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SUMMARY 

Pontryagin's Maximum Principle was investigated for the 

finite and infinite time interval cases to assess its 

usefulness in practical applications. Attention was 

focused on the analogue control of a second order position 

control system. 

The findings demonstrated that the principle was a 

useful mathematical tool but not satisfactory for direct 

application for the finite time interval and virtually 

impossible for the infinite time interval. 

To produce a method of optimisation for the infinite 

time interval compatible with that of Dynamic Programming, 

and yet, preserving the formulated advantages of Pontryagin's 

Maximum Principle, equations were evolved to replace the 

characteristic two point boundary value problem. A practical 

controller was then evolved which would enable optimal control 

to be obtained without the need for resort to a computer. 

  
Optimal control of an actual second order position control 

system was effected and the results compared with those gen- 

erally obtained from the application of Dynamic Programming. 

They were observed to be better. : 

The evolved method of optimisation was further extended 

to encompass second and third order systems possessing two 

time constants, optimal control of an actual third order 

plant being effected.
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Introduction 

    

The classical approach to control systems design 

through such techniques originated by Nyquist and Bode 

are inadequate for the needs of present day technology. 

This is particularly true for process control, space 

vehicle design and guidance and flight controllers. 

Such problems have thus produced a flood of ‘modern 

mathematical techniques’ totally independent of established 

control theory. The problem of optimisation may be singled 

out as experiencing the most profound escalation. This 

escalation, however, has been provoked by mathematicians 

with almost total disregard for application. It is the 

purpose of the engineer, therefore, to consolidate and 

manipulate these new ideas into practical forms. This has 

successfully been achieved for complex systems, mainly 

connected with space vehicles for which the techniques 

were probably originally evolvdd, but has not been general- 

ly presented for application to more mundane problems. 

Therefore, there still exists a large gulf between 'modern 

theory" and practice. 

Many authors (ref. 6, 33, 34) have given voice to the 

need for application orientation, but such papers have not 

been readily forthcoming. There exists a magnitude of 

papers dealing with optimisation of mathematical problems
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and computer models. A general formulation of the 

  

difficulties and errors entailed in the. contruction of 

an actual analogue controller to realise the postulated 

goals was not obtainable unless a computer was used as 

the controlling element. The majority of work in. Chys 

field is devoted to bang-bang control. Ans cacapt Lone 

perhaps, is Bellman's Dynamic Programming (ref. 1,20) 

which has gained popularity as one of the most readily 

applicable of the modern techniques. Pontryagin's Maximum 

Principle (ref. 24, °25) on the other hand has gained pro- 

minence solely amongst mathematicians or for computer 

manipulations, its use for actual analogue control not 

being exploited. This is mainly due to the excess computer 

time required for the solution of two point boundary value 

problems peculiar to the Maximum Principle, compared with 

that required for the solution of the Riccatian equations 

characteristic to Dynamic Programming. Furthermore, as 

the canonical equations of Pontryagin have been derived 

from the equations of Dynamic Programming (ref. 20, 20,)., 

the two methods are frequently quoted as producing similar 

results (ref. 26). This latter statement, due to the lack 

of literature on the practical application of the Maximum 

Principle, could not be completely assessed. 

It was the object of this research to evolve a direct 

method of optimisation eliminating the need for a computer
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as the controlling element and to reduce its role in the 

solution of the control equations. The resulting control 

strategy, however, was required to be continuous in nature 

and maintain the benefits offered by the existing techniques, 

the principal benefit being the minimisation of a performance 

index. The techniques considered were Bellman's Dynamic 

Programming and Pontryagin's Maximum Principle. 

The only reference to this topic was that of Freeman 

and Abbott (ref. 10) who produced an alternative method for 

the design of optimal linear systems based on Pontryagin's 

Maximum Principle. The performance index considered was 

a quadratic and similar to that used throughout the research. 

The resulting control was similar to that effected by Dynamic 

Programming, i.e. constant gains were calculated and feedback 

of all the state vectors required. The resulting trajectories, 

for the mathematical problem solved, possessed overshoots and 

no attempt, at any stage, was made to measure the performance 

index or compare the method with existing techniques. 

The most difficult task in any ‘'modern' optimising 

technique is the correct choice of the weighting factors for 

the performance index. Generally, the only way of acquiring 

these values is by trial and error. This is comparable with 

the classical method of design where a controller is designed 

and the resulting plant trajectories evaluated. If these are 

not compatible with the specification, the controller is 

modified. The major difference between the two methods is



  

that for the classical approach the physical construction 

of the controller may have to be modified (the initial form 

of controle beines virtual ly an intuitive guess), whereas the 

modern approach necessitates the change of parameters, such 

as gain coefficients. The control strategy and physical 

form of the controller remain identical for each trial run. 

The majority of papers dealing with optimal design do 

not attempt to measure the resulting value of performance 

lndex. “This issbecause Ltrs known: that wthe procedune used 

will produce the mimumunm Sie re However, due to the trial 

and error technique usually involved, the value of the 

performance index will show if the resulting extra cost (i.e. 

need of greater power amplification, etc.) is compensated 

by the system improvement. An exception to this is presented 

in a paper by Ellert and Merriam (ref. 9) where an aircraft 

landing system is designed. Here, as the system specifi- 

cations were so complex and the sole object of the design 

was the correct landing of an aircraft, the value of the 

performance index was insignificant. 

Throughout this research the value of the performance 

index;*and= hence the cost of control,:-was. taken,as a pre 

dominant design feature. When comparing methods of opti- 

misation this proved ‘invaluable as the resulting plant 

trajectories, although being comparable, produced different 

values of performance index.



Nomenclature 

N.M.P. 

N.O.P. 

H(£) 

XI 

  

Normally monotonic plant, i.e. over-damped 

output for a plant with negative unity feed- 

back. 

Normally oscillatory plant, i.e. under-damped 

output for a plant with negative unity feed- 

back. 

Initial co-state vector conditions 

Reciprocal of plant time constant 

Co-state vectors 

Plant state “vectors 

Weighting factor 

Control effort 

Natunal, frequency 

Value of performance index 

Plant input function (unless otherwise stated 

Es: a unit. step) 

-The Laplace operator 

Hamiltonian function 

Gain. Coerricitent
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1. Application of Pontryagin's Maximum Principle to a 

” Second Order Plant 

1.1. Pontryagin's Maximum Principle 

Rozonoer (ref.28 ) has given a good explanation 

of the mathematical application of Pontryagin's Maximum 

Principle (ref.24,25) and the following is a brief statement 

of the method as given by Brennan (ref. 2 ). 

Suppose that the response of the controlled object 

may be described by n first order differential equations. 

Then, at any time, the state of the object may be described 

by n state variables Sake eS xn" Suppose that there are 

r controlling elements with position mee oie m.. — ‘The 

System may then be described by the n first order differen- 

tial equations. 

xj = te ee ts seer TL5 Shoe oe Lye Se on (a 

The control problem is to choose m(t), where m is the 

vector m, +«.e-, mr, to minimise the performance index 
1 

n 

FE rt ¢T) oe oe ee oe Clio sz) 

k=1 

where T is some time which may be fixed or free. This is a 

general criterion and it includes the problem of minimizing



  

In this case we introduce a new state variable. 

nt 

X41 60) = [F(x tenes X53 m» were, m_)dt Clad) 

Oo” 

Thus a new equation 

‘.* EAs seees Ky - aie 6 ar m_) CL elson) 

may. be 4added .to the set; of equations (1.1%.2)s.* Then the 

problem of minimizing the integral of equation (1.1.3) 

reduces to that of minimizing the (n + 1)st ‘state variable 

at the fital instant of time T. 

To solve this problem, form the function 

  

n . 

Hi(x>p,m, t) = Py,f,, “9 @eeey ae ete: eeeey aa t) 

k=1 Clieds <.6') 

where P iaee. oF ee ee ee ee oe Ctr 

dpi 

Satyr prey cee Ce nk ie a eee Pe OCD GB) 
OX. 

1 

and x;p are the vectors a avotes Mes . 0s 8s Poyy? 

respectively. The boundary conditions are given by 

° 
x. (o) Tks
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the initial conditions of the state variables, and 

p; (7) = HG s ee ee ee GL 51.9) 

At time T, the vector p is equal in magnitude but opposite - 

; The in direction to..the: vector .c = #¢c Ael ere ein.gs: 1 > 

maximum principle then states that 

n+l 

J => cx, (T) 

k=1 

is minimized when H(x,p,m,t) is maximized Loreal. t, 

Ort eT 

As demonstrated, optimal control is effected through 

Pontryagin's Principle by constructing, via mathematical 

means, an ‘adjeine system to produce an optimal control 

effort (m). Although the proof is highly mathematical, 

the mathematical manipulations required to produce the 

adjoint system are relatively simple and may be per ehemed 

by purely algebraic means. Great difficulty arises, however, 

in solving the inevitable two point boundary problem for 

Tene 
the required initial conditions (c) of the co-state or ‘p 

vectors of the adjoint system. 

2% Performance Index 
  

The initial step in the optimisation of any system is 

that of choosing a performance index. The form of the in- 

dex and its associated weighting factors are very critical 

to the resulting optimal design and lengthy analysis is 

often necessary to obtain its correct or required form.
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An effect of the performance index is that, depending 

upon the optimising procedure, the index may dictate the 

whole optimal strategy. Pontryagin's Maximum Principle 

was observed to be such a procedure for the index determined 

whether control would be effected via analogue or bang- 

bang means and which vectors would be required for feedback 

purposes. 

A performance index whose integrand consists of vectors. 

raised to unity power will in general not be convex and 

lead to bang-bang control (section 2.1). Under such cit cun- 

stances a unique optimal solution may not be obtained (ref. 

1g )+ A quadratic performance index is generally convex 

and results in continuous control. This produces a unique 

optimal solution. 

A quadratic index was used throughout the research. 

This ,.cook the:torm: 

Cy
 il |(error)? + dm2| dt 

° 
where 'm' is the optimal control effort and \ a weighting 

or penalty factor. (Throughout the research the value of 

} was taken as 0.1.) Optimisation was achieved by minimising 

J. J may be assumed to be a cost function for minimising 

a system error and cost of control. 

The significance of the performance index and its 

integrand are discussed in section 2.1.
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1.3. Mathematical application to a second order plant 

As mentioned in the introduction, literature was not 

available which clearly stated the practical application 

of Pontryagin's Maximum Principle. The initial research 

was therefore devoted to this end. 

Consider a second order plant whose transfer func- 

tion in the S plane may be represented by 

x 

s(s + a) 

The resulting state vectors may be represented by the 

first order differential equations 

ai Cb) hail es eg ee “ OSA 13 
i 4 2 

x (t) = -ax (t) tm a - oe tle 9295 
2 : 2 

The performance index 

er 
+ | Ke: ~ x ¢t))*+ am (t) | dt os (103,99 

% 

where E is the system's desired output, produces a third 

state variable 

x(t) = (E - x (ey)? + Am2{t) ne (L305 

The Hamiltonian for the system may now be written 

ae iy: ; ( 2 2 H = x ee .(-ax° + m) + CCE 7% + \¥n Poe Cl. oa 
Py 2 P+ 2 ) P + ? ) ) 
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Pontryagin proved that maximising the Hamiltonian mini- 

mised the index thus, in maximising H w.r.t.m 

oe SA Ce) eile) pn tb) ei - cis C456) 
9m 2 aS 

Ao. Seay a a 3 be tL 
ox 

and x. (t) = 9H oe oe = ten eS 8) 

oP; 

From equations 1.3.5 and 1.3.7 

p(t) = -0H = 0 rs a i ge (173 8 

ox 
3 

Equation 1.3.9 demonstrates that P. is*.a constant and.will 

be .equal to -l. 

  

. ° 
Fem Ct) ere ght) 

ee Me el Se OM 

2 

From equations 1.3.5 and 1.3.7 

Best)? 2.(xy Ct)7.= 2k) ia vy i pe LSS kL) 

and 

~Ctlo ar Bp th. = pete) ee es Be er ys) 
£ Py &, | 

The values of the p vectors at time t = t, must be 

zero, their value at time t = O are unknown. 

The complete optimal system may be simulated on an 

analogue computer with equations 1.3.11 and 1.3.12 represen- 

ting the adjoint system (fig. 1.3.1).



  
  

  

Computer Model of Optimal System 

Rigs Eyavk 

The values of the initial conditions of the co~state 

vectors p and p_ (A and B respectively) are the solutions 

a 2 

of a two point boundary problem. 

1.4. Iterative Procedure for Optimal System Trajectories 

Initially it was decided to solve the two point boun- 

dary problem on a digital computer. This necessitated an 

iterative procedure. Such procedures are well established 

and include 'Method of Finite Differences', various gradi- 

ent and relaxation methods and 'Boundary Iterations'. The 

mentioned methods are summarised in ref.22 . 

It was decided that a gradient method would be used 

and the 'Steepest Ascent of the Hamiltonian’ (ref.3,I4 ), 

was observed to have been formulated to solve the problem 

in the form presented by the mathematics of Pontryagin 

(Appendix 1). The method took the form of computing the
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controlling effort (m), trajectory, correcting it in such 

a direction as to increase the Hamiltonian according to 

me ue my + 4K oH se ee os we (154.8) 

om 

for each iteration (i), and hero Lin atone until a con- 

vergence was acquired, i.e. when the required optimum 

effort had been attained, the partial derivative was 

equal to zero producing M4). 7 My (The resulting flow 

diagram is shown in Appendix s.r) 

1.5. Optimisation by Digital Simulation 

The initial plant considered possessed an open loop 

transfer function of 

gh e 
Bs. Cs 452) 

the desired output on closed loop being unity. 

When the tsystem is depicted aswin fics J5.«1 >the 

  

s 
Analogue Model for ata Ce ay. 

state equations may be expressed as 

(L.5¢k) %s CE) A m5 6D) “ és 

x (t) 
2 

m(t) - 2x,(t) i oer (Lessa



  

The third state variable to be minimised may, in accord- 

ance with equation 1.1.5, be expressed as 

x3(t)= (E- x(t)? + 0.1m? (t) ei - (4:.5,5) 

where O.1 is the weight (A) attached to m(t). 

The Hamiltonian for the system may be written as 

Ho= p(t) (t) + Pp, (t). (a(t) Thx (et): + pe).{CE = x, (0) ; 

+ 0.1m2(t)| 

given Be eer oH 

Ox 
£ 

Pp. ~ ae E) ee ee oe Chi S84) 

FS = 2p, es P, ee ee ee Ct #55755) 

and P, eae OQ ee a. i Gl 3:5,<6:) 

oH : 
oo = p (t) + 0.2p (t)m(t) = O (for a maximum) 
om Zz 3 

oo mkt) & “Pet 

oe ou ee C15. 4) 

O2p_(t) 

Equation 1.5.6 shows that Ei is a constant and will equal 

-l. Equation 1.5.7 may therefore be written 

m°(t) = +5p_ (t) 2 ms Gl: S85 

where m° (t) is the optimum system control effort. 

The initial values on: the state vectors ih and 52 were 

taken to be zero. The final value of x) was required to 

be unity while that of x, was unknown. The final values 

 



  

of the co-state vectors would be zero while their initial 

conditions are unknown. 

A block diagram of the optimum system is shown in 

fig. 1.5.2. The digital programme which simulated the 

system for an optimising period of 2 seconds is shown in 

Appendix 5. The integrating routine was that of ref.29 

with a time increment of 0.01 seconds. 

The resulting computer convergence is depicted in 

table 1.5.1 and the optimum trajectories by fig. 1.5.3. 

A great disadvantage of the method employed was in 

the selection of the up-rating constant constant K of 

equation boGat. It, was sobserved *that. this constant was. 

very critical to the convergence of the programme. For 

an optimising period of two seconds, four trial runs were 

required to determine a rough value, and a fifth to obtain 

a value which produced an acceptable convergence. If the 

value of K was too large, the programme became unstable, 

if it was too small, convergence was very slow. The 

resulting value of K was 2.5 and the time taken for each 

iteration was 1} minutes. (An Elliott 803 computer was 

used). It thus necessitated approximately two hours actual 

computing time to obtain the initial conditions for the 

adjoint system. 

As the period over which optimisation was being con- 

sidered was increased, so the constant K became more
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TABLE TO SHOW CONVERGENCE OF CONTROL VARIABLE 

Iteration 1 10 L5 18 
time 

2.0 0.5000 0.0009 0.0000 0.0000 

1.8 0.5214 0.04427 0.0420 0.04198 

1.6 0.0925 0.1107 0.1105 0.1104 

Lt 0.7124 042242 0.2244 0.2244 

0.8812 0.3886 0.3892 0.3892 

1.0978 0.6138 0.6147 0.6147 

1.3611 0.9131 0.9142 0.9142 

1.6694 1.3014 1.3027 T3020 

0.4 2.0202 Pe 793 1 1.7946 Lh 9D 

0.2 264097 2609 1.8 253997 273990 

07.0 2.8324 SLPS 3.1166 3.1165 

Table lte5,. 1 

  es ee a 
Adjoint m i Plant | 4 

—"O-—| system         

Block Diagram of Optimal System 

Fig. 1.5.2
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critical. With an optimising period of four seconds, a 

satisfactory K was observed to be 0.70. The time per 

iteration was three minutes. It was further observed that 

to obtain an acceptable convergence, many more iterations 

were required. The due of iterations for longer opti- 

mising periods were reduced by making K as large as possi- 

ble, without invoking instability, for the initial iter- 

ations* and teduGing, 1 t for the. latrer. 

Other digital techniques (as mentioned in section 1.4) 

were considered but all were observed to have some defi- 

ciency or undesirable characteristic similar to those 

discussed. 

1.6 Solutions of two-point boundary value problems via 

an Analogue Computer 

As the solution of the characteristic two-point boun- 

dary eo ten media lengthy computing time per solution 

on a digital computer, an analogue computer was employed 

with the intention of obtaining much faster solutions. 

The analogue computer diagram for the system (equations 

T2532 155 eS io) boo. Oc ad 1968) | ae Bown in fig, 

Llé6.1;, was ‘used with the initial values of the co-state 

vectors applied via potentiometers. The analogue circuit 

for measuring the index is also shown.
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‘ f se as be ot 
j ~~, i fy i SOQ o> oh. lol RS eg as 

—j—__ |! ee ee ee eae 
ee Pea Poe) 10 x ir: + O.lm2)dt 

1 >! > $a. / 
se i oe} { 

  

  

Analogue Computer Circuits for Plant 
Evaluation of the Performance Index 

Bite: decOuel 

l 
aiao¥ 2) and the 

Optimisation was achieved by operating the computer 

in its cyclic mode and adjusting the co-state vector 

initial conditions until they attained zero magnitude 

at the termination of the optimising interval. The 

cyclic period was initially small and gradually increased 

to the required optimising interval; the initial values 

of co-state vectors being adjusted to produce zero co- 

state values at the termination of each cycling increment. 

Initially an Electronics Associates TR-10 computer 

was used, but it was found unsatisfactory due to in- 

sufficient resolution of the potentiometers for the set~- 

ting of the initial conditions. To obtain optimum con- 

ditions, an Electronics Associates TR48 computer was used, 

the results of which are shown in fig. 1.6.2. The values 
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and control effort 

0.5 Volts/cm 

0.2 secs/cm. 

  
Time (secs) 

  

Q 

Plant state vectors < 
° 
- 

0.2 Volts/cm 

0.2 secs/cm. 

Time (secs) 

Index. = 
° 
> 0.2 volts/cm 

0.2 secs/cm. 

to
 FIG, 1.6. 

   
   

      Optimum trajectories 
Time (secs) 

for plant with open 

loop transfer funct ions =
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of the initial conditions of the co-state vectors and the 

value for the index compare very favourably with those 

obtained from the digital solution (fig. 1.5.3). (The 

instability of the trajectories of fig. 1.6.2 are discussed 

in section2.4). To verify that an optimum system had been 

attained, the change in the value of the index was observed 

for changes in the initial conditions. The results are 

depicted in fig. 1.6.3 from which it may be observed that 

any change in the initial conditions only increased the 

value of the index. 

  1S 

/| Curves showing the increase 
we 

os a eh in the value of performance 

\ 28 7 indéex:..( J) for<chance in. the 

Ny \ UZ value of: the. corstate vec- 

aN Ae tors. 

change in initial condition 

Figs 1.6.3 

Once the circuit had been patchedon the computer, it 
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took approximately ten minutes to obtain the required 

initial values of the co-state vectors for an optimising 

period of two seconds, which, due to the inherent opti- 

mising procedure, included the relevant initial conditions 

for many optimising periods less than two seconds.
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2. Results and Observations from the Analogue Computer 

The facility for quickly solving the two-point boundary 

value problem rendered the analogue computer a much more 

usable tool for the investigation of Pontryagin's Principle 

than» that of “the digital: computers lt -<wastalso much. more 

adaptable and versatile for model manipulation. 

201. Performance Index 

Many authors have stated that Pontryagin's Maximum 

Principle either produces bang-bang systems or open loop 

control (ref.19,37). This was conceived by considering 

an isolated problem and drawing general conclusions. 

The aati control: effoe€ fara plant.; according to 

Pontryagin mathematics, is given by: 

oH = 0 ee ee ee ee ee C211) 

If m is only present in the Hamiltonian to unity power, 

then equation 2.1.1 will not contain m and thus a bang- 

bang system will result. If, however, m appears in the 

Hamiltonian in quadratic form, then m will be present in 

equation 2.1.1 and the resulting optimal system will con- 

sist of only analogue vectors. , Similarly, as the co-state 

vectors are given by: 

Py 2-2 és ss ve rs “ C22) 
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“any state vector x; which appears in quadratic form in 

the Hamiltonian will be an integral part of a co~state 

vector and will.thus be required for feedback purposes. 

These quadratic terms may only be introduced by way 

of the (i + 1)th state vector, i.e. via the performance 

index. sthe type of control,(i.e. bang-bang or analogue), 

and the state vectors required for oe ae may therefore 

be completely determined at the onset by the choice of 

the performance index. 

oo, oa Mathematical Modeds Of,h Lame 

The plant to be optimised may be represented in many 

different forms, the transfer function of each form remain- 

ing identical. This is demonstrated in fig. 2.2.1 where a 

general second order plant with a transfer funceLlonszoet 

a is represented in three different modes. Due 

s(s + a) 

to differing state equations, each mode will give rise to 

a different adjoint system. The optimum control effort 

m° must, however, remain identical in each case to produce 

identical outputs and values of performance index. This 

requires the co-state vectors pg (the co-state vector 

; ; o : 7 nee 
directly responsible for m ) to possess identical ina tial 
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conditions. The value of the initial conditions on the 

other co-state vectors must therefore be different to 

compensate for the re-arrangement of the system components. 

The variation of choice for the mathematical model 

was of assistance in avoiding saturation when optimisation 

was performed on an analogue computer. | 

| 
, | 

) 

2.3. Variation of System Vectors with Change in 

Optimising Interval 
  

Curves of the initial conditions for the co~state 

vectors, which produced optimum systems for Various opti 

mising intervals (fig. 2.3.1), show that after a certain 

period of time the initial conditions tend to a constant 

value (i.e. region B of fig. 2.3.1). These constant 

initial conditions may be explained with reference to the 

co-state vector trajectories. When both co~state vectors 

tend to zero magnitude asymptotically at the termination 

of the optimising interval, increasing the interval would 

still produce zero terminal magnitudes and so Satiery the 

requirement for optimality without further change of the 

initial conditions (fig. 2.3.2). For optimising intervals 

in. region A (fig. 2.3.1), at: least one corstate vector 

would be expected not to approach zero asymptotically. 
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(fig. 2.3.2). Increasing the optimising interval would 

thus not maintain zero terminal conditions. The value 

of the initial conditions in region B was further observed 

to be directly proportional to the desired plant output. 

The constant value of the initial conditions on the 

co-state vector 2} (producing m°) was observed to be iden- 

tical for every plant considered of the form ——~—. 

8 Csu+)-a ) 

This suggested that this initial condition was independent 

of the plant's parameters. (This was later verified (Sec- 

tion 4) for a large class of systems). 

The maximum values of the optimum plant output for 

optimising periods less than that at which constant initial 

values prevailed, i.e. region A of fig. 2.3.1, was always 

less than that desired; the desired output, or slightly 

greater, being attained for optimising periods in region 

B..a8, Shown; ii figs 2.303.505 Fig. 23 73:d41s0 depicts the 

observation that plants which were N.O.P produced optimum 

outputs which did not attain zero slope at the termination 

of the optimising interval, while systems which were N.M.P. 

did attain zero slope when their optimum output approached 

the desired value. 

2.4. Optimising Period and System Noise 

Negative exponentials in the plant being optimised
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produce positive exponentials in the adjoint system by 

virtue of the negative sign in the canonical equation 

for the co-state vectors (equation 1.1.8). These 

positive exponentials render the adjoint system extreme- 

ly sensitive to noise and magnitudes of the initial-~con- 

ditions..”This sensitivity. to, variation in: initial con= 

ditions (portrayed in detail in section 5.2) produced 

curves, taken from the analogue computer, as families 

rather than single trajectories (fig. 1.6.2). This was 

due to error in the computer when re-setting the integrators 

at the commencement of each cycling period (an error of 

approximatelyQ5%). Error in the re-setting of the initial 

conditions would produce error in the co-state vectors and, 

as the optimal control effort for the performance index 

used was five times greater than Ps this error was accord- 

ingly amplified. 

The sensitivity of the co-state vectors will be most 

pronounced in the region of zero magnitude as there is 

little or no control over the adjoint system in this region. 

It is for this reason that, when the optimising period has 

terminated, the system must be switched off as, once the 

co-state vectors attain zero magnitude, there is no correct- 

ive control over them and the slightest noise will produce 

instability. This phenomenon was experienced on the
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analogue computer and the trajectories of fig. 2.4.1. 

show them patuedas to leave the zero axis soon after 

they attain zero magnitude, the optimising period being 

sufficient to produce zero error. (The co-state vectors 

will go unstable after the termination of the finite time 

interval due to noise and the non-zero error, i.e. the 

finite time interval may be assumed to be that interval of 

time at the termination of which the integrand of the 

performance index has not been reduced to zero magnitude, | 

The foregoing underlines the fact that Pontryagin's 

principle cannot be used in the infinite interval case and 

that there is a limit to the period over which optimisation 

may be achieved. This limit was the time at which the co- 

state initial conditions tend towards a constant value and 

will depend upon the plant parameters, i.e. the maximum 

optimising period is that at which the plant output attains 

its desired value. For the majority of N.M.P. instability 

occured before a sufficient optimising period was attained 

to enable the optimum output to reach its desired value 

(fig. 2.3.3). This was due to the co-state vectors con- 

verging to zero magnitude very gradually and thus being 

exceptionally susceptible to noise. This gradual converg- 

ence contributed to the optimum output of normally monotonic 

systems tending towards zero slope.
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2.5. Optimisation of an Open or Closed Loop Plant 

Consider the closed and open loop plants of fig fo" 2 aGa8 

x] nm ————— *} 
——— fe 

m eS 

9 PLANT rr PLANT 

| 
‘ 

eect 

  

        
    

  
Closed Loop Open Loop 

Fig. 2505 oak 

The performance index for the open loop plant is: 

Ee 
i =] 

a x + Am2)idt 2 o (21%. 1) 

° 

An equivalent index for the closed loop plant would be: 

a 
rm
 

né 
/ ese 2 eC, = x Yjac e (2 5.2) 

U 
° 

as the error e¢ is comparable with m of the open loop 

system. 

From the mathematical model of fig. 2.5.2, the state 

equations for the closed loop plant are: 

x a Vx a OG ee one C255 5:43 ) 
1 2 

x = on = sak xX Sieg ee ete C25 4) 
ak: 2 l 

See eS a On SNe eR 8 ee (2.5.5) 
3 1 1
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Analogue Computer Model for a Unity Feedback 

y, 
Plant with Open Loop Transfer Function 

(S + a) 

Pigs. 215% 2% 

The Hamiltonian may be written: 

4, 
H = pjY¥xo+ po(m - aXo — X1) + p3((E - x1) + Atm = xj) 2) 

2H aR? 2x(m =x ,)3° p3 being equal to =1 

° ° Po 

: f . Spas to xy ee ee ee ee (25.5769 

2X | 

From the canonical equations: 

Pe Ae Ry eer hE) eee n°) ry + tee SOF) 

Po = apo - YPj r , a fac O4 5 8) 

From equation 2.5.6: 

Po = 24(m° - x1) 

Equation 2.5.7 may now be written: 

py = 2(x, - E) ay ca Be, : (255295



To) ee eae on a4 (2.5.10) 

2a 

The optimum system may be realised from equations 2.5.3, 8, 

G end 10: (fies 806e9):s 

  

          
  

  
  

  

Computer Model of Optimal System 

Fig. 2.5.3 

Fig. 2.5.3 is identical to that of fig. 1.3.1 (analogue 

diagram for equivalent open loop plant). 

The net result is that optimising an open loop system 

to the index of equation 2.5.1 produces identical control, 

and hence values of co-state vector initial conditions, as 

optimising an initially closed: loop system to the compara- 

ble index of equation 2.5.2. 

Thus, an adjoint system designed to optimise an open 

loop plant could be used to optimise the same plant possess~— 

ing unity feedback. This enables optimal control to be



  

applied to a plant possessing unity feedback without 

the need for removing the feedback loop or even stopping 

the process. This may be advantageous for chemical 

plants, large furnaces and any process where shut down 

would prove an extremely costly or lengthy procedure.



32 

3. A Practical Controller to Implement Pontryagin's 

Principle 

A literature survey did not reveal a paper in which 

the author had applied optimal analogue control to an 

actual plant and fully observed the improvements. In the 

Main, actual application, not being the theme of the majo 

ority of papers, was glossed over by such statements as, 

"the control strategy when applied to a particular plant 

produced an improved output", or that "the evolved opti- P P 

mal strategy may be exerted via a computer". This latter 

statement may be perfectly satisfactory when controlling 

very large plants or processes, but may prove uneconomic 

for the control of small individual plants. 

This tection of the research formulates a controller 

which may be used for the finite time interval and forms 

the basic element for the control of an actual plant 

(section 5), in the infinite time interval. 

Error in the computation of the actual plants trans- 

fer function would be reflected in the model. Although an 

adjoint system, according to Pontryagin's Maximum Principle, 

may be obtained to optimise the model, it is very unlikely 

that the same adjoint system would optimise the actual 

plant. This is because the co-state vectors and at least 

one of their initial conditions are totally dependent upon 

the parameters of the model. Furthermore, as it was ob-
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served that the adjoint system was extremely sensitive 

to variation or error in the initial conditions of the 

co-state vectors, it is feasible that instability would 

occur before the termination of the optimising period. 

To obtain a controller which would optimise the 

model, the adjoint system was required to be replaced by 

a system which was inherently stable and exhibited a 

similar transfer function. Such a system was realised 

by replacing the adjoint system with a function generator 

(fig. 3.1), constructed to reproduce the optimum plant 

input (output of adjoint systen, m°) for an input of 

system error (input to adjoint system,€). 

  

    

      
== FG. seed PLANT 

  

      

Optimal Control with Function Generator (F.G.) 

Bao WO tts 
1 

For the original plant considered a 
s(s + 2) 

curve of errory m® was taken from an analogue simulation 

for an optimum period of one second (fig. 3.2). The 

resulting curve was reproduced on an analogue computer 

function generator (fig. 3.3) and used on closed loop
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FIG. 3.2. 
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to control the model. The resulting model output and 

value of index showed negligible variation from that ob- 

tained when control was effected via the pagdetarin et 

joint system (fig. 3.4). Similar results were obtained 

for plants which were. .N.O<P. (fig. 3.5) 

The curve of errorym for N.M.P. for optimising 

periods sufficient to produce plant outputs with zero 

error were, in the main, observed to approach zero m° 

asymplotically with reference to the error axis (fig. 3.6). 

This virtually represented a dead zone so that once the 
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vectors had attained zero magnitude, small variations in 

error would not produce change in system output. Further- 

more, for the same class of systems, the output tended 

Reuards its desired value with zero slope at the termin- 

ation of the optimising interval; the second state vector 
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also tending to zero magnitude. This type of controller 

may therefore be used in the infinite interval case (fig. 

Ba) “as at the .tetmination of the: optimising snternyad 

the system transients are also terminated. In general, 

however, the output of the optimum plant did not tend 

towards its desired value with zero slope (section 2.3) 

and thus, using the function generator described, an 

optimum output would be obtained for the designed opti- 

mising interval, after which large overshoots and an 

excessive value of performance index would be obtained. 

At this stage, the function generator approach was 

not used to control an actual plant as it could not be 

used on the general system in the infinite interval case. 

Furthermore, it is very unlikely, due to the apparent 

dead zone at the origin, that it could be used success- 

fully, for the infinite time interval in the form described, 

even 2f0r can Na Meer;
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4. Initial conditions for adjoint system to operate for the 

infinite time interval. 

It has been demonstrated that Pontryagin's Maximum 

Principle cannot be directly applied to optimise on actual 

plant. With the replacement of the adjoint system by a 

function generator however, a practical controller was 

obtained for the finite time interval. Such a controller for 

N.M.P.'s was also demonstrated to be applicable to the infinite 

time interval. It was therefore considered relevant that 

further research, based on the mathematics concerning the 

adjoint system of Pontryagin's Maximum Principle, should be 

carried out to present a general and direct method of 

obtaining the initial conditions of the co-state vectors to 

present an adjoint system capable of infinite time interval 

control. Such a method would be required which did not 

necessitate the solution of a two point boundary value problen, 

render the resulting optimal strategy applicable via a 

function generator technique and produce trajectories and 

values of index comparable with those obtained when other 

optimising techniques, (i.e. Dynamic Programming), were 

implemented. 

4.1 Determination of required plant output. 

A block diagram for the optimal plant STSFE) iS 

A 
Bac’ A ae | < shown in figure 4.1 
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e | $-a 
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ee 
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The plant output is given by 

aa) Bp -a| a a Ste) = 
5 - 

| q-*/s) 2 C/s) + M/S CN 
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e e 

The denominator of equation 4.1.1 may be written 

2r>S (S*-a?S?+ Y7n) Se tee ua Ze 

Equation 4.1.2. has five factors; one being the laplace 

transform S, (produced by the step input (F/s) to the system), 

and two quadratic factors of the form (S?~x), (S*~8) where 

and & are given by 
4 

on 
a +3 at es abe Came eg, 1S 
2 ~ x 

y?2 a 

if z - x then the factors of equation 4.1.2. (neglecting 

the constant multiplierS2), may be written. 

(S*=c+jd) 

The factors may be isolated as 

(S-h+jf£) (Sth-jf) (S-h-jf) (Sth+jf)....... 4a a 

Factors (S-h+jf) and (S-h-jf) will give rise to an 

output in the time domain of the form 

htf og; | Kes hdo Sin£t+(90rct) fs eee veh Ly Ss 
4 2 

1s, a>+ then the factors of equation 4.1.2. may be written 

(again neglecting the constant multiplierS2)), 

(S?-c) (S?-d) 

The resulting roots being isolated as
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(BaF) (Se SVS nYCSA) Co ee dd 

The factors (S-£) and (S-h) will produce factors in the 

time domain of the form 
¢ 

Kew and are tk eecemeete sue of ool ats = 

Consider the numerator of the plant output (equation 4.1.1.) 

Numerator = BYS?-AYS+2EY? 

m BY (StS) ee 4B. 

Roots of equation 4.1.8, neglecting the multiplier BY, will 

be given by: 

2EY 4s B . ° ° ° 

bh
] 
>
 

bal
e 

i+
 

SI)
 >

 
by]

 i 
Pp 

2y2 

£5 a> i then the factors of 4.1.8. may be written 

MS-h  +jf ) (Sehs HJ Oe 4 710: 

2v2 

ke 7 ane the factors of 4.1.8. may be written 

(Ssh) (SS£ cs)en es eR, Tks 

As complex poles will give rise to complex zero's the optimum 

plant output may be written by combining equations 4.1.11 

and 4.1.6, 4.1.10 and 4.1.4, not forgetting the respective 

constant multipliers. 

  

  

_ BY(S-h -+jf" )(S-h -j£”) 
0S) * ZXS(S=FyE) (Sth-9£) (S-n-3f) (SNE) oie 

: BY(S-h )(S-£°") 

Equations 4.1.5. and 4.1.7 demonstrate that the optimum 

plant output will always possess two poles which will produce
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positive exponentials in the time domain. Therefore, for 

the plant to be infinitely stable the initial conditions 

on the co-state vectors (A and B), which only appear in 

the numerator (equation 4.1.1.), must be arranged so that 

zero's are generated to exactly cancel the positive poles. 

This implies the following identities: 

heh feb Oe eee oe eed 

heh os fef OV SS SAR AS. 

which results in the following outputs: 

  

* BY 
x, (S) oe 28 (Sth-j £) (Sth+jf) . e ° . ° A at. 

  or x,(S) = apS-7SEF SEED Ps, eed oh Ale 

The stable output as postulated by equation 4.1.17 will 

be over-damped and hence would approach its desired value 

with zero slope and no overshoot. Equation 4.1.16 postulates 

an output which is under damped and thus overshoot may 

be exhibited. (This overshoot was observed to always be 

small,(less than 4.3% in the worst case, Section 4.4.), 

and was counteracted in the actual controller, section 5.). 

4.2 Determination of adjoint system initial Conditions. 

The values of the co-state vector initial conditions 

were obtained by a method of comparisons related to the 

identities of equations 4.1.14 and 4.1.15 (section 4.2(a)). 

This method however, was not general as initial conditions 

could not be obtained to satisfy both of the equations 

4.1.16 and 4.1.17, and would have been very difficult to 

apply to higher order systems. A second method was 

therefore evolved to produce a completely general approach 

(section 4.2(b).) 
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4.2(a) Initial conditions by method of identities 

The identities of 4.1.14. may be expressed: 

(s-h+j£) (Sth-j£)=(S-h +Jf’)(Sth-jf ) ...-- Ae a(a) 1. 

where (S-h+jf)(Sth-jf) are the factors of (S*-c+jd) 

Substituting equations 4.1.3 and 4.1.9 into equation 

422. (@) - bezcyierdss 

at fa? YS AYO ASN se 2 ee RS 2EY 
- 5 4G "CU setaee ~ oe Ge ame ee 

where each square root term is an imaginary quantity. 

Equating real parts 

ae CCMA? BAYS QEY 
Fo Gea eB 

a A hee + 4s fa gee 8409 a). 3. 

Equating imaginary parts 

Pets 2y2 / Bee VERY eG APY Eo ee 2EY 
FR eR Btee OB 

  

° es s ALY* 2EY?2A2 

Sep Fe AO ee 

Substituting for A* and A? from equation 4.2.3 produces 

V4 wat 4BAN8 
oe B? 

Bier2EV A eet ea Awe C2). 4.
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The identities of 4.1.15 may be interpreted as 

(S-£) (S+f) (S-h) (Sth) = (Sch’ ) (S-£") (Seh (Sef) 02. 4.28) 6 

Substitution of equations 4.1.3 and 4.1.9. into 4.2(a).5. 

yields: 
4 

Ce Yaak ABS 

aes 2E/X es cg’ Bee ene 

Identical equations for the initial condition 8 were 

obtained (equations 4.2(a).6 and 4), for both forms of 

the optimal system output as represented in equations 

4.1.16 and 4.1.17. The method employed however did not 

facilitate the evaluation of the initial condition A 

for the system output where all roots were real. 

4.2(b). General method for calculation of the co-state 

vector initial conditions. 

As discussed in section 4.1. the numerator of the 

optimum plant output is a quadratic in S$ and for a stable 

system the roots must cancel with those ofthe 

denominator which would give rise to positive exponentials 

in the time domain. 

When complex roots are present the optimum stable 

plant output is that of equation 4.1.12:namely: 

x,(S) = BY (S-h+j £) (S-h< je 5s 
1 2x9(S-h+j£) (S*h-jf) (S-h-jf) (Sth+jf)



which may be expanded and written: 

BY (S* =2n5sn vr) : 
x, (S) = Zr5(S*-(eh*-2t-)o- ton bth +t) tie 6 422 (Bb) 34 

By substituting x 2h 

and Z = h?+£? 

equation 4.2(b).1 may be written 

BY (S?2-XS+Z) - 6 2) 82: 
X(S) = STTON(S¥=(XF222) S747) e) 

When all roots are real the optimum stable plant output 

will be of the form given in equation 4.1.13 namely 

  

BY(S-h’ )(S-£° x, (8) = Pe EE STS ele Se (6) 3 

which may be expanded and written 

  

_ BY(S*-S(h+f) +hf) 
x, (S) = Sze oh Ee) ene) ou ee ee 4.2(b) .4 

By substituting: Zz’ = hf 

and X° = hef 
equation 2.2(b).4 may be written 

BY (S?-X"-S+#Z) 

2d.8(S*-(X2-22) +Z?) 
  

x, (S) = 2 . e 4,2 (Cb) 5 

As the ratio between numerator anddenominator are 

identical for equations 4.2(b).5 and 4.2(b).2 only one 

equation need be considered for both real and complex 

poles in the optimum plant output.



  

The general form of the optimum plant output 

(equation 4.1.1), may be written 
; 

py(s?-AY 528%) 
  

STEN St oarteetY Py) a AO (Da 0 « 

Equating coefficients of equation 4.2(b).2 with those 

equation 4.2(b).6 

Ti
 
r<
 

Se eat ot 34 LD) 7, 

Pe ABS tye ar ea CB ok 

(X?-22) =a? Me ae ae ee eeeT «9 

¥? 

rN 

From equations 4.2(b).8 and 10 

z3 DP hae ote 4 eel Bis 40 

Bo DE ae ee genni 0 422 CD) Le 

From equations 4.2(b).7, 8 and 9. 

Py eke ee 4EY 
a ie ee ae 

2 hp an he 4EB 
A= Ayr t+ y+ ee + 442 (b)-12 

Substituting equation 4.2(b).11 into 4.2(b).12. 

2 

aE. / 484 +e. oa 4. 2 Oca:
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Equations 4.2(b).11 and 13 give the values of the 

initial conditions, B and A respectively, to produce the 

stable plant output of equations 4.1.16 and 17. af 

the plant had been conceived in any other form (elements 

of the mathematical model rearranged), then a different 

equation for A would have been evolved. The equation 

for B however, would be expected to remain the same 

for as observed in section 2 and verified by equation 

4.2(b).11, B is independant of the plant parameters and 

therefore independant of the plant model. This may be 

demonstrated by considering the initial plant with the 

rearranged model of fig. 4.2(b).1. The plant state 

equations may now be written: - = YX2-aX} 

ae (E-x,)? +n? 

The Hamiltonian may be written 

H = p,(Yx,-ax,) +p2m- [ c-x,) 2 m3] 

° "3 
for maximum H, m “75 

Py = ap, +2 (x, -E) 

and Po = “YP, 

From the block diagram of the complete optimal system 

(fig. 4.2(b).2) the optimum output may be calculated as: 
AYS “28% 

x, (S) = 
    

/ 

BY (S*-S(atE-)+ 3) 
  4.2(b).14. 
LeheD Ul mca the Th)



  

  

      

Re arranged Model of 
  

as mica 
S’CSurts a) 

Fig. 4.2(b).1 
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This equation is identical to 4.2(b).6 except for the 

addition of (-BYaS) in the numerator. The required 

ratio between numerator and denominator will therefore, 

to comply with the stable outputs of equations 4.1.16 

and 4.1.17, be that of equation 4.2(b).2 with: 

oa as sul icns taeda? (by 225 

X = atA Y oho aed 2 (D) 16 
  

(X?-22) " seb
) . 4.2(b).17 

Z? = y* 4.2(b).18 x ee ane es ‘; 

From equations 4.2(b).15 and 18 

Bow DESKS aby a 

From equations 4.2(b).15, 16 and 17 

Fo ee ALYE dos ABY AA 
  

  

al et ae ee OR 

a ee eahee aER: 
al eyes ae ae 

heed aB . /a?B? . 4EB 
oy A #- ¥- Y . Se eh eye We oD) 20 

Taking the required positive solution 
/ 2p2. aur 

A= - 2/2 R + BL. . 4.20b).21



  

21 

This same result may also be obtained directly from 

equations 4.2(b).14 and 4.2(b).6 for, as the plant 

output must be the same for both models: 

  

BY ee AY 
ro Ae 

ee oe eB 
pe BN Sue 

4.3 Determination of initial co-state vector value 

from the performance index. 

The initial condition B, (equation 4.2(b).11), is 

independant of the plant parameters and only dependant 

upon the elements of the performance index. It should 

therefore be possible to derive a similar equation from 

the performance index. 

The performance index may be represented as: 

((error)? +Am*) dt. 

t2o 

At time t=0, x,=0, m=%, and error * <E (fit. 4.2(0) 22); 

enabling the integrand of the index to be written 

Bt 
2 

E v 4 e . os e ° ° ae 50 

Substituting for B = 2EYX equation 4.3.1. may be written 

Bite a 2b eo. Bay seks eee 

Equation 4.3.2. demonstrates that for the index to 

be a minimum the value of the integrand at time t = O, 

will always be equal to 2E?. A similar result may be



  

inferred from an example worked by Merriam (ref .20), 

where the system of fig. 4.3.lwas optimised according to 

the mathematics of the Calculus of Variations. 
  

  

Q . Kt m(t) fae q(t) The performance index 

; optimised being:       

  
: 

ae fie gio)” tomo} do 

2 
Optimal System Merriam derived the 

ig. 4,3, 
optimum gain K(t) as: 

  

: I T-+ K{+t) ‘eee oe eee, 4.3.3 

and the optimum control signal as: 

a°(4) SK G4)ichO~a(t)) es 0 ee SA, 

For an optimizing interval ranging from zero time 

to infinity, K(t) at time t=0, may be written 

ee 
  K(O) = Coth = 

(0) pr f* 

1 
bc nr e ° ° e ° e 4.35.5, 

Also at time ~¢=0, q(t)=0, and substitution of equation 

4.3.5. into 4.3.4. produces 

o ie 
m (0) - 3 e ° e ° e 4. oS: 6, 

The integrand of the performance index may now be written 

2460 2! 20% 3,7 a SS a 

Equation 4.3.7. again demonstrates that for the infinite 

interval, in order that the performance index can be 

minimized, the value of the integrand at time t=0, will 

be equal to twice the squared value of the desired output. 

It is thus evident that the initial value of the 

co-state vector directly responsible for the control effort
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S (his Me p, (0) or B), may be 

the performance index at 

ches 

i.e. error? +m? = 2E? 

° 2 

pt+ ABS, = 25? 

B = 2E/X 

derived from the integrand of 

time t=O, by equating it to 

at time t=0



  

4.4 Maximum per-centage overshoot for oscillatory 

output. 
  

The optimal plant output may be oscillatory as 

depicted by equation 4.1.16, and thus overshoots may 

result. The maximum value of these overshoots may 

be calculated as follows: 

The required output is shown by equation 4.2(b).5 to 

be of the form 

_ BY(S?-XS+Z) 
x1 (S) = 2NKSSTS*=(X2=22) S747? 

which may be written 

ae BY 
x (S) ae Bie Fee S +XS+Z ° e ° ° . ° Aa, 

The closed loop transfer function ( 2S) ); maybe 

written : 

BE A ae 
E(S) ($<+: XS+*Z) 
  

For a second order system with one time constants, 

x = > Z = ay and B = 2E/X Equation 4.4.2. may 

therefore be written, 

  

EG)" S™¥AY S4Y o RW ta es as FO 

, B A 

Therefore equation 4.4.3. may be written 

  

% 
x (S) : Wo ; 

E(S) SS+2 Wow, 

A E(Wn?) 
543 (5) = S(S*+2niinSeWn*) Livet hac eee dod a4 

 



  

a0 

It is shown in appendix 2, that the maximum overshoot, 

in the time domain, of equation 4.4.4. will be: 

Maximum per cent overshoot = exp. (- ce o wintetea Oe 4 

Equation 2.1.16 gives form of equation 4.4.1 i.e. 

BY : BY u BY 
ZAS(StH-JF) (SthH+jE)  ZA.S«.(S*#XS4Z) ~ Ton. S(S*+AYS*2EY) 

7 Bras 

(S*+2hSth?+£2) = (S*+AYS + 2EY) 
e e B B 

equating coefficients 

h s AY e : e e e . 40456. 

2B 

  

2 

h?= 2+ Bit Pek Saree sae PO8y 

Therefore h>f 

The conjugate complex poles may be represented in the 

complex plane as shown in fig. 4.4.1. where g = cos) 

Or damping factor).
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| wo 
TO As h>f, $ will always be less 

Bie wg 8, than 45 degrees and therefore 

i= --tif \ will always be greater than 

Location of complex 
poles 

0.7071. 

From equation 4.4.5. the maximum possible overshoot 

will be: 
MO. 707 U alt: e ) 

2 ex cone 

= exp(-Ti) = 0.043 

Or. 415% 

4.5 Initial co-state vector values for a second order 

plant with two time constants. 
  

The previous theory has been developed solely for 

a second order plant possessing one time constant. The 

initial conditions of the adjoint vectors are now 

considered for a plant which possesses two time constants. 

(i.e. a simple Ward Leonard control system). The state 

equations for such a plant fig. 4.5.1. may be written. 

=. Pate ese 

Xo ce m-ax. Soong ee ee. Ae ees 

(E-x,)*+dm?. 

= YX, -bx Ces. 

The Hamiltonian may be written 

H = p,(Y¥x,-bx,) +p, (m-ax,) ~( (Ex, )* +m?) 

oH 
om 

Therefore for maximum H: m°= x Ce eee hee Fee 

= p2-2Am 
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Block Diagram of Optimum Plant 

Fig. &.5.2 
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a 2(x,-E)+bp, Higetahe ers 4.5. AS 

and P.=ap,-YPy Ke ae ep Se Oe tre 

Equations 4.§.1 to 5 enables the complete block diagrams 

for the optimum system to be constructed (fig. 4.5.2.) 

from which the optimum plant output may be obtained: 

BY [S*-S (b+AY) +2BY | 
a: x, (S) = fs 

Dem Ol oS =O COR ta N tab th) ois ace oa oe 
x 

As the form of equation 4.5.6. is the same as that 

obtained for the second order plant with one time constant 

the required ratio between numerator and denominator for 

a stable system will be: 

BY (S?-XS+Z) 
ZeAc ol So (ete eele fe Shi oe ee eels 

Comparing coefficients of equation 4.5.6. with those 

of equation 4.5.7. 

K8 De AL 
3 ee leas 855 08 

Z = 2EY ne rene 

(X* #27) wba eae. de ete Aa 10, 

I2=a2h2+y2 
— ecards Spal % 
A
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From equations 4.5.9. and 11 

a * a pity: 
oy . 

TE Re 2k ay ae ee Ate Ao 
° e \atb ; 

From equations 4.5.8, 9 and 10 

b2+a2= b2+ A2Y? + 2bAY - 4EY © 
B* B B 

* 42, B2bA _ 4EB SBS 5 
By RD ENS 5 

  

eer ab.) Bie Ae ee oe 
none Vor je ye ee eye 

Taking the required positive value for A 
i i. ' 

As- + & (ora ao Fe oe 4.5.15, 

Equations 4.5.13. and 4.5.12 become Ssinilar td. the 

equations representing A and B, for the second order plant 

"with one time constant, when a or b is made equal to zero 

depending upon the required form of the model. 
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4.6 Optimisation by formulae of a second order 
  

system with one time constant. 

As demonstrated in section2 the optimum plant 

trajectories could be generalised into two categories; 

each being descriptive of the plant output when operated 

with normal unity feedback (N.O.P. or N.M.P.), This 

generalisation was observed to be applicable. to the 

equations evolved for the co-state vector initial values 

when compared with those obtained from the solution of 

the two point boundary value problem i.e. the value 

attained from the analogue computer for an optimising 

interval as long as possible without invoking instability. 

For plants which were initially N.M.P. the values differed 

by magnitudes in the order of 1%. This error was 

attributed to the analogue computer. Plants which were 

N.O.P. exhibited appreciable difference (up to +15% or 

+20%), and could not be accounted for by computing error. 

A difference for the N.O.P. was expected as 'Pontryagins' 

technique did not allow steady state conditions to prevail 

at the termination of optimizing interval, which is a 

requirement for the infinite interval plant. As steady 

state conditions were attainable for N.M.P., the requirement 

for the infinite interval were met and therefore, no change 

in the initial conditions of the co-state vectors were 

required. 

Calculation of the initial co-state vector value B, 

(initial condition on P, producing habe yielded the same 

result, for both N.O.P. and N.M.P., as that obtained from 

the solution of the two point boundary value problem. This 

was expected as this condition was totally independant of the 

plant parameters.



  

As the two initial conditions for the N.M.P. were 

identical to those obtained from the solution of the 

two point boundary value problem, the resulting 

trajectories and value of index were identical to those 

obtained via Pontryagin's Maximum Principle for the 

"longest' time interval. The N.O.P. however, having a 

larger value of 'A' produced different vectors and 

larger values of index. The calculated values of 'A' 

producing co-state vectors and hence, control efforts 

which over-shoot. This was necessary to reduce the 

over-shoot of the output and attain steady state 

conditions at the instant all the co-state vectors 

reached zero magnitude. Actual plant trajectories, 

obtained when optimation was accomplished with the aid 

of equations 4.2(b).11 and 13, are represented in 

later sections. A comparison between the new 

trajectories and those obtained from Pontryagin's 

Maximum Principle would not be valid as the latter did 

not produce infinitly stable systems, or from N.O.P., 

produce outputs which possessed zero slope at the 

desired plant output value. It was for these reasons 

that for a N.O.P. the value of index and trajectories 

were compared with those obtained from a similar plant 

optimized according to the principle of Dynamic 

Programming (section 6).
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S.  Réalisation of @ Practteal Controller 

As mentioned in section 4.6, optmisation of an N.O.P., 

when the initial co-state vector values are calculated 

according to the formulae of section 4. ; produce, vectors 

which over-shoot. Typical outputs and control efforts are 

shown in fig. 5.1. The resulting function generator curve 

(m°v error) 

  

  

time ee 

  

El gis 2D:. L 

Typical output and control effort for N.O.P. 

would take the form shown in fig. 5.2. If this function 

- a 

7 
™m 

  

7 - = arTnor lie le 

eb A: eee error 
{ of i 

j ve 
| J; . ae 

/ 
Beg _f£ 

a ee   Re isOi iets 

Typical Function Generator Characteristic
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was used as the controlling element, the points a, b andc 

of fig. 5.2 would correspond to a', b' and c' on the output 

of fig. 5.1., i.e. at the instant of switching on, the plant 

output is assumed zero, and the control effort will be at its 

maximum value (3). The error of the system will then be 

decreased as the output increases producing a change in m° 

according to the function of fig. 5.2. (The broken character~ 

istic of fig. 5.2. is for switching off or applying a negative 

step input). When the error attains its first zero, point b 

(fig. 5.2), the output would have attained its desired value 

(point b', fig. 5.1). The portion of the characteristic b.c 

(fig. 5.2) produces the overshoot on the output b'c' (fig. 

5.1). 

The function generator curve of fig. 5.2 would be extreme- 

ly difficult to simulate in its entirety. For error in the 

range 0 volts to E volts, however, the function is completely 

amenable to simulation. If a system was completely controlled 

by a function generator of this form (fig. 5.3), an identical 

output trajectory would be obtained, from 

2E: 
WE: 4 

° 
m 

  

  

  | 
oO
 
+
i
 

_—_-™M 

Bo 5D 6 

Actual Function Generator Curve



  

zero to the desired value, as depicted in fig. 5.1. At 

the instant the system attained zero error, the plant 

vectors would be as shown in fig. 5.4., i.e. ‘zero error, 

negative control effort (-M) and the desired output. The 

  

  

        

  

E error TP am ° apc ol x, 
cater aes oe LANT ; 1 _ 

fF A@ i & ee See ee 
a ! | 

| 

| 
j 

Rigs 7534 

Optimal System Showing Vector Values at the Instant of 

Attaining Zero Error 

only forcing vector will be the negative control effort. 

This will cause the output to decrease thus producing a 

positive error. Small system error will also produce 

negative control efforts thus causing the output to decrease 

still further. When the error is sufficient to produce a 

positive control effort, the output will start to increase 

and thus reduce the error. Finally, possibly after many 

oscillations, the output will settle in a position where 

the error is such that the output of the function generator 

is zero. A typical output trajectory is shown in fig. 5.5
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The maximum peak (position b) is not likely to be dis- 

continuous as the slope at the instant before b will be 

almost zero, i-e. maximum overshoot is 4.326. . Ef the .coa~ 

trol was switched at point b, position of zero slope fig. 

5.5, from the function generator to a linear gain function, 

Output 

  

  

time 

Figs (5 8D 

Typical Output when Plant is Controlled via the Function 

Generator of Fig. 5.3 

the steady state value may be maintained. At the instant 

before switching the values of the system vectors would be 

as represented in fig. 5.4. If the function generator was 

now replaced by a linear gain function, the control effort 

would be instantly reduced to zero thus maintaining the 

output of fig. 5.5 constant at its desired value E. The 

plant output would thus be improved over that of Cie. ot 

as the overshoot has been eliminated. This would result 

in a smaller value for the performance index. 

The controller so described controls the transient 

response in an optimum manner and the steady state response
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as a normal system with unity feedback. A plant controlled 

in such a manner is represented pictorially in fig. 5.6 

where switch 1 is closed and 2 open for transients initiated 

by changes of E, and 2 closed and 1 opened once.steady state 

conditions have been attained. 

error on? x 

erate L FLant 
< 

    

  
  

          
  

  
era Aap 

  
  

Fig p00 

Plant Controlled by Two State Controller 

When the plant being optimised possesses a high. gain 

it may be desirable for the gain coefficient W to be less 

than’ unity to reduce sensitivity of the system while oper- 

ating in the steady state. Conversely, for a plant whose 

sensitivity is required to be increased, the steady state 

gain may be increased by making W greater than unity <2 Lt 

would also be possible to increase the plant gain for its 

transient response, and thereby produce a faster response, 

and reduce it under steady ats th Condi t1008. <5 UCh.-a, Con 

troller is shown in fig. 5.7 where the plant to be optimised 

is taken to have a transfer function K.Y, the gain factor 
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K being replaced by W for the steady state. 

/ {1-@ [te 
nee | 

    

  

            

    

Figs 5 <7 

Two State Controller to Enhance the Transient Response 

Similar results obtained from the controller of fig. 

5.7 may be obtained with the controller of fig. 5.6 if the 

weighting factor ) of the performance index is appropriately 

reduced. 

The curve of control effort against error (the function 

generator characteristic) may be obtained without the use of 

a computer, i.e. mathematical formulae may be obtained for 

both the system error and control effort. Section 6.2 shows 

that for the plant whose open loop transfer function may be 

represented by oe ,» the optimal control effort may be 

written as: 

m’(t) = se (T Cos wt + U Sin wt ) ss oe (5.1) 

and the error as: 

E(t) = -e ?® (Ee cos wt + R Sin wt) c (5.2) 

The constants of equations 5.1 and 5.2 are dependent 

upon the co~state initial conditions which may be calculated 

from the formulae of section 4.
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Se kis Control ofan actual Second:..Order Pant 

The plant which was to be controlled is shown in fig. 

5.1.1 where the amplifier supplied the field of a d.c. motor 

which, via a gear train, positioned the slider of a potentio- 

meter. The actual plant is shown in fig. 5.1.1(a). 

  
  

  

    
              

| 

ae 
    

Fig. 5.1.1 

Diagrammatic form of Plant 

Initially, the transfer function of the plant was 

required. The most convenient and accurate method of ob- 

taining this was to set up an analogue computer second 

order model with unity feedback and variable time constant 

and gain controls. (The plant being approximated as 

possessing one major time constant). The plant and model 

outputs were then matched, for the same step input, by 

adjusting the parameters of the model. An exact match was 

not possible due to the non-linearity of the plant and the 

possible influence of other time constants. A good approxi- 

mation to the transfer function of the plant (fig. 5.1.2) 

was observed to be:
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Actual second order plant 

FIG, °$,.14 1a); 
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a rel 
Y¥(s) ee ein 6.6) ee ee ee (S'ole1 ) 

The state equations representing equation 5.1.1 may be 

written: 

x1 = 71x92 ee ee ee C5712) 

x9 = a 6.6x9 ee oe ee : C513) 

Applying Pontryagin's Maximum Principle, the third state 

variable may be written: 

° 

X3 - (E = x1)* ~ \m2 oe ee €573:1.4) 

The Hamiltonian may be written: 

H - = p1(71x2) + po(m - 6.6x>) -[a - x1)" + Am2)] 

C5: 15) 

oH 
te = Po 2\Am oe bee (5.1.6) 

For H to be maximised w.r.t.m. 

m° Sy Pa = P2 oye ee (5 e. 7) 

2X 0.2 

. = oOo 
= —_ = pa ee ee . ° 8 Pl : x4 2 (xy E) Co. 14.8) 

Po = 23 = 6.6p, - 71py oe ee (5o1.9) 
> 

Bevations 5.1.2, 5; .7,,. 8 and .9 may be mechanised on an 

analogue. computer as shown in fig. 5.1.3 where Pi? Et 72 

? GaN 75) B 

and p, = Peso. Der) and B = rt 
a 

The initial value of p,(B)) may be calculated from:



aN 
| 
| 

| sae 
B = 2E/V0.1 

For E = L's 0, Bo = 0.6324 ee ee ee CS <¢l720) 

    

  

  

PLoS 

: ; ; : 71 
Analogue Circuit for Optimum System: Btg-4 6.6). 

The initial values of p,(A), may be calculated from 

  

where a = 6.6 

y s/f] 

A = O41 

For E = 1.0, A= 0.1977 oe oe ss (55.111) 

The resulting model optimum trajectories were obtained 

by digital simulation and the resulting trajectories are 

depicted in fig. 5.1.4(a) and €b) c= The m°v error curve is 

shown in fig. 5.1.4(c).
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A’ twos tage controller ,as) shown in fig. 5.64. was 

designed to incorporate the function generator curve 

of “figs 5.1.40} for error ine the range 140 volte to 0 

volts. (The actual design of the function generator is 

given in appendix 3). A schematic diagram of the actual 

coutroéller. ts shown: in £15. 5.125% 
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Negative step inputs for switching on and off. With the 

System input at zero, the relay contacts were in the position 

shown, i.e. dark contacts closed. Under such conditions, 

the error output = Kx(error.input). The value of K was 

made equal to unity. When the shone Inpurconm controw effort 

changed in a negative direction, relay 4 was energised and 

contacts 24 ‘and 34 closed. The negative plant error was now 

inverted by the amplifier with a gain of -4, shaped by the 

function generator, inverted by the amplifier with a gain 

of -5 and injected back into the plant. When the plant out- 

put attained its desired value, the comparitor excited all 

the relays. This set the comparator reference to the next 

transient desired value, switched control to the non-inverting 

amplifiers and produced the output error again equal to K x 

(input error). For a positive change in plant input, i.e. 

switching off, relay 4 was again energised and the positive 

error would now be channelled via the non-inverting amplifiers 

through the function generator to the error output. When the 

output again reached its desired value, the comparator acti- 

vated all the relays returning them to their initial state. 

With the aid of additional logic circuitry and required 

function generators, it would be possible to. accommodate 

multi-step inputs as shown in fig. 5.1.6. Furthermore, by 

using a zero slope detector on the plant output to initiate 

switching, the need for a multi-reference comparator would
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be eliminated. 
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The controller of fig. 5.1:6 was initially used to 

control the analogue computer model. Fig. 5.1.7 depicts 

the output trajectories with and without switching and 

fig. 5.1.8 the output with and without control. The 

coutrol effort is shown. in: fig. 5.1.9. which ¢learly per= 

trays. the switching instant. . Fig. 5.1<«l0O portrays. the 

index.« The steady.state value-of 0/092 was,less than 

that obtained from the digital simulation of fig. 5.1.4(b), 

i.e. 0.098. This difference may be attributed to error in 

the analogue computer, the absence of overshoot in output 

and the premature attainment of zero for m° (fev Slee 9) 

when the model was controlled via the double function 

generator. 

Having successfully obtained control of the model, 

the same controller was used. to ‘control the actual plant. 

The results are depicted in the trajectories of figs. 

5.1.11-14 with: the measured value of the performance
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Actual Plant Output 

with and without 

Switching 

0.2 volts/cm 
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Fig. 5.1.11 
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tidexs (fic. 5.1513) being 02102. -1.e.,san approximate 

increase of 10% compared with that of the model. 

222.0 Sensitivity. and Corréetion- for Moder Error 

Figure 5.2.1 demonstrates the sensitivity of the 

plant to variation in the value of initial co-state vector 

magnitudes when optimised for the infinite time interval. 

Lt may be observed. that a change inthe: order of 24 will 

produce an excessive change in the control effort and re- 

sulting output. An error in the model time constant (a) 

and gain coe feiczent (Y) of 2% compared with those exist- 

ing in the actual plant would produce an error in the ini- 

tial condation: Ay according to: equation .4.2( bi) isso f ome 

It is thus apparent cheat neglecting the instability pro- 

duced by noise in the steady state, it is very unlikely 

that a stable system, due to error in the model, would 

evolve if the model adjoint system was used to control the 

actual plant. Control effected via a switched function 

generator would ya re es invoke instability but, accord= 

ing to the degree of model error,.may produce sub-optimal 

control. 

The resulting plant output trajectory, if controlled 

via a function generator without switching, would be simi- 

lar, £0;-that of fig. 5.5... except: that the magnitude of the 

initial peak would not be equal to the desired output.
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Under such circumstances, the function generator may be 

modified so as to produce the required peak value. When 

the model is obtained by matching the plant output with 

that of the model, the resulting error will be small and 

will affect the function generator in the region of zero 

magnitude. Any necessary adjustment of the function 

generator may be obtained by variation of the governing 

potential chain.
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6. Comparison of Optimisation by the Modified Pontryagin 

Principle and Dynamic Programming 

6.1 Dynamic Programming 

The state equations for the second order system 

ogidadie ae ‘ S(S + a) are; 

x} = YxX9 ee ee ee C6: 1a) 

X29 = m- Ax2 ee ee ee C6 la 2) 

The performance index to which the system is to be 

optimised is: 
co ‘ 

oc [a CE - x1) + an2| det 

0 
where aj= 0, a,= 1 

Equations 6.1.1 and 2 may be written in matrix notation: 

x(t) = Bx(t) + Dm(t) # (6v159) 

where B= ie Y. Dee.) 0.4 0 

0 -A 0 + 

Merriam (ref.20) shows that the optimum control effort 

for a system expressed in matrix notation and optimised 

according to a quadratic performance index is of the form: 

N 3 

ee) pera et k(t) - - Kk, 6t) Ct) | (6.124) 
2 

A m=1
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Where k, (t) and k 68) are time varying gains, the values 

or which are obtained via? the ‘solution to. the “Riccatizan 

equations:- 

* 2 

akg St? a ia (02 om?nk %% Dian . Mok a 5 a Kha 

n=l 

(6,175) 

and 

N 

= 2 

“k (t) = " (o£ Sr ae ee, oe (67155) 

n=l 

Where a; are the elements ofa unity matrixc of order oN. 

Equations 6.1.4, 5 and 6 were obtained with the 

assumption that the instantaneous error function possessed 

a solution ofethe ‘form: 

N + 
ku) *, Cu) lx Cu) su) mR CIO 2) 

7 = 
N N 

+ i iy kok (HX, CH) *, Ga) 

m=1 k=1 

where kK 6? = kn 6H) 

Equation 6.1.4 produces the optimum control effort for 

the system considered as: 

m°(t) = 1 lk CE owe Ghee Cee ee tye (t)| (6.1.7) 
et 2 12 1 22 oe |
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The resulting Riccatian equations are: 

ley eGR) FOU eb) a * ieee LBA. 8S 
1 ; 2 ee1. : 

he Ct) moiX sk CEY ke eee ke a (6.1.9) 
2 ’ 1 2 2 2:2 

wk (ty) ew OL =k (t) 4 i eS | os C601 .510) 
LL : 1 

mig Cb) ome e ek EY aA tak CE Cte (685th) 
12 11 2% 2:4 22 

mS Ce). eo Ek CE ee Rae hoe k 6 (404 fs (604,180 
22 : 12 22 22 

Equation 6.1.7 produces the system of fig. 6.1.1 from 

which it can be observed that the Riccatian equations 

need only be solved for the gains k (t), boat? and 
2 

Kee Cer. 
232. 
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When solving for the infinite interval case, all
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all the sapeveriven of the ¢gaing: willbe zero; ives: each 

gain becomes constant. Hence to aid the calculation of 

the infinite interval gains, equations 6.1.8-12 may be 

equated to zero: 

From equation 6.1.10: 

1 k 2 (~) 
, k 12 (@) 21. ei tue (6.5453 95 

For a stable system at t = ~, the feedback gains depicted 

in equation 6.1.7 must all be positive. Therefore, 

Ry) 1 

Substituting equation 6.1.13 into 6.1.12 produces: 

Vue 2 eAw 5g (m) — kop Cm), we 20 

ie ky ote) a MA a /A2 OY 

Required kop (o). = -A + VA2 + 2Y 6 (6.1.14) 

Substituting equation 6.1.13 into equation 6.1.8: 

ko (Ce). mE ot <n oe (6. +45) 

Equation 6.1.15 indicates that the optimum input 

gain will always be equal to the desired output and the 

overall feedback (equation 6.1.13) will always be unity. 

These are the required parameters for any infinite interval 

position control system linearly controlled and may be 

deduced without any prior mathematics. 

The Riccatian equations were solved on a digital 

computer. Specimen results verifying equations 6.1.13, 14 

and 15. ere shown in fig. 6.1:2.4 Bigs..6.1.9,: depicts: the
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optimum trajectories and index obtained for the system 

gs wind , the optimum value of kj2() being 7.022, 

$(S = 6,6) 

ko = E = LeQ and; k)5="b.0% 

TIME k> Ev eo 
(SECS) | 

E = 1.0 

Onl 0.279 0.279 1.014 

0.2 0.755 0.755 4.300 

0.3 0.967 0.967 6.430 

0.6 0.999 0.999 7.017 

0.8 1.000 1.000 7.021 

£0 1.000 1.000 "77022 

E = 2.0 

0.04 0.102 0.051 0.085 

0.1 0.558 0.279 1.014 

0.2 1.509 0.755 4.296 

0.3 1.933 0.967 6.430 

0.4 1.998 0.999 6.957 

0.5 1.999 0.999 7.016 

1.0 2.000 1.000 7.022 
71 

Time Varying Gains for Plant Gia eb Te} 

Fig. 6.1.2
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6.2. Calculation of the Minimum Value of the Performance 

Index 

Equation 4.2(b).2 gives the system output in the 

s' plane as 

BY(s* - xs + z) 

2 NG Bie (st- (x2 - 2z)s% + 22) 
te): 

= a ee ee C6..-23.:1°) 

2. Ate. UBS * eee 8) 

  

Thus x,}(t) may be expressed as: 

-pt ; : 
ei th = Ee 8 (E cos wt + R sin wt) 

where p = =; R= 5. : O = N 

1 

|
x
 Bh

 

The system error (E - x,) will therefore be: 

  

  

& = og fete cost +:R sin wt) 

¢2 ‘ee 
a [ e2 + R2 + (E2 -R2) cos 2wt + 2ER sin 2ut| 

From fig. 4.1 and equation 6.2.1: (0.242) 

nm (s)| = ee _ = 

4 Verse. (ee xB" + 3Z) 

a oe Cs) Aen + Ba tee (6.2 73) 
2.A(s* + xs + z) 

Se m° (t) = evel cos wt + U sin wt| 

B i a Bx 
yn Ge eee. ON et aoe 24h saw eG EX 2G
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oy tf kee eels 2 2 2 | ce Am (t)| = — ETe. + US Che Ola i=. US) Co's 20tits 220s Sine 2ut)) 
2 L 4 

(* , 
The performance index, | (E - x1)% + Am*)dt, 

0 
may be written: 

co 

-2Pt . 
E + R2 + (E2 - R%) Cos 2wt + 2ER Sin 2uwt ic 

J = a 

d 
+ A(T? + U2) + A(T? -U2) Cos 2wt + 4.2.T.U Sin 2wt)| dt 

(g2 - R2)(2w Sin 2wt - 2P Cos 2ut) 
  

  

e 2Pt ae i ‘ 
oe =a (E“ +. R*) * 
2. oe 4Pp2 + 4w? 

2ER(-P2Sin 2wt - 2w Cos 2wt) i a (1? + U2) 

4P2 + dw? £* 

A(T2 - U2) (2w Sin 2wt - 2P Cos 2uwt) 
  + 

4P2 + 4w2 

. ».2.T.U.(-2P Sin 2wt - 2w Cos 2wt) 

  

T
o
e
 

  

4P2 + 4w2 
0 

E2 R2 (E2 - R2) (2P) 4.ERw 
= —_—_ +— + + 

4P 4P 2GP2 + 4w?) 2(4P2 + 4w2) 

x(T2 U2) (T2 = U2) (2P) See lees 
+ —_ +— + +   

4P 4P 2(4P2 + 4w2) (4P2 + 4y2)
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Or 

1 (E* + R*) (E2 - R)(P) 2E.R.w A (T2 + U2) 
Je- + + + — 

4P (4P2 + 4w*) 4P2 + 4w2 = 4P 

A(T? = U*) (P) 255.0 soe %3 
+ - ee ee (65264) 

4p? + 4w? 4p2 + 4w2 

From fig. 6.1.1 the output in the S plane of the system 

when optimised according to Dynamic Programming is: 

EY 
x1(s) = vi = (62275) 

AS (82+ s(Ksa + a) + 7/2) 

  

where k = kjy92.- 

  

  

and 

a Vibe. tha. 
m (s) = z oe a (64250) 

A(s2 + S("/A + a) + Y/x) 

: et 5 
ne B3CC)e eB ee (E Coswyt + V Sin wt) 

and m° (t) = a5 UR Cos wit + W Sin w,t) 

where E : 

V=— (= + a) 
A 

2wj 

k a ee a 
Gay ti dee eet oa) 

Wy ZX Wy 

The resulting value of the performance index will be:



  

(E2 - v2) (c) 
  

pe (v2 + 525% . 2.E.V.wj sou (z2 + w2) 

S 4c2 + 4w,2 402) + hu 2 0% 

, (2 = w2)(C) , 2E.Wewy ere 
  

A(4C2 + 4w 12) (4C2 + 4w,7) 

Consider the system of fig. 6.1.3 where a = 6.6, Y = 71, 

A = 0.1, E = 1.0. The value of the performance index may 

be divided into two parts, J, and Ja? where J, is othe 

contribution due to the error and J the contribution due 

to the control effort. 

The Pontryagin approach yields from equation 6.2.4: 

(E2 - R*)(P) 2E.R.w 
  

  

2 2 

aoe <a Sete 
+ 

Pe Oe Ad (T2 + UF} o ACT U*) (P) : pay ie So 

_ ay 4p2 + dw? 4p2 - Lw* 

‘ 

For initial co=state vector values A and B of 0.1977 and 

0.6325 respectively, J, = 0.071 and J. = 0.027 

ee De. 0.098 ee eo @ ee (62.228) 

The Dynamic Programming approach yields from equation 

6:5 Lars
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2 2 Bes 2 ¢ uti (E V7) (C) . 2.E.Viw; 

Y4e = SC . : 2 4c2 + 4w,2 4c2 + 4w,? 

Be 2 
3 : 2) (E2 a W2) ij (E W 206) : 2E.W.W} 

Oo he eR A(4C2 + 4w,2) =A (402 + 4wy7). 

For an optimum plant K = 7.02 and ie 0.061, te 0.068 

ee Jer = 0. 1:29 

The values of J and J, are comparable with the values of 

performance index obtained experimentally, (i.e. 0.098 

fig..541.48 , and. 0.297...fig.: 6.1.3.4: respectively. 

6.3 Comparison of Pontryagin's Infinite Interval Approach 

with that of Dynamic Programming 

The equations derived for the control effort, system 

output and hence value of index (section 6.2), appear 

algebraically to be similar for both systems. Substitution 

of actual numerical values reveal, however, that the two 

systems are different. This was demonstrated by the 

different values obtained when optimisation was effected 

according to the same index. 

Equation 1.3.10 shows that the maximum value of the 

control effort for a system, with at least one pure inte- 

grator, optimised according to Pontryagin as: 

Biles 6° (Pa Co) se 2B A) iu (6¢3%1) “A as
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Equation 6.1.7 gives the maximum value for the control 

effort when optimisation is achieved according to Dynamic 

Programming as 

A 
anes 2 

ON 

e A E 

ee d= ee ee ee ee ee ee 6:33:62 m i ¢ 

(i.e. maximum value occurs at time t = 0 when x, = af 0) 

A A 

When } is less than unity, md will be greater than mp. 

This may be advantageous when optimisation is to be achieved 

to produce the shortest settling time. To obtain such systems, 

the avi tida wet ve of the control effort would be made equal 

to the voltage at which the system would saturate. The value 

of X to obtain such a system could be directly calculated 

from equation 6.3.1 or 2. Under such <i ree eneene x would 

be less than unity otherwise the plant output would be re~- 

quired to be greater than the value at which it saturated. 

The value of the performance index for such plants would be 

smaller when optimisation was carried out according to the 

formulae of equations 4.2(b)11 and 13 while maintaining a 

smaller maximum controlling effort and shorter settling time. 

The shorter settling time (fig. 6.3.1) is brought about by 

the absence of overshoot inherent in the controller. 

The difference in the value of performance index is 

emphasised by the evaluation in section 6.2; (‘where itis 

shown that by optimising to the same index of performance,
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the value is less via the modified Pontryagin Principle. 

Furthermore, due to the elimination of overshoot, the value 

of the performance index for a controlled plant (recdeait. 

to the controller of section 5) will be reduced. This will 

produce a greater difference for the value of performance 

index than represented in section 6.2. The main reason 

for the difference may be observed to be in the contribution 

made by the respective controlling efforts (contribution 

due to mp = 0.027 and for md = 0.068; section O25 

If the system considered saturated at 9 volts (say), 

then optimisation according to Dynamic Programming would 

only be achieved by increasing ) above 0.1 (i.e. with 

at 0.1, md = 10v) and so decreasing md. This may have the 

effect of increasing the index and would certainly increase 

the settling time. Saturation may not have been provoked 

by optimising according to Pontryagin, however, (ivesewith 

A} at 0.1, mp = 3.16v) and thus ) may be reduced increasing 

mp, reducing the settling time and value of the index. 

Optimisation with ) greater than unity would produce 

a reverse situation; mp would be greater than md and the 

value of the index may be greater when using Pontryagin's 

Principle. It is unlikely, however, that optimisation 

would be carried out with \ greater than unity as this would 

produce maximum control efforts (m°) , in Ho ch cdne less 

than the desired output. This would render the plant more
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sluggish eit Gh control than without, it. 

The most .important.and most difficult task of opti-— 

misation is determining the required index. Once the form 

of index and hence control strategy has been formulated, 

the relevant weighting factors have to be obtained. In 

general, these are obtained by trail and error runs (an 

exception is the case where the maximum control effort is 

required). 

The feedback gains inherent in the procedure of 

Dynamic Programming are independent of the weighting 

factor’ A (equations 6.1.13, 14. and 15) .of thexquadratic 

index bane ideced The optimum control effort however may 

be observed to be greatly dependent upon A (fig. 6.3.2). 

This enables the required feedback gains to be calculated 

and the effect of verying A observed for a particular system 

without the fed to re-calculate the gains and thus the 

required )} may be readily determined. 
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Bs : Function Generator 

Block Diagram of Optimal System designed via Pontryagin 

Principle 

When the system is optimised by 'Pontryagin' and a 

practical controller constructed from a function generator 

is implemented, the complete system may be represented in 

the block diagram form of fig. 6.3.3 where Hy represents 

the function generator; a inherent in the mathematics 

not being included in Ho: Unlike Hg of fig. 6.3.2, Hp 

is not independent of the performance index, i.e. the 

initial values of the co-state vectors are directly depend- 

ent upon A (equations 4.2(b).11 and 13). It is therefore 

evident that for each value of \} a new function generator 

would have to be designed. Selecting the required value 

of A may therefore necessitate the running of several 

different systems on a computer. As the initial conditions
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of the co-state vectors have been obtained in formulae 

form, this is not a lengthy process. As the most con- 

venient method of acquiring the correct value of ) for 

the Dynamic Programming plant would also be via simulation 

on a computer, this is not a distinct disadvantage. 

The figures of 6.3.2 and 6.3.3 demonstrate the some- 

times misleading similarity between control effected via 

Dynamic Programming and Pontryagin's Maximum Principle. 

Besides the difference in the mathematics for evolving 

Hy, and Has the main differences are:- 

i) H_is dependent upon the weighting factors of the 

index, Ha is not. This may be a contributing factor 

for the difference in performance index. 

ii) Probably the most important advantage Pontryagin has 

over Dynamic Programming is that only the output of 

the plant is required for feedback to produce an 

optimum system and not each state variable. 

It has further been shown that the actual feedback vectors 

that will be required may be determined at the onset by 

-the form of the performance index. This would enable the 

optimising controller, or adjoint system, to be tailored 

to individual systems unlike Dynamic Peotranniaee wheter. to 

a quadratic index, generally demands every state variable 

to be fedback. It is thus evident that for such systems 

«



  

  

102 

where it is impossible to monitor every state variable, 

such as for chemical plants, furnaces and electrical and 

mechanical systems where the vectors may be encased wien 

the machinery etc., the 'Pontryagin' approach may be used 

where Dynamic Programming may not. (In such circumstances 

it would be possible to apply a modified version of Dynamic 

Programming ref./3 . This method, however, due to lack of 

system information would generally produce sub-optimal 

control). 

Merriam (ref.20 page 123) states: 

"The construction of a control equation possessing 

feedback around the dynamic process poses an entirely 

different problem from the numerical problem. In 

particular, the solution to the condition for minimum 

error must be structural in a fashion that suggests 

physical components needed in the construction of the 

control equation. This structuring of the solution 

is really a control-system-synthesis problem. On the 

one hand, the equations of Pontryagin give solutions 

along a single trajectory and hence the control signals 

are found as functions of time and not as functions of 

the state vector and time. In- other words; structure 

and hence a control equation are not obtained. On the 

other hand, the dynamic programming equation expresses 

the condition for minimum error for all values of the 

state vector and hence provides hope for obtaining 

directly the structure of the control equation." 

This statement, given by many authors as an argument 

against the application of the Maximum Principle, is a little 

harsh for the optimal control effort as calculated by Pontry-
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agin's Principle may be expressed in terms of its dependent 

state variables, namely the system output for the index con- 

sidered, and thus producing a control equation with reference 

to £78. 6.3.5 08 

m(t)> = (BE > x it) Bg, + os 6.3.3 

where Hp is the transfer function of the adjoint system. 

When Hpis considered to be a function generator, equation 

6.3.3 provides directly the structure of the complete opti- 

mal system. Furthermore, it has been shown (by virtue of 

not requiring each state variable for feedback purposes) 

that not producing the control effort as a function of all 

the state variables is a great advantage which the Maximum 

Principle offers over Dynamic Programming. 

Roberts (ref.26 ) demonstrates that the application 

of Dynamic Programming and Pontryagin's Maximum Principle 

aresidentical. sAs; however, the control equations for 

Pontryagin's Maximum Principle cannot in general be solved, 

for the analogue case, in the infinite time intervel,” thre 

statement cannot be absolutely verified. The comparison of 

the modified Pontryagin Principle with Dynamic Programming 

has been shown, both experimentally and mathematically, not 

‘to be comparable. Furthermore, Roberts’ approach to. the 

infinite time interval would prove extremely difficult to
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apply to a plant whose model could not be represented as 

a string of integrators without internal feedback of the 

state vectors. 

6.4. Comparison with Calculus of Variations 

A comprehensive comparison with that of Calculus of 

Variation was not undertaken as Pontryagin's Principle 

may be regarded as an extension of the method to take 

into account vector saturation. 

Optimisation by Calculus of Variations (ref .20,32) 

results in the solution of a Euler-Lagrange equation 

which entails the solution to a two-point boundary problen. 

The Euler-Lagrange equation is always unstable and there- 

for solutions. for. the. infinite «interval case mayaprodiuce 

Control efforts of i1ntinite magnitude.
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La Third Order Plant. 
  

Work on second order plants was extended to third order 

(fig. 7.1.), implementing an analogue computer. The procedure 

    
  

  

Model of third order plant 
s(sta) (stb) 

ELG.e Zak 

for optimisation being to vary the initial conditions of the 

co-state vectors until they were all zero at the termination 

of the optimising interval. 

In general, this method of optimising could not be 

performed. This was mainly due to the inability of all three 

co-state vectors to reach zero magnitude at the same time. 

In general it was characteristic for one co-state vector to 

attain zero magnitude before the other two. This state vector, 

due to the presence of positive exponentials in the adjoint 

system,would go unstable before the others reached zero 

magnitude. Further, as shown in section 7.4 the third order 

plant was observed to be extremely sensitive to variation in the 

setting of the initial co-state vectors, much more so than that 

of a second order plant. Instability and saturation of the 

‘computer amplifiers was thus possible due to slight error, when 

the computer was run in its cyclic mode, in the resetting of 

the initial conditions. The latter problem could have been 

over-come by not running the computer in its cyclic mode. This 

however, would have rendered the setting of three initial 

conditions, by a trial and error technique, impractical. 

 



  

Dead zones, for the co-state vectors, in the region of 

zero, were introduced so that once a vector entered the zone 

it would be clamped. This offered a slight advantage but, 

in general the dead zone was required to be so large, to 

overcome the variation in the vectors produced by the error in 

resetting, that an optimum system was not attained. 

A second method of holding the co-state vectors at zero 

employed was open circuiting the inputs to each relevant inte- 

grator when its output attained zero magnitude. This appeared 

to be more sensitive to the resetting error than the previous 

method. 

The only systems that could be optimised to any degree 

were those which possessed low gains and whose co-state vectors 

came to zero within 'short intervals' of one another. Where 

‘short interval' implies an interval of time where the vectors 

remained at zero magnitude without going unstable. Such 

systems produced families of curves when viewed on a scope. 

This was due to the computer resetting error. 

Optimisation of a third order plant was therefore 

accomplished by digital simulation. 

7.1 Formulation of optimising procedure for the infinite 

time interval 

To obtain a method of applying Pontryagin's Maximum 

Principle to the infinte interval case and to calculate the 

initial conditions of the P vectors without the necessity of 

solving a two point boundary value problem, a procedure, 

similar to that evolved for the second order case (section BR 

was used.
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Determination of system output 

From fig. 7.1. 

Kem YRS aes 72a de 

X5 = Xz-aXy ee ee VolsZa 

Xs = m-bx; . . + «+ 761.3, 

xy = (E-x,)*+Am? . . 7.1.4. 

The Hamiltonian will be: 

H = P “Y.X> + P,(xz-aXx,) ~ P..(m-bxz)-((E-x,)*.+ uae 

  

2 

GO. es 
m = as 

3 on oH Fa, a 

ae Py ~ 2 (x, -E) ° ° e ° e ° Egil s ous 

Po = aP,-YP, Te tase eV ke Os 

P = bP or P, e e ° ° ° ° Lok.
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Equations 7.1.1.-7 may be mechanised to form an analogue 

computer diagram as shown in fig.7.1.1. where A,B and C are 

  

    A   

Analogue computer diagram for equations 7.1.1.-7. 

EXON ta lie 

  

the initial conditions on vectors Py P, and P. respectively. 

From fig. 7.1.8. 

  

  

Bio ean bay B al C Y . 
Oe aeras ete te ie : =| (S=p? S| Tis(stay(sb) *1 6S) 

. -2EY7+AY2s-BYs?2CYS2 (s-a) 

tat x; (s) ~ §(2As2(s2-a2) (s?-b2)-2Y2) 

B AY 2EY Sia are aie ts a eee 

de ee CEES Seep = Cer edt: Ur eee nee owe el 
s2A(s&-s* (a2+b2)+S%a2b2-Y? ) 

r 

It..i6 ‘important. to: note that equation 7.1.8.,for the system 

output in Laplace transform, will vary according to the config- 

uration or original conception of the third order system, 

i.e. the elements of figure 7.1 may be interconnected in many 

ways to produce different physical analogue simulations. The 

output, xX), of each simulation however, when subjected to
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indentical inputs, m, would produce identical trajectories only 

the mode of variation of the other state trajectories would 

differ. Thus, as for the second order case equation 7.1.8. 

may take many forms. Each form would possess different 

values of A and B to produce identical outputs x). The 

simulation of figure 7.1 was chosen as it produces the simplest 

and most convenient form for x, (s)- 

Equation 7.1.8. is analogous to that of equation 4.1.1. 

The denominator will possess three roots which will give rise 

to negative exponentials, in the time domain, and three which 

will give rise to positive exponentials. The numerator will 

possess three roots the nature of which will be dependant upon 

the initial conditions A, B or C. If the system is to be 

stable in the infinite interval case then the zero's of the 

system, or the roots of the numerator, must cancel with the 

poles of the system which give rise to positive exponentials. 

i.e. for a stable system the numerator must be of the form: 

(s-e) (s-£) (s-q) | 
and denominator of the form: 

(s*=e*) (s*=£7) (s*-q*) 
Where e, £ and q may be real or complex. 

(S-e) (S-£) (S-q) = S3-S?(e+f+q) +S(ef + eq t+tqf) - efq- «. - 7.1.9. 

(S*-e7) (S?-£7) (S?-q?) pe S°-S* (e*+f£2+q?) +S? (e* £2 +072q2+q7F?)- 

Or Ge 8S eek Oe 

Equations 7.1.9. and 10 may be observed to be similar to the 

numerator and denominator respectively of equation 7.1.8. 

Hence x, (s) may be expressed as: 

S*-S? (e+f+q)+S(efteqraf) -efq 
S°-S* (e7+f£+q7) +52 (e*f*+e7q7+q7F?) -e*f2q?   

ay Se sWS*+Xs-7 > 
. S=S* (W*-2X) +97 (X--22W) 2 ie tae eo 3
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Where W = e+f+q 

X = efteq+qt 

Zz = efq 

Comparing like powers of S, in the numerator and denominator, 

of equation 7.1.8. with equation 7.1.11: 

W27X%=a? +b? iis fi heehee. 

Xe mea Wak eb. io. ce 7 Ld 3: 

ETS el Te 

oy * at en Pees 

oS ct HOS es ses 7. 116 

x= ot De OK BT 

FromiS andl14 v Luke 

Cre Re es. 

Prom. 722-422, 16%-and- 1? 

B? 2Ba can b2 
eb eS. 

Lan ae ee Ba b2c 
SO Ne FTE Pee Ry ee
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From 7.1.19. and 21. 

From equations 7.1.20 and 19. 

Res. b* Go * ye ZCB n 2aGr . a7heC* RB? 

C90 9st Bye Tae t Tos YZ 

"  B*+B3(4aC) +B? (4a2C?-2b2C?) -B(4ab2C?+8 
LA VX 

wAC*A*DO}5's week eee 

YCc*) +(b*C*-8YC*%a* 

Equation 7.1.18 gives a direct solution for the initial value, 

C, of the vector Pe. This equation is identical to that of 

equation 4.2(b).11. which confirms that for a system which 

contains at least one pure integrator the initial candition 

of the co-state vector, directly responsible for the control 

effort m°, is totally independant of the system parameters. 

and only dependant upon the elements of the Performance Index. 

Equation 7.1.18 may therefore be evolved directly from the 

performance index in exactly the same manner as for the second 

order system of section 4.3.
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Equations 7.1.22: and 23 give quartic equations in the 

unknown initial conditions for vectors P, and P. respectively 

(figisisk a). 

As portrayed for the second order plant a similar identity 

to that of equation 7.1.11 would have been obtained if the 

roots given in equations 9 and 10 where complex. 

7.2 Determination of initial Conditions 

A quartic equation may be solved by pure algebraic 

manipulations, (appendix4 ). 

Since equation 7.1.22 was that of a reduced quartic, (quartic 

with the unknown cubed term missing), its roots were more 

readily obtainable than those of equation 7.1.23. It was thus 

decided to obtain the initial value of P, by solving equation 

-7.1.22 and the initial value of 7) with the use of equation 

42 215 As depicted in appendix 4 the roots of equation7.1.22 

could have been obtained with the aid of a slide rule or desk 

calculator. The latter producing a more accurate result. 

However, as a digital computer was available, and for the final 

analysis its facilities would have to have been sort, the 

quartic was solved by means of a digital programme. A flow 

diagram of the required programme is depicted in figure 7.2.1. 

This programme, appendix 9.5, appears at first sight, to be 

lengthy for its actual mathematical content. This was 

necessitated at the onset to prevent the computer from attempting 

to evaluate mathmatical roots of negative numbers. Further, 

since initially, the only relevant known requirement of the 

required root: was that it must be real, facility had to be made 

for all possible real roots to be evaluated. A further 

requirement of the required root was that it must be positive. 

The programme of Appendix 9.5. also calculated the relevant 

initial conditions. for P, and Pa. 
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Flow diagram for solution of quartic equation. 

  

 



A specimen: of the results given by the quartic programme 

are shown in figure 7.2.2. The results show, along with many 

others that were taken, that equation 7.1.22. always possesses 

at least two real roots. At least one of these roots is 

always positive and will produce. a positive value for the 

initial condition of Py. This root was always observed to be 

Z3, (initial value of Py or A), which gave rise to Z3B, 

(initial value of P, or B). The digital programme may 

therefore be shortened so that only root Z3 is evaluated. It 

should be noted however, that 23 may be derived by one of two 

routes, i.e. either by Cardan's Formula or by trigonometric 

means, either FF or AA. The actual computer calculating time 

for each set of results, depicted in fig./2.2, was less than 

30 seconds. (Computation was carried out on an Elliott 803 

machine). 

7.35%. Verification of .calculatéd. initial-conditions 

Verification of the formulae derived in the previous 

section was achieved by running third order systems such as 

depicted in figure 7.1.1. (with a=1, b=3 and Y=10) on a digital 

computer with the initial conditions calculated via the formulae, 

The results and conclusions drawn from these runs were similar, 

though more exaggerated, to those obtained for the second order 

system. i.e. initial region of transient response acceptable, 

slight overshoot on the output and system unstable in the 

region where all the vectors should have maintained steady state 

conditions. A typical set of optimum trajectories, obtained 

by digital simulation, are shown in figures 7.3.1.A and B. 

7.4 Trajectory error in proposed steady state regions 

The instability invoked in the proposed steady state regions 

of the trajectories may be accounted for by similar reasoning 

to that for the second order system, namely error in integrating 
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routine, error in the value of the initial conditions and noise. 

Error in the integrating routine was observed not to be 

the significant factor as reducing the time interval of 

integration by a factor of ten did not produce a significant 

change in the system trajectories. The instability must 

therefore have been due to error in the actual value of the 

initial conditions and noise. On investigation it was 

determined that the sensitivity of the vector trajectories was 

critically dependant upon the value of the initial conditions. 

This is verified by fig. 7.4.1 which depicts the ‘optimum’ 

plant controlling efforts and resulting outputs for different 

initial conditions. It may be observed that slight adjustment 

of the sixth significant figure, of one of the co-state vector 

initial values or even terminating them to six significant 

figures, produces a totally different vector in the proposed 

steady state region. It may also be observed that the third 

order plant was much more sensitive to the actual value of the 

initial conditions of the co-state vectors than the second order 

plant. To overcome this inaccuracy in the setting of the initial 

conditions, the third order system programme was modified so that 

- the initial conditions were first calculated and substituted. 

into the system all on the same programme; i.e. the relevant part 

of the 'Quartic' programme was introduced at the beginning 

of the 'Third Order' programme. Figute.:7 4.1. (curves 4), shows 

the results of such a programme, absolute steady state 

conditions were not obtained and ultimately instability was 

invoked. Since the controller, to be constructed from these 

results was only concerned with the initial transient response 

the region of instability was of no great importance. Further, 

the plant trajectories from switch on to the point the output 

attained its initial desired value, (i.e. region over which 

controller is effective), were not so sensitive to error in 

the initial values of the co-state vectors.
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7.5 Transient Gain of controller 

As Pontryagin's Principle is devoted to minimising the 

value of the performance index a N.O.P., whose gain is 

sufficiently high as to invoke instability, may be perfectly 

stable when optimised by the modified Pontryagin approach for 

the infinite time interval. This is because Pontrygains 

Maximum Principle will minimize the performance index and this 

minimum value will not be infinity*as for an unstable plant. 

Figure 7.5.1. depicts the plant output with and without 

optimising control, (according to equation 7.1.21 and 23), for 

a normally unstable plant. Since a stable plant when 

optimised inevitably goes unstable in the prepoised steady 

state region an originally unstable plant will be even more 

susceptible to instability. This however, is of no 

significance as the controller of section 5 allows the transient 

gain and steady state gain to be different and selected at will. 

7.6 Comparison with Dynamic Programming 

The state equations for the plant of figure 7.1l.are: 

x) =z YX e e e e * TO. 

Xo baa Xz~-AX ore ee - 7.6.2 

Xz = m-Bx. ot eisan. Vere 

Equations 7.6.1.-3 may be written in matrix rotation: 

x. (t) = Bx(t)+ Dm(t) 

Where B =|0 Y D = O
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Equation 7.6.4 produces the optimum system of fig. 726, i 

Thus, only the values of K,(t), kz3(t), kz4 (+) and kz, (+) are 

required. 
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k; ; &) will equal zero, and thus it is possible to solve 

the Riccation equations, for the required system gains, by pure 

algebraic means. All nine equations however, are interdependant 

and thus obtaining such a solution would be a lengthy and tedious 

process even though the value of k. is known to be equal to the 

required X4 and Kea to be unity (Section 6). Since a digital 

computer was to have been used to simulate the optimum system 

it was also used to solve the Riccatian equations. The results 

for a system with unity input are shown in fig. 7.6.2. The 

digital programme concerned was that of appendix %.5. 

Similar conclusions were drawn as for the second order 

system, (section 6), namely: Dynamic Programming approach 

produced an optimum system whose control effort was much larger, 

settling time comparable and value of performance index 20% to 

30% larger than a system designed by the formulae of section 7.1. 

The relavant magnitudes of the control effort were identical 

to those discussed for the second order system.
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7.7 Control of an actual third order plant 

A third order position control systen, Similar to the 

second order system controlled (fig. 5.1.1.) was modelled, 

again by comparing the output of the actual plant with that 

of a computer model. The model (fig. 7.7.1.) possessed 

two variable feedback gains, a and b, and a variable forward 

gain Y. A good approximation to the actual plant output 

for a unity step input (Fig. 7.7.2.) was observed, 20 be: 

600 ee as 
S(S*10)° ($tis00) > 

i.e. Y#600, a#10, b#7.85 (fig.1.1.1) 

The plant state equations on open loop may be written 

Xs * 600x, ge Cah sk ee Te Pes 

Kot X2-7.85Xx>, oa ieee Taw 

Xz = m-10x, e ° ° ° e ° Vel ees 

The fourth state equation may be written 

X4 = (E-x,)?+Am? 

The Hamiltonian will be given by 

H = Pp, (600x,) + Py (xXz-7-85x5) + pz (m-10x,)-((E-x,)*+m4))..7.7.5. 

The resulting co-state vector equations may be written 

se
] 

~~
 

1 m2 tyeH) mip gory tee 7176s 

Po = 7.85p,-600p,; .. ~~. 7.7.7. 

Pz = 10p, <i Doar 8 nor. Fins dats Os
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S(S+7. 85)(S+10). 
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The optimum control effort may be written 

Pp oS 
m a 5h Cee ae Lee 

The optimum system governed by equations 7.7.2.-9 with 

the required initial co-state vector values as given 

by equations, 7.1.18, 7.1.22. and 7.1.21, were simulated 

on a digital computer. The resulting trajectories and 

value of index are depicted in fig. 7.7.3. 

The actual controller was identical to that used for 

control of a second order plant with the exception of 

the function generator. For identical reasons to that 

of the second order case, the function generator was 

constructed to reproduce as faithfully as possible, 

(appendix 3), the required m° for system errors ranging 

from unity to zero. (fig. 7.7.5.}. 

Fig. 7.7.4. shows the results obtained by controlling 

the computer model. The resulting value of index (0.16v) 

again being observed to be less than that obtained from 

the digital simulation. (0.18v). 

The results obtained from the actual plant when 

controlled via the switched function generator are shown 

in fig. 7.7.5. with the value of index measured at 0.19v. 

Figure 7.7.6. shows the output obtained from a 

digital simulation when optimisation was effected via 

Dynamic Programming. The setting time and value of 

index (0.2513), were observed to be greater than those 

obtained from the actual plant optimised by the modified 

Pontryagin Maximum Principles.
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8. Conclusion 

A method of continuous optimisation has been evolved 

for which the control equations are solved by purely 

algebraic manipulations. A controller to implement this 

control has been evolved which consists of a function » 

generator and a small amount of logic switching. The 

controller is thus cheap to produce and is applicable for 

the optimal control of plants when operated for the infinite 

time interval. The control strategy, resulting plant 

trajectories and value of performance index are more _ 

desirable than those obtained by the application of Dynamic 

Programming (D.P.) 

The method was evolved by extending Pontryagins 

Maximum Principle (P.M.P.), to the infinite interval case 

and eliminating, or replacing, the characteristic two point 

, boundary value probiem with algebraic formulae. The 

formulated advantages of P.M.P. were maintained, namely: 

1) Mathematical manipulations required for producing the 

control equations are virtually purely algebraic. 

2) Type of control (i.e. bang-bang or analogue), is 

determined by the integrand of the performance index. 

3) The state vectors required for feedback purposes are 

completely dictated by the choice of the performance index. 

4) The resulting controller and optimum trajectories are 

identical for plants which are originally open circuit or 

- possess unity feedback links. 

Additional advantages offered by the modified P.M.P. are 

1) The maximum control effort is generally smaller than 

that produced when optimisation is effected by D.P. for a 

similar performance index. 

2) The value of d (weight attached to the control effort in 

the performance index), may be easily calculated to produce 

the maximum value of control effort without introducing 

saturation, for any plant whose model possess at least 

one pure integrator.
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The procedure to produce optimal control for the 

infinite time interval may be categorised: es 

1) Calculate initial co-state vector conditions (sections4,7) 

2) Calculate the optimal control effort and error (section 6 ) 

3) Plot curve of control effort against error and piece 

wise linearise. (appendix 3 ) 

4) Design function generator (appendix 3 ) 

5) Add logic switching to function generator to produce 

complete controller (section 5 ) 

The popularity of D.P. over P.M.P. for the application 

of optimisation was mainly due to the reduced computing time 

required for the solution of the Riccation equations, compared 

with that required for the solution of the two point boundary 

value problem of P.M.P. Optimisation by the modified 

_?P.M-P. has completely eliminated this computing time. 

A disadvantage of D.P. is the requirement that all 

state vectors must be available for feedback purposes. The 

fact that only the state vectors appearing in the performance 

index in quadratic form are required for feedback, according 

to P.M.P., has not been exploited in the literature. 

As it is unlikely that the value of > would be greater 

than unity, the value of performance index, settling time 

and maximum value of control effort will generally be smaller 

for the modified P.M.P. than that obtained by the application 

of D.P. (It is most likely that X will be less than unity as 

» greater than unity would produce systems which would be 

more sluggish with control than without it). Besides the 

obvious advantages of reduction in error and cost, the 

modified P.M.P. may be used with a smaller value of A than 

D.P. without producing plant saturation. This would enable 

a much shorter settling time to be obtained than possible 

with D.P.
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A possible reason for the improved response is the 

greater dependance upon the performance index. i.¢.: the 

feedback gains of D.P, for the infinite time interval, are 

totally independant of the performance index. In 

comparison, the co-state vectors of the modified P.M.P. are 

totally dependant upon the index. A further reason is the 

non-linear control effected by the modified P.M.P. i.e. the 

infinite interval gains of D.P. are constants and Hd (fig. 

8.1), consists of constant gains. The comparable controllin; 

  

  

| 
  

    

  
  

        

          
H, — PLANT Hp aa Rant 

ISTATE VARIABLES} 

              
  

          
  

Dynamic Programming Pontryagins Maximum Principle 

FIG. 5.1 Flic 3s 2 

element H. of fig. 8.2 however, is non-linear (transfer 

function of adjoint system). 

The application of the modified P.M.P. to an open 

loop plant requires exactly the same controller, producing 

similar trajectories, as when applied to a closed loop 

pliant. This enables optimising control to be implemented 

on plants normally possessing feedback without removing the 

feedback link or even stopping the process. (fig. 8.3).
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This would be advantageous for chemical plants, large 
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Control of open and closed loop plants 

FIG. 8.3 

furnaces and any process where shut down may be an 

extremely costly or lengthy procedure. 

Freeman and Abbott's (ref.io) alternative method for 

the design of optimal linear systems based on P.M.P. for 

the infinite time interval has all the disadvantages of 

.D.P. (except that a computer is not required for the 

solution of the control equations), plus the fact that the 

optimum plant output has overshoot. The modified P.M.P. 

evolved by this research offers all the advantages over 

D.P. without producing overshoot.
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9. Appendix 

9.1 Steepest Ascent of the Hamiltonian 

The equation governing the co-state vector p (equation 

1.3.12) is unstable. If, however, this equation is consider- 

ed in reverse time, it will become stable, i.e. in reverse 

time equation 1.3.12 will transform to: 

po Giee Vey Cn aed (1) a Cr @ AS 

In general, all the co-state vector equations will be 

unstable if the system being optimised is stable. The state 

equations for a stable system will of course be stable and 

therefore may be considered in forward time. 

The initial conditions on the state equations will be 

known while their final conditions will generally not be 

known. The terminal conditions of the co-state vectors are 

known in reverse, i.e. their final values will be zero and 

the determination of their initial values is the object of 

the two point boundary problem. It is therefore evident 

that considering the reverse time equations of the co-state 

vectors, besides producing stable equations, produces equa- 

tions with known initial conditions of zero and unknown 

final conditions. This enables the 'p' equations to be 

integrated in reverse time from known initial condtions and 

the state equations to be integrated in forward time from 

known initial condtions.
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The object of Pontryagin's Principle is to maximise 

the Hamiltonian (equation 1.3.5) with respect to the con- 

trol effort m. This would require a knowledge of both the 

terminal conditions on the co-state vectors. If, however, 

an estimate of the unknown terminal condition is made to 

compute a corresponding value of the control effort m, and 

a correction made to m so that the Hamiltonian is increased, 

a more accurate terminal value may be obtained. To achieve 

this, a law which corrected the value of m at each stage 

in the numerical integration would be required. Such a 

law to proceed from the ith to the (i + 1)th stage may be 

of the form 

Kd Hy Be RS) omy (tC) * mee oe oe oe (1.952) 

Where tre m, (t) when the correct condition for the p 

vectors has been attained, i.e. for this condition H will 

be a maximum and thus au Will be wero. + Kvis Aa eurtap.le 

positive constant. 

The sequence of computations for one iteration would 

then be as follows: 

a) Given the ith estimate of m(t) stored in the 

computer (originally a guess), the equations of 

‘the state vectors (x) are integrated with the 

specified initial conditions and the x-variables 

are stored. In this case only x, is required. 

b) Given the stored values of xj , the equations
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for the co-state vectors are integrated in 

reverse time, viz. 

Pl 2.(Eo ey) 

and pe =: Ypi = @sDP2 

Pi B2°* fe 

c) At each stage of numerical integration, as p 

becomes available, m(t) is up-dated according to 

the law of equation 1.9.2. 

The resulting computer programme for the plant whose 

; a ; 
open loop transfer function was ore oe DY, is shown for 

an optimising period of two seconds. (Appendix 9.5) 

9.2 Calculation of Maximum Overshoot 
  

The partial fraction expansion of equation 4.4.4 may 

be written: 

  

Ry 
a => + x1 (8) 5 mere 

s.* nw, - je Len 

Kp 
+ 
  

s + nw, + jw, vl - n2 

where Ky and Kp are constants. 

The location of the conjugate complex poles in the complex 

plane will be as in fig. 9.2.1, where ¢ = cos 4m or 

gin, ¢ **7¥1 n2.
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Fig. O92 od. 

The time domain response of x, will be: 

eu(th ek + tes S| sin [ (w YT = n2)t - | (9.2.1) 

oe 

The frequency of oscillation (w,) may be deduced as 

1 27 
es = _ = 

fy wiv - n¢ 
L ° 

The first, and peak overshoot, occurs at ly, Therefore, 

the time to the first overshoot (tj) may be written 

Substituting for t, in equation 9.2.1 produces:
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x1(t) = E + E.e sin. (7 = 0) 

fis 

which may be written: 

+ (pene 

x(t) = Ext E.e 

The maximum per cent overshoot may thus be expressed 
nt 

V7. ug 2 
100:¢ 

when = 0.707, the overshoot is given by: 
_ 0.707.7 

ion YI - .7072 

w 100.6. <a5 

tt >
 

bo
 

N
e



9.3 Function Generation 

A continuous function when approximated as being 

piece-wise linear (fig. 9.3.1.) may be simulated by 

a non-linear impedance (fig. 9.3.2.). The resulting 
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pass lah aaa il PEGS oes 

values may be calculated from measurements taken from the 

linearised curve: 

  

  

R 
FA Oo <i os 
AD = e e . e ° ° Es i Bie 

AB R) +R, 

EG , eon 9) Sa 
BC RytRo 

R,R 
where Ry = oi ° e ° . ° ° OS Soe 

LCs 

GH ee pana 9.3.4 
CD RytRs 

ROR ¢ 

where Rz = _ 2 3° 
. RoR. 9.345
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HI Oo 
TT = 6 Rawr eS 5 Yaa e e e e e e 953.6. 
DE RotRy 

R,Ry 
where ne = i te ° ° e © . DES dee 

4 Ry + Ra 

‘ a 71 3 
The required function for the plant S(ste.6y 38 

given in fig. 9.3.3. To accommodate for positive and 

negative outputs from the same function generator and to 

enable its gain to be less than unity the arrangement of 

fig. 9.3.4. was employed. 

The function to be reproduced is shown in fig. 9.3.5. 

i VM ee Fune™ 2 eee a Spe 

Complete function §generator / 

BIG. 975.4: 

  

      

from which table 9.3.1. was derived Ce 

Section Slope Brake point 

£ O(const.output of -0.6v) Ov 

‘ Oss 0.96v 

3 Q.17 22 624v 

4 0.35 3.28v 

S 0.87 3.76v 

Table 9,37. 

The circuit diagram for the function generator used 

is given in fig. 9.3.6. To ensure that the potential chain 

governing the brake points did not constitute extra loading
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its total resistance was small (300‘2). An approximate 

+Ve 

3:7bv 

S°28v 

A2RY 

    O'96v 

  

< 

Function generator 

Fig. 953.6. 

value for the resistors R,-R, were calculated from 

equations 2.3.1.-7. These were later modified along 

with slight adjustment of the break points to accommodate 

the non-linearity of the diodes. Fig. 9.3.3. shows 

the resulting generated function with error occurring at 

the extremities of the input. (This error, due to the 

small] amount of power involved, did not produce significant 

errors in the plant output.)
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9.4 Algebraic Solution of Quartic Equations (ref. 6 ) 

Descarte's Solution. 

To Be solved: ‘x’ sbxtécx2sdxuse=0°) oc. S84 

By replacing x with Z - 2 we obtain a 'reduced' quartic 

equation lacking the term Z? 

EG. 2 eqcteel *6=0 3 68 oa eee 0 AS 

(Equation 9.4.2. is the general form of the quartic in 

&..4.6,..ecuation 7.2.22.0 

Equation 9.4.2. may be expressed as the product of two 

quadratic factors: 

(Z7+2KZ+1) (Z?-2KZ+m) = Z*+(i+m-4K?)Z7+2K(m-4)Z+1m 

The conditions are 

d+m-4K?= q 

2K(m-1) =r 
im = §$ 

If KXO, the first two give 

. to2 aq -e r. 2m = qt4K*+ 7K > 24 qt4K 7K 

Then im = S gives 

64K*.*32qK" s4farnds)K*srte00 ge oy 6 699.453 

Equation 9.4.3. may be solved as a cubic equation for K?: 

Any root K?=0 gives a pair of quadratic factors of 

equation 2 as 

2+ 2KZ+ 3 +2K?= 

The four roots of these two quadratic functionsare the four 

roots of equation 9.4.2.



146 

Algebraic Solutions of Cubic Equation 

If in the general cubic equation: 

x eb texted 9 OS eo 29 44 

the substitution x=y-2 is made then a reduced cubic 

equation is obtained: 

yoeyrg. Oe Gk 4 0a 

aD ‘ibe 2 one Where p= C-z— q=d-3— Fey ga se as 9.4.6. 

If the roots of equation 9.4.5. are Y1y» Yo Y3 then the 

roots of equation 9.4.4. will be 

x1°71-3 2 ¥5-3> x5"¥5-3 

Algebraic Solution of a Reduced cubic equation: 

Substituting y=Z - ay Cas a ae Deh Te 

in equation 9.4.5. produces 

ie Fe gs .qx0 

F ateeqg ind gh 6 9.4.8 le +y huge ee ao 

Solving equation 9.4.8. as a quadratic equation in Z? 

zie 4 t SR 
3 2 

Where R= (z) + (P) 

Any number has three cube roots, two of which are 

the products of the remaining one and either 

w= -0.54j0.5./3 or w*=-0.5-j0.5. /3
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Since (- 4 + JR) (-.4 - JR) (* =)? 

particular cube roots may be chosen: 

A 2 gf aI 2: 42 /K ; Reale U2. ws FR 

° The six values of Z may then be 

w
i
r
d
 

such that AB = - 

_ written 

a, wA, w7A, B, wB, w7B 

These can be paired so that the product of the two in each 

pair is - F ‘ 

7D Pie uot age oo. AB = > wA.wB z > W A.wB % 

Hence with any root Z another root - 7 may be paired. 

From equation 9.4,7,the sum of the two gives the value y. 

Thus the roots of equation 9.4.5 are 

Yi APD 5 75: = wA+w2B, y? = w7A+wB 

These are known as Cardan's formulae for the roots of a 

reduced cubic. 

Irreducible Case 
  

When the roots of a cubic equation are all reai and 

distinct, R is negative, so that Cardans«formulae present their 

values in a form involving cube roots of imaginaries. This 

is called the irreducible case. 

Trigonometric Solution of a Cubic Equation 

: In the irreducible case Cardan's formulae may be 

avoided. This is based upon the trigonometric identity 

Cos 3x = 4 Cos*x-3Cosx 

This may be written in the form 

z3 - z 1-5 Gosixs0". Bos Sa 0 

To transform cubic 9.4.5. into equation 9.4.9, set y = nZ. 

Equation 9.4.5 may then be written 

7 Fe Ea Z+ A oe 0 ° ° ° e ° ° O41 O08
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The two cubic equations 9.4.9. and°10 are identical if 

ef oes oop ee n*® a Cos3x 7 =p 

As R<O, p<O and the value of Cos3x is real and numerically 

€1 the value of 3x may be obtained from a table of 

cosines. The three values of Z may thus be written. 

Cosx, Cos(x+120°) , Cos (x+240°). 

Multiplying these by n, the three roots y are obtained. 

Construction of digital Programme. 

The equation to be solved is: 

Lege. 2G a*h* eS es C*a*h* 4G* 2 2 

av-at | 2070 b'] - alee] + Spee - ee (ate) 

This has the general form 

A* - HA? + IA+J 

The deduced cubic may be written (equation 9.4.3.). 

(64)K® +(32H)K?44(H*-45)K -I?.= 02. . 3.4. 924.11 

2 H H?-4J aa i.e, Kit 5 K? + Caen) K -2, =0 

This is ofthe form 

x’ +bx’ tex +d = 0 

By setting x=y-3 or x=y-8 we obtain the reduced cubic 

y7>Pys+Q =70 3 

where P = oo Qs d-BE % abe 

~ H?-4d H? 
oe te ap Td 

2 Os 3 and 0 wets ve IH hem 
64 96 108



R= (3)? + (3)? 

If R is negative then 

ay aae ee Qe ee 
N= ae oe Cos 35x = gy OF 

In the programme this is represented as 

= : - 2 T Cos3x ay 

and U = ARCCOS(T), X = 4/3, v = N.cOS(X) 
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(In the programme x was represented by the letter 0) 

Therefore 

: H 
O#V- é 

and the roots of the reduced cubic are N. Cos(x) Producing. 

the roots of equation 9.4.11 as 

K = N,Cos(x) - - =V- s in the programme. 

If Ris positive then a root of the reduced cubic is 

ye 3 + J Ret J-3 ee 

The roots of the quartic will, be given by the roots of: 

Zie(2nye ein 8 206) © oe 2 4 

and 2? - (2L) 249 + 2(0) + a
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H and =G 

The programme is shown in Appendix 9.5. Additional 

information to that given for the calculation of the 

other initial conditions B and C, is also included in 

the programme.
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9.5. Specimen Digital Programmes 
  

STEEPEST ASCENT OF THE HAMILTONIAN! 

BEGIN REAL 1P1,1P2,1X1,1X2,AX1 ,AX2 M,BX1 ,CX1 ,BX2 ,CX2 ,FX1 ,FX2 ,AP1 ,AP2, 
BP1,CP1,BP2,CP2,FP1,FP2,T,V,N,F* 
ARRAY gC 3201) 5¥( 12201) HC 2201) ,w(1:201) ' 
INTEGER U,K,E,B,D,L,Q,C,1 ,2Z' 
SWITCH St=AA ,BB,CC,DD,EE FF! 
T2020]! 

READ v! 
PRINT ££L1S7?T IME (SECS) £58? ITERATION? 
FOR Ut=1 STEP 1 UNTIL 20 DO 
BEGIN K:=€ :=D :=L :=Q :=B t=C :=0! 
F s=0! 
Ni=2.0! 
|P1:=0, 0! 
| P2 s=W( 1) :=0,0! 
1X1 s=Y(1) :=0.0! 
[X23s0, O's 
BEGIN 
AAS Keane! 
F :=F4+0.01! 
LesL+1! 

C set f 
AX1:=1X2! 
IF U=1 THEN Mt=1 ELSE M:=u(202-K) ! 
AX2:=-2* |X24M! 
IF K=1 THEN 
BEGIN CX1:=BX1s=AX1! 

- CX2 :=BX2 t=AX2! 
END! 
FX1 s=1X14T*( (2*AX1) -(1.5*BX1)+( 0.5*CX1) ) 
FX2 t= 1 X2+T*( (2*AX2) -(1.5*BX2) +( 0.5*CX2) ) ! 
Y(K+1) =F X1! 
CX1 s=BX1! 
BX1:=AX1! 
CXa sehihes 
BX2:=AX2! 
[X2:=F x2! 
[Xte=F XT 
IF Us20 AND C=1 THEN 
BEGIN PRINT£ELIS227T£S82X1£582X22 ,££L12? SAMELINE ,ALIGNED(1,3) JF, 

££522? ,FREEPOINT(6) ,Y(K+1) ,££522? ,FREEPOINT(6) ,FX2! 

END! 
IF U=20 AND L=20 THEN 
BEGIN PRINT£EL12? ,ALIGNED(1 ,3) ,F ,££522?, 
SAMELINE ,FREEPOINT(6) ,Y(K-+1) ,££522? ,FREEPOINT(6) ,FX2! 

Laao! 

END!



  

  

IF K LESS 200 THEN GOTO AA 
END! 
FOR |:=1 STEP 1 UNTIL 201 DO 
BEGIN 
H(1) s=u( 1)! 

END! 
BB sN:=N-0,01! 
D:=D+1! 
Bi=B+1! 
E s=f+1! 
Q :=Q+1! 
AP] s=-2*(¥(202-E) -1) ! 
AP2:=1P1-2*|P2! 
IF E=1 THEN’ 
BEGIN CP1:=8P1:=AP7! 
CP2 s=BP2 s=APe2! 
END! 
FP1 s=1P147*( (2*AP1) -(1.5*BP1)+(0.5*CP1) )! 
FP2:=] P2+T*( (2*AP2) -(1.5*BP2)+( 0.5*CP2) ) ! 
W(E+1) s=FP2! 
IF U=l THEN-H(E) :=1! 
J(E) sH(E) 4V*(W(E) -0.2*H(E))! : 
IF E=200 THEN 
BEGIN u( 201) s=H(201)+4V*(W( 201) -0.2*H(201)) ! 
END! 
IF D=20 THEN BEGIN 
IF U=1 THEN GOTO CC! 
IF Us5 THEN GOTO CC! 
IF Ue10 THEN GOTO CC! 
IF U=15 THEN GOTO CC! 
IF U=18 THEN GOTO CC! 
IF U=19 THEN GOTO CC! 
END! 
GOTO DD! 
CCsPRINT£EL1S92? ySAMELINE ,ALIGNED( 1,3) ,Ny££S112? ,FREEPOINT(6) ,u(E) ! 
Du=o! 
DD:IF B=1 AND U=20 THEN 
BEGIN PRINT£EL1S22T£S8? P1 £582 P2es8eme ! 
END! 
IF D=20 AND U=20 THEN 
BEGIN PRINT£E£L12? ,SAMELINE ,ALIGNED( 13) yN,££S22? JFREEPOINT(6) ,FPI, 
££522? ySAMELINE yFREEPOINT(6) ,W(E+1) ,££529? ,FREEPOINT(6) ,u(E) ! 
D:=0! 
END! 
IF Q=1 THEN BEGIN 
tF=U=1- THEN GOTO EE! 
IF U=5 THEN GOTO EE! 
IF U=10 THEN GOTO EE! 
IF U=15 THEN GOTO EE! 
IF U=18 THEN GOTO EE!
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IF U=19 THEN GOTO EE! 
END! 
GOTO FF! : 
EE :PRINT££L1S262? BN ane, ooets U,££L1S97? ,SAMELINE ,ALIGNED( 1,3) ,N, 
££5112? ,FREEPOINT(6) ) sw(E 
FFsCP1l:=BP1! 
BP1:=AP1! 
CP2tapPe! 
BP2:=AP2! 
|P1:=FP1! 
|P2:=F P2! 
ELLIOTT( 0,6 ,0,0 
ELLIOTT(1, a: Z,0 
IF Z LESS O THEN 
IF E LESS 200 THE 
END! 
END OF PROGRAMME! 

9739,0)! 
3050, O) f 

DUMP! 
N GOTO BB



THIRD ORDER SYSTEM (DYNAMIC PROGRAMMING) ! 

BEGIN REAL C,XD,A,B,Y,1 ,CB1 ,BB1 ,AB1 ,CB2 ,BB2 ,AB2 ,CB3 ,BB3 ,AB3,CB11, 
BB11,AB11,CB12,BB12 ,AB12 ,CB 13 ,BB13 ,AB 13 ,CB22 ,BB22 ,AB22 ,CB23 8823 ,AB23, 
CB33 »BB33 ,AB33 ,FB1 ,FB2 ,FB3 ,FB11 ,FB12 ,FB13 ,F B22 ,FB23 ,FB33 ,B1 B2 ,B3, 
B11,B12,B13 ,B22 ,B23 ,B33' 
INTEGER U,H,L! 
SWITCH S:=ZZ! 
READ XD,A,B,Y,T,U! 
PRINT ££L12A=? ,SAMELINE ,FREEPOINT( 4) ,A ,££S32?B=? ,FREEPOINT( 4) ,B,££532?Y=?, 
FREEPOINT(44) ,Y,££532 INPUT=? ,FREEPOINT( 4) ,xD ,££532T IME INTERVAL=?, 
FREEPOINT(#) ,T ,££L52T IMEESE?K3£5 82K 3 1£S07K32£562K33? | 
H:=L3=0 
C:=0! 
B1 s=B2 :=83 :=811 :=B 12 :=B 13 :=B22 :=B23 3=B33 :=0! 
CB1:=8B1:=AB1! 
CB2 :=BB2 :=AB2! 
CB3 :=BB3 :=4B3' 
CB11 :=8B11:=AB11' 
CB12?=BB12:=AB12' 
CB13 :=BB 13 :=AB13! 
CB22 :=BB22 :=AB22! 
CB23 :=BB23:=AB23' 
CB33 :=8B33 :=4B33! 
ZZ: H:=H+1! 
Ce=C4+T! 
Ls=L41! 
AB11 :=1-B13*B13! 
AB12 :=Y*B11-A*B12-B13*B23' 
AB 13 :=812-B*B 13-B13*B33' 
AB22 t=2*Y*B 12-2*A*B22 -B23*B23! 
AB23 :=Y*B 13 -A*B234B822 -B*B23 -B23*B33' 
AB 33 :=2*B23 -2*B*B33 -B33*B3 3! 
AB1 :=XD-B3*B13! 
AB2 :=Y*B1-A*B2-B3*B23' 
AB3 :=82-B*B3-B3*B33 * 
Feasts eAaTT UT oheeui tore cert 
FB2 :=B2+T* ( ( 2*AB2) -( 1.5*8B2)+(0.5*CB2) )' 
FB3 :=B34T* ( (2*AB3) -(1.5*BB3) -+( 0.5*CB3) )! 
FB11 :=8114T*( (2*AB11) -(1.5*8B11)+(0.5*CB11) )! 
FB12 :=B12+T*( (2*AB12) -(1.5*8B12)+( 0.5*CB12) )' 
FB13 :=B134T*( (2*AB1 3) -( 1.5*88 13) +( 0.5*CB13) )! 
FBd s=B224T*( (2*AB22) -( 1.5*BB22)+( 0.5*CB22) ) ! 
FB23 :=B23+T* ( (2*AB23) -( 1.5*8B23)+( 0.5*CB23) )! 
FB33 =B334+T*( ( 2*AB33) -( 1.5*8B33) +( 0.5*CB33) ) ! 

 



iss 

CB1:=8B1! 
BB1:=Ap1! 

Bl:=FB1' 
CB2 :=BB2! 
BB2 :=\B2! 
B2 :=FB2! 
CB3 :=8B3! 
BB3 :=AB3' 
B3:=FB3' 
CB11:=BB11! 
BB11:=AB11! . 
B1l:=FB11! 
CB12:=8B12! 
BB12:=ABl1e! 
Bl2:=FB12' 
CB13 :=8B13! 
BB13:=AB13! 
B13:=FB13! 
CB22:=8B22! 
BB22 :=AB22! 
B22 :=FB22! 
CB23 :=8B23! 
BB23 :=AB23' 
B23 :=FB23! 
CB33 :=BB33' 
BB33 :=AB33!- 
B33 :=F B33! 
IF L=20 THEN 
BEGIN PRINT ££L12? ,SAMELINE ,ALIGNED( 1,2) ,C,££542? ,FREEPOINT(5) , 
FB3, ££5427 ,FREEPOINT(5) ,FB13 ,££542? ,FREEPOINT(5) ,FB23, 
£65472 ,FREEPOINT(5) ,FB33! 
Ls=0 Y 

END! 
IF H LESS U THEN GOTO ZZ 
END OF PROGRAMME!



  

DESCARTES SOLUTION OF THE QUARTIC! 

BEGIN REAL E,K,A,B,Y,CsH,1 50,0 ,Q,P,R,V1 yN,T ,U,X VL MyZ1 22 523,24, 
EQUI ,EQU2 ,EQU3 ,EQUS 216 220,230,248 jG! 
INTEGER w! 
SWITCH Si=AA,FF ,HH,GG,BB,CC ,DD,EE! 
FOR W:=1 STEP 1 UNTIL 10 DO 
BEGIN READ E,K,A,B,Y! 
PRINT Acer cinta) ¥ ess 
£ES32Y=? ,FREEPOINT(3) ,Y,££53?A=? ,FREEPOINT( 2) A, ££532B=2 , 
FREEPOINT(2) ,B! 
C:=2*E*(sQrT(K)) ! 
H Saelelereh tile 
I: -8*( ( )** Hae 

Ji=( (C*A*B) Aye *A*A*((C) #1) ) /(y#Y*K) -4*( (CH) * (BZ) ) /(yHY*K) ! 
- Qis( -H*(H*H-4*Y) ) /96-1* 1 /644-(H**3) /708! 
Ps=(H*H-4*J) /16-H*H/12! 
R =( P/3)**34(Q/2) ¥¥D 1 

PRINT ££L1?Q=? ,SAMELINE ,FREEPOINT(6) ,Q,££53?P=? ,FREEPOINT(6) ,P, 
££532R=? ,FREEPOINT(6) ,R,££532C=7 ,FRECPOINT(S) ,C; FEL 12H? 
SAMELINE ,FREEPOINT(6) jH ,££537 I=? ,FREEPOINT(6) ,1, 
££53?J=? ,FREEPOINT(6) ,u! 
IF R LESS O THEN GOTO AA ELSE GOTO BB! 
AA: Ni=SQRT( -(4*P) /3)! 
T =( -Q/2) /SQRT( ( -P**3) /27) ' 
Us=ARCCOS(T) ! 
X3=U/3' 
V s=N*COS( Xx) ! 
O:=V-H/6! 
PRINT ££L12AA?! 
GOTO cc! 
BB: V1 :=-Q/2-SQRT(R) ' 
IF V1 LESS O THEN GOTO FF ELSE GOTO GG! 
FF: PRINT ££L19FF?! 
V =( -Q/24SQRT(R) )**( 1/3) -( -V1) **( 1/3) ! 
GOTO HH! 
GG: V:=( -Q/2+SQRT(R))**( 1/3) +( Q/2-SQRT(R) )**( 1/3) ! 
HH: O:=V-H/6! 
CC! et ee 
M:=-H/2-041 /( 4*L) # 
IF M LESS O THEN GOTO DD! 
Z12==L+SQRT(M) ! 
EQUI :=Z 1**44.(21**2) *H471* |4y! 
Z1B s=21*Z1*Y*(SQRT(K) ) /( 2*C) -A*C-( C¥A*A*B*B*SQRT(K) ) /(2*y) ! 
Z2 :=-L-SQRT(M) ! 
EQU2 t=Z2**44.(72**2) *H472* |4u! 
Z2B t=Z2*Z2*Y*(SQRT(K)) /(2*C) -A*C-C*A*A*B*B*(SQRT(K)) /(2*Y) ! 

ee
 
e
t



  
PRINT EL192 167 ,SAMELI NE ,FREEPOINI(G) 521 easb iz dot gf Re POUT (O] 528} 

££L12EQUI=? ,SAMELINE ,FREEPOINT(8) ,EQU1 ,££56?EQU2=? ,FREEPOINT( 8) , 
EQU2 ,££53?Z1B=? ,FREEPOINT(6) ,Z1B ,££53?Z2B=? ,FREEPOINT(6) ,Z2B! 
DD: G:=-0-H/2-1/(4*L) ! 
IF G LESS O THEN GOTO EE! 
23 :=L+SQRT(G) ! 
EQU3 :=:Z 3**44(23**2) *H+Z3* 14U! 
Re 2*C) -A*C=C*A*A*B*B*(SQRT(K)) /(2*Y) ! 

Z4 s=L-SQRT(G) ! 
EQUY s=Z4** dy ( 242) #H4ZY* Jt! 
Z4B :=Z4*Z4*Y* ( SQRT(K) ) /( 2*C) -A*C-C*#A*A*B*B* (SQRT(K)) /( 2*Y) ! 
PRINT ££L19Z3=? ,SAMELINE ,FREEPOINT(6) ,23,££562Z4=? ,FREEPOINT(6) ,Z4, 
£EL12EQU3=? ySAMELINE »FREEPOINT( 8) ,EQU3, ££567EQUI=? ,FREEPOINT( 8) ,EQUY, 
££537238=7 jFREEPOINT(6) »Z23B »££532Z4B=? ,FREEPOINT(6) ,Z4B! 
EE: END 
END OF PROGRAMME !



  
9.6 Suggestions for further work . 

The value of the initial state vectors producing 

optimisation when plotted against the optimizing interval, 

produce regular curves. The general shape of these 

curves resembling exponentials. Equations governing 

their maximum values have been attained. It is therefore 

suggested that the equations governing the complete curve 

may be determined to replace the two point boundary value 

problem of Pontryagin's Maximum Principle for the finite time 

interval. 

A method of obtaining these equations may be by 

substitution of the required vectors into the performance 

index as in section 6. The minimum value of this integral, 

in general terms, being acquired and the equations 

governing the initial co-state vectors to achieve this 

extracted.
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