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SUMMARY 

NEW STRATEGIES 

FOR THE CONTROL OF ELECTROHEAT PROCESSES 

The increasing use cf electroheat in complicated industrial 

processes makes it necessary to investigate the current pieecechuat 

control methods with a view to developing new strategies. 

First, varicus models of electroheat processes are investigated. 

Methods for obtaining approximate models are evaluated in terms of their 

accuracy in the time domain. 

An analytical investigation of on-off control systems is presented. 

Digital simulation techniques for on-off control systems are discussed, 

and computer programmes are given. 

Open loop control of first and second order systems is investigated. 

The advantages and disadvantages of open-loop control are discussed. An 

indirect electroheat control scheme which uses a model of the plant in 

the feedback loop is proposed and discussed. It is shown that, by a 

suitable choice of the model parameters, performance criteria can be 

subtantially improved. 

Pulse-width modulation (PWM) control of electroheat processes is 

presented as an alternative to indirect control. An analysis of PWM 

control systems, with particular reference to electroheat processes, 

is given. Digital simulation programmes based on this analysis are also 

included. Stability conditions are investigated analytically and the 

results are verified both by digital and analogue simulation. An exact 

analysis of limit cycling in PWM electroheat control systems is 

presented. The results of this analysis are verified by using analogue 

and digital simulation. The potential advantages of PWM for electroheat 

control are discussed.



ACKNOWLEDGEMENTS 

I wish to thank the late Professor W.K.Roots for his guidance 

and encouragement. I also thank Professor J.i.Flood who kindly 

consented to be my adviser for the latter portion of the work. 

Thanks are also due to Mr. J.L.Murgatroyd who provided many useful 

suggestions. 

L thank the Scientific and Technical Research Council of Turkey 

for the financial support provided during my studies. 

ta



TABLE OF CONTENTS 

INTRODUCTION 1 

APPROXIMATE MODELS FOR ELECTRCHEAT PROCESSES 4 

2.1 Introduction 4 

2.2 The Ziegler-Nichols Model 4 

2.3 Other Approximate Models 5 

2.4 Typical Electroheat Processes 7 

2.5 Discussion 17 

2.6 Summary 138 

ON-OFF CONTROL OF ELECTROHEAT PROCESSES Lo 

3... Introduction Lo 

3.2 The on-off Controller 19 

3.3 On-off Control 21 

3.4 Illustrative Example 34 

3.5 Digital Simulation of On-off Control Systems 36 

3.5.1 Method Used for Simulation 36 

See Simukation Programme 39 

3.5.3 Simulation Results 40 

3.5.4 Discussion 43 

3.6 Summary a3 

OPEN-LOOP AND INDIRECT CONTROL 55 

4.1 Introduction a2 

4,2 Open-loop Control 56 

4.2.1 First Order Systems 56 

4.2.2 Higher Order Systems 66 

4.2.3 Digital Simulation of Open-loop Control Systems 74 

4.2.3.1 Method Used for Simulation 74 

4.2.3.2 Simulation Programme ‘ 74 

4.2.3.3. Simulation ‘Results ‘ 75 

4,37 tndirect Control &0 

4.3.1 Description and Design Criteria 82 

4.3.2 Applications 88 

4.4 Summary 93 

iv



PULSE-WIDTH MODULATION (PWM) CONTROL 

Dek 

Dez 

533 

5.4 

oe, 

Introduction 

PWM as a Sampling Process 

Analysis of PWM Control Systems 

5.3.1 Description of the System 

5.3.2 Solution of System Differential Equations 
for Sampled-data Systems 

5.3.3 Analysis of the PWM System 

Digital Simulation of PWM Control Systems 

Summary 

LIMIT CYCLES IN PWM CONTROL SYSTEMS 

6.1 

6.2 

6.3 

654 

6.5 

6.6 

Introduction 

Graphical Analysis of PWM Control Systems 

6.2.1 Difference Equation Formulation of the System 

6.2.2 Graphical Solution 

6.2.3 Bias Considerations 

An Exact Analysis of Limit Cycles in PWM Electroheat 
Control Systems 

6.3.1 Basic Definitions 

6.3.2 Saturated-saturated Oscillations 

6.3.3 Linear ans Saturated-linear Oscillations 

6.3.4 Plants with Transit Delay 

Effects of Mode Dependence 

Effects of Disturbance 

94 

94 

20 

104 

104 

103 

BID: 

122 

129 

130 

130 

132 

132 

S37 

130 

143 

143 

146 

179 

190 

209 

210 

6.5.1 Effects of Disturbance on Regulation Characteristic210 

6.5.2 Effects of Disturbance on Limit Cycles 

Summary 

ANALOGUE SIMULATION OF PWM SYSTEMS 

Dok 

Toe 

eo 

134 

Introduction 

The Pulse-width Modulator 

Analogue Simulation of the PWM Control System 

7.3.1 Actual Variables and Their Analogues 

7.3.2 Description of the Circuit used in Simulation 

Experimental Results 

7.4.1 Practical Considerations 

7.4.2 Qualitative Results 

7.4.3 Quantitative Results 

Summary 

Qe 

214 

OrL



8 GENERAL CONCLUSIONS 

APPENDIX A DIGITAL SIMULATION PROGRAMMES 

APPENDIX APPROXIMATIONS USED IN THE TEXT 

LIST OF SYMBOLS 

REFERENCES 

PRESENT PUBLICATIONS RESULTED FROM THIS WORK 

vi. 

242 

245 

267 

270 

273 

276



INTRODUCTION 

The use of electroheat in industrial processes has been 

continuously increasing for the last three decades. Today 

electroheat plays an important role in nearly all branches of 

industry and this role is acquiring even more importance as the 

processes become more and more complicated. [In thermal pro~ 

cesses the main objective is to achieve certain thermal condi- 

tions and to maintain them within acceptable limits. Therefore 

the control of electroheat processes is the most important fact- 

or in determining the quality of the output product. On-off 

control methods have been widely used to ites electroheat 

processes since these methods often represent the simplest and 

most economical means of control. In on-off control the con- 

trol element is usually a relay. Relays are capable..of hendiane 

large powers, operate with very small amounts of power, and 

reasonably cheap. It is now possible to utilise electronic on= 

oOLf controllers Csilicon, controlled rectifiers; uni junction 

transistors ete.) which have the advantage of high speed switch- 

ing and less hysteresis over the conventional relay controllers. 

Aithough on-off control is still the most common technique 

used in electroheat processes, it presents serious disadvantages 

which can be summarized as follows: 

{



py
 

a hae existence of long cycling periods, especially when 

the transit delays in the system are large. 

b, the existence of large amplitude oscillations in the 

Output temperature 

ce. the undesirable effects of controller hysteresis, 

Therefore it is found necessary to examine existing on-off 

control methods with a view to develoning new techniques. This 

study is done for the most general case viz. mode dependent pro-~ 

cesses with transit delay which are controlled by hysteretic 

controllers. 

A new electroheat control technique must have better per- 

formance while still using conventional controllers (electro- 

mechanical or electronic relays) to be regarded as an improve- 

ment. Two such techniques are proposed in this work. The 

first is the indirect control scheme which is analysed with 

emphasis on the design aspects. The second strategy is the use 

of pulse width modulation (PWM) control. Up to the present time 

PWM has not been studied in the Literature as a means of elece 

troheat control. PWM systems encountered in communication and 

control systems have been associated with bang=bang type out 

puts rather than on-off. Thus, a detailed study of PWM control 

of electroheat was required to assess the suitability of such 

techniques to practical processes. An exact analysis of sta- 

bility, including limit cycling phenomena in PWM electroheat 

control systems, is presented in this work for the first time. 

S v pecial emphasis is given to the digital simulation aspects 

of electroheat control throughout the work. Digital simulation 

programmes for on-off, Gpen-loop, and PWM control systems are 

developed. These programmes are not only a powerful tool in the 

analysis and design of such systems, but also serve the purpose
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of checking the results derived analytically. 

1wlation method for PWM control systems and 

n [>
 

=
 > 

4 An analogue 

the experimental implementation of this method are also des- 

eribed. The analytical results derived throughout this study 

were checked by using digital and analogue computers end they 

. es : as 
were found to be in complete agreement with the simulation 

{ 

results. 

In this thesis the presentation of PWM control is from . 
| ‘ 

an analytical viewpoint, though it must be conceded that Tor 

a complete treatment there are further investigations which 

should be made in the application of PWM to the control of 

electroheat processes. The accuracy of control obtained as the 

result of the use of PWM in preference to comparative schemes 

for electroheat control has not been investigated for reasons



 



APPROXIMATE MODELS FOR ELECTROHEAT PROCESSES 

Zel > IN TRODUC LEON 

Electroheat processes encountered in practice usually 

possess irrational transfer functions leading to cumbersome 

calculations. This necessitates the use of approximate models. 

In this chapter some of the approximations encountered in the 

literature are discussed. The Ziegler=Nichols model is shown 

to be the most suitable approximation for the analysis and 

design of control systems. Even in dealing with simple electro- 

heat processes one is usually involved in complex calculations. 

To rblusit rate:-this point a typical electroheat process model is 

investigated briefly later in this chapter. 

Bae THE ZIEGLER-NICHOLS MODEL 

All electroheat dco benia ie possess a low-pass transfer 

characteristic of an order higher than one, therefore they ex- 

hibit an S~shaped step response. This property suggests the 

use of ereclericeols” approximation. The Ziegler-Nichols 

approximate model consists of a transport delay and a first 

order system, therefore its transfer function is given by: 

F ..exp (=sLe)/(1 + sTe) C203 

A.
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The determination of the model parameters from the process 

step response is shown in fig. 2.la. In this figure a(t) is 

the step response of the actual process. The tangent to a(t) 

at its inflection point is denoted by AB. The inverse slope 

of AB gives the time constant of the model, and its intersection 

point with the time axis gives the equivalent delay. 

The Ziegler-Nichols model is extensively used in electro- 

heat control Copficaticne | a ee Among the 

reasons for this wide acceptance are: 

1. The Ziegler-Nichols model is relatively simple; hence 

it simplifies the analysis both in time and in the 

frequency domain. 

2. It provides a good approximation to most electroheat 

processes. 

3. Most important of all, the Ziegler-Nichols model has a 

delay/time-constant ratio which is larger than any 

ether reasonable first order approximation (fig. 2.16). 

As is well known, the L/T ratio is the most important 

factor on.system stability. As L/T increases the 

tendency of the system to become unstable increases. 

Because of the conservative L/T value of the Ziegler-Nichols 

model, the stability analysis of control systems carried 

out by using a Ziegler-Nichols model of the process 

will have a safety margin, i.e. the actual system will 

always be stable whenever the analysis using this model 

gives stable results, 

2.3 -OTHER APPROXIMATE, MODELS 
  

Other approximate models have been proposed instead of the 

Ziegler-Nichols model. Two of these models will be bricfly men- 

tioned sin: this section.
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One approximation method is Strejec's method . Streje 

proposed an approximate model with the transfer functions: 

n 
F exp(-sL,)/(1 4#-sTg) » n integer (2/<) 

The equivalent model parameters L,, T, and n are found 

from the Lo/Te ratio (Le and Tg as shown in fig. 2.la) of the 

step response of the actual process, by using tables 70". This 

method will not be elaborated here. From the tables given by 

Streje it is seen that for Le/Te smaller than 0.104 this method 

results in a first order system with lag, with parameters equal 

to Le. and Ty. Therefore, for Lo/T, <' 0.104 Guhiceh is the case 

for many electroheat processes), Streje's model and Ziegler- 

Nichols model are identical. 

Another approximation method was proposed recently by 

Chaussard . Chaussard's model has the following transfer func- 

tions 

c 
F/(l 2% sTe) (22635) 

As is seen from eqn. 2.3 Chaussard's model is a generali- 

sation of Streje's method to include non-integer values of n. 

Chaussard gave nomograms’, instead of tables, to determine Te 

and ec from T, and L,- In the following section we shall give 

an example of Chaussard approximation. 

2.4, TYPLCAL ELDECTROHBAT: PROCESSES 

This section is a brief presentation of the time properties 

of some basic electroheat processes. First, we consider the 

distributed lag. A salient feature of thermal processes, where 

heat transfer is mainly due to conduction, is the distributed
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lag property?” The heat conduction through a semi-infinite 

solid (fig. 2.2) is a typical example of distributed lag. For 

most practical apadicetione, a furnace wall can be represented 

by a semi-infinite solid. If the surface at x = 0 is kept at 

constant temperature F and if the initial temperature of the 

solid is zero, then the temperature at point A is given by® 

Sf li oe (2.3) 
2Vkt 

where k is the diffusivity of the solid (om*/ sec) . 

it: we cal) 

2 
T..« d /k { sec) 

then eqn 2,3 becomes 

~ lar
 

GO = bP |'l = erm = a (24:4) 

n
f
 

et
 

We know that 

~t exp (-~vVsT C k eee F(: oe ) 
s 2 t 

Therefore eqn. 2.4 represents the step response of a 

system with the following transfer function; 

F exp (= 4+/sT) 

The system with the above transfer function is called a 

distributed lag system. Note that the time constant T for a
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particular point A is proportional to the square of its dis- 

tance from the heating surface. 

One notes that the step response of an infinite leakage-~ 

free non-inductive transmission line has the same Cian This 

gives rise to the possibility of simulating some electroheat 

processes by using ladder networks of the type of series re- 

sistance~shunt capacitance. This type of simulation has the 

drawback of introducing errors due to the’ use of the ladder 

(lumped) networks instead of distributed parameter line, and 

also. due to the £inite “length” -of the simulated iver, 

The Ziegler-Nichols model for the distributed lag system 

can be easily found Ly noting that the coordinates .of the 

inflection point of the step response are: 

ts T/6 C2. ta) 

By using these values the equivalent time condant and 

delay are found to be: 

1,08 T (2.8a) Hy
 t 

Line 04075. T C2. 5:5) 

Hence we establish the following approximate model for 

the distributed lag, exp (- 4[sT): 

exp(-0.075 TS)/(1 4 1.08 Ts) (24) 

In fig. 203 a distributed tae system with T= .200 man and 

its approximate model (found from eqn. 2.9) are compared by their 
\
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step response curves*, It can be seen that the approximation 

is satisfactory for Values of time up to aboutelT. Since 

in most of the discontinuous control systems the cycling period 

is considerably shorter than the time constants the above appro- 

ximation will tore satisfactory results for the steady state 

dec conditions. 

As stated above, the L/T ratio is an important index for 

a control system. For the Ziegler-Nichols model corresponding 

to the distributed lag,this ratio is 

L/T. = 0.07 (2.10) 

Streje's approximation method applied to the distributed 

lag system of eqn. 2.6 yields the approximate model of eqn, 2.11. 

Rote © 
170i: 470.43 T.) C2. El) 

In order to check the applicability of this approximation 

method in case of a distributed lag, the step response of a 

transfer function of the type 

Ljties pea? 2 (2.1335 

is found and given in eqn. 2.13 

t 2 7 ' 

a, (t) = erty - eee = exp (-t/T!) C2743) 
pie w 

This transfer function is plotted for three values of 

  

*This response corresponds to a point 6.7 cm away from the 

heating surface of a brick wall (k=0.0038 em2/sec fox 

brick?),
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T§/T vatio in: fig. 2.4.° in fig. 2.4 curve d caorressonds- to 

the actual Chaussard model (T' #(.0.43T). «From fig. 2.5. it. is 

clear that a model with T' = 0.8T is certainly a better appro- 

ximation to the actual process (curve a) compared to the 

Chaussard model, 

Some of the transfer functions which arise in electroheat 

process control lead to cumbersome calculations. In these 

instances the use of approximate models often becomes the only 

practical way to deal with the system. One such transfer func-~ 

tion is given by ey ehcheiake and tee rgon fois tune tion 

is found as the transfer function of an electric resistance 

furnacecand is=civen inveaqn.: 2.105." 

K 

Cl. op sT,) (1 + STz2) + K 
  (2.14) 

This Evans ray function and its step response were first 

analysed by Kilomeitseva and Netushil . 

As an example of the complicated nature of calculations 

which can arise in the analysis of electroheat control systems 

we shall investigate the time properties of a simple system. 

In electric resistance heating the heating element generally 

possesses a transfer function of the form 1/(1 + sT,)- The 

receiver (walls of the furnace, body of the fluidised bed; e£o: ) 

usually exhibits a distributed lag exp (- VsT>). If the inter- 

action between the heating element and the receiver is negli- 

gible then the process transfer function can be written as 

exp (- VsT9) 

eee 

H(s) = F (2259 

1 

martin 

  

ee nccnmescnn 

*Since an exponent of 1.6 leads to very long calculations, 
an exponent of /1,.5-is- taken.
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(a) exp vY-sT » 1=10 min. (b) approximate model, T' = T = 10 min. 

(c) approximate model, T' = 0.8T = 8 min. (d) approximate model, T'=0.43T=4.3 min. (Chaussard model)
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This process is equivalent to the transfer of heat from 

a cc ae surface into a semi-infinite solid (fig. 2.2), where 

the temperature at the surface (x = 0) varies exponentially. 

To cncwibeds: to d?/k where dis the distance of temperature 

measuring point from the surface and k is the diffusivity of 

the material. Ty corresponds to the time constant of the ex- 

ponential change of temperature at the heating surface. 

The inverse Laplace transform of H(s) given in eqn. 2.15 

13 
is found to be 

  h(t) = e a + 

* 

prot Ty 1 [7 f 
e@ Crh ly = —— + je— (2.16) 

2 t MY 

Although the error functions of complex arguments are 

F St/T.) 4 Viol th Lod Se 
lle CTEO 4 2 SF 

2N¢ 

very difficult to handle, with the introduction of the function 

2 : 
w(z) = exp(-z ) erfe(-jz) C200 7a 

(which has recently been tabulated) this difficulty can be over~= 

come. 

Brom ¢dn. 2.1 / one. can write: 

: 2 pik 5; 
erfc(z) = exp(-z2 ) w(jz) CP8) 

or 

Cree (x = jy) = exp [- (x . iy)?] wca y + jx) 2.195 

By using the following property



w(z*) = wk (=z) 

where * denotes complex conjugate, one can write 

: ed * : 
erfc(x + jy) = exp ee + jy) | wy + jx) (2:0 a) 

: ; 2 : 
eric(x — iy): = exp Ee - jy) |: wy, + jx.) (2216) 

Equation 2.16 can be reduced to. eqn.*2,22 by Using eqn. 

ht) cs - exp (-v2) Re fou + iv)] ‘ (2.22) 

1 

where u tT, and v.= 0.5VT,/t 

Then, by using the table for w(u + jv), the impulse 

response of the plant, h(t), is ecalculated.and plotted in fig. 

Zee.) Lom qT, = 5 and Ty = lO. ming By ante cra tine. the curve 

in fig. 2.5a numerically, the step response, a(t) is obtained 

CEig. 2.5.02) 

Let h(t) and a(t) denote the impulse and step response of 

a plant. For the parameters of the Ziegler-Nichols model one 

can write 

  c _ = : (23:23a)} 
«Bees Ate) re 

dt 

a(t; ) 

Me ig ale (2.23b) 
. b(t.) 

where time ty corresponds to the maximum of h(t) curve or,
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equivalently, to the inflection point of a(t) curve. 

For the process given in eqn. 2.15 and for the values of 

Ty a Semin, “and To = 10 min., L, and T, are found from Eig; 2.0. 
e 

£. = 24.1 min (2.24a) 

Ly = 2.2 min (2.245) 

The impulse response and the step response of the Ziegler- 

Nichols model are shown by dotted lines in fig. 2.5. The 

L,/T, ratio for this plant is found to be: 
e 

L /T, = 0.0915 

2.5 DISCUSSION 

The following comments can be made as a result of the 

above analysis. 

1. Since most of the electroheat processes possess irra-= 

tional tran’ster functions, their time domain investisation 1s 

rather complicated. 

2. For the same reason the behaviour of electroheat control 

systems is very difficult to analyse exactly. 

3. Therefore it is necessary to use approximate models. 

4. The Ziegler-Nichols approximate model is used exten- 

sively to represent electroheat processes. The main advantages 

of the Ziegler-Nichols model over other approximations are its 

simplicity and its inherent property of giving conservative 

design values, 

5. For most electroheat processes Strejc's approximation 

yields the Ziegler-Nichols model. 

6. Chaussard's approximation complicates the calculations
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without improving the accuracy of the approximation achieved. 

7. The investigation of simple or distributed lags in the 

s plane is ccNia tite & with this model than for the transfer 

functions which result from Chaussard's approximation. There= 

fore, at least for electroheat systems, the practical advanta-~ 

ges of the Chaussard method is rather questionable. 

8. For process having distributed time lag an L/T ratio 

of approximately 0.1 can be assumed. 

2.6 SUMMARY 

In this chapter some approximate models are discussed. 

The Ziegler-Nichols model is shown to be the most suitable 

approximation to, electroheat processes.



ON-OFF CONTROL OF ELECTROHEAT. PROCESSES 

Shak INTRODUCTION 

In this chapter a general analysis of on-off electroheat 

systems is given. On-off control methods are widely used to 

control industrial electroheat processes since these methods 

often represent the simplest and most economical means of con-~ 

trol es Such control methods are particularly important for 

resistance and are furnaces, ovens, plasma torches, boilers, 

tanks, fluidised beds, space heating, etc. 

Fig. 3,1 shows a block diagram representation of a typical 

on-off controlled process. One should note that this model is 

valid when changes in the disturbance are slow compared with 

the equivalent time constant of the plant. This is the case 

for most industrial electroheat systems>°, 

3.2 THE ON-OFF CONTROLLER 
  

A typical characteristic of an on-off controller is shown 

in fig. 3.2. It is well known that almost every on-off cone 

troller has the hysteresis effect (memory) shown in fig. 3.2. 

It will be shown that hysteresis has an adverse effect on the 

performance characteristics of the control system. For this 

Ag
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Hebe os 1 

Block diagram for a typical on-off control system 

: controller 
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: command 

: disturbance 

: output temperature C
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Bic. 3.2 

Characteristic of the on-off controller 

  

    
Pig 3.3 

Characteristic of the ideal (memoryless) on-off controller
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reason, its reduction, or elimination is generally desirable, 

Hysteresis can be reduced (or eliminated) by suitable controller 

designs or by secondary fesivack’.. Figure 3.3 shows the ideal 

on-off controller characteristic where hysteresis is not pres-=- 

ent. This characteristic is represented ag: 

1 
a > [1 + sgn e ] C33) 

where sen e@ = ‘jel fe (Ce ¥€ 0) 

3.3 ON-OFF CONTROL 

In the following analysis, the controller is assumed to 

have memory, as in fig. 3.2. The plant is taken as a Ziesler- 

Nichols approximate model i.e. one with a transit delay and a 

Single pole. Hence the plant transfer function-is: 

PCS) sik exp, Cesijy Gl “& sT) (332) 

where F corresponds to the runaway temperature, oc rt the 

thermal gain of the plant is G(°C/watt), and the power input 

to the plant’ as wW(watt), then & = WG. 

The disturbance e. is considered to be constant or slowly 

varying, therefore it can be taken as a reference level, and 

the controlled aoe ri tute @ is the excess temperature over e.° 

The command 9, is also taken as constant, since for the majori- 

ty of electroheat Mgt aus encountered in practice, 9:8 either 

constant or programmed to have constant values over fixed time 

intervals. 

The general case, where the Biante has the property of mode 

dependence and the controller is hysteretic, has not been



analysed so far*, A brief analysis for this general case is 

given below. 

The term mode dependence implies that in the active mode 

(i.e. when heating), the process time constant(s) can assume 

values significantly different (usually smaller) than their 

55 288 Tf is values in the passive mode (i.e. when cooling) 

usual to express this dependence by writing the time constant 

as T(m), but this is not justified because, for systems with 

time lags, the time interval in which m = 0 and the cooling 

period are not the same, one being shifted by L with respect to 

the Sehoe.s Actually, the time constant depends on the sign of 

8, hence we show this dependence by writing** T = T(sgn Q). 

The active and passive time constants, Ty and TS are de- 

fined as? 

te a 

@
D
-
 A T(sgn @) ee (33:8) 

La
 ti T(sgn 6) fe (3.3.6) 

@
e
 

il i _
 

The dynamic equilibrium cycling (dec) performance of the 

process is shown in fig. 3.4. The dec curve rises with time 

constant T, (from A to B, fig. 3.4) and decays with time con- 

stant T = (irom 8 bo 16): fic. 3.4%) 
Pp 

From fig. 3.4 one can write: 

~t,/T, i £ 

A ee Gi ) (3.4) Qe. ¢+hs We 

  

*Roots and wend” gave the analysis only for the special 

case where the controller is ideal. 

**It seems that the value of the time constant depends not 

only on the sign of 6, but also on the temperature itself: 

T=. TCO, Sign 9). No mention of this kind of dependence is 

given in the literature.
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2.4, 
Shi Tg | eu ih 

eo = (9. + h) F(1 C3'..50 

oi. kh ese gc t2l Tp (3.6) 
r max 

6 jth 2 Wee (3.7) 
min r 5 a 

The most significant dec performance indices are the 

period, tq; “the amplitude of the dec, 8a and the offset, 

. bie Qe. 

The dec amplitude 
  

‘The amplitude of dec can be found from eqns. 3.5 and 3.7: 

C8 eh) + 8 CT e i = ep 
  

94 - Onax = Cnin . 
ay 

(3.8) 

where a@ = exp (L/T,) 

B = O,/F 

y = exp (L/Ty) 

H = h/F 

For thewspecial. case of Ta = tT (mode independence) 84 is 

given Dy 

S. = FCeh ee + tLe (3.9) 

On the other hand, for the special case h = QO (memoryless 

controller), eqn. 3.8 becomes: 

2, - eta x :| (3.10) 

For the case where youn, and h = QO:



@. = F(a = 1)/« C3e4 1) 

If we use the following approximation*;: 

Ce exp CL ED) ee BCL ee BP <7 0n G35 :1:23) 

equation 3.11 simplifies.to: 

o. F + (3573) 

The equation given by Tiidds*” for the amplitude is eqn. 

3.13, which is only an approximate one, whereas the exact value 

of O43 iS? eiven Dy Eqns. 9. 00— 35 11". | 

FroOm.¢qn. 369 it tseseen that 84 is strongly affected by 

the hysteresis. Since one of the control objectives is to 

decrease the dec amplitude, reduction or elimination of the 

hysteresis becomes one of the goals of the designer. 

ErOm the approximate eqn. 3.13, the vefiect of L/T ratio on 

amplitude is evident: the amplitude is directly proportional to 

L/T. As it is shown in Chapter 2, L/T ratio is in the range of 

0267 > O.l1 for most electroheat processes. Lic we take -i/T = O01 

then the amplitude is approximately given by 

@, % F (1.81 H + 0.1) (3.16) 

Equation 3.14 can be used as a rule of thumb for design 

h cs os a when rs T, 

MF Ne a ete 

  

*The approximations used in the text are explained in 
Appendix B.
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The average output temperature @, and offset Qe. <0 

  

The average value of the output temperature, 6, is de- 

fined as3 

tq 

@ = 1 e(t) dt (32615) 

where @(t) is the output temperature at dec. An approximate 

expression for 6 can be written as} 

oi
 

it 2 1G 
eas > a e ) 

6 values obtained from eqns. 3.15 and 3.16 are approxi- 

mately equal when the amplitude 84 is small--compared. to. F, 

which is the case in all of the electroheat applications. 

The average value of output, obtained from eqns. 3.16, 3.5, 

and 3.7.28 9 

Bias GCY «9 4) 4+ 26a 6 7 Je RE Oey ) (3.17) 

2 oy 

For the mode independent processes T. = T,) we have: 

@= F(2B +a -1)/2a 7 (3, ba) 

For mode dependent processes with memoryless controller 

To ea ho =O) (T, Bt 

- SLY =~ I) 6 Pt ee 7 (3.19) 
2:07



a 

Since the width of hysteresis extends symmetrically about 

the-orbean, 9 is not dependent on h for mode independent pro- 

cesses. Hence eqn. 3.18 holds for controllers with or without 

memory. However, for mode dependent processes @ is dependent 

on h, as it is seen from eqn. 3.17. 

One cf the important performance indices is the offset 

Q@, - @: 

9 ~6 =O. PCr Ore y/o (3.20) 

Equation 3.20 holds for mode independent processes, Relae 

tive afftsec 1S sheen ar” in fies 3.5 as a funetion -ct 0 /F, 

and L/T. 

If we use the approximation of eqn. 3.12 in eqn. 3.18, 

thesoreset is found tobe: 

go+ 6 es Ble (3.21) 
7 x 

ss oe 
The approximation in eqn. 3.21 is given by Tudos . The 

exact Value of.the offset (tor a81< F).1s: given. by eqn. 3.20 

for mode independent processes, and can be found from eqn. 

3.17 for mode dependent processes, 

For most electroheat processes (L/T & 0.1) one can write: 

o. 3 ee 0.1(0, = 0.5 F) (3.223 

Equation 3.22 can be used as a first approximation for 

design, for the case where TT, 8 Tpe 

Period of dec 

From eqns. 3.4 -— 3.7, on and off times are found: as:



No ey 

  

Te Ot we eH) 
xt 

02 
- Ty bn ot we BO C3523) 

Oe Biome Ne tte =) 
ty = Tp fn ek ng (3.24) 

And we have 

ee et (352590 7 

For the special case of mode independence the on and off 

times become: 

ct
 il tla. j€e = 8 + W/L =p mat (3.26) 

ct
 q tT fh {( B+ +a -1)/(6 - H)} (3.279 

On the other hand, for the special case of memoryless con- 

troldd ex; 

te T dn Lyte 3g h/« hw 64} (3028) 

ew Ts Ln {a( 6+ ¥- 1)/67} (3.29) 

The period oe obtained from eqns. 3.28 and 3.29 is shown as 

a function OF 1/8 “in fig. 346% 

For the mode independent process with memoryless controller 

we have; 

ne Ln {1 - feGae ly eCR (3.30) 

From eqn. 3.30 an approximate equation for tq can be found as}
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tq aT [ 1/ 6-8 -1) ] (3.31) 

Using the approximations®*: 

a enue CLATI bos 6775 Lit =< 064 (3533) 

38 
Equations 3.30 and 3.31 are found by Roots and Woods , 

ee ee ; 
and Tiidds respectively, These equations apply for the 

special case where H = 0. Equations 3.30 and 3.31 are dis- 

Sais ‘ 
played”, in fig. 3.7, where normalized period (tq/T) is 

shown as a function of 1/6 = F/@,; for. varying values oft /it-. 

Since one of the objectives of the design. is: to reduce 

28 ; Wes 
the period  , the minimum value assumed by t, has a significance. 

It can be shown that for,.mode independent processes tq attains 
a 

its minimum value for $= 0.5 (i-e. for 0, = F/2)... When 

B #045, On and off times: are: equal, offset is. .2ero.(as shown 

in £4¢., 3.5), and period as minimum... The value of “this mini-= 

fium is found to. bes 

0.4 Ho= 0.5 Caan fo ee ee (3.34) 

From eqn. 3.34 an approximate equation can be obtained for 

vomin 

Ce 
qmin 

we 4T [2H + = = 2H) J (3.35) 

*The approximations used in the text are explained in 

appendix B.



3| 

For memoryless controller case, Comin (at. p= .0.5) is 

Found from: een... 34: 

tome tot). 4 eC moth] (3.36) 

By, using eqns. 3.35. and 3.36, the value of the minimum 

period for memoryless controller can be estimated: Substitu- 

ting H = O in eqn. 3.35 or by taking 4 S24 °L7T in. eqns: 3.35 

we gets 

Comin ea Lb (3.37) 

ee eae 
Tudos gives approximation in eqn. 3.37 for the minimum 

39 
period. On thevother hand,» in Shapiro it is asserted that 

Ce ea (3.38) 

However, from the above analysis it is clear that ta cannot be 

equal: to 2.1L. 

As a rule of thumb, the following equation can be given 

for most of the electroheat processes: 

t 2 om fae t (3.39) 
qmin 

For mode dependent processes, the minimum of to no longer 

eccurs:at A =..0.5,: but at "a value very near to: 0, 5se- fe can 

be shown that, for H = 0, the minimum of Re occurs at 

~ Tee ee 3:40 p Tele ‘ p? ( ) 

and



on 

Comin e (3.41) 

Start-up time 

It. can. be shown. that for a cold start, the time required 

for the cycling to start.is given by: 

L 
(= ee ty ee o§ (3.42) 

In £72. 3.0, normalized etertees time, ti/Ta> is displayed 

as a function of £3; for L/T, = 0.1 (curve 1), and for L/T, = 

0. 074 COurve: 29% 

For comparison, normalised start-up time, t/T, for a 

distributed lag system exp (- fst) is also shown in fig. 3.8 

(curve 3). A comparison of the two curves reveals that when 

B is larger than 0.4, the start-up time for distributed lag 

system becomes substantially larger. It:isS also .seenwthat. 73 

Values, lareer than: about 0.6.are impractical tor distributed 

lag systems because of very large start-up times. 

Choice of p 

The choice of B depends mainly on three factors: 

1. In terms of offset and cycling period, £.* 0.5 gives 

optimum results. Since, for p *’' O69 Offset. 1s. Zero. 

and cycling period is minimum. 

2. In terms of start=—up time, lower B values. are-pre= 

ferred, as is shown above. : 

3.:In terms Of input power, larger B values a: pre- 

ferred. For a given output temperature F increases 

with decreasing Bp . Hence, if the available power ts 

limited, larger g values should be chosen, The energy 

input does not change with fp and this is reflected in
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Fig. 3.8 

Start-up times for first order and distributed lag systems 
1 first order system, L = 0.1 Ta 

2 first order system, L = 0.07 Ty 
3 distributed lag, exp (-Vs7T)



34 
the fact that the to/t., ratio becomes larger for 

smaller p values. 

The above comments on the choice of p are summarized in 

fis. 34°96 

  

  

  

  

  

offset Negative Zero Positive 

Berio 
Minimum ee 

Start-Up Time small large 

Power Input 
cigar 

For A Given @, large anwase 

0 0.5 a ie 

fie. 309 B 

Factors having a role in the choice of £ 

364 ILLUSTRATIVE EXAMPLE 
  

Various electroheat processes possess largely varying 

time constants and lags. As an example, characteristic values 

2 
for three different types of furnaces are given below :; 

time constant of.*-transit delay iof 

  

Ziegler-Nichols Ziegler-Nichols G 
model model : 

(sec) (sec) C"CyW) 

Chamber furnace 1500 - 3000 LO =—220 0.2-= 72 

(oven) 

Muffle furnace 4000 - 1000 200 = 300 ~l 

Tubular furnace 600 — 4000 L20° = 200 O25 =e 2 

One notes that for the: furnaces 

elements L/T ratio is larger. 

26 
approximately second-order characteristics* . 

with covered heating 

In fact these furnaces exhibit 

For a second- 

order system, the largest value of L/T ratio. Onere -L and fare 

*The same is true for thermometers and thermocouples; 32 
coated thermometers exhibit second order characteristics



35 
Ziegler-Nichols model parameters, is about 0.103. and ft occurs 

26 
when the two time constants are equal . 

If the process to be controlled is a muffle furnace with 

° 
T = 5000 sec and L = 300 sec, with a gain of 1 C/w; and a tem- 

+ oO 
perature of 200 = 15 C is required, then using the notation 

given in sec. 3.3, we have: 

“ oO 
6 > = 200°C 

ah 2) oe, = 30°C 

a = exp (L/T) = exp (0.06) = 1.062 

G = 1°c/w 

Tf we Choose a B Value of 05% 

  

oO 
F = 400:'C 

W = F/G = 400 W 

Erom ean. 3.9': 

. 400 2H + 0.062 oe 

ec L062 

or 

o 
h ¢ 0.64 C 

Oo 
With h = 0.64 C or H = 0.0016, we have 

  

1062" ~ 0.5 & &.00T6 
int @ SOUC ee = 600 sec 

0 p le om O65 = Oa OOLO 

tw 1200 sees. = 20° Mins



36 
Prom eqn... 30423 

t= 300 + 5000 bix.2 mw 300 4 BNGE o' 3965 « 

G2.) omits 

For this furnace; which has a@n LAP ratio .ot O5.06, the 

minimum cycling amplitude (which can be obtained with an ideal 

controller) is; 

0.002 oO 
@,=4 a = 2324 

d wes 1.062 - 

Hence the regulated temperature cannot be better than 

+ 9° 
200 - 11.7 C. This suggests other types of control {open loop, 

indirect, or PWM control). 

Figure 3.10 shows the digital simulation result for the 

above example, for h = QO case. 

365 DIGITAL SIMULATION OF ON-OFF CONTROL SYSTEMS 

3.5.1 Method used for simulation 

The input to the plant, m({t), can be taken as the sum of 

unit step functions appropriately shifted in times: 

n 

i 
m(t) «= Y , (el): wltu- NO» a bea 3563) 

i=0 

where dX, are switching instants, and u(t) is the unit step 
i 

function Cite. 3i1 1) 

Then, by superposition, the output temperature is found
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to ves 

n 

; i 
t = « ]) a Ae oa te (3.44) E(t) ( A ( di)» Nine Nal 

i=0 

where a(t) is the step response of the plant. 

The problem here is to find the switching instants Ay? 

As seen from fig. 3.11, rd, can be found from: 

BEX.) = 0. (d,) +h, 1 odd (8 > 0) 

Ao < raj 

CAC pe a, i even (@<0) 6 ¢ ,) 2. i 

(3.45) 

We note that this method ts a «general ‘one, ise. it: 25 

valid for all types of plant transfer functions, for hysteretic 

controllers, and for time varying commands. One of the advantages 

of. this method of calculation is that there isinor- need 

10 
to carry along the initial conditions for every interval . 

3.5.2 Simulation programme 

The digital simulation programme for the on-off control 

systems, called ONOFF, is based on the method given in section 

3e5els This programme has, the following features: 

le Possibility of stimulation of any.type of linear, time 

invariant Bene provided that the step response of 

the plant can be expressed analytically (either exact~ 

ly, or approximately). 

2. Possibility of selecting various sampling intervals, 

command value, and hysteresis width. 

3. Possibility of printing or plotting the output tempe= 

rature and m(€t).



40 
4. In order to avoid long printing times which are re- 

quired when the sampling interval is small, a skipping 

possibility is included in the programme. For a skip-~ 

ing factor of, say 10, every other tenth value of 

time/output-temperature pair is printed (or plotted); 

the io ca rnediate values being internally calculated, 

but not printed. 

The programme ONOFF requires two subprogrammes; 

l. Subroutine SPLOT4 

2. A’ function subproeramme from STEP series. 

dub eu Laue SPLOT4 is the printing-plotting subprogramme, 

Subprogrammes STEP define the step yeassese of the plant... Ine 

following STEP subprogrammes are used: - 

1. STEP 1 = step response of a first order plant with 

or without time lag 

2.2 STEP, 2% = step response of a second order plant 

3. STEP 3 = step response of distributed lag exp (- VsT). 

This subprogramme requires another subprogramme, 

SUBERF, which calculates the error function 

of real arguments... This calculation is based 

on a polynomial approximation. 

All the above programmes are given in appendix A, along 

with the relevant. information about them. 

3.5.3 Simulation results 
  

Some results obtained from the digital simulation programme 

ONOFF will be given in this subsection, 

First order system with lag 

In fi. 3.10; output tenperature ofthe system given in 

the example of section 2.4 is given. The parameters of the 

system are:



Al 
it co OE ~ oe BOTS ath he 6 

ow 200 E ‘ars min 

The maximum, minimum, and average values of the output. 

temperature, found from eqns 3.5, 3.7 and 3.16 are 

Oo 
9 acttte ce 
max 

om LBS ca es 
min 

- oO 

9 =: 200.026 

The start-up time r and the period a were found in 

sect. -3,¢-a$% 

t 6257. min 
Ww 

t = 20 min 

From fig. 3.10, the corresponding values are seen to be: 

9 ~ 510 4 
max 

oO 

ae oO 
8 = 2.00:.C 

t., = 60 min 

8 2 ( i q ) min 

Therefore, we conclude that the simulation results confirm the 

analysis presented in 3.3. 

Distributed lag systems and their equivalent first order 

models. 

The on-off control of a distributed lag system with trans- 

fer function



100 exp (-+ 200 s) 

and its equivalent first order system 

LOO exp “(15 7s)/' Cl + 2167 s) 

are simulated for a command of oy = 50°C and the printouts 

Sve shown in: figs, S.12, 3143.73.14. and 3715; 

Fig. 3.12 shows the output temperature of first order 

system, controlled by the ideal controller, fig. 3.13 shows 

the output temperature of the distributed lag under the same 

conditions. Whereas fig. 3.14 and 3.15 are outputs of the 

first order system and the distributed lag system, controlled 

by a controller with h = 10°C. 

Tre results: are summarised in table s:so.1:, 

  
  

h G5 Sate © ta ee 

figure plant =e “t Pe C min min 

3.12 £Lvet corer 0 54 46 50 60 170 

3.13 dist. lac O FZ 46 49 70 Z2L0 

Joba sfiret order 10 62 38 50 225 170 

30 Uc diet. 2468 10 60 38 Hee 255 210 

Tabie’ 3.2 ‘ 

The following comments can be made On the results 

summarised in table 3.1. 

1. For the first order plant with h = 0, equations, 3.5, 

° oO 
3:7, and 3.30. gives 0 = 53.4 © and -6 = 404.09 CO, 

max min 

tq = 58.5 min; and curve 2 of fig. 3.8 gives-t,, = 165 

min, hence calculated and simulated results are very 

close.
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Computer plot of the output. temperature (*) and m (+) for the distributed lag system [ 100 exp (-VsT)] 
with hysteresis. The system parameters are: T = 200 min, o. = 50° Cc, h = 10° C. This figure is to be 

compared with fig. 3.14. «
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2. For the distributed lag with h = 0, curve 3 of fig. 

eS ghees Co 220 min, whereas simulation gives 210 

min. 

3. Comparison of figs. 3.12 and 3.13 shows that apart 

from the difference in start-up times, the first 

order model as given in eqn. 2.9 represents a close 

approximation to the distributed lag. a stated in 

3.3, the difference in start-up times becomes negli- 

gible for #<0.4 and large for B>0.6 (fig. 3.8) 

4. Note that, for the distributed lag system, the output 

temperature takes very long time to reach its steady 

state, because of the nature of error function. The 

period of dec will decrease and temperatures will in-_ 

crease slightly when the system reaches its steady 

state. This ‘explains the differences in @ and t. as 

shown antic .oea 2 and fie..35515. 

5. For the: first order plantywith sh = tof, equations 

365. 0g oe ZO aud. 3.21. cives: 

@ 62,9" a7,5°c, +t 224 mi 
pie Oh Me Bg tet .. oo 

These values are very close to those found by simula- 

tion (rdvline, cable 3.1). 

65* Comparison of figs .3314 and 3.45 again shows the 

validity of the approximate model, this time for on- 

off control with hysteretic controller. The difference 

in start-up times is the same as it is for ideal con-= 

troller case. 

Varying commands 

It is not possible to include time varying commands in 

the programme ONOFF; because ONOFF, with its subprogrammes,
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worked on the Serge of the memory capabilities of the computer 

deed cebe 9 with 8K memory). For this reason another computer 

programme was written, whose listing is not ineluded in this in- 

vestigation, for varying commands. One of the printouts of 

‘this programme is displayed in fige 3.16. The parameters for 

the control system are: 

F.-m- 100°C,.  C/t-ecOcl, 2 «0 

@. = 25 + 7.5 sin (t/T) ve 

Since the period of the command is about twelve times 

greater than the period of dec, the analysis of sec. 3.3 must 

still be walid.*. From fig. 3.00 Tt is seen. that thie ie the 

case. 

3<De4 Diseussion 

Since dicital simulation, by its.nature, works on sampling 

principle, a systematic error is introduced in simulation. 

When the step leneth, At, is not very small compared with the 

time constant involved, the determination of switching instants 

( r,) becomes somewhat erroneous, IT£ we denote the actual value 

of the i=th switching instant by Ax computer determines this 

instant as Di *s where’ im 

Ny hom + 1) Bt (3,46) 

where k is such that 

a(k At)< eo, 2h <o {(k +1) Ach 

whereas the actual value of By is given by



  

8 (°c) 

  
  

Fig. 3.16 
Digital simulation result for an on-off system with 

sinusoidally varying command. System parameters are: 
F=100 °C, L/T=0.1, h=0, e* 25.+°7.5 sin (072) 7G 

6
0
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et Ag) = 82 Fh (3.47) “ 

The plus and minus signs in eqns 3.46 and 3.47 correspond. Co 

odd and even values of i, respectively. 

The following four strategies suggest themselves as a 

remedy for these kinds of errors: 

Is Choice of small walues: for AE 

By choosing small values for step-length better simula- 

tion is obtained up to a point. For very small values of At, 

another kind of error, the roundoff error attains importance 

and tends to impair the accuracy of calculation. Roundoff 

errors arise from the limited precision with which arithmetic 

operations are carried out in the computene! There is also 

the problem of computing time, which becomes very large with 

very small values of At. Therefore, there is an optimum 

range of values for At. In fie~ 317 Ehe Fesults obtained by 

simulation, by using three different values of At, are shown. 

The parameters of the system are? 

st
 a 

Oo 

100°C, 9. = 65°C © aw elnin Ob & Cel min: 

The values of the step-length, At, and the skipping 

ratio, JJy are as follows: 

curve nO. At apa 

1 0.050 min 1 

2 0.005. min 10 

3 O.001 min 50 

Curve 1 is wrong, due to the errors in determination of
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The effect of step length on the accuracy of the calculation 

F = 100° C, Gr 45. C, T = 1 min, L = 0.1 min, h = 0 

0.050 min 

0:.005:° min 

0.001 min 
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curve: 3° :.° At S
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the crossing points, 5° For example, the simulation pro-~ 

gramme takes point B (the first sampling instant after the 

actual crossing point) as a whereas actual A corresponds to 

point: Ase On the other hand, curve 3 shows the effect-of round- 

off errors. ..For practical applications curve 2,is the Best of 

the three, and corresponds to an optimum value of the step length. 

2. The use of double precision arithmetic 

Another remedy would be the use of double precision arith- 

metic throughout or in some parts of the programme, in addition 

to using small step lengths. The double precision version of 

the programmes ONOFF and STEP can be obtained very easily from 

the standard ones given in appendix A. Clearly, the double 

precision programmes will require more memory space. 

3. The wse of variable step leneths 

Another possible scheme is to use variable step lengths, 

When the output temperature is not close to the command value 

(i.e. when the error is largwe) At is chosen large... #4 When the 

error becomes smaller, At is decreased, so that more frequent 

sampling is performed. In. this way it is possible to avoid 

the pilinec of the roundoff errors.and to. find the, switching 

insteners more accurately since At becomes small when the 

temperature approaches a crossing point. A variable step- 

length programme, VARDEL has been written and run, for which the 

step length is calculated by the computer as: 

At q 

o
 = 

pa
y wn
 

ce 

i ® + 0.005, | F mn 0. | <0.2 

At = 0.1 ; | ¥ - 0,|>0.2 

The results, which are not included in this investigation 

show a considerable increase in the accuracy of calculation.



4. The use of iterative algorithms DY 
  

Another approach is the use of an iterative algorithm 

to calculate the crossing. points. ,Inm. this case there is: no 

need to choose the step length very small. In this method, as 

the temperature approaches the command value, the actual inter- 

section of the output curve and the command curve is found by 

an-iterative root solving algorithm. The exact switching in- 

stant AG found by root solving is taken as a sampling instant, 

and next sampling times continue to be’ 

Aj + At, Na + 2 At; dr; + BS -Ats eee 

until the next switching instant. One Simple algorithm which 

can be used is the Newton=-Raphson iteration method. In. thtis 

method, due to the continuous correction in sampling instants, 

teletype plotting of the output temperature becomes impossible. 

However, this method seems to be the best solution to overcome 

the systematic and/or roundoff errors in the simulation. 

366 SUMMARY 

In this chapter an analysis of on-off electroheat control 

systems is presented. In sec. 3.2 the characteristics of on- 

off controllers are described.” In sec. .3.3 an analytical in-= 

vestigation of on-off systems is given. The general case, 

where a mode dependent plant with time-lag which is controlled 

by a controller with memory is analysed. the displays which 

are intended to be used for the design of on-off control 

systems are included. In sec. 3.4 numerical examples to illus- 

trate the use of the material presented in sec. 3.3 are given, 

In sec. 3.5 digital simulation methods of on-off systems are 

discussed. A digital computer programme to simulate on-off
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control systems is given. The analytical results of sec. 3.4 

are found to be in agreement with the simulation results. The 

effects of the model approximations on the overall systems 

response are shown. Possibilities for more elaborate simula- 

tion schemes are discussed.



OPEN=-LOOP AND INDIRECT: ELECTROHEAT CONTROL 

4.1 INTRODUCTION 

In this chapter two control schemes are investigated: 

Open Loop control. and indirect control. 

In Sec.: 44.2 an analysis of open loop electroheat control 

systems is given. This analysis is important for the follow- 

ing reasons: 

1. Open loop control can be used in systems where the 

aisturbance is. constant (or predictable). This: nes tric tion 

does not apply to a large number of electroheat systems but, 

nevertheless, open loop control finds its place in control 

practice. he analysis presented in sec... 4.2 will be useful 

for the design of open-loop control systems. 

2. The results obtained from the analysis of open-loop 

control systems will a used in the second half of this chaptex 

where indirect electroheat control is See oeweed, 

3. Open loop control constitutes a basis: for che investi- 

gation of pulse width modulation control systems, which is pre- 

sented in Chapter 5, 

In; sec...4,3, indirect electroheat control fs presented. 

Indirect control has certain advantages over conventional on- 

off control. These advantages are discussed, and design 

55
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eriteria for indirect electroheat control systems are present= 

ed, 

4.2 OPEN-LOOP CONTROL 

A block diagram of a typical open-loop control system is 

sHoOwn in. tie. 4.1% The control element (switch, relay, thyris- 

tor, etc...) operates witha constant perios CG » and a preset 

on-off ratio y= Fo! foe ® represents the control element. 

P is the electroheat process. The transit delay L which P may 

possess has no influence on the output temperature waveshape, 

Since its only effect: is to retard the output temperature cyc= 

le. 

4.2.1 First order systems 
  

In this section, P is assumed as being a mode dependent 

first order system, with heating and cooling time constants, 

Pe and T A >? respectively. In fig. 4.2, the output temperature 

for heating and cooling intervals are shown. 

From-tie. 4.2. one can write: 

®5 = (ho=: p)F. + p 0, C4,.1) 

6. = 4 05 (4.2) 

where 

~~
 Hy exp (<t. ft) 

2
 H] exp cht 45) 

Since the only periodic change in the system has the period t 

0 “will -also*be perfodic in the dec with period fa 5 and? 

(4.3) 

C454)
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Heating and cooling intervals for the open-loop control system 

(a) heating interval 

(b) cooling interval 
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Substituting eqns. 4.34and 4.4 into -eqns..:4.1 and 4.2: 

1 -p : 
8 = F C45) 
max bi = pg 

Q ht po 
8 : = a eee (46) 

min 1 = pq 

from eqns. 4.5 and 4.6% 

(l-= p) (I - 
8, = 8 - © = F See ey C47) 

d max min 1s po 

Figure 4.3 displays @4/F as a -function of Corry and 

t PTs 
Rae 2 

An approximate equation can be obtained by using the 

: : So 1 approximation* exp (-x) wl - x 

ty Tgp toe et, (4.8) 

  

The average value of the output temperature can be found 

Erom: 

to | 

es _ ie [F + (nin 7 FD exp (-t/t,) | dt 4 

Lope exp erage dt (4.9) 

be 

  

*See appendix B for the explanation and validity ranges 
of this approximation.
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Combining eqns. 4.9, 4.5, and 4.6 one obtains* 

e 1 Ch a hw) Be ee a ET DO i 4.10 | Gcdige! (T,, Pe a : (4.10) 

Figure 4.4 displays the normalized average output temp~ 

erature, 0/F ; es a FUNGC PON OF v ci This figure 1s valtd 

for the common constraints t<T, and ad For cases where 

these do not apply, fige 4.5 can be used to evaluate 0/F for 

a wider range of t,/T n and sue Values. 

For the special case of mode independece, eqn. 4.10 

becomes! 

. : 

Sion bc we ee (4,975 

t q 1 + 

On the other hand, if t <T, and t <T , which is a common case 
oes De ‘ bk 

for electroheat processes, the approximation exp (-x) ~ 1 =x 

  

yields 

Cot 

Be a (Ani 2) 
b o.4 6 7 y+ 

Oo =p pA 

*Shapiro gives the following equation for 8 : 

F 
re ~ T )(1 = 9 : T aos p) 

It can be shown that this equation gives errors of the order 

of several hundred percent, especially when T, and Tp differ 
Significantly. For a comparison of Shapiro's formula with 

eqn. 4.10, see Roots and Chinen 34,
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where § = Ta/Ty 62 

The equations given above are for steady=state dec. On 

the other hand, when transients occur (on start-up, shut-down, 

change of W , etc..) the transient will respond to an equiva= 

lent time constant T, as shown in the open-loop start-up 

operation in fig. 4.6. To find this equivalent time constant 

one compiles the following difference equation from eqns. “eet 

and 4.23 

Pokal oo tak 

Mie 2 ace CE) 

Coy TN eS Pee 

with the initial condition: 

I ; 

where Ook al = ect e kt.) and 89K 42 = ect = kta + ay ae 

= Q(t = ktq) and Go1,5 “ Q(t «kt. 64 £29 

Sokal q ° 

Solving eqn. 4.13 for the minima and maxima: 

q(l-p) k (lp) 
orca) 7 Fm Cpa) ok = 1,26, (4015) 

i pa 1 = pq 

(l-p) k 1 e “ 
Ook 42 oo ae APGD Fd pq Part eae 

(4.16) 

In eqns. 4.15 and 4.16 the first terms are the steady~state, 

and the second terms, the transient, solutions.
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Equating Osne1 and On 42 to the values of a continuous ex~= 

ponential function at t = ktg and t = ktq + ty, respectively; 

Ts 

one obtains: 

  

q(l - p) ; ; 
= tim kt). =F. = « expi= Pee. a( Rtg) F ae ery L exp ( t,/Tr) | 

7 7} 

2 perce Se ee Pe ee yee 
9542 e(t = ke, + t, =F —— F 8, exp ( kt /Ty) 

1-pq 1-pq 
See acagy 

By comparing eqn. 4.15 with 4.17, and eqn. 4.16 with 4.18 one 

obtains** 

heey : 

ook SEP - 7, ¥4+t (4.19) 

In the mode independent case (T ex T -«@ T, 6 = 1) s @ans 4.19 

A p 

becomes: 

th = T 

Graphical solution 
  

15 
A graphical solution of the difference equation govern-~ 

ing open loop control of first order systems can be devised. 

If we denote: 

ee a(ntg), 0.4) 89 [(ne1)t,| , o 7, = @(nt_ + t.) 

  

*The right hand side of the eqn. 4.18 involves a shift 
of time by tie : 

** T is evaluated for the maxima and minima during the 

transient, It follows that the average temperature during 

the transient will follow the same time constant T
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we have 

@ » pO, + F(L = p) (4.20) 

9.4 Pond qe. C4219 

If the initial temperature 9,=9(0) is known, successive 

maxima and minima can be found from eqns. 4.20 and 4.21. 

Note that eqns. 4.20 and 4.21 represent straight lines, in the 

Q 39 and 8 an n+l » °m Planes, successively. To illustrate the 

solution of the above equations by the graphical method, let 

us consider a numerical example. A plant with active and 

passive time-constant of T= 50 min,:, «and Tp =.Z200 min, <1s 
A 

assumed, Also Pet. Ui =. 0.28. = 100°C. ea = ty = 50 min. 

Therefore we haves: 

p = exp (-tyt = 0.368 

= exp (-t /T = 0.779 q exp ( of ao 

Equations 4.20 and 4.21 become: 

@. = 0.368 6, + 63.2 
m 

O41 = 0./79 a, 

Two straight lines corresponding to these two equations 

are shown in fig. 4.7. A third straight line which passes 

through the origin with slope 1 serves as a link between 

successive values of ne Assuming an initial tebee detuve of 

@5= 0 (cold start), successive maxima and minima are found 

as shown in fig. 4.7. The parameter values are the same as 

those of fig. 4.5, making a comparison-possible. It is clear 

that the "cobweb" pattern, as it is usually called in econo~



69 

oohPmn; Pazre}-——— Fe See ores 
seh pid ach habe aN ech abe how eld Pete rh ie taf +h of rials é 

  

  

  

    

            
  

      

      
O 20 AO 60 8o 100 By Om 

Ca) 

Fig. 4.7 

Graphical solution for the open loop control. (mode 
dependent process). ABCD is the dec trajectory.
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mical analysis, approaches the square ABCD, which corresponds 

to the dec. 

Another approach to the graphical solution would be to 

combine eqns. 4.20 and 4.21, by eliminating 9% } 

Qe = pq 0, + F(l-p)q 4222)) 
n+l 

From eqn. 4.22, the minima of the output temperature can 

be found, tor n= 0,1 oe. In terms of the above parameter 

values, eqn. 4,22 becomes: 

= 0.286 9 + 49.1 
Oneal . 

This equation corresponds to a straight line passing 

through the points E, D, and R in fig. 4.7. In this case, the 

trajectory will approach point D. 

Since the control is open loop, the delay which the 

plant may possess does not affect the method. 

4.2.2 Higher order systems 

For a second order plant, P is given by 

eta} sn F (4.23) 
(l + 7,8)( + Ts) 
  

The step response of the plant is: 

: -t/T, ~s 
a(t) = F 1 + atm (ne - Tye ECO) 

T, # Ty (4.24) 

where u(t) is the unit step function,
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Since m(t), “the input to..the plant is periodic. its 

Laplace transform is given by: 

Nieyh a eg ke Se (4.25) 
S.C) = ceo: 9.) 

Therefore, the transform of theoutput is: 

ery we 5 

Obtaining the inverse transform of eqn. 4.26 

bs -t/T» e(t=t.)/T, tat a 

6 Ct) ae ee ee ~e Re ee ae 
5 re 2 ty Fe 

1 2 <n et 

=-t -~(t-t iT ET iT (t ess aha Ay 

T(e “e mn (4.27) 
eta/Ty ie 

for io + (n - V)ty et <ntg 

and 

  

ey n+l)t T 

F : ( os ¥ a! Sot o(t) =F +e =< ee pe 
ert aq! ni 

-(t-t,)/T2 nt /Ty ; yey 
e iit dial ilanericeh ~- Ty e 

1 
ot a/Te 

(n+l)t_/T hee ntq/T 
: 3. 24 SST Re ey Ale: (4.28) 

71 os bod ly 
eo - 1 e* 27h 

for nto < f < (n+ ret,
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In eqns. 3.27 and 3.28, the terms containing n will give 

steady state solutions. Taking the terms containing n, and 

substituting n = 1 in eqn. 3.27 and n =_0 in eqn. 3.28, we 

obtain:* 

  

(4.29) 

Lime -t/T Lie 

Gg) 9 eens east : Tei P, (1~q,) p, (l-q,) 

 s t< tg 

le -t/T 

iS F oe e f - en qy e~t/T; 6. (t) F + T . 
on =f, | 3% tap o8 ae Coe “eno 2 Pay 

Se <t, (4.30) 

where p «= er felt, and q, = orp nd go Awe 1 2 
z 

The maximum and minimum values of the output temperature can 

be found by differentiating eqns. 4.29 and 4.30 with respect 

to: time. 

1. The maximum value of the output temperature; 

Output temperature attains its extremum value in the off 

interval at t = Cas where 

o 9 Cu. } 0 

From eqns. 4.31 and 4.29 one obtains 

n . (4.32) 
T)-T, Po(l - py)(l = pod) 
  

  

~~ 

  

*Note that eqns. 4.29 and 4.30 are the steady-state 
solutions for the output temperature; reduced, for the sake of 

Simplicity; to the first period
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and the value of this extremum can be found by substituting 

the value of th given by eqn. 4.31 in eqn. 4.29: 
{ 

  

Tal CL mee, 

Arey p2(l-p,) Q- P2a2)| La 
@ = Boag (ty) = Fo 
ma x P, (i=P14,) LP, -p2)C-piai) J 

(45333 

To show that the extremum given in eqn. 4.33 is a maximum, we 

tnd dO, O/dk > ot. Xek: 

  Cet \= F Erle 
meme 0 t ee vag 

ace oe (Teta) Ty p, (t-p,4)) 

  

  

  

1 1 e- P9 ot 

(T,-T,)T, Py (L=p492) 

(4.34) 

Tt can. be shown. that: 

C2 Lr Mee? 2 
eu. Po (1 = P> 42 ) d t 

. 2 Bore (Cy) ie = T <0 

F 1 = Po dt To 

(e035) 

2 2 
Since the coefficient of d oon Me is positive in the 

above equation, one concludes that a corresponds to the maxi- 

mum of 6 (t), and eqn. 4.33) sives.6 Since there is one ex- 
max” 

tremum in the off interval and one’ extremum in the on interval, 

one concludes that the extremum in the on interval corresponds 

to a minimum.
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2. The minimum value of the output temperature: 

Proceeding exactly as above, it can be shown that the 

minimum of @(t) occurs ih the on interval; for t= t where? 

  

i? Cl =. p,q, )Clr~. a) 
ee ye ee hd 2 (4.36) 

m eee Ae P54) 

The value of this minimum is given by: 

l=q) 

Oe ie Ox Ee Pars ( 
min on l=p)4) 

  

ee 

(i-q,) (imp, 4,1) 

(4.37) 

The dec amplitude, 04, can be found as ea = a from eqns. 

4.3/ and 4.93. 

Since eqns. 4.33 and 4.37 are rather involved, normalized 

dec amplitude, 9 ,/F »~calculated from e€ans.: 4,33 - and 4,37 is 

displayed in figure 4.8a~-d. In-these figures, 0,/F is plotted 

as a function of w= t,/t, , for various values of = t/t, 

and g¢= T,/To- One notes that, as expected, the dec amplitude 

is very much)smaller than:it is for first order systems. . The 

dec amplitude vee as through a maximum for vel, ive. to # ce" 

One also notes that 8g increases when the period of the input 

becomes larger with respect to the time constants. The ampli- 

tude also increases as the two time constants approach a common 

value. In fact, as stated in sect. 3.4, the value of the equi- 

valent lag for the Ziegler-Nichols.model becomes maximum when 

the two time constants are er. therefore the dec amplitude 

attains a maximum when T, = Ty, ( 9 = 1). 

Since we assume a mode independent process, the average 

value of the dec output temperature is simply:
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Soe ae (4.38) z oe yi : 

In fact, eqn. 4.38 is valid for all types of transfer 

functions, provided that they are mode independent. For any 

type of plant, the average value of the output temperature for 

transients will follow the curves; 

ty 

f(t). = = a(t) ; (4.39) 

q 

where a(t) is the step response of the plant. Therefore, the 

start-up time for open loop control can be found by solving 

the equation 

ty 
5 = ee a(t.) (4 40) 

“q 

for toe 

On the other hand, for on-off control the start-up time 

i's found by solving 

a. ™ a(t) (4.41) 

fox tus 

Generally, start-up time for open loop control is con- 

siderably longer than the start-up time for on-off control, 

for the same plant. The difference between the two is larger 

for slow rising systems, such as a plant with distributed lag. 

. The analogue computer plot given in fig. 7.10 provides an 

example for the start-up Sveration, Curve a in fieg 7.10 

corresponds to PWM control, which operates on on-off basis in 

the start-up. Curve b corresponds to open-loop control,
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4.2.3 Digital simulation of open-loop control systems 

42.36 Method,used for simulation 

Input to the plant, m(+t), can be expressed as: 

  

mCt) 0, wt) octct. 

n n=l 

m(t) «= u(tekt ) - > u(tet «kt ) Int Ct<nt 4t 
o q m4 “ Oe 
k=0 k=0 (on period) 

(4.42) 
n n 

m(t) = ) aA SPER? - > utter yr kts REGEt Gs canes ee 

kao k=0 (off period) 

A s43) 

Where 410) gee theiunit: step function, anden = ' Os lye.25 ee. o 

The system output is found using the superposition prin- 

ciple; therefore the equations for the output have the same 

“form as eens. 4.42 and 4.43, with the following changes: 

mt) 3° 0(Ce) and iG): => a Ct) 

One notes that this method is similar to the one used for 

the simulation of on-off Seal sal systems, except that, cor Guan 

loop systems the switching instants are periodic. 

This method is valid for all linear, time invariant syst- 

emSe 

4.2.3.2 Simulation programme 

The digital simulation programme, called OPLOOP, is 

based on the above method. This programme requires two sub- 

programmes, 

ae Subroutine SPLOG.



b. A function subprogramme from STEP series. 45 

Subroutine SPEOT¢ 1s for plottine Cand printing) and 

subprogramme STEP supplies the step response ofthe plant, Data 

to be supplied are e os step length, and the parameters of 

the plant. Note that the subprogrammes used with OPLOOP are 

the same as those used with ONOFF. 

All the above programmes are given in appendix Ao 

4.2.3.3. Simulation results 

Four examples are given on digital simulation, 

1, Figure 4.9 shows the start-up operation for the exe 

ponential lag plant whose transfer function: is F exe (fst) 

oO 
where F = 100°C: and T 100 min = 6000 sec. The control para- 

meters are t = 10 min. and ¥ = 20 min. 

2. Figure 4.10 shows the start-up operation for the 

Ziegler-Nichols approximation to the exponential lag of example 

(1). This model has the transfer function F exn(-sL)/(1 4 Si"). 

where F - 1060 (, 1 «7.5 win =450 sec. and Tt = 108 min «= 

6480 sec. Both curves in fig. 4.9 and 4.10 have an average dec. 

temperature of 

1 oO 
t et F = 2 loo = 3 Big o Cc 

OP 

  

The steady state (dec) performances are not shown due to reasons 

of space, 

: A comparison of the two curves shows that the Ziegler- 

Nichols equivalent model is a good approximation for the expo 

nential lag in open-loop control systems. Note that the same 

two plants have been compared for on-off control, in figs. 3.12 

end Sei3. 

From eqns. 425, 4.6 and 4.7, one obtains: for the first
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order system 100 exp (-450 s)/(1 + 6480 s): 

oO 

Q =o BSCS. Oe oe RRO O, oe oe 
max min d 

(This value of Q4 can also “‘be:found from :€1 9.4.3, 7° -The simu- 

lation curve in fig. 4.10 has an amplitude of approximately 

6°C, SO’ itagrees wath the analytical “result, 

3. Figure 4.11 shows the simulation result for the open- 

loop control system, with a plant transfer function 

F/ Cl + sT,)(1 + sT2) 

a 
where F = 100 C, T, = 100 min, Ty “200. nin, and ty = 20 min, 

tS = 80 min. Average value of the dec temperature is 

@=F to/tg = 20°C. The dimensionless parameters which are 

previously described are: 

o = T,/T>) = 0.5% A= t/t, st. and ye= Rod he 2) -Oe29 

Using these values, from fig. 4.8b, the value of the dec ampli- 

tude can be found as; 

9,/F = 0.01 or g..= 1¢ 

Equations 4.33 and 4.37 gives 0,4, and @ x min @S? 

oO Oo oO 

max min d 

From the printouts of OPLOOP programme we have, 

39° 9 19.42°C a 0.97 ¢ 
Y ia = 20439 Cy min | he : d
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Hence the simulation results are in close agreement with 

the analytical results. 

4. Figure 4.12 shows simulation ee for the same 

plant in (3) above (i.e, F » 100°C, T, = 100 min, Ty = 200 min), 

but this, time. with t, = 100 min, and es = 400 min. For this 

case one has: 

= 0.5, x = DG y= @.25 

Since ty and 2 values are of the same order of time constants, 

this example shows a bad choice of control parameters. For 

this reason, the value of % , which is very high, is out of 

ete ratece of Cig. 4.8... Equetfons 4,33 avid 4.37 give: 

oO 
Loc 255°C, 9 aha; Sc, 9 ul 

max min 

The average value is: 

Q = | £ = 9 F ty/ q ZO aC 

Simulation gives (from fie. 4.12) s 

Oo Oo 

9 n29°C, 60" & 1G, 8'.c 
max ape AAD 

4.3 INDIRECT CONTROL 

In some on-off regulation systems, it is suitable to 

have the feedback loop not around the main process itself, but 

around an auxiliary process. The main process is then con- 

trolled on an open-loop basis by the same controller which is 

included in the feedback loop. This regulation scheme can be
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useful when 

1. it is undesirable or physically impossible to have 

the location of prime importance (temperature sensing 

point) at the output of the process, 

2. the process to be controlled has a large delay. 

The auxiliary process may be an electrical analogue or 

it may be another thermal process. [In both cases its parameters 

can deliberately be made different than those of the main pro- 

cess. 

In the following section some design criteria are devel- 

oped for this type of Feqan ton and At is shown that, in some 

cases, the use of this scheme results in better performance 

: : ; : 5 
criteria than the conventional on-off peeuietion” * 

4.3.1 Description and design criteria 

In fig. 4.13 an indirect reeswlation scheme is shown. Boch 

processes are assumed to be of first order and with inherent 

time lags. The limit cycling performance of the process is 

given in. fig. 4.14 

From the closed-loop part, on and off times are found as 

(£irom ete. 9.26 and 3.27)% 

    

a ae 
i sei i ee z (4.44) 

1-8 -H 

34+ H oat Poa, ee (4.45) 
Pp ae 

The pulse train, with t, and ty as given in eqns. 4.44 

and 4.45, is applied to the main thermal process. 

The average value of the output temperature, 01> can be 

found from eqn. 4. ll, wi th to and to as given in eqns. 4.44 and
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Dynamic equlibrium cycling for system in fig. 4.13
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4.45. The amplitude, of the dimit cycling can be found 814? 

CLOM CON. Geis. wach =. and . again as given by eqns. 4.44 and 

4.45. 

“The transit delay, Li» of the main process has no influ- 

ence on these indexes since control is open-loop; the only 

effect of this delay is to retard the output waveshape. 

Two cases are investigated: 

lL. zero délay in the ¢losed loop (Lb « 6, >" 0) 

2. memoryless controller (L > 0, nh. #0) 

1. zero delay in the closed loop 

Substitution of a= 1 and Y= 1 in eqns. 3.23 and 3.24 

eevee. T, and t.? and with these values of ty and th? one obtains 

from eqn. 4.1t 

  

  

= te 1 eh an 

oe elie (4.46) F iy bee a et ' 

Using the approximation* 

baox ss 2¢x<1)/(ebd fic 47) 

One can obtain from eqn. 4.46 an approximate equation 

e 8 
whe, Rey e- (4.48) 
F F 

It must be noted that one has always 

ota ee US ee (4.49) 

*See appendix B.
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Moreover, it is logical to put a limit on the value of nye 

since, in practice, h is generally a fraction of e..° 

The exact result:of eqn. 4:46.48 @isplayed in fie. 4,15 

where the average output temperature is plotted as a function 

of he - AM Upper Limit of 0.3 is, taken for h/@.» hence 

eA OP a ooh <a (4.50) 

From £Cig. 4.15. it tan bDesseen that, for smati Valwes of Ene 

approximation given by eqn. 4.48 is in fact valid. 

The dec amplitude 0 Lsefound, from eqn. 4.50, with p 
ld 

and q having the values: 

  

p 

pe erncegtny soo bn ES) (a) 
(4.51) 

p 

G sexe (oe exp(-p bn ae a a 

(4.52) 

where p= T/T, 

In fig. 4.16 normalized dec amplitude is shown as a func- 

tion of h. The amplitude is dependent on p. but shows very 

little dependence on » For small h, the amplitude is appro- 

ximately a linear function of h . This can be shown as follows. 

For small h, both p and q and 1l=pq can be expressed as: 

    

p 
2H 2HP 

Pen ee -) 1 -pv=1- —— (4.53) 
1-8 +H 1 =p +H 

p 
2HP 

a= Gew) = ( - a1) Le pw Lom eee (4.54) 
p +H p +H
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Big. 4515 

Average output temperature vs hysteresis width (both 

normalized) for t = 0. 

9
1
4
/
F
,
 

  
    

Figs24.16 

Cycling amplitude vs hysteresis width (both 
normalized) for .t = 20. 

p (=T/T,) is the parameter. For small p, 8B 

has negligible effect. 
-—8 = 0.7 oe oO)
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p 
L-pqei- [11 =v) - w)] pe hry ae: ae 

  

1 iE 
wp( Vv +w) = 2Hp + (45559 

Lop ok pt 

Substituting these approximate 
% 

values of p,q and (l=-pq) in 

eqn, 4.50, one obtains: 

: — h<F C4. 50)) 
Pe Ly 

On the other hand, it can be shown that, for p=1; 

8 1 ee tu eg (4.57) 
F r 

1 

This linear dependence of 814 enh ts clear from fig. 4.96, 

2. Memoryless controller 

fn this Gase. () = O and b> 20) from eqns. 3.23, 3.24 

and 4.117: 

  

a Me AE 

os oF 7 (4.58) 

it fn eae aoS i, 

    

PP 

Using the approximation of eqn. 4,047 4n eqn. 4.55, one .Optains 

e
t
 

a + 2p - | 
tes ae lee. (4.59) 

2a 

    

ty
 

—
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The exact values of average temperature are displayed as 

& functton o£ L/T in“fis. G.177% 

The dec amplitude, is found from eqns. 3.23, 3.24 and 4.7 

as; 

Sua CS Pe a) (2: 60) 

Fy Ps Pg 

  

where  p and q are now given by 

to p 

oe ( -—--.) (4.61) 
A-B 

p 

p Z ve a! Gb) 

c 

With the same type of approximation used to find eqns 4.,53- 

  

4.55, One obtains 

814 Te de 4 2 
ee es eae Ca (4.63) 
EF) ty 2d 

The exact values of dec amplitude are displayed in fig. 
> 

4.18. 

4.3.2 Applications 

In conventional on-off control, large time lags cause 

{ 
| 

long periods and large values of cycling amplitude. For ob- 

vious reasons, among the control objectives is the reduction 

of the period and cycling amplitude. But the approximate mini- 

mum value of the period equals four times the inherent time lag 

(eqn. 3.37); and the cycling amplitude is roughly proportional 

to, the lac (eqn. 3.13).
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Fig. 4.18 

Cycling amplitude vs delay, where hysteresis is 
is not present 

These curves are for $8 = 0.5 but 8 has negligible 
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By having a modified model of the process in the closed 

loop one can eliminate these effects. The following example 

makes this idea clear. 

Example: The process to be controlled has a time constant 

Og Tv = 10 min. and a barge transit delay, of Ly = 9. min. “The 

command is ey = 50°C. A controller with negligible hysteresis 

is used. | 

For the conventional on-off system, in order to obtain the 

minimum value of the period, one chooses p = 0.5 hence ro 100% 

Thee pertod is then, trom eqn. 35.30 

fat, on [1 +46(a - Ly | 

and since Q = exp (L,/T,) = 1, O15 

tece tO dn. (> 403 | agi. £025.39" = 26.7 min 

The amplitude.is found fromeeqn. 3.11, or 

- | a6 

Sign pees wo Bo25 weaoo nee 
a 1.05 

    

This .is a very high value, and it renders the control 

system useless. 

For control by the auxiliary model, if one uses a model 

with: [T = 2°min and L = 1 min in the feedback loop and control 

the process on an open loop basis (still with v* 50°C and 

Poe Fs 100°C), ones has L/T = 0.5, and) p= T/T, Ole Zhe noe 
1 

from £19. 4018 

Hi] co
 ° 

©
 8, g/100 =-= 0.08 or Prd



| 
which is very much smaller than the result obtained above. 

Average of the output temperature can be found from fig. 4.17: 

oO 
/100 = 0.5 or o, = 50 < 

The period can be found from eqn. 3.30, with Q= 1.65, 

ad tn [1 + 4dk(a- 1)] = on 5.3 e382 98 m8 

Hence the period is reduced from 16../ min to 3.33 min. 

When the lag in the process is caused by a gas or fluid 

column between the heater and the location of prime import- 

enem  Otl piss the above example corresponds to shifting 

the temperature sensing point from the 1l.p.i. towards the 

heater (fig. 4.19). In this way the portion of the process 

included in the feedback loop (A in fig. 4.19) becomes shorter, 

hence the time constant of this portion becomes smaller, even 

though L/T ratio remains constant. As is shown in the above 

example, better performance criteria (smaller dec amplitude, 

smaller periods) are obtained. The disadvantage of this 

scheme is that the disturbances which affect only the open-loop 

part of the process (B in fig. 4.19) will not be sensed and, 

therefore, their effects, will not be corrected. Tt ids clean 

that dec amplitude and period will petone smaller, hence the 

performance will be beeres if we shift the temperature sensing 

point nearer to the heater, but at the same time the region for 

which the disturbance is not sensed becomes larger. This con- 

fronts the designer with the necessity of a compromise. 

The process which is included in the feedback loop can be 

ean. electrical analogue of the main process... In this Cease, tic 

parameters of this model. must be different than those of the 

main process, in order to obtain better performance. When
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using. such a model, it is important. to énsure that both . the 

model and the process are subjected to the same disturbances, 

Same 
as, in tie. 4.13. . ff thie model is energised from the/voltage 

supply as the electroheat, disturbances due to supply-voltage 

variation are catered for. Disturbances ape g from the 

change of ambient temperature, and from the quantity, quality 

and initial temperature of the charge will require special in- 

strumentation to feed corresponding signals to the model, 

The indirect-control approach presented in this chapter 

can also be applied to a wide variety of control problems. 

4.4. SUMMARY 

In this chapter open-loop control and indirect control 

(control by model) are investigated. The advantages and dis-. 

advantages of both are discussed, mt is shown that, by wsing 

indirect control, with a suitable choice of the model parameters, 

performance criteria can be substantially improved. 

Computer programmes for the digital simulation of open loop 

control systems are given, and examples are included,



PULSE WIDTH MODULATION CONTROL 

3yq 1 INTRODUCTION 

Pulse width modulation (PWM) found many applications in 

the field. of communications®* and control since tts theoretical 

investigation started 13 years ago. PWM has some definite ad- 

vantages over the conventional sampled data systems, But, on 

the other hand it is an inherently nonlinear process. «Because 

of this. analysis of PWM Systems ane more difficult “than, for 

example, pulse amplitude modulation (PAM) systems which are 

basically linear. 

The first PWM system was described by Gouy inan historic 

16 
paper /2 years ago . -His system was actually a PWM electroheat 

regulation scheme. This resulation system (fig. 5.1) consists 

of a resistively heated oven, a relay, a mercury thermometer 

and an electrical contact mounted on a motor driven eccentric. 

From fio, 5.1 it ts clear that the sequence of. current pulses 

passing through the resistive heating element has a constant 

period set by the speed of the motor. The duration of the 

pulses, however, depends on the time that the contact, is 

immersed in the mercury, i.e. the level of the mercury in the 

thermometer. Since the -level of the mercury is a Eunction of 

94
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MOG CME 
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o : b resistive heating 

‘, of element 
vA c mercury thermometer 
o, d electrical contact 

ac ee e motor driven 
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Ye speed) 

TD Sag ae f; relay coil 
Z g normally closed 

contacts   
Fig. 5.1 Gouy temperature regulator 

v(t) 

  

          

Bilis. 9.2 

Typical pulse train through the heating 

element of Gouy temperature regulator 

  

      

X(t) pulse ~ width m(t) : 

> modulator [> 

input Width-modulated pulses 

Nilo) 5, 3 

Block diagram of pulse width modulator
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the oven temperature, a closed loop control is achieved in this 

way. In fig. 5.2 a typical pulse train through the heating 

element is shown. This waveshape will be compared with today's 

standard PWM outputs in the next section. 

PWM remained one of the unexplored topics in control- 

; : : : AO ., theory until 1956. Starting with Shnaidman in. Ws SSR. 

28 : s : (1956) and Nease in U.S.Ae (1957) investigators began to 

publish papers in this field. Since PWM systems are described 

by nonlinear equations, an exact analysis is very difficult. 

Approximate methods of analysis generally depend on either 

2 
linearization or describing function techniques. Andeen used 

linearization, and assumed non-saturating PWM systems only, 

Sele. : ; Delpheld and Murphy resorted to describing function analysis. 

14 
Gelb and Vander Velde also presented a short account on the 

describing function analysis of PWM systems. Stability condi- 

tions can be investigated by using Lyapunov's second method, 

20 : 
Nelson and Kadota and Bourne are among the authors who used 

Lyapunov's method for stability analysis. 

Approximation methods like linearization and describing 

function analysis can only be used for the investigation of 

sbaes : : 30 ; : ; local stability and small deviations ©, Linearization methods 

overlook the inherent nonlinearities in the system. Describing 

function analysis fails to give correct results when it is 

applied to first order systems. On the other hand, results ob- 

tained by Lyapunov's second method are, in general, conservatives 

since this method yields only sufficient conditions for stabili- 

ty, but not necessary and sufficient conditions. 

Because of the reasons mentioned above, an exact analysis 

of the limit cycling behaviour and stability of PWM control of 

electroheat systems is presented in this study, Another reason 

for this analysis is the fact that although PWM is first
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presented as a means of electroheat regulation (by Gouy), later 

papers overlook the possible applications of PWM to electroheat 

CONETO 1. Emphasis has been mainly on communication systems and 

control of mechanical quantities, 

In 

1. 

4. 

2 O97 
general, PWM has the following advantages : 

PWM systems are less susceptible to noise, since 

noise affects the amplitude of the signal, whereas 

in PWM, information is conveyed by the duration of 

pulses. 

The output stage of the PWM can be a simple relay. 

As a result of this, large amounts of power can be 

handled with low cost equipment. 

Compared to on-off control, PWM has the following 

advantages} 

ae For on-off control, the cycling period depends 

on the time lag of the plant and the controller 

hysteresis.and, thus, May attain undesirably 

large values. On the other hand, for PWM control 

the period is under the command of the designer. 

For on-off control, cycling amplitude may attain 

large values. Especially if the L/T ratio of 

plant is large, large values of the cycling 

amplitude render the control system useless. On 

the other hand the cycling amplitude for the PWM 

control system can be reduced to a low level by 

choosing small sampling uteewal a: 

The effects of hysteresis can be eliminated in 

PWM systems. 

Compared to open-loop control, PWM has the following 

advantages; 

Ae Since PWM control is a closed-loop control, the
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effects of disturbance are greatly reduced, or 

eliminated. 

Dee oe, up time for open-loop control systems is 

barge. On the other hand, start up time is 

optimal for PWM systems, since the control is 

on-off until the output reaches the command. 

Se With PWM a continuously varying control parameter 

ra oe can be obtained by using on-off devices 

(relays, thyristors, etc). Therefore many of the 

advantages of continuous control is achieved with low 

cost elements. 

6. One point which is regard” as a disadvantage of the 

PWM is that PWM can only be used where the control 

object has a low pass characteristic. Clo Filer down 

the ripple caused by the pulsed nature of the control 

the plant should have low pass characteristic. The 

same requirement also applies to on-off and open- 

loop control systems of chapters 2 and 3). Since 

the characteristics of all electroheat processes are 

low pass in nature the application of PWM creates no 

problem. 

In this chapter an analysis of PWM electroheat control 

systems is presented. In section 5.2 PWM is defined, and 

various types of PWM are discussed. A PWM system with only 

positive going eae Gulees is.defined. This is necessary, 

since most electroheat control systems use the on-off (heat- 

offy i 
principle. In section 5.3, after a brief introduction 

to the solution of system differential equations for sampled 

data systems, a state variable formulation of the PWM control 

System is presented. Some numerical examples are included. 

Since the calculation of system behaviour is rather cumbersome,
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a. digital computer programme for the simulation of PWM control 

systems is developed and the results are discussed... This 

programme is also used to check and verify the analysis of 

limit cycle behaviour of PWM oe which is the main topic 

of chapter: 6, 

Die PULSE WIDTH MODULATION AS A SAMPLING PROCESS 

Sampling processes can be divided in three gabbepyics? & 

1, Fixed~pattern sampling 

2. Signal dependent sampling 

3. Random sampling 

In the first category the sampling period and the dura- 

tion of the pulses are independent of the signals flowing in the 

System. Therefore sampling processes of this category are linear 

in the sense that inputs and outputs are governed by the super-~- 

position principle. This category can be divided into many 

types, the simplest and well-known one being the classical 

sampling scheme, where the pulses are Beriodic with a fixed 

penioad t and the pulse duration is sufficiently short, so 

that the pulses may be regarded as impulses. The information 

is carried through the changes in the pulse ane i owed hence 

this category is called pulse amplitude modulation (PAM). 

Cyclic variable rate, multirate, and finite pulse wath sampling 

27,44 
schemes are.in this caltegory . 

In the second category, the sampling period and/or the 

duration of the pulses are dependent on the signals flowing in 

the system. This type of sampling, therefore, is basically non- 

linear; hence linear system theory is no longer- applicable to 

these systems. Among these systems are pulse width modulation 

(or as it is sometimes called variable pulse width sampling o> or
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pulse duration modulation), pulse frequency modulation and 
Zz? <a 

double (pulse frequency-pulse width) modulation systems. 

In the third category, sampling instances are random. 

This type of sampling can only be treated by statistical methods. 

2s : 205 27. 
WM schemes can be divided into four types : 

Lwelead type 

20 Lae type 

3. lag-delay type 

&. lag-delay-integrator type 

A block diagram of a pulse width modulator is shown in 

fies input Sienad 1s ‘sampled with a constant: period, 

denoted by t,. The width of the pulse’ is proportional to the 

absolute value of (1) the input signal for the lead, lag, and 

lag-delay type, and. (2) the intecral of the input  sienal for 

the lag-delay-integrator type, Since the pulse width cannot be 

larger than t,, saturation occurs for large values of the input 

voltage. The height of the pulses are +1 or <1 according to 

the: polavity of the imput signal (or the polarity of the in-— 

tegval @2 the input sisnal, for the integrator type); A 

typical input signal and the output waveforms for PAM (finite 

pulse width type) and four different types of PWM axe shown in 

Picts 5.45. The modulation type for the Gouy resulgtor, .stown in 

fig. 5.2 does not coNee Rene to any of the types shown in 

fie. 5.54.. But when the sampling period is small compared to 

A the 4 smallest time constant in the Os teas lead, lag and Gouy 

types of PWM yield approximately same behaviour. Types of PWM 

shown in fig. 5.4 have been extensively used in communication 

systems. Note that for all these types, the output signal can 

assume positive or negative values. For electroheat control, 

a positive input to the plant means heating, while a negative 

input means cooling. A controller with -1, 0, #1 outputs is
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Hig. 5.4 

PAM, and various types of PWM. a: input signal, b: PAM, 

c: lead type PWM, d: lag type PWM, e: lag-delay type PWM 
f: lag-delay-integrator type PWM. w is proportional to |x(nt Ths 

Wy is proportional to the integral of x(t) up to tent, e 

Wo is constant.
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not suitable for the contxol of electric heating, Because of 

this a modified version of PWM is adapted in this work. This 

version has only positive eine pulses at.the output. «It. fs 

clear: that. four. types O£°RWM, as shown inv fig. 5.4; al so 6x tet 

for this version. Since the lead type PWM is especially suit- 

able vionmide. thrys tor (SCR) cone al” (and easicr to implement, 

in general) this type of PWM will be considered in this study. 

Leadstype, PAMewith positive pul ses ts shown: in fie. 5.5. The 

output of the modulator is given by: 

Pal + le tor ats ‘e gone, es t. n-s 

m(t) = (Sa 13 

O- Gov nt. 4 ou eS ©. <tr TD te 

where a = £ [x(ne,)| 

The function © derines the modulation law. Generally 

the modulation law is a linear relationship between two satura- 

tion limies; in this case £ isthe saturation function: 

~
 u : sat [ x(ne.)] C5782) 

where 

O for 24 <0 

sat (x) =(x for BS xe 1 

1 for x4 

Saturation function is shown in fic. 5.6.. 

If the modulation law is the saturation £unetion, then 

the Upper saturation limft is Lb and the lower ‘saturation limit 

PSu0,. 1.6. ii othe input signal at “t = nt, is negative, there
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Fig. 3.9 

Lead type PWM with positive pulses. 

A Sat (x) 

| 

Rico. = D).6 

Saturation function. 

A Yh AY, 

{ 

| ~ aoe 

° X(nts) O | X(nt,) 
(a) (b) 

Fig. <7 

(a) Modulation law of eqn. 5.3.a 

(b) Modulation law of eqn. 5.3.b.
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is no pulse in the nth period; if, on the other hand, the input 

sitenalva tet «= nt. is larger than 1|,: pulse duration in. Ee nth 

period 148.0, so that m.« 1 for the whole peripd.. tf the 

value of the input signal is between 0 and 1, the pulse dura- 

tion he nth ie tees TS.proportional. to the input. 

Modulation laws other Ehan the saturation function can 

be used. An interesting approach is the choice of the following 

£UNCEL OS 3 

il aS ae + sgn Exa; Goi. oa) 

Yn ti Oo £0.25 y ssn Lae) + sen [x(nt,) - il} 

C55 37. b» 

With the modulation law of- the form of@eqns 5.3.a; the EWM 

system becomes an on-off control system, whereas with a modula- 

tion law as in eqn. 5.3.b it becomes a three-level control 

system. The’ control laws given in eqns. 5.3.a and 5.3.b are 

suOWn iu Tis. 2.4.0 In fact, by choosing appropriate modulation 

laws, nearly all types of conventional control can os investi- 

gated as special cases of PWM. 

DS ANALYSIS OF PWM CONTROL SYSTEMS 

Jedel Description of the. System 

The modulator is assumed lead type, with positive going 

pulses, as described by equations 5.1. The plant is assumed a 

Ziegler-=Nichols model; 

F CxpCesl)/{l + aT) 

where the only restriction is that L is assumed an inc ger
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multiple of the sampling period: 

L = pte» u non-negative integer 

The: block diagram of the control system is shown in 

Figs 3004 Vin fies usas ok ts the actual modul@tor ening. 20 

fact, the. block shown dotted” in fig.°5.0 18 the actual modules 

Sor. The quantety. bis a bias co ahitt the PWM characterise i ce. 

The block label. ed PWM is the modulator defined by eqn, 5.1). 

They value of gene bias depends.on  13.c and 6; and will be Si 

kepe constant at a set value depending; on Py Et and @,. .This Ss? 

point will besmade clear later. »1£ one-incorporates the gain 

ke8and the bias bin the, modulator, as it ds Shown dotted in 

fice 5.0, Ehe- modulator equations: becomes 

ky. foe ate a t < neon 7 t 

G Hef 0 for nt. 7 om eo (nH) Ee 

where 1. = f [» + ke(nt,)| 3 55) 

Or, if 4 is thé: usual saturation funclion. law: 

a = Sait [ + ke(nt,) | (G5... 6») 

Equations 9.6 is displayed in fie. 5.9. which Shows tne 

overall characteristic of the modulator. From fig. 5.95 one 

can see that b is actually the (pulse duration/sampling period) 

ratio for, zero erron in the Systems, Then, from fig. 5.8, 

and’-for u's 07, 2 =O;
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PWM control system 

= command (°c] 

= gain fas" di 

= bias [-] 

disturbance temperature [°c] 

= disturbance [-] 

° 
output temperature [ C] 

= error 5°o] 

= modulator input [-] 

plant gain (runaway temperature) (Cj 

modulator output (0 or 1) [-] 

: : Oo 
disturbance transmittance [1/ °C] 

= exp(-sL)/(1 + sT)
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Overall characteristic 
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State variable diagram of the PWM control system. Cl: zero order 

hold (clamp), $: sampler with period t,» 9: initial value of the 

temperature.
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bw O./F (5.7) 

5.3.2 Solution of system differential equation for sampled- 

data systems ?¢ 
0 net ae 

  

Let v denote the state vector of the system. Actually, 

v consists of the inputs and the proper state variables of the 

System. The n-th sampling interval, nt. @ t <r # pt ts 
7 

Shown in fig. 5.10, with two types of state variables: x vod 

continuous state variable, such as, for example, the output of 

an integraton:s and Xo, a discontinuous state variable, such as 

the output of a sampler-clamp. One can define a new variable, 

r , which denotes the time elapsed since the start of the 

interval, hence T = t «= nt,- The time instant just before 

the n-th sampling interval starts is denoted as t = AC. OF 

Tae Vs Woerens the instant “Suet ‘sfter the n-th’ interwar Starts 

(just after the sampler switch is closed and opened) is denoted 

as t = Beg Or T= A05 For example, reterrrineg to fel Quel Os 

The system is described by the matrix differential equa-~ 
\ 

| 
ti om: 

: 
(ty = A Vet), nt < ton tare, 1) be C5685 

dt : 

where A is a square coefficient matrix. The initial conditions 

for the above differential equation can be found from the value
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of the, state vector at the end of the previous sampling inter-— 

val; 

v(nt 74 es 8B v{at.) (.9)) 

This equation deSexmibes. the transition of the state 

variables “at the sampling instances, 8B 18 a square matrix 

defining this transition: hae: solution of the scalar mitter— 

ential equation 

d 
oor x Cl) =a Ce) (5-0) 
dt 

iS given: by 

MEL Y OR ec Aections (5,14) 

By analogy to this solution, the solution to the matrix equa- 

tion. 5.6 4.can pe wri ttenvas : 

At 
w(t) = S wiot) CS 125 

At 
where e 1S a matrix defined as: 

At vd k k 
e = A As 

kt 
k=0 

The values of the vector v at two different instants of time 

can be related to each other in the following way. 

RrOM Cdn. .12¢ 

VOR = ee Cove) (5.13)
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for ¢ = ti: 

v(or) = eorad v(t.) Co ihe 

+} 

Substituting this value of v(O ) back into eqn. 5,12, and: for 

Poem bot 

Atty Att oo ee v(t.) =. eae see v(t,) v(t) 

(G5). 1953) 
Equation 5.15 relates the values of vector v at ty and 

tj. Note that both tC and bo Should be in the Same sampling 

; : : At 
interval. Lt is usual to denote the matrix e by @ (&) 5 and 

call it the overall transition matrix. With this new notation; 

+ : : ana and with > ae tae nt. (initial time for the nth sampling 

interval); 

oe ee GC A ee) v(nt") meget < (at 1), 

(S516) 

Equation 9.16 gives the’ values of v. for any time in the nth 

Sampling interval, provided that its initial value for that 

interval, via) is known. Equations 5.9 and 5.16 can be 

combined together; 

Vi tr & b(*) B v(nt.), at oe < Xn 401s 

Coreld) 

Equation 5.17 can be used successively (n = 0,1,2...) to find 

the behaviour of the system. 

Matrices A and B can be written from the state-variable 

diagram of the system by inspection. The matrix ® can be found 

from the equation @(t) = eA A Simpler method to find @ can
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be obtained by solving eqn. 5.8 by the Laplace transform method: 

+ 

SV(S)) = AV(S) + v(o.) (3:51 8) 

Loy 

VCey © [st a A] si v(0") (5.19) 

where 2*is the unit matrix.of the S4me order as: A. Taking ine 

verse Laplace transform: 

- ~-1 + OCs) = fe lets ee v0") (5.20) 

-1 
where ee denotes inverse Laplace transformation, By compar. 

ing eque. 5.20 and 5,12 

-1 -1 SCs) i= {- [cst ~iA) (5.21) 

Equation 5.21 provides an easier way o£ finding the. matrix. ©. > 

53.3.3 Analysis of the PWM system 

The state variable diagram of the PWM System of fio. 5.8 

if Swown in fis. 5.1%. The delay in the plant and the disturb- 

ance are Faken ero for the time being. The constant input 6, 

is taken as an element of the state vector v, and it is denoted 

by xr. Clamp and integrator outputs are to be taken as State 

variables. Therefore, a suitable thoes for state variables is 

the paixm-@, x. The:-state vector, and its initial value is; 

if te 

cs v(o) = | 9, (3.235 
se b



On interval a es eens 

TLE: < t Sone. + Votes y = f [x(neg) | som a 

Ss 

The system differential equations for this interval are: 

  

r=0 
Co, 5 ae 

. Se a bas oe x(ntt) (5.23 b) 

- x tT 7. xCmeC) 

x = 0 
(S523 

From eqns. 5.23 a; b; and c, the matrix A which iS .the coetti= 

cient matrix for the on interval can be written aS; 

0 0 0 

An ek 0 oe (51,24) 
id i ook 

0 te 

where x denotes x(n 2) 

From eqn. 5.243 

iy 0 

aiokee 0 oe ae 5.25 

1 T Tx 
(5-25) 

es s 

Taking inverse;
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Be; poo 

J 0 0 
Ss 

(ate MN! Sok ge uy E (5.26) 
1 l+sT xess(ClastT) 

Oro J 
s 

a a     
Finally, taking the inverse Laplace transform of :eqn. 5.26, 

®; the ‘overall transition matrix for the on period is found; 

1 0 0 

=-1 a 2 S Ste, @ (Stel) oo ee BT ee 
ox 

0 0 1 

The state transition equations are; 

ene ©): we Gat 3) (5.28a) 

e(nt’) = e(nt,) C5280) 

“Cit m b(nt.) 4k [x(ne,) = 9 (nts) | 

b 
= kr(nt,) - k@(nt.) + (nee Eine) C5 2230) 

s 

The state transition matrix for the on period, eas can be 

WhitbLen from eqns. 5J.28a, 4b; and. cs 

1 0 0 

Piet ee ee (5729) 

k -k b
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The value of the state vector v can be calculated from 

eqns. 7.9 and 5.16. witb &, (rT ) and By as given in eqns. 5.927 

and 5.29, for any time instant in the on interval of the nth 

Sampling: period, In particuiar, fort # nt. + Lt i.e. for 

the end of the on interval, the state vector is given by: 

c = . ° v(nt. + a) S C1) es) (5.30a) 

ct oe v(nt™) = By v(nt.) (5 .30b) 

OLE interval 

+ 

nt i+ 7s t < in + 1)t.; 7. af x(nts)), m= 0 

The system differential equations are; 

r = 0 ¢5431a) 

: 1 oa a = 9 
(5.315) 

x = 0 (Sv3ie) 

The “coefficient matrix for. the off Interval, Ay» is 

found Grom equa. 5 03) Ay b, and: ‘ci 

lo 0 0 

1 
A. = O ae O (34024 

2 T 

©
 oO S
 

Therefore:
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s 0 

1 : 
Sil =A) Ae O Sipe os. (5 333) 2s T 

0 (@) 

and 

i 0 0 
s 

(st ek 5 So ks T ot: (5,30) 
2 l+sT 

,° 0 = 
Ps s 

Hence the overall transition matrix for the off period, ® os ae 

l 0 0 

y( r= (™ [¢st-ay 7) eS cs 

0 0 1 

(5.35) 

Since no change occurs in the sampler status while passing 

from the on interval to the off interval 

1 0 0 

Bue < leeeg a =, (5.36) 

0 0 1 

that is, the state variables are continuous at t = nt, 4 a 

The value of the state vector at any time in the off 

interval of the n-th sampling period is given by; 

MART S VON ee NE) VCRs De ee
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In particular, at the end of the period, t = (n + F529 

V [cn + Le, = ®, (t. ~ Toe ev (CE + Gebs) 

(3 3a) 

A similar formulation can easily be given for higher 

order systems, by increasing the order of v, A, B and ®, 

Numerical Example 
  

Consider a PWM control system with the following para-~ 

meter values; 

plant time constant De Oe. min 

sampling period Pa 10 min 

initial output temp. oe 2g7 

plant runaway temp. fe too ¢ 

command ol” 80°C 

modulator gain kite 0,01 ~1/°C 

bias by =. O35 

modulation law Sat function Chiec 5. 6,) 

In order to find the output temperature as a function 

of time, one proceeds as follows; 

The Anitial value of the state vector is, from eqn. 5.22% 

80 

v{O). = 41.20 

0.815 

n = 0, on: period; 

Prom €qn. 5.293 1 O 0 

By = oO 1 0 

0201 -O.01 di



ie} 
Brom eqn. 5.230.b; 

1 0 0 80 80 

+ 
w(O) = 0 1 oO 20 = 20 

Oo jae Lt ao # Sat(1 1415) = 4 

hts = 10 

Brom €an. 25,278 

1 0 0 

®, (10) = 0 0682 12h / 

0 0 i 4 

Eromeegn. 5 .30:.a 

80 “80 a 

v(10) = $,(10) | 20 = |34.4 

13415 le 4 

Wesel, On periods 

ClO) = 1 e415 

1 0 0 

B, = | 0 1 0 

0.01 -0.01 G2) 0



Similardys 

80 

v(10") = B, v(l0) = {34.4 

1 27 

eC10.")= 1,271 rarer keer ee ee 

e
 

oO
 

oO
 

a
e
 

. -_
 S10) = ao Oee TA 

o ° —
 

[
o
e
 

v(20) = $, (10) v(1o*) = 

J 
££ 

co
l 

—
 

OV
 

oO
 

ho
 

nN 

~S ~
 

80 
a 

wigG tes] woud p< haa 1s, s 

1 e183 

80 

vi30). => (1.55 29 

ds DO
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80 

li v(307) 

056 

v(40) a Ov
 

Ww
 

e oO
   120386 

80 

v(407) ui 63.8 ea = 0. 97? 

Or Ie 

Then, for t © 40°74 (0.977) (10) = 49.77: 

80 

4049 7.7). =: P(9.72) 9¥407) = 4639.8 

0.977 

N= 4, off6 interval 

v(50) = €, (0.23) v(49.77) 

{



\20 
80 

ViCo0), = J1.5 

O.ai 7 

n = 5, on intervals 

fon 

W501 © 196.2 ; Y, = 0.913 

0.913 

80 7 

¥VES9e13). <= Look 

0.913 

im 9, 08% interval 

80 

v(60) = 15301: 

O.913 

The calculation continues according to the above pattern. 

The resude. is plotted in: figs 54124 

From fig. 5.12 the following points of interest are 

© noted: 

ae In the starteup, output of the modulator is constant- 

ly on, this results an on-off type (short duration)start-up . 

b. Pulse duration settles at 8.15 min., which is bet,.
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Output temperature corresponding to the numerical example given in the text. 

 
 

 
 

 
 

 
 

 
 

690 

 
 

 
 

 
 

    
      

  
  
 
 

 



Lee 

As it was mentioned earlier (see fig. 5.9) the value of the 

bas is equal to the pulse duration/sampling period ratio 

for, zéro, error in. the system. 

ce. The value of the output temperature at sampling 

instants settles to 80°C (command value). In fact the value 

of the bias (0.815) is deliberately chosen to obtain this 

result. . nis point will be explained later, tn. seetion: 6.2.3. 

ds It is’ evident that the system is stable. 

504 DIGITAL: SIMULATION OF PWM CONTROL SYSTEMS 

From the numerical, example civen in section 4.32it is 

clear that the calculation of the system response is somewhat 

cumbersome. In order to investigate the effects of changing 

various parameters, one necds a quick method of calculation. 

The state= variable approath.of sectien 443. is patticularly 

suitable for digital programming. 

The digital simulation programme for the simulation of 

PWM systems is called.PWMSYS.. The programme is for first: 6raer 

systems, but it can easily be converted to handle second or 

higher order systems. 

The programme PWMSYS requires the following five sub- 

programmes: 

a. A subroutine for matrix multiplication: SUBMUL, 

bo A subroutine for printing and: plotting: SPLOTS 

Cc», A subroutine for, introducing delay to the vsystem: 

SUBLAG i 

d. A function subprogramme to define the modulation law. 

For this purpose, three subprogrammes are used: FUNSAT, 

SATN2, and SATNIO. The modulation laws corresponding 

to these subprogrammes are defined in appendix A. 
x 

e. A function subprogramme to define the disturbance,



For this purpose, several subprogrammes are used: 

FUND, for zero disturbance; FRAMP2 for ramp dis- 

turbance; FSTEP2 for step disturbances; and FSIN 

for sinusoidal disturbances. 

Flowchart and Fortran listing for programme PWMSYS and 

for the subprogrammes are given in appendix A, 

The programm PWMSYS follows the procedure described in 

section 5.3. Some important points are explained belows 

1. The data to be supplied to the programme are: sampling 

period, time constant of the plant, modulator gain, runaway 

temperature of the plant, command value, the initial value of 

the output temperature, and the delay in the plant (as we 

L/t | where yp is an integer). In case of step disturbance, 

the value of the step, and the time instent when it is applied 

should also be given as data. In case of sinusoidal disturbance 

the parameters of the sinusoid (amplitude, average value and 

period) are to be supplied. 

2. The value of the bias is internally calculated accord- 

ing to the equation: 

bh = ae én. 1 of ~——(o ~ Ll) C54.39) c. F 

This equation, found from the difference equation of the system 

will be derived and explained in section 6.263." This value 

of b results in a steady-state value of the output tempera- 

ture (at sampling instances) equal to command value. Note 

that, for small values of t fr, eqn. 5.39 becomes; 

D 

b — 

F



Diels [2.4 which was given in eqn. 

This internal calculation corresponds to a forward 

loop in the system block diagram, considering Salat and F 

constant, (ite. 5513), 

3. The:delay is introduced to the system in the follow- 

ing way. Since the plant is linear, the blocks representing 

delay and the first order parts of the plant can be separated 

and their order is immaterial. Hence to simulate the delay 

in the plant, it is sufficient to delay Y by an amount of 
n 

L = ots. This delay can be achieved by a shifting algorithm 

as Shown in £49.° 5.14. 

4. The disturbance is introduced as a function subpro- 

gramme. Thedisturbance is assumed constant during one sampling 

period. This is equivalent to assuming a slowly varying dis-~ 

turbance. 

5. The use of subroutine SPLOT5 makes plotting possible, 

Since the teletype can plot only with equal increments along 

time axis, the values of the output temperature only at 

ance instants are plotted. However, the values at 

t= Cn aT a cah- be ob tsi neu by using the Sint tas option. 

6. The value of the state vector v at t = nts is called 

internally V, whereas the value at t = ntt 1S called Z, and. the 

Valpe at. £ =. (mn. + aie. 48 called U.. Using: this-notation,* the 

programme, in plotting mode, plots successive valuesof V, on 

the other hand, in printing mode, it is possible to print 

only V values, or V and U values. These options are selected 

by assigning different values to NV and NU, as explained in 

appendix A. 

ve In plotting mode, Scaling of. the temperature axis 

is obtained by furnishing a scaling factor as data. On the 

time axis, dimensionless time t/t, is indicated, 

8. In plotting mode the programme plots the output
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Forward loop showing the dependence of the. bias upon command. 

Q represents the functional relationship given in eqn. 5.39. 
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nmp 

(delayed by «ts ) 

Fig. 5.14 

Shifting process to simulate delay. 

At each sampling instant a new value of y is introduced 
from left, and all existing values are shifted to the 

right by one _ location.



temperature @(nt,) and disturbance 6 (nt,) ViemSUS nee 6 /7b os 

in. printings mode it p¥ints the time (t = nt and t = Bt * S? 

tc and corresponding output temperature, modulator input ns > Pp Pp P > Pp 

x(nt.) » and disturbance. 

Examples 

In fig. 5.15 the output temperature plot of a limit 

cycling PWM system is shown. Until t = 35 t, the disturbance 

is zero. The system settles in a 6=1 mode limt cycling. At 

t=.-35 ts a step disturbance of 62°C is applied and the system 

changes its mode of Timit cycling, and settles in a >?=7 wWede. 

The limit cycling modes will be discussed in chapter 6 in 

detaa i: 

In fig. 5.16 the output temperature plot.of a plant 

with delay is shown. The output temperature follows a sinu- 

soid whose period is about 8.5 Coe Lima ti ccycline for time Tag 

PWM systems will be discussed in chapter 6,:-and it will be 

Shown that with the parameter values of fig. 5.16, solution 

of difference equations indicate a sinusoidal oscillation of 

period 8.47 ts: Analogue simulation result corresponding to 

the same parameter values is given in fig. 6.34 @€cuxve. aa; 

From analogue simulation the period of oscillations are found as 

8.4 ty. 

Other examples to digital simulation of the PWM elec- 

troheat control system are given in Chapter 6 (figs. 6430, 64314 

6.35, 6.36 and 6.37). All these computer outputs are obtained 

from PWMSYS programmes with relevant subprogrammes.
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5s Se SUMMARY 

In this chapter an analysis of PWM electroheat control 

systems is presented. Definitions and various types of PWM 

are discussed. It was shown that the PWM methods hitherto 

studied in the literature are not applicable to electroheat 

Systems. Therefore, a PWM system with positive coing nulses 

1s. defined. 

After a brief introduction to the solution of system 

differential equations for sampled data systems, a state 

variable formulation of the PWM is presented. This formulation 

constitutes the basis for the digital simulation also presented 

in this chapter. Since the formulation of this simulation 1S 

based on the state variable technique, it can easily be ex~= 

tended to higher order systems. (In fact the matrix multipli- 

cation subroutine is written for matrices wp to, 10th order). 

This simulation programme serves the Following basic purposes: 

1. It provides the insight required for a better under= 

standing of the system operation. 

2. It is a powerful tool in the analysis and synthesis 

of PWM electroheat control systems. 

3-e It makes it possible to check the analytical 

results obtained for the PWM control. 

This programmcomprises subroutines for the simulation 

1, processes with or without transit delay 

2. systems incorporated with various PWM laws, : 

3. systems subjected to various forms of disturbance, 

This programme has been developed in such a way that on-= 

off, open-loop, and multiposition (quast-continuous) control 

Systems can be simulated by treating them as spectal cases of 

PWM Control,



DIMI? CYCLES, IN PWM CONTROL SYSTEMS 

OVt INTRODUCTION 

The term "Limit cycling" denotes a steady state oscilla-= 

tion of a system which is independent of the initial conde 

tions @ Limit cycling occurs in almost all nonlinear systems. 

Terms such as "cycling" and "dynamic equilibrium cycling" (dec) 

are also used in the literature to denote Limit cycling. ~We 

distinguish two types of cycling: 

a. The steady state cycling of a stable system due to 

the pulsed mature of control. In this type of cyclins the 

output values at sampling instants remains constant in steady 

state. This type of cycling, which we have called dec in pre-= 

vious chapters,is present even if the control is open-loop. 

lt aS 3h inherent property of relay’control Systems (62, 

"pulsed" systems), and is thus unavoidable. 

b. The steady state cycling of the output value at 

Sampling instants. This cycling will be called "Limit cycling" 

in-the analysis that wills follow. 

We call a system Stable if dts; output (state variables 

at sampling instants) is either constant or approaches a con-= 

stant value asymptotically. It is clear that a system which 

(30
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is cycling in the sense of (a) above is stable, whereas a 

limit cycling system is unstable. 

Limit cycling can be desirable in some control appli- 

cations, especially in mechanical systems, Since it provides 

the vibration which minimizes frictional eicoecn. In 

electroheat systems, limit cycling per se does not provide 

an advantage. But, Since it is desirable to have larger gains 

for better regulation and large gains cause limit CVGliine. inc 

is important to know the system performance under limit cyc- 

ling conditions. Then, should limit cycling Hee rosie 

System performance, it may be allowed and we may thus benefit 

from the advantages of higher loop gains. 

Limit cycling of PWM systems was first investigated in 

China by Pocchuan © (1959). Da-Chuan investigated the possi- 

bidity of limit cycles with a period of 2t.. pyeking used 

describing function technique to predict limit cycles. Jury 

and Nishimura : used the equivalence of limit cycline PWM 

Systems to the finite length pulse systems with periodically 

varying sampling pattern. In a further paper Jury and Nishi- 

ie used the same technique to find satesat mode limit 

cycles. In literature cited above, and in all other sources 

the type of PWM investigated was that with positive and negative 

going pulses, aS jin fig. 4.4.c¢.. Since this.type is not suit= 

able for electroheat control for reasons stated in chapter 4, 

the results found so far by various authors are not applicable 

to electroheat control systems. For example, Jury and Nishi- 

Hacer” Stated. that the only possibile limit cycling for finse 

order systems was the one with a period of 2to, AS will be 

Shown later in this chapter, this is not true for: positive 

pulse PWM. Therefore an analysis of limit cycling phenomenon 

in PWM electroheat control systems was necessary. Since use
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of describing function techniques is limited to Systems of 

order three or oe it is not possible to use this technique 

for electroheat system analysis. In Gelb and Vander velde!4 

describing functions for PWM systems are given for. limit ¢yequ 

ling periods up to St. But-as is stated above, these are 

not applicable to electroheat systems because of the following 

two reasons; 

a. the different nature of PWM used (positive-negative 

going pulses) 

b. the inherent limitation of describing function 

technique (it cannot be used for first order 

Syspems) . 

In this chapter a complete analysis of limit cycling 

in PWM systems ie given, for positive pulse PWM. An exact in-= 

vestigation method is followed, not overlooking the inherent 

non-linearity of the system, based on the graphical solution 

of difference equations. Graphical solution of difference 

equations is a well-known be Chia Gee especially in economi- 

cal systems analysis. First (and only) use of this method 

to analyse PWM systems was by Polen? who presented a brief 

graphical analysis of PWM control systems for first order 

plants (without transit delay). Polak completely overlooked 

the possibility of satesat oscillations. 

6.2 GRAPHICAL ANALYSIS OF PWM CONTROL SYSTEMS 

6.2.1 Difference equation formulation of the system 

The following notation will be used in chapters 6 and 

eo 7 O{nte?), Ce e(ntg), d oa ce. ; A = exp (-t,/T)
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Por the. system given in fic. 5.8, and with the: modu— 

ation E€quations of eqns. 09.4 and 556, the equations relatine 

e to Ra can be formulated in the following way: 
n+l 

i. Modulator saturated, ae = 1, power is constantly 

On~ [iis occurs when 

b + k Cee 1 

or 

ee (len b)/k 

Qutput of Che modulator; .m, is 1 for the whole ‘period 

and we haves; 

-7r/T . e(r) = 6 e aa = et (6.1) 

Therefore, for 7 = t4 

2. Modulator saturated, Y, = 0, power is constantly 

Ofef, This occurs when: 

b + keng oO 

or 

en < ~b/k 

m = Q for the whole period, and we have: 

- T T 

G7 J = ore : (6.3) 

therefore for T= ty
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O27 2 hb 2. (6.4) 

3. Modulator in its linear region, Og bt he ge 
n 

and 

moo for Ve eS Thts (on interval) 

me O for vrat Or Sit, (ore inte rved 

On interval: From eqn. 6.b,and-tor t= Ynts? 

~ Ynt</T — 7 weet 

@( Tnts) = Oe + ECL vee ) 

(6:55) 

Off interval: From eqn. 6.3, with 6, replaced by 

e ( rts) as given in eqn. 6.5, and for T= (1 - ¥,)tg: 

eVoitol/T. tl %y)tett 

Ona R e.° . * 

eel~7 taf Tt -Ynt/T 
Fe (l -e ) (6% 6) 

or 

Yn*s/t 

O34 = A On + FA (e - 1) C6r5/) 

Substituting Tm RP PORE, Fo + k (oO. - eo) Pn eqns 6.70 

[b+ k(e,-e )] @ 
8 = A@ + FA [e = i (6.8) 
n+l n 

The system will be said in region I when b + ken Dl; 

in, seigion © when 0 <b Ke = I3-and in region. TIT when 

b + ken O- Typical output waveshapes in one sampling period 

OS shown invtie>s 6.1 .< 

Equations 6.2, 6.4 and 6.8 are the difference equations
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(a) (b) ic} 

Bios 6.1 

Typical output waveforms for the PWM control system. 

(a) ‘2 (1 - b)/k (region I) 

(b) -b/k < e< (1 - b)/k (region IT) 

(c) en < -b/k (region III)
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which govern the system, for regions I, III, and II, respect- 

ively. Note that when the system is Satumated. i.e. when at 

is in either xcecton 1 or Ith. the governing difference equa- 

Cions are linear, whereas in the control Mee ton, ise. win 

region II, the system difference equation is nonlinear. 

One notes that Ehe exponemt in, eqn. 6.5 has the follow~ 

ing property: 

[oie Ke. -6,y¥ J. oO cet (6.9) 

The quantity in brackets is less than 1, because of 

the control condition for region II. @ = t,/T is generally 

very much smaller than 1; Hence’ the inequality of 6.9 is 

valid. Therefore, one can uSe the following approximation; 

exp{[b + k(@, - 0,) ] df 1 +[ bd + k(oy = Ga 

C6%10)) 

Substituting into eqn. 6.8 

O41 AO + FA GL D+ k(o, - @,)} (6921) 

One notes that 

Ag ea i (6.12) 1+¢ 

or 

AQ mw 1 =~ A C613) 

Substituting the approximate value of Ag given by 

eqn. ©.13 into eqn. 6.11%
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Ons MA OL 4 R() way Tb 4 k(O, = 6.5} “Conrad 

or 

O.0, MLA < PKG ="A) |, Opel @ Adee 2 ee) 

(6.2.15) 

Equation 6.15 is a better* approximation than €qn. O41, 

Moreover, equation 6.15 has the important advantage that it 

coincides with the saturation equations 6.2 and 6.4 at the 

lower and upper boundaries of region II. 

6.2.2 Graphical Solution 

As in the case of open loop control, a graphical solu-~ 

tion is possible. Equations 6.2, 6.4, and 6.15 are plotted 

in fig. 6.2, in their respective regions. The curve of fig. 

6.2 is drawn for the following parameter values: 

toe 10 ming 22 = 50 din, Fo 100°C, e. = 80°C, 

m= O00 Lic, b= 0,815 

The straight Line with slope 1c [T) serves as a link for the 

ineremene et ie? If is seen fromiftig. 6.2 that the Doundarien 

of. the regions are: 

Region I (full on) : @ V woe - Cl bes 61.556 

Region Iq \Geontrot) 461.5) 0— Vo <b, «0. +b/k = 1618 e 

Region  Eil -Geull oft): 161.6°C = Ui q. 

In the above example the straight line approximation 

° in the region II has a maximum absolute error of On432. Cy which 

CN a Om oN 8 Oe 

*See appendix B
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Figs 0.2 

Graphical representation of the system difference equations. 

The parameters of the system are: t.=10 min, T=50 min, F=100°C, 

@ =80°C, k=0.01 1/°C, b=0.815. 

A start-up with an initial temperature of 20°C is shown with broken 

lines; this corresponds to the numerical example of Chapter 5 (fig.5.12)
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corresponds. to,a maximum relative error of 0.46/ percent. 

Points X and Y which are the boundary points between 

regions (fig. 6.2) will be encountered frequently in the 

discussion to follow. The coordinates of X.and Y are: 

BOING AY Vow Beco (1 bk, Ea AVG ch Eepewiay 

(6.16) 

Pointe yy? u, =O, + -b/K, 7 = AU, C617) 

oO oO ° 
th Che “above example. V. = 615-0, ° “§ = 68.6°C, Uae lpd 5.0 

o oO 

and 7 = 132°C. 

in £ig. 6.2, a Start-up operation: from an initial 

Cemperatunme of JG is also shown. Since the parameter values 

are the same as in the example of fig. 5.12, a comparison is 

possible. [It can be Seen that the results from state variable 

analysis of chapter 5 and from the above graphical analysis 

are in pertect’ accordance. 

6.32053 Bias considerations 

As was mentioned in Chapter 5, the bias is applied 

to the modulator to obtain a certain output temperature. 

When the output temperature is is equal to the command 

9 the error will. be zero... Therefore the; bias must be such es 

thats 

9 = 96 when em 

Moreover, in a stable system, the output will remain constant, 

for alle t = nto» after it reached the steady state. Therefore 

n+l n
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The above conditions, applied to eqn. 6.8 yields: 

bg 
@. =A Or +F Ale = 1) (6.18) 

which has the solution for b: 

b - 5 Ee | : pee 3 1) | ? (6.19) 

where g ty/t 

= 0,/F 

T
S
 1 

Thesbras as found according to eqn. 6.19 4s used in the 

programme PWMSYS, (see eqn. 5.39) as well as in the examples 

of Chapter 5. | 

One notes that when the sampling period is small com- 

pared to the time constant, *t Ss possible.-to: use the appro= 

ximations*; 

av Se ld (6.20) 

An(l +AG)= BO (6.21) 

with the above approximations, eqn. 6.19 becomes: 

®D 

be i ae (650222) a  . 

This approximate value for b was given in eqn. 5.7. 

This value will be used in the derivation of conditions for 

Pimit cycles. 

  

*See Appendix B
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Note that the bias value of eqn. 6.19 results an ovt— 

put temperature waveshape with its value at sampling instants 

being equal to the command values) Tf we require that the 

average value of the output temperature equals the command 

value, a different bias value should be applied. 

The bias which is required for 6 = @, (rather than 

a = ei can be found as follows: bec y denote the steady 

state value of pulse width/sampling period ratio. them, tom 

each sampling period the on time will be Ces and the ots 

time will Ge (1, - ES: Then; 

a
 i] exp(= 7/1) = exp (='7 G) (6.23) 

or 

2)
 i (1/6). > Cac / 9) (6.24) 

The average temperature at the output is (from eqns. 4.5 and 

A 
= tip )( lq) ee. pick as - rece ile ee (6.25) 

Eqn. 6.25 is found by replacing q by A/p. 

From 6.25, by writing © = @,., and solving for p: 

  

: 2 a(24 <1) (ies) *'« Ve -1)7(1-a)" = 4A (6.26) 
2 
  

Substitution of the above p into eqn. 6.24 gives Y. Then: 

18 ee, - 8.) L6.27) 

We note that (since 9 as = Omin/4> from eqns. 4.5 and 4.6)
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1 

Oo = = min gq 
c 

2 2: 

Oxvesince 6. = @. 
min n 

2q 
Oo = 6. == 

+ mi qt+l 

Substituting this value of ®, into eqn. 6.27 and noting that 

exp {-(1 - 7)¢} = exp(- 6) exp(Y@) = A exp(7$) 2
 ut 

te 
Ya beeok 6 1 =A exp( YG) (6.28) 

tohs+ A exp( 7G) 

Finally, bias can be found from eqn. 6.28: 

Le bi Vee oo eee (6.29) 
lie A eee CeO) 

thesprocedure to Lind .b as as follows: 

1. Given ts, T, ©, and F find p from eqn. 6.26. 

2. With this valve of. p find: ¥ from ean; 6.24. 

3. With thie value’ of VY ,and siven k, find the 

required bias from eqn. 6.29. 

One notes the following points: 

1. The value of bias becomes dependent on not only tg, 

Lo) and hs “but akso on ik. 2 

2. This derivation of the bias maintaining 6 = 0, is 

cumbersome, and mainly of academic interest; since 

in general practice the difference between 6 and 

eo, 1S small.
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3. A version of program PWMSYS which calculates the 

bias according to the eqns. 6.24, 6.26, and 6,29 

(instead of eqn. 6.19) is written, and it is veri-= 

fied that the average value of the output tempera-~ 

ture (rather than the minimum value) is adjusted by 

the system to be made equal to command. This version 

Of PWMSYS* iStnot included: in this work. 

C. 3 AN EXACT ANALYSIS OF LIMIT CYCLES IN PWM BLECTROHBAT 

SYSTEMS 

Oc otc Basic definitions 

In this section the plant is assumed mode independent 

and without lag. The effects of mode dependence and lag will 

be discussed later. The control law is assumed linear between 

two Saturation recions (Chie. 5.6). The ertects of. saturation 

ts taken into consideration. [wo types of Lamit cycling are 

distinguished: 

1. Saturated=saturated (sat-sat) mode (or "relay mode'" 

as it«is referred to by some chon ONS In this 

mode, the modulator input is either negative or 

larger than 1, i.e. the modulator is-always satura- 

ted. 

2. Linear-saturated (lin-sat) mode. In this mode the 

modulator is saturated for Some part of the “oyeling 

period, and non saturated for oie remaining part. 

It will be shown that the linear mode, where the modu= 

lator remains non-saturated for the whole cycling period is 

not possible. except for unstabhe limit cycling. 

In the following analysis we shall make use of three 

operators, 9H, C, and Q. Their definitions are given below:



[44 
H (heat) operator: * 85 Ss H(6,) where eo) Ps tne soutout 

temperature at t = nt,, and @> is the output temperature at 

C= 26n..# 1)t., when m = 1 (power on) for the entire sampling 

interval. 

C (cool) operator: Go = C(@;) where 8) and 6) are the 

output temperatures at t = nt , and t = (n + 12 ee respectively, 

when m = 0 ( power off) for the entire nth sampling interval. 

Q (control region) operator: eo 6 Q(e,) where 8) and 

@5 are the output temperatures! at be ne Bae Se L)t. 

respectively “when m=. for nt.< Cth yee and m = 0 

Eor {nie mS tt tee 1)t.- 

Figure 6.3 shows the interpretation of these operators 

in time domain and in (O,> Onan e plane. 

These operators and their powers can be represented 

algebraically as follows; 

H(@) = - + BCL =~ K) (6.30a) 

C(6) = Ae (6.30b) 

Q(e) = {A - Fk(1 ~ A)}e + F(1 - A)(b + ke,)= 

Se + (1 - S)e, (6.30c) 

Hote) ao 6 ee (6.304) 

c#(e) = ale (6.30e) 

Ore) = 88 + {I= Ser = SG ~ ery > e. | (6.308) 

n (0) ale oe a (6.30g) 

  

Ai
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H, © and Q operators.



[4.6 
9 Sh (6.30h) 
Ai 

QO
 

i -_
 

mo
 

® —
 it 

where 1 O, 1; 2, 3,2... and S is the Slope of the characterts— 

bic curve in region If [s = A - Fk(l - A)| ; 

From the above equations, one notes Ehat 

lL. Operators H and Q are -not linear, while operator 

€ is tinecar,. 

2. The operators H, Q, C do not Commute with each Phe 

1.€. when two or more operators of different kind 

operate, their order is° important. For example 

H{cce)} #¢ c{xce)} 

6.3.2 Saturated-saturated oscillations 
  

In sat-sat mode the modulator remains saturated through= 

ouc the cyclins period. The system Should alternate between 

region [ and III, since otherwise. the output temperature cannot 

be periodic. Switching from one saturatfon region to the other 

occurs at Sampling instants, since the output of the saturated 

modulator remains constant (m = 0 or 1) in a Sampling inter- 

Val. therefore the system will Be in region .t for an dinternal 

MULtiple of Ehe sampling period, and in region Tit tor another 

integral multiple of the sampling period. We Shall use the 

following notation: M will denote the number of heat-up 

Sampling perngods (i.e. periods for which m = 1) in a cycling 

period; N will dénote the number of cool-<down sampling pexiods 

(m= 0) inva cyeling period. = [t tollows that ty, = (M + N)t. 

where Oe denotes the pertod of the Limit cycle. Such a 

Sate=Sat oscillation mode will be called M-=N mode. [fn fie. 

6.4 typical plant and modulator output waveforms are shown 

for 3-1 mode Limit cycling.
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Pigs. 6.4 

Typical plant output (9) and modulator output (m) wave- 

forms for 3-1 cycling mode. 
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Typical limit cycle trajectory for 3-1 mode
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Geometry of the sat-sat trajectory and possible modes 
  

Ot oscillation 

Since cue limit cycling is periodic, the trajectory is 

a closed curve. A typical cycling trajectory is shown in 

fig. 6.5 For sat-sat oscillations, the cycling trajectory 

never hits the Line J between Vy and U,» Since this would 

mean a Sampling interval with linear control. 

i i 
We define temperatures ig Vas Ue and U as follows: 

vee) 

Tt =o 
Vm ee) SY) 

ee hy Hea.) (6.31) i im] e@eeee Oo e 

eae um ¢u, ) 

ee Os ne ge 

yy ee w7*(U,) (6.32) 

a 
Ue CAD , 

| 
lt 2 

Un Oey) = C0.) 

= c(y : = 6 Ces we or a (U)) ; (6.305



-| 
A & 

uy =a: 2G ‘vo (49 

in Os tamed (v=) (6.34) 

The above quantities correspond to points on the line 

Fo, shown in fig.°6.6.° Et is clear from fic.6.6 thee tie 

limit cycle trajectory. cannot hit the portions of F shown 

Bede in fig. 6.6, because this would result in a sampling inter- 

val with linear control. Therefore a sate-sat limit cycle 

trajectory hits. [° only in the intervals shown black in £12 3 

67. 076 These intervals will be called "allowable intervals", 

Allowable intervals correspond to the portions of I for 

which; 

li Ce 5 <v, (foo.4 2 (65354 

and 

Dice, Bee Pen co (6.36) 

From the geometry of the. trajectory (figey6.5.end 6.6) 

ite@can be, seen, thats 

1. The trajectory can hit IT only once in an allow- 

able interval. 

2. The trajectory cannot skip an allowable interval, 

1.€. the hitting points are in consecutive allow- 

able intervals, starting with the .Firet Buch. dnter= 

val in region I Cinterval 7 vi) and the first 

interval in region [II (interval U, - pry
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Blige 0707 

Constraints on M and N 

Wild 

SSS 

HH 

equation 6.39 

equation 6-40 

assertions 1 and 2 with 

eqns. 6.37 and 6.38
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a6 the trajectory for M-N mode hits [. NM disea in 

region EF (below vi and N times in region III 

(above U,). 

4. Since the temperature cannot be larger than & 

ane smaller thane 7. theritrajectony is bound 

to be between two horizontal lines passing through 

DOLRES = K and: vic 

bet pw denote. the number of allowable intervals or 

interval fractions between points v3 and 4Y".° and y= denote 

the same between Us and X'. Then we have: 

M Oo ee ( ) 

N y 6 35 < ( ) 

Aseercimm ft Tispu>l then. % < r. 

Proofi > l implies Y" is.bélow Vid <¢_ Ras 

ctl ee ae 

Since U, = LS +1 k 

  

: A 

2 a? 
Sy eee ene ee 

2 A 
OU Oe Ae eee ey 

k 9 

A 2



(2 
2 

A 2 : PAU = A) toe Sy, C4. wif) Since A <¢ 1, 

F(l + Slee o 

2 
A 2 2 

BAC). = Ali @ SPig V dia A”) Since AT > 0, 

KO 

1 on ; 2 
FA CI SA) = c < Voss oe AY) SInCE Ae 

Ci 2 L 
FAC(l =A) < Vora vA UF - 

va l ; 
FUl-= A) < To We tere since A” 3.0 

BGy.). < en) 

.< ay 

Vv S 1 Qe iD. 

Assertion 22.) lf. yo > i then. p< d eee eae oo 

Proors y>1 implies f > U,> and by similar manipu- 

lation, it can be shown that this implies 17> V, which means 

Mh x Le Q.E.D. 

Since the limit cycle is periodic, we can assert the 

following: 

I. The trajectory isa closed curve.



oe 
2. In a cyeling period, there is at least one sampling 

pervod with m= Wo andi one with m =.0, 71 :.e.3 

Meh (6.39) 

Nt (6.40) 

Now we have 

NS sy On ed Grom €qnS. 6.39 and 46.40 

Mee ye eee brom eqns .:6.3/ and 6.316 

from the assertions | and 2. 

< Vv _
 

= 4
4
 a 

The Llosical result, from the above constraints @ the 

Bollowiune (fic. 6.7) 3 

Mee aL N = 1 

Neal, M = 1 

Therefore the only possible modes are M = 1 and 1 = N modes, 

where M, N = Lge SOs ens 

The output waveform 

A trajectory corresponding to a M=-l mode limit cycle 

is Shown in fig. 6.8.a.. In fie. 6.6.b. the corresponding
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(a) Trajectory corresponding to M-l mode limit cycling 

(b) Corresponding output temperature 

  

  

  

  

Pig.6.9 

(a) Trajectory corresponding to 1-N mode limit cycling 

(b) Corresponding output temperature.
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output waveshape is shown. From fig. 6.8.a, the maximum 

output tCemperature satisfies 

M 
H {c(@,) } = 0, (6.41) 

or 

M+l1 M 
A @, + FAC(L = A )o= eo, (6.42) 

The solution of ‘eqn. 6.42 for o gives 

    

  

es 0, = F - (6.43) 
jee AM+1 

For e, we have 

aC gy 2 
@ =H (e_) (6.44) 

i 1 

Equation 6.44, with eqn. 6.43 gives 

AM(1 = A) ? 
O2= ~ : 

a Sele i-1 M+1 (oa 
i ee ey 

The minimum value of the output temperature, On, p can be 

round by létting 4 =.M + 1 in eqn. 5.45% 

A(l - AY 

i ee (6.46) 

The cycling amplitude 84 is given by 

Oo aye 
Pe8 Oy 8 ON ae a one (6.47) 

M+1 Se eed.



\56 

The average value of the output temperature can be found 

from: 

M+1 

ae 1 > | 
9 8 (6.48 

M +1 i ) 
i=l 

  

But one notes that the average value m over one cycling period 

iS? 

M 

M+ 1 

B| ul 

(6.49) 

Therefore the average value of the output temperature is; 

@|
 u I cs]
 i x 

(6.50) 

SuUbSttetution of 8, as given in eqn. 6.45 into eqn. 6.48 yields 

the same result. 

1l-N mode 

The trajectory and the output waveshape corresponding 

to 1-N mode limit cycle are shown in fig. 6.9a and b. From 

fio. 6.9 ca: 

H {c'ce, )} = 8) (6.51) 

Ox 

N+l1 

A 8, + F(l = A) = 9) (6,52) 

Solution. for @, gives:



oy 
ae 

8, = Co ee Co .52) 

9, is related to the maximum output by 

    

yc (6454) 

therefore 

NS eG a 
ee 6.55) 

The minimum value of the output , Ona1,18 found by leering 

i= N +.) in eqn. 6.595% 

GU eY = A) 
So eb oe (6.56) 
N+1 1 i AN#l 

The cyeling amplitude, 84> tis given by: 

pO we Adee A”) 
Nel des anal 

(6.57) 

The average value of Ehe output temperature is given by: 

6 rer (6.58) 

Gain and B boundaries for the oscillations 

Mo= 1 mode oscillations 

In order that the system sustain.an M ~-.1 mode: Dimit



IS8 
eycele,. the following conditions muse be satisfied: 

iL. 0 SO Ce. <a) 

24.1 Vi Dee eaea. £ aus) 

3. A closed trajectory of the form given in- fig. 6.8 

should be geometrically possible, with e) (max. 

temperature) satisfying conditions 4 and 5 below. 

a Qj 

IN
 

Da
ag
 

5+ 8) 2 Uy 

Conditions I and 25 must be Satisfied in order Chace 

and N have values greater than zero (eqns. 6.39 and 6.40) 

The maximum cycling temperature 8, must satisfy condition 4 

because the output temperature cannot attain values greater 

- than € . Condition 5 must be satisfied,: otherwise the 

limitcycle looses, its sat=<sat nature, as is evident from 

fic. .0.8... Conditions 4 and 5 Paee eee imply that ©, must be 

between points X' and U, Chae. 6.6)... Note, that conditions & 

and 5 together imply condition 2; therefore we can omit condi- 

Cion 2.3. later it will be Shown.that condition) 1s not inde— 

pendent*.. Thus, for the time being, we also Leave out condi— 

ELOn 6 

A closed M = 1 mode trajectory implies; 

es 
T= AMeL 

  

as given in con. 76.43. .Substitutinse this valve: of ®, and 

OE Tt et men ne se CRN NN 

*See eqn. 6:07:55 .a%



the value of. € given in eqn. 

hy
 

  

Lig—- b 
Sincec V..7= Oe = and 

. k 

Yt =A" 
: l alitl < AG, 

by collecting terms, and dividing 

aM 

3 Mel < ORAS 

Samce: § = leis negative 

M 
eee Ce 
fos AM+1 

1)* + A 

6.LO-into condition 4: 

+
 

: pp etna 4 F(1 
k Fk 

1 

  

Ba 

ands, finally 

1 - B 

\V
 

by F 

  

1 

cal fa AM” h geen), A) 
M+1 

On the other hand, condition 5 gives: 

Since Uy ao £ b/k and.b 6, 

Fei oA) 

m
y
 | >
 

- 

-—£) 

58 

(6.60) 

(6.61) 

(6.62) 

(6.63) 

(6.64)
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M 
LA i 

ea > me 

which yields 

p Fky, (6.60) 
Za M 

loo Ae 
aD 

too pee 

Expressions 6.63 and 6.66 gives the gain and As bounda~ 

rieéS for.M <= 1 mode limit. ¢ycies. 

An examination of the two inequalities 6.63 and 6.64 

mBeveals the following facts: 

1. M=l mode limit cycles are possible only for some B 

values. The ee of / values for which M-l limit cycling 

is possible will be called "M-l zones". The lower and upper 

4 U 
&) 

: Mel? 

These boundaries can be found by equating the. denominators 

t 
boundaries of a M-l zone will be denoted by ae and 

of the right hand sides of eqns. 6.63°and 6.66340 zéro: 

  

hes a ee ae 
p Mal i as (6.67) 

u ey (6.68) 

2. In a given M=l zone the minimum required (i.e. cri- 

tical)-gain to sustain the Se eeeie cbciaee teas can be found 

as the. minimum Fk value which satisfies both eqn. 6.63 and 

eqn. 6.60. 

a. DOD fp values corresponding to the boundaries of 

the zones the necessary gain to sustain the oscillations



\6| 
becomes infinibe , 

4. In a given zone the critical gaim passes through 

a minimum, this occurs at the # value which makes the right 

hand sides of eqns. 6.63 and 6.66 equal. + ILI£ we denote this 

value of f by ae i? 
l ~ 

    

u oO 
Bry ‘i Bry 

M f= ~ oO 

M=1 1 AN+l 1 AM+l M=-1 

(6.69) 

which gives: 

° 1 ee 6.7 = a 
@ oO 8 ry ( ) 

M-1 Las Ae Ok 

The minimum critical gain for the M-l zone is found by sub- 

stituting the above value of B : imboe eqns 0,019. 

M+1 

Ph (6.71) 
D fs 

ies ey Ue 

AS an example, let t, = 20 min, and T = 100 min, which 

gives @ = 0.2 and A = exp (-0.2) = 0.8187. We shall investi- 

gate the possibility of 2-1 limit cycline.  Phor this. case 

expressions 6.63 and 6.66 become; 

  

Coe i ! (6.72) 
7p - 0.6711 

A 
Fk > (6.73)



162. The 2=1 zone is the interval:, 

L u 

C671 gp <P oo. 057307 

The gain necessary to sustain the 2-1 mode becomes infinite 

at zone boundaries ( #% = 0.6711 and f = 0.7307), and becomes 

minimum for: 

oO 

B = = 0.6896 (6.74) 2—1 ae 2 

The minimum critical gain (for B = 0.6896) is: 

too 

(1 - ay kh 

  

rk = 16.771 (6.75) 

In fig. 6.10 this zone, and* the gain boundary is shown. 

2-1 limit cycling is possible only for the Fk and p values 

corresponding to the shaded area in fig. 6.10. 

It can be shown that all M=l1 zones lie above Bp =0.5, 

therefore no M<l limit cycle is possible for p 0297, with thie 

fi exception of l=1 mode, whose zone is centered at & 0.5. 

USing this fact one can prove that condition 1 is always satis- 

fied when conditions 5 and 6 are satisfied. In other words; 

condition 4 

—P condition 2 
Condition > mp condition 1 

B > 0.5 

(6.75a) 

This can be proved as follows:
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et ba 

  

  r 

0.6711 0.6896 0.7307 B=0,/F 

Fig. 6.10 

2-1 limit cycling boundaries for 9 = 0.2 

Fk A 

16.771 4 

  

    t , ee 

0.2693 0.3104 03289 6=9,-/F 

Bie, 01, 11 

1-2. limit cycling boundaries for 9 = 0.2



p 20-5 loa 

since pAb Sk = bs i p 

b Le 
a a k 

Pou < ¥, (6.76) 

On the other hand, condition 2 gives: 

eo 

Bit BL mR) AV, CG 377) 

Inequalities 6.76 and/6.77 added side by side gives; 

Paw eg C1 Ong 

multiplying both sides by 1 - A, which is positive: 

FACL = a) ao - aT)



A favo + FUL -A)E<v, lo5 

Ail eee ye 

wnich 18 condition 1¢:-Q.E.O; 

It is interesting to find the limit values of the zone 

boundaries for ¢—0. When @ = taft becomes very small, the 

effects of sampling becomes less significant, therefore we 

expect. that the zones will shrink with decreasing ¢, and 

finally disappear when $—»0O. From eqns. 6.67 and 6.683 

  

  

L ‘ Meal 
Pi 6 fim i Chee) an 
ee ee fo auel M+ 1 

(6.78) 

M 
u ' 1 uk fin pie oN (6.79) 

g—-oO M=-1 A>l 1 - aMel Mw +1 

AS expected, lower and upper boundaries of each zone become 

egual,, thus the zones vanish « 

l-N mode oscillations* 

In order the system sustain a l=N mode limit cycle, 

the following conditions must be satisfied: 

i.e we 

oo > 0 

ve Av Closed trajectory of the form given in f42¢, 6.9 

  

*Since there exists a symmetry between M-1 and 1-N 
modes, many arguments are somewhat similar, therefore 
details of some derivations are omitted.
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Should be geometrically possible. with Orel 

(minimum temperature) satisfying conditions 4 

and 5 below, 

ee 
es < Yo 

= 
Sig ? 42 Se n 

Conditions 4 and 5 imply condition 1 and together with 

f <025 they imply condition 2. The fact that p< 0-3 ter 

T=N oscillations will be shown Later. Conditions 4 and 5 

mean that 9 4d must be between points Y "and vA CE Pees 6.9). 

AwchLosed l-Ni mode. trajectory amp?! lies: 

A Cpe ee 
Onel = FP 

we aNtl 

as. given in eqn. 6,560.  Substitingine this value of Ona and 
4 

the “Value or Ye in condition 4 we obtain: 

> 1 ~ p (6.30)) 
a a ne ee ae 

Similarly condition .5 gives: 

  

ie (6.81) 

N -1 
A Cl A B 

1 aan 

Ek > 
A 

The following conclusions can be drawn from eqns. 6.80 

and 6.81; 

Le 1-N mode limit cycles are possible only for some 

values. The ranges of p values for which l-N limit 

eycling is possible will be called 1l=-N zones. The
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boundaries of the 1-N zones will be denoted by pe 

u 
and Bs where; 

L Anta SA) 
é vag o. ae (6.82) 

  

u Ae Cie) 

tt 

2. The boundaries of 1=-N and Mel zones are related to 

each other by; 

pa ee 
M=1 1l=N 

N=M 

Pe af 
Pe * 1=N N=M 

This relationship is evident from eqns. 6.67, 6.68, 

6.82, and 6.83. From this relationship, it is clear that 

l-N and M=-l zones are symmetrical about p nD) ee 

3. In a given l=N zone the critical gain is found as 

the minimum Fk value which Satisfies both inequalities 6.80 

and 6.0. ! 

4. At zone boundaries the critical gain becomes infinite. 

5- In a given l=N zone the critical gain. passes through 

° 
a minimum, and this minimum occurs at e = 6 : » where: 

eal 

N-1 
oak (1. =) (6.84) 

B 1-N Se ae ee 
| ok - 2A
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By comparing eqns. 6.84 and 6.70: 

° ° 
B =n =1- p is ae (6.85) 

The value of the minimum critical gain for the 1=<N Zone is: 

Lo (6.86) roe 
(lo =A) 8AN 

The above minimum is exactly the same as the minimum critical 

gain for the symmetrical M-1 zone COON) es Fads: 

It can be shown that the gain boundaries in the 1-N 

zone and the M=l zone are symmetrical with HeESpect’ foq the 

vertical line passing through £ “ 0.5 when M = N. he come 

boundary of 1=2 mode limit cycling for a system with 

g = Coit m 0.2.18 Shown ‘in fig. 6%11.- Note that: this figure 

and the one in fig. 6.10 are Symmetrical with respect to the 

line B = 0-5. 1-2 mode limit cycling is possible only for 

the Fk and A values corresponding to the shaded area in 

tigi Gabby 

No 1={N limit cycling is possible for p> 0.5, wien 

the exception of 1-1 mode. It can be asserted that 

condition 4 

——~> Condition 1 
condition 5 —— > condition 2 

B< 0.5 

The proof followsthe same pattern as given for M-l zones. 

When @—»Q the zone boundaries approach the limits given 

below: 

t N 
fim B . Pim AAI = A) é a (6.87) 

geal. jmmO °° ton AS 1 | eA N +4
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A Nel 

him a Na ee l (6.88) do jo gay A et tee N. eed. 

The zones vanish for ¢ ~ 0 as it can be Seen from the above 

equations. 

The complete gain-~ 6 boundaries are given in fig. 6.12 

for @ = 0.2 and in fig. 6.13 for 6 = 0.5. From these figures 

Tt. 1S seen that thene are an Infinite fanoee of M=-1 and 1=N 

zones. AS M and N become larger the zones become narrower, 

and Ghe critical sains increase, 

The zone boundaries are shown in fig. 6.14, for chang- 

ing @. From this figure it is seen that all zones except the 

1-1 zone become narrower as ¢ increases. For large values of 

g, the 1-1 zone extends over a large range of fp values. This 

shows the increasing tendency of the system towards 1-1 mode 

as ¢ becomes large. 

A three dimensional display of the gain-4 boundary 

fot t-k mode limit cycling is shonin fie. 6.15. 

The 1-1 zone is centered around $= 0.5. The mini- 

mum critical gain for l-l zones is given by; 

Lore A 
Beene (6.89) 

Le = A 

This value is the global minimum of critical gain for sat-=sat 

mode oscillations. 

AS 4n example: of the: digital simulation, of a limit 

cycling eystem the computer plot in £18. 5,05 is eiven.~ the 

System parameters are: t_ = 10 min, T = 10 min, k = 2 tye, 

F = 100 C, ©, = 92°C, b= 0.927, L = 0. Therefore g = 0.2, 

A = 0.819 and Fk = 200. It can be seen that the parameter 

vaiues Satisfy the conditions for 6-1 mode cycling. The



  

  

  

  
      
  

    
            
    

  

  
  

  
  

                
  

  

  
            

  

              
      

Gain-8 boundaries for sat-sat limit cycling. ¢@ = t_/T = 0.2 

a: Stability boundary; b: Upper limit for sat-lif oscillations. 

  

qT | | i 

i00 | | | 
| \ 

| 

| 
i é lee ee = ee ee ee ee 

50 ageing mene a as! esa cs | Neda 

1-1 

| | 
| { | 

= SS ES eee = = = = = = = = = Sod 

O oe 

° o.| o2 0.3 O.g 0.5 0.6 1B 

Fig 6.12 

OL
I



oes 

h eK 

    

Joo : 4 — : ee f EE ST Biss Pedals SR 4 ea sae Ce te nee age 

        
                    
      
          

. O.2 
1,0 03 0.8 

Fig. 6.13 

Gain- 8 boundaries for sat~sat limit cycling. 

md = 0.5 

a: Stability boundary, 
b: Upper limit for sat-lin oscillations.
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A three dimensional display of 1-1 limit cycling zones. 
A point (a set of values of 9, 8, and Fk) inside the V- 

shaped curve corresponds to 1-1 mode limit 
cycling
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System settles into a 6-1 mode limit cycling. The effect of 

the disturbance will be discussed later. 

Stability of sat-sat limit cycles 

Et is seen trom figure 6,16 that for an M=i)- limit 

cycle a perturbation e€ on the output temperature becomes 

aMel 
after one cycling period. The same is true for 1-=N 

Limit: cycles. Since A = exp(*¢). <' 1 the perturbation will 

eventually die. It can be shown that even if the perturbation 

is large enough to drive the system out of the saturation 

region, the system will eventually return to the original 

limit cycle. Therefore it can be asserted that all sat-sat 

limit cycles.are stable, 

Performance of the system in sat-=sat cycling 
  

The average output temperature and offset 
  

Dhe output waveshape for a given M-l or 1=N mode is 

independent of the command value, as shown in eqns. 6.50 and 

6.58. On the other hand the mode of the oscillations depends 

on the command. Since the average value of the output is de- 

pendent on the mode the command still has an effect on the out-~ 

put temperature. . This effect is shown in fig. 6.17... In fig. 

6.17 the average output temperature of a sat~sat cycling system 

is shown as a function of command (both nonmel ized) < Line A 

Shows the ideal dependence (i.e. 9 = ®,), whereas the horizon-= 

tal line segments show the actual dependence. Figure 6.17 is 

valid for @ = 0.2, the dependence of 6 on G, for other values 

of @ can easily be found from fig. 6:14. In Dic. 6.17 the 

boundary for an allowable offset of +7 percent is also shown 

as an example (line B). It can be seen that for M-1 modes 

with M = 4,5,6 and 7 the offset may exceed the allowable Limi.



  

    

    

  

      

Bro. 63516 

Stability considerations for sat-sat 

limit cycling. A 2-1 mode cycling 
is shown. An initial perturbation 
€ becomes Ate after one cycling 
period. 
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0.4 0.6 0.8 4 
B=0, /F 

Pic « G7 

Average output temperature of sat-sat cycling system as a 
function of command (both normalized). Line A shows the ideal 
dependence (i.e. 9=0 ). Line B is the allowable offset 

boundary for an offset of 7 percent. GL
\



176 

whereas for other values of M the offset is always less than 

+7 percent. The value of the offset for a given @, and M 

(or N) can precisely be calculated from: 

    

M = for <6 OO.) FE 
P 1+M r 2 

relative \ arte = 

offset F 

- 1 for 6.5 653. °F 
P L+N ao 

The maximum possible value of the relative offset can be 

found from: 

u 

P oe for 0.3 0. Ger 
Me1 L+M 

max.possible 
offset 

where upper and lower boundaries of zones are as given in 

eqns. 6.68 and 6.82. In fig. 6.18 naximum possible offset is 

Shown aS a function of @. 

Amplitude of oscillations 

The amplitude of sat-sat oscillations have been given 

in eqns. 6.47 and 6.57. These equations are displayed in 

fig. 6.19. It is cléar thet.as Melor N) ineréases (ise; Hes 

o-7F approaches Ol or 1) the amplitude increases. ft can be 

shown that the maximum possible amplitude is; 

8 
lim 3S ms te fh 

M(N)*+o F 
1 = exp(- @) u
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Fig. 6.18 

Maximum possihle offset as a function of 9 (sat-sat cycling 

system),
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Fig. 6.19 

The amplitude of sat-sat oscillations as a function of Os
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Figures 6.17, ° 6.18, and 6.19 provide an easy way for 

the evaluation of the performance of the system in sat-sat 

cycling. 

6.3.3 Linear and sawrated=linear oscillations 

As it was: mentioned earlier, the term "sat-Lin limit 

cycling" implies the existence of non-saturated.as well as 

Saturated sampling intervals in the cycling period. Before 

examining this type of cycling, we shall investigate the 

POSSIDILity of linear Limit cycling, for which the system 

BeMainse MOn=-Ssaturated tor Chie Gntire cycling period. 

The slope of the system Ccharacterrstivce curve. for region 

Eis. eqn. 0.15) 

S =A = Fk({l = A) (6. 90) 

No. Limitecycle of any. kind is possible for 

Sas): (6.91) 

This can be shown as follows: 

1. From eqn. 6.89 we know that no satesat limit cycle 

is possible for 

L+A 
  Fk < 

This last condition is equivalent to condition 6.91 ee is 

evident from eqn. 6.90. 

2. For any other type of limit cycling the system must 

pass through region IL. “Once the system enters into, region 

It the. output, temperature:willhave a value © between U,



130 
and Vi (fig. 6.2). The temperature for the next sampling 

instant will be equal to Q(@) and the subsequent temperature 

Values .aye piven ‘by -(eqn,. *6.30:.£) 4 

i i 
Q (®) = S (68 = 8) eS 

Tt Aseclear that when 5{ <1 

tins. =o 

i> o 

and 

lim q* (@) = 0, (6.92) 
i> m 

Thewne Lome.) it Is] < 1 the system will remain in region II, 

and the output temperature approach oe 

We note that the maximum value of § is A, which 

COnGeSponds: tO Hk =. 0. 2 bt 

A 
O'S 625 A ea Oe BES 54 

then © approaches 0. from either above or below, the system 

error having the Same sign all the time. But if 

  baie Sa 5 ice wo < Fk < 

then © approaches 9. by damped oscillations. The damping is 

dependent on the value of |S] . The smaller the value of 

Is] the faster the transients die out.
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The above argument is summarised in fig. 6.20. 

For S = -l1 damping is zero and linear oscillations 

become .possibile,...This.is shown in. fis. 6.21, tis @isgoe 

clear that..this limit cycling is: not. stable since, if S$ 46 

Slightly larger than -l1, the oscillations will eventually die 

Ole. «On the gine, hand, if °S is slightly smaller than —1 the 

oscillations will increase in amplitude, until the trajectory 

hits one or both of the saturation characteristics, then the 

system falls in a sat-sat limit cycle if B and Fk satisfy 

the conditions for some sat-sat zone. Otherwise sat-lin 

limite recycling occurs. 

Sat-lin limit cycling is basically a two sampling period. 

cycling. One sampling period is saturated (m = 0 or 1), the 

other is non=saturated. The term sat heat=lin will be used 

if m= 1 in the saturated sampling period, whereas a sat=lin 

limit cycling with m = O in the saturated period will be 

called sat cool-lin cycling. Fig. 6.22 shows a typical sat 

heat-lin cycling. The parameters of the system are: 

g 

k 

baptimcG.915, F = 100 C,56.4=—-80°C,>p = 0.79 € 0 ce0), 
a 

O06 Lie. I 

The graphical determination of the limit cycle tra- 

jectary i868 evident from fie. 64622.. Point De4ds the interseeeson 

point®.of ‘fesion, { characteristia line and: [4 The. line 56 

makes the same angle with [ as DY. Point B is found as 

the intersection of lines DB and XY. Point C is found by 

Simply drawing a perpendicular to [ from point B. Note that 

the line DB has a slope 1/A. Any point E on XY corresponds 

to a pulse duration ratio Y which is given by 

rel
e 

(6.93)
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ee ——————- STABLE | 

| | 
A; | | limit 

DAMPED > 
ae —>| OSEIEL. 

  

    
Bic. 6.20 

Behaviour of the system in the stable region. 

  

  

        

Fig.6.21 

Linear cycling. This type of cycling 
occurs when Fk = (1 + A)/(1 - A). With 
a small disturbance e€ the system 

passes into a new trajectory. This 
cycling mode is not stable. 
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0.79, 80°C, b — L=0, F=100°C,9 
(b) plant input (m) and output (6) 

Bipot <9. mi 10 min, T=10 ty= A typical satheat-lin limit cycling. The system parameters are 

trajectory (a) cycling 1/°c. k=0.04



134 

For the numerical example, point B corresponds to; 

O23 ~
 u 

sil
sl i 

Therefore the limit cycle consists of two Sampling periods, 

one with power continuously on, and another with Y= 0.53 

Reta s Osea )s 

The value of the output temperature at Sampling instants 

can be found as follows; 

@ i 

ee H { Q(@,)} (6.94) 

Oy > 11 507 * (1:- 8)e)} = Ad Soyrs (1-- $)e, 

(i <x) (6.95) 

with S HH] A - Fk(l - A) the above equation gives 

pus 1+ PAC + Fk) (6.96) 
VG ACLs FRY 

The minimum temperature is found from 

® 
nN
 i = Q(0,) (6.97) 

which gives 

AS FRCL = A) ee UR ee FR 
8 = F 

* 2 +r A Ch e+ rk) (6.98) 

  

With the parameter values of the above example, eqns.
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6.96 and 6.98 yield: 

which agree with £12, 6.19. 

Note that 84 can no longer be found as eo) =o. thas 

is simply because 8) does not represent the maximum output 

temperature. @ occurs in the linear sampling period, as 
max 

1C7iS Seen “trom fie. 6.22.2, Towtind Snax Sraphically, one 

draws line DK which corresponds to 

Of e 8 exp(- y t/t) #28. f° = exp(- ¥ c.f) | 

(6.99) 

where © and @6' are abscissa and ordinate values, respectively, 

andi Yom 0755. 

For sat cool-lin cycling the temperatures at Sampling 

instants are as below; 

99 C [ Q(e2)] 

which gives 

» oo0 2 | (6.100) 
P26 1 + ACle + Fk) 

and 8, is found from: 

which gives



S86 

(1 + Fk)6 
emma (6.101) 

eo ACL: + 8k) 

The. graphical construction or the limit cycle stragectormy. is 

Similar to satheat~lin case. 

It can be shown that for Bo O25 only satheat-lin 

oScillations exist whereas only satcool—lin oscillations are 

possible for A <“O0.9 0 hor p> 0.5 the system falls into l-1 

mode without passing through sat-lin oScillations, as is evi- 

dent from eqn. 6.90. 

Stability of sat-lin mode oscillations 

Inv fie. O23° a.small perturbation of magnitude ¢« is 

assumed. At the end of one cycling period this perturbation 

becomes SA€ where 

A = exp(=@) .and = S = A = FkK(1 = A) 

in order that the oscillation: be: stable we require: 

|sale << « (6.102) 

oh Ao et (6.103) 

ls] < = (6.104) 

Since oSiceitlations are possible only for S <'-l,"S is negative. 

therefore |s| = -S$. Equation 6.104 becomes: 

“sce (6.105)
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Fig.6.23 

Stability considerations for sat-lin oscillations 
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Fig. 6.24 

Oscillations when S = -1/A 

[ de. Fe = (1 + es 7. 
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1 
re (6.106) 

1 
Ac@ FRCL = A) > = = 

A 

or 

reas <-—— | 6.107 PWS Te Boe} aan 

Therefore, sat=lin oscillations are possible for: 

te < Pk ek (6.108) 
ook ee Geer. 

Note that tor the example of fic. 6521, Fk = 4 whereas 

A = 0.4 and the gain boundaries of satelin oscillations are 

34 ke 4.84 

Therefore, sat-lin oscillations are possible for Fk = 4. 

Since A = 0.8 >0.55 we have satheat-lin oscillations. 

Ef.S = -L/A; i.¢..the charactecietic Lines for Setugan 

ted and non-Saturated regions are perpendicular, the situation 

shown in fig. 6.24 occurs (satelin oscillations of Cane 4t.)- 

In this type of oscillation the disturbance is carried alone 

indefinitely with alternting signs. This type of oscillation 

is unstable because, if S is slightly larger than -l1/A, the 

oscillations become stable sat—<lin, on the other hand, if S 

is slightly smaller than -1/A, then the oscillations become 

aperiodic, or Sat=sat if B and Fk values fit into an oscilla- 

tion tesion siven in fics. 6.12. 6.13, and 6.14, 

Figure 6.25 summarises the conditions given so far.
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Stability considerations 68
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The functions 

Fk = : " : (curve 1) 

2 
ie ay N 

een 2 Fk Rt oe (curve 2) 

are displayed in fig. 6.26 as a function of @ = Covi CuLve 

l. represents the stability of the system.  Sat-lin oscilla- 

tions are possible only for the Fk values between the two 

curves. it is clear that for the normal range of @ satelin 

oscillations are highly improbable. 

6.3.4 Plants with transit delay 

In this section we consider the plant transfer function 

Fexp(-sL) Cl 4+ 5s 7) 

where L # QO. 

Because of the sampled nature of the system, it is 

convenient to consider the discrete values of delay which are 

integer multiples of the sampling period; 

L= pt pw integer s? 

The block diagram of the system is shown in fig. 6.27. 

From fig.: 6.27 and eqn, 6.88 

ie 1 AO eu on {ox { [b+k (6, -6,,) | 0d} i i 

(6.109) 

With the same approximations used to derive eqn. i015, we 

have;



o
 

o=ts;/T 

(2)-Upper limit of sat-lin oscillations. 

Fig. 6.26 
(1)- Stability boundary Gain boundaries for L = 0. 
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Stability considerations for L = te
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One +l 7 MPneu * FRC M“ADO, = CisA)4asPK DO, 

(6.110) 

Equation 6.110 is a linear ( w+ 1) st order differ- 

ence equation. For w#O0O a graphical solution is very diffi- 

cult if not impossible. Therefore, we proceed to solve 

eqn. 6.110 by analytical methods. 

Since the range of delays usually encountered in 

electroheat processes extends from about T/10 to at most 

about T/5, and the sampling period is usually of the order 

of 1/20 to T/VOrwe consider 1 =& C,0and Low 2t. €1.8. wa] 

and mu=2) in the following analysis. 

Solution of system difference equation 

For # = 1 the difference equation 6.110 becomes; 

oe ~ A@ ai + Fk(l = A) 1 * Cl AJL + Fk)@, 

(S127) 

The corresponding homogeneous equation is: 

9 - A® val + Fk(l = A) P.%. 0 (6.112) n+2 

The characteristic equation is; 

oe hi dk Filo he (6.113) 

which has the solution 

  

= A 
m 5 > (6.114)
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THUS. Lh 

A aos ark hy So (6.115) 

my, and m) are real. Inequality 6,115: leads. to: 

2 
Fk. < A Fach. = 8) C6. 167 

We now distinguish three cases; 

Lic rk < at/4(l = A) 

In this case the roots are neal and distinct... The 

Solution of eqn. 6.112 is given. by: 

n @, = Cymp + Com, (6,117) 

A particular solution of eqn. 6.111 is 

2m Sy C6o..1 15) 

Therefore, the general solution of eqn. 6.111 is given by: 

n @ = Cymy + Comp + 0, (6.119) 

where Cy and oe) are to be determined from the initial conditions. 

ii 

2 
24 Fk Av f4Gle =A) 

In’ this case, the roots are, equal, and the,,ceneral 

solution is 

A @ = (C, + Con) F + 0, (6.120) 

2



5 

In this case, the roots of the characteristic equation 

ane civen  bive 

  

hats y 2 he ; = = Osl2t M2 eee 4Fk (1 A) A ( ) 

On, in.potar form: 

m = r(cos a j Sin va) C61 22) Le 

where 

  

yy
 ui 

3 

w
R
]
 

qe + 4Fk(1 = A) - ce = y Fk(1l = A) (6.123) 

and 

  

Z 
~1 4Fk(1 = A) = A (6.124) 

A 
a = tan 

The solution of eqn. 6.111 is given by 

n 

a = C)r cos (n a + Co) + - (62125) 

where C, and Cc, are to be determined from the initial conditions. 

Stability of the system 

The condition of stability for a second order differ- 

1 ence equation is given by the following theorem ei 

Theorem: Let 

Q = max( || ; [m4)) (6.126) 

where m, and m> are as given in eqn. 6.114. Then 2:< 1 ds 4
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necessary and sufficient condition for the solution o£ the 

homogeneous equation to converge, with limit 0, for all 

initial conditions. 

From eqn. 6.118 it follows that when 2 < 1 the solu- 

tion of the nonhomogeneous equation will converge to the 

Limit e.° 

Now we examine the stability for the three cases men= 

tioned above 

Le Fk S a7 741 mA) 

In this case we have 

Gy |, rs Ya = 4rk(1 ~ A) ul 

N
p
 > 

+ (6.127) 

2 
singe*A > 0,.:A ..~.GFKCE =: A) > 0. 

The condition 2 <1 gives 

Rk > ait 

whichsissalways true, Since Fk> QO. “Therefore; the system 4s 

always stable. 

a 
2. Fk = A /4(1 = A) 

In this case 

Therefore, the system is always stable. 

2 
ay Mgr Ak /4(1. = A) 

in this case 

Q= r =4f Fk(1 - A)



oy 

Therefore, the system is stable when Fk < 1/(1 = A), and 

unstable when Fk > it /aC Lack) 

Thevpertod of,osicillations, .€ is found from 
osc’? 

eqns. 6.122 and .5%.12 4s 

aso t 6.12 t amd (6.128) 

where ais expressed in radians 

The summary of the’ above discussion is given dn 

Lae 3 6.28. 

Tmstie. 0.29 athe: stability boundary: (curve a): and 

the oscillatory solutdon boundary (curve b) are shown. Lf 

the point corresponding to the @ and Fk values is in region 

I the system is stable and non-oscillatory, if it is in region 

II the system is Stable but oscillatory (damped), and if it 

is4in region LIL. the system is unstaole. Curve a shows .the 

period of the undamped oscillations (i.e. period of oscilla- 

tions when Q = 1) versus @. 

Numerical Example 

Let the system parameters be t, = 10 min, T = 50 min, 

L = 10 min, F = 100°C, @, = 50°C, b = 0.5, A = exp(-0.2) = 

0.819. | 

The condition for nonoscillatory solution is: 

BFK mee = 0.924 or kK 0.00924 
4(1 = A) 

The condition for stability is: 

Rik: Sern ei SS OF ke SO eoke
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Fig. 6.30: =. 
Digital computer plot of the system output for t _=10 min, T=50 min, F=100°C, @ =50°C 

z b=0.5 and k=0.87. 

66
1



2.00 

Tf.k 0.07 the system will be oscillatory, with oscillations 

i 

very Slowly growing. 

y. 4s found: from -eqan.: 6.123 

ros VY FK(1 = A) =21.12 

xX is found from eqn. 6.124 

Therefore, the period of the oscilktions is, from eqn, 6.120. 

_ 360 
Whee.” 68.7 

  

bg = 5.25 tom 52.5 min. 

A digital simulation plot corresponding to the above 

example for k = 0.07 is shown in fig. 6.30. There it is seen 

that the simulation gives an oscillation period of, apouce 

tee: 02) o> Minh, 

It must be noted that the difference equation 6.111 

is valid only for the linear region. When the gain is large 

growing oscillations will cause saturation. The saturated 

oscillations in presence of delay will not be elaborated in 

this work. Iwo figures are included to show a typical satura-~ 

ted oscillation (fi. 6.31 and 6.32). Both fic; 6.31 (curve 

a) and 6.32 are for the same system with t. = 10 min, fe Ss 

S0--miny t= 19 ainy F = 160 Ch 8.= 76°C, kos 0.24 1/98 i 

and b = 0.72. Figure 6.31 shows the digital Simulation re- 

sult, whereas fig. 6.32 shows the analogue simulation result. 

From both curves it is clear that the system is in 4=2 mode, 

We therefore conclude that for systems having delay M=N modes
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Rie. fo o4 

Digital computer plot of the output of a system in 

saturated limit cycling. System parameters are + 

t.=10 min, T=50 min, F=100°C, 9 =70°C, kw 0 26> 1/ °C; 

Lee 10 min.



  

  

        
  

  

  

    
  

        
                                      

Fig. 6.32 
Analogue computer plot of the output of the same system as in fig. 6.3]. 

a- k=0.24 » 0;=70. (sat.limit cycling). 
> 

Time scale: 50 sec/inch; temperature scale: 20°C/inch ( 2 V/inch). 
b- k=0.008, 0,=45 (stable system). C

O
G
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are “possipler where both Mand N are, different from 1.4. In 

curve b of fig. 6.32 the response of the same system is 

Shown, but with k = 0.008. This value of gain corresponds 

to non-oscillatory solution, since 

oo) 
Fk.< A/. 4(1 =A) = 0.924 

Bes 207 2t.) 

  

Solution of system difference equation 
  

For f= 2, eqn. 6.110 becomes? 

n43 7 40,,, + FRCL --A)O, = (1 - A)(1 + Fk)O, 

G6.129) 

The characteristic eqn. of the homogeneous difference equa-= 

tion is: 

3 2 
Moeoe AM + bkCl = 7A). = 30 GO.130)) 

This cubic equation can be solved analytically by substituting 

7 
for m the value x + (A/3). The details:of the method will 

not be given. 

Let 

tr. 3 
do ek (64431) 

3 

z 3 b = - 57 A> + FK(1 = A) (65132) 

2 3 b - l i 4 Do ee Bk (1 wy | me REE OR) ow” Se 
ee Oe ( ) E ¢ ) oF | 

(6.133)



Lod 

Zz y - 2 aa (6.134) 

  

3 b 
Z4 = oe -VA (6.435) 

Then the solution of eqn. 6.130 is: given by; 

A 
m9 oye oe (6.136) 

La te Zea ZL l 2 1 2 A 
2 Se oe _ a 8 > * 5 + 5 (Coys ish7e), 

From eqns. 6.131=-6.137 it can be Seen thats; 

3 
lias 0 1 ven Fk> >t tn then there will be one. real 

root and two complex conjugate roots. 

3 
So AL Te as 0 deer. PRS a then there will be three 

real roots. 

Therefore we conclude that if 

3 

>
 4 

Fk $97 _
 ~A 

the system is non oscillatory, otherwise it is oscillatory. 

NOC hata pared cular Solution “of: eqn. .6.129 as Or. 

Therefore, when the homogeneous equation is stable, the output 

will approach O.- The homogeous equation is stable when N<l, 

j 

where 

Q = max ( || ‘ [m2] » [3] > (6 208) 

In particular, for the oscillatory case, the oscillations 

Wiltedie sir a <i. 

| mJ . | mo| and {[m.| are. Lound=to- ‘bers



“a5 

  

in, | = Zz + Zo +5 62339) 

2 2 

lm, 5] = hee eo . Ze) a 
ON ia le 

where 2) and Zo are as given in eqns, 6.134 and 6.135. 

To find the stability condition we have to find the 

values of § and Fk which make one or more of [m] , Int, 

and | m.| larger than? 1; Unfortunately, to do this analyti- 

cally is very difficult. Instead, one can seek the solution 

Of the inequality. §< 1 by digital computer. This is done 

and the results are shown in fig. 6.33. In this Figure, 

curve a is the stability boundary and curve b is the oscilla- 

Cory solution boundary. If the point corresponding to the ¢ 

and Fk values is in region I the System is stable and non 

oscillatory, if it is in region II the System is stable but 

oscillatory (damped), and if it is in region III the system 

is unstable. Curve ¢ shows the period of the undamped 

oscillations (i.e. period of oscillations when Q = 1) versus 

b. 

Numerical example 

Let the system parameters be; Cec + man, T.8°25: min; 

1m 10: mingwk'* 0.045147 °C, F-10000. -0. = sa°c. #h Aare Se | x 

The characteristic equation is; 

3 
m - 0.819 fae + O.olo = 6 

The roots of the above equation are; 

a ala Oe 2S
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-@.when Q= 1). i 

ion (b) boundaries for L = 2t . Curve c shows 
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Kio, 6.33 

the period of undamped oscillations 

 
 

The stability (a), and oscillatory solut
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My 3 = 0.772 = 400726 

we see that 

|| “= 0.725 

ny 3] - 1.06% 

Therefore, the system has slowly growing oscillations. 

7 Im(m, ) 2 s 

Qo= tan : oo = tan” once = tan : 0.92 = E236 
Re (mo) Oar 

Therefore the period of the oscillations are (from eqn. 

6.123):% 

360 
t 8 ne es SO Gee 4. 3 min ose 42:6. 7S Ss 

Since 2 = [m.| = 106-1, S66. since the oacilias 

Cions are nearly undamped, this value of the oscillation 

period Gan: be found: trom fig. 6.33% 

In fig. 6.34 the output of the system which corresponds 

to the above example is shown as obtained from analogue simula- 

tions Curve a corresponds, to k = "0.045 as in the: above 

example. The period of the oscillations is seen to be 42 min. 

Curve b corresponds to kk =.0.01. As it can be seen from 

Fig. 6.33 this value of k (Fk = 1) corresponds to dying 

oscillations, and this is evident from fig. 6.34. Curve c 

corresponds to k = 0.006, which is very near to critical damp-= 

ing’(7s -*" 0.000736). ° Compare £i¢.°6.34 with €i2. 9.16 (digi tat 

plot) and fig. 7.9 (analogue photograph).
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Hig. 6.34 

Analogue computer plot of the output ofa system with L = 2t_. The system parameters are: 
£2 min, T=25 min, L=10 min, F=100° G56 =50°C, b=0.52. 

me scale: 50 sec/inch, temperature etsle: 20°C/inch ( 2 V/inch) 
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For large values of gain, analogue simulation has 

Shown 4=4 mode oscillations. 

6.4 EFFECTS OF MODE DEPENDENCE 

If the plant is mode dependent, the system difference 

equations can be easily found. Denoting (iit, * by and 

ts/Tp od Bp» for the on portion of the sampling interval; 

OC r): 565 2 eae PC eA) (6.141) 

where T-m € 4 nt. 

TRETEGLOLe Eu Toe Ynts 

O(Y,t,) = O, exp(-7npd,) + F {1 = exp(-796,)} (6.142) 

For the remaining portion of the sampling interval: 

e414 * Oty, cia exp {-(1 -Yn) bp } (6.143) 

From.eqnse, 6.142 and 6.143% 

ei eno hn (6, s8y Jew bp} + 

Ey {exp {( ¥ 1) d5} 2 exp{7y(dp-G,) ia op} 

(6.144) 

For 2egion 1. (862.70 .2) ¢ ig a 

Ore On CAR Bat = exp (-8,) f (6.145) 

POY resi on 11 ln = b + k (0, ~ °| 3
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Equation 6.144 with Ms + Ae EO. = 9.) 

For rezion Tia ( ti Ot 

e ae exp(-,) , (6.146) asi 

The system difference equation for the control region is, as is seen | 

from eqn 6.144, very complicated. It can be shown that with the approxi- 

mation exp(x)¥1+ x , equation 6.144 can be approximated by a parabola. 

Therefore, the graphical technique which we used for mode independent 

systems looses its advantages. Thus we shall not attempt to solve the 

above difference equations. 

The nonlinearity of the characteristic curve in region 

II does not have any influence on the analysis of sat=sat limit 

cycling. Therefore, a complete analysis of sat-sat limit 

cycling is possible using only eqns. 6.145 and 6.1460. .0ne 

notes that these two equations represent two straight Janes 

in the 6p, @,,, plane, and the boundaries of regions I and 

El cangeasiiy «be, found. 

63 > BPFPECTS OF .DISTURBANCE 
  

6.5.1 Effects of disturbance on regulation characteristic 
  

PWM control is one way of achieving a pseudo-linear 

control using highly gen nee elements (relays, thyristors, 

ete.). Thus, from the point of view of disturbance, a PWM 

control system is similar to a continuous linear system, dot 

it is stable, and non=-saturated, 

Two examples are given on the effects of disturbance. 

In fig. 6.35 the system is subjected to a step disturbance 

Dt lo’c at t = 150 min. For this system t./T = $6 = 0.2, 

F = 100°C, 0, = 60°C, and’ k = 108. ‘We Wave
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Therefore damped oscillations occur, as is seen from 

fieew- 0.555 Dut thee Systemats stable. “from tic. 6.35 itis 

seen. that.a disturbance: of ia causes a change of 1c ing the 

output temperature, as the rough calculation below suggests; 

® c —
 

o 

  

In the second example a sinusoidal disturbance is 

considered (fig. 6.36). The system parameters are the same as_ 

above, except that k = 0.09. The system is still stable, but 

oscillations die slower than they a tne -firsit..exanple. 

The. disturbance is réduced about 10 times. 

6.562 Effects of disturbance on limit cycles 

in terms of the modulator input, and in the steady 

state, the disturbance can be viewed as opposing the command. 

Thus, in the presence of disturbance, the zones given for sat-= 

Sat modes will still be valid, provided that A should now be 

interpreted as (0, - @/F» instead of 6,/F. 

An example of the effects of disturbance on the limit 

cycling is given in fig. 5.15. The system parameters. are 

$= t./T = 0.2, F = 100 C, 0, = 92% and k = 2 1/°C. From 

fig. 6.12 it ‘ean be seen that p = 0.92 and Fk = 200 corres-= 

ponds to 6—1 limit cycling, therefore the system settles in 

6—1 limit cycling. When a step disturbance of a, = 62°C is 

applied the effective becomes (96 = 62)/100 = 0.3 and this P
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new value of fh Cogether witn fk = 200 now corresponds to a 

1-2 zone. The system changes mode and settles in 1=2 mode 

oscillations. 

Another example. is given in .€ig2 6.37% = Here, the 

System is subjected to a ramp disturbance of 

8 (te) = 0.0 59et C 

where € is°in minutes. The system-parameters are: ee = ea 

° mins, T= 50:min., Bee 100 C, 6 50 r Gr, bs 0, k = O wiee 

Since Fk = 10 and B O.9. The system settles in l= mode. 

When p moves away from 0.5 the required gain for 1l=1 mode 

increases sharply (fig. 6.12). Therefore, when disturbance 

attains about 5 degrees we expect 1l=l mode cycling to die out 

and satelin oscillations to emerge. Since effective p is 

now smailer Chan O.5' these oscillations are of satcool=-lin 

type. @ahrom €qns. 6.100 and 6710) ft is evident that. the 

amplitude of satcool-lin oscillations is proportional to 

(in contrast with sat-sat oscillations whose amplitude is 

independent of fp ). Since the effective A decreases with in- 

creaSing disturbance, the amplitude also decreases, 

6.6 SUMMARY 

In this chapter limit cycling in PWM electroheat systems 

is investigated in detail. An exact analysis, based on the 

graphical solution of difference eee is presented, 

In section 6.1 basic definitions and a brief survey of 

the literature on limit cycling in PWM systems are given. 

In section 6.2 the graphical analysis is presented. This 

method is used'in section: 6.3 to analyse limit cycling. Use
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of operator algebra facilitated the analysis. It is proved 

that for positive pulse PWM, and for the Ziegler-Nichols model 

without delay, the possible limit cycling. modes are, those with 

only one sampling period of heat-up (or cool down) in a cyec- 

ling period. . The waveforms, average value, and oscillation 

ampildtude of the.output. in.presence of Limit cycling vane 

found. @©Stability boundaries for plants with or without de- 

lay are given. Stable and unstable modes of limit cycles are 

considered. ‘All results are verified by digital simulation 

described in Chapter 5 and by analogue simulation which will 

be described in Chapter 7. Numerical examples corresponding 

to typical cases: are given, along with the Simulation results. 

In section 6.5 effects of disturbance on regulation perform- 

ance: and.on limit cycline arewinvesticated.



ANALOGUE SIMULATION OF PWM SYSTEMS 

Fel INTRODUCTION 

Digital simulation is a powerful tool for the verification 

of theoretical results. In fact,all assertions, conditions and 

critical values found and presented in Chapter 6 are verified 

by digital simulation. But analogue simulation provides certain 

interes€ing possibilities such as the. following; 

i. Analogue simulation is an efficient method for the in-s 

vestigation of the system behaviour under various con- 

ditions. This can be done quickly and in an exhaustive 

manner by analogue simulation, whereas considerable 

computer time is necessary to do the same by digital 

simulation. 

2. Analogue simulation gives an overall qualitative picture 

of the system performance. This enables the experiment-~ 

er to gain bettervinsieht into the system operation. 

Therefore, analogue simulation provides a useful feed- 

back during the process of theoretical research. 

3. Analogue simulation constitubes one of the essential 

techniques for the verification of results found by 

theoretical analysis. 

Because of these reasons an investigation based on analogue 

QN7
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simulation is necessary for this study to be complete. In this 

chapter the analogue simulation of the PWM control system is 

presented. Among the subjects included are the method of si- 

mulation, the experimental circuitry, and the qualitative and 

quantitative results. 

7.2 THE PULSE WIDTH MODULATOR 
  

A simple circuit* was used to implement pulse width mods 

lation. This circuit can be realized on the computer patch- 

board orenaee using additional elements. 

The analogue computer diagram of the pulse width modulator 

is shown in fig. 7.1. In thie diagram: A23.is.a track-store 

amplifier of unity gain. <A track-store amplifier is equivalent 

€0.a Gampler followed by a tero order hold (fig. 7.2). The 

track~store operation is achieved by applying a pulse train 

to the pulse input of the amplifier. The period of this pulse 

train determines the sampling period. C35 is a comparator which 

compares the two input voltages (at C, and Cy). Since the in-= 

put. Cy is kept at zero potential the voltage at C, is compared 
1 

‘with zero level. The output of the comparator is connected to 

relay R35 in such a way that R35 is operated when the potential 

of point Cy is positive, and released otherwise. In other 

words the output of the modulator (m) is 10V when w>O and 

OV when W§i0 

Typical waveforms at various points of the modulator cir- 

CuULt arewshown. ine his, 27). 3. In this bigure- x is the input 

voltage to the modulator. This voltage becomes the staircase 

voltage, y, after passing through the two inverters (Al6 and 

A23) and the sampler-hold of the track=store amplifier A23. 

Note that during the n-th sampled period the value of y is 

  

os ence 

*A somewhat similar circuit was described by ebson= >.
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constant and equal to x,, where x, is the value of x at the 

n-th sampling instant. The voltage, y5>as added to the itera 

angular voLeank: U;cand the sum, u + ys is denoted by w. The 

pulse train is obtained from w in such a way that m = R when 

w>0O and m = 0 when w< Of Tt is.clegs from fi9; 7  3ctheat che 

pulse train so obtained is pulse-width modulated according to 

the modulation law shown in fig. 7.4. It°1s also @¢vident from 

figs. 7.1 and. 7.3 that the circuit of fig. 7.1 performs the 

pulse width modulation as shown in figs. hed Ond 1/6 “2 the 

actual experiment R was 10 V and E was 1 V. 

lee ANALOGUE SIMULATION OF THE PWM CONTROL SYSTEM 

7.3.1 Actual process variables and their analogues 
  

In this analogue simulation all process variables are 

presented by their analogues. The usual dependent analogue 

vatieble is voltage,. All. quantities will be de eecehees by 

voltages or by voltage ratios (gain or attenuation)... tani, 7.1 

gives the relationship between the actual PWM control system 

variables and their analogues. 

  

  

Table 7.1 

VARIABLE UNITS EQUIVALENCE 

| Actual | Actual Analogue 
Process Analogue 
  

8 (output temperature) 
F (runaway temperature) -. V 10°C Lg 
Oy (command) 

« 

b 2Cbt as.) 
m (pulse height) ~ V 1 iV. 
x (modulator input) 

i k (modulator gain)* Lye ~ 1 a Le 
C 

Sere ecteetocerrecame oe 

*In the actual process b,m, and x may be represented by 
voltages, in which case the units of k become VIPS, 
Units for analogue quantities will remain as given in 
tablie 6.1.
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7.3.2 Description of the circuit used in simulation 

The analogue computer diagram for the simulation of the 

PWM control system is given in figs 7.5. This. simul ation was 

realized using an EAL 48° Hybrid computer, Dhe simulation. c#reui& 

utiliees 22 amplifiers, l-track=store amplifier, i. comparator, 

1 relay and 6 potentiometers. Four additional devices were 

used: 2 oscilloscopes, 1 x-y recorder and 1 oscillator (servo- 

mex PF 51). The numbers for amplifiers, comparator, relay and 

potentiometers in fig. /.5 correspond to the actual element 

numbers on the analogue computer. 

The value of F was kept constant at 10 V (100°C). The 

command, Gs was obtained from P55, and could be adjusted bet- 

ween O-and 10. V.(¢O and 100°C). All amplifiers in the circudst 

had unity gain except A34 (and A31). The gain of A34 was either 

I 7Or4L0, depending-on the position ofsswitch Sil. The modulator 

gain, kK was represented by 

I G nee Ps aioe 

where Gs, is the -agbsolute walue of the. gain of A344 Ceither aor 

10), and Log is the dividing ratio of P28 (adjustable between 

GO and 1)... Thus, the quantity G could have values between 
34128 

O and 10 which corresponded to actual k values between O and 1 

oO 
£PACS 

Bias was obtained from P15 and P16. The voltage at the 

movine contact of Pi6 was: 

Bo => LO. Xr volts 
15,16 

where “15 16 is the dividing ratio of P15 and P16 in cascade. 
> 

where r and Note that because of loading T1516 # Tr5 "16? 15
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"16 ane ratios of P15 and P16 respectively. The ratio T1918 

could be adjusted between O and 1, therefore the output of the 

P15-P16 combination was between O and 10 volts which corres- 

ponds to actual bias values between 0 and 10. Since we did 

not need actual bias values braete# than 1, the P15 setting 

was kept constant at Ti5 * O.l and the fine adjustment of the 

bias was achieved by adjusting P16. 

Potentiometer P40, together with the triangular voltage 

source and A32 supplied the sweep voltage u. The amplitude 

of the triangular voltage (setting on the external generator) 

and the setting of P40 were adjusted to obtain the waveshape u 

as “shown at. the output of A32 in fig. 7.5; and then were kept 

constant, 

It is important to observe that the pulse input to the 

track=store amplifier (A23) and the triangular input to A32 must 

be of exactly the same frequency, and they must be in phase as 

shown in fig. 7.5, This necessitates use of a single generator 

giving both voltages. 

Implementation of time delay 
  

There are various methods to simulate time delay on ana- 

: ‘ d 43,46 logue computers. One method is to use Pad@ approximants e 

Another method is to use a tape recorder with spatial separation 

of record and playbackiheads. If the Signals to be delayed are 

pulses, monostables can be used to obtain delay. The simplest 

method to obtain approximate delay is using a network with an 

n-th order pole, so that in s domain: 

ee rie Bn ace (21)
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We know that the above approximation becomes better as n ine& 

creases. Qn the analogue computer the right hand side of 

eqn. 7.1 is equivalent to n cascaded first-order systems with 

equal time constants (T, = J /in,) 6 Since-cthe overall cain, of the 

Chain ds owe it is desirable to choose m an even number so 

as to obtain a gain of 41. Among the considerations on the 

choice of n are the available number of amplifiers and the 

noise present in the system. For the simulation described in 

this work a value of n = 10 was used. When switch S3 is in 

ND position the amplifier chain is bypassed so that there is 

no delay in the plant. ~‘When.S3-is in*D gsosition, the delay 

becomes effective. 

Computer time versus real time 
  

As indicated: im fi¢.7 7/25, 7 denotes the timerconstant .of 

the’ plant (Al0O, when S2° 49 in ‘position A=A‘'), t, denotes the 

sampling period, Ty denotes the time constant of each indivi- 

dual first order network in the delay chain. While doing 

measurements and taking photographs a fast computer time is 

preferred, on the other hand while plotting on the x+y plotter 

slow computer times must be used because of the slow response 

of the x-y recorders. Therefore two different computer times 

were used, For measurements and photograph taking 1 minute 

real time —»+1 msec computer time equivalence is adopted, where- 

as a computer time which is 1000 times slower is used for plot- 

ing on the x-y recorder. The procedure to set the time con- 

stants is described bellows 

1. M = 0 (no delay, $3 is in position ND) 

ae Given @ (f = t./T) 

be. T = 50 msec. for measurements (mode A) 

50 sec. for plotting (mode B)



ae 

Cs et @.T (set on the generator) 

De, * 0 (delay, S53 is in position’ D) 

a. Given @ and 

be. L = 10 msec for measurements (mode A) 

10. sec. for plottins (node.B) 

Csi. since nes !O svoonstant.. set z = 1 msec. (for 

measurements) or ios l. sec ; (for plotting). 

Geo Find t Se row te L/p = 10/p msec (measurements 

sec (plotting) 

and set the generator’ to this Ci. 

Ge «Find: Ttreg T = t./O*and. sett to *thiscveatue, 
s 

For both cases 1 (no delay) and 2 (delay); 

1 msec computer time for measure- 

ments (mode A) 
1 minute real time ———— 

lL secvconmputer time: for plot tine 

(mode B) 

Some typical examples are given in Table 7.2 

    

  

  
  

Table /#. 2 

Mode A Mode B 

¢g Ui C. b TF T S ty ee fy 

msec sec 

6.2) 0.245 S sh 10 - A. ie 

ous 0% as “ eas 25 a a5 oo 

a oe 16%a 2 to 10 to. “ide 50 

0:8 2 5 io 3825 5 10 3. bas 

OF 9 a el ye tae 5 6h es Ao 

It is seen from the procedure above that to simplify 

the operation some standard values were adopted, e.g. T = 50 

msec in case 1 and L = 10 msec in case 2, Since the performance 

criteria of the eystem depends on Co/T and ‘not :on“tyeand T
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separately, the above procedure does not impose any limitation 

on the generality of the experiment. Also, as seen in table 

teas LOT moses 3 (plotting) long time constant are required. 

Since the longest time constant available on the computer was 

1. second, the branch which consisted of AZO. ASles POOmwand A4, 

Was added’ (fig.°7.5)s For this branchs 

Vee" 
. a ey l 2) Vp Pacers 

  

where T' is the equivalent time constant of the branth.. +16 eee 

be shown that 

    

ry T = G7. 3) 
“3150 

where Gay is the absolute value of the gain of A3l1 and Peg 

is thé Tatio of P50. Inthe €feenit used CG.) = 0.1 and 

T) = 1 sec. Therefore: 

10 
pie sec G72 Gy) 

« te 

50 

when a plant time constant larger than 1 see was required switch 

Ss, was put in position B-B' and the required time constant was 

obtained according to eqn. 7.4 by adjusting P50. 

7.4 EXPERIMENTAL RESULTS 

  

LeGe Practical considerations 

The following practical considerations are worth mention- 

ing?
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1. Since a relay was used in the circuit, the computer 

time was chosen slow enough for the relay to 

follow the operation of the system, 

2. The oscilloscope rise and fall times were very small 

compared with the time intervals involved, therefore 

exact waveshapes were displayed. 

3. Since the comparators on the analogue computer operate 

on the sampled-data principle it is important to have 

a yery Weh samplings rate Cat least 50 times larger) 

for the comparators compared with sampling rate of 

the system, 

4. The time~properties (slow response) of the x-y re- 

corders necessitated the slowing down of the computer 

rime, this resulted im the exact. tracins of the wave 

shapes. 

5. For plants with delay the period of oscillations usuall: 

is not an integer multiple of the sampling interval. 

Therefore, since the triggering is obtained from the 

same generator which supplies the sampling pulses, 

the oscillation pattern (output waveshape) and the 

triangular vol€ate (voltagery in fig...7.3)° meve with 

respect to each other onthe oscilloscope screen. 

Becausecof “this, photographs should be taken by using 

the single-sweep facility. Fieure 7.8 and: 729 were 

taken using the single-sweep facility. 

  

1.4.2, Qvalitative wvesults 

Plants without delay 
  

The existence of lin-sat and sat-sat oscillations are 

verified. <A careful experimentalinvestigation confirmed that: 

a, Lin. oscillations are not possible
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b. Sat-sat oscillations of mode M-N, with both M and N 

different from 1, “are not possible. 

Analogue simulation, therefore, provided an experimental 

verification of the assertions of chapter 6 that lin oscillations 

and sat-sat oscillations as in b above do not occur. The types 

and modes of oscillations were monitored from the waveform of 

me. For example, the 3-1 nature of the oscillations can be 

clearly seen from the m waveform in fig, ee 

The existence of zones and the fact that the critical 

gain for any particular mode of sat-sat limit cycling passes 

through a minimum and becomes infinite at zone boundaries teas 

it is impossible to maintain the oscillations) were verified. 

Also verified was the fact that the ZOneS, Critical. cainc- cto. 

are dependent upon B (@y/F) and Ott ./T) and not upon OF rigs 

andi: T, 

Plants with delay 
  

The experiments on plants with delay also verified the 

theoretical results given in chapter 6. The n-th order pole 

approximation to delay (with n = 10) proved to be a simple and 

sufficiently accurate approximation. One of the outcomes of 

the experiment concerned the saturated limit cycles. (Lt was 

found that. in contract to the nosdcelay case, it was possi ble «ror 

the system to have M-N mode limit cycles with both M and N 

different from 1. ft seems that the system.goes into an. M—N 

limit cycling where M4#N is the nearest integer to ty ft, where 
sc 

iE is the period of non-saturated oscillations. For example, 
osc 

With= aol (1 = to); fc re. was about 5.5 whereas the period 
osc 

of saturated cyclin was found to be 6. The value of the 

p (0 ./F) dictates the M/N ratio. For fp = 0.5 (0, = F/2) 

M = N, and this explains the tendency of M+N to be an even
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number. For M + N = 6 there are 5 possible saturated Limit 

cycling modes: 5-1, 4-2, 3-3, 2-4, and I-5, Therefore, it is 

logical to divide the range of pias of p (o< B < J) auto 

5 zones, the largest being 3-3 zone, centered around ps 0.5. 

Experimental study supported this argument. 

7.4.3 Quantitative results 
  

Two sets of experimental data are given in tables 7.3 

and 2.4. The corresponding theoretical values, found from the 

equati ; E ap are included for comparison. 

Debs e263 

Experimental and theoretical values of CriVtioal ca tns 

Oy 20m 0.6.2 (t, = 10 msec, T = 50 msec) 

  

  

    

a B OscdlTeectart at sateSat Oscillations 

(v) (Fk) OsciFlcewstart at 

(Fk) 
BD Theor. Mode Bits Theor. 

5.00 0.500 LOS 1Q3,03 1] dO) 10.03 

6.90 0.690 10.5 10.03 2-1 18.0 16.77 

1 2G 06.788 LOwt 10.03 3-1 26.0 25.00 

8.47 0.847 10.0 10.03 4o1 37.0 35.05 
8.86 0.886 10.6 10.03 5-1 49.0 41,33 

I. 5 0.913 10.5 10.03 6=1 65,0. S2e393 

foe 10°v (oo 0); b = 6 /F



Table 7.4 

Experimental and theoretical values of critical gains 

Le8:30),3:0: =" 0. (t, = 25 meec, T= 50 msec) 

  

  

  

Oscill. start at sat-sat oscillations 

8, (Fk) oscill.start at 

(v) 6 se Exp. Theor. mode exp. ~ theor. 

D200 0.500 4.2 4.08 1-1 4.2 4200 

ono Or. 71256 4k 40S: = 2—1 8.0 8.4127 

8.43 02043 Gy 4.08 » ael Et Pols 

9.08 0.908 4.1 4.08 4-1 21s 26.457 

Oat Os745 4.1 4.08 5~1 46.0 45.35 

Die Ox. 0.967 4.1 4.08 6—1 THe Oe 30 

F = 10 Vv (100°C), b = 0,/F 

It is seen from tables 7.3 and 7.4 that the. experimental 

results for the stability boundary (start of oscillations) corre- 

spond closely to, the theoretical values. The theoretical values 

(10.03 for # = 0.2 and 4.08 for @ = 0.5) are found from eqn. 

6.89. 

Experimental values for sat-sat oscillation boundaries 

are slightly higher than expected. The reason for this differ-~ 

ence is explained below: 

The command values in the first columns of tables 7.3 

and 7.4 correspond to 5: values (the value of fs where the 

sat~-sat gain boundary attains its minimum) as given hy eqne 6.70. 

It is clear from figs. 6.10-6.13 that the gain boundary has a 

large slope throughout the zone. The significance of this 

large slope is that a small change in p Cive.-.in GJ will 

cause a large change in corresponding critical gain. From 

equsy 6.63, 6.66, 6.67, ° 6.68,.6.70 and 6.72 it: can be shown
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that the slope of gain boundary at p a Px i for an M=l zone 

is given by; 

f oO etd + Kee sD 

o .- 2 ° “ : where Fk Me1 denotes the critical gain at po B yey AM a siven. 

M-l -zone. Note that the values listed in the last columns 

ef Cables 7.3 and 7.3% correspond to Fk® For example, if M-1° 
®@ = 0.5 and M = 5, corresponding to the fifth line in table 7.4, 

the slope of the gain boundary curve at B simi = 05945 36 

+ 46.35, which simply means an error in the setting of 8 (0 /F) 

will be amplified into a gain (Fk) value 46 times larger. 

The experimental results related to the system with delay 

are ‘given in tables 7.5, (0s and 7.7 

Table #5 

Oscillation conditions, m= L/t. wt, 2 =. talk &. 068 

Oscillations 

  

Start at Fke Period(t.___) Saturated Oscillations Or if (Tr) ae Experimental 
(v) EXp:. thie. Exp Exp... 3 Mode Starts at Fk = 

  

L=t = 10 msec,) T= 50 msec, F=10¥V (lo0- Cc). 

Seetdemitemeneeeteemnaetineemtee 

. see fie, 778 
2 From the example in section 6.3.4
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Table 7.6 

Oscillation conditions, y= L/t. =~ 7, 9 = ie ma. Oc 2 

Oscillations 

9 p Start at Pke= Period Ct ) Saturated Oscillations ic asec 
4 

(Vv) Exp thee 2 bua ) The. Experimental 

5 oe See Oe OO 8.5t, 8.6t, 4-4 mode for large gain. 

7 aL 5.45 3.010 8.5t. 8.6t. 

= LO msec. Coe 5 msec, [ ='25 msece Fr = LO V (100°C) 

Table: 7.4, 

  

      

Oscillation conditions, 4 = L/t, 58 Ose 0. erat fel eee. 

ts ie u T Op if) Oscillations Approximate 
ane he gare Startéat .Fks Period Rte a) 

sec msec - msec V ~ Experimental Experimental 

aa 53 10 3 10,8555 - 02.5 Bo tte 

Seno lo 30) 16565? 8 90.88 3.10 11.2t. 

2 30 10 4 1275 2, 05 3.05 L3G. 

750 10. BAe to Sey By oe 2.60 13ts 

2.00 10 5 10 DO. oD 2.70 Le. Ste 

2.00 1o 5 10 S). Oa8 1.80 15.5t. 

  

o { 

Eat 3 VV CLOO C)y. be oe 

  

ioe rrom fig. 60.35 
D> 6S6e fig. 1.9



  

Fig. 7.6 

Output temperature of a stable (curve a) and 

2-1 cycling (curve b) PWM control system. 

F=10 V, t =10 msec, T=50 msec, L=0. 

curve a: k(actual system)=0.01, Res = 6:59°V. 

curve b: k(actual system)=0.19, 0. ="6.3:-V.. 

Horizontal axis: One period of the triangular 

wave is 10 msec. 

Vertical axis: 

curve: a <:max = /233 V;. min *= 6.02. V. 

curve’b * max = 6.82 V,~ min) = 6.33 V. 

No
 

J
 

u
l



4)
 

t
y
 

=
~
 

a 

AAA LALL LAL LLL jf 0 

  

DUS C57, 

Output temperature (curve a) and m (curve b) 

for a 3-1 limit cycling system. 

F=10 V, t.=10 msec, T=50 msec, L=0, 0 = 7.88 V; 

k(actual system)=0.3 

Horizontal axis: One period of curve b is 10 msec. 

Vertical axis: 

curve a: max Soae Ve 9 min 

curve b : max =10 Veo ee man 

H.00 Vv. 

QO V. 

il i 
i I
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Oscillations in the presence of delay (L=t_) 

F=10 V, t_=10 msec, T=50 msec, L=10 msec , 
3 

T=1 msec, 0 =5 V, k(actual system) = 0.07 . 

Horizontal axis: One period of the triangular 
wave is 10 msec. 

Vertical axis: 

Output voltage; max = 5.95 V, =min = 4.0 V. 

It is seen that to. oe te 
sc Ss 

ne



  

dg eu) oo 

Oscillations in the presence of delay (L=2t.). 

F=10 V, t= msec, T=25 msec, L=10 msec, 
e 

Lal msec, 0-5 V, k(actual system)=0.0455 

Horizontal axis: One period of the triangular wave 

is 5 msec. 
Vertical axis: 

Output: yvoutages “max = 6.2, V, .min = 3./1-V. 

It is seen that t So.) t's 
osc s
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Fig. 7.10 

Comparision of PWM control with open loop control. Curve a: PWM system output. F=10 V, T=50 sec, 
L=0, 9,=8 V, t,=10 sec, k(actual system)=0.05, b=0.8. Curve b: Open-loop system output. F=10 V, 

T50 sec,L=0, 0-8 5 a sec.(corresponds to the above PWM system with k=0). C
E
B



2.4.0 

_From tables 7.5 and 7.6 it is seen that the experimental 

data are in close agreement with the theoretical results of 

chapter 6. 

Four photographs are given in figs. 7.6-7.9. The first 

photograph (fig. 7.6) shows the output temperature for a stable 

(curve a) and a 2-1 limit cycling system. The triangular wave- 

shape at the bottom is the sweep. voltage u, it is added to the 

photograph to indicate sampling periods. 

In fig. 7.7, system output (curve a) and m (curve b) is 

shown for a 3=l Limit cycling a ge 

In fig. 7.8, Oscillations in the presence of delay 

(L = ts) shown, It is seen that the period of oscillations is 

a0 5 ta 

In fig. 7.9 oscillations for larger delay (L = 2 C.) are 

displayed. The period of oscillations is seen to be 8.8 tes 

whereas theoretical investigation indicated 8.47 fe (see 

example In section 6.3.4 and fig. 6. 33) 

In figs. 6.32 and 6.34 two plots obtained using an x-y 

plotter are shown. Another plot shown in fig. 7.10 provides a 

comparison between open-loop and PWM control systems. Curve a 

in fig. 6.10 corresponds to PWM control. As was stated 

before, PWM systems operates on on-off basis in the start-up 

period thereby giving a short (in fact optimal) start-up period. 

On the other hand, asjit is seen from curve b, open-loop control 

results in considerably longer start-up times. 

7.5. SUMMARY 

In this chapter methods for the analogue simulation of 

PWM control systems are described, and the corresponding diagrams 

are given. Practical considerations concerning the simulation 

are also discussed.
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The results obtained by analogue simulation were found to be 

in complete agreement with the theoretical results, as well as those 

obtained by the digital simulation.



GENERAL CONCLUSIONS 

Individual conclusions have been Summarized at the end 

of each chapter. Here the general conclusions of this study 

are given, 

ie 

26 

A full analytical investigation of the on-off control 

systems has been given. This analysis applies to the 

general case of mode dependent electroheat processes 

with transit delay which are controlled by hysteretic 

controllers. It therefore represents a considerable 

advance on Roots and Woods ~ which was restricted £o 

ideal controllers. 

Open=loop control methods have been examined as a 

preliminary to indirect and PWM control, 

Digital simulation programmes for on-off and open-~ 

loop control systems have been developed. These pro 

grammes are applicable to processes with any transfer 

funetion given analytically, with or without transit 

delay and controlled by hySteretic or ideal controllers. 

Indirect control has been proposed and examined in 

depth. ft has been shown that with a suitable choice 

of the model parameters the performance criteria can 

be substantially improved. Material to facilitate the 

ee



24.3 
design of such control schemes has been included. 

Pulse width modulation (PWM) control has been tho- 

roughly studied as an electroheat control scheme for 

the first time. An analysis of PWM control systems 

has been given. This analysis is based on state 

space approach and hence can ecasily be extended to 

higher order systems. 

A digital computer programme for the complete simu- 

lation of PWM ea systems has been developed, 

This programme serves the double purpose of being a 

powerful tool in the analysis and design of PWM con- 

trol systems and as a method of checking the analyti- 

cal results obtained for such systems. This programme 

comprises subprogrammes for the simulation of; 

(a) processes with or without transit delay 

(b) systems incorporated with various PWM laws 

(c) systems subjected to various forms of dis- 

turbance. 

The programme given has been developed in such a way 

that on-off, open-loop, and multiposition (quasi- 

continuous) control systems can be simulated by 

treating them as special cases of PWM control. 

The most important aspects of control systems, sta-~ 

bility criteria and non-oscillatory response criteria 

have been developed for PWM electroheat control. 

An exact analysis of limit cycles in PWM electroheat 

control systems has been presented for the first tame. 

This represents a considerable advance beyond the 

existing work dm this a rea. The previous results 

have been restricted to approximate methods or were 

unsuitable for application to electroheat systems.
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DIGITAL STMULATION PROGRAMMES 

Ael INTRODUCTION 

The programmes developed for the digital simulation of 

on-off, open-loop, and PWM control systems are given in the 

following pages. Programmes developed mainly for calculation 

purposes or alternate forms of the simulation programmes are 
~~

 

not included, All programmes are written in FORTRAN language 

suitable for PDP=9 computer (8k memory), and run through the 

department computer (PDP-9). 

For each programme basic information such as class, 

purpose, subprogrammes used, basic variables, and data to be 

supplied are given. Flowcharts are included for two main 

programmes. 

References are given to the relevant sections and figures 

Of the’ text. 
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A.2 BASTC INFORMATION 246   

ONOFF 4 

Class: Main programme 

Purpose: Simulate the on-off control system shown in fig. 361 

Subprogrammes used: 

tl. H(T): A function subprogramme for the step response 

of the plant. (One of STEP 1, STEP 2, STEP 35 

2e- SPLOTG: Subroutine for printing and plotting (see SPOTS) 

Flowchart: Figure A-l, 

Programme Listing: Figure A-2. 

Variables in the programme: 

  

Fortran name Meaning 

Er tf time 

K i counting index for on-off periods 

Caée. £166 3.11) 

J counting index for time inter 

Vals Co .At)s. 

TSK) 2; switching instant (fig. 3.11) 

U 1-MOD(K,2) U = 1 means on, U = O means off, 

Zz 9 output temperature 

Data to be supplied: 

  

Fortran name Meaning 

R 0. 

HYS T ho 

DELT At (step length) 

START time value at which plotting 

starts 

SCALE yeaxis scaling for plotting 

NN NN = O means print 

= 1 means plot



Fortran Name Meaning 2.47 
  

bd skipping ratio (see sect. 3.5.4) 

Comments: This programme uses the method described in 

sect. 325. Examples of output of ONOFF are given in 

Site: 3.10, 94900 910 27.1% and 4. 0S, 

OPLOOP 

Class: Main programme 

Purpose: Simulate open-loop control system 

Subp rogrammes used: 

1, H(T): A function subprogramme for the step response 

Of the plant. (One of “STEP Ty. STEP 2; STEP 3). 

Ze SPHOT4G*= Subroutine a printing and plotting (see 

SPLOTS) 

Programme listing: Figure A-3 

Variables in the programme: 

  

Fortran Name Meaning 

TQ tq period 

TE te time 

N n period counting index 

M M = even: offs «M° = odd: ons 

R 68 output temperature 

Data to be supplied: 

rQ ty on time 

ap tp off time 

DELT At step length (time increment) 

NN NN = O02: “writes NN’ «ct: plot. 

SCALE yeaxis scaling in plotting 

Comments: This programme uses the method described in sect, 

4o02e3. Examples of Output of .OPLOOP are given.din figs. 4.9,



4510, 4e1 

PWMSYS 

af 
6 Clas Ma 

Purpose: 

bath 

1 sand Gel. 

246 

programme 

PWM control system shown in fig. 5.8. . 
tne Simulate 

Subprogrammes tsed: 

1, 

Se 

Flowchart 

Pyogramme 

Variables 

n(x): A funetion subprogramme for disturbance. One 

of FUND, FRAMP2, FSTEP2, FSIN 

SAT(X): A funetion subprogramme for control law. One 

of FUNSAT, SATN2, SATNIO. 

SUBMUL: Subroutine for matrix multiplication, 

SUBLAG: Subroutine to introduce transit delay. 

SPLOT5: Subroutine for printing and plotting. 

wh Aude . 
+ Figure 

listing: Figure A-5. 

in the programme: 

  

Fortran name Meaning 

PO ?, 

Pl b> 

B By 

Vv v(nt.) 

U VisGni Bede 

RY 
Zz v(nt 2) 

PST v 

BIAS 

GAM 

Data to be supplied: 

Fortran name Meaning 
  

TQ ts 

TAU T 

H k



Fortran name Meaning 
  249 
el F 

R aie 

xO 85 

MU | u 

SCALE Scaling factor for the y-axis 

NV, NU 0,0 means print V-and.U, 

O,-l1 means print V only, 

1,1 means plot V and U 

(see comment 5° in sec. 5.4), 

1,-1 means plot V only 

(all plots displayed in this work have 

been obtained with 1,-1). 

Comments: This programme uses the method described in sec.5.3.3. 

For, further explanation see. sec. 5.4.. Examples of. output of 

PWMSYS @¥@ Given in fies. $615, 3e0ee os a, 6431, 6.35, ° 6.56, 

and Ce OW. 

STEP] 

Class: Function subpro gramme 

Purpose: Evaluate the step response of the yer order system 

with transfer function F exp(-s DL)/(1l4s TC) : 

Function reference: H(T) 

Programme listing: Figure A-6 

Common Statement A ee COMMON “14: Le must be set to.0 beens 

the first encounter of function reference, and it must be 

set to l immediately afterwards. 

Data to be supplied: F, DL, TC = system parameters. 

STEP2 

Class: Function subprogramme 

Purpose: Evaluate the step response of the secondorder system



1 4. 372 E/ Clee s' T))() 4 Ss. 22) 250 

Function reference: H(T) 

Programme listing: Figure A-/7,. 

Common Statement required: Common L (see program STEP1) 

Data to be supplied: F, Tl, T2 ~ system parameters. 

Comment: Tl and T2 must not be equal. 

STEPR3 

  

Class: Function Subprogramme 

Purpose: Evaluate the step response ne a distributed lag system 

whose transfer funetion (in s.domain) is7 7F exp(= WSSB). 

Function reference: H(T) 

Subprogrammes used: SURFRF 

Programme listing: Figure A=8. 

Common statement required: COMMON L (see programme STEPI1) 

Data to be supplied: F, B: system parameters. 

SH RERE 

Class: Function subprogramme 

Purpose: Evaluate error function of a real argument, 

Function reference: ERF(X) 

Programme listing: Figure A-9. 

Method of pack taken: Brror funetaon is pal cul at®e according 

to the polynomial approstvarina: 3 

erf(x) = 1 ={Ay + By? + cy? exp (=x) 

where y = 1/Gi.4 px) 

p = 0.47047 

A = 0.3480242. 

B = -0.0958798 

C = 0.7478556 

=5 
he absolute value of the error is less than’ 2.5 °- 10
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Class: Subroutine subprogramme 

Purpose: Plot or print of up to three dependent functions (B, 

C, D) of one independent variable (A) 

Calling sequence: SUBROUTINE PLOT (N24 BAe. C. OSCR. 

Description or Pe ge 

N: determines printing, plotting or skipping modes 

O print values of ABYC. and D. 

l plot 

-l skip (neither print nor Pots 

I: selects the variables to be plotted (immaterial if N#l). 

plot: only. 8 

o -prot Sand C 

a PAOL By 0. eng. D 

4 - plot 8B .and.D 

K: £lag to read data. Set K = 0 in the first call, and 

K=l in all subsequent calls (immaterial if N#l). 

A; independent variable 

B,C,D: dependent variables 

SCALE: scaling factor for the y-axis. One division on 

yeaxis equals SCALE. 

Program listing: Fieure A=-40, 

‘Data to be supplied: 

BLANK = blank ( ), 

DOT26 dot (.7, 

STAR,PLUS, EKS = plotting symbols for B,C, and D, respect- 

ively. 

PRIME = primeC'), 

HYPHEN ~ hyphen (=), 

Comments: In this work, SPLOTS is used in conjunction with PWMSYS. 

A slightly different version of SPLOTS has been used with



Coe 
all other main programmes. his programme, SPLOTA, does 

not indicate time values on x=axis. - To obtain SPLOTG 

from SPLOTS the following changes should be done: 

1. Delete 7 lines between statements 350 and 950 (inclu- 

sive). 

wm ° Ingert; instead of deleted lines: 

350 WRITE? C2, 203) TINE 

203°.. FORMAT -C1X57OAL) 

LCOUNT = LCOUNT-+.1 

SUBMUL 

Class: Subroutine subprogramme. 

Purpose: Multipy two matrices A and B (each up to the order 

LO x10) 

Calling sequence: SUBROUTINE MLTPLY (A,B,C,M,N,L) 

Description of parameters: 

At matrix of order MxN 

Bé matrix of order Nx L 

C: result’ of the multiplication AB 

Programme listing: Figure A-\l. 

Comment: . M,N, and L must be equal or less than 10. 

SUBLAG 

Class: Subroutine subprogramme. 

Purpose; Shift .a sequence of numbers stored in a one dimensional 

arrayo 

Calling sequence: SURROUTINE DELAY (A,MU) 

A: the number to be shifted 

MUS amount of Shitt (Og), 2,66. ) 

Programme listing: Figure A-\2. 

Common statement required: COMMON ICOUNT 

ICOUNT must be set to 0 before the first call, ends it



aoe must be set to 1 immediately afterwards. 

Comment: This subroutine has been used to introduce transit 

delay into the PWMSYS program, by shifting valucs of 

GAM ( USE MU, then, equals uw. SUBLAG must be used 

with FUND. 

FUNSAT 

Class: Function subprogramme 

Purpose: Evaluate saturation funetion (fig. 5.6) 

Function reference: SAT(X) 

Programme listing: Figure A-|3 

Comment: FUNSAT is used with PWMSYS as the modulation law. 

SATN2 

Class: Function subprogramme 

Purpose: Evaluate the function displayed in fig. A=l5a, 

Function reference: SAT(X) 

Programme listing: Figure A-\I4 

Comments: SATN2 is used with PWMSYS as a modulation law. It is 

evident from fig. A-l5a that this function is a rough 

approximation to the three level control law of fig. 5.76 

A better approximation has been obtained by using SATNI1O 

subprogramme which evaluates the function displayed in 

fig.e A-15b. To obtain SATN1O from SATN2 the following 

change should be done: Replace statement N = 2. by N = 10, 

In fact any even value can be assigned to Ne 

FUND 
meen non 

Class: Function subprogramme 

Purpose: Assign D(X) = 0 

Function reference: D(X). 

Programme listing: Figure A-l6,



2.54 

Comment: FUND supplies zero disturbance to the prozramme 

PWMSYS. .A Sih coaeene i's used (which may seem unnecessary) 

to achieve flexibility in obtaining various types of dis~ 

turbances (sce FRAMP2, FSTEP2, FSIN).» Examples of PWMSYS 

using FUND are given in less 386, 6.96 and 76; 31. 

FRAMP2 

Class: Function subprogramme 

Purpose: Evaluate the function D(X) = 0.05X 

Function retevcdee) DCX) 

Programme listing: F;gure A=-\7 

Comment: FRAMP2 supplies a remp disturbance to the programme 

PWMSYS. See figure 6.37 for a display. The slove of the 

ramp can easily be changed by changing the statement 

D = Xy0-205 accordingly. 

Pole 2 

Class: Function subprogramme 

Purpose; Evaluate the function D(X) = A u(X = TW), where 

u(t) is unit step function 

Function reference: D(X) 

Programme listing: Figure A=t8 

Common statement required: COMMON T 

T must be set to O before the first Fetetence ta D(X), 

‘and it must be set to a value other than O immediately 

afterwards, 

Data to Be supplied: 

A: magnitude of the step function 

TW: time instant when the step function is applied. 

Comment: Two examples are given in f4e8..So15 end 6,35.



a et 

FSIN 

  

Class? Funetion subprogramme 

Purpose: Evaluate the funetion D(X) = A = B cos( % CX) 

Function reference: D(X) 

Programme Listing: Ficure A~ |9§ 

Common statement required: COMMON T (see FSTEP2) 

Data to be supplied: 

A, B, C: parameter values for the D(X) function. 

Comment: An example is given in fig. 6.36. 

A.3 FLOWCHARTS AND PROGRAMMES 
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READ DELT»RsHYST»STARTs SCALEsNNoa JJ 
READ THE PARAMETERS OF THE PLANT 
K=A3 T=9-@ 

RPLUS=R+HYST3 RMINUS=R-HYST 
Z=HCT) 

J=33 U=1-90     
        

T2START     T<START 
  

  
  

      

     

WAREDS is Zs PEOT= she Zo U 
          

  

  

       Z<RPLUS %42RPLUS Z<RMINUS Z2>RMINUS    

    

  

  

K=K+1 

TSGK) =F —— 

T= TLADELT 

J=J+1 

  

      
  

        

  

; ¥ 
FIND Z 

CEQN.e 3444)       

  

   

    

  

T2START eS) SDA RCL 

e-   
  

  

   INGEGER 

MUL GLPLE 

OF Jee 

U=1-MOD(CKs 2) 

  

    

  

        
    

Wits oles PLOT hea U 

Y y 
Fig. A-l Flowchart-Programme ONOFF 

    
      

    —t



LUD 

90 

11 

74 
D4 

39 

39 

49 

59 

94 

DAMEN STON: EoiC50 > 

COMMAN. 

READ 3C),115) DELTSRSHYSTs STARTs SCALESNN; JS 

RORMAL GaGe7. 392%). Tis el X> 13) 

Pr=0..0 

B=0. 

Z=aHteT ) 

Joral 

4=9 

H=1.9 

J=9 

RPLUS=R+HYST 

RMINUS=R-HYST 
<k=9 

LE Chel sst antl) G)219: 90 

N=NN 

CALVERT 8ON 25. X<Ks Tes 25.75 SCALE ) 

KK=1 

Lee (MOD Chae EO. 1G) 1D. Sso 

Peete. Give thio) GO. if) 40 

T=T+DELT 

J= I+] 

Z=HiGE) 

The Ghee 2) G)..19. 29 

DD Ep Ms.) 5% 

Q=C-12.9)**M 

7=24944(T-TSOM)) 
Ee Gis | teorandi) G). 1)750 

N=NN 

MOD J=MIDC Js JJ) 

FE-aACMaLD: Je NED) N==1 

=1-MIDC%,2) 

GOEL OT CNS 2s KKs £57515 Zs SCALE) 

GIBTO «14 

Lie CZ. Ole RM INUS 9G) ED 15 

K='K+I 

TSCK)=T 

Grae ts: 
N=-1 

G92.19:'.39 

N=-1 

Git) 95 

END 

Fig. A-2 Programme Listing - ONOFF 

i
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nh 

oS 

49 

ae 
Ox 

79 

ae 

COMMON L 

READ (1581) TO»TP»DELT»s NN» SCALE 

FORMAT. G3 CE5<102X%0> Ilo eXs P53) 

T=9.-0 

M=1 

TQ=TO+TP 

K=9 

L=A 

RSHCT)D 

L=1l 

CAEL PLO RUGNN o25K3 To Roiks Riso CALE ) 

Kal 

sie Diels 1: 

tes GP GE. 10): GO. 19° 36 

GO 210 -29 

Ma 4+] 

LE ACM. GE Coe) sO TOF 

N=(€M-1)72 

AN=N 

B= CAN+1.29)*T9 

R=4.9 

T=N+1 

DD 43 J=1,I 
Ak es J= 13 

R=R+HCT-AK*#TQ)-HCT-TO-AK*TQ) 

G MoPilO 13ONMe d's Ks do Rh o-Roks SCALED 

TST+DELT 

i Cite Giue BPwGo lO. O06 

G9 102735 i 

M=aM+1 

N=(M-1)72 

AN=N 

C=AN#T9+TO 

R1=0-.8 

T=N+1 

DA 68 Ja 15.1 

AK= > J-1 

RI=RI+HCT-AK*TQ) 

R2=0-9 

DO 18. Jalen 

3 

AK =Jn1 
RQsR2+H (T-TO-AK*TQ) 
R=R 1- R2 

CALL PLOT (NNs sks Ts8sRsRs SCALED 
TeTf+DELT 

ite G1. Gis GO" 10. 36 

Got) 

END 

Fig. A-3 Programme Listing - OPLOOP



  

  

READ TQsTAUsHs FGs Rs X6»MU 

N=0 

T=3 0B 

INITIALIZE. V 

WRI DE: hs VC 2s 1 De C3s 1) 2D CO)   
  

  
  a 

  

BCS>3)=BIAS7ZV:C3 5.3) 

Z=Bx*V 

GAM=SAT(Z(351)) 

DELAY GAM BY MU*TQ     
  

GAM=0 GAM=1 
  

  

  
OB8<GAM<]1 

  

  

  

      

  
    

T=(N+G4M)*TQ 

CALCULATE P@ 

U=P9*Z, 

WRITE: TeU COs 13 9UC 30 4-¥5DCN*TO? 

  

  

a 
Y 
  

N=N+1 

T=N*TQ 

CALCULATE P1 

V=P1*U 

WRATH T 9V:C2 5-1) 5G 35al ds DCT) 

  

  

    
N=N+1 

T=N*TQ 

CALCULATE PG 

V=PO*Z 

WRITE oT.) Ces 195-V.Ces 1s DCT 

  
    

Fig. A-4 Flowchart - Programme PWMSYS



63 
G2 

64 

67 

12 

Gs 

14 

COMMON ICOUNT 

COMMON T 

READ €1562) TQsTAUsHsFGsRsXd 

WRITE €23;63) TQ,TAUSHsFGsRs XB 

FORMAT C19X32CF5.152X) oF 6035 3C2X5F52-1)) 

PORMAT: C2CHS. 1lsex. sh 6535 3°C2X5h5.1)) 

READ ¢€1564) NVsNU»s SCALE 

FORMAT (C2C12,2X%)sF 5.2) 

READ ©1567) -MU 

FORMAT (12) 

ICOUNT = @ 

DO 12 I=1353 

DO 12 Jalos 

POCIs JI=9-D 

P1ICIs J)=9.9 

BCI, J)=9-G 

PO@C1s1)=1.9 

P9C63s3)=1.0 

P1¢1,51)=1.98 

PLC3 5:30 = tis G 

BC1,1)=1.9 

BC2,2)=1.90 

BC3,1)=H 

BC3,2)=-H 

Pol=1O7TAU 

BIAS=(€1¢/PSI)*ALOGC1.+CR/FG)*CEXPCPSI)-1.)) 

WRITE €2;65) BIAS. 
FORMAT .€71@8X,5HBIAS=5F8.5) 

V Gis =r 

V€251)=X@ 

VC3,s1)=BIAS 

N=9 
T=9.9 

D9=DCT) ; 
CALL PLOT CNV s 4505 fs ViGes 1) » VCO51)5D0, SCALED 

BC3s3)=BIAS/VC351) | 

Nig. A=) Programme Listing—-PWMSYS 

2.60 

“DIMENSION, P@C€3s3)5P1(35395B(3.32.V¢321)»UC3s1)620301)
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21 

14 

2.6 | 

CALL MLTPLY €BsV»Zs 35351) 
GAM=SAT. €Z¢6351)) 

CALL DELAY CGAMsMU) 
ICOUNT=1 

IF (€GAM-EQ.9.-9) GO To 15 

IF (CGAMeE9.1.-9) GO TO 17 
RN=N 

T= (CRN+GAM)*TQ 
POC2s2)=EXP C= CGAM*TO/ TAU) ) 
POC2Qs3)=C CF G+DCRN*TO) /Z06351)9*C1.0-P9(252)) 
CABESMETPL Y= CROs 250535451) 
C=D¢RN*TQ) 
CALL PLOT (NUs 4515TsUC25195UC351)9Cs SCALE? 
IF (NeGE.100) STOP 

GO 20. 2} 

UCle1I=7 Cls 1) 

LC Siptt Ma7 C2519 

U.GS's:1oia7 C341) 

N=N+1 

RN=N 

T=RN*TO | 

P1€2,2)=EXPC-€1-9-GAM) *TO/ TAU) 

P1025 3)= (D6 CRN#=1. 09 *T0)0/Z 6351) *C1-60-P1G2,2)) 
CALE MLEPRLY CP 1s Wes 3535 1) 

E=DC(T) ; 
CALL “PLO. (NVs 4515 fs V COs 1)5 V.635495 Es SCALE) 

GO 10.14 

N=N+1 
IF (NeGE-100) STOP 

RN=N 

T=RN*TQ | 

POC252)=EXPC- CTQ/ TAU) ) 

PO(253)=C (CF G+DC CRN-1-20)*TQ))/Z6351))9*0€1-90-PQ(252)) 
GALL -MLTREY CPOs ZsVs 35 351) i 

O=D.CiD. : 

CALL PLOT (NVs4515TsV6231)3V6331)5Q95 SCALE) 

GO. TO 14 
END 

Fig. A=5. -ctd.
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iclo 

262 
FUNCTION HOT) 
CIMMIN LL 
Le 8 NEGO) GY T9115 
READ (1,635) F»NL,TC 

635 FIRMAT (3¢F5.1,2X)) 
145-18 oCT.i 2 0LD Cy P2105 

H=AMAK1 C90 Ds CR HCL. I-EXPC-CT-DLD/TC)))) 
RETURN 

125. 429.9 
RETURN 
END 

Fig. A.6 Programme Listing-STEP1 

PUN GT LON 2461) 

COMMON. L 

Te GueNE<.9).G6) [9 -hiS 

READ. G2s695) Fs hls [2 

PRM Ar CS CR De i's 2 x) 

Theat. 896964 )-69 “TO 125 

U=AMOX1 60.05 (Ch € Cl. d+ CTOXEXP C-T/T2)-TPeeXPG-1T7T1))4CTI-Te)))> 

RETURN 

H=9.9 

RETURN 

END 

Fig. A-7 Programme Listing-STEP2 

FUNCTION H¢T) 

COMMON 

Ly Ce NBe a): Gao toe dS 

READ G15625) bs 8 
S235 FIRMAT, €2(F:5.152%99 
ir TeoCVeEO. 2.9) 6s T8425 

H=AMAXK1 69. 9s CF £ C1 6 O-ERF O9.5*SIRTCB/T))))?) 
RETURN 

PeoU. H=9.0 

RETIJRN 

END 

Fig A-8 Programme Listing-STEP3 

FUNCTION ERFCX) 
IF €X-EQ.-9.9) GO TO 148 
P=9.47947 
A=9-3489242 
B=-9-0958798 
C=0-7478556 
Y=1e/C1.+P*X) 
ERF=1e- CA*Y+BeY*Y +O XY #Y*Y ) KEXP C= CX*X)) 
RETURN 

109 ERF=9.0 
RETURN 
END 

Fig A-9 Programme Listing-SUBERF
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610 

396 
310 
109 
291 

191 

192 

202 
194 
193 

310 

829 
$38 
349 

710 
3304 

7293 
356 
919 
930 

929 
949 
9590 
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SUBROUTINE PLOT (NsIsKsAsBsCsDs SCALE) 

REAL LINE (¢€76) 

ERCX) =) INTG2l.O*X—AINT CX) ) 

IF. (N) 30953085; 310 

WRITE €25,610) AsBsCsD 

FORMAT (€19X5,4¢CF8-334X)) 

RETURN 

RETURN 

IF €K) 10690319090, 194 E 

READ ¢€152091) BLANKsDOT>s STARsPLUS>»s EKS»sPRIMEs HYPHEN 

FORMAT C7A1) 

DO 101 J=1,76 

LINE. GnD=D0T 

DO. 12. Jats: 1035 

LINE ¢€J)=PRIME 

LCOUNT=0 5 

WRITE C25 202) “LINE 

FORMAT (€3Xs7GA1) 

DO 2103 g=1. 10 

LINE ¢€J) = BLANK 

IF CMODCLCOUNT35)) $193;829;819 

LINE Ci) =)07 

GO 10. 830 

LAINE C1)” =HYPHEN 

GO TO €3205339.5 3405329) sI 

L=IRCD/ SCALED +1 

Th eGieGls 700. GO 70 719 

LINE Ch) =8KS 

EP Gin bO. 4) .GO 10 2350 

M=IRCC/SCALE) +1 

EPoECM. Giest 0): G0. 10-320 

IAENE CM) = PLUS 

J=TRCBASCAILE I: +1 

i ClsGi. 70) GO..T0 128 

LINE CI) = SvAR 

re CLeEG. 4). GO 10340 

IF CMODCLCOUNT,5)) 9103910:928 

WRITE €2,936) LCOUNT sLINE 

FORMAT (€1Xs12s79A1) 

GO. 10..9598 : 

WRITE (€25,948) LINE 

FORMAT (3X5 70A1) 

LCOUNT=LCOUNT+#1 

RETURN 

END 

Fig. A-10 Programme Listing-SPLOT5S 

SUBROUTINE MLTPLY (CAsBsCsMsNsL) 

REAL AC19319)5 BC10s190)5,CC10519) 

DOT f= 15M 
DO 1 al ol 

CIs J290D X 

DO 1 K=1sN 

COIs JIACCI a JIFACT SKI *BCKs JD 

RETURN 
END 

Fig. A-ll Programme Listing-SUBMUL
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SUBROUTINE DELAY CAsMU) 
DIMENSION S¢€190) 
COMMON ICOUNT 
IF CICOUNT-NE-@) GO TO 30 
DO 24 I=15 1800 

20 SCI)I=8-G 
SOR DOs 10 K= 15 9,9 

Noe TGieK 
19 SCN)=S¢N=1) 

SC1)=A 
A=S(MU+1) 
RETURN 
END 

Fig. A-12 Programme Listing-SUBLAG 

FUNCTION SAT ¢€X) 

IF CXelets re: GO..T6: 2 

SAT = 1-9 
RETURN 

1 SAT =6.9 
RETURN 

B25 AT fs 4 
RETURN 
END 

Fig. A-13 Programme Listing-FUNSAT 

FUNCTION SATCX) 

N=2 
TRO CX. ee 66.0) GO. 10 A 

ih GXs LE... 49) GO 10 2 

The: CXlebs As 51):. GO 10 <3 
Lh CKXielte 1 49, GO10. 4 

SAT=1.@ 

RETURN 

SAT=0.9 
RETURN 
SAT=H=0- 5-20 #KCN-1)9*CCX-G2 5) KEN D 

RETURN 

SAT=8e5 
RETURN 
SAT= C20 KE CN=1))*COX- Ge S)DKENI+G65S 

RETURN 

END 

Fig. A-14 Programme Listing-SATN2
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Fig. A-15 

\ 
\ 

Modulation laws realized by the programmes SATN2 and SATN1O 

a- SATN2 

b- SATN10
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FUNCTION DCX) 

D = X#0-0 

RETURN 

END 

Fig. A-16 Programme Listing-FUND 

FUNCTION DCX) 

D = X*9-@5 

RETURN 

END 

Fig. A-17 Programme Listing-FRAMP2 

MUNCETON DCX) 

CIMMAN fT 

Th Ch) ths 1 G5 1:1 

Wr C2 scl) 

PORMAT C1IOX, AGHVALUE OF STEPs TIME APPLIED -=.--) === 6-4 -)) 

READ. Chs 12) As iW 

FIRMAT Ch 562s OXs 662) 

UF (X-TW) 2Aseiset 

N=X*I9.d 

RETURN 

N=X*%eA+A 

RETURN 

END 

Fig. A-18 Programme Listing-FSTEP2 

FUNCTION DCX) 

COMMON T 

Tee GC] ) lle Os 11 

WRITE Ges ds) 

FIRMAT(190X%»37HA-BOISCC 3.14 X)s4 B Cree “e- -~e---) 

READ Cl. 72) As Ba 

PIRMAT (F3. 122% oF Ss LS SXEF De 3) 

D=A-B*CIS(C*3214159*X) 

RETURN 

END 

Fig. A-19 Programme Listing-FSIN



  
APPROXIMATIONS USED IN THE TEXT 

B.1 APPROXIMATIONS TO exp(x) 
  

Two approximations to exp(x) are used in the text: 

exp(x) «= 1 x (Bed) 

exp(yy =  2:/ G1 =x) (B.2) 

Approximation B.1 is used in eqns. 3.33 and 6.20, and B.2 is 

used in eqn. 3.12. Errors of the above approximations relative to 

exp (x) are shown below: 

relative error, per cent 
  

  

x (B.1) (CE. 2) 

0.0 0.00 0.00 

Cet -0.47 0.54 

0.2 le 2.34 

0.3 -3.69 259 

0.4 —6.16 Lr 72 

0.5 =o .02 21.31 

The ranges of these approximations, for errors less than 10 

per cent, are given below: 

exp(x) ¥ 1+ x 0 << 0555 

exp(x) ® 1/(1 - x) O'S 2° < Oc3e 

B.2 APPROXIMATIONS TO exp (-x) 
  

Two approximations to exp(-x) are used in the text: 
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exp(-x) #1- x (3.3) 

exp(-x) ® 1/(1 + x) (B.4) 

Approximation B.3 is used in eqn. 4.8 and B.4 is used in 

eqn. 6.12. Errors of the above approximations relative to exp(-x) are 

shown below: 

relative error, per cent 
  

    

x (B.3) (B.4) 

0.0 0.00 0.00 

aa ~'0.53 0.47 

0.2 =< 2.28 1.78 

0.3 = 551 3.84 

0.4 -10.49 6.56 

0.5 -17.56 9.91 

The ranges of these approximations, for relative errors less 

than 10 per cent, are given below: 

exp(-x) # 1- x One x <"0739 

exp(-x) & 1/(1 + x) 0 a < 0.50 

Another approximation to exp(-x) is found as: 

exp(—x) (2.35 — @).//(235--+. 135%) CB: 5) 

The relative error of this approximation is given below: 

relative, error Of %B.5 
  

aoe per cent 

0.0 0.00 

0.5 0.83 

1.0 - 0.82 

i ee: 

ie ~ 3.83 

13 - 6.14 

1.4 = 9.14 

1.5 =12.93 

From the above table it is seen that the approximation of B.5 

is better than B.3 and B.4. In fact this approximation is better than
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the Taylor approximations [ 1 - x + x" /2 ] vand = [| l-=x+ x*}2 - ar 

and the Pade approximations of relatively higher orders. Since the 

exponents encountered in the text ( L/IT and @ ) were generally in the 

range of 0 <x < 0.4 we used the approximations B.3 and B.4. If better 

approximations or larger ranges are required, the approximation of eqn. 

B.5 can be used. 

B.3 APPROXIMATIONS TO In x 

Two approximations to In x are used in the text: 

Ine x 2 x7-. 1 (B26) 

in'x -2(x = 1)/(x * 1) (B.7) 

Approximation 8.6 is used in eqns. 3.32 and 6.21, and B.7 

is used in eqn. 4.47. The ranges of these approximations, for relative 

errors less than 10 per cent, are given below: 

Potex Vex =) 1 O65 x <5 1025 

In x w2(x - D/(x+ D OnS3< x. < 323 

B.4 APPROXIMATION USED FOR THE DIFFERENCE EQUATION 6.8 

A detailed investigation using digital computer showed that 

for a values larger than 0.2F the error associated with the eqn. 6.15 

is less than 10 per cent. ye >0.2F is the usual case in practice 

which means that the linear control region does not extend to very low 

temperatures. The range of parameter values in the error investigation 

was: 

0.1 < Fk < 1000 © (B.8) 
0.2.46 20.5 (B.9) 

0.1 < @ < 0.9 (B. 10) 

Values of Fk given in B.8 cover the practical range of gain values. Va- 

lues of § given in B.9 cover approximately the whole range ( 0-1). The 

range of @ given in B.10 also covers all the practicel values.



LIST OF SYMBOLS 

B 

Q 
S
o
e
 
e
a
t
 

- = 
ese

 
wm 

AO 
©
.
 

Vv 

c 

at 
e 

Ab 
s 

Le 
A 

Vv 

W 

exp (-t/T) ; coefficient matrix 

state transition matrix 

cool operator 

runaway temperature of the plant 

gain of the plant ; gain of the amplifier 

normalized hysteresis width (h/F); heat operator 

unit matrix 

transit delay 

equivalent transit delay (Ziegler-Nichols) 

equivalent transit delay (Strejc) 

number of heat-up periods in the limit cycling period 

number of cool-down periods in the limit cycling period 

plant 

linear region operator 

slope 

time constant 

equivalent time constant (Chaussard) 

equivalent time constant (Ziegler-Nichols) 

equivalent time constant (Strejc) 

active and passive mode time constants 

State vector, s domain 

pover into plant 

a(t) step response 

b 

e 

bias 

error signal 

modulation law 

half hysteresis width 
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h(t) 

bet
 

He 
U
B
 

osc 

ct
 

tt
 

fh
 
e
e
 
e
e
 

O
8
9
 

ae 
S
3
6
 on
 

tt
 VY 

* 
oa

 
4
 

e
e
 

O
O
 

Um
 

impulse response 

gain of the modulator 

controller output ( 0 or 1 ) 

exp (-t)/T,) 

exp (-t | /T,) 

command; voltage dividing ratio of potentiometer 

Laplace variable 

time 

limit cycling period 

on time 

period of oscillations ( L # 0) 

off time 

Raid 

sampling period 

start-up time 

disturbance 

unit step function 

state vector 

modulator input 

discriminant; increment 

temperature, s domain 

overall transition matrix; controller 

exp (L/T), exp (L/T,) 

6 /F 

exp (L/T 4) 5 pulse width/t. 

Ta/Tp 
disturbance 

temperature 

command 

amplitude of oscillations 

disturbance 

average output temperature 

Eft 38 switching instant 

number of possible heat-up periods; L/t. 

number of possible cool-down periods 
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pie 

p T/T) 

Oo T,/T, 

T t-nt 
s 

) t/T 

w Pe 

dec dynamic equilibrium cycling 

lpi location of prime importance
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