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SYNOPSIS 

Predictions of the stresses and displacements induced within a soil 

mass by interaction with an engineering structure are made, at present, with 

only a limited knowledge of the deformational behaviour of soils under gen- 

eralised stress conditions. The majority of routine testing and laboratory 

research investigations are performed on cylindrical soil specimens in the 

conventional triaxial apparatus, which is limited to imposing axially-sym- 

metrical stress conditions, In very few field problems are such conditions 

strictly relevant. Many problems approximate more closely to plane strain, 

and recent progress has been made in investigating the behaviour of cuboidal 

specimens constrained from deformation in one of the principal directions. 

However, the experimental difficulties are increased, and controversies 

remain regarding the influence exerted b;" the apparatus on the soil behaviour, 

The general field condition is one in which the stresses and strains 

are different in each of their three principal directions at a point, Very 

few satisfactory attempts have been made to overcome the complex problem of 

testing elements of soil under similar conditions. 

The design and development of a new apparatus is described which allows 

generalised stress or strain conditions to be applied to cuboidal specimens, 

The methods used to apply the three boundary principal stresses ensure a 

high degree of stress, uniformity, and suitable lubrication shocibdres uni- 

form strains. Comparisons between the results of tests carried out under 

simple stress conditions, on specimens of the same sand, in this and in more 

conventional apparatus, a ee apparatus interference. A 

further series of tests in plane strain shows that the deformational be- 

haviour of loose specimens is similar to that observed in triaxial compres- 

sion. For dense specimens, however, considerable strength increases result 

from the restriction imposed on strains. The results of generalised stress 

tests suggest that the intermediate principal stress is of most significance 

when its magnitude is less than that observed at failure in plane strain, 
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FIG. 34 (Cb) 

- DIMEN SIONAL APPARATUS 

ENCE 

THREE 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

  
  

 
 

 
 

 
 

 



  

oO NSS SSSR EN SY 
  

    GS 
S
S
N
S
 

! 

    | 

a 

  

  

  y y ~   
  

  

  

    fe
 

e
s
 
S
O
S
 
N
S
A
 

A 

  
  

    
    

    
  

FIG. 3.5 (a) 

HOLLOW CYLINOER TEST 

~ KIRK PATRICK       

  

      

  

  

PS. 3. (6) 

MAGNETIC “TRIAXIAL APPARATUS 

= EOCARIO 

SCHEMATIC PLANE   
 



  
  

« . 

ee: , %
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APPENDIX A 

LABORATORY MANUFACTURE OF LATEX-RUBBER MEMBRANES 
  

The specially designed side stress-cell membranes and cuboidal 

specimen membranes were manufactured in the laboratory from a pre- 

vulcanised, ammonia-stabilised latex, 

The process is essentially simple. A perspex former is dipped 

into a tank of the latex. When withdrawn the former is coated with 

a thin latex film which upon drying takes the same shape as the 

former. However, an allowance must be thd for shrinkage of the film 

when deciding the dimensions of the former. 

Control of the membrane thickness is facilitated by the use of a 

coagulent which also Sei membrane uniformity. Prior immersion 

of the former into the coagulent causes a gelling of the latex during 

the subsequent dip, the strength of the coagulent solution being one 

of the factors determining thickness, If necessary several dips can 

be used to build up sufficient thickness. 

From these basic principles, the following process has evolved 

as the most suitable for the manufacture of membranes in the laboratory:- 

(i) Clean former and immerse in coagulent (20% solution of calcium 

nitrate in I.M.S.). 7 

(ii) Withdraw slowly and allow a few seconds for excess coagulent 

tosrnon off. 

(iii) Lower former steadily into latex, at approximately 1 in./sec.; 

keep immersed for about 5 seconds; withdraw at same rate. 

(iv) Invert and slowly rotate to prevent any excess latex from 

forming globules. 

(v) Inspect surfaces carefully, if necessary "dabbing on" latex 

to complete coverage.



  

(vi) Dry under lamp for a few minutes, then place in oven at 

70-80°C, 

(vii) Remove when transparent (2 to 3 hours is usually sufficient) 

and leave to cool naturally to ambient temperature, 

(viii) Dust membrane with talc and strip from former, simult- 

aneously dusting inside surface, 

(ix) Wash off talc, dry membrane and inspect for perforations or 

weaknesses by stretching against a bright light. (Water-filling 

may be used as a further check). 

(x) Trim with scissors as required, 

(xi) Dust with tale and store in a closed container, 

Before dipping, it is important to ensure that air bubbles have 

been removed from the latex, This is done most easily by allowing the 

tank to stand uncovered for several hours, periodically skimming off 

the latex skin which forms on the surface, 

After oven-drying, by allowing the membrane to cool while still 

on the former, shrinkage was reduced to about 6% on average. However, 

since the magnitude of shrinkage varied from point to point, the best 

method of obtaining the desired membrane size was found to be one of 

trial and error, with continual adjustment of the former dimensions, 

When manufacturing both the cuboidal specimen membranes and the 

side stress-cell membranes, it proved beneficial to increase the thick- 

ness of rubber in certain areas not on the "working-surface", This 

increase was desirable at the top and bottom of the specimen membranes 

for more efficient sealing with the end stress-cells, and to reduce the 

vulnerability of the membrane to puncture around the relatively sharp 

edges. Similarly the thickness around the flange of side stress-cell 

membranes was increased to improve the seal between back-plate and 

side-frame. In such cases the second dipping-cycle may be performed



  

A. 

a few minutes after the first, without the necessity of oven-drying 

during the interim period. 

During inspection of the stripped membrane any perforations or 

weaknesses may be repaired by "dabbing on" latex followed by oven- 

drying to transparency. However, repairs should be restricted to 

areas not on the working-surface,. 

The side stress-cell membranes were replaced as necessary and, 

in general, each cuboidal specimen membrane was used for one, or 

occasionally ee Lane Therefore membranes with even slight imper- 

fections on the working-surface were discarded before use, 

The formers used are shown in Fig. A1 together with the dimensions 

of the finished membranes, 

Thickness uniformity of several membranes manufactured in the 

laboratory was studied, Using a micrometer gauge, 36 measurements of 

thickness were taken on the working-surfaces of each of four specimen 

membranes, In addition the thickness of each of two side stress-cell 

membranes was bisceuen in six positions distributed evenly over the 

surface, and further measurements were taken of the thickness of mem- 

branes subjected to two dipping-cycles. The results are shown in 

Table A.1. 

TABLE A.1. 

———_-—», 
  

Average Standard 
ponexane TyEP thickness (in.) | deviation (in.) 
  

  
Cuboidal specimen membranes 020127, 0.0015 

Side stress-cell membranes 050129 0.0012, 

Twice-dipped surfaces 0.0210 -       
  

The average thicknesses of all working-surfaces were assumed in 

all calculations, 

- III -
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MEMBRANE FORMERS 

Scale -Half Size     

  

  

    
  

    
            
  

  

    
  

    
  

(b) SIDE StRESS- CELL MEMBRANES         
(CG) CuU.BoOIDAL SPECIMEN MEMBRANES



  

APPENDIX B 

MEMBRANE PENETRATION TESTS 
  

The measurement of volumetric deformation of cohesionless soils, 

if based on the volume of pore-fluid entering or leaving the specimen, 

is susceptible to errors resulting from penetration of the rubber mem- 

brane into the voids under pressure (442). All of the experiments in 

this research program, including triaxial compression of cylindrical 

and cuboidal specimens, triaxial extension of cylindrical specimens, 

and tests under a variety of stress conditions in the ATA, were carried 

out on specimens of coarse sand. Therefore it was essential to correct 

the volumetric deformations for menbrane penetration, 

It was decided to use a method similar to that described by Roscoe 

et al (1963) in which cylindrical annular specimens of sand, with rigid 

coaxial cylindrical rods, were tested under ambient stress conditions, 

Although the authors expressed doubts regarding the accuracy of 

corrections obtained in this way, these were based apparently on a 

comparison between this method and another which would appear inferior 

Chek. 2):



  

Bet 

B.1 SPECIMEN PREPARATION AND MEASUREMENT 
  

The specimen density, or porosity, is an important factor in 

determining the magnitude of the membrane penetration effect, Tri- 

axial compression and extension tests, and those in the ATA, were 

carried out over a range of initial density. Therefore in order to 

make membrane penetration corrections for any one test, it was necess- 

ary to investigate this effect over a similar density range, and 

attempts were made to prepare specimens at four relative densities, 

At each density four specimens, nominally 5 in. long and 2.8 in, 

0.D., were formed around coaxial cylindrical perspex rods, 0.75, 1.25, 

1.75 and 2,25 in, in diameter respectively, and also 5 in. long. Each 

specimen was subjected to ambient stress, and the apparent volume change 

determined for each stress increment between 0 and 80 lbf/in? 

Formation of the specimen was difficult, since the presence of 

Sib nods’ placed in position prior to sand deposition, precluded the 

use of one of the more conventional methods of preparation, such as 

settlement through water, In addition the height of the required poe 

imen was fixed at 5 in., and in each case it was hoped to produce a 

uniform specimen of a predetermined initial density. 

The following technique was found to be the most suitable:- 

The mass of sand needed to form the specimen was calculated from 

the approximate initial volume and required initial density. A mass 

slightly in excess of this was sephoreed in water and boiled, Having 

placed a lubricated end membrane in position covering the bottom platten, 

the specimen membrane was sealed with rubber O-rings and the specimen 

former set up as described in 5.5.1. 

The membrane was then partially filled with de-aired water, to an 

extent dependent upon the rod diameter, and similar precautions were



  

Bet 

taken against trapping air during the filling process, The rod was 

lowered into position in the centre of the bottom platten, displacing 

water upwards so that the membrane, supported several inches above the 

top of the former, was filled almost to its brim, 

Sand was transferred from the container into the membrane by 

spooning, the rod being held firmly in position during this and sub- 

sequent processes, For each volume of sand transferred, a little 

water was siphoned off to maintain an approximately constant level 

above the rod, Spilling over could have resulted in a loss of 

particles, Except far the loosest specimens, vibration was applied to 

the former, the degree depending on the required density. When pre- 

paring the densest specimens, the cell base also was vibrated, 

Under the effect of a small pore-suction, conventional solid cyl- 

indrical sand specimens consolidate, reducing in both height and dia- 

meter. Unless the top platten is free to move in the former, a "neck" 

results at the top of the specimen, In the membrane penetration spe- 

cimens, top platten movement is prohibited, except for a very small 

compression of the lubricated membranes, by the presence of the pode 

Therefore, if the sand were to ae finished level with the top of the 

rod, necking would undoubtedly occur when the pore-suction was applied. 

This happened in early attempts to form specimens, 

The difficulty was overcome by "banking" the sand surface out- 

wards from the rod towards the specimen circumference, the gradient of 

the slope for each density and rod diameter being determined by exper- 

ience, 

Having banked the top of the sand in this way, the top platten, 

with its lubricated end membrane and circumferential filter paper (5.564) 

was placed in position, and de-aired water passed through the drainage 

connection to remove trapped air-bubbles. The specimen membrane was 

ne ae
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then sealed with rubber O-rings and a small pore-suction, 0.4 lb./in?, 

applied. 

If, upon removing the former, a significant neck had formed or the 

Specimen was greater than 5.020 in. long, the specimen was rejected and 

preparation begun again. The latter fault results from excessive 

banking of the sand prior to placing the top platten, Although the 

specimen profile may appear uniform, there is a clear possibility that 

sand particles have become trapped between the perspex rod and the top 

platten causing the initial length of the specimen to be greater than 

that of the perspex rod and the thickness of two lubricated membranes. 

The effect of overlooking this fault is likely to be much greater than 

the effect of accepting slight necking at the top of the specimen due 

to insufficient banking of sand, However, after initial experimentction 

with this type of preparation, few specimens had to be rejected because 

of either fault. 

The height and mean diameter of each specimen were determined in 

the manner described for cylindrical triaxial compression tests. The 

triaxial cell was then clamped to the base and the plunger, which is 

not used actively in this type of test, was vertically restrained in 

its bushing before filling the cell. 

With the burette at specimen mid-height, the cell pressure was 

eae aud in increments from zero to 5, 10, 20, 30, 50 and 80 1bf/in? and 

the discharged volume of water measured. For brevity this will be des- 

cribed as the "volume change". However, it is meant to imply only that 

this volume of pore-fluid has been discharged, and not that the sand 

specimen has compressed by this amount, Each increment of ambient stress 

was maintained for a period long enough to ensure that full consolidation 

had occurred. Normally about 15 minutes was sufficient for each stage, 

It was expected that the resulting strains would be reasonably 

- VII -
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uniform since lubricated end membranes were used, Although they 

compress slightly under pressure, the magnitude of compression for a 

given ambient stress should be the same in all tests, and therefore 

have negligible effect on the extrapolated membrane penetration 

correction (B,2). Moreover, their inclusion meant that the tests were 

carried out under the conditions of minima] end friction appertaining 

to all stress-deformation tests in this research program. 

- VIII -
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B.2 RESULTS AND DISCUSSION 
  

The volume changes resulting from the initial stress increment, 

Oeto:.5 lbf/in2 , in each of the sixteen tests were found to be incon- 

sistent with those occuring during subsequent increments, In addition, 

inconsistencies in volume change among specimens prepared at different 

densities were apparent for the initial increment only. Probably this 

was caused by slight differences in the preparation of the specimen, 

end-membrane compression, bedding at each end of the perspex rod, 

sealing of the specimen membrane and associated effects which are vari- 

able. Clearly these are likely to be insignificant at higher stress 

levels. 

Therefore it was decided to ignore the first stress increment and 

to use the specimen volume at 5 lbf/in? as the datum from which to 

measure volume change. The results are shown in Figs. B.1, B.2, B.3 

and B.4, as graphs of total volume change, AV (m1), against applied 

ambient stress, Oo. (1bf/in2) for each diameter rod, Dy tins As 

expected, the volume change decreases with increase in rod diameter 

and initial density of the specimen, yg(lbf/ft®). 

Figs. B.5, B.6, B.7 and B.8 show that for each stress level, the 

decrease in volume change is approximately linear with initial dry 

density for all four rod diameters. By interpolating values of AV for 

three convenient densities, 100, 103 and 106 lbf/in?, and plotting 

against the rod diameter, the effect of the latter at each stress level 

was determined, Figs. B.9, B.10 and B.11 show that the relationship is 

again linear, 

These curves were extrapolated to D, = 2,8 in. in order to deter- 

mine the volume change that would occur in the hypothetical case of a 

fully rigid specimen having surface properties identical with those of 

a solid, cylindrical specimen, The extrapolated values of AV were 

Eee
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plotted against o,, for each value of yg, to a natural scale, Fig. B.12; 

and to a semi-logarithmic scale, Fig. B.13, 

For all three densities, the graphs of AV against log 0, approx- 

imate very closely to straight lines passing through Oo, = 5.0, the 

stress at which the datum for AV was chosen, Therefore that part of 

the membrane penetration correction associated with ambient stress 

above 5.0 lbf/in? may be written in the form:- 

: AV = k.1og(o,/5), (1) 
where k, the gradient, is dependent only upon density. By inter- 

polation from the curves for the various densities, k may be ex- 

pressed in terms of initial porosity, a more convenient parameter, as:- 

Xe eet 7 020 - 5.25), (2) 

giving AV = (17.02n - 5.25) .log(o,/5). (3) 
Below o, = 5.0, for the reasons discussed, the results of these Nd 

membrane penetration tests are less conclusive, being more widely 

monttersde However, at low stress levels the effects are likely to be 

less significant, and it was decided to take the overall average 

behaviour of the 16 specimens tested, irrespective of initial density, 

to complete the membrane penetration correction, AVp, as follows:- 

Top 0,365.0). AV, = 0.400; (4a) 

for o> 5.0,  AVp = 0.50 + (17.02n - 5,25) .log(a,/5). (4b) 

This is the basic form of correction incorporated in the computer pro- 

grams used to process results of stress-deformation tests on this soil. 

The true volumetric strain of the membrane penetration specimens 

was very small, not greater than about $% even for loose specimens: 

stressed to 80 lbf/in? Therefore it was assumed, in deriving the 

correction equations, that the initial porosity applied throughout the 

range of stress, During stress-deformation testing of cohesionless 

soils, the application of deviatoric stresses usually causes considerable
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volumetric strains, particularly in dense dilating assemblies. The 

effect of such porosity changes on membrane penetration is assumed 

to be given by equation (4b), the implication being that this equation 

describes the effect of any changes in porosity, regardless of whether 

they result from ambient or deviatoric stresses, 

A further assumption, that the measured overall average porosity 

is representative of the soil properties at surfaces subject to mem- 

brane penetration, was necessary in the sbecnte of information on 

specimen homogeneity (4.5.1). Nevertheless the corrections obtained 

from aicks tests, given by equation (4), cary thought to be sufficiently 

reliable for the accuracy of corrected volumetric strain to be compat- 

ible with that of corrected stress. 

The membrane penetration tests described were carried out on cyl- 

indrical specimens, almost exactly 5 in. long and 2.8 in, in diameter, 

Because it is a condition associated with the specimen surface, the 

effect of membrane penetration will decrease with decrease in surface 

area, providing other factors are constant, All cylindrical tests, 

whether in triaxial compression or extension, were carried out on nom- 

inally 2.8 in. dia. specimens. However, their lengths were various, 

In particular, those of compression and extension specimens were 

widely different. Therefore a factor was incorporated in the membrane 

penetration correction, based on direct proportionality between sur- 

face area and penetration, and hence between specimen length and pene- 

tration, 

The corrections applied to the volumetric deformations during 

cuboidal triaxial compression tests were also based on spe cimen sur- 

face area, The perimeter of the cuboidal specimens and circumference 

of the cylindrical specimens were very similar, and therefore length 

was again the dominant factor, However, the difference in curvature 

we tts
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of the surfaces, particularly at the corners of the cuboidal specimens, 

may have some slight influence on membrane penetration, It was 

assumed that this was negligible. 

ATA specimens were treated in a similar manner, the correction 

being based on the surface area exposed to main-cell pressure, i.e. 

the oy faces of the specimen, It was assumed that the combination of 

membranes and silicone grease on the oy faces, on which the side stress- 

cells operate, and that of the rubber diaphragm and lubricated end- 

membranes on the o3 faces, on which the end stress-cells operate, 

would minimize membrane penetration on these surfaces, 

The various forms of membrane penetration correction were included 

in the respective computer programs for each type of test along with 

any other necessary corrections, such as those to be applied to axjal 

deformations (Appendix C.). 
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APPENDIX C 

APPARATUS CALIBRATION TESTS 

The methods used to measure the direct strains of ATA specimens 

were described in4.4.1, Similar systems were used in all the other 

stress-deformation tests carried out, reliance being placed on accurate 

correction of observed deflections, 

In ATA tests only two of the three Alaa ct strains are measured, 

the third being calculated from knowledge of volumetric deformation 

corrected for membrane penetration Aomaniiee B). Therefore calibration 

of measuring instruments to allow for strain of the apparatus, and 

bedding of the specimens at boundaries where measurements are made, is 

essential, Moreover, the accuracy of the instruments theneélves must 

be known, 

Measurements of Sieaue in the x- and y-directions were mede using 

two Budenberg pressure gauges. In the z-direction, pressure induced in 

the top and bottom stress cells, and transmitted to pressure transducers, 

was recorded using an ultra-violet recorder, (Consolidated Electro- 

dynamics 5-127 Recording Oscillograph). Similar arrangements were used 

for testing cylindrical and cuboidal triaxial specimens, except that in 

the majority of tests a proving ring was used to measure axial stress 

in addition to the end stress-cells, so that a comparison between these 

systems could be made, This was also the case in a few ATA tests. 
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C.1 AXTAL STRAIN 

Calibration tests were carried out in order to determine the 

corrections to be applied to measurements of strain in the axial- 

direction in cylindrical triaxial ,compression tests, The results of 

these tests were then used as the basis for correcting axial strains 

measured in the various other tests, including those in the ATA. 

Fig. C.1 shows the layout of the apparatus in diagrammatical form. 

; A mild-steel cylindrical dummy specimen, 5 in, Long and 2 °67in. 

dia., was used in order to eliminate the soil specimen deformation as 

a factor in the calibration, In all other respects the apparatus was 

identical with that used for cylindrical triaxial compression tests 

with top and bottom stress-cells. In a second series of tests, the 

stress-cells were replaced with rigid end plattens so that their rel- 

ative deflections under stress could be studied. 

The deflection dial ae mounting used in the majority of tests 

was that shown in Fig. 0.1. The disadvantages of this system, rel- 

ative to internal methods of axial deformation measurement, were dis- 

cussed in4.4.1. However, the size of the main-cell relative GO. bnat 

of the specimen was such that internal measurement was precluded, 

The following are the major sources of error in determining axial 

strains (see Fig. C.1):- 

(a) seating of the proving-ring at the loading crosshead; 

(b, ) seating of the proving-ring onto the plunger; 

(be) seating of the ball-bearing between the plunger and the top 

stress-cell; 

(bs) compression of the lubricated end-meanbrane, squeezing out of 

the silicone grease layer, compression of the stress-cell and 

rubber diaphragm, and bedding of the specimen; 

(b4) a similar condition at the bottom of the specimen;



Cd 

(c) seating of the cell onto its base and the associated O-ring 

compression; 

(d,) seating of the cell base onto the brass spacer; 

(dg) seating of the spacer onto the loading pedestal; 

(e) expansion of the loading frame; 

(f) distortion of the cell, 

In most ATA tests the proving-ring was replaced with a brass rod 

and ball-bearing. Although this permitted the application of a 

genuinely constant rate of deformation, since proving-ring compression 

was eliminated, the seating errors are likely to be similar, Errors 

due to compression of the body of the stress-cells are probably negli- 

gible compared with that of the rubber diaphragms and menbrane-silicone 

grease candwich, 

Bedding of the specimen onto loading plattens is a problem common 

to the majority of stress-deformation testing, and tests in the ATA 

are no exception, However, the provision of flexible surfaces at each 

end of the specimen may, in addition to increasing the degree of stress 

homogeneity, improve the intimacy of contact. 

In baliel ; Barden and Khayatt's (1966) Se aan on axial strain 

measurement were discussed, with particular reference to their comments 

regarding reliability of calibration for cell distortion, and its 

dependence upon the clamping of the cell to its base, During the ATA 

test program, no difficulty og experienced with this process, 

Clockhouse "quick release" clamps being used. It was expected that the 

clamping force was very similar in each case, am therefore that the 

error due to cell distortion was not variable. However, the seating 

of the cell onto the cell-base O-ring must be regarded as another 

possible source of error. 

A Clockhouse Universal Triaxial Cell was used as one of the basic
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components in the development of the ATA, and also served for triaxial 

compression and extenstion tests. The testing program was, however, 

carried out using a Wykeham Farrance 5 ton capacity compression 

testing machine, Therefore the diameter of the loading pedestal was 

different from that of the recess in the cell-base, and a brass spacer 

had to be inserted to ensure that the cell remained centrally- 

positioned during testing, Although machined plane, the seating of 

the spacer represents another source of error, 

In order to investigate the relative magnitudes of the errors 

described, a "triaxial compression test" was carried out on the dummy 

specimen at a "rate of strain" of 0.004 in./min, The cell pressure 

was zero during this stage of the test, but was later raised in 

increments to about 80 lbf/in? in order to determine cell distortion, 

Deflections were measured (Fig. C.1) using a dial gauge fixed to the 

loading machine to measure the upward movement of the pedestal (PDG), 

a dial gauge mounted on the base of the proving-ring, in the conven- 

tional manner, (DDG), and the proving-ring dial gauge (PRDG). 

Taking all apparatus deformations as positive in compression, and 

assuming that the dummy specimen is incompressible, it can be shown 

that the three dial gauges measure the following compressions: - 

ppG = (b -c -?f), (1) 

PRDG = PDG - (a +b + a), (2) 

PDG - (DDG + PRDG) = (at+to+adat+f), (3) 

assuming that distortion of the loading frame is negligible for the 

loads considered, i.e. e = 0. Since the initial tests were carried 

out with zero cell pressure, cell distortion was insignificant and 

therefore equation (1) becomes:- 

DDG = (b - c) (4) 

Fig. C.2 shows the results of seven tests in which this quantity 

of OT
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was measured, ° 

In three tests, the end conditions were similar to those in tests, 

using end stress-cells; in a further two tests rigid end-platten con~ 

ditions were simulated. Finally two tests were carried out with rigid 

end-plattens in direct contact with the dummy specimen, in order to 

determine compressions other than those due to the lubricated end- 

membranes and diaphragms. 

- Not surprisingly the use of end stress-cells’ in place of rigid 

end-plattens increases the overall compressibility of the system. 

However, the increase is little above 50% in the extreme case, despite 

the far greater thickness of rubber, the reason being that the stress- 

cell diaphragms are glued around a peripheral flange and therefore 

restrained from lateral movement. 

The tests carried out on the dummy specimen only were inconclusive 

in separating the various components of compression, since bedding onto 

the end-plattens introduced a further unknown, Nevertheless, the 

results do show that the majority of end compression must be due to 

the membranes and diaphragms, Again, in equation (3), f = 0 and there- 

‘fore, by elimination betweer deflection readings, the combined effect 

of the compression of components a, c and d was shown to be negligible 

[Pop , aye) < 

In Figs. C.3 and C.4 the mean values of (b - c) are plotted 

against the square root of axial stress/o,. Because (a + c + a) is 

negligible, neglecting the possibility of significant compensating 

errors, c must be negligible, and therefore these curves represent the 

compression of the components listed in Fig. C.2, Each has been 

idealized as a straight line, passing through Oo, = 1 lbf/in?, in order 

to formulate the correction to axial deformtion of the specimen. 

Two experiments were carried out to determine the effect of cell 
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distortion under pressure. The dummy specimen was set up as before, 

with lubricated end menbranes, and the plunger brought into contact 

with the ball-bearing and the proving-ring. No further movement of 

the pedestal was allowed, and hence the PDG reading remained constant, 

while the cell pressure was raised to 75 lbf/in? in increments of 

5 lbf/in? 

From the previous compression Scoael (e S54 d) was shown to be 

negligible relative to the compressibility of the remaining system. 

If this quantity is assumed to be zero, the vertical component of 

cell expansion, -f, under pressure, is given by:- 

-f = (DDG + PRDG), (5) 

The curves of expansion against cell pressure for the two experiments 

were of similar form, and the discrepancy between them at no point 

exceeded 10%, Fig. C.5 shows the mean curve of vertical expansion 

(in. x 1078) against ore (1b$/in?), and the relationship assumed in 

formulating the necessary correction, idealized into two linear 

portions above and below 20 1bf/in? 

The measured axial deflections, DDG, of a soil specimen in this 

apparatus, were corrected by subtracting the errors due to compression 

of the various components and expansion of the cell, the corrected 

axial deflection, AL, being given by:- 

AL = DDG = (b - f), (6) 

where b and f are both positive in compression. 

HOlO4y=))1 sO, De Os 

for d2:> 1.0, b =k/o,- =k, 

“here k is a constant dependent upon the end conditions. 

For oy < 20.0, -f = 0.030,.; 

for 0, > 20.0, -f = {0.60 + 0,079(o, - 20)}. + 

These corrections, together with those for membrane penetration, 
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were incorporated in computer programs for the respective tests. The 

constant k, defining the slope of the compression correction curve, 

Figs. C.3 and C.4, could be varied according to whether rigid end- 

plattens or end stress-cells were used or the end lubrication system 

was changed, 

The combined results of the experiments described were used to 

determine axial strains in both cylindrical and cuboidal specimens, 

including those in the ATA, Although both the shape and end surface 

area of the cuboidal and cylindrical specimens were different, the 

compressibility of the various components was expected to be very 

similar, The most significant cowpression errors in cylindrical tests 

were shown to be those concerned with the stress-cell diaphragms and 

lubricated end membranes, A vertical section through these compon«nts 

would be identical with that for a cuboidal specimen. It is con- 

ceivable that shape may have a slight effect on the total compression, 

but this was expected to be negligible, 

One important proviso regarding the reliability of the applied 

corrections is that they take no account of specimen bedding. This is 

a problem common to most stress-deformation tests. Apart from the 

errors which may be incurred in eiastrtan specimen deformations, part- 

icularly at small strains, it seems likely that differences in the 

nature of specimen bedding at the top and bottom are responsible for 

the characteristic displacement of the lateral "bulge" below the mid- 

height of the specimen in triaxial and other tests (Bishop and Green, 

1965). 

It is suggested that the use of the top stress-cell in place of a 

rigid end-platten, improves the nature of initial specimen contact, 

since local flexing of the diaphragm may compensate for non-planarity 

of the prepared sand surface. If this is so, the errors in deflection 
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C.2 LATERAL STRAIN 

The difficulties associated with the measurement of lateral strains 

in stress-deformation tests were discussed in Helos = ine $ria.ad 

testing of cylindrical specimens, it is common practice to calculate 

the average radial strain from measurements of axial and volumetric 

strain, 

This procedure was used in the analysis of all axially-symmetrical 

tests, cylindrical and cuboidal, carried bak in this research program. 

The accuracy of the average lateral strains, so determined, depends 

entirely upon the accuracy with which rial and volumetric deformations 

are measured and, if necessary, corrected. Therefore, the calibration 

tests described in C.1 and those for membrane penetration in Appendix B 

are indirectly relevant to lateral deformation measurements in these 

tests. 

In the ATA, strain in the y-direction is calculated from the 

volume of de-aired water entering or leaving the side stress-cell com- 

partments. This strain, together with the axial and volumetric strains, 

is then used to determine the x-direction strain, Again there is no 

redundancy of measured quantities, and hence no means of checking the 

strains. 

The majority of ATA tests were carried out to investigate soil 

behaviour under plane strain conditions or under axially-symmetrical 

stress conditions, In the former case, the y-direction strain was 

monitored using a "null-indicator" system and, in the latter, equality 

of the two lateral strains was normally assumed, Only in intermediate- 

stress tests was the volume change in the side stress-cell compartments 

consistently measured with an apparatus of suitable sensitivity. 

In order to determine the magnitude of any necessary correction to 

this volume, calibration tests were carried out using a cuboidal 

2 S
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mild-steel dummy specimen, 4.05 in. x 2.33 in. x 2.26 in., the approx- 

imate dimensions of the average ATA specimen. The dummy was placed in 

position between the end stress-cells, lubricated membranes being used 

at top and bottom in the usual way, The side stress-cells were filled 

and, after greasing the working-surfaces, connected together on 

opposite faces of the dummy. Finally, a small pressure was applied 

and a small volume volume of water bled from the de-airing screw to 

ensure that no air~bubbles were trapped. Pressure increments of 

2 lbf/in?, from 0 to 10 lbf/in?, were applied, and the corresponding 

volume change was measured, It was anticipated that 10 lbf/in? would 

be the maximum difference between main-cell and side-cell pressures 

used in the research program. This was exceeded slightly in a few 

tests. 

The observed volume changes, particularly those for the first 

pressure increment, were of a more erratic nature than the compressions 

measured during axial deformation calibrations. However, in none cf 

the three tests did the volume of water entering the side stress-cell 

system exceed 1.3 ml for the full pressure range, which is equivalent 

to approximately 0.008 in. compression in the y-direction, or about 

0.35% Geer is the strain measurement. 

Probably a large ovepactibn of this error is due to compression 

of the membrane surfaces and expansion of the compartment. These may 

well be constant at moderate pressures, That part of the error which 

can be attributed to extension of the tie-bars or, more importantly, 

movement at their anchorage, is unknown and likely to be different for 

each test. 

The size of the dummy specimen was such that the side-cell mem- 

branes were fully covered and in full contact with the two vertical 

faces, These conditions are not exactly the same as those in the 
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genuine ATA test, where slight initial exposure of the side-cell 

membranes is a common feature of tests over a wide range of stress 

paths (4.2.3), It is probable this exposure leads to further small 

errors in strain measurement, which are also liable to vary from test 

to test, especially at small strains. 

In view of the uncertainty regarding the errors associated with 

the y-direction strains, their probable variability, and difficulty of 

devising a calibration test to allow not only for changes in stress 

but also for changes in specimen size and shape, it was decided not to 

correct the measured strains, However, it is suggested, in the light 

of the calibration tests that were carried out, that the errors are 

small, and result in slight overestimation of the true strains. Sub- 

sequent calculation of strains in the x-direction are therefore likely 

to be slight underestimates. 
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C.3 AXIAL STRESS 

In the Mk, I ATA, axial stress was computed from external proving- 

ring measurements of axial load, During the remainder of the research 

program, with the exception of a few tests in cylindrical triaxial 

compression, stress-cells were used in place of rigid end-plattens to 

measure axial stress directly at the specimen surface, The proving- 

ring was retained in some of these tests so that the effect of bushing 

friction could be observed, The Works figures for proving-ring cali- 

bration were accepted. 

Calibration of the end stress-cells was carried out as follows:- 

The two stress-cells, having been de-aired in the usual manner (4.3.2), 

were positioned inside the main-cell which was then filled with water. 

The pressure was raised in increments of 5 1bf/in?, up to a maximua 

value appropriate to test requirements, and the resulting galvanometer 

mirror deflections recorded, Galvanometer sensitivity could be varied 

by adjustment of the stabilized voltage supply, so that maximum sensi- 

tivity was obtained, In this way a stress range of 0 to 70 1bf/in?, 

measured using one of the Budenberg pressure gauges, was recorded over 

an effective paper width or about 18 in., or two and a half full-scale 

deflections, the galvanometer traces being re-set when they reached the 

edge of the 7 in. paper. Each 0.1 in, scale graduation therefore rep- 

resented a stress difference of approximately 0.4 lbf/in? The gradu- 

ations were further sub-divided to obtain an accuracy of at least 

0.1 lbf/in?, which with careful calibration could be improved upon, 

particularly at low stress levels. 

Having calibrated the stress-cells at a given constant voltage, 

it is essential that this voltage should not change. Therefore the 

stabilized voltage supply was kept in continuous operation between 

calibrations, even when tests were not in progress, 

E MKeLve =
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In general, calibration curves were linear, or could be separated 

into linear sections, depending on the galvanometers used and the 

voltage supplied, Whenever the galvanometers or the operating conditions 

were changed, the stress-cells were re-calibrated, Otherwise checks 

were made at regular intervals to ensure that the calibration had not 

changed, 

By applying pressure directly to the transducer blocks, with the 

stress-cell connections closed off, calibration curves were obtained 

which were identical with those from the above method, This facilitated 

quick and accurate spot checks without the necessity for setting-up the 

stress-cells inside the main-cell, though the latter method was also 

used at regular intervals as a primary check, 

No significant hysteresis effect was observed during end stress- 

cell calibration using either of the methods described, 
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C.4 LATERAL STRESSES 
  

In all tests the lateral stresses, applied through flexible men- 

brane surfaces, were measured using Budenberg pressure gauges. 

Generally, during tests under axially-symmetrical stress conditions 

only the main-panel system was used. However, in ATA tests it was 

essential that measurements of stress in both x- and y-directions 

were both accurate and compatible. ? 

Each gauge was calibrated against a mercury manometer for pressures 

up to 10 lbf/in? After suitable adjustments for datum head, in 

relation to specimen mid-height, the maximum discrepancy between their 

respective measurements was found to be 0.2 lbf/in? The main-panel 

gauge, used for measurement of o, in ATA tests, was found to be the 

more reliable during this calibration, and was therefore used as the 

standard against which to calibrate the other stress systems,including 

the end ee (C.3), over the full pressure range. In the 

absence of an absolute standard against which to check measured stresses, 

it is conceivable that slight errors were incurred at the higher stress 

levels. However, it is very improbable that this would in any way 

invalidate the conclusions drawn from the test results, since such 

errors are likely to be constant. 
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APPENDIX D 

MEMBRANE STRENGTH TESTS 
  

The majority of stress-deformation tests on soils require the 

specimen to be enclosed within an impermeable rubber membrane in order 

to isolate the pore-fluid from the confining fluid, The membrane is 

usually sealed firmly to top and bottom plattens, or their equivalent, 

and hence acts as a thin shell, in compression or extension, as the 

specimen deforms. 

By assuming that the specimen, and therefore the membrane, de- 

formed as a right cylinder, and that the cell pressure prevented men- 

brane buckling, Henkel and Gilbert (1952) derived a simple expression 

for correcting the deviator stress in undrained triaxial compressio.2 

tests. Their experiments on 14 in. dia. specimens, with and without 

membranes, verified the correction, 

In dnedaied tests on sand v, Poisson's ratio,is different from 

. that of the membrane, for which vy ad, and therefore hoop stresses are 

induced in the membrane. However, their magnitudes do not, in normal 

circumstances, justify the use of a lateral stress correction, The 

care deviator stress correction suggested by Henkel and Gilbert has 

been extended for use in testing cuboidal specimens, e.g. Wood (1958). 

A simple substitution of specimen circumference by specimen perimeter 

yields a deviator stress correction, (o, - o3)ms, given by 

(o, -o5)ms = L.M.e,/A, (1) 

where L is the length of perimeter of the cross-section, 

M is the compression modulus of the rubber 

per unit width, and 

A is the specimen cross-sectional area. 

The extension moduli of the cylindrical and cuboidal specimen 
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membranes used in the euthor's research program were determined using 

the method suggested by Bishop and Henkel (1957). It was assumed that 

the extension and compression moduli were similar, 

Three 1 in, circumferential strips were cut from three different 

2.8 in, dia. cylindrical specimen membranes, and the average thickness 

of each was determined, In each case this value approximated closely 

to 0,010 in,, the manufacturer's specification, The load was increased 

from 0 to 200 1b, in increments of 50 1b, and the corresponding strain 

increments were measured using a vernier microscope. The resulting 

average total strain for the three tests was about 6%, 

Incremental values of the extension modulus, M(1b./in.), are plotted 

against the load per inch, P(1b.),in Fig. D.1. Although M appears to 

decrease with increasing P, and hence increasing strain, the changes are 

erratic and a mean value of 2.24 lb./in., calculated from all three 

tests over the full range, was considered appropriate, 

It was ae See that the extension modulus of laboratory-. 

manufactured cuboidal membranes would be more variable, since the 

standard deviation from overall average thickness was greater (Appendix A). 

In addition, the shape of the membrane does itsélf lead to a wider vari- 

ation of local thickness, particularly in the region of the "corners", 

The majority of cuboidal membranes were used within a few days of 

manufacture; in some cases the time period was much less. Occasionally 

some were used in more than one test. In order to investigate the effect 

of age on the extension modulus, a1 in. strip was cut from each of five 

cuboidal specimen membranes, two of which had been used in tests and 

were several months old, the remaining three having been freshly mam- 

factured, 

After measuring the average thickness, each strip was set up and 

tested in the manner described for cylindrical membrane strips. However, 
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unlike the latter which appear uniform, each cuboidal membrane strip 

has Pai discernible ridges, the four corners of the original membrane 

section, running across its surface, When stretched against a bright 

light, the corners appear more transparent than the remainder of the 

membrane, indicative of smaller thickness, Therefore when setting up, 

the strips were always suspended from a membrane face rather than a 

membrane corner, so that two corners were always visible from each side, 

In addition to measuring the total elongation of the strip for 

each load increment, local elongations in the regions of the two visible 

corners were also determined, Two thin horizontal lines were drawn on 

the sisuibith nei dbeessinatety 2% mm above and below each of the corners, 

thus spanning the weaker zones, In the initial unloaded condition, and 

for each subsequent load increment, vernier micrometer readings of the 

positions of these lines were taken, enabling the local strains to be 

calculated, 

Fig. eee the extension modulus, M(1b./in.), based on overall 

strain, plotted against load increment per inch, P(1b.), for the five 

strips tested, Once more the points are widely scattered, though the 

tendency for M to decrease with increasing P is noticeable, The hori- 

zontal TEABS Gn the graph represent the arithmetic mean values of M 

for individual strips, The age of the membrane does not appear to be 

a relevant factor, and the differences cannot be accounted for by the 

thicknesses of the membranes, which were all very close to 0.013 in, 

The average of the five mean values of M was 2,35 1b./in., only slightly 

greater than that of the three cylindrical membrane strips. 

Consideration of the local deformation in the region of the 

cuboidal eer irens corners showed, as would be expected, that elongation 

was much greater, The mean strain from the two visible 5 mm zones was 

used to calculate a local extension modulus for each load increment, 
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Assuming that the two corner regions on the remote side of the strip 

behaved similarly to those on which measurements were taken, which was 

qualitatively confirned, the mean value of M was calculated for the 

membrane faces. Fig. D.3 shows the results for the one-day old strip, 

which are typical. 

The average values of M for all the membranes tested are summa- 

razed: in Table Dst:. 

TABLE D.1 

  

Average Extension Modulus (1b./in.) 
Membrane Type | thickness (in.)   

Overall Faces |Corners 
  

Cylindrical 0010 Pe De: ~ - 

            Cuvoidal 0,013 head 2652 0.88 

  

From equation (1), using the average extension modulus of the 

faces of cuboidal specimen membranes, the deviator stress corrections 

ares: 

ul (o4 - O;)ms 2.24 Leg /A for cylindrical specimens, and 

Ul (4 - o3)ms = 2,52 Le,/A for cuboidal specimens. 

These corrections must be subtracted from the measured deviator stress 

in triaxial compression and therefore are given as negative quantities 

in Table D.2, which shows the resulting effect on the peak strength 

for both ey iirical and cuboidal specimens over a range of initial 

voids ratio, 

The corrections applicable to ¢ are quoted to the nearest 0.1°. 

Clearly the effect is negligible except for loose specimens at low 

stress levels, which reach failure at greater values of axial strain, 

Beyond the failure condition it is probable that membrane strains may 

be less uniform, especially if specimen discontinuities occur. However, 

SOO



it would appear unlikely that significant errors would result from 

using the method of correction described, 

TABLE D.2 

  

  

  

Initial Axial Deviator | Konpeae his! 
Test voids strain at | Uncorrtd stress to be 

Number ratio failure d correction | applied to 

ei Eas (04-07%) ms p 

(%) (1b£/in?) 

CYL CG a14 05522 4.89 557 -0.15 0.0 , 

CYL TC 16 0.581 a 34.8 -0.11 0,0 

CYieTGa3 0.626 Delo 535 wh -0.27 -0.1 

CUB TC 3 0.614. 5.69 bp Pe, -0 2). 0.0 

CUB TC 4 0.548 Hotes: a7 6 0.17 0.0 

ATA TC 13 0.576 Leak. 36 3 ~0.29 =O .2 

ATA TC 16 0.650 10.09 Daa -0.4.0 -0.3 

ATA TC 17 0.528 Bett ; Jase -0.22 -0.1               
In triaxial extension tests, the specimen membrane is stretched 

in the axial direction and therefore the membrane strength correction 

becomes additive with respect to the axial stress. However, since the 

latter is the minor principal stress, the correction must again be sub- 

tracted from the measured deviator stress. Table D.3 shows that although 

the magnitudes of the corrections are similar to those calculated for 

triaxial compression specimens, the effect on ¢ is much more pronounced, 

The greater sensitivity of ¢ to correction for the strength of the 

specimen membrane results from the fact that corrections are always 

applied to the axial stress, A comparison may be drawn between the 

effect of a 0.2 1lbf/in? correction on the results of a triaxial com- 

pression and a triaxial extension test, each reaching failure at a mean 

stress of 30 lbf/in? The changes in magnitude of the axial stress are 

SYN KL =



Ds. 

0.3% and 2% respectively, and consequently the peak stress ratios are 

affected in an approximately proportionate manner, 

  

  

  

TABLE D.3 

Initial Axial Deviator Correction | 
Test voids strain at | Uncorrtd stress to be 

Number ratio failure ¢ correction | applied to 
ei Eas (04-03) ms $ 

(%) (1b£/in?) 

CYL TE 1 0.605 -7.80 36.8 -0.27 -0.9 : 

CYL TE 2 0.558 5.15 LA 4 -0.17 -0.8 

CYL TE 3 0.586 -8 35 37 -0.29 -0.9 

Grime’), ) 0.665 | -5283 40.9 -0.20 -0.7 

CYL TE 5 0.576 -6.75 40.5 -0,.23 -0.9 

CYL TE 6 0.649 -8 ,00 33.0 -0.28 -0.9 

CYL TE 7 0.603 -5 42 35.7 -0.19 -0.6 

CYL TE 8 0.549 -6 82 42.5 -0 23 -0,8               

In developing membrane strength corrections for axially-symmetrical 

_ tests, it was assumed that the strains were uniformly distributed. 

Therefore, providing the extension modulus ee constant, uniform 

stresses would be induced in the membrane, Clearly this may not be so 

in ATA tests, even prior to the formation of slip planes, since the 
2 

strains in the x- and y-directions are not normally equal. However, 

the corrections for menbrane strength are again small, and the mag- 

nitude of errors resulting from the assumption of uniform behaviour is 

unlikely to justify the use of a more sophisticated method of correction, 

Typical examples of the effect of corrections applied to the results 

of ATA plese strain tests are given in Table D.4. 

The effect of corrections applied to tests under other stress or 

strain conditions in the ATA would be similar, except when the minor 
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principal stress acts in the z-direction, 

D. 

In this case, the conditions 

are similar to those prevailing in the triaxial extension test, and the 

necessary corrections may be of comparable magnitude, 

  

  

  

TABLE D4 

Initial Axial Deviator Correction 

Test voids strain at Uncorrtd stress to be 

Number ratio failure p correction | applied to 

Pte Eat (04-03 )ms $ 

(%) (1b£/in?) 

ATA PS 7 0.521 6.31 46.1 -0.26 -0.1 

ATA PS 17 0.549 J. 42.3 -0.23 0.0 

ATA PS 22 0.611 110.59 SO -0 11 -0,.2               

In oanaser the effect of membrane strength on the results of stress- 

deformation tests is small enough to be ignored for most purposes. 

However, stresses may be conveniently corrected by assuming uniform 

deformation of the membrane and equality of compression and extension 

moduli, Corrections to peak strength data are marginally greater for 

loose specimens, since failure usually occurs at greater values of axial 

strain, The effect of membrane strength is more significant in tri- 

axial extension tests and tests performed in the ATA under similar 

stress conditions. Nevertheléss, the magnitudes of the corrections 

may * no greater than those of the errors resulting from uncertainty 

regarding specimen cross-sectional area, Similarly, non-uniform de- 

formation of the membrane, resulting from the formation of post-failure 

slip surfaces, is likely to be insignificant compared with the diffi- 

culties of relating measured overall stresses and strains to the 

behaviour of the soil in this condition, 
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E.1 

APPENDIX E 

PROPERTIES OF SOIL TESTED 

E.1 PARTICLE SIZE AND SHAPE 
  

The uniform coarse sand, used in all of the tests carried out as 

part of this research program, was taken from a batch delivered to the 

Department several years ago by a local contractor no longer in busi- 

ness, Its exact origin could not be traced, but since the source was 

undoubtedly also local, the description "Birmingham Area sand" has 

been used. 

The medium and fine fractions were removed by mechanical sieving, 

so that the remaining particles were retained on the No. 25 B.S.S., 

having Fassed the No. 14. Before usage, the sand was washed, and any 

extraneous material removed, 

The shape of individual particles was observed at various magni- 

oi cs nine a binocular microscope, and a micrograph was taken at 

x 10 magnification (Fig. E.1). Corresponding sketches of several par- 

ticles were made, and are shown in Fig. E.2. Clearly the particles 

rest horizontally with their longitudinal mais parallel to the plane of 

the paper. The group was large enough to be considered representative, 

and an estimation of the two-dimensional sphericity of the particles, 

using thé method suggested by Rittenhouse (1943), gave a value of 0.81, 

Using more general terminology the particles could be described as 

"sub-rounded", 

During stress-deformation testing, the crushing and fracture of 

particles has been shown to occur at high pressures (Bishop 1966). 

However, shedoee in particle size distribution of sands have been ob- 

served, by analysis before and after shearing tests, at much lower 

pressures, i.e. within the range of normal laboratory apparatus 
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E.1 

(Cornforth 1961, Bishop and Green 1965). 

Barden and Khayatt (1967) indicated that for cell pressures less 

than 50 lbf/in? the effect of crushing on stress-deformational behaviour 

was néeligibie, Therefore, although it would have been preferable to 

have used fresh samples, taken from the same batch, for each test, the 

consequences of not doing so were unlikely to significantly affect the 

test results, especially since the maximum stress level was considerably 

lower than that quoted above. 

The batch of sand from which the specimens were formed was, however, 

replaced or replenished at regular intervals from the main batch. 

~ Se



Bues oo 

E.2 SPECIFIC GRAVITY 
  

The specific gravity of the particles was determined using the 

B.S. 1377 procedure for fine-grained soils, since the removal of trap- 

ped air using vacuum desiccation was found to be more efficient. 

Three representative samples were tested in 50 ml density bottles, 

and the specific gravities obtained were 2.648, 2,650 and 2.645, In 

all test computations a value of 2.648 was assumed. 

E,3 MAXIMUM AND MINIMUM POROSITIES 
  

Kolbuszewski's (1948) "rapid tilt" method was used to determine 

the maximum porosity, five tests yielding an average value of 0.417, 

(voids ratio = 0.715). . 

To determine the minimum porosity, a B.S, Compaction Test cyl- 

inder was filled with the dry sand, and a normal load of 20 lb. was 

applied through a loosely-fitting rigid piston, The cylinder and 

piston were then mechanically vibrated at varying frequencies for sev- 

eral minutes, | 

The results of three such tests were very similar, giving an av- 

erage value for the minimum porosity of 0.335, (voids ration = 0.503). 

» SOT



E 4, FRICTIONAL PROPERTIES 
  

The mineral frictional properties of cohesionless soils are likely 

to have considerable influence on their stress-deformational behaviour. 

In several theories, the magnitude of the friction angle is regarded as 

sensibly constant, (2.2). In order to determine these properties for 

the quartz sand used in this research program, simple friction-slider 

tests were performed using a smooth quartz crystal and three sand par- 

ticles, The arrangement is shown in Fig. E.3. Tests were carried out 

under both air-dry and submerged conditions. 

The quartz crystal was set into a plaster block with its smoothest 

surface horizontal. Apart from ensuring that the surface was clean and, 

in the first series, dry, no further surface treatment was undertaken, 

The slider, consisting of three sand particles positioned at the 

corners of an equilateral triangle and glued onto the surface of a 

square perspex block, was placed gently on the quartz crystal and the 

normal load applied, The frictional force was then increased in small 

increments, the loading system being supported during this process to 

prevent jarring of the slider. When sliding occurred, it was usually 

rapid. 

Tests were carried out under submerged conditions by forming a 

water-bath with a rubber O-ring re plastercine, the slider being 

placed in position only after the quartz crystal was flooded. Results 

from each test series are shown in Table E,1 

Previous investigators had observed variations in $y With normal 

load, and therefore an estimate was made of the interparticle force 

appropriate to the stress-deformation test conditions, by consideration 

of the mean particle size, The stress levels in all tests were within 

the range from 0 to 100 lbf/in?, and the Samvasceniins friction-slider 

normal loads were between 0 and 500 g, 
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TABLE E.1 

Maximum 

Test Normal | Frictional | Frictional | Angle of 
Conditions Load Load Soefficient | Friction 

N (g) F (g) u a 

Air-dry T2360 a 0.287 16.0 
ae 225.69 64.5 0.289 16.1 

eo 154.3 0.295 16 hy. 
1023.5 34.0.0 Oes52 18.4 
50255 1090.0 0.360 19.8 
6025.5 2290.0 0.380 20.8 

Submerged 125.5 41.8 0.120 6.8 

22905 27.8 0.12) Tot 
Sea eo Saye 0.113 6.5             

The results show that within this range, the angles of friction 

for both the air-dry and submerged conditions are independent of nor- 

mal load, having regard to the degree of accuracy attainable using this 

apparatus, Moreover, it is clear that the magnitude of the frictional 

coefficient in the air-dry condition is approximately 2} times greater 

than that observed when the surf'aces are submerged. 

A further series of tests was carried out at higher normal loads, 
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in the air-dry condition only, and the results (Table E.1) show a 

slight progressive increase in the angle of friction, Fowever, at the 

highest normal load, particle crushing was considerable, 

The results described may be compared with those of other workers 

an this field, 

Penman (1953) obtained a value of Pu of about 31° for silt-sized 

quartz particles, and showed that its submerged value decreased with 

increasing normal load, 

Horn and Deere (1962) studied the frictional characteristics of 

several minerals, observing that for massive-structured minerals, such 

as quartz, water had an anti-lubricating effect, but that this effect 

decreased rapidly as surface roughness increased, For very smooth 

quartz surfaces, friction angles of 6° and 27° were observed for oven- 

dry and saturated conditions respectively. The increase in frictional 

coefficient with ambient relative humidity was such that, for air-dry 

and. submerged conditions, similar values of gy were observed for rough 

quartz surfaces, It was also pointed out that the practice of polishing 

the sliding surfaces may cause the development of different surface 

structure, 3 | 

7 Skinner (1969), using an unspecified "friction apparatus", obtained 

friction angles for dry glass ballotini which increased from about 2° to 

5°, as the normal load increased from 5 to 50 gm. The corresponding 

values for the "flooded" Gond belek were 27° and 39°, 

Many investigators have used the "three-point" friction-slider. 

This has been criticized on the grounds that significant wear could be 

caused to shoceh surfaces. Rowe (1962) used a mass of sand particles 

sliding over a quartz block, and demonstrated a decrease in ¢u with load 

per particle, varying from 31° for silt-size to 22° for pebble-size. 

However, it is difficult to substantiate the criticism of tne three- 
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point slider, providing the test conditions are based on sensible magni- 

tudes of load per particle, In particular, in the series of tests des- 

cribed as part of the author's research program, the initial values of 

¢, were determined with a previously unused smooth quartz block, and it 

was only later that high normal loads were applied, 

The results are not easily explained in the light of some of the 

earlier work described, especially since the friction angles obtained 

were considerably lower than those frequently quoted for the same min- 

eral, Slightly different values might reasonably have been expected due 

to the limited amount of surface preparation, Conversely, the possible 

adverse effect of surface polishing, suggested by Horn and Deere, may 

itself explain the discrepancies, 

Particular care was taken to avoid shock loading, especially since 

initial tests had given friction angles lower than those expected, and 

therefore, because of the apparent repeatability of results, the values 

obtained were considered accurate for the test conditions described, 

Taken hogetier with the results from previous similar studies, however, 

they reinforce the view that the angle of friction between the minerals 

which constitute soil material is extremely difficult to determine.
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APPENDIX F 

EFFICIENCY CF LUBRICATION METHODS 

Laboratory investigations of the stress-deformational behaviour 

of soils usually involves the application of stresses or strains, or 

combinations of the two, to the boundaries of specimens either cyl- 

indrical or cuboidal in bhede. Generally, it is highly desirable for 

the stresses and strains to be uniformly distributed throughout the 

specimen, since frequently measurements of its response are taken only 

at the boundaries, Consequently a complete analysis of the soil's be- 

haviour is possible only if these measurements are assumed to be rep- 

resentative. 

Some of the methods with which investigators have attempted to 

improve stress-strain homogeneity were discussed in Chapter 3, including 

the use of lubricants, usually separated from the soil with a flexible 

rubber membrane, at the specimen boundaries. The specific procedures 

used in this research program were described in Chapter 4. 

In all of the tests carried out, both in the ATA and the more con- 

ventional triaxial pope tetas: the top and bottom of the specimen was 

lubricated one or more rubber membranes, 0.010 in. thick, coated 

with a thin layer of silicone riage (Releasil 7 - Midland Silicones Ltd.), 

In addition, the interfaces between ATA specimens and the side stress- 

cells were similarly lubricated. 

Extensive research has been carried out concerning the effect of 

end restraint on soil strength and stress-deformational behaviour, Usu- 

ally it was assumed that the lubricating effect of silicone grease was 

similar for different Ei: and also that the coefficient of friction, 

u, determined from a simple test was that appropriate to test conditions, 

However, Roscoe (1967) reports tests performed in the Mk, 6 "simple 
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shear apparatus", in which friction forces were induced 2long the 

rigid sides of the specimen container, consistent with a value of u of 

approximately 0.25. The soil used was a coarse Leighton Buzzard sand, 

and the sides were lubricated using silicone grease and single rubber 

membrane, 
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F.1 APPARATUS AND TEST PROCEDURE 
  

The first series of tests were performed during the development 

of the Mk,I ATA, and were aimed at determining the magnitude of p for 

the lubrication ented under conditions similar to those at the Mk.I 

rigid end plattens and at the side stress-cells, The apparatus, a con- 

verted shear box, is shown in Fig. F.1a. 

"sandwich" consisting of twe 0.010 in, thick membranes and a 

thin layer of grease was tested between 2.8 in. dia. cylindrical alu- 

minium plattens and 2% in. square plattens in both perspex and brass. 

In some Of the tests a $ in. diameter hole was cut in the middle of 

each membrane to represent the specimen drainage holes, but their 

effect was not discernible. 

The top and bottom membranes were mutually displaced at a rate of 

0.045 in./min, and the shear force was measured at regular intervals, 

The normal load was 172.5 lb, in each test, equivalent to initial nor- 

mal stresses of 23 and 3 lbf/in? respectively, for the cylindrical and 

square plattens, 

Seven tests were carried out for each end condition, and no noti- 

ceable differences were observed for the various combinations. In each 

case, the frictional force increased steadily to a maximum, which was 

reached at between 0.1 and 0.2 in. movement. The magnitudes of the co- 

efficient of friction were randomly scattered between 0.01 and 0.03, 

with an average value of 0.02. 

In a later series of tests, carried out using the apparatus shown 

in Fig. F.1b, this figure was confirmed for sliding between a single 

greased membrane and a smooth brass surface. A constant normal load 

was applied and the frictional force increased slowly until noticeable 

movement occurred, For the three normal stresses used, 2, 4 and 

10 1bf/in® the value of u was identical, being only slightly greater 
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than the 0.02 previously obtained. 

By replacing the top brass block with a sand surface compesed of 

particles from the batch used in the stress-deformation test program, 

it was hoped to simulate the rigid-end test conditions, and to observe 

any loss in efficiency of the lubrication system, 

A mould, having a cross-section equal to that of an ATA specimen, 

was filled with rapid-hardening cement, Sand particles were then sprin- 

kled over the surface and loaded through se plate, so that when the 

cement was set, the protruding particles were in a single plane. The 

results of these tests performed with this block were inconclusive, 

since although a coefficient of cosahien of 0,08 was recorded for normal 

loads of 2 and . 1bf/in?, it was found possible to uebueee the fric- 

tional force to several times this va.ue without movement. 

In ATA Mk.II tests, and in the majority of cylindrical and cuboidal 

triaxial tests, the end plattens ies replaced with end stress-cells, 

having flexible diaphragm surfaces. To simulate these conditions, a 

strip of rubber, the same as that used to form the diaphragms, was laid 

over the lower brass block (Fig. F.2a). However, there was little im- 

provement, and although the previous minimum uu was observed, it was 

again possible to obtain much greater values, 

A final series of tests was performed using the arrangement shown 

in Fig. F.2b. The lubricated membrane was pcesitioned on the brass block 

or rubber strip as before, and sand was poured into the bottom section 

of a shear box, supported freely on roller bearings. The sand was 

lightly tamped and the nord load applied through a rigid dduddne cap. 

Small increments of frictional force were applied until movement occurred, 

The results of tests carried cut at various magnitudes:of normal 

load are shown in Fig. F.3, each curve being drawn through seven test 

points, 

- XLIV -



Wea 

F 2 DISCUSSION OF RESULTS 
  

Clearly there is little doubt that the degree of lubrication ob- 

tained using a silicone grease~membrane sandwich between rigid flat 

surfaces would be highly desirable in much soils testing. However, 

the effect of replacing one of the rigid surfaces with a surface having 

the irregularity of those at the ends of the normal test specimen i 

not clear. Some of the tests described may have indicated the likely 

effect, for the particular soil and lubrication system used. 

It would seem reasonable to suppose that the greater the load, 

the greater is the possibility of the lubricant being squeezed out. 

Since coarse sands, such as that ee in this research program, carry 

a greater load per particle, for a ose normal stress, these are likely 

to be critical. Similarly, the thinner the membrane, the higher the 

stress concentration and the greater the possibility of puncture, 

leading to direct contact between the particles and the surface. 

It was hoped that in the cement biock tests the conditions would 

represent a plane of uniformly loaded particles moving, by translation 

only, over rigid iekeah or flexible stress~cell surfaces. However, 

the very erratic nature of the observed frictional coefficients would 

appear to suggest the bs thas was not the case, and that certain par- 

ticles carried loads far in excess of the average. Several particles 

ior lost from the block after each ie This, together with changes 

in positioning of the block for each test, would explain the wide vari- 

‘at eone in the results. 

The final test series was more successful, the scatter being 

greatly reduced, 

The test conditions did not preclude rolling of the particles, 

which might possibly have been exaggerated, since movement occurred in 

one direction only. (In triaxial testing, the particles move in radial 
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si tsettons over the end plattens)., The mechanism of movenent, rolling 

or sliding, at the specimen ends in stress-deformation testing, must, 

however, be regarded as uncertain, since assumptions concerning the 

mechanism within the interior of the soil element are still controver- 

sial (2.2). 

Despite the Séuttsn of results shewn in Fig, F,3, it was consid- 

ered appropriate to draw linear curves through the tests points for 

each surface condition, The respective average p values for the brass 

block and rubber strip conditions were 0.44 and 0.08, indicating an ad- 

vantage in using a flexible surface. The lower average value was about 

the same as the minimum obtained using ie cement block, 

It is suggested that the greater flexibility of the specimen bound- 

aries in the ATA tests, and some of the other tests described, would 

lead to a further reduction in up. Certainly at the side stress-cells 

- boundaries, where silicone grease is applied between the specimen men~ 

brane and the stress-cell §ieeeanedi: the frictional coefficient may be 

expected to be Aittle different from that observed for a membrane-grease 

sandwich between two rigid surfaces, (u = 0.02). The flexibility of the 

end stress-cell diaphragms is less than that of the side stress-cell 

membranes , and therefore, under test conditions, the magnitude of u will 

probably lie between 0.02 and 0.08. Unfortunately, it was not possible 

to simulate these conditions more precisely, due to the possibility of 

stress-cell damage. Moreover, it would seem unlikely that the true na- 

ture of the contact between the sand particles and the end surfaces could 

be represented experimentally with any great accuracy. 

The results of this series of tests indicate that although the fric- 

tional coefficient under simulated test conditions is greater than that 

for silicone-grease-membrane sandwiches alone, the values are not ex- 

cessive, and the lubrication system used may be regarded as effective, 
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APPENDIX G 

ASTON TRIAXTAL APPARATUS - MK.I TESTS 

The design and development of the ATA was described in Chapter , 

and in particular the methods used to measure stress in the z-direction 

were discussed at length, 

The external measurement of axial deviator stress in conventional 

triaxial testing gives rise to significant errors; in the ATA, where 

the sideways thrust on the loading piston ts likely to be greater, the 

magnitude of these errors will be increased, In addition, knowledge 

of the stresses at both top and bottom of the specimen was considered 

desirable. However, befors the Mk.II end stress-cells were developed 

to allow such measurements, plane strain tests were performed using the 

Mk I apparatus. The results from these tests are reported briefly 

herein, 

All specimens were consolidated under zero lateral strain, though 

deviations from this condition occurred to a greater extent than in the 

ATA Mk.II, since the testing procedure was less sophisticated. Clearly 

the erroneous 0, measurements affect the values of Ky and ¢, as can be 

seen from Table G.1 and Figs. G.7 and G.8 where comparison is made with 

the results from ATA Mk.II tests. 

Following consolidation, the minor principal stress was maintained 

constant as o3 and oy increased under plane strain conditions, After a 

further axial. strain of about 1%, the cell pressure, Oy, was adjusted 

to keep the axial stress, 03, constant, failure being reached at the 

Minimum oy value. The majority of tests were continued into the post- 

peak region, Plane strain was aad nteinee throughout by adjusting the 

magnitude of oy to balance a null-indicator, as descrived for Mk.II 

tests. 
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TABLE G.1 

  

  

  

  

Consolidation Conditions at Failure 
imatiat ' 

ATA Mk.I| Voids Minor | Stress | Major | Inter | Minor Angle 
Test Ratio Stress | Ratio Stress | Stress | Stress |Sh'g Res 

Number oe 
r poke 3 

et Oy=0x o. O3 Oy Or p 

ont 0.548 260 08275 bon 18.8 9, “O62 

PS 2 0.566 12.0 0.278 - - ~ - 

PS 3 Deh57 fs 480 cl 0,26), BF sheet. A725 8.2 4741 

PS 9.550 1240 05275 ~ - eS - 

PS 5 0.570 1230 0.26). Byars et 10.6 142.0 

PS 6 0.521 42.0 | 0.273 : ae - s 

PS 7 0.612 42.0 | 0.278 be Ol 476 1h 38 .6 

PS 8 0.656 12.0 0.298 ay, 2 16.6 106 58 <3 

PS 9 0.64.0 12.0 0.302, 46 42 16.6 11.0 38.0                 
A set of charts were drawn to enable the magnitude of the axial 

stress to be calculated at any stage of a test from the proving-ring 

reading, the measurements of axial and lateral deformation, and the 

cell pressure, However, since the error due to plunger friction was 

almost certainly increasing with specimen strain, the genuine value of 

the major principal stress was probably steadily decreasing, This 

would account for the smaller strains at failure recorded for these 

tests, when compared with those in the ATA Mk.II. The peak strengths, 

plotted in Fig. G.7 are widely scattered and, in general, considerably 

in excess of the corresponding Mk.II mean values. 

The general trend of the verietion in the intermediate principal 

stress is in keeping with that observed in the latter apparatus, al- 

though a direct comparison is not possible, because of the two-part 

shearing stage in tests carried out using the Mk.I apparatus. However, 
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apart from the sudden drop in o, which occurred in the PS 1 test 

(Fig. G.1), and which was most probably caused by a fault in the 

apparatus or in the specimen sealing system, Og increased during 

shearing to an extent determined lergely by the initial porosity of 

the specimen, 

Since it is unlikely that the frictional errors were similar in 

each test, detailed quantitative comparison with ATA Mk.II results 

would be unwarranted, 
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APPENDIX H 

CLASSIFIED TEST RESULTS IN GRAPHICAL FORM 

In Chapters 6 and 7, the results of stress-deformation tests per- 

formed on cuboidal and cylindrical sand specimens using either the ATA 

Mk.II, or modified forms of the conventional triaxial compression and 

extension apparatus, were discussed, The major implications of these 

investigations were presented by selecting’ a few specific test results 

to indicate typical behaviour, or by summarizing the results from a se- 

ries of tests in tabular or graphical Pont: 

To allow more detailed comparisons to be made between these find- 

ings and those of cther workers using different apparatuses, this 

appendix includes graphs showing the relationships between the more im- 

portant measured quantities, obtained from all tests which yielded valid 

experimental data up to or beyond the failure condition. The principal 

stresses are plotted against the major principal strain in each case, 

as is the volumetric strain, For tests carried out in the ATA, the re- 

maining principal strains are also shown. 

The order of presentation is as follows:- 

(i). Pigs. H.1°= H.2k, CYL TC 1-26; 

(ii) Figs. H.25 - H.30, CUB TC 25-30; 

(iii) Pigs. H.31 - H.38, CYL TE 31-38; 

(iv) Figs. H.39 - H.49, ATA TC 4-18; 

(v) Figs. H.50 - H.70, ATA PS 1-25; 

(vi) Figs. H.71 - H.76, ATA INT 1-7; 

(vii) Fig. H.77, ATA TE 1, 

Figs. H.10-19 show both proving-ring and corrected end stress-cell 

readings of o, for CYL TC tests, as do Figs. H.25-30 for the CUB TC 

tests, Corrected and uncorrected values of o, are shown in Figs. H,20-2)



H. 

for the CYL TC tests, in which a proving-ring was not used. Similarly, 

all graphs for CYL TE tests show two curves for o,, the upper of which 

represents its magnitude after end stress-cell correction, 
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