-07$ $\because 0000996 \quad 4955.4 \quad 7.33300-08 \quad .1888 \quad 2.7680-07$ $.0000485 \quad 5076.6 \quad 9.03260-08 \quad .1795 \quad 3.2340 .07$ $.0000476 \quad 5156.4 \quad 3.8381 @-08 \quad .1734 \quad 1.323 @-07$ $.0004354 \quad 557^{4} .3 \quad 6.7^{4} 28 巴-08 \quad .1394 \quad 1.814 巴-07$ $\because 00028626216.46 .51510-08 \quad .0852 \quad 1.0970 .07$ $.0001569 \quad 6630.0 \quad 5.1343 @-08 \quad .0481 \quad 4.4700-08$ $.0000334 \quad 6812.2 \quad 2.9297^{0}-08 \quad .0310 \quad 1.663 @-08$.0000245 6868.4 $2.01020-08 \quad .0256 \quad 9.265 @-09$ $.0000318 \quad 6923.2 \quad 3.11010-08 \quad .0202 \quad 1.104 \mathrm{e}-08$

TABLE: 51
TEMP: $70.0^{\circ} \mathrm{C}$ CELL: C
SEED: BATCH C PREPARED

RUN NO.: R.C. 16
STIRRER SPEED: 1000 R. $\mathrm{P}_{0} \mathrm{M}_{0}$
SIEVE FRACTION: $44-64 \mu$

CONCN: \%M/V	TOTAL TIME MINS.	$\begin{aligned} & \text { CRYSTAL } \\ & \text { MASS } \\ & \text { (GRAMS) } \end{aligned}$	DIAMETER INCREASE (CM)	MEAN AREA CM^{2}		MEAN SUPERSATN.	GROWTH RATE CM/MIN.

30.152	. 00000	2.000	- 0004023	2236.3	4.40100-6	.1429	$4.4700 \sim 0$
29.986	4.5000	2.531			2,68800-06	. 1371	2.608@-0
29.847	10.000	2.972				-1	
29.708	15.500	3.412				. 1265	5
29.569	20.500	3.851			2.07040-06	. 1212	
29.430	26.500	4.289	.0001953	3788.2	$2.40780-06$.1160	¢
29.291	31.500	4.727	. 0001819	457.8	1.8128@-06	0.1107	4000.-5
29.152	38:000	5-16	. 000175	4319.2	1.2925@-06	.154	-06
29:012	47.000	5.59	.0001607	4573.2	1.15740-06	$\because 1001$	8.033@-06
28.873	57.000	6.	.0001521	4820.5	1.45010-06	.0948	-10-06
28.734	65.000	6.465	.0001445	5061.7	1.1709@-06	. 0895	7.2240-06
28.59	万.000	6.89	.0001377	5297.3	1.0819@-06	. .0842	6.260@-06
28.45	86.000	7.32	.0001316	5527.6	8.6993@-07	. .0789	.702@-06
28.315	100.00	7.5	.0001261	5753.0	7.38460-07	. 0736	7100-6
28.175	117.00	8.188	.00012.11	5973.9	3.95110 .07	. .0683	1.836@--6
28.035	150.00	8.6	.0001164	6190.4	3.0342C-07	. 0629	1.2940m06
27.895	195.00	9.041	.0001122	6402.7	4.80980-07	. 0576	$1.8700=06$
27.756	225.00	9.46	.0001082	6610.9	2.8014@-07	. 0023	$9.8350-07$
27.615	280.00	9.888					

CONCN.耾/V	TABLE: 52			RUN NO. : R.C. 17			GROWTH RATE CM/MIN.
	TEMP $40.0^{\circ} \mathrm{C}$ CELL: C			STIRRER SPEED:2000 R.PoM• SIEVE FRACTION: 44-64 μ			
	TOTAL TIME MINS:	$\begin{aligned} & \text { CRYSTAL } \\ & \text { MASS } \\ & \text { (GRAMS) } \end{aligned}$	DiAMETER INCREASE (CM)	$\begin{gathered} \text { MEAN } \\ \text { AREA } \\ C M^{2} \end{gathered}$	GROWTH RATE CONSTANT $\mathrm{K}\left(\mathrm{MIN}^{-1} \mathrm{CM}^{-2}\right)$	MEAN SUPERSATN.	
. 38	. 00000	2.000	. 0004193	2245.5	8.56280-08	.3179	7.487e-07
15.190	280	2.55					
			.0011035	3150.8	$9.8570-08$.2775	7.456@-07
		4.591	.0000673	3888.9	8.63030-08	.2433	5.609@-07
14.395	1080.0	4.745	.000129	4031.0	1.28820-07	.2359	8.102@-07
82	1160.0	5.034					
14.196	12 万	5.285	. 00	4194.4	6.70410-08	.2273	4.049@-07
14.125	1320.0	5.477	$\because 0000752$	4320.3	1.4287@-07	. 2206	8.355@-07
			. 0001019	4455.4	$1.20410-07$.2132	$6.7910-07$
			.0000844	4599.7	8.6563@-08	.253	4.688@-07
	148.0	5.97	.0000548	4709.1	1.1622@-07	. 1991	6.0900-07
13.884	1530.0	6.127	. 0006270				
13.143	24	8.081		5280.9	7.85890-08	.1648	.318@-07
	2580.0	8.266	$.0000536$	5857.2	$7.6944 \mathrm{C}-08$	$.1298$	$2.5510-07$
			:0000421	5942.9	7-39330-08	$.1243$	$2.3410-07$
			$.0000518$	6027.9	9.53790-08	.1188	2.8790-07
		8.599			5.9439@-08		1.695@-07
12.872	2910.0	8.783	.0000508	6121.4		.1126	
12.516	3870.0	9.687	-00023	6	5.36710-08	.0942	1.2480-07
12.-459	3990:0	9.831	.0000366	6651.2	8.0779-08	. 0763	1.523@-07
12.387	4260.0	10.01	.0000449	6729.4	4.78440-08	. 0708	8.3208008

CN:	L	L	DIAMETER	MEAN	E	ME	GROWTH
/V	TI	MASS	INCREASE	AREA	C	SUPER-	RATE
	MINS.	(GRAMS)	(CM)	CM^{2}	$\mathrm{K}\left(\mathrm{MIN}^{-1} \mathrm{CM}^{-2}\right.$	SATN。	CM

$29.986 \quad .00000 \quad 1.968$ $29.847 \quad 3.0000 \quad 2.410$ $29.708 \quad 10.000 \quad 2.81$ $29.569 \quad 19.000 \quad 3.291$ $29 .-430 \quad 26.000 \quad 3.729$ $29.291 \quad 36.000 \quad 4.167$ 29.152 $\quad 46.000 \quad 4.604$ $28.873 \quad 72.000 \quad 5.475$ $28.734 \quad 87.000 \quad 5.909$ $28.454 \quad 107.00 \quad 6.77^{4}$ $28.315 \quad 120.00 \quad 7.204$ $28.175 \quad 135.00 \quad 7.633$ $28.035 \quad 150.00 \quad 8.061$ $27.76 \quad 195.00 \quad 8.914$ $27.615 \quad 223.00 \quad 9.339$ $27.475 \quad 260.00 \quad 9.762$ $27.335 \quad 300.00 \quad 10.18$ $27.195 \quad 345.00 \quad 10.60$ $27.111 \quad 390.00 \quad 10.85$
$\because 0002333 \quad 3209.1 \quad 3.99810-06 \quad \div 1371 \quad 3.8880-05$ $.0002014 \quad 3707.2 \quad 1.54350-06 \quad .1318 \quad 1.4390-05$ $.0001783 \quad 4177.4 \quad 1.11050-06 \quad .1265 \quad 9.9030-06$ $.0001606 \quad 4624.7 \quad 1.34660-06 \quad .1212 \quad 1.1470-05$ $.0001467 \quad 502.8 \quad 9.0259 @-07 \quad .1160 \quad 7.333 @ \cdots 06$ $.0001353 \quad 5464.4 \quad 8.74990 \sim 07 \quad .1107 \quad 6.7640-06$ $.0002438 \quad 651.1 \quad 6.5579 @-07 \quad .1027 \quad 4.688 @-06$ $.0001108 \quad 6619.6 \quad 5.63200 .07 \quad .0948 \quad 3.695 @-06$ $.0002045 \quad 7157.0 \quad 8.54479-07 \quad 0868 \quad 5.1130-06$ $\because 0000948 \quad 7681.0 \quad 6.74200-07 \quad .0789 \quad 3.6470-06$ $.0000906 \quad 8017.8 \quad 6.00520-07 \quad .0736 \quad 3.0200 \cdots 06$ $.0000868 \quad 8347.4 \quad 6.22090-07 \quad .0683 \quad 2.8940-06$ $.00016368826 .9 \quad 4.4538 \mathrm{e}-07 \quad .0603 \quad 1.818 \mathrm{e}-06$.0000772 9297.0 3.9128@-07 . 0223 1.379@-06 $.0000745 \quad 9601.3 \quad 3.19460-07 \quad .0470 \quad 1.0070-06$ $.0000720 \quad 9900.0 \quad 3.23510-07 \quad .0416 \quad 9.0000-07$ $.000069710193 \quad 3.2058 @-07 \quad .0363 \quad 7.7409 .07$.0000407 10425 2.1299@-07 .0321 4.523@m07

CONCN. MM/V	TABLE: 54			RUN NO.: R.D. 2			
				STIRRER SPEED:2000 R. P.Mo			
	TOTAL TIME MING.	CRYSTAL MASS (GRAMS)	DIAMETER INCREASE (CM)	$\begin{aligned} & \text { MEAN } \\ & \text { AREA } \\ & {C M^{2}}^{2} \end{aligned}$	GROVTH RATE CONSTANT $\mathrm{K}\left(\mathrm{MIN}^{-1} \mathrm{CM}^{-2}\right)$	MEAN SUPERSATN.	GROWTH RATE CM/MIN.
28.748	. 00000	2,000	.0001413	3155.5	2.21380-06	$\because 0911$	1.4130-05
28.664	5.0000	2.263	.0002089				
				3556.5	$6.8715 \mathrm{C}-07$. 0868	4.1770 .06
	30.000	2.702	. 0001837	4035.2	5.3785@-07	. 0815	3.0610~06
28.385	60.000	3.140	. 0001647	4489.9	3.10410-07	.0762	1.6470.06
28.245	110.00	3.577	.0001499	4924.4	$2.17430-07$. 0709	1.0710m6
28.15	180.00	4.013	. 0001379				9.192@-07
27.965	255:00	4.448		5341.8	2.0236@-07	. 0656	1.1630-06
27.825	310.00	4.882	. 0001280	$57^{43} \cdot 3$	$2.79420-07$.0603	

TABLE: 55

SEED: BATCHD PREPARED

RUN NO: : R.D. 3
STIRRER SPEED: 2000R.PoM.

SIEVE FRACTION: $44-64 \mu$

$\stackrel{C N-}{/ N_{0}}$	TOTAL TIME MINS.	$\begin{aligned} & \text { CRYSTAL } \\ & \text { MASS } \\ & \text { (GRAMS) } \end{aligned}$	CIAMETER INCREASE (CM)	MEAN AREA CM^{2}	$\begin{aligned} & \text { CONSTANT } \\ & \mathrm{K}\left(\mathrm{MIN}^{-1} \mathrm{CM}^{-2}\right) \end{aligned}$	MEAN SUPERSATN.	$\begin{aligned} & \text { GRO } \\ & \text { RATE } \\ & \mathrm{CM} / \mathrm{M} \end{aligned}$

$29.930 \quad .00000 \quad 1.967$ $29.763 \quad 6.0000 \quad 2.497$ $29.624 \quad 12.000 \quad 2.938$ $29.485 \quad 22.000 \quad 3.378$ $29.207 \quad 47.000 \quad 4.256$ $29.068 \quad 62.000 \quad 4.693$ 28.943 71.000 5.086 $28.803 \quad 82.000 \quad 5.522$ $28.664 \quad 94.003 \quad 5.957$ $28.524 \quad 105.00 \quad 6.391$ $28.38 \quad 120.00 \quad 6.824$ $28.15 \quad 135.00 \quad 7.688$ $27.965 \quad 145.00 \quad 8.119$ $27.825 \quad 167.00 \quad 8.549$ $27.545 \quad 230.00 \quad 9.406$ $27.265 \quad 270.00 \quad 10.26$
$.0002760 \quad 3257.0 \quad 2.41080-06 \quad .1344 \quad 2.3000-5$ $.0001963 \quad 3801.9 \quad 1.79970-06 \quad .1286 \quad 1.6360-05$ $.0001745 \quad 4267.3 \quad 1.00380-06 \quad .1234 \quad 8.7250-06$ $.0003025 \quad 4919.6 \quad 7.45470 \sim 07 \quad .1554 \quad 6.0510-06$ $.0001334 \quad 5545.9 \quad 5.9193 @-07 \quad .1075 \quad 4.448 巴-06$ $.0001123 \quad 5921.9 \quad 8.7277$ @-07 . $1025 \quad 6.238 @-06$ $.000117^{4} \quad 6286.2 \quad 7.86510-07 \quad .0974 \quad 5.334 \mathrm{C}-06$.000115 6659.1 7.2015@-07 .0921 4.65@-06 $.00010467021 .9 \quad 7.90990-07 \quad .0868 \quad 4.7330-06$ $.0000994 \quad 7375.4 \quad 5.8853 \mathrm{C}-07 \quad .0815 \quad 3.312 \mathrm{C}-06$ $.0001855 \quad 7888.0 \quad 1.22240 \cdots 06 \quad .0736 \quad 6.1850-06$ $.0000869 \quad 8389.5 \quad 9.6637^{巴-07} \quad .0656 \quad 4.344 \mathrm{C}-06$ $.0000835 \quad 8713.4 \quad 4.6033 \mathrm{e}-07 \quad .0603 \quad 1.898 @-06$.0001581 9186.0 3.5293@-07 . 023 1.2540-06 $.0001476 \quad 9799.9 \quad 6.5635 @-07 \quad .0416 \quad 1.845 @-06$

TABLE: 57
TEMP: 70.0 Q
SEED: BATCH D PREPARED

RUN $\mathrm{NO}_{亏}:$: R.D. 5
 STIRRER SPEED:2000R.P.M. SIEVE FRACTION: $75-89 \mu$
$\begin{array}{ccc}\begin{array}{c}\text { CONCN. } \\ \text { TMM }\end{array} & \begin{array}{l}\text { TOTAL } \\ \text { TIME }\end{array} & \begin{array}{l}\text { CRYSTAL } \\ \text { MASS }\end{array} \\ \text { MINS: } & \text { (GRAMS) }\end{array}$ $29.902 \quad 5.0000 \quad 2.476$ $29.763 \quad 12.000 \quad 2.917$ $29.624 \quad 18.000 \quad 3.357$ $29.485 \quad 25.000 \quad 3.796$ $29.207 \quad 42.000 \quad 4.673$ $29.068 \quad 50.000 \quad 5.110$ $28.929 \quad 62.000 \quad 5.546$ $28.789 \quad 73.000 \quad 5 . \div 981$ $28.650 \quad 84.000 \quad 6.415$ $28.510 \quad 95.000 \quad 6.848$ $28.371 \quad 109.00 \quad 7.280$ $28.231 \quad 121.00 \quad 7.712$ $28.091 \quad 134.00 \quad 8.143$ $27.951 \quad 153.00 \quad 8.572$ $27.811 \quad 174.00 \quad 9.001$ $27.672 \quad 195.00 \quad 9.429$ $27.531 \quad 220.00 \quad 9.856$ $27.391 \quad 25.00 \quad 10.28$ $27.251 \quad 325.00 \quad 10.71$ $27.111 \quad 35.00 \quad 11.13$

DIAMETER	MEAN	GRONTH RATE	MEAN	GROWTH
INCREASE	AREA	CONSTANT	SUPER-	RATE
(CM)	CM^{2}	$\mathrm{~K}\left(\mathrm{MIN}^{-1} \mathrm{CM}^{-2}\right)$	SATN.	$\mathrm{CM} / \mathrm{MIN}$.

$\because 0006938 \quad 1295.7$ 6.9933@-06 . 1397 6.938@-0 $\because 0004994 \quad 1495.4 \quad 3.76530-06 \quad .1339 \quad 3.5670-\sigma$ $.0004472 \quad 1666.3 \quad 4.1063 @-06 \quad .1286 \quad 3.727 \mathrm{C}-0$ $.0004065 \quad 1829.4 \quad 3.34500-06 \quad .1234 \quad 2.9030 \sim 5$ $.0007210 \quad 2060.2 \quad 2.6178$ @-06 . $1154 \quad 2.1210-05$ $.0003237 \quad 2282.9 \quad 2.6963 @-06 \quad .1075 \quad 2.023 @-\sigma$ $.0003042 \quad 2424.2 \quad 1.78140-06 \quad .1022 \quad 1.2680-5$ $\because 0002873 \quad 2561.5 \quad 1.9408 @-06 \quad .0969 \quad 1.3060 \sim 05$.0002725 2695.2 1.9524@~06 .0916 1.239@m0 $.0002594 \quad 2825.7 \quad 1.97780-06 \quad .0863 \quad 1.1790-05$ $.0002477 \quad 2953.1 \quad 1.5853$ e-06 $\quad .0810 \quad 8.848 \mathrm{e}-06$ $.0002372 \quad 3077.7 \quad 1.9002 @-06 \quad .0757 \quad 9.8850-06$ $.0002277 \quad 3199.8 \quad 1.8155 @-06 \quad .0704 \quad 8.7590-06$ $.0002191 \quad 3319.5 \quad 1.2960 @-06 \quad .0651 \quad 5.7650-06$ $.0002112 \quad 3436.91 .23410-06 \quad .0597 \quad 5.0289-06$ $.0002039 \quad 3552.2 \quad 1.3117 \mathrm{Q}-06 \quad .0544 \quad 4.855 @-06$ $.00019723665 .5 \quad 1.1843 @-06 \quad .0491 \quad 3.944 \mathrm{O}-06$ $.0001910 \quad 3777.0 \quad 5.86470-07 \quad .0438 \quad 1.7360-06$ $.0001852 \quad 3886.7 \quad 7.144440-07 \quad .0384 \quad 1.8520-06$ $.0001798 \quad 3994.7 \quad 8.07910-07 \quad .0331 \quad 1.798 \mathrm{O}-06$

TABLE: 58 TEMP: $70.0^{\circ} \mathrm{C}$ CELL: C SEED: BATCH C PREPARED

RUN NO: : R.D. 6
STIRRER SPEED:2000 R.P. $\mathrm{P}_{\mathrm{o}} \mathrm{M}_{\circ}$ SIEVE FRACTION: 75-89

N.		CRYSTAL		MEAN	GROWTH RATE	MEAN	
\% M / V	TI	MASS	I NCREASE	AREA		SUPER-	
	MINS:	(GRAMS)	(CM)	CM^{2}	$\mathrm{K}\left(\mathrm{MIN}^{-1} \mathrm{CM}^{-2}\right)$	SATN:	CM/M

$30.263 \quad .00000 \quad 1.970$ $30.124 \quad 3.0000 \quad 2.413$ $29.986 \quad 10.000 \quad 2.854$ $29.847 \quad 17.000 \quad 3.295$ $29.708 \quad 24.000 \quad 3.734$ $29.569 \quad 33.000 \quad 4.173$ $29.430 \quad 41.000 \quad 4.610$ $29.152 \quad 60.000 \quad 5.483$ $29.012 \quad 74.000 \quad 5.917$ $28.873 \quad 84.000 \quad 6.351$ $28.594 \quad 105.00 \quad 7.215$ $28.315 \quad 128.00 \quad 8.075$ $28.035 \quad 160.00 \quad 8.931$ $27.895 \quad 180.00 \quad 9.356$ $27.756 \quad 200.00 \quad 9.781$ $27.615 \quad 235.00 \quad 10.20$ $27.335 \quad 300.00 \quad 11.05$ $27.193430 .00 \quad 11.46$ 27. ©5 $435.00 \quad 11.88$
$.0003152 \quad 2383.7 \quad 4.9924 \mathrm{e}-06 \quad .1476 \quad 5.253 \mathrm{C}=0$ $.0002570 \quad 2912.8 \quad 1.81680-06 \quad .1424 \quad 1.8360-05$ $.0002185 \quad 3415.5 \quad 1.60990-06 \quad .1371 \quad 1.5610 \sim 0$ $.0001911 \quad 3894.3 \quad 1.4693 @-06 \quad .1318 \quad 1.365 \mathrm{e}-\sigma$ $.0001706 \quad 4352.1 \quad 1.06590 .06 \quad .1255 \quad 9.4760-06$ $.0001546 \quad 4791.5 \quad 1.1373 @-06 \quad .1212 \quad 9.6590-06$ $.0002730 \quad 5416.6 \quad 9.077^{40}-07 \quad .1133 \quad 7.1840-06$ $.0001221 \quad 6021.3 \quad 5.96010-07 \quad .1054 \quad 4.3600-06$ $.0001145 \quad 6406.3 \quad 8.26240-07 \quad .1001 \quad 5.7260-06$ $.00021026961 .5 \quad 7.8794 \mathrm{C}-07 \quad .0921 \quad 5.005 \mathrm{C}-06$ $.0001897 \quad 7675.5 \quad 7.3844 \mathrm{C}-07 \quad .0815 \quad 4.1240-06$.0001733 8358.1 5.6126@-07 . $0709 \quad 2.7070-06$ $.0000814 \quad 8854.3 \quad 4.77300-07 \quad .0629 \quad 2.036 @-06$ $.0000783 \quad 9175.5 \quad 5.034440-07 \quad .0576 \quad 1.9570-06$.0000 万54 9490.6 3.0664@-07 .523 1.077@-06 $.0001432 \quad 9950.8 \quad 3.73520-07 \quad .0443 \quad 1.1020-06$ $.0000681 \quad 10403 \quad 3.53380-07 \quad .0363 \quad 8.512$ @ - 07 $.0000658 \quad 10697 \quad 1.69820-07 \quad .0310 \quad 3.4650-07$

TABLE： 59 TEMP： $70.0^{\circ} \mathrm{C}$ CELL： S －－－－－ SEED：BATCH P．G．PREPARED

RUN NO：：R．D． 7
STIRRER SPEED：2000 R．P．M．M．

 CONCN：TOTAL CRYSTAL DIAMETER MEAN GROWTH RATE MEAN GROWTH M $A M$ TIME MASS INCREASE AREA CONSTANT SUPER－RATE MINS．（GRAMS）（CM） CM^{2} K $\left(\mathrm{MIN}^{-1} \mathrm{CM}^{-2}\right)$ SATN．CM／MIN．

29：902	． 00000	1.955					
29.763	2．0000	2.397	.0005044	1480．0			
	5．0000				9．2466＠－06	． 1286	8．4060－5
		2.838	． 00044520	1647.7	6．49960－06	$\therefore 1234$	5．6510－05
29.485	9.0000	3.27	． 000795	1882． 4	$2.5635 @-66$	． 1154	2．0800－5
29.207	28．000	4.156					
29．068	38．000	4.593	.0003512	2107.7	$2.3363 \bigcirc \ldots 06$.1075	1．万6＠－5
			． 000328	2249.7	1．2797＠－	－1022	9．1200－06
28．929	56．000	5．030	.-006014	2453.3	3．52960－06	. .0943	$2.3130-5$
28．650	69：000	5.901	． 0002769	2651.2	2．3187＠－06	． 0863	1．3850－5
28.510	79：000	6.335	.0002638	2778.0	2．1448＠－06	． 0810	1．1990－5
28.371	90．000	6.768		2901．7	2．01540	.075	らくッら
26.231	102．00	7.200	． 0002414	3022．8	1．24920－06	.0704	6．0360－06
28．091	122．00	7.632	． 0002319	3141.2	1．85870－06	.0651	8．2810－06
27.95	136．00	8．		325	2．2788＠－06		
27.811	148．00	8.492	$\because 0002152$	3371.3	1．31920－6	． 644	4．8910－06
	170．00	8.921					
27.67227.531			． 0002079	3483.1	1．2464＠－06	． 0491	$4.1570-06$
			． 0003964	3646.7	8．93510－07	． 0411	$2.4777^{\text {e－06 }}$
27.251	2 万．00	10.20					

TABLE： 60 TEMP：70．0 ${ }^{\circ}$ CELL：S

SEED：BATCH P．G．PREPARED

RUN NO：：R．P．G． 3 STIRRER SPEED 2000 R．P．M．M_{0} SIEVE FRACTION： $89-105 \mu$

CONCN：TOTAL CRYSTAL DIAMETER MEAN GROWTH RATE MEAN GROWTH ：M／V TIME MASS INCREASE AREA CONSTANT SUPER－RATE MINS．（GRAMS）（CM） CM^{2} K $\left(M_{I N} \mathrm{~N}^{-1} \mathrm{CM}^{-2}\right)$ SATN． $\mathrm{CM} / \mathrm{MIN}$ ．
$30.963 \quad 4.0000 \quad 3.148$ $30.814 \quad 6.0000 \quad 3.624$ $\begin{array}{llll}30.665 & 7.5000 & 4.099\end{array}$ $30.517 \quad 9.5000 \quad 4.572$ $30.368 \quad 11.500 \quad 5.044$ $\begin{array}{llll}30.220 & 13.500 & 5.514\end{array}$ $30.071 \quad 16.000 \quad 5.983$ $29.923 \quad 18.500 \quad 6.451$ $29.77^{4} \quad 21.000 \quad 6.917$ $29.477 \quad 26.000 \quad 7.847$ $29.180 \quad 31.000 \quad 8.772$ $28.736 \quad 39.000 \quad 10.15$ $28.587 \quad 43.000 \quad 10.61$ $28.439 \quad 47.000 \quad 11.06$ $28.291 \quad 52.000 \quad 11.51$ $27.994 \quad 59.000 \quad 12.42$ $27.846 \quad 64.000 \quad 12.87$
$.0008206 \quad 1399.1 \quad 9.2362 巴-06 \quad .2602 \quad 1.6410-04$ $.0004464 \quad 1813.9 \quad 8.7201 \mathrm{e}-06 \quad .2530 \quad 1.488 \mathrm{e}-04$ $.0003749 \quad 2151.3 \quad 5.64760-06 \quad .2470 \quad 9.3740-05$ $.0003246 \quad 2476.1 \quad 6.70390-06 \quad .2410 \quad 1.0820-04$ $.0002873 \quad 2788.6 \quad 4.5779 @-06 \quad .2350 \quad 7.183 @-05$.0002583089 .4 4．23960．．06 ． 2290 6．463＠－の $.00023563379 .7 \quad 3.97900 \sim 06 \quad .2230 \quad 5.8900-\sigma$ $.0002169 \quad 3660.6 \quad 3.0197$＠－06 $\quad .2170 \quad 4.338 @-$－ $.0002013 \quad 3932.9 \quad 2.89000-06 \quad .2110 \quad 4.025 @-0$ $.0001880 \quad 4197.3 \quad 2.78660-06 \quad .2050 \quad 3.7610-0$ $.0003439 \quad 4578.9 \quad 2.67160-06 \quad .1960 \quad 3.439 @-05$ $\because 00030875069.6 \quad 2.56930-06 \quad \div 1840 \quad 3.0870 \cdots 5$ $.00041325650 .5 \quad 2.35290-06 \quad .1690 \quad 2.5830 \cdots 0$.0001265 6101．1 1．5617＠－06 ． 1571 1．5810－05 $.0001218 \quad 6317.7 \quad 1.56760-06 \quad .1511 \quad 1.5220-05$ $.0001175 \quad 6530.5 \quad 1.26310-06 \quad .1451 \quad 1.1$ 万＠-0 .0002235 6841．9 1．8363＠－06 ． $1361 \quad 1.597$＠－0 $.0001054 \quad 7148.3 \quad 1.31620-06 \quad .1272 \quad 1.0540 \ldots 0$

TABLE: 60 (CONTD.) RUN NO.:R.P.GY(CONTD.)

CONCN.钆/V	TOTAL TIME MINS.	CRYSTAL MASS (GRAMS)	DIAMETER INCREASE (CM)	MEAN AREA $C M^{2}$	GROWTH RATE CONSTANT $K\left(M_{I N}{ }^{-1} \mathrm{CM}^{-2}\right)$	MEAN SUPERSATN.	GROWTH RATE CM/MIN.

$27.846 \quad 64.000 \quad 12.87$
$27.550 \quad 74.000 \quad 13.76$
$27.402 \quad 80.000 \quad 14.21$ $.0000974 \quad 7738.4 \quad 1.17900-06 \quad .1092 \quad 8.1189-06$ $.0000948 \quad 7929.4 \quad 1.0432 @-06 \quad .1032 \quad 6.7720-06$ $27.254 \quad 87.000 \quad 14.65$ $27.106 \quad 92.000 \quad 15.10$ $.0000923 \quad 8117.8 \quad 1.5141 巴-06 \quad .0973 \quad 9.235 @-06$ $.0000900 \quad 8303.8 \quad 8.76010-07 \quad .0913 \quad 5.0020-06$ $.0000878 \quad 8487.4 \quad 9.16960-07 \quad .0853 \quad 4.8800-06$

TEMP: $70.0^{\circ} \mathrm{C}$ CELL: C

RUN NO: : R.E. 1 STIRRER SPEED: 2000R. $\mathrm{P}_{0} \mathrm{M}_{0}$

SEED: BATCH E PREPARED SIEVE FRACTION: 89-105 μ

$29.986 \quad .00000 \quad 1.982$ $29.847 \quad 2.0000 \quad 2.424$ $29.708 \quad 9.0000 \quad 2.865$ $29.569 \quad 18.000 \quad 3.35$ $29.430 \quad 28.000 \quad 3.744$ $29.291 \quad 37.000 \quad 4.181$ $29.152 \quad 45.000 \quad 4.618$ $29.012 \quad 53.000 \quad 5.054$ $28.873 \quad 63.000 \quad 5.489$ $28.734 \quad 72.000 \quad 5.922$ $28.594 \quad 83.000 \quad 6.355$ $28.454 \quad 93.000 \quad 6.787$ $28.315 \quad 106.00 \quad 7.217$ $28.175 \quad 122.00 \quad 7.647$ $27.895160 .00 \quad 8.503$ $27.615 \quad 202.00 \quad 9.354$ $27.45 \quad 225.00 \quad 9.778$ $27.335 \quad 275.00 \quad 10.20$ $27.195 \quad 325.00 \quad 10.62$ $26.914 \quad 48 . .00 \quad 11.45$
$.0004307 \quad 1739.2 \quad 1.10660-05 \quad .1371 \quad 1.0777^{(1) 04}$ $.0003672 \quad 2034.2 \quad 2.8129 @-06 \quad .1318 \quad 2.623 @-\infty$ $.0003218 \quad 2314.6 \quad 2.0042 @-06 \quad .1265 \quad 1.788 @-$-5 $.0002877 \quad 2582.5 \quad 1.68810-06 \quad .1212 \quad 1.438 @-0$ $.0002610 \quad 2839.4 \quad 1.78470 . .06 \quad .1160 \quad 1.4500 \sim 5$.0002395 3086.9 1.9361@-06 $\quad .1107$ 1..497@-の $.0002218 \quad 3326.0 \quad 1.8883 @-06 \quad .104 \quad 1.386 \mathrm{e}-5$ $.0002058 \quad 3557.6 \quad 1.48780-06 \quad .1001 \quad 1.0340 \cdots 5$ $.0001941 \quad 3782.5 \quad 1.64270-06 \quad .0948 \quad 1.078 巴-05$ $.0001830 \quad 4001.3 \quad 1.34660-06 \quad .0895 \quad 8.3180-06$ $.0001733 \quad 4214.6 \quad 1.49570-06 \quad .0842 \quad 8.6660-06$ $.0001647 \quad 4422.8 \quad 1.17090 \sim 06 \quad .0789 \quad 6.3360 \ldots 06$ $.0001571 \quad 4626.2 \quad 9.7573 @-07 \quad .0736 \quad 4.9090 \cdots 06$ $.0002944 \quad 4921.9 \quad 8.6839 @-07 \quad .0656 \quad 3.874 \mathrm{Q}-06$ $.00027165304 .68 .7186 @-07 \quad .550 \quad 3.233 @-06$ $.0001283 \quad 5583.4 \quad 8.8373 @-07 \quad .0470 \quad 2.7900-06$. $.0001239 \quad 5764.1 \quad 4.4451 \mathrm{C}-07 \quad .0416 \quad 1.239 \mathrm{O}-06$ $.0001197 \quad 5941.6 \quad 4.9499 @-07 \quad .0363 \quad 1.1970-06$ $.0002273 \quad 6200.6 \quad 3.8443 @-07 \quad .0283 \quad 7.103 @-07$

TABLE: 62

CONCN: TOTAL CRYSTAL DIAMETER MEAN GROWTH RATE MEAN GROWTH \%M/V TIME MASS INCREASE AREA CONSTANT SUPER- RATE - MINS: (GRAMS) (CM) $\mathrm{CM}^{2} \mathrm{~K}\left(\mathrm{MIN}^{-1} \mathrm{CM}^{-2}\right)$ SATN: CM/MIN. $27.419 \quad 00000 \quad 1.986$ $26.970 \quad 1290.0 \quad 3.310$ $26.942 \quad 1440.0 \quad 3.391$ $26.914 \quad 1630.0 \quad 3.472$

CONCN: gM/V	TOTAL. TIME MINS.	$\begin{aligned} & \text { CRYSTAL } \\ & \text { MASS } \\ & \text { (GRAMS) } \end{aligned}$	गIAMETER INCREASE (CM)	$\begin{aligned} & \text { MEAN } \\ & \text { AREA } \\ & C M^{2} \end{aligned}$	GROWTH RATE CONSTANT $\mathrm{K}\left(\mathrm{MIN}^{-1} \mathrm{CM}^{-2}\right)$	MEAN SUPERSATN.	$\begin{aligned} & \text { GROWTH } \\ & \text { RATE } \\ & \text { CM/MIN. } \end{aligned}$
27.419	. 00000	1.986	-0011184	2023.2			07
26.970	1290.0	3.310	.0000557	2480.1	1.01300m07	.0284	$1.8560-07$
26.942	1440.0	3.391	. 0000540	2529:1	$6.45250-08$. .0274	1.125@-07
26.914	$1630 \cdot 0$	3.472					

TABLE： 63 TEMP $: 60.0^{\circ} \mathrm{C}$ CELL： C
 SEED：BATCH E PREPARED

RUN NO：：R．E． 3
STIRRER SPEED：2000 R．P．M．
SIEVE FRACTION：89－105：＂

CONCN．TOTAL CRYSTAL DIAMETER MEAN GROWTH RATE MEAN GROWTH $\%$ M $/ V$ TIME MASS INCREASE AREA CONSTANT SUPER－RATE MINS：（GRAMS）（CM）$\quad \mathrm{CM}^{2}$
$27.276 .00000 \quad 1.985$ $26.998 \quad 1.5000 \quad 2.849$ $26.859 \quad 3.0000 \quad 3.279$ $26.719 \quad 4.0000 \quad 3.708$ $26.580 \quad 5.0000 \quad 4.136$ $26.441 \quad 6.0000 \quad 4.563$ $26.302 \quad 7.2500 \quad 4.990$ $26.162 \quad 8.5000 \quad 5.416$ $25.023 \quad 10.000 \quad 5.88!1$ $25.883 \quad 11.250 \quad 6.265$ $25.743 \quad 12.500 \quad 6.688$ $25.604 \quad 14.000 \quad 7.110$ $25.464 \quad 15.670 \quad 7.532$ $25.324 \quad 17.330 \quad 7.953$ $25.184 \quad 19.330 \quad 8.373$ $25.044 \quad 21.000 \quad 8.792$ $24.904 \quad 2 \overline{2} .50 \quad 9.210$ $24.764 \quad 24.670 \quad 9.627$ $24.483 \quad 29.500 \quad 10.46$ $24.343 \quad 31.500 \quad 10.88$ 24．202 $\quad 33.500 \quad 11.29$ $24.061 \quad 35.750 \quad 11.70$
$.0007818 \quad 1879.1 \quad 1.41790-05$ $.0003163 \quad 2302.0 \quad 5.97000-06$ $.00028332564 .6 \quad 8.21160-06$ $.000257^{4} \quad 2816.8 \quad 7.64140-06$ $.0002364 \quad 3059.9 \quad 7.19300-06$ $.0002191 \quad 3294.9 \quad 5.246720-06$ $.00020453522 .75 .23420-06$ $.000192037^{44.1} \quad 4.20300-06$ $.0001812 \quad 3959.6 \quad 4.88700-\infty$ $.0001718 \quad 4169.8 \quad 4.75830-06$ $.0001634 \quad 4375.0 \quad 3.877^{40-06}$ $\because 0001559 \quad 4575.8 \quad 3.41870-06$ $.0001492 \quad 4772.3 \quad 3.38800-06$ $.0001431 \quad 4965.0 \quad 2.77890 \cdots 06$ $.0001376 \quad 5154.0 \quad 3.29880 \ldots 06$ $.0001325 \quad 5339.5 \quad 3.12910 .06$ $.0001280 \quad 5522.0 \quad 2.84240-06$ $.0002436 \quad 5789.1 \quad 2.2600 @-06 \quad .2201 \quad 2.5220-05$ $.0001160 \quad 6022.0 \quad 2.74180 \sim 06 \quad .2097 \quad 2.901 @ \cdots 5$ $.0001126 \quad 6223.2 \quad 2.5$ 万54 $-06 \quad .2027 \quad 2.815 @-\sigma$ $.0001094 \quad 6391.9 \quad 2.4743 \mathrm{C}=06 \quad .1958 \quad 2.432 \mathrm{Cm}$
$.3447 \quad 2.6060-04$.3343 1．04＠－04 $.3274 \quad 1.4160-04$.320 1．287＠～04 .3136 1．1820－04 $.3067 \quad 8.765$＠－5 .2998 8．1810－05 ． 2929 6．402＠～05 .28607 .249 ＠－ 5 .2791 6．870＠－5 $.27215 .4460-05$.2652 4．5680－5 .2583 4．493＠－5 $.25143 .57^{80}-5$.2444 4．119＠－5 ．23万 3．787＠ーら .23053 .334 C 05

TABLE:63 (CONTD.)
 RUN NO: :R.E. 3 (CONTD.)

$\begin{array}{c}\text { CONCN: } \\ \text { GMM/V }\end{array}$	$\begin{array}{l}\text { TOTAL } \\ \text { TIME }\end{array}$	$\begin{array}{c}\text { CRYSTAL } \\ \text { MINS. }\end{array}$
24.061	$35 . \overline{\text { MASS }}$	
(GRAMS)		

$23.921 \quad 38.000 \quad 12.12$
$23.780 \quad 40.750 \quad 12.53$
$23.639 \quad 43.750 \quad 12.94$
$23.498 \quad 47.000 \quad 13.35$
$23.217 \quad 54.000 \quad 14.17$
$23.05 \quad 57.000 \quad 14.57$
$22.934 \quad 60.750 \quad 14.98$
$22.793 \quad 65.000 \quad 15.39$
$22.652 \quad 71.500 \quad 15.79$
$22.510 \quad 79.000 \quad 16.20$
$22.369 \quad 86.500 \quad 16.60$
$22.227 \quad 93.000 \quad 17.00$
22.086 $99.500 \quad 17.40$ $21.944 \quad 110.50 \quad 17.80$
$21.802 \quad 119.00 \quad 18.20$
$21.661 \quad 133.00 \quad 18.60$
$21.519 \quad 148.00 \quad 19.00$
$21.235 \quad 194.00 \quad 19.79$
$21.093 \quad 220.00 \quad 20.19$
$20.950 \quad 260.00 \quad 20.58$
$20.751 \quad 330.00 \quad 21.13$ $20.666 \quad 390.00 \quad 21.37$

DIAMETER MEAN
INCREASE AREA (CM) CM^{2}

GROWTH RATE MEAN GROWTH CONSTANT SUPER- RATE $K\left(\mathrm{MIN}^{-1} \mathrm{CM}^{-2}\right)$ SATN.

CM/MIN.
$.0001064 \cdot 6558.2 \quad 2.50190-06 \quad .1888 \quad 2.3650-5$ $.0001036 \quad 6722.3 \quad 2.07470-06 \quad .1818 \quad 1.8840 \sim 05$ $.0001010 \quad 6884.2 \quad 1.93220-06 \quad .1748 \quad 1.6830-05$ $.0000985 \quad 7044.1 \quad 1.81650-06 \quad .1679 \quad 1.5150-05$ $.0001903 \quad 7279.7 \quad 1.74300-05 \quad .157^{4} \quad 1.3590 \sim 05$.0000918 万12.6 2.11180-06 $\quad .1469 \quad 1.5300-05$ $.0000898 \quad 7665.0 \quad 1.7395$ @-06 $\quad .1399 \quad 1.1979 \times 05$ $.00008797815 .7 \quad 1.58540-06 \quad .1329 \quad 1.0340-0$ $.0000861 \quad 7964.8 \quad 1.07430-06 \quad .1259 \quad 6.6210 m 06$ $.0000843 \quad 8112.3 \quad 9.6854 \mathrm{C}-07 \quad .1189 \quad 5.6220-06$ $.0000327 \quad 8258.2 \quad 1.01160-06 \quad .1119 \quad 5.5110-06$ $.0000811 \quad 8402.7 \quad 1.2245 @-06 \quad .1049 \quad 6.2370 .06$ $.00007968545 .7 \quad 1.29100-06 \quad .0979 \quad 6.1200-06$ $.0000781 \quad 8687.2 \quad 8.0889 @ \cdots 07 \quad .0909 \quad 3.5500-06$ $\because 0000767 \quad 8827.5 \quad 1.11710-06 \quad .0838 \quad 4.512 \mathrm{Cm} 06$ $.0000753 \quad 8966.3 \quad 7.29290-07 \quad .0768 \quad 2.6910-06$ $.0000740 \quad 9103.9 \quad 7.38410-07 \quad .0698 \quad 2.468 @-06$ $.0001443 \quad 9307.3 \quad 5.5$ 万55@-07 $.0592 \quad 1.5680-.06$ $.0000703 \quad 9508.8 \quad 5.86180-07 \quad .0487 \quad 1.3530 \mathrm{~m} 06$ $.0000692 \quad 9641.3 \quad 4.39880-07 \quad .0416 \quad 8.6450-07$ $.0000948 \quad 9798.3 \quad 4.3702 \mathrm{e}-07 \quad .0332 \quad 6.7680-07$ $.0000399 \quad 9927.9 \quad 2.72570-07 \quad .0261 \quad 3.324 @-07$

RUN NO.: R.E. 4

CONCN: TOTAL CRYSTAL DIAMETER MEAN GRONTH RATE MEAN GROWTH G $\mathrm{a}_{\mathrm{M}} / \mathrm{V}$ TIME MASS INCREASE AREA CONSTANT SUPER-RATE

$24.371 \quad .00000 \quad 1.985$
$24.202 \quad 7.5000 \quad 2.495$
$24.061 \quad 29.000 \quad 2.920$
$23.921 \quad 48.000 \quad 3.343$
$23.780 \quad 68.000 \quad 3.765$
$23.639 \quad 87.000 \quad 4.186$
$23.498 \quad 15.00 \quad 4.606$
$23.358 \quad 124.00 \quad 5.02 .4$ $23.217 \quad 141.00 \quad 5.442$ $23.075 \quad 162.00 \quad 5.859$ $22.934 \quad 181.00 \quad 6.275$ $22.652 \quad 219.00 \quad 7.104$ $22.369 \quad 256.00 \quad 7.929$ $22.086 \quad 35.00 \quad 8.750$ $21.944 \quad 335.00 \quad 9.158$ $\begin{array}{llll}21.802 & 367.00 & 9.565\end{array}$ $21.661 \quad 400,00 \quad 9.971$ $21.519 \quad 435.00 \quad 10.38$ $21.377 \quad 485.00 \quad 10.78$ $21.235 \quad 540.00 \quad 11.18$ $21.135 \quad 580.00 \quad 11.46$ $21.036 \quad 620.00 \quad 11.7^{4}$
$.0004906 \quad 1764.4 \quad 2.97940 \mathrm{O} 06 \quad .2137 \quad 3.2710-05$ $.0003460 \quad 2075.8 \quad 7.64190-07 \quad .2060 \quad 8.0480-06$.000305 2344.1 7.9323@-07 . 1990 8.042@-06 $.0002747 \quad 2600.9 \quad 7.0443 @-07 \quad .1919 \quad 6.867$ @ 06 $.0002502 \quad 2847.6 \quad 7.03400-07 \quad .1849 \quad 6.589 \mathrm{C}-06$ $.0002303 \quad 3085.6 \quad 7.1271 \mathrm{e}-07 \quad .1779 \quad 6.398 \mathrm{~B}-06$ $.0002138 \quad 3315.7 \quad 6.54590-07 \quad .1708 \quad 5.6260-06$ $.0001998 \quad 3538.9 \quad 7.15340-07 \quad .1638 \quad 5.877^{0-66}$ $.0001878 \quad 3755.8 \quad 5.70500-07 \quad .1567 \quad 4.4720 \sim 06$ $\because 000177^{4} \quad 3966.9 \quad 6.2546 \Omega-07 \quad .01497 \quad 4.6670-06$ $.00032854272 .3 \quad 6.25860-07 \quad .1391 \quad 4.323 @-06$ $\because 0002393 \quad 4666.2 \quad 6.55870-07 \quad .1250 \quad 4.0440-06$ $.0002754 \quad 5044.0 \quad 5.17320 \cdot 07 \quad .1108 \quad 2.8100-06$.0001299 5319.1 4.43000-07 . $1002 \quad 2.1650-06$ $.00012545497 .4 \quad 4.3266 @-07 \quad .0931 \quad 1.9590-06$ $.00012115672 .7 \quad 4.4034 \mathrm{Q}-07 \quad .0860 \quad 1.835 @-06$ $.0001172 \quad 5845.0 \quad 4.39400-07 \quad .0789 \quad 1.6740-06$ $.0001135 \quad 6014.5 \quad 3.2864 \mathrm{Q}-07 \quad .0718 \quad 1.135 @-06$ $.0001100 \quad 6181.2 \quad 3.2280 @-07 \quad .0648 \quad 1.0000-06$ $.0000751 \quad 6321.1 \quad 3.35060-07 \quad .0587 \quad 9.3910-07$ $.0000736 \quad 6434.8 \quad 3.59760-07 \quad .0537 \quad$ 9.202.6-07

TABLE： 65 TEMP：60．0 ${ }^{\circ} \mathrm{C}$ CELL： C SEED：BATCH E PREPARED

RUN NO：：R．E． 5
STIRRER SPEED： 2000 R．PoM．

SIEVE FRACTION： $89-105 \mu$

CONCN：TOTAL CRYSTAL DIAMETER MEAN GRONTH RATE NEAN GROWTH GMM TV TIME MASS INCREASE AREA CONSTANT SUPER－RATE MINS．（GRAMS）
$25.827 \quad .00000 \quad 1.986$ $25.743 \quad 1.5000 \quad 2.243$ $25.604 \quad 6.5000 \quad 2.671$ $25.464 \quad 12.000 \quad 3.098$ $25.324 \quad 15.500 \quad 3.524$ $25.184 \quad 20.000 \quad 3.950$ $25.044 \quad 24.500 \quad 4.374$ $24.904 \quad 28.500 \quad 4.798$ $24.764 \quad 33.000 \quad 5.220$ $24.623 \quad 37.500 \quad 5.642$ $24.483 \quad 42.000 \quad 6.063$ $24.343 \quad 47.000 \quad 6.483$ $24.202 \quad 51.000 \quad 6.903$ $24.061 \quad 55.000 \quad 7.321$ $23.921 \quad 59.500 \quad 7.739$ $23.780 \quad 64.000 \quad 8.155$ $23.639 \quad 69.500 \quad 8.571$ $23.498 \quad 75.500 \quad 8.986$ $23.358 \quad 82.000 \quad 9.400$ $23.217 \quad 88.500 \quad 9.814$ $23.075 \quad 97.000 \quad 10.23$ $22.934 \quad 108.000 \quad 10.64$
$.0002591 \quad 1680.1 \quad 5.81620-06 \quad .2850 \quad 8.6360-5$ $.0003793 \quad 1911.6 \quad 2.60810-\infty \quad .2794 \quad 3.793 @-\sigma$ $.0003303 \quad 2189.6 \quad 2.12400-06 \quad .2724 \quad 3.003 @-0$ $\because 0002939 \quad 2455.1 \quad 3.0566 @-06 \quad .2654 \quad 4.199 @-$ の $.0002657 \quad 2709.6 \quad 2.2133 @-06 \quad .2585 \quad 2.952 @-05$ $.0002432 \quad 2954.6 \quad 2.08720 \sim 06 \quad .2515 \quad$ 2．702＠～0 .0002246 3191．2 2.2373 ＠－06 ． $2445 \quad 2.808 @-\sigma$ $.0002092 \quad 3420.4 \cdot 1.91100-06 \quad .2375 \quad 2.3240-\sigma$ ． $0001960 \quad 3642.9 \quad 1.84970-06 \quad .235 \quad 2.177^{0} 005$ $.0001846 \quad 3859.3 \quad 1.8015$＠－06 $\quad .2236 \quad 2.510-05$ $\because 00017^{4} 7 \quad 4070.2 \quad 1.58780 \cdots \quad .2166 \quad 1.7470 \cdots 5$ $\because 0001659 \quad 4276.1 \quad 1.9534 \mathrm{C}-06 \quad .2096 \quad 2.0740-05$ $\because 00015814477.4 \quad 1.9311 巴-06 \quad .2026 \quad 1.977 巴-05$ $.0001512 \quad 4674.3 \quad 1.70400-06 \quad \div 1955 \quad 1.6800-05$ $.0001449 \quad 4867.3 \quad 1.69820-06 \quad .1885 \quad 1.6100 \cdots 5$ $.0001392 \quad 506.5 \quad 1.3899 @ \sim 06 \quad .1815 \quad 1.2650 .0$ $.0001339 \quad 5242.2 \quad 1.27900-06 \quad .1745 \quad 1.1160-05$ $.0001292 \quad 5424.7 \quad 1.1894 \mathrm{C-06} \quad .1675 \quad 9.9360-06$ $.0001248 \quad 5604.1 \quad 1.20240-06 \quad .1605 \quad 9.6040-06$ $.0001208 \quad 5780.5 \quad 9.32740-07 \quad .1534 \quad 7.103 @-06$ $.0001169 \quad 5954.2 \quad 7.33740-07 \quad .1464 \quad 5.3160-06$

TABLE： 65 （CONTD．）
 RUN NO．：R．E． 5 （CONTD．）

$22.934 \quad 108.00 \quad 10.64$
$22.793 \quad 116.00 \quad 11.05$ $22.652 \quad 127.00 \quad 11.46$ $22.510 \quad 138.00 \quad 11.87$ $22.369 \quad 148.00 \quad 12.27$ $22.086 \quad 180.00 \quad 13.09$.000205 6864．3 5．9万10－07 ． 1077 3．133＠－06 $.0001908 \quad 7179.3 \quad 6.0207 @ \cdots 07 \quad .0935 \quad 2.725 @-06$ $21.802 \quad 215.00 \quad 13.90$ $21.661 \quad 235.00 \quad 14.30$ $.0000920 \quad 7411.0 \quad 5.75240-07 \quad .0829 \quad 2.2990-06$ $.00008997562 .6 \quad 6.1662 巴-07 \quad .0759 \quad 2.248 巴 \cdots$ $21.519 \quad 255.00 \quad 14.70$ $.0001740 \quad 7786.0 \quad 3.9949 @-07 \quad .0653 \quad 1.2430-06$ $21.235 \quad 325.00 \quad 15.50$ $.00008428006 .8 \quad 5.4034 \mathrm{Q}-07 \quad .0546 \quad 1.403 \mathrm{Q}-06$ $21.093 \quad 355.00 \quad 15.90$ $20.950 \quad 410.00 \quad 16.30$ $20.865 \cdots .45 .00$ ． 16.53 $.0001134 \quad 6125.2 \quad 1.03080-06 \quad .1394 \quad 7.0890-06$ $.00011016293 .7 \quad 7.6885$＠－07 ． 1323 5．0060．06 $.0001071 \quad 6459.7 \quad 7.9164 \mathrm{C}-07 \quad .1253 \quad 4.8660-06$.00010426623 .5 9．0040＠－07 ©1182 5．209＠－06 $.0000824 \quad 8151.4 \quad 3.3295 @-07 \quad .0476 \quad 7.4900-07$ $.00004888266 .0 \quad 1.89150 \cdots 07 \quad .0419 \quad 3.7330-07$

TABLE: 66

TEMP:50.0 $0^{\circ} \mathrm{C}$ CELL: C
SEED: BATCH E PREPARED

RUN NO-: R.E. 6

STIRRER SPEED :2000 R.P.M.
SIEVE FRACTION: $89-105 \mu$

CONCN: TOTAL CRYSTAL DIAMETER

 \%MM TIME MASS INCREASE$\begin{array}{lll}\text { TIME } & \text { MASS } & \text { INCREASE AREA } \\ \text { MINS: } & \text { (GRAMS) } & \text { (CM) } \\ C l^{2}\end{array}$
(CM)
.0010748 2008

$.0002780 \quad 2547.5 \quad 5.21690 \mathrm{~m} \quad .06 \quad .5295 \quad 1.0690 \mathrm{~m} 4$ $.0002529 \quad 2794.3 \quad 1.01510-5 \quad .5204 \quad 2.0390-04$ $.0002325 \quad 3032.3 \quad 7.11550-06 \quad .5112 \quad 1.4010-04$ $.0002157 \quad 3262.5 \quad 1.1183 @ \sim 0 \quad .5021 \quad 2.1579 \ldots$ $.0002014 \quad 3485.7 \quad 1.0665 \mathrm{e}-5 \quad .4929 \quad 2.014 \mathrm{e}-04$ $.0001892 \quad 3702.7 \quad 7.6371$ - $-06 \quad .4838 \quad 1.412 \varrho-m 4$ $.0001787 \quad 3913.9 \quad 7.47870-06 \quad .4746 \quad 1.353 \mathrm{Q} . .04$ | .0001694 | 4119.9 | 7.13900 | 06 | .4654 |
| :--- | :--- | :--- | :--- | :--- | $1.2640 \ldots 04$ $.0001611 \quad 4321.2 \quad 6.2000-06 \quad .-4562 \quad 1.0740-04$ $.0001538 \quad 4518.0 \quad 6.78200-06 \quad . .4471 \quad 1.148 @ m$ $.00014724710 .8 \quad 5.93460 \sim 06 \quad .4379 \quad 9.8140 \sim 0$ $\because 000277^{4} \quad 4991.8 \quad 5.4932 @-06 \quad .4241 \quad 8.7780-5$ $.000257^{4} \quad 5356.5 \quad 5.355 @-\infty \quad .407 \quad 8.1460-\sigma$ $.0002405708 .8 \quad 4.33410-06 \quad .3873 \quad 6.264 \mathrm{em}$ $.0002260 \quad 650.2 \quad 4.1248$ @-06 $\quad .3689 \quad 5.651$ @- 5 $\because 0003162 \quad 6462.0 \quad 3.45590-06 \quad .3459 \quad 4.4160-05$ $.0000997 \quad 6784.6 \quad 2.25540-06 \quad .3275 \quad 2.7100 . \ldots$

TABLE： 66 （CONTD．）
 RUN NO：：R．E． 6 （CONTD．）

$\begin{array}{c}\text { CONCN：} \\ \text {／MM } / V\end{array}$	$\begin{array}{l}\text { TOTAL } \\ \text { TIME } \\ \text { MINS．}\end{array}$	$\begin{array}{c}\text { CRYSTAL } \\ \text {（GRAMS }\end{array}$
20.209	21.670	12.67

，0001165 6957．0 3．02040－06 ． $3173 \quad 3.5090-05$.0000 万8 $7112.0 \quad 1.83080 \ldots 05 \quad .3081 \quad 2.061$＠-0 $.0000928 \quad 7249.6 \quad 2.12340-06 \quad .2998 \quad 2.3190-0$ $.0000907 \quad 7400.8 \quad 2.14690 \ldots 06 \quad .2906 \quad 2.2670-05$ $.0000887 \quad 7550.4 \quad 2.01310-06 \quad .2813 \quad 2.0530-0$ $.0000868 \quad 7698.3 \quad 1.76450-06 \quad .2721 \quad 1.7370-5$ $.0000850 \quad 7844.5 \quad 1.41410-06 \quad .2629 \quad 1.3410-$－ $.0000833 \quad 7989.2 \quad 1.1915 @-06 \quad .2536 \quad 1.088 巴-6$ $.0000817 \quad 8132.5 \quad 1.2121 @-06 \quad .2444 \quad 1.064$－-0 $.0000801 \quad 8274.2 \quad 1.2419 @-06 \quad .2351 \quad 1.0460-\sigma$ $.00007868414 .6 \quad 1.00840-06 \quad .2259 \quad 8.1410-06$ $.0000772 \quad 8553.6 \quad 1.4964 \mathrm{C}-06 \quad .2166 \quad 1.156 \mathrm{C} . \mathrm{Cl}^{-0}$ $.0000758 \quad 8691.2 \quad 1.18720-06 \quad .2073 \quad 8$. 万70－06 $\because 0000745 \quad 8827.6 \quad 1.02510-06 \quad .1981 \quad 7.2070-06$ $\because 00007328962.7$ 1．0956＠－06 $\quad 1888 \quad 7.325 @-06$ $.0001429 \quad 9162.7 \quad 7.8108 \varrho-07 \quad .17^{49} \quad 4.816 @-06$ $.0001383 \quad 9425.7 \quad 9.0058 \mathrm{e}-07 \quad .1564 \quad 4.938 巴-06$ $\begin{array}{llllll}.0000674 & 9620.4 & 6.77820-07 & .1424 & 3.3720 \cdots 6\end{array}$ $.0000664 \quad 9748.4 \quad 5.96550 .07 \quad .1331 \quad 2.7670 .06$ $.0000654 \quad 9875.3 \quad 5.4284 \mathrm{C}-07 \quad .1239 \quad 2.3360-06$ $.0000644 \quad 10001 \quad 2.75^{410}-06 \quad .1146 \quad 1.074 \mathrm{e}-0$

CONAN. TOTAL CRYSTAL DIAMETER MEAN GROWTH RATE MEAN GROWTH $\$^{*} M / V$ TIME MASS INCREASE AREA CONSTANT SUPER- RATE MINE. (GRAMS) (CM) CM^{2} K $\left(\mathrm{MIN}^{-1} \mathrm{CM}^{-2}\right)$ SATE: $\mathrm{CM} / \mathrm{MIN}$.
$\begin{array}{llll}16.956 & 139.00 & 21.64\end{array}$
$\begin{array}{llll}16.814 & 162.00 \quad 22.02\end{array}$ $16.672 \quad 183.00 \quad 22.40$
$\begin{array}{llll}16.530 & 206.00 & 22.78\end{array}$ $\begin{array}{llll}16.387 & 230.00 & 23.15\end{array}$
$16.245 \quad 270.00 \quad 23.53$
$16.103 \quad 305.00 \quad 23.91$
$\begin{array}{llll}15.961 & 365.00 & 24.28\end{array}$
$.0000635 \quad 10126 \quad 3.79480-07 \quad .1053 \quad 1.3800-06$ $.000626 \quad 10250 \quad 4.50600-07 \quad .0960 \quad 1.4900-06$ $.0000617 \quad 10373 \quad 4.50420-07 \quad .0867 \quad 1.3410-06$ $.0000608 \quad 10494 \quad 4.78250-07 \quad .077^{4} \quad 1.2670 \cdots 06$ $.0000599 \quad 10615 \quad 3.2271 \mathrm{C}-07 \quad .0681 \quad 7.492 \mathrm{C} \sim 07$ $.000591 \quad 10735 \quad 4.22890-07 \quad .0587 \quad 8.4438-07$ $.0000583 \quad 10854 \quad 2.90320-07 \quad .0494 \quad 4.855 \mathrm{~B}-07$

TABLE: 67

SEED: SATCH E PREPARED

RUN NO.: R.E. 7
STIRRER SPEED: 2000 R. $\mathrm{P}_{0} \mathrm{M}_{\circ}$
SIEVE FRACTION: 89-105... CONCN. TOTAL CRYSTAL JIAMETER MEAN GROWTH RATE MEAN GROWTH \%M/V TIME MASS INCREASE AREA CONSTANT SUPER- RATE MINS: (GRAMS) (CM) CM KM^{2} (MIN $\mathrm{N}^{-1} \mathrm{CM}^{-2}$) SATN: CM/MIN:

30.041	.00000	1.937
29.902	5.0000	2.379
29.763	10.500	2.820
29.624	18.000	3.261
29.485	29.000	3.700
29.346	40.000	4.139
29.207	50.000	4.576
28.929	69.000	5.450
28.789	80.000	5.885
28.510	99.000	6.754

$.0003741 \quad 1997.9 \quad 3.58690-06 \quad .1339 \quad 3.4010-05$ $.0003273 \quad 2278.0 \quad 2.40300-06 \quad .1286 \quad 2.182 \varrho-\sigma$ $.0002923 \quad 2545.3 \quad 1.53000-06 \quad .1234 \quad 1.328 @-05$ $.0002649 \quad 2801.8 \quad 1.45300-06 \quad .1181 \quad 1.2040-05$ $.0002430 \quad 3048.7 \quad 1.53850-06 \quad .1128 \quad 1.215 @-\sigma$. $.0004351 \quad 3401.3 \quad 1.5639 @ \cdots \quad .1048 \quad 1.1450 .05$ $.0001967 \quad 3743.3 \quad 1.3281 巴-06 \quad .0969 \quad 8.9400-06$ $.0003616 \quad 4067.0 \quad 1.5446 @-06 \quad .0890 \quad 9.515 @-06$ $.0001670 \quad 4382.8 \quad 1.3595$ e-06 $\quad .0810 \quad 7.590 @-06$ $.0001593 \quad 4585.9 \quad 1.3912 @ .06 \quad .0757 \quad 7.2390-06$ $: 0001523 \quad 4784.8 \quad 9.86489-07 \quad .0704 \quad 4.7600-06$ $.0001461 \quad 4979.6 \quad 1.1725 @-06 \quad .2651 \quad 5.217 巴-06$ $.0001404 \quad 5170.7 \quad 1.07660-06 \quad .0597 \quad 4.387 \mathrm{Q}-06$ $.00013525358 .4 \quad 9.13020-07 \quad .0544 \quad 3.3800-06$ $.000135 \quad 5542.7 \quad 1.08780 .06 \quad .0491 \quad 3.6240-06$ $.00012625724 .0 \quad 9.25400 \sim 07 \quad .0438 \quad 2.7420-06$ $.0001221 \quad 5902.4 \quad 9.40910-07 \quad .0884 \quad 2.4410 .06$

CONCN: ga/v	TOTAL TIME MINS.	CRYSTAL MASS (GRAMS)	DIAMETER INCREASE (CM)	MEAN AREA CM^{2}	GROWTH RATE CONSTANT $\mathrm{K}\left(\mathrm{MIN}^{-1} \mathrm{CM}^{-2}\right)$	MEAN SUPERSATN.	GROWTH RATE $\mathrm{CM} / \mathrm{MIN}$ 。
27.251	253.00	10.61					
27.195	270:00	10.78	$\bigcirc 0000477$	6025.8	5:9986@-07	.0347	1.4030-06
			.0000354	6086.9	5.3348 ¢-07	.0329	1.1800-06
27.153	285:00	10.91	.0001499	6224.8	7.8346@-07	. .0286	1.4990-06
26.970	335.00	11.46	.0000449	6370.6	3.4863@-07	. 0240	5.617e-07
26.914	3 万.00	11.63	.0000665	6455.1	6.6446@-07	. 0214	9.495@-07
26.830	410.00	11.89	.0000654	6555.8	3.3704@-07	.0182	4.035@ 07
26.746	490.00	12.14	. 0000430	6639.1	3.4653@-07	.0155	$3.581 ¢ \times 07$
26.689	550.00	12.31					

CONCN. M/V	TABLE: 68			RUN NO. : R.P.G. 4			
	TEMP	\% $0.0^{\circ} \mathrm{C}$	CELL: C -CREPAR	STIRR	FRACTION: 89	R.P. $\mathrm{P}_{0} \mathrm{M}_{0}$ -105μ	
	TOTAL TIME MINS.	$\begin{aligned} & \text { CRYSTAL } \\ & \text { MSS } \\ & \text { (GRAMS) } \end{aligned}$	DIAMETER 'NCREASE (CM)	MEAN AREA $C M^{2}$	GROWTH RATE CONSTANT $\mathrm{K}\left(\mathrm{MIN}^{-1} \mathrm{CM}^{-2}\right)$	MEAN SUPERSATN.	GROWTH RATE CM/MIN.
30.101	.00000 2.000		.0003831	1257.7	6.70170 .06	.2134	9.578@-5
			,0005238	1532.0	3.12670-06	. 2086	4.365@-5
			.0004260	1872.7	5.6422@-07	. 2026	7.607e-06
29	36:000	3.227	.0003606	2203.3	1.1529@..06	. 1966	1.502@~0
29.566	48.000	3.696					
29.270	84.000	4.629	-0005930	2671.9	$6.6418 巴-07$.1876	8.237^{0-06}
28.825	135.00	6.019	.0006940	3398.7	6.0088e-07	. 1726	$6.8040-06$

EQUILIBRIUM CONCENTRATION $=24.771$
INITIAL SEED AREA $=1156$

TABLE: 71
TEMP: $70.0^{\circ} \mathrm{C}$ CELL: C
SEED: BATCH P.G. PREPARED SIEVE FRACTION: $89-105 \mu$

	TABLE: 72			RUN NO. ${ }^{\text {a }}$ R.E. 8			
	TEMP:70.0 C CELL: C			STIRRER SPEFD: 2000 R:P-M.SIEVE FRACTION: $89-105 \mu$			
CONCN- $\text { 粈 } / v$	TOTAL TIME MINS.	$\begin{aligned} & \text { CDSBTAL } \\ & \text { (MASS } \\ & \text { (GiniSS } \end{aligned}$	NIAUTER INCREASE (CM)	$\begin{gathered} M E A \\ \text { AREA } \\ C M^{2} \end{gathered}$	grourth RATE COHKTANT $K\left(M I N^{-1} \mathrm{CM}^{-2}\right)$	MEAN SUPERSATN.	GROJTH RATE $\mathrm{CM} / \mathrm{MIN}$.
29.819	-00000	2.000	.${ }_{-} \mathbf{C 0 0 3} 4.71$	1723.9	5.3322.-06	-1313	$4.9580-55$
29.708	3.5000	2.353	.000351	1990.6	3.22570 .06	.1265	2.88j@-5
29.569	10.000	2.794	.00032 .74		1.9173 Pm 06	. 1212	1.6370×0
29.430	20.000	3.234		$2 ? 73.7$	1.99190-06		1.5220-5
29.291	29:000	3.672	-0002.919	2544.0		.1160	
EQUILIBR	IUM CONC	CENTRATI	$N=26.310$		INITIAL	EED A	$=1602$

TABLE: 73

 TEMP: $70.0^{\circ} \mathrm{C}$ CELL: C STJRRER SPEED: 2000 F.OP. PO- SEED: BATCH F PREPARED SIEVE FRACTION: $89-105 \mu$

CONCN. MM/V	TOTAL TIME MINS.	$\begin{aligned} & \text { CRYSTAL } \\ & \text { MASS } \\ & \text { (GRAMS) } \end{aligned}$	DIAMETER INCREASE (CM)	MEAN AREA CM^{2}	GROWTH RATE CONSTANT K (MIN ${ }^{\prime} \mathrm{CM}^{\prime \prime}$)	MEAN SUPERSATN.	GROWTH RATE CM/MIN.
30.235	.00000	2.000	..002の88 . 0000707	$\begin{aligned} & 6990.3 \\ & 11871 \end{aligned}$	2.0761@-07 $7.5524 \mathrm{C}-08$	$\begin{aligned} & .1026 \\ & .028 \end{aligned}$	$\begin{aligned} & 1.525 @-06 \\ & 2.618 @-07 \end{aligned}$
27.784	675.00	9.618					
27.615	810.00	10.11					

		TABLE			RUN NO:		
	$\frac{\text { TEMP }}{\text { SEED }}$	$\begin{aligned} & : 70.0^{\circ} \mathrm{C} \\ & : ~ B A T C H \end{aligned}$	$\begin{aligned} & \text { CELL: C } \\ & \text { PREPARED } \end{aligned}$	STIR	ER SPEED:2000 FiAACTION:	$R_{i} P_{0} M_{0}$ -105μ	
CONCN. \%M/V	TOTAL TIME MINS.	$\begin{aligned} & \text { CRYSTAL } \\ & \text { MISS } \\ & \text { (GRAMS) } \end{aligned}$	D! MiETER 'NOREASE (CM)	$\begin{aligned} & \text { M:AN } \\ & \text { AREA } \\ & C M^{2} \end{aligned}$	CROVIH RATE COMTANT $\mathrm{K}\left(\mathrm{MiN}^{-1} \mathrm{CM}^{-2}\right)$	MEAN SUPERSATN.	GROWTH RATE CM/MIN.
29.902	.00000	1.985	000125		1:39636-07	. 1355	1.339@-06
29.847	45:000	2. 161	-0012				
29.708	80.000	2.601					
	120.00		.00000645	3450.5	8.9412@-08	.1284	8.0620-07
	120.00	2.733	$\square 0001908$	3883.1	1.98000-07	.61249	1.735@-06
29.527	17.00	3.170	.0002656	4733.7	4.60670-07	. 1178	3.794@-06
29.291	210.00	3.911	$\because 0001325$	5541.5	3.0815@-07	. 1107	2.3660-06
29.152	238.00	4.345	. 0001199	6103.5	2.2248 --07	.1054	1.6200.06
29.012	2 万.00	4.777	. 00001098	6643.3	1.9919@-07	.1001	1.372@-06
28.873	315.00	5-208	.0001014	7163.6	$1.73480-07$.0948	1.1260.06
28.73	360.00	5.637	.0000944	7666.3	1.7180@-07	.0895	1.049@-06
28.594	40.00	6.064	.0000884	8153.7	1.93290~07	.0842	1.10@-06
28.454	445:00	6.490	. 00001619	883.7	1.43280-07	.0762	7.3570-07
28.175	555:00	7.337	.0003955	1051	$8.27780-08$. 549	2.8870-07
27.335	1240.0	9.797	. 00004453	11940	3.7320-08	.0369	8.7190-08
27.223	1500.0	10.12					

		TABLE:	75		RUN NO-: R		
	$\begin{aligned} & \text { TEMP: } \\ & \text { SEED: } \end{aligned}$	$\begin{aligned} & : 70.0^{\circ} \mathrm{C} \\ & : B A T C H E \end{aligned}$	$\begin{gathered} \text { CELL: } \mathrm{C} \\ \text { PREPARED } \end{gathered}$	$\begin{aligned} & \text { STIRR } \\ & \text { SIEVE } \end{aligned}$	ER SPEED:2000 FRACTION: 89	R.P.Mo -105μ	
CONCN: M 4	TOTAL TIME MINS.	$\begin{aligned} & \text { CRYSTAL } \\ & \text { M:SS } \\ & \text { (GRA:MS) } \end{aligned}$	DIAMETER INORCASE (CNi)	$\begin{gathered} \text { MEAN } \\ \text { AREA } \\ C M^{2} \end{gathered}$	$\begin{aligned} & \text { CROITHH RATE } \\ & \text { CONTMNT } \\ & K\left(M I N^{-1} C M^{-2}\right) \end{aligned}$	MEAN SUPERSATN。	GROWTH RATE CM/MIN.
29.763	. 00000	2.000	.0001796	1663.7	$4.87400-06$.1302	4.490-6
29.708	2.0000	2.177	.0003989	1873.2	3.18400-0	. 1265	2.8490-5
29.569	9.00c0	2.617	.0006503	2296.6	3.2366@-06	. 1186	2.709@~5
29.291	21.000	3.497		2945.8	532-06	-10	1.147@-の
28.873	54.000	4.811					

SEED: BATCH P.G.PREPARFD SIEVE FRACTION: $89-105 \mu$

CONCN. :M/V	TOTAL TIME MINS.	$\begin{aligned} & \text { CRYSTAL } \\ & \text { MASS } \\ & \text { (GRAMS) } \end{aligned}$	DIAMETER INCREASE (CM)	MEAN AREA CM^{2}	GROWTH RATE CONSTANT $\mathrm{K}\left(\mathrm{MIN}^{-1} \mathrm{CM}^{-2}\right)$	MEAN SUPERSATN:	GROWTH RATE

30.041	.00000	1.990					
29.863	2.0000	2.558	00007146	1355:6	1.268¢@-5	.2092	1.7870-04
2.863	2.000	2.j58	$\bigcirc 0004618$	1731.5	4.88190-06	.2026	6.5980-0
29.715	5.5000	3-029	. 0003853	2066	$2.45820-6$	-1966	3.2110-5
29.566	11.500	3.499	. 00038		2. ${ }^{\text {d }}$		3.210-0
29.418	15.000	3.967					
			.0002926	2700.9	1.09220.06	.1846	$1.3300-5$
			. 00002625	3000.1	1.24190-06	-1786	$1.4590 \sim 5$
29\%121	39:000	4.8	$\because 000238$	3288	1.24 $100 \sim 06$.1726	1.4040-05
28.973	47.500	5.363			9.5915@-07	. 1666	
28.825	58.000	5.8		356.7	9.59150 .07	. 1666	
28.676	73.500	6.286	$\square 0002031$	38	6.26400-07	.1607	.5520-06
28.528	87.000	6.745	. 00018	4100	6.99130-07	\square	0180-06
28.083			.000500	4598.4	$6.36940-07$	-1427	5.372@-06
			.0002947	5198	7.20900-07	.1278	5.894@-06
7.787	155.00	9.	$\because 0001373$	5542.3	4.54208-07	.1188	3.432@m06
27.639	175.00	9.470		5764-1	7-06340	-1128	5-4820
27.491	187.00	9.918					

CONCN.䚗/V	TABLE: 78			RUN NO. : R.G. 4			
	TEMP SEED		$\underset{\text { CRELLPARED }}{\text { C }}$	STIRR	ER SPEED: 2000	Ri PiM ${ }_{\text {c }}$	
	TOTAL TIME MINS.	CRYSTAL MASS (GRAMS)	DIAMETER INCREASE (CM)	MEAN AREA CM^{2}	GROWTH RATE CONSTANT $\mathrm{K}\left(\mathrm{MIN}^{-1} \mathrm{CM}^{-2}\right)$	MEAN SUPERSATN:	GROWTH RATE CM/MIN.
29.791	.00000	1.970	-0002680	1669.7	$2.413840-07$.1307	$2.2330-06$
29.70	60.000	2.234					
			${ }_{-} .0003898$	1906.9	2.9193@-07	. 1265	2.5980-06
29.569	135:00	2.673	.0006374	2323.1	4.2664@-07	. 1186	3.5410-66
29.291	225.00	3.545	.0002699	2720.2	4.3943 @ 07	. 1107	3.3740×06
29. 152	265.00	3.979				-1027	
28.873	345.00	4.843	. 0004739	3086.4	4.17860-07		2.9620.06
28.734	390:00	5.272	$\because 0002111$	3439.9	3.6126@-07	.0948	2.345@-06
			.0013030	4353.7	1.97310-07	. .0709	9.0480-07
			.0001299	5242.6	6.0130@-08	. .0470	1.805007
27.4 万	1470:0	9.005					

EQUILIBRIUM CONCENTRATION $=26.310$
INITIAL SEED AREA $=157^{8}$

TABLE: 79
TEMP: 70.00° CELL: C
SEED: BATCH P.G.PREPARED SIEVE FRACTION: $89-105 \mu$

RUN $\mathrm{NO}_{5}:$ R.P.E. 1

$30.012 \quad .00000 \quad 1.980$
$28.083 \quad 1.0000 \quad 8.121 \quad .0038201 \quad 3055.3 \quad 1.50150 \sim 04 \quad .1727 \quad 1.9100-03$
.083.0000.121
$27.9935 \quad 1.5000 \quad 8.576$
$27.787 \quad 2.5000 \quad 9.030$
27.491 $5.0000 \quad 9.935$
$27.158 \quad 8.5000 \quad 10.84$
$26.899 \quad 14.500 \quad 11.73$
$26.455 \quad 27.000 \quad 13.06$
$26.159 \quad 41.000 \quad 13.95$
$25.864 \quad 59.000 \quad 14.82$

TABLE: 80 TEMP: 70.0 C CELL: C - - -

SEED: BATCH P.G.PREPARED

RUN NO: : R.P.G.T.I
STIRRER SPEED: 2000R.P.M.
SIEVE FRACTION: $89-105 \mu$ CONCN. TOTAL CRYSTAL DIAMETER MEAN GROWTH.RATE MEAN GROWTH $7 M / V$ TIME MMSS INCREASE AREA CONSTANT SUPER- RATE MINS: (GRAMS) (CM) CM^{2} K $\left(\mathrm{MIN}^{-1} \mathrm{CM}^{2}\right)$ SATN. $\mathrm{CM} / \mathrm{MIN}$. $30.012 \quad .00000 \quad 1.980$ $29.863 \quad 2.0000 \quad 2.453$ $29.715 \quad 8.0000 \quad 2.924$ $29.566 \quad 20.000 \quad 3.394$ $29.418 \quad 42.000 \quad 3.862$ 28.973 96:000 5.259 $28.676 \quad 130,00 \quad 6.181$ $28.380 \quad 180,00 \quad 7.096$ $28.083 \quad 235.00 \quad 8.003$ $25.657 \quad 1440.0 \quad 15.03$ $\because 0006123 \quad 1315.2 \quad 1.0926 @-\sigma \quad .2086 \quad 1.5310-04$ $.0004828 \quad 1657.2 \quad 2.97550-06 \quad .2026 \quad 4.023 @ \cdots 0$.0003994 1994.2 1.2738@-06 . 1966 1.6640.-5 $.0003418 \quad 2319.6 \quad 6.16000-07 \quad .1906 \quad 7.7680-06$ $.0008128 \quad 2922.9 \quad 6.3783 @-07 \quad .1786 \quad 7.5260-06$ $.0004294 \quad 3638.0 \quad 5.91750-07 \quad .1637 \quad 6.3140-06$ $.00037204164 .8 \quad 3.7913 @-07 \quad .1517 \quad 3.7200-06$ $.0003295 \quad 4662.7 \quad 3.3415 @-07 \quad . \quad 1397 \quad 2.9960 \ldots$ $.0018409 \quad 6534.4 \quad 1.67480-07 \quad .0848 \quad 7.6390-07$

TABLE: 81 TEMP: 70.0 C CELL: C STIRRER SPEED:2000 R.PoM. SEED: BATCH P.G.PREPARED SIEVE FRACTION: $89-105 \mu$

$29.77^{4} \cdot 00000 \quad 1.990 \quad .0016326 \quad 1723.4 \quad 1.86920-04 \quad .1918 \quad 2.47^{40}-03$ $.0006087 \quad 2604.9 \quad 5.23800 \sim 05 \quad .1756 \quad 6.0870004$ $.0004919 \quad 3199.9 \quad 2.2874$ - $-5 \quad .1637 \quad 2.4600-04$ $.0004165 \quad 355.6 \quad 1.2013 @-05 \quad .1517 \quad 1.1900 \times 04$ $.0003633 \quad 4278.8 \quad 6.8886 \mathrm{e}-06 \quad .1397 \quad 6.2210 \cdots$ $.0003236 \quad 4774.9 \quad 6.54090-06 \quad .1278 \quad 5.3930 \cdots$ $.0002927 \quad 5248.0 \quad 4.9235 \mathrm{Q}-06 \quad .1158 \quad 3.658 \mathrm{O}-05$ $.0002678 \quad 5701.2 \quad 3.67510-06 \quad .1038 \quad 2.435 @-05$.0002473 6137.0 3.0313@-06 . 00919 1.766@-の $.0002300 \quad 6557.4 \quad 2.28300-06 \quad .0799 \quad 1.150000$ $.0002153 \quad 6963.8 \quad 1.94480-06 \quad .0680 \quad 8.2808-06$ $.0002024 \quad 7357.6 \quad 1.38340-06 \quad .0561 \quad 4.8200-06$ $.0000968 \quad 7646.1 \quad 1.50800-06 \quad .0471 \quad 4.4010 \sim 06$

TABLE: 82
TEMP: $70.0^{\circ} \mathrm{C}$ CELL: C STIRRER SPEED:2000 R.P.M. SEED: BATCH P.G.PREPARED SIEVE FRACTION: $89-105 \mu$

CONCN. TOTAL CRYSTAL DIAMETER MEAN GRONTH RATE MEAN GROWTH \therefore MM/V TIME MASS INCREASE AREA CONSTANT SUPER- RATE MINS. (GRAMS) (CM) $\mathrm{CM}^{2} \mathrm{~K}\left(\mathrm{MIN}^{-3} \mathrm{CM}^{-3}\right)$ SATN. CM/MIN:

	000		$\bigcirc 0005971$	1312.3	$2.25840-05$	-1008	$1.64930-04$
27.195			.0004733	1645.2	7.6583@-06	.6949	$4.7330-05$
27.047	7.0000	2.902	.0003927	1973.9	$2.72460-06$. 0889	1.5710×5
26.899	19.500	3.359	.0003368	22.91 .5	1.33810-06	.0829	7.1650-06
26.751	43.000	3.815	.0002957	2596.9	$7.47450-07$	$\because 0770$	3.6970~06
26.603	83.000	4.268	.0002644	2890.7	6.9326@-07	.0710	3.1480 .06
26.455	125.00	4.720	.0002397	3173.7	$7.23860 . .07$. 0650	2.9960-06
26.307	165.00	5.169	-0002195	3446.9	4.8924@-07	-.590	1.8290-06
26. 159	225:00	5.616	.0002028	371 i.0	5.0553@-97	-.531	1.6900-06
26.012	285.00	6.061	.0001885	3966.8	3.7617^{0-07}	${ }_{.} 0471$	1.1090-06
25.864	370:00	6.503	.0001765	4214.9	5-7442@-07	$\because 0411$	1.4770006
25.716	430.00	6.942	. .0001655	4455.7	2.93460-07	.0352	$6.3660-07$
25.568	560.00	$7: 378$.000.5ر5	- 7	2.93	. 0	$6.3660-07$

TABLE: 83 TEMP: $70.0^{\circ} \mathrm{C}$ CELL: C SEED: BATCH F PIEPARED

RUN NO.: R.P.E. 4
STIRRER SPEED:2000 R.PoM*
SIEVE FRACTION: 89-105 μ

CONCN: TOTAL CRYSTAL DIAMETER MEAN GROWTH RATE MEAN GROWTH ${ }_{2} \mathrm{M} / \mathrm{V}$ TIME MASS INCREASE AREA CONSTANT SUPER- RATE MINS. (GRAMS) (CM) CM^{2} K $\left(M I N^{-1} \mathrm{CM}^{-2}\right)$ SATN. CM/MIN. $27.9343 \quad .00000 \quad 1.987$ $\begin{array}{lll}27.195 & 1.5000 & 2.444\end{array}$ $27.047 \quad 14.000 \quad 2.906$ $26.899 \quad 44.000 \quad 3.363$ $26.751 \quad 85.000 \quad 3.817$ $26.603 \quad 120.00 \quad 4.270$ $26.455 \quad 150.00 \quad 4.721$ $26.307 \quad 182.00 \quad 5.170$ $26.159 \quad 232.00 \quad 5.617$ $26.012 \quad 2 \overline{5} .00 \quad 6.062$ $25.716 \quad 410.00 \quad 6.944$ $25: 627 \quad 540.00 \quad 7.206$
$.0002882 \quad 2715.7 \quad 1.455$ 10-5 $\quad .1008 \quad 9.6070 \sim$ の $.0002249 \quad 3459.0 \quad 1.45700-06 \quad .0949 \quad 8.9980-06$ $.00018634154 .8 \quad 5.3933 @-07 \quad .0889 \quad 3.10 @-06$ $.0001601 \quad 4809.3 \quad 3.6544 \mathrm{e}-07 \quad .0829 \quad 1.9530-06$ $.0001412 \quad 5429.2 \quad 4.08600-07 \quad .0770 \quad 2.0170-06$.0001268 6019.9 4.6605@.07 . $0710 \quad 2.1140-06$ $.0001155 \quad 6586.0 \quad 4.36020-07 \quad .0650 \quad 1.8050-06$ $.0001061 \quad 7130.1 \quad 2.8382 @-07 \quad .590 \quad 1.061 @ \sim 06$ $.00009847654 .5 \quad 3.4199 @-07 \quad .0531 \quad 1.144 \mathrm{e}-06$ $.00017778402 .8 \quad 2.39870-07 \quad .0441 \quad 6.5830-07$. $.0000490 \quad 9034.5 \quad 8.38590-08 \quad .0364 \quad 1.3850-07$

			. 0001939	1608.7	2.7672@-06	$\because 1074$	1.939@-6
27.402	5:0000	2.112	.0000914	1704.2	4.15010 .08	.1056	7
27.372	165.00	2.204					
27.254	240.00	2.572	.0003353	1858.0	31	10	235
			.0003654	2126.1	2.4088@-07	. .0973	1.523 --06

EQUILIBRIUM CONCENTRATION $=24.771 \quad$ INITIAL SEED AREA $=1545$

TABLE: 85

TEMP: $70.0^{\circ} \mathrm{C}$ CELL: S STIRRER SPEED :2000 R. $\mathrm{P}_{0} \mathrm{M}_{0}$
SEED: BATCH E PREPARED
SIEVE FRACTION: $89-105 \mu$ CONCN: TOTAL CRYSTAL DIAMETER MEAN GROWTH RATE MEAN GROWTH IMPV TIME MASS INCREASE AREA CONSTANT SUPER- RATE MINE: (GRAMS) (CM) CM^{2} K $\left(\mathrm{MIN}^{-1} \mathrm{CM}^{-2}\right)$ SATN: CM/MIN:
$27.491 \quad .00000 \quad 1.960$
$27.402 \quad 5.0000 \quad 2.237$ $27.254 \quad 62.000 \quad 2.697$ $27.106 \quad 80.000 \quad 3.155$ $26.958 \quad 99.000 \quad 3.613$ $26.810 \quad 123.00 \quad 4.069$ $26.662 \quad 145.00 \quad 4.524$ $26.218 \quad 207.00 \quad 5.884$ $26.071 \quad 245.00 \quad 6.334$ $25.923 \quad 290.00 \quad 6.782$ $25.77 \quad 355.00 \quad 7.230$ $25.627 \quad 432.00 \quad 7.65$
$.0002811 \quad 1665.9 \quad 3.98630-06 \quad .1080 \quad 2.8110-5$ $.0004074 \quad 1913.9 \quad 5.3078 @-07 \quad .1032 \quad 3.573 @-06$ $.00003514 \quad 2210.8 \quad 1.5443 \mathrm{C}-06 \quad .0973 \quad 9.762 @-06$ $.0003107 \quad 2493.2 \quad 1.38210-06 \quad .0913 \quad 8.1$ 万5@-06 .000279 2763.0 1.563@-06 .0853 5.822@-06 $.0002548 \quad 3022.2 \quad 1.13270-06 \quad .0793 \quad 5.790006$ $.0006577 \quad 3506.7 \quad 1.22950-06 \quad .0674 \quad 5.3040-06$ $\because 0001914 \quad 3976.1 \quad 7.1292 @-07 \quad .0555 \quad 2.5180-06$ $\because 0001808 \quad 4197.1 \quad 6.39130-07 \quad .0495 \quad 2.009 @-06$ $.0001715 \quad 4412.6 \quad 4.7865 @-07 \quad .0435 \quad 1.319 @-06$ $.00001632 \quad 4622.9 \quad 4.4709 @-07 \quad .0376 \quad 1.06 \varrho 0-06$

27.076	.00000	1.975				-0895	-24
26.899	1.1700	2.526					
$26 . 万 1$	27.000	2.983	0.0003679	2104. 1	1.32590.06	.0	7-1210-06
			.0003222	2390.6	7:9216@-07	$: 0770$	3.9290.-6
26.603	68.000	3.	.0005481	2791.3	5.25620 .07	.0680	2.284@..06
26.307	188.00	4.340	.0002382	31 万. 1	2.9782@-07	-.590	1.1130-06
26. 159	295:00	4.787	.0002200	3416.1	4.39340-07	-¢31	$1.4670-06$
26.012	370.00	5.231		3858.3		-0111	
25.568	1245.0	6.510		385	1.30950	$\because 0411$	3-2100-07

CONCN. TOTAL CRYSTAL DIAMETER MEAN GROWTH RATE MEAN GROWTH MM/V TIME MASS INCREASE AREA CONSTANT SUPER- RATE MINS. (GRAMS) (CM) CM^{2} K $\left(\mathrm{MIN}^{-1} \mathrm{CM}^{-2}\right)$ SATN. CM/MIN.

27.461	. 00000	1.964			2.		1.905@
27.402	5.0000	2.148					
			.0002204	1855.7	1.2.24810.-6	$\because 1032$	6
2		2.	.0003606	2155.8	$1.78170-06$	$\because 0973$	1.1270-5
27.106	46:000	3.067	.0003174	2440.9	$1.78810-06$.0913	1.58@-¢
26.958	61.000	3.525	.0002847	2713.1	1.9123@m	$\bigcirc 0853$	1.05¢-0
26.810	74.500	3.981	.0002589	2974.3	1.7462@-06	. 0793	8.9290-06
26.662	89.000	4.436	.0002381	3225.9	$1.94180-\infty$	$\because 0734$	9:156@-06
26.514	102.00	4.890	.0002208	3468.9	$2.3229 @-06$. 0.0674	1.003@-の
26.366	113.00	5.343	$\bigcirc 0002061$	3704.3	1.38170 .06	. .0614	5.-424@-06
26.218	132.00	5.794	$\bigcirc 0001936$	3932.9	$1.3042 \mathrm{e}-06$	-.055	4.609@-06
26.071	153.00	6.244	.0003563	4262.5	1.0259@-06	. 0465	3.0200-06
25.775	212:00	7.141	. .0001647	4583.9	1.3353@-06	. 0376	$3.1670-06$
25.627	238.00	7.587	${ }_{.}^{.0001571}$	4790.6	$2.78310-07$.0316	5-532@-07
25.480	380.00	8.032					

TABLE: 88 TEMP $070.0^{\circ} \mathrm{C}$ CELL: C SEED: BATCH E PREPARED

RUN NO_{0} : R.P.E. 5
STIRRER SPEED :2000 R. PoM:
SIEVE FRACTION: $89-105 \mu$

CONCN. TOTAL CRYSTAL DIAMETER MEAN GROWTH RATE MEAN GRONTH \%M/V TIME MASS INCREASE AREA CONSTANT SUPER- RATE MINS. (GRAMS) (CM) CM^{2} K $\left(\mathrm{MIN}^{-1} \mathrm{CM}^{-2}\right)$ SATN. CM/MIN.

27.402	. 00000	1.987	. .0006046	1810:1	6.0428@-の	-1020	4.0310-04
27.195	- 5000	2.632					
27.047	6.0000	3.090					
26.899	23.000	3.547	.0003146	2459.6	$1.6077{ }^{\text {--06 }}$.0889	$9.2520-06$
			.0002821	2\%31.8	1.0551@-06	-0829	5.642@-06
			.0002564	2992. 7	9.26570-07	. 0770	4.5790×06
26.603	76.000	4.456	00004539	3362.9	6.2326@-07	-0680	$2.7020-06$
26.307	160.00	5.357	. 00003944	3832. 4	$6.19710-07$	- 061	2.1910-06
26.012	250.00	6.249	. 0001797	4168.1	$4.34720-07$. 0471	1.283@-06
25.864	320:00	6.692	.0001697	4382.3	3.48940-07	.0411	8.932@-07
25:716	415:00	7.132					

TABLE： 89

CONCN．TOTAL CRYSTAL DIANETER MEAN GROWTH RATE MEAN GROWTH人̂M／V TIME MASS INCREASE AREA CONSTANT SUPER－RATE MINS：（GRAMS）（CM） CM^{2} K $\left(\mathrm{MIN}^{-1} \mathrm{CM}^{-2}\right)$ SATN．CM／MIN．
$27.461 \quad 0000001.975$ $27.254 \quad 1.0000 \quad 2.620$ $27.106 \quad 6.2500 \quad 3.079$ $26.958 \quad 13.000 \quad 3.537$ $26.810 \quad 18.000 \quad 3.993$ $26.662 \quad 22.000 \quad 4.448$ $26.514 \quad 26.000 \quad 4.902$ $26.366 \quad 30.000 \quad 5.354$ $26.218 \quad 35.000 \quad 5.806$ $26.100 \quad 4.0 .000 \quad 6.166$ $25.923 \quad 46.500 \quad 6.75$ $25.75 \quad 53.000 \quad 7.152$ $25.627 \quad 59.500 \quad 7.598$ $25.480 \quad 70.000 \quad 8.043$ $25.332 \quad 8.000 \quad 8.487$ $25.184 \quad 10.00 \quad 8.930$
, $0006082 \quad 1800.6 \quad 4.45200-5 \quad .1044 \quad 3.0410-04$ $.0003590 \quad 2165.0 \quad 5.40660-06 \quad .0973 \quad 3.4200-05$ $.0003162 \quad 2450.3 \quad 3.983 @-06 \quad .0913 \quad 2.343 \mathrm{C} .5$ $\because 0002837 \quad 2722.8 \quad 5.14500-06 \quad .0853 \quad 2.8370 \cdots 5$ $\because 0002581 \quad 2984.2 \quad 6.30890-06 \quad .0793 \quad 3.2260-5$ $.0002373 \quad 3236.0 \quad 6.29090 \ldots 06 \quad .0734 \quad 2.9670 .05$ $\because 0002201 \quad 3479.3 \quad 6.36890-06 \quad .0674 \quad 2$. 万20 $\quad .05$ $.0002063715 .1 \quad 5.23540-06 \quad .0614 \quad 2.0660 \cdots$ $.0001553 \quad 3921.6 \quad 4.3465$＠－06 ． $0.561 \quad 1.553 @-$－ $.00022004144 .3 \quad 5.31610-06 \quad .501 \quad 1.6920-\sigma$ $\because 0001728 \quad 4383.6 \quad 4.81810-06 \quad .0435 \quad 1.3290-5$ $.0001643 \quad 459.5 \quad 5.32800-06 \quad .0376 \quad 1.2640-05$ $.0001568 \quad 4802.5 \quad 3.7545 @-06 \quad .0316 \quad 7.4670 \sim 06$ $.0001500 \quad 5005.1 \quad 3.11280-06 \quad .0256 \quad 5.0010-06$.0001439 5203．5 2．9352＠－06 ．0197 3．598＠－06

	$\begin{aligned} & \text { TEMP } 70.0^{\circ} \mathrm{C} \text { CELL: } \mathrm{C} \\ & \text { SEED: BATCH E PREPAREDD } \end{aligned}$			RUN NO: : R.P.E. 7			
				STIRRER SPEED 2000 R.P.M. SIEVE FRACTION: $89-105 \mu$			
CONCN. \%M/V	TOTAL TIME MINS.	$\begin{aligned} & \text { CRYSTAL } \\ & \text { MASS } \\ & \text { (GRAMS) } \end{aligned}$	DIAMETER INCREASE (CM)	MEAN AREA CM	GROWTH RATE CONSTANT K $\left(\mathrm{MIN}^{-1} \mathrm{CM}^{-2}\right)$	MEAN SUPERSATN.	GROWTH RATE CM/MIN.
27:343	. 00000	1.993	.0004447		3.37910..¢		2.2240-04
27.195	1.0000	2.453					
-	6.0000	2.912	. 0003772	2060.7	6.11430-06	.0949	3.7720-5
	.0000	2.912	. 00003292	2351.4	$1.3614 \mathrm{e}-06$. 0889	7.8380-06
26.899	27.000	3.369		2628.4	8.8438@-07	. 0829	4.7300-05
26	58.000	3.824	. 0002932				
26.603	88.000	4.278	. 0002653	2893.4	8.94490-07	.0770	4.421@-06
26.455	113.00	4.729	.0002428	3148.1	1.0695@-06	.0710	4.8570-06
			.0006289	3623.8	7.20860-07	. 590	2.6870-06
			.0001836	4084.5	$4.43610 \sim 07$. 0471	1.3110-06
25.864	300:00	6.517	.0001732	4301.1	$3.75270-07$		9.6220-07
25.716	390.00	6.957				. 0411	

TABLE: 91

SEED: BATCH E PREPARED

RUN NO: : R.P.E. 8
STIRRER SPEED 2000 R. Po Mo
SIEVE FRACTION: 89-105 μ

CONCN: TOTAL CRYSTAL DIAMETER MEAN GROWTH RATE MEAN GROWTH \%M/V TIME MASS INCREASE AREA CONSTANT SUPER- RATE MINS: (GRAMS) (CM) CM^{2} K $\left(\mathrm{MIN}^{-1} \mathrm{CM}^{-2}\right)$ SATN: CM/MIN.

			. 0004529	1723.7	5.0138@-5	.1032	$3.3800-04$
27.254	.67000	2.415					
27.106	4.5000	2.875	.000	2030.2	7.9034@	. 0973	5:002@-¢
			.0003341	2320.7	5.64200-06	. 0913	$3.3410-5$
	9.5000	3.333	.0002976	2597.6	-3.3706@-06	. 0853	-1.86@-0
26. 810	1.5000	3.789	. .0002692	2862.8	1.42200.06	.0793	
26.662	20.000	4.245					
26.514	25.000	4.699	. 0002465	3117.7	5.2237@-06	.0734	2.465 @-¢
			$.000227^{8}$	3363.7	6.58780-06	.0674	$2.8480-5$
	29.000	5.	. 0002122	3601.8	5.40010-06	. 0614	2.1220.-ら
26.218	34.000	5.603	.0001988	3832.7	5.6209@-06	. 055	1.9880-5
26.071	39.000	6.033	. 0001873	407.2	4.25040-06	. 0495	1.338@-の
25.923	46:000	6.502	.0006615	4586.4	3.41020-06	.0346	7:1910-06
25.332	92.000	8.293					

CONCN: ${ }_{4} \mathrm{M} / \mathrm{V}$	TABLE: 92TEMP: $70.0^{\circ} \mathrm{C}$ CELL: SSEED: BATCH E PREPARED			RUN NO: : R.P.D. 3			
				STIRRER SPEED: 2000 R. P.M.			
	TOTAL TIME MINS.	CRYSTAL MASS (GRAMS)	DIAMETER INCREASE (CM)	$\begin{aligned} & \text { MEAN } \\ & \text { AREA } \\ & C M^{2} \end{aligned}$	GROWTH RATE CONSTANT $K\left(M_{I} N^{-1} \mathrm{CM}^{-2}\right)$	MEAN SUPERSATN.	GROWTH RATE CM/MIN.
27.402	-00000	1.935	.0004572	1707.7	1.2330-5	. 1032	8.312@-5
27.254	万00	2.395					
-	2.7500	2.35	.0003863	2014.0	7.6284@-06	-0973	4.8290-0
27.10	6.7500	2.855	.0003365	2304.2	5-9815@-06	. 0913	3.542 C -
26.958	11.500	3.313					
26.810	16.500	3.769	.0002	2580.7	5.4282@-06	. 0853	2.9950-5
26.662	21.000	4.22 .4	.0002709	$2845 \cdot 5$	5.88140-06	. 0793	3.01@-¢
			.0002479	3100.0	5.25370-06	.0734	2.4790-5
			. 0002291	3345.5	5.8878@-06	. 0.0674	2.545@-5
26.365	30.500	5.131	. 0002:33	3583.0	$6 . .7854 \mathrm{e}-06$. 0614	2.665@-05
26.21	34.500	5.583					
26.071	39:000	6.033	.0001998	$3813-4$	6.27690-06	. 055	2.2200~5
	47.000	6.4882	. 00001882	4037.4	3.7373 -06	.0495	1.1760-5
			.00001780	4255.5	5.3768@ -.06	. 0435	1.4840-05
			:0001691	4468.2	5.47970-06	. .0376	1.3010-5
25.627	59.500	7.376					
25.3480	70.000	7.822	. 0001611	4676.0	$3.85610-06$.0316	7.673@-06

CONCN. SM/V	TABLE: 93			RUN NO: : R.E. 10			GROWTH RATE CM/MIN.
	TEMP SEED:	SEED: BATCH E PREPARED	$\begin{gathered} \text { CELLL: C } \\ \text { PREPARED } \end{gathered}$	STIRP	ER SPEED :2000 FRACTION: 89	R.P.M M_{0} -105μ	
	TOTAL TIME MINS.	CRYSTAL MASS (GRAMS)	DIAMETER INCREASE (CM)	MEAN AREA $C M^{2}$	GROWTH RATE CONSTANT $\mathrm{K}\left(\mathrm{MIN}^{-1} \mathrm{CM}^{-2}\right)$	MEAN SUPERSATN:	
29.708	.00000	1.988	. 0004289	1743.8	6.840@-06	.1265	6.1270-¢
29.569	3.5000	2.429					
29.430	10.500	2.869	.0003659	2038.4	3.05510-06	-1212	2.613@-5
			. 0003207	2318.5	1.3566@-06	-1160	1.1060-05
			.0002868	2586.0	$1.54070-06$	-1107	1.1950-5
29:152	37.000	3.747			1,6068@-06		1.183@-0
29.012	48.000	4.184	. 0002602	2842.7		.154	
28.1 万	118.00	6.797	. 0012201	3648.2	1-45160-06	. 0868	$8.7150-66$
,			.0021640	4430.5	9.7672@-07	.0683	4.5560-06
			. 00001564	4633.5	1.1401@-06	. 0629	4.8880-06
27.895	152.00	7.654	. 0001206	4832.2	1.47070-06	. $¢ 76$	5.7540-06
27.3	165:00	8.082					
27.615	182.00	8.508	. 00001434	5026:8	1.1919@-06	. 523	4.218@-06
	200.00	8.933	.0001378	5217.5	1.2084@-06	. O	3.828@-06
			. 0002607	5495.9	1.00130-06	. 0390	2.6070-06
27.15	250.00	9.779	.0002426	5857.0	6.5118@-07	. 0283	1.2130 .06
26.914	350.00	10.62					
26.77^{4}	480.00	11.03	.0001150	6120.2	3.32340-07	. 0203	4.422@-07
26.633	590.00	11.45	.0001111	6290.6	5.2133@-07	$\bigcirc 0150$	5.5@-07

TABLE： 94 TEMP：70．08 CELL：S

SEED：BATCH E PREPARED

RUN NO．：R．E． 11
STIRRER SPEED：2000R．P．M．
SIEVE FRACTION：89－105 μ_{\sim}

CONCN．TOTAL CRYSTAL DIAMETER MEAN GROWTH RATE MEAN GROWTH
$9 \mathrm{M} / \mathrm{V}$ TIME MASS INCREASE AREA CONSTANT SUPER－RATE MINS：（GRAMS）（CM） CM^{2} K $\left(\mathrm{MIN}^{-1} \mathrm{CM}^{-2}\right)$ SATN．CM／MIN．

29.8 万	． 00000	1.958					
2．9．763	1.5000	2.31%	.0003542	16	1.	－1334	1．1810－04
29.624	5．0000		．0003	1956.	5．9943＠	． 1286	$5.24540-$－
			.0003328	2239.7	6.3 万540－	． 1234	5.5460. －
			.0002963	2509.6	5．09810－0	$\because 1181$	4．233＠－の
29.345	11.500	3.632	．0002580	2768．3	4．84100－06	.1128	3．829＠－05
29．207	15．000	4.070					
29．068	18.000	4.50	\bigcirc	3017.3	5．43990－	． 10 万	4．0900～0
28．929	20.500	4.9944	．0002268	3257.8	6．3629＠－06	． 1022	$4.537 \mathrm{C}-$－
			.0002113	3490.6	6．2666e－06	.0969	$4.225 @-0$
	23．	5	.0001980	3716．7	6．2295＠－06	.0916	3．960＠－¢
28.65	25.500	5.815	． 000186	3936.6			
28.510	28.500	6.249	．0001806	3936.6	5．2055＠－0	－ 0863	3．110＠－0
28．371	32．000	6.682	.0001766	4150.9	4.5113 ＠－0	－0810	$2.523 @-$－
28．091			.0003281	4461.5	4．0822＠－	． 0730	2．051＠－の
			． 0001529	4765.2	3．8119＠－06	.0651	1．6990－5
			.0001466	4961.3	3．98970－06	． 097	1．6290－0
27.811	49．000	8.407	． 0004082	5339.7	4．5530－06	． 049	$1.512 \mathrm{C}-5$
27.391	62.500	9.695	．0001264	5711.5	$3.24120-06$.0384	8.4270006
27.251	70．000	10.12	． 0001223	5891.0	4．56540－06	.0331	1．0190－5
27．111	76.000	10.55	． 0002336	6154.0	$2.69740-06$	． 0251	4．－4930－06
26.830	102．00	11．40	． 0001116	6413.2	$2.7271 \mathrm{C}-6$	$\bigcirc 0171$	3．1010－06
26．689．	120.00	11．82					

TABLE： 95
TEMP： $70.0^{\circ} \mathrm{C}$ CELL： S － －me esene

SEED：BATCH E PRRPARED
RUN NO．：R．P．E．M．I
STIRRER SPEED： 2000 R．P．M． －
SIEVE FRACTION： $89-105 \mu$ $\begin{array}{llllllll}\text { CONCN：} & \text { TOTAL } & \text { CRYSTAL } & \text { DIAMETER } & \text { MEAN } & \text { GRONTH RATE MEAN } & \text { GROWTH } \\ \text { IM } / V & \text { TIME } & \text { MASS } & \text { INCREASE } & \text { AREA } & \text { CONSTAN } & \text { SUPER－RATE } \\ & \text { MINS．} & \text {（GRAMS）} & \text {（CM）} & C M^{2} & K\left(\text { MIN }^{-1} C^{-1}\right) & \text { SATN．} & \text { CM／MIN．}\end{array}$ $27.432 .00000 \quad 1.942$ $27.254 \cdot$ ．万000 2.495 $27.106 \quad 5.0000 \quad 2.954$ $26.958 \quad 10.000 \quad 3.412$ $26.810 \quad 15.000 \quad 3.868$ $26.662 \quad 20.000 \quad 4.323$ $26.514 \quad 25.000 \quad 4.777$ $26.366 \quad 30.000 \quad 5.230$ $26.218 \quad 35.000 \quad 5.681$ $26.071 \quad 40.000 \quad 6.131$ $25.923 \quad 46.000 \quad 6.580$ $2, .627 \quad 60.000 \quad 7.475$ $25.332 \quad 8.000 \quad 8.366$ $25.184 \quad 103.00 \quad 8.808$
$.005378 \quad 1743.8 \quad 5.2831 巴-0 \quad .1038 \quad 3.5850-04$ $.0003740 \quad 2079.2 \quad 6.9546 @-06 \quad .0973 \quad 4.4000-05$.00032 万 2366.7 5．5325＠－06 ．0913 3．2万ऽ＠～の $.0002926 \quad 2640.9 \quad 5.3046 巴-\infty \quad .0853 \quad 2.9260-\infty$ $.00026542903 .7 \quad 5.1871 \mathrm{e}-06 \quad .0793 \quad 2.654 \mathrm{@} \ldots 5$ $.0002434 \quad 3156.5 \quad 5.1596 @-06 \quad .0734 \quad 2.4340-0$ $.0002253 \quad 3400.6 \quad 5.21310-06 \quad .0674 \quad 2.2530-05$ $.0002100 \quad 3636.9 \quad 5.3479 @-06 \quad .0614 \quad$ 2．100＠－． 5 $.0001970 \quad 3866=2 \quad 5.57220-06 \quad .0555 \quad 1.9700-05$ $.0001858 \quad 4089.1 \quad 4.92010-06 \quad .0495 \quad 1.5480-05$ $.0003435 \quad 4411.3 \quad 4.79990-06 \quad .0405 \quad 1.22 .70-05$ $.0003122 \quad 4826.3 \quad 3.50600-06 \quad .0286 \quad 6.2440 \sim 06$ $.0001461 \quad 5127.3 \quad 3.30980-06 \quad .0197 \quad 4.088-06$

TABLE: 97

 SEED: BATCH E PREPARED

RUN NO.:R.P.D. 5
STIRRER SPEED: 2000 R. Po. Mo
SIEVE FRACTION: $89-105 \mu$

$27.461 \quad .00000 \quad 1.987$ $27.343 \quad 1.5000 \quad 2.356$ $\begin{array}{lll}27.195 & 11.500 & 2.815\end{array}$ $27.047 \quad 40.000 \quad 3.2 .73$ $26.899 \quad 64.000 \quad 3.729$ $26.751 \quad 100.00 \quad 4.183$ $26.603 \quad 135.00 \quad 4.635$ $26.455 \quad 167.00 \quad 5.085$ $26.307 \quad 25.00 \quad 5.533$ $26.012 \quad 295.00 \quad 6.2424$ $25.864 \quad 355.00 \quad 6.865$ $25.716 \quad 430.00 \quad 7.304$ $25.627 \quad 480.00 \quad 7.567$
$.0003634 \quad 1718.7 \quad 1.74630-0 \quad .1062 \quad 1.2110-04$ $0003900 \quad 1996.3 \quad 2.9692$ © - $06 \quad .1008 \quad 1.95$ @ - -5 .00033852290 .1 9.6525@-07 . 0949 5.938e-06 $.00030042569 .6 \quad 1.09000-06 \quad .0889 \quad 6.2580 .06$ $.0002709 \quad 2836.9 \quad 7.05560-07 \quad .0829 \quad 3.762 @ \sim 06$ $.0002473 \quad 3093.5 \quad 7.17110-07 \quad .0770 \quad 3.533 @-06$ $.0002281 \quad 3340.6 \quad 7.8735 \mathrm{@}-07 \quad .0710 \quad 3.564 \mathrm{Q}-06$ $.0002119 \quad 3579.4 \quad 6.75590-07 \quad .0650 \quad 2.7880-06$ $.0003845 \quad 3921: 2 \quad 6.05660-07 \quad .0561 \quad 2.1360-06$ $.0001757 \quad 4253.1 \quad 4.9704 \mathrm{O}-07 \quad .0471 \quad 1.464 \mathrm{C}-06$ $.00001664 \quad 4465 \% 1 \quad 4.33790-07 \quad .0411 \quad 1.1090-06$ $.0000958 \quad 4631.0 \quad 4.2535 @-07 \quad .0364 \quad 9.577^{@-07}$

CONCN. ${ }_{M} \mathrm{M} / \mathrm{V}$	TABLE: 98			RUN NO: : R. P.D. 6			
	$\text { TEMP: } 70.08$		$\begin{gathered} \text { CELL: }: ~ \\ \text { PREPARED } \end{gathered}$	STIRRER SPEED: 2000Rö. P.Mo			
	TOTAL TIME MINS:	CRYSTAL MASS (GRAMS)	DIAMETER INCREASE (CM)	$\begin{gathered} \text { MEAN } \\ \text { AREA } \\ C M^{2} \end{gathered}$	GROWTH RATE CONSTANT $\mathrm{K}\left(\mathrm{MIN}^{-1} \mathrm{CM}^{-2}\right)$	MEAN SUPERSATN.	GRONTH RATE CM/MIN.
27	.0000	1.910	. 0006273	1748.6	1.4456@-5	. .1104	1.046@-04
27	3.0000	2.556					
27.25	18.000	3.016	.000368	2112.8	1.8271@-06	.1032	1.228e-05
			. 0003237	2397.4	1.28170-06	. 0973	8.092e-06
26.958	52.000	3.93	$\bigcirc 0002899$	2668.9	1.75210-06	.0913	1.0350-0
26.810	73	4.38	-0002633	2929.3	1.13860-06	. 0853	6.2700-06
26:662	92.000	4.841	.0002419	3179.9	1.2465@--06	. 0793	$6.3650-06$
26.071		6.6	. 0.0008176	3760.0	9.9742@-07	.0644	4.0880-06
			.0003425	4427.7	$1.0046 \mathrm{e}-\infty 6$	$: 0465$	2.953@-06
- 27	250.00	7	.0001590	4739.7	$6.7156 \mathrm{e}-07$		1.5900-06
25.627	300:00	7.994				$.0376$	
25.480	410.00	8.438	.0001521	4940.6	3.48370-07	. .0316	$6.9140-07$

TABLE: 100 TEMP: $70.0^{\circ} \mathrm{C}$ CELL: C
SEED: BATCHE PRBPARED

RUN NO.:R.E. 13
STIRRER SPEED: 2000 R P P $_{0} M_{0}$
SIEVE FRACTION: $89-105 \mu$

CONCN:	T	CRYSTAL	DIAMETER	ME	TE	MEAN	GROWTH
\% M/V	TIME	MASS	INCREASE	AREA	CONSTANT	SUPER-	RATE
	MINS:	(GRAMS)	(CM)	$C M^{2}$	$\mathrm{K}\left(\mathrm{MIN}^{-1} \mathrm{CM}^{-2}\right)$	SATN:	CM/MIN.

$29.902 \quad .00000 \quad 1.971$ $29.708 \quad 5.2500 \quad 2.589$ $29.569 \quad 15.000 \quad 3.030$ $29.430 \quad 24.000 \quad 3.469$ $29.291 \quad 34.000 \quad 3.907$ $29.152 \quad 43.000 \quad 4.344$ $29.012 \quad 53.000 \quad 4.780$ $28.873 \quad 65.000 \quad 5.215$ $28.734 \quad 77.000 \quad 5.649$ $28.454 \quad 98.000 \quad 6.515$ $28.175 \quad 120.00 \quad 7.377$ $28.035 \quad 136.00 \quad 7.805$ $27.895 \quad 155.00 \quad 8.233$ 27. F6 $\quad 170.00 \quad 8.659$ $27.335 \quad 240.00 \quad 9.933$ $27.195 \quad 266.00 \quad 10.35$ $27.055 \quad 308.00 \quad 10.77$ $26.914 \quad 360,00 \quad 11.19$ $26.830 \quad 450.00 \quad 11.44$
$.0005868 \quad 1788.7 \quad 5.92430-06 \quad .1329 \quad 5.5890-05$ $.0003486 \quad 2139.0 \quad 2.0019 巴-06 \quad .1265 \quad 1.788 @ \cdots$ $.0003081 \quad 2413.8 \quad 2.00670 \ldots 06 \quad .1212 \quad 1.712 @ \cdots$ $.0002771 \quad 2676.8 \quad 1.7038 \mathrm{Q}-06 \quad . \quad 1160 \quad 1.386 @ \sim 5$.0002526 2929.5 1.8135@-06 . $1107 \quad 1.403 @-05$ $.0002326 \quad 3173.1 \quad 1.58340-06 \quad .154 \quad 1.1630-05$ $.0002160 \quad 3408.7 \quad 1.29400-06 \quad .1001 \quad 9.0000-06$ $.0002019 \quad 3637.1 \quad 1.2813 @-06 \quad .0948 \quad 8.414 \mathrm{Q}=06$ $.0003596 \quad 3966.0 \quad 1.46850 .06 \quad .0868 \quad 8.800 @-06$ $.0003323 \quad 4388.4 \quad 1.444540-06 \quad .0762 \quad 7.5530 .-06$ $.0001545 \quad 4694.0 \quad 1.03710 \ldots 06 \quad .0683 \quad 4.8290 \ldots 06$ $.0001479 \quad 4890.9 \quad 9.09570-07 \quad .0629 \quad 3.8920-06$ $.0001419 \quad 5083.9 \quad 1.21150-06 \quad .0576 \quad 4.7310-06$ $.00039525455 .98 .9929 @-07 \quad .0470 \quad 2.823 @-06$ $.00012255821 .3 \quad 9.71590-07 \quad .0363 \quad 2.357006$ $.00011855997 .46 .85100-07 \quad .0310 \quad 1.4100 \times 06$.0001147 6170.6 6.5079@-07 . $0256 \quad 1.1020 .06$ $.0000669 \quad 6307.0 \quad 2.6446 @-07 \quad .0214 \quad 3.716 @-07$

TABLE: 101
$7 . \mathrm{O}, \mathrm{O} \ldots \mathrm{CE} \mathrm{O}_{\mathrm{C}}$: C
SEED.: BATCH E PREPARED

RUN NO: : R.E. 14
STIRRER S.PEED:2000 R.P.Mo
SIEVE FRACTION:89-105

CONGN: TOTAL CRYSTAL DIAMETER MEAN
s M / V TIME MASS INCREASE AREA
MINS: (GRAMS) (CM) CM^{2}

GRONTH RATE MEAN . GROWTH CONSTANT SUPER- RATE K $\left(\mathrm{MIN}^{-1} \mathrm{CM}^{-2}\right)$ SATN: CM/MINo
$30.041: 00000$. 1.960 $29.847 \quad 6.0000 \quad 2.579$ $29.708 \quad 12.000 \quad 3.019$ $29.569 \quad 19.000 \quad 3.459$ $29.430 \quad 29.000 \quad 3.898$ $29.291 \quad 35.000 \quad 4.335$ $29.152 \quad 43.000 \quad 4.772$ 29.012 51.000 5.208 $28.873 \quad 60.000 \quad 5.642$ $28.734 \quad 70.000 \quad 6.076$ $28.594 \quad 80.000 \quad 6.508$ $28.454 \quad 89.000 \quad 6.940$ $28.315 \quad 99.000 \quad 7.370$ $28.17 \quad 110.00 \quad 7.800$ $28.035 \quad 119.00 \quad 8.228$ $27.615 \quad 167.00 \quad 9.509$ $27.475 \quad 179.00 \quad 9.933$ $27.335 \quad 202.00 \quad 10.36$ $27.195 \quad 223.00 \quad 10.78$ $27.055 \quad 252.00 \quad 11.20$ $26.914 \quad 295.00 \quad 11.62$ $26.633 \quad 408.00 \quad 12.45$
$.0005901 \quad 1780.0 \quad 5.00730-06 \quad 1381 \quad 4.9180 \mathrm{~m} 05$ $.0003503 \quad 2130.4 \quad 3.1336$ e-06 $.1318 \quad 2.919 @ \sim 0$ $.0003095 \quad 2405.3 \quad 2.47960 \cdots \quad .1265 \quad 2.2100 \sim 05$ $.0002782 \quad 2668.3 \quad 1.63380 \cdots 06 \quad .1212 \quad 1.3910 \sim 5$.0002536 2920.9 2.60230-06 . $1160 \quad 2.1130 \mathrm{~m} 0$ $.0002335 \quad 3164.6 \quad 1.88860-06 \quad .1107 \quad 1.04590 \cdots$ $.0002168 \quad 3400.2 \quad 1.8471 \mathrm{Cm} \quad .1064 \quad 1.3550 \cdots 5$ $.00020273628 .6 \quad 1.6208 \mathrm{em06} \quad .1001 \quad 1.1260-05$ $.0001903850 .6 \quad 1.45230-06 \quad .0948 \quad 9.5270=06$ $.0001800 \quad 4066.7 \quad 1.45740-06 \quad .0895 \quad 8.9990-06$ $.0001707 \quad 4277.4 \quad 1.63750 \sim 06 \quad .9842 \quad 9.4840-06$ $.0001625 \quad 4483.3 \quad 1.50160-06 \quad .0789 \quad 8.1240-06$ $.0001551 \quad 4684.5 \quad 1.40160406 \quad .0736 \quad 7.0510-06$ $.00014834881 .6 \quad 1.77290-06 \quad .0683 \quad 8.2510-06$ $.0004122 \quad 5261.0 \quad 1.10390 .06 \quad .0576 \quad 4.2940 \cdots 06$ $.000125 \quad 5633.5 \quad 1.67870 \cdots \quad .0670 \quad 5.3110 \cdots 06$ $.0001231 \quad 5813.0 \quad 9.5818 @ \cdots 07 \quad .0416 \quad 2.6770 \cdots 06$ $.0001191 \quad 5989.6 \quad 1.16910-06 \quad .0363 \quad 2.8370 \rightarrow 06$ $.0001154 \quad 6163.229 .65530-07 \quad .0310 \quad 1.9900006$ $.0001119 \quad 6334.0 \quad 7.66710-07 \quad .0256 \quad 1.301 @ m 6$ $.0002138 \quad 6584.0 \quad 8.40290 \sim 07 \quad .0176 \quad 9.4600 \mathrm{~m} 07$

TABLE： 102 TEMP： $70.0^{\circ} \mathrm{C}$ CELL：C SEED：BATCH E PREPAPED

RUN NO．：R．E． 15
STIRRER SPEED：2000 R．PoMo
SIEVE FRACTION：89－105 μ

CONCN：TOTAL CRYSTAL DIAMETER MEAN GROWTH RATE MEAN GROWTH CMM TV TME MASS INCREASE AREA CONSTANT SUPER－RATE MINS．（GRAMS）（CM）CM $\mathrm{K}\left(\mathrm{MIN}^{-1} \mathrm{CM}^{-2}\right)$ SATN．CMMIN．．
$29.708 \quad 3.2500 \quad 2.412$ $29.569 \quad 14.000 \quad 2.852$ $29.430 \quad 24.000 \quad 3.292$ $29.291 \quad 34.000 \quad 3.730$ $29.152 \quad 43.500 \quad 4.167$ $29.012 \quad 53.500 \quad 4.604$ $28.873 \quad 64.000 \quad 5.039$ $28.734 \quad 77.000 \quad 5.473$ $28.594 \quad 87.000 \quad 5.906$ $28.315 \quad 109.00 \quad 6.770$ 28.1 万5 122：00 $\quad 7.200$ 28．055 $\quad 137.00 \quad 7.629$ $27.615 \quad 191.00 \quad 8.911$ $27.335 \quad 248.00 \quad 9.59$ $27.195 \quad 270.00 \quad 10.18$ $27.055 \quad 35.00 \quad 10.60$ $26.914 \quad 365.00 \quad 11.02$ 26．830 480．00 11．27
$.0004328 \quad 1729.5 \quad 7.1262 \mathrm{Q}-66 \quad .1318 \quad 6.658 巴-05$.0003687 2024．1 1．9187＠－06 $\quad .1265 \quad 1.715 \mathrm{C}-05$ $\because 00032302304.2 \quad 1.89190-06 \quad .1212 \quad 1.615 \mathrm{e}-5$ $.0002886 \quad 2571.6 \quad 1.7735 @-06 \quad .1160 \quad 1.443 \times-5$ $.0002618 \quad 2828.1 \quad 1.77968 \mathrm{~m} 06 \quad .1107 \quad 1.3780-05$ $.0002402307 .1 \quad 1.6339 巴-06 \quad .105^{4} \quad 1.2010-5$ ．0002223 3313．7 1．5213＠－06 ．1001 1．059＠－5 $.0002073 \quad 3544.8 \quad 1.2135 @-06 \quad .0948 \quad 7.973 \mathrm{e}-06$ $.0001945 \quad 3769.2 \quad 1.5725 \mathrm{Q}-06 \quad .0895 \quad 9.724 \mathrm{Q}-66$ $\because 00035744.092 .8 \quad 1.444780-06 \quad .0815 \quad 8.123 \mathrm{Q}-06$ $\because 0001651 \quad 4408.3 \quad 1.2603 巴-06 \quad .0736 \quad 6.3480-06$. .0001574 4611．3 1．12610－06 $.0683 \quad 5.2460-06$ $.0004340 \quad 5000.9 \quad 1.0323 \mathrm{e}-06 \quad .0576 \quad 4.0190-06$ $.0002620 \quad 5473.8 \quad 7.74320-07 \quad .0443 \quad 2.2980-06$ $.0001242 \quad 5746.8 \quad 1.16310-06 \quad .0363 \quad 2.822 巴-06$ $.00012005924 .1 \quad 8.32300-07 \quad .0310 \quad 1.715 @-06$.0001161 6098．2 $5.7071 \mathrm{C}-07$ ．0256 9．672®－07 .0000676 6235．4 $2.0935 @-07 \quad .0214 \quad 2.9390-07$

TABLE: 103 TEMP:70.0 $0^{\circ} \mathrm{C}$ CELL: C

SEED: BATCH E PREPARED

RUN NO.: R.E. 16
STIRRER SPEED 2000 R. $\mathrm{P}_{0} \mathrm{M}_{0}$
------..--..........
SIEVE. FRACTION: $89-105 \mu$ CONCN. TOTAL CRYSTAL DIAMETER MEAN GROWTH RATE MEAN GROWTH gM/V TIME MASS INCREASE AREA CONSTANT SUPER- RATE MINS. (GRAMS) (CM) CM^{2} K $\left(\mathrm{MIN}^{-1} \mathrm{CM}^{-2}\right)$ SATN. CM/MIN:
29.8 万5 .00000 1.974 $29.708 \quad 2.5000 \quad 2.504$ $29.569 \quad 10.000 \quad 2.944$ $29.430 \quad 22.000 \quad 3.384$ $29.152 \quad 36.000 \quad 4.261$ $28.873 \quad 55.000 \quad 5 \% 133$ $28.734 \quad 65.000 \quad 5.568$ $28.594 \quad$ T5:000 6.001 $28.454 \quad 84.000 \quad 6.433$ $28.175104 .00 \quad 7.295$ $28.035 \quad 114.00 \quad 7.725$ $27.895 \quad 124.00 \quad 8.153$ $27.756 \quad 139.00 \quad 8.580$ $27.615 \quad 154.00 \quad 9.006$ $27.475 \quad 178.00 \quad 9.430$ $27.195 \quad 220.00 \quad 10.28$ $27.65 \quad 257.00 \quad 10.70$ $26.914 \quad 292.00 \quad 11.12$ $26.633 \quad 370.00 \quad 11.95$
$.000102 \quad 1762.0 \quad 1.0868$ @ - क $\quad .1323 \quad 1.0200-044$.0003579 2084.7 2.67020-06 . $1265 \quad 2.3860 \sim 05$ $\because 0003149 \quad 2362.2 \quad 1.53790-06 \quad .1212 \quad 1.312 @-0$ $.0005399 \quad 2752.6 \quad 2.4242 \odot-06 \quad .1133 \quad 1.928 @-\sigma$ $.0004556 \quad 3245.1 \quad 1.67340-06 \quad .1027 \quad 1.199 @-0$ $.0002044 \quad 3595.8 \quad 1.55520-06 \quad .0948 \quad 1.0220-05$ $.00019203819 .1 \quad 1.55190-06 \quad .0895 \quad 9.5990-06$ $.0001812 \quad 4036.5 \quad 1.7353$ e-06 . $0842 \quad 1.0070-0$ $.0003355 \quad 4350.9 \quad 1.60360-06 \quad .0762 \quad 8.388 \mathrm{e}-06$.0001559 4658.1 1.6722@-06 .0683 7.795@-06 $.0001492 \quad 4856.1 \quad 1.74060-06 \quad .0629 \quad 7.4600-06$ $.0001431 \quad 500.1 \quad 1.21960-06 \quad .05764 .7100-06$ $.0001375 \quad 5240.3$ 1.2958@-06 .523 4.58§@-06 $.00013245427 .0 \quad 8.7132 @-07 \quad .0470 \quad 2.7590-06$ $.0002513 \quad 5699.71 .1494 \mathrm{Q}-06 \quad .0390 \quad 2.9920-06$ $.0001194 \quad 5967.7 \quad 7.8155 \mathrm{e}-07 \quad .0310 \quad 1.613 \mathrm{e}-06$ $.0001156 \quad 6141.8 \quad 9.71420-07 \quad .0256 \quad 1.6510-06$ $.0002208 \quad 6396.8 \quad 1.25300-06 \quad .0176 \quad 1.4150-06$

TABLE: 104 TEMP: $70.0^{\circ} \mathrm{C}$ CELL:C

RUN NO: : R.E. 17 STIRRER SPEED: 2000 R.. Po. Mo

SIEVE FRACTION: 89-105,
CONCN: TOTAL CRYSTAL DIAMETER MEAN GROWTH RATE MEAN GROWTH GM/V TIME IMSS INCREASE AREA CONSTANT SUPER- RATE MINS. (GRAMS) (CM) CM^{2} K $\left(\mathrm{MIN}^{-1} \mathrm{CM}^{-2}\right)$ SATN. CM/MIN.
$29.930 \quad .00000 \quad 1.970$ $29.708 \quad 6.5000 \quad 2.677$ $29.569 \quad 15.000 \quad 3.117$ $29.430 \quad 23.000 \quad 3.556$ $29.291 \quad 32.500 \quad 3.994$ $29.152 \quad 39.000 \quad 4.431$ $29.012 \quad 49.000 \quad 4.867$ $28.873 \quad 59.000 \quad 5.302$ $28.734 \quad 69.000 \quad 5.737$ $28.594 \quad 81.000 \quad 6.169$ $28.454 \quad 90.000 \quad 6.601$ $28.17 \quad 110.00 \quad 7.463$ $28.035 \quad 126.00 \quad 7.892$ $27.895 \quad 143.00 \quad 3.319$ 27.756 $\quad 156.00 \quad 8.746$ $27.615 \quad 172.00 \quad 9.171$ $27.195 \quad 250.00 \quad 10.44$ 27.055 $278.00 \quad 10.86$ $26.77^{4} \quad 395.00 \quad 11.70$ $26.633 \quad 490.00 \quad 12.11$
$.0006609 \quad 1816.6 \quad 5.3632 @-06 \quad .1334 \quad 5.0840-05$ $.0003397 \quad 2194.4 \quad 2.2383 @-06 \quad .1265 \quad 1.998 巴-0$ $.0003014 \quad 2466.8 \quad 2.20910-06 \quad .1212 \quad 1.8840-\sigma$ $.0002719 \quad 2727.6 \quad 1.76000-06 \quad .1160 \quad 1.4310-0$ $.00024842978 .42 .4697 \mathrm{C}-06 \quad .1107 \quad 1.9110 \times 0$ $.0002292 \quad 3220.4 \quad 1.56010 .06 \quad .1054 \quad 1.1460 \cdots 0$ $.0002131 \quad 3454.6 \quad 1.5322 @-06 \quad .1001 \quad 1.066 @-\sigma$.0001995 3681.8 $1.5189 @-06 \quad .0948 \quad 9.975$ @-06 $.0001877 \quad 3902.6 \quad 1.2656$ @-06 $\quad .0895 \quad 7.8220-06$ $.0001775 \quad 4117.7 \quad 1.70110-06 \quad .0842 \quad 9.8620-06$ $.0003293 \quad 4429.0 \quad 1.57530-06 \quad .0762 \quad 8.233 @ \cdots$ $.0001533 \quad 4733.4 \quad 1.02850 \sim 06 \quad .0683 \quad 4.7900 .06$.0001468 4929.6 1.0086@-06 .0629 4.0317@-06 $.0001409 \quad 5122.0 \quad 1.3875$ @-06 $\quad .576 \quad 5.4200 \cdots 6$ $\therefore 0001355 \quad 5310.6 \quad 1.19870-06 \quad .0523 \quad 4.2360 \sim 06$ $\because 0003789 \quad 5674.9 \quad 8.78020-07 \quad .0416 \quad 2.4290-06$ $.00011796032 .8 \quad 1.02160-06 \quad .0310 \quad 2.150^{-0} 06$ $.0002246 \quad 6289.8 \quad 6.4307 @-07 \quad .0230 \quad 9.598 @ \ldots 07$ $.0001071 \quad 6542.3 \quad 5.8042$ - $07 \quad .0150 \quad 5.6350-07$

TABIE: 105 TEMP: 70.0 C CELL: C

RUN NO:: R.E. 19
STIRRER SPEED: 2000 R $_{0}$ P $_{0} M_{0}$

SIEVE FRACTION: $89-105 \mu$

CONCN: TOTAL CRYSTAL DIAMETER MEAN GRONTH RATE MEAN GROWTH $\% \mathrm{M} / \mathrm{V}$ TIME MASS INCREASE AREA CONSTANT SUPER- RATE MINS: (GRAMS) (CM) CM^{2} K $\left(\mathrm{MIN}^{-1} \mathrm{CM}^{-2}\right)$ SATN:- CM/MIN:
$29.708 \quad 4.0000 \quad 2.598$ $29.569 \quad 13.000 \quad 3.039$ $29.430 \quad 25.000 \quad 3.478$ $29.291 \quad 34.000 \quad 3.916$ $29.152 \quad 46.000 \quad 4.353$ 29.012 $\quad 55.000 \quad 4.789$ $28.873 \quad 67.000 \quad 5.224$ $28.734 \quad 78.000 \quad 5.658$ $28.594 \quad 88,000 \quad 6.091$ $28.454 \quad 97.000 \quad 6.523$ $28.315 \quad 108.00 \quad 6.954$ $28.035 \quad 134.00 \quad 7.813$ $27.895 \quad 145.00 \quad 8.241$ $27.756 \quad 163.00 \quad 8.668$ $27.615 \quad 179.00 \quad 9.093$ $27 .{ }^{2}$ 万万 $\quad 195.00 \quad 9.517$ $27.335 \quad 212.00 \quad 9.941$ $27.055 \quad 25.00 \quad 10.78$ $26.77^{4} \quad 35.00 \quad 11.62$
$.0008445 \quad 1795.9 \quad 7.74420-06 \quad .1329 \quad 7.3060-0$ $.0003474 \quad 2146.3 \quad 2.16130-06 \quad .1265 \quad 1.9300 \cdots 05$ $.0003071 \quad 2421.3 \quad 1.5003$ @- $06 \quad .1212 \quad 1.2800 \cdots 5$ $.00027632584 .4 \quad 1.8877$ @-06 . $1160 \quad 1.535$ @
 $\because 0002320 \quad 3181.1 \quad 1.53490-06 \quad .154 \quad 1.2890 \ldots 0$ $.0002155 \quad 3416.9 \quad 1.29090-06 \quad .1001 \quad 8.9780-06$ $.0002015 \quad 3645.5 \quad 1.3945 \mathrm{e}-06 \quad .0948 \quad 9.1570-06$ $.0001894 \quad 3867.7 \quad 1.53240-06 \quad .0895 \quad 9.4710 \times 06$ $.0001790 \quad 4084.0 \quad 1.7151 @ 06 \quad .0842 \quad 9.9430-06$ $.0001698 \quad 4295 \cdot 0 \quad 1.42490-06 \quad .0789 \quad 7.7160-06$ $.0003162 \quad 4600.9 \quad 1.25490-06 \quad .0709 \quad 6.0800-06$ $.0001477 \quad 4900.2 \quad 1.56810-06 \quad .0629 \quad 6.7130-06$ $.0001417 \quad 5093.5 \quad 1.0077$-.06 $.0576 \quad 3.9360-06$ $.0001363 \quad 5283.1 \quad 1.2500-06 \quad .0523 \quad 4.258 @-06$ $.0001313 \quad 5469.1 \quad 1.2969 @-06 \quad .0470 \quad 4.1020-06$ $.0001268 \quad 5651.9 \quad 1.3333 @-06 \quad .0416 \quad 3.7290-06$.0002409 5919.2 8.57110-07 . 0337 1.912@-C6 .0002257 6266.5 7.5519@m07 .02230 1.128@.06

$29.902 \quad .00000 \quad 1.967$ $29.708 \quad 5.0000 \quad 2.585$ $29.569 \quad 11.000 \quad 3.026$ $\because 0003492 \quad 2135.7 \quad 3.25810 \ldots 06 \quad .1265 \quad 2.9100 \ldots 05$ $.0003086 \quad 2410.6 \quad 2.58350-\infty \quad .1212 \quad 2.204$ - 0 - σ $.0002775 \quad 2.573 .5 \quad 1.89540-06 \quad .1160 \quad 1.542 \mathrm{C}-05$ $.0009076 \quad 3276.1 \quad 3.71510 \sim 06 \quad .1027 \quad 2.669 @-\sigma$ $.0001901 \quad 3859.5 \quad 3.07130-06 \quad .0895 \quad 1.9010-5$ $.0011016 \quad 4673.6 \quad 3.3239 @-06 \quad .0682 \quad 1.5300 \sim \sigma$ $.0005022 \quad 5738.9 \quad 1.77800-06 \quad .0390 \quad 4.566 巴-06$ $.00029256321 .3 \quad 1.06580-06 \quad .0214 \quad 1.4630-06$ $.0000429 \quad 6576.1 \quad 4.06100-07 \quad .0134 \quad 3.57^{4} 0-07$

TABLE: 107

SEED: BATCH E PREPARED

RUN NO: R.E. 21
STIRRER SPEED: 2000 R.P.M.
SIEVE FRACTION: $89-105 \mu$

CONCN: TOTAL CRYSTAL DIAMETER MEAN ${ }_{6}^{6} \mathrm{M} / \mathrm{V}$ TIME MASS MINS: (GRAMS) 29.902.00000 1.938 $29.708 \quad 7.0000 \quad 2.556$ $29.569 \quad 15.000 \quad 2.997$ $29.430 \quad 24.000 \quad 3 .-436$ $29.152 \quad 40.000 \quad 4.312$ 29.012 $47.000 \quad 4.748$ $28.873 \quad 55.000 \quad 5 .-184$ $28.734 \quad 63.000 \quad 5.618$ $28.454 \quad 79.000 \quad 6.484$ $28.315 \quad 89.000 \quad 6.916$ 28.175 $\quad 99.000 \quad 7.346$ $28.035 \quad 111.00 \quad 7.7 万$ $27.756 \quad 142.00 \quad 8.631$ $27.615 \quad 160.00 \quad 9.056$ 27.4 万 $189.00 \quad 9.481$ $27.335 \quad 223.00 \quad 9.904$ $27.195 \quad 270.00 \quad 10.32$ $27.055 \quad 330.00 \quad 10.74$
$.00597 \quad 1762.1 \quad 4.51020-06 \quad .1329 \quad 4.255 \mathrm{C}-0$ $.0003531 \quad 2112.0 \quad 2.47100-06 \quad .1265 \quad 2.2070-05$ $.0003116 \quad 2386.4 \quad 2.02970006 \quad .1212 \quad 1.7310-05$ $.0005357 \quad 2772.7 \quad 2.158 \mathrm{Q}-06 \quad .1133 \quad 1.674 \mathrm{C}-05$ $.0002348 \quad 3144.3 \quad 2.28270-06 \quad .1054 \quad 1.677$ @ -5 $.0002180 \quad 3379.2 \quad 1.95800-06 \quad .1001 \quad 1.3620-05$ $.0002037 \quad 3607.0 \quad 1.93800-06 \quad .0948 \quad 1.273$ C- 0 $.0003728 \quad 3934.8 \quad 1.94270-06 \quad .0868 \quad 1.1650 \cdots 05$ $.0001715 \quad 4254.2 \quad 1.58240-06 \quad .0789 \quad 8.5760-06$ $.0001632 \quad 4459.4 \quad 1.61960-06 \quad .0736 \quad 8.1620 .06$ $.0001558 \quad 4660.0 \quad 1.39290-06 \quad .0683 \quad 6.493 \mathrm{O}-06$ $.00029254951 .7 \quad 1.15250-06 \quad .0603 \quad 4.7170-06$ $.0001375 \quad 5237.7$ 1.0804@-06 ..0523 3.8210-06 $\because 0001324 \quad 5422.7 \quad 7.2166 @-07 \quad .0470 \quad 2.2830-06$ $.0001278 \quad 5604.5 \quad 6.72310-07 \quad .0416 \quad 1.8790-06$ $.0001233 \quad 5782.9 \quad 5.41040-97 \quad .0363 \quad 1.3120-06$ $.0001191 \quad 5958.2 \quad 4.8273 \mathrm{C}-07 \quad .0310 \quad 9.9290-07$

TABLE: 108

SEED: BATCH E PREPARED

RUN NO-:R.E. 23
STIRRER SPEED: 2000 R. P.M.

SIEVE FRACTION: $89-105 \mu$

CONCN: TOTAL CRYSTAL DIAMETER MEAN GROWTH RATE MEAN GROWTH \%M/V TIME MASS INCREASE AREA CONSTANT SUPER- RATE MINS: (GRAMS) (CM) CM^{2} K $\left(M_{I} N^{-1} \mathrm{CM}^{-2}\right)$ SATN. CM/MIN. $29.611 \quad 00000 \quad 1.930$ $28.664 \quad 64.000 \quad 4.934$ $28.245 \quad 84.000 \quad 6.240$ $28.15 \quad 93.000 \quad 6.673$ $28.077 \quad 110.00 \quad 6.759$ $27.9665 \quad 130.00 \quad 7.104$ $27.825 \quad 150.00 \quad 7.535$ $27.405 \quad 175.00 \quad 8.826$ $27.125 \quad 208.00 \quad 9.681$ $\because 0021360 \quad 2453.1 \quad 2.15300-06 \quad .1075 \quad 1.6690-0$ $.005993 \quad 3693.5 \quad 2.65190-06 \quad .0815 \quad 1.498$ e-0 $.0001771 \quad 4132.2 \quad 2.01530-06 \quad .0709 \quad 9.8410-06$ $.0000343 \quad 4258.2 \quad 2.16800-07 \quad .0677 \quad 1.0090-06$ $.0001340 \quad 4360.9 \quad 7.49600-07 \quad .0651 \quad 3.3490 \cdots 06$ $.000165 \quad 4543.5 \quad 9.71510-07 \quad .0003 \quad 4.0120 . .06$ $.0004429 \quad 4934.4 \quad 2.6314 \mathrm{e}-06 \quad .0496 \quad 8.8990 .06$ $.0002676 \quad 5409.4 \quad 1.65660-06 \quad .0363 \quad 4.04 \mathrm{O}-06$

EQUILIBRIUM CONCENTRATION $=26.310$
INITIAL SEED AREA $=1546$

TABLE: 109 TEMP: 70.0 C CELL: G

RUN NO.: R.E. 24
STIRRER SPEED:2000R.P.M.

SIEVE FRACTION: $89-105 \mu$.

CONCN: TOTAL CRYSTAL DIAMETER MEAN GROWTH RATE MEAN GRONTH Y$M \mathrm{M} / \mathrm{Y}$ TIME MASS INCREASE AREA CONSTANT SUPER- RATE MINS: (GRAMS) (CM) CM^{2} K $\left.\mathrm{KMIN}^{-1} \mathrm{CM}^{-2}\right)$ SATN: CM/MIN.
$29.958 \quad .00000 \quad 1.935$ $29.763 \quad 5.0000 \quad 2.554$
$29.624 \quad 10.000 \quad 2.994$ $29.485 \quad 17.000 \quad 3.434$ $29.346 \quad 25.000 \quad 3.873$ $29.207 \quad 34.000 \quad 4.311$ $29.068 \quad 44.000 \quad 4.748$ $28.803 \quad 60.000 \quad 5.577$
$28.664 \quad 69.000 \quad 6.012$
$28.385 \quad 91.000 \quad 6.880$
$28.15 \quad 117.00 \quad 7.744$
$27.686 \quad 200.00 \quad 9.036$
26..703 $270.00 \quad 12.04$
 $.0003537 \quad 2109.9 \quad 3.89160-06 \quad .1286 \quad 3.5370-0$ $.0003123 \quad 2384.5 \quad 2.56640 \ldots 06 \quad .1234 \quad 2.230 @ \mathrm{~m}$ $.0002807 \quad 2647.2$ 2.1145@-06 $\quad .1181 \quad 1.754$ - -5 $\because 0002557 \quad 2899.6 \quad 1.79740-06 \quad .1128 \quad 1.4210 \cdots 5$ $.0002354 \quad 3142.9 \quad 1.56680-06 \quad .1075 \quad 1.177 巴-0$ $.0004035 \quad 3479.8 \quad 1.8123 \mathrm{e}-06 \quad .0998 \quad 1.2610-05$ $.0001932 \quad 3806.8 \quad 1.67960 \sim 06 \quad .0921 \quad 1.0730-05$ $\because 0003559$ 4128.0 1.38970-06 .0842 8.0890-06 $\because 0003222 \quad 4541.4 \quad 1.2249 \mathrm{C}-06 \quad .0736 \quad 6.01960-06$ $. .0004347 \quad 5031.9 \quad 6.37490-07 \quad .0603 \quad 2.6190-06$ $.0008560 \quad 5941.7 \quad 3.00740 \sim 06 \quad .0336 \quad 6.1140-06$

TABLE: 110 TEMP: $70.0^{\circ} \mathrm{C}$ CELL: C SEED: BATCHE PRTPARED

RUN NO: : R.E. 25
STIRRER SPEED:2000 R. P. Mo $_{0}$
SIEVE FRACTION: $89-105 \mu$

CONCN: TOTAL CRYSTAL DIAMETER MEAN GRONTH RATE MEAN GROWTH YM/V TIME IASS INCREASE AREA CONSTANT SUPER- RATE MINS:- (GRAMS) (CM) CM^{2} K $\left(\mathrm{MIN}^{-1} \mathrm{CM}^{2}\right)$ SATN: CM/MIN.
$29.569 \quad 7.0000 \quad 2.580$ $29.430 \quad 17.000 \quad 3.020$ $29.291 \quad 26.000 \quad 3.2459$ 29.152 $36.000 \quad 3.897$ $29.012 \quad 46.000 \quad 4.333$ $28.873 \quad 57.000 \quad 4.769$ $28.734 \quad 67.000 \quad 5.204$ $28.594 \quad 78.000 \quad 5.637$ $28.454 \quad 89.000 \quad 6.070$ $28.315 \quad 100.00 \quad 6.502$ $28.15 \quad 114.00 \quad 6.932$ $28.035 \quad 128.00 \quad 7.362$ $27.895 \quad 152.00 \quad 7.790$ $27.756 \quad 173.00 \quad 8.217$ $27.615 \quad 190.00 \quad 8.642$ 27.4 208.00 $\quad 9.067$ $27.335 \quad 240.00 \quad 9.490$ $27.195 \quad 300: 00 \quad 9.911$
$.0005888 \quad 1781.3 \quad 4.64900-06 \quad .1276 \quad 4.2060-0$ $.0003496 \quad 2131.2 \quad 2.0455 \mathrm{Q}-06 \quad .1212 \quad 1.748 \mathrm{e}-05$ $\because 0003089 \quad 2405.7 \quad 2.1064 \mathrm{e}-60 \quad .1160 \quad 1.7160-05$ $.0002778 \quad 2668.4 \quad 1.79180-06 \quad .1107 \quad 1.3890 \times-5$ $.0002531 \quad 2920.7 \quad 1.72020-06 \quad .154 \quad 1.2660-05$ $.0002331 \quad 3163.9 \quad 1.520 \mathrm{~g}$ - $06 \quad \div 1001 \quad 1.0600-0$ $.0002164 \quad 3399.2 \quad 1.6451 \mathrm{e}-06 \quad .0948 \quad 1.082 \mathrm{C}-\sigma$ $.0002023 \quad 3627.3 \quad 1.48540-06 \quad .0895 \quad 9.1970006$ $.0001902 \quad 3848.9 \quad 1.48900-06 \quad .0842 \quad 8.6460-06$ $.0001797 \quad 4064.7 \quad 1.5070-06 \quad .0789 \quad 8.1670-06$ $.0001704 \quad 4275.1 \quad 1.20670-06 \quad .0736 \quad 6.085 @-06$ $.0001622 \quad 4480.5 \quad 1.24180-06 \quad .0683 \quad 5.7910-06$ $.0001547 \quad 4681.4 \quad 7.52310-07 \quad .0629 \quad 3.224 \mathrm{e}-06$ $.0001481 \quad 4877.9$ 9.01890-07 .0576 3.5260-06 $\because 0001421 \quad 5070.4 \quad 1.1817 巴-\infty \quad .0623 \quad 4.179 @-\infty$ $.0001366 \quad 5259.2 \quad 1.19880-06 \quad .0470 \quad 3.7950_{0} 06$ $.0001315 \quad 5444.5 \quad 7.35310-07 \quad .0416 \quad 2.0550-06$.00012685626 .3 4.35610.07 . 0363 1.0570.06

TABLE： 111 TEMP：70．0 ${ }^{\circ} \mathrm{C}$ CELL： C

SEED：BATCH E PREPARED

RUN NO：：R．E． 26
STIRRER SPEED：2000 R．P．M．
SIEVE FRACTION： $89-105 \mu$

CONCN：TOTAL CRYSTAL DIAMETER MEAN GROWTH RATE MEAN GROWTH MM／V TIME IASS INCREASE AREA CONSTANT SUPER－RATE MINS：（GRAMS）（CM）CM ${ }^{2}$ K $\left(M_{I N}{ }^{-1} \mathrm{CM}^{-2}\right)$ SATN．CM／MIN．

29．708	． 00000	1.953	．0004359	1715．7	6．08350－06	． 1265	
29.569	4．0000	2.394	．000 3 ）	171	6.08350	． 126	5．1込気
29．430	13.000	2.834	0.0003710	2010：0	2．40980－06	． 1212	2．0610．05
			.0003248	2289.7	1．99180－06	－1160	1．6240．－5
29．291	23：000	3.274	.0005536	2682． 4	1.740 e	． 1080	1．3180－0
29．012	44：000	4.150	．000536				
28.873	53：000	4.586		359．7		$\bigcirc 1001$	5
28.594	74.000	5.456	.0004319	3411.5	1．6079＠－	.0921	1．028＠－－5
27.4 万	184.00	8.912	.0013193	4460	$1.37110-06$.0656	5．9970．．06
		－ 335	.0001336	5370.7	9：93890－07	.0416	2．782＠－06
27.335	208．00	9.335	$\because 0001287$	5553.6	8．27460－07	$\because 0363$	2．0110－06
27.195	240.00	9.75	. .0001243	5733．2．	8．60000－07	.0310	1．7760－06
27.055	275.00	10．18	.0001200	5909．7	5.43620×07	.0256	9.2340 .07
26．014	340.00	10.60	． 001.00	590．7	$5 \cdot 3620$	，	
26.777^{4}	415.00	11．02	． 00001160	6082．9	5．79600－07	． 0203	734－07

TABLE: 112
 SEED: BATCH E PREPARED

RUN NO.: R.E. 27
STIRRER SPEED:2000 R.P.M.
SIEVE FRACTION: $89-105 \mu$

CONCN: TOTAL CRYSTAL DIAMETER MEAN GRONTH RATE MEAN GROWTH ${ }_{i 0} \mathrm{M} / \mathrm{V}$ TIME MASS INCREASE AREA CONSTANT SUPER- RATE MINS: (GRAMS) (CM) CM^{2} K $\left(\mathrm{MIN}^{-1} \mathrm{CM}^{-2}\right)$ SATN. CM/MIN. $33.294 \quad .00000 \quad 1.960$ $29.708 \quad 23.670 \quad 13.72$ $29.430 \quad 27.250 \quad 14.57$ $28.594 \quad 44.000 \quad 17.12$ $28.454 \quad 45.750 \quad 17.54$ $28.315 \quad 51.000 \quad 17.95$ $28.175 \quad 56.000 \quad 18.37$ $\begin{array}{llll}28.035 & 61.500 & 18.79\end{array}$ $27.756 \quad 73.500 \quad 19.62$ $27.615 \quad 80.000 \quad 20.03$ 27.4 . $75 \quad 89.000 \quad 20.44$ $27.335 \quad 101.00 \quad 20.85$ $27.195 \quad 114.00 \quad 21.26$ $27.055 \quad 135.00 \quad 21.67$ $26.914 \quad 160.00 \quad 22.08$ $.0001946 \quad 7^{401.6} \quad 3.2208 @-06 \quad .1239 \quad 2.718 @-\sigma$ $.0005370 \quad 8023.2 \quad 2.32000 \cdots 06 \quad .1027 \quad 1.6030-05$.0000828 8558.2 4.20920-06 .0842 2.365@-0 .0000812 8704.7 1.4731@-06 $.0789 \quad 7.7330-06$.0000797 8849.7 1.6322@-06 .0736 7.9700-06 $.0000783 \quad 8993.3 \quad 1.57^{4} 70-06 \quad .0583 \quad 7.1150-06$ $.0001525 \quad 925.8 \quad 1.60140-06 \quad .0603 \quad 6.3540-06$ $.0000743 \quad 9416.2 \quad 1.66420-06 \quad .0523 \quad 5.713 @-06$ $.0000730 \quad 9554.6 \quad 1.31970-06 \quad .0470 \quad 4.0570 .06$ $.0000718 \quad 9691.7 \quad 1.10150-06 \quad .0416 \quad 2.993 @-06$ $. .0000707 \quad 9827.5 \quad 1.15100-06 \quad .0363 \quad 2.718 @-06$ $.0000695 \quad 9962.1 \quad 8.2489 @ \sim 07 \quad .0310 \quad 1.655 @ \cdots 06$ $.0000684 \quad 10095 \quad 8.27380-07 \quad .0256 \quad 1.3680-06$

TABLE: 113

SEED: BATCH E PREPARED

RUN NO:: R.E. 28
STIRRER SPEED:2000 R. Po. Mo
SIEVE FRACTION: $89-105 \mu$ CONCN: TOTAL CRYSTAL DIAMETER MEAN GROWTH RATE MEAN GROWTH MM/V TIME MASS INCREASE AREA CONSTANT SUPER- RATE MINS: (GRAMS) (CM) $\mathrm{CM}^{2} \mathrm{~K}\left(\mathrm{MIN}^{-1} \mathrm{CM}^{-2}\right)$ SATN: CM/MIN.
$27.623 \quad .00000 \quad 1.960$ $26.650 \quad 4.5000 \quad 4.992$ $26.371 \quad 7.0000 \quad 5.845$ $26.092 \quad 9.5000 \quad 6.695$ $25.534 \quad 14.500 \quad 8.390$ $25.254 \quad 18.000 \quad 9.230$ $25.114 \quad 20.000 \quad 9.648$ $24.974 \quad 22.500 \quad 10.07$ $24.834 \quad 25.250 \quad 10.48$ $24.693 \quad 27.500 \quad 10.90$ $24.413 \quad 32.000 \quad 11.73$ $24.132 \quad 37.000 \quad 12.56$ $23.991 \quad 41.000 \quad 12.97$ $23.850 \quad 44.000 \quad 13.38$ $23.569 \quad 52.000 \quad 14.20$ $23.428 \quad 58.000 \quad 14.61$ $23.287 \quad 63.000 \quad 15.02$ $23.146 \quad 67.500 \quad 15.42$ $23.005 \quad 71.000 \quad 15.83$ $22.864 \quad \overline{5} .500 \quad 16.24$
$.0021265 \quad 2486.2 \quad 1.25220-05 \quad .3446 \quad 2.3630-04$ $.0003988 \quad 3623.2 \quad 4.8603$ @-06 $\quad .3136 \quad 7.9760-05$ $.0003549 \quad 4054.2 \quad 4.54860-06 \quad .2998 \quad 7.0990-0$ $\because 0006163 \quad 4657.9 \quad 4.26310-06 \quad .2791 \quad 6.1630-05$ $.0002715 \quad 5237.0 \quad 2.92910-\infty+.2583 \quad 3.879 @-\sigma$ $.0001284 \quad 5512.4 \quad 2.53870-06 \quad .2479 \quad 3.2110-5$ $.0001242 \quad 5691.3 \quad 2.0248 @-06 \quad .2409 \quad 2.484 \mathrm{e}-05$ $.0001202 \quad 5867.4 \quad 1.83950-06 \quad .2340 \quad 2.1860-05$ $.0001165 \quad 6040.8 \quad 2.25170 \ldots 06 \quad .2271 \quad 2.5900-0$ $\because 0002233 \quad 6295.2 \quad 2.26710-06 \quad .2166 \quad 2.4810-0$ $.00021126627 .6 \quad 2.0734$ @-06 $\quad .2027 \quad 2.112 @-05$ $.0001014 \quad 6871.8 \quad 1.3184 \mathrm{C-06} \quad .1923 \quad 1.268 \mathrm{em} 0$ $.0000990 \quad 7031.3 \quad 1.7835 @-06 \quad .1853 \quad 1.6490-0$ $.0001912 \quad 7266.5 \quad 1.3735 @-06 \quad .1748 \quad 1.195 @-5$ $.0000923 \quad 7498.9 \quad 9.4415 @-07 \quad .1644 \quad 7.688 @-06$ $.0000903 \quad 7651.0 \quad 1.1603 @-06 \quad .157^{4} \quad 9.0260-06$ $.0000884 \quad 7801.5 \quad 1.32390-06 \quad .1504 \quad 9.8170 \ldots 06$ $\because 0000865 \quad 7950.3 \quad 1.75260 \ldots 06 \quad .1434 \quad 1.2360 \cdots 05$ $.0000848 \quad 8097.6 \quad 1.40770 .06 \quad .1364 \quad 9.4230-06$

TABLE: 113 (CONTD.) RUN NO.: R.E. 28 (CONTD. $\}$

$22.864 \quad 75.500 \quad 16.24$ $22.722 \quad 82.000 \quad 16.64$ $22.581 \quad 88.000 \quad 17.05$ $22.440 \quad 95.000 \quad 17.24$ $22.298 \quad 103.50 \quad 17.85$ $22.157 \quad 116.50 \quad 18.25$ $22.015 \quad 126.00 \quad 18.66$ $21.873 \quad 137.00 \quad 19.06$ $21.590 \quad 163.00 \quad 19.86$ $21.448 \quad 185.00 \quad 20.25$ $21.306 \quad 215.00 \quad 20.65$ $21.164 \quad 240.00 \quad 21.05$ 21.021 $270.00 \quad 21.44$ $\because 00008328243.4 \quad 1.00970-06 \quad .1294 \quad 6.3970 .06$ $\begin{array}{llllll}.0000816 & 8387.7 & 1.13710-06 & . .1224 & 6.798 \Theta-06\end{array}$ $.0000801 \quad 8530.6 \quad 1.01710-06 \quad .1154 \quad 5.719 @-06$ $\because 0000786 \quad 8672.1 \quad 8.77690-07 \quad .1084 \quad 4.6250-06$ $.000077^{2} 8812.3 \quad 6.04150-07 \quad .1014 \quad 2.9700-06$.0000 万59 8951.2 8.7493 -07 . $09444 \quad 3.9940-06$ $.00007469088 .9 \quad 8.04460-07 \quad .0874 \quad 3.3910-06$ $.0001456 \quad 9292.7 \quad 7.59420 .07 \quad .0768 \quad 2.8000006$ $.00007109494 .7 \quad 5.0853 @-07 \quad .0663 \quad 1.6140-06$ $.0000699 \quad 9627.6 \quad 4.11760-07 \quad .0592 \quad 1.1660 .06$ $.0000689 \quad 9759.5 \quad 5.5364 \mathrm{Q}-07 \quad .0522 \quad 1.377 巴-06$ $.0000677 \quad 9890.2 \quad 5.26810 \ldots 07 \quad .0452 \quad 1.129 @-06$

CONCN：TOTAL CRYSTAL DIAMETER MEAN GRONTH RATE MEAN GRONTH畚／V TIME MASS INCREASE MINS．（GRAMS）（CM）

CONSTANT
K $\left(\right.$ MIN $\left.^{-1} \mathrm{CM}^{-2}\right)$ SUPER－RATE SATN．CM／MIN．
$27.137 \quad 1.0000 \quad 2.589$ $26.998 \quad 1.7500 \quad 3.019$ $26.859 \quad 2.500 \quad 3.449$ $26.719 \quad 3.6700 \quad 3.878$ $26.580 \quad 4.5000 \quad 4.306$ $26.441 \quad 5.5000 \quad 4.733$ $26.302 \quad 6.5000 \quad 5.160$ $26.162 \quad 7.6700 \quad 5.585$ $26.023 \quad 8.500 \quad 6.010$ $25.883 \quad 9.8300 \quad 6.434$ $25.743 \quad 11.250 \quad 6.857$ $25.604 \quad 12.500 \quad 7.279$ $25.464 \quad 14.250 \quad 7.700$ $25.324 \quad 15.670 \quad 8.121$ $25.184 \quad 17.250 \quad 8.541$ $25.044 \quad 19.000 \quad 8.959$ $24.904 \quad 21.000 \quad 9.378$ $24.764 \quad 23.000 \quad 9.795$ $24.623 \quad 25.000 \quad 10.21$ $24.343 \quad 28.750 \quad 11.04$ $24.202 \quad 30.250 \quad 11.46$ $24.061 \quad 32.000 \quad 11.87$
.005717 .0003412 $.000302224 .07 .48 .56310-06$ $.0002724 \quad 2665.7 \quad 8.5873 \mathrm{~B}-06$ $.0002486 \quad 2914.2 \quad 8.89900 . .06$.00022933153 .96 .97890 .06 $.0002131 \quad 3386.0 \quad 6.65000-06$ $.00019943611 .2 \quad 5.45500-06$.00018763830 .2 5．7062＠－06 $.000177^{4} \quad 4043.6 \quad 5.53880-06$ $.0001684 \quad 4251.8 \quad 4.10790-06$ $.0001604 \quad 4455.2 \quad 4.56920-06$ $.0001532 \quad 4654.3 \quad 3.20740-06$ $.0001467 \quad 4849.3 \quad 3.8977^{0-06}$ $.0001409 \quad 5040.5 \quad 3.46500-06$.00013565228 .1 3．1033＠－06 $.0001307 \quad 5412.42 .70110-06$.0001263 5593．6 2．693 e－06 $.0001221 \quad 5771.9 \quad 2.6931 \mathrm{C}-06$ $.00023326033 .2 .2 .88580-06$.0001114 6290．6 3．6397＠－06 ． 2027 3．712＠-05 $.00010826458 .4 \quad 3.1484 \mathrm{e}-06 \quad .1958 \quad 3.093 \mathrm{C}-5$
.3495 2．8590－04 $.3412 \quad 2.274 \mathrm{C}-04$.3343 1．511 0 －04 $.32741 .4800-04$.32051 .498 e－04 .3136 1．146＠－04 .3067 1．066e－04 ． 2998 8．522＠－の ． 2929 8．687＠－ 5 .2860 8．212＠～0 .2791 5．9280～0 .2721 6．414＠－5 .26524 .377 ＠－ 5 $\because 2583$ 5．1670～ち .2514 4．459＠～の $.24443 .8740 \sim 5$.23 3 3．2680－5 .2303 3．158＠－05 .2236 3．03＠－क .2132 3．109＠－0

TABLE ：114（CONTD．）
RUN NO．：R．E． 2 （CONTD．）
$.0001536623 .9 \quad 1.857^{80}-06 \quad .1888 \quad 1.7550-0$ $.0001026 \quad 6787.1 \quad 1.8836 @-06 \quad .1818 \quad 1.710 @-$－ 5 $.0001000 \quad 6948.3 \quad 2.29720 \ldots 06 \quad .1748 \quad 2.0000-5$ $.00009767107 .4 \quad 1.4628 @ \sim 06 \quad .1679 \quad 1.2200-0$
 $.0001843 \quad 7496.3 \quad 1.45960-06 \quad .1504 \quad 1.084$＠－ 5 $.0000891 \quad 7725.4 \quad 1.4383 @ \cdots \quad .1399 \quad 9.895 @-06$ $.0000872 \quad 7875.4 \quad 8.91570-07 \quad .1329 \quad 5.812 @-06$ $.00008548023 .9 \quad 1.9805 \mathrm{CO} \quad .1259 \quad 1.2200 \mathrm{~m}$ $.0000837 \quad 8170.8 \quad 1.2020-06 \quad .1189 \quad 6.9740-06$ $0000821 \quad 8316.1 \quad 8.86340-07 \quad .1119 \quad 4.8270-06$ $.00008084460 .0 \quad 1.1293$ —－06 $\quad .1049 \quad 5.750 @-06$ $=0000790 \quad 8602.4 \quad 1.28250-06 \quad .0979 \quad 6.0770-06$ $.0001538 \quad 8813.1 \quad 9.14100-07 \quad .0874 \quad 3.845 \varrho-06$ $.0000748 \quad 9021.7 \quad 7.2482 \mathrm{C}-07 \quad .0768 \quad 2.673$＠－06 $.0000736 \quad 9158.7 \quad 6.8811 巴-07 \quad .0698 \quad 2.2990-06$ $.0000723 \quad 9294.5 \quad 6.0368 巴 \sim 07 \quad .0628 \quad 1.808 \varrho \ldots 06$ $.00007119429 .0 \quad 6.0978 巴 \ldots 07 \quad .0557 \quad 1.616 \mathrm{e}-06$.0000699 9562．3 5．5893＠－07 ． $0487 \quad 1.5200-06$ $.0000688 \quad 9694.4 \quad 6.99950-07 \quad .0416 \quad 1.3760-06$ $.00006769825 .1 \quad 4.62610-07 \quad .0346 \quad 7.506 @ \ldots 07$ $.0000664 \quad 9954.5 \quad 3.6964 \mathrm{C}-07 \quad .027 \quad 4.743 巴-07$ $20.666 \quad 355.00 \quad 21.53$
DIAMEIEK MLAIV
INCREASE AREA
（CM）
（CM） CM^{2}

GROWTH PATE CONSTANT $K\left(M I N^{-1} C^{-2}\right)$
$\begin{array}{ccc}\begin{array}{c}\text { CONCN．} \\ \text { sMM／V }\end{array} & \begin{array}{l}\text { TOTAL } \\ \text { TIME }\end{array} & \begin{array}{c}\text { CRYSTAL } \\ \text { MASS } \\ \text { MINS }\end{array} \\ \text {（GRAMS）}\end{array}$ $23.921 \quad 35.000 \quad 12.28$ $23.780 \quad 38.000 \quad 12.69$ $23.639 \quad 40.500 \quad 13.10$ $23.498 \quad 44.500 \quad 13.51$ $23.358 \quad 48.000 \quad 13.92$ $23.07565 .500 \quad 14.74$ $22.934 \quad 61.000 \quad 15 \% 15$ $22.793 \quad 68.500 \quad 15.55$ $22.652 \quad 72.000 \quad 15.96$ $22.510 \quad 78.000 \quad 16.36$ $22.369 \quad 86.500 \quad 16.76$ $22.227 \quad 93.500 \quad 17.17$ $22.086 \quad 100.00 \quad 17.57$ $21.802 \quad 120,00 \quad 18.37$ $21.661 \quad 134.00 \quad 18.77$ $21.5519 \quad 150.00 \quad 19.17$ $21.377 \quad 170.00 \quad 19.56$ $21.235 \quad 192.00 \quad 19.96$ $21.093 \quad 215.00 \quad 20.35$ $20.950 \quad 240.00 \quad 20.75$ $20.808 \quad 28.00 \quad 21.14$ EQUILIBRIUM CONCENTRATION $=20.181$

TABLE: 115
 SEED: BATCH E PREPARED

RUN NO.: R.E. 30
STIRRER SPEED:2000 R.P.M.
SIEVE FRACTION: $89-105 \mu$

CONCN. TOTAL CRYSTAL DIAMETER MEAN GROWTH RATE MEAN GROWTH GGM/V TIME MASS INCREASE AREA CONSTANT SUPER- RATE MINS. (GRAMS) $\quad(C M) \quad \mathrm{CM}^{2} \quad K\left(M_{N^{-1}} \mathrm{CM}^{-2}\right)$ SATN. CM/MIN.
27.4. 1.44 . . . 00000 . 1.972 27.276 . $50000 \quad 2.404$ $27.137 \quad 1.6700 \quad 2.835$ $26.998 \quad 3.0000 \quad 3.265$ $26.859 \quad 4.5000 \quad 3.695$ $26.580 \quad 6.2500 \quad 4.552$ $26.441 \quad 7.2500 \quad 4.979$ $26.302 \quad 9.0000 \quad 5.405$ $26.162 \quad 10.250 \quad 5.830$ 26.CR3 $\quad 11.500 \quad 6.255$ $25.464 \quad 16.50 \quad 7.950$ $25.784 \quad 19.750 \quad 8.790$ $24.904 \quad 23.000 \quad 9.628$ $24.623 \quad 26.500 \quad 10.46$ $24.202 \quad 32.750 \quad 11.71$ $24.051 \quad 34.50 \quad 12.12$ $23.921 \quad 37.000 \quad 12.53$ $23.780 \quad 40.500 \quad 12.94$ $23.639 \quad 42.000 \quad 13.35$ $23.498 \quad 45.000 \quad 13.76$
$.0006483 \quad 1129.0 \quad 3.43370-5 \quad .3550 \quad 6.483 @-04$ $.0005619 \quad 1299.4 \quad 1.30090-5 \quad .3481 \quad 2.4010-04$ $.0004982 \quad 1462.3 \quad 1.03800-05 \quad .3412 \quad 1.873 巴-04$ $.0004491 \quad 1618.5 \quad 8.4913 @-06 \quad .3343 \quad 1.4970-04$ $.0007892 \quad 1840.5 \quad 1.32210-5 \quad .3240 \quad 2.2550-04$ $.0003515 \quad 2055.2 \quad 1.07090-5 \quad .3136 \quad 1.7580 \cdots 04$ $.0003290 \quad 2191.8 \quad 5.87060-06 \quad .3067 \quad 9.3990-05$ $.0003095 \quad 2324.6 \quad 7.93190-06 \quad .2998 \quad 1.238 @-04$ $.00029262454 .1 \quad 7.6948 巴-06 \quad .2929 \quad 1.1700-04$ $.0010404 \quad 2760.9 \quad 6.9377$ @-06 $.2756 \quad 9.9090-05$ $.0004563 \quad 3117.8 \quad 5.81970-06 \quad .2548 \quad 7.6050-05$ $.0004240 \quad 3342.2 \quad 5.3580-06 \quad .2409 \quad 6.5220-05$ $.00039653559 .1 \quad 4.91490-06 \quad .2271 \quad 5.665 @-05$ $.005521 \quad 3820.2 \quad 4.17290-06 \quad .2097 \quad 4.4170 \cdots 5$ $.00017354024 .6 \quad 4.4208 @-06 \quad .1958 \quad 4.339 @-05$ $.0301690 \quad 4123.9 \quad 3.97870-06 \quad .1888 \quad 3.756$ @- 5 $.00016484221 .8 \quad 2.59560-06 \quad .1818 \quad 2.3540 \cdots 05$ $.0001608 \quad 4318.6$ 6.16020-06 $\quad .1748 \quad 5.359 @-5$ $.0001570 \quad 4414.1 \quad 3.14030-06 \quad .1679 \quad 5.6160 \sim 05$

TABLE: 11 (CONTD.)

CONCN: TOTAL CRYSTAL DIAMETER MEAN
TMM V TIME MASS INCREASE AREA MINS: (GRAMS) (CM) CM^{2}

RUN NO: :R.E. 30 (CONTD.)

ABLE: 117 (CONTD.)					RUN NO. :R.E. 30 (CONTD.)		
CONCN. s.M/V	TOTAL TIME MINS -	CRYSTAL MASS (GRAMS)	DIAMETER INCREASE (CM)	$\begin{gathered} \text { MEAN } \\ \text { AREA } \\ C M^{2} \end{gathered}$	GROWTH RATE CONSTANT $K\left(M I N^{-1} \mathrm{CM}^{-2}\right)$	MEAN SUPERSATN.	GROWTH RATE CM/MIN.
$23.498 \quad 45.000$							
23.358	48.500	14.17	0001534	50	2. $5120-06$	-1609	2.1910-05
23.217 52.000		14.58	-.0001500	4601.9	2:8193@-06	. 1539	2.1420-0
		. 0002907	4739.7	2.42250-06	. .1434	$1.7100-5$	
22.934	60.500		15.39	48万.9	2.40010-06	. 1329	$1.563 \mathrm{e}-5$
22.793	65:000	15:80	.0001407				1.623@-5
22.652	69:250	16.20	. 0001380	4965.3	2.63570-05	. 1259	
22.369	83.000		. 0002680	5097.3	1.73470-06	$\bigcirc 1154$	9.7470 .06
		17.01	.0001302	5228.0	2.1320@-06	. 1047	1.0850-0
22.227	89.000	17.	. 0001278		1.49950-06	. 0979	7.0990-06
22.086	98.000	17.81	$.0001255$	5313.9	1.30160-0	.0909	
21.944	109.00	18.22	\because	5483.0	1.52880-06	. 0838	6.1630
21.802		18.6					6.163@-06
2	147:00	19.41	. 00024.04	5607.5	1.22530-06	. 0733	4.293@-.06
			.0002324	5771	1.25340-06	. .5992	$3.5220-06$
21.23	180.00	20.20	.0001133	5892.4	1.89190-06	. 0487	4.35,90-06
20.950	193:00	20.60	.0001115	5972.1	$8.87670-07$. 0416	1.7420-06
	225:00	20.99					
20.808	260,00	21.38	. .0001080	6129.1	1.05060-06	.0346	1.5670-06
						. .02 万	$1.3498-06$
$\begin{aligned} & 20.666 \\ & 20.523 \end{aligned}$	$\begin{aligned} & 300.00 \\ & 430.00 \end{aligned}$	21.78$22.16$. 000109	6206.4	$4.31370-07$. 025	$4.075 \mathrm{C}-07$

TABLE: 116
TEMP: $70.0^{\circ} \mathrm{C}$ CELL: C -ancouse SEED: BATCH P.EPREP

RUN NO: :R.P.E. 9
STIRRER SPEED: 2000 R.P.M.
SIEVE FRACTION: $89-105 \mu$ CONCN- TOTAL CRYSTAL DIAMETER MEAN GROWTH RATE MEAN GROWTH gMM/V TIME MASS INCREASE AREA CONSTANT SUPER- RATE MINS: (GRAMS) (CM) CM^{2} K $\left(\mathrm{MIN}^{-1} \mathrm{CM}^{-2}\right)$ SATN: $\mathrm{CM} / \mathrm{MIN}$.
27.461 .000001 .957 $27.3431 .5000 \quad 2.326$ $27.195 \quad 8.0000 \quad 2.7 \%$ $27.047 \quad 22.000 \quad 3.243$ $26.899 \quad 37.000 \quad 3.700$ $26.75148 .000 \quad 4.155$ $26.307 \quad 98.000 \quad 5.513$ $26.159 \quad 114.00 \quad 5.961$ $26.012 \quad 135.00 \quad 6.408$ $25.864 \quad 175.00 \quad 6.853$ $25.716 \quad 215.00 \quad 7.296$ $25.568 \quad 255.00 \quad 7.737$ $25.420 \quad 300.00 \quad 8.176$ $25.273 \quad 460.00 \quad 8.611$
$.0005633 \quad 1108.6 \quad 2.70740-0 \quad .1062 \quad 1.878$ @ - 04 $.0006118 \quad 1272.3 \quad 7.16740-06 \quad .1008 \quad 4.7050-05$ $.0005363 \quad 1446.3 \quad 3.1114 \mathrm{Q}-06 \quad .0949 \quad 1.9150-05$.0004793 1612.4 2.7794@-06 .0889 1.598@-0 $.0004347 \quad 1771.8 \quad 3.69720-06 \quad .0829 \quad 1.9760-0$ $.0011130 \quad 2069.0 \quad 2.45240-06 \quad .0710 \quad 1.1130-05$.00032222356 .7 2.6834@-06 .590 1.0070.-5 $.0003036 \quad 2491.9 \quad 2.1510 @-06 \quad .0531 \quad 7.228 @-06$ $.0002870 \quad 2623.5 \quad 1.20860-06 \quad .0471 \quad 3.588 \mathrm{e}-06$ $.0002724 \quad 2751.8 \quad 1.31970-06 \quad .0411 \quad 3.4050-06$ $.00025942877 .0 \quad 1.4771 @-06 \quad .0352 \quad 3.243 @-06$.0002477 2999.2 $1.51800-06 \quad .0292 \quad 2.752 @-06$.0002359 3118.5 5.1691@-07 . 0232 7.372@~07

TABLE: 117
TEMP:70.0 ${ }^{\circ} \mathrm{C}$ CELL:C
SEED: BATCH E PREPARED

RUN NO.: R.E. 31
STIRRER SPEED: 2000 R.P.M.
SIEVE FRACTION: $89-105 \mu$

CONCN. TOTAL CRYSTAL DIAMETER MEAN GRONTH RATE MEAN GROWTH $\%$ TIME MASS INCREASE AREA CONSTANT SUPER- RATE MINS: (GRAMS) (CM) CM^{2} K $\left(\mathrm{MIN}^{-1} \mathrm{CM}^{-2}\right)$ SATN. CM/MIN.
$29.708 \quad .00000 \quad 1.952$
$29.569 \quad 4.0000 \quad 2.393$ $29.430 \quad 15.000 \quad 2.833$ $29.291 \quad 27.000 \quad 3.273$ $\begin{array}{llll}29.152 & 38.000 & 3.711\end{array}$ $29.012 \quad 48.000 \quad 4.148$ $28.873 \quad 59.000 \quad 4.583$ $28.594 \quad 77.000 \quad 5.453$ $28.454 \quad 87.000 \quad 5.886$ $28.315 \quad 98.000 \quad 6.318$ $28.175 \quad 110.00 \quad 6.749$ $28.035 \quad 123.00 \quad 7.178$ $27.895 \quad 142.00 \quad 7.607$ $27.756 \quad 162.00 \quad 8.034$ $27.615 \quad 174.00 \quad 8.460$ $27.47 \quad 192.00 \quad 8.886$ $27.335 \quad 210.00 \quad 9.309$ $27.195 \quad 240.00 \quad 9.732$ $27.055 \quad 280.00 \quad 10.15$ $26.914 \quad 340,00 \quad 10.57$
$.0004361 \quad 1714.9 \quad 6.08630 \sim 06 \quad .1265 \quad 5.452 @-0$ $.0003711 \quad 2009.2 \quad 1.9724 \mathrm{C-06} \quad .1212 \quad 1.687$ @-0 $.0003249 \quad 2288.8 \quad 1.660$ @ $-06 \quad .1160 \quad 1.354 @-05$ $.00029022555 .71 .70070 \cdots 06 \quad .1107 \quad 1.319 @ \cdots 0$ $.0002631 \quad 2811.7 \quad 1.7869 @-06 \quad .1054 \quad 1.315 @-0$ $.0002413 \quad 3088.1 \quad 1.5735 @-06 \quad .1001 \quad 1.097 ల-05$ $.0004320 \quad 3409.9 \quad 1.87670-06 \quad .0921 \quad 1.2000-5$.0001953 3万1.0 1.6806@-06 .0842 9.764@-06 $.0001841 \quad 3968.8 \quad 1.54200-06 \quad .0789 \quad 8.3690-06$ $.0001743 \quad 4181.0 \quad 1.4395 @-06 \quad .0736 \quad 7.2640-06$.0001657 4388.0 1.3655@.06 . 0683 6.373@-06 $.00015804590 .4 \quad 9.6912 @ \ldots 07$. 0029 4.157 @ 06 $\begin{array}{llllll}.0001510 & 4788.3 & 9.6471 巴-07 & .0576 & 3.775 @-06\end{array}$.0001448 4982.2 1.7037@-06 . 5523 6.032@-06 $.0001391 \quad 5172.2 \quad 1.21900-06 \quad .0470 \quad 3.8630-06$ $.0001339 \quad 5358.7 \quad 1.32820-06 \quad .0416 \quad 3.7190-06$ $.0001290 \quad 5541.7 \quad 8.84520-07 \quad .0363 \quad 2.1500-06$ $.0001246 \quad 5721.5 \quad 7.54$ Б@-07 $.0310 \quad 1.557$ @-06 .0001203 5898.1 5.9008@-07 .0256 1.0029-06

TABLE: 118 TEMP: $30.0^{\circ} \mathrm{C}$ CELL.: C STIRRER SPEED:2000 R.P.M.
 SEED: BATCH P.E. PREPARED SIEVE FRACTION: $89-105 \mu$ CONCN. TOTAL CRYSTAL DIAMETER MEAN GROWTH RATE MEAN GROWTH ©M/V TIME MASS I:ICREASE AREA CONSTANT SUPER-RATE MINS. (GRAMS) (CM) CM $\mathrm{CM}^{2}\left(\mathrm{MIN}^{-1} \mathrm{CM}^{-2}\right)$ SATN. CM/MIN.
$12.251 \quad .00000 \quad 1.991$
$\begin{array}{lll}11.241 & 1.0000 & 4.760\end{array}$ $11.100 \quad 10.000 \quad 5.140$ $10.959 \quad 15.000 \quad 5.518$ $10.819 \quad 17.500 \quad 5.896$ $10.678 \quad 20,000 \quad 6.27^{4}$ $10.396 \quad 22.000 \quad 7.027$ $\begin{array}{lll}10.114 & 23.300 & 7.778\end{array}$ $9.5487 \quad 24.000 \quad 9.275$ $9.2658 \quad 24.500 \quad 10.02$ $8.8409 \quad 25.15 \mathrm{C} \quad 11.13$ $8.4154 \quad 26.000 \quad 12.23$
$8.1314 \quad 27.300 \quad 12.97$ 7.989 ? $28.500 \quad 13.33$

RUN NO.: R.P.E. 10
 $.00030282119 .92 .25700-06 \quad .4133 \quad 1.6820 \sim$ の $.0002860 \quad 2240.4$ 4.01900-06 . $3955 \quad 2.8600-0$.0002712 2358.0 8.0009@.06 .3777 5.424@-05 $.0002581 \quad 2473.1 \quad 8.0103 @-06 \quad .3598 \quad 5.163 @-$ $.0004830 \quad 2640.4 \quad 2.02920-5 \quad .3331 \quad 1.2070-04$ $.0004447 \quad 287.3 \quad 3.23480 \sim 0 \quad .2974 \quad 1.711 \mathrm{e}-04$ $.0008007 \quad 3166.4 \quad 1.3324 \mathrm{e}-04 \quad .2438 \quad 5.7190-04$ $.0003629 \quad 3465.8 \quad 1.0893 @-04 \quad .1902 \quad 3.629 @-04$ $.005079 \quad 3702.8 \quad 1.55390 \sim 04 \quad . .1454 \quad 3.9070-04$ $.0004703 \quad 3978.1 \quad 1.79050-04 \quad .0916 \quad 2.7670-04$. .0002953 4200.6 1.48420-04 .0467 1.1360 -044 $.0001427 \quad 4330.8 \quad 1.88680-04 \quad .0198 \quad 5.9450-0$

$27.248 \quad .00000 \quad .9920$
$27.137 \quad 1.0000 \quad 1.337$ $26.998 \quad 2.5000 \quad 1.768$ $26.859 \quad 4.2500 \quad 2.198$ $26.580 \quad 7.2500 \quad 3.057$ $26.441 \quad 8.7500 \quad 3.484$ $26.302 \quad 10.250 \quad 3.911$ $26.162 \quad 12.000 \quad 4.337$ $26.023 \quad 1 . .500 \quad 4.762$ $25.883 \quad 15,000 \quad 5 \cdot 186$ $25.604 \quad 19.000 \quad 6.033$ $25 .-464 \quad 20.500 \quad 6.454$ $25.324 \quad 22.000 \quad 6.875$ $25.184 \quad 23.250 \quad 7.295$ $25.044 \quad 25.000 \quad 7.714$ $24.904 \quad 27.000 \quad 8.132$ $24.764 \quad 29.000 \quad 8.550$ $24.623 \quad 31.250 \quad 8.967$ $24.483 \quad 33.500 \quad 9.382$ $24.343 \quad 35.750 \quad 9.797$ $24.202 \quad 38.000 \quad 10.21$
$24.061 \quad 40.000 \quad 10.62$ $23.921 \quad 42.750 \quad 11.04$
$.0006434 \quad 911.32 \quad 1.7326 \odot-5 \quad .3493 \quad 3.2170-04$ $.0006293 \quad 1161.8 \quad 1.1536 @-0 \quad .3431 \quad 2.098$＠－04 $.0005134 \quad 1419.5 \quad 8.2634 \mathrm{e}-06 \quad .3362 \quad 1.467 \mathrm{e}-04$ $.0008237 \quad 1769.2 \quad 7.9882 \mathrm{C}-06 \quad .3258 \quad 1.373 \mathrm{C}-04$ $\because 0003447 \quad 2099.7 \quad 6.95700-06 \quad .3155 \quad 1.1490-04$ $.0003134 \quad 2304.3 \quad 6.48460-06 \quad .3086 \quad 1.045 \mathrm{e}-04$ $.00028822500 .9 \quad 5.2417$＠－．06 ．3017 8．233＠ल $.0002673 \quad 2690.3 \quad 5.8212 @-06 \quad .2947 \quad 8.911 巴-05$ $\because 0002498 \quad 2873.6 \quad 5.58400-06 \quad .2878 \quad 8.3260-05$ $.0004570 \quad 3136.8 \quad 3.98420 .06 \quad .277^{4} \quad 5.713 \mathrm{~B} \omega 0$ $.0002103 \quad 3392.9 \quad 5.10590-06 \quad .2670 \quad 7.0090-05$ $.00020023557 .25 .0028 巴-06 \quad .2601 \quad 6.672$＠－ 5 $.00019123717 .6 \quad 5.9049 @ \sim 06 \quad .2531 \quad 7.6460 \cdots 5$ $.0001830 \quad 3874.6 \quad 4.1633 @-06 \quad .2462 \quad 5.2300-\sigma$.0001 万7 4028．4 $3.60760-06 \quad .2392 \quad 4.393 @-05$ $.0001690 \quad 4179.2 \quad 3.5835 @-06 \quad .2323 \quad 4.226 @-5$ $.0001629 \quad 4327.2 \quad 3.17310-06 \quad .2253 \quad 3.6210 \sim 05$ $\because 0001573 \quad 4472.5 \quad 3.16950-06 \quad .2184 \quad 3.4960-0$ $.0001521 \quad 4615.4 \quad 3.1743$－ $06 \quad .2114 \quad 3.3810-5$ $.0001474 \quad 4755.9 \quad 3.18720-06 \quad .2044 \quad 3.2750-\sigma$ $.0001429 \quad 4894.2 \quad 3.60930-06 \quad .1974 \quad 3.573 @ \cdots$ $.0001388 \quad 5030.5 \quad 2.6488 巴-06 \quad .1905 \quad 2.523 巴-\sigma$

TABLE ：119（CONTD．）RUN NO．：R．E． 3 A CONTD．$)$

$23.921 \quad 42.750 \quad 11.04$ $23.780 \quad 45.500 \quad 11.45$ $23.639 \quad 47.750 \quad 11.86$ $23.498 \quad 51.000 \quad 12.27$ $23.358 \quad 55.000 \quad 12.68$ $23.217 \quad 58.500 \quad 13.09$ $23.075 \quad 62.750 \quad 13.50$ $22.934 \quad 66.500 \quad 13.90$ $22.793 \quad 71.500 \quad 14.31$ $22.652 \quad 76.500 \quad 14.71$ $22.510 \quad 82.000 \quad 15.12$ $22.369 \quad 90.000 \quad 15.52$ $22.227 \quad 96.000 \quad 15.92$ 22．086 $108.50 \quad 16.33$ $21.944 \quad 118.00 \quad 16.73$ $21.802 \quad 127.50 \quad 17.13$ $21.561 \quad 140.00 \quad 17.52$ $21.519 \quad 160.00 \quad 17.92$ $21.377 \quad 180.00 \quad 18.32$ $21.235 \quad 200.00 \quad 18.72$ $20.950 \quad 257.00 \quad 19.50$ $20.808 \quad 295.00 \quad 19.90$
$.0001349 \quad 5164.7 \quad 2.6795$＠ $06 \quad .1835 \quad 2.4520 \cdots 05$ $\because 0001313 \quad 5297.1 \quad 3.32130-06 \quad .1765 \quad 2.9190-\sigma$ $.00012795427 .7 \quad 2.33780-06 \quad .1695 \quad 1.968 @-05$ $.0001247 \quad 5556.5 \quad 1.9363$ e～06 $\quad .1625 \quad 1.558 \mathrm{e}-5$ $.0001216 \quad 5683.7 \quad 2.2619 @-06 \quad .1555 \quad 1.738 巴-05$ $.0001187 \quad 5809.2 \quad 1.90940 .06 \quad .1485 \quad 1.3970-05$ $.0001160 \quad 5933.2 \quad 2.22480-06 \quad .1215 \quad 1.5470 \sim 05$ $.0001134 \quad 6055.8 \quad 1.72090-06 \quad .1345 \quad 1.134 \mathrm{C}-05$ $\because 0001110 \quad 6176.8 \quad 1.7809 @-06 \quad .1275 \quad 1.1100-0$ $.0001086 \quad 6296.6 \quad 1.68160 \sim 06 \quad .1205 \quad 9.876 巴 \cdots$ $.0001064 \quad 6414.9 \quad 1.2056 @-06 \quad .1135 \quad 6.6500 \sim 06$ $.0001043 \quad 6532.0 \quad 1.68370 \cdots \quad .1065 \quad 8.6900 \ldots 06$ $\because 00010226647.98 .50690 .07 \quad .0994 \quad 4.0890-06$ $.0001003 \quad 6762.5 \quad 1.1847 @-06 \quad .0924 \quad 5.277 巴-06$ $.0000984 \quad 68$ 万5：9 $1.2619 @ \cdots \quad .0654 \quad 5.1790-06$ $.0000966 \quad 6988.2 \quad 1.02910-06 \quad .0783 \quad 3.8640-06$ $.0000948 \quad 7099.4 \quad 6.960 \mathrm{C}-07 \quad .0713 \quad 2.371 \mathrm{Cu} 06$ $.00009327209 .4 \quad 7.61090 \sim 07 \quad .0543 \quad 2.3290-06$ $.0000915 \quad 7318.4 \quad 8.4277$＠－07 $\quad .072 \quad 2.2890-06$ $\because 0001785 \quad 7479.5 \quad 7.15080-07 \quad .0266 \quad 1.566 @ .06$ $.0000869 \quad 7639.1 \quad 6.76$ 万5＠－07 $\quad .0361 \quad 1.144 \mathrm{e}-06$

TABLE 219 (CONTD.) RUN NO.R.E. 32 (CONTD.)

CONCN. TOTAL CRYSTAL DIAMETER MEAN GROWTH RATE MEAN GROWTH © M / V TIME MASS INCREASE AREA CONSTANT SUPER- RATE MINS. (GRAMS) (CM) $\mathrm{CM}^{2} \mathrm{~K}\left(\mathrm{MIN}^{-1} \mathrm{CM}^{-2}\right)$ SATN. CM/MIN.

20.808	295.00	19.90	.000855	7743.9	$5.7491 \mathrm{e}-07$.0290	$7.768 \mathrm{e}-07$
20.666	350.00	20.29	.0008	.0000839	7847.5	$3.76680-07$.0219
20.523	460.00	20.68		$3.812 @-07$			

EQUILIBRIUM CONCENTRATION $=20: 153$
INITIAL SEED AREA $=794.7$

TABLE: 120
TEMP: $60.0^{\circ} \mathrm{C}$ CELL: C SEED : BATCHE YREPARED

RUN NO.: R.E. 33
STIRRER SPEED:2000 R.P.M.

SIEVE FRACTION:89-105 μ

CONCN. TOTAL CRYSTAL DIAMETER MEAN GRONTH RATE MEAN GROWTH \% d / V TIME MASS INCREASE AREA CONSTANT SUPER- RATE MINS: (GRAMS) (CM) $\mathrm{CM}^{2} \mathrm{~K}\left(\mathrm{MIN}^{-1} \mathrm{CM}^{-2}\right)$ SATN. CM/MIN.
$27.276 \quad .00000 \quad .4920$ $27.137 \quad 2.2500 \quad .9236$ $26.580 \quad 11.000 \quad 2.648$ $26.441 \quad 13.000 \quad 3.05$ $26.302 \quad 14.257 \quad 3.502$ $26.162 \quad 16.000 \quad 3.927$ $26.023 \quad 17.670 \quad 4.352$ $25.883 \quad 19.250 \quad 4.776$ $25.743 \quad 20.750 \quad 5.199$ $25.604 \quad 22.500 \quad 5.621$ $25.464 \quad 24.000 \quad 6.043$ $25.324 \quad 25.500 \quad 6.464$ $25.044428 .500 \quad 7.303$ $24.764 \quad 33.500 \quad 8.140$ $24.623 \quad 36.750 \quad 8.556$ $24.483 \quad 38.000 \quad 8.972$ $24.343 \quad 39.500 \quad 9.387$ $24.202 \quad 42.170 \quad 9.801$ $24.061 \quad 45.500 \quad 10.21$ $23.921 \quad 47.750 \quad 10.63$ $23.780 \quad 49.500 \quad 11.04$
$.0013932 \quad 532.22 \quad 1.6317 \mathrm{O}-0 \quad .3538 \quad 3.096 \mathrm{C}-04$ $.0027663 \quad 1085.9 \quad 8.66450-06 \quad .3365 \quad 1.5810-04$ $.0004556 \quad 1588.1 \quad 6.83720-06 \quad .3192 \quad 1.1390-04$ $.0004109 \quad 157.0 \quad 1.0113 \mathrm{e}-5 \quad .3123 \quad 1.644 \mathrm{e}-04$ $.0003755 \quad 1918.3 \quad 6.76990-06 \quad .304 \quad 1.0730-04$ $\because 0003468 \quad 2073.2 \quad 6.7204 \mathrm{e}-06 \quad .20,94 \quad 1.0380-04$ $.0003228 \quad 2222.6 \quad 6.7873$ @-06 . 2915 1.022@-04 .00030252367 .1 6.8806e-06 . $2845 \quad 1.008 \mathrm{e}-04$ $.0002850 \quad 2507.2 \quad 5.715 \mathrm{C}-06 \quad .2776 \quad 8.144 \mathrm{C}=0$ $.00026982643 .46 .48480-06 \quad .2706 \quad 8.9930-0$ $.0002564 \quad 2776.1 \quad 6.34120-06 \quad .2636 \quad 8.546 @-0$ $.00047892968 .36 .1814 \mathrm{C}-\infty 6 \quad .2532 \quad 7.981 巴-\sigma$ $.0004401 \quad 3216 .-4 \quad 3.6262 巴-06 \quad .2393 \quad 4.4010-05$
 $\because 0002002 \quad 3513.4 \quad 7.16950-06 \quad .2218 \quad 8.007 \mathrm{O}-0$ $.0001935 \quad 3628.1 \quad 5.97710-06 \quad .2148 \quad 6.4490-9$ $.0001873 \quad 3740.8 \quad 3.36810-06 \quad .2078 \quad 3.5070 \cdots 5$ $.0001815 \quad 3851.6 \quad 2.71560-06 \quad .2008 \quad 2.7250-5$ $.0001762 \quad 3960.7$ 4.0516@-06 . 1938 3.915@-5 .00017124068 .25 .2643 @ $06 \quad .1868 \quad 4.8910 \cdots 5$

CONCN: TOTAL CRYSTAL DIAMETER MEAN GROWTH RATE MEAN GROWTH GM/V TIME MASS INCREASE AREA CONSTANT SUPER- RATE MINS. (GRAMS) (CM) CM^{2}
$23.780 \quad 49.500 \quad 11.04$ $23.639 \quad 52$. 万0 11.45 $23.498 \quad 57.000 \quad 11.86$ $23.358 \quad 59.500 \quad 12.27$ $23.07 \quad 66.500 \quad 13.08$ $22.934 \quad 72.500 \quad 13.49$ $22.793 \quad 77.500 \quad 13.90$ $22.652 \quad 83.500 \quad 14.30$ $22.510 \quad 88.750 \quad 14.71$ $22.369 \quad 95.000 \quad 15.11$ $22.227 \quad 102.00 \quad 15.51$ $22.086 \quad 114.00 \quad 15.91$ $\begin{array}{llll}21.802 & 135.00 & 16.71\end{array}$ $21.661 \quad 149.00 \quad 17.11$ $21.519 \quad 162.00 \quad 17.51$ $21.235 \quad 200.00 \quad 18.30$ $21.093 \quad 230.00 \quad 18.70$ $20.550 \quad 265.00 \quad 19.09$ $20.808 \quad 30.00 \quad 19.48$ $20.666 \quad 360.00 \quad 19.87$ $20.523 \quad 740.00 \quad 20.26$
$.0001665 \quad 4174.1 \quad 2.87190-06 \quad .1798 \quad 2.5610-05$ $.0001621 \quad 4278.5 \quad 2.23060-06 \quad .1728 \quad 1.9070-05$ $.0001580 \quad 4381.5 \quad 3.86160-06 \quad .1658 \quad 3.1590-05$ $.0003048 \quad 4533.0 \quad 2.8505$ - $06 \quad .1553 \quad 2.1770-05$ $\because 0001469 \quad 4682.6 \quad 1.7273 \mathrm{Q}-06 \quad .1448 \quad 1.224 \mathrm{e} \cdots$ $.0001436 \quad 4780.5 \quad 2.13500-06 \quad .1377 \quad 1.4360=05$ $.000145 \quad 4877.1 \quad 1.83870-06 \quad .1307 \quad 1.1710-05$.0001376 4972.7 2.1794@-06 $\quad .1237 \quad 1.3100=05$ $.0001347 \quad 5067.2 \quad 1.90600-06 \quad .1166 \quad 1.0780 \cdots 05$ $.0001320 \quad 5160.7 \quad 1.7793 \mathrm{e} \sim 06 \quad .1096 \quad 9.4280-06$ $.00012945253 .1 \quad 1.0903 @-06 \quad .10265 .3900-06$ $.0002515 \quad 5389.6 \quad 1.3574 \mathrm{em} 06 \quad .0920 \quad 5.988$ @ -06 $.0001221 \quad 5524.6 \quad 1.1216 \odot-06 \quad .0814 \quad 4.362 @-06$ $.0001199 \quad 5613.2 \quad 1.3025 @-06 \quad .0743 \quad 4.613 @-06$ $.00023375744 .2 \quad 1.01990 \cdots \quad .0637 \quad 3.075 \mathrm{C} 06$ $\because 0001137 \quad 5873.9 \quad 7.56290-07 \quad .0531 \quad 1.8950-06$ $.0001117 \quad 5959.0 \quad 7.37850 \sim 07 \quad .0461 \quad 1.5960-06$ $\div 0001098 \quad 6043.3 \quad 7.5316 @ \sim 07 \quad .0390 \quad 1.3730-06$.0001079 6126.6 6.6144@-07 . $0319 \quad 9.811 @-07$ $.00010506208 .7 \quad 1.21820-07 \quad .0248 \quad 1.3810-07$

TABLE： 121
TEMP：60．0 $0^{\circ} \mathrm{C}$ CELL：C
SEED：BATCH E PREPARED

RUN NO：：R．E． 34
STIRRER SPEED ：2000 R．P．M．
SIEVE FRACTION：89－105 μ

CONCN：TOTAL CRYSTAL DIAMETER MEAN GROWTH RATE MEAN GROWTH \％M／V TIME MASS INCREASE AREA CONSTANT SUPER－RATE MINS：（GRAMS）（CM）CM ${ }^{2}$ K $\left(M_{N}{ }^{-1} \mathrm{CM}^{-2}\right)$ SATN．CM／MIN．
$25: 743: 00000 \quad 9950$ $25.604 \quad 5.0000 \quad 1.423$ $25.464 \quad 12.500 \quad 1.851$ $25.324 \quad 19.500 \quad 2.277$ $25.184 \quad 27.000 \quad 2.703$ $25.044 \quad 31.000 \quad 3.127$ $24.904 \quad 37.000 \quad 3.551$ $24.764 \quad 44.000 \quad 3.974$ $24.623 \quad 50.000 \quad 4.396$ $24.483 \quad 54.500 \quad 4.817$ $24.343 \quad 59.000 \quad 5.238$ 24．202 65：000 $\quad 5.657$ $24.061 \quad 70.000 \quad 6.076$ $23.921 \quad 75.000 \quad 6.493$ $23.780 \quad 80.500 \quad 6.910$ $23.639 \quad 87.000 \quad 7.326$ $23.358 \quad 102.00 \quad 8.156$ $23.217 \quad 108.00 \quad 8.569$ $23.075 \quad 117.50 \quad 8.982$
$.00077^{4} 7 \quad 940.45 \quad 5.2744 @-06 \quad .2812 \quad 7.747 @-0$ $.005968 \quad 1214.6 \quad 2.79340-06 \quad .2742 \quad 3.979 巴-05$ $.0004927 \quad 1466.7 \quad 2.5446 \mathrm{e}-06 \quad .2672 \quad 3.519 巴-\sigma$
 $.0003738 \quad 1923.8 \quad 3.5859 @-06 \quad .2533 \quad 4.6720-5$ $.0003361 \quad 2134.8 \quad 2.2167 巴 \cdots \quad .06 \quad .2463 \quad 2.8000 \sim 0$ $.0003063 \quad 2336.6 \quad 1.78760-06 \quad .2393 \quad 2.1880-05$ $.0002822 \quad 2530.5 \quad 1.98480-06 \quad .2323 \quad 2.352 @-\sigma$ $.0002623 \quad 2717.6 \quad 2.54210-06 \quad .2253 \quad 2.9140-\infty$ $\because 0002454 \quad 2898.7 \quad 2.46110-06 \quad .2183 \quad 2.7260-05$ $.0002308 \quad 3074.5 \quad 1.79900-06 \quad .2113 \quad 1.9240 \cdots 0$ $.0002182 \quad 3245.4 \quad 2.11650-06 \quad .2043 \quad 2.182 @-\sigma$ $.0002072 \quad 3411.9 \quad 2.059 \mathrm{O}-06 \quad .1972 \quad 2.072 \mathrm{O}-05$ $\div 0001973 \quad 3574.4 \quad 1.87790-06 \quad .1902 \quad 1.7940-5$ $.0001885 \quad 3733.2 \quad 1.585$－ $06 \quad .1832 \quad 1.4500-05$ $.00035443964 .2 \quad 1.3750 .06 \quad .1727 \quad 1.1810-05$ $.00016694190 .5 \quad 1.72670 .06 \quad .1621 \quad 1.3910 .0$ $.0001609 \quad 4337.0 \quad 1.10210 \ldots 06 \quad .1551 \quad 8.468 \mathrm{e}-06$

CONCN: $\% \mathrm{M} / \mathrm{V}$	TOTAL TIME MINS.	$\begin{aligned} & \text { CRYSTAL } \\ & \text { MASS } \\ & \text { (GRAMS) } \end{aligned}$	DIAMETER increase (CM)	MEAN AREA CM^{2}	GROWTH RATE CONSTANi K $\left(\right.$ MIN $\left.^{-1} \mathrm{CM}^{-2}\right)$	MEAN SUPERSATN:	GROWTH RATE CM/MIN.
23.075	117.50	8.982	. 00001554	4480.9	1.4162@-06	-1480	1.0360-05
	125	9.39	, 0001503	4622.4	$9.83370-07$:1410	6.832@-66
22.793	136	9.804	.00014	4761.5	$1.10600 \sim$.1339	2790-66
22.	14	10.21					
			.0001412	4898.4	1.03220-06	.1269	6.4180-06
			.0001371	5033.3	8.3626@-07	. 1198	$4.8960-06$
			-0001333	5166.1	8.6626@-07	. 1128	4.7590-06
22	0	11.44					
22.086	197.00	11.84			1.521@-06	.157	--4060-06
			.0001263	5426.3	7.77^{410-07}	. 0986	3.716e-06
			. 0002433	5616.1	6.6718@-07	. 0880	2.8290 .06
			. 00001172	5803.5	$6.858 \mathrm{e}-07$	$\because 0774$	$2.5470-06$
	280.00	13.46					
21.377	307.00	13.8	.0001144	5925-9	6.3022@-07	.0703	2.1190-06
21.235	340.00	14.26	.	6046.8	5.62370-07	.0632	1.6940~06
			-0001093	6166.2	5.86100-07	. 0561	.5610-6
			$\bigcirc 0001059$	6284.1	5.76540-07	- 0490	1.336@-06
0.95		15					7-4660-07
20.808	48.00	15.45	.0001045	6400.5	$3.78630-07$. 0420	

TABLE: 122 TEMP $\%=0.0^{\circ} \mathrm{C}$ CELL: C SEED: BATCH E PREPARED

RUN NO: :R.E. 35
STIRRER SPEED:2000 R.P.M.
SIEVE FRACTION:89-105 μ

CONCN. TOTAL CRYSTAL DIAMETER MEAN GROWTH RATE
gM/V TIME MASS INCREASE MINS: (GRAMS)

DIAMETER
INCREASE
(CM)

AREA
C^{2}

GROWTH RATE CONSTANT K $\left(M_{I N}{ }^{-1} \mathrm{CM}^{-2}\right)$

MEAN GROWTH SUPER- RATE SATN. CM/MIN.
$25.687 \quad .00000 \quad .-4900$ $25.604 \quad 6.5000 \quad .7469$ $25.464 \quad 22.000 \quad 1.174$ $25.324 \quad 31.500 \quad 1.601$ $25: 184 \quad 39.000 \quad 2.026$ $24.904 \quad 50.000 \quad 2.876$ $24.623 \quad 64.000 \quad 3.722$ $24.483 \quad 69.000 \quad 4.143$ $24.343 \quad 74.000 \quad 4.563$ $24.202 \quad 79.000 \quad 4.983$ $24.061 \quad 84.500 \quad 5.401$ $23.780 \quad 94.000 \quad 6.237$ $23.498 \quad 106.00 \quad 7.069$ $23.217 \quad 118.00 \quad 7.898$ $23.05 \quad 123.50 \quad 8.310$ $22.934 \quad 131.00 \quad 8.722$ $22.793 \quad 142.00 \quad 9.132$ $22.510 \quad 162.00 \quad 9.952$ $22.369 \quad 175.00 \quad 10.36$
$.0009165 \quad 477.65 \quad 4.8172$ @ $-06 \quad .2798 \quad 7.0 @-05$ $.0010601 \quad 686.86 \quad 2.39010 \ldots 06 \quad .2742 \quad 3.4200-\sigma$ $.0007860 \quad 920.75 \quad 2.9866 \mathrm{e}-06 \quad .2672 \quad 4.1370-05$ $.0006378 \quad 1130.7 \quad 3.1649 @-06 \quad .2603 \quad 4.252 \varrho-05$ $\because 0010210 \quad 1412.1 \quad 3.6044 \mathrm{C}-06 \quad . \quad 2498 \quad 4.6410 \cdots 05$ $. .0008162 \quad 1756.4 \quad 2.4145 @-06 \quad .2358 \quad 2.915 @ \cdots$ $.0003571 \quad 1996.1 \quad 3.11490-06 \quad .2253 \quad 3.5710-05$ $.0003314 \quad 2146.5 \quad 2.99130-06 \quad .2183 \quad 3.3140 \cdots$ $.0003097 \quad 2291.7 \quad 2.89620-06 \quad .2113 \quad 3.0970-5$ $.0002912 \quad 2432.4 \quad 2.56710-06 \quad .2043 \quad 2.6470-05$ $.0005368 \quad 2634.9 \quad 2.89550-06 \quad .1937 \quad 2.8250-05$ $.0004865 \quad 2894.8 \quad 2.25280-06 \quad .1797 \quad 2.0270 \cdots 05$ $.0004462 \quad 3143.0 \quad 2.25370-06 \quad .1656 \quad 1.8590-05$ $.0002100 \quad 3323.2 \quad 2.4844 \mathrm{@}-06 \quad \div 1551 \quad 1.909 巴-\sigma$ $.0002025 \quad 3439.8 \quad 1.8449 @-06 \quad .1480 \quad 1.350$ @ 0 $\because 0001955 \quad 3554.2 \quad 1.2789 @-06 \quad .1410 \quad 8.888 @-06$ $.0003727 \quad 3721.6 \quad 1.2548 \mathrm{e}-06 \quad \div 1304 \quad 9.317 \mathrm{e}-06$ $\because 000177^{6} \quad 3886 .-2 \quad 1.16640 \times 06 \quad \div 1198 \quad 6.832 @-06$

TABLE :122 (CONTD.)
 RUN NO. 8 R.E. 35 (CONTD.)

EQUILIBRIUM CONCENTRATION $=20.039$
INITIAL SEED AREA $=392.5$

TABLE: 123 TEMP:60.0 $0^{\circ} \mathrm{C}$ CELL:C SEED: BATCH E PREPARED

RUN NO: : R.E. 36

STIRRER SPEED:2000 R.P.Mo

SIEVE FRACTION:89-105 μ

CONCN: sMM/V	TOTAL TIME MINS.	CRYSTAL MASS (GRAMS)	DIAMETER INCREASE (CM)	MEAN AREA CM^{2}	GROWTH RATE CONSTANT $K\left(M I N^{-1} \mathrm{CM}^{-2}\right)$	MEAN SUPERSATN:	GROWTH RATE CM/MIN.

24.258	. 00000	. 9920					
	11.000	1.162	.0003375	83.31	1.41890-06	. 2109	1.5340-0
	11.000	1.162	.0006872	1048.7	9.85520	.2060	1.041
24.061	44.000	1.586					
23.921	69.000	2.010		1311			
			$\bigcirc 000$	155	2.6199@-	-1919	$2.5580-0$
			. 00004003	1781.7	7.91110-07	. 1849	7.412@-06
23.639	105.00	2.853	.0003562	1997.2	1.52460 -06	-1779	1.3700-5
23.498	118.00	3.273	.0003221	2202.5	1.1702@-06	-1708	1.0
23.358	134.00	3.692					
23.217	148:00	4.111	.0002950	2399.3	1.28120	-1638	54¢-¢
23.217			.0002728	2588.7	1.2415@-06	. 15	$9.7420-06$
23.075	162.00		.000254	2771-7	1.06300-06	.1497	7.9420.-06
22.934	17	4.944	-0002383	2948.9	1.11910-06	.1426	$7.9430-06$
22.793	193.00	5.359	\%0002246	3121.0	7.25900-07	-1356	4.882@-06
飞..652	216.00	5.773	.0004150	3369.1	8.61810-07	\%1250	5-3210-06
22.369	255.00	6.599	. 0001926	3611.1	5.90810-07	-1144	3.3200
22. 2227	284.00	7.010					$4.846 \mathrm{C-C6}$
22.086	303:00	7.420	-0003162			. 10	4.846e-6
21.802	370:00	8.237	0.0003462	3992:9	$5.48740-07$.0967	2.584@-06
	40	8.643	50001631	4214.6	$5.75260-07$.0860	2.3990-06
		8.64	.0001572	4358.0	4.48410-07	.0789	1.7090.06
21.519	450:00	9.048	$\bigcirc 0001517$	4498.7	3.66150-07	. 0718	1.2640-06
21.377	510:00	9.452	.0001467	4636.8	4.7335@-07	$\because 0648$	1.4670-06
21.235	560.00	9:854					

TABLE: 124 TEMP $\$ 0.0^{\circ} \mathrm{C}$ CELL: C SEED: BATCH E PREPARED

RUN NO.: : R.E. 37
STIRRER SPEED 2000 Ro. Po Mo
SIEVE FRACTION 39-105 μ

CONCN. SM/V	TOTAL TIME	CRYSTAL MASS (GRAMS)	DIAMETER INCREASE (CM)	MEAN AREA	GRONTH RATE CONSTANT K($\mathrm{IN}^{-1} \mathrm{CM}^{-2}$)	MEAN SUPER SATN:	GROWTH RATE CM/MIN

$24.343 .00000 \quad .4900$ $24.202 \quad 58.000 \quad .9147$ - $24.061 \quad 90.000 \quad 1.338$ $23.921 \quad 110.00 \quad 1.761$ $23.780 \quad 130.00 \quad 2.182$ $23.498 \quad 160.00 \quad 3.022$ $23.358 \quad 173.00 \quad 3.441$ $23.2 .17 \quad 186.00 \quad 3.858$ 22.934 210́.00 4.691 $22.652 \quad 257.00 \quad 5.519$ $22.510 \quad 27^{4.00} \quad 5.932$ $22.086 \quad 345.00 \quad 7.164$ $21.944 \quad 3$ 万.00 $\quad 7.572$ $21.802 \quad 40.00 \quad 7.979$ $21.661 \quad 435.00 \quad 8.385$ $21.519 \quad 45.00 \quad 8.789$ $21.377 \quad 515.00 \quad 9.6192$ $21.235 \quad 565.00 \quad 9.594$
$.0013799528 .52 \quad 1.07530 \cdots 06 \quad .2130 \quad 1.1900 \cdots 0$ $\because 0009212 \quad 781.23 \quad 1.36430-06 \quad .2060 \quad 1.4390 \cdots 5$.0007142 1002.8 1.7616@~06 . 1990 1.785@-0 $.0005928 \quad 1204.1 \quad 1.52170 \sim 06 \quad .1919 \quad 1.4820 \cdots$ $.0009659 \quad 1476.2 \quad 1.75320 \cdots 60.1814 \quad 1.6100 \cdots 5$ $.00040861733 .0 \quad 1.83050-06 \quad .1708 \quad 1.572$ @~の $. .000373^{34} \quad 1892.0 \quad 1.74970-06 \quad .1638 \quad 1.4360-05$ $.0006661 \quad 2116.9 \quad 1.4508 \mathrm{Q}-06 \quad .1532 \quad 1.1100-05$ $.0005840 \quad 2402.1 \quad 1.03170-06 \quad .1291 \quad 7.1210 \ldots 06$ $.0002677 \quad 2606.2 \quad 1.24140-06 \quad .1285 \quad 7.8740-06$.0007295 2861.1 9.16100-07 . $1143 \quad 5.1370-06$ $.0002219 \quad 3110.1 \quad 7.57660-07 \quad .1002 \quad 3.699 @-06$ $.00021323228 .9 \quad 7.85730-07 \quad .0931 \quad 3.5530-06$ $.0002523345 .4 \quad 8.2134 \mathrm{e}-07 \quad .2860 \quad 3.419 \mathrm{O} \mathrm{C} 06$ $.0001978 \quad 3459.6 \quad 6.49570 \cdots 07 \quad .0789 \quad 2.472 \mathrm{Cm} 06$ $.0001909 \quad 3571.7 \quad 6.9176 @-07 \quad .0718 \quad 2.387 @-06$ $.0001846 \quad 3681.7 \quad 5.96614 \mathrm{Cm} 07 \quad .0648 \quad 1.8460 \mathrm{CO}$

TABLE: 125 TEMP: $60.0^{\circ} \mathrm{C}$ CELL: C SEED: BATCH E PREPARED

RUN NO: : R.C.F.I
STIRRER SPEED: 2000 R.P.M-
SIEVE FRACTION: $89-105 \mu$

CONCN: TOTAL CRYSTAL DIAMETER MEAN GROWTH RATE MEAN GROWTH IM $/ V$ TIME IASS INCREASE AREA CONSTANT SUPER- RATE MINS: (GRAMS) (CM) $\mathrm{CM}^{2} \mathrm{~K}\left(\mathrm{MIN}^{-1} \mathrm{CN}^{-2}\right)$ SATN. CM/MIN.
$27.137 \quad 1.0000 \quad 2.424$ $26.859 \quad 3.0000 \quad 3.285$ $26.719 \quad 4.0000 \quad 3.715$ $26.580 \quad 5.1700 \quad 4.143$ $26.444 \quad 6.6700 \quad 4.570$ $26.302 \quad 8.2500 \quad 4.997$ $26.023 \quad 11.330 \quad 5.849$ $25.743 \quad 15.000 \quad 6.697$ $25.604 \quad 16.750 \quad 7.119$ $25 .-464 \quad 19.330 \quad 7.541$ $25.044 \quad 26.170 \quad 8.803$ $24.904 \quad 28.750 \quad 9.221$ $24.764 \quad 31.170 \quad 9.639$ $24.623 \quad 35.000 \quad 10.06$ $24.343 \quad 41.000 \quad 10.89$ $24.202 \quad 44.500 \quad 11.30$ $24.061 \quad 48.000 \quad 11.71$ $23.921 \quad 53.000 \quad 12.13$ $23.780 \quad 58.500 \quad 12.54$
$\because 0004196$ $.0006753 \quad 2166.9 \quad 9.41470-06$ $.0002826 \quad 2570.5 \quad 8.19270-06$.0002568 2822.9 6.51710-06 $.00023593066 .1 \quad 4.78570-06$ $.00021873301 .2 \quad 4.31700 \sim 06$.00039633638 .7 4.16280-06 $\because 0003527 \quad 4071.1 \quad 3.27890-06$ $.0001631 \quad 4383.23 \quad 3.3174 \mathrm{C}-06$ $.0001556 \quad 4.584 .0 \quad 2.20890-06$ $\because 0004301 \quad 4970.5 \quad 2.43620-06$ $.0001323 \quad 5349.6 \quad 2.11840-06$ $.00012775532 .2 \quad 2.25100-06$ $.000: 235 \quad 5711.7 \quad 1.42110-06$ $.0002355 \quad 5974.7 \quad 1.8213 @-06 \quad .2132 \quad 1.962 @-5$ $.0001124 \quad 6233.7 \quad 1.57^{410-06} \quad .2027 \quad 1.6060-05$ $.0001092 \quad 6402.5 \quad 1.58800-06 \quad .1958 \quad 1.5600-0$ $.0001062 \quad 6568.9 \quad 1.12400-06 \quad .1888 \quad 1.0620-0$ $.0001034 \quad 6733.1 \quad 1.03570-06 \quad .1818 \quad 9.4000 \sim 66$
$.3481 \quad 2.098 \mathrm{e}-04$.3378 1.688@-04 $.3274 \quad 1.413$ e-04 $.325 \quad 1.0970-04$.3136 7.8650-05 .3067 6.9200~0 .2964 6.434@-5 .28254 .806 - -5 .-2721 4.659@~क $\because 2652 \quad 3.015$ @ - 5 $.2514 \quad 3.144 \mathrm{e}-5$.23 万 2.5630.05 .230 2.6390~0 .2236 1.612@-0

TABLE: 12 (CONTD.) RUN NO.:R.C.FZ(CONTD.)

$\begin{array}{c}\text { CONCN: } \\ \text { GMM/V }\end{array}$	$\begin{array}{l}\text { TOTAL } \\ \text { TIME } \\ \text { MINS. }\end{array}$	$\begin{array}{c}\text { CRYSTAL } \\ \text { MASS } \\ \text { (GRAMS) }\end{array}$
23.780	58.500	12.54

$23.358 \quad 71.000 \quad 13.77$ $23.217 \quad 76.25 \mathrm{C} \quad 14.18$ $22.934 \quad 88.000 \quad 14.99$ $22.793 \quad 94.000 \quad 15.40$ $22.652 \quad 101.00 \quad 15.80$ $22.510 \quad 107.00 \quad 16.21$ $22.086 \quad 135.00 \quad 17.42$ $21.944 \quad 146.00 \quad 17.82$ 21.802 $156.00 \quad 18.21$ $21.519 \quad 186.00 \quad 19.01$ $21.235 \quad 240.00 \quad 19.80$ 21.093 $265.00 \quad 20.20$ $20.950 \quad 300.00 \quad 20.59$ $20.808 \quad 345.00 \quad 20.98$ $20.666 \quad 440.00 \quad 21.37$
$.0002956 \quad 7033.6 \quad 1.41660-06 \quad .1679 \quad 1.182 \mathrm{@} \ldots 0$ $.0000937 \quad 7370.1 \quad 1.17360-06 \quad .1539 \quad 8.9230-06$ $.0001813 \quad 7600.2 \quad 1.09290-06 \quad .1434 \quad 7.7170-06$ $.0000877 \quad 7827.7 \quad 1.1213 @ \ldots \quad .1329 \quad 7.3060-06$ $.00008597976 .8 \quad 9.9609 巴-07 \quad .1259 \quad 6.133 巴-06$ $.0000841 \quad 8124.3 \quad 1.20890-06 \quad .1189 \quad 7.0110 \cdots 06$ $\because 00024318413.6 \quad 8.54250-07 \quad .1049 \quad 4.3410-06$ $.0000779 \quad 8700.0 \quad 8.0771 \mathrm{C}-07 \quad .0909 \quad 3.541 \mathrm{e}-06$ $.00007658840 .1 \quad 9.48200-07 \quad .0838 \quad 3.825 @-06$ $.0001490 \quad 9047.4 \quad 7.08790-07 \quad .0733 \quad 2.483 @-06$ $.0001438 \quad 9319.9 \quad 4.74310-07 \quad .0592 \quad 1.332 @ \ldots 06$ $.0000701 \quad 9521.3 \quad 6.0883 \mathrm{e}-07 \quad .0487 \quad 1.4 .03 \mathrm{e} \sim 06$ $.0000690 \quad 9653.7 \quad 5.02070-07 \quad .0416 \quad 9.355 \mathrm{C}-07$ $.0000677 \quad 9784.7 \quad 4.64520-07 \quad .0346 \quad 7.5260-07$ $.0002665 \quad 9914.3 \quad 2.73470-07 \quad .0275 \quad 3.501 \mathrm{Cm} 07$

TABLE: 126

RUN NO.: R.C. 18
STIRRER SPEED:2000 R. P ${ }_{0} M_{0}$
SIETEMCTIC
SIEVE FRACTICN: 89-105

CONCN. TOTAL CRYSTAL DIAMETER MEAN GROWTH RATE MEAN GROWTH SOM/V TIME MASS INCREASE AREA CONSTANT SUPER- RATE MINS- (GRAMS) (CM) $\mathrm{CM}^{2} \mathrm{~K}\left(\mathrm{MIN}^{-1} \mathrm{CM}^{-2}\right)$ SATN. CM/MIN.
$27.137 \quad 75000 \quad 2.290$ $26.998 \quad 2.0000 \quad 2.721$ $25.859 \quad 3.2500 \quad 3.151$ $26.719 \quad 4.7500 \quad 3.579$ $26.580 \quad 6.5000 \quad 4.007$ $26.441 \quad 8.50004 .433$ $26.302 \quad 11.500 \quad 4.859$ $26.162 \quad 13.250 \quad 5.283$ $26.023 \quad 14.750 \quad 5.707$ $25.883 \quad 17.500 \quad 6.129$ $25.604 \quad 21.750 \quad 6.971$ $25.464 \quad 24.740 \quad 7.389$ $25.044 \quad 33.500 \quad 8.641$ $24.904 \quad 38.250 \quad 9.055$ $24.764 \quad 42.500 \quad 9.467$ $24.623 \quad 45.750 \quad 9.879$ $24.483 \quad 49.500 \quad 10.29$ $24.343 \quad 52.500 \quad 10.70$
$\therefore 0003487 \quad 1677.1 \quad 1.2604 \mathrm{e}-5 \quad .3474 \quad 2.325 \mathrm{e}-24$ $\because 0003766 \quad 1937.7 \quad 8.33470-06 \quad .3412 \quad 1.5060-04$ $.0003286 \quad 2214.3 \quad 7.244780 . .06 \quad .3343 \quad 1.315 \mathrm{C}-04$ $. .0002928 \quad 2478.3 \quad 5.6652 @-06 \quad .3274 \quad 9.762$ @- -5 $.0002650 \quad 2731.4 \quad 4.5031 @ \omega \quad .3205 \quad 7.572$ @-0 $.0002427 \quad 2974.9 \quad 3.28820-06 \quad .3 \div 36 \quad 5.393 @ \cdots$ $.0002243 \quad 3210.0 \quad 2.55080 \ldots 06 \quad .3067 \quad 4.078$ @ -05 $.00020893437 .6 \quad 3.8313 @-06 \quad .2998 \quad 5.9690-05$ $.0001958 \quad 3558.5 \quad 4.30140 \mathrm{~m} 06 \quad .2929 \quad 6.5270-05$ $.0001844 \quad 3873.3 \quad 2.27090-06 \quad .2860 \quad 3.353 巴-\sigma$ $\therefore 0003406 \quad 4183.6 \quad 2.82600-06 \quad .2756 \quad 4.0070-05$ $.0001580 \quad 4486.6 \quad 1.9474 .4-\infty \quad .2652 \quad 2.5410-05$ $.0004351 \quad 4869.4 \quad 1.94170-06 \quad .-2514 \quad 2.484 \mathrm{e}-05$ $.0001335 \quad 5244.5 \quad 1.1737$ @-06 .235 1.4060-の $.0001287 \quad 5424.7 \quad 1.30710-06 \quad .2305 \quad 1.5140-\sigma$ $.0001243 \quad 5601.7 \quad 1.70770-06 \quad .2236 \quad 1.9130-5$ $.00012025775 .7 \quad 1.48220 \sim 06 \quad .2166 \quad 1.603 \mathrm{e}-\sigma$ $.0001164 \quad 5946.8 \quad 1.8602 @-06 \quad .2097 \quad 1.9400 \cdots 5$

			2	6197.3	9.8118@-07	. 1	9.660
					1.23940-05		
23.217	93.003	13.92			1.23940		
	10		.00009	7376	1689@		
22.93	108		. 0	万	1.10750	.1399	388
22.			. 0	7949.1	$7.17890-07$	-1189	3.9640-0
			. 0001526	8434.6	7.68110-0	.0944	.317@-06
802	20		-0000738	86	5.10940-07	.0338	942@-06
	. 0		-0	87	26	. 07	2.0040-05
	243.00			8893	. 92	. 06	531
	2		. 00006	9019.6	4.60790-	. 0628	. 2710 -06
			-00	9311.8	3:64890	1	6.520

EQUILIBRIUM CONCENTRATION $=20.181 \quad$ INITIAL SEED AREA $=1558$

TABLE: 127 TEMP: $60.0^{\circ} \mathrm{C}$ CELL: C STIRRER SPEED:2000 R.P.M. SEED: BATCH P.E.PREPARED SIEVE FRACTION: $89-105 \mu$

CONCN. TOTAL CRYSTAL DIAMETER MEAN GROWTH RATE MEAN GRONTH AM/V TIME MASS INCREASE AREA CONSTANT SUPER- RATE MINS: (GRAMS) (CM) CM^{2} K $\left(\mathrm{MIN}^{-1} \mathrm{CM}^{-2}\right)$ SATN. CM/MIN.

24.012	. 00000	1.972					
21.919	. 58000	8.292	. 0054592	2069:6		23	3
			.0012552	3427.8	7.2011@-5	. 1529	5.0210-04
21.047	1.8300	10.03	.0003654	3861.1	$4.9627 \mathrm{e}-5$.1217	2.72700 d
20.756	25000	11.66	.0003454	4063.8	3.0985@-5	.1061	1.4760 .04
20.465	3.6700	12.49	.0009420	4449.8	1.3115 @-5	.0749	$4.2510-05$
19.593	14.750	14.97	. 0005594	4915.2	5.5336@-06	.0359	8.1660-06
19.012	49.000	16.59	. 0001324	5137.9	$3.63450-06$. 0164	$2.5460-06$
18.866	15.000	17.00					

EQUILIBRIUM CONCENTRATION $=18.634$
INITIAL SEED AREA $=1042$

TABLE: 128 TEMP: $60.0^{\circ} \mathrm{C}$ CELL: C STIRRER SPEED: 2000R.P.M. SEED: BATCH P.E.PREPARED

RUN NO.: R.P.E. 12

SIEVE FRACTION: $89-105 \mu$

$21.890 \quad .00000 \quad 1.962$ $21.773 \quad 3.0000 \quad 2.307$ $21.628 \quad 25.000 \quad 2.736$ $21.483 \quad 35.000 \quad 3.165$ $21.337 \quad 44.500 \quad 3.592$ $21.192 \quad 55.000 \quad 4.019$ $21.047 \quad 64.000 \quad 4.444$ $20.901 \quad 75.000 \quad 4.868$ $20.756 \quad 85.000 \quad 5.290$ $20.611 \quad 98.000 \quad 5.712$ $20.465 \quad 113.00 \quad 6.132$ $20.320 \quad 130.00 \quad 6.551$ $20.029 \quad 167.00 \quad 7.386$ $19.884 \quad 187.00 \quad 7.801$ $19.739 \quad 214.00 \quad 8.215$ $19.593 \quad 248.00 \quad 8.627$ 19.4448 $278.00 \quad 9.038$ $\begin{array}{llll}19.303 & 318.00 & 9.448\end{array}$ $19.157 \quad 373.00 \quad 9.855$ $.005277 \quad 1106.5 \quad 1.09560-5 \quad .1716 \quad 8.795$ @- 05 $.000577^{8} \quad 1260.0 \quad 1.71000-06 \quad .1646 \quad 1.3130-0$ $.0005097 \quad 1423.6 \quad 3.49540-06 \quad .1568 \quad 2.5490-05$ $.0004578 \quad 1580.3 \quad 3.48810-06 \quad .1490 \quad 2.4100-6$ $\because 0004168 \quad 1731.0 \quad 3.04$ Б@-06 $\quad .1412 \quad 1.9850-\sigma$ $\because 0003834 \quad 1876.3 \quad 3.46400-06 \quad .1334 \quad 2.1300-0$ $.0003557 \quad 2016.9 \quad 2.80050-06 \quad .1256 \quad 1.6170-\sigma$ $.0003322 \quad 2153.2 \quad 3.0768 @-06 \quad .1178 \quad 1.6610-05$ $.0003121 \quad 228.6 \quad 2.38790-05 \quad .1100 \quad 1.2000-05$ $.0002945 \quad 2414.5 \quad 2.10870-06 \quad .1022 \quad 9.8170-05$ $\because 00027912540.2 \quad 1.91490-06 \quad .0944 \quad 8.2090-06$. $.0005191 \quad 2722.3 \quad 1.87880-06 \quad .0827 \quad 7.0160-06$ $.0002422 \quad 2900.5 \quad 1.8963$ @-06 $.0710 \quad 6.055 @-06$.0002322 3015.4 1.51830-06 .0632 4.3006-06 $.0002231 \quad 3128.1 \quad 1.32650-06 \quad .054 \quad 3.2800-06$ $.00021473238 .6 \quad 1.6911 \mathrm{e}-06 \quad .0476 \quad 3.5790 \cdots 6$ $.0002070 \quad 3347.0 \quad 1.4693$ @-06 . $0398 \quad 2.587$ @-06 $.0001998 \quad 3453.5 \quad 1.290$ @-06 .0320 1.816@..06

CONCN. M M / V	TOTAL TIME MINS.	$\begin{aligned} & \text { CRYSTAL } \\ & \text { MASS } \\ & \text { (GRAMS) } \end{aligned}$	DIAMETER iNCREASE (CM)	MEAN AREA CM^{2}	GROWTH RATE CONSTANT $K\left(M I N^{-1} M^{-2}\right)$	MEAN SUPERSATN:	GROWTH RATE CM/MIN.
21.890	. 00000	. 9650	0.0005359	544.76	8.26900-06	-1732	6.699@-¢
21.832	4.0000	1.137					
			. 0004740	613.24	3.11680-07	.1700	2.469e-06
			.0010006	725.61	1.1263@-06	.1646	8.626@-06
21.628	158.00	1.737			1.11280-06	.1529	7.884@-06
21.337	255.00	2.588	;0015294	946.11			
21.192	300.00	3.011	.0006214	1152.6	1.06540-06	.1412	6.904@-06
20.901	360.00	3.854	. 0010663	1338.6	1.50190-.06	.1295	8.8860-06
			.0004672	1516.8	1.45590.06	.1178	7.7860-06
			. 00043335	1628.8	1.45200-06	. 1100	7.2200~06
			.000401	1737.1	1.2562@-06	-1022	5.7870.-.0
		5	.0003807	1842.0	1.49640-06	.00944	$6.344 \mathrm{C-06}$
		5.	.0003594	1944.0	1.44920-06	.0866	5.6160-06
20.1 5	517.00	5.933	.0003409	2043.2	1.86530-06	.0788	6.555@-06
20.029	543.00	6.344					
19.942	5万,00	6.590	.0001963	2121.0	9.50909-07	. 0725	$3.0570-06$

TABLE: 129 TEMP: $60.0^{\circ} \mathrm{C}$ CELL: C STIRRER SPEED:2000 R.P.M. SEED: BATCH P.E.PREPARED SIEVE FRACTION: $89-105 \mu$ CONCN. TOTAL CRYSTAL DIAMETER MEAN GROWTH RATE MEAN GROWTH O / V TIME MASS INCREASE AREA CONSTANT ${ }^{-2}$ SUPER- RATE MINS. (GRAMS) (CM) CM^{2} K $\left(\mathrm{MIN}^{-1} \mathrm{CM}^{-2}\right)$ SATN. CM/MIN. $21.832 \quad 4.0000 \quad 1.137$ $21.773 \quad 100.00 \quad 1.309$ $21.628 \quad 158.00 \quad 1.737$ $21.337 \quad 255.00 \quad 2.588$ $\begin{array}{llll}21.192 & 300.00 & 3.011\end{array}$ $20.901 \quad 360.00 \quad 3.854$ $20.76 \quad 390.00 \quad 4.272$ $20.611 \quad 420.00 \quad 4.690$ $20.465 \quad 455.00 \quad 5.105$ $20.320 \quad 48.00 \quad 5.52 .0$ $20.175 \quad 517.00 \quad 5.933$ $20.029 \quad 543.00 \quad 6.344$ $19.942 \quad 575.00 \quad 6.590$

RUN NO:: R.P.E. 14

CONCN． g M／V	TABLE： 130			RUN NO－：R．P．E． 16			
	$\begin{aligned} & \text { TEMP } 50.0^{\circ} \mathrm{C} \text { CELL: } \mathrm{C} \\ & \text { SEED: BATCH P.E. PREPARED } \end{aligned}$			STIRRER SPEED：2000 R．P．M． \qquad SIEVE FRACTION： $89-105 \mu$			
	TOTAL TIME MINS．	CRYSTAL MASS （GRAMS）	DIAMETER INCREASE （CM）	$\begin{aligned} & \text { MEAN } \\ & \text { AREA } \\ & C M^{2} \end{aligned}$	GROWTH RATE CONSTANT $\mathrm{K}\left(\mathrm{MIN}^{-1} \mathrm{CM}^{-2}\right)$	MEAN SUPER－ SATN．	GROWTH RATE CM／MIN．
17.545	.00000	1.969	． 0007244	1138.1	1．20960－06	.2369	9．789＠－06
17.374	37．000	2.455	． 000521	1313.7	$1.35650-06$	． 2258	1．042＠いち
17.232	62．000	2.860	.0008887	1537.9	8．7586＠－07	.21	$6.2589-06$
16.948	133.00	3.666					
16.806	158．00	4.067	.0003874	1753.6	1．1753＠－06	.1956	7.7470 .06
16.664	180．00	4.468	.0003586	1890	1.3073 －－06	.1855	8.1490 .06
16.521	198．00	4.867	． 0003344	2022.6	1．5800＠－		9．288＠－06
16．236	240.00	5.665	.0006100	2213.2	1．3572＠－06	.1603	$7.262 @-\ldots 6$
		6.062	． 0002800	2399：0	1.	.1451	7．779＠－06
			． 0002662	2518.3	2．4794＠－06	． 1350	1．109＠－5
15	270．00		，0002539	2635．1	$2.56310-06$	． 1249	1．58＠－ら
15.808	282．00	6.853	.0002429	2749.4	2．4693＠－06	.1148	9．342＠－06
15.665	295．00	7.248	．0002329	2861.5	2．2568＠－06	.1047	7．7630－06
15.522	310.00	7.642		2971.4	$2.25760-06$. .0945	6．99440－06
15.379	326．00	8.035	． 0002238	3079.4	2.17090×06	－	5．986＠－06
15.236	344.00	8.427	． 0002155		2．6861＠－06	.0742	6．4960－06
15	360.00	8.818	.0002009	3185.5	3.4472 ＠－06	.0641	$7.1740-6$
14.949	374.00	9.209	． 0001944	3289.8	$2.9314 \mathrm{C-6}$	．0539	5．115＠－06
14.806	393.00	9.599		3392.5	4．452．40．06	． 0438	6．2790－06
14.662	408．00	9.988	.0001884	3493.5		.0316	2：231＠．06
14．461	465.00	10.53	.0002543	3612.6	2．2296＠－06		

CONCN.$6 \mathrm{M} / \mathrm{V}$	TABLE: 131			RUN NO.: R.P.E. 17			
	TEMP: ---. SEED	$: 40.0^{\circ} \mathrm{C}$: BATCH	CELL: C	STIRR		R.P.M: -105μ	GROWTH RATE CM/MIN.
	TOTAL TIME MINS.	CRYSTAL MASS (GRAMS)	DIAMETER INCREASE (CM)	$\begin{aligned} & \text { MEAN } \\ & \text { AREA } \\ & C M^{2} \end{aligned}$	GROWTH RATE CONSTANT $K\left(M I N^{-1} M^{-2}\right)$	MEAN SUPERSATN.	
13.613	$\because 00000$	1.983					
13.557	8,0000	2.140	. 600	1079.8	2.2093 -		1.539@-6
13.471		2.367	.0003313	1157.5	1.02620-07	. 2737	6.7060-07
13.35	540.00		.0003872	1259.2	1.12940-07	. 2643	6.7940 .07
13.350	540.00	2.655	.0038345	2054.5	9.31950-07	. .1634	2.7390 .06
. 330	0.0	7.	.0001845	2837.5	5.2342@-06	.0610	6.1510-06
11.186	1255:0	7.496		2924.5	5.77920-06		5.2400-06
11.042	1272.0	7.803					5.2400-6
10.898	130.0	8.109	.0001717	3009.8	4.07860-06	.0339	$2.6020-06$

TABLE:133

CONCN. TOTAL CRYSTAL DIAMETER MEAN GROWTH RATE MEAN GROWTH SMM TIME MASS INCREASE AREA CONSTANT SUPER- RATE MINS. (GRAMS) (CM) CM^{2} K $\left(\right.$ MIN $\left.^{-1} \mathrm{CM}^{-2}\right)$ SATN. CM/MIN.
$13.187 \quad 680.00 \quad 3.077$ $13.045 \quad 770.00 \quad 3.464$ $12.903 \quad 840.00 \quad 3.850$ $12.760 \quad 940.00 \quad 4.235$ $\begin{array}{lllll}12.617 & 1000.0 & 4.619\end{array}$ $12.332 \quad 1055.0 \quad 5.384$ 12:189 10 105.0 $\quad 5.766$ 12.046 $1090.0 \quad 6.147$ $11.903 \quad 1100.0 \quad 6.527$ $11.616 \quad 1113: 0 \quad 7.287$ $11.473 \quad 1119.0 \quad 7.665$ $11.330 \quad 1128.0 \quad 8.043$ $11.186 \quad 1143.0 \quad 8.420$ 11.042 $\quad 1159.0 \quad 8.796$ $10.898 \quad 1200.0 \quad 9.172$
.0014704 1262.7 1.67200-07 .2616 1.0810-06 $.0004237 \quad 1545.9 \quad 4.08190-07 \quad .2362 \quad 2.3540-06$ $.0003878 \quad 1684.3 \quad 5.11120-07 \quad .2227 \quad 2.7700-06$ $\div 0003581$ 1818.0 3.52990-07 .2093 1.7910-06 .0003335 1947.6 5.87290-07 . $1959 \quad 2.7790-06$. $0006077 \quad 2134.2 \quad 1.30700-06 \quad .1757 \quad 5.525 @-06$ $.0002788 \quad 2316.1 \quad 1.87060-06 \quad .1555 \quad 6.9698-06$ $.0002649 \quad 2.433 .0 \quad 2.6017 巴-06 \quad .1421 \quad 8.8300-06$ $.0002526 \quad 2547.3 \quad 4.12190-06 \quad .1286 \quad 1.263 @-5$ $.0004736 \quad 2713.8 \quad 7.10290-06 \quad .1083 \quad 1.8220-05$.0002225 2877.2 8.90850-06 .0881 1.8540-5 .0002143 2983.0 6.7775@-06 ..0745 1.190@-5 $\because 0002067$ 3087.1 4.81100-06 .0610 6.8900-06 $.00019973189 .5 \quad 5.63030-06 \quad .04$ 万 $6.2410-06$.0001932 3290.2 3.0031@-06 .0339 2.356@-06

TABLE： 134

 TEMP： $70.0^{\circ} \mathrm{C}$ CELL： CSEED：BATCH P．E．PREPARED SIEVE FRACTION：89－105 μ

CONCN． cm / v	TOTAL MINS	CRYSTAL MASS （GRAMS）	DIAMETER INCREASE （CM）	MEAN AREA CM^{2}	GROWTH RATE CONSTANT $K\left(M_{I}{ }^{-1} \mathrm{CM}^{-2}\right)$	MEAN SUPER－ SATN．	$\begin{aligned} & \text { GROWTH } \\ & \text { RATE } \\ & \text { CM/MIN. } \end{aligned}$

28.587	． 00000	1.950					
28.380	.67000	2.602					
			.000575	1377.9	3．0432＠－0	－1427	$2.8530-04$
			．000559	1548.9	$1.54390 \sim 0$.1367	1.3820 .04
28．083	3.5000	3.529	.0004561	1712.6	8．9070－06	.1307	7．602＠－5
27.935	6.5000	3.991	.0004164	1869.9	7．8885＠－．06	－1248	6．4070－5
27.787	9．500	4.451	． 0003840	2021	7．11510－06	． 1188	5．4860－9
27.639	13.250	4.910	.0003569	2168.6	6：11090－06	－1128	4．4610－5
27.491	17.250	5.367	.0003339	2310.9	$5.38170-06$.1068	$3.7100 \sim 5$
27.34	21.750	5.823	.0003141	2449.3	$4.84010-06$	－1008	3．1410－5
27.195	$26 . 万 0$	6.277	$\because 0002968$	2584.0	4．87610－06	.0949	2．9680－5
27.04	31．万	6.731	.0002816	2715.3	$4.71570-06$	． 0889	2．682＠－5
26.899	37.000	7.183	． 0002680	2843.6	2.8157^{0-06}	. .0829	1．4890－5
26.51	46：000	7.633	.0005014	3029．7	2．96710－06	.074	1．393＠－ら
26.455	64．000	8.531	.0002350	3212.	$2.38410-06$	． 6050	9．7920－0
26.307	76.000	8.977	.0002259	3329．8	$2.64230-06$	－0990	$9.824 \mathrm{C}-66$
26． 159	87.500	9.421	． 0002177	3445.4	2．84090－06	． 031	$9.4630-06$
26．012	99.000	9.864	． 0002099	3558.8	1.54960 .06	.0471	$4.5630-06$
25.864	122．00	10．31	． 0002028	3670.3	$2.47370-06$.0411	6．3399－06
25.716	138．00	10．75	.0003852	3832.9	7.40910 －07	．0322	1．4590－06
25；420	270．00	11.62	．0000740	3961.3	$5.3486 @-07$	． 0250	8．226＠－07

CONCN: Sin/V	TABLE: 135			RUN NO.: R.E. 38			
	TEMP:50.0		$\frac{\text { CELL: } C}{\text { PREPARED }}$	STIRRER SPEED:2000 R.P.- ${ }_{\text {O }}$			
	TOTAL TIME MINS.	$\begin{aligned} & \text { CRYSTAL } \\ & \text { (GASS } \end{aligned}$	DIAMETER iNCREASE (CM)	MEAN AREA CM^{2}	GROWTH RATE CONSTANT $\mathrm{K}\left(\mathrm{MIN}^{-1} \mathrm{CM}^{-2}\right)$	MEAN SUPERSATN.	GRONTH RATE CM/MIN.
19.307	. 00000	1.973					
19.222	22.000	2.219					
19:081	63.000	2.627	.0003669	1887.2	$4.51270-07$.2678	$4.4740-06$
			.0003202	2153.2	$2.18300-07$.2558	2.079@-06
		3.035	. 0002855	2407.3	$3.46780-07$.2491	3.172@-06
18.798	185.00	3.4440	. 00025 क	2650.9	3.6823 @-07	.2398	3.2310-06
18.657	225.00	3.845	. 0002368	2885.5	4.0248@-07	. 2304	3.3830-06
18.515	260.00	4.249			5.98	. 2163	
18.232	35.00	5.54					
18.090	337.00	5.455	.0001912	3545.2	4.08520-07	. 2023	σ
	376.00	5.85	. 0001801	3752.5	3.32190-07	.1929	2.3090-06
	376.00	5.03	.0001705	3954.5	5.38620-07	.1835	$3.5520-66$
17.807	400.00	6.253	.0001619	4151.6	3.2453 --07	.1742	2.1240-66
17.665	440.00	6.650	. 00	4344.1	2.6235@-07	.1648	$1.54 .30-66$
17.524	490.00	7.046					
17.382	530.00	7.441	$.000147^{4}$	4532.5	3.3	$\bullet 1$	
17.098	630.00	8.227	. 000277°	4806. 4	$2.77100-07$	$\because 1413$	1.385@--6
			.000135	5075.0	2.9137^{0-07}	$\because 1272$	1.35 @-06
			. 0008971	5811.8	2.2036@-07	. .0848	6.0210 .07
15.818	1425.0	11.69	0972	6535.9		.0425	1.767 ¢-07
15.676	1700:0	12.07					

TABLE: 136
RUN NO: : R.P.E.F. 2

TEMP: $70.0^{\circ} \mathrm{C}$ CELL: C

 --"SEED: BATCH P.E.PREPARED

CONCN. TOTAL CRYSTAL DIAMETER MEAN GRONTH RATE MEAN GROWTH gMM V TIME MASS INCREASE AREA CONSTANT SUPER- RATE MINS. (GRAMS) (CM) $\mathrm{CM}^{2} \mathrm{~K}\left(\mathrm{MIN}^{-1} \mathrm{CM}^{-2}\right)$ SATN. CM/MIN.
28.602 . 00000 1.944 $28.380 \quad .50000 \quad 2.643$ $28.232 \quad 1.2500 \quad 3.107$ $28.083 \quad 2.2500 \quad 3.570$ $27.935 \quad 3.7500 \quad 4.031$ $27.787 \quad 5.5000 \quad 4.491$ $27.639 \quad 7.50004 .950$ $27.491 \quad 10.250 \quad 5.408$ $27.343 \quad 13.000 \quad 5.864$ $27.047 \quad 18.750 \quad 6.773$ $26.899 \quad 22.250 \quad 7.225$ $26 . 万 1 \quad 27.750 \quad 7.676$ $26.603 \quad 33.500 \quad 8.125$ $26.455 \quad 39.500 \quad 8.573$ $26.307 \quad 47.000 \quad 9.020$ $26.159 \quad 56.000 \quad 9.465$ $25.864 \quad 78.500 \quad 10.35$ $25.716 \quad 94.500 \quad 10.79$ $25.568 \quad 109,00 \quad 11.23$ $25.480 \quad 136.00 \quad 11.49$
$.00101771166 .1 \quad 1.02540-04 \quad .1502 \quad 1.0180 .03$ $.0005646 \quad 1392.2 \quad 4.01580 \sim 5 \quad .1427 \quad 3.764 \mathrm{C}-04$ $.000015 \quad 1562.4 \quad 2.8008 @-05 \quad .1367 \quad 2.507 @-04$ $.0004527 \quad 1725.4 \quad 1.76790-05 \quad .1307 \quad 1.5090 \ldots 04$ $.0004138 \quad 1882.1 \quad 1.45550-0 \quad .1248 \quad 1.182 @-04$ $.0003818 \quad 2033.4 \quad 1.10050-0 \quad .1188 \quad 8.4850-05$ $\begin{array}{lllll}.0003551 & 2179.7 & 9.72740-06 \quad .1128 \quad 7.103 \mathrm{e}-\mathrm{m}\end{array}$ $.0003324 \quad 2321.6 \quad 8.7658$ @-06 $\quad .1068 \quad 6.0440-05$ $.00060942526 .18 .4181 @-06 \quad .0979 \quad 5.2990-05$.0002807 2725.3 7.0477@-06 .0889 4.010@-05 $.0002673 \quad 2853.2 \quad 4.59180-06 \quad .0829 \quad 2.4300-05$ $.0002553 \quad 2978.3 \quad 4.5338 @ \cdots \quad .0770 \quad 2.2200 \cdots 6$ $.0002445 \quad 3100.7 \quad 4.52410-06 \quad .0710 \quad 2.0370-05$.00023463220 .7 3.8043@~06 . 0650 1.564@~05 $.0002563338 .3 \quad 3.3677$ @-06 .0590 1.254@-の $.00042763510 .0 \quad 3.0313$ @-06 . 0001 9.503@-06 .00020273678 .7 2.46800-06 .0411 6.335@-06 .00019623788 .2 3.0946@~06 . 0352 6.765@-06 $.0001147 \quad 3874.6 \quad 1.12640-06 \quad .0304 \quad 2.123 @-06$

TABLE: 137 TEMP: $60.0^{\circ} \mathrm{C}$ CELL: C
SEED: BATCH D PREPARED

RUN NO.: R.E. 39
STIRRER SPEED:2000 R.P. ${ }_{0} M_{0}$
SIEVE FRACTION: 75-89 μ

CONCN: TOTAL CRYSTAL DIAMETER MEAN GROWTH RATE MEAN GROWTH MM/V TIME MASS INCREASE AREA CONSTANT SUPER- RATE MINS: (GRAMS) (CM)
$27.303 .00000 \quad 1.968$ $27.137 \quad 1.0000 \quad 2.486$ $26.859 \quad 2.6700 \quad 3.348$ $26.719 \quad 3.8300 \quad 3.777$ $26.580 \quad 4.500 \quad 4.25$ $26.302 \quad 7.0000 \quad 5.060$ $26.162 \quad 8.2500 \quad 5.485$ $26.023 \quad 9.5000 \quad 5.910$ $25.743 \quad 12.000 \quad 6.758$ $25.464 \quad 15.000 \quad 7.603$ $25.324 \quad 16.500 \quad 8.024$ $25.184 \quad 18.330 \quad 8.444$ $25.044 \quad 19.670 \quad 8.863$ $24.904 \quad 21.750 \quad 9.281$ $24.483 \quad 28.250 \quad 10.53$ $24.343 \quad 29.750 \quad 10.95$ $24.202 \quad 31.500 \quad 11.36$ $24.061 \quad 34.000 \quad 11.78$ $23.921 \quad 36.250 \quad 12.19$
$.0006715 \quad 1307.2 \quad 1.8119 @-05 \quad .3488 \quad 3.3570-04$ $.0009220 \quad 1584.5 \quad 1.54200-5 \quad .3378 \quad 2.7600-04$ $.0003967 \quad 1830.5 \quad 9.91800-06 \quad .3274 \quad 1.7100-04$ $.00036521984 .2 \quad 1.17910-05 \quad .325 \quad 1.9850-04$ $.0006572 \quad 2203.0 \quad 8.98300-06 \quad .3102 \quad 1.4600 \cdots 04$ $.0002983 \quad 2415.0 \quad 7.63510-06 \quad .2998 \quad 1.193 @-04$ $.00028192550 .1 \quad 7.40510-06 \quad .2929$ 1.128@-04 $.0005230 \quad 2745.3 \quad 7.13800-06 \quad .2825 \quad 1.0460-04$ $.0004771 \quad 2996.8 \quad 5.7362$ @ - $06 \quad .2687 \quad 7.9520 \sim 05$ $\because 00022393179.2 \quad 5.62810-06 \quad .2583 \quad 7.463 \mathrm{C}-05$ $.00021543297 .14 .57340-06 \quad .2514 \quad 5.8860 \cdots 05$ $.0002077 \quad 3412.8 \quad 6.20860-06 \quad .2444 \quad 7.710-5$ $.0002006 \quad 3526.5 \quad 3.9861 巴-06 \quad .2375 \quad 4.823 @-05$ $.0005658 \quad 3746.8 \quad 3.83210-06 \quad .2236 \quad 4.352 \mathrm{Q}-05$ $\because 00017713963.6 \quad 5.58180-06 \quad .2097$ 5.903@-05 $.0001722 \quad 4068.6 \quad 4.8235 @-06 \quad .2027 \quad 4.9200-0$ $.00016764172 .1 \quad 3.41170-06 \quad .1958 \quad 3.352 \varrho-05$ $.00016334274 .2 \quad 3.8388 @-06 \quad .1888 \quad 3.628 @-\sigma$

TABLE：137（CONTD．）
 RUN NO．：R．E． 39 （CONTD．）

CONCN：筑／V	TOTAL TIME MINS	CRYSTAL． MASS （GRAMS）	DIAMETER INCREASE （CM）	MEAN AREA	GRONTH RATE CONSTANT	MEAN SUPER－ SATM	GROW RATE

$23.921 \quad 36.250 \quad 12.19$ $23.780 \quad 38.250 \quad 12.60$ $23.498 \quad 42.250 \quad 13.42$ $23.358 \quad 45.500 \quad 13.83$ $23.217 \quad 50.000 \quad 14.24$ $22.652 \quad 64.000 \quad 15.87$ $22.369 \quad 77.000 \quad 16.68$ $22.086 \quad 89.000 \quad 17.48$ $21.944 \quad 100.00 \quad 17.88$ $21.802 \quad 110.00 \quad 18.28$ $21.661 \quad 121.00 \quad 18.68$ $21.235 \quad 168.00 \quad 19.88$ $21.093 \quad 189.00 \quad 20.27$ $20.950 \quad 220.00 \quad 20.66$
$.0001592 \quad 4374.9 \quad 4.38340 \cdots \quad .1818 \quad 3.9800 \sim 05$ $.0003074 \quad 4523.2 \quad 4.50400-06 \quad .1714 \quad 3.843 巴-05$ $.0001482 \quad 4669.7 \quad 2.86060 \cdots 06 \quad .1609 \quad 2.2810 \times 05$
 $.0005521 \quad 4999.1 \quad 2.94160-06 \quad .1364 \quad 1.972$＠-05 $\because 0002593 \quad 5274.8 \quad 1.77300 \cdots \quad .1154 \quad 9.9740-06$ $\because 0002498 \quad 5452.6 \quad 2.11810-06 \quad \because 014 \quad 1.0410-05$ $.0001215 \quad 5583.91 .25840-06 \quad .0909 \quad 5.5210 \times 06$ $.0001193 \quad 5670.1 \quad 1.4783 \mathrm{Q}-06 \quad .0838 \quad 5.9670-06$ $.00011735755 .5 \quad 1.44608-06 \quad .0768 \quad 5.332 \Theta-06$ $.0003409 \quad 5923.31 .21960-06 \quad .0628 \quad 3.6270-06$ $.0001098 \quad 6089.6 \quad 1.13320-06 \quad .0487 \quad 2.6140-06$ $.00010806171 .1 \quad 8.86$ 万＠ 07 07 $0416 \quad 1.7420-06$

CONCN. \%M/V	TABLE: 138			RUN NO: R .A. 7			GROWTH RATE CM/MIN.
	$\begin{aligned} & \text { TEMP: } \\ & \text { SEED: } \end{aligned}$	$\begin{aligned} & : 70.0^{\circ} \mathrm{C} \\ & : ~ B A T C H \end{aligned}$	$\frac{\text { CELLL: C }}{\text { C. }}$	STIRR	FRACTION: 89	R.P.M M_{0} -105μ	
	TOTAL TIME MINS.	$\begin{aligned} & \text { CRYSTAL } \\ & \text { MASS } \\ & \text { (GRAMS) } \end{aligned}$	DIAMETER INCREASE (CM)	$\begin{aligned} & \text { MEAN } \\ & \text { AREA } \\ & {C M^{2}}^{2} \end{aligned}$	GROWTH RATE CONSTANT $K\left(M I N^{-1} \mathrm{CM}^{-2}\right)$	MEAN SUPERSATN.	
29.736	. 00000	1.920	.0008007	1120.5	1.8552e-06	. 1271	1.6680-¢
29.569	24.000	2.449					
29.43	54	2.889	.0005679	1310.5	1.1088@-06	.1212	9.4640-06
			.0005031	1474.4	$1.34490-06$.1160	1.0940-0
			.0004534	1631.3	1.62830-06	-1107	1.259@-क
29.152	95.000	3.764	. .0004138	1782.3	1.56610-06	.1054	1.15@-の
29.012	113.00	4.199	. 0003815			.1001	9.5370-06
28.873	133.00	4.634		1927.9	$1.37270-06$		
28.734	155.00	5.067	-. 000	2068.9	1.22860-	.0948	8.0.06-06
28.594	176.00	5.499	.0003315	220.6	1.27960-06	. 0895	7.893@-06
28.454			. .0003118	2338.4	$1.41890-06$. 0842	8.206@-06
			.0002946	2467.8	1.29900-06	. .0789	7.015@-0
			.0002794	2593.9	1.07090-06	.0736	5.3740-06
28.175	242.00	6.788			8.6871@-07	.0583	
28.035	275.00	7.215	. 00002659	2717.1			4.029@-06
27.895	320.00	7.640	.0002536 .0002426	2837.4	6.6198@-07	. 0629	2.8180 .06
27.56	365.00	8.064		2955.1	$6.94740-07$.0576	2.6950 .06

TABLE： 139
 －－－－ SEED：BATCH D PREPARED

RUN NO．：R．E．F．I
STIRRER SPEED：2000 R．P．M．
SIEVE．FRACTION：75－89

CONCN．TOTAL CRYSTAL DIAMETER MEAN
GM／V TIME MASS INCREASE
MINS．（GRAMS）（CM）
29.833 ． $00000 \quad 1.948$ $29.708 \quad 2.2500 \quad 2.345$ $29.569 \quad 8.5000 \quad 2.786$ $29.430 \quad 17.500 \quad 3.226$ $29.291 \quad 26.500 \quad 3.664$ $29.152 \quad 35.000 \quad 4.102$ $29.012 \quad 44.000 \quad 4.538$ $28.734 \quad 62.000 \quad 5.409$ $28.594 \quad 70.500 \quad 5.843$ $28.454 \quad 79.000 \quad 6.275$ $28.175 \quad 100.00 \quad 7.138$ $28.035 \quad 109.00 \quad 7.568$ $27.895 \quad 129.00 \quad 7.996$ $27.756 \quad 142.00 \quad 8.423$ $27.615 \quad 154.00 \quad 8.849$ $27.335 \quad 186.00 \quad 9.699$ $27.195 \quad 215.00 \quad 10.12$ $27.055 \quad 245.00 \quad 10.54$ $26.914 \quad 290.00 \quad 10.96$
$.0005299 \quad 1270.2 \quad 1.2639 @-\sigma \quad .1315 \quad 1.177$＠－04 $.005168 \quad 1443.8 \quad 4.6266 巴-06 \quad .1265 \quad 4.1350 \cdots 5$ $.00046021617 .1 \quad 2.9520-06 \quad .1212 \quad 2.5570-$－ $.0004166 \quad 1782.2 \quad 2.8433 \mathrm{C}-06 \quad .1160 \quad 2.3140-\sigma$ $.0003817 \quad 1940.3 \quad 2.89910-06 \quad .1107 \quad 2.2450-05$.0003531 2092．4 2．6680－06 ． $105^{4} \quad 1.962 @ \sim 0$ $.0006387 \quad 2309.4 \quad 2.6185 \mathrm{Q}-06 \quad .097^{4} \quad 1.774 \mathrm{C}=0$ $.0002911 \quad 2519.9 \quad 2.76710 \sim 06 \quad .0895 \quad 1.7120-\sigma$.0002 万7 $2654.2 \quad 2.79420-06 \quad .0842 \quad 1.6220-05$ $.0005127 \quad 2848.5 \quad 2.3328$＠－06 $\quad .0762 \quad 1.221 @-\sigma$.0002392 3038．2 2．84860－06 ．0683 1．329＠－0 $.0002293 \quad 3160.4 \quad 1.3372$ ®－06 $.0629 \quad 5.732 \varrho-06$
 $.0002122 \quad 3397.6 \quad 2.4983$＠－06 $\quad .0523 \quad 8.842 \varrho-06$ $.00040293569 .0 \quad 2.1154 \mathrm{C}-06 \quad .0443 \quad 6.295 \mathrm{e}-06$ $.0001913 \quad 3737.4 \quad 1.3568 @-06 \quad .0363 \quad 3.298 巴-06$ $.0001853 \quad 3846.7 \quad 1.4954 \mathrm{e}-06 \quad .0310 \quad 3.088 \mathrm{e}-06$ $.0001795 \quad 394.1 \quad 1.17360-06 \quad .0256 \quad 1.9950-06$

SEED : BATCH E PREPARED
RUN NO.: R.E.F. 2
STIRRER SPEED:2000R.PoM.
SIEVE FRACTION: $89-105 \mu$
CONCN: TOTAL CRYSTAL DIAMETER MEAN GROWTH RATE MEAN GROWTH gam TIME MASS INCREASE AREA CONSTANT SUPER- RATE MINS. (GRAMS) (CM) CM ${ }^{2}$ K (MIN ${ }^{-1} \mathrm{CM}^{2}$) SATN. CM/MIN.
$27.192 \quad .00000 \quad 1.970$ $26.859 \quad .75000 \quad 3.006$ $26.580 \quad 1.7500 \quad 3.865$ 26.302 2.5000 4.721$25.883 \quad 4.0000 \quad 6.000$ $25.604 \quad 5.2500 \quad 6.847$ $25.464 \quad 5.8300 \quad 7.269$ $25.184 \quad 7.0000 \quad 8.112$ $25.044 \quad 8.0000 \quad 8.531$ $24.904 \quad 9.0000 \quad 8.950$ $24.623 \quad 11.250 \quad 9.786$ $24.343 \quad 13.500 \quad 10.62$ $24.061 \quad 16.500 \quad 11.45$ $23.780 \quad 19.500 \quad 12.27$ $23.633 \quad 21.500 \quad 12.69$ $23.358 \quad 24.500 \quad 13.51$ $23.217 \quad 26.500 \quad 13.92$ $22.934 \quad 30.750 \quad 14.73$ $22.652 \quad 37.000 \quad 15.55$ $22.510 \quad 40.000 \quad 15.95$ 22:369 43.000 16.36
$.00091891921 .4 \quad 3.3838 @-0 \quad .3391 \quad 6.126 @ .04$ $.000575 \quad 2522.8 \quad 1.68800-5 \quad .3240 \quad 2.8870-04$ $.00048013020 .6 \quad 1.96550-5 \quad .3102 \quad 3.2010-04$.00050323593 .6 1.3142@-क $.2929 \quad 2.0110-04$ $.0003470 \quad 4134.9 \quad 9.7217$ @-06 $\quad .2756 \quad 1.3880 .04$ $.0001607 \quad 4443.1 \quad 1.01370-0 \quad .2652 \quad 1.3850-04$ $.0003010 \quad 4738.2 \quad 9.81910-06 \quad .2548 \quad 1.2860-04$ $.00014125027 .4 \quad 5.6477$-06 $.2444 \quad 7.0600-05$ $.00013595214 .6 \quad 5.60710-06 \quad .2375 \quad 6.793$ @--5 .0002578 5488.2 4.9580@-06 . $2271 \quad 5.728$ ——の $.00024115844 .3 \quad 4.96510-06 \quad .2132 \quad 5.3580-5$ $\therefore 0002268 \quad 6189.5 \quad 3.76600-06 \quad .1992 \quad 3.780$ - -05 $.0002143 \quad 6524.7 \quad 3.8454$ @-06 $.1853 \quad 3.5710 \ldots 5$ $\because 0001028 \quad 6770.8 \quad 2.94680-06 \quad .1748 \quad 2.5700-05$ $\because 0001983 \quad 7010.6 \quad 4.04150-06 \quad .16044 \quad 3.304 \mathrm{O}-05$ $.00009557247 .5 \quad 3.13270-06 \quad .1539 \quad 2.3870-5$ $.0001847 \quad 7478.7 \quad 3.0750-06 \quad .1434 \quad 2.173$ @- 5 $.0001768 \quad 7782.0 \quad 2.2263 @-06 \quad .1294 \quad 1.4150-5$ $.00008568005 .5 \quad 2.45360-06 \quad .1189 \quad 1.4270-0$ $.00008398152 .1 \quad 2.5618$ @-06 . 1119 1.398@-0

TABLE： 140 （CONTD：）RUN NO：：R．E．F2（CONTD．）

CONCN． SM／V	TOTAL TIME MINS．	$\begin{aligned} & \text { CRYSTAL } \\ & \text { MASS } \\ & \text { (GRAMS) } \end{aligned}$	DIAMETER INCREASE （CM）	$\begin{aligned} & \text { MEAN } \\ & \text { AREA } \\ & C M^{2} \end{aligned}$	GROWTH RATE CONSTANT $\mathrm{K}\left(\mathrm{MIN}^{-1} \mathrm{CM}^{-2}\right)$	MEAN SUPER－ SATN：	GROWTH RATE $\mathrm{CM} / \mathrm{MIN}$ 。
22．369	43.000	16.36					
22.227	46.500	16.76	.0000823	8297.2	$2.30309-06$.1049	1.1 万＠－5
			． 0000807	8440．8	2．83200－06	． 0979	$1.3450-05$
			．0001571	8653.2	2．48260－06	． 0874	1．048＠－0
21．802	57.000	17．96	．0001516	8932.4	1．95800－06	.073	6.8900 .06
21.519	68．000	18.76					
21.235	79．000	19.56	.0001465	9206	2.	－ツத	
21．093	92．000	19.96	.000071	9409.1	1．1848＠－06	． 0487	2.7470 .06
			.0001394	9608.2	2．2908＠－06	． .0381	4．1008－06
			－0000681	9805．6	2．38800－06	.0275	3．0960－06
20．666	120．00	21.14		100	$2.44020-06$		
20.324	170.00	22.09			2.140206		1．5910－6
20.210	270：00	22.40	．0000 16	10230	1.57310×06	.0042	2.578 ＠m07

		TABLE:	141		RUN NO: :R.E	E.F. 4	
		$: 60.0^{\circ} \mathrm{C}$	CELL: C	STIRR	RER SPEED:2000 FRACTION:89	$\begin{aligned} & 0 R_{0} P_{0} M_{0} \\ & -105 \mu \end{aligned}$	
CONCN. sh/V	TOTAL TIME MINS.	CRYSTAL MASS (GRAMS)	DIAMETER INCREASE (CM)	$\begin{aligned} & \text { MEAN } \\ & \text { AREA } \\ & C M^{2} \end{aligned}$	GRONTH RATE CONSTANT $\mathrm{K}\left(\mathrm{MIN} \mathrm{N}^{-1} \mathrm{M}^{-2}\right)$	MEAN SUPERSATN.	GROWTH RATE CM/MIN。
24.483	.00000	1.988					
24.343	7.0000	2.414	. 0004150	1738.6	2.6209--6	.2200	$2.964 \mathrm{e}-5$
24.202	24.000	2.838	.0003555	2023.3	$9.58370-07$. 2130	1.045@-5
24.061	31.000	3.262	-0003127	2294.3	2.12360-06	. 2060	2.233@-5
23.921	47	3.65	. 0002802	2553.5	$8.64710-07$. 1990	8.7560-06
23.780	57.000	4.106	. 000254	2802.5	$1.30750-06$. 1919	$1.2740-5$
23.639	69.000	4.527	. 0002341	3042.5	1.04240-06	.1849	9.7530-06
23.498	80,000	4.947	.0002170	327405	1.09900-6	. 1779	9.863@-06
23.358	92.000	5.366	. 0002026	3499.5	9.82020-07	. 1708	8.44@-06
23.217	103.00	5.784	. 0001902	3718.0	1.523@-06	. 1638	$8.647 ¢-06$
23.075	115.00	6.201	-0001795	3930.7	9.53920-07	. 1567	$7.4800-6$
22.934	128.00	6.617	. 0001701	4138.2	8.76298-07	-1497	6.543@-06
22.793	140:00	7.032	. 0001618	4340.7	9.50320-07	. 1426	$6.742 \mathrm{e}-06$
22.652	154.00	7.446	. 0001544	4538.8	8.2003@-07+	. 1356	5.5140 .06
22.510	166.00	7.859	. 0001477	4732.6	9.68488-07	. 1285	6.155@-06
22.369	179:00	8.271	$\because 0001417$	4922.6	9.10010-07	. 1214	5.4500-06
22:227	196.00	8.683	. 0001362	5109:0	7.12370-07	. 1144	4.0060-06

CONCN.硞 $/ V$	TOTAL TIME MINS.	$\begin{aligned} & \text { CRYSTAL } \\ & \text { MASS } \\ & \text { (GRAMS) } \end{aligned}$	DIAMETER INCREASE (CM)	$\begin{gathered} \text { MEAN } \\ \text { AREA } \\ C M^{2} \end{gathered}$	GROWTH RATE CONSTANT $\mathrm{K}\left(\mathrm{MIN}^{-1} \mathrm{CM}^{2}\right)$	MEAN SUPER- SATN.	GROWTH RATE CM/MIN.
22.227	196.00	8.683	. 0001312	5291.9	7.79360.07	.1073	4.0990-06
22.086	212.00	9.093					
802			.0002491	5559.3	6.77100-07	.0967	3.193@-06
			. 0002332	5907.1	6.63000-07	. 0825	$2.6500 \sim 06$
21.519	295.00	10.73	. 0001112	6161.8	7.29060-07	. 0718	
21.377	317.00	11.13					2.5280-06
21.093	382.00	11.94	.0002131	6408.7	5.5956@-07	. 0612	1.6390-06
20.950	415.00	12.34	$\bigcirc 0001021$	6652.1	6.41490-07	.5の	1.5470-06

27.491	.00000	1.970	. 0006886	1133.6	$3.65700-06$. 1068	$2.5500-$ ¢
27.343	13.500	2.431		131	.	-10	
27.195	37.000	2.890	$\because 0005200$	1486.8	$7.99470-07$.0949	4.9060-06
27.047	90.000	3.346	.0004659	1651.2	$8-4818$--07	. 0889	$4.8530-06$
26.899	138.00	3.801	.0004232	1808.8	7:6612@-07	. 0829	. 0690.06
$26 . 万 1$	190.00	4.253	.0003885	1960. 4	7.92130-07	.0770	3.885@-06
26:603	240.00	4.703	.0003588	2106.5	$3.47450-07$.0710	-06
26.455	355.00	5:149	..$C 003342$	22.47 .6	5.4514 Cm 07	.0650	$2.228 \mathrm{e}-06$
26.307	430.00	5.593	. 0002212	2364.2	$4.91630 \sim 07$	-0,99	$1.843 \mathrm{e}-06$
26.204	490.00	5.902					

EQUILIBRIUM CCNCENTRATION $=24.771$

TABLE: 144	RUN NO: - R.P.E.F. 5
TEMP $60.0{ }^{\circ} \mathrm{C}$ CELLL C	STIRRER SPEED 2000 R.P.M*
SEED: BATCH P.G.PREPARED	SIEVE FRACTION: $89-105 \mu$

21.744	.00000	1.995					
21.628	3.5000	2.339	. 00044880	1276.8	8.52550-06	.1638	$6.5430-5$
			. 0004679	1557.3	1.4862@-06	.1568	1.0880-5
			.0003884	1867.0	7.01220-07	.1490	4.8540.06
21.337	65:000	3.196	. 0003328	2168.0	4.6346@-07	. 1412	3.0250-06
21.192	120.00	3.622					
21.046	225:00	4.046	. 0002917	2458.	2.2664@-07	.1334	1.3890-06
20.901	310.00	4.467	$\because 0002605$	2737.5	2.6702@-07	. .1256	1.533@-06
20.7	0.	4.886	.0002360	3006.9	$2.75410-07$. 1178	$1.475 \mathrm{C}-6$
			.0003377	3341.9	$2.89430-07$. .1076	1.4070.06
20.523	510.00	5.552	.0011312	4339.4	2.63840-07	.0737	$8.1970-07$
19.491	1200.0	8.434	.0001156		.638107		
19.360	1380.0	8.790					

TABLE: 145

SEED: BATCH PoE. PREPARED

RUN NO: :R.P.E.F. 6
STIRRER SPEED:2000 R.P.M.

SIEVE FRACTION:89-105 μ CONCN. TOTAL CRYSTAL DIAMETER MEAN GROWTH RATE MEAN GROWTH \& M / V TIME MASS INCREASE AREA CONSTANT SUPER- RATE MINE: (GRAMS) (CM) CM^{2} K $\left(\mathrm{MIN}^{-1} \mathrm{CM}^{-2}\right)$ SAIN. $\mathrm{CM} / \mathrm{MIN}$.
$27.580 \quad .00000 \quad 1.944$ $27.491 \quad 10.000 \quad 2.221$ $.0004324 \quad 1083.3 \quad 2.96670-\infty \quad .1116 \quad 2.1620-0$ $.0006320 \quad 1229.4 \quad 5.582 \mathrm{e}-07 \quad .1068 \quad 3.5110-06$ $\because 0010420 \quad 1486.2 \quad 1.71400-06 \quad .0979 \quad 1.0850-05$ $27.047 \quad 148.00 \quad 3.592$ $26 . 万 1 \quad 25.00 \quad 4.498$ $26.307 \quad 310.00 \quad 5.843$ $26.160 \quad 370.00 \quad 6.286$ $25.805 \quad 520.00 \quad 7.340$ $25.627 \quad 610.00 \quad 7.862$ $.0003049 \quad 2895.3 \quad 7.2208 巴-07 \quad .0382 \quad 1.6940-06$ $.000083 \quad 3093.8 \quad 2.65890-07 \quad .0280 \quad 4.3820-07$ $25.302 \quad 1190.0 \quad 8.791$

CONCN.谷 $/ V$	TABLE: 146			RUN NO-:R.P.E.D. 1			
	$\text { TEMP: } 70.0^{\circ} \mathrm{C}$		$\begin{gathered} \text { CELL : }: C \\ \text { E.PREPAR } \end{gathered}$	STIRRER SPEED:2000 R. $\mathrm{P}_{0} \mathrm{M}_{*}$			
	TOTAL TIME MINS:	$\begin{aligned} & \text { CRYSTAL } \\ & \text { MASS } \\ & \text { (GRAMS) } \end{aligned}$	DIAMETER INCREASE (CM)	$\begin{aligned} & \text { MEAN } \\ & \text { AREA } \\ & C M^{2} \end{aligned}$	GROWTH RATE CONSTANT $\mathrm{K}\left(\mathrm{MIN}^{-1} \mathrm{CM}^{-2}\right)$	MEAN SUPERSATN.	GROWTH RATE CM/MIN.
28.528	. 00000	1.964					
28.380	1.2500	2.430	$\because 0006976$	1131.4	$2.846 @$ @	.1487	2.7900-04
			.0005985	1314.4	1.82300-05	.1427	$1.7100 \cdots 04$
	3.0000	2.	.0005267	1488.6	1.17590-0	.1367	1.53@-04
28.084	5.5000	3.357	. 0004722	1655.1	6.50460-06	. 1307	5.555@-5
27.935	9.500	3.819	.0004292	1815:0	4.80260-06	$\bigcirc 1248$	3.9020-5
27.78	15.250	4.279	. .0007606	$20+2.3$	3.0213@-06	-1158	2.2710.0
27.491	32.000	5.196	. .0006620	2331.4	3.40890-06	. 1038	2.283@--5
27.195	46.500	6.108					
27	56:000	6.56	.0003020	25	2.6	-0949	5
			.0002861	2671:3	2.7961@-06	. 0889	$1.5890-5$
899	65:000	7.012	.0002719	2800.7	1.7152®-06	. 0829	9:063@--6
26.751	80.000	7.462					
26.603	91.000	7.911					
26.307	125.00	8.804		3110.9			
26.160	142.00	9.248	\%0002282	$3290 ; 8$	1.8086@-06	־ら90	$6.7130-06$
			.0002196	3407.1	1.43640 .06	. 0531	4.77^{40-06}
			. 00002114	3521.2	$7.2043 \mathrm{C}-07$. 0471	2.1140-06
25.864	215.00	10.13	.0002038	3633.0	6.1516@-07	. 0411	1.568@-06
25.716	280:00	10.57	. 0001151	3720.1	3.4384 -08	.0364	7.4770 .08
25.627	100.0	10.82					10
25.539	1740.0	11.07			. 18630		

TABLE: 147

SEED: BATCH P.G.PREPARED

RUN NO. R.P.E.D.D. 2
STIRRER SPEED: 2000R; P- Mo $_{\circ}$
SIEVE FRACTION: 89-105 μ

CONCN: TOTAL CRYSTAL DIAMETER MEAN GROWTH RATE MEAN GROWTH \%M/V TIME MASS INCREASE AREA CONSTANT SUPER- RATE MINS. (GRAMS) (CM) CM^{2} K $\left(\mathrm{MIN}^{-1} \mathrm{CM}^{-2}\right)$ SATN. CM/MIN.

$17.232 \quad 200.00 \quad 2.802$
$\begin{array}{lll}17.090 & 320.00 & 3.203\end{array}$ $16.977 \quad 410.00 \quad 3.523$
$+14.892 \quad 1485.0 \quad 9.237$ $14.748 \quad 1710.0 \quad 9.615$
$.0003616 \quad 1881.8 \quad 2.0663 @-07 \quad .2157 \quad 1.506 @ \cdots$ $.0002535 \quad 2136.7 \quad 2.0272 @-07 \quad .2067 \quad 1.408 \mathrm{e}-06$ $.00258523894 .3 \quad 3.1173$ @-07 $0.1288 \quad 1.2020 \cdots 06$.0001135 5634.0 1.61320-07 .0499 2.5220-07

TABLE: 148

SEED: BATCHE PREPARID

RUN NO: : R.E. 40
STIRRER SPEED: 2000R.PoM.
SIEVE FRACTION: $89-105 \mu$ CONCN: TOTAL CRYSTAL DIAMETER MEAN GROWTH RATE MEAN GROWTH CM/V TIME MASS INCREASE AREA CONSTANT SUPER- RATE MINS: (GRAMS) (CM) $\mathrm{CM}^{2} \quad \mathrm{~K}\left(\mathrm{MIN}^{-1} \mathrm{CM}^{-2}\right)$ SATN: CM/MIN.

	5.0000		.0004312	1734.2	4.8	. 1265	
29.569		2.417	.0003676	2028.7	3.0698@-06	. 1212	$2.6260-05$
			. 0003222	2308.6	2.6340@-06	. 116	2.1480-0
29.291	19.500	3.297	. 0002880	2576.0	2.1836@-06	. 1107	1.6940.05
28.873	28.000	3.735	. 0005014	2954.1	1.83820-06	. .1027	. 320005
	47.000	4.609					
28.594	65.000	5.479	. 0004293	3432.9	1.8642@-06	. 0921	1.1930-5
27.756	130.00		.0010276	4292.2	1.63940-06	. 0709	7.9040-06
		8.076	.0001439	5016.5	1.4503@-06	. 0523	$5.1410-\infty$
27.615	144.00	8.502	-.0001383	5207.2	1.36210-06	.0470	4.3220.06
27.45	160.00	8.928	.0003861	55 万.3	1.23550..06	$\bigcirc 03$	9700-06
27.055	225.00	10.20	. 0001199	5937.0	1.3027e-06	. .0256	2.2210 .06
26.914	0	10			1.31110-6		
26.774	285.00	11.04	. 0001161	6111.5	1.3111@-06	.0203	- $590-\infty$
			. 00001124	6283.1	1.0439@-06	.015	1.0220-06

- 364 -

TABLE: 149
SUMMARY OF PREVIOUS WORK (1) ON SEFDED CELIS STTRRED AT 500 R.P.M.

TABLE: 149 (CONT.)

TABLE: 149 (CONT.)

$\begin{aligned} & \hline \text { OLD RUN NO: } \\ & \text { NEW RUN NO: } \\ & T_{0}{ }^{\circ} \mathrm{C} \\ & \text { SEEFD } \end{aligned}$	$\begin{gathered} \text { R. } 30 \\ \text { R.P.A. } 3 \\ 80 \cdot 0 \\ 44-53 \mu \mathrm{M} \cdot \mathrm{~A} .{ }^{3} \text { ? } \end{gathered}$			$\begin{aligned} & \mathrm{R} \cdot 31 \\ & \mathrm{R} \cdot \mathrm{C} \cdot 1 \\ & 60.0 \\ & -53 \mu \cdot \mathrm{P} \cdot \mathrm{~A} \cdot{ }^{3 E} \end{aligned}$			$\begin{gathered} \text { R. } 32 \\ \text { R.P.A. } 4 \\ 50.0 \\ 44-53 \mu \cdot{ }^{2} \cdot A_{0}^{38} \end{gathered}$		
	\% \%m/v	$\left\|\begin{array}{l} \mathrm{TINE} \\ \mathrm{MmSS} \end{array}\right\|$	$\mathrm{Kxc}^{\mathrm{K}-7} \mathrm{~min}^{-1} \mathrm{~cm}^{-2}$	0\%m/v	$\left\|\begin{array}{l} \mathrm{TINE} \\ \mathrm{MINS} \end{array}\right\|$	$\begin{gathered} \mathrm{K} \times 10^{-7} \\ \mathrm{~min}^{-1} \mathrm{~cm}^{-2} \end{gathered}$	0\%m/v	\|lTME	($\begin{gathered}\mathrm{Kx1} \mathrm{O}^{-7} \\ \mathrm{in}^{-1} \mathrm{~cm}^{-2}\end{gathered}$
	36,00	0	2.82	24.00	0	5.7	18.50		4.82
	35.19	26		23.88	25		18.18	25	
			1.53		40	5.17		60	3.38
	$34 \cdot 94$	45	1.17	23.17	40	10.5			1.78
	34.56	85		23.20	100		17.95	120	
	34.44		1.42	22.97	145	5.63			0.860
			1.635			5.20			
	34.19	120		22.85	170				
			2.13			5.331			
	33.94	160	2.75	22.63	220	4.78			
	33.82	170		22.51	250				
			1.62			7.44			
	33.57	215	0.983			6.52			
	33.44	270		22.17	315				

TABLE: 149 (CONT.)

OID RUN NO: NEW RUN NO: $\mathrm{T}_{\mathrm{o}}{ }^{\circ} \mathrm{C}$ SEFED	$\begin{gathered} \text { R. } 33 \\ \text { R.A. } 5 \\ 50.0 \\ 44-53 y, A^{34} \end{gathered}$			$\begin{gathered} \text { R. } 34 \\ \text { R.P.A. } 5 \\ 80.0 \\ 44-53 \mu-A^{35} \end{gathered}$		
	\%\%m/v	TIIE MINS	$\begin{gathered} \mathrm{Kxl107} \\ \mathrm{~min}^{-1} \mathrm{I}_{\mathrm{om}}-2 \end{gathered}$	$0 \% \mathrm{~m} / \mathrm{v}$	$\begin{aligned} & \text { TITMS } \\ & \text { MINS } \end{aligned}$	$\begin{gathered} \mathrm{Kxl}^{07} \\ \mathrm{~min}^{-1} \mathrm{om}^{-2} \end{gathered}$
	19.50		4.22	36.00	0	8.4
	19.08	960	5.16	35.56	4	4.21
	18.96	1140		35.44	7.5	
			3.74			4.19
	18.85	1380		35.31	11	1.60
				35.1.9	20	
						1.835
				35.06	28	1.837
				34.94	36	
				34.69	45	1
						2.315
				34.56	52	
				34.44	59	.
						2.01.
				34	8	0.723
				34.19	'95	
				34.07	114	1.125
					124	1.21

CONCN: TOTAL CRYSTAL DIAMETER MEAN GROWTH RATE MEAN GROWTH $\% M / V$ TIME MASS INCREASE AREA CONSTANT SUPER- RATE MINS. (GRANS) (CM) CM^{2} K $\left(\mathrm{MIN}^{-1} \mathrm{CM}^{-2}\right)$ SATN. CM/MIN.

24.021	.00000	2.000	.0002117	3242.9	$1.2334 @-06$.2491	$1.512 @-0$
23.887	7.0000	2.404	.0001739	4014.9	$3.8595 @-07$.2420	$4.576 @-06$
23.750	26.000	2.815	.0001430	4761.1	$5.4683 @-08$. .2350	$6.273 @-07$
23.616	140.00	3.217	.000236	5803.4	$4.28300-07$.2245	$4.692 @-06$
23.349	165.00	4.019	.00023				
23.082	190.00	4.817	.0001901	7116.2	$3.7244 @-07$.2106	$3.802 @-06$
22.419	270.00	6.787	.0003653	9164.2	$2.5378 @-07$.1863	$2.283 @-06$

TABLE: 151 TEMP:50.0 ${ }^{\circ} \mathrm{C}$ CELL:A SEED: BATCH A PREPARED

RUN NO.R.A. 5
STIRRER SPEED: 500 R. P $_{\mathrm{o}} \mathrm{M}_{\text {o }}$

SIEVE FRACTION: $44-53 \mu$

19.380	.00000	2.000	.0006010	42.25 .6	$3.2251 @-08$.2501	$3.1300-07$
18.880	960.00	3.452	.0001052	5896.2	$3.4119 @-08$.2296	$2.922 @-07$
18.753	1140.0	3.818	.000				
18.628	1380.0	4.175	.000928	6523.2	$2.3463 @-08$.2214	$1.933 @-07$

COMPUITFD PREVIOUS RRESULTS（1）WITH PREVIOUS STZE ANAIYSES（ D_{c} ）

BUT CORRECIED EQUILIBRTUM VALUES

TABLE： 152	RUN NO．：R．P．A．I
TEMP： $60.0^{\circ} \mathrm{C}$	CELL：A
SEED：	STIRRER SPEED： 500 R．P．M．

CONCN．雄／V	TOTAL TIME MINS．	CRYSTAL MASS （GRAMS）	DIAMETER INCREASE （CM）	$\begin{aligned} & \text { MEAN } \\ & \text { AREA } \\ & C M^{2} \end{aligned}$	GROWTH RATE CONSTANT $\mathrm{K}\left(\mathrm{MIN}^{-1} \mathrm{CM}^{-2}\right)$	MEAN SUPER－ SATN．	GROWTH RATE CM／MIN．
24.021	． 00000	2．000	． 0002117	3242.9	1．1074＠－06	－2855	1．512＠－5
23							
			． 0001739	4014.9	$3.4548 \mathrm{e}-07$.2782	$4.5760-06$
23.750	26．000	2.815	． 0001430	4761.1	4．8795＠－08	.2710	6．273＠－07
23	140.00	3.217	． 0002346	5803.4	3．8026＠－07	． 2602	4．6920－06
23	165．00	4.019	$\bigcirc 0001901$	7116.2	3．2822＠－07	.2459	3．8020－06
23．082	190．00	4.	.0003653	9164.2	2．2010－07	． 2209	$2.2830-06$
22．419	270.00	6.787					

	TABLE： 153		RUN NO：：R．A． 5			
	$\begin{aligned} & \text { TEMP: } 50.0 \mathrm{C} \\ & \text { SEED: } B A T C H \end{aligned}$	$\begin{gathered} \text { CELL: A } \\ \text { A PRFFPARED } \end{gathered}$	STIRR	ER SPEED： 500 FRACTION： 44	Ro． $\mathrm{P}_{\dot{\circ}} \mathrm{M}_{\mathrm{o}}$ -53μ	
CONCN．創／V	TOTAL CRYSTAL TIME MASS MINS： （GRAMS）	DIAMETER INCREASE （CM）	MEAN AREA CM^{2}	GROWTH RATE CONSTANT $\mathrm{K}\left(\mathrm{MIN}^{-1} \mathrm{CM}^{-2}\right)$	MEAN SUPER－ SATN：	$\begin{aligned} & \text { GROWTH } \\ & \text { RATE } \\ & \text { CM/MIN- } \end{aligned}$
19.380	．00000 2.000	． 0006010	4225.6	3．20360－08	.2522	3．130－07
18．880	$960.00 \quad 3.452$.0001052	5896．3	3．38710－08	． 2317	2．922＠－07
18．万3	$1140.0 \quad 3.818$	． 0000928	6523.2	2．3286＠－08	．2235	1．933＠－07
18.628	1380，0 4.15					

CONCN: TOTAL CRYSTAL DIAMETER MEAN GROWTH RATE MEAN GROWTH $\% M / V$ TIME MASS INCREASE AREA CONSTANT SUIPER- RATE MINS. (GRAMS) (CM) C^{2} K $\mathrm{K}^{2}\left(\mathrm{MIN}^{-1} \mathrm{CM}^{-2}\right)$ SATN. CM/MIN.

19.380	.00000	2.000	.0005954	4264.9	$3.17400-08$.2522	$3.1010-07$
18.880	960.00	3.452	.0001043	5946.4	$3.3585 @-08$.2317	$2.8970 \cdots-07$
18.753	1140.0	3.818	.0000				
18.628	1380.0	4.175	.0000920	6577.1	$2.3095 @-08$.2235	$1.918 @-07$

CONCN: TOTAL CRYSTAL. DIAMETER MEAN GROWTH RATE MEAN GROWTH $\%$ TM $/ V$ TIME MASS INCREASE AREA CONSTANT SUPER- RATE MINS. (GRAMS) (CM) CM^{2} K $\left(\mathrm{MIN}^{-1} \mathrm{CM}^{-2}\right)$ SATN. CM/MIN.

23.845	. 00000	2.000					
23.716	9.0000	2.390	. 0002027	3275.6	1.16520-06	-1884	1.126@-¢
23.716	9.0000	2.390	.0001680	4022.6	$1.2737^{-m 07}$.1819	1.183@-06
23.583	80,000	2.789	.0001384	4763.1	$1.5515 @$.173	1.384@-06
23.454	130.00	3.178	. 0001201		1.0785	-1588	9.2400
23.324	195.00	3.566	. 0001201	5476.7	1.078@	.1088	9.2400
23.194	240.00	3.954	$\because 0001065$	6165.6	1.43950-07	.1624	1.183@-06
23.064			.0000959	6833.2	1.0152@-07	-1559	7.9900-07
			.0001698	7796.1	1.1533@-07	.1461	$8.4900-07$
		5.122	.0006098	11270	5.66160-08	.157	2.932@~07
21.448	1440.0	9.131	.0000407	14329	$1.007^{4} \mathrm{Com}$.0689	3.396@-07
21.329	1500.0	9.476	,	14768	2.1415@-08	. 0629	6.579@-08
21.209	1800.0	9.821					

CONCN. $\% M / V$	TABLE: 156			RUN NO: R R.A. 2			
	$\text { TEMP }: 70.0^{\circ} \mathrm{C}$		CELL: A PREPARED	STIRRER SPEED: 500 R ${ }_{\text {o }} \mathrm{P}_{\mathrm{o}} \mathrm{M}_{\circ}$ SIEVE FRACTION: $44-53 \mu$			GROWTH RATE CM/MIN.
	TOTAL TIME MINS.	$\begin{aligned} & \text { CRYSTAL } \\ & \text { MASS } \\ & \text { (GRAMS) } \end{aligned}$	DIAMETER INCREASE (CM)	$\begin{gathered} \text { MEAN } \\ \text { AREA } \\ C M^{2} \end{gathered}$	GROWTH RATE CONSTANT $\mathrm{K}\left(\mathrm{MIN}^{-1} \mathrm{CM}^{-2}\right)$	MEAN SUPERSATN.	
29.424	.00000	2.000	.0002137	3298.4	2.6006@-06	. 1159	$2.1370-5$
29.294	5.000	2.414					
			.0001719	4082.2	1.22030-06	.1109	9.5480 .06
	14.000	2.828	. 0001440	4857.3	8.7898@-07	. 1060	$6.545 @-06$
29.032	25.00	3.240	. 0001269	5617.3	7.47420-07	. 1009	5:286@-06
28.89	37.000	3.661		6321.5	8.3348 @-07	. 0961	
28.	46.000	4.037	. 0001007				5.5970-6
28.65	60,000	4.413	.0000913	6965.0	5.10770-07	.0916	3.261@-06
28.418	. 000	5	. 0001611	7888.4	$9.11150-07$. 0847	5.369@-06
28.298			. 0000720	$8785 \cdot 9$	6.0682@-07	. 0779	3.2710-06
			.0000674	9360.3	6.6592@-07	.0733	3.372@-06
			.0000635	9920.7	2.31170-07	.0687	1.095@-06
28.058	125.00	6.281					
27.915	158.00	6.722	.	1518	2.4526@-.07	. 06	.075@-06
$27.7{ }^{12}$	195:00	7.162	.0000668	11151	2.2568@-07	. 088	9.023@-07
27.487	300.00	8.041	. 0001232	12068	$1.7151 @-07$	$.002$	5.868@-07
			.0000571	12964	1.99800-07	. 0420	5.7090-07
			.0002781 .0000398	$\begin{aligned} & 14789 \\ & 16555 \end{aligned}$	$\begin{aligned} & 1.1249 @-07 \\ & 1.4256 @-07 \end{aligned}$.0342 .0066	$\begin{aligned} & 1.5800-07 \\ & 6.0290-08 \end{aligned}$
	1230.0	10.90					
26. 419	1560.0	11.29					

TABLE: 157 TEMP $55.0^{\circ} \mathrm{C}$ CELL: A STIRRER SPEED:500 R.P.M. SEED: BATCH A PREPARED

RUN NO, 2 . A .3

SIEVE FRACTION: $44-53 \mu$

CONCN. TOTAL CRYSTAL DIAMETER MEAN GROWTH RATE MEAN GROWTH \%M/V TIME MASS INCREASE AREA CONSTANT SUPER- RATE MINS. (GRAMS) (CM) $\mathrm{CM}^{2} \mathrm{~K}\left(\mathrm{MIN}^{-1} \mathrm{CN}^{-2}\right)$ SATN. CM/MIN.

21.225	10,000	2.392	. 0002035	3277.3	1.01080-	221	
21.104	25.000		. 0001523	3988.1	5.23410-	.2247	5.0760-06
		2.750	.0001271	4655.0	7.97900-08	. 2178	7.4760 .07
20.985	110.00	3.099	. 0001139		$4.3416 @-08$	-2\%08	
20.863	255.00	3.456		530.9			3.928@-07
20.027	1110.0	5-903	.000551	7632.7	4.0719@-	.1831	$3.223 @-07$
			. 0000629	9909.1	4.0043@-08	. 1552	2.623@-07
19.772	1470.0	6.640	.0000596	10451	1.99400-08	.1478	1.241@-07
	-10.0	8.461	.0002579	11977	$2.2701 \mathrm{C}-08$.1258	$1.1940-07$
		8,80	.0000437	13463	2.1093@-08	. 1039	9:110-08
893	3090.0		. 0000422	13916	1. 万26@-08	.0969	7.038 @-08

CONCN.垛/V	TABLE: 158			RUN NO: :R.P.A.I			GROWTH RATE CM/MIN.
	TEMP SEED	$\begin{aligned} & : 60.0^{\circ} \mathrm{C} \\ & : \text { BATCH } \end{aligned}$	$\begin{gathered} \text { CELL.:A } \\ \text {-A.PREPARE } \end{gathered}$	$\frac{\text { STIRR }}{\text { SIEVE }}$	$\begin{aligned} & \text { ER SPEED:500 } \\ & \text { FRACTION: } 44 \end{aligned}$	R.P.Mo 53μ	
	TOTAL TIME MINS:	$\begin{aligned} & \text { CRYSTAL } \\ & \text { MASS } \\ & \text { (GRAMS) } \end{aligned}$	DIAMETER INCREASE (CM)	MEAN AREA CM^{2}	GROWTH RATE CONSTANT $K\left(M I N^{-1} \mathrm{CM}^{-2}\right)$	MEAN SUPERSATN:	
2\%.021	.00000 2.000		.0002088	3288.0	1.0922@-06	.2855	1.4910-5
23.887							
			.0001717	4065.9	$3.41150-07$.2782	$4.5190-06$
23.750	26.	2.815	$\bigcirc 0001413$	4817.6	4.8222@-08	.2710	6.199@-07
23.616	140.00	3.217	.0002320	5867.7	$3.7609 \mathrm{-07}$. .2602	4.6400-06
23.349	165:00	4.019					
23.082		4.817	.0001882	7190.3	$3.2484 \mathrm{C-07}$.22459	3.7630-06
			.0003618	9254.1	$2.17970-07$. 2209	2.2610.06
EQUILIBRIUM CONCENIRATION $=18.634$							
	TABLE: 159			RUN NO-:R.P.A.4			GROWTH RATE CM/MIN:
	TEM	$: 50.0^{\circ} \mathrm{C}$	CELL:A	STIRRER SPEED:500 R.P.MG			
	SEED: BATCH P.A.PREPARED			SIEVE FRACTION:44-53 μ			
CONCN. \% M/V	TOTAL TIME MINS:	$\begin{aligned} & \text { CRYSTAL } \\ & \text { MASS } \\ & \text { (GRAMS) } \end{aligned}$	DIAMETER INCREASE (CM)	MEAN AREA CM^{2}	GROWTH RATE CONSTANT $K\left(M I N^{\prime} \mathrm{CM}^{-2}\right)$	MEAN SUPERSATN:	
18.151	.000002 .000		00001797	3228.3	3.7520-07	. 2816	3.593@-06
18.							
			.0001489	3882.7	2.2694@-07	.2732	$2.1280-06$
			. 0001276	4520.1	1.17390-07	.2648	1.0640-06
17.794	120.00	3.023					
17.678	300.00	3.355	$\because 0001096$	5129:5	3.4772 -08	.2564	3.046@-07

EQUILIBRIUM CONCENTRATION $=14.116 \quad$ INITIAL SEED AREA $=2898$

TABLE: 160

TEMP:70.0 $0^{\circ} \mathrm{C}$ CELLL:A

SEED: BATCH P.A.PREPARED SIEVE FRACTION:44-53 μ

CONCN.䛇M/V	TOTAL TIME MINS.	CRYSTAL MASS (GRAMS)	DIAMETER INCREASE (CM)	MEAN AREA CM^{2}	GROWTH RATE CONSTANT $\mathrm{K}\left(\mathrm{MIN}^{-1} \mathrm{CM}^{-2}\right)$	MEAN SUPER~ SATN.	GROWTH RATE CM/MIN.
28.848	.00000	2.000					
	3.		.6002079	3286.1	3.2231@-06	.1620	3.464 - -5
			.0003094	4415.9	1.64260-07	. 1543	1.6820-06
	95:000	3.204	$\because 000258$	5924	. 8.8	.1434	6.4510.06
28.17	115.00	4.103					
27.435	150.00	6.418					
27.295	163.00	6.846	.00006	10	3.94300	.10	2.658@-06
27.15	175:00		.0000653	11049	. 27	$\because 0991$	2.7210-06
26.881	200:00		.0001198	11886	4.12590-07	.0908	2.3960-06
			.0000563	1270	$3.5775 \mathrm{C}-07$. 0824	1.8780-06
			$\because 0000494$	13213	3.36590-07	\because	$1.648 \mathrm{e}-06$
26.615	230:00	8.923	.0001803	14376	2.787	. 0642	
26.109	310.00	10.45	. 00018	1510	2.78730		
25.982	325:00	10.84	$\because 0000416$	15519	$4.2877{ }^{\text {@-07 }}$	- 015	1.3860-06
			.0000394	15954	1.35570-07	.0464	$3.9420-07$
			.0000437	16408	1.7046e-07	.0410	4.3700-07
25.716	425.00	11.63	.0000406	168万	$1.67290-07$	$\because 0354$	3.6920-07
25.580	480.00	12.04					3.6920-07

APPENDIX F - IIPURITY EXTRACTION WITH MOLECULAR SIEVE

APPENDIX F

Impuxity extraction with Moleoular Sieve (Type 13X)

Extraction Procedure:

1 litre of 10.00% mass fraction purified Batoh G (P.G.) solution was made up and held at $40^{\circ} \mathrm{C}$ in a flask, heated with an isomantle, oontrolled with a voltage regulator. $\quad 10.00 \mathrm{~g}$ of molecular sieve (type 13X) l/16 n pellets were added and stirred for 2 hours. The solution was filtered through a No. 1. Whatman paper and a sample of the wet sieve weighed, dried at $100^{\circ} \mathrm{C}$, reweighed and then calcined in an open muffle furrace maintained between $700^{\circ} \mathrm{C}$ and $900^{\circ} \mathrm{C}$ for 3 days. The resulting sieve was again weighed enabling the amount of vaporised material to be caloulated. The solution was filtered through a 0.45μ millepore filter to remove attrited sieve and placed in the flask at $40^{\circ} \mathrm{C}$ for the seoond extraotion.

Example Caloulation: 1st Extraction

Readings:

1) Weight of empty, dry crucible $=26.0189 \mathrm{~g}$ •
2) Weight of oruoible + wet sieve $=38.4380 \mathrm{~g}$.
3) Weight of oruoible + dry sieve $=34.3852 \mathrm{~g}$.
4) Weight of crucible * calcined aieve $=32.5320 \mathrm{~g}$. after 3 days heating $=32.5324 \mathrm{~g}$. after 6 days heating

Blank Test on Dry Molecular sieve

	Loss of weight per 10.000 g. sieve
Ist Test	0.690 g.
2nd Test	0.680 g.
3rd. Test	0.672 g.
Average:	$0.682 \mathrm{~g} \cdot / 10.000 \mathrm{~g} \cdot$ sieve

Calculation:

Weight of water in sieve sample $=$ Weight (2) - Weight (3) $=4.0528$. 10.0\% P.E. mass fraction in solution $=11.1 \%$ mass ratio

- Weight of attached P.E. in sieve from dxied mother liquor

$$
=4.0528 \times 0.111=0.4499 g
$$

Total Weight of vapouxised adsorbent $=$ Weight (3) - Weight (4)
$=1.8532 \mathrm{~g}$.
Weight of dry sieve sample $=\left(\right.$ Weight (4) - Weight(1)) $+\frac{0.682}{10}($ Wt. (4) - Wh (1) $)$

$$
=6.9571 \mathrm{~g} .
$$

Weight of adsorbed contamirent $=1.8532 \cdots 0.4499 \cdots 0.0682 \times 6.9571$

$$
\begin{aligned}
& =0.9285 \mathrm{~g} \\
\text { Extraot } & =0.9285 \times \frac{10.00}{6.9571}
\end{aligned}
$$

$=1.33 \mathrm{~g} \cdot / 10.00 \mathrm{~g}$ sieve io per 100.0gp. G.

Summary of Resulis

Sample	Extraot (g/100 g. solute)
lst Extraotion of Purrified Batch ¢̣.	1.33
2nd " " " "	1.15
3rd " " " "	1.11
4 th " " " " "	1.13
5th " " " " "	1.11
6th " " " "	1.13
Ist Extraction of Purified Batoh D	1.11
2nd " " " " "	1.12
Extractionof Batch E	1.09

It is apperent from the results that a datum exists at about l.11g. extract / 100 g , solute even for PoD with little or no expeoted contaminant. As the growth studies showed no effect of molecular sieve extraction on purified Batch D, this is assumed to be an absorption of Pentaerythritol molecules in the sieve. The disappointing soatter of results about this datum of 1.11 g . / 100 g . solute is attributed to the difficulty of weighing s vet sample in an eveporating crucible with any acoura.oy.

The contaminant extraotions are assumed to be above this datum for P.G. material and indicate 0.22 g . contaminant / 100g. P.G. removed
with the first extraction, 0.04 g contaminant / 100 g P.G. removed with the second extraction but an immeasurable effect with each suooessive extraction. This indicates a total of about 0.26 g . contaminant per 100g。 P.G. extracted.

Estimation of remaining contaminant after 6 successive extractions of P.G.
Assume a partition coefficient (K^{\prime}) exists of the contaminant with x_{w} mass fraction in solution and x_{s} mass fraction in the moleoular sieve such that: $K^{\prime}=\frac{x_{H}}{x_{S}}$

If the mass of solution is W, the mass of moleoular sieve S^{\prime}, and the ratio $\quad \frac{S^{\prime}}{\mathrm{W}}=\gamma$

Then on the last extraction
where $W_{W_{W_{0}}}$ is the original mass of contaminant.

$$
\begin{aligned}
\therefore \quad W_{w_{W_{0}}} & =\mathbb{W}_{x_{W_{1}}}+\frac{S^{\prime} x_{W_{1}}}{\mathrm{~K}^{\prime}} \\
& =W_{x_{W_{1}}}\left(1+\frac{\gamma}{K^{\prime}}\right)
\end{aligned}
$$

\therefore Contaminant left in solution, $W x_{W_{:}}=W_{W_{W_{0}}}$

$$
\left(1+\frac{\gamma}{K^{\prime}}\right)
$$

On and extraction

$$
\begin{align*}
W_{x_{W_{1}}} & =W_{w_{W_{2}}}+S^{\prime} x_{S_{2}} \tag{2}\\
& =W_{x^{\prime}}+\frac{S_{2}^{\prime}}{K^{\prime}} x_{W_{2}} \\
& =W x_{w_{2}}\left(1+\frac{\gamma}{K^{\prime}}\right)
\end{align*}
$$

\therefore Contaminant left in solution, $W_{x_{W_{2}}}=\frac{W_{x_{W!}}}{\left(\overline{1+\frac{W_{1}}{K^{\prime}}}\right)}=\frac{W_{W_{W O}}}{\left(1+\frac{Y}{K^{\prime}}\right)^{2}}$

Hence, Contaminant left in solution after ' n ' extractions:

$$
W_{x_{W n}}=\frac{W_{x_{W O}}}{\left(1+\frac{\gamma}{K^{\prime}}\right)^{n}} \cdots \ldots \ldots \ldots \ldots \ldots \ldots . \ldots(3)
$$

From (1) $\quad x_{W_{1}}=\frac{W x_{W_{0}}-S^{\prime} x_{S_{1}}}{W}=x_{W_{0}}-Y_{X_{S_{1}}}$

$$
\begin{equation*}
\therefore \quad K_{1}^{\prime} \quad=\frac{x_{V_{1}}}{x_{S_{1}}}-\frac{x_{W_{O}}}{x_{S_{1}}}-\gamma \tag{4}
\end{equation*}
$$

From (2) $\quad x_{W_{2}}=\underline{W x_{W_{1}}-S^{\prime} x_{S_{2}}}=x_{W_{1}}-\delta x_{g_{2}}$
V
$\therefore \quad K_{2}^{\prime}=\frac{x_{W_{2}}}{x_{S_{2}}}=\frac{x_{W_{1}}}{x_{S_{2}}}-\gamma$
but

$$
x_{W_{1}}=\frac{x_{W_{0}}}{\left(1+\frac{\bar{K}^{\prime}}{\prime}\right)}
$$

$$
\begin{align*}
\therefore K_{2}^{1} & =\frac{x_{W_{0}}}{x_{S_{2}\left(1+\frac{K^{\prime}}{K^{\prime}}\right.}}-\gamma \tag{5}\\
& =-
\end{align*}
$$

For each extraction $S=10.0 \mathrm{~g}$ and $W=1000 \mathrm{~g}$ Contaminant lIst extraction $=0.22 \mathrm{~g} / 100 \mathrm{~g}$ PG. $/ 10 \mathrm{~g}$ sieve

$$
\therefore x_{S_{1}}=0.22
$$

Contaminant 2 nd extraction $=0.04 \mathrm{~g} / 100 \mathrm{~g}$ PuG. $/ 10 \mathrm{~g}$ sieve

$$
\therefore \pi_{g_{2}}=0.004
$$

$$
\begin{aligned}
& \text { Now } \\
& W x_{W O} \xlongequal{n} \mathrm{Sx}_{\mathrm{S}_{1}}+\mathrm{Sx}_{\mathrm{S}_{2}}+\mathrm{Sx}_{\mathrm{S}_{3}}+\cdots \\
& x_{W_{0}} \bumpeq \frac{S}{W}(0.022+0.004) \\
& =0.00026 \\
& \gamma=\frac{S}{V}=0.01 \\
& \therefore K^{\prime}=\frac{0.00026}{0.022}-0.01 \ldots \ldots \ldots \text {.................. (4) } \\
& =0.0118-0.01 \\
& =0.0018 \\
& \mathrm{~K}_{2}^{\prime}=\frac{0.00026}{0.004\left(1+\frac{0.01}{0.0018}\right)}-0.01 \ldots . . \text { from (5) } \\
& =0.0093-0.01
\end{aligned}
$$

This gives a negative K^{\prime} which is impossible, however if $\mathrm{X}_{\mathrm{S}_{2}}$ is taken 2 to be 0.003 , which is within experimental error.

$$
\text { Their } \begin{aligned}
\mathrm{K}_{2}^{\prime} & =\frac{0.00025}{0.003\left(1+\frac{0.01}{0.0018}\right)}-0.01 \\
& =0.0127-0.01 \\
& =0.0027
\end{aligned}
$$

However K_{l}^{\prime} should equal K_{2}^{\prime}, and K_{2}^{\prime} is of the expected order with the accuracy of this experiment and the value of 0.00018 will be used in the calculations. Hence in (3):

$$
\text { After } 6 \text { extractions } x_{W 6}=\frac{0.00026}{\left(1+\frac{0.01}{0.0018}\right)^{2}} 6
$$

- 382 -
$=0.00026$
79000
$=0.00000000329 \mathrm{~g} / \mathrm{g}$ solution
. Contaminant in P.G. $=0.0000000329 \mathrm{~g} / \mathrm{g}$ P.G.
or 0.0329 p.p.m. Pog.
after 6 sucoessive extraotions.

A Total surface area of orystals.
$\bar{A} \quad$ Mean surfsoe area of crystals over a time interval.
$A^{\prime} \quad$ Arrhenius equation oonstant.
A_{c} The Coulter Counter orifice area normal to the flow axis.
a The projeoted area, parallel to the orifice axis, cm^{2} of the ppartiole as it is orientated in passing through the Coulter Counter orifice.
ap The surface area of a crystal. cm^{2}
a. Moleoular spaoing of the adsorbed layor on the crystal surface.
B Calibration constant in $0=F+B . S .+G . S .{ }^{2}$ or Constant o 2

$$
\sqrt{\Lambda_{0}}
$$

b Index in equation $g=\mathrm{k}_{\mathrm{L}} \mathrm{s}^{\mathrm{b}}$
C A general oonstant.

- Conoentration \% Mass/Volume (fraction) $(=\mathrm{m} / \mathrm{v}) \mathrm{g} /(100 \mathrm{~cm})^{3}$

0 Concentration \% Nass/Volume (fraction) at $\mathrm{g} /(100 \mathrm{~cm})^{3}$ Equilibrium.
Ac Eq=ivi-ars Spherical Diameter of Crystal.
micron or cm
Dt The Coulter Counter orifice diameter mioron
D_{c} Indicated Coulter Counter Equivalent spherical mioron diameter.
$D_{L} \quad$ Dirfuasion ooefficiont. $\mathrm{om}^{2} / \mathrm{s}$

Dm Molar Diffusjivity. mole/cm.s
d Distance between layers of a double layer condenser.

E Activation energy for growth.
e Cxystalliser bed voidage.
θ^{\prime} Apparent expansion of Hg in glass $=0.000156$
F Calibration constant in $\mathrm{c}=\mathrm{F}+\mathrm{B} . \mathrm{S} .+\mathrm{G} . \mathrm{S} .{ }^{2}$ or Constant $=$

$F_{0} \quad$ Coulter Counter Soale expansion faotor.
G Calibration constant in $\mathrm{C}=\mathrm{F}+$ B.S. + G.S. ${ }^{2}$
$\Delta G \quad$ Excess free energy between a partiole and the solute in solution.
$\Delta G^{\text {T }} \quad$ Free energy of formation of a nucleus of the oritioal size r^{35}
$\Delta G^{3 \mathbb{P}^{1}}$ Free energy of formation of the oxitical nuoleus for heterogencous nucleation.
ΔG_{d}. Free energy of aotivation of diffusion.
$\Delta G_{S} \quad$ Surface exceess free energy between the surface' of the partiole and the bulk of the particle.
$\Delta G_{V} \quad$ Excess free energy per unit volume between a very large particle and the solute in solution.
g Crystal growth velocity $\left(=\frac{d r}{d t}\right)$ $\mathrm{cm} / \mathrm{min}$

H Initial orystal seed mass.
H^{\prime} Heat of adsorption 0.1
h The side of a particle element, (Coulter Counter om

I Integer counter for the time dimension (in Computer Program 2).
I The Coulter Counter aperture ourrent setting.

If The Coulter Counter aperture current setting used in calibration.

J Integer Counter for size distribution dimension. in Computer Programs 1 and 2.

Rate of nucleation.
Growth rate constant in equation $\frac{d o}{d t}=-K A\left(0-o_{\infty}\right)$ Contaminant Partition coefficient $\left(\approx \frac{X_{W}}{\widehat{X}_{S}}\right)$
$\vec{K} \quad$ Average value of K .
$K_{c} \quad$ The Coulter Counter calibration factor. Growth rate constant (linear basis)where $\frac{d r=}{d t}=K_{L}\left(0-0_{\infty}\right) \mathrm{cm} / \min (g / g)$
K, Growth rate constant (mass basis) where $\frac{d m}{d t}=-\mathrm{K}_{\mathrm{M}} A\left(a-q_{0}\right)$
A rate constant for the surface integration step.
${ }_{r}$
Boltzman constant $=1.3805 \times 10^{-16}$ Growth rate constant where $g=\mathrm{k}_{\mathrm{L}} \mathrm{s}^{\mathrm{b}}$
Characteristic crystal dimension of the P.E. pyramid base.
om or micron
L^{\prime}. Length of emergent Hg column of thermometer expressed in degrees.

1
Half the particle length as it is orientated in the axis of the Coulter Counter orifice.

Crystal? mass.
g
M_{m} Mean moleoulnc weight of the solution.

Mass of solute in solution.

No. Number of crystals of a particular size D.
N Number of time readings of Experimental Data.
$n_{c} \quad$ The Coulter Counter corrected count.
$n_{c}{ }^{\prime} \quad$ The average of counts of a particular sample using the Coulter Counter.
$\bar{n}_{c}{ }^{1} \quad$ The average number of counts on the Coulter Counter, $n_{c}{ }^{\prime}$ of each sample.
$n_{c}{ }^{\prime \prime}$ The Coulter Counter coincidence correction.
$n_{D} \quad$ Refractive Index for mean sodium D lines.
$n_{\text {es }}$ Refractive Index for mean sodium D lines at equilibrium.
P Number of size readings of size distribution.
$\Delta P \quad$ Pressure difference in a droplet.
$P_{c} \quad$ The Coulter Counter coincidence factor.
Q Defined by:- $Q=\frac{\mathbb{M}(I+1)-M(I)}{1.396 x\left(\frac{11}{21}\right)}$
(Computer Program 2).
q The electric charge on a particle.
R Defined by:- $\mathrm{R}=\sum 3 \times\left(\mathrm{NO}_{*}\right) \times \mathrm{D}$ at any particular time.

Ri Universal Gas constant.
$\mathrm{R}_{\mathrm{o}} \quad$ The Coulter Counter aperture resistance.
ohms
ohms
$\Delta \mathrm{R}_{\mathrm{o}} \quad \begin{aligned} & \text { The oharge in the Coulter Counter aperture } \\ & \text { resistance produced. by the particle. }\end{aligned}$
Re Reynold's Number.
r Equivalent spherical volume radius.

$r_{\text {c }}$	The resistance of the Coulter Counter aperture current switoh in the position used.
S	Refractometer scale used in oalibration (Equivalent to zeroed prism $1 B+1.20$)
St	Mass of itolecular Sieve. g
s	Supersaturation o-qo
	0_{0}
T	Absolute temperature. ${ }^{0} \mathrm{~K}$
To	Observed temperature ${ }^{\circ} \mathrm{C}$
T_{s}	Mewn temperature of thernometer emergent stem. ${ }^{\circ} \mathrm{C}$
t	Time min
$t_{\text {c }}$	The Coulter Counter relative partiole volume ($=t_{0}{ }^{\prime} \mathrm{F}_{\mathrm{o}}$)
t_{0} ?	The Coulter Counter threshold level.
$t_{0}{ }^{3}$	The Coulter Counter threshold value found for the monosized particles used in the calibration.
U	\sum (No.) at anv particular time.
u	Felative crystal / solution velocity.
u_{t}	Terminal Foulling Velooity. om / s
v	Volume of solvent.
V'	The Coulter Counter metering manometer volume. $10^{-6} \mathrm{dm}^{3}$
V_{0}	The voltage between the outer eleotrode of the Coulter Counter and the earth, when immersed in the eleotrolyte.
. V_{m}	Molar Volume of Solute.
v	Total volume of Solution. om^{3}
∇_{0}	Indioated Coultor Counter Particle Volume. cm^{3}
$\nabla_{\underline{p}}$	Volume of partiole. cm^{3}

W Mass of solution
w Work required to form a droplet from its vapour.
X \% Mass Ratio.
$\mathrm{x} \%$ Mass Fraction. $\mathrm{g} / \mathrm{loog}$
$\mathrm{x}_{\mathrm{g}} \quad$ Mass fraction of contaminant in sieve.
X_{w} Mas fraction of contaminant in solution.
Y Defined by;- $Y=\sum 3 \times(N o.) D^{2}$ at any particular om^{2} time (Computer Program 2)

Y Defined by:- $Y=\ln I+\frac{I}{\sqrt{A_{0}}} \frac{I-\frac{I}{\sqrt{\Lambda_{0}}}}{}$ in Computer Program 3
om
y Correction to be added to T_{0} to correct partially immersed thermometer.

Distance evpant of ledges on crystal surface.
Dummy integer (Computer Programs 1 and 2).
The height of the orystal pyramid apex above the projected side of an element.
$z_{s} \quad$ Average diffusion distance of adsorbed molecules. Background count of blank electrolyte.
$\propto \quad$ Angle of contact between crystalline deposit and a foreign solid surface.
The factor by which G^{35} for homogeneous nucleation

A reflection coefficient.
γ Ratio of Molecular Sieve to Solution Masses (S!)

Film thiokness surrounding a orystal.
θ Area Shape Factor $\left(=\frac{a_{p}}{\pi L^{2}}\right)$
μ Solution visoosity. Poise
∇ The energy of attaohment of a moleoule.
ρ Density.
P_{s} Density of Solute.
PW Density of Solvent.
σ Surface energy per unit area of oxystal.
$\phi \quad$ Volume shape frotor $\left(=\frac{6 v_{p}}{\pi_{L^{3}}}\right)$
Yy Dieleotric constant.
Ω The partiole resistivity. microhms/om ${ }^{3}$
$\Omega_{0} \quad$ The eleotrolyte resistivity used for the microhms/ cm^{3}
2. 1. ROGirRS, J.F. MoSc. Thesis University of Aston in Birmingham (1967).
2. OSTWALD, J_{0}, "Lehrbuck", Vol.II, Leipziç, Inglemann, 1896 - 1902.
3. MIMRS, H。A॰, J. Inst. Hetals, 37, 331, 1927.
4. SPALDING, D.B., Chem. Eng. Sci. II, 183,225 (1959).
5. FREUNDLICH, H. "Colloid and Capillary Chemistry", p.155, New York, Dutton \& Co., 1922.
6. KNAPP, L.F. The Solubility of small particles and the stability of Colloids, Trans. Faraday Soc., 17, 457,
(1922).
7. DUNDON, MoL., Surface Energy of Several Salts, J. Amer. Chem. Soc., 45 2658, (1923).
8. ROLJER, J. Phys. Chem. 35, 1133, 1931.
9. VAN HOOK, A., and FRULLA, Fo, Ind. Eing. Chem., 44, 1305, No.6. (1952).
10. GIBBS, J.W., Collected Works, London: Longmans Green. 1928.
11. CORMLA, R.L.e, PRICE, F.P., TURNBULL, D.
J. Chem. Phys. 37, 1333 (1962).
12. BECKER, R•, and DOERING, W. Ann. Physik, 24, 719, 1935.
13. VAN HOOK, A., "Crystallisation": Theory and Practice,
(New York: Rheinbold Publishing Corporation). 1961.
14. BECKER, R., Ann. Phys., 32, 128, (1938).
15. UHLMANN, D.R., and CHALMERS, B., The Energetics of Nucleation. Ind. Eng. Cheme, 57, 9, 19 - 31, 1965.
16. MELIA, T.P., Crystal Nucleation from Aqueous Solutions. J. App1. Chem. 15, 345, 1965.
17. VOLMER, Mo, Kinetik der Phasenbildung, Dresden,
T. Steinkopff, 1939•
18. PRECKSHOT, GoW., and BROWN, G.G., Ind. Eng. Chem. 44, No.6, p.1314, 1952.
19. TEIKES, M., Ybid. p.1308.
20. MULLIN, J.W., and RAVEN, K.D., Nature, 195, p.35, 1962.
21. MIERS, H.A., J. Oxford Junior Sci. Club (June 1911).
22. STRICKLAND-CONSTABLE, R. F. and MASON, R.E.A.,

Nature, London, 197, 897, 1963.
23. McCABE, W. L. Ind. Eng. Chem. 21, 30,112. (1929).
24. MELIA, T.P. and MOFTITT, W.P. I. \& E.C. Fundamentals.

Vol. 3, No.4, p.313, 1964.
25. TING, H.H., and McCABE, W.L. Ind. Eng. Chem. 26, 1201, (1934)。
26. CAYEY, N.W., and ESTKIN, J. Ind. Eng. Chem. Fund. $6(1), 13-20,(1967)$.
27. NOYES, A.A. and WHITNEY, W.R. J. Amer. Chem. Soc., 19, 930, (1897). Z. Phys. Chem., 23, 689, (1897).
28. NERNST, Wo, Z. Phys. Chem, 47, 52, (1904).
29. MIERS, H.A., Phil. Trans. A.202, 492, (1904).
30. MULLIN, J.W., Crystallisation, London: Butterworths. 1961.
31. BERTHOUD, A., J. Chim. Phys., 10, 624, (1912).
32. VALETON, J.J.P., Z.Kristallogr., 59, 135, 335, (1923); 60, 1, (1.924)
33. MARC, R., Uber die Kristallisation aus Wàsserigen Lösungěn, Z. Phys. Chem., 61, 385 (1908); 67, 470 (1909).
34. BUCKLEY, H.E., Crystal Growth, London: Chapman \& Hall, 1952.
35. CURIE, P. Bull. Soc. Franc Minéral, 8, 145-150 (1885).
36. VOLMER, M., Z. Physik, Chem。, 102, 267-275, 1922.
37. BRANDES, H., Z. Physik, Chem., 126, 196-210, 1927.
38. BRAVAIS, A., Etudes Cristallographiques, Paris,

Gauthier Villars, 1866.
39. KOSSELL, W., in FALKENHAGEN, Quantentheorie und Chemie,

Leipzig, 46pp, 1928.
40. STRANSKI, I.N., Z. Physik, Chem, 136, 259-278, 1928.
41. NEILSEN, A.E., Kinetics of Precipitation, Pergamon Press (1964)
42. BURTON, W.K., CABRERA, No, and FRANK, F.C.

Phil. Trans. Roy. Soc. A.243, 299 (1951).
43. FRANK, F.E., The Influence of Dislocations on Crystal Growth, Ref. 4, p. 48.
44. STRICKLAND-CONSTABLE, R.F., Kinetics \& Mechanism of Crystallisation, Academic Press, London \& New York, (1968)
45. REICH, Ro, "Zur Kinetik des Kristallwachstums in Wässerigen

Lösungĕn" Thesis, Göttingen (1965).
46. CHERNOV, A.A. Soviet Fhys. Usp., 4, 116, (1961)
47. BRANSOM, S.H., BROWN, D.E., and WATTS, P.

The fiffect of impelled speed on Growth Rates in a
stirred vessel Crystalliser Symposium on Industrial
Crystallisation, Inst. Chem. Eng. 1969.
48. CARTIER, R., PINDZOLA, D. and BRUINS, P.F. Ind.Eng.Chem. 51
49. AMELINCKX, So, J. Chim. Physo, 47, 213 (1950).
50. MULLIN, J.W. aṇd GARSIDE, J.

Trans. Inst. Chem. Eng. Vol.45, No.7, (1967)
51. DAVIES,C.W and. JONES A.L. Trans. Faraday Soc. 51, 812 (1955).
52. SCHIERHOITZ., O.J. Canadian J. Chem. 36, 1057, (1958).
53. McCabe, WoL., Crystallisation, in Chem. Eng. Handbook J.H. Perry (Ed.), 3rd ed., New York, McGraw-Hill, 1950.
54. HOOKS, I.J. and KERZE, F., Nomograph for crystal size prediction, Chem. Metall., Eng. 53 (7) 140, (1946).
55. VAN HOOK, A., Kinetics of Crystallisation, "Principles of Sugar Technology", Vol. 2, P. Honig, 1959.
56. RUMFORD, F., and BAIN, J., Trans. Inst. Chem. Eng. Vol. 38, 1960.
57. McCABE, W.L., and STEPHENS, R.P. Chem. Fig. Prog., 47, No.4, pp.168. (1951).
58. HIXON, A.W., and KNOX, K.L. Ind.Eng.Chem. 43, 2144, (1951).
59. BRANSOM, S.H., Brit. Chem. Eng., December 1960.
60. BRANSOM, S.H., and PALMER, A.G.C., Brit. Chern. Eng. 2, No.10, 1964.
61. BENNETT, R.C., Chen. Eng. Prog., 58, No.9, 1962.
62. BENNETY, M.C. and FENITMAN,Y.L. Growth Rate of Sucrose Crystals related to Krypton Surface area of Seeds. (in ref. 47).
63. McCARTNEY, E.R., and ALEXANDER, A.E.J. Coll. Sci., 13,383(1958)
64. BOISARIS, and Co-Workers. Paper 12D, 61st Nat. Meeting of Am. Chem. Eng., Houston, (1967).
65. BERICW, E., BARTH, R.H., and SNON, J.E.,

The Pentaerythritols, A.C.S. Monograph No.136, Rheinhold, New York, 1958.
66. VON GROJH, P., Chemische Krystallographie, Vol.3., 385, Leipzig, 1915.
67. BISHOP, A.C. Outline of Crystal Morphology. Hutchinson, (1967)
68. PORTER, M.W., and SPILTER, R.C. Barker Crustal Index, Heffer, (1951)
69. WYCKOFF, R.W.G., Crystal Structures, Vo.5, Interscience (1966).
70. NITTA, I. and WATANABE, T. Bull. Chem. Soc. Jap. 13, 28 (1938)
71. SALKIND, M., AHERN, H.F. and ALBERT, A.A. Ind. Eng. Chem., 50, No.8, 1106 - 14, 1958.
72. WIERSMA, D.S., HOYLE, R.E. and REMPIS, H., Anal. Chem.

Vol. 34, No.12, 1533, (1962)
73. BARTH, R.H. and SNOW, J.E. U.S. Patent 2,464,430.
74. WALKER, J.F. "Formaldehyde", 3rd Ed., A.C.S. Monograph, No.159, Reinhold.
75. COOKE, E.G. Paint Manufacture, 18, 125 (1948).
76. International Critical Tables, 5, 70.
77. BRADLEY, R.S. and COTSON, S., J. Chem. Soc. 1984-88, 1953.
78. NITTA, I。, SEKI, S. and SUZUKI, K. Bull. Chem. Soc.

Vap. 2463 (1951)
79 BRIGHT and CARSON, I.C.I. Report: RI.5067, The Heats of Aqueous Solutions and Dilution of P.E. and Other Salts.
80. WULER, J.A., WERNETT, E.A. (Trojan Powder Company), U.S. Patent $(2,299,048), 1942$.
81. SUCHANEC, R.R. An. Chem. 37, No.11, 1361, (1965)
82. WHETSY'ONE, J. Research 2, 194 (1.949).
83. Coulter Counter Instruction Manual.

COULTER ELECTRONICS ITD., Dunstable, Bedfordshire.
84. ALLEN, T. Particle Size Analysis p. 110, Soc. Anal. Chem. (London) 1966.
85. HENRICI, P. Elements of Numerical Analysis. Wiley \& Sons Inc. New York. 1962.
86. EDMUNDSON, I.C. Nature 212, 1450, (1966).
87. MATTERN, BRACKETT and OISEN. J. of Applied Fhysiology, Vol. 10, No.l (1957). (Referred to in reference 83).
88. LINES, R.W. Private Commication Coulter Electronics Ltd. Dunstable. (1967)
89. DYSON, J. Nature 184, 1561, (1959).
90. MIDLAND SILICONES LTD., Private Communication. (1968).

