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Summary 

Since many semiconductor devices may be operated 

as very efficient switches it is desirable to make use 

of these switching properties as a means of obtaining 

high efficiency linear power amplification. One method 

of achieving this is to vary the length of the pulses of 

a wavetrain in accordance with the signal to be amplified. 

The modulated wavetrain may be demodulated by simply 

passing the wavetrain through a low-pass filter. The 

majority of the published work on this technique is 

concerned with ideal systems. It is the objective of 

this research work to establish some of the more important 

design criteria for pulse-length modulation systems. The 

analytical work is divided into three distinct sections. 

The first of these sections deals with distortion 

arising in the modulation process. The effects of 

system parameters on the system linearity are analysed on 

a static basis, where the system input is d.c., and in 

the frequency domain. In general the static analysis is 

required before the analysis in the frequency domain can 

be made. In addition to examining,in detail, the effect 

of a number of particular system parameters a generalised 

spectrum analysis has been made for non-linear pulse- 

length modulation. 

The second section considers the efficiency of 

switching output stages operating in conjunction with the 

low-pass filter necessary for demodulation. The power 

dissipation in the elements of the output stage is 

analysed in terms of the d.c. characteristics of the 

active. elements. As as result of the complexity of the 

problem a quasi-dynamic approach has been used. 

Expressions are obtained relating the power dissipation 

 



to the pulse length. The pulse length is then 

modulated in a sinusoidal manner and the power 

dissipation integrated over one cycle of the modulating 

frequency. 

It was shown in the first section that non- 

linearities in the modulation process givenrise to 

systems with non-linear transfer functions. The final 

_ section of the thesis introduces the possibility of 

producing systems with prescribed non-linear transfer 

functions by means of pulse-length modulation.
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CHAPTER I 

General Introduction to Pulse-length Modulation 

Systems
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1. Basic principles of pulse-length modulation amplifiers 
  

In conventional power amplifier systems the control 

devices (i.e. thermionic-valves or transistors) are 

operated in the linear or quasi-linear region which is an 

inherently inefficient mode of operation due to the relatively 

large power dissipation in the control device. Thus high- 

power amplifier systems must be designed around devices 

capable of dissipating a considerable amount of power. 

Provision usually has to made to remove the heat 

generated in order to maintain the control devices at a 

reasonable temperature. However a number of modern 

semiconductor devices, transistors in particular, are 

capable of operating as very efficient switches. In the 

"on" condition the voltage drop across the device may be 

less than a volt, whilst in the "off" condition the current 

through the device may only be a few microamps. Thus a 

method of linear amplification which could make use of 

the efficient switching properties of transistors would 

present an attractive alternative to the conventional 

Class A and Class B modes of operation normally used. 

Pulse-length modulation affords a means of achieving this 

objective. 

Pulse-length modulation is a process whereby the length 

of the pulses in a pulse-train are varied in accordance with 

some modulating function. Fig. 1.1. shows the manner in‘ 

which the length-modulated pulses are utilised. The two 

switches are operated at a constant frequency and in such a 

manner that when one switch is open so the other is closed. 

The period T, for which SW1l is closed (and SW2 is open) is 

nt The 

waveforms associated with the circuit show that the average 

1 
varied in accordance with the modulating signal V; 

value of;the voltage appearing across the load resistance is: 
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Fig.1.1. Basic pulse~length modulation amplifier 

(a) Schematic circuit 

(6b) Circuit waveforms 

 



Vicor (amy. | i. (1.1) 

If the period Ty is equal to a when no modulating 

signal is present, then the period T, may be written 

as: 

Ye te + kt V,, a (1.2) 

where k.T, relates the variation of T, to the modulating 

signal Nig Substituting eqn. (1.2) in (1.1) gives: 

Vee? KN, ey (1.3) 
av 

Thus the average voltage appearing across the load is 

directly proportional to the modulating signal. Now 

the average value of the switching waveform is, by 

definition, the d.c. component of the waveform. There= 

fore an inductance may be connected in series with the 

load resistor to filter the high frequency components of 

the waveform as shown in Tit. Tees If the inductance 

is sufficiently large then the voltage across the load 

resistance will have a value directly proportional to the 

modulating signal V,_ and linear amplification is achieved 

by means of switches. If the switches are replaced by 

transistors then high efficiency should be obtained since 

the transistors are operated in either the "on" or "off" 

condition where the device dissipation is low. 

Fig. 1.3 shows the block diagram of a system for 

producing length-modulated wavetrains, and fig. 1.4 shows 

the waveforms associated with the system. The output of 

the square-wave generator is integrated to produce a 

triangular sampling waveform ss shown in fig. 1.4(b). 
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Fig.1.2 Basic pulse-length modulation amplifier with 

series inductance for low-pass filtering. 

(a) Schematic circuit 

(o) Cireuit waveforms 
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This triangular waveform is added to the modulating input 

voltage Men and the sum applied to the input of the level- 

detector. Now the operation of the level-detector is 

such that the output changes state whenever the voltage 

applied to its input crosses the threshold level as shown 

in f£10,):1.4€d). and.fed.« From fig. 1.4(e) it can be seen 

that the level-detector output waveform is a length- 

modulated wavetrain which can be used to switch the devices 

in a high power output stage. 

The principle of pulse-length modulation as a means 

of achieving continuous control predates the introduction 

of transistors by at least fifty years as will be seen in. 

the following section which is a survey of previous work. 
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Ze Previous work 
  

One of the earliest applications of pulse-length 

modulation techniques was to the temperature control of 

an oven, described by Gouy 61) in 1897. The system 

consists of an oven heated by a resistive heating 

element, a mercury thermometer and an electrical contact 

mounted on a motor-driven eccentric. The motor-driven 

eccentric periodically immerses the electrical contact 

in the mercury of the thermometer thus closing a circuit” 

and causing current to flow in the coil of a relay. 

The relay is connected in series with the heater coil of 

the oven in such a manner that heater current flows when 

the relay is not energised (i.e. when the switch contact 

is not immersed in the mercury). Thus. the current 

supplied to the heater coil is a periodic pulse-train. 

The motor driven contact is so arranged that as the oven 

temperature rises, the mercury level rises and the contact 

remains immersed in the mercury for a longer period, hence 

decreasing the period of the current pulses supplied to the 

heater coil. Since the pulse period is reduced, the 

average power dissipated in the heater coil is reduced and 

the oven temperature falls. Thus. closed-loop control of 

the oven temperature is achieved. The first publication 

dealing with pulse-length modulation in electronic systems 

appears to be a patent, taken out by Bedford (2) an 1931, 

which describes a low frequency amplifier using thyratrons 

as the switching elements. The next application of 

pulse-length modulation was in television systems when a 

number of workers (3*4»>) considered the possibility of 

using the line synchronising period to transmit the sound 

channel as length modulated pulses. However the technique 

found very little application until the advent of World 
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War II, when the need for high power communication 

equipment stimulated an interest in pulse modulation. 

A number of papers (8-12) appeared in the immediate 

post-war years dealing with theoretical and practical 

aspects of pulse-length modulation which had arisen from 

(13-17) published at 

this time discuss the spectrum analysis of pulse-length 

the war effort. Further papers 

modulated wavetrains. Although these early papers do 

not deal with pulse-length modulation as a technique 

for achieving audio amplification they do provide the 

theoretical foundations of the modulation process. 

Up to this point in time (i.e. the late 1940's) the only 

devices capable of switching at the required pulse 

repetition frequency were thermionic valves which are not 

very efficient as high-power switches. However the 

development of the junction transistor led to a resurgence 

of interest in pulse-length modulation as a means of 

achieving high efficiency amplification. 

One of the first references to the use of transistors 

in this manner is a paper by Bright (48) ‘which describes the 

switching properties of junction transistors and briefly 

describes a hypothetical system for controlling the fiedd 

current ofa d.c. motor. The first paper dealing 

specifically with pulse-length modulation amplifiers is by 

Milnes (19) who describes various systems which are analogous 

to the well known phase-controlled thyratron systems for 

controlling the average current into a load from an a.c. 

supply. After this publication a number of papers appeared 

oon) describing various pulse-length modulation amplifiers 

and regulator systems. None of these papers attempt to 

establish any analytical basis for the systems apart from 

calculations of losses occuring in transistor switching 

output stages. In general the analyses are of a very 

much simplified nature with a few exceptions (23,24,25) wheres 
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the authors have considered the output stage efficiency 

from a more realistic point of view. It :is.-interesting 

to note that in spite of the fairly considerable amount 

of work published on the spectrum analysis of pulse- 

length modulated wavetrains none of these papers on 

pulse-length modulation amplifiers makes more than a 

passing comment on the required pulse repetition frequency. 

The first published work which gives serious 

consideration to the theoretical aspects of pulse-length 

modulation amplifiers is by Miller (33) , He makes use of 

the spectrum analyses developed by workers in the radio- 

communication field to establish the required pulse- 

repetition frequency for an amplifier system. He also 

gives some consideration to the problems involved in 

operating switching output stages into the low-pass 

filter necessary to demodulate the wavetrain. Turnbull 

and Townsend (39) present complete designs for two pulse- 

length modulation amplifiers which can deliver an output 

power of 2 watts into a 15.0 load. The first of these 

two amplifiers is described as an "open-loop" system since 

the basic square-wave, which produces the sampling 

waveform, is derived from a separate oscillator in the 

Same manner as the system shown in fig. 1.3. The second 

system dispenses with the square-wave generator by 

connecting the system output back to the integrator input 

in,such a manner that the feedback is positive and the 

system oscillates. Although this overall feedback is 

positive the system can be designed so that the feedback 

for the modulation frequency components is negative thus 

giving some improvement in performance. This type of 

amplifier is called a "closed-loop" system. With this 

system not only is the pulse-length varied but also the 

frequency. The "closed-loop" system is well known in 

(36) and is often referred to as a control system theory 

 



(11) 

relay amplifier. Previous authors (37741) have also 

suggested a "closed-loop" system as an alternative to 

the normal open-loop" systems as a means of designing 

high efficiency amplifiers. The article by Turnbull 

and Townsend (35) raised a certain amount of controversy 

(42,45) | particularly with regard to the chaims the 

authors make for the efficiency of the amplifiers. The 

controversy arises from aspects of operating switching 

output stages into an inductive load (i.e. a filter) 

which gives entirely different operating conditions to a 

reistive load. These problems are discussed in 

considerably more detail by Turnbull and Townsend (44 »45) 

in two later articles. Johnson (46:47 48) has published 

a critique of pulse-length modulation amplifiers in which 

he examines the performance of various types of system 

from the point of view of distortion and efficiency. 

The majority of the discussion is based on intuitive 

reasoning rather than on mathematical analysis. However 

these papers do show the need for a considerable amount 

of analytical investigationianato the performance of 

practical pulse-length modulation amplifier systems. 
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as Classification of pulse-length modulation processes. 
  

As discussed in the survey of previous work there are 

two types of pulse-length modulation amplifier: namely 

"open-loop" systems and "closed-loop" systems. The 

"open-loop" system is basically more simple and is the 

fundamental pulse-length modulation process, since the 

pulse-repetition frequency also varies in the "closed- 

loop" system. For this reason it is considered that 

design principles should be established for the "open- 

loop" systen. However, many of the principles can 

probably be applied to the "closed-loop" system. 

There are two fundamental methods of producing 

pulse-length modulation and these are normally called 

natural sampling and periodic sampling. With periodic 

sampling the length of the pulses are made proportional 

to the instantaneous value of the modulating input at 

strictly periodic intervals. : Natural sampling is rather 

more complex since the position of the pulse-edge is 

determined by the instantaneous amplitude of the 

modulating input at the time of occurence of the pulse- 

edge. The two types of modulation are shown in figs. 

3.1 and 3.2. A further classification of the modulation 

processes is to define which of the pulse-edges is being 

modulated. Thus both natural and periodic sampling can 

be sub-divided into the following classes. Leading-edge 

modulation where the trailing edges of the pulses occur 

at periodic intervals and the leading pulse-édges are 

modulated according to the particular type of modulation 

being considered (i.e. Natural sampling or periodic 

sampling). Double-edge modulation where the positions 

of both the leading and trailing pulse-edges are modulated. 
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Finally there is trailing-edge modulation where the 

leading pulse-edges occur at periodic intervals and the 

positions of the trailing pulse-edges are modulated. 

Pulse-length modulated wavetrains produced according to 

these various classifications have rather different 

characteristics which are discussed in the following 

chapter.
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CHAPTER II 

Distortion in the Pulse-length Modulation Process 
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1. General 

Distortion in the pulse-length modulation process 

is of two types, namely sideband distortion and harmonic dis- 

tortion, Sideband distortion results from lower order sidebands, 

of the sampling and modulation frequencies, falling within the 

pass-band of the system. This type of distortion is inherent in 

all methods of pulse-length modulation. Distortion in the form 

of harmonics of the modulation frequency is not inherent in the 

pulse-length modulation process but can arise as a result of 

imperfections in the system, Much attention has been given in 

the literature to the problem of sideband distortion, and the 

major contributions will now be reviewed, 

(6) Lawson, Lord and Kharbanda present a limited 

analysis of pulse-length modulation with natural sampling, the 

analysis being based on a quasi-dynamic method, The quasi- 

dynamic method entails setting up the Fourier series for a train 

of pulses of constant length, and then replacing the pulse length 

with a time-dépendent function, This method of analysis lacks 

mathematical rigour since the pulse length is not a function of 

the instantaneous amplitude of the modulating signal at periodic 

intervals, Thus, the resulting modulated wavetrain is non- periodic 

and application of Fourier series analysis requires, in the words 

of the authors, ''some mathematical courage", A further fault in 

the analysis is that the spectrum is derived for double-edge length- 

modulated wavetrains, and the results applied to a single- edge length 

(13) modulation system, Roberts and Simmonds also make use of 

the quasi-dynamic method for analysis of pulse-length modulation
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with natural sampling. Fredendall, Schlesinger and BS heoaier Ted 

analyse in some detail a system where the length of a pulse is pro- 

portional to the amplitude of the modulating wave at the instant 

corresponding to the centre line of the pulse. This is a form of 

periodic sampling; however, it is obviously impossible to achieve, 

since the positions of the pulse edges are determined by the value 

of the modulating wave at some time after the leading pulse edge 

has occurred. The authors apply this analysis for periodic samp- 

ling to a system having single-edge modulation with natural samp- 

ling. This lack of rigorous definition of the type of modulation 

process being analysed is a common feature of the early papers on 

the subject. A number of workers have. published analyses of 

pulse-length modulation which do not rely on the rather dubious 

(1) quasi-dynamic method. Fitch approaches the problem by 

synthesising 2N + 1 cycles of a rectangular wavetrain with 2N + 1 

positive step functions and 2N + 1 negative step functions. The 

Fourier transform for each of the positive step functions is written 

with the appropriate time shift, and a series formed by summing the 

Fourier transforms. A similar process is carried out for the 

negative step functions and the two series added. Nis then 

allowed to increase indefinitely and the limit of ‘the series obtained. 

The resulting expression enables the individual effects of the lead- 

ing and trailing edges of the pulses to be readily identified; the 

pulse length can then be modulated as required. Even this method 

is not completely rigorous, since the limiting process really only 

produces a Fourier series from the sum of the Fourier transforms, 

A similar method is outlined by ree, i for pulse-length modul- 

ation with natural sampling. However, he defines the pulse-length 

incorrectly so that the mathematical analysis is actually for a 
9 

system with periodic sampling. Stuart* Me acklors a method 
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similar to that of Fitch , except that the modulation is 

applied to the appropriate parameter of the pulse before the 

limit is taken of the sum of the Fourier transforms of the 

(50) 
individual pulses, Bennett developed a method of analysing 

rectified waves by means of a double Fourier series in two 

variables. He also extends the method to analysing pulse-length 

modulated wavetrains, but did not publish the work, Black®"), 

however, has published and analysis based on Bennett's unpub- 

lished work, The method is rigorous but requires rather more 

(11,49) 
routine mathematical work than the Fourier integral method j 

A further method 6f analysing pulse-length modulated wavetrains 

(16) 
was introduced independently by Krauss and Ordung and 

Bice The method is to synthesise a rectangular wavetrain 

from two triangular wavetrains displaced in time, and to maintain 

the amplitude of the pulse train constant by introducing an amplitude- 

correction factor, The phase of either, or both, of the triangular 

wavetrains is modulated to produce a pulse-length modulated 

wavetrain, The derivation of the amplitude correction term is 

(16) 
dealt with in some detail by Krauss and Ordung but is not 

(14 ) 
treated rigorously, Kretzmer utilises the quasi-dynamic 

method of analysis but takes some care in correctly defining 

the switching instants for pulse-length modulation with natural 

(17 ) 
sampling. Moss presents an extensive treatment of pulse 

modulation of various types, including periodically and naturally 

sampled pulse-length modulation, The analysis is developed in 

a general way for pulses of arbitrary shape modulated in amplitude 

and time. Introduction of a spectral shape-factor for each type 
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of pulse enables the development to be concentrated on the 

essential features of each type of modulation, Time modulation 

is achieved by deforming the time variable. Theanalyses are 

developed in abstract terms so that careful consideration is 

required in order to follow the argument, 

At this point it is convenient to introduce the results of 
| 

the rigorous spectrum anciveea. | 751 ) For single-edge 

pulse length modulation with periodic sampling, the frequency 

spectrum is given by equation 1.1. 

i TING! oe 

J,("oe*) sin (not = BOT Ade "E) + s: tee tae sin (pet) 

-\ > TnL (pvt naa) se cies [ (pet ne2,)( ~ 2s) - | Be (1.1) 

where k,= ratio. of unmodulated pulse length to the period of 

the unmodulated wavetrain 

€ " « = angular frequency of the wavetrain 

i " m= angular modulation frequency 

x modulation index 

modulation function = M.cos (ont) 

It will be noted from equation 1,1. that the amplitude of 

the component at the fundamental of the modulating frequency 

is not linearly related to the modulation index M . Furthermore, 

distortion is present in the form of harmonics of the modulating 

frequency. Sideband components Po, - AW,» which extend 
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down to the system pass-band, also produce distortion. Thus, 

harmonic and sideband distortion exists if the periodically- 

sampled, length-modulated wavetrain is demodulated by passing 

the modulated wavetrain through a low-pass filter. It may be 

shown @51) that distortionless demodulation may be achieved 

by first converting the periodically length-modulated wavetrain 

into a pulse-amplitude modulated wavetrain having pulse ampli- 

tudes directly proportional to the length of the corresponding 

pulses of the length-modulated wavetrain. Demodulation of the 

pulse amplitude modulated wavetrain may then be achieved by 

low-pass filtering. However, the conversion of pulse-length 

into a proportional pulse amplitdue is likely to be a very ineffi- 

cient process at high power levels, This technique is therefore 

not suitable as a means of producing high power amplification. 

The frequency spectrum for pulse-length modulated waves, 

with natural sampling, is given in equation 1.2. for single-edge 

modulation, and in equation 1.3. for double- edge Mnoduianoht EOC, » 

For single-edge modulation: 

F(t)= k[t+Mcos(o,t}} +
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For double-edge modulation; 

F(t)= k fie. ae t)| y Ailes) sin (prrk).cos (pot) + 

  

y yes 2dn she sin(prrk.+ 5 ).cos|(pocrne,t| 2 48F 
p=! n=tt 

where the symbols have the same significance as in equation 1.1. 

Equation 1,2. gives the frequency spectrum for trailing-edge 

modulation, To obtain the spectrum for leading-edge modulation, 

it is merely necessary to reverse the sign of the time variable 

throughout equation 1,2. The frequency spectra for single-edge 

and double-edge modulation contain a constant term k and an 

undistorted modulating- frequency component k,Mcos va 

They also contain components at all the harmonics p Ww. of the 

carrier frequency and sidebands (po, < nw) of each 

harmonic of the modulating frequency. It should be noted that 

no harmonics of the modulating frequency occur and that the 

amplitude of the component at the fundamental of the modulating 

frequency is directly proportional to the modulation index 

Demodulation can therefore be achieved by simply passing the 

modulated wavetrain through a low-pass filter. Thus pulse- 

length modulation with natural sampling is an inherently better 

technique for high power amplification than pulse-length modu- 

lation with periodic sampling. Some of the lower sideband 

frequencies (p wWo7 Rn a) in particular (a, . 2 wo) 

fall within the system pass-band and cause sideband distortion, 
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Before continuing the discussion of sideband distortion, 

some further observations will be made from equations 1, 2, 

and 1.3. The modulation frequency term k,M cos We has 

the maximum value of k, cos ook when M =1, and there is 

full modulation of the pulse from zero to 2k, If k, (the ratio 

of the unmodulated pulse length to the period of the unmodulated 

wavetrain) has the value 0.5, then the pulse length can be 
9 

modulated from zero to = ‘ For the double-edge modulation 

. 
spectrum, equation 1,3. shows that, with k,= 0.5, the sidebands 

(po, ae nw) are eliminated when nis odd and’p =1. Thisis 

not the case with single-edge modulation, Also, although not 

immediately apparent from equations 1,2 and 1.3., the lower 

sidebands (w., “nw ) for double-edge modulation are smaller 

in amplitude than the corresponding sidebands for single-edge 

modulation. An intuitive explanation of this factis that, for a 

given value of modulation index, the time deviation of each pulse 

edge with double-edge modulation is only half the time deviation 

of the pulse edge for single-edge modulation, Figs. 1.la. and 

1.1b. show how the amplitude of the various sideband components 

vary with the modulation index M for single-edge and double-edge 

modulation respectively. In fig, 1.1., the value of k,is 0.5, 

since this allows full modulation of the pulse length from zero 

to ma . From fig. 1.1. it can be seen that, if the sideband 
Cc 

components falling within the system pass-band are to be 

attenuated by at least 60 dB, with respect to k, cos Wt then 

the pulse-repetition rate WO. must be greater than 9 Pe 
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Fig.1.1(a).Sideband amplitude for single-edge modulation 
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for single-edge modulation. In order to meet the same speci- 

fication with double-edge modulation, it is only necessary that 

the pulse-repetition rate is greater than 7 OW where a is the 

upper limit of the required system pass-band. Thus, there is 

a considerable theoretical advantage in using double- edge 

modulation because a lower pulse repetition rate can be used 

for a given level of sideband distortion. 

All the literature reviewed on distortion in pulse-length 

modulation systems assumes that the modulation process is 

ideal in that the pulse length is linearly related to the modula- 

ting input to the system, Very little information has been 

published dealing with distortion that can arise in a practical 

(53) 
pulse-length modulation system, Narayana Rao develops 

expressions for the harmonic distortion resulting from non- 

linearity in a particular type of thermonic-valve modulator, 

Although not stated, the type of modulation is single-edge 

modulation with natural sampling. The expressions developed 

give the pulse length as a function of the modulating signal and 

its harmonics. No account is taken of sideband distortion and 

the work is of very limited application. Further discussion 

of distortion in the pulse-length modulation process have been 

published 6235) However, these papers are not primarily 

concerned with the distortion aspect of pulse-length modulation 

so that they do not present any work which has not been covered 

(48 ) 
in the previous references. Johnson ‘discusses the general 

problem of sideband distortion but does not introduce any ana- 

lytical work, 

Thus, the need exists for analytical expressions relating 
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harmonic and sideband distortions to modulator parameters 

in order that the design of pulse-length modulation systems 

can be carried out on an analytical basis rather than empiri- 

cally. 

_ Since it has been shown that there are sound theoretical 

reasons for utilising naturally-sampled pulse-length modulation, 

as opposed to periodic sampling, all further work will be with 

reference to natural sampling.
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2. Discussion of Generalised Pulse-Length Modulation Systems 

Fig. 2, l(a). shows a generalised system for producing 

double-edge length-modulated wavetrains with natural sampling. 

The waveforms associated with the system of fig, 2. (a). are 

shown in fig. 2. l(b). The block diagram of a generalised system 

for producing single-edge modulation with natural sampling is 

shown in fig, 2.2(a), The switches associated with the operational 

integrator operate in synchronism every k. T. seconds, where 

k is an integer and c. (= on) is the pulse repetition period. 
c 

It is assumed that the switches are closed for an infinitesimally 

short time so that the system waveforms are as shown in fig. 

2.2/b). The output waveforms of the summing amplifiers, in 

figs. 2.1(b). and 2, 2(b)., are idealised to some extent, since 

the sloping edges are shown as straight lines. This is not a true 

representation, since the modulating input is time varying during 

the scan of the triangular wave, _ Although many circuits can be 

envisaged for producing pulse-length modulation, the majority 

of systems perform the functions shown in figs. 2. 1, and 2, 2. 

Moreoever, with the advent of integrated circuits, the designer 

must work in terms of the type of standard circuit blocks shown 

in figs. 2,1. and 2, 2, rather than design a discrete-component 

circuit for each specific application, 

_It was shown in section 1 that for a sideband distotion level of 

- 60 dB, the pulse-repetition rate must be greater than BP. for 

double-edge modulation, and greater than 9 en for single- edge 

modulation. Thus, if a system is to have a pass-band extending
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to 17 kHz, the pulse-repetition rate must be of the order of 

120 kHz for double-edge modulation and 160 kHz for single-edge 

modulation, This is only a very limited consideration of the 

problem, but it enables some useful conclusions to be drawn 

regarding the specification for the functional blocks of these 

systems. For the double-edge modulation system of fig. 2. l(a)., 

it is necessary to generate a square-wave having rise and fall 

times much lessthan the period. With a repetition rate of the 

order of 120 kHz, the period is approximately 8 usec. so that 

a square-wave having rise and fall times much less than the 

period may be generated by well established techniques © A 

The problem of maintaining unity mark-space ratio, in 

order to maintain a symmetrical triangular wave, may be 

overcome by using a rectangular wave generator, of arbitrary 

mark- space ratio, operating at twice the required pulse repetition 

rate. The correct repetition rate, and a well-defined mark-space 

ratio of unity, may then be obtained by dividing the output of the 

Pactangwlar wave generator by a single binary divider circuit. 

With the single-edge modulation system of fig. 2. 2(a). the 

square wave generator is not necessary. However, the integrator 

must be reset periodically and in a time much shorter than this 

period so the problem is much the same as for double-edge 

modulation. Since the rise and fall time of the square wave 

generator for double-edge modulation, and the integrator reset 

time for single-edge modulation, can both be accomplished in a 

time very much less than the period, this part of the system willbe 

considered ideal, 
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The operational integrator section of the two systems 

presents the major design problem, There are several 

parameters to be considered, the major ones being: gain, 

input resistance, output resistance and open-loop baswiais. 

Unfortunately, it is not possible to make each of these parameters 

-approach the idealised values without introducing considerable 

complexity into the design. In fact, with a practical operational 

integrator, these parameters are very often inter-dependent. 

For instance, increasing the gain of an operational integrator 

usually requires additional amplifier stages with a resulting 

decrease in bandwidth. A further problem with high-gain ampli- 

fiers is that there are a number of time-constants, and high- 

frequency instability can occur when the amplifier is used as 

an operational integrator. 

The bandwidth of the summing amplifier has to be sufficient 

to pass the summation of the sampling waveform and the modulating 

input waveform without distortion. Since the bandwidth of the 

sampling waveform is much greater than that of the modulating 

waveform, the requirement is essentially that the summing ampli- 

fier bandwidth be sufficient to pass the sampling waveform without 

distortion, Now, the sampling waveform for single-edge modu- 

lation is a sawtooth which has a jump discontinuity. It can be 

(55) shown that the Fourier series coefficients of a waveform with 
1 : ; 

a jump discontinuity decrease as In , Where nis the order of the 

harmonic, For double-edge modulation, the sampling waveform is 

triangular and the Fourier coefficients decrease as ‘In? «° Thus
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| the bandwidth requirements of the summing amplifier are 

rather more severe for single -edge modulation. In many 

: practical systems, the summation is carried out by means of 

a resistance network, so bandwidth limitation is not a problem. 

For summation, only a low gain is required and relatively large 

bandwidths are easily achieved. Therefore, the summing ampli- 

fier need not be further discussed. It is shown in section 6.1, 

that this part of the modulator can usually be eliminated as a 

separate circuit element. 

The output of the level detector of figs. 2.1(a), and 2. 2(a) 

changes state whenever its input signal crosses the threshold 

level, A large class of level detectors exhibit a hysteresis 

effect; the threshold voltage for positive- going input voltages 

differs from that for negative- going input voltages. The transfer 

function of a typical level detector is shown in fig. 2.3. In the 

Level~ 

detector 

output 
  

    
  

— — 
= 

Level-detector input 

Fig.2.3. Transfer function of hysteretic level- 

detector. 
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design of a pulse-length modulation system, it is therefore 

| necessary to know what effect the level detector hysteresis 

has on system performance, 

In view of the points raised above, the analysis of dis- 

tortion in practical modulation systems has been concentrated 

on the operational integrator and level detector functions. 

Development of expressions relating system distortion to 

system parameters has been carried out in two stages. First, 

a static analysis is made, section 3, in which the switching 

instants of the level detector are related to system parameters 

for ad.c. modulating input, From these expressions, the static 

error in the averaged value of the level detector output can be 

deduced. The second stage, section 4, is to analyse the frequency 

spectrum of the modulated waveform when the system input is 

sinusoidal. In order to do this, it is necessary to make use of 

the expressions for the level-detector switching instants which 

are obtained in the static analysis, 5 

 



(34) a ee a 

3. Static Analysis 

| 
3.1. Static Error due to Finite Operational Integrator Gain 

Fig. 3.1.1. shows an operational integrator 

consisting of an operational amplifier (having a finite voltage 

gain, - «) and a resistance-capacitance network to produce 

the integrating action. It is assumed that, apart from the 

finite gain, the amplifier is ideal in that the input resistance 

and bandwidth are infinite, and the output resistance is zero. 

  

      —Wi—— poet 

v(t) 

prio 

Fig.3.1.1. Operational integrator. 

The output voltage of the operational integrator of Fig. Ok. kr. 

in response to a positive step input of Vie is: 

vz (t) - ~aV, [I-exp Gateg)| ce 6G) 

The above expression’ is the basis for the following analyses 

of static error in pulse-length modulation systems with finite 

integrator gain. 
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3. 1.1.Single-edge Modulation 
  

Consider the single-edge modulation system of 

fig, 2, 2(a). using the operation amplifier of fig, 3.1.1. to 

produce the sampling waveform. The sampling waveform is 

added to the system modulating input V;, and the sum is 

applied to the input of the level detector. The output of the 

level detector changes state whenever the voltage applied to 

its input crosses the threshold. If it is assumed that the 

level detector does not exhibit hysteresis, the waveforms 

will be as shown in fig. 3.1.2, It can be seen that the 

trailing edge of the level detector output pulse occurs at 

periodic intervals of To The switching instant, th of the 

leading edge is obtained by solving the equation: 

Malti). © Nosy J (31334 
where VY, is the level-detector threshold voltage. 

Consideration must now be given to choosing the level 

detector threshold V,: Demodulation of the pulse-length 

modulated wavetrain at the output of the level detector may 

be achieved by passing the modulated wavetrain through a 

low-pass filter, If the attenutation of the a,c. components 

of the waveform is sufficient, then filtering is equivalent to 

taking the average value of the modulated wavetrain, Fig. 

3.1.2. shows that the average value of the level-detector 

output waveform is: 

Viewl- 2-2 Me — oe ( 3.1.3) 

The level detector threshold voltage can be set to give 

two distinct conditions. The first of these conditions is that 
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the average value of the level-detector output is zero for 

zero input modulating voltage. The value of t, necessary 
1 

to satisfy this condition is given by equation 3.1,3.,(i.e., 

r 
t, = —> for V__ = Owhen V,_ = 0.) Itis evident 

1 2 av in 

from fig. 3.1.2. that the threshold voltage must be set at 

the value of the sampling waveform at time Velo if the 

unmodulated pulse length is to equal Tels . Equation 

3.1.1. expresses the sampling waveform as a function of 

time, and substituting Fels for t gives the value for the 

threshold voltage as; 

me ; 
V, = —«V\, li- exp (agate) Ks tie ot) 

Substituting equations 3,1,4. and 3.1.1. into equation 3.1. 2, 

gives: 

~t, ae et oe Ne ~V~ ex “(ie + Vi. = a, expl Zi 2) (3.1.5) 

from which the switching instant t can be calculated. 

It is of interest to calculate the positive and negative 

values of vi required for full modulation, Now, full 

modulation for positive values of Ve is given by the condition 

that 4 as T. . Full modulation for negative values of ve 

is given by th = 0. From equation 3.1.5. with uh QS 

and 4... 875s 
1 C
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Vin = ~av,[1- ool see) a (3.1.6) 

V2 -«V[-eq( Ea) + a\,| 1+ | pee CAT 

where oo and 2 are respectively the positive and 

negative values of Vin necessary to achieve full modulation, 

These results could also have been obtained by considering 

fig. 3.1.2. It will be noted that for finite values of integrator 

gain «, the absolute magnitude of the peak negative input 

q is greater than the absolute magnitude of the peak 
in- 

positive input Wik: This leads to the second condition for 

which the threshold level of the level-detector may be set; 

namely that the positive and negative values of modulating 

input voltage uy necessary for full modulation, have equal 

absolute values, i.e., 7 =-¥, . As stated previously, 
int+ in- 

the peak positive input is given by the condition that 4 e TO 

Similarly, the peak negative input is given by the condition 

ty = 0. Substituting equation 3.1.1., for the sampling wave- 

form, into equation 3.1.2 gives: 

—~«Vjl[—ex —_— +V. =V (31.9) 
\ P (1 + x)CR in t oe ol, 

The value of the threshold voltage Vy. necessary to satisfy the 

condition i a ase » may be calculated from equation 3,1, 8. 

by substituting ty = 0 and ty ee ae Solution of the simul- 

taneous equations so formed gives: 
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oi ~~ Va 
ee eee | i roe 

«Vi - T. ; 
Nae (1 e2p (x) | oe ( 3.1.10) 

Thus, the threshold voltage is equal to half the peak value 

of the sampling waveform, The positive input Nia neces- 

sary for full modulation is equal and opposite to the threshold 

voltage. These conclusions could also be deduced by consider- 

ing fig. 3.1.2. With the threshold voltage set at the value 

given by equation 3.1.9,, the unmodulated mark-to- space is 

not unity, so the averaged value of the level-detector output 

is not zero when the modulating input me is zero, 

As the integrator gain is increased, the sampling wave- 

form approaches an ideal triangular waveform and the two 

values obtained for the threshold level tend to the same value. 

With the aid of theory to be developed, a system should be 

designed as that the difference between the two conditions is - 

negligible. However, for high-power amplifiers, the second 

condition (i.e. ree = “We is likely to be more useful; 

attention will therefore be concentrated on this condition, 

The switching point t, may be calculated by substituting the 
. 

threshold voltage expression (equation 3.1.9.) into equation 

3.1.8, which gives: 

-2\\|l- exp (TeEheg) | + Mi =~ 0] expl- Ey) ( 3.1.11) 

The modulation index, , may be defined as aus . 
in+
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The limit values of the modulation index are +1. Dividing 

equation 3,1,11. by the peak value of Ne (from equation 

3.1.10.) leads to the following expression for the switching 

instant t: 

+X =te wee {trade le _ ot geayea)| - log ms mi 

where 

( 3.1.12) 

  

Al
c 

- 

—Te 

b= exp [a seq] 

tie en 
The manner in which ‘I /p, varies with the modulation 

index M may be more clearly seen if the second of the 

logarithmic terms in equation 3,1.12, is expanded as the 

following Maclaurin series (the expression is valid since 

IM.KI < 1). 

fe a 8 tL ee EeR)]- yt (nx) | a 
n=l 

The normalised average value of the level-detector output, 

_ (given by equation 3.1.3.) is: 

. 
Vio = i Ae 

av 

Therefore, from equations 3,1,12. and 3.1,13., the average 

value of the normalised level-detector output may be expressed 

as;    
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Vi = ee Mitex (a Sscx)|- loglI— «| (3.1.14) 

ae eG s4[I+ exp aoe =a)| = (Mk) " (31.15) 

- Ts | 

[sep Lex 
where K = 

| +expf | 
(i+ «)CR. 

Fig. 3.1.3, shows the transfer function of a single-edge pulse- 

length modulation system for selected values of integrator gain 

oe and time constant a . It will be noted that the linearity 

of the system improves with increasing gain, and that the transfer 

function is not symmetrical about the origin, From equations 

3.1.14. and 3,1.15., the demodulated wavetrain consists ofa 

constant term (arising from the manner in which the level- 

detector threshold was specified) and a power series in terms 

of the modulation index M, 

There are two ways in which the error in the system output 

may be defined. The first is to define the error EB as the 

departure of the system transfer function from that of a system 

having an ideal sawtooth sampling waveform (i,e., a system 

having infinite integrator gain), Thus the system error E, is: 
1 

( 3.1.16)
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Fig.3.1.3. Transfer function of single-edge modulation 

system with finite integrator gain. 
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Since the normalised level-detector output waveform has been 

defined in such a manner that the transfer function has a phase 

inversion, the error may be written as: 

E=V+ M acs 13.17) 
' av 

Fig. 3,1.4. shows the system error, E as a function of the ise 

normalised time constant and the modulation index (TF ajcR 
M . <A disadvantage of defining the error by equation 3.1.16, 

is that the general form of the error curves are not consistent 

with those obtained from an analysis with a sinusoidal modulating 

input. This may be deduced readily from equation 3.1.15, which 

expresses the system output as a power series in terms of the 

modulation ides. If the modulation index varies sinusoidally, 

then the error (defined as harmonic distortion) is greatest when 

M = 1, This result contradicts the results of fig, 3.1.4. 

which shows the error to be zero for M= 1, For this reason, 

an alternative definition of the static error in the system output 

may be preferred. 

In equation 3,1,15, the term directly proportional to the 
-2(i+ 

modulating input is G2 SOek AM.%,) - Thus, the static 
= 

. c 

error, E in the amplitude demodulated wavetrain may be 2: 

defined as: 

- _ |ACe)CR 
= V ee mx | 
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Fig.3.1.4. Static error &, for single-edge modulation 

system with finite integrator gain. 

  

       

1:0 

10 

10° 

10° 

10 

10° 

<5 

10 

10 

ST
AT
IC
 

ER
RO
R 

E,



or 

(45) 

be Lt oe =| + ot ( 5a) Heyl] + nx | ( 3.1.18) 
c 

_ 1), 2Uta)crR -T \ | e ec Ml sliten Gea) |-) 4 MS foun 
nan 

Fig. 3.1.5. shows the system error, E as a function of the 

normalised time constant wearer ae the modulation index 

BX s 

Which of the two alternative error definitions is more 

useful in the design of a pulse-length modulation system 

largely depends on how the system is to be used, If the input 

to the system is d.c., then the first error definition is probably 

of more use. If, however, the input is a,c., then the second 

definition of error gives a better indication of system perform- 

ance, It should be noted that the static-error expression gives 

only an indication of how the system behaves with a.c, inputs; 

a detailed analysis is given in a later section, 

Considerable care is required when calculating, from 

equations 3,1.17., 3.1.18, and 3.1.19, the system error for 

small values of normalised time constant. This is particularly 

so when evaluating the constant term which tends to zero as the 

integrator gain tends to infinity. The numerical methods used 

for calculating the error are discussed in Appendix 1. An 

Algol programme was written in accordance with the flow chart 
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Fig.3.1.5. Static error E, for single-~edge modulation 

system with finite integrator gain. 
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shown in Appendix 1 and the error equations evaluated on an 

Elliott 803 digital computer. 

From figs. 3.1.4. and 3,1.5. the static error in the system 

decreases with decreasing values of normalised time constant 

ae . If the value of the time constant CR is increased, 

(1 +A“)CR 

the peak value of the integrator output waveform (i,.e,, the 

sampling waveform) decreases and the specification for the 

accuracy of the threshold level of the level-detector becomes 

more stringent. Thus, under circumstances where only a limited 

gain is available, the choice of the integrator time constant is a 

compromise between making the normalised time constant 

Kee Te _ small enough to give an acceptable value of static 

(1 +)CR 

error, and large enough to give a reasonable value for the peak 

value of the integrator output waveform, The peak value of the 

integrator output, obtained by setting t = T. in equation 2,1.1., 

is given by: 

v,(t) x v,(T. ) the aVi[i- exp (=a (3.1.20 ) 

As was discussed earlier, if the positive and negative values of 

input voltage necessary for full modulation are to have equal 

amplitudes, then the threshold level of the level-detector must 

be set at a value equal to half the peak value of the sampling wave- 

form, Therefore, a useful parameter in the design of a system 

is the ratio: 
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peak integrator output 

integrator input n
i
e
 

From equation 3,1,20., this is: 

(3.1.21) it 

  

Ses. Fie Raa 

Fig. 3.1.6. shows this ial Se sibide as a function of 

c and integrator gain a,   normalised time tant constan CR
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Fig.3.1.6. Normalised peak integrator output as 

function of gain and time-constant. 
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3.1.2. Double-Edge Modulation 

Consider the double-edge pulse-length modulation 

system shown in fig. 2. 1(a)., the operational amplifier of 

fig. 3.1.1. .being used to produce the sampling waveform, 

As a first step in the analysis for the static error of the 

system, it is necessary to derive an expression for the output 

of an operational amplifier when a square wave is applied to 

the input. The square wave of fig. 3.1.7. may be synthesised 

from a series of positive and negative step functions with 

appropriate time delays. 

  
  

  

  

*V, 

  
  

              
          - HAE on = 

Fig.3.1.7. Square wave input to operational integrator. 

The output of an operational integrator in response to a step- 

function input is given by equation 3,1.1, The output fora 
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square wave input, obtained by summing the outputs result- 

ing from the sequence of time-delayed step functions com- 

prising the square wave, is: 

10 Lin | “MI e (e)] 

N-1 N-1 

~(t+ nele M(tante+ te) ) 

2a\). [=e a) ae eee 
n=0 Ne 

  

, a (t+ NT.) -t 
n\iLin| J exp AXE) ~2exp (3 K)CR N-» oo 

N-1I 

ye 7 ante r 
f qa yet (=*,)| TOR Ot < 2 ( a.22) 

The summation term in equation 3.1,22, is a geometric 

progression, so the sum can be written in closed form: 

: -(t+NT.) “% u(t)=-«, Lin coal eanek ) 20 (ea) * 

  |- exp aT fh - exe a) | 

ae [I-el Gea } 
If N is now allowed to tend to infinity, the response of the 

  

integrator to an infinite train of square waves is given by: 

 



  

ae) 

v,(t)= — «V, Ear: 28 

+exp(s7 5) 

(3.t.269 

for 0.6. S. < “= 

An expression for the integrator output during the period 

rg to Te may be obtained by adding, to equation 3.1. 23., 
2 

a term corresponding to the integrator output for a negative 

step input at time t = —. This procedure leads to the follow- 
2 

ing expression: 

lee 
v, (t)=-«V, y+ eter) 

|+exp ree 

(3.1.24) 

for a ee 

The input to the level-detector is the sum of the sampling 

waveform (given by equations 3.1.23. and 3.1, 24.) and the 

modulating input voltage Vig (see figs. 2. 1(a). and (b). ) 

The output of the level detector changes state whenever the 

input to the level-detector crosses the threshold, i.e., when: 

VCE) te Vice Ne Omti< 4s (3.1.25) 

 



v(t) eh = Vy $<t<k ( 3.1.26) 

where Vv, is the level-detector threshold voltage. 

The waveforms defining the switching instants ty and to are 

shown in fig. 3.1.8. The peak positive output of the integrator 

v(t) is given by equation 3.1.23. witht set to ate and the 

peak negative output by equation 3.1.24. witht = = . 

It will be noted that the peak positive and negative outputs 

have equal amplitudes, 

2. 
v(t) =-aV] 1 — ae (331-27) 

[+ exp sea) 

From fig, 3.1,8., full modulation for positive input ive) 

is achieved when the pulse length is zero (i.e. t = to 

5a ) and full modulation for negative input a is 

achieved when the pulse length is T. (i.e. t, = 0, ty = T.). 

If the positive and negative input voltages necessary for full 

modulation are to be of equal amplitude, then fig. 3.1.8. shows 

that the level-detector threshold voltage must be half the peak- 

to -peak value of the integrator output waveform, Since the 

positive and negative values of the peak integrator output are 

equal in amplitude the threshold voltage must be zero. Thus 
A 

the positive modulating input voltage Lena necessary to 

produce full modulation is equal to the peak positive value of 
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Fig.3.1.8. Waveforms for double-edge modulation 

system with finite integrator gain. 
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the integrator waveform (given by equation 3.1.27.), i.e.: 

ay = % (t) ( 3.1.28) 

These deductions could equally well have been made by 

substituting, in equations 3.1.25, and 3,1.26., the conditions 

corresponding to full modulation, and solving the resulting 

simultaneous equations, 

Setting a = 0 in equations 3. 1.25, and.3.1..26., and 

dividing eocian by the peak modulating input 5 She ae v, 

  

nt 

gives: 

eth) 2 Mm o<t< ¥ (3.1.29 ) 
Ming 

t val pe oa E<t,< 7 (31,205 
pes 

where M is the modulation index aS ; 

Substituting equations 3.1.23., 3.1,24, 3.1.27. and 3.1. 28. 

into equations 3.1.29, and 3.1.30., and solving the resulting 

equations for the switching instants 4 and to: 

t, eee ys Vt we b nis - a log 9 ite A eal {+ na CS.1.31.) 

    

tel _ (+ a)cR OSG oe ee og | {- 
9 ee | a} + see ten hs 
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v 

er eikabins K 2 (ita)CR 

=i. 

Waa (=e. | 

The variation of the switching instants, t, andt,, with 
1 2 

modulation index may be more clearly seen if the logarithmic 

terms containing the modulation index are expanded as follows: 

Cin” eeee fiat ee re be), , i 
T° Tr. 93 “Gaal i (m«) C344803 

_ 1 _ {leader 1]1~esp{=—l|-2 . 
SZ, eH a ys Cn) eee 

n= { 

cl
s 

The effect of passing the pulse-length modulated wave- 

train through a low-pass filter is equivalent to taking the 

average value of the waveform, since the modulating input 

is ad.c. voltage Vag The average value Macs of the 

modulated waveform over one cycle (from fig, 3.1.8.) is: 

- { t 
ae eel (3.1.35 ) 

c 

Substituting equations 3.1.31., 3.1.32., 3.1.33. and 3.1.34.    
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in equation 3.1.35. leads to the following expressions for 

the amplitude of the demodulated wavetrain: 

eo UF aycr 1+ M.K pes fis tema) Ara 
of eI Beloit gy oe Cs. 904 

av ae (2n-1) . ole 

n= 

Two interesting observations may be made from equations 

3.1.36. and 3.1.37. Firstly, no constant term exists, so the 

amplitude of the demodulated wavetrain is zero when the 

modulation index is zero, Secondly, only terms involving 

odd powers of the modulation index occur in the series 

representation of nas , so the system transfer function is 

symmetrical about the origin. Fig, 3.1.9. shows the system 

transfer function for selected values of integrator gain and 

normalised time constant. 

The static error in the demodulated wavetrain will be 

defined in the same manner as for single edge modulation 

(Section 3.1.1.). The first definition of error, E,, is the 

departure of the system transfer function from that ofa 

system having an ideal triangular sampling waveform (i.e. 

a system having infinite integrator gain). 

= Vale TA (see eqn 3.1.16)  



  

(58) 

Average value of normalised 
level-detector output 

  

  

    

  
      Modulation 

Index M 
  

    
  

    

                
  

Fig.3.1.9. Transfer function of double-edge modulation 

system.
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Fig, 3.1.10. shows the system error, E,, asa function of the 

ae : 
normalised time constant (1 +«)CR   and the modulation index M. 

For the reasons discussed in section 3.1. 1. , an alternative 

‘ definition of error is more consistent with the results to be 

expected from an analysis of system error with a sinusoidal 

modulating input voltage, From equation 3.1,37., the component 

of the demodulated wavetrain which is directly proportional to 

-4(1 +c«)CR 

z 
G 

static error may therefore be defined as; 

  

the modulation index is M.K. The system 

e wy A({+«)CR 
: mM Tr ee 3.7788) 

Substituting equations 3.1,36., 3.1.37. in 3.1.38. gives: 

A(l+ax)CR 1+ M.K E.=- ——— { leg (| ——-] - 2MK (3.1.39) 
: Te ( ss cd 

e _ Alt ajcr e rhe 

= ) & eee ee 

Fig, 3.1.11. shows the system static error, Ey; as a function 

of the normalised time constant @ +a)CR and the modulation 

index M. As was explained in section 3,1,1., which error 

definition is more useful in the design of a pulse-length modulation 

system largely depends upon how the system is to be used. 

Numerical evaluation of the error expressions presents 
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Fig.3.1.10. Static error E, for double-edge 

system with finite integrator gain. 
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rather fewer problems than the corresponding expressions 

for single-edge modulation, since the constant term is not 

present. Evaluation of the constant K is similar to the 

procedure for evaluating K for single-edge modulation (see 

Appendix 1), the only difference being that, with double-edge 

modulation, the effective time constant (1 +«)CR, is 

multiplied by a factor of two, 

A parameter which must be taken into account in the 

design of a system is the peak amplitude of the sampling wave- 

form, since the accuracy required for the level-detector 

threshold depends on the amplitude of the sampling waveform. 

As the amplitude of the sampling waveform is decreased, so 

the threshold level has to be defined more accurately, The 

ratio of the peak integrator output to the amplitude of the 

integrator step function input, from equation 3,1.27., is: 

v, (t) ‘a z 
| + erp ert 

2(Iea)CR 

Fig. 3.1.12, shows this ratio plotted as a function of the 

Je 
on 

  (3.4.44) 

integrator gain & and the normalised time constant
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Fig.3.1.12. Normalised peak integrator output as a 

function of gain and time-constant. 
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3.4.03. . Conelistions 

The static error in the outputs of pulse-length 

modulation systems, operating with finite integrator gain, 

has been related to the system parameters, The most 

striking feature of the analytical results is the large 

improvement in system performance obtained with double- 

edge modulation, The reasons for this improvement are 

discussed in a later section (section 3.5.). A second 

feature of the results is that, with double-edge modulation, 

a surprisingly large value of normalised time constant 

He 
(1. + a)CR 

error. For instance, if the static errors (Ey and E,) are 

can be tolerated without introducing significant 

to be less than es then figs. 3,1.10. and 3.1.11. show 

that the normalised time constant must be less than 0, 2, 

Obviously this fact is of importance in the design of a system 

since the sampling waveform can be obtained from an integrator 

with a relatively low gain.
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3.2 Static error due to finite input and output resistance 

of the integrator 

  

Fig. 3.2.1 shows an integrator utilising an operational 

amplifier with finite voltage gain & , input resistance R, and 

output resistance R,. 

  

( C 

  
  ee R Fr, 

—_— a - A Wee 

  

Fig.3.2.1. Operational integrator. 

The output voltage vo(t) of the operational integrator, 

in response to a positive step input voltage Vj is: 

  v, {t) =— (Pa) [ _ ( + ea eet ce ( 3.2.-10)) 

. (l+a)CR 
where ae 2 

b+ “R, 
CR, ( 3.2.1(b))
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The input resistance of the amplifier R, and the time-constant 

resistance R form a potential divider which reduces the 

effective value of the time constant, The effect of the amplifier 

output resistance Rp is to increase the effective time constant. 

The integrator step-function response, given by equation 3.2.1, 

is the basis for the following analyses of system static error. 

3.2.1 Single-edge modulation 
  

Consider the single-edge pulse-length modulation system 

of fig. 2.da with the operational integrator of fig. 3.2.1 being 

used to produce the sampling waveform, Fig. 3.2.2 shows the 

integrator output waveform for the system, evaluated from 

‘eudediane 3.2.1 and normalised to the value of the output at 

time t= T ,. It will be noted that the effect of the constant term, 

(1+ PED 
Ce: 

is not zero at time t= 04, The integrator output waveform is 

  ), is such that the amplitude of the output waveform 

added to the modulating input voltage Vj, and the resulting 

sum applied to the input of the level detector. The output of the 

level detector changes state whenever the voltage applied to its 

input crosses the threshold level. The waveforms associated 

with the level detector are shown in fig. 3.2.3, The trailing 

edges of the level-detector output- pulse train occur at periodic 

intervals of nT¢, whilst the leading edges of the pulse train are 

position modulated in accordance with some function of the 

input voltage V;,. The position, tj, of the leading edge is 

defined by the expression: 

Vv (t,) 4. NV, 89¥ 
me i % 

where V; is the level-detector threshold voltage.
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Fig.3.2.2.Normalised integrator output waveform with 

finite input and output resistance. 
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Therefore, from equation 3, 2.1: 

oa (\- 2) exp(E)] + v= (3.2.3) 

The factors to be considered when setting a value for 

  

the threshold V;, are discussed in some detail in section 3.1.1. 

Briefly, the threshold level can be set to satisfy two conditions: 

1) The average value of the level-detector output waveform 

(i.e. the modulated wavetrain) is zero when the modulating 

input voltage Vj, is zero. 

2) The positive and negative input voltages, Vaca and Vie 

respectively, required to produce the two states of full 

modulation are equal in amplitude. | 

It was shown in section 3,1.1 that, in order to satisfy 

the first of the two conditions, the level-detector threshold 

voltage must be equal to the value of the sampling waveform at 

  

      

Gia 2° < . Therefore, from equation 3. 2.1; 

Pe eet at 
MN. is ME ! (| oe xp(F=)| (3.2.3 ) 

Substituting equation 3. 2.3 in equation 3, 2,2 enables the 

switching instant t,, of the leading pulse edge, to be calculated 

  
  

  
  

from: 

ee = Serene ee 

ae (zl 020 

From fig. 3.2.3, full modulation for positive values of Vj, 

corresponds to the condition t;= Tg. Full modulation for
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negative values of V;, corresponds to the condition tj = 0. 

Substituting these conditions in equation 3. 2.4 leads to the 

following expressions for the positive and negative input 

voltages required to produce full modulation. 

  

  

  

    

he Sel Sloe B) ae 
tS See] one 
From equations 3, 2.5 and 3, 2.6 it can be seen that the input 

voltages, a and Wy gor required for full modulation are 

“not of equal amplitude. This observation leads to the second 

of the two conditions for which the level detector threshold may 

be set, namely: Vint ov: 

If the two sets of conditions defining full modulation 

(i.e. t; = Tg when Vj, = Via ty = 0 when Vin = Veni are 

substituted in equation 8, 2, 2, together with the added condition 

that Tis. = Vins , then the two simultaneous equations formed 

may be solved for V; and Vint : 

  Ee Sly] ean 
Ve = isda oe “P| ae 

Substituting the above expression for the threshold voltage in 

equation 3.2.2 and dividing through by Ve enables an expression 

to be deduced for the switching point t; of the leading edges of the 

pulse-length modulated wavetrain, 

= ak 7 log +I eee (=) 2 es[i-nu} (3.2.9)    
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Vin 
where: M = , the modulation index, 

Vine 

(1+«)CR T= 1+ BR, Ce 

  1-0) 
ee) 

The logarithmic term containing the modulation index M may 

be expanded as a Maclaurin series in order to gain a clearer 

insight into the manner in which switching instant ty varies 

with the modulation index. Such an expansion is valid since 

(Moki <1. 

60 

Ba Bf ly sfi-eg(Z]}-) Lert} tsa 

Comparing equations 3, 2,9 and 3, 2.10 with the corresponding 

expressions for the switching instant of the pulse leading edge 

in a system utilising an integrator with ideal values of amplifier 

resistances (equations 3,1,12 and 3, i 13 of section 3.1.1), it 

will be seen that the expressions are identicalin form, The 

effect of the finite input and output resistances is simply to 

modify the effective time constant from (1 +@)CR to 

Gas) cR + CR,+ Thus the expressions for the amplitude 
1: +   

Ry 
of the demodulated wavetrain Vay and the static error in the 

demodulated wavetrain may be written down by inspection of 

the corresponding equations relating to the system with ideal 

amplifier resistances,
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(Equations: “3,2; 14, 3.2.15, 3e8717,23) 1018 and. 3.1.9; 

Section 3.1.1). Therefore: 

Ve = Eo al = exp (2)| ~log[i-nex]} C2248) 

ys | + BL og al! exe) | ai (mxy'| 2.20.12) 

Sy eee ge \ (3.2.13) 

as | + *E {log as exp) log[- mx] + nx (3.244) 

ei ks a log 5|!- exp (Ey-) 4 (run) } (3.2515) 

The manner in which the error, E, and Eo, are defined is 

discussed in section 3.1.1. Since the error expressions for 

the system with finite amplifier input and output resistance are 

identical in form to the corresponding expressions for the 

system with ideal amplifier resistances it is not necessary to 

plot further graphs of static error. In order to determine the 

error for a system with finite amplifier resistances, the 

graphs of error for the system with ideal amplifier resistances 

  

may be used by simply replacing oo » in figs: 3,1, 4 
: re, (1 +a) CR 

and 3.1.5, with pO These figures show that the system 
e 

static error decreases with increasing values of effective integrator 

time constant. Thus the effect of the finite amplifier input 

resistance is to increase the error, as may be seen from 

equation 3, 2.1(b) for the effective integrator time constant T.. 

The amplifier output resistance increases the effective time
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constant and, hence, reduces the error. However, the 

output resistance cannot be increased indefinitely, since 

increasing values of Ro reduce the time-varying component 

of integrator output in the manner shown in fig. 3.2.4. The 

peak negative value of the integrator output occurs at time 

t=T, for small values of Rg. However, as Rog is increased, 

the time-varying part of the output waveform is effectively 

superimposed on a positive d.c, term. so that, for large 

enough values of Ro, the output waveform is never negative. 

For this reason, knowledge of the integrator output at only 

time t=Tc is of little use when designing a system. The 

additional information required is the peak-to-peak value of 

the time - varying component of the integrator output waveform 

Von. p. as shown in fig. 3.2.5, 

Time —»- I 

  

Fig.3.2.5.
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Fig.3.2.4. Normalised integrator output waveform 

showing the effect of increasing the integrator 

output resistance R,.
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Fig.3.2.6.Peak integrator output voltages for single- 

edge modulation systen. 
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ie v, (0) = v, (T.) (3.2.16) 

From equation 3, 2,1 

    Vee ey [ oo |! exp(=)| (22 iF) 
2p-p Ve %*, «Te 

  v(t) = v(t) =- ae ie (\- Rs) exp(Z) (3.2.18) 

  

one Van Pp Volt) 
Fig. 3.2.6 shows Se ee and plotted as a function 

1 
of the integrator gain « for a range of values of the normalised 

Ro 

  

amplifier output resistance and of the reciprocal of the 

Rj 
  normalised amplifier input resistance Unfortunately 

fig. 3.2.6 does not indicate very clearly the manner in which 

the peak - to - peak integrator output Vap, p varies with amplifier 

output resistance R,. However it does give a reasonable 

indication of the variation of the peak - to- peak output. Two 

points of interest arise from fig. 3.2.6. Firstly, neither the 

peak - to - peak output Von, p nor the peak output vot) are very 

strongly dependent on the amplifier input resistance Ry. 

-Secondly, the ats aaa Vo (t) varies quite rapidly with varying 

amplifier output, whereas the peak-to-peak output is only slightly 

affected by the output resistance. 

3.2.2 Double-edge modulation 
  

Consider the double-edge pulse-length modulation system, shown 

in fig. 2. %(a), with the operational integrator of fig. 3.2.1 being 

used to produce the sampling waveform. It is necessary to
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derive an expression for the output waveform of the integrator 

when a square wavetrain is applied to the input. In section 3,1, 2 

a procedure was developed which enabled the square-wave 

response of an operational amplifier with finite gain, to be 

derived from the step response. Now, the step response of an 

operational integrator with an amplifier having finite values of 

voltage gain, input resistance and output resistance is given by 

equation 3,2,1. Since the procedure for obtaining the square-wave 

response from equation 3. 2.1 is identical to that used in section 

3.1.2, only the results will be given here, 

  

XV, 2(I+ &) ~t <1 mess 
A ae ait a O< 2: ( S2c19 ) 

\ \+exp(55) 

CR ‘ 
(t)= - oe 2 all at) lS a 2) t ctx) (3.3350 ) 

Bs lee euteeeplee\ Vs 

  

CRo 
The term (1 + oT 

a step discontinuity in the waveform at multiples of 

), in equations 3, 2.19 and 3, 2,20, produces 
Te 

2 

  

as can be   

seen in fig, 3.2.7, which shows the integrator output waveform 

for selected values of the parameters. The second effect of the 

finite values of amplifier input and output resistance is to modify 

‘the effective integrator time constant from 

(1 +) CR to a ee + CR, - 

Ry 
In the block diagram of the system, fig, 2. 2(a), the 

integrator output waveform is added to the modulating input 

voltage V;, , and the resulting voltage applied to the input of 

the level detector. The output of the level detector changes
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Fig.3.2.7. Effect of finite values of amplifier input 

and output resistance on the integrator output waveforn.
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state at times t, and ty, as defined by the following 

expressions. 

Bye: 

va(t,} + Va Ve O< Uy S noe &3.2.21 ) 

vi(t,)+V,.2 Ve s<t,< Ag (332.22) 

where Vv, is the level-detector threshold voltage. 

Fig. 3.2.8 shows the waveforms associated with the level 

detector. In section 3,1.2 it was shown that if the peak 

positive and negative values of the integrator output waveform 

are equal in amplitude, then the following conditions ensure 

that the positive and negative values of the modulating input 

voltage required for full modulation, en and 9 as 

respectively, are equal in amplitude. 

V+ 0 (9.2.23) 

v,(t)= Ve (i334) 

where Vo(t) is the peak positive value of the integrator output 

waveform. Now, the peak value of the integrator waveform 

occurs at time t=04. Therefore, from equation 3.2, 19; 

CRo 

A at «V, 2(1 © aoe 
Voto = = (3.4725) 

| + -R, | + exp (Zs) 

Substituting equations 3, 2.23, 3,2, 24 and 3, 2,25 in equations 

3.2,21 and 3.2.22, and dividing through by the peak input 
A 

Vint, gives: 

CR, CRe 
is zs ele en pe ( 3.2.26) 

I+ exp(F=} . |+exp(5=]
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Pig.3.2.8. Waveforms for double-edge modulation system 

with finite values of integrator gain,input resistance 

and output resistance,
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Re 7 CR, 
—| * oleae) exp (Hct). ate ( 32.27) 

[+ exp(F= ] “ I+exp( Fa) 
Vin 

is the modulation index.   where M = 
Vis 5 

From equations 3, 2, 26 and 3,2, 27 expressions may be 

obtained for ty and ty, the time positions of the leading and 

trailing edges of the pulse-length modulated wavetrain at the 

output of the level detector, 

  

[+ exp (ste) 2(\+ ee) 
Le a ci jen(i- Se) ( 3.2.28) 

TT) ae SB) I+ exp (se) 

7 CR 
4a ee Heap ate) 
+=—-— — a ee 7 log I-M beeen 2 ( 2.2.29) 

lee ote 2(I 3) |+exp(s=} 

Comparing the above expressions with the corresponding ones 

for the system with ideal amplifier resistances (equations 3.1. 31 

and 3,1, 32) shows that there is a close similarity in general 

form, This similarity is more marked if equations 3,2, 28 

and 3,2. 29 are rewritten as: 

  

eT 

xy ee) | Sean + log ( |-M¢K ( 3.2.30) 

teh Saw 
  t. - Bi, eae +log('enée)| (372.31) 

ie Vier ae



  

  

  

  

ole 
where: = seul ad ( 3.2.32() ) 

| + exp(5s] 

Ki ae 1 exp (Fs) ( 3.2.32 (b) ) 
Te 

Li stan) 
Apart from the constant term, equations 3, 2. 30 and 3. 2. 31 

are identical to those for a system with infinite amplifier 

input resistance and zero output resistance, but with an 

effective integrator time constant of T, and an effective 

modulation index of M¢. 

Demodulation of the wavetrain at the level-detector 

output is equivalent to taking the average value of the 

modulated wavetrain, Therefore, the expression for the 

amplitude of the demodulated wavetrain is: 

Substituting equations 3, 2, 30 and 3, 2, 31 in the above 

expression gives: 

V =-4) log Eee (3.2.33) 
I- M¢K e 

The logarithmic term in the above expression may be 

expanded as an infinite series: 

SS 2n-| 

Wi maeere sa aj (ms } (3.2.34) 
n= 

Since the constant terms in equations 3, 2, 30 and 3. 2,31 have
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cancelled out, the amplitude of the demodulated wavetrain 

is zero when the modulation index is zero, Equations 

3,2.33 and 3.2, 34 are identical in form to the corresponding 

expressions for a system with infinite amplifier input 

resistance and zero output resistance (equations 3,1, 36 and 

3.1.37). Therefore expressions for the error in the amplitude 

of the demodulated wavetrain for a system with finite amplifier 

input and output resistance may be written down by inspection 

of equations 3,1.16, 3.1.38, 3.1.39 and 3,1. 40. 

  

CF oe at £3235 ) 

J l+M¢K \ _ 3 
on (ee amex} f-3°3.36) 

Se 2n-1 

bp ook | (m¢k) (.3.2:97) 
Re Me (2n-l) 

The considerations underlying the choice of definition of the 

error expressions are discussed in sections 3,1.1 and 

oe 2, Equation. 3,2,35 may be rewritten as; 

GeN. +. AG M(I-¢ ) ( 3.2.38 ) 

Now the term V,_ + M¢ , in equation 3, 2, 38, is identical to 

the static error EH, for a double-edge modulation system with 

infinite amplifier input resistance and zero output resistance, 

operating with a modulation index M¢ and an effective 

integrator time constant of [. Thus, the graph oferror Ej 

for a system with non-finite amplifier input and output 

resistance (Fig. 3.1.9) may be used to evaluate the term
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Te 
(1 +x) CR 

and M¢ respectively. Graphical 

ve M¢ by replacing the system parameters 

and M by   

presentation of the factor (1-¢), as a function of the individual 

Te 
CR 

It is possible, however, to plot (1-4) as a function of the 
CR, 

, is not practicable.   variables Ro ,Rys and 

and - 
Qe ea 

Interpretation of this diagram is facilitated if the functions 

Eo and “c 
e e 

  variables 

  

» as shown in fig, 3.2.9, 

  are rewritten as:   

    (4.2.59) 
  

xT. (ire )BA, | 
1+ Be   

hc ee 
(1+) R. 

+ par 

142% R 

(3.2.40) 
  al

e 

a 7
 

The additional error term M(1-¢), in equation 3, 2.38 for Ey, 

can now be evaluated with the aid of fig. 3.2.9, 

Equations 3, 2.36 and 3, 2,37 for the system static error 

Ey are identical in form to the corresponding oe expressions 

for the double-edge modulation system with ideal amplifier 

input and output resistances (equations 3.1.39 and 3.1.40), Thus 

fig. 3.1.10 can be used to determine the error of the system with 

finite values of amplifier input and output resistance by simply 
. 

replacing the system parameters M and ——S———- 
‘ (1 +a)CR 

3.1.10, with Md and — respectively; the value of ¢ is 

an Sg, 

a 

then obtained from fig, 3.2.9, 

The finite values of amplifier input and output resistance 

affect the system error in a number of ways, and these cancel out
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Fig.3.2.9. Modulation index modifying function ¢ 

for double-edge modulation system with finite values 

of amplifier input resistance and output resistance.
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to some extent. The output resistance causes an increase in 

the effective integrator time constant, hence decreasing the 

system error, whilst the amplifier input resistance decreases 

the effective time constant and increases the system error, 

The function ¢ modifying the modulation index is due to the 

output resistance, but it is also a function of the input 

resistance, It is not possible, in general, to state whether 

the finite values of amplifier input and output resistance cause 

an increase or a decrease in system static error, since this 

depends on the particular values of the system parameters. It 

is clear, however, from fig, 3.2.9 and equations 3.2.39 and 

3.2.40, that a remarkably large value of output resistance can 

be tolerated without producing a significant increase in system 

error, 

It has been implicitly assumed that the preceding analysis 

of system error is valid for all values of modulation index M, 

That this assumption is not valid may be seen from fig. 3,2,8. 

As the modulating input voltage Vj, is increased in the 

positive direction, the position t, of the leading edge approaches 

Te 
  . When the input voltage is equal and opposite to the 

smaller of the amplitudes of the sampling waveform at time 

To 
  , then the leading edge of the pulse occurs at time 

oo . Any further increase in the input voltage will only   al 
affect the position of the trailing edge of the pulse. However, 

this condition is not given by the analytical expressions, The 

position tj of the leading edge was derived from equations 

3.2.19 and 3,2,21. If, in equation 3,2,21, the input voltage 

ae Te 
in is greater than the integrator output vo(t) at time 5 ;  



  

(ey 

i 
then the value for t,; will be greater than a . . This. is   

not a valid condition, since equation 3, 2.19 for the integrator 

  output waveform is only valid for O<t«< 3 a. tims 

condition is illustrated by fig. 3.2.10. Since the integrator 

output waveform is symmetrical, a similar argument holds 

for negative values of modulating input voltage. The maximum 

positive input voltage Vjy(max), for which the analytical work 

is valid, is equal and opposite to the smaller of the two values 

  

A 
of the integrator waveform at time 5 ox Lnerefore, from 

equation 3, 2,19 

av, 5 ( 3.2.41) 
I+ “R, V,,.lrnex) = 

  

The maximum input voltage Vin (max) may be expressed as a 

modulation index: 

Vin bax) Momo (3.2.42) 
in 

From equations 3, 2, 23 and 3, 2, 25; 

  

  

    

  

  

a] 2ER Te J+ See }ex ( )-| 
M(mox) a ( % Je P 2 Te ( 3.2.43) 

She (ss \- ( Be at 
Co im Te 

: CRo 
Fig. 3.2.11 shows M (max) plotted as a function of and 
ih, e 
ae . The number of variables and the form of equation 

5 

2.2.42 is such that direct graphical presentation of M (max) asa 

function of the system parameters R,, R, , oe and 

is not practicable. 

Analytical expressions for the system error will not be 

developed for values of modulation index greater than M (max),
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Fig.3.2.10. Level-detector input waveform. 
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the modulation index 

for which the analytical expressions are valid.
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When a system is designed, the values of the system parameters 

will normally be chosen so that M (max) is insignificantly 

different from unity. Substitution of typical values in fig, 

3.2.11 show that this condition is easily met. 

As discussed in sections 3,1.1 and 3.1.2, a parameter 

of importance in the design of a pulse-length modulation system 

is the peak amplitude of the sampling waveform, as given by 

equation 3,2,25, It is also of interest to know the amplitude 

of the lower of the two values of the integrator output waveform 

at the step discontinuity introduced by finite amplifier 

resistances, Fig. 3.2.12 shows that, as the amplifier output 

resistance is increased, so the lower of the two values of the 

integrator waveform at the discontinuity changes polarity, On 

account of this polarity change, graphical representation of 

this value of the integrator output waveform on a logarithmic 

scale will yield rather confusing results. For this reason , it 

is better to plot the peak - to - peak value of the continuously 

varying component Von. p of the integrator output waveform as 

a function of the system parameters. Fig. 3,2,13 shows the 

a j hich is defined, manner in whic Vop. p
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Fig.3.2.12. Integrator output waveform with increasing 

values of output resistance R,.
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Fig.3.2.13. 

‘ Te 
  

Therefore, from equation 3.2.19, 

  

is 

Pe. ag et eee Rie: wo ae 2(| ie co (St) (3.2.44) 

$5 (t) 
(from equations   

V 
Fig. 3,2,14 shows ae and ¥; 

3.2.25 and 3, 2,44 respectively) plotted as a. function of the 

integrator gain & for a range of values of normalised 

Ro 
  and of the reciprocal of 

. As with the 

amplifier output resistance 

  the normalised amplifier input resistance 

single-edge modulation case, it is rather unfortunate that the 

form of the equations which define Vop and v(t) lead to 
° 

graphical results which are rather complicated. However, 

fig. 3,2,14 does give a reasonable indication of the manner in 
Vv 2(t 

which ener and 7 (t)   vary with the system parameters. If 
1 : a ae 

accurate 1 -esults are required, it is a simple matter to 

calculate the values from equations 3, 2,25 and 3, 2,44.
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Fig.3.2. 14. Peak integrator output voltages for double- 

edge modulation systen.   
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3.2.3 Conclusions 

Expressions have been derived for the static error in 

the demodulated output of pulse-length modulation systems 

utilising operational integrators with finite values of amplifier 

input and output resistance, The error of the system has been 

expressed in terms of the error of an equivalent system having 

infinite amplifier input resistance and zero output resistance, 

For the single-edge modulation system, a finite value 

of input resistance increases the static error, whilst finite 

output resistance decreases the error, The overall effect of 

the finite values of resistance is more complex for the double - 

edge modulation system. It is not possible to state in general 

terms what is the effect of the finite resistances, since the 

nature of the effect depends on the actual values of the system 

parameters, 

The most striking feature of the results is thata 

relatively large value of output resistance can be tolerated 

without producing any significant change in system performance. 

This may be seen from equation 3, 2,40 for the normalised time 

Te 
& lel e 

with (1 +&) R before it has any significant effect on the 

constant The output resistance Ro must be comparable 

normalised time constant. The value of output resistance that 

can be tolerated without significantly affecting the factor ¢ is 

best demonstrated by considering a practical example, (See 

section 5),
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3.3 Static error due to finite bandwidth of the integrator 

amplifier 

When specifying an amplifier for use as an operational 

integrator in a pulse-length modulation system one important 

parameter is the bandwidth of the amplifier. Since the cost 

of an amplifier increases with bandwidth, it is obviously 

desirable to use the minimum bandwidth consistent with the 

required system performance. It is the objective of this 

section to relate the system static error to the bandwidth of 

the amplifier used in the operational integrator. It will be 

assumed that the upper turnover frequency of the amplifier is 

defined by a single time constant T, so that the amplifier 

transfer function (s) has the form; 

(3) (3.395 

—— 

(oo C 

at, R 
eee jotted SN Laces 

ea ee i 
| v(t ) 

ran 
Fig.3.3.1. Operational integrator with bandwidth- 

limited amplifier. 
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The response of the operational integrator of fig. 3.3.1 

to a positive step-function input voltage Vy is: 

  

\ | 
w= = ai Be ee expt] (3.3.2) 

: 
a 

Sa CR aig Jae (eR Se ete ee 2) TOR TCR Te 

Tye lite)cR  /]f Tar leoeR] 4 ( 3.3.3tb)) 
TCR Rce ck 

The integrator step response given by equation 3.3.2 is the 

  

fe 
Z ni

- 

basis for the following analyses of system static error. 

3.3.1 Single-edge modulation 

Consider the single-edge pulse-length modulation 

system of fig. 2.2(a) using the operational amplifier of fig. 

3.3.1 to produce the sampling waveform, Fig. 3,3.2 shows 

the effect of finite amplifier bandwidth on the integrator 

output waveform, the amplitude of the waveform being 

normalised to the amplitude at time t = T,. In general, the 

waveform shown in fig. 3. 3.2@is somewhat unrealistic, since 

it is assumed that the finite bandwidth does not affect the 

reset time of the integrator. However, since the reset time 

rather depends on the particular method used, the analysis of 

static error will be carried out for a system with zero reset 

time. The sampling waveform is added to the modulating input 

voltage, Vj, . and the sum applied to the input of the
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Fig.3.3.2(o)Effect of finite amplifier bandwidth on the 

normalised integrator output waveform. 
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Fig. 3.3.2(b) Vaveforms for single-edge modulation system 

with bandwidth-limited integrator amplifier. 
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level-detector. The output of the level-detector changes state 

whenever the voltage applied to its input crosses the threshold 

level, The waveforms associated with the level-detector are 

shown in fig. 3.3. 2(b) The trailing edges of the level-detector 

output pulses occur at periodic intervals of n Tos The position 

of the leading edge is modulated in accordance with some 

function of the modulating input voltage V,,. The switching instant 

t, of the leading pulse edge is defined by the. expression; 

v.{t:} £ Vo moy on : 9.3.4) 

where V, is the level-detector threshold voltage. 

As discussed in section 3,1,1, the levoletekiator 

threshold voltage may be set to give two different conditions, 

The first of these conditions is that the amplitude V,_ of the 

demodulated wavetrain is zero when the modulating input 

voltage is zero, It was shown in section 3,1,1 that, in order 

to satisfy this condition, the threshold voltage must be set at 

  

  

      

the value of the integrator output waveform at time t = Te . 

Substituting t= 5 in equation 3, 3,2 gives: 

i | —ksT | whale 
\V/ =v, ()= -aV) i - exp we) ESP ass} (3.3.5) 

gee LS tee ee | Sad ( . 

Now, from fig, 3.3.3, full modulation, for positive values of 

input voltage Vj, , corresponds to the condition t; = Tg; full 

modulation for negative values of input voltage corresponds to 

tj = 0. Substituting these conditions into equations 3.3.4 leads 

to the following expressions for the positive and negative input 

voltages, Sitter and fee respectively, necessary to produce 

full modulation,



  

AL ott 
= V. —-y, (0) ( 3.3.8) 

‘ 
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Poe Ne oe Ar) ( 3.3.6) 

exp 8) oF Gul | 323.7)         

‘ 

  

    fe [eet] + [rents] Gan 
A ‘ 

In general, Vj,4 

opposite, However, under certain conditions they can be 

A 

and Vj,. are not equal and 

A A 

made equalin magnitude. If Vjny =-— Vip. - then from 

equations 3, 3.6 and 3,3, 8: 

mn . Vo= = NAT.) ( 3.3.10) 

Substituting from equation 3, 3,5 in equation 3.3.10 gives: 

vel ht (3.3.11) 

Thus, if the positive and negative input voltages for full 

modulation are to be equal in magnitude, then the integrator 

output voltage at time t = ae must be equal to half the 

integrator output voltage at time t = T Fig. 3.3, 2 shows os 

that this condition could be satisfied by suitable choice of 

amplifier bandwidth, The relationship between this 

particular value of bandwidth and the other system parameters 

will not be derived at this point, Equation 3,3.11 may be 

considered as a special case of the second of the two conditions
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for which the level detector threshold may be set, i.e., that 

the positive and negative input voltages for full modulation 

are equal and opposite, 

The value of the threshold voltage required to satisfy 

the condition ey eV. may be derived from equation 

3.3.4 by setting ty to 0 and T, (i.e. the values of the 

switching instant ty corresponding to full modulation). 

A 

v, (0) +(-W)=¥ ( 3.3.12) 

v, (T.) + Vi. = \ (3.3.13) 

Substituting equation 3, 3.2 in the above, and solving the 

simultaneous equations, gives the following expressions for 

the positive value of the modulating input voltage ie 

required for full modulation, and for the level detector 

threshold voltage V4 

  bg vrkhe)- ig hs x 23 14) 

k, 

= “A (3.3.15) 

Substituting equations 3,3,14 and 3,3,15 in equation 3, 3, 4, 

‘and dividing through by Ve. gives: 

{1 - er Ke t i) Te exp k,t,)| = 
2 k, 

(em (t~ bree Chto tocar’ 

  

  

7 exp(kT.)| { 33-16) 
Pe ' 

Vin : 
where M= -— is the modulation index, 

Vin+ 

 



  

(99) 

Equation 2, 3,16 defines the position t of the leading edge 

of the pulse occuring at the output of the level detector, 

Unfortunately, equation 2, 3.16 is not amenable to direct 

solution, Consequently, either numerical methods or 

infinite- series methods must be used to evaluate ty. Since 

the results of the static analysis need to be used when the 

dynamic analysis is made, a numerical analysis will be of 

little use. For this reason, a formula will be derived which 

expresses the switching point t, as a power series in terms 

of the modulation index M. 

co 

n . 

= > aah 3.3.17 

n=0 

a
 

The method of deriving expressions for the coefficients ay is 

covered in detail in Appendix 2, and only the results will be 

given here, 
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t, 
Wane (3.3.18) ) 

Coe ele ie 

oh gaat Ba al (3.3.18() ) 

mee 

azote p(t - 4) -£.] ee 
Bo ele VAR OAIEE Be — 

— 

os he) SFR 
re, Ste An A ee (3.3.18) ) 

eee | Tt Hior FF, +E tee 
= ara et Uo ot Fo Es ' Or Gl D(x, x r F? (3.3.18(e) ) 

pr 2 > 2 

ey al i) IS FLFR + lO, +105 F, FF IOSEF Fs] (5 5 pe) ) 
e Cog iol VA AS te F 3
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1 p(t 1 pus he re + 12.60 FoF ~ oo 
7k me A, 

Es 
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en TN ce ARS 280K Fifa aT e413 | (3.3.18¢3) ) 

ek th bet E456! Cb SEE eSISOr FFs 
oy a te a] FS* 

a Ses. 6 is 33 

6300F,F, F, +10395 F,- FF, -378 FFF, — 
be 

a5 Was 

I260F, FF, F,-280F, F-17325 FF, “| (3.3.18(h)) 
FS 

where 

2 Te | 0 T, = Thea cg | (3.3.1 9(s)) 

(l+e)CR 

CaN, 4% 6.1 oY BLES | ] )* =| +e + oid (-\ 4 so Bat r (ar) ol ee ht \> 2 ee (3.3.19(b)) 

CR | Ta $ v= sabe Maal (3.3.19) 

A=¥- hae. (3.3.19(4)) 

ant + D= 4h woe (-A,T, )- ae expta.t.)| (3.3.191)) 

: ee t By A expFA,t, a = A exp LAT. oe {3.3.20} 

° 

t is the unmodulated position of the leading-edge of the 

. ° oes 

pulse, 1,6, 47. = ti/ Meo.
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Figs.3. 3.3 (a), (b), (c) and (d) show the coefficients a, 

plotted as functions of the normalised time constant 

T 1 
Ties sods iilcwatves Ta and the parameter 

(1 +) CR 1+ (TFaj)cR 
ey The reasons for choosing these two particular parameters 

are discussed in Appendix 2, A number of interesting 

observations may be made from these curves, The constant 

term, .a95 = a ,» passes through the value 0, 5 as the 

parameter ts 3 decreases, It is therefore possible, by 

suitable choice of the amplifier bandwidth, to make the 

unmodulated mark-space ratio unity. This would, at first 

sight, seem to be a desirable state of affairs, However, as 

the parameter ay is reduced, so ay (the coefficient of M 

in equation 3,3,17) decreases. Coefficients ag and av change 

very abruptly once a particular value of the parameter ae has 

been reached, This critical value of * depends on the 

particular coefficient under consideration. and on the value of 

the normalised time constant Ty . The reason for this 

rapid change in the values of the coefficents is evident from 

equation 3.3.20 for the factor..F,, in the expressions for the 

coefficients. For large values of xy the term 

AD exp (-Ay. Ty. ee dominates the expressions for EF 2 

whilst for lower values of YW the term At exp (-Aj, Ty ° 

becomes the dominant factor, Considerable care is required 

ty 
  

in interpreting figs, 3.3.3 (a), (b), (c) and (d), since Y has 

a minimum value which is a function of the integrator gain « . 

This minimum value occurs when: | 

A eee ae (3.3.21()) 

>
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Fig.3.3.3(a). Coefficients a, ,a,and a,for single-edge 

modulation system with bandwidth-limited integrator 

amplifier. ‘ee



  

  
  

  

      
  

  

    
  

Fig.3.3.3(b). Coefficients a,and a, for single~edge 

modulation system with bandwidth-limited integrator 

amplifier. 
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Fig.3.3.3(c). Coefficients a,and a, for single-edge 

modulation system with bandwidth-limited integrator | 

amplifier.
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Pig.3.3.3(d). Coefficient a,for single-edge modulation 

system with bandwidth-limited integrator.
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and the magnitude of the term Ke is given by: 

min 
fh ee h. (1+ 0) (3.3.21) 

Ta 
CR 

increases, so the term ve decreases to the minimum value 
e 

and then increases again, 

  

Thus, for a particular value of « , as the term 

Now, as discussed in section 3,1.1, demodulation of 

the pulse-length modulated wavetrain is equivalent to taking 

the average value of the waveform over one cycle of the 

repetition frequency. From fig. 3. 3.2(b) the average value 

over one cycle is: 

VES ~ 25 (3.3.22) 
av 

Substituting equation 3, 3,17 in equation 3, 3, 22 gives the 

following expression for the amplitude of the demodulated 

wavetrain; 

Vo=I- aie mM: (3.3.23) 
n=O 

In section 3,1.1 the static error E, in the system output was 

defined as: 

Ee Vo +A (3.3.24) 

E,=(14M)-2) aM" (3.3.25) 

Because of the number of variables involved, it is not practicable 

to present graphs of E, asa function of the system parameters 

and of all values of modulation index M. By definition, the value 

of E, is zero for the two conditions of full modulation (i.e, M=+1),
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Thus, a knowledge of the static error E, for M = -0.5, 0,0 

and +0. 5 will give a reasonable indication of the manner in 

which the error varies as a function of the modulation index, 

Figs. 3.3.4 (a) and (b) show the static error as a function of 

the normalised time constant T., and the parameter + 

for these three values of cdbgietion index, From these 

diagrams it can be seen that, for particular values of Ra ‘ 

the error By is zero. Unfortunately, the particular value of 

Bs is a function of the modulation index; zero error cannot, 

therefore, be obtained for all values of M, It may be possible 

to choose the bandwidth in order to minimise the mean-square 

error, but this has not been attempted. That the static error 

E, is zero for particular values of the system parameters may 

be seen by considering the normalised integrator output 

waveform for various values of the amplifier time constant, as 

shown in fig. 3.3.5, The dotted line in this figure represents 

the ideal sampling waveform, for which the system:static error 

is zero for all values of modulation index M, Since the 

integrator waveform crosses this ideal waveform, there is a 

value of modulating input voltage, Vj,, such that the level- 

detector output changes state at the point where the ideal 

and actual waveforms are coincident, Under these conditions 

the static error Ej, is zero, 

For reasons discussed in section 2,1.1, the static error 

in the demodulated wavetrain may also be expressed as the 

difference between the actual output ae and the component of 

a that is directly proportional to the modulation index M.
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Fig.3.3.4(a). Static error E,for single-edge modulation 

system with bandwidth-limited integrator amplifier.
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Fig.3.3.4(b). Static error E,for single-edge modulation 

system with bandwidth-limited integrator amplifier.
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Fig.3.3.5. Integrator output waveform for single~edge 

modulation system with bandwidth~limited integrator 

amplifier.
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Therefore, from equation 3, 3, 22; 
Co 

to zy Oh (3.3.26) 
n=2 

As with the static error Ey , it is not practicable to present 

the error, E, in graphical form for all values of the 

variables. From consideration of fig. 3.1.5 (section 3, 1.1) 

for the static error Ep of a single-edge pulse-length 

modulation system with finite integrator gain and infinite 

bandwidth, the values of modulation index which give the 

best indication of system performance are +1.0, 0.0 and 

-1,.0. However, the analytical results for double-edge . 

modulation (which are derived in section 3,3, 2) are not 

valid for full modulation, When comparing the performance 

of the two systems it is convenient for the graphs of static 

error to be presented for the same value of modulation index, 

A value of M = + 0.5 ensures that the analytical results for 

the double-edge modulation system are valid over the required 

range of system parameters, Fig. 3.3.6 shows the static 

error E9 for the single-edge modulation system for values of 

M of +0.5 and -0.5, The value of E59 for M = Ois, from 

equation 3.3, 26: 

bef es Late. (3.3.27) 
MeO 

Equation 3, 3,27 is identical to equation 3. 3. 24 for E, with 

M=0, Itis not necessary to plot a graph of Ey with M=0 

since E, / jqy=0 is already shown in fig. 3.3.4 (b). Fig. 

3.3.6 shows that the static error Eo decreases to zero as 

1 decreases, Further decrease of a0 causes the static
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Fig.3.3.6. Static error E, for single-edge modulation 

system with bandwidth-limited integrator amplifier. 
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Chis) 

error to increase in the negative direction. As was 

discussed in relation to figs, 3.3.3 (a), (b), (c) and (d) 

(see equations 3,3, 21 (a) and (b) ), care must be taken in 

interpreting the factor pA ee 

Since the specification for the accuracy of the threshold 

level of the level detector depends on the peak amplitude of. , 

the sampling waveform, it is of interest to examine the 

manner in which the peak output of the integrator varies as 

a function of the system parameters, The peak integrator 

output occurs at time t=T,. Therefore, from equation 

Joos 

    

, (t) oe | 
ae x | — ex -kT. )- = ex ~k T. (3.3.28) \, ce yale p \ (ee P( ao) 

where the terms ky and ko are given by equations 3. 3,2 and 

3.3,3, 
V(t) ; 

Fig. 3.3.7 shows plotted as a function of the system   

parameters, It will He noted that decreasing the amplifier 

bandwidth decreases the peak integrator output,
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Fig.3.3.7. Peak integrator output for a single-edge 

modulation system with bandwidth~limited integrator 

amplifier.
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3.3.2 Double-edge modulation 
  

In order to investigate the performance of the double- 

edge modulation system shown in fig. 2, §.(a), when the operational 

integrator has a finite open-loop bandwidth, it is necessary to 

derive an expression for the output of the integrator in response to 

a square wavetrain input. A procedure was developed in section 

3.1.2 for deriving the square-wavetrain response of a finite- gain 

integrator, having infinite open-loop bandwidth, from the step 

response. The step response of the integrator with finite amplifier 

bandwidth is given by equation 3,3,2., Since the procedure for 

obtaining the square wavetrain response from equation 3.3.2 is 

identical to that used in section 3.1.2, only the results will be 

quoted here: 

  

  

kp ka 
he Rie 

v, (t= -2, tee wt HER exp[-k,t) . (3.3.29) 
as: Pe Ogtes 

    

  

ko k, 

v,(t}=- “ + ata ex[-k(t- =) Hace) expl-k (t-)] (3.3.30) 

where k, and kg are given by equation 3.3, 3. 

Fig. 3.3.8 shows the integrator output waveform for selected values 

of the system parameters. It will be noted that the peak output does 

not occur at time t= 0. However, the positive and negative values 

of the peak output are equal in magnitude. 

In the block diagram of the system, fig, 2.4.(a), the 

integrator output voltage is added to the modulating input voltage 

Vin a and the sum is applied to the input of the level detector. The 

output of the level detector changes state whenever the sum of the
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Fig.3.3.8. Output waveform for integrator with 

bpandwidth-limited amplifier. 
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Fig.3.3.9. Waveforms for double-edge modulation system 

with bandwidth-limited integrator amplifier.
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modulating input voltage and the integrator output voltage crosses 

the threshold voltage of the level detector, as shown in fig. 3.3.9. 

Thus, the switching points of the leading and trailing edges of the 

level detector output pulse, t, and to respectively, are defined 

by: 

v, (t) + VI = % for O<t<«< “ ($.3,31) 

v,(t,)+V. = V for leet r<h<T (3.3.32) 

where Vv, is the level-detector threshold voltage. 

It was shown in section 3,1. 2 that, if the positive and negative values 

of the modulating input voltage required for full modulation are to 

be of equal amplitude and the peak positive and negative values of the 

integrator waveform are equal and opposite, the threshold level 

V, must be set to zero, Under these conditions, the value of 

input Mik for full modulation is equal to the peak positive value 

of the integrator. output V(t). 

° oo (3.3.33) 

V,, v, (t) (3.37534) 

o
H
 

Substituting equations 3, 3,33 and 3,3. 34 into the expressions 

defining the switching points ty and to (equations 3.3.31 and 

3.3.32) gives: 

vali) __ (3.3.35)   

  

  

°,(t) ; 

Valle) - (3.3.36) 
“A 

Vv. V, (t) 
in : : 

where M =.= , the modulation index. 

V in+
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The time t at which the peak value Vo(t) of the integrator output 

occurs may be obtained by differentiating equation 3.3.29 with 

respect to time and equating the differential to zero. 

    

  

  

  

  

  

exp(-k.e) # exp(-k, t) 

I+ exp oe \+ exp (5) 

Therefore 3 eee 

= k,- ky 

ex bk t) ‘“ Irexp(S%) (3,3.32) 
Phe. tote 

I+ exp( > )| 

71 os 

sxpckt) = i +exp i |" (3.3.36) 
[reat     

Substituting equations 3.3.37 and 3,3. 38 in equation 3.3.29 gives 

the following expressions for the peak positive output of the integrator. 

ka he 

A(the-l/{t-2firee lH)  inexe HE) acl (2.3.38) 

From equations 3,3,29, 3.3.30, 3.3.35, 3.3.36 and 3.3, 39, the 

  

positions of the leading and trailing edges of the level detector output 

pulse are defined by: 

o aa exp(-kt)- : (is) 

\+ exp(“tE} \4 exp| > 

    

  

  

    --tf-afen SE] F* feeeBYRE] 220



  

  
  

    

  

  

ae k 2 ey 
l+exp aa |4exp(- zi) 

rs “ky 
=—M I-2[l+exp AE] Kerk I exp(S)] Koka (3 3.4 1) 

Unfortunately, it is not possible to obtain direct solutions to t and 

to from equations 3, 3.40 and 3.3.41; numerical methods or 

_ series methods must therefore be used, From the point of view of the 

static analysis, numerical solution of equations 3.3.40 and 3.3.41, 

for a range of values of the parameters, would be adequate. 

However, the results of the static analysis are to be used for the 

spectrum analysis, and a list of values of ty and te would be of 

little use, For this reason, the switching of the pulse leading and 

trailing edges will be expressed as power series in terms of the 

modulation index M. 

== x M (3.3.42) 
n=0 

Ss n = Le) AM : (3 3743) 

The expressions for the coefficients a, and b, are derived in n 

Appendix 3, and only the results will be quoted here, The reason 
t t 

e +) instead of 2 
g e 

is     for obtaining a power series for ( 

apparent in the appendix.
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FJ? 

"] 

(3.3. 441) 

(3. a 44(b)) 

(3.3.44) 

a ata) 

a
m
e
s
 

WwW w 

(3.3.4 40) 

(3.3.44) 

(3.3. 44%) 

(3.3.44)



  

  

\ 
where: ¥ = (Irax)cr |} (3 ae A 5(a)) 

(1+xX)CR 

nf SE Ge) SE Get a Gp 
R mo 

Seo aes | (3.3.4 51) 

  oe (3.3.45(4) 

Vernier (3.3.4 5(d)) 

_ Keolan) “ _Kexpl arte) (3.3.4 5¢)) 

: + exp (Ags ) J+ exp(Ars] 

Aa =nt: 
D=l- 2 [I+ exp (A ee [1 eexp (Mal) a, (3.3.4 5(F)) 

3 is the unmodulated position of the leading-edge of the pulse, 

(i.e, i, at ) and is given by the numerical solution of the 
1“ T/yq=0 : 

following expression: 

  

se : Se ° sie =plAT, 2) + Aa ea) (3.3.45(g)) 
| exp(- Au Tw Irexp( 33) 

b = Ci), (3.3.46) 

The numerical methods used in evaluating the coefficients a, and b, 

are described in Appendix 3. Figs. 3.3.10(a), (b), (c) and (d) show
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Pig. 3.3.10(a).Coefficients a,,a,and a,for double-edge 

modulation system with bandwidth-limited integrator 

amplifier.
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Fig.3.3.10(b). Coefficients a,and 98, for double-edge 

modulation system with bandwidth-limited integrator 

amplifier. 
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Fig.3.3.10(c). Coefficients a,and a,for double~edge 

modulation system with bandwidth-limited integrator 

amplifier. 
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Fig.3'.3.10(d). Coefficient a,for double~edge modulation 

system with bandwidth-limited integrator amplifier.
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the coefficients ay to an plotted as functions of the normalised 

time constant Ty and the parameter we . The graphs of the 

coefficients have the same general form as those for single-edge 

modulation but they are numerically smaller. The value of the 

coefficients change rapidly when particular values of ~ are 

exceeded, for the reasons discussed in section 3.3.1 for single- 

edge modulation, Care must be taken in the interpretation of 

figs. 3.3.10 (a), (b), (c) and (d), as was discussed in relation to 

single-edge modulation (See equations 3, 3, 21(a) and (b)). 

| Demodulation of the pulse-length modulated wavetrain 

at the output of the level detector is equivalent to taking the average 

value of the waveform over one cycle of the repetition frequency. 

Therefore, from fig, 3.3.9, the amplitude of the demodulated 

wavetrain is: 

| 
V=2(2 awe (3,4,.47) 

Substituting equations 3.3.42 and 3, 3.43 in the above expression 

gives: “a 

A agt Y (bya) fe | (3.3.48) 
n=0 

But it has been shown that b, = Gay Qn 

a esa (3.3.49)
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Equation 3.3.49 shows that the amplitude of the demodulated 

wavetrain is zero when the modulation index is zero. Also, since 

only odd powers of M occur in the expression for V the av? 

system transfer function will be symetrical about the origin, 

Jt has been implicitly assumed that the preceding 

analysis is valid for all values of modulation index. That this 

assumption is not valid may be seen from fig. 3.3.9. As the 

modulating input voltage increases in the positive direction, so 
+ 

the position of the leading edge tends towards en and eventually 

c 
2 e 

that have been developed are only valid for t; < 

  the condition is reached where t= The analytical expressions 

since itis 2 

assumed that t; is determined by the integrator waveform for the 

period 0 to —& 

ao. then both t, and t, are governed by the integrator waveform. 

  (i.e. equation 3,3,29), When t, is greater than 

  

7 
for the period a to T, (i.e, equation 3.3.30), Thus, the 

analytical expressions will give an incorrect result when the 

  

dy 
modulating input voltage is such that t, is greater than = si This 

effect is illustrated by fig. 3.3.11. Since the integrator output 

waveform is symmetrical, a similar effect exists when the negative 

input voltage is such that ty is greater than TO: From fig. 3.3.9, 

Teo 
2 

and opposite to the amplitude of the integrator output waveform at 

Te 
2 

which the theory is valid, may be obtained by setting t = 

  t; becomes equal to when the positive input voltage is equal 

time t=   Therefore the maximum input voltage V,,(max), for 

Te 
5 in   

equation 3,3, 29, 

Vj, mare) = (3) - v, (0) 

=~oV, er, oa nl (2.3.50) 

[+ exp“) |+exp Cs)    
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v(t )+Vi, 

(ae v(t) from eqn. +, Saeeé 

a v(t) + V,, 
\ 

' v(t) from —> 

eqn.3.3.3¢ 
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Hisa| 
It, te 

t, (given by eqn.3.3.40)   
Fig.3.3.11. Level-detector input waveform, 

M(max ) 
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Fig.3.3.12. Maximum modulation index for which the 

analytical expressions are valid.
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This value of maximum input voltage may be expressed as an 

equivalent modulation index, M(max). 

M (max) = ee (3 Boao 1) 

in+ 

  

Therefore, from equations 3, 3. 34 and 3. 3, 39 

2 (-] ahs | - ——"——_—_—- - 

J+ exp (SE) J+ exp(=35 | 

kp -k, 

)- 2fis exp (SEI kok [I enep(2E )| kk, 

M(max) may be expressed as a function of the two parameters TN 

and by substituting equations A3.6, A3.7, A3.14(a), (b) and (c) 

    

    

  Maes a (3.3.52) 
    

  

(from Appendix 3) in equation 3. 3. 52, 

A cen, 
oom Papess 

J+ exp (- “Acta |+ exp (Ag) 

Az A 

1-2 [le enp(AB] [in expf A] 
where Ty, Ag and A; are given by equations 2, 3,45(a), (b) and (d) 

  

  M (mare = 

    

  

respectively, Fig. 3.3.12 shows M(max) plotted as a function of 

the parameters Ty and a 

A further point arises from the discussion of the maximum 

input level for which the theory is valid. It was shown that when the 

positive input exceeds V,,,(max) then both t, and t, are governed 
2 

to: Te Now, the   by the integrator waveform for the period
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power series representation of ty should yield two values for ty 

under these conditions, the smaller of these values being the 

effective value of t,. It is obviously not possible for the power 

series to give two values of t, for a given value of modulation 

index, One attempt to secrete this problem is to represent the 

integrator waveform as a Fourier series which may be time shifted 

so that the peak value of the waveform occurs at the time origin. 

However, it is not then possible to use Maclaurin's theorem to 

obtain a power series for the switching points, since a discontinuity 

exists in the first differential of the integrator waveform and further 

differentials would be meaningless, 

In section 3.1.1 the static error E, in the amplitude Vay 

of the demodulated wavetrain was defined as: 

BV ae (3.3.54) 

Therefore, from equation 3, 3, 49 

on 2n-| 

Bema a M | (3 73).55)) 

It is not practicable to present graphs of E, asa _ function of the 

system parameters for all values of modulation index, and graphs 

will be drawn for the single value of M=0,5, The system transfer 

function is symmetrical about the origin, so the error for M = -0.5 

will be equal and opposite to the error for M = 0, 5... Pne error EY 

for M=0 is zero, since no constant term exists in the expression 

for V,,. By definition, the error Ey for full modulation is zero; 

thus a knowledge of the error for M=0.5 will give a reasonable 

indication of the manner in which the error depends on the system 

parameters at other values of modulation index, Fig. 3.3.13 shows 

the static error Ej, asa function of the normalised time constant
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Fig.3.3.13. Static error E,for double-edge modulation 

system with bandwidth-limited integrator amplifier. 
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system with bandwidth-limited integrator amplifier.
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’Ty and the factor Y , for M=0.5, It will be noted that the static 

error increases as the factor fo is decreased. 

For reasons discussed in section 3.1.2, the error in the 

amplitude of the demodulated wavetrain may also be expressed as 

the difference between the amplitude of V,, and the component 

which is directly proportional to the modulation index M. Therefore, 

from equation 3, 3.49; 

co 

E.= be Ors. mw (3.3.56) 

n=Z 
Since it is not practicable to plot graphs of error E, against system 

parameters for all values of modulation index it is necessary to 

select a particular value of M. Now, for a double-edge pulse- length 

modulation system with finite integrator gain and infinite amplifier 

bandwidth, the error Ep» isa maximum for full modulation (See 

fig. 3.1.11, section 3.1.2), Thus graphs of error E, for the system 

utilising a bandwidth limited amplifier would be most useful if plotted 

for M=1. Unfortunately, the analytical expressions developed for 

E» are not valid for full modulation; a lower value of M must 

therefore be chosen. Fig. 3.3.14 shows the error Es as a function 

of the normalised time constant Ty and the parameter oe for 

a modulation index of M=-0.5. Due to the symmetry of the 

transfer function about the origin, the error for M = +0.5 will be 

equal and opposite to the error for M = -0. 5, The error for M=0 

is zero, since no constant term exists in the expression for the 

amplitude V,,_ of the demodulated wavetrain. Fig. 3,3,14 shows that 

the system static error Ep» increases with decreasing values of a 

As was discussed in section 3 2, an important parameter 

in the design ofa pulse length modulation system is the peak amplitude



(133) 

Vo(t) of the sampling waveform, since it determines the accuracy 

required of the level-detector threshold voltage. Fig. 3.3.15 shows 
A 
volt 

the ratio a(t) , from equation 3. 3,39, plotted as a function of 

  

the system parameters.
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Fig.3.3.15. Peak integrator output for double-edge 

modulation system with bandwidth-limited integrator 

amplifier. 
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‘=3;3.3 Conclusions 

- Expressions have been derived for the static error in 

pulse-length modulation systems which utilise a bandwidth-limited 

amplifier in the integrator: section. The error equations have been 

expressed in terms of three variables; the normalised time constant 

gh the modulation index M and the parameter % 4 ‘ 

2 
CRI Te | 

where Yo =| +/+ TALER 

The transfer function of the single-edge modulation 

system is not symmetrical about the origin, In general, a constant 

term exists in the demodulated output waveform when the modulation 

index is zero. However, it is shown that under certain conditions 

the effect ef the finite amplifier bandwidth is to reduce this constant 

term to zero. The transfer function of the double-edge modulation 

system is symmetrical about the origin, and the amplitude of the 

demodulated system output is zero when the modulation index is 

zero, 

The,magnitude of the amplifier time constant T, that 

can be tolerated without significantly affecting the system 

performance is a function of the other system parameters. For this 

reason, a clearer indication.of the effects of the finite amplifier 

bandwidth can be gained by applying the analytical results to a 

practical example (See section 5 ).
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3.4 Static error due to hysteresis in the level detector 

threshold level 

Many of the circuits used as level detectors exhibit 

a hysteresis effect in that the threshold level for positive- going 

input voltages differs from that for negative- going input voltages. 

The transfer function of a hysteretic level detector is shown in 

fig, 3.4, 1 

  

y 

Output 

        

0 y-§ YM yrs Input 

Fig.3.4.1. Transfer function of hysteretic level- 

detector. 

Cy 

In the design of a pulse-length modulation system it is required 

to know what effect the level-detector hysteresis has on the 

system performance, 

3.4.1 Single-edge modulation 
  

Consider the single-edge modulation system of 

fig. 2.Q(a) utilising a hysteretic level detector with a transfer 

characteristic as shown in fig, 3.4.1. It will be assumed that 

the integrator has finite gain but is ideal in all other respects, 

The output v(t) of the integrator is given by equation 3.1.1 of
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section 3,1,1 and is rewritten below for convenience, 

y(D=-a\i[I-exe( CES) (3.4.1) 
The integrator output waveform is added to the modulating input 

voltage Lees and the sum applied to the input of the level detector, 

The output of the level detector changes state whenever the sum 

of the modulating input voltage and the integrator output voltage 

crosses the effective threshold level. The waveforms associated 

with the level detector are shown in fig, 3.4,2. It can be seen 

that the positive hysteresis (V,+ & ) does not affect the position 

of the trailing edges of the pulses, The position t; of the leading 

edge of the pulse is defined by the expression: 

v,(t,)+V,.= \-§ (a4) 

Since the hysteresis does not affect the position of the 

pulse trailing edge, the level detector can be considered as 

non-hysteretic but with an effective threshold level of V; - % 

Obviously this effective threshold level can be set to give 

identical conditions to those for a non-hysteretic level detector, 

Thus, hysteresis in the level detector threshold will have no 

effect on the system error, provided that the effective threshold 

level (V; - & ) is set to the value required for a level detector 

with zero hysteresis (See section 3.1.1), 

Fig. 3.4.2 shows that, for positive values of 

modulating input voltage, full modulation corresponds to LS eal 

Full modulation. for negative values of modulating input voltage 

corresponds to t,=0. However, full modulation cannot be 

achieved in a continuous manner for negative values of Vin.
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Fig.3.4.2. Waveforms for single-edge modulation system 
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As Vin 

edge approaches zero, until the condition shown in fig. 3.4.3 

is increased negatively, the position t, of the leading 

is reached. If the modulating input voltage is further increased 

negatively, then t, changes abruptly from some finite value 

to zero, since the sum of the integrator output voltage and the 

modulating input voltage does not cross the upper threshold 

level V; +8. Thus, continuous modulation is achieved for 

negative values of Vjyn only if the sum of Vj, and the integrator 

output voltage at time t=0, is greater than the upper effective 

threshold level, V,+& . The amplitude of the integrator 

output waveform is zero at time t=0, , so the maximum 

negative input voltage Vj,_(max) for continuous modulation is 

given by: 

V,,,-(max)= V, + § (3.4.3) 

It was shown in section 3.1.1, for the system with 

a non-hysteretic level detector, that if the positive and negative 

input voltages required to produce full modulation are to be of © 

equal amplitude, then the level detector threshold level must be 

set to half the peak value of the integrator output waveform. 

Under ee conditions, equation 3.1.10 gives the following input 

voltage Vv for full modulation: 
in- 2 

A 

=— SoH. ue: ~ «VL 1 op (ea al (3.4 4) 

Therefore, fora poe with a hysteretic level detector, if the 

effective threshold level V; -§ is set to half the peak value of 

the integrator output waveform, the positive input voltage 

required to produce full modulation is given by equation 3, 4. 4 

and the effective threshold levelis:
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yf 75, [-e9 (Tall Ca 
The maximum negative input Vj ,- (max) can now be expressed 

as a modulation index; 

V,_ (max) 
mete 3.4.6 M_ trax) = “S ( ) 

Vin 

Substituting equations 3.4.3, 3.4.4 and 3.4.5 in equation 3.4.6 

gives: 

ince ee AE SS aa on 
o\,[-ex = (Gal) 

The above expression for the maximum negative modulation 

index for continuous modulation may be rewritten as; 

re 
A 

v(t) 
where Vo(t) is the peak output of the integrator. 

  M_(max) =-|- (3. 4¥8 ) 

Thus, hysteresis in the level detector has no effect 

on the system error, but it sets a limit of less than unity on the 

maximum negative value of the modulation index,
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3.4, 2 Double-edge modulation 

Consider the double-edge modulation system of 

fig. & 1(a) where the level detector has a transfer function as 

shown in fig. 3.4.1. As for the single-edge modulation system, 

it will be assumed that the integrator has finite voltage gain but 

is ideal in all other respects. The output of the integrator v(t) 

is given by equations 3.1.23 and 3,1, 24 of section 3,1. 2,. which 

are rewritten below for convenience, 

ae ie ‘ 
(ble OMA aera a Oo<t<> (3.4.9) 

) 

Sah olraaee | 

my >) renp( tee) 

v,(t}=-aV, —| + Ae 

\+ exe eae 

The integrator output voltage v(t) is added to the modulating 

ce 
; e<t<T (324 310 

input voltage Vj, and the sum is applied to the input of the 

level detector, The output of the level detector changes state 

whenever the sum of the input voltage Vj, and the integrator 

output voltage crosses level Vi +§ for positive - going voltages, 

and yy § for negative - going voltages. The waveforms 

associated with the level detector are shown in fig. 3.4.4. The 

* positions of the leading and trailing edges of the level detector 

output pulse, t, and to respectively, are defined by: 

v,(t,) + x = V, - ve 
a 

y(t.) + Vy = es | (3.4.12)
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Fig. 3.4.4 shows that, as the modulating input voltage increases 

in the positive direction so the position ty of the leading edge of 
1. 

the pulse tends to = . Eventually, the condition is reached 

where ty = = ; however, as a result of the hysteresis, the 

  

  

  

position ty of the trailing edge is not equal to ae 7. i see 

input voltage Vj;, increases further, the pulse length (to-t,) 

abruptly changes to zero, since the sum of the integrator waveform 

and the modulating input no longer crosses the lower threshold 

level V, - § . Similarly, for negative values of input voltage a 

condition is reached where ty = Tes but ty is not zero. Further 

increase of Vj, in the negative direction will cause the pulse 

length (tg - ty) to change abruptly to T,, since the sum of the 

input voltage Vj, and the integrator output voltage no longer 

crosses the upper threshold level Ma +§. Thus, the maximum 

positive value of input voltage Ves 4 for which the modulation 

process is continuous,from fig. 3.4.4, is: 

= Vee ~ vy, (5) [3 4.13) 

Pé-us T 
where vo( —— ) is the integrator output voltage at time t = “9 . 

  

Due to the symmetry of the integrator output waveform, 
= 

Vo(-5 9 is equal and opposite to the peak positive integrator 

output v(t) which occurs at time t =0. 

A : 
: a - A: See Noe \ b+ v, (t] 7 (3454) 

Similarly, the maximum negative value of input se for continuous 

modulation is: 

Wee V.+8-%(t} (3.4.15) 
n-
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The conditions of input given by equations 3.4.14 

and 3,4.15 will be defined as full modulation, even though the 

pulse lengths corresponding to these inputs are not zero and 

T,. If the maximum positive input voltage v; 

and opposite to the maximum negative input Nae then, from 

equations 3,4.14 and 3.4,15, 

int is to be equal 

A A 

V.=0 For Net ain: (3.4.16) 

Equations 3.4,11 and 3,4,12 now become; 

v,(t,) + Ve= —§ (3.417) 

v(t.)+ Viz 8 (3.4.18) 

Dividing equations 3.4.17 and 3.4.18 by v. and solving for 
int:’ 

t,; and to gives: 

tee tf - a] [ee all + log[ 4] (3.4.19)   

  if: Silven(geBallefiertd] 4.20) 
  

ie 2 ee 

. Vin : ; 
where: M= = , the modulation index. 

Vin+ 

|-—ex ae 
P I~ exP (7 ihajer | (3.4.21) 

ere = 

& (k- ) oe | 
se XV 3.4.82 d= | + ci) ( )
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The modulation-index modifying function ¢ may be expressed in 

terms of the peak output voltage V(t) of the integrator. From 

equation 3,4, 22 and equation 3.4.9 with time t = 0; 

wel , 
os (3.4.23) 

Vz(t) : 
fs 

The form of equation 3,4, 23 is more convenient for design purposes 

§ 
since the ratio 

; g(t) 

  x is easier to visualise in terms of the system, 
Vv 

XV : 
peak integrator 1 output V(t) plotted as a function of the system 

than the ratio   Fig. 3.1.12 of section 3.1.2 shows the 

parameters. 

Demodulation of the length-modulated wavetrain 

at the level-detector output is equivalent to taking the average 

value of the waveform over one cycle of the repetition frequency, 

Therefore, from fig. 3.4.4, the amplitude V,, of the demodulated 

wavetrain is: 

oes (aa4.24) 

Substituting equations 3.4,19 and 3.4. 20 in equation 3, 4, 24: 

ae : (3.4.25) 

av = 1-M¢k 
< 

The logarithmic term in equation 3,4, 25 may be expanded as an 

infinite series: 

co 

A. (l+ax)CR “Roel 
ve +; . net) (Mex) pee 

n=\ 

  

Comparing equations 3.4, 25 and 3, 4, 26 with the corresponding 

expressions for the amplitude of the demodulated wavetrain for the
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double-edge modulation system with a non-hysteretic level 

detector (equation 3.1.36 and 3.1.37) shows that the effect of 

the level detector hysteresis is simply to modify the effective 

value of the modulation index from M to Mé¢. - 

The static error Ey in the amplitude of the demodulated 

wavetrain was defined in section 3.1.1 as; 

a (3.4.27) 

Equation 3,4, 27 may be rewritten as; 

E=V+mM¢+ M-#) (3.4.28) 

The term V,,, + M¢ in equation 3.4, 28 is identical, in form, to 

equation 3,1,16 for the static error E, in a double-edge 

modulation system with a non-hysteretic level detector. The only 

difference is that the modulation index M is replaced with M¢. 

Thus, fig. 3.1.10 of section 3. 1,2 may be used to determine the 

value of Va, + M¢ by simply replacing the modulation index 

M with the modified modulation index Mg. Fig. 3.4.5 shows the 

factor (1-4) plotted as a function of the normalised time constant 

= patie eto 
(1+ %) CR Fo(t) ” 
be evaluated from fig. 3.4.5. Thus, the static error BE, for a 

The term M(1-¢) can readily 

double-edge modulation system with a hysteretic level detector 

has been expressed as the static error of an equivalent double-edge 

modulation with a non-hysteretic level detector, plus an additional 

error term M(1-¢4). Figs, 3.1.10 and 3.4,5 show that the two 

terms in equation 3.4. 28 have the same sign. Since the modulation 

index modifying factor ¢ is nearly equal to unity for practical 

values of level detector hysteresis, the term (Vg,+M¢) in equation 

3,4, 28 will be very little different from the error E, ofa



(148) 

  1.0 

          
  

  

    
  

  

t 
(140)COR 

a | pee 
16° (ee 9. ¥60 

(+t) 

Fig.3.4.5. Modulation index modifying function ¢ 

for double-edge modulation system with hysteretic 

level~detector,.
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non-hysteretic system. However, the term M(1-¢) will certainly 

be significant compared with (Vay + M¢), so level-detector 

hysteresis can cause an appreciable increase in the system static 

error E,, When designing a system, the manner in which Ey 

is defined should be borne in mind since the definition used perhaps 

gives an erroneous indication of system error, The error EB is 

defined as the deviation of the system transfer function from the 

ideal one where V,,= -M, as shown in fig, 3.4.6. From this 

diagram it can be seen that care is required in interpreting the 

significance of E,, since it does not give a true indication of the 

system linearity. In many systems, the increase in E, will not 

matter, since, from fig. 3.4.5, the increased error may be 

interpreted as a decrease in system gain. 

For reasons discussed in section 2.1.2, the error in 

the amplitude V,, of the demodulated wavetrain may also be 

expressed as the difference between the amplitude of Was and the 

component of the demodulated wavetrain that is directly 

proportional to the modulation index M. Therefore, from 

equations 3,4, 25 and 3.4. 26: 

eas 2 pone -andx | (3.4.28) 
I= Mok 

  

  

I. (\40)CR = \ an-l 
or aa ee y Bact) (Mok) (3.4.30) 

n= 

Comparing equations 3.4, 29 and 3.4, 30 with the corresponding 

expressions for the double-edge modulation system with a 

non-hysteretic level detector (equations 3.1.39 and 3.1.40) it will 

be noted that they are identicalin form, Therefore, fig. 3.1.11
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for the error Eg in the double-edge modulation system with 

no hysteresis may be used to determine the error E, in the 

system with hysteresis by replacing the modulation index M 

in fig. 3.1.11 with the modified modulation index M¢.
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3.4.3 Conclusions 

Expressions have been derived for the static error 

in pulse length modulation systems which utilise a hysteretic 

level detector. The error equations are expressed in terms of 

the error of equivalent systems with non-hysteretic level 

detectors. 

It is shown that, for a single-edge modulation system, 

the level-detector hysteresis has no effect on the system error 

provided that the effective threshold V, - § is set to the value 

required for the threshold of a system with zero hysteresis. 

Under these conditions, the only effect of hysteresis is to limit 

the maximum negative value of the modulation index for which the 

modulation process is continuous, 

For the double-edge modulation system, level-detector 

hysteresis reduces the effective modulation index, This reduces 

the maximum value of the demodulated system output. When the 

modulation index M is unity, the system output corresponds to 

the output of a non-hysteretic system with a modulation index of M¢. 

Hysteresis is inherent in the operation of many forms 

of level detector. However, some types of level detector do not 

possess hysteresis (e.g. A high-gain, wide-band saturating 

amplifier). In practice, itis often. convenient to introduce a small 

amount of hysteresis into this type of level detector to avoid ‘'jitter' 

of the pulse edges at high levels of modulation. The 'jitter'is due 

to a tendency to oscillation in the high-gain, wide-band type of 

circuit. Any oscillation can, of course, be avoided by careful 

design and component layout, but it is often more practical to 

overcome the problem by introducing hysteresis.
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3.5 General discussion of the results of the static analyses 

A number of interesting general observations can be 

made from preceding analyses of static error in pulse-length 

modulation systems. In all the cases analysed, it was found that 

the amplitude V,, of the demodulated wavetrain could be 

represented by power series of form: 

so 

n 

Vee ae M for single-edge modulation 

pene , 
oe a for double-edge modulation 

ak 

where M is the modulation index and the coefficients a, are 

functions of the system parameters. The power series for 

double- edge modulation does not contain a constant term, so the 

amplitude of the demodulated wavetrain is zero when the 

modulation index is zero; this is not the case for single-edge 

modulation. The power series for single-edge modulation has 

terms involving all positive powers of M, whereas the series for 

double-edge modulation contains only positive odd powers of M. 

Consequently the transfer function of the double-edge modulation 

system is symmetrical about the origin. In general, the system 

static error is smaller for double-edge modulation systems, and 

the reason for this may be demonstrated diagrammatically as 

shown in fig. 3.5.1. The points t, 2 and to represent holiest 

case where the sampling waveform is not linearly related to time. 

It will be noted that, for double-edge modulation, the error in ty 

cancels the error in t, to some extent. With single-edge 
Z 

modulation there is no cancellation of error,
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For all the cases considered, it has been shown 

that the level-detector threshold should be set at zero for 

double-edge modulation, and to some finite value (which depends 

on the system parameters) for single-edge modulation. Since 

it is normally simpler to design a level detector with a threshold 

of zero volts, this is a practical advantage of double-edge 

modulation,
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4, Spectrum Analysis 

4,1, General Theory 

The method of spectrum analysis which is based on 

setting up the Fourier series for a train of unmodulated pulses, 

and then applying the modulation to the appropriate parameter, 

lacks mathematical rigour, This is due to the non-periodicity 

of a pulse-length modulated wavetrain produced by natural 

sampling. The method of analysis used in this section is 

based on that used by Fitch ' i) and Shiart’ 49) for the 

spectrum analysis of pulse-length modulation with ideal 

sampling waveforms, It a be sheen that the frequency 

spectrum of 2N + 1 pulses, whose edges are position modulated, 

Qo 

is given by the expression: 

sin(N 

F(t}= 4 Fam} cin(et am sinlvra je ae = t lexp (ieLt- = +t,))- 

exp(joft- -#-ty] }) a (4.1.1) 

   

    

  

where wW = angular frequency 

oe = unmodulated pulse length 

tar and tat are the time deviations from the unmodulated 

positions, of the leading and trailing pulse edges 

respectively 

s ; 27 
Te. pulse period re 

. Cc
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Fig. 4.1. (a). shows the manner in which the unmodulated 

wavetrain is defined, and fig, 4.1.(b), the manner in which the 

time deviations of the pulse edges are defined, The general 

expression for the frequency spectrum of 2N + 1 length- 

modulated pulses (equation 4,1, t, ) is the basis of all the 

following analyses.
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4,2. Distortion due to Finite Operational Integrator Gain 

4,2.1. Single-edge Modulation 

It is shown in section 3.1.1, (equation 3,1.12.) 

that the position t, of the leading edge of the pulse ina 
1 

single-edge modulation system, with finite integrator gain, 

is given by the expression: 

  

  
i (aoc {s93[" exp (ae) |* (-nx)| | (4.2.1) 

ce 

J} -ex ( aa 

where : ie pee A Ghee) clr (4.2.1¢6)) 

r P( (l4a)CR 

    

        
  

Time 

Fig.4.2.1. Single-edge pulse-length modulated wavetrain.
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' The trailing edges of the pulses occur at periodic intervals of 

nT, as shown in fig. 4,2,1. From equation 4,2,1., and 

fig, 4.2.1, the time deviation of the leading edge is: 

  
Ly = t, sian t. 

: tay (la)CR eS 
ee te ia oe log (1 mK) (4.2.2) 

The time deviation of the trailing edge is zero 

ae 0 (4.2.3) 
Ve 

The unmodulated pulse length T> ist 

te eg lca 

ot es 4. Unie log 4 [1 + exp( ca) | (4.2.4) 
Zz (It+ax)CR 

If the modulating input to the system is a cosine wave of 

frequency . then the modulation index is a time function 

M.cos on The expression for the time deviation of the 

leading pulse edge becomes: 

t l+ax)CR = - — log [1 — MK. cos(oo,-t )| (4.2.5) 

Substituting equations 4,2,3,, 4,2.4, and 4,2, 5, in 

equation 4,1,1., gives the following expression for the frequency
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spectrum of a single-edge pulse-length modulated wavetrain 

of 2N +1 pulses where the sampling waveform is produced 

by an operational integrator having finite gain, 

so 

sin(v+h)ohk | * 

F(t) 5 Fans cs - eq] jo(t- z)| % 

exglio(t + +. —(lra)CR lolt-nxcoe(a,)) | des (4.2.6) 

The limit of equation 4, 2,6. as N tends to infinity will not be 

derived here since the limiting process of similar expressions 

(4.9, 56) is considered in detail elsewhere Following the methods 

given in references 49 and56, the limit of equation 4,2, 6, is: 

exp] jpa(t+ +({+eX)CR slog [\- M.K.cos @.t)) (4.2.7) 

where ps = angular repetition frequency of the pulse train, 

(S79. 
Making use of the expansion 

so 

  log(1* +S Poets. cos8) = 2 log(r) —-2 ys cosin8) (4.2.8) 
(s 
(= 

n= 1 

s 
for eo
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the frequency spectrum given by equation 4, 2,7, may be 

rewritten as: 

rsa) th eelipett-$)] + Ss 
exp] jpr(t + < -Yk, cos(n,t))| (4.2.9) 

where 

(4.2.1 01) k= —(I+«)CR. log 

k= (ajc a lle | (4.2.10) 

It is shown in Appendix 4 that manipulation of equation 4, 2.9, 

in the Re form is very complex, In order to ease the 

problem somewhat, the assumption is made that the non- 

linearity of the sampling waveform is such that an adequate 

representation is obtained by taking only the first three terms 

containing harmonics of the modulation frequency. Therefore 

equation 4,2.9. becomes:
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vs Lifebe- BI 
pase 

exp jpa(t + ws : k, cos (next) : (4.2.11) 

The rearrangement of equation 4, 2,1., into a useful form is 

considered in detail in Appendix 4, and only the resultis 

quoted here, 

F(t) = ae k —k,cos(w,t) -k, .cos(2a,t) - k,cos(30,t )| = 

sin|(posfe-+2e +3q| oft + po -k)-(eofeg] (4.2.12) 

Thus the frequency spectrum consists of a constant term 

= (T, - ko) and components at the modulation frequency 

e 
and its harmonics, Components are also present at all the 

harmonics Pw, of the repetition frequency plus sidebands
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pw + (e+ 2f+ 3gw . 
c m 

The amplitude of the components at the modulation 

frequency and its harmonics are not linearly related to the 

modulation index as can be seen from equation 4,2,10(b). Fig. 

4,2,2. shows the peak amplitude of the modulation frequency 
< k 

‘ 

component = ; cos(w_t} plotted as a function of the normalised 

time constant a and the modulation index M. It 
(1 +x)CR . 

will be noted that for values of c less than 0,1, « 

(1 +«)CR 
the modulation frequency component is very nearly equal to io 

2 

The second and third harmonic distortion factors, DF, 

and DF, respectively, are defined as; 
2 

bee (4.2.13) 

DF, (4.2.14) 

Subsituting equation 4, 2,10(b) in equations 4, 2,13. and 4,2, 14 

oF ie {lan | (4.2.15) 

gives: 

oe (atm Mel} es 
Fig, 4,2.3. shows the harmonic distortion factors DF, and 

DF, as functions of the normalised time constant r¢ me 

(1 +%)CR
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Fig.4.2.2. Amplitude of fundamental. component for single- 

edge modulation system with finite gain integrator.
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Fig.4.2.3. Harmonic distortion in single-edge modulation 

system with finite integrator gain.
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and the modulation index M . 

In order to present graphs of the amplitudes of the components 

at the repetition frequency and the sideband frequencies, it is 

necessary to choose a reference level, The most obvious one 

is the amplitude of the modulation frequency component at full 

modulation, However, for some of the system imperfections 

considered in the static analysis section, the results are not 

valid at full modulation, Since these results are required for 

the spectrum analyses, it is convenient to define a reference 

level which can be used as a basis for presenting graphical 

results for all the spectrum analyses, For this reason, the 

k 

amplitude of the modulation frequency component = ,.c08 (oY) 

is chosen as the reference level. Fig. 4, 2. 4(a), (b) © and (c) 

shows the relative amplitudes of the repetition frequency components 

and the sideband components as function of the normalised time 

¥ 
c 

(1 +a)CR 

of normalised time constant less than 0,1, the finite integrator 

constant and the modulation index M. For values 

gain has negligible effect on the amplitude of the components, 

T 
S . 

‘However, for T+a)CR greater than 0,1, the effect on the 

higher order sideband components is quite marked,
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Fig.4.2.4(a). Amplitude of components at the repetition 

frequency and sidebands for single-edge modulation 

system with finite gain integrator.
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4,2,.2. Double-edge Modulation 
  

It is shown in section 3,1,2. (equations3,1,33, and 

3.1.34.) that the positions of the leading and trailing edges of 

the pulses, t, andt, respectively, in a double-edge modulation 

    

1 2 
systern with finite integrator gain are given by the expressions; 

t, _(lesdeR fy af of Sh (\- mx) Tse Pe EY expt cal t log {I- MK (4.2.1 8t0)) 

fs 4 WesdeBfiogt [1a exp (Geajen)|+og(I+k)| (4.2 .19(b)) 

| exp | 
e. 4 : (4.2.19) 

expla ajew) 
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Fig.4.2.5. Double-edge pulse~-length modulated wavetrain. 

From fig. 4,2.5., equation 4, 2,18(a), and equation 4, 2, 18(b), 

the time deviations ta and tae of the leading and trailing 

pulse edges respectively, are:
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Lie oe aay 

to SE |, (\- mK) 
eee 

tae a te ce 

- — (tealeR 
+ T log (I+ mk} 

  

(4. 

(4. 

If the modulating input to the system is a cosine wave, 

the modulation index is a time function M.cos (wt). 

2 O(0)) 

.20(b)) 

.21(0)) 

.2.1(b)) 

.22(0)) 

.22(b)) 

then 

The 

expressions for the time deviations of the leading and trailing 

pulse edges become: 

Ie = (I+ x)CR log i M.K cos(.t) | 

Tiec(ea)}cr log [t+ MK cos (wt) 

(4.2.23] 

(4.2.24)



(173) 

Substituting equations 4,2, 22., 4,2.23., and 4, 2, 24. 

in equation 4,1.1. gives the following expression for the 

frequency spectrum of a double-edge pulse-length modulated 

wavetrain of 2N+ 1 pulses, where the sampling waveform is 

produced by a finite gain integrator, 

; wr) 

geben | 1 
Ftt)= a] sin(@s) je 

~So 2 
  

{ene (t + - + (1+2) CR Jog/ I- M.k.cos(w,t}] ) 

exjo(t “ - +(1ea)CR. log[ 1+ nceos(et))] fs (4.2.25) 

The limit of equation 4, 2,25, as N tends to infinity will not 

be derived here since the limiting process for similar expres- 

sions is considered in detail in the liscatre Following 

the methods given in references 49 and 56the limit of equation 

4,2. 25. iss 

| jen jo pelt + 7 +(14a)CR.Log [| — MK. cosas} | — 

ep jpalt = + +(I+a)CR. log [1+ MK. cos e41)]| (4.2.26) 

2 
where oe a , the angular repetition frequency of the pulse 

¢ 

train,
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(57) 
Making use of the expansion : es 

log (P+ s+ 2rs | = 2 lols) -2) (+ yessee) (4.2.27) 

for i <4 

the frequency spectrum given by equation 4, 2,26, may be 

: 

rewritten as: 

rots) Herlirake $ Lheotos] 
expl jpra(t ~ i -Yes ky-cos(ne,t)} |} (4.2.28) 

h where Lm)? 

macn (ie [ba Pte 
It is shown in Appendix 5 that manipulation of equation 4, 2, 28, in the 

ks ~(It«)CR. log (4.2.2910)) 

general form is extremely difficult.. In order to ease the problem, 

the assumption is made that the non-linearity of the sampling 

waveform is such that an adequate representation is obtained 

by taking only the first three terms containing harmonics of the 

modulation frequency, Therefore equation 4, 2,28, becomes:
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E(t) ine} YS fefipalt- £ 7 cos(nw ‘))] 

ee azo 

-exe| jpee| 7 -) aL ka esho,) | (4.2.30) 

The rearrangement of equation 4, 2, 30 into a useful form is 

considered in detail in Appendix 5, and only the result is 
-- 

quoted here; 

F(t)* ve # cos(s,t) Bs cos(3.w,t) + 

+) 4 2a) (peo \) Jy (peok,) x 

=I esFig 

sin|F (p-e-g]] cos] (par[er2t+3g] Jt pake-FF | Te) 

where e, f and g are integer variables, and the summation 

involving e, f and gis over all positive and negative combin- 

ations of the integer variables, 

The constant term ($), in the spectrum, arises from 

the manner in which the pulse train is specified, Ifthe pulse 

train had been specified as having an amplitude of +1 instead 

of 0 and 1, then the constant term would be zero, Itis of 

interest to note that only odd harmonics of the modulation 

frequency are present in the frequency spectrum, Components
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are also present at all the harmonics Pw. of the repetition 

frequency, plus sideband components at pw (e+ 2f + 3g)u 

The sidebands of most interest in a pulse-length modulation 

system for use as an amplifier are the lower sidebands of the 

repetition frequency (i.e. p=1). Now, asa result of the 

Ee sin - (p - e - g), sidebands of the repetition frequency 

only exist when (e + g) is an even number, For even values of 

(e + g), the only sidebands present are those corresponding to 

even harmonics of the modulation frequency (i.e. a au 

OW: - ay ie "Ch | ete, 
c m c m 

The amplitudes of the components at the modulation 

frequency and its harmonics are not linearly related to the 

modulation index, as can be seen from equations 4, 2. 29(b). 

and 4,2,31, The amplitude of the modulation frequency component 
k - 

—z is shown in fig. 4.2.6. as a function of the modulation index 
E 

c 

T 
c 

(1 +0)CR . The diagram and the normalised time constant 

shows that, even when the normalised time constant is as large 

as 1.0, the amplitude of the fundamental component is still 

very close to the ideal value of > . 

The second harmonic distortion is zero since no second 

harmonic term exists in the frequency spectrum, The third 

harmonic distortion factor DF, is defined as: 

ks 
Rha aa (4.2.32) 

{
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Substituting equations 3, 2, 29(b), in equation 3, 2,32. gives: 

mite} aa 
Fig, 4,2.7, shows the third harmonic distortion factor DF, 

£ 
plotted as a function of the normalised time constant ¢ 

(1 +a)CR 

and the modulation index M, 
\ 

Figs. 4,2. 8(a). and (b) show the relative amplitudes of 

the repetition frequency component and the sideband components, 

the reference level is the amplitude of the modulation frequency 
k 

component nh cos (wt). The reasons for choosing this 
z 

particular reférence level are discussed in section 4,2.1. 

The effect of the finite integrator gain is most marked on the 

higher order sidebands (i.e. w - 6y ,w - 8w ). For 
é Mee c m 

values of normalised time constant less than 0.1, the effect 

is negligible, ‘but for values greater than 1.0, a significant 

increase in the level of the sidebands is produced, 

Numerical evaluation of the various sideband components 

from equation 4, 2,31, entails a cansiderable amount of comput- 

ation since there are a large number of combinations of e, f 

and g which give rise to terms that make a significant contri- 

bution to a particular sideband component, All of these contri- 

butions must be added inthe correct phase in order to calculate 

the amplitude of the particular sideband, The problems involved 

are discussed in more detail in Appendix 5.
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4.2.8. Conclusions 

Expressions have been derived for the frequency 

spectra of the outputs of pulse-length modulation systems 

which utilise finite gain operational integrators, The spectrum 

of the output of the single-edge modulation system contains 

a component at the modulation frequency and components at 

harmonics of the modulation frequency, The component at 

the modulation frequency increases towards the value of O, 25 

ie 
Cc 

(1 +~)CR is reduced, as the normalised time constant 

The harmonic distortion components decrease with decreasing 
= 

€ 
values of (1 +0)CR ' Terms also exist at all harmonics pw, 

of the pulse repetition frequency, together with sidebands of _ 

the form Pw. ts, nw associated with each harmonic, Itis 

shown that for values of normalised time constant less than 

0,1, the finite integrator gain has negligible effect on the 

amplitude of the sideband components, 

The spectrum for the double-edge modulation system 

contains a component at the modulation frequency and com- 

ponents at only odd harmonics of the modulation frequency. 

The spectrum also contains terms at all harmonics Pw. of 

the pulse repetition frequency, plus sidebands of the form 

Pw. es nw From the point of view of distortion, the most 

important sideband components are the lower sidebands of 

the repetition frequency (i.e. wl 0 For double-edge 

modulation these components only exist when n is even, 

Comparison of'the results of the analysis of the single-
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edge modulation system and the results for the double- edge 

modulation system shows that the harmonic distortion and 

sideband components are significantly smaller for double- edge 

modulation, Adding to this the fact that not all the harmonic 

distortion and sideband components are present with double- 

edge modulation, it can be seen that double-edge modulation 

is inherently superior to single-edge modulation,
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4.3. Distortion due to Finite Input and Output Resistance of 

the Integrator Amplifier 
  

4,3.1. Single-edge Modulation 
  

It is shown in section 3.2.1, (equation 3,2, 9.) that 

the position t, of the leading edge of the pulse in a single- 
1 

edge modulation system, with finite values of amplifier input 

and output resistance, is given by the expression: 

tea Bfletfl-eeElfetal-me)} 
where ( fee 

14+ A)C Tas CR, (4.3.2) 
tt Re, 

an 

peel SBC 3 
  | ex(=5) 

Comparing the above expression for t, with the corresponding 
1 

one for a system with infinite amplifier input resistance and 

zero output resistance (equation 4, 2,1(a),) shows that the 

effect of the finite resistances is simply to modify the normal- 
x - 

: : c c 
ised time constant trom —_..... to. As a result 

(1 +&)CR TS 

of this similarity, the expression for the frequency spectrum 

can be written down by inspection of equations 4,2,12,, 4.2. 10(a) 

and (b) of section 4, 2,1.
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F(t) ® + [T.-k,-k,cos(o,t) —k,cos(2e,t) 

To log [I+ exp (3) 

wk.) J, (peck 

sin|(part[e-2F- -3g]0,) t+ po. B -k,)- (c-f-4) ll 

7 k cos(3ast) | ral 

>) x 

(4.3.4) 

(4.3.5(0) 

(4.3.5(b)) 

(4.3.5) 

Since the spectrum for the system with finite values of amplifier 

input and output resistance has the same form as the spectrum 

for the system with infinite amplifier input resistance and zero 

output resistance, figs. 4.2.2., 4.2,3., 4.2.4(a)., (b) and (c) 

may be used to determine the amplitude of the spectral components, 
v 

It is merely necessary to replace 

with the modified normalised time constant 

  Cis. 

(1 +«)CR 
in the diagrams 

- 

pe The forms 

of the diagrams of the various spectral components are discussed
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in section 4,2,.1, This discussion is valid for the system with 

finite amplifier input and output resistance, bearing in mind 

that the normalised time constant is modified by the amplifier 

resistances, 

The effects of the finite amplifier resistances on the 

normalised time constant =e are readily deduced from 

equation 4,3,2, The finite value of amplifier input resistance 

increases the value of the normalised time constant, hence 

increasing the system harmonic distortion (see fig. 4.2.3.). 

The finite value of output resistance decreases the normalised 

time constant, hence decreasing the system harmonic distortion, 

The effect of the finite resistances on the sideband components 

cannot be stated in general terms since the form of the effect 

-is dependent on the modulation index M , (see figs, 4. 2. 4(a), 

(b) and (c). )
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4,3,2,. Double -edge Modulation   

It is shown in the static analysis of a double-edge 

pulse-length modulation system with finite values of amplifier 

input and output resistance (section 3,2,2., equations 3. 2. 30, 

and 3,2,31.), that the positions of the leading and trailing 

edges of the pulses, t, andt, respectively are given by 
1 2 

the expressions: 

  

  

  

  

| ce eee : and log a+ She + log(1- MP) es, 5) 

|+ ex ate 
ere a + log(1+ Mg (4.3.7) 

", 

where : 2(1+ Re ) 

 - lL texp(Fe) (4.3.8) 
oon es 

| +exp(F=) 

T= ste oe (4.3.9) 
+ | 

-Te 
K = |- exp(F=] (4.3.10) 

| + exp (Se



It is shown in the spectrum analysis of double-edge pulse-length 

modulations systems with finite integrator gain (section 4,2, 2., 

equation 4, 2,20(a). ) that the time deviation t,, of the leading 
dl 

edge of the pulse is given by: 

ae t 
les \ 

ne 

  

M=0 

Substituting equation 4,3,6. in the above expression gives: 

eau Mes) (4.9.14) 

The time deviation tot of the pulse trailing edge is given by 

equation 4, 2, 21(a) of section 4, 2, 2, 

M=0   Ck Oe 

Therefore, from equation Oo 9. te 3 

tat ne Te ( o + log I+ Mek (4.3.12) 

Equation 4, 2, 22(a) (section 4, 2,2,) expresses the unmodulated 

pulse length as; 

y= + | —t 
. 2 M=0 'IM=o0 

Substituting equations 4,3,6. and 4,3.7, in the above expression 

gives; 

ae 7 ee (4.3.13) 
s 

Comparison of equations 4,3,1]., 4.3.12., and 4,3.13., 

with the corresponding expressions for the double-edge modu-
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lation system with infinite amplifier input resistance and 

zero output resistance (equations4. 2. 20(b)., 4.2.21(b). and 

4,2.22(b), section 4.2.2.) shows that the expressions are 

identicalin form. The effect of the finite resistances is to 

. 
: : : Cc 

o> the normalised time constant from (1+a)CR to 

Re 
a and to modify the modulation index from M to Mg. 

e 

Asa result of this similarity, the frequency spectrum may 

be written down by inspection of equation 4, 2.31. (section 4, 2, 2.) 

for the spectrum of a system with infinite amplifier input 

resistance and zero output resistance. Therefore: 

F(t) = + _ ® cos(o,t) - ts cos(3.0,t) + 

/ 

2% cb tele ED tp om rok a7 | Ge ese 
a8 

sin[E (e- Fs) sree ar 3g] Jt “rok F (4.3.14) 

(4.3.15) 

kot rr ~ Nae) - | (4.3. 15(b)) 

The above expression for the frequency spectrum is an 

approximation. The reasons for deriving an approximate
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expression are discussed in section 4.2,2. Since the finite 

amplifier resistances simply modify the normalised time 

constant and the modulation index, the various components 

in the frequency spectrum can be evaluated from figs. 4.2.6., 

4.2.7., 4.2.8(a). and (b) for the system with infinite ampli- 

fier input resistance and zero output resistance. It is merely 

necessary to replace the system parameters a 
-+- (1 + «)CR - 

and M, in the diagrams, with the modified parameters = 
e 

and M¢ respectively. The forms of the diagrams of the 

various spectral components are discussed in section 4, 2. 2., 

and this discussion is valid for the system with finite values 

of amplifier input and output resistance, bearing in mind that 

the system parameters are modified by the amplifier resistances, 

A further point which must be considered is that the expressions 

derived, in the static analysis section, for the position of the 

leading and trailing edges of the pulse are not valid for all 

values of modulation index. Fig, 3.2.11. of section 3. 2. 2. 

shows the maximum value of the modulation index for which 

the analytical expressions for the positions of the pulse edges 

are valid. This maximum value of the modulation index also 

applies to the spectrum analysis since the spectrum analysis 

has been derived from the results of the static analysis. 

The modulation index modifying factor ¢ may be 

evaluated from fig. 3.2.9. of the static analysis section 

(section 3.2.2.). Interpretation of fig. 3.2.9. is facilitated 

by making reference to equations 3.2.39, and 3.2.40. (section 

3.2.2.) which express the parameters 7 and a 
xT. 4 e
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directly in terms of the system parameters. | 

  

CRew | a 4.3.16 

aT. (lea), ( ) 
Se ct 

1+ ”R, 

gga a de el (4.3.17) 
7 CRE UVES) R. 

ei § 
I+ ?R, R 

The factor ¢ increases with increasing values of amplifier 

output resistance Ro thus increasing the effective modulation 

index M¢ and the system harmonic distortion (see fig. 4.2.7., 

section 4,2.2.). However, the output resistance decreases 

the normalised time constant ‘a which leads to a decrease 

Te 
in harmonic distortion. It is not possible to say, in general 

terms, what overall effect the output resistance has, since this 

depends on the other system parameters. However, fig. 3.2.9. 

(section 3.2.2.) shows that relatively large values of amplifier 

output resistance can be tolerated without making ¢ significantly 

greater than unity. 

The finite value of amplifier input resistance increases 

the normalised time constant oe and hence increases the 

Te 

system harmonic distortion. The second effect of the input 

resistance is to increase the value of the modulation index 

modifying factor ¢ which also leads to an increase in harmonic 

distortion. 

Due to the manner in which the various parameters 

interact, the overall effect of the finite amplifier resistances 

on the sideband frequency components cannot be stated in
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general terms. When designing a system it is therefore 

necessary to examine the effect of the resistances for the 

particular values of the other system parameters that are 

to be used in the design.
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4.3.3. Conclusions 

The spectra of pulse- length modulated wavetrains, 

produced by systems with finite values of amplifier input 

resistance, output resistance and gain, have been derived in 

terms of the spectra for systems with ideal values of amplifier 

input and output resistance. The effect of the amplifier input 

and output resistance on the overall system performance cannot 

be stated in general terms since the nature of the effect depends 

on the actual values of the system parameters. The most 

striking feature of the Peace is that a relatively large value 

of output resistance can be tolerated without producing any 

significant effect on the system performance, In the design 

of a system it would seem, from the analytical results, that 

amplifier output resistance is not a parameter which will give 

rise to practical problems. If the effect of the amplifier 

output resistance is negligible then the amplifier input resistance 

simply reduces the effective integrator time constant from 

(1+a)CR to OO SIEN, . With the aid of the analytical 
. * 1+ /R, 

results, the choice of values of the parameters to give a 

specified level of harmonic and sideband distortion is a 

straightforward matter,
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4,4. Generalised Spectrum Analysis of Non-linear Pulse- 

Length Modulation 

The frequency spectrum of 2N +1 length- 

modulated pulses is given by equation 4.1.1. of section 4,1, 

In a linear system, the time deviations of the pulse edges 

are linearly related to the modulating signal and the analysis 

TLS : 
toe) y In a non-linear system, however, is straightforward 

the time deviations will not be directly proportional to the 

modulating signal. It is the objective of this section to 

develop a generalised spectrum analysis for non-linear systems. 

For all the cases analysed in the static analysis section, 

it is shown that the positions of the pulse edges can be represent- 

ed by power series in terms of the modulation index M. It 

will be assumed that, for any non-linear pulse-length modulation 

system, the positions of the leading and trailing pulses edges, 

t, andt, respectively, can be represented by the power series: 1 2 

i Ke ee Mh. (4.4.1) 

ne Bae met acs) 
. n=) 

The signs of the coefficients, a and Pw are defined so 

M 

that the pulse-length increases for positive values of modulation 

index M. From fig, 4,4.1., equation 4.4,1., and equation 

4,4,2., the time deviations of the pulse edges are:
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/ 

tar t tj 
—_ = er aor ie 4.4 - 3(9) 

Mg & M=O0 Me ( 

t es | a az = yee (4.4.3(6)) 

where be is the time deviation of the pulse leading edge. 

c
e
 

a.
 rv c
e
 

a 

A 

we . ) Aart (4.4.48) 

where tqdt is the time deviation of the pulse trailing edge. 

(4.4.4(0)) 
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The unmodulated pulse length T> is: 

ee = te oe ae 

Te s Te |m=o Te|m=o ; (4.4.5) 

Te —_ — ae Bo- X, (4.4.5) 

If the system modulating input is a cosine wave, then the 

modulation index is a time function Mcos (w 1), and the 

expressions for the time deviations of the pulse edges 

become; 

ka 
ae 

i} ee M cos’ (Wnt) (4.4.6) 
n=) 

c
e
 

+ | 4 

a> YBa cos'(w,,t) _ (4.4.7) 

Substituting equations 4.4.5., 4,4.4., and 4.4.7, in 

| 

equation 4,1.1. (section 4.1.) gives the following expression 

for the frequency spectrum of 2N + 1 pulses whose length 

is modulated in a non-linear manner, 

  

ait. 
F(t = fe ee a 

“) aS ho Stier) aly 

exp(joft+ = +7 eM M cos ety t)])- 

oo 

epleft-E TE ameet et} es) 

The limit of equation 4,4.8., as N tends to infinity, will not 

be derived here since the limiting process for similar
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expressions is considered in detail in the iesciure foes ) 

Following the methods of references 49 and 56 the limit of 

equation 4, 4,8. is: 

co 

rth) * {edie (t- # on A eo (ot )] _ 
p=-°2 | 

explipe(t-E TY ar eor'o.t))] | cats 

2 
yo 7 = , the angular pulse repetition frequency. 

S 

One possible approach to the problem of obtaining a 

useful expression from equation 4, 4.9. is to convert the 

power series in terms of M cos" (wo 4) into a Fourier 

series of the form Kk. cos (nwt). . This is the procedure 

that is used in section 4.2. except that the Fourier seriesis 

obtained directly from the closed form of the expressions for 

the time-deviations of the pulse edges rather than from the 

power series, This approach to the problem leads to expres- 

sions which require a considerable amount of computation in 

order to evaluate the amplitudes of the various components. 

This is because the expression for the spectrum contains terms 

of the form: 

so 

ye JCA) J, (A,)..-J,(A,) cos| put re ate #(2,F,---n)] 
e,f.-.n 
=- so 

(4.4.10)
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The major problem with this form of analysis is that there 

are a large number of combinations of the integers’ e, zt 

«sees nN which give rise to terms making a significant 

contribution to a particular sideband component. For each 

combination of the integers, the product of the Bessel 

functions must be evaluated and the resulting contributions 

to the sideband added together with account taken of the phase 

angle ¢(e,f, ....n). In fact, equation 4,4,10. is simplified 

since, in the general form, there are an infinite number of 

Bessel function terms rather than the finite number, Je 

Je. epedine Jn This comment leads to a further problem - 

that of deciding how many of the Bessel function terms should 

be considered, and also deciding what limits should be taken 

for the integers 6. sees n if no significant contributions 

to a particular sideband are to be neglected. 

Asa result of the compexity of the computational problem 

involved in the Bessel function analysis, it is worthwhile con- 

sidering a different approach. Equation 4.4.9., for the 

spectrum, may be written in terms of only positive values of 

the integer p; the term corresponding to p = 0 being dis- 

regarded temporarily. 

co oo 

F(t) re) fe | inf pea (t+ +1 LY cos" (o,t)) = 

\ n=\ 

oo 

sin[pa(t-% —T. Te M cos wt) (4.4.11) 
n=l
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Noting that ve a , equation 4,4,11. may be rewritten as; 
c 

FUER {sin [pa(t +E) cos[pam)_ a Nec! (Coma) 

p=s 

cos| pex(t- 1) sin] pq yar Gq (wt) | see 

sin [pa(t- =) espa) Bs Mos (ot) | — 

cos [pox (t- 2) infer) Bi M cos (wt) I (4.4.1 2) 

The trigonometric expressions containing power series 

f n n i 
intermsof M = cos (w 4) may be rewritten as further 

power series as shown below; 

9° oo 

Cos pan - os IM’ cos (nt) r a A, cos’ (wt) (4.4.1 3) 
nel k=o 

cosl ptr) A, nit cos(,t) |= y B cos (wt) (4.4.1 30) 
n=\ k=O 

costo t) |= os (wt 4.13 sin[par) a M cos (Ww, )| mos s (wt) (4.4.13) 

n= 
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sin fen) B,. M cos. et) dD. a (wt) : (4 ya 

Now the right-hand sides of equations 4, 4,13(a), (b), (c) and 

(d) may be expanded as Fourier series to give: 

cos [parr ) a,fteod (ot) | s nV Er cos(nw t) (4 < 

n=0 

cos pen) A, M cos > (wo, t) ) -4 one rt t) (4.4. 

sin per) M cos 5 (W. t) Fee, cos (neo at) (4.4. 

sin pam) A, M'cos («, t) ) ee y 4 Cos (nes =) (4.4. 

The constant terms are defined in the manner shown for 

convenience in later equations. 

1314) 

| A(o)] 

1 4(»)) 

1 4(e)) 

14) 

Equations 4,4.14(a), (b), (c) and (d) may be substituted 

in equation 4,4,12. and the resulting expression rearranged 

to give:
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AY LY [le sin[(p-nen}t ef] (4.4.15) 

  

    

p=! ns-eo 

where 

v= (E,-F,} cos (P| (HH - G. | sin PR] (4.4. 1610) 

‘= (H+ G,) cos (PS! *)+(E + F.)sin ) (4.4. 16(b)) 

¢ = i. 4 | (4.4. 16(¢)) 

Eee Ub eb ee a Gon eon (4.4. 164)) 

The term corresponding to p = 0 has been disregarded 

in the expressions for the frequency spectrum from equation 

4.4.10. onwards. Since equation 4,4,9. for the complete 

frequency spectrum is indeterminate when p = 0, itis 

necessary to apply L'Hopital's rule for the limit ofa 

quotient, This gives: 

co 

oF +) (a,+6,) 0 cos (w t) (4.4.17) 
4a n= 

F(t) 

  

we 
The power seriesinterms of M cos, (wt) may be 

expressed as a Fourier series:
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F(t}| = = + *s + ) kK cos(veo,t) (4.4.18) 
p=o v=)   

Therefore, from equations 4,4,15, and 4,4,18. the complete 

frequency spectrum for non-linear pulse-length modulation is: 

cos Ke +) K,.cos(ve,t) + 

yve=l : ‘ 

os > {fe i) sin] (patne,)t ms A ]| (4.4.19) 

The derivation of the expressions for the coefficients EY By 

Gy He and KL is considered in detail in Appendix 6, and 

only the results are given here. 

= = 
Pes A : 4.4,20(a) 

° ou ae | : ( ) 
  

Ee A a hey (4-4 -20(6)) 

| 2u | a 

E. » Awe i ee 4 (4.4 .20(c)) 
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where: 

’ 5 k-2 

as amp) Se (rq ee eae. 
{= 9 r=qrl 

A= 

A =0 

k (2 iy keg V j(kor} = Tp - r-q)(k-r 
CTI REN Sue i C, era: 

ss.2 r=gtl 

C =0 
° 

C=Mpara, 
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.25(¢)) 

2 6(@)) 

. 2 6(b)) 

.26(c)) 

.2 7(0)) 

.27(b)) 

.27(c))



  K,= (8, 1M ar Ee 7 (4.4.28(a)) 

  

  

ei = aw-l \ ne 

Sod a (o + A...) M gewek ee ; (4.4.28(b)) 

= aw | cS . 

k= » (Pe M yen be . (4.4.21) 

At first sight, the expressions developed for the spectrum 

appear formidable and would seem to have little advantage over 

_ the Bessel function type of analysis. However there is an 

important point in favour of this series analysis. Consider the 

components at the pulse repetition frequency Pw, and the 

sideband frequencies (po, r= nw). The amplitude of each 

sideband component is specified by only one term, namely 

( be + ae ). Equations 4,4, 16(a), and (b) express 

2 2 
ix + f ) in terms of the coefficients E_, F_,G 

n n oon he 

and He Since these coefficients are defined by convergent 

series (equations 4,4. 20. 4.4,21., 4,4. 22. and 4,4, 23 

respectively) the amplitude of the sideband components can be 

calculated to any required accuracy by taking sufficient terms 

in the series, Thus, the series analysis overcomes the major 

disadvantage of the Bessel function type of analysis (i.e. that 

of deciding how many of the Bessel function terms must be 

considered, and the limits that must be placed on the order of 

the Bessel functions).
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Although the series analysis presented may not be the 

best approach to the problem of analysing non-linear pulse- 

length modulation, it does demonstrate that methods can be 

developed which are superior to the Bessel function analysis, 

The Bessel function analysis is an extension of the methods 

used for analysis of linear pulse-length modulation, andis 

not really adequate. It is possible that the series analysis 

could be simplified since the expressions for the various 

coefficients have the same general form. A further point 

which requires investigation is the implicit assumption that 

‘the series for the coefficients, Ey’ By G.. and Hy are 

convergent, In all the practical problems for which the 

analysis has been used, the series have converged rapidly. 

Figs. A6.1 and A6, 2. in Appendix 6 shows the flow chart 

which was used as a basis for a computer programme to 

evaluate the spectral components.
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4.5. Distortion due to Finite Bandwidth of the Integrator 

Amplifier 

  

4.5.1. Single-edge Modulation 

It is shown in the static analysis of a single-edge 

pulse-length modulation system with finite amplifier bandwidth 

that the position t, of the pulse leading-edge can be represented 
1 

by the following power series: 

Ser at | (4.5.1) 

Analytical expressions for the coefficients a, are given in 

section 3.3.1. (equations 3.3.18., 3.3.19., and 3,3. 20.). 

The coefficients are also shown in graphical form in figs. 

3.3.3(a)., (b), (c) and (d). It is also shown in the static analysis 

that the trailing-edge of the pulses occur at periodic intervals 

of Tew 
c 

te 7 
ec 

= | i. (4.5.2) 

Equatign 4.5.1. for the position of the pulse leading-edge 

is in the form required for the generalised spectrum analysis. 

Comparison of equations 4.5.1. and 4,5, 2. with equations 4,4.1. 

and 4, 4,2. of section 4.4. showsthat in order to use the generalised 

spectrum analysis, the following substitutions must be made in 

the expressions for the spectrum; 

a (4.5. 3(a)) 

oO =—-O (4.5.3()]
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B,= | (4.5.30)) 

B=? (4.5 .31a)) 

Due to the number of variables involved, It 1s.nov 

practical to present graphs of the spectral components for 

all values of modulation index M. Thus, it is necessary 

to select a single value of modulation index for which the 

components of the frequency spectrum may be evaluated. 

Since the distortion is likely to be greatest for full modulation 

(i; @: Ms 1) this would be the most useful value. However, 

the static analysis for the double-edge modulation system 

with finite amplifier bandwidth is not valid for M= 1. In 

order to compare the single-edge modulation and double- edge 

modulation systems, it is convenient if the spectra for the 

two systems are evaluated for the same value of modulation 

index. For this reason a value of M= 0.5isused. The 

frequency spectrum of the single-edge modulation system 

with finite bandwidth was evaluated from the generalised 

spectrum analysis by means of a digital computer, 

The amplitudes of the various components of the spectrum 

may be plotted as functions-of the parameters 7. and e6 ; 

The normalised time constant Ty is given by equation 

3.3.19(a). of the static analysis section.
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— | 
  = (4.5.4(0)) 

“ (f+a)CR 

and the factor by equation 3, 3.1 9(c) 

2 

oe ara pe Te Bl Beles (4.5.41) 

As was discussed in section 3.3.1., care is required in 

interpreting the parameter + ¢ since it has a minimum value 

which is a function of the integrator gain «. This minimum 

value occurs when: 

Jo 
C L+ x (4.5.5(0)) 

and the magnitude of the term e8 is given by: 

Y= & lien) (4.5 .5(b)) 
min 

Thus, for a particular value of %, as the term GR is 

increased, so the term ee decreases to the minimum value 

and then increases again. 

Fig. 4.5.1. shows the amplitude of the modulation frequency 

component as a function of T, and v . The amplitude of the 

component approaches the ideal value of 0,25 as the normalised 

time constant T, is reduced, 0.25 is the ideal value since 

the amplitude of the pulse train was defined as unity, and the 

modulation indexis 0.5. It can be seen that the effect of
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Fig.4.5.1. Amplitude of modulation frequency component 

for single-edge modulation system with finite bandwidth 

integrator amplifier.
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increasing the amplifier time constant T, is to reduce the 

amplitude of the modulation frequency component, 

Figs. 4.5.2(a). and (b) show the second, third and fourth 

; h 
harmonic distortion factors for the system. The w harmonic 

distortion factor DF is defined from the generalised spectrum 

analysis (equation 4.4.19.) as: 

Ky DF, = K. (4.5.6) 

  

As a8 is decreased, the even harmonic distortion factors (i.e, 

DF, and DF, decrease to zero and then rapidly increase again, 

However, it is not possible to make use of this effect to produce 

a low distortion system since the value of e required to produce 

zero distortion is a function of the modulation index M . That 

this is so may be seen from equation 4, 4. 28,, of the generalised 

spectrum analysis (section 4.4.), for the coefficients K of the 

modulation frequency and harmonic components, The third 

harmonic distortion factor DF, increases as the factor a is 

decreased, 

Figs. 4.5.3(a)., (b) and (c) show the amplitudes of the 

repetition frequency component and the sideband frequency 

components as functions of the normalised time constant T 

and the factor ~e . The amplitude of the repetition frequency 

component and the first sideband component both increase as 

as the factor ov is decreased. The amplitudes of the higher 

order sidebands decrease with decreasing values of + :
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Fig.4.5.2(a). Harmonic distortion in single-edge 

modulation system with finite bandwidth -:integrator- 

amplifier.
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Fig.4.5.3(a). Amplitude of repetition frequency component 

and sideband components for single-edge modulation 3; system 

with bandwidth limited integrator amplifier.
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Fig.4.5.3(b). Amplitude of sideband components for 

single-edge modulation system with bandwidth limited 

integrator amplifier.
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Fig.4.5.3(c). Amplitude of sideband components for 

single-edge modulation system with bandwidth-limited 

integrator amplifier.
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4.5.2. Double-edge Modulation 

It is shown in the static analysis of a double- 

edge pulse-length modulation system with a finite bandwidth 

integrator amplifier, (equations 3.3.42,, 3.3.43. and 3, 3, 46,) 

that the positions of the leading and trailing edges of the spe 

may be represented by. the following power series: 

-\ on" | (4.5.7) 
n=0 

Batt) coal (4.5.8) 

where ty and to are the positions of the leading and trailing 

pulse-edges respectively. The expressions for the coefficients 

al
s 

a, are given in equations 3, 3.44, and 3.3.45. of section 3,3 

The coefficients a, are also presented in graphical form in 

figs. 3.3.10(a)., (b), (c) and (d) of section 3. 3, 

Equations 4,5, 7, and 4.5.8. for the positions of the 

pulse edg@s are in the form required for the generalised 

spectrum sieliat's of section 4,4. Comparing equations 4. 5,7 

and 4,5.8. with equations 4.4.1. and 4.4, 2. of section 4, 4. 

shows that the following substitutions must be made in order 

to use the generalised spectrum analysis, 

x= &, (4.5.9()) 

oe amet (4.5.9())
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Aarts (45.910) 

Pe el a2 (4.5.9()) 

The number of variables involved makes graphical present- 

ation of the results of the spectrum analysis impractical for 

all values of modulation index. Therefore, one particular 

value of must be selected. Since it seems likely thar 

the distortion components would be greatest at full modulation, 

the ideal value for the modulation index would be unity. 

However, the analytical expressions for the coefficients a 

in the power series representation of the positions of the 

pulse edges are not valid for full modulation. The maximum 

value of modulation index for which the expression are valid 

is a function of the system parameters as shown in fig, 3.3.12. 

of the static analysis section (section 3.3.2,), For the range 

of system parameters chosen, the value of M= 0.5 ensures 

that the expressions describing the positions of the pulse 

edges are valid. Thus the various components in the frequency 

spectrum can be evaluated by means of the static analysis of 

section 4,4, The amplitudes of the spectral components can 

be presented graphically as functions of the normalised time 

constant T, (equation 4,5, 4(a).) and the factor T (equation 

4,5.4(b).). Care is required in interpreting the factor YY 

as is discussed in connection with the single-edge modulation 

system (see equations 4, 5. 5(a). and (b) ).
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Fig. 4.5.4. shows the amplitude of the modulation 

frequency component as a function of T, and sche 

the normalised time constant T, is reduced so the amplitude 

of the modulation frequency component approaches the value 

of 0.25. Since the amplitude of the pulse train is defined as 

unity, and the modulation index is 0.5, the amplitude of the 

modulation frequency component in an ideal system is 0, 25, 

The effect of increasing the amplifier time constant i is 

to reduce the amplitude of the modulation frequency component, 

bearing in mind the remarks regarding the variation of * 

with TS 

With the double-edge modulation system, no components 

exist at even harmonics of the modulation frequency, The 

reason for this may be seen from equation 4, 4, 28., of the 

generalised spectrum analysis, which expresses the amplitude 

of the modulation frequency and harmonic components in terms 
a : p n 

of the coefficients a and p 3 Since x (=4) Po 

(equations 4,5, 9(b). and (c) ), the coefficients of the even 

harmonic terms cancel out, Fig. 4.5.5, shows the third and 

fifth harmonic distortion factors as function of T, and — : 

The Bn harmonic distortion factor DF. is defined from 

equation 4.4,19. of the generalised spectrum analysis as: 

DRE (4.5.10) 

The odd harmonic distortion factors decrease as the normalised 

time constant T, is decreased, Decreasing the factor re 

increases the harmonic distortion.
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Figs, 4.5.6(a). and (b) show the amplitude of the 

repetition frequency component and the sideband frequency 

components.as functions of the parameters T, and oo at 

will be noted that with double-edge modulation, no odd order 

sidebands exist (i.e. sidebands Wy + nw» where n is odd), 

This is due to the relationship between the coefficients RB. 

and x (i.e. x = (oa B,) which define the time deviations 

of the leading and trailing edges of the pulses, The amplitude 

of the repetition frequency component increases with decreasing 

values of 1 , whilst the amplitude of the sideband component 

(w, - 20) decreases with decreasing values of oc) The 

amplitude of the sideband coniponents at is 40 o3 oO 

and On saan decrease with decreasing values of YY until 

the amplitude of the particular sideband component is zero, As 

or is further increased, so the amplitude of the component 

rapidly increases. However, it is not possible to make use of 

this effect in the design of a system with small sideband dis- 

tortion. This is because the values of the system parameters 

required to make the amplitude of a particular sideband zero, 

are functions of the modulation index, That this is so may be 

seen from the equations for the parameters in the generalised 

spectrum analysis (equations 4.4.19. to 4.4.27. of section 4. 4.).
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4.5°3>° «Conclusions 

The spectrum analyses of pulse-length modulation 

systems which utilise finite bandwidth integrator amplifiers 

have been carried out by means of the generalised spectrum 

analysis of section 4.4. The amplitudes of the spectral 

components have been presented in graphical form as a 

function of ae , the normalised time constant, and + ; 

In the spectrum for single-edge modulation, components 

exist at the modulation frequency and at harmonics of the 

modulation frequency. Terms are also present at all harmonics 

Pw, of the pulse repetition frequency, together with sidebands 

at Pw, sk nw: The spectrum for double-edge modulation 

contains a component at the modulation frequency and components 

at only even harmonics of the modulation frequency. Terms 

are also present at all the harmonics Po. of the pulse repetition 

frequency, together with sidebands po + nw? However, 

sidebands do not exist for all values of n, From the point of 

view of sideband distortion, the most important components are 

the lower order sidebands (i.e. W 7 nw ). For double- 
m 

edge modulation, these sidebands exist only when n is even. 

For both single- edge modulation and double- edge modul- 

ation, the amplitude of the harmonic distortion components 

decrease as the normalised time constant T, is decreased. 

The amplitude of the modulation frequency component approaches 

the ideal value of 0.25 as T, is reduced, The value of the 

amplifier time constant T,, that can be tolerated without 

producing a significant change in system performance isa
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function of the other system parameters, For this reason, 

a clearer indication of the effects of the finite bandwidth is 

gained by applying the analytical re sults to a practical 

example. (see section 5).
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4.6. Distortion due to Hysteresis in the Level- Detector 

Threshold Voltage 

4.6.1. Single-edge Modulation 
  

It is shown in the static analysis section (section 3,4,1.) 

that hysteresis in the level detector does not modify the positions 

of the pulse- edges provided that the effective threshold voltage 

ve - § ) is set to the value required for a non-hysteretic 

system. The only effect of the hysteresis is to impose a limit 

on the maximum negative modulation index for which the modu- 

lation process is continuous (see equation 3.4.8., section 3.4.1. hi 

Since the hysteresis of the level-detector does not affect the 

positions of the pulse-edges, the frequency spectrum of the 

modulated waveform is identical to that of a system with a 

‘non-hysteretic level-detector. Thus the spectrum analysis of 

section 4, 2.1. is valid for a single-edge pulse-length modu- 

lation system with a hysteretic level-detector,.
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4.6.2. Double-edge Modulation 
  

It is shown in the static analysis of a double-edge 

modulation system with a non-hysteretic level-detector (section 

3.4.2., equations 3.4.19. and 3.4.20.) that the positions of 

the leading and trailing edges of the pulses are given by the 

following expressions: 

tote dl Al-edggaa) shims} + 

EE oth leat etatent] (oe 
where ty and to are the positions of the pulse leading and 

trailing edges respectively. 

and eo 

eo (4.6.3) 
vet 

§ 

—\. (eooeh 
ie pl saasien] (4.6.4) 

I+ exp (eaicR 

It is shown in the spectrum analysis of a double- edge 

pulse-length modulation system with finite integrator gain 

(section 4.2.2., equation 4, 2. 20(a).), that the time deviation 

t,, of the leading edge of the pulse is given by: 
dl
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net 
M=0 

  

Substituting equation 4.6.1. in the above expression gives; 

t (14+ x)CR 
7 = = ae log(1- M$] (4.6.5) 

The time deviation tat of the pulse trailing edge is given by 

equation 4, 2. 21(a). of section 4, 2.2. 

= ie tL 

Therefore, from equation 4, 6. 2.; 

  M=0 

t l+a)CR 
Be OO fog (1+ MP) (4.6.6) 

Equation 4, 2. 22(a). (section 4. 2. 2.) expresses the unmodu- 

lated pulse length T> as: 

ag 
M=0 

eet, ‘fas, 
    

Substituting equations 4,6.1. and 4.6, 2, in the above 

expressions gives: 

ote 4.6.7 Tee (4.6.7) 
Comparison of equations 4.6.5., 4,6,6. and 4.6.7. 

with the corresponding expressions. for a double-edge 

modulation system with zero hysteresis (equations 4, 2. 20(b), 

4,2.21(b)., 4.2.22(b)., section 4,2.2.) shows that the 

expressions for the two systems are identicalin form. The
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only effect of the level-detector hysteresis is to modify the 

value of the modulation index from M to Mg. Asa result 

of this similarity, the expression for the frequency spectrum 

of the system output may be written down by inspection of 

equation 4, 2.31. (section 4.2.2.) for the spectrum of a double- 

edge modulation system with finite integrator gain and zero 

hysteresis. 

cos| (pa. e+2f +34] wt sae (4.6.8) 

| 

where LimM$ky 

k= ~(I+ x)cR log : oT 3 (ng) 

wctraee? (Se flenl- i) 
The reasons for deriving only an approximate expression for 

(4.6.9(0)) 

  

4.6.9(b)) 

e
r
r
,
 

the frequency spectrum are discussed in section 4,2,2. The 

modulation index modifying factor ¢ is shown as a function 

of the system parameters in fig. 3.4.5. of the static analysis
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(section 3,4.2.), The factor ¢ decreases with increasing 

values of level-detector hysteresis, which means that the 

effective modulation index M¢ decreases as the hysteresis: 

is increased. Since the effect of the hysteresis is simply to 

modify the effective modulation index, the discussion of the 

results of the spectrum analysis for the non-hysteretic 

system (section 4, 2.2.) is equally valid for the hysteretic 

system, and will not be repeated here.
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4.6.3. Conclusions 

Expressions have been derived for the spectra of 

the outputs of pulse-length modulation systems utilising 

hysteretic level-detectors. The equations for the frequency 

spectra are expressed in terms of the spectra of equivalent 

systems with non-hysteretic level-detectors. 

For the single-edge modulation system it is shown, 

from the results of the static analysis, that if the effective 

threshold A - § is set to the value required for a non- 

hysteretic system, then the hysteresis has no effect on the 

frequency spectrum, Thus the frequency spectrum of a 

single-edge modulation system, with a hysteretic level- 

“detector and finite integrator gain, is identical to that ofa 

non-hysteretic system with finite integrator gain. However, 

the hysteresis sets a limit on the maximum negative value of 

modulation index for which the modulation process is con- 
/ 

tinuous. 

The effect of the hysteresis in the double-edge modulation 

system is simply to modify the effective modulation index, 

Therefore the form of the spectrum is identical to that of a 

non-hysteretic system. However, the reduction of the 

effective value of modulation index means that the maximum 

value of the modulation frequency component will be reduced. 

Under conditions of full modulation (i.e. M= 1), the system 

output will be identical to the output. of a non-hysteretic system 

with a modulation index of M ¢. 

oo a
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ae Discussion of the Results of the Spectrum Analyses 
  

The frequency spectra for the various single-edge 

modulation systems analysed all have the same general form. 

The spectra consist of a constant term and a modulation 

frequency component, plus terms at harmonics of the 

modulation frequency. Components also exist at all the ‘ 

harmonics (pw) of the pulse repetition frequency, together 

with associated sideband components (pu, Ed nw). The 

terms at harmonics of the modulation frequency constitute 

harmonic distortion, and are due to the non-linearity of the 

sampling waveform. In general, the system imperfections 

(i.e. finite integrator gain, etc.) are found to have ealy a 

relatively small effect on the amplitude of the sideband com- 

ponents of the frequency spectrum, 

The spectra for the double-edge modulation avetenie 

have a number of important differences compared with the 

spectra for single-edge modulation systems. The first of 

these differences is that components exist at only odd 

harmonics of the modulation frequency, and are of smaller 

amplitude than the corresponding harmonics for the single- 

edge modulation systems. The fact that only odd harmonics 

exist in the double-edge modulation spectrum might have been 

anticipated from the static analyses which show that the d.c. 

transfer functions of the double-edge modulation systems are 

symmetrical about the origin. The second difference in the 

frequency spectra is that sideband components (0, - nw) 

are present only for even values of the integer n, and the 

components are smaller than the corresponding ones for
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single-edge modulation. 

As a result of these differences in the spectra for the 

two types of modulation, it can be seen that double- edge 

modulation is inherently superior to single-edge modulation 

as a technique for high power amplification.
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5, Application of the analytical results to a practical system 

. Since it is difficult to make generalised comments on 

many of the analytical results, it is worthwhile considering a 

practical system as this will give a clearer insight into the effects 

of the various parameters on the system performance, 

Given below are values for the major parameters of a 

typical operational amplifier. In order to demonstrate some of 

the effects more clearly, a value of voltage gain & has been 

specified which is rather lower than that obtained from commercial 

amplifiers, 

Voltage gain "3200 

Input resistance R, = 40k 

Output resistance Ro = 200 2 

3dB bandwidth = 800 kHz 

Let the bandwidth of the system input signal be 17 kHz. 

In order to estimate the required pulse repetition frequency, the 

specification is made that no sideband components falling within 

the system passband must be greater than -60 dB with respect to 

the modulation frequency component, 

Assume initially that the system is ideal in all respects 

except that the integrator has a finite gain, Now it is shown in 

sections 4,2,1 (Figs. 4.2.4 (a), (b) and (c)) and section 4, 2, 2 

(Figs. 4.2.8 (a) and (b)) that if the normalised time constant 

i. __ is less than 0,1 then the finite integrator gain has 

(1+ &) CR 
negligible effect on the amplitude of the sideband components, 

Therefore an initial estimate of the required pulse repetition 

frequency may be made by assuming that "e is less 

tL oo) OR
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than 0.1. Figs. 4,2.4 (c) and 4, 2.8 (b) of section 4,2 show that 

the required pulse repetition frequencies Wo ares 

Oa. oa for a single-edge modulation system 
Cc 

-. > 1a. for a double-edge modulation system 

Now the highest frequency of the input signal has been specified 

as 17. kHz. Therefore: 

f > 160 kHz for single-edge modulation 

f. > 120 kHz for double-edge modulation 

W 
Cc 

20 
  where f = 

c 

A typical value for V,, the input to the integrator in Figs, 

2.1 (a) and 2.1 (b) of een is 5v, The output of the integrator 

is added to the input signal, and the sum applied to the input of the 

level detector, The accuracy required for the level detector 

threshold is obviously directly related to the peak amplitude of 

the integrator output. A typical value for the maximum output of 

a solid state operational amplifieris t5v. Having specified the 

peak integrator output, the integrator input and the gain, the 

required value of Po) may be obtained from Fig. 3.1.6 and 3.1.12 

. of section 3, 1, wae Therefore, for a peak to peak integrator 

output of 5v: 

  

“a = 1.0 for single-edge modulation 

na ; fi» 0,01 
(i: + x CR 

x 
£_ =1,0 for double-edge modulation 

CR 

. 
Cc 

; = 0,01
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The staticerror of the two systems may now be evaluated from 

fies, 9.1.4; 3.1.5, 3.1,10 and.3, 1. 11 of.section 3.1: 

Single-edge modulation 

7 = 1,88.10°° for M = 0.5 

Static error E, = 2 50. 107° for M = 0.0 

= 1.87.10°° for Me = -0.5 

a 
137.10 for M3 ..025 

Static error E 9 3 

1 67°30 oi tar = OG 

i
t
i
 

" 
ul 

Double-edge modulation 

783. 10°! for M Static error Ey = =1,0.35 

Static error E = -2, 60. 107! for M = 0.5 
2 

; Te ee : 
Since (i +x) CR* 0.1 the finite integrator gain has 

negligible effect on the amplitude of the sideband components, 

as may be seen from figs, 4.2.4 and 4. 2.8 of section 4.2. The 

harmonic distortion factors of the systems are evaluated from 

figs. 4,2.3 and 4.2.7, However, some of the distortion factors 

do not come within the range of the diagrams so that the precise 

value cannot be evaluated. 

Single-edge modulation 

Second harmonic distortion = -58 dB for M=1 

Third harmonic distortion < -90:dB. for M=1 

Double-edge modulation 

Second harmonic distortion does not exist 

Third harmonic distortion < »-120 dB. for’ M= 1
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Up to this point it has been assumed that the system is 

ideal except for the finite value of integrator gain. The effect 

of the finite values of amplifier input resistance Ri and output 

resistance Ro must now be considered, In order to evaluate the 

effect of the finite amplifier resistances on the system performance 

it is necessary to select a value for the integrator time constant 

resistance R, Now in the analyses of systems with finite values 

of amplifier input and output resistance (Section 3.2), two 
Ro R 

and eee resistance ratios occur in the equations: namely R 7 
1 

  

In an ideal system both of these ratios are zero. Therefore the 

value of R_ should be chosen so that these ratios are as small as 

possible. Since Ry = 40 kQ2 and Ro = 200 2, a reasonable value 

for R is 5kQ, From equations 3, 2,39 and 3. 2,40 (Section 3. 2) 

    

  

CRo 
the parameters and may be evaluated. 

ole 3 ys 

i bi oe 
jt CR. Ure : Ro 

oe 

CR; a a = L.-S a 

xe (i+0)’R, 
Sieg A 

[+ “R, 
r - 
oe 1431.20 ox both the single-edge and the double- edge   

e 

modulation systems. The effect of the finite output resistance on 

the normalised time constant   is negligible, The finite input 
e a 

resistance, however, does lead to a significant increase in : 

  

e 

It is shown in section 3, 2.1 that the static error in a single-edge 

modulation system with finite values of amplifier input and output
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resistance is equal to the error in a system with ideal values of 

input and output resistance and an effective normalised time 
T 

: Therefore the single-edge modulation system 

  

constant of 

error may be evaluated from figs, 3.1.4 and 3.1, 5 of section 3.1.1. 

From the diagrams it can be seen that the increase in normalised 

time constant does not lead to a significant increase in static error, 

It is shown in section 3. 2, 2 (equation 3, 2, 38) that the 

demodulated output of a double-edge modulation system with finite 

values of amplifier resistances is equal to the output of a system 

with ideal values of resistances operating with an effective 
eT 

modulation index M¢ and a normalised time constant 2 

  

e 

As a result of this, the static error Ej in the system output is 

(equation 3, 2, 38): 

E, = Vay+M¢+ M(1-¢) 

The above error expression is equivalent to the error Ey in a 

system with ideal amplifier resistances, effective modulation 

index M¢ and normalised time constant , plus an AP 
Te 

additional error term M(1-¢). From fig, 3.2.9 of section 3.2.1, 

the value of the modulation index modifying factor is ¢ = $ 002 

for the system under consideration, The term (Vay + M¢) in 

the expression for Ej may be evaluated from fig. 3.1.10, for the 

error Ej in a system with ideal amplifier resistances, by replacing 

M and —“~—— with M¢ and 
(1+) CR T¢ 

the diagram it can be seen that the modified parameters have 

  

respectively. From 

negligible effect on the term (Vay + M¢). However, the term 

M(1-¢) in the expression for Ej leads toa large increase in error 

since the term Vay + M¢ is 7.8. 10°’ for M = 0.5, while M(1-4) 

is -1.0,10°° for M = 0,5. Therefore static error By# -1,0,10 

for M = 0.5. 

3
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The system static error E9 is shown in section 3, 2, 2, 

equation 3, 2,36, to be equal to the static error Ey in a system with 

ideal values of amplifier resistances, but with a modified modulation 

index M¢ and a normalised time constant ae . Therefore error 
; e 

E9 nae be evaluated from fig. 3,1.11 by Eee one M and 

c 
  —______, in the diagram, with M¢ and 

(I #0¢):CR Té 
From the diagram it can be seen that the modified parameters have 

respectively. 

an insignificant effect on the static error, 

Thus it has been shown that, apart from the error Ey in 

the double-edge modulation system, the effect of the finite values 

of amplifier resistances may be ignoredim these particular systems. 

The input resistance Rj has more effect on the system performance 

than Rg. For this reason it may be preferable in some systems to 

reduce the value of the time constant resistance R , hence 

  

: ‘ R 
decreasing the ratio ny 

It is of interest to calculate how large the output resistance 

must be before it seriously affects the modulation index modifying 

factor ¢. From fig. 3.2.9 for the factor ¢, it can be seen that 

  

  

CRo + ‘ ; 
a value of 7 * 10 is required to bring about a change of 

e 

approximately 5% in the effective modulation index M¢. Calculation, 
GR; =k, 

from equation 3, 2,39, of the value of Ry required to make aT S| 
e 

gives the value of R, = 4.5 k®, However from fig, 3.2.11, this 

value of Rg would limit the maximum modulation index for the 

double-edge modulation system to 0,92, Even with a value of 

Ry = 4.5 k&, the effect of the output resistance on the normalised 

time constant is less than 1%. 

Figs. 3, 2.6 and 3.2.7 of section 3.2 show that the finite 

values of amplifier input and output resistance have a negligible 

effect on the peak value of the integrator output,
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The finite values of amplifier resistance do not 

significantly effect the static error Eg of the systems, Therefore 

the spectra of the system outputs will also be unaffected since the 

analyses of the frequency spectra are derived from the results of 

Te 
(1 +&) CR 

4.2.2, 4.2.3 and 4, 2,4 for the spectrum of the single- “edge 

the static analyses. Replacing   writh “Skin figs. 
Ts: 

modulation system, shows this statement to be true, The spectrum 

for the double-edge modulation system is obtained by replacing 

oe 
(1+ a) CR 

and M¢ respectively. 

  and M, in figs. 4.2.6, 4.2.7 and 4,2,8, with zs 
e@ 

It is now necessary to consider the effects of the finite 

amplifier bandwidth on the system performance, The upper 

turnover frequency of the amplifier is specified as 800 kHz so 

that the amplifier time constantis 1.25 usec. For the single-edge 

modulation system the pulse repetition frequency is 160 kHz, and 

for the double-edge modulation system it is 120 kHz. Therefore 

the period T¢. of the repetition frequency is 6,25 usec. for 

single-edge modulation and 8. 34 usec. for double-edge modulation, 

The results of the static analyses of systems utilising bandwidth 

integrator amplifiers (Section 3, 3) are presented in terms of the 

parameters Ty and ‘Y . The normalised time constant Ty is 

given by equation 3, 3.19 (a) (Section 3. 3). 

Seok | 
ae + ces | 

The factor Y is given by equation 
a Ck} te | 

{= = | os +1+% 
le 

  

N 

Therefore: oo 4h to” 
For the double-edge modulation system: Tv 2 none in 

=5-5.10° 
For the single-edge modulation T, = 0-938.10% 

system:
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The static error in the single-edge modulation system may be 

evaluated from figs, 3.3.4 and 3. 3,6 (Section 3.3.1), 

+o MD for M= 0.5 

Static error E, = 7.0.10°* for M= 0 

8: 02100" for M=-0.5 

{ Pig SE 
4 Static error E95 #=* & 

< 10 for Me +0, 6 

The static error in the doubie-edge modulation system is 

evaluated from figs, 3.3.13 and 3.3.14 (Section 3, 3. 2), 

a6. ay for M 

Static error Eg = 2.6.107" for M 

0.5 

-0.5 

Static error Ey, 

The effect of the finite amplifier bandwidth on the single- edge 

modulation system is to decrease the static error, This is mainly 

because the finite bandwidth decreases the amplitude of the 

demodulated system output when M=0, The finite bandwidth 

causes a considerable increase in the static error Ej of the 

double-edge modulation system but a negligible change in the 

static error Eo. 

The analytical results for the double-edge modulation 

system are not valid for all values of modulation index, The 

maximum value of the modulation index M (max), for which the 

analytical results are valid, is evaluated from fig, 3.3.12 (Section . 

3.3.1) The.value of M (max) obtained from the diagram is 

0.999, 

The effect of the finite amplifier bandwidth on the 

frequency spectra of the systems may be evaluated from figs. 

4.5.1 to 4.5.6 (Section 4,5), For the single-edge modulation
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system figs. 4.5.1, 4.5.2 and 4. 5,3 show that the limited 

bandwidth has negligible effect on the amplitude of the spectral 

components, the variation being less than 0. 5 dB for all 

components. It is of interest to calculate how small the amplifier 

bandwidth can be made before any significant change occurs in 

the harmonic distortion, From fig. 4.5.2, the third and fourth 

harmonic distortion factors increase rapidly for values of 

less than 5. 10°, This value of Le corresponds to an amplifier 

_time constant of T, = 12.5 usec. (i.e. an upper 3 dB frequency. 

of 80 kHz). 

For the double-edge modulation system figs, 4.5.4, 

4.5.5 and 4. 5.6 show that the finite bandwidth of the amplifier 

does not produce a significant change in the amplitude of the 

spectral components, the variation being less than 0.5dB. The 

amplitudes of the harmonic distortion components are such that 

they do not come within the range of the diagrams, However, 

from the general form of the curves it can be seen that the limited 

bandwidth will not affect the amplitude of the components. As 

with the single- edge modulation system, it is of interest to 

calculate the value of amplifier time constant that is required 

to produce a significant change in harmonic distortion, 

Extrapolating from the curves of fig. 4.5.5 shows that the 

distortion rises rapidly for values of Te less than 10°. This 

value of “corresponds to an amplifier time constant of 

8.34 usec, (i.e. an upper turnover frequency of 120 kHz). 

Figs. 3.3.7 and 3.3.15 (Section 3, 3) show that the finite 

amplifier bandwidth has a negligible effect on the peak amplitude 

of the integrator output waveform for both the single-edge 

modulation and the double-edge modulation systems,
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Thus it has been shown that low distortion pulse-length 

modulation systems can be designed using only moderate 

performance operational amplifiers. However, as the required 

system passband is increased so the problem of providing 

adequate amplifier bandwidth will become more severe, 

The effect of hysteresis in the level detector will now be 

considered, It is shown in the static analysis section (Section 

3.4.1) that hysteresis has no effect on the static error and 

distortion of a single-edge modulation system provided that 

certain conditions regarding the level detector threshold are 

satisfied. These conditions are discussed in section 3.4.1. The 

only effect of the hysteresis on the system performance is to limit 

the maximum negative value of modulation index for which the 

modulation process is continuous. This maximum negative 

modulation index M_(max) is given by equation 3, 4.8. 

4 
A 

Va(t) 
For the practical system under consideration the value of Vo(t), 

  M_(max) =-1 - 

the peak integrator output voltage, is -5v. If the specification is 

made that the system must operate with negative values of 

modulation index up to -0.95, then a hysteresis component of 

+ 0, 0625v can be tolerated, 

The analyses of a double-edge modulation system which 

utilises a hysteretic level detector(Sections 3,4, 2 and 4.6.2) show 

that the demodulated output of the system is identical to that of 

a non-hysteretic system with an effective modulation index Md. 

This means that under conditions of full modulation (i.e. M = 1) 

the output of the system is equal to that of a non-hysteretic system 

with modulation index ¢. If the specification is made that
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g = 0.95 then, from fig. 3.4.5, a normalised hysteresis of up 

§ 
Vo(t) 

output (i.e. 2 ¥o(t)) is 5v so that the level detector hysteresis must 

to   = 0,05 can be tolerated. The peak to peak integrator 

not exceed + 0.125v. 

It is shown in section 3.4, 2 (equation 3, 2, 38) that the 

system static error E, is given by the expression; 

E, = Vu M¢é + M(1-¢) 

The term (Vay + Mé4) in the above expression is equal to the static 

error Ej of a non-hysteretic system operating with an effective 

modulation index M¢. (See discussion following equation 3. 2, 38), 

Thus V,,+M¢ may be evaluated from fig. 3.1.10, for the error 

Ey, in a non-hysteretic system, by replacing M with Md. The 

diagram gives a value of ( Vay + M¢), for M¢ = 0,475, which is — 

negligibly different from the error Ej of a non-hysteretic system 

with M = 0.5 (i.e. E, = 7.8, '.'). The term M(1-¢) leads toa 

large increase in error since its value is 0.025 fora modulation 

index of M=0.5. Therefore the effect of the level detector 

hysteresis is to increase the system static error E, from 

To8. 10°! to approximately 0,025. However, care is required in 

interpreting this large increase in error, as is discussed in section 

3.4.2. (See discussion following equation 3, 4, 28), 

Equation 3,4, 29 shows that the static error Eo ofa 

double-edge modulation system with a hysteretic level detector is 

equal to the static error Eg of a non-hysteretic system with a 

modulation index of Mé. Therefore the error Eg 9 may be 

evaluated from fig, 3.1.11 by replacing M with M¢. Since ¢ 

is less than unity the effect of the hysteresis is to reduce the error 

E92, However, it must be remembered that the system output is 

also decreased so that no real advantage is gained from



(246) 

increasing the level detector hysteresis, 

It is shown in section 4.6, 2 (Equations 4,6. 8 and 

4,6,9) that the frequency spectrum of a double-edge modulation 

system with hysteresis is identical to that ofa non-hysteretic system 

with modulation index M¢. Figs. 4.2.6, 4.2.7 and 4, 2.8 for 

the spectrum of a non-hysteretic system may therefore be used 

to evaluate the spectrum of the hysteretic system by replacing 

M with M¢ inthe diagrams. Since ¢ is less than unity the 

effect of the hysteresis is to reduce the harmonic distortion. 

However, as with the static error Eg, no advantage is gained by 

increasing the hysteresis since the modulation frequency 

component is also reduced. If the modulation index of the 

hysteretic system is adjusted to give the same modulation 

frequency component output as the non-hysteretic system, then 

the spectra for the two systems are identical. 

In the practical example just considered the system 

parameters have a negligible effect on the amplitude of the 

sideband components so that the initial estimate of the required 

pulse-repetition frequency is adequate, The initial value of the 

repetition frequency is chosen under the assumtion that, apart 

from the finite integrator gain, the system is ideal. With some 

systems it may be found that the effect of the other system. 

parameters, on the sideband components, make the initial value 

of repetition frequency inadequate, When this is the case itis 

necessary to.choose a higher frequency and repeat the design 

process,
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6. Experimental Work 
  

6.1. Experimental Apparatus 
  

Since the methods used for the analyses of single- 

edge modulation and double-edge modulation systems are the 

same for each system, experimental verification of the 

analytical results is carried out only for double-edge modul- 

ation. Figs. 6.1.1(a), (b) and (c) show the circuit for a 

double-edge modulation system with variable values of 

integrator gain, amplifier input resistance, amplifier output 

resistance, amplifier bandwidth and level-detector hysteresis, 

The square-wave generator (fig, 6.1.1(a).) consists of 

(64 ) a self- starting multivibrator utilising standard integrated 

logic circuits, The multivibrator is designed to operate at 

40 kHz, and the frequency can be adjusted over a small range 

by means of RV1. The variable resistance RV1 actually varies 

only one of the two multivibrator time constants so that the 

mark- space ratio is varied as well as the frequency. However, 

this does not matter since the output of the multivibrator is 

connected to the input of a binary circuit. The output of the 

binary stage has a frequency which is half that of the multivibrator, 

and an accurately defined mark-space ratio of unity. The discrete 

component circuit, following the binary stage, increases the 

amplitude of the square-wave. Thus the frequency of the square- 

wave generator output is 20 kHz, this value being chosen from 

consideration of the spectrum analysis equipment available. 

The operational integrator is shown in fig. 6.1.1(b). In 

order to make measurement of the system performance easier,
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the values of the integrator parameters have been selected 

to give a markedly non-linear sampling waveform. The 

value chosen for the normalised time constant i is 25. 
CR 

Since TY the period of the square-wave input, is 50 pMSec., 

the time constant CR is 2 psec. Transistors VT1 and 

VT2 are a super-alpha pair with high input resistance (> 1M). 

The high input resistance is required in order to approximate 

to an ideal system (i.e. amplifier input resistance Ry = 00), 

SW1 provides a means of switching finite values of amplifier 

input resi stance R, into circuit. The output of the super- 

alpha pair is connected to the input of an integrated circuit 

operational amplifier via switched input resistances. These 

input resistances were adjusted on test to give the values of 

voltage gain & shown in the circuit diagram, The bandwidth 

of the amplifier is varied by means of SW3. This method of 

varying the bandwidth was chosen in preference to introducing 

a further high input resistance amplifier and switching capa- 

citors to earth (i.e. in the same manner as the amplifier in- 

put resistance R, is varied), since additional amplifier 
1 

stages lead to stability problems due to stray capacitances. 

The operational amplifier with capacitive feedbac’k closely 

approximates to a single time constant as may be seen by 

analysing the circuit shown in fig. 6.1.2.
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The transfer function of the above circuit is: 

oe 

Vas I+ (1+ A) Pin? rt) 
(i+ AYSC, RR, 

Ris | Ue Ay oR 

    

  in + 

The voltage gain A of the fAT02C amplifier is 3, 10°, The 

tests with limited bandwidth were carried out with an integrator 

gain of 4 (i.e, Ro ; R, ). Substituting these values in 

equation 6,1, shows that an accurate approximation to the 

transfer function is: 

a ae
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Vig noe : Ghee ery 
V.. 1+ +1 

where io A 

a ee aa 

1+ (It) "YR, 

a. * Che 

Equation 6.1.2, has the form specified for the bandwidth limited 

amplifier in the analytical section (section 3,3.1., equation 

3.3,1.). The values of effective amplifier time constant 

Ty faGeR, are shown in the circuit diagram, The two 

capacitance-resistance networks associated with the operational 

amplifier are to ensure that the amplifier is stable, the values 

of the components being selected in accordance with the amplifier 

manufacturers published eragedees: = ) Switch SW4 enables 

finite values of effective amplifier output resistance Ro to be 

connected into the circuit, 

The level-detector circuit is shown in fig, 6,1,1(c), The 

KATMO2C integrated circuit is a high gain operational amplifier, 

and the unity series feedback loop provides a high input resistance, 

The high input resistance is necessary to avoid loading the output 

of the integrator when carrying out tests on the effect of finite 

amplifier output resistance, Ro The general design of a unity 

(65 ) 
feedback amplifier is discussed in the manufacturers! literature aia
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will not be considered here, It was shown in the analytical 

sections that, for a double-edge modulation system, the 

level-detector threshold should be set to zero, Therefore 

in the generalised system of fig, 2. 4(a) (section 2 ), the 

output of the level-detector changes state whenever the sum 

of the modulating input voltage and the instantaneous integrator 

output voltage is equal to zero (i.e, the modulating input voltage 

and integrator output are equal and opposite), The PATIOS 

level-detector shown in the circuit diagram is the differential 

comparator type (i.e, the output changes state whenever the 

_ voltages applied to its two inputs are equal), Therefore the 

pulse-edges occur when the instantaneous integrator output 

voltage and the modulating input voltage are equal, as opposed 

to the generalised system (fig. 2. %(a).) where the pulse-edges 

occur when the voltages are equal and opposite, However, this 

difference is of no consequence since it merely introduces a 

180° phase change in the demodulated wavetrain, The discrete 

component circuit following the KAT OC level-detector in- 

creases the peak to peak output voltage of the system, Potentio- 

meter RV5 is adjusted to make the output waveform symmetri- 

cal about zero volts. Hysteresis is provided by the positive 

feedback network RV6, Ro.
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6.2. System Performance with Finite Integrator Gain 

With the amplifier input resistance (R,), amplifier 

output resistance (R) and amplifier time constant (T_) 

switches set to the ideal positions (i.e, R, =, Ro = 0, 

T. = 0) and the hysteresis set to zero, te d,c, transfer 

function of the system was measured for a range of values of 

integrator gain « . The pulse-length modulated wavetrain 

at the system output was demodulated by passing it through a 

low-pass filter with a pass-band much less than the pulse 

repetition frequency. For each value of integrator gain, the 

amplitude of the square wave input was adjusted to give an 

integrator output of approximately 3v. peak to peak, 

Fig, 6,2,1. shows the measured and theoretical system 

transfer function for a range of values of integrator gain and 

modulation index, The theoretical curves are calculated 

from equation 3,1,36, of section 3.1.2, 

The components of the frequency spectrum were measured 

for a range of values of integrator gain and modulation index. 

Fig, 6.2.2. shows the third harmonic distortion factor DF, 

as a function of the normalised time constant ee a 

(1 +X%)CR 

and the modulation index. The theoretical curves were cal- 

culated from equation 4. 2.33. of section 4,2,2, Measurements 

below - 60 B were not reliable due to the noise level of the 

spectrum analyser and the harmonic distortion of the modul- 

ation signal source. Figs, 6. 2. 3(a) and (b) show the measured 

and theoretical values of the sideband components as functions 
é\ : : c 

of the normalised time constant (i +o)CR 

  

for M=0.5 and



  

| Normalised 
_ output 

——+ —i-voltage 0.8 

| 

  

  

  

      
  

Bs | ae 
-0.8 -0.6 -0.4 -0.2 is | 

| F SO. (0,475026 20.8      

     

; ; _[o,2. Modulation Index 

+} 1-0, £ fo see ere Sea ae eee 

| pame” 
|Gn 72 
  

| 
| 

aio | 
| | 

} 

ionentipensianicaitinie:ingndinicbestihonemaal 

  i 
| 
| }       ee 26,65 be soli 

  
  

Fig.6.2.1. Transfer function of double-edge modulation 

system with finite integrator gain. 

—— =Theoretical curve 

x =Measured value



  

  

(257) 

Te 
Normalised time constant (1400) GR 

o 04 0.6 1:8 ze 
| 
| 

—
-
-
—
—
—
-
—
1
@
 

  

0 4.0 6,0 10 20 

  

  

  
    
      
  

  

Fig.6.2.2. Third harmonic distortion DE, for double-edge 

modulation system with finite integrator gain. 

——=Theoretical curve 

x = Measured value



(258) 

= 
Normalised time constant ack 

  

  

  

  

  

  

  

  

  

                      

’ oO 0.6 LeO 3 Fe ior oped ae 4.0 6,0 Bal 20 

0 : 
-10 x 

-20 

-30 
. ts ee ee oe on 

(aB) 
~40 |—— M=1.0 - 

im ! 
~50 —=25 

| CR 

ie 
702 

Fig.6.2.3(a). Amplitude of sideband components relative 

to modulation frequency component for double-edge modulation 

system with finite integrator gain. 

—= Theoretical curve 

x = Measured value



  

(259) 

= 
Normalised time constant ate 

  

  

  

  

  

  

  

  

  

  

  

  

+2004 0.6 _1.0 2.0 4.0 6.0 10 20. 

| | 
“ep 

+10 i We lee ee 

Hees | | 
0 

| | 

| -10 Ee 

(dB), a x hg 
; > ae 

-20 

3 M=0.5 
-3 

it 205 
CR 

-40 

- 4, ae ae =50: ween 

-60       
  

Fig.6.2.3(b). Amplitude of sideband components relative 

to modulation frequency component for double-edge 

modulation system with finite integrator gain. 

—= Theoretical curve 

<x = Measured value



(260) 

M = 1.0. The theoretical values of the spectral components 

were calculated from equation 4. 2.31. , section 4, 2, 2,
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6.3, System Performance with Finite Values of Amplifier 
  

Input and Output Resistance 
  

The d,c. transfer function of the system was 

measured for the range of values of amplifier input resistance 

R, provided by SW1 in the circuit diagram, For the measure- 

ments the integrator gain was set to 4,0, the amplifier output 

resistance set to zero, and the amplifier time constant set to 

zero, Fig, 6,3,1, shows the measured results together with 

the theoretical transfer function calculated from equation 3, 2. 33, 

OL section.3, 2; 2. 

A similar set of measurements were made to determine 

the system transfer function for finite values of amplifier 

output resistance, Ro: These measurements were made under 

two conditions; namely with the amplifier input resistance 

Ry = 09, and with the amplifier input resistance R equal 

to the integrator time constant resistance R, It is shown in 

section 3,2.2, that the analytical results are not valid for 

all values of modulation index. The maximum positive value 

of modulation index for which the theory is valid is defined as 

that value which causes the leading edge of the pulse to occur 

at time Fo (see discussion preceding equation 3, 2. 41, of 
2 

section 3, 2, 2,). The effect of the finite output resistance 

is such that under these conditions the trailing-edge of the 

pulse does not occur at time a6 . This maximum value of 

2 

modulation index was checked experimentally, Fig, 6.3.2. 

shows the measured and theoretical transfer function of the 

system for a range of values of amplifier output resistance Ro
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the amplifier input resistance R, beinginfinity,. Also shown 
1 

in fig, 6,3,2, are the measured and theoretical values of 

maximum modulation index, Fig, 6,3,3, shows the system 

transfer function for a range of values of output resistance Ry 

with the amplifier input resistance R, equal to the integrator 

time constant resistance R, The ee values of 

maximum modulation index are also shown in fig, 6.3.3, For 

both fig. 6.3.2, and fig, 6,3,3., the theoretical transfer func- 

tion was calculated from equation S,:2. 83 (section 3.2.2. ),; and 

the theoretical values of modulation index calculated from equa- 

tion 3, 2,43 (section 3, 2. 2), 

The frequency spectrum of the output of a double-edge 

modulation system, with finite values of amplifier input and 

output resistance, is given by equation 4, 3,14 (section 4,3,2.). | 

Fig. 6,3,4, shows the measured and theoretical values of third 

harmonic distortion for a range of values of amplifier input 

resistance and modulation index, the output resistance being 

zero, Figs. 6.3, 5(a). and (b) show the amplitudes of the side- 

band components as functions of the amplifier input resistance | 

for values of modulation index of 1,0 and 0,5, The measured and 

theoretical values of third harmonic distortion in the system with 

finite amplifier output resistance are shown in fig, 6,3,6, The 

amplitudes of the sideband components are shown in fig, 6, 3,7. 

for a modulation index of 0.5, The measured and theoretical 

third harmonic distortion in the system having finite values of 

both amplifier input resistance and output resistance is shown in 

fig. 6.3.8. for a range of values of modulation index, The
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| 
amplitudes of the sideband components for the system are shown 

in fig. 6.3.9. for a modulation index M= 0.5, . 
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6.4. System Performance with Finite Amplifier Bandwidth 
  

The d,c, transfer function of the system was 

measured for selected values of amplifier time constant 

ae . For these measurements, the integrator gain was set 

to 4,0, the input resistance R, set to infinity, and the output 

resistance Ro set to zero, ae 6,4.1, shows the theoretical 

and measured system transfer functions, The theoretical 

transfer function was calculated from the analytical results 

of section 3, 3,2, (equations 3,3,44,., 3,3.45., 3,3.46,, and 

8.3, 47.) 

The frequency spectrum for a double-edge modulation 

system, with a bandwidth-limited integrator amplifier, is 

evaluated from the results of the static analysis (section $83 2e) 

and the generalised spectrum analysis (section 4.4,). Gener- 

alised analytical results are presented in graphical form in 

section 4,5,2, The measured and theoretical third harmonic 

distortion of the system output is shown in fig, 6,4,2. for 

a modulation index of 0,5. The results shown in fig, 6,4, 2. 

may seem, at first sight, to be at variance with the general- 

ised results of section 4, 5, 2, (fig, 4.5.5.) since the harmonic | 

distortion decreases with increasing values of amplifier time 

constant To However, in the generalised results it must be 

remembered that the amplifier time constant T. also varies | 

the effective normalised integrator time constant T_. (see 
N 

equation 4,5,4.). The integrator gain is low in the test 

system so that the increasing values of amplifier time constant 

Ts lead to an appreciable decrease in the normalised time 
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constant Ty The decreased value of Ty causes a decrease 

in harmonic distortion, The measured and theoretical values 

of the sideband components, for a modulation index M= 0.5, 

are shown in fig. 6.4.3. asa function of the amplifier time 

constant F ; 
a
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6.5. System Performance with a Hysteretic Level-Detector 

The d.c, transfer function of the system was 

measured for a range of values of level detector hysteresis 

with an integrator gain of 4,0, Full modulation for a double- 

edge modulation system with hysteresis is defined in section 

3,4. 2, as that positive value of modulation index which causes 
_ 

the pulse leading edge to occur at time _c (see discussion 
Pea 

preceding equation 3.4,13,, section 3.4.2.). The effect of 

the level- detector hysteresis is such that, under these 

conditions, the trailing edge of the pulse does not occur at 

gad 
time (c.. This means that for full modulation the system 

2 

output is less than that of a system with a non-hysteretic 

level- detector. This effect may be seen in fig. 6.5. 1. 

which shows the measured and theoretical transfer function 

of the system for selected values of normalised hysteresis 

ie (t), where Vo (t) is the peak positive value of the 

integrator output waveform. The output voltage in fig. 6.5.1. 

is normalised to the value of the system output under conditions 

of zero hysteresis and full modulation. The theoretical trans- 

fer function was calculated from equation 3.4. 25., section 

3.4.2. The normalised system output for full modulation is 

shown in fig. 6.5.2. asa function of the normalised hysteresis. 

As with fig. 6.5.1., the val ues of system output are normalised 

to the system output under conditions of zero hysteresis and 

full modulation. 

Fig. 6.5.3. shows the measured and theoretical values
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of third harmonic distortion as a function of the normalised 

hysteresis. The corresponding sideband amplitudes are 

shown in fig. 6.5.4. The theoretical values of harmonic 

distortion and sideband amplitudes were calculated from 

equations 4.6.8. and 4.6.9. of section 4.6. 2.
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6.6. Conclusions 

The analytical results of sections 3 and 4 have been 

compared with the results obtained from an experimental 

double- edge modulation system. Very close agreement 

is obtained between the measured and theoretical results. 

For the measurements made with d.c. inputs the actual 

measurement error is negligible since a high grade digital 

voltmeter was used to measure the system input and output 

voltages. The measured results for the frequency spectrum 

agree with the theoretical results to within +1 4B, which 

is within the limits of experimental error. The quoted 

accuracy of the spectrum analyser is +0.5 dB so that 

an experimental error of +1 dBis quite reasonable.
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CHAPTER III 

Analysis of Power Dissipation in the Output 

Stages of Pulse-length Modulation Amplifiers
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i General 

A factor of paramount importance in the choice of 

pulse-length modulation techniques as a method of linear 

amplification is that it seems possible to achieve high 

efficiency. This is, of course, a very desirable state 

of affairs for high-power amplifiers. Class B operation, 

which is the only alternative for linear amplification, 

has a maximum theoretical efficiency of only 78.5% so 

that the problem of maintaining the amplifier output 

stage at a reasonable temperature is quite severe at 

output levels of greater than 100 watts. Cooling of 

output stages can be an expensive procedure when forced 

air or water cooling are required. 

The calculation of output stage dissipation in a 

pulse-length modulation system is obviously straightforward 

for purely resistive loads. However the length-modulated 

waveform must be filtered if the modulating signal is to be 

recovered, and it is the introduction of the reactive 

components of the filter that complicates the analysis. 

Only a limited amount of published work appears to exist 

on this partscular topic, and the major contributions will 

be reviewed in chronological order. 

Flesher (9) calculates the power dissipation in a 

common-emitter transistor switching stage by a combination 

of graphical and analytical techniques. However only the 

simplest configuration is examined, and the use of diodes 

to carry the current due to the back e.m.f. of an inductive 

load is only mentioned briefly. Ettinger and Cooper **) 

describe 2 watt and 1 kilowatt pulse-length modulation 

amplifiers but very little analytical work is presented. 

The problems of filtering are only mentioned briefly since 

the amplifiers are intended for driving motors, and
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frequency response of the system is not a design criterion. 

The introduction section of the paper quotes, from an 
: : 2 

earlier paper by Ettinger ‘ Ay an expression for the power 

dissipation in a common-emitter switching stage, with 

resistive load. Ohno (2°) describes a servo amplifier 

which uses pulse-length modulation techniques. The 

theoretical analysis presented deals only with purely 

resistive loads, and it is assumed that the results apply 

when the system is used to drive a servo-motor. This 

assumption is clearly not valid since any electro- 

mechanical system which operates as a low-pass filter must 

have reactive components associated with it. Efficiency 

of the order of 98% for a 250 watt output power into a 

resistive load is quoted. However this figure appears to 

be derived from a very much simplified analysis and is not 

supported by any experimental work. The circuit diagram 

of a practical system given in the paper has no diodes 

across the reactive load and no mention is made of the 

effects of switching this load. Miller (23) presents a 

more detailed analysis of the effect of the reactive 

components of the low-pass filter on the power dissipation 

in a simple thermionic value output stage. The analysis 

is based on the assumption that all the active components 

in the output stage (i.e. diodes and valves) can be 

represented as linear resistances. A further assumption 

is that the filter input current is d.c. with amplitude 

proportional to the modulation index of the pulse-length 

modulated wavetrain. Turnbull and Townsend“treat the 

problem of output stage dissipation in considerably more 

detail than the previous references. The type of output 

stage discussed is a complementary transistor pair 

operated in the common-collector mode as shown IH TTE. kel 

The bases of the transistors are switched between the
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levels = V, and the approximation made that the ‘on' 

transistor can be represented by a lv. source in series 

with a resistance of 12. The authors show that for 

w L>R, » and Rj = o, where We is the pulse repetition 

frequency, the current into the filter does not change 

direction during the cycle when the modulation index is 

sufficiently great. This:-its illustrated in fig. 1.2, 

Samain (44) has pointed out that if it is not possible for 

a transistor to conduct in the reverse direction then the 

opposite transistor: of the output pair will be forced to 

continue conducting during the time when it has the full 

. supply voltage across it. When this condition exists the 

efficiency is low. Turnbull and Townsend (+4) show that 

the addition of resistance Ry and capacitance Cy in 

fig. 1.1. can improve the situation if Ry is chosen so 

that the combined current into the filter and Ry is never 

in the same direction throughout the cycle. Efficiency 

figures are given for various relationships between the 

inductance L, the load resistance Ry» Ry and C,- It is 

shown that by limiting the modulation index, and suitably 

choosing the component values, an overall efficiency 

comparable with Class B operation can be obtained. Further 

work by Turnbull and Townsend (45) presents an approximate 

analysis of the type of output stage shown in fig. 1.3. 

The diodes Dl and D2 carry the current when it is in the 

‘Opposite direction to the normal current flow in the '‘'on' 

transistor. The analysis is again based on the approximation 

that the diode and transistor volt-ampere characteristics 

can be represented by a constant voltage drop in series with 

a resistance. A further approximation is that only one 

diode and one transistor conduct during one cycle of the 

pulse repetition frequency. Dimensional inconsistencies
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exist in the power dissipation equations developed in 

the appendix of the paper. These two papers by Turnbull 

and Townsend appear to be the only published work which 

deals, in any detail, with the dissipation in the output 

stages of pulse-length modulation amplifiers. 

The analysis to be presented in this section affords 

a means of evaluating the power dissipation of the output 

stage in terms of the static characteristics of the 

semiconductor elements and the characteristics of the 

demodulating filter. The basis of the analysis is to 

obtain an expression for the filter input current as a 

function of the modulation index. This expression enables 

the static power dissipation, over one cycle of the pulse- 

repetition frequency, to be evaluated for each of the 

elements of the output stage. The modulation index is 

then varied in a sinusoidal manner and the expressions for 

power dissipation integrated over one cycle of the 

modulation frequency to obtain the average power.dissipation. 

This method is only an approximation which improves as the 

ratio of the pulse-repetition frequency to the modulation 

frequency increases. A completely rigorous treatment 

would require that the power dissipation be evaluated from 

a spectrum analysis of the response of the filter to a 

sinusoidally pulse-length modulated wavetrain. As was seen 

in Chapter II, the frequency spectrum of a length-modulated 

wavetrain is rather complex so that analysis of output 

stage dissipation on a spectral basis would be extremely 

involved.
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Z% Choice of output stage configuration 

At the present stage of semiconductor development 

the junction transistor offers the best combination of 

high power handling capabilities and fast switching time. 

For this reason attention will be concentrated on the use 

of transistors as the switching elements in the output 

stage. However it is possible that, in the future, the 

switching time of very high power devices, such as the 

silicon controlled rectifier, will become comparable 

with that of transistors. These high power devices will 

then present an attractive alternative for use in switching 

output stages. 

There are a number of basic configurations of output 

stages using transistors, and it is necessary to decide 

which of these configurations offers the best performance. 

The most simple type is shown in fig. 2.1. This output 

stage has the obvious drawback that under conditions of 

zero modulation (i.e. the input waveform has unity mark- 

space ratio) the mean current flowing in the load is 

ai R where R, is the load resistance. This problem 

may bE overcome by making use of the configuration shown 

in fig. 2.2., where the two transistors switch alternately. 

(i.e. one transistor is conducting whilst the other is non- 

conducting). The: mean current through the load is zero 

when the modulation index is zero since the input to the 

filter and load is switched between “V. 

There are various possible ways in which the transistors 

can be connected to perform the switching operations shown 

re cies. cent Consider first, the situation where both 

transistors are of the same type (i.e. PNP or NPN). Output 

stage configurations which require operation of the 

transistors in the common-base mode may be rejected on the 

grounds that no current gain is available. This leaves
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only the configuration shown in fig. 2.3. The most 

serious drawback of this type of output stage is as 

follows. If transistor VT2 is operated as a saturated 

switch, the stored charge (i.e. the charge in excess of 

that required to maintain the collector current) causes 

a time delay when the transistor is switched of £66) | 

Thus at the point when VT1 is switched on and VT2 is 

switched off, both transistors will conduct during the 

period that the excess charge is being removed from the 

base region of VT2. Since the full supply voltage (2V) 

is across the transistors, the power dissipation is high. 

The storage delay time can be reduced to some extent by 

connecting a capacitor across the input resistor R,, in 

order to remove the stored charge more rapidly (67) , 

However the amount of stored charge is a function of the 

modulation index since the average collector current 

depends on the modulation index and the base current is 

constant. Various techniques have been developed *) 

to prevent common-emitter switching stages from entering 

the saturation region, but they are not really suitable 

for high power switching where the transistor must be 

maintained Very close to saturation to avoid excessive 

dissipation. A further drawback of the circuit shown 

in fig. 2.3 is that with many high power transistors a 

current gain of the order of 10 to 20 must be assumed in 

order to ensure saturation. This means that the power 

dissipated in the base input resistor Ce) may be large. 

In a high power amplifier this problem could be quite 

serious. 

Since complementary pairs of transistors are now 

becoming available it is possible to use the configuration 

shown in £16. 2.4. Both of the transistors are operated 

in the common-collector mode so that no problems are
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are encountered due to storage of excess charge. Further- 

more base input resistors are not required which overcomes 

the second of the problems associated with the saturated 

common-emitter stage in fig. 2.3. The complementary pair 

circuit does, however, have the disadvantage that the 

voltage dropped across the transistors is slightly larger 

than the voltage drop across a saturated transistor. In 

spite of this the circuit shown in fig. 2.4 appears to 

offer the best possibilities. 

The low-pass filter connected between the load and the 

switching transistors must provide high attenuation to 

frequencies outside the system pass-band, and also present 

a high impedance to these frequencies in order to prevent 

large switching currents. The second of these requirements 

indicates that the filter must have a series input inductance.
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3. Performance of low-pass filters with switched 

input voltages 

  

3.1 Time-domain analysis of filter performance 
  

In order to calculate the power dissipation in the 

switching elements of the output stage it is necessary 

to derive expressions for the filter input current as a 

function of the filter parameters and the mark-space 

ratio of the voltage waveform applied to the filter input. 

Since the output impedance of the switching elements is 

small, the source impedance for the filter is assumed to 

be zero. 

The most simple type of filter is an inductance L in 

series with the load resistance Ry as shown in fig. 3.471, 

The filter input current, in response to a positive step 

function voltage input Vy; is given by eqn... 5x1.2; 

eg reolt E)| eer is) 

The input current in response to the rectangular wavetrain 

input, shown in fig. 3.1.2., is obtained by synthesising 

the wavetrain from a series of positive and negative step 

functions with appropriate time delays. Prom can. 3.1.1, 

and fig.-3.1°2., the filter: input current is: 

i(t)= AG exp (ts NT. yaya \{ a exal-(t4 ai RY 2 
n=0 

14 fieefteeneteat]} ae 
n=O 
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The above expression may be rearranged to give: 

a Re Re _y)) ® i(t}= atau #s)|fenel NT, Bele 2[t- expt (7. 1) bee bes 

ye “nl %)]] (3.1.3) 

The summation term in eqn. 3.1.3. is a geometrical 

progression and may be expressed in closed form. There- 

fore 

OE Er Eero) arent 
t— exp(vr.® } 

| — exp LTE] 

The expression for the filter current in response to an 

ta fea) 

infinite wavetrain is given by allowing N to tend to 

infinity in eqn. 3.1.4. Thus: 

R 
é |—exp|/—(T.—T, }7= 

(efron th) rl ( a c| a 1.5) 

: |= exp[-T. | for 0<¢<T, 

The input current for the period Ty < t a7 is obtained 

  

by adding, to eqn. 3.1.5., a term corresponding to the 

filter current in response to a step input of ~2V4 

occuring at time t=T,.



Therefore: 

  

fee. ut)= Eft -nexpt8) que (3.1.6) 

fore 7. e.- 

For a sinusoidal input to the filter the voltage transfer 

function 3dB frequency w, is: 

  ged ; (3.1.7) 

a is the period of the pulse repetition frequency W,.. 

Therefore: 

c 
eeu (93.8) 

If the pulse-length modulated wavetrain applied to the 

filter input is produced by a system having a linear 

sampling waveform (i.e. the pulse length Ty is directly 

proportional to the modulating input voltage), then the 

modulation index M may be defined as: 

M=2=4 =| . (3.1.9) 
Substituting eqns. 3.1.7., 3.1.8 and 3.1.9. in. éqns. 

3.1.5. and 3.1.6. enables the filter input current to be 

expressed as: 

i(t)= i finaenp fan ) Serko (ai: 0) 
|-exp|-2m = | 
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M+ 1 

2: 
for   $= <el ik. 

Te 

Now it is shown in Chapter II that if the sideband 

components falling within the system pass-band are to be 

less than -60dB with respect to the modulation frequency 

component, then for a double-edge modulation system, the 

pulse repetition frequency (w,) must be greater than 

TW. The frequency w,, is the highest modulation 

frequency the system is required to handle. Therefore 

allowing a small factor, the smallest value of pulse- 

repetition frequency likely to be used in a practical system 

is W.=50,,. In the design of a system, the 3dB 

frequency of the low-pass filter will be made equal to the 

highest modulating frequency required. Therefore the 

maximum value of the ratio “% is Ye. 

Fig 3.1.3. shows the normalised filter input current 

Re. i(t) ; given by eqns. 3.1.10 and 3.1.11, for various 

values of modulation index M. The diagram shows that the 

  

filter current is an approximately triangular wave 

superimposed on a normalised current of M. This observation 

however, is not particularly obvious from eqns. 3.1.10 and 

Scbears 

Before proceeding further with this point a time- 

domain analysis of a slightly more complex filter will be 

carried out using the same techniques as for the simple LR
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filter. The obvious extension of the LR filter is to 

connect a capacitor across the load resistance Rp» as 

shown in fig. 3.1.4., to further attenuate the high 

frequency components which appear across the load. 
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Fig.3.1.4. Single-section LCR low-pass filter. 

In order to obtain constancy of amplitude response, the 

values of the filter components are chosen to give the 

maximally-flat (or Butterworth) characteristic. It may 

be shown that the voltage transfer function G(w) of the 

filter is given by the expression: 

| (9-01 512) 
ee +o tee Fe 

For maximally-flat amplitude response: 

  

2 
Gas 1 Ce oe 

R 
cl 

Therefore: L= 2 CRA ; (3.1 43) 

and the maximally-flat transfer function is: 

|e (w)| = i (3.1. 14] 
|! +L |
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From eqn. 3.1.14., the 3dB frequency (w,) of the filter 

is given by the expression: 

oe aA ce 
Bee) Ace: : : 

The above equation for the filter turnover frequency 

is at variance with the result quoted by Miller **) 

(i.e. ci ) for the same filter. Analysis of 

the maximally-flat filter shows that the filter input 

current, in response to a step function voltage input 

V,, may be expressed as: 

t= Lr smog) forbear Zall} @1-19 
The response of the filter to the rectangular wavetrain 

      

shown in fig. 3.1.2. is obtained from the step response 

by the same methods as were used for the simple LR filter. 

Since the methods are identical, only the results are 

given here. 

  
  

ey a Lexy) : 
V, I+ exp(-2) —Rexp(-w).cos(~) 

Ko £) —exp (-~) cos(v)—exp [-U-n) 5] cos|(t-n) e+ exp [+ Pal $i GC | S. 

  

ine ot) sole -m)  ot-rb gee A) soll) dl 
for CoS fs.4517) 

The normalised filter input current for the period 

T) < t<T, is obtained by adding to eqn. 3.1.17 a term 

corresponding to the filter current in response to a 

negative step input of 2V, occuring at time t=T,.
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Therefore: 

RUE pero Lexelw ) 
Vi I+ exp(-2p)-2exply ) cos(p) 

    

(pt farboirrenErndlofone refs often 

  

sin(y +) exp(y) piuas exp|- (-m)4] sin]-m) 4 ~exp|-y (\+ KA) sin{(N-1 ‘ll 

e 

+Rexplye +h (n+1)| cos[w- i & (ns) for ae tS | (3 phat 8) 

m= 4h — | (3.1. 190) 

yp = ALA ae Ch. 1 9(b)) 

As discussed in connection with the LR filter, the 

maximum value of the ratio ete is likely to be of the 

order of z for a practical system. Fig. 3.1.5 shows the 

’ normalised filter current Re ilt) plotted as a function 

of normalised time L : The diagram shows that the 

current is closely approximated by a triangular wave 

superimposed on a normalised current of M. From the 

point of view of analysing the power dissipation in the 

output stage it would clearly be advantageous to have an 

approximate expression for the filter current in this 

form. If the exponential and trigonometric terms in 

eqns. 3.1.17 and 3.1.18. are written as power series then 

truncation of the resulting expressions should yield the 

required form. However the expressions are too complex 

to make this procedure practicable. Obviously the
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complexity of the analysis in the time domain will 

increase as more sophisticated filter circuits are used. 

For this reason, analysis in the frequency domain will 

be applied to the problem. 
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See Frequency-domain analysis of filter performance 

Fourier analysis of the filter input voltage 

waveform shown in fig. 3.2.1. gives the following 

expression for the frequency spectrum. 

  5 oa 
Heley,{ (28 ae Ne eae exa(inat ty .2° 1) 

n=] a 

+V, 
  

  

              
Fig.3.2.1. Filter input voltage waveforn. 

Rearranging the limits of the summation in eqn. 3.2.1. 

gives: 

% sin[ SF (m0) 
ia 

Fey n+ 2) eT cos(nw.t) 
where: Modulation index 

TT 
M= a mI 

ce 

(35252) 

(3.9.3)



(308) 

‘For a sinusoidal input V, @&), the input current 

of the simple LR filter, shown in fig. 3.1.1., is given 

by the following expression: 

Mes | /9 : 3.2.4 Ww" I> 
@ = tan (=) | faces) 

of oh (3.2.6) 

Therefore, from eqns. 3.2.2. and 3.2.4., the normalised 

  

where: 

  

filter input current for, in response to the rectangular 

input voltage wavestrain, ‘is: 

  

  

; = sin] 3 (M+) 

eee = ey | ue : cos[negt+®,] (2.2.7) 

where Q = aa! (22) | (3.2.8) 

If nw, > 0, then eqn. 3.2.7. may be written as: 

7 Ww, sin ar (mM+I : 
= i(t) = M#2(M+) ar “be sin(ne,t) (3.2.9)   

As was discussed in section 3.1., the maximum value of 

likely to’ be used in a practical pulse-length 

modulation system, is = 

Therefore the maximum error in the approximation 

Oe an” | 

pw. = J[i+ (se)*] 
ig 1.95%. The maximum error in the phase angle 

  

approximation 6,2 -F $5 47.64, However it will be 

noted that the Fourier coefficients in eqn. 3.2.9. decrease 

as yer which is a characteristic of the frequency 
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spectrum for a triangular wave. Before pursuing 

this point further, the frequency spectrum will be 

derived for the input current of the single-section 

maximally-flat LCR filter shown in fig. 3.1.5. 

The normalised input current of the LCR filter, 

for a sinusoidal input voltage V,¢ w), is given by: 

  
  

ee {i+ ell+ SP] /8 (3.2.10) 

    

Viel 1+ Ce 
a 

where: | 0 = teal Se [i+ on (32081) 

2." ER 3 (3.2.12) 

From eqns. 3.2.2. and 3.2.10, the normalised input current 

for a rectangular sear wavetrain input, is: 

Se Ee ob 
ti L(t)=M+2(M+1 ree cally | 

  

  

7 ae) 
sin Erle] cos[net + 0, | (3 «2.1 3) 

a (M+) 

    where : G = Ee [i+ =| (Se. (4) 

If w > w,, then eqn. 3.2.13 may be rewritten as: 

Re enc hn Dae e _ sin E (m+) sin(net) (3.2.15) 
\ oS (Mt!) 
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Since WW. >45w,, in a practical system, the maximum 

error in the approximation 

fis t(mey fie ey} oo, 
Beet Has NO 

BRN cys 

is 3.6%. The maximum error in the approximation 62-5 

is 0.67%. It should be noted that the errors in the 

approximations for the Fourier coefficients and the phase 

angle give only a general indication of how accurately 

the approximate frequency spectrum describes the 

normalised filter input current. The Fourier coefficients 

in eqn. 3.2.15 decrease as le which is characteristic 

of the frequency spectrum for a triangular wave. 

It was shown in the time-domain analysis of the LR 

filter and the maximally-flat LCR filter that the input 

currents closely approximated to a triangular waveform 

superimposed on a constant term M. The triangular wave 

is as shown in fig. 3.2.2. 

  

Time —>- 
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Fourier analysis of the waveform gives the following 

expression for the frequency spectrum. 

co 

3 8A SEAT : ‘4 
F(t)=) PS sin (re snl a} (3.2.16) 

n=) 

where 

M=2=-| 

If the waveform shown in fig. 3.2.2. is superimposed on 

a constant term M, then the spectrum becomes: 
so 

§ oe ; 
F(t)= M+ ) SESE RIR sin B (+ sin(not) (3 wea! 7) 

- nel 

Comparison of eqns. 3.2.9. and.3.2.15, for the 

normalised input current of the LR and the maximally- 

flat LCR filters respectively, with eqn. 3.2.17 reveals 

that the expressions all have the same form. BS 

now possible to obtain simplified expressions for the 

filter input current in the form of a triangular wave 

plus a constant term. The peak excursion A of the 

triangular Component is related to the filter constauts 

by equating the approximate frequency spectrum for the 

filter current to the spectrum for the triangular wave. 

From eqn. 3.2.9. for the LR filter, and eqn. 3.2.17 

for the triangular wave: 

M+ 2(me)) 2s oly sin{nyt) = 
NO, AT (M+ 1) 

18) eee GR sin (nwt) (3.2.18) 

n=\ 

Therefore: j ~ i = (i-m)(1+™) (3.2.19) 

where w= Ws



(312) 

Similarly, from eqn. 3.2.15 forthe LCR filter: 

  

A=# (ime) (3.3-.20) 

e Oo where: p = [27 = 

and Wee ee. 

a NOR, 

Thus the normalised input current for the two 

filters may be approximately répresented by the waveform 

  

  

shown in fig. 3.2.3: The equations defining the 

M+A 
M 

M-A 

Normalised 

filter 
input Time —>- ?T, T 

current 

  

  

Fibvoccise 

waveform are as follows: 

Re: 
i(t} = M-A.= -1] For O<t<T, = (3.2.21(0)) 

Ty 

  

V, 

Be (t)=meafi- 2 (t-1)| for Let<k = (3.2.21)



3 

Since M = 2 —j| 5. eqns.i3.2.31(a} ahd. (b). may: be 

rewritten as: . 

    Ru i(t) = ages i ) fori se (3.2.2 2(a)) V, hoe 

Resi Be Meals ot a ep 
y tle meal sen Sat tL) for Me bel — (s.2.200) 

Fig. 3.2.4. shows the error in the triangular approximation 

for the input current of the two filters considered. The 

exact expressions for the input current are given by 

eqns. °3.1.10,) 3.1.11, 3.1.27 and 3.1.18 of the time domain 

analysis section (Section 3.1). The error has been 

expressed as a percentage of the peak excursion of the 

current, (ice. MtA). It can be seen that the triangular 

wave approximation for the LCR filter is quite accurate, 

the maximum error being of the order of 3%. The 

approximation for the simple LR filter is not so accurate, 

the maximum error being 16%. However, both of the curves 

shown in fig. 3.2.4. represent the "worst case" condition 

for the approximation since the error decreases as the 

modulation index M increases (e.g. With M=0.5, the error 

falls to 6% for the LR filter). A further point is that 

the accuracy of the approximation will improve as the ratio 

of the pulse repetition frequency (w,) to the filter 

turnover frequency (W,) increases. The value of used 

in the error calculations is 5.0, which, as mentioned 

earlier, is the smallest value likely to be used in a 

practical system. 

Since any filter used in a pulse-length modulation 

system must have a series input inductance if large 

switching currents are to be avoided, it is a reasonable 

assumption that the triangular approximation to the input 

current will be valid for the majority of filters. 1t



(314) 

  20 

  

  

  

  
  

  % Error 

                    

Normalised time = 
7 c 

Pig.3.2.4. Error in the approximate expression for 

the normalised filter input current. 

(fu i) 7, ee et appro. 

Ry 
Peak swing of —i(t) 

4 

Error defined as  
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is also reasonable to expect that peak excursion (A) 

of the triangular component will have the same form as 

that obtained for the two filters: analysed. Therefore 

the general expression for A is: | 

A= X(i-n)(i+™) (a, 2.23) 

where \ is a function of the filter components. 
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4. Static analysis of power dissipation in the output 

stage 

It is the objective of this section to derive 

expressions for the static power dissipation in the 

various switching elements of the output stage by 

making use of the approximate expression for filter 

current obtained in section 3.2. The discussion in 

section 2 indicated that the output stage configuration 

which offers the best possibilities is the common- 

collector complementary pair shown in fig. 4.1. The 

triangular wave approximation to the filter input current 

is shown in fig. 4.2. Consider the situation, in fig. 

4.2, where the modulation index M=M,. During the period 

tz0 to t=T), 

whilst transistor VT2 is turned off. - In order to 

transistor VTl in fig. 4.1. is conducting 

simplify the analytical work the assumption is made that the 

current gain of the transistors is such that the emitter 

current is insignificantly different from the collector 

current. Therefore the instantaneous power dissipation 

in VT1l is given by the product of the instantaneous filter 

input current and the instantaneous collector-emitter 

voltage of VT1. The power dissipation in transistor VT2 

is the product of the transistor leakage current and the 

collector-emitter voltage. The power dissipation due to 

the leakage current will be neglected since the leakage in 

modern silicon transistors is very small.. At time teT, 

the voltage applied to the bases of the transistors 

switches to “Vo. However the filter input current does 

not change direction. This means that transistor VT2 

cannot conduct since the current is in the opposite 

direction to the normal current flow in a transistor. The 

back e.m.f. of the filter thus drives the emitters of the 

transistors negative with respect to the negative supply 
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Fig.4.1. Common collector complementary pair output 

stage. 
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Fig.4.2. Normalised filter input current.
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line until the base-emitter junction of VT1 becomes 

forward-biased and VT1 conducts. Thus transistor VT1 

is forced to conduct throughout the period t=0 to To: 

The power dissipation during the period T, to T, is 

high since the collector-emitter voltage is approximately 

equal to the supply voltage 2V)- For negative values 

of modulation index (e.g. ~My in fig. 4.2) transistor VT2 

will be forced to conduct throughout the cycle. At 

intermediate values of modulation index (e.g. M = My in 

fig. 4.2) both transistors will conduct at different times 

during the cycle. However the power dissipation will still 

be large since during the period O to T' transistor VT2 

will be forced to conduct with nearly the full supply 

voltage across it. Also transistor VT1l is forced to 

conduct with approximately the full supply voltage between 

collector and emitter during the period T" to aa This 

mode of operation is clearly inefficient. Turnbull. and 

Townsend (+) have carried out an approximate analysis of 

the operation, and have shown that the efficiency is 

slightly lower than that of a conventional Class B output 

stage. 

One method of overcoming this problem is presented 

by Miller (33) and consists of connecting diodes across 

the transistors to carry the reverse direction currents. 

The circuit arrangement is shown in fig. 4.3. Consider 

the operation of the circuit when the modulation index M°M, 

as shown in fig. 4.2. As before transistor VT1l conducts 

for the period t=0 to t=T,. At time T, the base input 

voltage switches to -V. but the filter input current does 

not change direction so that VT2 is unable to conduct. 

Since VT2 does not conduct, the back e.m.f. of the filter 

forces the emitters negative with respect to the negative 

supply line until diode dD, becomes forward biased and
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Fig.4.3. Output stage with diodes to conduct reverse 

current. 
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conducts the filter current. Care must be taken in the 

design to ensure that the voltage drop across Do is 

insufficient to forward bias the base-emitter junction of 

transistor VTl. This problem is discussed in more detail 

later in the section. It can be seen that this system is 

inherently more efficient than the previous one since 

neither of the transistors conduct with the full supply 

voltage between collector and emitter. Fig. 4.4. shows 

the manner in which the period of conduction of each of 

the output stage elements varies with modulation index. 

Also shown in fig. 4.4 are the voltage waveforms appearing 

at the: friter: input, From the diagram it can be seen that 

as the modulation index is increased positively so the period 

T' decreases and the period’ T" increases. Eventually the 

condition is reached where T' is zero, and T" is. equal to 

To. From figs. 4.4 and 3.2.3., the value of modulation 

index required to bring about this condition is M=A, 

where 2A is the peak to peak value of the normalised 

filter input current. As the modulation index M is 

increased in the negative direction so the period T' 

increases and period T" decreases. When the condition 

that M=- is reached, then were and T'=Ty. Expressions 

for the two periods.T' and T" may be calculated from the 

equations for the triangular wave approximation for the 

filter current derived in section 3.2. 

From fig. 4.4 the period T' is defined by the 

condition that the normalised filter input current Re ult: 0 : 

Therefore, setting & ult) = O and t=T' in eqn. 3.2.22(a) 

for the triangular wave approximation to the normalised
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Fig.4.4. Filter input voltage and current waveforms showing 

the period of conduction of the output stege elements. 
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filter current gives: 

oem alats | 
+ Eat Bley) Gi) 

Now, as was just discussed, the period T' tends to 

zero as the modulation index is increased. The limiting 

condition is obtained by setting TA, = O in eqn. 4.1. 

The non-trivial solution to the equation gives: 

M=A for < =0 (4.2) 

This is the result derived by inspection of fig. 4.4. 

As the modulation index is increased negatively so the 

period T' tends to T,;. Therefore setting TAL? We 

in eqn. 4.1, and substituting for lyfe from the expression 

Mer — | gives: . 

M=-A For tere (4.3) 

Thus eqn. 4.1 for the period T' is valid for -A< M<A 

From fig. 4.1, the period T" is defined by the 

condition that the normalised filter current is zero. 

Therefore setting Se i(t) = 0 and t=T" in eqn. 5 4aate(D) 

for the approximate filter current gives: 

u ead gace (4) 
Now as the modulation index is increased negatively so 

T" tends to Tj: The limiting condition is obtained by 

setting Teel, in eqn. 4.4, and substituting for Me from 

the expression M= 24-1. 

This gives: 

M== Ao) fer = a (4.5)
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Increasing the modulation index positively causes T" 

to approach Tos Setting ac eee in eqn. 4.4. gives the 

limiting condition as: : 

: io M=A ote ans (4.6) 

Therefore eqn. 4.4., for the period T", is valid for 

ee -A<M<€<A 
The values of the periods T' and T" outside the range 

-h Sy Se may be deduced from fig. 4.4. 

Z. 1. 
ae ,and as for M>A (4.7) 

Tee ond Scape tek Se A 4.8 
T Tse he Ae i ( : ) 

Now that analytical expressions have been obtained for 

T' and T" it is possible to evaluate the power dissipated 

in each of the elements of the output stage. 

The power dissipation is expressed as the average 

value of the product of the instantaneous voltage across 

the device and the instantaneous current taken over one 

cycle of the pulse repetition frequency (i.e. over the 

period O to tals 

Therefore from figs. 4.3 and 4.4: 

Average power dissipation in transistor VTl = a 

T " 

eed 

io ie | u(t). V(t) dt (4. 9) 
+! 

Average power dissipation in diode Dl = 2. 

Pp 2] ie) \y(t) a (4.10)
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Average power dissipation in transistor VT2 = Pe 

+ 
e 

P= yi UE) Nah) at ( : ! ') 

Average power dissipation in diode D2 = P,, 

B= t/ yd te ia) 

where: i(t) is the instantaneous filter input current 

V..(t) and V(t) are the instantaneous collector- 

emitter voltages during conduction of VT1 and VT2 

respectively. 

Vt) and Vit) are the instantaneous voltages 

across diodes DS and Do respectively. eo ~ 

The negative signs in the expressions for Pp and Foe 

are required since the filter input current is negative 

during the period of conduction of Dl and VT2. In order 

to evaluate the expressions for the power dissipation in 

the output stage elements it is necessary to relate the 

voltage drops across the devices to the current. 

The terminal voltages and currents for an idealised 

junction transistor may be represented ©”) by the 

following expressions: 

aie 1Vee ' a. 
1=T,,le=r| kT }-i]-, Lele=e(4c)-I (4 4) 

safer] ee 
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where: ' 

tS = The emitter junction saturation current with 

the collector connected to the base. 

ty = The collector junction saturation current with 

the emitter connected to the base. 

o, = Large-signal forward-injection common-base short- 

circuit current gain 

x, = Large-signal. reverse-injection common-base short- 

circuit current gain 

Vi, =Emitter-base voltage taken as positive for a forward- 

biased junction 
| 

V., =Collector-base voltage taken as positive for a 

forward-biased junction. : 

k = Boltzmann's constant (1.3805.10° 2° joules/degree) 

T = Absolute temperature 

q = Magnitude of the electronic sive (1602. 10" cee 

coulomb) 

Under normal operating conditions the collector-base 

junction is reverse biased. If the reverse bias is 

greater than a few tens of millivolts then the large- 

signal volt-ampere characteristics reduce to: 

1 = 1, [e= =p(4 Mee) Wea, (4.15)   

- | (4.16) 

With the complementary common-collector output stage shown 

I, @ ~«, 1.-(i- 0, %,) 1 

in fig. 4.3, the collector-base junctions will always be 

reverse-biased if the voltage applied to the bases is less 

than the supply voltage. The terms &,1., and (1-x .«,)I 

in eqns. 4.15 and 4.16 are usually very small compared 

cs 

with typical normal-region emitter currents, and may be 

neglected. If the assumption is made that the forward 

current gain of the transistor is sufficiently large for
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the collector and emitter currents to be regarded as 

equal (i.e. A, =| ) then: 

: 1g,| exp 42) | (4.17) 

tad (4.18) 
e
t
 IP 

The current-voltage relationship for an idealised junction 

diode” is given by the expression: 

I= 1, | exp(HE)-I] (4.19) 

diode saturation current 

  

where I. 

! 
V 

D 
voltage across the diode 

Experimental work, which is described later in this 

chapter, shows that the simple mathematical models of the 

transistor and diode are not sufficiently accurate. 

Considerably better agreement is obtained between the 

measured and theoretical characteristics if a linear 

resistance is included in series with the ideal diode and 

transistor as shown in fig. 4.5 

  

Fig.4.5. Idealised transistor and diode with added 

series resistance,
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The volt-ampere characteristics for the modified 

transistor and diode may be written down from eqns. 4.17 

| 4.19 and fig. 4.5 

| | V. cue As ~ Xt = log(l- a (4.20) 

V, = =I) Ronee 4 T legli + x | (4.21) 

The instantaneous power dissipation in the output 

- Stage diodes is simply the product of the current 

flowing (i.e. the filter input current) and the voltage 

drop across the diode as given by eqn. 4.21. The 

power dissipation in the transistors is made up of two 

components. One component being the product of the 

filter input current and the emitter-base voltage of the 

transistor. The second component is the product of the 

filter current and the collector-base voltage. From 

fig. 4.3 the collector-base voltage we of transistor 

VT1 during the conduction period is: 

2 se \ Pi Vi (4.22) 

The collector-base voltage of transistor VT2 during the 

conduction period is: 

Ve ve Vea (4.2 3) 

Thus eqns. 4.9, 4.10, 4.11 and 4.12, for the average 

power dissipation in the elements of the output stage, 

may be written as: 

ar 

Barf UR, +A ne S log( Ij rr) a fet (4.24) 
Est 

TH  



  

  B rf) (UR, + a log (4-8 dt (4.25) 

  Pes Hf ACOR, + log (1 He } \Lsa des 94: ac) 

  

—H 

Pe = (| i(t) Ro s log( 1+ ra dt (4 : 27) 

where i(t) is the filter input current as given by 

eqns. 3.2.22(a) and: (6b) 62 section.3,2. 

The integration and rearrangement of the power dissipation 

expressions is covered in detail in Appendix 7., and only 

the results are quoted here. 

For M> A 

D ‘.. ‘ 2 : 

Bar ate gh HE igh Wb eb) 4 
TV MIM*1) Zp be 4 EI & 

7 A) +3 (4. 28(a)) 

oe een b= 1+ (ma) = 1+——(M- =|+--(M- 
less « les 

oe 0 (4. 28(»)} 

Ps
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. UM | ee e . es pe HL liga lellaneal lest 
ae TY a 

  

where; c= I+ = (M+A) com | + bh (M-A) 
$2 $2 

  

P= nm row {5 * ) log b, = b, (2 . i 7 

  

  

(mei(m+ayy , ERA (M4) M3 
Bf PES + (2 (\+ 3) (4.29) 

where: b= ie “3 (m+A) 

= eh (AS) pee ED tyncalt It 
Pe ae Pe Sen eine 

_ where aet- (=A) 

p= kT 153, (i- M) dp da 2 
ie “ee LTA A -1) log A. a ae -) -3| + 

(i-m)(M-Ay ], Ree W(-M) /, m5 
ry,,[ BA | nie (1 =~) (4.29(0)) 

where: 421-5 ("-4) 

3 :| 
(4.29(4))    
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LG (4.306) 

  

2 PER y (20) 
where a=|- é (m-a) age 7, (M+) 

  

dD kT 1Z.,(I-M) ReaD ER (AE Mion 4b “gd -4G-1)ea@ | - 
M 

  

(si) p Phe ACH me 1) (4.30(¢)] 

where a= - +(e A) : d= l- ale a) 

pe 2m (4. 30(4)) 

‘In the above equations I is the maximum current that 

can be passed through the load. 

Vi =e | (4.31) 

It has been assumed throughout the analysis that 

only one of the output stage elements is conducting at 

any given time. However this may not be the case unless 

care is taken in the design of the output stage. 

Consideration of the circuit diagram of fig. 4.3, and the 

associated waveforms of fig. 4.4., shows that, for 

sufficiently large positive values of modulation index, 

diode Do should conduct the filter current during the 

period t=T, to T.. Fig. 4.4. shows that when diode D, 

is conducting, the filter input voltage is ~(V, + \V,,) 

Under these conditions the base-emitter voltage for transistor
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VIL iS (V; Vn = Vi) ° Now in a practical system 

Vb is likely to be slightly less than Vy which means that 

base-emitter voltage of VT1l is slightly greater than the 

voltage Vy2 dropped across D,. This forward bias on 

VT1 may well be sufficient to cause transistor VT1 to 

conduct a significant proportion of the filter current 

during the period t=T, to Dest Since the collector- 

emitter voltage of VT1 will be approximately equal to 

the supply voltage 2V during this period ,inefficient 

operation will result. Similar reasoning applies to the 

forward base-emitter voltage of transistor VT2 for 

sufficiently large negative values of modulation index. 

This problem may be reduced by the circuit arrangement 

shown in fig. 4.6 where the diodes D3 and D4 increase 

the effective emitter-base voltage required.by transistors 

VTl-and VT2 respectively. Thus the conditions for the 

correct operation of the circuit are: 

Morty, a a "a eee * Van (4 aS 2) 

ve Ve) : Macs x we (4.33) 

where VEEL? V3 VeR2 and Voa are the forward bias 

voltages necessary to cause a significant current flow 

in VIl, DS, Vi2, and. Dé ‘respectively. 

Diodes D3 and D4 are in series with transistors.VTl 

and VT2 and hence conduct when the respective transistors 

conduct. Therefore the average power dissipation in the 

diodes may be written down by inspection of eqns. 4.28 (a) 

and (c), 4.29(a) and (c), 4.30(a) and (c) for the power 

dissipation in the transistors.
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Fig.4.6. Output stage with additional diodes D3 and D4.
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For My A 

  

= LT T,.(Mtl) lev eth f f, Be TE AE Mest FE- eg -K(Pst Ef 

Pre Mf 2 a 
where: Fett 7 (m-A) f= + 7 (mea) 

Ps Ce (4 .34()) 

For he Ae A 

Be KAM} RT 28) 
where: 4 =\|+ 7a M+) 

  

Tree yas a) 2809 
where: g,=1+ Ts A) 

B ae (4. 36(0)) 
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Thus expressions have been developed for the 

average power dissipation in all the elements of the 

output stage. The equations are expressed in terms 

of the modulation index M, the parameters of the 

particular element, and the peak to peak excursion (2A) 

of the triangular wave approximation to the normalised 

filter current. It is shown that the diodes Dl and D2 

modify the voltage waveform at the filter input. 

However the assumption is made that this modification of 

the waveform has negligible effect on the filter current 

so that the triangular wave approximation is still valid. 

Due to the number of independent variables involved in 

the power dissipation equations it is not practicable to 

present generalised graphs of power dissipation for the 

various output stage elements. However application of 

the analytical expressions to a practical system is a 

straightforward matter, although somewhat time consuming 

due to the complexity of the equations.
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5. Quasi-dynamic analysis of power dissipation in 

the output stage 

  

The difficulty of performing a rigorous analysis of 

power dissipation in the output stage for time-varying 

modulation is discussed in section l. However an 

approximate analysis may be carried out on a quasi- 

dynamic basis. In section 4 expressions are derived 

relating the average power dissipation, over one cycle 

of the pulse repetition frequency, to the circuit 

parameters and the modulation index M. If the modulation 

index, in these expressions, is allowed to vary in a 

sinusoidal manner then the average power dissipation may be 

evaluated by integrating over one cycle of the modulation 

frequency. The innaccuracy of the method lies in the fact 

that the expressions for the filter input current were 

derived by assuming that the rectangular wavetrain applied 

to the filter input started at an infinite time before 

time zero. The accuracy of the quasi-dynamic analysis 

will thus improve as the ratio of the pulse repetition 

frequency to the modulation frequency increases. Now it 

was shown in the static analysis that the power dissipated 

in each of the active elements of the output stage is 

governed by one of three different expressions, depending 

on the value of the modulation index. (See eqns. 4.28, 

4.29, 4.30, 4.34,7 4.35 and: 4.36). The three ranges of 

modulation index for which the power dissipation 

expressions are defined are My A,-A<M<A , and Ms-A. 

If the system input is a cosine wave (i.e. M(t)= M.cos(w t) ) 

then these limit values of modulation index may be related 

to time as shown in fig. 5.1. Now A, the peak value of    
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M(t)=A 

  

M(t )=-A 

  

Fig.5.1. Instantaneous modulation index M.cos (wt) 

the triangular component of the filter current (see 

fig. 3.2.3.) asa function of the modulation index. 

it is shown: in section 3.2, eqn. 3.2.23, that the factor 

is given by the expression: 

A= X(i-M)i+M) (5.1) 

where \ is a function of the filter parameters. 

Since the modulation index is time varying, eqn. 5.1 may | 

be rewritten as: 

A(t)= (I= Mit))(1 + MQ) (5.2) 
The instants t, and ty in fig. 5.1 are defined by the 

1 
expressions: 

(5-3) 

(5.4)    
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| Substituting eqn. 5.2 in eqns. 5.3. and 5.4.,. and 

setting M(t)=Mcos(w,t) , leads to the following 

expressions for ty and t- 

Le — mi i Alt | (5.5)   

0b (5.6) 

As a result of the symmetry of fig. 5.1, expressions for 

the instants tz and ty could be derived from eqns. 5.5 

and 5.6. However it is shown later in this section that 

these expressions are not required. 

For small values of modulation index the condition 

M(t)=A(t) may not occur. The limit condition is when the 

peak value of the modulation index M(t)is equal to A(t). 

Therefore: 
M= \(t-M)U+M) 

which gives = \ Te eae ree 
where M,.. is the minimum value of the modulation index 

for which eqns. 5.5. and 5.6 are valid. 

From fig. 5.1. it can be seen that when M=™_. then t= 0 

and t,= ayy : Although t, and t, do not actually exist 

for M eo it is convenient to make the definition: 

e, t \ 
T. = 0 and wT," z fer Me ioe (5.8) 

The average power dissipation, over one cycle of the 

modulation frequency w in each of the elements of the 
mM ? 

output stage can now be expressed by the general equation:  
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t, ts ts, ty vi 

po [neat B(t)ats] p(t).dt-+] p(t). at +] (oe 5) 
0 = te ts ty 

where: P(t) is the power dissipation in the element 

for M(t)» A(t) 

B(t)is the power dissipation in the element 

for —A(t)<M(t)< A(t) 

P,(t)is the power dissipation in the element 

for M(t)<-A(t) 

Since the time varying modulation index M.cos(w,t) is 

symmetrical about time t= % eqn. 5.9 reduces to: 

t, tS "94 
: $f [mbse] ltd ‘[ptoat} _ (5s10) 

Now it is shown in the static analysis of power dissipation 

that, for some ranges of modulation index, the power 

dissipation in a particular element of the output stage is 

zero. (e.g. From eqn. 4.30(a) the power dissipation in 

transistor VTl is zero for M<-A ). 

Therefore, from eans. 4728, 4.29, 4.50, 4.38, 4.35, 4.36 

and 5.10, the power dissipation in each of the output 

stage elements may be expressed as: 

_{ [eu dt +(e at| 10) 

P. = aoe [ B(e).at| | (5 A 1(b)) 

x a 

i
f



  

5 ve 
Pe = 41 [Root ap hat dt co | 1¢<)) 

te 4 

P= £1 f Plsat + bit). at | (5.114) 

te iw, 

P= Hf [ Reve + | Pp Lb) dt | (5.1 1(e)) 

t, ES 

Nis. ill P(t). dt + | Ble) dt (5.1 «F)) 

The expressions for the time dependent power dissipation 

are obtained by replacing M with M.cos(,,t) in the 

expressions for the static power dissipation. The 

appropriate static power dissipation expression may be 

identified by the limits of the integration. 

ice Norio te Bt, Me (5.120) 

For tj to . 4 -Ba Med (5. 12(b)) 

For. ft) to Tm : M<-A 7 (5.12(¢)) 

Integration of the static power dissipation 

expressions (eqns. 4.28,4.29,4.30,4.34,4.35, and 4.36) 

is a formidable task when M is replaced by Mcos(w,,t) and 

the results are likely to be so complex as to preclude 

evaluation without the use of a digital computer. For 

this reason numerical integration is used to evaluate 

eqns. 5.11(a) to (f). With this in mind, a number of 

useful observations can be made from the static power 

dissipation expressions.
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Comparison of eqns. 4.28(a), 4.29(a) and 4.30(a) 

for the power dissipation in transistor VT1 with eqns. 

4.34(a), 4.35(a) and 4.36(a) for the power dissipation 

in the associated series diode D3 shows that the 

corresponding expressions for each element have the same 

form. The only difference in the expressions is in the 

constants relating to the particular element. Similarly. 

the expressions for the dissipation in transistor VT2 and 

associated diode D4 have the same form. Furthermore 

comparison of eqns: 4.28(a), 4.29(a) and 430(a) with eqns. 

4.30(c), 4.29(c) and 4.28(c) respectively, shows that the 

dissipation in transistor VT1l for positive values of 

modulation index has the same form as the expressions for 

the dissipation in transistor VT2 with negative values 6f 

modulation index. Therefore, as a result of the symmetry 

of the modulation, the expressions for the average power 

dissipation in transistors VT1 and VT2 onver one cycle of 

the modulation frequency will have the same form. This 

means that when calculating the average power dissipation 

in VT2 it is only necessary to substitute the constants 

relating to VT2 in the expression for the power dissipation 

in transistor VTl. Therefore. the average power 

dissipation in the four series elements may all be 

evaluated by integration of the expressions for the 

dissipation in transistor VT1l (i.e. eqns. 4.28(a) and 4.29(a 

with M.cos(w,t) replacing M) with the appropriate constant 

substituted in place of those relating to VT1l. The limits 

of the integration are given by eqn. 5.11(a). Comparison 

of eqns. 4.28(b), 4.29(b) and 4.30(b) with eqns. 4.30(d), 

4.29(d) and 4.28(d) respectively shows that the power 

dissipation in diode Dl for positive values of modulation 

index has the same form as the dissipation in D2 for negativ
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values of modulation index. Therefore, as a result of 

the symmetry of the modulation, the average power 

dissipation in diode D2 may be evaluated by integrating 

the expressions for the dissipation in diode Dl, with 

the constants for D2 replacing those relating to Dl. The 

limits for the integration are given by eqn. 5.11l(c). 

These observations considerably simplify the writing of a 

computer program to evaluate the average power dissipation 

in each of the elements. 

Figs. 5.2(a) and (b) show the flowchart used as the 

basis of the computer program. Simpson's method © 9) is 

used to perform the integration. The integration is 

reiterated with the mesh size halved for each iteration, 

until two successive evaluations of the integral agree to 

one part in 10°. The flowchart is split into two sections: 

namely fig. 5.2(a) which evaluates the average power 

dissipation in the series elements of the output stage, and 

fig. 5.2(b) which evaluates the dissipation in the shunt 

diodes Dl and D2 of fig. 4.3. Since the first section 

(i.e. fig. 5.2(a)) evaluates the dissipation for diodes 

and transistors, it is necessary to specify in the data, 

that Viv = for the diodes. 

Due to the number of independent variables it is not 

practicable to present generalised graphs of power 

dissipation in each of the output stage elements. . However 

the theory is applied to an experimental system in section 

6.4. , and the results give a reasonable indication of 

the variation of power dissipation with modulation index.
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Fig.5.2(a). Flowchart for calculating average power dissipation in 

series elements of output stage.
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Fig.5.2(b). Flowchart for calculating average power dissipation in shunt 

diodes of the output stage,
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6. Experimental work 
  

OVE: Determination of diode and transistor parameters 
  

Eqn. 4.19 for the voltage-current characteristic 

of an idealised junction diode shows that if the diode 

is reverse-biased by a few volts then the diode current 

will be very nearly equal to the saturation current I.. 

This method would seem to be the most convenient way of 

determining I: In practice, however, the current does 

not reach a constant value as the reverse bias is 

increased. This effect is discussed in some detail in 

the literature (Reference(71\), Chapter 4,) and is, in 

general, attributable to carrier generation in the space- 

charge region. The total current accounted for by 

generation in the space-charge layer is proportional to 

the rate of thermal generation of carriers, and to the 

colume of the space-charge layer. Consequently, this 

reverse current component has the same dependence on 

the reverse-bias voltage as does the width of the space- 

charge layer, and falls in the range v2 for abrupt junctions 

to v3 for graded junctions. It is pointed out in 

reference (71) that considerably better agreement between 

the measured characteristics and the idealised model may be | 

obtained by deducing the saturation current I. from the 

measured forward characteristics. 

Table 6.1 shows a range of measured values of forward 

voltage and current for a typical silicon power diode 

(IN3880). Eqn. 4€719°for the idealised diode shows that 

it should be sufficient to determine the saturation 

current from one set of readings of forward voltage 

and current. However, Table 6.1. ‘shows that
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Measured Measured Apparent 

current voltage value of I, 

(Amp ) (volts) (Amps ) 

0.1 0.5886 5.95.10. 

0.2 0.6219 3.14.10 

0.3 0.6390 2.38.10. 

0.4 0.6525 1.85.10" 

0.6 0.6681 1.49.10 

0.8 0.6765 1.42510" 

1.0 0.6820 1.42.10. 

1.2 0.6898 1.25.10 

4.4 0.6940 1.23.10 

0.6992 1,0%.10- 1.5       

  
Table 6.1. 
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the apparent value of I. (calculated from eqn. 4.19 

for each set of values of forward current and voltage) 

decreases with increasing values of forward voltage 

and current. If the calculated value of the saturation 

current at 0.1A. is taken as reference than theoretical 

values of diode forward voltage may be calculated from 

eqn. 4.19. The results are shown in fig. 6.1 where it 

can be seen that the calculated diode voltages are 

lower than the measured values, and that the difference 

increases as the current increases. This effect could 

be accounted for by including a resistance in series with 

the idealised model of the diode. Reference (7! ) 

(Chapter 4) discusses various factors which contribute 

to the effect of an apparent series resistance. 

The voltage drop across a diode with series 

resistance is obtained from eqn. 4.19 for the idealised 

diode. 

AT I Ve TR, +S log(t+ =] (oo) 

where R p is the series resistance. 

The measured values of voltage and current necessary 

to determine the diode paramters may be chosen such 

that ed I.. The equation for the diode voltage can 

then be written as: 

kT I ote — ee Ve ky , log +] (6.2) 

Since small errors in the measured values of Vy and I, 

could lead to large errors in the calculated values of 

the diode parameters, the minimum square error method 

is applied to the measured data to reduce the effect of 

random errors. A further advantage of doing this is 

that, although the model may not completely describe the 

diode characteristics, the minimum square error method
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-                 
Pig.6.1. Characteristic for 1N3880 silicon diode (D3 in 
output stage).
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will give the "best fit" values for the diode paramters. 

The theory for the method is given in Appendix 8. 

Since the expression for the base-emitter voltage of an 

idealised junction transistor (eqn. 4.17) is identical 

to eqn. 4.19 for the diode, a resistance Ry may be 

included in the emitter of the idealised transistor. 

Therefore; from eqn. 4.19, the base-emitter voltage of 

the transistor is: 

Vi= 1,8, + AF log{ t+ (6.3) EB Tes 

The minimum square error theory developed in Appendix 8 

can be applied to the measured values of voltage and 

current for the transistor. 

Figs. 6.2, 6.3 and 6.4 show the measured and 

theoretical characteristics of the NPN transistor and 

two of the diodes used in the tests on the output stage 

to be described later in the section. The results 

obtained by applying minimum square error theory to the 

model with a series resistance agree quite closely with 

the measured results. A range of characteristics could 

be obtained from the idealised diode diode model since ; 

the apparent value of the saturation current is a function 

of the forward current as was shown in Table 6.1. The 

curves (a) and (c) in figs. 6.2, 6.3 and 6.4 are obtained 

from the idealised diode model using values of I. 

calculated from the measured results at 0.1A and 1.5A. 

These two values of current are the extremities of the 

measured range of voltage and current for the devices. 

It has been assumed in all the analytical work of this 

section that the device remains at ambient temperature 

irrespective of the power dissipated. This condition is 

not met in practice, and probably accounts for the 

difference between the results obtained from the model
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and those obtained by measurement. This hypothesis is 

strengthened by the fact that the results for the power 

transistor are in better agreement than those obtained 

for the diodes which have a smaller surface area than 

the transistor. For a given power dissipation, the 

temperature of the transistor will be lower than that 

of the diodes since the transistor has a larger surface 

area.
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6.2 Design of the output stage and low-pass filter 

The type of filter used in the experimental work 

was the single-section maximally flat LCR filter shown 

in fig. 5.1.4. For ease of experimental measurement a 

fairly low value of pulse-repetition frequency was 

chosen (25 kHz). The filter was designed with a 

turnover-frequency ( ge ):-of SkHz. With these values 

of pulse repetition frequency and filter turnover- 

frequency the ratio ee has the value 5.0, which, as 

discussed in section 3.1., is the smallest value likely 

to be used in a practical system. The value chosen for 

the load resistance Ry is 102 as this enablés reasonable 

power levels to be attained with values of supply voltage 

well within the capabilities of modern power transistors. 

The values of capacitance and inductance necessary for 

maximally-flat amplitude-response of the LCR filter are 

calculated from eqns. 3.1.13 and,3.1.15. The calculated 

values are as follows: L = 450~H 

(),.* 5,0. Kuz. 

In order to avoid problems resulting from the non- 

linearity of iron-cored coils at the frequency and current 

used in the tests, the inductor was wound on an air-cored 

former of the type shown in fig. 6.2.1. Expressions for 

the inductance of a multilayer coil, with a diameter . 

much greater than the length, are given in the literature 7%) 

and will not be repeated here. The coil former shown 

in fig. 6.2.1. is completely filled when wound with 

68 turns of 15 s.w.g. enamelled copper wire. The 

measured inductance of a coil manufactured in accordance 

With fig. 6.2.1. was 452 7H which compares favourably
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Fig.6.2.1. Coil former for filter inductance.
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with the theoretical value of 450 WH. 

The circuit diagram of the output stage, driver 

stages and filter is shown in fig. 6.2.2. This 

circuit does not necessarily represent the optimum 

configuration for the driver stages since the design 

objective was simply to supply a waveform, having short 

rise and fall times and well defined voltage levels, to 

the bases of the output transistors. Circuit economy 

was not a design criterion. It is necessary to have 

two diodes in series with the emitter of the PNP 

germanium transistor (VT2) in order to ensure that it 

does not conduct during the wrong period (See section 

4, eqns. 4.32 and 4.33).
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6.3 Measurement of static power dissipation in the 

output stage 

  

Ettinger (#4) reviews a number of methods of 

measuring power dissipation in switching transistors, 

and concludes that two of the techniques are more 

suitable than the others. The first method is that of 

measuring the case temperature of the diodes and 

transistors under: operating conditions. The case 

temperature of the device may be related to average power 

dissipation by producing a calibration curve of 

temperature against power dissipation under d.c. 

conditions. This method would seem to be capable of 

reasonable accuracy. However a number of drawbacks 

arise in practice. The maximum temperature rise in each 

of the output stage elements is of the order of 157C..ta 

50°C, In order to measure the power dissipation down to 

say, one tenth of the maximum value, it is necessary to 

measure temperature rises of the order of 1.5°C to 3°C. 

Thermocouples may be attached to the cases of the devices 

to measure the tem perature rise. However the output of 

a copper-constantan thermocouple is only 40 wVv/°C which 

makes accurate temperature measurement rather difficult. 

Kendall, Dixon and Schutte ‘73) show that much greater 

sensitivity may be obtained from thermocouples manufactured 

from semiconductor materials. The germanium thermocouple 

described by the authors has a sensitivity (2mv/°C) of the 

order of 35 times that of chromel-constantan thermocouple. 

As far as is known, semi-conductor thermocouples were not 

commercially available at the time the work was carried 

out. Loeffler (74) compares thermocouples, resistance 

temperature detectors and thermistors. He concludes 

that thermistors are desirable where measurements are 

required over relatively short temperature ranges.
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However many thermistors are glass encapsulated which 

makes the problem of obtaining good thermal contact with 

the diode or transistor more difficult than with 

thermocouples. A further problem is that the thermistor 

measures absolute temperature rather than the difference 

between the ambient temperature and the temperature of 

the device cdse,. This means that the ambient 

temperature must be controlled to better than O41 6.t 

temperature rises of the order 1.5°C are to be made with 

reasonable accuracy. Both thermocouples and thermistors 

were tested in practice but the results obtained at low 

power levels were not sufficiently reproducible to be of 

use. 

(24) ws tO The second method advocated by Ettinger 

photograph the current and voltage waveforms associated 

with each device, and multiply ordinates to obtain 

graphs of instantaneous power. These graphs can then be 

integrated, by means of a planimeter, to obtain the 

average power dissipation over one cycle of the pulse 

repetition-frequency. 

An extension of this method is described by Flood 

and Rayner “79) , The technique used by these authors is 

to obtain curves of instantaneous power by electronic 

multiplication of the instantaneous values of the voltage 

and current waveforms. They overcome the problem of 

multiplying. large bandwidth signals in real-time by using 

a conventional analogue multiplier operating on the 

reconstituted signal outputs of a two-channel sampling 

oscilloscope. A number of practical problems were 

encountered when applying this technique to the output 

Stage shown: in: fig. 612.2. The major problems were 

drift in the reconstituted oscilloscope outputs, and the 

difficulty of measuring the voltages across the series
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diodes (D3, D4 and vr) without intdroducing spurious 

"ringing" into the voltage and current waveforms. 

Since the expressions for the power dissipated in 

transistor VT1l, with a modulation index of +M are 

identical to the expressions for the power dissipated in 

transistor VT2 with a modulation index of -M, it is 

only necessary to measure the dissipation in the elements 

of half the output stage. Fi0S.. 0% 3044. Ose Ae G0 5558 

show the measured and theoretical values of power 

dissipation in transistor VT1, diode Dl and dode D3 | 

respectively. The measured values were obtained by 

integrating the curves of instantaneous power obtained 

from oscillographs of the instantaneous voltage and 

current associated with each ‘device. The theoretical 

curves were calculated from eqn.s 4.28, 4.29,4.30,4.34, 

4.35 and 4.36 of section 4. The value of I, in the 

equations, was measured in circuit since the voltages 

dropped across the output stage elements are significant 

compared with the supply voltage, and error would be 

introduced by taking the value T= Vp tlsA. The 

measured and theoretical results agree within the limits 

of experimental error. The major souree of error in 

the experimental method is in taking readings of voltage 

and current from the oscillographs. This is particularly 

so when the current through a particular element is small, 

Since a certain amount of "ringing" occured on the current 

waveform which makes accurate measurement difficult. 

This effect may be observed in figs. 6.3.4.(a) and (b) 

which are photographs of the filter input voltage and the 

currents flowing through the output stage elements for 

a range of values of modulation index M.
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6.4 Measurement of power dissipation in the output 
  

stage for sinusoidal modulation 
  

In order to examine the power dissipation in the 

output stage under conditions of sinusoidal modulation, 

the output stage and drive unit, shown in fig. 6.2.2., 

were connected to the output of the pulse-length 

modulation system shown in Chapter IT (fig. 6.1.1(a) 

(b) and (c)). The frequency of the square-wave 

generator was changed to 20kHz since this is the pulse- 

repetition frequency for which the output stage was 

designed. 

The problem of measuring the average power 

dissipation in the ouput stage for sinusoidal modulation 

is much more severe than when using d.c. modulation. 

The method based on obtaining graphs of instantaneous 

power in the output stage elements is not practicable since 

the average power over one cycle of the modulation frequency 

is required. For this reason the technique used was that 

of measuring the case temperatures of the devices. The 

case temperatures are related to average power 

dissipation by means of calibration curves produced by 

dissipating known d.c. power levels in the elements. As 

discussed in section 6.3 this method is subject to rather 

large random errors due to the small temperature changes 

in the elements at low power levels. In order to 

minimise these errors thermocauples were bolted to the 

case of each element to obtain good thermal contact, 

and the complete output stage operated in a temperature- 

controlled enclosure. Fig. 6.4.1. shows the experimental 

results, measured at a modulation frequency of 100c/s, 

together with the theoretical curves.calculated using 

the numerical integration procedure shown in figs. 5.2(a) 

and (b). Taking into account the difficulty of making
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accurate measurements with the case temperature method, 

the agreement between the measured and theoretical 

results is reasonable.
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7. Discussion of the analytical and experimental 
  

results for the output stage power dissipation 
  

The power dissipation in a pulse-length modulation 

amplifier output stage has been analysed for both d.c. 

and sinusoidal modulation. The equations for the 

dissipation are expressed in terms of the characteristics 

of the output stage elements and the low-pass filter 

characteristics. It is shown ,for two particular types 

of filter, that the filter input current can be 

approximated by a triangular wave superimposed on a term 

directly proportional to the modulation index. 3% 48 

also postulated that this approximation to the input 

current is valid for the majority of filters having a 

series input inductance. Introduction of the 

approximate expression for the filter input current 

considerably simplifies the evaluation of output stage 

dissipation. However, in spite of this simplification, 

the expressions for the power dissipation are still 

very complex, and contain too many independent variables 

to make presentation of generalised graphs of power 

dissipation practicable. 

Results obtained from measurements on a practical 

system are compared with the analytical results and 

found to agree within the limits of experimental error. 

An interesting feature of the results is that the power 

dissipation in the shunt diodes is considerably less 

than that in the series diodes. (See ‘figs. 6.3.1, 

Oot. ee5 Oc 500s ond 6.4.45). The reason for this is that 

when the shunt diode current is large, the period of 

conduction is short so that the average power dissipation 

is small (See figs. 6.3.1(a) and (b).). 

With the system used in the experimental work, the 

peak value of the modulation frequency component appearing
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across the load resistance is approximately equal to 

the supply voltage V, under conditions of full 

modulation. Therefore the system can deliver a 

maximum power output of Gy = 12.25 watts. From 

fig. 6.4.1. the total power loss in half of the output 

stage (i.e.:: V1, Dil and D3) is 0.5+0.25+0.032 = 0.582 

watts. If it is assumed that the power dissipation 

in the other half of the output stage is also 0.582 

watts, then the output stage efficiency is 92% at full 

modulation. Greater efficiency can be obtained by 

increasing the supply voltage (V;) and the load 

resistance (Ry) such that the peak current through’ 

the load (i.e. I = We, ) remains constant. Under 

these conditions the power dissipation in the output 

stage elements is unchanged but the available output 

power is increased. Therefore, in the design of a 

system, the supply voltage should be made as high as 

possible in order to reduce the load current and hence 

increase the efficiency.
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CHAPTER. IV 

The Generation of Non-linear Functions by . 
  

means of Pulse-length Modulation 
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ie General 
  

In the analysis of error in practical pulse-length 

modulation systems (Chapter II) it is shown that the 

amplitude of the demodulated system output is proportional 

to some non-linear function of the modulating input when 

the sampling waveform is not a linear time function. The 

objective of this chapter is to examine the possibility of 

making use of this phenomenon to produce systems having a 

prescribed non-linear transfer function. 

Very little work appears to have been published on the 

use of pulse-length modulation for this purpose. Schmid 79) 

describes a method for producing a system with a sine 

(or cosine) transfer function. The principle of operation 

is to use a length-modulated pulse to gate a sinusoidal 

input to an integrator. Thus the output of the integrator 

aS 5 t, i 

_[sinfest).dt = | cos(wl,) (1-1) 

:“o 
where ty is the length of the gating pulse. 

If the pulse length ty is made directly proportional to 

the modulating input Ysa) then the integrator output is 

proportional to cos(wkV,.). The system therefore has a 

cosine transfer function. A limited amount of analytical 

work is given in the paper, and a cursory examination is 

made of the problems introduced by time-varying system 

inputs. A later paper by Schmia‘?7) describes a more 

sophisticated version of the system. He also shows that 

any required transfer function can be achieved if a waveform 

can be generated having a time-function proportional to the 

derivative of the required transfer function. Klein and 

den Hertog (78) utilise pulse-length modulation with 

non-linear sampling waveforms to produce non-linear transfer 
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functions. They state that incorporation of a non-linear 

pulse-length modulator in the feedback loop of an 

operational amplifier gives rise to a system having a 

transfer function directly proportional to the time- 

function of the sampling waveform. The description of 

the operation of the system is based largely on intuitive 

reasoning rather than on mathematical analysis. However 

the method described by these authors appears to offer 

interesting possibilities, and the work to be described in 

the following sections is an attempt to cstablish a 

theoretical basis for the system. 
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Zs Static analysis of pulse-length modulation systems 

with non-linear sampling waveforms 
  

The basic pulse-length modulation system is shown 

im £40. 1 hel% The output of the differential level- 

detector changes state whenever the instantaneous value 

of the sampling waveform v(t) is equal to the modulating 

input voltage Vi: If the switching instants of the level- 

detector are denoted as ty and ts then: 

..:" v, (ty) (2.1) 

Vy Z vy (t2) (2.2) 

Solution of the above equations for ty and t, will give 

expressions for the switching instants which involve the 

‘time inverse of the sampling waveform time function. This 

point is clarified if the sampling waveform v,(t) is 

defined by a specific function (e.g. vy (t) = V,sin(ut). 

Substituting v,(t) = V,-sin(wt) in ‘eqns. 2@.l°and 2.2, 

and solving for the switching instants, gives: 

ty Pe Vy 

Bia 5 etn | sei 

re | es (x) 
é 

é Oh V2 (2.4) 

where
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Fig.2.2. Waveforms for system with sinusoidal modulation.
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The waveforms associated with the system are shown in 

£0.25 o% As a result of the symmetry of the sinusoidal 

sampling waveform, the expression for t, may be rewritten 

as: 

te pipe ot (2.5) 
Te Te 

Passing the length-modulated waveform through the low- 

pass filter shown in fig. 2.1 is equivalent to taking the 

average value of the waveform. Therefore, from fig. 2.2: 

Ee (3.4) 

Substituting eqns. 2.3 and 2.5 in eqn. 2.6 gives the 

following expression for the demodulated output of a 

pulse-length modulation system with a sinusoidal 

sampling waveform: 

v, = 22 sia Or] (e.7) 

Thus the system transfer function is proportional to the 

time inverse of the sampling waveform. Pulse-length 

modulation can therefore be used to produce a prescribed 

non-linear transfer function provided that a high 

frequency waveform can be generated which is the time 

inverse of the required transfer function. A further 

application is in generating very low frequency waveforms. 

If the system modulating input is a low-frequency 

triangular wave then, from eqn. 2.7, the system output 
A ed: : 
is a sin ~ waveform having the same frequency as the   triangular wave. Fig. 2.3 shows the waveforms of a 

system operating in this manner. In a practical system 

the ratio of the sampling waveform frequency to the 

modulating frequency would be much greater. 

 



  

(375 ) 

v(t) V, sin@t) 

Inputs to ; \ \ : | 
level-detector NE We 

  

Level-detector 

output 

            

Demodulated 

system output     
Fig.2.3. System waveforms for sinusoidal sampling 

waveform and triangular input waveform.
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The pulse-length modulation technique for generating 

non-linear transfer functions would be more useful if the 

system transfer function could be made directly proportional 

to the sampling waveform time function rather than 

proportional to the time inverse of the waveform. This 

condition may be readily achieved by incorporating the 

modulation system in the feedback loop of a high gain 

operational amplifier as shown in fig. 2.4. 

Let the transfer function of the pulse-length 

modulation section be: 

= F(\) ye) 
where ASS is a function of the overall system output 

Vo: Analysis of the system leads to the following 

expression relating the input voltage (V;,,) -and the 

output voltage Vere 

eat We 2 la on (2.9) 
in R, XK R, 

If the amplifier gain (&) is large then eqn. 2.9. 

reduces to: 

V, #——.F(V,) (2.10) 

It was shown previously that the transfer function of 

the pulse-length modulation section is proportional to 

the time inverse of the sampling waveform vo (t). Now 

it can be seen that solving eqn. 2.10 for y. involves 

inverting the function F(V,) which is itself proportional 

to the time inverse,of v,(t). Therefore the complete 

system transfer function has the same form as the time 

function of the sampling waveform. This observation is
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modulation.    
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clarified by considering a particular function for the 

sampling waveform (eg. v,(t) = V,sin(w.t)). 

From eqn. 2.7, for the transfer function of a pulse- 

length modulation system with a sinusoidal sampling 

waveform, eqn. 2.8 may be written as: 

AN ic, Ee 
F(V,)= 42 sin'(“} atl (W)=2e sinl(Me) (2.11) 

Substituting eqn. 2.11 in eqn. 2.10 and solving for 

V,» gives: Sen: 

V,=—-\, sin Nae oe (2 : 12) 

Thus the system transfer function has the same form as 

the time function of the sampling waveform. Fig. s.9 

shows the system output evaluated from eqn. 2.12 for a 

triangular wave input. 
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Pig.2.5. Output of system shown in fig.1.4. fora 

triangular wave input and a sinusoidal sampling waveform. 
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3e Spectrum analysis of a pulse-length modulation 
  

system with a non-linear sampling waveform. 
  

The generalised spectrum analysis of non-linear 

pulse-length modulation developed in Chapter II could 

be used to ewaluate the frequency spectrum for the 

output of the basic modulation system shown in fig. 2.1. 

However this analysis applies to sinusoidal modulating 

inputs only. Since the major application of these 

techniques is expected to be in low-frequency function 

generation, a spectrum analysis is required for triangular 

wave modulating inputs. Furthermore, for reasons 

discussed in section 2, the system with the pulse-length 

modulator in the feedback loop of an operational amplifier 

is likely to find greater application than the basic 

system. Therefore the spectrum analysis will be 

concentrated on the feedback system with a triangular 

wave modulating input. 

Substituting eqn. 2.8 in eqn. 2.10 gives the following 

resuit: | 

Vise Bb. (321) 

Thus the demodulated output (Vz) of the pulse-length 

modulation section is directly proportional to the input 

Vine 
waveform being used. It is therefore possible to carry 

and is independent of the particular sampling 

out a generalised spectrum analysis of the system when 

operating with a triangular wave input. The 

frequency spectrum of a pulse-length modulated wavetrain 

of 2N+l pulses is given in Chapter LL Section .4.1, 

eqn. 4.1.1) and is rewritten below for convenience.



  
  

  

eee Mess 
where: ne is the period of the pulse-repetition 

frequency Wo 

a is the unmodulated pulse-length 

ty, and ta, are the time deviations of the 

leading and trailing pulse edges respectively. 

In order to evaluate the frequency spectrum from eqn. 3.2. 

it is necessary to develop expressions for the time 

deviations of the pulse edges. 
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From fig. 3.1. the time deviations may be expressed as: 

t 
in O t. (3 08) 

(3.4) 

Nigga: 
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If the sampling waveform is symmetrical about its peak 

value (e.g. a sine wave) then: 

  

  

eld (3.5) 

Fig. 3.1. shows that the unmodulated pulse-length Ti is 

given by: 

[aa [ t —t 3.6 
° c *Iy, =0 ‘lv, 20 ( ) 

Now if the average value of the output of the pulse-length 

modulation section is to be zero when the modulating 

input Mix is.zero then, from fig. 321: 

Te T= (237) 

Substituting eqns. 3.5 and 3.7 in.eqn. 3.6 gives: the 

following expressions for the unmodulated positions of the 

pulse-edges: 

  

  

  

. ete 
hy oth (3.8) 

Te | 
t =5-—= 3. 

Substituting eqns. 3.5., 3.8 and 3.9 in eqns. 3.3. and 

3.4 gives: 

bat ie te ae 3.10 
J ee C . ( ) 

Eat ty ae , Eaat t) 
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Now the demodulated output (Vz) of the pulse-length 

modulation section is equal to the average value of the 

modulated waveform. Therefore, from fig. 3.1 

a ti t, Vo=2h [== + 0-5] (3.42) 

Furthermore, eqn. 3.1. shows that Vz is directly 

proportional to the modulating input Vea! Thus: 

ee eee ee 5 Mos thal +055] (3.13) 

Substituting eqn. 3.5. in eqn. 3.13, and solving for - 

gives: . 

t R | 
cig a aval (3, (a) 
ap hh Ry 4. 

Substituting eqn. 3.14.in eqns. 3.10 and.3.11 for the time 

deviations of the pulse-edges gives: 

ta. ta _ Vin, Re | 
ea Ee ee 

Since the maximum time deviation of each pulse-edge is 
A 

ot te » the peak value i. of the modulating input is: 

V=h 7 (3.16) 

If the modulating input voltage es is a triangular wave, 

as shown in fig. 3.2., then eqn. 3.14 becomes: 
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t t t | 
ae aa ae 

fa. Ube Al say L | (8) 

where M9 is the modulation index. 

It is now possible to evaluate the frequency 

spectrum for the output of the pulse-length modulation 

section by substituting eqns. 3.7, 3.16 and 3.17 in eqn. 

3.2. and then allowing N to tend to infinity. The limit 

of eqn. 3.2. as N approaches infinity will not be derived 

here since the limiting process for similar equations is 
(49,56). covered in detail in the literature Using the 

methods of references (49,56), eqn. 3.2. becomes: 

: : ra, fa * 2 fexa[ joo (t+ ar tu) = 
n=- co 

ate lee Peo 
where tat and tai are given by eqns. 3.16 and 3.17. 

  
The rearrangement of eqn. 3.18 into a useful form is 

carried out in Appendix 9., and only the result is given 

here. 
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Pte _ Lh i re 

2h \ cam SCE) sine) cesfno.t) + 

+00 

2h : % a grE TS [ease cos (BF) cos(EM)— 
n=\ pl (nnJM (Fa) . 

i+ erie sin(S) sin(E ) cos(ney,+ pa) t (3.19) 

where ya is given by eqns. 3.16 and 3.17. 

The spectrum given by eqn. 3.19 consists of an undistorted 

triangular wave component (hh bye. ) » and terms at all 

odd harmonics (nw, 1..0F the pulse repetition frequency. 

Sideband Eoipanente (nw, “pon ) exist for all values of the 

integer n. However these sidebanes are not present for   
all values of the integer p. The sidebands of most 

interest are the lower order sidebands of the pulse 

repetition frequency (i.e. n=1) since some of these fall 

within the system pass-barid and cause distortion. For 

n=1, sidebands exist for only even values of p. Evaluation 

of the sideband amplitude for the special case [(%m)-!]=0 

must be carried out by applying L'Hopital's rule to eqn. 3.19 

However, this condition does not occur when considering 

Ssidebands of only the repetition frequency, so the 
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expression for the amplitude will not be derived. Fag, Ds 

shows the amplitudes of the sideband components as a 

function of the modulation index M. When making use of 

this diagram it should be remembered that w, 28 only the 

fundamental frequency of the triangular input waveforn, 

and the system bandwidth must be sufficient to pass the 

triangular wave without significant distortion. If the 

specification is made that the sideband distortion must be 

less than -60dB, then fig. 3.3. shows that the frequency 

of the sideband (o 7200.) must be greater than the highest 

harmonic required for the triangular wave. Assuming that 

harmonics up to 100, will adequately represent the 

triangular wave, the following relationship is obtained: 

(W200, % 1003, 

Therefore: 

Gry Sts. . ye {e.20) 

Thus, a practical function generation system based on the 
‘ 

schematic circuit shown in fig. 2.4, can now be designed. 
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Modulation Index M 
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Fig.3.3. Sideband amplitude for triangular wave 

modulation.
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4. Experimental work 
  

. The experimental verification of the analytical work 

of the previous sections is divided into two parts. The 

first part is measurement of the frequency spectrum for a 

pulse-length modulation system with triangular wave 

modulation. The second part is a brie® examination of 

the performance of a practical system based on the 

schematic circuit. shown: in fis. .274, ; 

The circuit shown in fig. 4.1. was used to produce 

a pulse-length modulated wavetrain with triangular 

modulation. Since the sampling waveform is triangular, 

the time deviations of the pulse edges are directly 

proportional to the amplitude of the modulating waveform. 

Thus triangular modulation is achieved by using a 

triangular modulating waveform. This method of achieving 

the required modulation was chosen in order to ensure that 

the measured results were due to the modulation process 

rather than spurious effects introduced by the practical 

realisation of the function generator system shown in 

Sig. 254, Very close agreement is obtained between the   
measured and theoretical results as may be seen from fig. 

4.2 where the measured values of the sideband amplitudes 

are plotted for a range of values of modulation index M. 

The theoretical curves in the diagram are calculated from 

eqn. 3.19. 

Fig. 4.3 shows a complete function generator system 

based on the schematic circuit of fig. 2.4. Low-pass 

filtering of the pulse-length modulated wavetrain is 

perrormed by the networks RiCy and RoC,. The amplifier at 

the output of the RC) network is an operational amplifier 

with unity series feedback to achieve a high input 

impedance. The purpose of this amplifier is to prevent 
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loading of the RC, filter network. The symmetry, 

about Ov., of the pulse-length modulated wavetrain is 

adjusted by means of variable resistance RV1. Extensive 

tests were not carried out on the system as its purpose 

is merely to demonstrate the general principles of the 

technique. Fig. 4.4 shows the system input and output 

waveforms when the sampling waveform is a 100kHz. sine.: 

wave. The output waveform is seen to be a sine wave having 

the same frequency as the triangular modulating input 

waveform as predicted by the analytical work of section 3.
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Fig.4.4. System input and output waveforms for the 

practical system with a 100 kHz. sampling waveform.
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Ss Discussion of results 
  

A pulse-length modulation system has been described 

which may be used as a non-linear function generator or 

as a system having a non-linear transfer function. It 

is thought that the system could find extensive application 

as a means of generating functions such as sinusoids, 

exponential waveforms etc. in the very low frequency range 

where the capacitor and resistor values required by 

conventional techniques are impracticable. In order to 

produce a particular function the system requires a high 

frequency version of the required function and a triangular 

wave at the required frequency. Very low frequency 

triangular waves can be readily generated by digital tech- 

niques (e.g. By summing weighted outputs from a binary 

counter). In theory there is no lower limit to the 

frequency which can be generated since binary stages can be 

cascaded to give the required frequency, no matter how low. 

Although the analytical work presented in the 

preceding sections establishes some of the theoretical 

foundations for the system, there are still a number of 

points which require investigation. The major one is 

that in the spectrum analysis it is assumed that the © 

modulating input to the pulse-length modulation section is 

simply the required system output waveforn. In practice 

however high frequency components also exist in this 

waveform due to, components of the pulse waveform being 

fed through the operational amplifier. Since filtering 

of the pulse waveform is carried out within a negative 

feedback loop there is a limit to the rate at which the 

filter frequency response can fall off without producing 

high frequency instability in the system.
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CHAPTER V 

Conclusion 
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1. Summary and discussion of results 
  

A survey of the literature relating to pulse-length 

modulation amplifiers has revealed the lack of information 

on the design of a practical system. Most of the 

published work either deals with ideal systems or else 

presents a complete amplifier circuit with very little 

indication of the methods. used in the design. Since 

the work described in this thesis was started two papers 

have been published 44245) which make some progress 

towards establishing a theoretical basis for the design 

of practical pulse-length modulation amplifiers, 

particularly with regard to output stage design. 

From a study of the frequency spectra of pulse- 

length modulated wavetrains produced by both periodic 

and natural sampling it has been shown that the natural 

sampling process is inherently more suitable for use in 

pulse-length modulation amplifiers. Consequently ail 

the analytical work is concentrated on systems using 

natural sampling. A study has been made of the static 

error in the demodulated output of both single-edge and 

double-edge modulation systems which have a number of 

practical imperfections. The results relate the system 

error to the system parameters thus enabling a practical 

system to be designed on an analytical basis rather than 

an empirical one. Analyses of the frequency spectra of 

the system outputs have been developed from the results 

‘of the static error analyses in order that harmonic and 

sideband distortion can be determined for a practical 

system. It has been shown that, in general, the error 

and distortion in systems using double-edge modulation 

are significantly less than in single-edge modulation 

systems. The results of the analytical work compare 

favourably with measurements made on an experimental system. 
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Analysis of power dissipation in the output stage 

of a pulse-length modulation amplifier has been carried 

out in two stages. Firstly expressions were obtained 

relating the dissipation in the output stage elements 

to the modulation index and the parameters of the low- 

pass filter. It has been shown that the input current 

to the low-pass filter may be approximated by a 

triangular wave superimposed on a constant term. Use 

of this approximation leads to some simplification of 

the analysis of output stage dissipation. The second 

stage of the analysis was to allow the modulation index 

to vary sinusoidally and then integrate the power 

dissipation expressions over one cycle of the modulation 

frequency. This is only an approximate method since the 

expressions relating the dissipation to the modulation 

index were derived under the assumption that the pulse- 

length modulated waveform applied to the output stage is 

an infinite wavetrain with a constant modulation index. 

The analytical results compare favourably with measurements 

made on an experimental output stage and low-pass filter. 

The efficiency of the output stage was shown to be greater 

than 90% for full modulation which is a considerable 

improvement on the maximum theoretical efficiency of 78.5% 

for a Class B output stage. In order to ensure efficient 

operation of the output stage, diodes were connected across 

the output transistors. It has been shown that these 

diodes introduce step discontinuities into the voltage 

waveform appearing at the filter input. Further work is 

required to determine the effect of these discontinuities 

on the system distortion.



  

Observations made from the analyses of error and 

distortion in practical systems ked to a proposed 

scheme for producing non-linear transfer funetions using 

pulsetength modulation techniques. A study of the 

relevant literature revealed that a description of an 

identical system had already been published ‘7®) , 

However the description given in the paper was based 

largely on intuitive reasoning. Since. the system 

appears to offer a convenient means of generating very 

low frequency functions, an analysis of the operation of 

the system has been presented and the results compared 

with those obtained from an experimental system. The 

analysis covers only a few of the more fundamental aspects 

of the operation and it is thought that the general 

technique of non-linear function generation by means of 

pulse-length modulation could provide a fruitful topic 

for further research.
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Appendix 1 

Numerical Evaluation of the Static Error in a Single-Edge Pulse- 

Length Modulation System with Finite Integrator Gain 

Equations 3.1.18, and 3.1,19. of chapter II give the 

static error E of a single-edge modulation system which utilises 

an operational integrator with finite gain to produce the sampling 

waveform, The expressions are rewritten below for convenience. 

    

eo ZUleRICR | “Te 
Balt rT Hat oe [Gea] tal(-ne) vn (Al ; 1) 

co 

f J(l+a)CR Po a n 

J9 ee {eg Ls oe ZEA -) i (“-k) | (At 2 } 

n=2 

  

A ae   
Care has to be taken in evaluating either of the above expressions 

: ; , eo os 
when the normalised time constant (iF aj)CR is small, 

> Te 

(1 +A&)CR 
tends to zero, calculation of the 

Consider the term 1 - exp which occurs in 

    the factor K, As 
CL. +:a0jCR 
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numerical value for the term involves taking the difference of 

nearly equalnumbers, This may be overcome by writing a 
Te 

  

Maclaurin expansion for the term 1 exp (7 +X)CR 32 eee 

2 | 3 

Ve ce - (eee) +3 hea} - Sige) =") 

(cer) be Tice 

- pr Pp 

oe 
° Ko Paes . (Ai. 3) 

[+ ex we 
P (lea)CR 

Sufficient terms may be taken in the series for K to give the 

required accuracy. 

The second term, in the static error expressions, which 

presents problems of numerical evaluation, is the constant term:   ee 2(l+a)CR \ ~T. 
ee | + a es L[isexp( qeea)| (Al. 4) 

Again, as the normalised time constant tends eee 
(1 +&)CR 

to zero, the difference of nearly equal numbers is required, 

This is not very obvious at first sight. However, if the 
T 

exponential term is approximated by 1- c » then the 

1% R 
constant term, equation Al.4., becanes | ay 

ye 2(l+x)CR | 3 
C= | + ne log + +|- act 

Expanding the logarithmic term as a series gives: 
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Rem age ed Je a ee 4 : 

Tae ie. rae Fara Woe | (Al. 5) 

It can now be seen that the numerical evaluation of C, involves 

taking small differences. The approximate expression of equation 

Al1.5. is inadequate, since only one term was taken in the series 

for the exponential, Extending the method by taking further terms 

in the exponential series would produce a very unwieldy expression 

for the constant C,. A better way of carrying out the evaluation 

will now be described, For ease of writing the equations, let: 

an ae 2 (lo [exp()| + log[cosh (=| (ai. 6) 

it 
Now cosh( 5 ) may be expanded 6 58) as an infinite product: 

co 

h (& e Ol ee he 
2 ( (p+ 1)" =: ( ) 

rs 

Substituting equation Al. 7, into equation Al,6, gives:
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ik a es | log (1 D Gort Wr =) (a1 8) 
p=0 

Expanding the logarithmic term in equation Al,8 as a Maclaurin 

series gives; 

om v Ei = \ 
c-t) 1(3) (-1) ‘eae (ar. 9) 

n=l p=o 

Thus, a series representation has been obtained for Cg and it 

is not necessary to take small differences when making a numerical 

evaluation, 

Consider the term corresponding to n = 1 in equation Al, 9 

*< 

Read 2m) & (2p+1) ooo) 

eee 

Now the numerical series in equation Al.10 does not converge 

  
very rapidly. To evaluate the series to an accuracy of eight 

significant figures, it is necessary to take approximately 10 

(57,59) 
terms. However, series of this type have a sum which 
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can be expressed as; 

so oo 2 hae és an 

en: gis if 8, (2p+t)* as 2 (2n)! : 

  

  

  

p20 p=! 

: th : 
where Bon is the 2n Bernoulli number: 

a | 
tn Coe aril 

iP mn 
m=] 

oO 
Bernoulli numbers are tabulated in the Ufsrature uy and 

substituting their values in equation Al,11 gives the following 

expressions: 

| Te 

) ee Se iH   
ve pai = ae (Al. 12()) 

  

6 ee es | 2 Al. 12(c) 
(2p-1)° 604.80 ( )
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’ . : 

| WeoZeSs§ 
= Al.12(d) 

(ap-1)* 2419200 ( «)) 
p=! ‘ 

co 10 
3) 

| io : (AL. 12()) 
(2p-l)'° 2903040 

pal 

co 12 

>= pies (AI .12(6)) 
(2p-1)'* 3193344000 

p=t 
CO 

Evaluation of the term ) Se ; where 
n 

p=l (2p a 1) 

n > 7, only requires a few terms in the series for an 

accuracy of eight significant figures. Thus, the expression   for the constant term C. becomes: 

coe ew Lae) my Lfath Peo 
2 3 604.80 

AED kas Ce eee 
4 \m?} 2149200 5S \4) 2903040 6\*) 3193344000 

oo co
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= ? 85 \ Ml ao on : ay Ss a hid Z 

N 60480 SN 20965 60,0 \h 515200 N 51093504000 

  

= n+1 an-| | 

\ tH ch , = a (Ar.t3) 

n=7 ee 
      

a 
c 

where Es (i+ )CR 

If terms up to ae are taken in the above series, then the 

accuracy is approximately six significant figures for T, = 1. 

As T, is reduced, so the accuracy improves rapidly. 

The system static error E, may now be written as; 
2 

co 

a © wey c= c. mel : (Ar.14) 

esas 

where 

C {~exp (-T,] 

\+ exp (-T,,)
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From equations 3.1.15, and 3.1.17. of partII section 2.1.: 

i \ 
gale leg Lf exp (-T, WL ae Spm 

which may be rewritten as: 

E,=E, + M(i- 5] (Ar .15) 

oH [\+ exp ‘i )| ~2[1 - exp T)] 

yy A [ I+ exp (Ty) 

  wh = Ben 

Expanding the exponential terms as infinite series and 

rearranging the expression leads to the following result: 

Ce. Se (ar .16) 

where 

2. 
D= ————_- ) 1), Te) im ih (\- et Al o17 

Je exp( “Ww) ¢ MW) p! ee ( 

By making use of the series methods outlined in this 

appendix, the system static errors, Ey and Eo may be 

evaluated for small values of normalised time constant T 

without large rounding errors due to subtracting nearly equal 

numbers, These rounding errors will still exist when (for 

a given value of 7 i ) the value of the modulation index Mis
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such that the error tends to zero. However, this is not 

important, since the maximum value of the error (for a 

given value of T,, ) is evaluated accurately and the rounding 

errors only occur when the modulation index is such that the 

error is very much smaller than the maximum value. These 

methods were used in calculating the curves shown in figs. 

3.1.4. and 3.1.5. of chapter 2, which show the system 

static error as a function of the normalised time constant and 

the modulation index, Fig. Al.1. is a flow chart of the 

method used for evaluating the system error on a digital 

computer,
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Compute successive terms 

A in series for K and 

form the partial sum 
Q 

o ) As 
‘ 

-7 
until AX K.10 
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Compute successive terms 
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form the partial sum 
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Fig.A1.1. Flowchart for evaluating static error in single-edze 

modulation system with finite gain. 
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Appendix 2. Derivation of the expressions for the positions 

of the pulse-edges in a single-edge modulation 

system with finite amplifier bandwidth 

The position t, of the leading edge of the pulses 

of a single-edge pulse-length modulation system with a 

bandwidth-limited integrator amplifier were shown (Chapter TI, 

Section 2,3.1, equation 2.3.16) to be defined by: 

\ | 
f - exp(-k t)- WA, explcht)| = 

[= ", r 
    

    

| | 
Eom - = bh exp(-kT)— agent (a2. 1) 

2 

  

(52 | CARER LCR ok 

bd] Tattler pene i 4 (a2. 2) 

  Po Tat (i4a)cR -/ ae 
ke (a2. 3) 

Re atk TCR TGR [ 

Since a direct expression for ty cannot be obtained from 

equation A2.1, it is required to represent tj; as a power series 

in terms of the modulation index M, 

ee =) aM (A2.4) 

n=0 

Before deriving expressions for the coefficients an it is 

convenient to rearrange equations A2,2 and A2.3, With the above 

form of the expressions, the effect of allowing the amplifier time
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constant T, to approach zero is not readily deduced. Also, 

numerical evaluation of the coefficient ky will be subject to 

rounding errors when T, is small, since the difference of 

nearly equal numbers is required. From equation A2, 3 

k= +(e he L. on ¥ 

2 Ol eee Ta-CR \ Th + (14 CR 

The square root term in the above equation may be expanded by 

  

the binomial theorem to give; 

  

  

| 
Ce sore (A2. 5) 

2 (ita)CR | | + ae a 

where 

ts 2 iS 
gi] 7s ul oe 218. Sit 2D 

aslett (le te Ge) eas (pe) +----- as) 

From equations A2,2, A2.3 and A2,5; 

kh] ) (82.7) 
+ a 

| (l4+c)CR 

The effect on k, and ky of allowing the amplifier time constant 

T, to approach zero is now readily seen. 

For convenience of writing the equations in subsequent 

analytical work, equation A2,1 will be rewritten as:
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I~ (IHM)D = exp (kt, + exp(-k, (a2.8) 
: ky, 

where: 

  

| 
Ds +!" = a AKT) ay PAE) (A2. 9) 

There are a number of different approaches to the problem of 

obtaining a power-series representation of ty from equation 

A2;8, The first of these is to expand the exponential terms 

containing t; as infinite series, thus producing an expression 

for the modulation index M as a power series in terms of th. 

A series for t,; in terms of M can then be obtained by reversion 

of the series for M in terms of ty wry ‘However, as 

may be seen from equation A2,7, the term k, tends to infinity 

as T, tends to zero, so the series for exp(-k,t,) will converge 

very slowly. Evidently, the series reversion method is 

, unsuitable. The second method involves solving: equation A2,.8 

numerically for a range of values of modulation index M and then 

using a polynomial curve-fitting method (645°) to obtain a 

polynomial for t; in terms of M. There are a number of 

difficulties entailed in applying this method, the major one being 

the numerical analysis problems involved. When the integrator 

gain c is large, the coefficients of terms involving powers of 

M_ greater than unity will be small; extreme care would thus be 

required in evaluating these coefficients by a curve fitting
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technique. The third method makes use of Maclaurins theorem, 

If the power series for t equation A2,4, isa 

  

  

1 3 

Maclaurin series, then the coefficients a, may be written as; 
‘ : 

t oy ee (A2.10) 
. an M=0 ae, 

where t is the unmodulated position of the pulse leading edge. 

n 

ae th oe CAC 1d) 
Fe AS   

The power series for t is, therefore: 

| 

= 1) it oe 

Thus, the problem is that of obtaining successive differentials of 

  i (A2.12) 
  

ty with respect to M. 

| Differentiating both sides of equation A2.8 with respect 

to M gives: 

copa, ~k, dt, “De | Renn the 4, eet) iM     

ace Tease eae (A2.13) 

Equation A2,13 may be differentiated to give the following 

expression for the second differential: 

  

‘ k exptk t J—k exp(k,t,} dt \ \ ar re 

eect 
(A2.14) 

dM = k [explk,t, )-expk,t,}| ;
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Substituting equation A2,13 in equation A2, 14; 

  
  

dt. > A fl kexp(k,t.)-k,exp(k,t,) (A2 4 5) 

kak | [exp kt )-expCk.ti)] 

It has not been found possible to obtain a general expression for 

the nth differential of t, with respect to M, since equation 

A2,13 (for the first differential) is a function of a function, 

“ differential of a composite Expressions are available for the n 

function 7): but when applied to equation A2,13 they give 

expressions which are too complex to be of use, 

Expressions for higher-order differentials are 

obtained by repeated differentiation of equation A2,15, Setting 

  

  

  
  

ty * ty in the expressions for the differentials, and substituting 

in equation A2.11, enables the coeffidents a, to be written as; 

t aa (a2. 166) 

a= F Geet (a2. 1.60) 
‘2 | A, A, | Fe : 
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ROA fh 53 | (a2 .16(F)) 
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cS (a2. 1 6(h)) 

° 

(A2.17¢)) 

  

Has) | (A2.17(6)) 
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Substituting equations A2.5 and A2,7 in equation A2,9 enables 

the term D_ to be rewritten as: 

A, 
d= 7 Ke A, expAT, 

    
  

A, 
aaa i, expC AT, } (A2. 18) 

The unmodulated position t of the Jeading edge of the pulse 

is obtained by numerical solution of equation A2.8 with M=0. 

  a eth) - 1 a exp(~ k ,)=I- (A2.19) 

Substituting equations A2,5 and A2.7 in equation A2.19: 

  
  exp(-AT, bye -D (a2.20) A Ba Ay 

Rea SteN ae NT 
{ im 

oe : : ty 
Thus, the coefficients a, in the power series for 7 have 

¢ 
been expressed in terms of the two variables, Ty and Be ‘ 

In order to evaluate th   from equation A2,20, use 
ij : Cc : : 60 
is made of Newton's successive-approximation method ( ) 

° ° ty : | 

) - (GL-T (2-2   

where; 

+ ys ; th ty (— )a41 is then+1°° approximation to —— , 
Te - 
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° 

  

  

  

  

  

f (a ), 18 the equation defining —«— , evaluated with the nth 

approximation to “i 2 

f(z 3 ¥ is the first deni vate of the equation defining 4 

eae with the nth approximation to fi : 
c 

From equation A2, 20: 

° 

F(=)= a exp(- Avl,, tee exp CAT, Te }-teD (a2. 22(0))   

  

|= nikal exp(-ATT, Ey Ad exp(-AT, (A2 ‘ 22(b)) 

A,~A, ONT! Am Ay 
F( 

Substituting equation A2,18, for D, in equation A2, 22 gives: 

f(#)- ay exp CAT, a . exp(-AT,)- =| = 

Rk Ale ep AT, #)- pega) | (a2. 23) 
Considerable care has to be exercised when evaluating equation 

an
eT
S 

  

  

A2,23 for small values of Ty , since the second of the square 

brackets on the right hand side of the equation involves taking the 

difference of nearly equal numbers. Evaluation of the first of the 

square brackets does not present any difficulties since, for all 

practical values of the system parameters, the term A, Ty is 

considerably greater than unity. Expanding the exponential terms 

in the second of the square brackets enables f ( TS) to be 

written as: 

te) ; oe exp (AT, aa au )- + : 
  

  a (A2.24)
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Rounding errors will still exist in the evaluation of (=—) from 
c 

equation A2, 24, but they will be very much smaller than the errors 

incurred by evaluating fio) directly from equation A2, 22, 

1 Evaluation of f ( 7   
c 

) is straightforward, so that: 

(A2.25) 

In order to make use of Newton's successive- 

approximation method, it is necessary to have an initial estimate 

  of at . This could be taken as zero. However, a better 
c 

approximation is 0.5, since the unmodulated position aT of the 

leading edge of the pulse in an ideal single-edge pulse-length 

Te 
2 e 

The terms A, and Ag can be evaluated directly 

from equations A2,17(b) and A2,17(c), 

The term Di - x) which occurs in all the 
Z 

modulation system is bi a“ 

  

expressions for a, , cannot be evaluated directly from equation 

A2,18 without incurring significant rounding error, since the 

Al 
ot op 
  term 1 - 

ofr 

exp (-Ag Ty) approaches zero for small values 

N e 

From equation A2,18; 

ot MOV Phyo aks ‘ . 
ofr | ae x} rertaleah) 

a 

  

Nee (-AT, (nz.26) 
t a
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Expanding the term exp(-A5 Ty) as an infinite series leads 

to the following result: 

oo 

ated asta) [hel and} abe tan)]} (2.20 
n=\ 

  

Although rounding errors will still exist when evaluating 

Peers ao) from equation A2, 27, — will be considerably 

less than ice evaluating Dig - os —— ) directly from 
Ag 1 

equation A2, 18, 

The numerical methods outlined probably do not 

represent the optimum methods of evaluating the equations, but 

are adequate for the purpose. Fig. A2.1 shows a flow chart 

of the method used for evaluating the expressions on a digital 

computer,
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Fig.A2.1. Flowchart for computing the coefficients a, toa,. 

 



  

(420) 

Appendix 3. Derivation of the expressions for the positions 
  

of the pulse-edges in a double-edge modulation 
  

system with finite amplifier bandwidth 
  

The positions of the leading and trailing edges of the 

pulses produced by a double-edge pulse-length modulation system 

utilising a bandwidth-limited integrator amplifier were shown 

(Chapter IT, section 3,3,2, equations 3.3.40 and 3, 3,41) to be 

defined by the equations: 

Acre - al 

afesfoltsg “ 5. ficexg SSPE it | (a3.1) 

[1 ee) aft Bh era 
kp -k, 

“Ai afi-exp ERY [ecg | (40.2) 
oe 

  

exp(k,t,} 
  

  

  

  

  

  

  

Since direct expressions for t, and ty cannot be obtained from 

equations A2,1 and A2, 2, it is required to represent the 

switching points as power series in terms of the modulation index 

M. 

fee) amt LAs. 3) 

B-5-) bm , (A3. 4)
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It was shown in Appendix 1, in relation to the 

single-edge modulation system with a bandwidth-limited 

integrator amplifier, that the terms k, and k, can conveniently 

be expressed as: 

  

\ | 

k= (l+o)CR i+ pee Ay he: 5) 

  

4 ee oa = (Ray ae he A,) (A3.6) 
  

(tox) 

h 

Shea) ae eee ea) 
ae CRIT, 2 

ee waa te ee 

es — [Bri+«] 
The various possible methods of obtaining expressions 

=
)
 

  

for the coefficients in the power series representation of the 

switching points tj and tg were discussed in Appendix 2 in 

relation to corresponding expressions for single-edge modulation. 

The method used is to represent ty and to as Maclaurin series; 

- the coefficients a, in equation A3,3 may then be written as; 

  

  

  

n 
° 

De Me kesh o 
where e is the unmodulated position of the leading edge of the 

pulse, 

dit | | \ 
Oo = ap A3:9 oT, ni dM” Pat ( ) 

Therefore +t; may be expressed as; 

be SDE en bSey BL Gon  
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Thus, the problem is that of obtaining successive differentials 

of ty with respect to M. 

Differentiating equation A3,1 with respect to M gives: 

4e25 aa dt, -D= Veep Sy re EY exp(k,t,) IM 

ke. -ki 

where: d= —2 i +exp ea) soa [i+ exp (43%) ke | (A3 a i) 

  

  

  

gate’ D ( | 

ve dM PAK k, exp(k,t,) exp(-k,t,) (a3. 12) 

| +exp(5%) [exp te) 

Equation A3.12 may be repeatedly differentiated to obtain 

  

  

expressions for the higher-order differentials, It has not been 

found possible to obtain a general expression for the nth 

differential of t; with respect to M, since equation A3,12is 

a function of a function, Expressions have been developed for the 

nth differential of a composite function (57) but, when applied to 

equation A3,12, give results which are too complex to be of use. 

Setting t, =t in the expressions for the differentials, 

and substituting in equation A3.9, gives the following expressions 

for the coefficients an: 

  

0, = + (A3 . 13(0)) 

Po RD tne DAN 7 efits em 
= fe l-Dil ost VL B oat 51 a & x F3 (A3 .13())



  

  

  

    
  

7 

  

v7 & ro 
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[3F7-FE 
F 5 

a i ° 

g 2 5 -\0F,F, fy +Fe Stee 
Py = 

  

SEER alOR FotiOS EF, F105 FF, Fe (a3 
& 

21S FF, +35 Fe Fy Fg +l260RF, Fa—Fo Fe— 
F iY] 

° 

    = 
  

280 FF, F-34.5 F-210F FFs | 
F i 

o 

  

ES FRR tSOETE Frasher, 43508, F Fat 
ce 

° 

i = 

SS0O FF losis PoE b. 45 18h 6 be 
  

  

  

  

  

i 

1260 FEF, Fp Fy-280F. Fo 17325 aaa ee 
: 

| | 
_where: Wa (regen Fe (A3 y 

(l+x)CR 

Volt ie eal Ss CET AH BET EET. ] tw. 
A= Y-A, (A3 

= 87a steal)” = LER (A3 

t, t __ Reale) Rewer. n 
3s |+exp (2) | +exp (oe) 

(a3. 

(a3. 

| 3(a)) 

.l 3(e)) 

. 13(F)) 

13(q)) 

. 1.3(h)) 

4(a)) 

1 4()) 

: 1 4(c)] 

. 14(d)) 

? 1 4(e))
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Substituting equations A3,4 and A3,6 in equation A3,11 enables 

the term D to be expressed as: 

ha “A | 

p-{1-2[iserg ABI) ™ [lreng( MEY EP (15) 
° 

The unmodulated position t, of the pulse leading edge is 

    

  

obtained by numerical solution of equation A3,1, with M set 

to zero. Therefore, substituting equations A3,5 and A3.6 in 

equation A3,1, and setting M=0 gives the following expression, 

1 

. 
which defines 

Ae : Coe 
Sean “pega =)=O  (a3.16) 

  

  

  

Thus, the coefficients a, in the power series expression for the 

position of the pulse leading edge have been expressed in terms 

of the parameters Ty and e . 

It is now necessary to carry out a similar procedure 

' to determine the coefficients by in the power series age to. If 

M is set to zero in equations A3,1 and A3, 2, then t,t, and 
° 

bea onto - Therefore, from equation A3, 1; 

    
k k 

k,~ k, t k,- hy 
exp ERE = ge Se cae Leo (a3.17) 

l+exp ee) lt+exp ea
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and from equation A3, 2: 

2; i) Lh a Me iG AGAR? <7 WS ae Ab - = 0 
"exp EE), fe ts z)- brexp(=3=) L } ne io) 

Since equations A3,17 and A3.18 are identical in form, it may 

be deduced that: 

    

  

ioe 
' ee 

c
r
o
 

w
i
 

(A3.19) 

By Maclaurins theroem, the coefficients b, in equation A3.4 may 

be expressed as: 

-+ 1|do(- 3) b L 1 | dal, ) ey (A3.20) 

Differentiating equation A3, 2 with respect to M leads to the 
T 

following expression. for the first differential of ty - with 

respect to M: 

  

d ey Dhee es | 
rae Yl expt e] _ exp[-ktt- ¥] re) 

I+ exp (“3 | |+exp es 

where D is given by equation A3.11 or A3,15. 

  

  

Comparing equation A3, 21 with equation A3,12 shows   that: 

d ‘P dt, [galt B]] =e] (23 
: ° Les ° 

since to ares ag 

From the form of equations A3,12 and A3. 2y;2at may be deduced 

that repeated differentiation of equation A3. 21 will lead to the 

following result. 
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Lami-B) cm | Te (A3.23) 

Therefore, from equations A3, 20 and A3. 10: 

b= (1) .0, (a3. 24) 

Thus, the position te of the trailing edges of the pulses is 

bz.) os (A3.25) 

The unmodulated position t 

given by: 

i of the pulse leading 

edge may be evaluated by applying Newton's successive- 

approximation method to equation A3. 16; 

  

    

  

  

  

  

  

c(t by. (ty b, b i 
() > Ge] (8) ie 

© Te n ° 

where cs jy, is the nth approximation to os 

° 2 | Aa ° 2. Gere, © 
i A-A\ s A-A ti: 

EFI rsenp (2) exp CAT, ea eet AT a) 
ex —— exe 

ive : (A3. 27) 

£( ‘ ) is the first derivative of f ( ty ) 
Cc 

pee pete muy A be A, 1 Loire 1 
f (1). ATT exptAT, 4) + p = exp(- ATS } 

|+exp(- ts) lrexp( z. Asly) 

(A3.28) 

=
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° 

Considerable care has to be taken when evaluating f( ‘ -) for   

: S 
small values of Ty» Since rounding errors can be significant, 

By suitably ee equation A3, 27, and expanding the terms 

-A2TN exp(-Ay Ty i) and exp( )as oa series, the 

  following expression is obtained for (> 

  

    

For practical values of the system parameters, A, Ty is always 

considerably greater than unity. Consequently, direct evaluation 

of the first of the brackets on the right hand side of equation A3, 29 

presents no difficulties. Rounding errors will still exist in 

evaluating a) from equation A3, 29, but the error will be 

very much less than direct evaluation from equation A3. 27. 

Dien) 
The ratio ——~“— can now be expressed as: 

  

  

e
r
a
s
 

a
.
 
i
 

P
s
i
 

W
h
i
t
 

| 
2
b
 

=
=
)
 

dealark)) 
n=l 
  

  

  

  

  

@. Al-——-— =} -a, 
is Irexp(y™ ") at (a3. 30) 
(=) ee + | m vba 4 DAA, 

Irexp (“AE ‘) I+ exp(Aets 
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In order to make use of Newton's successive-approximation 

method, it is necessary to have an initial estimate of onion 

c 
This initial estimate could be zero. However, a better value is 

0.25, since the unmodulated position of the leading edge of the 

pulse in an ideal double-edge pulse-length modulation system is 
° BS 
t Cc 

1 4 
  

Direct evaluation of the term D from equation A3,15 

will give rise to errors since, for small values of Ty and the 

range of values of A, that arise from practical values of the 

system parameters, D is much less than unity. 

From equation A3,15: 

  

  

  

  

At) [oo 
\. eee ie Bey | cea CN wa) 

on cB 
a 1 pan 

Making use of the expansion xX = e es (a.legx) P 
n=0 

x and the usual expansion for e™ , equation A3, 31 may be 

written as: 

  

    

  

ee = “Age hs veal 
va I+exp(“24) oes ( =) 2) ali is a | 

co n leexp (Arts) . pee \ 4 Ca Aa | | a | eB) LCE AR ee
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Evaluation of D from equation A3,32 gives considerably 

greater accuracy than evaluating D directly from equation A3.15, 

The numerical methods developed for evaluating the | 

equations probably donotrepresent the optimum techniques but 

have been found adequate for evaluating the expressions on a digital 

computer which has an accuracy of approximately eight 

significant figures. Fig. A3.1 shows a flow chart of the method used 

for evaluating the equations on a digital computer.
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taking sufficient terms in 

the series for an accuracy 

of 1 in 10 

  

    

  

  

      

  

Start Read P Read T,,,Q 

>{ Read Y 

Compute A, from eqn.A3.7. 

%, taking sufficient terms in 

Set mR 20.25 F< the series to give an 

accuracy of 1 in 10° 

t 
Compute correction term 

% Set 
t (7) : es 

rom eqn.A3Z, 30, 
(8) os 

t\n. os Me 

      

  

  

  

  

  

  

  

            

  

      

  

Set 

bik. +(é) 
‘c ‘c / £. 

(z) 

¥ 
Compute D from eqn.A3.32., 

taking sufficient terms in the _| Compute F, to F, from 

series for an accuracy of 4 eqn.A3.14(d). 

tin 

Set Print Compute a, to a, from 

Q=Q=1 & sa eqn.A3.13 

Set 

P=P=1 

  

  

  
  

  

  
  

    

  

  

        P = Number of values of T, on data tape. 

Q = Mumber of values of Y. 

Fig.A3.1. Flowchart for computing the coefficients a, toa,.
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Appendix 4 Derivation of the Frequency Spectrum for a 

Single-edge Modulation System with Finite 
  

Integrator Gain 

The spectrum of a single-edge pulse-length 

modulated wavetrain, produced by a system having finite 

integrator gain, is given by the following expression 

(chapter II, section 4.2.1. equation 4.2.9. ); 

Fea) F etfipeclt+ te. Y yes (n ot) ~ 
Paco 

<p| jpalt-3)) ee 

The terms exp | -i. P.W, kK > eos (nv, t)| may be expanded 

as Bessel function series of the forms 

exp [ -) po ke cos(n «t)|= ) a) J (perk) exp jqn w,,t} 

co 

dei) Ll exg[jou(t+ Fk) : 
60 0 now 

TTL) ed qoaklenn(igrat}-eafiealt-E)]} @+-2) 
i 

Manipulation of the above expression is obviously rather



  

(432) 

difficult and the results are likely to be too complex to be of 

use, In order to ease the problem it is assumed that the first 

three harmonic terms of oa will give an adequate represent- 

ation, Equation A4, 2, now becomes; 

Nag) pointe BA) 
peace 

\ T.lpeck) E (perks) (perks) exp [i (e+2+34) yt] - 
e,F,g 

co 

expLipelt-2)]| (A4.3) 

Rewriting equation A4, 3, in terms of only positive values of 

p, and temporarily disregarding the term corresponding to 

p= 0, gives: 

\ = ree. ° r()e ot) +42) sinfpalt-F)] +
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e+f+ : 

le onal [per (t+ & -\,)+(e+2F +3) 0, t] \- 

exp ifpectt + Bb )-(e+2#-+39),))] | (A4.4) 

Since the second of the summations in the above expression 

is over all positive and negative combinations ofe, f and g, 

the second of the exponential terms within the summation 

can be written in terms of the negative combination of e, f 

and g. 

(-1) 2p(j[pur(ts Bk )+(er26 +55) o,¢ ] ] ss 

Sess | 
(j) Sepak) Ji parks) (perks) x 

exp(-ifpalt+ F -k,)--e-2F-39) at) (A4.5)



- F(t)= ~ i 5 {-sin[ pos (t= )] + 

p= 

y Je(paak,) J (p (perks) x 
i 

sin (pas fer2F+3q] w,)t +pa(# -k,}-(2 +f +g) | (A4.6) 

| It is now necessary to determine the expression for F(t) 

when p= 0 since this term has been disregarded from 

equation A4, 4, onwards, From equation A4,1., the | 

expression for F(t) is indeterminate when p = 0 so that 

L'Hopital'srule for the limit of a quotient must be applied, 

ae ae [ -) -cos(awo (3, 

Taking the first three harmonic terms in the above expression, 

This gives; 

F(t) 

  

the complete frequency spectrum becomes; 

F(t)# ae k. .cos(w L)- k .cos(2a,, t) a 7£05(30 .t)| + 
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T(pok) J (pak,) J, (pocks) x 

an
 

sin| (pas esats3q] wt+pal? -1,)-(eafeg) (A4.7) 

Numerical Methods 

Care is required in evaluating the constants, koe k i 
ky and ke in equation A4,7. when the normalised time 

T. 

constant PCR is small, since considerable rounding 

errors can occur, The expressions for the constants are 

given by equations 3,1.10(a). and (b) of section 3, 2.1. 

(chapter II), The constant K which occurs in the expressions 

is given by equation 3, 2,1(b). The equations are rewritten 

below for conveniences: 

+ (MK) 
ae (mK) 

= —(14%) CR. log (a4.8)
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kr tiesder 24 = [ EEF] (4.9) 

= exo Traicn | 

| + ex Sa] 

K = (4.10) 

For small values of » €valuation of K involves 

(1+ )CR 
taking the difference of nearly equal numbers which leads 

to rounding errors, These errors may be avoided by 

expanding the exponential term in the numerator of equation 

A4,10. as aninfinite series. Thus: 

a 

Sees Deatepat fet) 
(l+a)CR 

Since K is small when = is small, it can be seen 

(1 +x)CR 

that evaluation of the denominator of equation A4,8, will be 

susceptible to errors. This problem may be overcome by 

expanding the square root term by the bonomial theorem, 

This gives:
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Pe ahi3 k = (I+<) cag eile k) + tI   

3 
13 (mi)! 3 sy (AK) | (A4 .12] 

Rounding errors will also occur if KO is evaluated directly 

from equation A4,9, for small values of * ... ‘These 
(1 +)CR 

errors are avoided by expanding the square root as a binomial 

k =(l4eJCR 2 i le the 13. (nah 45 Oe J (a4 «13) 

The normalised unmodulated pulse-length = is given by 

= 
c 

equation 3, 2,4. of section 3.2.1.(chapter II) and is rewritten 

  

  

below: 

Xo (l+a}CR Lf mT 4 

= [ae a exo) —————— 

The problems of evaluating the term 1 a0 as 2 

c 

ae 

2 
(1 

Ce log 2 [1 + exp (i TGR | for small values of (T+ a)CR
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are discussed in detailin appendix 1, anda series is derived 

for the term. Equation A4,14. may be rewritten as; 

ae | 2(lea)cR;, | -te 
Baty tha Hteg neal Gea] (a4.15) 

Therefore, from equation A1.13. of appendix 1: 

  
  

3 

aay (I+a)CR 8 an 198 ee 60480 (A416) 

Al
a 

The above expression is accurate to five decimal places 

for values of rs 24 ; For larger values of 

(1 + A)CR oe 

normalised time constant ae , the normalised un- 

(1 +a)CR 

modulated pulse length may be evaluated directly from 

equation A4, 14, 

The Bessel function terms in equation A4.7., for the 

frequency spectrum are evaluated from the standard series: 
\ 

= n+2 

Te) Fon ) ao 

Computational Methods 
  

The first problem is to decide what limits must be set 

on the integer variables, e, fand g. Approximate calculations 
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a no 

| show that, significant components will be neglected if the 

following limits are used: 

ih Oe ae 

6, 2-2. £6 

oh ce Gok A 

Having defined these limits, a computer programme can be 

written to determine which coobineioal of the integers give 

a particular sideband component (wo, - N, W 4) where 

N= e+ 2f+ 3g, The maximum value chosen for N is 8, 

It is obviously undesirable to calculate these combinations 

for every set of values of system parameters so that itis 

necessary to store the combinations of e, f and g which give 

rise to a particular sideband component, It is also necessary 

to know how many combinations (I, ) there are for each 
N 

sideband, in order to be able to read out the stored combin- 

ations, 

Now the part of equation A4.7 which defines the sideband 

components is the summation containing the Bessel function 

terms, and this may be rewritten as:   
so 

le if Ig! e+heg 

) Fesleabl(eer,)d (ok) Ge) GF) Gey ci) * x 
@,F 4g 
=-@ 

sin (p w+ le+2F +3q «,] t+ pa( -k) (A4.18) 

for e+f+g= even



  

  

(440) 

and 

Rey : lel \F A Igl e+f+g+l 

e f 

) Fleak)Fploak) Tyler's) (tr) Gir) (iar) eV e0) “x 
dy, 

cos| (pay afe+2F +39] w,)t + Pw, (2 +k) (a4 .19) 

For e+fig = odd 

Two integer functions may therefore be defined for each 

combination. Namely: 

lel 6) igh! Seek + 

SL= (7) (* fa (-1) 2 for e+ftg= even 

(A4.20) 

Func=0 

et Akh tal e+figrl 

s1= (5) (F] ca (-1) Ct) for e+f+g = odd 

(A4.21) 
Func =| 

The factor (Func) indicates whether the contribution to the 

sideband is a sine wave or a cosine wave (i.e. Func = 0 for 

a sine wave, and Func = 1 for acosine wave), Fig. A4.1. 

shows the flow chart for computing and storing the following 

information. The values of the integers e, f and g which give
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  N= Iy 

Set 

e= -8 

f= -6 

g= -4 

= O for 

0 to 8 
  

  

    
        

  

Set 

f= f+1 

e= -8     

  
  

    

  
  

    
  

  

      

  

  

  

   
   

  

  

    
Yes Set 

e+2f+3g<-8 

      

  

      

  

  

  

    

e=e+1 

Set 

N=e+2f+3¢ 

I,=1,+1 

A(N,I,, )= le! 

B(N, In )= if 

C(N,Iy)=ig1 

ry 

Func (N,I,)=0 Func (N,I,)=1 
of zy a estes ay r\ ai! efeart 

srr » (€) ) (f) en sxx = (2) §) (SF even         

  eid 
‘Se     e=e+1 

      

Fig.A4.1. Flowchart for computing sideband combinations.
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rise to a particular sideband component (wo, ag Nw) (where 

OG Sa Na 20 Ms the number of combinations (I) there are 

for each sideband, and two functions SI and Func for each 

combination, All the variables, except Ie have a two-dimension- 

al subscript in order to identify which sideband (wo. - Nw) 

the variable is associated with, and also the particular combin- 

ation it is associated with. Thus the first subscript is N and 

the second subscript lies within the range 1 to Ie 

The flow chart for evaluating the amplitudes of the spectral 

components is shown in fig, A4.2, The method used is to cal- 

culate the amplitude of all the contributions to a particular 

sideband component and sum the components for which Func = 0, 

and also sum the components for which Func = 1, This gives 

an expression of the form: 

Sum|.sin [pot No \b+ pe (+2-k,)| + 

2) Sum2.cos (porn w,) b+ pay (Fe-k, (A4.22) 

The expressions are evaluated only for the lower sidebands of 

the pulse repetition frequency (i.e. p = 1) since these are the 

most important sideband components, From equation A4, 22 

the amplitude of the sideband component is, therefore: 

Sideband amplitude -E[K(s ure (Sun2) (A4.2 3) 

The amplitude of the repetition frequency component has an 

additional term, as may be seen from equation A4,7,



  

(443) 

  

       

  

    
Read 

   
  

Compute Compute 
2 Je (2 x) for q=0 to 8 r k, from eqn.A4.12 

2 

  

Jy (#7) for a-0 to 6 fey fo K, from eqn.A4.13. for n=1,2,3 

        
  

  

  

          
  

  

    
  

  
  

  

eu 
Jq (# &,) for q=0 to 4 a 0, from eqn.A4.16. 

c 

from eqn.A4.17. 

Set Set 

N= 0 1 ee ee 

¥ 
Compute 

Prod=s1(u,P&s (27 x)x a (BF i) 
AUN) ~ B(N,P) 

2ir 
x J nm ks 

ate ) 

Yes g No 
Set Set 

3um1 =Sum1+Prod Sum2=Sum2+Prod         
  

  

  

  

Set 

  

  
P=P+1 

      
  

  

    

  

      

Compute Compute 
Sideband amplitude from a 

Repetition frequency component 

eqn.A4. 23. from eqn. A4, 26, 
| J 

          

Print 

Sideband (NN)      
  

Compute 

DF, from eqn.3.2.13 

DF, from eqn.3.2.14 

      

          Chapter II 

Print Set 

DF , DF. U=U-1 

  

  

          

  

Pig.A4.2. Flowchart for computing amplitude of spectral components for 
single-edge modulation system with finite integrator gain,
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Repetition frequency component = 

if snfalt- F]Senlsnfatoa(S—W) 
+Sum2,cos[ia.+ a a ks 

The above expression may be rewritten as: 

= {sn [,t a a (4 - k,}+ o(k-T, ) +. 

Suml.sinfat +a(-k)) + 

Sum2. cos [o,t * o(= - i 

(A4.24) 

(A4.25) 

Expanding the trigonometric terms in equation A4, 25, gives the 

following expression for the amplitude of the repetition frequency 

component; 

= [Sum | ~cos (2 =) i + 

2 

[Sum2—si ae ~ ey) (A4. 26)
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Appendix 5. Derivation of the Frequency Spectrum for a 
  

Double-Edge Modulation System with Finite 
  

Integrator Gain 

The spectrum ofa double- edge pulse-length modulated 

wavetrain, produced by a system having finite integrator gain, 

is given by equation 4.2.28. of section 4.2.2. , chapter II. 

F( ras) Helira(ee® oi cos(nw »)] 2 

a n=O 

eq jp (t-E- Ve kecoeost)]| (as.1) 
n=O 

The terms exp [-ipe, kT cos (no, ¢) | may be expanded as 

Bessel function series of the forms: 

exp [-iperk,ces (ne2,t)] \ es J, (perky) exp{ jane, t ) 

£.. 

5) {erin Ce + Eek) x 
i, 

“ eb Z (pak) exp( janant ) = 
n=l ne ae 

explipalt-§ -,)] : 

oo 

II ) és i) {pak elie.)] (As. ; 
=-sd
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Manipulation of equation A5, 2. is extremely difficult and the 

results are likely to be too complex to be of use, In order to 

ease the problem, the assumption is made that the first three 

terms containing harmonics of O-5 will give an adequate 

representation, Equation A5,2, now becomes: 

co 

F(t fet Ds (prak) lpak,) Zlpeak,) x 
p=-s0 

) F 49 

r
e
 

e+fs 

exif j(e2F +g) ts) expf jpn (t+ 4 -k,)] - 

e+q ett 

(-\) *) eof Jpault-E-k}]| : (as.3) 

Rewriting equation A5, 2, in terms of only positive values of 

p, and temporarily disregarding the term corresponding to 

p = 0, gives 

ta) (\ Llpakly (perk) Zlperk,) » 
e iFy\ga—e 

7955 

etfeg 

exp| | (e+2F+39),t] (-j) 24 sin (eat x   

etfs : fexafincelt-kJ}+C1) exp [-jpe (t-,)]] +
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e+f+g pot 
exp[ j(e+2F +3q) 0, | (4) 2.cos ( i : 

ethtg 

lexr[ips (t-k JC) of ipalt-k)] | (as.4) 

Since the summations involving e, f and g are over all positive 

and negative combinations of e, f and g, equation A5,4, may 

be expressed as: 

co °2o 

i 

  

  

Hes yale Flperk,) Z(perk,) Gi) i roe 

: p= 1 €,F,g=-e0 
ergzeven 

exalj (pan (t-k,)+ (2+2F +39) t)] . 

Ne. (perk) J (pak) J )Tipak) i) yi sin( PS) x 

e f,g=-90 

Cr sae
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e+fs 

C1) of E (pur (t-k,) (26 es a).t)] + 

  

co e+t+ 
OTe 

) leer) J (pak,) Jy(perk, ) ¢j) 2.cos(P : x 

a 

exe (pea (t-k,)#(e+2F-43q)eo4t e 

anise bo 

  

Bd tg 
Y Ursk) J ;(perk,) Jp ks) ) ) 20s 2 t x 

e,F,g=-co 

.@+g= odd 

onal (peat re (-e-2 3)]] (as.s) 

The above expression may be simplified to give:



  

  

  

05] (pas (e+2F 39) «,} t- pe. k, - f 4 | (5.6) 

It is now necessary to determine the expression for F(t) when 

= 0 since this term has been disregarded from equation A5, 4 

onwards. From equation A5,1., the expression for F(t) is 

indeterminate when p = 0 so that L'Hopital's rule for the limit 

of a quotient must be applied, This gives; 

[o@) 

tl E-) (eos rk. co(o0,) eres) 
n=O 

  

-Taking the first three harmonic terms in the above expression 

(i.e, n = 0 to 3), the complete expression for the frequency 

spectrum becomes: 

F(t j= i = “ Cos (ne t)— e cos(3u b ) 

oH ) Leak) Flporka) Glrak)» 
p= | e,F,g2-< 

a
 (p-e- )) <25|(parr(es2t +3q)e af}. patie f “|| (5.2)
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Numerical Methods 

When evaluating the constants ky. ko and ky in equation 

A5,8, care must be exercised since appreciable rounding 

errors can occur for small values of wr ao eh De 

(1 +«)CR 

expressions for the constants are given by equation 3, 2, 29(b). 

The constant K which occurs in the expressions is given by 

equation 3, 2.19. (section 3.2,2., chapter II), The equations 

are rewritten below for convenience: 

n 

i (\+e)cr# or eee: ] (As.9) 

Beihoses, K = Aes (As.10) 

et aed 
as 

- For small values of onl 
(1 +c&)CR 

taking the difference of nearly equal numbers, which may 

, evaluation of K involves 

lead to errors, These errors may be avoided by expanding 

the exponential term in the numerator of equation A5,10. as 

an infinite series, Thus: 

oo 

K= ——___— dt ee Pee (as. 11) 

re “e(specal n= 

Since K is small when te is small it can be seen 

(1 +%)CR
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that evaluation of equation A5.9. for kK will be susceptible 

to errors, These errors are avoided by expanding the square 

root term as a binomial series, Therefore: 

   k= (iea)er M8 c + (wes Slt) + Fara (aK) a (as .12) 

  

The Bessel function terms in the expression for the frequency 

spectrum (equation A5.7,.) are evaluated from the standard 

series: 

n+dq 

Rigty os col os i 
as 

Computational Methods 
  

The general method of computing the amplitude of the 

spectral components is very similar to that discussed in 

appendix A4, in relation to the single-edge modulation system, 

so only a brief description will be given here, The sidebands 

of interest are the lower order sidebands of the pulse repetition 

frequency (i.e. p = 1 in equation A5.8,), The term which 

defines the sidebands, in equation A5, 8, is the summation con- 

taining the Bessel function terms, Setting p = 1, the summation 

may be rewritten as: 
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hn ler a. lal. een E 

) Fas) Jilok : Jai eck Je 5] cr G \) (1) x 

2,F)g=-s0 

sin| [1+ (e+ 2F +39)0 _E- 2h,| , (A5.14) 

for e+g=even , f=even 

eo et: AA or igl 4 et 

) ish Jy (ecke) Ty ken) (a) (ig EE" 

ata (acne) 

for @+g=even , F=odd 

The sideband components are zero when e+ gis odd, 

Thus for each combination of the integers e, fand g which 

gives a particular sideband component, two integer variables 

can be defined: 

le] ( \F Ig! e+ +g 

ae ell Ge) (731) a 4 for e+g=even , F=even 

(A5.16) 

Func =0 

met, ART lg "eset 

f 2: 

s1=()) (ra) ca (-1) for @+g=even , feodd 

(A5.17) 

Func= |



   

  
  

Since no sideband components exist for e+ g = odd, it 

is not necessary to specify values for the integer variables 

under these conditions. The variable (Func) is to indicate 

whether the contribution to the sideband component isa 

sine wave or a cosine wave (i.e. Func = 0 for sine wave, 

Func = 1 for cosine wave). Fig. A5.1, shows the flow 

chart for computing and storing the values of the integers 

e, fand g which give rise to a particular sideband frequency, 

The integer variables, SI and Func, are also computed | 

and stored for each combination of e, f and g, 

The flow chart used for calculating the amplitudes of 

the sideband components is shown in fig. A5,2, The method 

used is to form sums of all the contributions to a particular 

sideband. One sum (Sum 1) consists of the components 

for which the sideband is a sine wave (i.e. Func = 0), the 

second sum (Sum 2) consists of the components for which 

the sideband is a cosine wave. The sideband then has the 

form: 

b{setlfictagteak] « 
Sum2.cos [oN jt-o.k,)| (As. 18] 

. Therefore the sideband amplitude is; 

sidebane(w) = || (surat (Sum2} | (As .19) 

The above expression is also valid for the repetition 

frequency component (i.e, N = 0).   
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set 

I=0 for 

N=0,2,4,6,8       

  

  

    
  

  

      
  

        

  

      
      

  

  

         

e+2f4+3g¢>0 

  
      Is 

    
Yes 

  
  

  

  

  

  

Set 

N=e+2f+3¢ 

T=I+1 
WON 

A (N,I,y)=lel 

B (N,1,)=|f| 

C (N,Iy)= j|g|     

No 

  

   
€+2f+32<-8 

  

Set 

e=e+1 
  

  

  
Set 

e=e+1 
      

  

  

Fune (N, I,)=0 Pune (N, I, )=1 

        

  

iy oe Ig! lel a Il 

SI(N,1,)= (€) (5) ( x SI(N,I,)= ($) (#) (g) 

(-1 e+Fe. (<1 ara 

oc J 
yy 

Set 

e=e+1 

Fig.A5.1. 

      

      

Flowchart for computing sideband combinations.
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Read 
tT, c 

Gi+aor *M 

   
  

   
  

Compute 

  k)for q=0 to 8 

E k) for q=0 to 6 

5 k,)for q=0 to 4 

Set 

N=0       

  

from eqn.A5.12 for n=1,2,3. 

from eqn. A5.13.     

  

Set       
P=1 

ie     
  

Compute 

  

BIN?) tT <(N,P)   

2 
Prod = SI(N,P)x J ( k, )*x ’ A eee 

J mx s Fx) 

    

   

    Yes   

Set Is 
Sum1 =Sum1+Prod 

ue 
      

No   

Set       
      

  

Compute 

DF, from 

000. 362633, 

Chapter II       

ne (N,P)= 

P=P+1 N 

  

  

Set 
Print DF, 

  U=U-1     

  

No   
Set 

Sum2=Sum2+Prod 

a 

    
     

  

  

Compute 

Sideband amplitude 

from eqn.A5.19.       

  

      

      

No     

U= Number of sets of data 

ie. values of Groth and M, 

Fig.A5.2. Flowchart for computing amplitude of spectral components for 

double-edge modulation system with finite integrator gain.
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Appendix 6, Derivation of the Coefficients involved in the 

Generalised Spectrum Analysis of Non-linear 

Pulse-length Modulation Systems 
  

It is required to obtain expressions for the 

coefficients AL. BU C. and D,. in equations 3,1.13(a). 

(b), (c) and (d) of section 3.4, (chapter II). The equations 

are rewritten below for convenience: 

    

oo : 2 co k 

Cos per) cos(w,t) ss A cos (ob) (A6. 1(a)) 

2 n=l 2 k=O 

oe ee ae eR 
cos |p2ir ) Pal cos(wt}|= as cos (w t) (A6. 1(b)) 

3 n= - k=O 

Pe ee ek 
Sin | pair ) xf Cos (at) F C, cos (wt) (A6. 1(<)) 

oo - , . so ‘ 

sin pa am Cos (co b}= Dd cos(w t) (Ac. 1(4)) 

‘4 n=l . k=0 

Asa result of the similarity of the above equations, itis 

necessary to consider only one set (e.g, equations AG, 1(a), 

and A6,1i(c).). Applying Maclaurin's theorem to the expressions 

enables the coefficients to be written as: 

co 

cos| pa \ 6, IM. eae tact ) (A6. 2(a)) 
cos(w t\=<0 

We 

  

Hh
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ie D (2 . M e ‘)] (Ao. 2(b)) =— COS (GU) we ld sg lero ee 
n=\ 

C. = sin| paar) a, M co8 (ot) (A6.3(a)) 
- cos(wt)=0 

k co 

= 4h sin (pa x, M coe (,¢) (as.30) 
7 ki int cos(w, t)=0 

where a ( ) is the differential operator 

dae) Thus the problem is that of finding the kth 
d cos (w_ t) 

m co 

o 

differential of the expressions cos pes ) Mm”, cos", 

ra) nat 

and sin [ pax ce mM". cos"(w_ 1) with respect. to 

=| cos (wt): n 

L et so 

z= pw ) at cos (w, t) (A6.4) 

= -cos(z) (A6.5) 

Ls sin(z) (ac.6)
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It is now required to find the kth differential of f and fy 

with respect to cos (wt). Since fy and f, are ‘functions 

ofa function", repeated differentiation is difficult if carried 

out directly. However, differentiating f, with respect to 
1 

cos (wt) gives: 

Df = -sin(z).Dz (A6.7) 

Substituting equation A6.6, in equation A6,7 

Di=-h Dz (Ao.8) 

Equation A6,8, may be repeatedly differentiated by appli- 

cation of the Liebnitz theorem, Therefore: 

B= - (def, +dz.0F, ] (as. 9)) 

DE=- (Daf +2 Dz.DE + Dz Df, } (A6. 9(b)) 

k k De=-(Dz F.4d Dz.DF, ee Df --#D2DF .) (a6. 9) 

Differentiate equation A6,6, with respect to cos (wt): 

DE = cos(z). Dz (A6.10) 
2 

Substituting equation A6, 5, in equation A6,10. gives; 

Det. (A6.11) 

The kth differential of fy is calculated by applying the
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Liebnitz theorem to equation A6.11.: 

  

Dit (v2.f, + DzF.] (Ae .12(0)) 

DE= (Df +202 Dh+D2T¢) . (A6 at 2(b)) 

Dee(de ftps Df, oe ay DF | (Ac 12(¢)) 

Equations A6.11., A6.12(a)., (b) and (c) may be substituted 

in equation A6,9(c). If the terms containing po 7 

be te, Serves fy are grouped together, then the following 

result is obtained: 

k k-I Skee k-2 

DE= {0 f.+f a Laver eos ye De + 

k-\ 

if S Vx.) a + 

  

ae A 2 pe bed week ys ici Ne zy eee 

. 3 k- (k-1)(k- =f SND og yi Peer De e+
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k-2)(k-3)(k-4) #4 3.2 2 fe eats) 5? pee HO a On, 2a 

  

(-tNe-ak-3 Mk ANk-5) 2 e2 De Lap, ile ye | : 
<1 21 

By elle 2)(k-3)(k=4) Da hee 
\ Et 

5 a 
thokcaMies Weeki 5) 9) AB 2 we 

  

hale) kod Mle) Ck 8) mt a 
é| 

ke k-2 | oN. CoRW SEY py a+. | Dede wl (As .13) 

It is required to evaluate the above expression when cos (wt) 

= 0 in order that the coefficients A, may be evaluated from 
k 

equation A6. 2(b).
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From equation A6. 4, 

  

  

  

  

Zz = 0 (A6 . 1 4(a)) 
cos(u, t)=0 

Dz = part («,M) (Ac : 1 4(b)) 

os(u,t}=0 

a a parr (21, M*} (Ao. 1 4(c)) 
os(w, t}=0 

k k 
Dz =" per (klo M } (Ao .14()) 

coslo t)=0 

Substituting equation A6, 14(a). in equations A6,5, and 

A6.6, gives: 

F a (A6 .15(a)) 
eos(w t)=0 

2 5 0 (Ao .15(b)) 
eos(u t}=0 

Substituting equations A6.14(d). and A6.15(b). in equation 

A6.13 enables the kth differential of fi to be written as:



  

(462) 

    

  

k-2 

k ; WADE 
DE} — =-(np) fui) fn re ae 

cos(wt)=0 is + cos(w, b)=0 

k-| 

epee ae, (Ac .16) 
r k-r my ? 

r=q+l 

aere fy cos (oY) = 025 : 

and . Df, one (ot) a0 0 (from equation A6, 7.) 
  

so 

: . . n n 
Noting that fy = cosz cos pas ) M’. cos 0) , 

n=l 

equation A6,16, may be substituted in equations A6. 2(a) and 

(b) to give the following recurrence relationship for the 

coefficient A,: 

  

k 

"kek : k=l 
2. “Y ~9)\(ker 

A=-4 ie fi A, ae x “.,| (Ao. 7(a)) 

9 r=qtl 

Aj=| (As .17(b)) 

A =0 | (As .1-7(<)) 

A similar process may be carried out to determine 

a recurrence relationship for C.. Substituting equations
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A6.8., A6,9(a), (b), (c) and (d) in equation A6,12(b) leads to 

the following expression for Cy: 

k-2 k-| 
ky 

o Mo 2rrex a i C, ) Satter a (Ae a 8(a)) 

e=0 reqel 4 

oo | (Ao . 18(b)) 

C=Mpar x, 2 (Ao . 1.8(b)) 

Since equations A6. 1(b). and (d) have the same form as 

equations A6, 1(a) and (c) respectively, the recurrence 

relationships for B, and D, may be written down by 
k k 

inspection of equations A6,17, and A6, 18, 

3 Kee 

  

x (parr) (r-4)(k-r) 
Da aE - {n* n) ome Fee A, (Ac .1.9(a)) 

1 O rer : 

Bo= | | (A6 .1.9(b)) 

B= 0 (A6 .1.9(c))
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a kel al 
d=Mpanp -© et Y fr p, ) Cates Oe A (A6.20(0) 

92.0 r= sar 

o=0. (Ao. 2.0(b)) 

D=MpawB, (As . 20(¢)) 

The power series on the right hand sides of equations 

A6.(a)., (b), (c) and (d) may be expressed as Fourier series in 

terms of harmonics of the modulation frequency a There- 

fore 

capes) M cos 5 (ot) } yA tos * (Op t) 

n=l 

co 

= = + ” E,.cos(nwt) . (Ao.2 1a) 

coslpar) M'cos (at) } )8 a (w t) 

n=i k=O 

= is be ) Faccetloet) (A6.2 1(b))
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So oo 

sinfparr) M co8 (2) = ) Gyced (wt) 

n=l k=O 

= = +) .COS (not ) 

n=\ 

so 

sin pan oe M cos (w,t) k »% oe (w,t} 

n=I k=0 

= te +) Hy-cos(oayt) 

nest 

(Ao .2 1) 

(A6.2 i(4)) 

The constant terms Eo? Fo G, and H, are defined in the manner 

shown for the sake of convenience in later equations, Since 

equations A6, 21(a)., (b), (c) and (d) have the same form, itis 

sufficient to derive expressions for the Fourier series coefficients 

for only one of the equations (e.g. A6, 21(a).). The terms 

k ; : 
cos (oY) may be expanded as Fourier series by means of the 

(57 ) 
trigonometric identities : 

cos (a, )= wah 2 is cos[2(k-9Jur,f +(* } (A6 . 22(0))
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k-\ 
2k-I = (3 ty 7{) ("Jesters (Ae. 22(b)) 

tes 

Therefore, from equation A6, 21(a).: 

co 

E a | = : Eee. A cos(w,t) + A> [leeos (20) | + 

n=l 

. A Heostset) : J+ 3cos(ea, As ~[cos(ha,t) t)+h.cos(2e, t)+3] + vie 

A ol ey }cos(u-2v-l)ant] + 

A om 2 eS cos|2(u-v)eo t] le ee | (A6.23) 

Equating like terms in the above identity results in the 

following expressions for the coefficients ES 

  

\ E= e hee ae (As.2.4(0))



  

  

The expressions for the coefficients Bs Oy 

written down by inspection of equations A6, 24(a), 

“VA 
au 

u=n 

oe 
2u 

(467) 

  

is \ 

u-n 

  

| 2u 
aoe un 

  2u 
ie \ u 

  

  

  

  

  

(Ac. 24(b)) 

( Ao. 24(c)) 

and Hy may be 

, (b) and (c) 

A6.25(a) 

(Ao .25(b)) 

(A6.25(c)) 

(A6. 26(a)) 

(A6.26(b)) 

(Ae. 26(c))



  

  

  

  

% 
Ue wey pel ee (A6.27(a)) 

u=0 

fe Hye D a (ae (A6.27(b)) 

e | 
ie ™ Ye peel (aia (As . 27(c)) 

u=n 

The frequency spectrum given by equation 3. 4,11, 

section 3,4, (chapter II) can now be expressed in terms of 

the Fourier coefficients by substituting equations A6, 21(a)., 

(b), (c) and (d) in equation 3,4.,11.: 

F(t)= LY yfifpatted] e +) Ege 2] + 

cos pa (t+) +) Geo (noo £ ) — 

sin|p (BY [B+) 5 costa] d 
n=\ 

co 

cos|pu(t- 3} [Hes cos(nw,t) | (As. 28) 
n=1 

Equation A6,28, may be rearranged to give:



  

  

  

  

p=! N\=-0o 

sin [(po.+nu,,)t + 4] (A6.29) 

where 

5 = (6 -F,) cos (POE) +(H_-G,) sin(Po| (A6. 30()) 

ie (H+ G,)cos (PRE (E + F) sin Pare (A6.3 o(b)) 

Q = baa ( ss (A6 .30(<)) 

E= E, ) ay: F ) aes G, ) sey Rh, (As t 30(4)) 

It is shown in equation 3.4.17. (section 3,4., chapter IT) 

that the modulation frequency and harmonic components of 

the frequency spectrum are given by the expression; 

co 

) (4 B,)M cos (wt) (Ao .31) 

n=\   
Now the form of equation A6, 31. is very similar to equations 

A6, 21(a)., (b), (c) and (d) so that the following expression 

may be written down by inspection of equations A6, 24;



) (a |)M.cos (0,t)= Zt) K,cos(wet (Ao . 32) 

n=\ vel 

where 

  (x 4+ : )M ees | (A. 3 3(01) 

ee aw-l 

bec ) at i iw ae (Ac . 3.3(b))   

  

(+ e ie ae ( a (Ac : 3 3(c)) 

Computational Methods 
  

It wit#l be noted that equations A6.17., A6,18., A6,19. 

and A6, 20. , for the coefficients Ay. By C. and D.. have 

- the same form. From the point of view of computing the   numerical values of these terms, it is convenient if they 

can be expressed in a general form, It is also convenient 

if the variables are identified by a subscripted letter rather 

than by different letters, Therefore let: 

A= ¥C1) (A6.3.4(0))
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=e (Ao . 3.4(b)) 

B= ie) (A6 . 3.4(c)) 

= 1h) | (Ao. 34(4)) 

The general expression for YN) is obtained by inspection 

of equations A6.17,, A6.18,, A6,19, and A6,20. The 

sidebands of most interest are the lower order sidebands 

of the pulse-repetition frequency so that the expression 

for Y,(N) is written for p= 1. 

  

es) mM x N= + (i+e0)] “Ont ce alee 

k-2 1 | 
ent (r-q)(K-r oe y(n) ) Saxe) 1 a (As. 35) 

“o reqe' 

where 

X= % for Ne=land 2 (6 .36(0)) 

x= By for N=3and 4 (6. 36(b)) 

The coefficients EW BY G, and Hy given by equations 

A6, 24,, A6,.25., A6.26, and A6. 27., can also be identified 

by subscripted letters, and expressed in general form, Let: 

ES Aa) (6.370) 

G =Z (2) (6. 37(b))
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F = Z (3) | (A6 .37(c)) 

H= Z(4) (As . 3714) 

By inspection of equations A6,24,, A6,25,, A6.26, and A6, 27,, 

the general expression for Z6N) is: 

  

| 
=1 

U 

U (ue | for nh=even (Ao 3 3.8(a)) 

4 ae 
Z (Nv) = Y ¥l0) 

uUu=even 

Z,(N)= ) YN) sale) for n=odd (Ac .3.8(b)) 

Gadd 

The flow chart for evaluating the coefficients Zy is shown 

in fig, A6,1. It is necessary to specify the following parameters 

for the flow chart: the highest order sideband of interest 

Gees ea J Ww ) the order (U) of the power series 

defining the positions of the pulse leading and trailing edges, 

and the highest modulation frequency harmonic (Rw) of 

interest. The values of the power series coefficients Xp 

and Pp are also required, together with the modulation index 

M . The method used is to evaluate the terms Z ON) to 

Z5(N) for successive values of N of 1, 2,3 and 4, 

The values of the coefficients Z_(N) are then used to 
J
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Nead U,J,M “7 

Set Yes ta No Set 

xp for p<U N<2 Xp=Apfor p<U 
x20 for p> U xp=0 for p>U 

I “4 r 3 

Compute Set U=Order of power series definition 

y,(N) and ¥,(N) be] new of positions of the pulse edges. (nN ~ 
on ade 2 (v)so| J> Highest sideband required -A6, Zn =       
  | ( ie. W, -du 

  

    

    

      

  
    

  
          

    
  

            

  

         

a 
Compute 

Y, (N) 
from eqn.A6, 35. 

Yes No 
Set Set Te ney 

kee teakes4 Me cal k=k+1 

No / Is Yes 

n=Jd 

Compute Te            

  

   
Is Yes 

=even 

   

  

Set th. 
th q ‘term in series 

Z,(N)=2,(N)+ q” te 
for Z,(N),eqn.A6.38 

    
    

J+k=even     n+k 

  

  

    

  

   
    

             

    

  

  

    
    
      
  

  

Is Set 

e terml< leurrent k=k+1 
a4 

value of 2,(N).10 q=q+1 

Set i= Modulation index 

n=J<-1 R=Highest modulation frequency 

q=1 , Z,(N)=0 harmonic required (N.B. R<U ) 

Pry | ¥ 

Compute Set 
th. * = h q” term in series Z,, (I1)=Z, (33)+ ai Fi a 

for 2,(N),eqn.A6. 38 %       
       

  
  

Is 

Ne | an tern|<|current 

value of Za(t 10 
     

  

  
      

          

    

  

  
            

Set Set nsn-1 

q=q+1 q=1 ,2,(N)=0 
Set 

k=k+1 

Set 

N=N+1       

  

Fig.A6.1. Flowchart for computing coefficients in the generalised spectrum 

analysis.
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evaluate the amplitudes of the repetition frequency component 

and the sideband frequency components as shown in fig, A6, 2, 

From equations A6, 29., A6, 30, and A6,37,, the amplitude 

of the sideband (w, - nw) may be written as: 

2 
Sideband amplitude = so (x +8 4 (A6 : 39(a)) 

where: 

¥ = (z,)-2,(3) cos(n as }+(z,4)-z,(2) sin(r ee (Ae ; 39(b)) 

ec c 

§-(2,uh2,(2) cost} (2, (+23) sin(rr 2] | ee 3 5(c)) 

© 
iat 
T,. is given by equation 4, 4, 5(b), of section 4,4. (chapter II) 

  = =. (ho Me (A6 . 39(4)) 

The amplitude of the modulation frequency and harmonic 

components are given by equations A6, 32, and A6,33. For 

ease of computing the coefficients K, may be written in 

general form: 

Ke ) be + B.,) 

wo dd 

for =.O0C 

(A6 . 40(a)) 

-
 

< 

Bi 
r
e
t
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Set Compute 

so PI Sideband(n) 

from eqn.46.39. 

Set Set 

rai n=n+1 

q=1 

¥ 

Compute 

qt’ term in Set set 

series for K, > nL=K + q” term q=q+1 

from eqn.A6,40, t          
|qth term| 

Zik 41 68      

   

      

Set   r=r+1 

a4 

  

      

vig.46.2. Computation of sideband frequency components and modulation 

frequency harmonic components.
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K = ) +A.) mM Pe [us ) (Ac . 4 0(b)) 

From equations A6,40(a). and (b), it can be seen that the 

highest modulation frequency harmonic required (r = R) 

must be less than, or equal to, the order U of the power 

series defining the positions of the pulse edges, 
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Appendix 7 Evaluation of the expressions for the static 

power dissipation in the output stage elements 

The power dissipation in transistor VT1 of the output 

stage is given by eqn. 4.24, section 4, Chapter III. 

The expression is rewritten below for convenience: 

Ty 

baal ice Re = log a Je (a7. 1)   
   

ES 

The filter input current i(t) is given by the approximate 

expressions developed in Chapter III section 3.2 (eqns. 

S.27072ta) and (b)) 2 

Ree ket, Sor aie 
Bit= meal k. oe. for O<=s (3 - a (A7.2) 

Re . g 3+M t aN t 
Re tna ~ ao =) for et. F< =< \ (a7. 3) 

Substituting eqn. A7.2 in A7.1 gives the following 

expression for the power dissipation in VT1. 
Te 

Ba af readin hale Ee Drealats eo J, 

+f [raft 4. Ealp Raat - 

+f eal i 8 ete i=% ee 

Evaluation of the first of the three integrals in the 

above expression is the only one that is not straightforward.
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eta eee (oe Lal 
TE thessubstitutions b= | + ao [Mea Mal Th | 

es) (Mt1) Te 
and dts neuen edb 

are made in the first of the integrals then eqn. A7.4 

  

  

becomes: 

of Ae cle. (Me 7 Fe H 2 

vg sf I) log b]db + | {n- a(t LA dt + 

A ‘ | : 

tel [mnea( tet ff = 
1s 

Integrating the first of the integrals by parts gives 

the following expression for the power dissipation. 

Ba Ya Ce iegh Wb -Dlogh -b(-1)h(-1)} 

{o-aF EE )eo-na ae CE Ge +5 hed EF G] | » 
a(n -E) eof -E-E} 2. sta) 

a
 

ee. eT me 4 where belay [real Tr ] b= \+ T [mea (oe a 

ESI 

Eqns. 4.25, 4.26. and 4.27 (Chapter I11, Section. 4} may be 

integrated in the same manner to give expressions for the 

power dissipation in diodes D, and Do» and transistor VT2. 

ee = a (3 -I}log a, a3 -tlog a, - a,([2-l) +a (7° - ) 3  



  

  

  tated © se eee fe a) 

where ata: ae 

  

~ ae 2 ib ais i-(EY]]- 
vy Hn[-E } al Fe (-E) Fa (- GN] aS 

vce det foals AR ergata 
  

p--5 ale (eiegs,- ee -(¢-)+(E-) 

fe, {fa [nna fe [E-=}} | fash iA) EE EY wel (eS) (E)-@ ey} (A7. 6(d)) 

nk co be e(ea( SA TY acl Naber 
2 $2 5 

Now the normalised times ee Bride are given by 

eqns. 4.1, 4.4, 4.7 and 4.8 of section 4, Chapter III. 

Substituting these expressions in eqns. A7.6(a), (b),(c) 

and (d), and substituting for VA from Mz4ly- | 

gives the following expressions for the power dissipation 

in the output stage elements. 

For M>xyA 
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Laie. M(M+1) 2 2mMsi ll mM eo 

ae as CR) 3] (A7. 7(0)) 
wh : 
ieee b=1+4+-(m-a es = 1+2-(m +6) 

Tes Test 

Ps =Q | oe (AT. 70) 

oie 0 (a7. 7()) 

  

4, 
ait e Cz BAe Sal llega eg, -ali4}+5( 1} + 

2 x 

ERA Se la) i | (a7. 704) 

h where c= 1+ t- (ta) Gel +t(-A) 

Se 

For -—A<M< A 

— kT Teg (M+ . ar Ba Tee Cig ACB) F} 
ry, [oenewat] t Re, K (m1) ( . : \ 

SA > (a7. 6(a)) 
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BaD ere AG leg -alb-)- 2] T 
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cB2 8A 12 (A7. e(c)) 

were: = re ae A) 

~ 1 them) | | teh enos-se 
aire (sR) (A7. 8(4)) 

oi 
where C= 1+ 1 (M+4) 

For M<-A 

Ree . 
(A7. 9(0)) 

  Bo ae oe ne -a,{ 22 —\\loq a, -o(F=l)+9,|4- fs 

  

r ee (Ay + 4) oe 9(b)) 
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oe A he d (3 -I)log d, -4(4-\loga,-4(4¢-1)+4 (4 . | S 

  

wre A Okla 7 Pee 
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Appendix 8 Application of the mean square error 

criterion to the measured data for a 

junction diode 

  

In chapter III (Section 6 , eqn. 6.2 ) an expression 

is given relating the forward voltage (Vp) of a junction 

diode to the forward current (I 
Ip). 

: kT), Te V2 1, 8+ “5 leg (32) (ae. 1) 
It is required to evaluate the constant I, and Ry» in 

the above expression, from a set of measured values 

of forward current and voltage for a junction diode. 

It is unlikely that values of r and Ry can be 

calculated which will make eqn. A8.1 exactly fit the 

measured data. The difference between the measured 

values of diode voltage and the values calculated from 

eqn. A&8.1 may be defined as the error 

€,= [log (1,)~log(1,)] +1, Ry - V, eo 
where V., and I, are the Si pair of measured values of 

diode voltage and current. 

The total squared error (E) for N sets.of measured values 

is: N 

c=) eh (8.3) 
n=1 

In order to minimise the squared error E, the partial 

derivatives of E are set to zero and the resulting 

equations solved for I, and Ry: Substituting eqn. A8.2 

in eqn. A8&8.3, and differentiating with respect to i 

and Ry gives:
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ae 24 [log(I,}-log(1,)] TRA a (As 5 5) 

n=! 

For minimum squared error oe 3k O . Therefore, 

from eqns. A8&.4 and A8.5: 

N 

ae [log(1,,)-le4(15)] +1,8-\yh = 0 (As.6) 
n=\ 

Y fe fgG)-byCal}eha no (as.7) 
n=! 

Eqns. A8.6 and A8.7 may be rewritten as: 

N 

kT kT 
bs = log(1,.) ea = 4 N log(I,) +R, pe 

ye [$F log(t,)-V,]- SE tog(t,) )1,+R, JIS = 0 (ae. ) 
Solving these two simultaneous equations for log(I, ) 

O- (asia) 

and Ry gives:



  

  

log (1, )= 

    

  

The flowchart used as a basis for a computer 

  t   

(As. 10) 

(As. 11) 

program to evaluate nS and Ry is shown in fig. A8.1
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N= number of pairs of values 

(eet) of V, and I, 

    

      

  

  

  
    

    
  

    
  

    
  

Read N 

Set 

n=1 

Yes No 

Read 

I, and V, 

Compute I, and R, Uprate the partial sums: 

from eqns.A8.10 pe: 
n 

and A8.11. 3 

dtr 
) [+ 208(I,)-%] 

Print 

I, and R, ) [£?.208(T,)-Ma] Ty 

n=n+1       

Fig.A8.1. Flowchart for determining diode parameters from measured data.
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Appendix 9 Evaluation of the frequency spectrum for 

the pulse-length modulation section of the 

function generation system. 

The frequency spectrum for the pulse-length modulation 

section of the system described in Chapter IV is given by 

eqn. 3.18 of section 3.1 (Chapter IV) and is rewritten 

below for convenience: 

es ee £ 
yall La tae A344 2] (as.3) 

for is < bat. 

The expression for F(t) when n=O may be evaluated 

by applying L'Hopital's rule to eqn. A9.1. Therefore: 

—
 bat 

ti 

i Lt of ina (E+ E+ ta = 

oo ce
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‘eft tl] ren 
Rewriting eqn. A9.4 in terms of only positive 

values of n, and making the substitution tae*tar> 

gives: 

3o 

F(t}=t+t +i yee cos (nt) -sin[ng (Te +ty)] (a9. 5) 

n=l 

Substitution of eqns. A9.1 and A9.2 in the above 

equation shows that the term sin| no(e+tu) | is a 

periodic function and may be expressed as a Fourier 

series of the form: 

co 

sinfna(E tal] =) cpe=plipest) (49.6) 
where — we 

eos = sin[ne (7: + ea exp(-jpeat}. dt (A9. 7 ) 

Substaguting eqns. A9.2 and A9.3 in eqn. A9.7 gives: 
a : 

Soe x bobo + tt] fexptipat] dt + 

aim | 

|sirfoe fe ee .]} exetinaat) (Ao. 8 ) 

% 
The integrals in the above expression are evaluated by 

integrating by parts twice. Applying the limits to 

the resulting equation gives: 

Se -cos(prtr).cos +C0S + AS..9 ome neo C-rJoeofE on] } (40.0)
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Substituting eqns. A9.6 and A9.9 in eqn. A9.5 gives: 

F(t)= > uw.) \ ony nies naa . 
ani” bree 

oh a exp(jpa,t).cos(nu,t) (A9 . 10) 

As a result of the positive and negative values of the 

integer p, the term exp(jpw,, t) in the above expression 

reduces to cos(pwit). Eqn. A9.10 may therefore be 

rewritten as: 

F(tjst + + Bt 

  

corn _ (FF )-sin( EM) -cosfneat) ae 

) ) TAREE {i-<cos(o cos(5).cos(S M) — 

[1+cos(pm)] sin( 4 o) sin( n) cos (pat).cosina.t) ! (AQ. 1 1) 

oo 

Consider the term > _cos( pw, t).cos(nw,t) in the above 

expression. Since the coefficient of this term does not 

change sign for negative values of p, the term may be 

expanded in the following manner: 

too too +00 

eer t os{nay t} = bale nope, Jt cos(ney~peo, t = )eo (neat poy \t 

pett peti p=+\ 

(a9. 12)



  

  

Substituting eqn. A9.12 in eqn. A9.11 gives the 

frequency spectrum as: 

  

hs 7A sin (5) sin (FM) cos nat) + 
WIT 

co 

Er [ite .cos(%"),cos( Sm) — 

n=\ p=! 

[I+cos(pr)] sn(E) (SE) cos(nu,+pa, }t | (Ao .13) 

. The frequency spectrum given by the above equation 

is for a pulse-train of unit positive amplitude. The 

spectrum for a pulse train of amplitude th is obtained 

by adding a constant of -} to eqn. A9.13 and multiplying 

the complete expression by 2h.
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