

Some pages of this thesis may have been removed for copyright restrictions.

If you have discovered material in Aston Research Explorer which is unlawful e.g. breaches copyright, (either yours or that of a third party) or any other law, including but not limited to those relating to patent, trademark, confidentiality, data protection, obscenity, defamation, libel, then please read our Takedown policy and contact the service immediately (openaccess@aston.ac.uk)

FRACTURE TOUGHNESS OF A SERIES OF HICH CHROMIUM ARRASION RESISTANT ALLOYS.

RAYMOND WILLIAM DURMAN.

Ph.D. THESIS.

UNIVERSITY OF ASTON IN BIRMINGHAM.

AUGUST 1970.

SUMMARY.

The fracture properties of a series of above containing 15% chromium and 0.8 to 3.4% carbon are investigated using plane strain fracture toughness testing techniques. The object of the work is to apply a quantitative method of measuring toughness to abrasion resistant materials, which have previously been assessed on an empirical basis; and to examine the relationship between microstructure and K_{1c} in an attempt to improve the toughness of inherently brittle materials.

A review of the relevant literature includes discussion of the background to the alloy series under investigation, a survey of the development of fracture rechanges and the energence of K_{lc} as a toughness parameter.

Metallurgical variables such as composition, heat treatment, grain size, and hot working are used to relate microstructure to toughness, and fractographic evidence is used to substantiate the findings. The results are applied to a model correlating duetile fracture with plastic strain instability, and the nucleation of voids. Strain induced martensite formation in austenitic structures is analysed in terms of the plastic energy dissipation mechanisms operating at the crack tip.

Emphasis is placed on the lower carbon alloys in the series, and a composition put forward to optimise wear resistance and toughness. The properties of established competitive materials are compared to the proposed alloy on a toughness and cost basis.

CONTENTS.

5.5. Physical Examination.

Word in Figure	
NOTATION.	··· page 1.
1. INTRODUCTION.	••• poge 3
2. CHARACTERISTICS OF ABRASION RESISTANT MATERI	ALS paga 6
2.1. Types of Wear.	
2.2. Development of a New Wear Resistant Alloy.	
2.3. The Iron - Chromium - Carbon System.	
2.4. The Mechanical Behaviour of Austenite.	
2.5. Fracture of Abrasion Resistant Alloys.	
3. THEORETICAL ASPECTS OF FRACTURE.	yazə 27.
3.1. Surface Energy Concept.	
3.2. Significance of Ductility.	
3.3. Stress Analysis Approach.	
3.4. Constraint Stresses.	
3.5. Notch Acuity.	
3.6. Fracture Toughness Testing Techniques.	
4. HETALLURGY OF CRACK INITIATION AND PROPAGATIO	N page 56.
4.1. Crack Initiation.	
4.2. Electron Fractography.	
4.3. Influence of Inclusions on Ductile Fracture.	
4.4. Strain Rate Sensitivity.	
5. EXPERIMENTAL PROCEDURE.	page 72.
5.1. Programme.	
5.2. Material Production.	
5.3. Measurement of Fracture Toughness.	
5.4. Mechanical Testing.	

6. RESULTS. .. page 1/2, 7. DISCUSSION OF RESULTS. .. page 100. 7.1. Preliminary Trials. 7.2. Enfluence of Carbon Content. 7.3. Grain Size. 7.4. Rardening Variables. 7.5. Homogenisation. 7.6. Sensitivity to Rate of Application of Stress Intensity. 7.7. Hot Working. 7.8. Strain Hardening Phenomena. 7.9. Fractographic Examination. 8. THEORETICAL CONSIDERATIONS. .. page 356. 8.1. Structural Correlation. 8.2. Plastic Energy Dissipation. 8.3. Crack Initiation. COMMERCIAL SIGNIFICANCE OF RESULTS. 9. .. rege 179. 9.1. The 15% Chromium Alloys.

🔐 page 193.

.. page 195.

.. page 204.

9.2. Fracture Toughness of Competitive Alleys.

9.3. Critical Defect Size.

CONCLUSIONS.

BIBLICGRAPHY. .

APPENDIX.

1.0.

NOTATION.

```
Crack half longth )
          Thickness
 E
                                     Of Fracture Toughness Specimen.
          Width ,
 28
          Height
          General tensile stress symbol - specified by subscript.
 o<sub>ys</sub>
          Uniaxial yield stress.
T
          General shear stress symbol.
 3
          Strain.
          Work hardening coefficient.
\mathbf{E}
          Young's modulus.
Ģ
          Shear modulus.
x )
         Three dimensional direction symbols.
         Crack tip co-ordinates.
         Radius of plastic zone.
         Poissons Ratio.
         Notch root radius.
         Crack opening displacement.
đ
         Grain size.
         Strain energy release rate.
(*
         Stress intensity factor
K
```

AC = As Cast.

CC = Chill Cast.

SC = Sand Cast.

Sill = Cast in Silliminite.

Hardened 975°C oil quenched. Tempered 250°C 2 hours.

H = Homogenised 1150°C 8 hours.

F = Forged.

() = Numbers in parentheses refer to the Bibliography.

Additional Notation.

X = Surface energy for unit increase in crack length.

c = Crack half length, (alternative to a).

f = Volume fraction.

 σ_{app} = Applied stress.

off = Effective stress.

1. INTRODUCTION.

A problem of ich facing the supplier of abrasion resistant components for the gridding, crushing, and mineral handling industries, is how to combine optimum wear resistance with adequate toughness to resist the severe impact conditions frequently encountered. assurance of freedom from premature failure is vital, since this can be costly, not only in replacements and repairs, but mainly in lost production during unscheduled shutdowns. Wear rate, in general a function of hardness, is a key factor in the economic working of pulverising plant and is of primary importance in instances where contamination of the product is undesirable. Thus it is a compromise between directly conflicting properties, hardness and toughness, which is required in parks such as mill liners, grinding media, crushing homeons sud rolls ato., used in owe grinding, coment, coal and iron making processes.

Complexity of shape and the nature of alloys used in these applications restricts the mode of manufacture mainly to casting and forging, with little or no subsequent machining. The recent trend to the use of larger and more powerful plant has emphasized the need for improved fracture resistance, and careful selection of materials used in the more operous conditions now prevailing.

An extensive range of ferrous alloys find application depending on the stress level of the wear process, from manganese steel, under the most severe shock loading, to high carbon white cast irons when impact resistance is of little consequence. However, it is the field between these two extremes which poses the greatest challenge to the material technologist. Here the widely used Hadfield type of austenitic steel is largely being displaced by the more abrasion resistant martensitic cast steels or alloyed white cast irons. The combination of relatively

good abrasion resistance with better dustilety than the white irons could make a new austenitic steel widely accentable for many types of service. The object of this project is the examination of such an alloy with chromium as the main alloying element.

Experience in the field of year testing and above that this is a property best neasured in production trials, laboratory tests rarely being able to adequately simulate process conditions. Progress in this aspect has led to reliable classification of near types of alloys in terms of year rate. The problem of fracture, however, appears to have been somewhat neglected. Arbitrary neasurements of toughness are made from observations during year testing programmes, and some impact testing is carried out, but no quantitative data is available. An investigation of the fracture properties of a series of alloys, with particular emphasis on an austenitic chronium alley was therefore considered worthwhile.

Previous work on the inject testing of obresion registent alloys served to illustrate the empirical nature and basic weaknesses of this nethod of assessment of toughness. The low fracture energy requirements of relatively brittle materials often necessitates the use of non-standard impact specimens, so eliminating any relationship to results from other sources, since there is no correlation between the impact strength of specimen and other section sizes. Also, poor sensitivity and lack of reproducibility are common features of impact testing, due mainly to the measurement of both the nucleation and propagation energy associated with cracking.

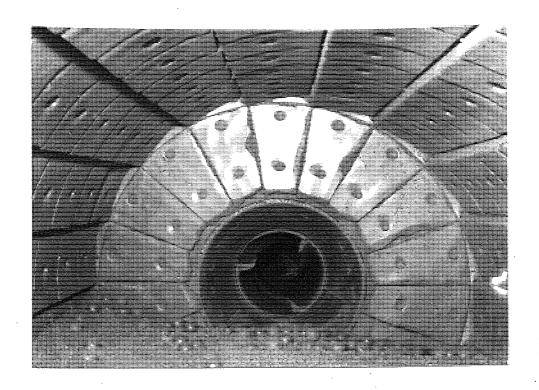
It was decided therefore, to adopt fracture mechanics as the testing technique since it reflects a combination of yield strength, work hardening rate, ductility, and is a property quite sensitive to metallurgical variations. Particular attention has been paid to the volume fraction, size, and distribution of carbides, and to the

relationship between fracture toughness and microstructural variations motivated by compositional, heat treatment, solidification rate and hot working programmes.

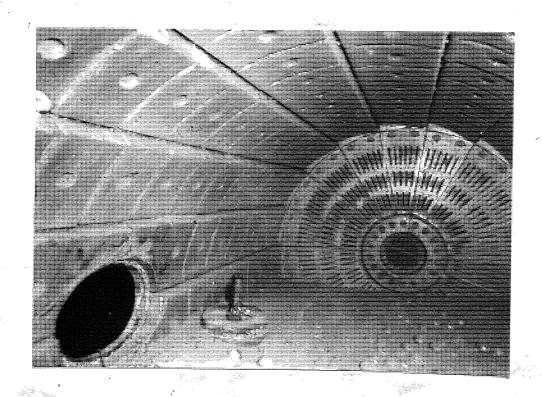
2. CHARACTERISTICS OF ABRASION BUSISTALE HATERIALS.

2.1. Types of Wear.

The rate of metal removal and the degree of impact involved in earthmoving, mineral handling, crushing and grinding plant, characterises the type of wear in a given process. Avery (1) has classified wear into three broad categories:

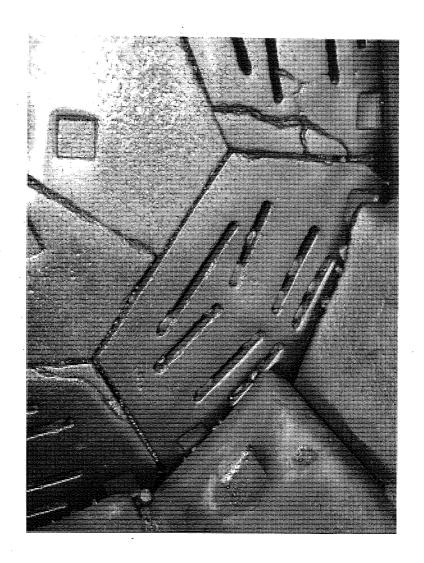

- 1. Couging or grooving year in which coarse abrasive partiales penetrate the working surfaces. In addition to a high rate of metal removal this type of year is often associated with severe shock loading, as for example in earthmoving plant, harmer mill heads, jan oxushers etc.
- 2. High stress abrasion where abrasive particles are crushed under the grinding influence of noving metal surfaces. In this wear process the level of stress involved is significant in governing the choice of naterial, and the performance of a given naterial for applications such as grinding media, mill liners, crushing discs and rolls.
- 3.. Low stress scratching abrasion or erosion predominant in abrasive handling plant such as hydro-cyclones, classifiers etc., where conditions are such that stresses are insufficient to cause penetration of the working surface or crushing of the abrasive.

The hardness of a metal can be considered as its resistance to penetration and for most wear processes, wear note can be directly related to hardness. Exceptions occur in cases where corrosive media are being handled, when corrosion resistance can be as important as abrasion resistance. Hierostructure is also a dominant factor influencing wear resistance.

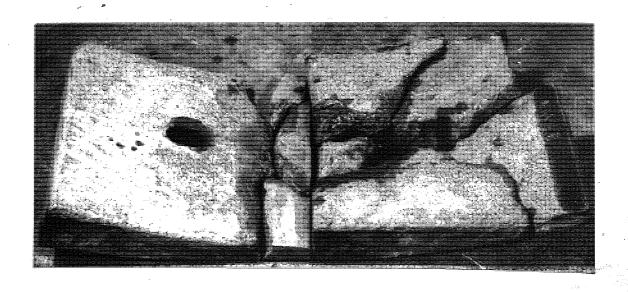

In the first class of year, the conventional choice is Francisco 125 manganese steel. A low yield point (50,000ksi) loads to high plasticity and toughness, whilst the ability to work harden in service from an initial hardness of about 200 H_V up to 450~500 H_V on working surfaces imparts a fair degree of wear resistance. Up to 3% additions of nickel, chromium, molybdenum and tungsten increase the wear resistance and yield strength in cases where toughness can be sacrificed to a cortain extent. (2) Whilst its resistance to fracture in the most severe conditions is excellent, the use of manganese steel in many applications is limited by 'spreading' due to the low yield properties. This can lead to bowing and distortion of working parts resulting in failure of holding bolts and operational difficulties in replacing worm components.

The second category of wear includes a wide range of pulvarising processes, typified by the action in a ball mill, shown in fig. 2.1. Characteristic failures in liners and dispurage plater from this type of plant are illustrated in fig. 2.2. A variety of meterials have found application in this field although in many instances it is the need for adequate toughness to resist the impact forces involved that limits the maximum hardness of alloy to be employed. Choice of alloy for a given application can be influenced by several factors such as the replacement cost and availability of material, and the importance of contamination of the product. For instance the abraded netal particles may cause discoloration of paint, ceramic, and pottery pigments, or be poisonous in the preparation of foodstuffs. Further it may be detrimental in subsequent production processes such as flotation separations, where it may act as a degressent. (3.4) Thus the use of expensive abrasion resistant materials with very low wear rates is frequently justified.

Cast martensitic white irons of the Mi-Mard and Dutectic Mi-Mard types and Cr/No pearlitic and martensitic steels are to some extent being superceded in ball milling and similar operations by heat treated



(a) View of Timeral Robet Chuke.



(b) Discharge Section, showing Screening Diaphragm.

Fig. 2.1. Typical Ball Hill, Grinding Cement Clirker, Internal Diameter 8 feet.

(a) Chacking in Diaphragm Plates.

(b) Fracture of Tapered Lining Plates.

Fig. 2.2. Characteristic Pailures Encountered During Crinding.

covered by A.S.E.H. specification No. A 532 ways 1. containing 2.3 - 3.05 C. and 24 - 285 Cr are discussed by 1000 and Jackson, (5) and provide a convenient double approach to the problem of high stress abrasion. When cost under appropriate confutions a tough austeniance matrix can be retained at room temperature, which will work harden in service, forming a gelf-replacing hard surface on a comparatively soft core. In applications where in afficient metal is metal contact occurs for work hardening to take place, one high diversity irons can be heat treated, and the austenitic matrix transformed to a harder martensitic one. The fact that chronium is relatively cheep, especially in the form of high carbon ferro-chrone used in the washedien of these froms, means that they are no more expensive than the nickel bearing Ni-Hard types.

For the erosive type of wear when fracture resistance is unimportant, hardness is the main criterion in notorial selection. Hartensitic materials, particularly high carbon neutencidic white cost irons, are generally used, although then cornorion resistance is of consequence, high chromium irons are preferred.

Norman (6) has shown that providing fracture does not occur in service, the order of ranking of wear rate for various alleys remains unaltered when grinding different minerals, but as the abrasive conditions become more severe, the range of wear rates becomes smaller, see fig. 2.3.

Thus in conditions of severe abrasion, in wet milling or the crushing of hard minerals, where wear resistance of all alloys nears a par, fracture resistance can be the controlling factor in selection of material.

The recent trend toward larger plant capable of higher output has resulted in more onerous impact conditions. In special applications where fracture in service may have disastrous consequences high chromium irons have been reinforced with east in high tensile steel bars. Then

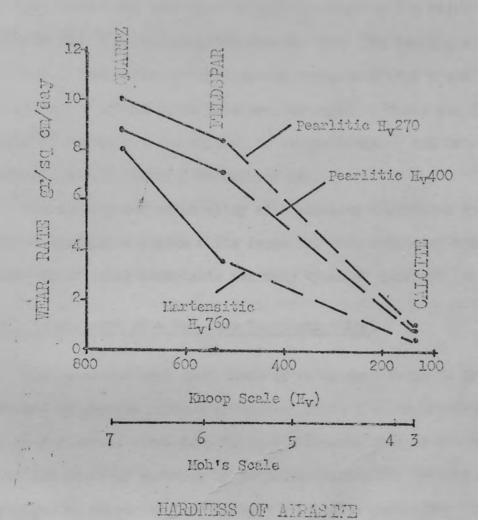


Fig. 2.3. Influence of Hardness of Abrasive Mineral on the Wear Rate of 0.8% C steel Grinding Balls at Three Hardness Levels.

(After Norman(6))



Fig. 2.4. Broken Reinforced Hammer Head.

shown in fig. 2.4, but complete success with this technique has not been attained. More recently martensitic white iron/mild steel laminates with a vacuum brazed joint have been employed. These are discussed by Kempe, (7) but as yet are limited to simple designs, and fabrication costs might well restrict widespread use.

The development of an alloy with abrasion resistance comparable to that of the high chromium white irons but with increased toughness could result in it being acceptable for many types of service.

2.2. Development of a New Mear Resistant Alloy.

presence of massive carbide particles within the microstructure, and alloying elements contribute to this characteristic in two ways.

Formation of alloy carbides by partition of ourbide forwing element, such as chromium, increases the hardness of carbide particles. The significance of this, however, is considered to be marginal since although the hardness of carbides may be increased from about 1200 My up to 1700 My by alloying, this is over twice the hardness of quartz (about 800 My) one of the most severe abrasives. It is the effect of alloying additions on the matrix which probably contributes most to wear resistance. Increasing hardenability and the formation of a hard martenaitic matrix is the obvious trend in this direction, but this results in a very brittle product unless heavy tempering or very lengthy and expensive heat treatments are employed netention of an austenitic matrix, as in the as east high chronium alloys, however, provides an alternative approach.

The meta-stable austenitic matrix is capable of work hardening, when operational conditions provide sufficient impact for surface deformation to occur, from an initial hardness of $400-500~\rm{H_V}$ to over 1100 H $_{\rm V}$. The depth of the work hardened layer can extend up to five mm. but, as in the

work hardering if mangenese steel, there is controversy over the mechanism. Most views favor either the formation of martensite or stacking fault production in the austenite. White (8) has been unable to detect martensite in deformed manganese steel, between -196 and 400°C, and suggests that it has no part in the work hardening theory of this material. Norman (6) has reported increased magnetic response in austenitic alloy grinding balls after service, indicating a martensitic transformation, although this was not confirmed. Dodd and Jackson (5) have shown that in high chromium irons deformation does not produce a magnetic change, but qualify this by pointing out that the deformation martensite of stainless steels is frequently non-magnetic.

Morman⁽⁶⁾ has found that increasing manganese above the amount necessary to produce a fully austenitic matrix reduces the wear resistance considerably. Mickel apparently has a similar effect to manganese in reducing resistance to alrasion, although available information appears to have been obscured to a certain extent by other alloys. Chromium, however, when present in solid solution form in the austenitic matrix, resulted in a marked increase in wear resistance.

No direct evidence of the effect of copper, molybdenum or cobalt on wear properties is available, although molybdenum is a common addition to chromium irons since it suppresses pearlite formation, and has no obvious detremental effect on wear.

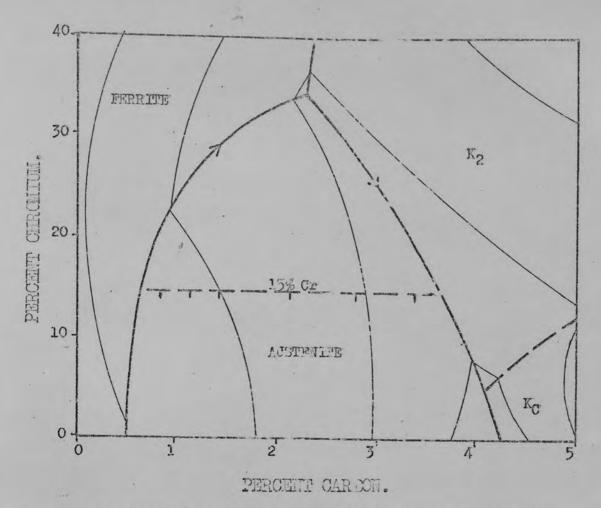
The presence of a network of carbides throughout the microstructure of white cast irons is an embrittling influence. Attempts to modify the morphology of carbides to isolated particles with the use of alloys, enalogous to the modifications produced in spheroidal graphite cast irons, have so far proved negative. Heat treatment to spherodise the carbides have not been pursued commercially due to the high temperatures required to effect solution of the alloy carbides.

These considerations led to the instigation of the development of a

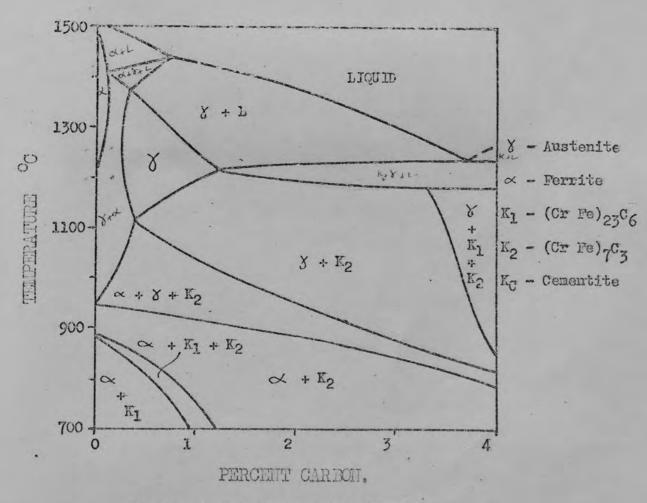
15% chromium alloy with a carbon content of between 1 - 2.5%. As martensitic alloys with complex heat treatments and molybdenum additions, this series of alloys is now competing favourably with the austenitic high chromium irons. Optimum carbon content for the austenitic version of the alloy has yet to be determined in order to combine high toughness with adequate wear resistance.

been investigated in both austenitic and markensitic conditions with carbon contents ranging from 0.8% to over 5%. Thus a discontinuous, semi-continuous and continuous carbida network has been examined. High temperature heat treatment has been carried out in an attempt to spherodise the carbides and the effects on fracture toughness observed. The grain size and toughness of cast irons is substantially incluenced by solidification rate. and the influence of this variable has been investigated over a wide range, from child easting in thin sections, to said easting in thick sections. The effects of forging on a low carbon allow in the series, with particular attention to directionality, have also been examined.

In austenitic alloys the work hardening mechanism has been studied, and in alloys having a less stable matrix composition a strain induced transformation detected. The effect of this transformation has been related to toughness in terms of the contribution to fracture energy requirements. The fracture micro-mechanism of austenitic and martensitic alloys has been examined fractographically and correlation between work hardening rate, carbide spacing and toughness determined on the basis of a recent fracture model.


2.3. The Iron - Chromium - Carbon System.

Literature on the liquidus surface of the iron-chromium-carbon system is fairly extensive, but there is only limited conflicting


reference to vertical sections below the solicus. Early studies were made by Murakami et. al. (9) and Kinzel and Fruker, (10) and the system has subsequently been reinvestigated by Rung. It et. al. (11) The shape of the relevant portion of the liquidus curface is shown in fig. 2.5. and solidification of the alloy series under investigation occurs within the austenite loop as indicated. Alloys of hypocutectic carbon content solidify as austenite surrounded by the reasonal chromium carbide $\mathrm{Cr}_7\mathrm{C}_2$. Bungarat et. al. suggest that the carbides are produced as a result of a peritochic reaction, but recent work by Griffing et. al. (12) and Jackson (13) has invalidated this aspect of Bungarat's work. It is now thought that the carbides are formed, together with further austenite by a entectic reaction, and the modified vertical sections by Jackson using this approach are certainly more useful in the interpretation of many of the microstructures examined during the course of this project, see fig. 2.5.(5).

the high temperature austemite transforms by a peritectoid reaction, at 795° C, to soft ferrite, and the less correction resistant chronium carbide, cr_{23} C₆, appears within the microstructure. The product of this reaction is an irresolvable granular pearlite. Balance of the ferrite and austemité stabilising elements, by the addition of small quantities (up to $1\frac{1}{2}$ %) of manganese or nickel, and the control of silicon and aluminium content, enables the tough austemite to be retained in the meta-stable state to room temperature. Further, it has been shown in high chronium irons (5) that the extremely brittle iron carbide, re_{3} C, is eliminated from the structure and the appearance of cr_{23} C₆ can be suppressed. This is an important factor when high chronium irons are used in the as cast condition, since the wear rate of pearlitic structures can be up to four times faster than austemitic structures of similar carbon content. (14)

It is quite apparent that the composition of dendritic sustenite will

(a) Liquidus Surface, Showing Alloys Under Investigation.

(b) Vertical Section at 15% Chromium.

Fig. 2.5. Fe/Cr/C Ternary System. (After Jackson(13)).

types form a continuous phase and often caunor be separated metallographically. In fact the entertic austenite is often depleted in carbon and chromium by an inverse diffusion gradient adjacent to the massive carbides. This results in a raising of the Mg temperature and transformation of the entertic austenite to markansite on cooling, especially in heavy sections or slo cooling conditions. The significance of any such narrowsite on the tracture properties of the alloys under investigation has been examined.

The phase changes occurring during heat treatment are considered in terms of the 15% chromium vertical section of Te Fe/Cr/C system by Jackson (13) At temperatures below the periloctoid reaction there is a gradual attainment of equilibrium conditions with the gradual attainment of equilibrium conditions with the gradual attainment of equilibrium conditions with the subsection of equilibrium conditions with the equilibr

At temperatures above the portectoid reaction a triple phase field is entered where ferrite, austenite and $\mathrm{Gr}_7\mathrm{G}_5$ are the equilibrium phases. $\mathrm{Kuo}^{(15)}$ has confirmed that $\mathrm{Gr}_7\mathrm{G}_5$ is the only stable carbide above the peritectoid in a 12% chromium 1% carbon alloy. There is little effect on the eutectic carbides within this phase field, although spherodisation may commence after prolonged holding. Further $\mathrm{Gr}_7\mathrm{G}_5$ is precipitated from the matrix however, in the form of secondary carbide particles, which depletes the matrix in carbon and chromium. As a result the alloy becomes air hordenable and the matrix transforms to martensite on cooling. Optimum austenitizing time and temperature determinations and the effect of tempering temperature on toughness are the basis of the heat treatment programme.

on further elevation of temperature, ferrite is replaced in the structure by austenite, which with Cr7C3 are the stable phases. Above

1050°C significant solution of the cutectic carbide network occurs, leading to a highly alloyed stable austenite which is retained on subsequent cooling. This effect is more pronounced at higher temperatures, resulting in marked spherodisation of the carbides and breakdown of the cutectic carbide network. The stable nature and high temperature of solution is considered by Lane and Grant (16) to be a function of the relatively high melting point of this phase (1782°C).

The fact that very little change in the carbide structure is observed below 1050 - 1100°C serves to illustrate the point that grain size (or dendritic cell size) of this type of alloy is governed by the rate of solidification. Chill casting and small section sizes leads to a fine structure, whereas sand casting or large sections produces a coarse grain size. Commercially, chill casting is as yet limited to small simple shapes for ferrous alloys, but experimental graphite moulded specimens have shown a grain size of less than 0.02mm. In industrial sand castings, where section sizes are fraquently over six inches, the grain size is of the order of 0.2mm. The effect of grain size is known to be a significant factor controlling the impact strength of this type of alloy. (17.18)

2.4. The Mechanical Behaviour of Retained Austenite.

A well known feature of many types of austenitic steels is strain induced martensite transformation (S.I.M.) which occurs during plastic deformation, and has been the subject of considerable research. Studies of the phenomenon have helped improve the deep drawability of austenitic stainless steels, and more recently featured in the development of high strength steels with excellent ductility and fracture properties.

Work by many authors has led to a fairly comprehensive understanding of the influence of the more common alloying elements on $M_{\rm S}$, but very little information is available concerning $M_{\rm d}$ (the temperature at which

martensite is formed during deformation). Bichleman and Hull (10 a call to cover the subject of Md in greatest detail, studying the effects of various elements on both S.I.M. and thermal martensite formation. A number of investigators, (20.21) including Bichelman and Hull, have developed equations from which Mg can be calculated, knowing the chemical composition of the austenite undergoing transformation. Minor anomalies are present throughout the literature, but most vorkers put alloying elements in the following order of effectiveness in reducing Mg:

N & C; Hi; Ho; Cr; In; Si.

clements known to have the reverse effect (ic. raise N_g). Holloway (22) has found that N_g is raised 13.5°C/percent cobalt in a Cr/No dic steel, which is in agreement with the results of Invine (23) and Hawkes and Heal (24). Cobalt is normally added to bot working steels, since it improves hot hardness and the resistance to tempering. From the information available it would appear that the effect of alloys on N_g is similar to their influence on N_g. Table 2.1. summarises the experimental results of Bichelman and Hull, on 18/6 type stainless steel.

Table 2.1.

Relative Effectiveness of Alloying Elements on Martensite

Formation Expressed as the Nickel Equivalents.

Element	G.I.H.	T.I.M.	Redn. in No/S element.	
C	+35	+30		
N		+30	3,000	
Ni	+1	+ 1	110	
ln	+0.5	+0.5	60	
Si	80	+0.45	50	
110	+1.5 x Cr	kind		
Ċr	*0*	40.68	75	

Cohen discusses the mechanical and therash aspects of S.I.M. production in a 12% Cr 1.5% C die steel, pottog a general increase in S.I.M. with strain, and a marked dependence in stress. In the latter case the reaction is inhibited up to a critical stress level and then proceeds rapidly with further increase in stress. The critical stress increases significantly with the amount of thermal martensite already present as shown in fig. 2.6. The results of heat treatment are summarised in fig. 2.7, where Cohen finds a parabolic relationship between the stress required to produce a given amount of S.I.M., and austenitizing temperature. The curves pass through a minima at about 2030°F (1100°C) corresponding to the interrelation of the driving force (austenite chemistry) and barrier conditions (percent martensite). At temperatures below the minima, thermal martenaite is present which acts as a barrier against S.I.M., whilst at higher austenitizing temperatures solution of carbides results in a stable austerite. A characteristic of the S.I.M. transformation noted by Ochen and other workers (26) is serrations in the tensile curve, attributed to local bursts of martensite formation accompanied by a small extension at constant stress.

powell et. al. (27) have examined the formation of S.I.M. under the influence of different types of deformation in tensile, torsion and compression tests with 18/8 type stainless steel, and conclude that tensile deformation favours the production of S.I.M. Cina (28) has observed a similar trend and suggests that tensile deformation aids the expansion necessary for S.I.M. formation whilst compression will tend to suppress it.

Karlson and Thomas (29) have observed an increase in U.T.S. from 140 ksi. to 200 ksi, associated with S.I.M. in stainless steels and comment that carbon plays an important role in two ways. Increasing carbon has a weakening effect due to a lowering of M_S, but a strengthening effect due to solution hardening and S.I.M. formation. This accounts for the

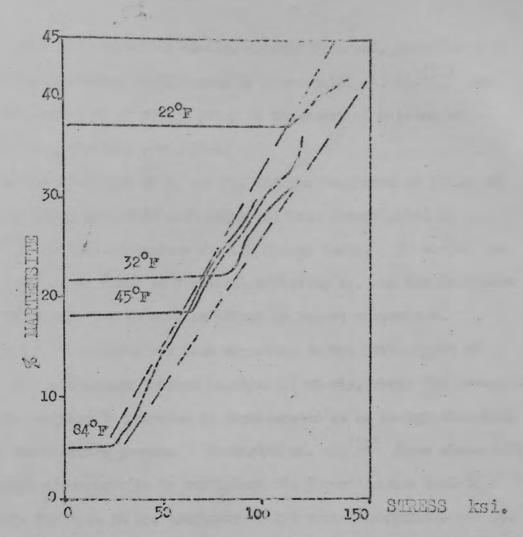


Fig. 2.6. Relationship Between S.I.M. and True Stress in Tensile Test of 1.5%, 12% r Austenitised @ 2050°F and Refrigerated to Temps.

Shown to Produce Various Amounts of Martensite. (After Cohen (25))

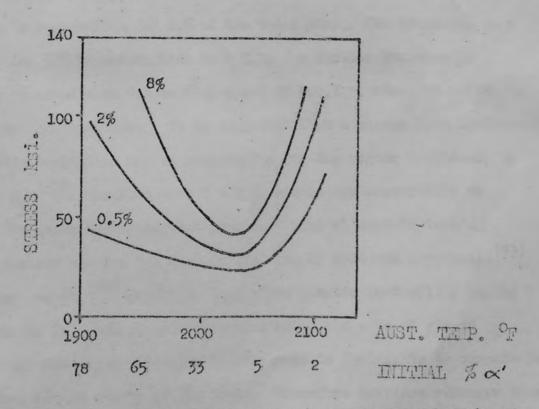


Fig. 2.7. Effect of Stress on S.I.M. in Tensile Fest of 1.5% 12%Cr Steel
Austenitised as Shown. (After Cohen(25))

increased U.T.S. in austenitic steels, a trend observed, together with increased work hardening coefficient, by Bressenelli et. al. (50) who consider the formation of S.I.M. prior to the onset of necking as detrimental to mechanical properties.

The effect of copper on H_s and H_d, and the toughness of flahe and nodular high alloy graphitic east irons has been investigated by Rickard, ⁽²⁶⁾ in low temperature V notch Charpy tests. 5% copper was found to lower H_s by about 30°C without affecting H_d, and the formation of about 25% S. T.H. had an adverse affect on impact properties.

The S.I.M. phenomenon has been exploited in the development of T.R.I.P. (Transformation Induced Plasticity) steels, where the invariant shear of the martensite reaction is incorporated as an energy absorbing medium in the fracture process. Gerberich et. al. (31) have shown that if the amount of martensite is sufficient its formation can lead to a considerable increase in the toughness of hot works austenitic steals. Very good fracture toughness is reported combined with up to 400 recuestion in area at a U.T.S. level of over 200 ksi. Breakdown and analysis of the various energy components leads Gerberich to believe that I. I.M. formation is responsible for 80% of the total energy for fracture, in a steel showing 30% transformation to S.I.M. A further increase in toughness is noted when the testing speed of T.R.I.P. steel is raised by three orders of magnitude. It is suggested that a change from isothermal to adiabatic conditions may be responsible for the higher toughness, by affecting No. (32) The fact that T.R.I.P. steels are susceptible to hydrogen diffusion and subsequent poor ductility at certain testing temperatures and speeds, has been pointed out by Gold and Roppenaal. (33)

Zackay et. al. (34) postulate that since plastic instability begins at low strains in quenched and tempered steels, the rate of strain hardening produced by dislocation interactions is inadequate to compensate for the increase in stress at the neck. Therefore barriers stronger than

dislocation tengles must be introduced during plastic straining in order to delay necking so that the inherent dustility can be utilised in the form of uniform strain. Such barriers rust on introduced during straining, not before, otherwise they would increase the yield strength but not necessarily the strain hardening rate. Purain induced martensite plates can act as strong barriers, particularly then the carbon content exceeds about 0.2%.

2.5. Practure of Abrasion Resistant Alleys.

As mentioned previously little or no quantitative data on the fracture properties of abresica resistant naturals is available. It is well known from observations made on working components that the manganese steel and the possibilitie Cr/Me steels, for instance, are tougher than white east irors and narrensitic alloy steels. Horman (35) has listed several materials in order of toughness from experience in their use as bell mill linears, but relative toughness in terms of a quantitative measurement and the mechanism of exact propagation are undetermined.

Some data has been presented by Glimar Holybdenum (17) for as cast and heat treated A.S.E.H. A.532 Type 2.B. 15% chronium cast iron. This information, shown in Table 2.2. demonstrates the effects of both grain size and heat treatment on toughness, measured as breaking load multiplied by deflection, in a bend test.

For coarse grained material (sand cast) the difference between an as cast pearlitic, and heat treated martensitic structure is marginal, the as cast being slightly tougher. Thilst an increase in toughness is noted in both conditions for fine grained material (chill cast), the increase is for greater, over 100%, for the as cast pearlitic, compared to less than 50% improvement above the send cast level after heat treatment to martensite.

002la

TABLE 2.5.

	Sand Cast.		Chill Cast.	
	As Cast	Ht. Trtd.	As Cast	Ht. Trtd.
Transverse strength				
18 inch span (1b)	2,900	2,850	4,100	3,650
Deflection at				
failure (inches)	0.140	0.138	0.202	0.160
Rockwell C.	51/56	60/65	52/58	62/64
Toughness (load x defin.)	406	393	823	584

In an investigation into the effects of directional solidification on a 1.2% C 12% Cr steel, Pattyn (36) finds that the direction of dendrite growth is a significant feature of the unnoteded Charpy impact toughness. The results are summarised in Fig. 2.8 and indicate that when the dendrites lie along the X plane, perpendicular to the impact direction, but parallel to the test bar axis, toughness is considerably higher than for an equiaxed structure. Poorest impact properties are obtained from the Z direction when dendrite growth is perpendicular to both impact and test bar axis.

Bradley and Foster Ltd. (37) have developed a modified Izod test, to increase sensitivity in the impact testing of abrasion resistant materials. Results of the order of 80 ft-lb/in² are reported, for high chromium cast irons tested in the form of plain bars 1½ in. diameter over a 5 in. span. Reproduceability is characteristically poor, however, necessitating a high level of duplication.

In addition to the more conventional 'U' and 'V' notch Charpy tests,

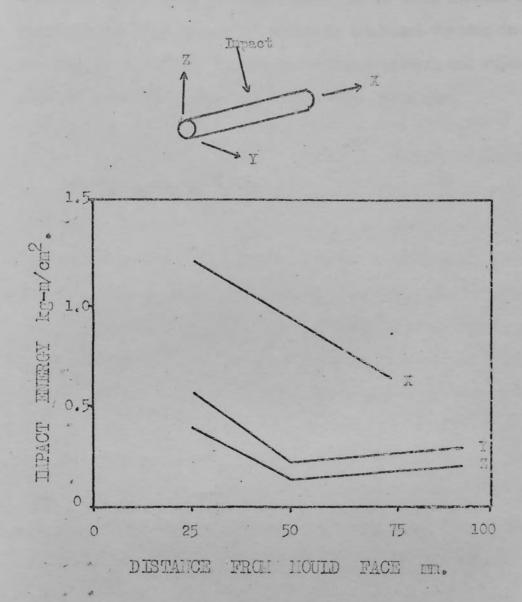


Fig. 2.8. Influence of Directional Solidification on the Impact
Properties of 1.2% C, 12% Cr steel. (After Pattyn(36))

four methods of toughness assessment have now been mentioned. This is each might be a useful control test in a given situation, all produce empirical values which are meaningless out of their limited context. This lack of standardisation applies to toughness testing in general, not only in the field of abrasion resistant alloys, and emphasises the need for a more sensitive and quantitative technique.

CONTRACTOR OF THE PARTY OF THE

CONTRACTOR AND ADDRESS OF THE PARTY OF THE P

3. THEOREFICAL ASPECTS OF FRACTURE.

3.1. Surface Energy Concept.

The qualitative evaluation of fracture derives from the lack of precision in defining toughness. The relative brittleness or touchness of a material can be assessed by the energy required to fracture a plain or notched specimen in an impact test. Whilst a useful control test, being cheep and easy to perform, the relationship between the snergy absorbed and the toughness of a component in service is of an ampirical nature. Proving that a material of given impact toughness will be suitable for a certain application, this level of loughness can be used as an acceptance value. Alternatively it is often possible to use a material above the ductile/brittle transition temperature, currecteristic of many notals.

The development of Fracture Mechanics has resulted in a quantitative treatment of fracture in terms of a material property, the resistance of the material to the rapid propagation of a crack. The basis of this relatively new approach is found in the work of Griffith, (38) carried out nearly fifty years ago.

Considering an ellipsoidal crack in an infinite plate, Griffith derived the now familiar equation defining fracture stress in terms of elastic energy, and the surface energy consumed during the formation of new fracture surfaces. Assuming a half crack length, a, and a surface energy for unit increase in crack surface area \forall , a positive value of 4a \forall is necessary to satisfy the energy requirements of the two new fracture surfaces. The decrease in stored elastic energy, which acts as the driving force during cracking, was calculated from the work of Inclis (39), as $\frac{d^2\Pi}{dt}$ for unit increase in crack length. This can be

considered as a negative value, increasing in magnitude as the square of the crock length, as portrayed in fig. 3.1.

From Griffithm theory unstable crack extension will occur when the elastic energy release due to an increment of crack growth, da, is greater than the surface energy required for the same crack growth, ie. instability occurs when:

$$a/aa \left(-\frac{8^2\pi a^2}{3} + 4a8\right) = 0$$
 3.1.

A gross fracture stress can then be defined by the Griffith equation:

$$\frac{1}{2} = \left(\frac{2X\Xi}{\pi a}\right)^{\frac{1}{2}} \qquad \dots 3.2.$$

Thilst holding well in a general form for brittle materials such as Class, insertion of practical fracture strengths for metals, say $\frac{E}{300}$ where $E = 10^{-12}$ dynes/cn², and surface energy, $\delta = 2 \times 10^4$ ergs/cm² predicts the presence of flaws 10 on long before application attress.

Alternatively, extrapolation of the data to 2a values approaching atomic dimensions, suggests surface energy values well above the most optimistic estimate for fuetile natorials.

These anomalies in the application of Griffith's theory to metals, and evidence of plastic deformation associated with brittle cleavage fractures by Growen, (40) led to the conclusion that in the fracture of metals the energy belonce is between the elastic energy release, and the combined effects of surface energy and plastic work.

3.2. Significance of Ductility.

It is now appearent that the ability to deform plastically, rather than an increase in surface energy is responsible for any improvement in fracture strength due to environmental effects. Teiss and Yukawa (41) in their appraisal of the subject estimate that the plastic work factor is 10⁴ to 10⁶ times the surface energy contribution. It has been shown by livin (42) and Growan, (43) independently, that in notals the energy consumed

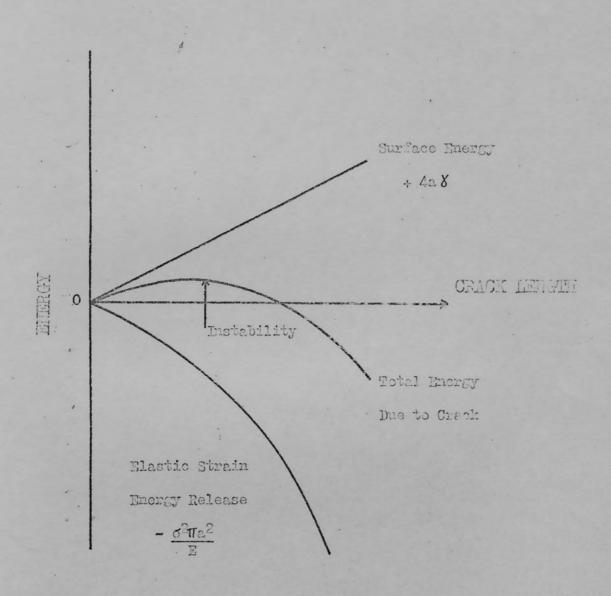


Fig. 3.1. Energy Balance of a Crack in an Infinite Plate.

(After Weiss and Yukawa (41))

-70

by plastic work during fracture is concentrated as plastic yielding in a small zone just ahead of the crack tip.

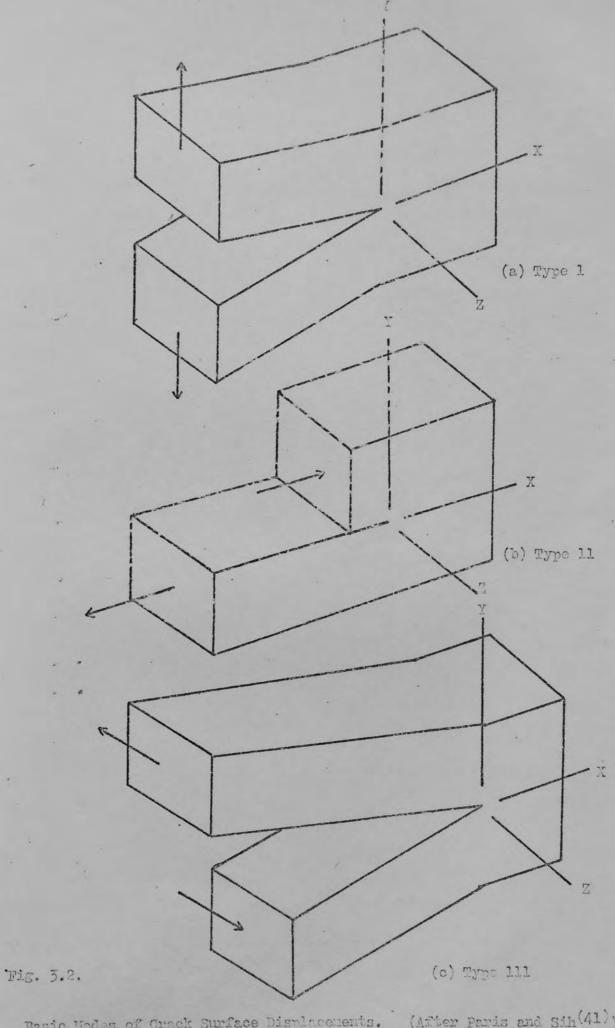
Generalisation of the situation by Irwin led to the introduction of G_c into the Griffith equation, replacing the 2% term and representing the combined effects of surface tension and plastic yielding. By introducing G_c and rearranging, a criterion for crack propagation is achieved, since elastic modulus, surface tension, and plastic working characteristics are material constants:

$$\sigma_{f} (a)^{\frac{1}{2}} = (\frac{G_{c} E}{\Pi})^{\frac{1}{2}}$$
 ... 3.3

Since G_c is the rate of release of potential elastic atrain energy per unit area of crack increase, it is normally termed 'crack driving force', and is a material constant in the same way as hardness or yield strength. Indiscriminate use of equation 3.3, however, can lead to unreliable predictions of the fracture stress. In short crack situations for ductile materials, (with a high plasticity factor), use of this equation gives a fracture stress exceeding the ultimate strength of the material. The Irwin/Orowan modification to Griffith's theory can only be justified when the applied stress for crack propagation is small compared to the yield stress and when any plastic deformation is localised to a narrow zone shead of the crack. The significance of this plastic zone is discussed to greater depth in section 3.4.

3.3. Stress Analysis Approach.

aspects, resulted in the development of linear elasticity relationships.


Irwin⁽⁴⁴⁾ has pointed out that a fracture criterion expressed in terms of energy has its equivalent stress and strain criteria, and whilst this does not resolve the energy balance problems no statement concerning the use of released elastic energy is required.

Stress fields near crack tips can be divided into three basic types, (41) associated with the mode of deformation, as shown in fig. 3.2. Type I is the tensile opening mode, when the crack surfaces move directly apart. Type II, the edge sliding mode, is characterised by the crack surfaces sliding over one another perpendicular to the crack front.

Type III, tearing, finds the crack surfaces shearing over one another parallel to the 'eading edge. A combination of one or more of these three basic modes generally describes the conditions prevailing during crack tip deformation and can be used to describe the associated stress fields. Trum bas analysed the stress field for each individual case as follows:

$$\sigma_{x} = \frac{K_{1}}{(2\pi \pi)^{\frac{1}{2}}} \cos^{\frac{\theta}{2}} \left(1 - \sin^{\frac{\theta}{2}} \sin^{\frac{3\theta}{2}} \right) \\
\sigma_{y} = \frac{W_{1}}{(2\pi \pi)^{\frac{1}{2}}} \cos^{\frac{\theta}{2}} \left(1 + \sin^{\frac{\theta}{2}} \sin^{\frac{3\theta}{2}} \right) \\
J_{xy} = \frac{K_{1}}{(2\pi \pi)^{\frac{1}{2}}} \sin^{\frac{\theta}{2}} \cos^{\frac{\theta}{2}} \cos^{\frac{3\theta}{2}} \left(2 + \cos^{\frac{\theta}{2}} \cos^{\frac{3\theta}{2}} \right) \\
\sigma_{y} = \frac{K_{11}}{(2\pi \pi)^{\frac{1}{2}}} \sin^{\frac{\theta}{2}} \left(2 + \cos^{\frac{\theta}{2}} \cos^{\frac{3\theta}{2}} \right) \\
J_{xy} = \frac{K_{11}}{(2\pi \pi)^{\frac{1}{2}}} \sin^{\frac{\theta}{2}} \left(2 \cos^{\frac{\theta}{2}} \cos^{\frac{3\theta}{2}} \right) \\
J_{xz} = \frac{K_{11}}{(2\pi \pi)^{\frac{1}{2}}} \cos^{\frac{\theta}{2}} \left(1 - \sin^{\frac{\theta}{2}} \sin^{\frac{3\theta}{2}} \right) \\
J_{xz} = \frac{K_{111}}{(2\pi \pi)^{\frac{1}{2}}} \sin^{\frac{\theta}{2}} \left(1 - \sin^{\frac{\theta}{2}} \sin^{\frac{3\theta}{2}} \right) \\
J_{xz} = \frac{K_{111}}{(2\pi \pi)^{\frac{1}{2}}} \sin^{\frac{\theta}{2}} \left(1 - \sin^{\frac{\theta}{2}} \cos^{\frac{3\theta}{2}} \right) \\
J_{xz} = \frac{K_{111}}{(2\pi \pi)^{\frac{1}{2}}} \cos^{\frac{\theta}{2}} \left(1 - \sin^{\frac{\theta}{2}} \cos^{\frac{3\theta}{2}} \right) \\
J_{xz} = \frac{K_{111}}{(2\pi \pi)^{\frac{1}{2}}} \cos^{\frac{\theta}{2}} \left(1 - \sin^{\frac{\theta}{2}} \cos^{\frac{3\theta}{2}} \right) \\
J_{xz} = \frac{K_{111}}{(2\pi \pi)^{\frac{1}{2}}} \cos^{\frac{\theta}{2}} \left(1 - \sin^{\frac{\theta}{2}} \cos^{\frac{3\theta}{2}} \right) \\
J_{xz} = \frac{K_{111}}{(2\pi \pi)^{\frac{1}{2}}} \cos^{\frac{\theta}{2}} \left(1 - \sin^{\frac{\theta}{2}} \cos^{\frac{3\theta}{2}} \right) \\
J_{xz} = \frac{K_{111}}{(2\pi \pi)^{\frac{1}{2}}} \cos^{\frac{\theta}{2}} \left(1 - \sin^{\frac{\theta}{2}} \cos^{\frac{3\theta}{2}} \right) \\
J_{xz} = \frac{K_{111}}{(2\pi \pi)^{\frac{1}{2}}} \cos^{\frac{\theta}{2}} \left(1 - \sin^{\frac{\theta}{2}} \cos^{\frac{3\theta}{2}} \right) \\
J_{xz} = \frac{K_{111}}{(2\pi \pi)^{\frac{1}{2}}} \cos^{\frac{\theta}{2}} \left(1 - \sin^{\frac{\theta}{2}} \cos^{\frac{3\theta}{2}} \right) \\
J_{xz} = \frac{K_{111}}{(2\pi \pi)^{\frac{1}{2}}} \cos^{\frac{\theta}{2}} \left(1 - \sin^{\frac{\theta}{2}} \cos^{\frac{3\theta}{2}} \right) \\
J_{xz} = \frac{K_{111}}{(2\pi \pi)^{\frac{1}{2}}} \cos^{\frac{\theta}{2}} \left(1 - \sin^{\frac{\theta}{2}} \cos^{\frac{3\theta}{2}} \right) \\
J_{xz} = \frac{K_{111}}{(2\pi \pi)^{\frac{1}{2}}} \cos^{\frac{\theta}{2}} \left(1 - \sin^{\frac{\theta}{2}} \cos^{\frac{\theta}{2}} \right) \\
J_{xz} = \frac{K_{111}}{(2\pi \pi)^{\frac{1}{2}}} \cos^{\frac{\theta}{2}} \left(1 - \sin^{\frac{\theta}{2}} \cos^{\frac{\theta}{2}} \right) \\
J_{xz} = \frac{K_{111}}{(2\pi \pi)^{\frac{\theta}{2}}} \cos^{\frac{\theta}{2}} \left(1 - \sin^{\frac{\theta}{2}} \cos^{\frac{\theta}{2}} \right) \\
J_{xz} = \frac{K_{111}}{(2\pi \pi)^{\frac{\theta}{2}}} \cos^{\frac{\theta}{2}} \left(1 - \sin^{\frac{\theta}{2}} \cos^{\frac{\theta}{2}} \right) \\
J_{xz} = \frac{K_{111}}{(2\pi \pi)^{\frac{\theta}{2}}} \cos^{\frac{\theta}{2}} \left(1 - \sin^{\frac{\theta}{2}} \cos^{\frac{\theta}{2}} \right) \\
J_{xz} = \frac{K_{111}}{(2\pi \pi)^{\frac{\theta}{2}}} \cos^{\frac{\theta}{2}} \left(1 - \sin^{\frac{\theta}{2}} \cos^{\frac{\theta}{2}} \right) \\
J_{xz} = \frac{K_{11}}{(2\pi \pi)^{\frac{\theta}{2}}}$$

The parameters K_1 , K_{11} and K_{11} are stress intensity factors for the corresponding types of stress fields, reflecting the redistribution of stress in a body due to the introduction of a crack. θ is an angular coordinate measured from the crack plane.

Basic Modes of Grack Surface Displacements. (After Paris and Sih(41))

The most noticeable feature of the stress distribution in a notched flat plate is the highly concentrated local stress of in the longtitudinal direction at the notch root. Considering x as the distance ahead of the crack tip, when x = 0, of is theoretically infinite and decreases with (x) according to equation 3.4. providing x remains small, i.e. in a region close to the crack tip:

$$\delta_{x} = \frac{\kappa_{e}}{(2\pi x)^{\frac{1}{2}}} \qquad \dots 3.4.$$

Since K is dependent upon the applied stress σ_a , for a given crack situation K increases with σ_a up to a critical level, K_c , when the local stress level is high enough to cause unstable crack propagation, as portrayed in fig. 3.7.

From strain energy considerations Invin(41) has shown that energy release rate, G, can be obtained in the form:

$$Q = \frac{1-v}{2q} K_1^2 + \frac{1-v}{2q} K_{11}^2 + \frac{1}{2q} K_{111}^2 \cdots 3.5.$$

There v is Poisson's ratio and G is the shear modulus.

Since E = 2(1 + v) G, the separate contributions of each node under plane strain conditions can be defined as:

$$G_{1} = \frac{(1 - v^{2})}{E} K_{1}^{2}$$

$$G_{11} = \frac{(1 - v^{2})}{E} K_{11}^{2}$$

$$G_{111} = \frac{1 + v}{E} K_{111}^{2}$$
Where $G = G_{1} + G_{11} + G_{111}$

As a consequence of these equations Irwin illustrates the direct relationship between the elastic strain energy release rate and stress intensity factor.

Other treatments leading to failure criteria have been proposed using

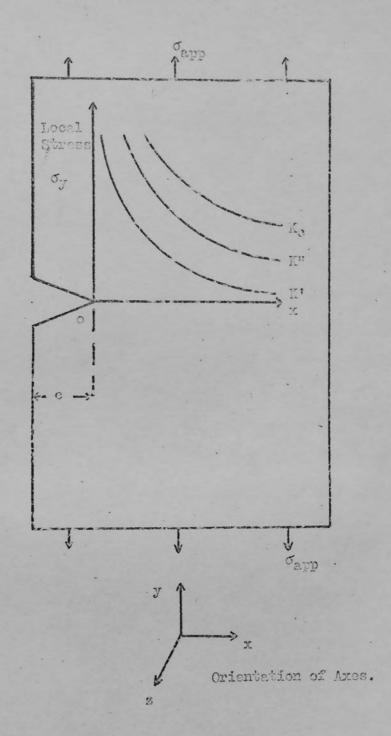


Fig. 3.3. Dependence of K on the applied stress, $\sigma_{\rm app}$, in a given Crack situation. (After Barnby (49))

-25

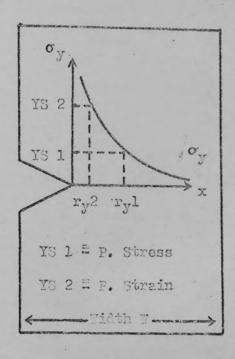
an elastic stress analysis to determine the rature of the redistributed stresses. Each is concerned with phenomena amoring at the crack tip, regarded as being essential to the attainment of a critical fracture criterion. Most notable are the methods developed by Neuber (46) (considering an enclave of critical size within the elastic stress field); Kuhn (47) (development of the ultimate stress at a specific radius from the crack tip); and Barenblatt (43) (stresses opproaching the cohesive bond forces shead of the crack with the use of 'medulus of cohesion', M, equal to (171) Kg). However, since each of these phenomena occurs within the elastic crack tip stress field, their occurrence will always correspond to a similar distribution of elastic stresses ahead of the crack tip. Therefore they are equivalent to the current concept of fracture mechanics, and the critical stress intensity factors. being extremely useful in the fuller understanding of fracture processes these alternative theories are unnecessarily vestrictive in their approach, and the absence of such assumptions in the formulation of a failure criterion is the basis of the general acceptance of fracture mechanics.

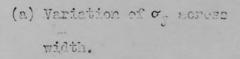
3.4. Constraint Stresses.

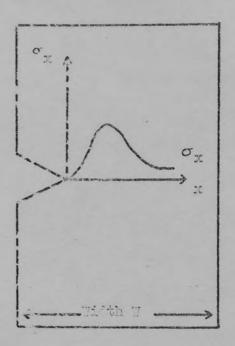
Consideration of fig. 3.3. has shown that the application of stress to a notched plate under elastic conditions results in concentrated local stresses in the longtitudinal y direction. In real situations three dimensional features must be accounted for $^{(49)}$ The presence of the σ_y stress combined with the notched geometry causes constraint stresses in the other two dimensions of the plate, the x and z directions. These arise under the influence of σ_y because of the Poisson effect demanding contractions in these directions, whether the crack is at the surface or embedded, of simple or complex geometry. Since the local stress reduces rapidly away from the crack tip, the remaining bulk of the material is subjected to only small Poisson contractions and restrains the material

at the notch root from contracting on the x one y directions, thus generating $\sigma_{\rm x}$ and $\sigma_{\rm z}$ constraint stresses.

The distribution of the $\sigma_{\rm x}$ and $\sigma_{\rm z}$ stresses will be partly distributed by the notch geometry, but generally they will bene to follow the pattern set by the $\sigma_{\rm y}$ stress. The level of the constraint stress will always be below that of the $\sigma_{\rm y}$ stress and is given by:

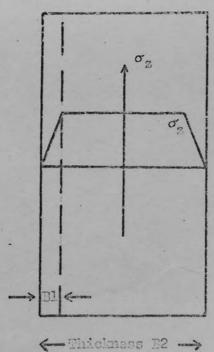

$$\delta_{z} = v (\delta_{y} + \delta_{z}).$$
 3.7.


The fact that they are constraint stresses generated by the geometry of the situation, means that the $\sigma_{\rm x}$ and $\sigma_{\rm y}$ stresses must reduce to zero at the free surfaces, as shown in Fig. 3.4. Thus $\sigma_{\rm x}$ follows, at a lower level, the distribution patient set by $\sigma_{\rm y}$, but falls off rapidly at the notch root, and with $({\rm x})^{-\frac{1}{2}}$ away from the notch root.

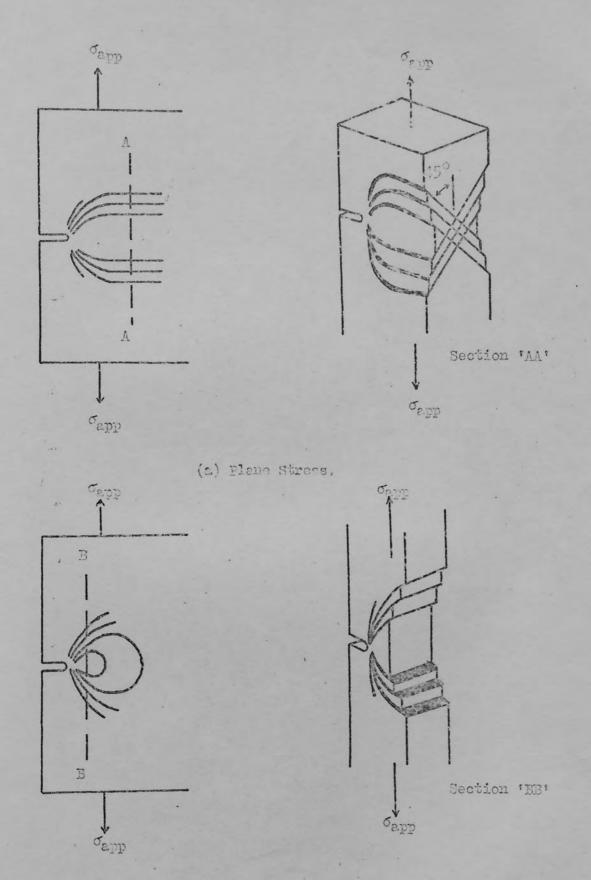

Whilst following the distribution pattern of σ_y in the x direction, proportional to $(r)^{-\frac{1}{2}}$, σ_z reaches a constant value in the z direction through the thickness, falling off to zero at each of the free surfaces, as depicted in fig. 3.4.(c).

develop due to the close proximity of the free surfaces. In this situation, termed generalised plane stress, all the stresses lie in the plane of the plate. Alternatively in a thicker plate where the σ_z atress is developed throughout most of the section, all the strain or displacements lie in the plane of the plate surface, and none through the thickness (except very close to the plate surfaces where σ_z becomes too small to prevent displacement) and a condition of plane strain prodominates. The yield somes characteristic of plane stress and plane strain are shown schematically in fig. 3.5.

The differences between these two important conditions are most marked when plasticity developes at the notch root. Under plane strain conditions with three principal stresses present, a component of lydrostation



(b) Variation of $\sigma_{\rm X}$ across wildih.


Dl E Plane Stress.

32 = Plane Strain.

(c) Variation of σ_z through plate thickness.

Fig. 3.4. Development of Constraint Stresses through Width and Thic mess of a Notched Plate. (After Barnby (49))

(b) Plane Strain.

Fig. 3.5. Yield Zones through the Gross Section of a Gracked Plate in Plane Stress and Plane Strain.

(After Hahn and Rosenfield (74))

tension exists in the stress field, whereas in plane stress, since the stresses through the thickness are sensible zero, a biaxial stress system prevails. The effect of triaxial termion, in plain strain, is to increase the effective yield stress of the material subjected to the stress field by constraint (ie. at the notal root). The extent of plastic yielding can be determined from the stress distribution curve by cutting off the dy turve at the yield stress level, since this is the physical limit in a real situation. The distance along the x axis at which the yield stress cuts the local stress distribution, ry, gives an estimate of the radius of the enclave which till become plastic prior to crack propagation.

rt can be seen from fig. 3.4.(a) that increasing the level of σ_{ys} will reduce the extent to which plasticity covers by limiting the size of the plastic zone. In practice the size and shope of the plastic zone will depend on the motorial properties and on whether the stress system is predominantly plane stress or plane strain. Under plane stress the yield strength is cut off at the uniaxial yield level, but under plastic constraint (plane strain), yielding criteria show that σ_{ys} will be higher than the uniaxial yield strength, σ_{ys} . Using the Tresca criterion σ_{ys} must satisfy:

$$\sigma_{ys} = \sigma_{y} - \sigma_{z}$$
 3.8.

where σ_y is the maximum and σ_z the minimum principal stress. Thus the effective yield strength of the material at the notch tip rises to the value of σ_y which is given by:

$$\sigma_y = \sigma_{ys} + \sigma_{z}.$$
 3.9.

plane stress:

$$r_y = \frac{1}{2\pi} \left(\frac{r_{1c}}{c_{ys}}\right)^2$$
. ... 3.10.

and for plane strain:

$$r_y = \frac{1}{5.6\pi} \left(\frac{12c}{5\pi} \right)^2$$
 3.11

During fracture the propagating crack tip is preceded through the structure by the plastic zone, which in a thick plate is small in the core where plane strain prevails, but becomes larger at the sides as the transition to plane stress occurs, shown schematically in fig. 3.6. The depth to which the larger zone extends into the triciness is approximately r. The smaller the plastic some size the less energy is consumed during fracture, and since this plastic work is the major contributory factor to toughness the critical K or G is a renimum for plane strain conditions, denoted Klc or Glo. Under non-grane strain conditions the energy consumed in the plastic zone is greater and the values of the stress intensity factor and the corresponding strain energy release rate are higher than the minimum Tie and Gie. To describe these situations the general notations I and C are used. Thus Kic represents the inherent resistance of a material to unstable crack propagation under the most severe conditions of geometrical constraint. Unlike the corresponding strain energy release rate, I, accounts for elastic modulus, allowing direct correlation between valid data from different materials.

3.5. Notch Acuity.

The importance of crack sharpness and its effect on the intensity of the local stress is expressed by Cottrell (50) as:

$$\delta_{\mathrm{I}} \propto \left(\frac{28}{\rho}\right)^{\frac{1}{2}}$$
.... 3.12

where p is the notch root radius.

It is apparent that decreasing p, (charpening the crack), increases the level of local stress, and as p approaches zero the local stress is increased toward infinity, effectively reducing the strength of the

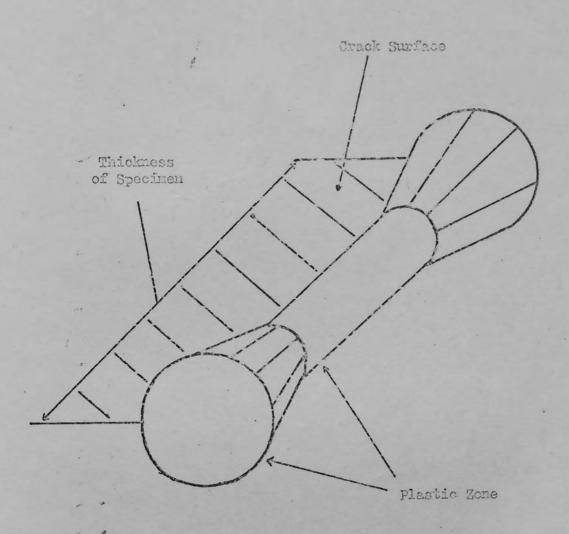
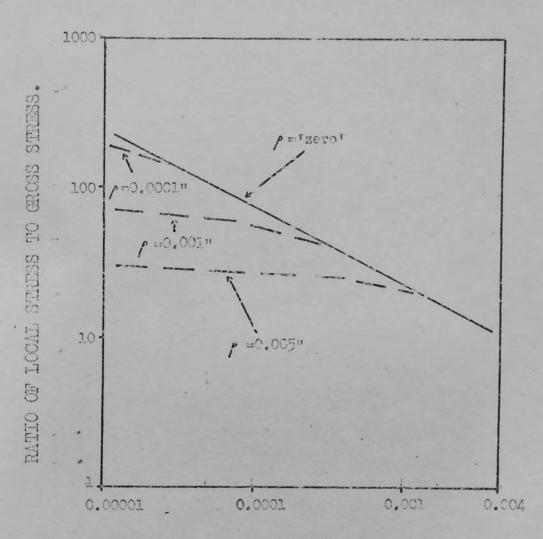


Fig. 3.6. Three Dimensional Schematic Diagram of the Plastic Zone.

(After Weiss and Yukawa (41))

material to a negligible level. For every raterial there is a lower limit of ρ however, below which no further inclease in σ_L occurs, since plastic flow at the tip will blunt the creak. The stronger the material the lower will be the critical value of ρ , since plantic flow becomes more difficult. Greenwood (51) estimates that a crack cannot have an effective sharpness so small that the tip radius is less than about four times the inter-atomic spacing!


In an earlier analysis Irwin (52) notes the following relationship between the stress intensity factor and crack root radius:

$$K = \lim_{\rho \to 0} \frac{1}{2} (\pi_{\rho})^{\frac{1}{2}}.$$
 3.13.

indicating that K becomes insensitive to root radius when p is small compared to notch depth.

rate is the sole criterion for unstable fracture, then fracture toughness should be insensitive to root radius in the small radius range. However, experimental data by Yukawa and McMullin (53) has shown that fracture toughness values are definitely dependent on root radius. Thus it is possible, with blunt notches, to exceed the critical value of strain energy release rate without fracture occurring. This observation emphasises the importance of the size of the plastic zone, and the stress/strain relationships within it.

Weiss (54) has treated the subject by assessing the clastic stress distribution of an infinitely sharp crack, compared to cracks of finite sharpness. Jackson (55) has confirmed the results of the treatment by Weiss, in his calculations of the Neuber stress analysis, shown in fig 3.7. Both workers conclude that the stress intensification for a crack of finite root radius differs from that of an infinitely sharp crack, only in the region shead of the crack tip approximately one fourth of the respective root radius. Therefore, for a crack of root radius 0.005in.,

DISTANCE AHEAD OF NOTCH TIP inches.

Fig. 3.7. Comparison of Local Stresses in the Vicinity of the Notch Tip. (After Jackson (55))

the crucial region is only some 0.001 in. above of the tip, and it is the deformation and fracture of this first mi .co-v lume which controls the subsequent fracture of the nett section.

Two definite conditions are now specified for the unstable fracturing of a material, firstly the initiation of fracture in the small localised zone near the tip; and then the supply of stored elactic energy from regions remote from the crack tip, necessary to maintain unstable crack motion once initiation has been overcome. The problem in fracture testing is to determine which of these factors is controlling and being measured in a particular test. For example, if the crack tip is not sharper than the critical root radius for the material, it will be the initiation resistance which is controlling and being measured. This is often the case in conventional notched and unrotched impact testing.

Ideally then, in order to because the materials inherent fracture resistance, it is desirable to perfore the test under conditions where the materials resistance to the initiation stage has over reduced as low as possible. Machined notches can rarely be produced with this sharper than about 0.002 in., but natural cracks produced by cleavage, fatigue, or fracture of secondary particles are normally sharper than this by at least two orders of nagnitude in high strength naterials. The affect of a blunt notch is to increase the size of the initiating plastic zone, resulting in the consumption of excess strain energy. In subsequent propagation the plastic zone size shrinks to that characteristic of a natural crack in the material. In order to avoid anomalously high values, when measuring fracture toughness, natural crack conditions are simulated by fatigue pre-cracking of a machined notch under low stress fatigue conditions.

3.6. Practure Toughness Testing Techniques.

Pormulation of stringent limits and special contions in addition to calibration data and test techniques has been issued by A.S.E.H. E 24 Special Committee, and all aspects are fully accurented in S.P.P. 381 and S.P.P. 410. A brief outline of the more solical points will be given here.

Practure Appearance. From the visual exemination of fractured tensile test specimens the 'cup and come' fracture surface has become a familiar characteristic associated with many redshs. In fact the cup and come fracture is a combination of two extreme types, referred to as 'shear' or 'shear' and 'square' or 'flat', which come not only in tensile testing but in all instances of fracture. Shear (ghour) fractures are produced in the presence of relatively large plastic strains in a situation approximating clame strain; thereas square (flat) fracture surfaces are associated with small amounts of deformation in the presence of constraint stresses, is, in a plane strain mode.

the various types of fracture surfaces observed and their recommended descriptive terms are schematically illustrated in fig. 3.8. by Grawley and Brown. (41) Since only in the two extreme slant and square types are the fracture surfaces roughly flat, the front of an extending crack in most real situations cannot be represented by a straight line. Tests (56) in which leading of a specimen is interrupted, and the extent of crack growth marked by heat tinting, throughout the fracture process from initiation to instability, have shown that the crack front in plate specimens is parabolic with the most sdvanced point at the mid thickness, as shown in fig. 3.9.

This phenomenon is brought about by the influence of the free faces failing in a plane stress node (and consuming more energy per unit increase in area), suppressing the advance of the crack in the plastically

Trace of Plane of Originating Crack

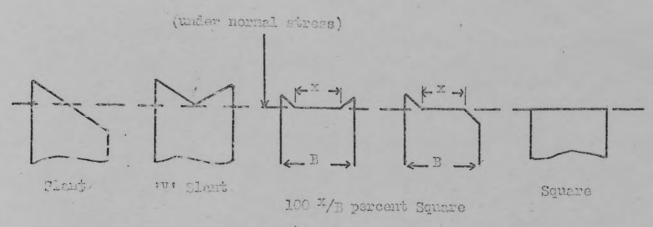


Fig. 3.8. Recommended Descriptive Ferms for Types of Practure Observed in Plate Specimens. (After Srowley and Brown (41))

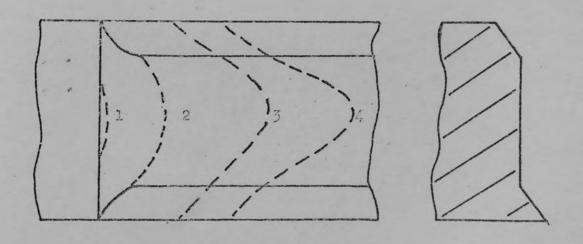


Fig. 3.9. Schematic Illustration of Successive Positions of Grack Front in Predominantly Square Fracture.

(After Srawley and Beachen (56))

commonly referred to as a 'thumb-mail' crack, and the slowt fracture trea associated with the free surfaces as 'shear lips'.

Effect of Whichmass. For a given material and test conditions the fracture appearance and strain energy release rate, G, show a marked dependence on section thickness, as shown for plate specimens in fig. 3.16., qualitatively typical of most metallic materials. The area of slant fracture in a given thickness is constant, and dependent on the yiel. properties of the material. Therefore as thickness decreases the proportion of high energy slant fracture becomes greater. For similar yield strengths (ie. same mechanical and thermal treatment) the effect of increasing thickness is to reduce the ratio of slant/square fracture. This means a reduction in energy requirements for unit fracture propagation, antil the fracture is predominantly square. At this point the Go/Whickness curve approaches a lower limiting value with minimum omergy requirements, typical of an ideal plane strain situation. The level of the plateau is the plane strain toughness, Gle, and is unaffected by further increase in thickness, since the extent of slant fracture is independent of plate thickness.

Effect of width. The effect of width as distinct from thickness can best be envisaged by considering the depth of a notch in a flat plate relative to the gross section size. If the extent of unnotched material ahead of the crack is infinitely large compared to the plastic zone size, r_y , then the situation nears the ideal for the application of linear fracture mechanics. For slightly larger plastic zone sizes, or smaller widths, the contribution of the plastic zone may become significant, making it necessary to consider the plastic zone as an addition to the crack length. Under those conditions the crack length, a, is represented by $(a+r_y)$ in relevant equations. In cases where the plastic zone is large the local

Fig. 3.10. Dependence of Go and Fracture Appearance on Thickness of plate Specimens. (After Srawley and Brown(41))

stress distribution may be influenced by the close proximity of the free surface and the plastic strains may actually treak out to the free surface. Under these circumstances the underlying assumptions of the linear elastic stress field theories are no longer valid, and a useful determination of toughness cannot be made on these grounds. It should also be appreciated that if the crack length is too small the applied stress may well exceed the yield stress of the material before instability is reached. In all types of practure toughness touting the nett section stress at instability should not exceed 80% of the 0.2% offset yield stress. (57)

Test Procedure. In section 3.3 it was shown how K_1 increases with applied stress up to the instability level K_{16} , for a given crack situation. By introducing a geometrical factor K_{16} , the formula can be normalised for any exack situation:

$$K_{10} = Y \sigma (a)^{\frac{1}{2}}$$
 3.14

Y is a non-dimensional polynomical incorporating the geometrical aspects of the specimen, such as thickness and width. The value of Y can be determined in two ways, theoretically by boundary collocation methods, and experimentally by compliance testing. The availability of computerised stress analysis techniques has led to the development of numerous types of specimen suitable for fracture toughness testing. It should be noted in this context that since K_{1c} is a material property, valid data can be correlated independent of the type of specimen used.

In order to determine K_{lc} therefore, from equation 3.14., since Y and a, are constants for individual tests, all that remains is to apply a tensile load across a pre-cracked notch and measure the load at which crack propagation commences. Insertion of this critical load into equation 3.14. together with values for Y and the initial crack length, a, enables K_{lc} to be calculated.

Choice of Specimen. The design of specimens for fracture toughness testing has developed rapidly over the past decade, and there is now a comprehensive range to suit many applications and test conditions. For example, three point hand specimens are ideal for quality control, since load requirements and machining costs are minimal; whereas single edge notch tensile specimens are suited to specialised testing techniques such as high temperature tests. The main factor influencing the choice of specimen and lost prodedure is the ultimate objective in performing the work. Nic. 3.11. shows some of the specimens available.

predeminently plane strain conditions should apply. A recommendation has been put forward by the A.S.F.M. E.24 committee regarding specimen dimensions, stressing that thickness and minimum crack length should exceed a characteristic of the natorial under test, 2.5 (\$\frac{Klo}{Oys}\$, in order that the \$K_{lo}\$ value determined from that specimen be considered valid. This parameter has been empirically established by extensive testing of many materials.

close machining tolerances are important to ensure that the geometry satisfies the calibration being used. Normally a flat bottomed notch with a root radius of less than 0.010 in, and a maximum included angle of 60° is suitable, but for special circumstances where fatigue crack initiation is difficult other techniques have been developed, such as elevron notching, and spark erosion of the notch root.

As mentioned in section 3.5. in order to simulate natural sharp crack conditions during testing, pre-cracking under low stress fatigue is employed. It is important that the fatigue cracking process be closely controlled in order that fatigue crack damage and the development of unsatisfactory fatigue cracks, (due to irregularities in the crack front contour; multi-nucleation from a blunt notch etc.), be avoided. To standardise the fatigue pre-cracking operation, A.S.T.H. E.24 committee recommend that the fatigue stress intensity (Mg) shall not exceed 60% of

* Kf is the change in stress intensity during cyclic tensile loading.

-	AND STREET, THE SECOND STREET,			
(a)	Round Notched	D	Length = 8D	Very large specials required to obtain fracture before yield. Difficulties in fatiguing.
(6)	Centre Cracked Plate.		$2a = \frac{4}{6}$ $B = \frac{4}{4} - \frac{4}{10}$ Length = 44 (min)	Useful for K _c tests on thin material. Difficulties in fatiguing.
(0)	Double Edge Cracked Plate.		a = W/6 B = 7/4-7/10 Length = 477 (min)	Difficulties with fatigue cracks. Generally replaced by Single Edge Hoteled.
(ā)	Single Edge Notched Plate.		$z = \frac{7}{3} - \frac{7}{6}$ Length = 47 (min)	Pequires only 305 natorial of Double National of Double Nor Specialised tests.
(e)	Single Hage Notched 3 & 4 Point Bend.		a 0.67 B = T - 7/8 L = 47	Easy and cheap to produce, low material and load requirement. Generally useful.
(1)	Hedge Opening Load, 'C.K.S.'		$B = \frac{W}{2}$ $M = 1.3M$ $H = 1.2M$ $Moles = \frac{P}{2}$ $dia.$ $a = 0.5M$	Optimised design combines low load with small size and high measuring capacity. Ideal for directionality work.

Fig. 3.11. Various Specimens used for the Determination of Fracture Moughness.

the subsequently minimized static K_{le} value. This is achieved by limiting the amount of crack growth in a given number of fatigue cycles, which can be calculated from the following relationship by Paris: (58)

on/dN =
$$C(\Delta X)^n$$
. * ... 3.15.

In their recommendations E.24 propose that a satisfactory fatigue crack should extend not less than 0.050 in. from the notch root, in order to be outside the influence of the stress field set up by the blunt notch, and that the linal 0.050 in. of fatigue crack growth should occur in not less than 50.000 cycles. It has been suggested (59), that for many materials these restrictions are too conservative and could be relaxed to a certain extent, still projucing valid results.

Determination of Critical Load. Several methods have been developed for the detection of the critical load for calculation of K_{lc}, including registivity, accountics, photography and ink staining. The most popular method, and that recommended by A.S.T.M. E 24 committee is to plot load against the opening displacement of a notch, measured with a calibrated clip gauge. In order that the load/displacement record can be subsequently analysed, and critical load determined, it is necessary to obtain a perfectly linear response from the clip gauge. For this reason a double cantilever beam gauge incorporating four resistance strain gauges in a balanced circuit is now commonly used.

The most obvious way of measuring K_{lc} would be to test a sufficiently thick plate specimen of the material, ensuring fully plane strain conditions. This is not always convenient, however, and certainly would not be economical of material. Depending upon material characteristics, initial crack extension may take place as a rapid jump, or slow crack growth may occur throughout the nett section. In intermediate thicknesses the phenomenon of meta-instability, termed *pop-in*, can be satisfactorily employed for the determination of K_{lc}. The use of pop-in for K_{lc}

^{*} Where C and n are material constants, and N is the number of fatigue cycles.

entirely square 'racture was first proposed by Boyle et. al. (60), who observed that initial extension of a crack often occurred as a distinct jump, followed by aradual extension as the load was increased. A schematic representation of pop-in behaviour in various thicknesses of material is shown in fig. 3.12. Boyle was able to show that the value of G at which pop-in occurred was the same as the value of G determined on a sufficiently thick plate specimen.

however, and the resulting load/displacement record is not stepped, but these a gradual deviation from linearity. A simple analytical treatment for load/displacement records has been developed, thus eliminating the scarter introduced by individual assessment. This procedure involves detection of significant crack growth by a secent method, regardless of how the oracle extension has developed, and corries with it certain qualifications to which the record must comply. It in no way affects specimen design or calculation procedures, and is analogous to the measurement of 0.25 proof stress when no distinct yield point is observed in a tensile test.

It is customary practice to determine a conditional value of $R_{\rm lc}$, denoted $R_{\rm lc}$, and from this is calculated the characteristic factor 2.5 ($\frac{RQ}{\rm cys}$). If this quantity is less than both the specimen thickness and crack length, and if the fatigue cracking conditions and load/displacement record are satisfactory then $R_{\rm lc}$ is taken as the required $R_{\rm lc}$ result.

Applied Fracture Mechanics. The main advantage of a fracture mechanics approach to materials assessment is that test data from laboratory specimens can be used for the selection of materials for specific design considerations. Fracture toughness will replace yield strength, or a given fraction of yield strength, as a design criterion.

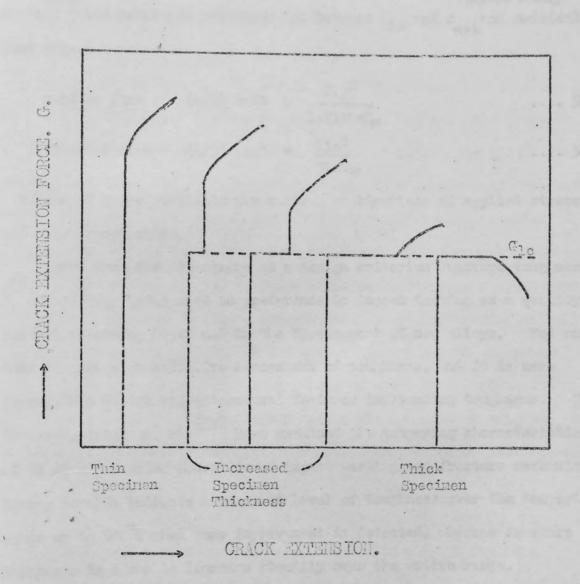


Fig. 3.12. Schematic Representation of 'Pop-in' Behaviour in Material of Varying Thickness. (After Greenwood (51))

If the plane strain fracture toughtess is known, together with the stress applied to a component, it is possible to calculate the flaw size necessary for failure. Conversely, knowing the maximum size and orientation of flaw present in the component the stress for failure can be determined. Considering () as the flaw shape parameter (applied stress)

In in (61) has developed relationships between fla and oritical flaw size:

Surface flaw (a/Q) crit =
$$\frac{K_{1c}^2}{1.21\pi \kappa_{pp}^2}$$
 ... 3.16
Embedded flaw (a/Q) crit = $\frac{K_{1c}^2}{\pi \sigma_{pp}^2}$... 3.17

Values of Q are available for various combinations of applied stress and flaw aspect ratio.

Apart from the advantages as a design criterion tracture toughness is effectively being used in preference to import testing as a quality control screening test, and in the development of new alloys. Not only does it give a quantitative assessment of toughness, but it is more susceptible to the microstructural features including toughness. For instance, Irani et. al. (62) have examined the tempering characteristics of EN 40 steel using conventional impact testing and fracture mechanics. Charge results indicate a constant level of toughness over the tempering range up to 500°C when some improvement is detected, whereas fracture toughness is shown to increase steadily over the entire range.

In general many of the metallurgical features that are desired to improve fracture toughness using pre-cracked specimens are those which are effective in improving toughness on notched impact standards. The mechanism or the degree of effectiveness of a particular feature, however, may be quite different in the two situations. The pre-cracked tests will be more sensitive to feators affecting crack propagation, thereas it is likely that it will be the initiation process which is controlling tests utilizing machine notched specimens.

4. LIPALLURGY OF CRACK INTRIATION AND PROPAGATION.

4.1. Crack Initiation.

In section 5.1. it was shown that if the Griffith criterion was to hold true for netallic naterials, cracks of a finite length must be present before stressing. Whilst it is known that cracks, as such, of this magnitude are not present before yielding, features are produced during deformation which are of this order. For instance slip lines across one grain leading to across concentrations in the next approach the size of crack required to satisfy the Griffith theory. Petch (53) noted that yielding occurs at a lower stress in coarse grained than in fine grained speed, due to the large stress concentration arising from the longer slip lines in the coarse grained material, promoting unlocking of dislocations and yielding in the next grain. In both coarse and fine grained steels the unlocking stress is the same. Petch has developed a relationship connecting yield characteristics with the frictional stress resisting deformation, 61, and the grain size dependence:

$$\sigma_{y} = \sigma_{i} + K_{y}d^{\frac{1}{2}}$$
 4.1

The Petch relationship is illustrated schematically in fig. 4.1.

Stroh (64) made the first attempt to associate slip bands with the initiation of fracture by summing the stresses due to individual dislocations in a slip plane, arriving at the following equation for the initiation of a micro-crack of length L:

$$(\sigma \text{ app } - \sigma_i) = \sigma \text{ eff.} = \left[\frac{3 \text{ TF G V}}{8(1 - \text{ V})L}\right]^{\frac{1}{2}}$$
.... 4.2

Stroh suggests that once the nucleation barrier has been overcome and a micro-crack initiated this crack would be of critical size and

Illustration has been removed for copyright restrictions

Fig. 4.1. Schematic Illustration of the Petch Relationship (63)

2000

result in immediate failure. In fact wany micro-cracks can be present without causing failure.

In view of the inadequacy of the Stroh mode? Smith and Barnby (65) have suggested an alternative mode of fracture initiation in two phase material. Consideration of dislocations of ad up against a barrier such as a carbide, as in fig. 4.2, leads to the following equation for the stress to cause failure of the carbide:

$$\sigma \text{ eff} = \left(\frac{2c}{d}\right)^{\frac{1}{2}} \left[\frac{2\chi c}{\pi(1-\tau)d}\right]^{\frac{1}{2}} \dots 4.3.$$

Thus if 2c is small and d long, (ie. long slip band and thin precipitate), the precipitate will fracture at a lower stress than postulated by Stroh. Once the crack is formed, equal lengths of slip lines cancel out leaving an unpropagated void. Unbalancing will cause the crack to propagate into the matrix on the weaker side.

cottreli (66) discusses only the growth barrier, considering the nucleation berrier unimportant and suggests that it is growth which is the controlling factor. Cottrell proposes intersecting dislocation lines in B.C.C. metals to produce a wedge defect opening the 100 cleavage plane, as depicted in fig. 4.3. The combination of dislocations on (101) and (101) planes with Burger's vectors 2/2 111 and 2/2 Ill respectively, produces a dislocation of [001] with a nett lowering of the elastic strain energy:

$$\frac{3a^2}{4} + \frac{3a^2}{4} \longrightarrow a^2.$$
 ... 4.4.

According to Cottrell, cracking will occur when:

(nb) can be determined from elastic strain displacements, since from fig. 4.4:

$$nb = (\sigma app - \sigma_i)^{d}/_{\mu}$$
 4.6.

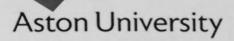


Illustration has been removed for copyright restrictions

Fig. 4.2. Smith and Barmby (65) Model for Initiation of Fracture at a Precipitate in Two Phase Material.

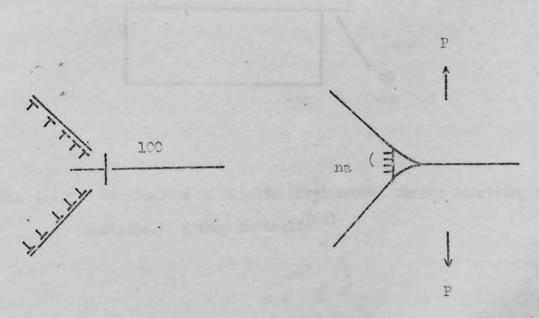
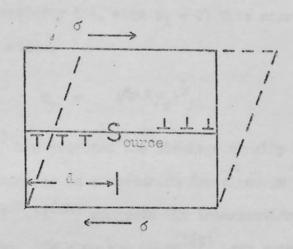



Fig. 4.3. Intersecting Dislocation Lines in B.C.C. Metals, to Produce a Wedge Defect Opening the 100 Plane. (After Cottrell(66))

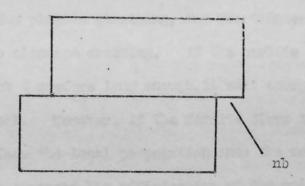


Fig. 4.4. Determination of Elastic Displacement During Straining of a Particle. (After Cottrell (66))

Substituting in Cottrell's equation and resurranging with $P=2\sigma_y$, the condition for instability taking into account plasticity is:

$$\dot{\sigma}_y (\sigma_y - \sigma_5) a = \beta \mu \delta$$
 4.7

where $\beta=1$ for a plain bar, and 1/3 for a notched bar. Ignoring the effects of plasticity (ie. when $\sigma_i=0$) this corresponds well with Griffith's equation:

$$\sigma_{y} = (\beta \mu \delta /_{\tilde{G}})^{\frac{1}{2}}, \qquad ... 4.0$$

Ener (67) has proposed the blockage of slip bands by precipitates and grain boundaries as a nechanism for cleavage initiation in E.C.C. metals, whilst hull (68) suggests the intersection of mechanical twins as an alternative. Relation and Cohen (69) have examined the initiation of cleavage cracking in polycrystaline iron, containing up to 0.035% carbon, and conclude that cracking will occur in carbides contained in quite soft pure from during plastic stratning, and the thicker the carbide the more prone it is to cleavage cracking. If the carbide is thick enough, and the micro-crack therefore long enough, it will energe into the matrix as a Criffith crack. However, if the ferrite flows locally at the carbide/ferrite interface the local propagation into the matrix will be suppressed. Barnby, and Cottrell, by relating K_c to the effective stress available for cracking, σ_{eff} , via the surface energy in the various models:

$$K_{c} = V \sigma_{eff} e^{\frac{1}{2}}$$
 4.9.

where Y is a geometrical parameter, and $\mathbb{F}_{\mathbf{c}}$ is the critical stress intensity factor generated by a slip band across the cracking plane. The larger the value of Y for a given situation the greater the efficiency of the different models.

Stron's model gave a value of 1.84, whilst those of Smith and Barnby

and Cottcell gave a value of 8. The Smith and Barnby model has a Y value dependent in the precipitate size and slip band length (grain size). A large Y value will occur in coarse grained material containing thin precipitates. I, therefore, has been shown to be a function of microstructure, and the relative efficiency of the nucleation criterion will also vary with microstructural parameters.

As an alternative to the fracture mechanics approach, Wells (71) has developed a fracture criterion based on the opening displacement of a charp crack prior to tailure, J. At a critical crack opening displacement (C.O.D.) fast fracture will occur. Cottrell, (72) Burdekin and Stone (73). and Hahn and Rosenfield (74) have shown that a simple relationship exists between fracture toughness and C.O.D., via the yield strength:

$$G_{c} = \sigma_{ys} J_{c} \qquad \dots 4.10$$
or
$$K_{c} = (J_{c} \sigma_{ys} E)^{\frac{1}{2}} \dots 4.11$$

This approach is currently finding wide application in low strength ductile materials where the assessment of toughness by fracture mechanics is limited by extensive plasticity. A detailed examination of the stress and strain distribution within the plastic zone, and the implications of designing on this basis are discussed by Knott⁽⁷⁵⁾.

4.2. Electron Fractography.

In the past, fracture has been described as 'fibrous', 'silky',
'intergranular', 'ductile' or 'brittle', but these terms are quite
insufficient to describe and explain the features of most fractures.

The use of electron microscopy as a tool in the examination of fracture surfaces has led to a fuller understanding and identification of individual fracture processes, such as cleavage, quasi-cleavage and micro-void coalescence.

Cleavage can be defined as the separation of a crystal along certain

prone to cleaver fracture along atomic planes of high density, especially at low temperatures. Cleavage fracture in metals is always preceded by some plastic deformation, and this combined with the fact that metal crystals are never perfect, results in the production of a stepped fracture surface, with separation taking place along parallel sets of cleavage planes. As fracture progresses these steps converge and the resulting surface examined by electron microscopic techniques exhibits typical river patterns. Beachem (76) considers screw dislocations, present in the structure at grain boundaries and other features, or produced during the associated deformation, to be responsible for the formation of these cleavage steps.

In addition to grain boundaries other metallographic features such as second phases, non-metallic inclusions etc. also influence cleavage fracture in metals. In this case several fracture modes may be distinguished on the same fracture surface. A common feature of mixed made fractures are flat facets which may comprise a considerable portion of the fracture surface, especially at temperatures near to the ductile/brittle transition. These individual facets are usually larger than fine scale metallographic features and can show river patterns and be very like true cleavage in appearance, but it has been shown that the orientation cannot be related to the cleavage planes of the matrix. The term 'quasi-cleavage' has been used to differentiate between these facets and true crystalline cleavage. Quasi-cleavage is associated with low energy fracture but shows features not normally connected with true cleavage, indicating the presence of localised plastic deformation. These are ridges and tongues which protrude from both fracture surfaces.

The fracture mode important in most ductile and tougher materials is the coalescence of micro-voids. The initiation of voids is dependent upon the existence of defects or heterogeneities present in the material or

produced during plantic deformation. This can occur by fracture of inclusions and proceed phase particles or breakdown of the matrix/particle interface. It is known that they are initiated in the plastic zone ahead of the craction where they tend to develop into rounded holes. During further plastic flow the voids continue to grow, the matrix between the voids nacking down and eventually separating by rupture, terred coalescence. The fracture surface created by coalescence of voids is made up of rounded concave depressions, known as 'dimples', and first identified by Crussard. (77)

Deschir has been able to show from the shape of dimples on electron Irectographs, the type of stress required for their formation, and designates three types. Dimples which are roughly equiaxed or hemispherical are produced under the influence of normal plastic strain. Shear rupture dimples are produced under normal plastic strain and shear strain, and are characterised by being elongated in opposite directions on opposite halves of the fracture surface. Shear rupture dimples would be characteristically present on shear lips and the sides of cup and cone fractures. Tearing occurs under the influence of non-uniform strain, such as the tip of a crack, producing elongated dimples in the same direction on both fracture surfaces.

The size of dimples on a fracture surface is determined by two factors, the size of the initial void, which is governed by the size of the inclusion or precipitate particle, and the amount of plastic growth permitted before the void coalesces with another free surface. The latter is dependent upon the distance between voids and the characteristics of the deforming matrix.

Intergranular failure occurs in many metal systems due to segregation of impurity or alloy elements to form precipitate particles, continuous films or composition gradients at the grain boundary. This results in a variation in mechanical, physical, and chemical properties of the grain boundary from the matrix. Depending on the extent of brittle grain

boundary constituents the failure may be partly intergranular and partly transgranular. The amount of plastic deformation absorbed by the adjacent grains during intergranular fracture influences the subsequent fracture surface. Beachem and Pelloux (41) have shown that intergranular failure can be associated with a variation of fracture surfaces, from being quite flat and featureless, to having a completely dimplea surface. Cleavage, fatigue markings, and other features have also been associated with intergranular separation.

4.3. Influence of Inclusions on Ductile Fracture.

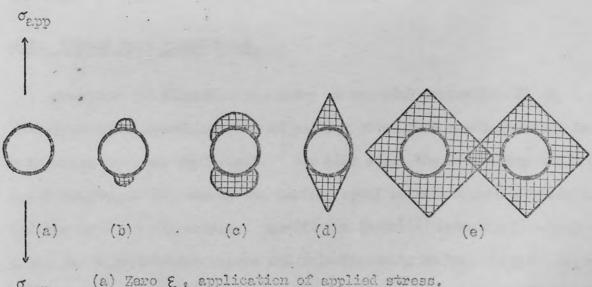
that due to second phase particles, such as inclusions, precipitates, and dispersions. In high strength steels, and high strength non-ferrous alloys, the fracture process is generally one of crack or cavity nucleation at hard second phase particles followed by internal necking of the matrix, resulting in typical dimpled rupture fracture surfaces. Since work must be done in the nucleation of the cavities, and in the subsequent coalescence process, the distribution, size, and characteristics of the dispersed particles are major metallurgical factors controlling the toughness of the alloy, since they strongly affect the level at which energy is absorbed in the plastic zone as crack propagation occurs.

Several theories have been proposed to explain the phenomenon of crack nucleation and its subsequent growth at second phase particles, most notably by Ashby, (78) Gurland (79) and McClintock. (80) Each of the models approaches the problem from a different aspect, Ashby suggesting a dislocation mechanism and the formation of a prismatic loop or vacancy loop, at the matrix/particle interface under the influence of the applied stress. Movement of the vacancy loop, by glide, away from the particle enables further loops to be produced, resulting finally in joining of the loops to form a crack. The Ashby model can be expressed as:

The interface will crack when on reaches a critical value, thus predicting that holes will form at larger particles at lower strains than at smaller particles.

Ashby's model does not take into account the effect of hydrostatic tension and its effect both on the flow properties of the particle and matrix, which could lead to stress relief at the interface. McClintock, however, takes these factors into consideration including the effect of work hardening, allowing effects such as notch geometry and necking to be described. The main objection to the McClintock model is that it is based on studies of plasticens containing polystyrene spheres, and therefore considers only the case where holes nucleate at zero strain by complete separation of the particle/matrix interface. Thus for nost general cases where the interface retains at least a partial bond even up to high strains, or when hole formation occurs by cracking of the particle, the McClintock approach will be inapplicable without some modification.

curland and Plateau (81) have examined cavity nucleation in Al/Si alloy and pearlitic steel and relate the elongation to rupture to the volume fraction of inclusions, with the micro-cracks growing into cavities by concentration of plastic strain. From this work durland and Plateau express the elongation to rupture as a function of the volume fraction only, for the conditions of hard precipitates and inclusions able to deform within the matrix. The model is shown to hold well for the experimental results of Edelson and Baldwin on copper, strengthened with precipitates of Cr. alumina, Fe and Ho shown in fig. 4.5, and can be expressed as:


$$\varepsilon_{R} = \varepsilon_{o} + \frac{1}{2} \log \left[1 + \frac{\kappa_{2}^{2}}{\kappa_{1}^{2}} \left(\frac{2}{3} \frac{1 + 2f}{f} e^{-\varepsilon R/2} - 2 \right)^{2} \right]$$
 4.13

where ER is the elongation to rupture, Eo the elongation before cracking,

Illustration has been removed for copyright restrictions

Fig. 4.5. Experimental Data of Edelson and Valdwin (82) on Fracture Ductility of Copper-Bese Composite Alloys.

- (a) Zero &, application of applied stress.
- (b) Initial separation of matrix/particle interface at low strain.
- (c) & (d) Growth of holes with further strain.
- (e) Coalescence of holes at high strain, close to true fracture

Fig. 4.5. Void Coalescence (Schematic). (After Palmer & Smith(83), & Puttick(64)

K1 and K2 constants, and f the volume fraction of precipitate.

The fundamental point to emerge from all sources is that as the volume fraction of second phase particles is increased there is a rapid drop in ductility. From the studies mentioned above, and many others it becomes evident that the formation of hole; at precipitates and the concentration of deformation in sharply defined bands dominates the process of ductile fracture. Bither of these pheromenon may occur first, the presence of holes concentrates the strain into narrow bands emanating from the holes; whilst slip bands implaging on particles causes holes to form around the particles. It would appear that slip-induced hole formation is more typical.

Irrespective of the namer in which the cavities are initiated, with increasing stress the holes will grow by a mechanism involving plastic strain, and finally, after reaching a critical size approaching the interparticle spacing coalescence occurs rapidly. The fundamentals of the growth and coalescence stages are not so fully understood, but are schematically represented in fig. 4.5, after Palmer and Smith, (85) and Puttick. (84)

4.4. Strain Rate Sensitivity.

practical difficulties may arise in material evaluation if an increased crack speed, or rate of loading of a fixed crack, results in a decrease in crack resistence. For mild steel the decreasing trend of crack toughness with increasing loading speed is well known but this is not the case for all metals. Krafft and Irwin⁽⁴¹⁾ have shown a reversed trend for hard titanium alloys and this disparity in behaviour is explained in terms of the absolute slope of the plastic region of the logarithmic, stress strain curve, (6), to changes in loading speed. For B.C.C. metals the value of 9 tends to remain constant and toughness will be proportional to yield strength, which increases in all metals with increasing strain

rate. Thus n and Kle vary inversely with strain rate:

Since
$$n \sim \frac{\dot{\theta}}{\sigma_{\varphi}}$$

n & Klc
$$\propto \frac{1}{\sigma_{\rm VS}}$$

Beauwhas (85) has observed in F.C.C. metals, however, that θ increases with speed of testing. If this increase in θ is a stronger effect than the increasing flow stress, σ_{f} , then an increasing trend in r and Γ_{lc} with speed of testing would follow.

Krafft (86) has demonstrated the similar dependence of n and K₁₀ upon strain rate and temperature over a wide range, using data from compression tests, which were preferred to tensile, since: (a) flow is uninterrupted by failure at low temperatures or high strain rates, and (b) compression tests are well adapted to impact testing. Making the assumptions that tensile instability and rupture occurs in a small elemental fracture cell adjacent to the crack front, illustrated in fig. 4.7, and that tensile plastic strain distribution approaching the crack can be regarded as increasing up to the elemental cell, then:

$$d_{T} = \frac{1}{2\pi} \left(\frac{K_{1c}}{nE}\right)^{2} \left(\frac{n}{ET}\right)^{2}. \qquad 4.14$$

where \mathcal{E}_T is the tensile strain, and \mathbf{d}_T is a constant, representing the distance ahead of the crack front where \mathcal{E}_T becomes equal to n, the tensile instability strain.

By making a correction for adiabatic heating which occurs in compression testing (in fracture toughness tests the yield zone is so small that isothermal conditions prevail at all speeds), Krafft was able to match K_{lc} versus \tilde{K} and n versus \tilde{e} , data, shown in fig. 4.8, reaching the conclusion that d_p , the size of the individual fracture cell, is a constant related to K_{lc} and n:

$$K_{1c} = En (2 \pi d_m)^{\frac{1}{2}}$$
 4.15

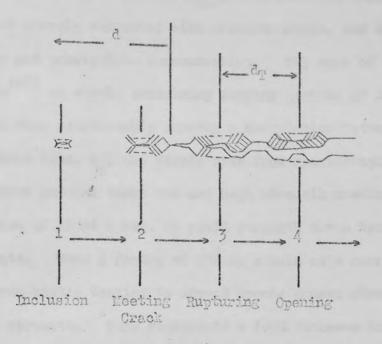


Fig. 4.7. A Model for the Interception of an Inclusion-Started Void by the Crack Front, Resulting in Diaple Formation.

(After Krafft (86))

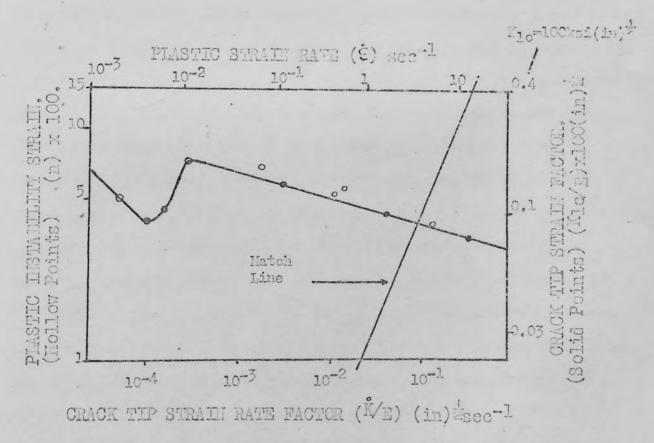


Fig. 4.8. Correlation of Crack Toughness Klc with the Strain Hardening Exponent n for Mild Steel, Tested at -320°F.

(After Krafft (86))

Thus according to Krafft, K_{lc} should increase directly with $(d_{T})^{\frac{1}{2}}$, a constant closely connected with microstructure, and more particularly, inclusion and precipitate concentration. The work of Birkle well and Pellisier (87) on steels containing varying amounts of sulphur has confirmed this relationship showing a correlation between calculated process zone size, d_{T} , and dimple size from fractographic examination.

In more general terms low and high strength steels typically exhibit an increase of about 6 ksi. in yield strength for a tenfold increase in strain rate. Thus a factor of 10⁵ in strain rate corresponding to a change from static testing to impact speeds causes about a 30 ksi. increase in yield strength. This represents a 100% increase in plain carbon steel and there will be a large effect on crack toughness. For high strength steel this may only represent a 15% increase, and K_{1c} will then be relatively insensitive to strain rate.

5. EXPERIMENTAL PROCEDURE.

5.1. Programme.

Three preliminary trials were conducted to determine the feasability of applying fracture toughness testing to cast material. Particular attention was paid to reproduceability, directionality, residual stresses, and the need for fatigue pre-cracking.

basic composition of 15% electrium, less than 0.5% silicon, and 0.75% manganese was investigated over the rarge 6.8 to 3.4% carbon. A series of alloys at six carbon levels, within this range, was examined, all of which solidified within the austeritic loop discussed in section 2.3. A metastable austeratic metrix surrounded by an interdendritic hypo-entectic network of electrium carbide is produced on subsequent cooling. The highest carbon level investigated (3.4%) corresponded approximately to the entectic composition. By heat treatment of the austeritic material the effect of varying carbon content in a marteneithic matrix was also investigated. Optimum heat treatment conditions were determined with respect to hardness and fracture toughness.

Breakdown of the embrittling carbide network was achieved by hot working, and by spherodisation at a temperature of 1150°C. Material of 0.8% carbon content was used in the forging trial where 50% unidirectional deformation was achieved on a drop harmer. Fracture toughness tests were carried out in the as forged condition and after heat treatment. The effects of spherodising were examined at all carbon levels. The 1.4% carbon alloy was used in an experiment involving variation of spherodisation time.

Changes in grain size over a wide range were accomplished in the 1.4% carbon alloy by the use of various moulding techniques and section sizes

Strain rate sensitivity was recoved in both austenitic and martensitic material by testing over a range of speeds covering five orders of magnitude.

Structural correlation in terms of the Hratift (86) hypothesis has been observed in martensitic structures. Practical and metallographic evidence confirmed this relationship.

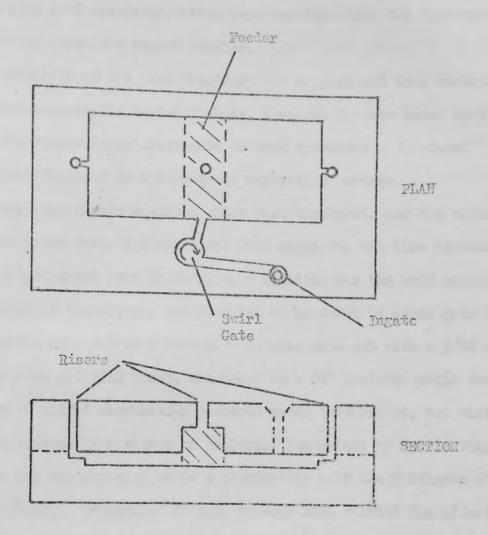
A strain induced transformation was observed in some of the austenitic alloys tested, and an attempt was made to determine the contribution of this phenomenon to plane strain fracture toughners.

The theoretical stress required to nucleate cracks in carbides has been calculated, and compared to the applied runess at which carbide cracking has been observed. The importance of carbide morphology in the determination of Klo has also been demonstrated.

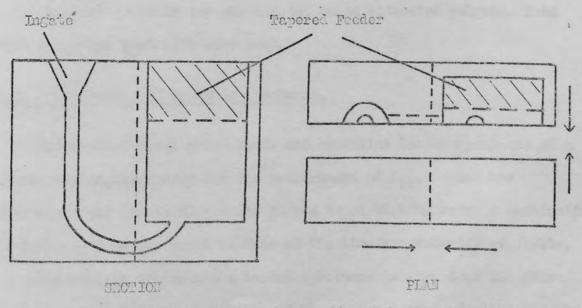
Optimum composition for a low carbon austenitic alloy has been proposed, and a survey made of the firsture properties of the alloys likely to be nost competitive in service. A direct comparison of the relative properties of those alloys was made by determination of the critical stress levels for a given defect size.

5.2. Material Production.

Charges were made up from commercial purity has materials and melted in a 50 kg. capacity high frequency induction furnace. Low carbon ferrochronium (less than 0.1% C); low sulphur and phosphorus pig iron; ferro-manganese; and high quality mild steel scrap were the constituents of most heats. High carbon ferro-chronium (6.C) was used in the production of the higher carbon alloys. Pouring temperature was controlled, in the hand ladle, at 100°C above the melting point, from 1400°C at 3. carbon to 1575°C at 1.5 carbon.


The bulk of the material was cast as four inch square, $\frac{1}{2}$ inch thick blanks, suitable for use as crackline loaded or bend specimens. Sand

castings were moulded in synthetic green sand and east horizontally in pairs, sharing a 12 inch square 4 inch long feeder. A swirl gate was incorporated into the running system to eliminate slag from the top surfaces of the castings, as shown in fig. 5.1.(a). All material was allowed to cool to room temperature in the mould.


other moulding techniques were used to achieve grain size variation in the 1.4% C alloy. A 4 inch square, 6 inch long block was send east and allowed to cool naturally. Blanks, \$\frac{1}{2}\$ inch thick, were extracted from positions midway between the ends of the block and the central zone near \$4\$ inch diameter exothermic feeder. In this way sound material, representative of the cooling conditions in the relatively large casting was obtained in the form of fracture toughness specimens.

Chill eastings were produced from graphite (Johnson Grade CS) moulds as I inch thick plates, and I inch thick coupons. The plates were cret individually in a vertical four part graphite need, with a bottom ingate and tapered feeder head, illustrated in fig. 5.1.(b). The coupons were produced in sets of three, in a two part graphite needs. A proprietary mouldcoat was sprayed onto the surfaces of the graphite moulds, which were pre-heated to 400°C prior to casting. A grain size intermediate between the chill and send east material was obtained by using a silliminite mould. This was pre-cast, fired, and set into a send moulding box, using the running system described above.

Material for the hot working trial was produced as 1 inch thick, 3 inch square blanks from a 0.8% carbon melt. The forging operation was performed on a 10 cwt. drop harmer within a temperature range of 1150°C to approximately 950°C. Fifty percent reduction in thickness (1 inch to ½ inch) was achieved after three reheating cycles with 6 to 10 blows per cycle. Four inch square crackline loaded specimens were taken from the forged stock, but subsequent tests to determine fracture toughness in the three dimensions relative to the forging direction necessitated the use of

(a) Running System used for Sand Casting 4 inch Square Blanks.

(b) Graphite Mould used for Chill Casting 4 inch Square Elanks. Fig. 5.1: Houlding Technique for Sand and Chill Castings.

two inch span band specimens, which were man ined from the fractured halves of the crackline loaded samples.

The majority of the leat treatment was conviced out in a controlled atmosphere electrically heated furnace, a vacuum furnace being used for some of the homogenising treatments on bend specimens. Rardened material was tempered in a forced air convection furnace.

Elanks were always machined after heat treatment, and the nature of the alloys under investigation meant that expensive and time consuming machining techniques were inevitable. Grinding was the only means of shaping most of the alloys, and care had to be taken to avoid grinding cracks in the high carbon material. Notches were out with a 3/32 in. thick abrasive slitting wheel, sharpened to a 50° included angle for the final out. Slight overheating occurred using this method, but this was kept to a minimum by a stream of coolant. The extent of overheating at the notch hip was observed to be approximately half the thickness of the slitting wheel. Subsequent fatigue pre-cracking carried the effective crack tip well beyond this point. The holes were inserted in crackline loaded specimens by spark erosion, using copper electrodes. Attempts to spark erode the noteb, and experiments with hard graphite electrodes, were abandoned due to excessive electrode wear.

Chemical analysis was carried out on an automated Polyvac, from coin specimens cast with each heat.

5.3. Measurement of Fracture Moughness.

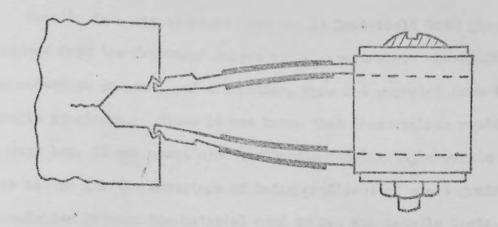
Established three point bend, and crackline loaded specimens of a recent design, were used for the measurement of K_{lc} . Each has advantages and disadvantages and it was hoped that by using a combination of both, optimum use could be made of the time and material available.

The ability of crackline losded specimens to arrest an unstable crack in all but the most britile of the alloys tested, facilitated the

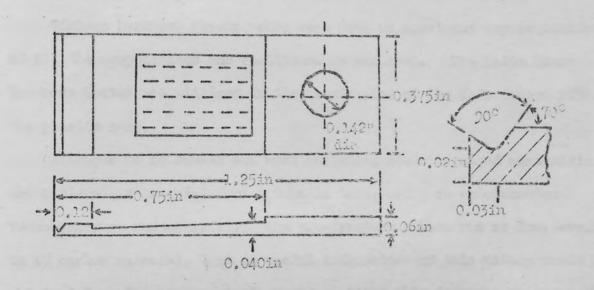
a complete plastic enclave, containing the arrested crack tip and its associated plastic zone; or by preparation of the specimen surface before testing, and subsequent examination. The technical benefits of the crackline loaded design must be weighed against the far greater cost of production, in both material and workshop time, when compared to the three point bend specimen.

Since the crackline loaded specimen was a new design a caribration curve had to be constructed by interpolation of existing data (88) for other tensile specimens. An experimental compliance calibration was carried out as a check on the specimen design, and the entire testing procedure. A good agreement was achieved between the theoretical and experimental methods. Details of the compliance calibration are given in the Appendix. The standard W/4 calibration curve published by A.S.T.M. (88) was used for bend tests. A sheek on the reproducability of K₁₀ from both types was made by preparing bend specimens from the fractured crackline loaded halves.

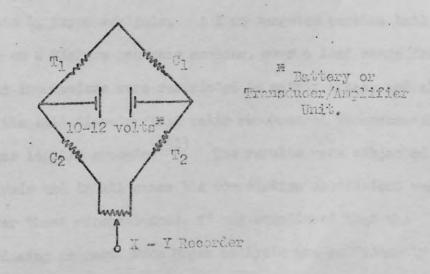
fatigue pre-cracking on an Amsler Vibrophore fatigue machine was carried out according to the A.S.E.M. recommended practice (final 0.050ins. in 50,000 cycles). A preliminary experiment in which faster rates of fatigue crack growth, and machinednotches were used, emphasised the importance of pre-cracking. The figure of 0.0005 E suggested by B.I.S.R.A. (89) as an estimate of the propagation stress intensity range was found to be generally satisfactory. It was necessary to exceed this value for some alloys with a high K_{lc}/σ_{ys} ratio, such as the low carbon homogenised series. The load required for initiation of a fatigue crack was usually some 40 to 50% above the propagation load. Fatigue crack growth was followed with the aid of a low power binocular microscope, and the final 0.050 inch of growth estimated from graduations made on the surface of the specimen. Total fatigue crack growth for


-180

most specimens was at least 0,100 inch.


Instructed to a design suggested by B.T.S.R.A. (90) and illustrated in fig. 5.2. Four 350 ohn strain gauges were connected in a Wheatstone Bridge balanced circuit, and excited by a Boulton Paul C 52 transducer amplifier unit. The amplified response from the clip gauge together with the load signal from the Instruction load call, was fed into a Bryan's K - I plotting table. A load/opening displacement record was obtained for each test. Location of the clip gauge across the notch was by means of attachable knife edges positioned accurately with a spacing skin. The clip gauge was calibrated and checked for linearity with a vernier nicrometer (see Appendix).

Bend specimens were tested on a jig with friction free hardened steel rollers, supported on adjustable boses to accommodate a span of 2 to 8 inches. The grips used for the crackline loaded specimens incorporated needle roller bearings in the head, to minimise the frictional effects due to rotation during testing.


an average value being taken from the furthest and least advanced points of the erack front, as recommended by D.I.S.B.A. (89). The critical load was determined from the load/displacement record using the 5% offset procedure, which estimates significant crack growth when distinct 'pop-in' is not evident. After the preliminary trial to check reproducability of results, all tests were carried out at least in duplicate, and whenever possible in triplicate. This was in accordance with a statistical analysis of early results, which indicated that a minimum of two specimens were required for a 90% confidence limit of obtaining a Kle value between 1.2 km (in) of the mean.

(a) Gauge Hounted on Specimen.

(b) Dimensions of Beam.

(c) Bridge Measurement Circuit.

Fig. 5.2. Details of Tapered Dean Displacement Gauge.

Tensile data was obtained from no. It Housefield test pieces machined from the fractured halves of Klc specimens. Meaningful results for reduction in area, and elongation, were not expected from these small tensile specimens. Since it was known that these values would inevitably be very low, it was considered worthwhile sacrificing accurate data of this nature for the advantage of being confident of exact grain size correlation between the material used in Klc and tensile tests. The tests were carried out at room to perabure on the Instron machine, using a strain rate of 1% per minute.

Vickers hardness reasurements were made on specimens representative of all the compositions and conditions encountered. The Leitz Micro Hardness Tester was utilised in the examination of the deformation within the plastic zone.

addenotes to determine the work bardening coefficient of austenitic and nertensitic natural from a tensile test, using an extensemeter technique were unsuccessful. The pre-fracture stain was so low, even in 15 carbon material, that no useful information of this nature could be obtained from the stress/strain curve. Since this data was necessary for the structural correlation work, further efforts were made to determine this characteristic by Meyer analysis. A 1 rm tungsten carbide ball indentor was used on a Vickers hardness machine, over a load range from 15 to 50 kg. The impressions were restricted to matrix areas, and all loads were above the ball diameter/load ratio recommended to ensure that the yield point was locally exceeded (91). The results were subjected to a regression analysis and in all cases the correlation coefficient was above 0.90. Under these circumstances, it was considered that the value of work hardening exponent from Meyer analysis was sufficiently accurate for the required purposs.

Normal metallographic techniques were vaca extensively. The etchant found to be most successful on the high chromium alloys was Picrol, a saturated solution of picric soid in alcohol, acidified with 4% hydrochloric acid. This solution stains sustenite a light yellow colour, martensite brown, and leaves carbides and ferrite unattacked.

The volume fraction of carbiles in the various structures was estimated on a quantimet microscope. Hen areas were selected at random, at 150 K magnification, for each determination.

A limited number of two stage parton replies were taken, and examined in a Fhillips EN 200 Electron microscope. Difficulties were experienced in the preparation of surfacer suitable for plastic replica stripping, due to preferential etching of areas adjacent to the carbides. This effect was particularly marked during electro-polishing, although several electrolyter were tried. It also occurred to a lesser extent during chemical etching.

A comprehensive fractographic survey was made on a Cambridge Scanning Electron Microscope. Preshly cracked fracture surfaces were preserved in a dessicator, and protected with a coating of liquid plastic, prior to cutting specimens suitable for examination on the stereoscan. The plastic coating was subsequently removed with chloroform, and the fracture surface degreesed and cleaned with carbon tetrachloride, in an ultrasonic bath. The stereoscan was also used for a more detailed examination of plastic zone enclaves, especially those from the free surface, where plastic deformation makes optical microscopy difficult.

6. RESULES.

Each aspect of the work is considered as a separate experiment, and tabulated in the following order:

Table	6.1.		0 6	Chemical Analysis.
t: ,	6.2.		• •	Tensile and Hardness Tests.
n	6.3.			Volume Fraction of Carbides.
1,	5.4.	• •	••	Preliminary Trial 1 on Notch Acuity.
II .	6.5.		• •	" 2 on Directionality and Reproducability.
ıı	6.6.			" 3 on Residual Stress.
n n	6.7.			Fracture Toughness of Austenitic Material.
11	6.8.	• 5		Austenitising Temperature.
u u	6.9.	••		Effects of Austenitising Time and Tempering Temperature on Klc.
11	6.10.		• • .	Fracture Toughness of Martensitic Material.
t ₄	6.11.		••	Rate of Application of Stress Intensity.
11	6.12.			Forging Trials.
"11"	6.13.	••	••	Effect of Common Alloying Elements on S.I.M. Formation.
tt	6.14.			Influence of S.I.H. on K

The thickness of all material is 1 inch, unless otherwise stated, and solidification and heat treatment procedures are described by the notation shown on page 1, and 2.

Chemical Analysis.

Six carbon. Details of the chemical analysis determined on an automated Polyvar from coin samples cast with each heat are shown below:

TABBE 6.1.

I was a second of the second of the	CARRED IN THE PROPERTY OF THE PARTY OF THE P	- A 21. 12 * REPAIR TO NO.	WARE CONTRACTOR OF THE PROPERTY OF THE PROPERT	-	CONTROLS IN MINISTRACTOR PORTER		
Meart Municer	G	Si	S	P	lm	Ni	Or -
COLOR TORON BLACK THE COLOR STORE ST	and Indiana and Columbia. It is the call	Territorian Chiesa (Severage	COMP. CONTROL OF THE	THE PROPERTY OF THE PARTY OF TH	CONTROL OF THE OWNER OF LAND	In the second section is the second	WIND MARKETON
1	0.82	0.44	0.064	0.031	0.56	0.18	16.3
2	0.78	0.75	0.028	0.037	0.73	0.22	15.5
3	0,82	0.51	0.029	0.029	0.63	0.21	16.0
	e Are						
4	1.06	0.77	0.038	0.030	0.77	0.20	15.5
5	1708	0.75.	0.029	0.031	0.62	0.18	14.6
6	1.16	0.63	***	-	0.88	0.18	16.7
7 -	1.30	0.82	0.031	0.032	0.67	**	15.5
6 *	1.46	0.59			0.78	0.18	16.4
9	1.47	0.47	~	-	0.72	0.18	15.8
10	2.1	0.64	0.042	0.038	2.0	0.24	14.8
11	2,82	0.58	0.034	0.048	2.89	0.11	15.5
12	3.4	0.68	0.050	0.062	2.4	0.23	14.0
	OUT OF THE PARTY OF THE WAY	to the speciment of the	Notice and the second of the second of	Security States of Contract Contract of the	***************************************		AND THE PERSON NAMED AND POST

Number eleven Hownsfield test pieces were machined from fractured halves of temphrons specimens and tested in duplicate.

Young's modulus (E) determinations were made on modified no. 15 Hounsfield test pieces with a 2" gauge length.

The results of Victors hardness are also included.

f TABLE 6.2.

Teas No. & Erestment	5 C	H _v 30	WIS kai
1 SC/AC	0.8	425	84.5
· 4 SC/AC	1.1	320	74.0
7 sc/Ac	1.4	350	97.0
30 SC/AC	2.1	485	110.0
11 SC/AC	2.9	510	114.0
- 12 SO/AG	3.4	530	34
- 1 sc/re	0.8	580	144.0
4 SC/HC	1.1	630	152.0
, 4 36 Vai	1.4	700	161.5
10 SC/RT	2.1	750	125.0
,11 SC/HF	2.9	825	122.0
12 SC/AR	3.4	850	2.5
9 30 6"	1.4	355	101.0
7 SC ½"	1.4	362	96.5
9 Sill l o	1.4	370	. 94.0
7 00 1	1.4	354	89.0
8 dd 4n	1.A	385	77.5
A CANADA A		E ps	i x 10 ⁻⁶
4 SC/AC	1.1	Advantage of the second	24.4
4 SC/IT	1.1		27.4

Mest piece fractured during mechining.

The Volume Fraction of Carbides.

The volume fraction of carbides in material of varying carbon content, grain size, and homogenisation time was estimated using the Quantimet microscope.

TABLE 6.3.

%.C	% Vol	.Carb.	1,45 C	", vol.
72.0	AC	1	Condition.	Carbide.
TO SEE THE SECOND SECON	The state of the s		SC 611	18
0.8	4	. 1	30 1 1	18
1.1	10	4	sili ½.	17
1.4	18	9	CC ½"	17
2.1	27.5	14	CC 10	17
2.8	35	22		
3.4	37.5	27.5	u her.	18
Denomination of the second of the second	AND LOCATED AND COLORS OF CHARACTER SPECIAL	ACCUPANT CONTRACT OF STREET, TO STREET, THE STREET, CONTRACTOR	H 2 hr.	18
			H 4 hr.	15
			H 8 hr.	9
			H 16 hr.	6

Preliminary Trial 1 on Motch Acuity.

To determine the effect of notch scutty and fatigue pre-cracking,

Kle was measured under five different notch tip conditions varying

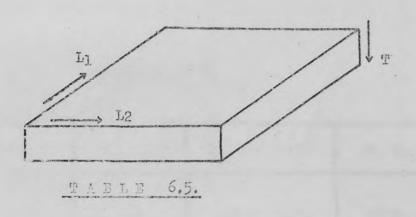
from a blunt notch to fatigue pre-cracking under the low stress conditions

recommended by A.S.T.L. Assessment of the plastic zone diameter (2ry)

was made on the free surface of the fracture toughness specimens after

crack propagation had occurred.

Naterial:- Heat 6 1.150 20/AC. Specimen:- 3 inch spar bend.


TABLE 6.4.

Crack Fip Details.	2ry rm. Flanc Stress	K _{lo} ksi(in) ²	Av. Klo
Blunt Foton.	2.0	37.0	37.3
(p = 0.025 m)		37.5	
Sherp Notch	1.5	36.0	54.6
(p = 0.010 in)		33.1	
Fatigue Precracked	0,65	29.1	29.8
(last 0.050 in 5,000 cycles)		30.5	
Fatigue Precracked	0.65	31.43	30.3
(last 0.050 in 20,000 cycles)		29.2	
Patigue Precracked	0.65	28.8	30.1
(last 0.050 in 5,000 cycles) #	14)	31.4	

A.S.T.M. Recommended Practice.

Preliminary Trial ? on Directionality and Tempoducability.

Directionality in as cast blanks has been investigated by measuring $K_{\rm lc}$ in three directions from the same plate. The blanks were first tested as U.I.L. specimens, and three point bend specimens were taken for subsequent tests in other directions. The direction of crack propagation is indicated below. A measure of the reproducability of $K_{\rm lc}$ in this meterial, and the variation in $K_{\rm lc}$ from two types of specimen can also be assessed from this work.

Heat No.	Noven Direction	Specimen	K _{lo} ksi (in) ^½	Av. K _{lo}
1 SC/AC	TI	C.L.L.	39.0, 37.9, 38.3, 38.0.	38.1
0.8¢ đ	L2	3in bend	37.6, 38.8, 57.4.	37.9
	Œ	2in bend	38.2, 37.2, 35.8.	37.1
5 GG/AG	L1 -	C.L.L.	40.0	40.0
1.15 C	L2	3 in bend	39.3, 37.4, 39.1.	38.9
	rg.	2in bend	38.9, 38.5, 39.0.	38.8

Preliminary Trial 3 on Residual Stress.

A tempering treatment was used to relieve any residual stress present in as cast material.

Haterial: - Heat 7 1.4% C SC/AC.

Specimen: - 3 inch span bend.

Treatment: - 550°c 2 Lours.

TABIE 6.6.

Condition,	Av. H _v 30	K_{lo} ksi $(in)^{\frac{1}{2}}$	Av. Kl
As Cast	360	26.4, 25.3.	25.8
Stress Relieved	365	23.5, 26.5.	25.0

In this section the toughness results or all austenitic alloys are summarised, including as cast, homogenised, and the material cast to achieve grain size variation.

TABLE 6.7.

GC Ut. No. + Condition. Specimen Type Gr. Size mm. Av. Klc. Ro. of mm. Ro. of mm. 0.8 1 SC/AC CLL + Bend 0.13 37.6 11 1.1 4 + 5 SC/AC CLL + Bend 0.11 31.7 8 1.4 7 SC/AC CLL + Bend 0.070 26.8 8 2.1 10 SC/AC 3 in. Bend 24.6 3 2.8 11 SC/AC 3 in. Bend 21.5 3 3.4 12 SC/AC 3 in. Bend 15.9 3 0.8 3 SC/H 3 in. Bend 35.5 5 1.1 6 SC/H CLL + Bend 44.4 3	-
1.1 4 + 5 SG/AC CLL + Bend 0.11 31.7 8 1.4 7 SC/AC CLL + Bend 0.075 26.8 8 2.1 10 SG/AC 3 in. Bend 24.6 3 2.8 11 SC/AC 3 in. Bend 21.5 3 3.4 12 SC/AC 3 in. Bend 15.9 3 0.8 3 SC/H 3 in. Bend 35.5 5	-
1.4 7 SC/AC CLL + Bend 0.075 26.8 8 2.1 10 SC/AC 3 in. Bend 24.6 3 2.8 11 SC/AC 3 in. Bend 21.5 3 3.4 12 SC/AC 3 in. Bend 15.9 3 0.8 3 SC/H 3 in. Bend 35.5 5	M. JETTE PERSONAL PORT
2.1 10 SG/AG 3 in. Bend 24.6 3 2.8 11 SG/AG 3 in. Bend 21.5 3 3.4 12 SG/AG 3 in. Bend 15.9 3 0.8 3 SG/A 3 in. Bend 35.5 5	-
2.8 11 SC/AC 3 in. Bend 21.5 3 3.4 12 SC/AC 3 in. Bend 15.9 3 0.8 3 SC/H 3 in. Bend 35.5 5	
3.4 12 SC/AC 3 in. Bend 15.9 3 0.8 3 SC/H 3 in. Bend 35.5 5	
0.8 3 SC/H 3 in. Bend 35.5 5	
1.1 6 SC/H CLL + Bend 44.4 3	
1.4 8 SC/H CLL + Bend 39.9 6	
2.1 10 SC/R 3 in. Bend 30.9 2	
2.8 11 SC/H 3 in. Bend 25.7 2	
3.4 12 SC/H 3 in. Bend 23.2 2	-
1.4 8 SC/H Air. 3 in. Bend 27.5 2	-
1.4 8 SC/H 2hr. 3 in. Bend 30.0 2	-
1.4 8 SC/H 4hr. CLL + Bend 36.5 2	
1.4 8 SC/N Shr. 3 in. Bend 39.9 6	-
1.4 8 SC/H 16hr. 3 in. Bend 29.0 2	-
1.4 8 CC/AC 1in. 2 in. Bend 0.017 34.9 4	-
1.4 7 CC/AC in. CLL + Bend 0.030 30.0 5	-
1.4 9 Sill/AC 2in. 3 in. Bend 0.053 28.3 4	-

cont'd. overleaf ...

-90-

TABLE 6.7. contid

Mt. No. + Condition.	Specimen Type	Gr. Sire	Av. Kle ksi (in)ż	Mo. of Tests.
		The state of the s	A ADDRESS - MARKETON CC WY ALCOHOL HICK HISTONIC SCIENCE SCIENCE	AND AND ASSESSMENT OF THE PROPERTY OF THE PROP
7 SC/AC *zin.	CLI + Bend	0.075	26.8	8
.9 SC/AC 6in.	CIL	0.18	25.0	2
9 SC Austred 6 in.	3 in. Bend		24.8	2
2 GC/VC	CII + Bend	0.11	37.9	6.
5 CC/AC	CLI, + Bend	0.079	39.4	7
	7 SC/AC in. 9 SC/AC 6in. 9 SC Austred 6 in.	7 SC/AC %in. CLI + Bend 9 SC/AC 6in. CLI 9 SC Austed 3 in. bend 6 in. 2 CC/AC CLI + Bend	7 SC/AC %in. CLL + Bend 0.075 9 SC/AC 6in. CLL 0.12 9 SC Austed 3 in. Bend 6 in. 2 CC/AC CLL + Bend 0.11	7 SC/AC 1in. CLL + Bend 0.075 26.8 9 SC/AC 6in. CLL 0.12 25.0 9 SC Austred 3 in. Bend 24.8 2 CC/AC CLL + Bend 0.11 37.9

Austenitizing Temperature.

Optimum hardening temperature was selected from hardness determinations on specimens heat treated in a protective atmosphere and sectioned after tempering.

Specimens:- 1 inch cube.

Treatment: - 1 hr. sock at teny arative followed by oil quenching and tempering 1 hr. a 250°C.

TABIE 6.8.

Ht. No.	χ. σ	Temperaturo Od.	Av. H _v 30.
	Advantage Services Seement, See	950	600
1	0.8	1000	600
The state of the s		. 3.050	590
and the second		950	620
4 .	1.1	975	630
		1.000	570
		850	570
7	1.4	900	631
		950	658

Effocts of Austenilizing Time and Tempering Temperature on Klo

Mardening variables were investigated in two trials to determine the effects of sustenitizing time (at fixed temperature) and tempering temperature on K, and hardness.

Haterial:- Ht. 6 SC. 1.19 C.

- Proatment: (a) Hardened 975°C 1 hr. to 16 hrs. Oil quench. Temper 250°C 2 hrs.
 - (b) Hardened 975°C 2 hrs. Oil quench 2 hrs. at tempering temperature.

Specimens: 3 inch span Bend.
Duplicate tests averaged.

TABLE 6.9.

Socking Time	Av. H _v 30	Av. Kle ksi (in) 2.
d hr.	450	28.1	Marca castral and an edge of the
Me 2 hr.	660	27.9	
5 hr.	660	27.9	
16 hr.	640	28.0	
Tempering			
		Manager Workshope	
Oil quenched	600 -	25.5	
250	660	27.9	
350	540	30.1	
450	590	35.2	
550	520	22.2	

^{*} Sub-zero treatment to -75°C produced no further increase in hardness in the as quenched condition.

Practure Toughness of Martengitic Material.

The fracture toughness of martensitie always, including those hardened after homogenisation is summarized in this section. A standardised hardening procedure was used har unbout.

Treatment:- Hardened 975°C 2 hrs. Gil quenched Tempored 250°C 2 hrs.

TABLE 5.10.

PARTILIE	restrictions and the second and second	and the second s	THE REST OF THE PARTY OF THE PA	gran	A- Marian
	9 C	Mt. No. & Condition.	Specimen Type.	Av. Klo ksi (in)2	No. of Tests.
	0.8	1 00/ET	CLL + Bend	26.3	9
	1.1	5 50/32	CLL + Bond	85.9	10
	1.4	7 SC/PT	CLL	26.6	3
	2.1.	10 SC/EP	5 in. Bend	25.5	2
	2.8	11 SC/90	3 in. Bend	20.5	2
	3.4	12 SC/HT	3 in. Bend	14.5	2
	5 00 -	0,00		356	20,5
	8.0	3 SC/H/HT	3 in. Bend	32.1	7
	1.1	6 SC/H/HT	CLL	28.0	2
	1.4	8 SC/H/HT	CIT	26.8	2
-	2.1	10 SC/H/HT	3 in. Bend	27.9	2
	2.8	11 SC/II/III	3 in. Bend	24.8	2
	3.4	12 SC/H/HH	3 in. Bond	23.8	2
	T FR			30.0	77.5
State Sentance	ATTEN STREET, TESTINGHICKETTES DATTE STREET	A LANGE BOND OF THE PARTY OF TH	MARKET MARKET TO PROCEED AND THE PROPERTY OF T	a vincential and an area.	MANUFACTURE MANUFA

Sensitivity to the rate of application of stress intensity was investigated with respect to K_{1c} of australia and martensitic chill cast material at three carbon levels. Conversion of crosshead speed (cm/min.) to rate of application of stress intensity $\frac{\alpha}{K}$, (ksi(in) $\frac{1}{2}$ /min.) was carried out by calibration of the load/displacement record.

Specimens: 2 inch span berd.

Duplicate tests averaged.

TABLE 6.11.

Heat No.	Cross Hd. Spd.	o K	Aw. Klc k	si (in)2.
	om/min.	ksi(in) //min.	CC/AC	CC/HT
	0.005	5	36.5	
2 00	0,02	20	. 37.9	
0.8% 0	0.5	500	34.9	
	5.0	5,000	34.9	
	50.0	50,000	34.2	
	0.005	5	37.9	
5 CC .	0.02	20	39.4	30.6
1.1% C	0.05	50	37.3	
	0.5	500	37.0	31.5
	5.0	5,000	34.8	26.2
	50.0	50,000	35.0	21.3
	0.005	5	29.2	
FT 000	0.005	20	30.0	07.7
7 00		500		27.7
1.4% C	0.5		30.5	
	5.0	5,000	32.5	24.7
	50.0	50,000	31.1	20.3

- (a) The effect of hot working and subsequent heat treatment on the fracture toughness of a 0.8% C alloy is shown below. K_{lc} was measured in the three planes of the plate to examine the directionality effect after forging.
- (b) Variation in K_{lc} across the forged plate was investigated. The positions of K_{lc} specimens relative to the centre line of the plate are indicated in the sketch overleaf.

Material: - Heat 2 SC. 0.8% C.

Treatment: - 1 inch thick blanks forged to \frac{1}{2} inch at 11500 C.

TABLE 6.12. (a).

Condin.	Notch Direction	Spec. Type	Av.H _v 30.	Av. Kiei ksi(in)	Mo. of Tests.
r · ·	T2	CLL 2in Bend 2in Bend	450	30.9 31.5 40.9	2 3 7
LAHT	T.	CLL 2in Bend	560	39.2 47.5	2
F/H/IE	L1	CIL 2in Bend	640	31.1	3 11

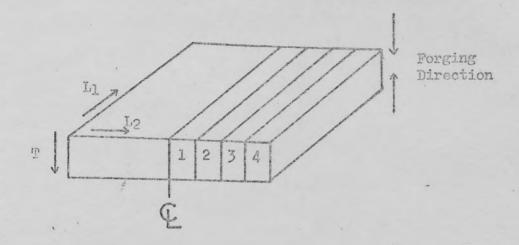


TABLE 6.12.(b).

Cond'n.	Notch Direc.	Pos					
		2.	2.5	3.	4.		
F	T	57.0	43.5	41.5	39.0	40.2	3.6.5
,	L2 .	30.7	31.3	30.6	32.5	3/43	40-6
F/HT	Ψ	46.5	45.5	52.0	45.5	47.5	
F/H/HT	ıI.	36.0	34.5	38.0	34.0	35.6	37.5

traces of strain induced martenaite (6.1.1.) were detected in the deformed zones of several of the lover carbon alloys, particularly at the 1.1 and 1.4% carbon levels. A more detailed examination was carried out in order to observe the influence of communalloying elements on S.I.M. formation, and the effect of S.I.M. on M₁₀. A series of eight heats were cast as $\frac{1}{2}$ inch diameter chill cast rods, exercing variations in C, Mn, Mi, and Co content. The stock was home, emissed at 1050° C for $\frac{1}{2}$ hour and tested as No. 11 Voussfield tensile specimens. In all cases the pre-fracture strain was loss than 5% and S.I.M. occurred in localised areas, usually close to the fracture. The abount of S.I.M. formed was estimated from a point count on the area immediately adjacent to the fracture, on longitudinal sections of tensile specimens. The results of these tests are tabulated in tables 6.13. (a) and (b).

TAREZ 6.13. (a).

Ht. Ho.	C	gj.	3	P	154	III.	Cr	Co
m 1 .	0.73		and the state of t	es e	1.20	-	14.8	
112	0.73	0.23	-	200	2.30	0.17	14.6	
93	0.51	0.18	ю		0.59	1.39	15.7	ar ₂
24	0.47	0.17	AND	600	0.58	3.25	15.3	000
<u>T</u> 5	0.82	0.33	0.011	0.030	0.52	1.38	15.2	810
T6	0.76	0.29	0.011	0.030	0.54	2.55	14.8	417
T7	1.25	0.34	0.030	0.031	0.59	0.21	15.2	0.88
78	1.22	0.30	0.031	0.039	0.59	0.21	15.2	2.28

TABLE 6.13. (b).

Reat	Element	Rance		adj. to freet		AV. UNG kei	
Nos.	The state of the s	FROM	TO	ENG	17(-)	FROM	<u>0</u> 0
93-95	C	0.51	0.82	20	URACE	82	66
T1-12	In .	1.2	2.3	5	TRACE	68	63
T3-T4	Ni @ 0.5%	1.4	3.3	20	5	82	64
<u>т</u> 5- <u>т</u> 6	Ni @ 0.8%	1.4	2,6	ROW	HOTES	66	68
T7-118	Co AC	0.9	2.3	mor	10	73	80
T7~T8	Co H 1150°C 8 hrs.	0.9	2.3	MOID	TRACE	75	78

Influence of S. I.M. Formation on Kic.

Consideration of the tensile survey led to the selection of compositions for two further heats, cast as $K_{\rm lc}$ specimen blanks. It was anticipated that S.I.M. formation would occur in sufficient volume to enable its influence on $K_{\rm lc}$ to be assessed. Cobalt was added to promote the formation of S.I.M. and each of the two heats was divided to provide a control alloy. $K_{\rm lc}$ was measured in the as cast condition, and after homogenisation at 1050 $^{\circ}\text{C}$ for one hour.

TABLE 6.14.(a).

Ht No.	C	Si	S	Đ	L'an	Ni	Cr	Co.
Kl-C	1.14	0.52	0.014	0.051	1,08	0.18	16.1	0.20
Kl	1.11	0.59	0.013	0.062	0.97	0.18	15.8	3.84
K2C	0.63	0.46	0.039	0.039	2.31	0.21	16.8	0.24
K2	0.60	0.52	0.041	0.050	2.20	0.20	16.3	3.97

TABLE 6.14.(b).

It No. & Condition	70	Nic ksi (in)	Av. K _{le}	Comments.
K1-C SC/AC K1 SC/AC K2-C SC/AC	1.1	31.2, 34.0, 32.8 33.4, 31.5, 35.6 32.2, 35.4	32.6 33.5 33.8)	Trace S. I.M. Estimated 15% S. I.M. Partly 1.G. fracture
K1-C SC/H	1.1	37.3, 35.4, 36.5 41.2, 44.0 43.4, 41.5	36.4) 42.6 42.5	TRACE S.I.H. TO S.I.H. Trace S.I.H.
K2-C S6/H K2 S6/H	0.6	31.8, 27.0, 29.4 29.6, 30.5	29.8) 30.1)	Completely Intergran, fracture.

m 100 m

7. DISCUSSION OF RESULES.

7.1. Preliminary Trials.

The importance of establishing a sound working technique is vital in any project, and considerable time and effort was put to this end. Several running and feeding systems were tried in order to produce sound, clean castings. Inherent characteristics of the material and casting shape, such as directionality and residual stress were examined with regard to their effect, if any, on K_{JC}. The experimental procedure was checked by compliance calibration and the fatigue pre-cracking requirements investigated. Poproducability was observed on individual heats, on different heats of chemically similar material, and using two types of specimen. The results of the three proliminary trials confirm that plane strain fracture toughness testing is a viable technique when applied to relatively british cast materials

The need for fatigue pre-cracking was demonstrated in the first of the preliminary trials. Although the results indicate a constant level of K_{lo} at higher fatigue stress levels, (see table 6.4.), the A.S.T.M. recommended practice was adhered to throughout the programme. In the absence of fatigue pre-cracking, results up to 35% high were obtained, associated with a wider plastic zone, measured at the free surface. This illustrates that the fracture process in a material containing a substantial volume fraction of brittle earbides is still influenced by plastic deformation, and is not simply controlled by the initiation of a crack within the carbide network.

The second preliminary trial, designed to examine directionality, was also used to assess the reproducability of the K test in as cast

material The invitations of directional solidification and axial dendrite growth or Charpy tests were discussed in section 2.5, where the work of Pattyn (36) was reviewed. In the moulding system used in the courant work, solidification occurs in the direction denoted I₁ in table 5.5, courancing at the edge opposite the feeder head. Any dendrite directionality would therefore be expected in this plane, and according to Pattyn this would lead to optimum properties in the L₂ direction, and properties in the E direction. Recreative tural examination however, revealed a random dendrite pattern, within a narrow zone solidifying under the influence of the mould wall. This was reflected in the H₁₀ results from erack propagation in the three dimensions of the plate, (see table 5.5.) The small variations in K₁₀ on sand cast and chill east material led to the assumption that the effects of directionality were negligible, under the conditions prevailing, and could be subsequently ignored.

considering the project as a whole, K_{1c} was determined within an overall scatter band of 20%. A statistical analysis of the results from this trial revealed a standard deviation of 0.91 for the results of heat 1, in table 6.5, and 0.80 for the results of heat 5. For these two sets of data, a minimum of two tests are required for a 95% confidence limit of obtaining a result between \pm 2 ksi.(in) $\frac{1}{2}$ of the mean.

the third preliminary trial also served a dual purpose, primarily as a measure of the influence of residual stress in as cast material, but also as a check on the effect of tempering any eutectic martensite present in the 1.4% carbon alloy. The temperature selected for stress relief, 550°C, is that used convercially for high chromium cast iron castings prone to spalling and cracking in service. This treatment has been proved successful in minimising failure obviously caused by the presence of residual stress. In fact no change in K₁₀ was detected after stress

relief, in the 1.4% carbon allow tested. These been found that the castings most likely to exhibit residual stress effects are those subjected to that knockout procedures. All castings used in this investigation, of necessity a simple shape, were allowed to cool naturally to room temperature in the mould. It is writkely then, that a significant level of residual stress is developed in these castings.

As mentioned in section 2.3, due to micro-segregational effects it is often possible to obtain freshly formed mertinsite immediately adjacent to the carbides, in as cast structures. This phase was considered a likely path for crack propagation, and it was interesting to observe the effect of tempering. The bulk of the matrix, being austenito remains unaltered. The fact that no significant variation in K_{lc} was detected appears to invalidate this argument.

After the preliminary wrists it was considered prudent to continue the investigation without taking elaborate precentions against the effects of directionality and residual stress.

It seems partiment at this point to include details of a typical fracture toughness test. Fig. 7.1 shows the load/displacement record for an as east 1.45 carbon crackline loaded specimen, and plates (a) to (d) illustrate the crack tip conditions and slow crack growth up to the maximum load point. The fatigue crack was initiated at the root of a machined notch and the final 0.050 ins., grown in 64,000 cycles, at a mean load of 550 lb. and an amplitude of 2 550 lb. Plates (a) and (b) show the fatigue crack tip after loading to just below and just above the elastic limit. Permanent deformation in the form of a plastic zone at the crack tip is evident in plate (b). The extent of plasticity and slow crack growth at the critical, and maximum loads, is shown in plates (c) and (d). Repid crack propagation occurs under a decreasing load beyond the maximum load point.

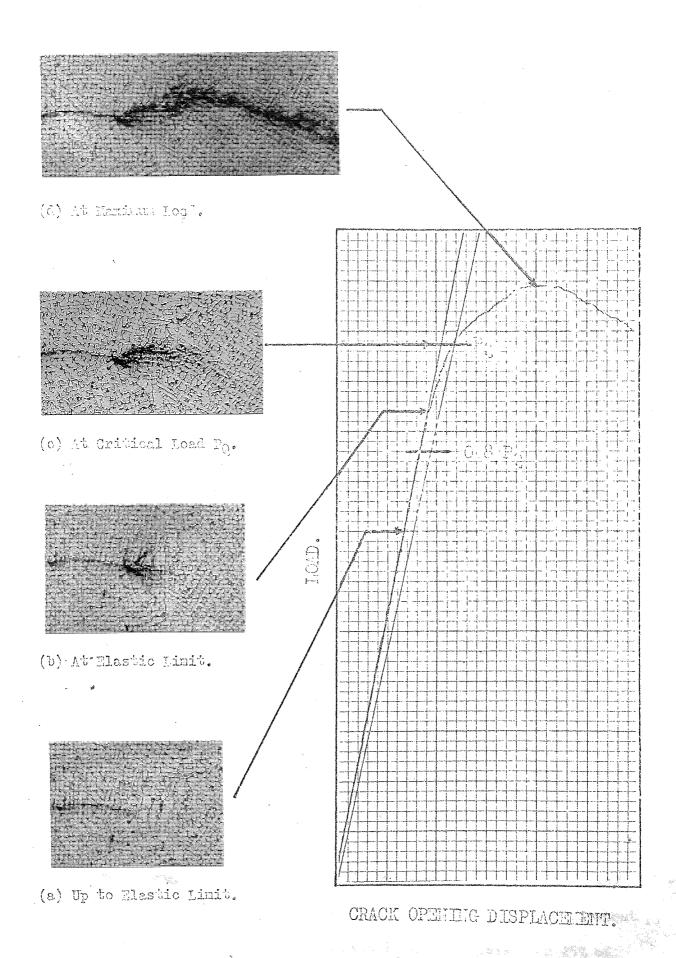


Fig. 7.1. Load/Displacement Record and Slow Crack Growth in 1.4% C, 15% Cr.

Examination of the load/displacement record shows that there is no 'pop-in' behaviour up this test, and it is necessary to construct the 5% offset line to determine the critical load, denoted provisionally p_Q . The initial crack length, a, is measured from the fracture surface, and includes machined notch plus fatigue crack. Other dimensions required for calculation of K_{1c} are width, W, thickness, B, and the geometrical factor for the specific crack situation of this test, Y.

The appropriate values for determination of a provisional fracture toughness, K $_{\rm G}$ are:

$$W = 3.375$$
 ins. $P_Q = 1900$ lb. $R_W = 0.576$ $Y = 16.1$

The calibration curve of $a_{/_{W}}$ against Y is shown in the Appendix.

From:
$$K_Q = \frac{P_Q \times (a)^{\frac{1}{2}}}{BW}$$
 $K_Q = 26.5 \text{ ksi. (in)}^{\frac{1}{2}}$.

It now remains to validate the K_Q value by ensuring that the test complies with three conditions put forward by A.S.T.M. as criteria of thickness, width, and stress distribution.

- (a) For a valid result the characteristic 2.5 $(^{K_Q}/\sigma_{ys})^2$ must be less than both specimen thickness and initial crack length. With a yield stress of 97 ksi. the value is 0.19, which is satisfactory, since it is less than B and a.
- (b) The width criterion necessitates further analysis of the load/displacement record, at a point corresponding to 0.8 P_Q . The requirement is that the departure from linearity at 0.8 P_Q must be less than 25% of that at P_Q . Since the record in question is still linear at 0.8 P_Q , it

is obtionaly samualed ory.

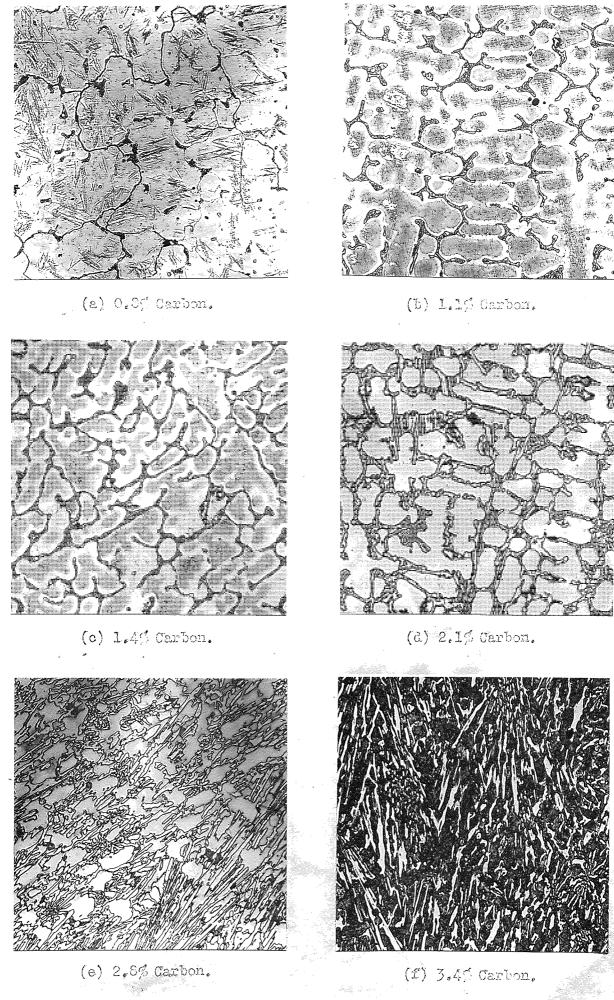
(c) The first condition refers to the fatigue crack front, and states that the difference between the most advanced and retarded points of the crack must be within 10% of the specimen thickness. Again this test fulfills the requirement, and $R_{\rm Q}$ can now be considered a valid plane strain fracture toughness value, and reported as $K_{\rm LC}$.

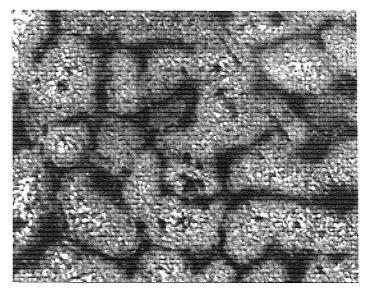
1.2. Influence of Carbon Content.

Variation of carbon content from 0.8 to 3.4% in a base alloy containing 15% chromium is discussed in terms of microstructure, volume fraction of carbidos, tensile properties, and fracture tougeness.

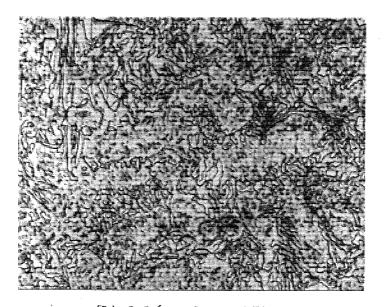
The change in microstructure at six carbon levels is illustrated in fig. 7.2. Two apportant features of the as cast structure are the carbida morphology and the matrix structure. The individual carbide form is one of lamellar colonies, together with eutectic austenite. At the lower end of the carbon range, the carbide segregates into a grain boundary film, enveloping what appear to be isolated carbide colonies within large grains. Above 1 carbon this grain boundary film is not evident, and up to 1.49 carbon the carbides solidify as an incomplete interdendritic network. Further increase in carbon results in a thickening of this network and the appearance of characteristic plate like carbides. At the highest carbon level examined, (3.49), there is a marked change in carbide norphology. Obviously this composition is very close to the termany cutectic, with the formation of entectic cells radiating from a nucleus, analogous to rosette graphite in grey irons. The presence of occasional primary carbide particles, characterised by their hexagonal shape, sometimes with a small pool of gustenite in the centre, suggests that the alloy may be slightly hyper-cutectic.

The matrix structure reveals irregularities at the two extremes of the

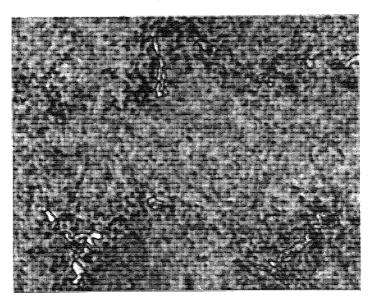



Fig. 7.2. Sand Cast Microstructures, X 100.

austenite liquidus plass field. At the 0.8% carbon level the composition is very close to the ferrite boundary, and the unstable austenite undergoes partial transformation to northneite on cooling. This is evident from plate 7.2. (a), which shows the coarse martensite needles. The natural consists entirely of metastable austenite at the intermediate exposulevels. The 1.1 and 1.4% carbon alloys, which solidify through a wide freezing range, show pronounced coring. At 3.4% carbon the Ca/C antio is so low that even the addition of 2% manganese is insufficient to prevent transformation to the equilibrium ferrite/Cr₂₃% applomerate. This as the dark granular pearlite type structure evident in plate 7.2. (f).


Precipitation of secondary carbides, (Cr7C3), during austeritising leaves the matrix depleted in carbon and chronium, raising the Mg above room temperature. Subsequent cooling results in transformation of the nation to nartensite. The cutectic carbide structure remains unaffected by tris treatment (975°C oil quench, 250°C temper). The presence of secondary carbides is not immediately obvious in these structures, but a none detailed examination is discussed in section 8.1.

The carbide volume at each carbon level was estimated from examination on the Quantimet microscope. The results from table 6.3. are expressed graphically in fig. 7.4., and whilst it is realised that these values may not be absolute, a useful trend is established. A linear increase of 1.8% volume fraction carbides with 0.1% carbon is evident in as cast structures up to 2.1% carbon. Above this value the increase in carbides is less pronounced as the entectic point is neared.


Fig. 7.5. shows the tensile strength of as cast and heat treated alloys of varying carbon content. Austenitic structures exhibit a parabolic increase in tensile strength with carbon content. An exception to this pattern is the 0.8% carbon alloy, in which the U.T.C. is

(a) l.lg Carbon I 150.

(b) 2.1% Carbon I 150.

(c) 0.8% Carbon X 500.

Fig. 7.3. Typical Heat Treated Licrostructures.

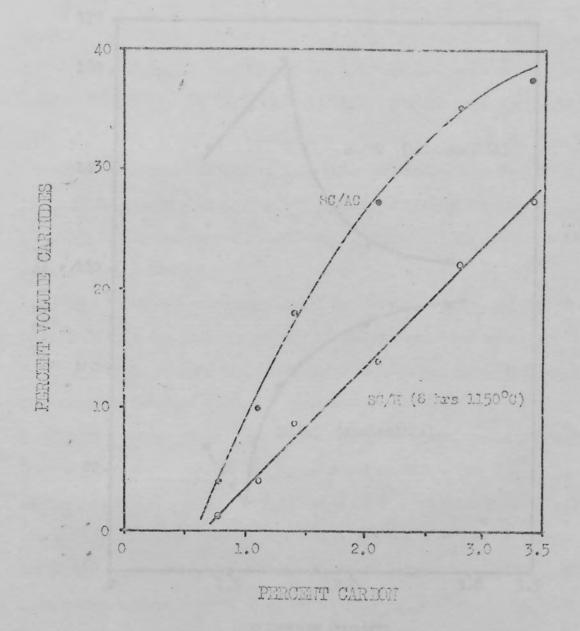


Fig. 7.4. Relationship Between Volume Fraction of Carbides and Carbon Content in As Cast and Homogenised Structures.

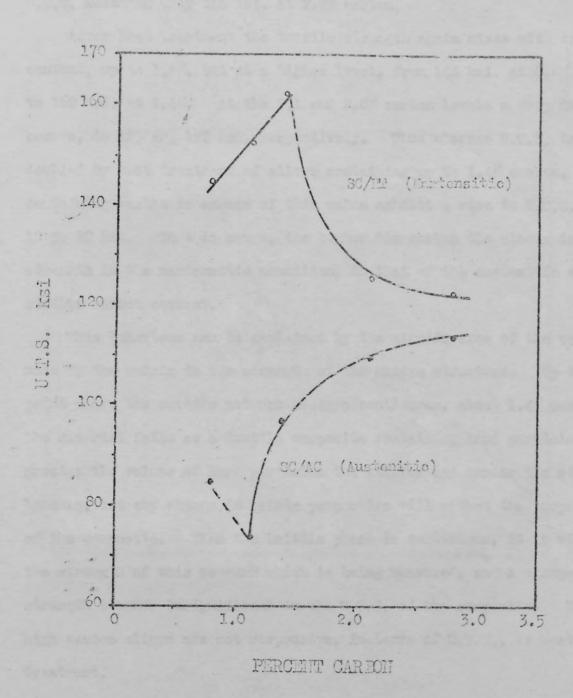


Fig. 7.5. Tensile Strength of As Cast and Hardened (250°C Temper) Material.

con ent has a surved influence on U.T.S. up to 1.4%, with a rise from 75 kmi at 1.1%, to 97 kmi. Further increase in cerbon is less effective, the U.T.S. reaching only 114 kmi. at 2.9% carbon.

After hear treatment the tensile strength again rises with carbon content, up to 1.4%, but at a higher level, from 144 ksi. at 0.8% carbon to 162 ksi. at 1.4%. At the 2.1 and 2.8% carbon levels a drop in U.T.S. occurs, to 125 art 122 ksi. respectively. Thus whereas U.T.S. is roughly doubled by heat treatment of alloys containing up to 1.4% carbon, those containing carbon in excess of this value exhibit a rise in U.T.S. of only 10 to 20 ksi. In this range, the higher the carbon the closer is the abrench in the nartensitic condition, to that of the austenitic alloys of similar carbon content.

This Pohaviour can be explained by the significance of the contribution made by the natrix to the strength of the entire structure. Up to the point where the carbide network becomes continuous, about 1.47 carbon, the naterial fails as a fuctile composite containing hard particles. The greatop the volume of hard particles the stiffer and harder the structure becomes, but any change in matrix properties will affect the properties of the composite. When the brittle phase is continuous, it is virtually the strength of this network which is being neasured, and a clange in matrix strength becomes insignificant in the U.T.S. of the composite. Thus the high carbon alloys are not responsive, in terms of U.T.S., to heat treatment.

The relationship between fracture toughness and carbon content of austenitic and martensitic sand cast naterial is shown graphically in fig. 7.6. The K_{1c} of as cast alloys shows a marked dependence on carbon content, between 0.8 and 1.4%. Over this range K_{1c} drops linearly from 38 to 27 hai (in) $^{\frac{1}{2}}$. Just as it was for tensile properties this point appears critical in the relationship, with little further reduction in K_{1c} , to 21.5 hai (in) $^{\frac{1}{2}}$, up to 2.8% earbon. The eutectic alloy shows a trop in

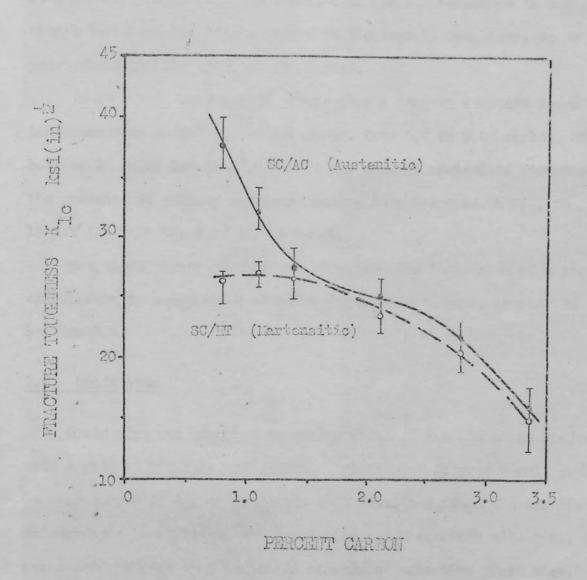


Fig. 7.6. Fracture Toughness of As Cast and Hardened (250°C Temper)

Material.

Kie to 16 ksi (in) to 13.4% carbon. Thus, we are point where the carbides are continuous the fracture process is controlled by the properties of the matrix, and a reduction in volume of hard carbides leads to an improvement in Kie. At carbon contents over 1.4% the fracture process is dominated by the presence of the carbide network, which acts as a weak link in the structure. The addition of further reakeners in the form of excess carbides, has little effect on the overall toughness, up to the point where primary carbides are formed.

In contrast, martensitic alleys show a roughly constant level of toughness over almost the entire range, from 0.2 to 2.8% carbon, of between 21 to 26 ksi $(in)^{\frac{1}{2}}$. As in the case of sustenitic structures, the presence of primary carbides results in a decrease in K_{1c} , to 15 ksi $(in)^{\frac{1}{2}}$ at the 3.4% carbon level.

The significance of these recults, and the discussion of a structural correlation in conjugation with fractographic evidence, is made in section 8.1.

7.3. Grain Sixe.

Grain size was measured on random areas of the structure projected onto a grid at 100 K magnification. The quoted figures should probably be more correctly termed dendritic cell size, but since the carbide network acts as a dislocation barrier, crack nucleation site etc., this was considered the most pertinant measure of effective grain size. By alteration of section size and casting in three moulding materials, graphite, silliminite, and send, a range of grain size was produced from 0.017 to 0.12 nm. This is reflected in fig. 7.7. which shows quite clearly the refinement of the microstructure with increasing solidification rate. The variation in K_{1c} and U.T.S. associated with grain refinement is shown in fig. 7.8. An increase of 30% in V_{1c}, from 26 to 35 kei (in)¹, was observed over the complete range of grain sizes, representing cand

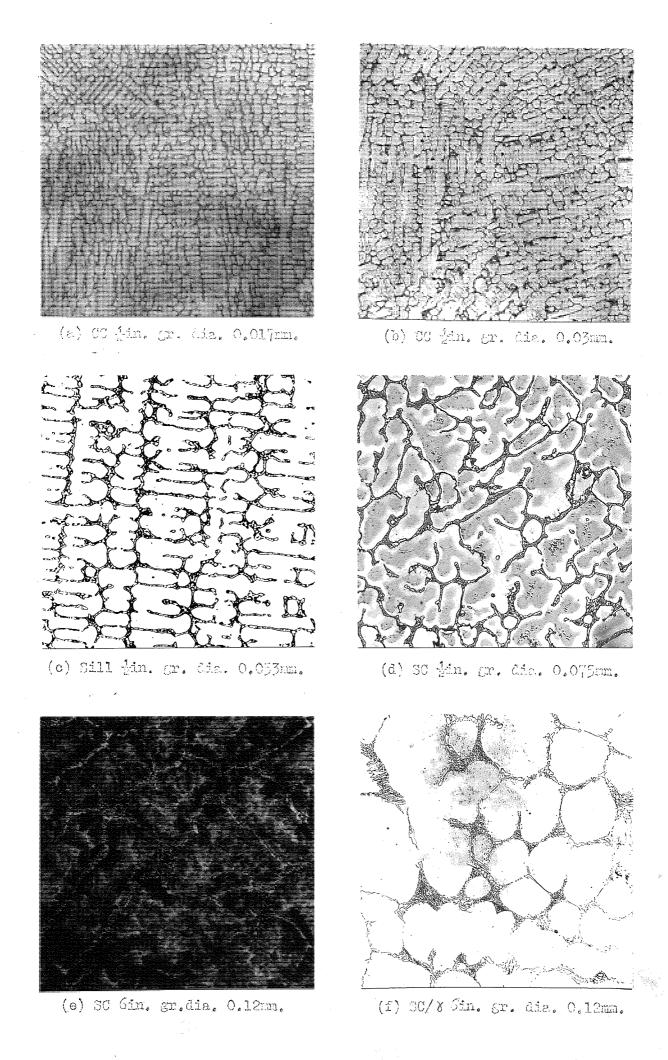


Fig. 7.7. Veriation of Crain Size in As Cost 1.4% Carbon Laterial

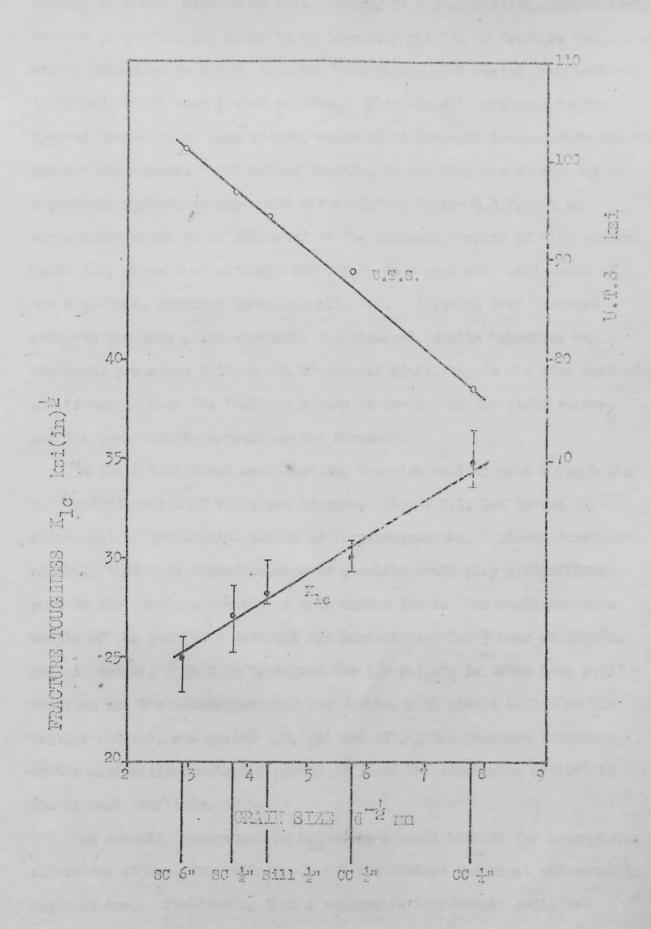


Fig. 7.8. Variation of Tensile Strength and Tracture Toughness with Grain Size in As Cast Material.

ma TT Clean

casting in 6 inch section to chill tacting in 1 inch section, respectively. Tensile properties are shown to be inversely rule od to fracture tong ness, with a reduction in U.M.S. from 101 ksi. in the sand cast 6 inch section, to 77 ksi. chill cast 1 inch section. This would be centrary to the typical behaviour of many steels, where yield strength decreases in coarse grained structures. The volume fraction of carbides was eliminated as a possible variable which would affect U.M.S. (Table 6.3.), but an explanation seems to be indicated in the mardness results of this series. Table 6.2. shows that although the U.M.S. decreases with refinement of the structure, hardness increases slightly. Assuming that hardness reflects the true yield strength, the observed tensile behaviour may represent prenature failure due to reduced plasticity in the fine grained structures. Thus the fracture stress is lower than the yield stress, and the real tensile properties are obscured.

particulation of the phase diagram, (fig. 25.), led to the attainment of equilibrium phases at room temperature. It was considered unlikely that this transformation to pearlife would play a significant part in the fracture process at this earbon level. As confirmation a sample of the pearlitic material was austenitized for \$\frac{1}{2}\$ hour at \$1100^{\text{O}}\$C, and air cooled. In this treatment the (Cr Fe)\$_{23}\$^{\text{G}}\$C is taken into solid solution and the matrix rendered austenitic, with little effect on the carbide network, see plates 7.7. (e) and (f). The fracture toughness of the austenitised naterial proved to be of the same order as that in the as east condition.

The overall improvement in H_{1c} seems a small benefit for a complete alteration of moulding technique, with the obvious technical and economic implications. Considering that a comparable improvement could be achieved by a reduction in carbon of 0.45%, at this level, a change from sand to chill easting could hardly be justified on the grounds of improving fracture toughness.

7.4. Pardening Variables.

Hardening characteristics were investigated in three experiments covering sustenitising time and temperature, and temperature temperature. This aspect of the programme was confined to alloys containing less than 1.47 carbon, the range where maximum response to heat treatment was observed.

Optimum austenitising temperature (table 5.2.) for martensite formation was selected on the basis of cardness, which is reported to bear archose relationship to year resistance, the practical function of the alloy. Highest baroness, indicating more complete transformation, was obtained at three carbon levels up to 1.4% from a scaking temperature of 975°C. This temperature was used for the subsequent hardening of all material.

Scaling time between \$\frac{1}{2}\$ hour and 15 hours was shown to have little effect on \$K_{10}\$ (table 5.9.). The low hardness of the sample austenitised for only \$\frac{1}{2}\$ hour indicates that precipitation of secondary carbides and subsequent transformation to martensite is probably incomplete at this stage. The specimens tested were \$\frac{1}{2}\$ inch thick, and the shortest time in which complete transformation was achieved was 1 hour. This time will obviously be a function of section size, but a minimum of \$1\frac{1}{2}\$ to 2 hours soak, per inch thickness, appears to be necessary for maximum hardness. No significant change in microstructure, hardness, or \$K_{10}\$ was detected on extending the scaling time up to 15 hours, indicating that the growth of secondary carbides is slow at this temperature.

The influence of tempering temperature, on the other hand, is most marked. Pig. 7.9. portrays Klo and hardness as a function of tempering temperature. Peak hardness is achieved on tempering at 250°C, and after a trough in the hardness curve at 350°C, a secondary hardening effect is

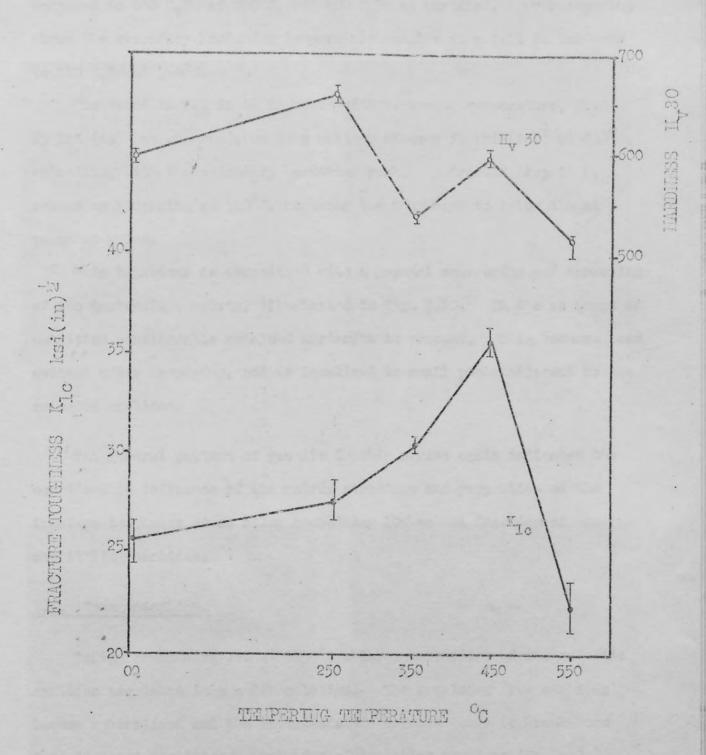
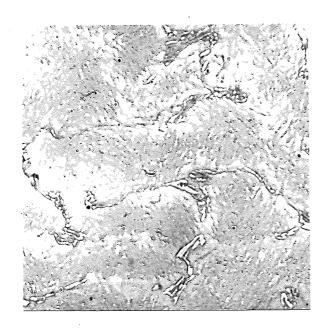
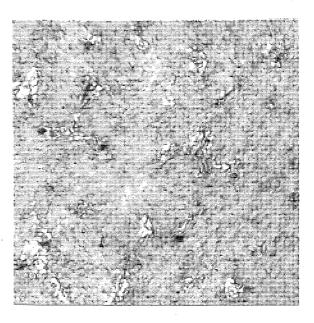


Fig. 7.9. Influence of Tempering Temperature on Fracture Toughness and Hardness.

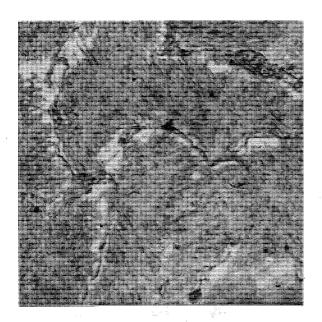
observed at 450° G. This secondary past reaches a level of 500 H $_{\rm v}$ 30, compared to 660 H $_{\rm v}$ 30 at 250 $^{\circ}$ G, and 600 H $_{\rm v}$ 30 at querehed. Gvertempering above the secondary hardening temperature results in a fall in hardness to 520 H $_{\rm v}$ 30 at 550 $^{\circ}$ G.

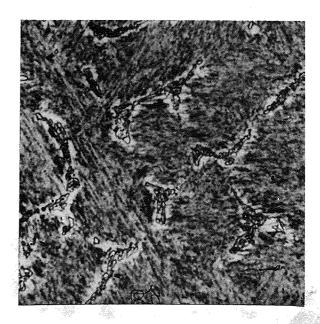

The trend in R_{1c} is to increase with tempering temperature, from 25 ksi $(in)^{\frac{1}{2}}$ as quenched, up to a maximum of over 35 ksi $(in)^{\frac{1}{2}}$ at 450°C, coinciding with the secondary hardening peak. A drestic drop in R_{1c} occurs on tempering at 550°C, reducing the toughness to below the as quenched value.

of the martensitic matrix, illustrated in fig. 7.10. In the as quenched condition considerable retained austenite is resent. This becomes less evident after tempering, and is localised to small pools adjacent to the eutectic carbides.


The general paintern of results in this series again indicates the considerable influence of the ratrix structure and properties on the fracture toughness of an alloy containing 10% volume fraction of embrittling carbides.

7.5. Homogenisation.


During homogenisation at 1150°C a large proportion of the entertic carbides are taken into solid solution. The remaining free carbides become spherodised and the interdendritic network tends to break down into isolated particles. Solution of the alloy carbides (Or Fe₇C₃) renders the natrix quite stable, and the austenite is readily retained to room temperature. The extent of carbide solution can be assessed from fig. 7.4., where the volume fraction carbides in alloys of varying carbon content is shown for an 8 hour homogenisation treatment. Roughly 50% of the original carbides are dissolved during this standard treatment.


(a) As Quenched.

(b) Tempored 350°C.

(c) Mempered 450°C.

(d) Tempered 550°C.

Fig. 7.10. Microstructure of Material Tempered at Increasing Temperature, I 300.

Solution of care act as a function of time at temperature, (1150°U), is shown in fig. 7.11. For a 1.4% carbon alloy.

Evain boundary film took place in the 0.8% carbon alloy furing the standard; how treatment. A similar effect occurred in the 1.4% carbon material after 16 nours at 1150°C. Individual carbide particles were observed within the grain boundary film in the 0.8% carbon structure, when almost all the free carbide was present in this form. Typical homogenised microstructures are shown in fig. 7.13 and it can be seen that the grain boundary film is beginning to develop in the 1.1 and 1.4% carbon alloys during the standard treatment.

Feat treatment to martensite after homogenisation resulted in preferential precipitation of secondary carbides at the grain boundaries and also as a sub-structure within the grains, (fig 7.14).

The wrend in fracture toughness is a uniform decrease as the carbon content is raised. With one exception, K_{lc} was improved by homogenization at all carbon levels. The 0.8% carbon alloy failed in a completely intergranular namer, the crack path following the grain boundary film mentioned above. In this case K_{lc} was reduced from 37.6 ksi.(in.) as east, to 35.5 ksi.(in.) after homogenization. The 1.4% carbon level proved to be most responsive to the 8 hour treatment, with over 50 increase in K_{lc} on the as east value, from 26.5 ksi.(in.) to 39.5 ksi.(in). The plateau observed in the toughness curve for the as east higher carbon series (fig. 7.6) was not evident after homogenization. A constant rate of reduction in K_{lc} was revealed above 2.1% carbon, shown in fig. 7.12.

Fig. 7.11 illustrates the effect of homogenisation time on the fracture toughness of a 1.4% carbon alloy. It appears that there is a critical period in the solution of carbides where optimum toughness properties are realised. For the alloy examined, containing 1.4% carbon, the standard treatment of 8 hours produces maximum K_{1.6}. Up to this time

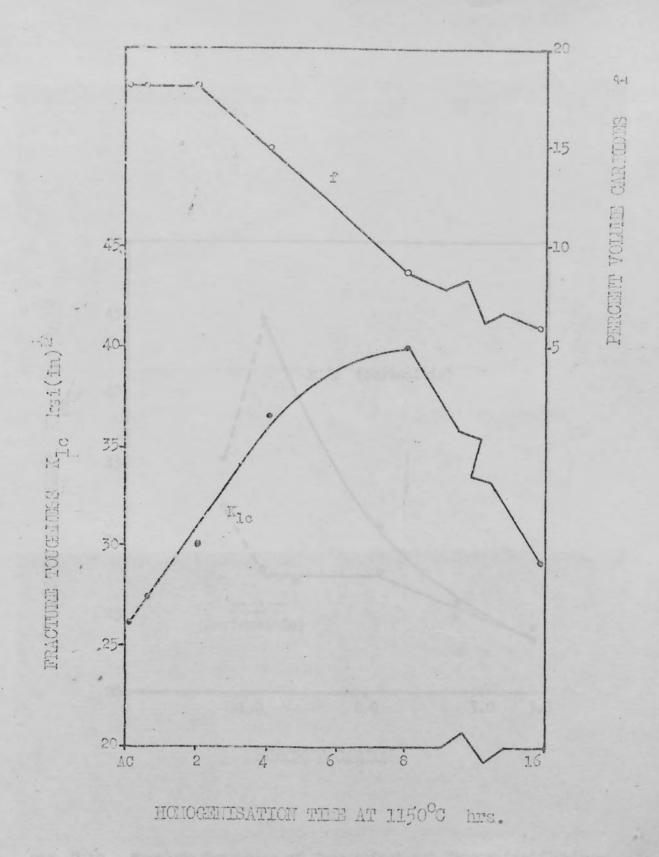
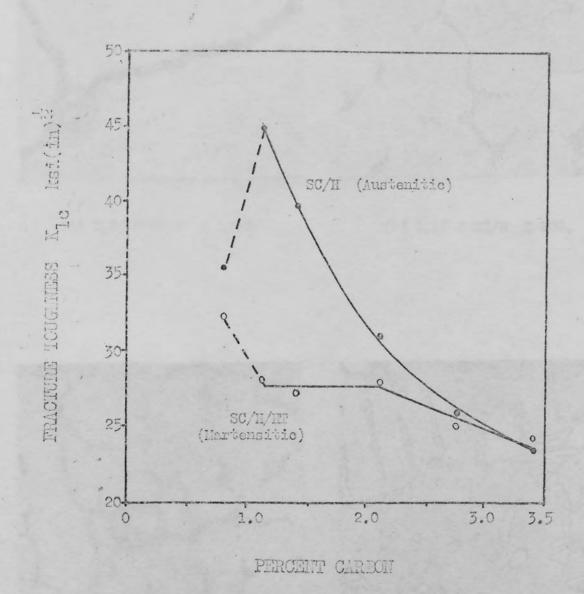
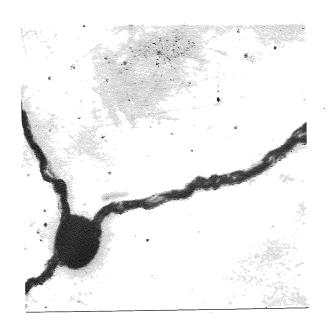
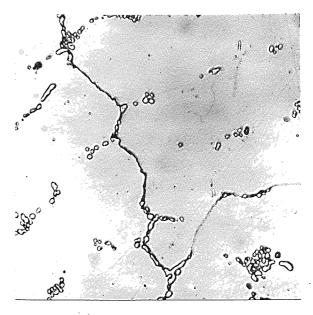
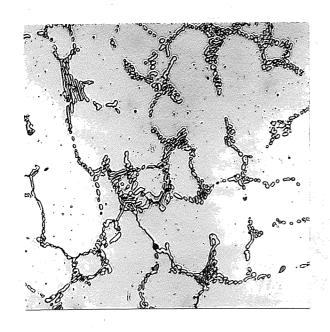
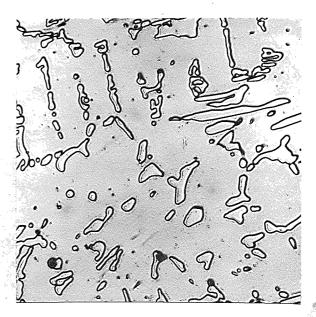


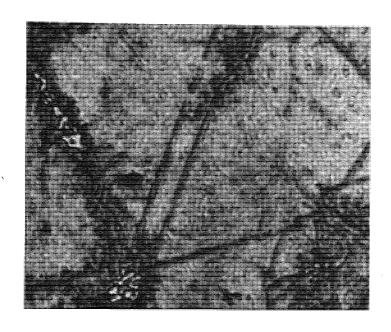
Fig. 7.11. Effect of Homogenisation Time on Volume Fraction of Carbides and Fracture Toughness.

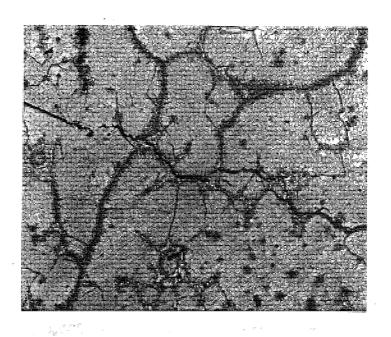

Fig. 7.12. Fracture Toughness of Homogenised and Homogenised/Hardened (250°C Temper) Haterial.


(a) 0.85 C SC/E X 1000.

(b) 1.1% C SC/H X 200.



(c) 1.4% C SC/H H 150.



(d) 2.1% C SC/H H 200.

Fig. 7.13. Hicrostructure of Material Homogenised for 8 hours at 1150°C.

(a) 0.8% C SC/I/II X 500.

(b) 1.1% C SC/H/HF X 100.

Fig. 7.14. Typical Homogenised and Hardened Hierostructures.

there is an increase in K_{lo} with soabin; time from 25 ksi.(in.) as cast to 36.5 ksi.(in.) after 4 hours at 1151°C. The rate of increase in K_{lo} is then reduced up to 3 hours then the maximum of 39 ksi. (in.) is achieved. The fall in toughness with farther extension of time is associated with the formation of a grain boundary film and intergranular fracture.

Hardening of the homogenised alloys reduces K_{10} to the level of the SC/MP series. As in the other nartensitic material, there is little variation in K_{10} over a wide range of carbon content. An interesting feature of this comparison between the two martensitic series, is that the SC/MP material exhibits a corotant K_{10} , of 26.5 kgi.(in.) up to 1.4% carbon (fig. 7.6), further increase in carbon reducing toughness. A similar pattern is established in the SC/M/MP structures, with a constant K_{10} of 27.5 kgi.(in.) up to 2.1% carbon. The homogenising treatment has effectively widehed the range in carbon content over which matrix structure plays a significant part in fracture process.

The toughness of the 0.85 carbon alloy was hardly affected by heat treatment after homogenising, the fracture path remaining intergranular. As a result $K_{\rm lc}$ was somewhat higher than the level typical of martensitic alloys.

7.6. Sensitivity to Rate of Application of Stress Intensity.

The sensitivity of H_{1c} to variation in rate of application of stress intensity has been observed in austenitic and martensitic material. A range of testing speeds was used covering five orders of magnitude, from 0.005 to 50 cm/min. Crosshead speed was converted to stress intensity rate, in ksi.(in.)²/min., by calibrating the load displacement system at 0.02 cm/min., and extrapolation. Calibration results for two specimens of different compliance functions are shown in fig. 7.15. Loading rates of 375 and 500 kg/min. were obtained for

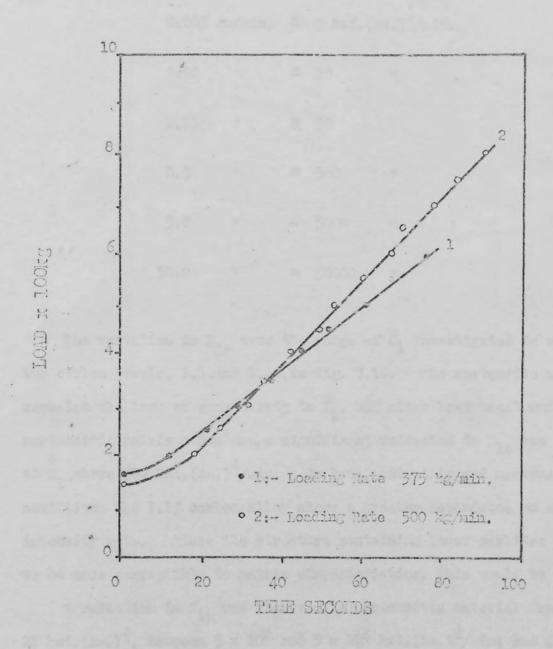


Fig. 7.15. Calibration of Loading Rate for Specimens with Geometrical Functions of 23.6 (1), and 17.5 (2).

specimens with functions of 23.5 and 17.5 respectively. Thus the rate of application of K is 19.7 and 19.5 ksi $(\ln .)^{\frac{1}{2}}/\min$. On extrapolation this led to the following correlation between crossbead speed and K_1 :

	0.005	cm/min.	10	5 ksi.(:	in.) ¹ /m	in.	
	0.02	11	E	20	11		
	0.05	12	nia ant	50	ír.		
	0.5	11	200	500	II .		
	5.0	11		5000	11		
		11					
	50.0		346	50000	"		

The variation in Γ_{1c} over the range of Γ_{1} investigated is shown for two carbon levels, 1.1 and 1.4%, in fig. 7.16. The austenitic material revealed the lack of sensitivity to Γ_{1} , but after heat treatment to a martensitic natrix structure, a significant reduction in Γ_{1c} was detected, at Γ_{1} above 500 ksi.(in.) //min. In both austenitic and martensitic conditions the 1.1% carbon alloy shows a greater dependence on stress intensity rate. Since the structure containing fewer carbides is likely to be more susceptible to matrix characteristics, this would be expected.

A reduction in \mathbb{F}_{lc} was observed in martensitic material from 30 to 21 ksi.(in.) $^{\frac{1}{2}}$, between 5 x 10² and 5 x 10⁴ ksi.(in.) $^{\frac{1}{2}}$ /min; and from 27 to 20 ksi.(in.) $^{\frac{1}{2}}$ between 50 and 5 x 10⁴ ksi.(in.) $^{\frac{1}{2}}$ /min., in 1.1 and 1.44 carbon material respectively. This behaviour is typical of B.C.C. metals, which exhibit decreasing toughness with increasing loading rate. The results of Priest and May⁽⁵⁷⁾ on low allow martensitic steels show a drop in \mathbb{F}_{lc} of between 5 to 20 ksi.(in.) $^{\frac{1}{2}}$ over a similar range of stress intensity rates.

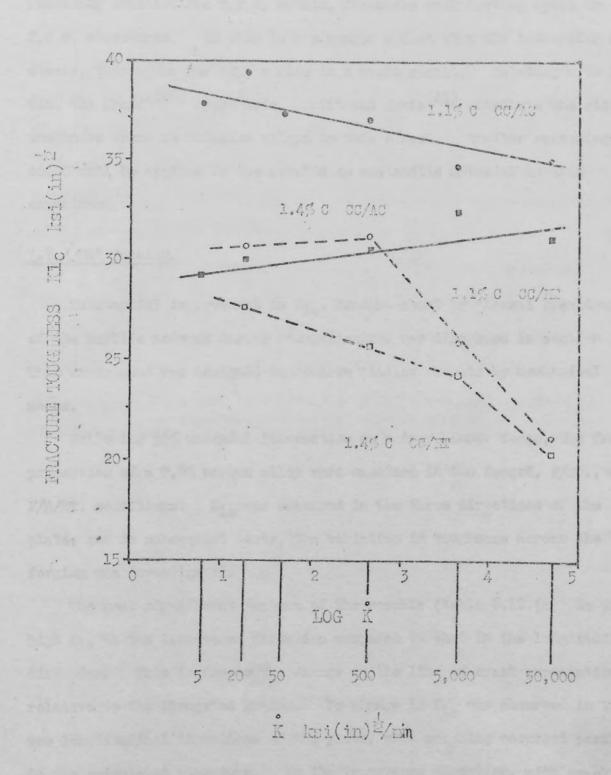


Fig. 7.16. Variation of Fracture Toughness with Rate of Application of Stress Intensity.

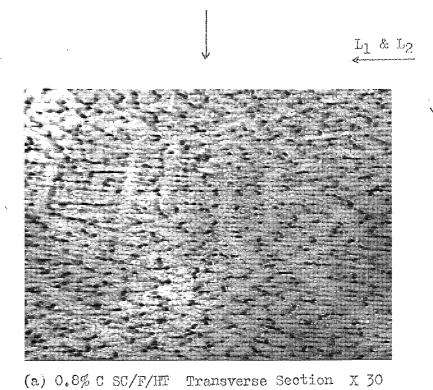
material, with a slight trend upward in 1.4% carbon, and downward in 1.1% carbon material. Becomiss (05) has noted that 0, the absolute slope of the plastic region of the logrithmic stress/strain curve, whilst remaining constant for B.C.O. metals, increases with testing speed in F.C.C. structures. If this is a stronger effect than the increasing yield stress, then since how of a rise in n would result. Relating a to Kin via. The Krafft (86) hypothesis, Frafft and Erwin (41) attribute the rising toughness trend in titanium alloys to this effect. Similar reasoning could well be applied to the results on austenitic material in this experiment.

7.7. Hot Working.

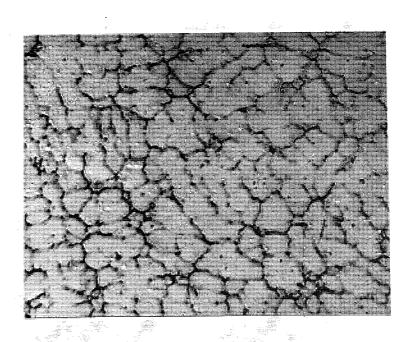
Substantial improvement in Kic, brought about by thermal breakdown of the carbide network during homogenisation was discussed in section 7.5. This experiment was designed to achieve similar results by mechanical means.

Following 50% uniaxial deformation on a drop harmer forge, the fracture properties of a 0.8% carbon alloy were examined in the forged, F/NT., and F/H/HT. conditions. K_{lc} was measured in the three directions of the plate, and in subsequent tests, the variation in toughness across the forging was investigated.

The most significant feature of the results (table 6.12.(a)) is the high K_{1c} in the transverse direction compared to that in the longtitudinal direction. This is due to the change in the line of crack propagation relative to the elongated grains. We change in K_{1c} was observed in the two longtitudinal directions of the plate, when cracking occurred parallel to the orientated structure. In the transverse direction, with crack propagation normal to the plate fibres a rise in K_{1c} was detected in all three conditions, from 31 to 40 ksi.(in.) as forged; 39 to 48 ksi.(in.)

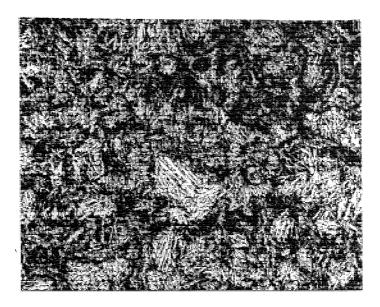

F/H; and 31 to 38 ksi.(in.) F/H/H. The orientation of the fibred structure relative to the direction of crack propagation is illustrated in fig. 7.17.

The microstructure of the forged material in the three conditions investigated is shown in fig. 7.18. In the as forged condition the structure consisted of very coarse martensite and retained austenite, K_{10} in the transverse direction was 40.9 ksi.(in.) $^{\frac{1}{2}}$. Heat treatment led to a refined and fully martensitic structure and an improvement in K_{10} , to 47.5 ksi.(in.) $^{\frac{1}{2}}$. The directionality imposed during deformation remained unaltered after hardening, and was still evident after homogenisation. Preferential precipitation of secondary carbides and subsequent decoration of the microstructure was evident in the F/E/TH material, and K_{10} in this condition was reduced to 37.5 ksi.(in.) $^{\frac{1}{2}}$. The fracture path, as in previous low carbon homogenised alloys, was intercrystalline.

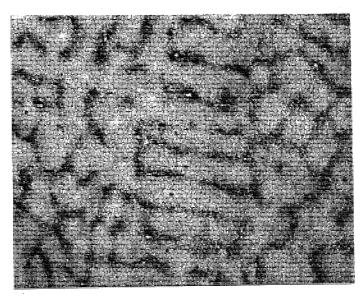

The abnormal level of scatter on K_{lo} results from the transverse direction led to a decision to carry out a more detailed investigation of the variation in properties across the forged plate. The spread of results on specimens taken from similar positions relative to the centreline of the plate was within more reasonable limits. K_{lo} was measured at four positions from the centre to the edge of the plate, summarised in table 6.12.(b). A constant level of K_{lo} across the width of the plate was observed with crack propagation parallel to the orientation of the structure (longtitudinal values). In the transverse direction the K_{lo} from intermediate positions was consistently higher than from central or edge regions. This trend is illustrated in fig. 7.19. No significant variation in hardness or macrostructure was detected to explain this effect.

Recent impositions in this field, discussed by Suthrie and Jolley, (92) are encouraging for future development in the forging of white cast iron.

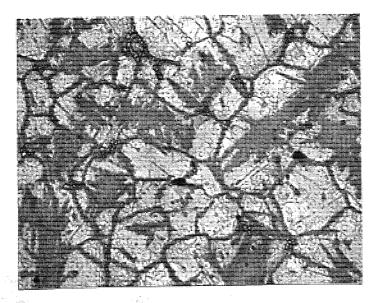
Forging Direction.



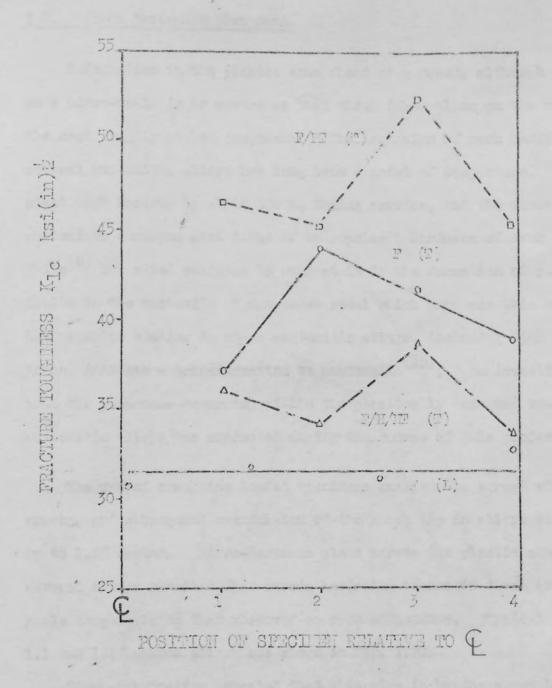
Ù



(b) 0.8% C SC/F/HT Longtitudinal Section X 30


Fig. 7.17. Orientation of Microstructure in Forged Material, Relative to the Direction of Crack Propagation.

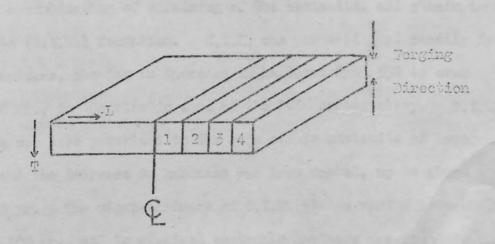
(a) 0.8% C SC/F X 100

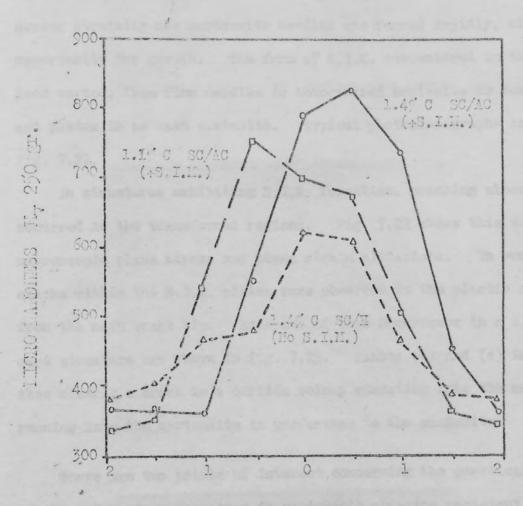


(b) 0.8% C SC/F/HP X 100

(c) 0.8% C SC/F/H/HT X 100

Fig. 7.18. Microstructure of Forged Material.




Fig. 7.19. Variation of Fracture Toughness Across Forged Plate.

7.8. Mirein Tardoning Phenomena.

Deformation in the plastic zone sheed of a crack, although occurring on a micro-scale is as severe as that thich takes place on the surface of the most roughly worked component. The mechanism of work hardening in several austenitic alloys has long been a point of conjecture. Manganese steel work hardens by about 300 Hy during service, and the surface of austenitic chronium cost irons often reaches a hardness of over 1,000 Hy. Thite (6) has cited evidence to suggest it is the formation of stacking faults in the austenite of manganese steel which produces this effect, but magnetic studies in other austenitic alloys, including high chronium trace, indicate a transformation to martensite (35). An investigation into the planomene occurring within the plastically deformed zone of austenitic alloys was conducted during the course of this project.

The use of creditine loaded specimens enabled the arrest of numing cracks, and subsequent examination of the crack tip in alloys containing up to 1.4% carbon. Micro-hardness plots across the plastic zones of several alloys revealed that strain hardening occurs in these areas on a scale comparable to that observed on worn components. Typical plots for 1.1 and 1.4% carbon alloys are shown in fig. 7.20.

Nicro-examination revealed that this rise in bardness was brought about by a combination of straining of the austenite, and strain induced nortensite (S.I.M.) formation. S.I.M. was produced most readily in as east structures, showing an increase in hardness from 350 to over 800 H_v250 gr., in the plastic zone of the 1.4% carbon alloy. S.I.M. formation was less prevalent in the more stable austenite of homogenised alloys, and the increase in hardness was less narked, up to about 600 to 650 H_v250 gr. The micro-hardness of S.I.M. plates varied between 700 to 850 M_v100 gr., and in strained austenite hardness was found to increase with slip line density. It a slip line density of 100 lines/sm. the

DISTANCE FROM CRACK FROMT nm.

Austenite :- 350 H_v 100gr.

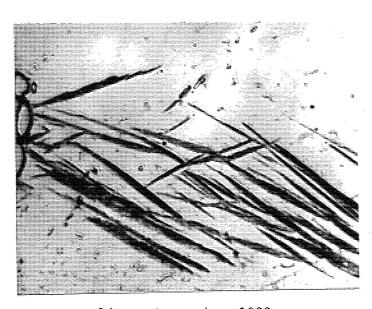
S.I.H. :- 700-850 H_v 100gr.

Strained Austenite :- 100 lines/nm - 450-500 H_v 100gr.

400 lines/nm - 550-350 H_v 100gr.

Fig. 7.20. Micro-Hardness Plots Across Plastic Zone (at the Bree Surface) of As Cast and Homogenised Material.

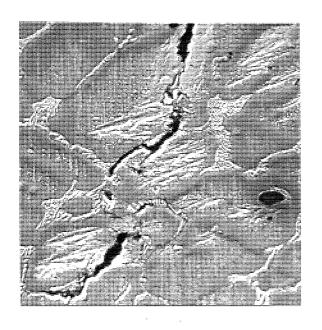
hardness was 450 to 500 $\rm H_v$ 100 gr; at 400 lines/mm. it was 550 to 650 $\rm H_v$ 100 gr., compared to 350 $\rm H_v$ 100 gr. for unstrained austenite.


The size and shape of S.I.M. plates will depend on the stability of the austenite, nucleation and growth characteristics for S.I.M. in that austenite, and the thermal conditions prevailing. Rickard (26) has noted that S.I.M. normally occurs as fine needles, since it is likely that during straining new martensite needles are formed rapidly, with little opportunity for growth. The form of S.I.M. encountered in this work has been varied, from fine needles in homogenised austenite to coarse needles and plates in as cast austenite. Typical photomicrographs are shown in fig. 7.21.

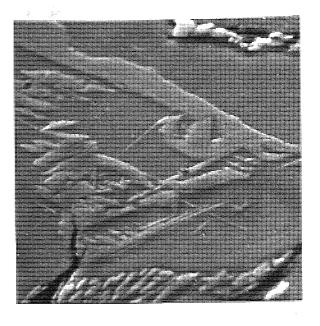
In structures exhibiting S.I.M. formation, cracking almost inevitably occurred in the transformed regions. Fig. 7.22 shows this to both macroscopic plane stress and plane strain situations. In some instances cracks within the S.I.M. plates were observed in the plastic zone remove from the main crack tip. Examples of this occurrence in a 1.4% carbon as cast structure are shown in fig. 7.23. Plates (b) and (c) in fig. 7.23 show clearly a crack in a carbide colony emanating into the matrix, and running into the martensite in preference to the austenite.


There are two points of interest concerning the practical potential of the S.I.M. transformation in austenitic abrasion resistant alloys. The development of a work hardened layer during service has always been a feature of this type of alloy, and the formation of S.I.M. in this region could be a means of increasing the surface hardness and wear resistance even further. Conflicting evidence on the effect of S.I.M. on toughness suggests that this might be a function of the alloy system. High strength, combined with high ductility and K_{1c} can be achieved when the formation energy of S.I.M. is harnessed into the fracture process, as in T.R.I.P. steels. However, the production of S.I.M. in cast irons appears to impair the impact properties, (26) possibly due to the formation of a

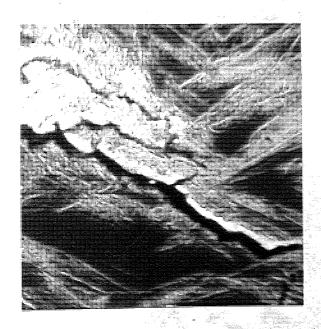
(a) 1.4% C SC/AC X 450



(b) 1.1% C SC/H X 1000



(c) 1.4% C CC/AC X 1500


Fig. 7.21. Typical Strain Induced Martensite.

(a) 1.4% C SC/AC X 700

(ъ) 1.1% с sc/Ac x 1600

(c) 1.1% C SC/AC X 2400 (d) 1.1% C SC/AC X 2400

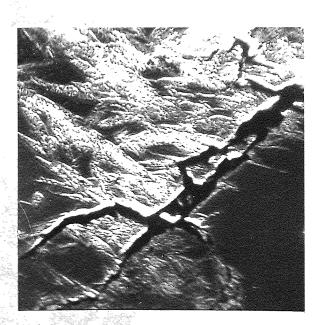
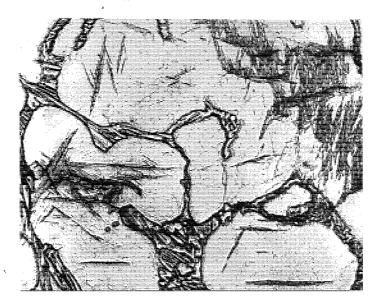
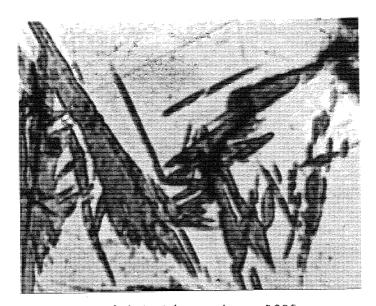




Fig. 7.22. Scanning Electron Micrographs showing Crack Propagation through Strain Induced Martensite: (a) & (b) Under Macroscopic Plane Stress (on Free Surface). (c) & (d) Under Macroscopic Plane Strain (at Mid Thickness).

(a) 1.4% C SC/AC X 350

(b) 1.4% C SC/AC X 1000

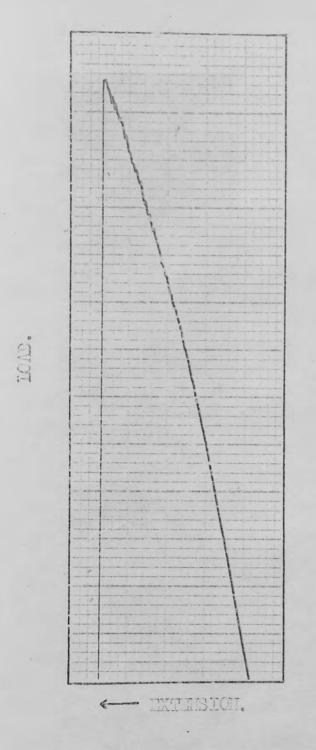
(c) 1.4% C SC/AC X 1000

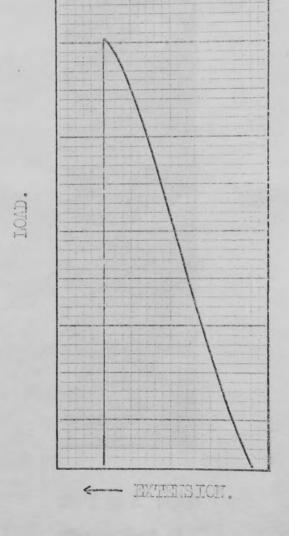
Fig. 7.23. Crack Formation in Strain Induced Martensite Plates Ahead of the Main Crack Tip.

brittle high carbon martensite. It was therefore considered partiment to clarify the position in the 15% Cr. series of allegs.

The production of 3.1.M. has been shown to be strongly dependent upon stress and strain; (25) Because of the limited strain involved in the fracture process of these alloys the most affective means of increasing the volume of martensite appeared to be raising P_d by alloying. Herly investigations (27.26) showed that tensile deformation is most effective in promoting 3.1.M., whereas compression opposed the expansion associated with a transformation to martensile. It was not surprising, therefore, that the tensile test was found to be the most convenient way of assessing the influence of alloying alarants on P_d. The results of a survey into the effects of C. In, Wi and Co are summarised in tables 6.13.(a) and (b).

The scope of this survey is not sufficiently extensive as to provide quantitative unformation, but its purpose is fulfilled in that it indicates the trend of belavious of the elements investigated. The results on austenitic stabilisors are in accordance with previous work, in that carbon energed as the most potent element in reducing N_d, whereas manganese and nickel are only middly effective. In bears T3 and 4 the low carbon was compensated for by mickel additions to rotain an austenitic matrix. Cobalt was investigated on the grounds of its effect on N_g, which, with aluminium are the only elements known to raise N_g. Since aluminium is a strong ferrite stabiliser (93) in chronium alloys it was not considered with respect to N_d. The addition of 25 cobalt increased the volume of S.I.M. from a trace to 10%, measured empirically in a tensile test.


The survey provided two opportunities to assess the influence of S.I.M. formation on tensile properties, at a constant carbon level. In each case the production of S.I.M. was accompanied by an increase in U.M.S. from 64 to 62 hsi. in heats T3 and T4; and from 73 to 90 ksi. in heats T7 and T8, corresponding to a 156 and 106 increase in S.I.M. volume respectively.


In the released ductile alloys such as the 18/6 steinless and T.R.I.P. steels used by many workers, S.I.H. formation has taken place throughout the gauge length of tensile specimens. The low ductility of the alloys investigated here, confined the S.I.H. to the area invediately adjacent to the precions. They rarely was the transformation observed in creas remote from the fracture surface. This means that the stress required to produce S.I.H. is also sufficient to initiate failure under the prevailing stress conditions, where yielding is almost coincident with fracture. In the C.M. barbon alloy, heat 74, the region between yield and failure was extended and a facture characteristic of S.I.H. formation was revealed.

Servations were produced in the load/extension curve, attributed to the formation and subsequent deformation of syntaneous bursts of S.I.H., causing a local extension at constant stress. This effect is illustrated in fig. 7.24., and typical longitudinal microsections of tensile speciment are shown in fig. 7.25.

Two heats were subsequently produced from which it was hoped to determine the incluence of 3.1.M. on the M₁₀ of 15% chronium alloys. The first heat was of the basic 1.1% carbon composition with 4% cobalt added. In the second heat, also containing 4% cobalt, the carbon was reduced to 0.6%, and 2% mangeness added to maintain the austenitic matrix. To produce a control alloy of identical composition, both heats were cast in two parts, the cobalt being added to the second half of each. Chemical analysis and the results of M₁₀ tests in the as cast condition and after homogenisation are tabulated in tables 6.14.(a) and (b).

Unfortunately the 0.6% carbon alloy failed in an intergranular manner, an undesirable feature evident in many of the low carbon alloys tested. This resulted in little plastic deformation and only traces of S.I.M. in the fracture process. A direct assessment was possible, however, from heat Kl in the as cast condition, where no significant variation in Klo

(a) Heat 54 0.5% C. Showing Serrations Corresponding to S.I.M. Formation.

(b) Heat T5 0.8% C.
No S. I.H. Formation.

Fig. 7.24. Influence of Strain Induced Martensite Formation on the Local/Extension Curve.

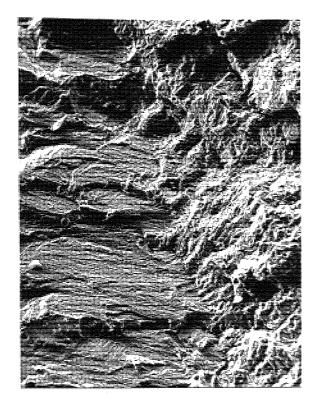
(a) Heat T.4. 0.5% C 20% S.I.M.

(b) 1.4% C SC/AC

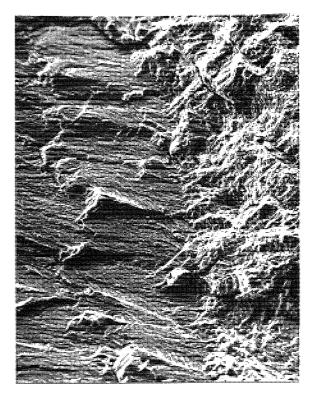
Showing Band of
S.I.M. Remote from
Fracture.

Fig. 7.25. Longtitudinal Sections of Tensile Specimens showing Strain Induced Martensite Formation.

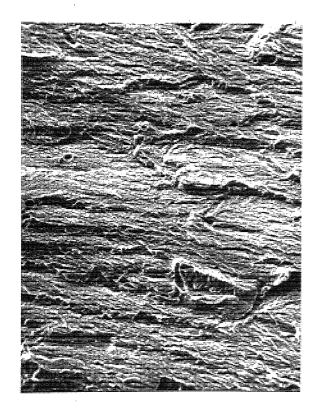
was detected when an estimated 15% of the tath in the plastic zone transformed to martensite.

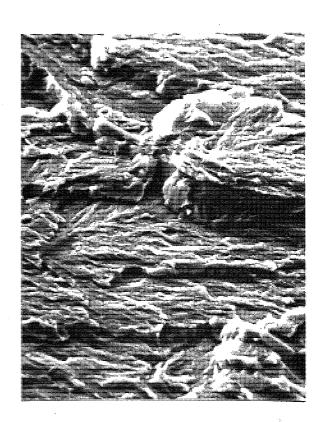

The relationship between plastic anergy dissipation and S. I.M. formation is discussed in section 8.2.

7.9. Fractographic Examination.


A comprehensive fractographic survey of the 15% chromium series of alloys under investigation was made on a Cembridge seanning electron microscope. Fracture surfaces from the six carbon levels and all the heat freatments utilised were included in the eramination. Sample preparation was discussed in section 5.5.

The area studied in all cases was that aljacent to the crack tip, where rapid crack propagation is initiated. In low carbon alloys the fatigua crack was easily discernable as a flat stricted region, showing interconnected fracture facets on different planes, illustrated in fig. 7.26. In the higher carbon alloys, particularly 2.9% and 3.4%, it was often difficult to distinguish between the rapid crack and fatigue cracked region. The discretion of macro crack propagation in all the fractographs is from left to right, as shown in fig. 7.26.


Fig. 7.27 shows fractographs of the six alloys in order of increasing carbon content in the as cast condition. Up to 1.4% carbon, plates (a), (b), and (c), the fracture surface consists of dustile tearing and fractured carbides, with the latter becoming more evident at the higher carbon levels. At 1.4% carbon, carbides constitute about 75% of the fracture surface. At 2.2% carbon and above, plates (d), (e), and (f), the fracture surface is completely dominated by the cleavage fracture of carbide colonies. Plate (f) shows a fractured primary carbide surrounded by the lammellar extectic carbide colonies. This evidence confirms the assumptions made in section 7.2, concerning the fracture process in austenitic structures. If was suggested that up to 1.4% carbon, the

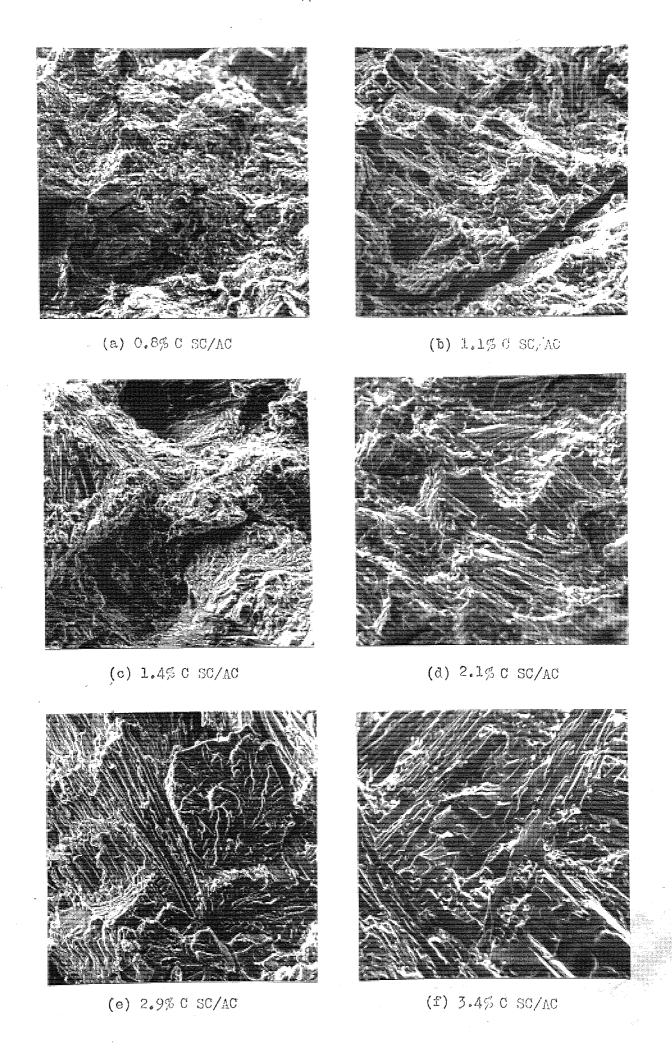

(a) 1.1% C SC/AC X 150

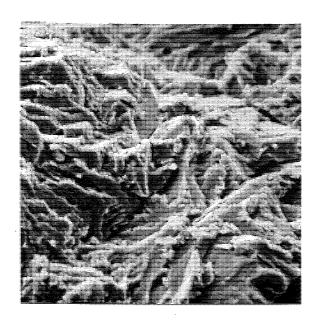
(b) 1.4% O SC/H X 150

(c) 1.1% C SC/AC X 350

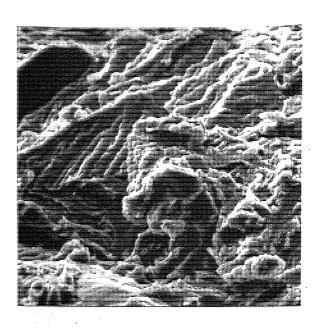
(d) 1.1% C SC/AC X 1700

Fig. 7.26. Scanning Electron Fractographs showing: (a) & (b) Fatigue Crack Tip. (c) & (d) Details of Fatigue Crack.

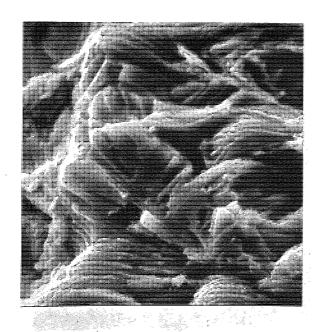



Fig. 7.27. Fractograph of As Cast Material of Varying Carbon Content X 500.

natural structure is the controlling factor, but at higher carbon contents the continuous carbide natural formates the fracture process.


Details of the ductile tearing associated with austemitic structures are shown in fig. 7.28. A feature of the sand cast austenitic fracture surfaces is what appears to be a series of coarse overlapping tongues, presumably produced by tearing, shown in plates 7.28.(a) and(b). In some cases the formation of these tongues is angular, and their appearance suggests fracture with limited plastic deformation. These points and the saze of the angular features, shown typically in plate 7.28.(b), suggest that they might represent the fracture of brittle high carbon strain induced martensité plates. Further evidence of plastic deformation is shown in plate 7.28.(c) where distinct elongated dimples are revealed on the austenite dandrites.

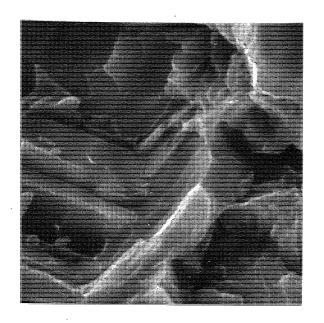
Characteristics of fractured carbides, the flat facets and river markings typical of electores fracture, are illustrated in fig. 7.29. Plate (a) shows a 90° change in direction of the crack path, associated with a transformation from flat cleavage of a carbide to matrix fracture. Hiver markings on the fracture surface of a primary carbide particle in 5.4% carbon material are shown in plate (b). These markings indicate the initiation of cleavage on different planes, which run into each other as fracture progresses. Thus fracture of this particle has occurred from bottom to top of the picture, normal to the macroscopic cracking direction (h to h). In contrast note the featureless cleavage of carbides in the same alloy in plate (d). Plate (c) illustrates the longitudinal fracture of a carbide/sustenite entectic colony, in 1.47 carbon material.

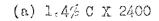

Mest treatment causes a marked refinement in the area of the fracture surface which fails with a ductile micro-mechanism. (fig. 7.30.). Alloys exhibiting a fracture surface consisting predominantly of carbide cleavage in the as cast condition, (ie. greater than 1.4% carbon), remained unaltered after heat treatment. Comparison of plate 7.30.(d) with the high carbon

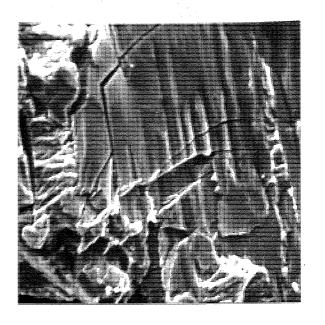
(a) 1.1% C SO/AC X 1600

(b) 1.4% C SC/AC X 1500

(c) 1.4% C CC/AC X 3200

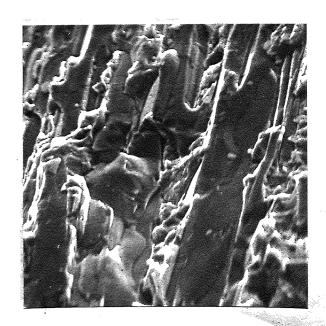



(d) 0.8% C SC/AC X 6000

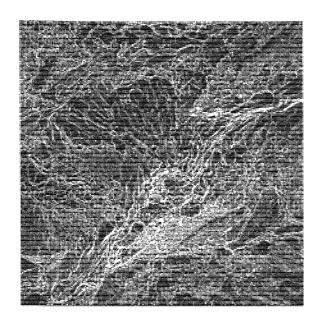

Fig. 7.28. Fractographs of Austenitic Cast Material. (a) and (b) Coarse

Surface produced by Tearing, and Failure of S.I.M. Plates.

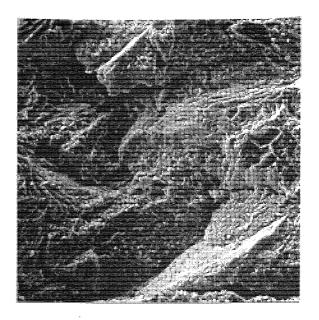

(c) and (d) Plastic Deformation of Austenite.



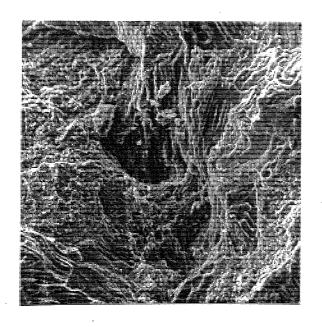
(b) 3.4% C X 1400

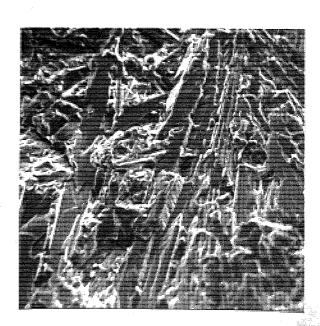


(c) 1.4% C X 750



(d) 3.4% C X 1300


Fig. 7.29. Fractographic Features of the Cleavage Fracture of Carbides.

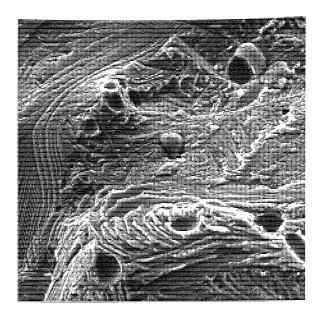

(a) 0.8% C SC/HT X 700

(b) 1.1% C SC/HT X 700

(c) 1.4% C SC/HT X 700

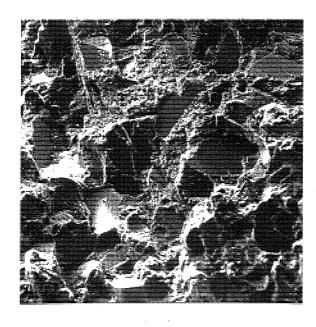
(d) 2.9% C SC/HT X 700

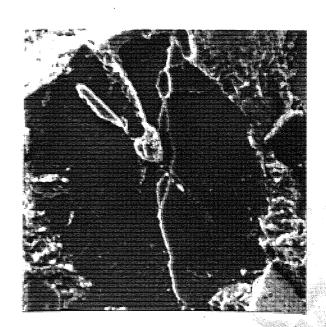
Fig. 7.30. Fractographs of Heat Treated Material of Varying Carbon Content.


as cast fractographs (fig. 7.27.(d), (e), and (f)) demonstrates this effect. The examination of heat treated material was therefore concentrated on the three carbon levels up to 1.4%.

At 0.8% carbon, shown in plate 7.30.(a), the fracture surface consists almost entirely of dimpled rupture, characteristic of micro-void coalescence. Eutectic carbides become more evident on the fractographs at 1.1 and 1.4% carbon, plates (b) and (c), occupying 40 to 50% of the fracture surface at 1.4%. This is significently lower than the amount of carbide fracture in the as cast condition at the same carbon level. It is clear from this fractographic evidence that there are two different micro-mechanisms operating in the fracture of as cast austenitic, and heat treated martensitic, material. This is discussed at greater length in section 8.1.

Metallographic examination has revealed the migration of carbides into a grain boundary film during homogenisation of 0.8% carbon alloys. Heat treatment of this low carbon homogenised structure leads to the precipitation of secondary carbides on preferential planes, within a martensitic matrix. In both SC/H and SC/H/HT conditions at the 0.8% carbon levels the fracture surface showed evidence of a low energy failure, shown in fig. 7.31. Plate (a) illustrates the intergranular fracture, or grain boundary separation, in the austenitic alloy. The presence of carbide particles within the grain boundary film is confirmed in plate (b), which also shows the elaborate patterns produced during fracture of the grain boundary film.


The fracture surface of the 0.8% carbon SC/H/HT alloy, shown in plates (c) and (d), is quite different. Although still a low energy fracture, the crack path appears to be along transgranular cleavage planes. This produces flat featureless facets, with occasional river markings, connected by areas of dimpled rupture.

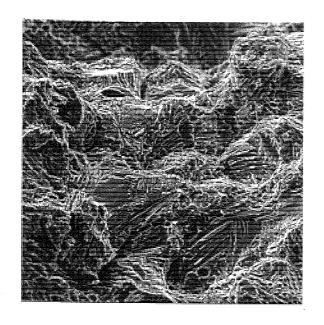


(a) 0.8% C SC/H X 150

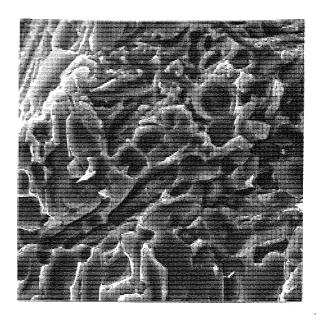
(b) 0.8% C SC/H X 750

(c) 0.8% C SC/H/HP X 150

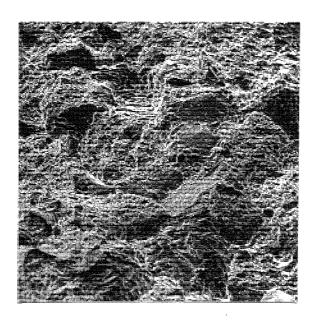
(d) 0.8% C SC/H/HT X 800

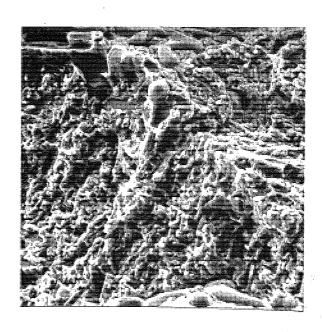

Fig. 7.31. Fracture Surface of Low Carbon Homogenised Structures.

The fractorraphy of higher carbon homogenised structures is depicted in fig. 7.32. Two points of interest are immediately evident; a change in the fracture micro-modernism of sustenitic naterial before and after homogenisation; and the marked difference in dimple size between austenitic and markensitic material in the homogenised condition.


The first point is quite clear from a comparison of plates 7.23(a) and 7.32(b), which show the same 1.15 carbon alloy in the austenitic condition, before and after homogenisation. The major differences between these two structures are the volume fraction of carbides present, and the stability of the austenitic natrix. Since in each case the carbides are present as a discontinuous network, it is difficult to envirage them affecting the fracture process of the interconnecting matrix. It seems likely therefore, that the stability of the austenité, and even slight transformation to martensite during cracking may play a significant role in determining the fracture nicro-medianism.

The second point, regarding dimple size, can be appreciated from plates (b) and (d) in fig. 7.32. It is sufficient to note here that there is a significant difference in the size of dimples between austenitic and martensitic material, although the micro-mechanism of fracture is the same. The relevance of this variation is discussed in section 8.1.


In addition to partially dissolving the entectic carbides, the homogenisation treatment has apparently weakened the carbide/matrix interface. Fracture of the carbide particles has been a feature of the fractography of as cast and heat treated material. After homogenisation however, cracking of the interface between carbide and matrix takes place revealing entire carbide particles rather than cleavage facets. This is most evident in plate 7.32.(d).


(a) 1.1% C SC/H X 300

(b) 1.1% C SC/H X 1500

(c) 1.1% C SC/H/HT X 300

(d) 1.1% C SC/H/HT X 1500

Fig. 7.32. Dimpled Rupture of Higher Carbon Homogenised Material.

8. THIONIPERCAL COMPREHENSIONS.

8.1. Structural Correlation.

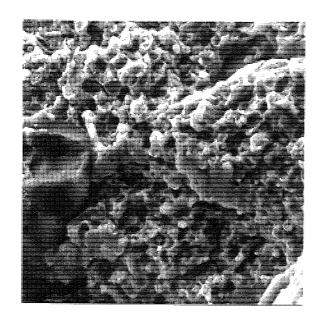
The model proposed by Brafft, (86) correlating K, with work herdening coefficient (n), and the elemental fracture cell $(\tilde{c}_m)_*$ was outlined in section 4.4. This spothesis is based on the Mensile plastic-flow instability; condition being attained, (ie. the achievement of strain equal to int, the necking strain), in coherent ductile ligarents about of the crack tip. . Then crack loading is increased sufficiently to establish the strain for duotile rupture of the cell a distance shead of the crack, convergending to the average cell size dm, crack growth becomes unstable. Then cleavage is predominant, Eraffit suggests that the critical process is tearing of the interconnecting ductile lignorie. Ripper (92) maintains that cleavage facets are formed well in advance of the crack, and as in normal rupture, the separation of the dustile ligaments connacting cleavage facets might be expected to be governed by strain hardening characteristics, In this case the instability zone size is limited by confinement between cleavage facets, which may explain my some steels with excellent strain hardening properties attain only a moderate level of toughness.

According to Brafft then, crack extension occurs by void nucleation and subsequent growth and coalescence, until plastic flow instability occurs at the critical cell size. Thus the dimples observed on ductile fracture surfaces are considered to be representative of the elemental fracture cell, or 'process zone'. Buckeation of voids can result from the fracture of inclusions or second place particles, and since nucleation rate will govern, to a large extent, the size of the process zone, the distribution of nucleit will play a significant part in determining fracture toughness.

The 15% chronium alloys with microstructure in terms of the Krafft model. The fractographic survey has shown that up to the point where a continuous carbide natural is produced, a considerable proportion of the fracture surface is of a dustile nature. The structural investigation was concentrated mainly on these alloys, containing up to 1.4% carbon, and exhibiting a fracture process controlled by plastic deformation.

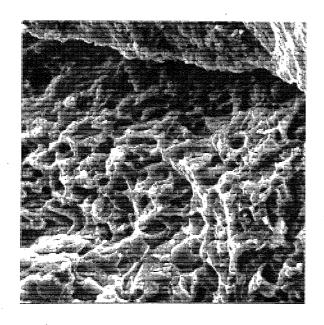
Consider first the situation in martensitic alloys. A constant tevel of toughness was observed, independent of carbon content and volume fraction of carbides. The predeminant fractographic feature of material in this condition was the dimpled supture of the matrix. Detailed fractography revealed that in fact dimple sizes for all martensitic structures were very similar, including the alloys hear areated after honogenisation. This is illustrated in fig. 2.1. which show the uniformity of dimple size at three carbon levels up to 1.4%. The experimental fracture cell size was estimated from the following formula:

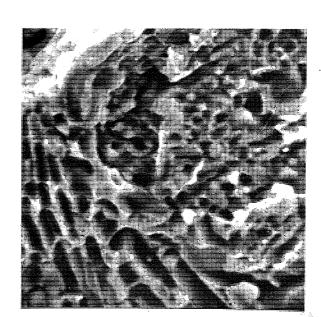
$$d_{T} = (A/T)^{\frac{1}{2}}$$
 8.1.


where H is the number of disples in an area A. In these calculations allowance was made for the foreshortening produced by tilting of the specimen in the scenning electron microscope. In all the martensitic structures, the experimental fracture cell size was found to be approximately I micron.

Having betermined de experimentally it was necessary to measure

Young's notulus and the work hardening exponent for this naterial in order


to predict a theoretical tensile instability zone size from the Brafft


equation:

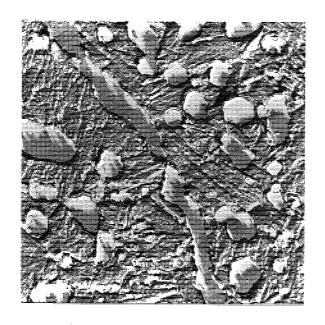
(e) 0.8% C SC/HT

(b) 1.1% C SC/HT

(c) 1.4% C SC/HT

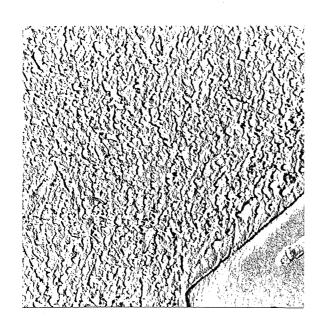
(d) 1.4% C SC/H/HT

Fig. 8.1. Uniformity of Dimple Size in Martensitic Alleys X 3000

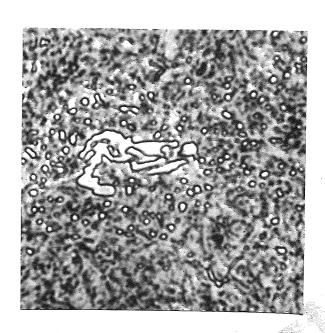

roung's modulus (E), was readily obtained during a tensile test, using an extensoreter technique, (table 6.2.). However, owing to the very small pro-fracture strain the values of n, calculated by the conventional log/log plot of the stress/strain curve were snomalous. The work hardening exponent was estimated, therefore, by the Meyer analysis technique, described in section 5.4.

Thus, using figures of 27.4 x 10^6 psi. for E; 24 to 27 ksi. $(in)^{\frac{1}{2}}$ for K_{1c} ; and 0.075 to 0.09 for n, a value between 0.5 to 0.8 microns was predicted for d_T ; in martensitic material. This is in extremely good excement with the experimentally determined fracture cell size of between 0.8 and 1.0 microns. Detailed results are tabulated in table 8.1 below.

The invariance of d_T, on the basis of Krafft's extensive experimental results, suggests that it may be related to some characteristic dimension of the microstructure. Birkle et. al.⁽⁸⁷⁾ showed that this dimension was the spacing between sulphide inclusions in Ni-Cr-Mo-steels. The most pertinent characteristic of the martensitic structures under investigation, appeared to be the dispersion of secondary carbide particles. The average secondary carbide spacing d was determined by electron microscopy, using two stage carbon replicas, and found to be very close to the average dimple spacing on the fracture surface, illustrated in fig. 8.2 and recorded in table 8.1.


TABLE 8.1.

% Carbon & condin	Av Kloj ksi(in)	E psi6	TI.	đ _{ợi j} ụ	Av Dimple Spacing M	Sec Carb Spacing d
0.8 SC/HT	26.3	N.D.	0.083	0.6	0.9	0.8
1.1 SC/HT	26.9	27.4	0.089	0.6	0.8	1.0
1.4 SC/HT	26.5	N.D.	0.072	0,8	0.9	0.8
1.1 SC/H/HT	28.0	N.D.	0.084	0.7	0.9	0.9
1.4 SC/H/HT	26,8	N.D.	0,092	0.5	1.0	0.7



(a) 0,8% C SC/ET X 12,500 d = 0,8

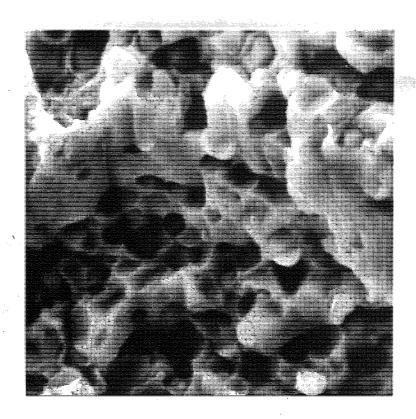
(b) 1.1% C SC/HT X 5,500 d = 1.0

(c) 1.4% C SC/HT X 2,650 $\bar{d} = 0.8$

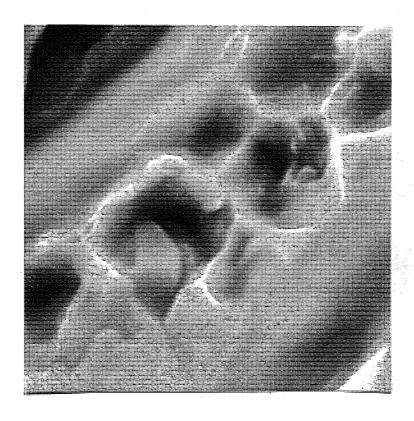
(d) 1.1% C SC/H/HT X 1,500 d = 0.7

Fig. 8.2. Distribution of Secondary Carbide Particles in Martensitic

Structures. (a), (b) & (c) Electron Micrographs using two

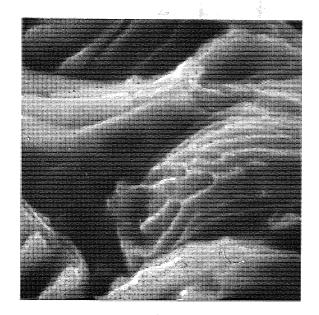

Stage Carbon Replicas. (d) Optical Micrograph.

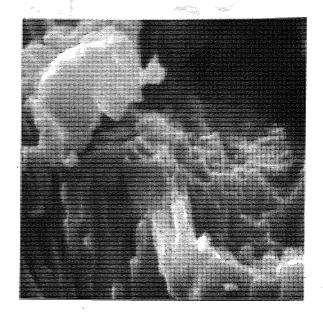
the mater between dimple spacing and secondary carbide dispersion data indicates that the sites for void nucleation are probably the secondary carbide particles. This assumption was confirmed by further fractographic evidence, showing dimples to be centred on secondary carbide particles 0.2 to 0.75 microns in diameter, illustrated in fig. 8.5.


These observations suggest that the onset of plane strain fracture instability is controlled by the dispersion of secondary carbide particles, and that the instability zone size corresponds to the average distance between these precipitates. The uniformity of secondary carbide dispersion emplains the constant level of $K_{\rm lc}$ in all the martensitic structures.

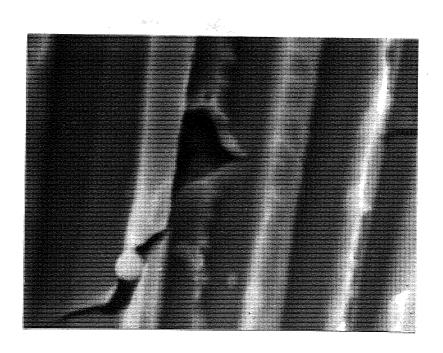
In austenitic structures a high rate of work hardening, associated with only moderate K_{10} , results in predicted process zone sizes of 0.1 to 0.2 microns, as listed in table 8.2. In homogenised alloys where the tracture rrocess is micro-void coalescence, the dimple spacing was an order of magnitude greater than this value. A closer correlation was revealed in as cast material, when a dimpled fracture surface was produced. An example is shown in fig. 8.4, where the dimple spacing is 0.5 microns in 1.4% carbon chill cast material. A structural feature of similar size was observed in the eutectic austenite of the same alloy in the sand cast condition. Fig. 8.4.(c) shows the fracture surface of a cutectic colony, where a crack in a carbide lamella has propagated into the adjacent austenite. Void formation and local necking during the fracture of the austenite has produced a single line of dimples in this region. spacing of these dimples is 0.46 microns, and whilst this is of the same order as the dimples on primary austenite it shows only moderate correspondence with the theoretical process zone size, dm.

Also included in table 8.2 is the spacing of other features observed on the fracture surface, such as the overlapping tongues discussed in section 7.9.




(a) 0.8% C SC/HT X 7,500

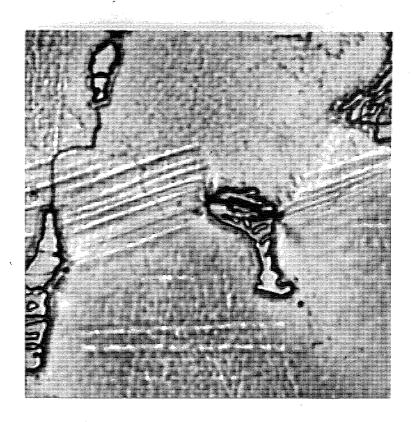
(b) 1.1% SC/NT X 20,000


Fig. 8.3. Secondary Carbide Particles within Dimples of Martensitic Fracture Surfaces.

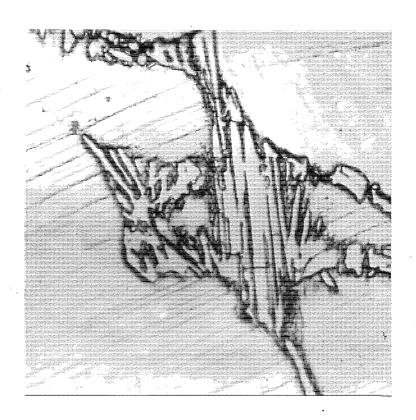
(a) 1.4% C CC 1 in.

(b) 1.4% C CC \(\frac{1}{4}\) in.

(c) 1.4% C SC/AC


Fig. 8.4. Dimpled Rupture of Austenite. (a) & (b) Fracture surface of Primary Austenite. (c) Void and Dimple Formation in Eutectic Austenite. X 9000.

are Lide


TABLE 8.2.

% C & Cond.	AV Kle ksi(in)	F	IJ	gir, v	Av Dimule Opacing <i>p</i> .	Spacing of other Peatures M
0.8 SC/AC	38	N.D.	0,22	0.23	- 100	2.5
1.1 SC/AC	32	24.4	0.29	0.10	eccs	3.0
1.4 SC/AC 1.1 SC/H	27 45	N.D. N.D.	0.24	0.16	0.46 · 2.0	2,8
1.4 SC/H	40	N.D.	0.26	0.17	# c /	ova .
1.4 GC/AC (+ in.)	56	Nel) e	0.24	0.16	0,5	essee

The arguments and theories concerning the nucleation of voids ahead of a crack were discussed in section 4.3. (78.79.80). It was concluded that slip induced cavity formation was the most typical mechanism operating during this process. Fig. 8.5 shows such cracking at carbide particles within the plastic zone of 1.1 and 1.4% carbon austenitic alloys. Krafft (86) postulates that in the presence of cleavage cracks the controlling factor in the fracture process is the ductile failure of interconnecting ligaments. Fractographic evidence has shown that by comparison, martensitic alloys contain fewer cutectic carbides on the fracture surface, than austenitic alloys of similar carbon content. It is suggested that in martensitic alloys where the nucleation of voids within the matrix is easier, due to the presence of secondary carbide particles, the fracture process is not so dependent upon the cutectic On the other hand, in austenitic alloys where the matrix is more ductile and has a higher work hardening rate, the cutectic carbides play a more important role. The interlamellar spacing of eutectic colonies in 1.4% carbon alloys has already been shown to have some significance.

(a) 1.1% C SC/AC X 450 (C.Ol in. ahead of grack tip).

(b) 1.4% C SC/AC X 1500 (0.015 in. ahead of crack tip).

----- Direction of Crack Propagation.

Fig. 8.5. Slip Induced Cracking in Austenitic Structures.

A further complicating factor in the matrix failure of lower tarbon austenitic alloys is the formation of strain induced martensite. The tendency for the crack path to be through the S.I.M. plates indicates that it might be the work hardening characteristics of this phase which should be considered rather than those of the austenite. Garberich et. all have noted a change in the fracture process when S.I.M. is formed, from dimpled rupture to wavy glide, in T.R.I.P. steels (31). The higher carbon martensite produced in the 15% chromium series, fractures in a mode of restricted plastic deformation, and the process zone size would be larger by at least an order of magnitude due to the low work hardening rate. Assuming a value of 0.08 for n, in the 0.8% carbon sand cart condition, results in a theoretical process zone size of 2.% microns, which is in good agreement with the spacing of the overlapping tengues observed on this fracture surface.

To summarise, in martensitic alloys which failed by dimpled rupture good correlation between K_{lc} and work hardcoing was observed on the basis of Krafft's tensile plastic flow instability hypothesis. The distribution of secondary carbides was found to correspond with the fractographic dimple size and the theoretical process zone size. These three characteristics were shown to be constant at all the carbon levels examined, explaining the uniform toughness over this range.

Structural correlation in austenitic alloys was complicated by the fact that the fracture process shows greater dependence on the carbide network, and the presence of strain induced martensite in some alloys. The interlamellar spacing of the eutectic colonies in higher carbon alloys has been shown to be significant, and a correlation based on the properties of the strain induced martensite appears to be more relevant in lower carbon alloys.

8.2. Plastic Energy Dissipation.

controlled strain induced martensite formation during cracking in steels of balanced chemical composition is the baris of the combined high strength, ductility, and toughness achieved in T.R.I.P. steels. An analytical treatment of the energy dissipation in T.R.I.P. steels by Gerberich et. al. (31) indicates that the invariant shear of the martensite reaction is about five times as iffective as the plastic dissipation processes normally occurring at the crack tip.

In their analysis, Gerberich et. al. theat the shear transformation to martensite as an energy absorbing mechanism, wince it takes place to minimise the strain energy of the system. The separate contributions of martensite, austenite, and the invariant shear as energy absorbing media are computed from the volume fraction of martensite, the strain energy density of the martensite, and the size and shope of the plastic zone. Treating these three factors individually, from tagnetic field strength measurements the volume fraction of martensite, V, is found to be proportional to strain;

$$v_{cr} = 1.2 \epsilon^{\frac{1}{2}}$$
. ... 8.3.

The strain energy density is approximated to (σ_{ys} E), and a tensile analogy taken which describes the plastic strain distribution in the plastic zone as:

$$\varepsilon = \frac{\sigma_{\rm c}}{E} \left(\frac{{\rm Rp}-1}{E}\right) \qquad \dots \quad 8.4.$$

where σ_c is the yield point of the austenite/martensite composite, and R_p is the length of the plastic zone. By assuming a plastic strip height of $\frac{1}{2}$ R_p a shape factor of $\frac{17}{8}$ is obtained.

Combination of these three factors results in the following equations for the plastic energy absorption, U, of the separate dissipation media:

Martensite:
$$U_{\alpha'} = 0.56 \sigma_{\alpha'} \left(\frac{\sigma_0}{E}\right)^3/c \frac{\pi^2 t}{E}$$
 8.5.

Invarient Shear:
$$U_{is} = 0.185 \sigma_{\kappa} (\frac{\epsilon_{ij} + \epsilon_{js}}{E})^{\frac{1}{2}} \epsilon_{js} = \frac{1}{2} t_{s}$$
 8.6.

Austenite:
$$V_{\gamma} = (0.196 \frac{\delta_{\gamma} \delta_{c}}{E} R_{p}^{2} t) - (0.55 \sigma_{c} (\frac{\delta_{0}}{E})^{3/2} R_{p}^{2} t) \dots 8.7.$$

where σ_{δ} is the austenite yield stress (approximated to σ_{c}), σ_{c} the martensite yield stress (estimated from other sources), ϵ_{is} the transformation strain, and the plate thickness.

Enumeration and summation of equations 8.5, 8.6, and 8.7 leads to a total plastic energy absorption, \mathbf{U}_p , in terms of \mathbf{P}_p . Plastic strip height is measured as a function of crack length, related to \mathbf{R}_p , and estimates of \mathbf{U}_p calculated at various stages of the slow cracking process. The plastic energy dissipation rate, \mathbf{G}_p , is obtained from:

and expressed in terms of stress intensity by:

$$K_{\underline{\mathbf{r}}} = (E G_{\underline{\mathbf{r}}})^{\frac{1}{2}}. \qquad 8.9.$$

Good correlation (within 15%) between derived and experimental values of K was achieved by Gerberich et. al., for two materials undergoing transformation to martensite.

The model, as proposed by Gerberich et. al., applies to a plane stress situation, and requires modification to deal with the alloys investigated here. Under predominantly plane strain conditions, the radius of the plastic zone will be approximately 1/3 of that measured at the free surface. The energy associated with this smaller zone will be correspondingly less, in proportion to the volume of the plastic zone. A factor which must also be taken into consideration is the elevation of the yield stress due to plastic constraint, when a condition of plane strain prevails. This

effect can increase the value of the uniaxial tensile yield stress by up to approximately three times, (2.8 using the Von Mises yield critericn). Under those conditions it seems reasonable to apply upper and lower bounds to the analysis, (a) assuming no elevation of the yield stress due to plastic constraint, where δ_{ys} equals the uniaxial tensile yield stress; and (b) assuming maximum constraint, where δ_{ys} equals three times the uniaxial tensile yield stress.

In the first case the following parameters are appropriate in the application of the analysis to the 1.15 carbon alloy of heat Kl in the current investigation, $(K_{lo} = 33.5 \text{ ksi.(in)}^{\frac{1}{2}})$:

$$\delta_{\infty'} = 180 \text{ ksi.}$$
 $\delta_{C} = \delta_{V} = 61.5 \text{ ksi.}$
 $t = 0.5 \text{ in.}$

$$E = 27.4 \times 10^{6} \text{ psi.}$$
 $\epsilon_{is} = \tan 19^{5} = 0.344$

The value of $\sigma_{\kappa'}$ was obtained by extrapolation of data on the 0.0% carbon sand cast alloy. This material was partially transformed to an accordant thermal martensite, similar in appearance and micro-hardness to the S.I.M. produced in cast structures.

The major axis of the martensite regions in T.R.I.P. steel tensile specimens was observed to be very close to the theoretical shear angle of 54° A4°. Similar measurements on chromium alloys revealed an average angle of 53° with the tensile axis. It was considered pertinent therefore, to use the same value of \mathcal{E}_{is} , the transformation strain, as used in the Gerberich analysis.

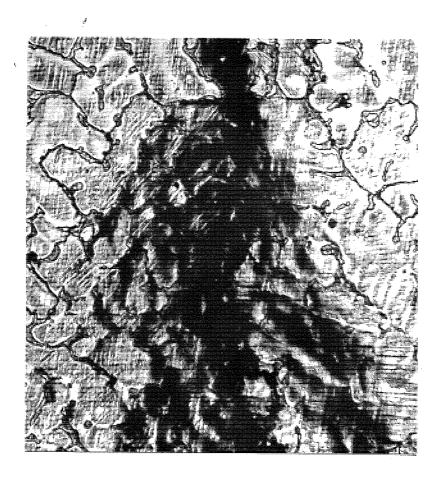
The formation of S.I.M. is more sensitive to strain, in T.R.I.P. steels than in chromium alloys. From the information presented by Cohen (25) on 12% chromium steels, the following relationship between volume fraction of martensite and strain was deduced:

$$\Psi = 0.8 \, \epsilon^{\frac{1}{2}}.$$
 8.10.

^{* (}ie. 19° the typical mechanical shear displacement of many types of martensite.)

Using this modified data the following values were obtained for the energy absorption of martensite, austenite, and the invariant shear:

$$U_{\alpha'} = 7.5 R_p^2 t. psi.$$
 $U_{is} = 465 R_p^2 t. "$
 $U_{\gamma} = 24.5 R_p^2 t. "$
 $U_{p} = 497 R_p^2 t. " for one onclave.$
 $U_{p} = 994 R_p^2 t. " for entire place.$


The increase in plastic strip height with slow crack growth is shown in fig. 8.6 for heat K 1 SC/AC. Estimations of R_p were made, and values of U_p calculated. The graph of U_p against slow crack growth, is shown in fig. 8.7. The most significant region during slow crack growth, relative to K_{lc} , is the first 0.05 in., and graphical differentiation ever this region results in a value of 192 lb/in. for G_p . This rigure is representative of the energy associated with the plastic zone at the free surface. According to Irwin (41):

Under plane stress:-
$$r_y = \frac{1}{2\pi} \left(\frac{\kappa_{1o}}{\sigma_{ys}}\right)^2$$
 ... 3.11.

Under plane strain:-
$$r_y = \frac{1}{5.6 \text{ TT}} \left(\frac{K_{1c}}{\sigma_{ys}}\right)^2$$
 8.12.

where $2r_y = R_p$, leading to plastic strip heights of 0.090 and 0.033 ins. for plane stress and plane strain conditions respectively. Assuming the volume of the plastic zone to be $(\frac{TR_p^2t}{4})$, the corresponding plastic zone volumes are 32 x 10⁻⁴ and 4.3 x 10⁻⁴ cu. ins. These values are slightly higher than the observed dimensions of the plastic zone, probably due to the restraining influence of the carbides, but this should not affect the ratio, which is being used here. Thus the energy absorbed under plane strain is roughly 1/8 of that under plane stress.

Applying this correction gives a value of 24 lb/in. for ${\tt G}_{\tt p},$ and

Heat K.1. 1.1% C X 100

Fig. 8.6. Slow Crack Growth and Plastic Zone Formation, in austenitic material.

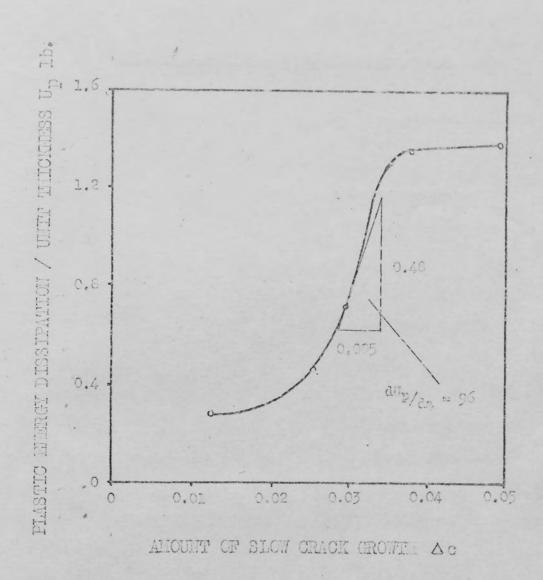


Fig. 8.7. Estimate of Plastic Energy Dissipation as a Function of Crack Length, by Graphical Differentiation.

26.5 ksi.(in)
$$^{\frac{1}{2}}$$
 for K_p .

For the upper bound solution, a similar procedure is followed, using the elevated yield stress data given below:

$$d_{c} = d_{d} = 184.5 \text{ ksi.}$$
 $d_{c} = 540 \text{ ksi.}$

and:

$$U_{\infty} = 62 R_p^2 t \text{ ksi.}$$
 $U_{\text{is}} = 2840 R_p^2 t \text{ m}$
 $U_{\text{g}} = 210 R_p^2 t \text{ m}$
 $U_{\text{g}} = 3112 R_p^2 t \text{ m}$ for one enclave.

 $= 6224 R_p^2 t \text{ m}$ for entire plate.

After correcting for the smaller plantic zone this results in a figure of 200 lb/in. for \mathbf{C}_{p} , or converting to stress intensity, 76 ksi(in) for \mathbf{K}_{p} .

In this treatment the energy required for cracking of the carbides has not been taken into account. The specific energy requirement for carbide cracking is about $^1/_{10}$ th that for matrix fracture, but since the invariant shear of the martensite reaction provides over 90% of the total energy, the nett effect would be only a very slight decrease in U_p , and consequently K_p .

In summary then, by examining the two extremes of plastic constraint, derived values for K_p of 26.5 and 76 ksi.(in) $^{\frac{1}{2}}$ are obtained, compared to the experimental figure of 33.5 ksi.(in) $^{\frac{1}{2}}$, for K_{lc} .

8.3. Crack Initiation.

The influence of applied stress on crack nucleation was discussed in section 4.1. Petch $^{(63)}$ has shown that a proportion of any stress causing yielding in a crystalline structure is employed in overcoming the frictional effects resisting deformation. This frictional stress will vary with the grain size dependence of the yield stress in the structure under investigation. In their modification of the Stroh $^{(64)}$ approach Smith and Harmby $^{(65)}$ estimate the stress required to cause cracking in a hard precipitate embedded in a deforming matrix. The effective stress, $\sigma_{\rm EFF}$, is expressed as a function of the length of dislocation pile up, d, acting on a precipitate of thickness 2c:

$$\sigma_{EFF} = (\frac{2c}{d})^{\frac{1}{2}} (\frac{2\times G}{1-v})^{\frac{1}{2}}$$
 ... 8.13.

The Smith and Barmby model is shown schematically in fig. 4.2 and is typified by the situation illustrated in fig. 8.5. Consider the circumstances of plate 8.5.(a), where a crack has been nucleated 0.01 ins. ahead of the main crack tip, at maximum load in a fracture toughness test; $20 = 4.5 \times 10^{-4} \text{in.}$, $d = 3 \times 10^{-3} \text{in.}$, $G = \frac{1}{2E} = 13 \times 10^{6} \text{psi}$, $\delta = \frac{Gb}{10}$, where b, Eurgers vector of a dislocation, = 1.2 x 10^{-8}ins. , and $v = \frac{1}{3}$.

The theoretical shear stress required to crack the precipitate, the value of $c_{\rm EFF}$ obtained using equation 8.13 is 2.5 ksi. To compare this figure with the applied stress it is necessary to estimate the stress level within the plastic zone at a given point. The shear stress can be calculated from Irwin's basic definition using the co-ordinates x and Θ , where x is the distance ahead of the crack tip and Θ is the angle of displacement from the crack plane, in this case 20° :

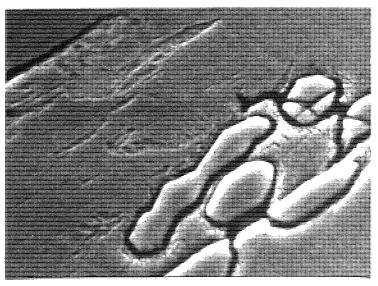
$$T_{xy} = K \frac{\cos \frac{\theta/2}{2}}{(2\pi x)^{\frac{1}{2}}} \cdot \sin \frac{\theta}{2} \cdot \cos \frac{3\theta}{2} \cdot \dots \cdot 8.14$$

For this material, the maximum load condition corresponds to a K

value of 35 ksi.(in)¹, and at a distance 0.01 fms. shead of the crack tip, the shear stress acting on the precipitate is 22.5 ksi. Since the effective stress required to crack the corbine is only 2.5 ksi., almost 90% of the applied stress is needed to evercor, the frictional resistance to deformation. This is in accordance with the results of Barnby (94) on stainless steel containing 3% volume fraction of (Te Cr)₂₃ C6, attributed to the small grain size dependence of the yield stress in F.C.C. alloys.

Cracks formed in hard particles in the plantic zone will remain as unpropagated voids, until the applied stress reaches a level sufficient to cause propagation into the matrix. This is the next stage in the fracture process, the voids acting as initiation sites for ductile failure. Fig. 8.8 shows the main crack connecting with fracture? carbides, and the emergence of the new crack tip into the matrix. The crack path in plates (a) and (b), is outlined by strain induced markenaite, and the formation of S.I.M. ahead of the crack tip is evident from plate (c).

Several workers have demonstrated the decrease in ductility with increasing volume fraction of brittle phase added to a ductile matrix. The predominant feature of much of this work is the proportion of brittle constituent present. Gurland and Plateau⁽⁸¹⁾ relate ductility directly to the volume fraction of second phase particles. However, this can only be considered as a general approach since it does not take into account the morphology of the second phase, or the interaction between the mechanical properties of the second phase and the matrix.


The deformation characteristics of the matrix, in particular the frictional resistance to slip, has been shown to be significant in determining the applied stress required to nucleate cracks in brittle precipitates. Fig. 8.9, where K_{lc} is expressed as a function of volume fraction of carbides in austenitic structures, illustrates the influence of second phase morphology. Since the ability to deform plastically controls

(a) 1.15 C SC/H X 1000

(b) 1.4% C SC/H X 1000

(c) 1.4% C SC/H X 3200

Fig. 8.8. Crack Propagation into the matrix from Cracked Carbides.

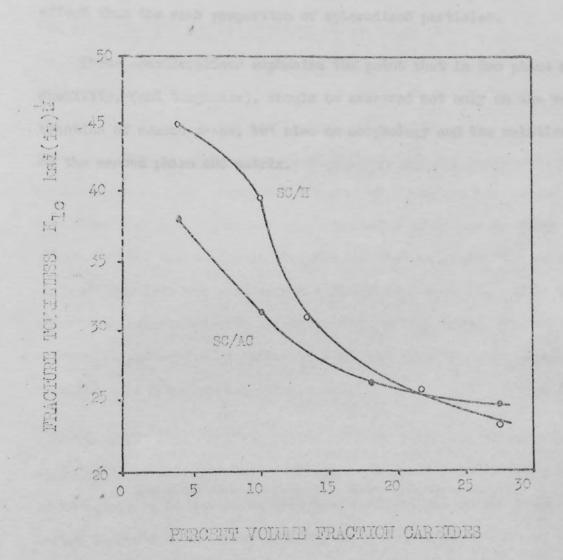


Fig. 8.9. Variation of Fracture Toughness with Percent Volume Fraction Carbides.

toughness, a drop in ductility generally corresponds to a reduction in toughness. K_{lc} decreases most rapidly with the first 15% volume fraction of carbides, but it is the variation in K_{lc} over this range between as cost, and homogenised structures which is important. For instance 10% by volume of interdendritic eutectic carbides have a greater embrittling effect than the same proportion of spherodised particles.

These considerations emphasise the point that in two phase material ductility, (and toughness), should be assessed not only on the volume traction of second phase, but also on morphology and the relative properties of the second phase and matrix.

9. COMUTECIAL SIGNIFICANCE OF RESULTS.

9.1. The 15% Chromium Alloys.

It is probably worthwhile at this stage to briefly restate the reasons for investigating the 15% chromium series of alloys.

One of the most widely used abrasion resistant alloys employed currently in medium impact loading situations is 25% Cr 2.5% C sustaining white cast iron. Recent developments in grinding and crushing plant are resulting in more onerous impact conditions, and the search for an alloy with comparable wear properties but greater toughness has led to the development of the 15% Cr series. The major advantage in using a 15% Cr alloy, besides the saving in chromium, is that an austemitic structure can be readily maintained with carbon contents as low as 1%. Thus one of the advantages associated with the high chromium cast irons, the ability to produce an austenitic or martensitic product from the same alloy, is retained in a lower carbon alloy.

The first consideration is the relative toughness of austenitic and martensitic material. From a fracture toughness point of view there is no advantage to be gained by heat treatment, at any carbon level. At carbon contents below about 1.5% the alloy is tougher in the as cast condition than after heat treatment to produce optimum hardness. The fracture toughness of martensitic material can be improved by increasing temperature, but at the expense of hardness and probably wear resistance. If heat treatment is necessary for other reasons, such as the type of wear process involved, there is little benefit in reducing carbon content below 2%, except when combined with a high tempering temperature. It should be noted that the tempering conditions necessary for significant improvement in toughness are fairly critical, and there

is a danger of over hempering, associated with a drastic drop in both hardness and tourhness.

In the as last condition only marginal improvement in toughness is achieved by reducing carbon from about 3%, just below the eutectic level, to 1.5%. Below 1.5% there is a steady increase in toughness with reduction in carbon to 0.8%, the limit of the austemitic phase field.

In the low carbon alloys there is a tendency for the carbides to segregate in an embritching grain boundary film, and the optimum combination of hardness and fracture toughness appears to be at about 1% carbon. Reduction in carbon is accompanied by a drop in hardness, but it may be possible to counteract this by adjusting the composition to promote the formation of martensite in the deformed surface layer, without impairing toughness.

Economically a high carbon content is favourable for two reasons, both connected with production. It enables the use of pig iron in the furnace charge in place of more expensive low carbon steel scrap, or low carbon ferro-chromium. Melting temperature increases from 1275°C at 3% carbon to 1450°C at 1% carbon, and this is associated with a widening of the solidification range. Thus a low carbon alloy will not only be more costly to melt but will also be more susceptible to unsoundness due to feeding problems. The increased feeder head material necessary for lower carbon alloys would reduce the yield of the casting process. As far as moulding technique is concerned, any process which refines the grain structure by increasing solidification rate (such as chill casting) will improve toughness. However, this improvement is not considered sufficient to be the sole justification for a change in moulding practice.

An important factor in the choice between an austenitic or martensitic alloy may be the sensitivity of fracture toughness to the rate of application of load. Over the range of testing speeds used (the fastest

of which is well below that involved in impact loading), martensitic structures have adhibited a drop in toughness with increasing loading rate. We change was detected in the as cast condition.

The embrittling carbide network formed during solidification can be broken down in two ways, thermally and mechanically. High temperature heat ireatment at \$150°C apherodises the carbide particles, and can increase fracture toughness by up to 50%. Soaking time is important in the attainment of maximum toughness, and increases with carbon content.

Excessive grain growth and the formation of a grain boundary film occurs it soaking time is extended past the optimum. A protective furnace simposphere is essential at \$1150°C to prevent decarburisation and scaling, and the cost of the treatment prohibits a large scale commercial proposition. In special circumstances, however, spherodisation of a limited number of small castings might be attractive.

Forging of low carbon alloys (less than 14% C) shows greater promise for further development. The production of small simple shapes, such as grinding media (balls or slugs), would be ideally suited to this process. Uniform deformation followed by heat treatment to a homogenous martensitic or austenitic structure should result in a very acceptable product.

9.2. Fracture Toughness of Competitive Alloys.

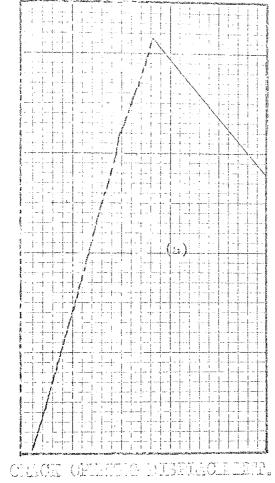
An accurate and dependable measure of the toughness of a new alloy is of little significance without a perspective view of the materials with which it is to compete. A brief survey was carried out on six alloys which are likely to be most competitive in the field of application envisaged for the 15% Cr 1% C alloy. The group of alloys investigated comprised: (a) Manganese steel (still the conventional choice in severe impact conditions); (b) alloyed manganese steel (lower wear rate than (a) in similar circumstances); (c) EF 253 (proprietry high Cr white cast iron); (d) Maxichrome (proprietry 12% Cr, 1.5% C martensitic alloy).

Chemical analysis and mechanical properties, including K_{1c} are presented in tables 9.1.(a) and (b). Quoted K_{1c} values are the average of a minimum of two tests.

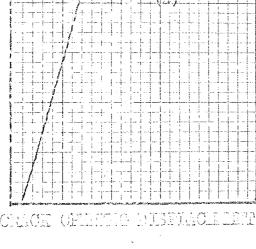
TABLE 9.1. (a).

ATT TY		Si	Miz	Ni	C.T.	Мо	Co
BF 253.	2.2	0.35	1.1	0.25	23.4	#idos	egas
Manganese steel.	0.97	0.60	10.5	0.06	0.04	45.3 7	çuni
Alloyed Mr. steel (1)	1,23	0,82 0,55	9.4 11.2	1.56 3.0	4.04 3.3	0123 EQB	3.6 0.25
Maxichnome	1.30	0.5	1.4	0,12	12.5	0.6	

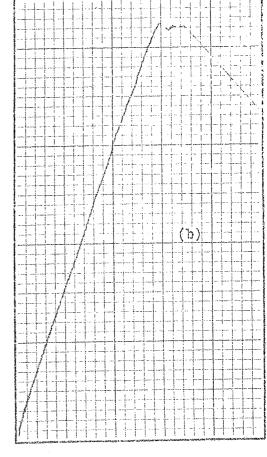
TABLE 9.1. (b).


ALLOY	OR IG IN	U.T.S. ksi.	Hv 30	Klc ksi,(in) ²	COEGAZINIS.
BF 253. AC.	Worn lining plate.	116 125	500 750	25.7 25.5)Rapid crack))propagation
Min. steel Alloyed (1)AG Min. St. (1) H		46 86	220 280 220	27.0 29.0 40.3))slow crack))growth through
Alloyed (2)AC Mm. st. (2) H	tt	72	270 200	50.3 38.4)entire mett))section.))
Maxichrome	New lining plate	164	450	35.3	Rapid er. prop.
1%; 15%cr ac	Virgin	70	330	35	Some sl.cr.grth.
н.т. 250°С.	Material	150	650	26	Rapid cr. prop.
н.т. 450°С.		ssoit	570	35	
н. 1150°с.		cover	250	45	Some sl.cr.grth.

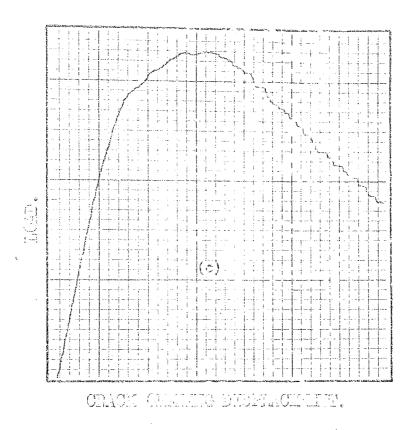
Three mean groups of alloys are covered by the materials investigated in this survey, tamely martensitic, and hard and soft austenitic. The results indicate that a 15 C, 15% Or alloy could compete favourably, especially with the first two types.


Maxicurome. The BF 253 was subjected to a straightforward hardening (975°C) and tempering (250°C) treatment, which has no effect on as cast toughness. This is consistent with results on the 15% Cr series. The normal procedure for Maxichrome alloys is a complex and expensive heat breatment including prolonged annealing. However, the resulting level of tracture toughness can be attained in the 15% Cr alloy by simply increasing tempering temperature from 250°C to 450°C.

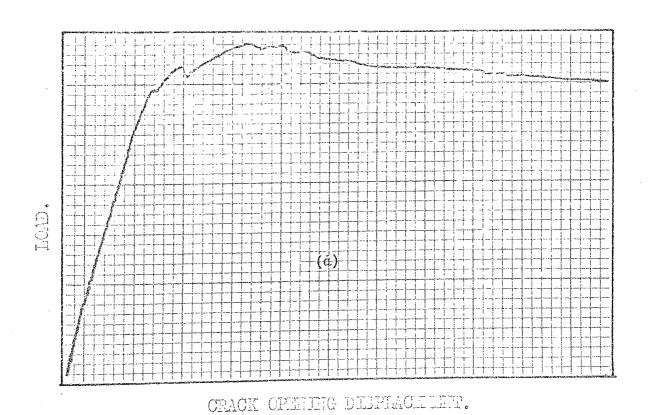
The fracture toughness of the as cast 15% Cr alloy is some 40% higher than the as cast EF 253, representing the hard austenitic category. This margin would probably be greater for a more typical BF 253 containing 2.7 to 2.9% carbon. Undoubtedly the wear resistance of the harder BF 253 will be superior to that of the 1% carbon material. The performance of lower carbon alloys in a dry cement mill production trial initiated some 3½ years ago, and still proceeding, indicates that a reasonable level of wear resistance is maintained. In more severe abrasive conditions, such as wet grinding, the wear rate should compare even more favourably with that of the higher carbon alloys.


manganese steels is slightly lower than the 15% Cr material, they have a very slow rate of crack propagation. In effect this means that after the critical stress intensity has been exceeded, and crack growth initiated, a high stress level must be maintained to cause complete failure. This feature is illustrated in fig. 9.1, which includes typical load/displacement records of the alloys under investigation. Thus, for a given crack situation, a higher stress is required to initiate crack

(a) High Carbon Material.



(b) Low Carbon Martensitic Material.



CRACK GREETING DESPLACE UPT.

Fig. 9.1. (a) & (b). Typical Load/Displacement Records for Material with Negligible Slow Crack Growth.

(c) Low Carbon Austenitic Material.

(d) Manganese Steels.

Fig. 9.1. (c) & (d). Typical Load/Displacement Records for Material showing Significant Slow Crack Growth.

growth in the lew carbon 15% Cr alloy. Subsequent propagation through the nett section is relatively fast, but still associated with some slow crack growth. In contrast, high carbon and markensitic alloys exhibit rapid crack propagation immediately critical stress intensity conditions are reached, with little or no slow crack growth.

Although several factors influence the choice of alloy for a given application, in components which are continually wearing, cost is always important. A comprehensive economic enalysis would include the separate costs of pattern making, moulding, raw materials, melting, fortiling, scrap, machining and heat treatment. For reasons such as the fluctuations in the price of raw material, and special requirements of the customer, it is common practice to quote costs on a contract basis. However, most suppliers have a range of tonnage prices which can be used as a general guide for comparison purposes. The following survey gives an estimate of the relative costs of the alloys under consideration in terms of these current selling prices.

Manganese Steel. General difficulties associated with the production of manganese steel are reflected in the comparatively high selling price. For instance in the molten state manganese steel reacts with normal silica sands, necessitating the use of expensive neutral mould facings.

Materials and heat treatment: £110 - £120 / ton.
Selling Price: Up to £350 / ton.

EF 253. A high chromium white cast iron marketed in the as cast, stress relieved, and hardened and tempered conditions.

Materials and Melting: £70 / ton.
Selling Price (as cast): £180 - £190 / ton.

Additional Heat Treatment Costs:-

Stress Relieving: £30 / ton.

Mardening: £45 / ton.

Tempering: £25 / ton.

Maxichrome. Molybdenum additions and prolonged achealing during heat treatment cycle, contribute to the rather high solding price of this alloy.

Materials and Melting: approximately 680 / ton. Selling Price: approximately £250 / ton.

15% Cr 1% C.

Materials and Melting: 155 - 160 / tcm-

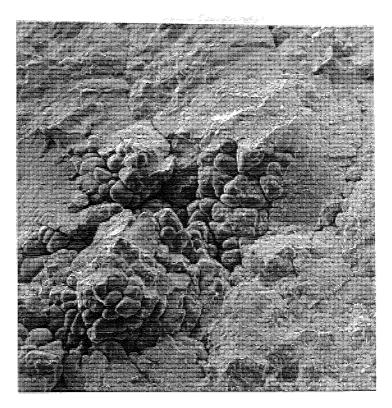
A selling price is not available for this alloy, but accounting for decreased yield due to extra feeding requirements it should still sell at around £170 - £150/ton in the as cast condition.

In general them, the proposed 1% C, 15% Cr composition appears to have commercial potential, at a competitive price, with a wider range of application than most of the alloys of its type at present on the market.

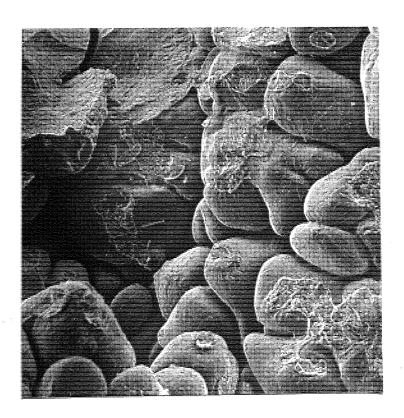
9.3. Critical Defect Size.

In applications where there is a danger of unstable brittle failure the gross stress field is generally elastic at the operational load, and the failed component is characterised by the absence of a large amount of plastically deformed material. This observation is fundamentally important and emphasises the risk involved in estimating the strength and operational life of a component on conventional strength analyses, assuming plastic yielding prior to failure. It should be recognised that fabricated, wrought, and cast components all contain defects and flaws of various kinds. The operational life of any structure is governed by the defect size required to cause failure at the operating stress level (ie. the critical

defect size), the unitial defect size, and the sub critical crack growth characteristics of the material.

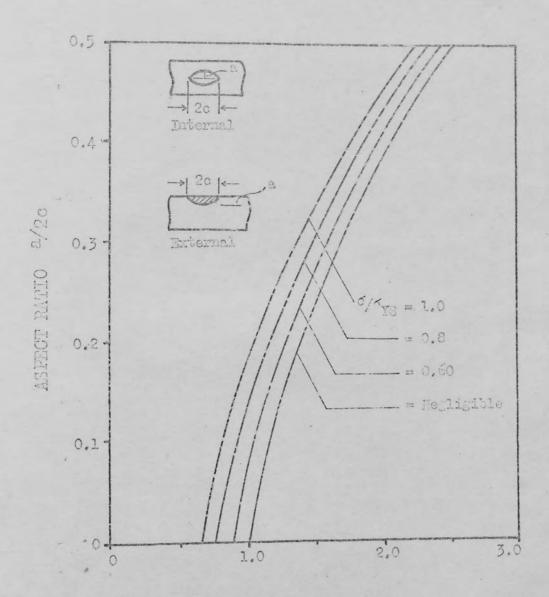

The A.S.F.M. H 24 committee have entegorized the types of defects likely to be encountered as surface, embedded, or through thickness cracks. For surface and embedded defects the degree of constraint at the crack from it high and plane strain conditions generally prevail. The mode of fracture for through thickness cracks will depend upon material strength and thickness. It this sections plane stress is generally predominant, but with increasing thickness the fracture changes from slant to square mader cosentially plane strain conditions.

In the failure of abrasion resistant castings a likely initiation site for brittle fracture is central unsoundness. It is common practice when producing thick sections to accept a certain amount of drawing, provided it is restricted to the interior of the casting. Normally the examination of failed components from grinding and crushing plant is hampered by destruction of the fracture surface due to contamination and post-fracture abrasion. However, when observed on the fracture surface this type of defect has been the apparent cause of failure. A typical example of shrinkage cavities on the fracture surface of a low carbon 15% Cr alloy is shown in fig. 9.2, taken from an unreported test casting, produced with insufficient feeding capacity.


In this situation, determination of the critical stress for an embedded defect of given size and shape was considered the most appropriate way of comparing the relative toughness of the alloys under investigation.

The mathematical model for the prediction of critical defect size assumes an elliptical (or semi-elliptical), defect shape. The relationship between defect shape, denoted Q, and aspect ratio is normally presented as a function of the applied stress level, shown in fig. 9.3. For an embedded flaw (61):

$$(\frac{2}{0})$$
 crit = $\frac{1}{0} \times (\frac{\text{Klc}}{\sigma_{\text{app}}})^2$ 9.1.



(a) X 50

(p) X 500

Fig. 9.2. Shrinkage Porosity on Fracture Surface of 1.1% C 15% Cr Test Casting.

FLAV STAPE PARATETER Q

 $K_{lo} = 1.1 (m)^{\frac{1}{2}} \sigma (^{a}C^{2}/Q_{Cr})^{\frac{1}{2}}$

Q = \$2 - 0.212 (5/5/8)2

Q = Flam Shape Parameter.

 ϕ = Complete Elliptical Integral.

d = Gross Stress.

org = 0.2% Offset Tensile Wield Stress.

Fig. 9.3. Flam Shape Parameter Curves for Surface and Internal Gracks (41),

The term $\binom{8}{6}$ describes the defect size in terms of the aspect ratio, $\frac{2k}{2c}$, where 2c and 2a are the major and minor dimensions of the defect with respect to the direction of crack propagation. Considering an area of porosity three inches in diameter, and extending $1\frac{1}{2}$ inches through the thickness (not uncommon in, say, a 4 inch thick easting), the aspect ratio, $\frac{a}{2c}$, is 0.25. Since the Q value will vary from 1.5 to 1.5 depending on the yield attress of the material. Assuming that no sub-critical crack growth occurs, the load required to attain critical stress intensity conditions, $o_{\rm crit}$; and intiate mustable cracking in this given situation, is propertional to $K_{\rm ic}$, and indicated in table 9.2, below.

TABLE 9.2.

Critical stress requirements for an embedded defect, aspect ratio 0.25, where a = 0.75 ins.

m MIJOY a	U.T.S. ksi.	Klc ksi(in)	Critical stress ksi.
15% Cr 1% C AC.	70	35	27.5
H.T. 250°C.	150	26 .	20.1
н.т. 450°С.	· see	35	27.6
н. 1150°с.	096	45	35.6
BF 253 (2,250)	116	25	19.8
15% Cr 2.8% C.	115	21.5	16.8
15% Cr 3.4% C.	Gonz	16	12.5
Maxichrome	164	35.3	27.8
Manganese steel.	46	27.0	21.0

10. CONCLUSIONS.

study the fracture characteristics of relatively brittle abrasion resistant alloys. The investigation was based on an austenitic east iron, containing 15% chromium and 0.8 to 3.4% carbon. Particular attention was paid to the temperation carbon alloys in this series. Carbon content, grain size, hardwing variables, homogenisation, rate of application of stress intensity, and hot working, have all been examined, and the effects on fracture toughness, microstructure, and tensile properties observed.

influencing the fracture process, and the point at which the entectic carbide network becomes continuous, about 1.5% carbon, found to be particularly important. At carbon contents above this value, toughness is controlled by the volume fraction of carbides, and is unaffected by matrix characteristics. Lower carbon alloys, in which the carbide network is discentinuous, are responsive to heat treatment and sensitive to matrix structure. Heat treatment to a martensitic matrix leads to a constant level of toughness, independent of carbon content, and generally below the as east value.

In the low carbon series the following treatments have resulted in an improvement in fracture toughness:

- (a) Reducing the volume fraction of eutectic carbides in austenitic alloys, from the level at which a continuous carbide network is formed.
 - (b) Decreasing the grain size at a given carbon content.
 - (c) Increasing tempering temperature of martensitic alloys.

- (d) Spherodisation of the eutectic carbides by heat treatment at temperatures approaching the melting point.
 - (c) Deformation of the as cast structure.

A simultural correlation was observed in martensitic alloys, in terms of a recent fracture model based on a plastic instability concept. The spacing of secondary carbide particles was found to correspond to the fractographic dimple size and the theoretical process some size. The uniformity of secondary carbide distribution at varying carbon centerts, is thought to be responsible for the constant level of toughtest recorded in martensitic material.

In austenitic structures a strain induced transformation to martensite has been detected within the deformed zones of Tracture toughness and tensile specimens. This transformation was shown to raise the U.T.S. with little influence on Kic. In an analysis of the fracture mechanisms occurring at the crack tip, the experimental Kic result was observed to be between the upper and lower bounds of a value derived from a modified energy dissipation model.

A survey of the materials likely to be most competitive with a proposed 1% carbon, 15% chromium alloy, indicates that this alloy would compete favourably, as far as toughness and cost is concerned. Variation of the microstructure by heat treatment widens the possible range of application beyond that characteristic of other wear resistant alloys.

ATPUEDT

onstant I, which determines the level to which H₁₀ is raised by a given situation. Theoretical values of I for many types of geometry have been calculated by complex stress analysis techniques, but practical calibration can be made for any specimen geometry by compliance testing, which also tests the experimental rig and procedure.

Since the crackline loaded specimen used in this investigation is a relatively new design it was decided to check the Y calibration by a compliance experiment.

Irwin and Kies (95) express the strain energy release rate in terms of load and spring compliance of the specimen.

where & is the strain energy, a, crack length, P load, and H spring compliance. Strain energy release rate, however, is G1, which is related through H, Young's hodulus, to K1:

$$d\xi_{da} = G_1 = \frac{\left[\mathbb{E}_1(1-v^2)\right]^2}{\mathbb{E}}$$

Hence, for unit thickness B, where v is Poissons ratio:

$$\frac{\left[K_{1}(1-\sqrt{2})\right]^{2}}{2} = \frac{1}{2} p^{2} d/da \left(\frac{1}{2}/10\right).$$

and:

$$K_1 = P \left[\frac{pp}{2(1-v^2)} \frac{d}{de} (\frac{1}{2}) \right]^{\frac{1}{2}} \dots \dots (A1)$$

In stress analysis $K_{\underline{I}}$ is normally expressed in terms of Y as:

$$K_1 = \frac{\text{Ip}(a)^{\frac{1}{2}}}{87}$$
 (12)

where T is the width of the specimen. Combination of equations Al and A2 leads to a formula for the polynomial T:

$$Y = T \left[\frac{ND}{2a(1-v^2)} d_{aa} (1/D) \right]^{\frac{1}{2}}.$$
 (N3)

V, B, R, and v, are constants, so by varying a, and measuring d/da ($^{1}/L$), the Y value for any crack length can be determined.

Sullivan (96). The clip gauge was first checked for linearity by ettaching it, with the buile edges, to a vernier micrometer. The response to opening and closing the gauge, was measured on the Tryans X - Y plotter, and is shown in fig. Al. A mild steel specimen was unde, to the design in fig. A2, with an initial crack length of 0.5 ins. The compliance, (1/1), was determined by loading and unloading, within the clastic region, up to 200 kg., necessaring the slope of the load/displacement record, and taking the reciprocal. This procedure was repeated at twelve crack lengths; up to a final crack length of 2.5 ins. Ten duplicate compliance measurements were made at each increment of crack extension. The variation in (1/4) with crack length is shown in fig. A3.

Foundary collocation data for this type of specimen is calculated from the theoretical displacements at the load line, and it is necessary to correct experimental data to compensate for measurement at the specimen edge, (97). The values of $\binom{1}{M}$ to which the correction graph applies are shown in table Al.

Compliance was expressed as $^{d}/_{da}$ ($^{1}/_{M}$), by graphical differentiation of the compliance versus $^{2}/_{W}$ curve at four crack lengths. This procedure is shown schematically in fig. A4. Insertion of this data into equation A3 gives the Y values shown in table A2. Experimental results are shown, superimposed on the theoretical analysis by Srawley and Gross (98) in Sig. A5.

The compliance calibration is in good agreement with the computed

analysis, and concentus well with the experimental results of Mossel (99) and Torry and It shards (100) on compact tensile specimens.

Compliance Culibration Results for Orackline Loaded Fild Steel Specimen.

T = 3.375 ins. B = 0.489 ins. 2H = 4.0 ins. v = 0.29. $T = 30 \times 10^6$ Tr/in^2 . Noteh width 3/32 in. Hole at crack tip 0.08 in. dia.

TABLE Al.

2.	8/77	1/11 x 10 ⁶ in/1b	1/1 Corrected to L.I.
1.02	0,502	1,648	1,030
1.20	0.355	1.937	1.262
1.39	0.412	2.316	1.618
2.59	0.472	3.202	2.350
1.76	0,522	3.854	2.88
1.98	0,586	5.300	4.10
2.17	0.642	7.347	5.76
2.34	0.584	10.48	8.41

TABLE A2.

a/W	d/do (1/15)	[d/aa(1/1)/a] ²	Y
0.65	11.1	2.28	21.6
0.57	5.9	1.76	16.5
0.45	2.78	1.35	12.7
0.33	1.36	1.11	10.6

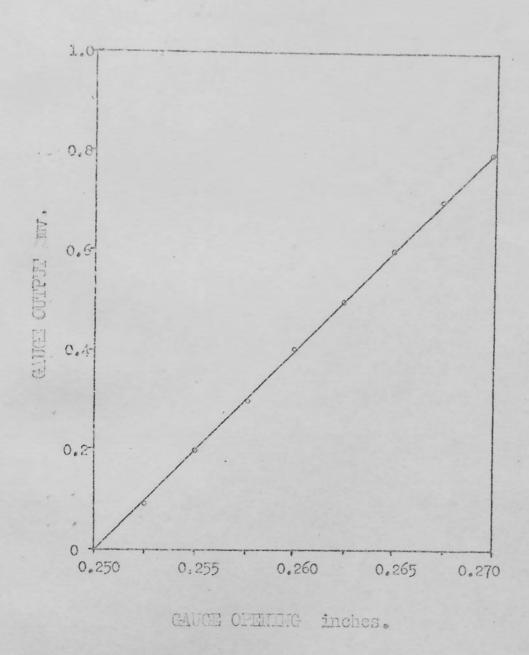
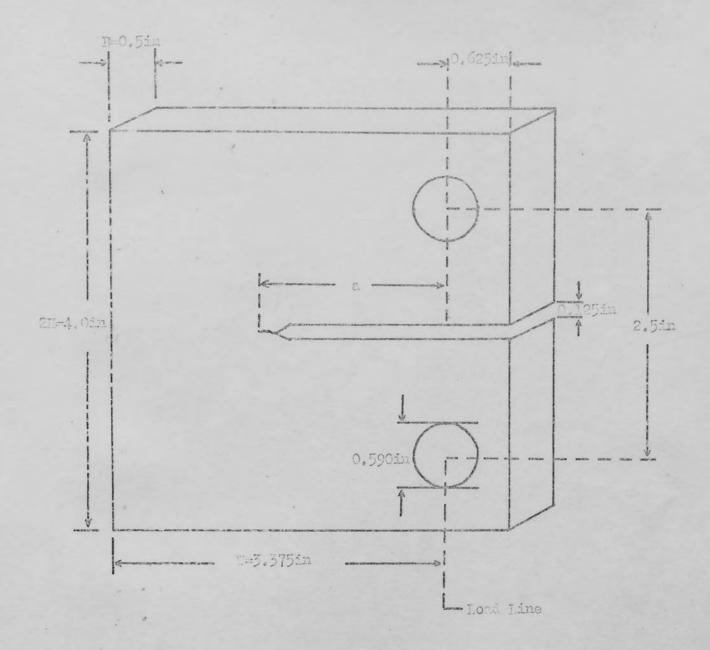



Fig. Al. Clip Gauge Calibration Curve.

Scale I:1

Fig. A2. Crackline Loaded Fracture Pougliness Specimen.

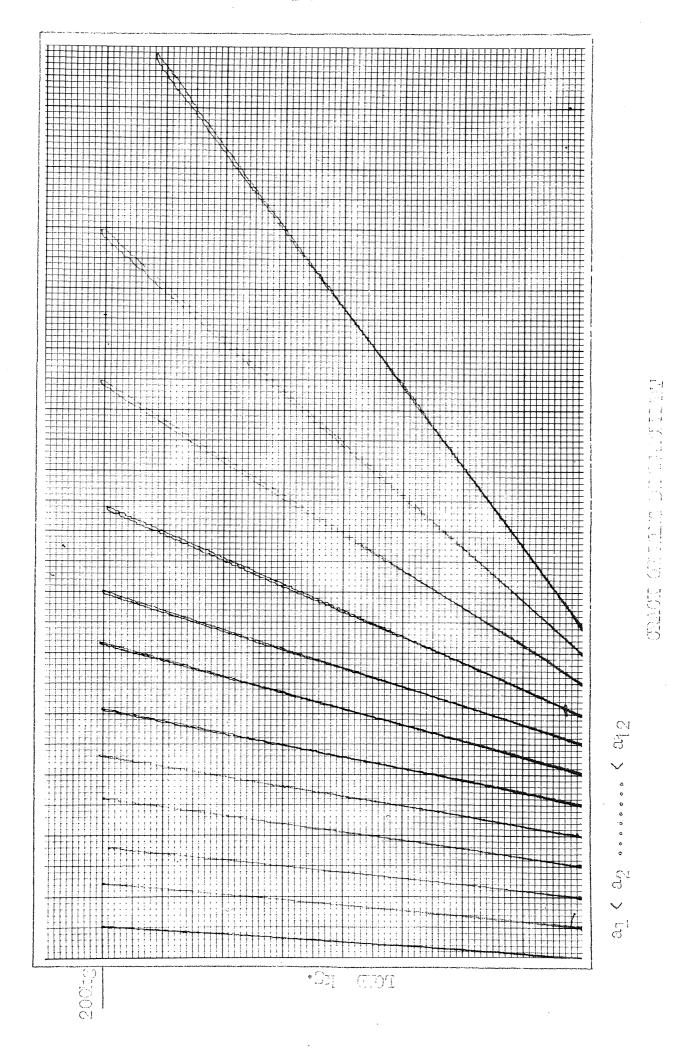


Fig. A3. Change in Compliance with Increasing Crack Length.

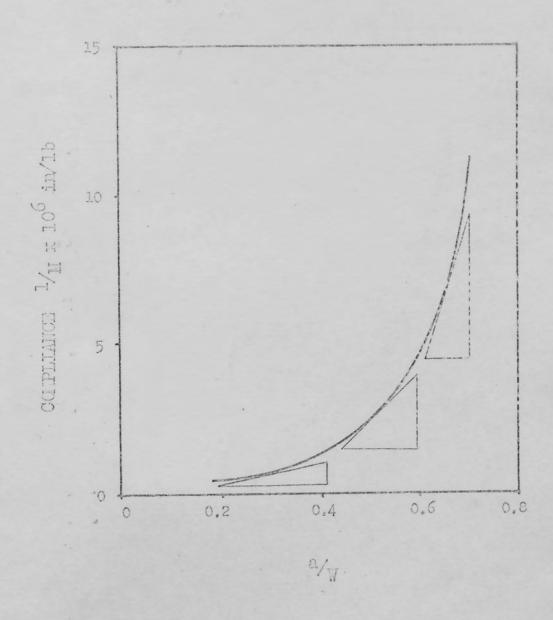


Fig. A4. Graphical Differentiation of Compliance/ a/y Curve.

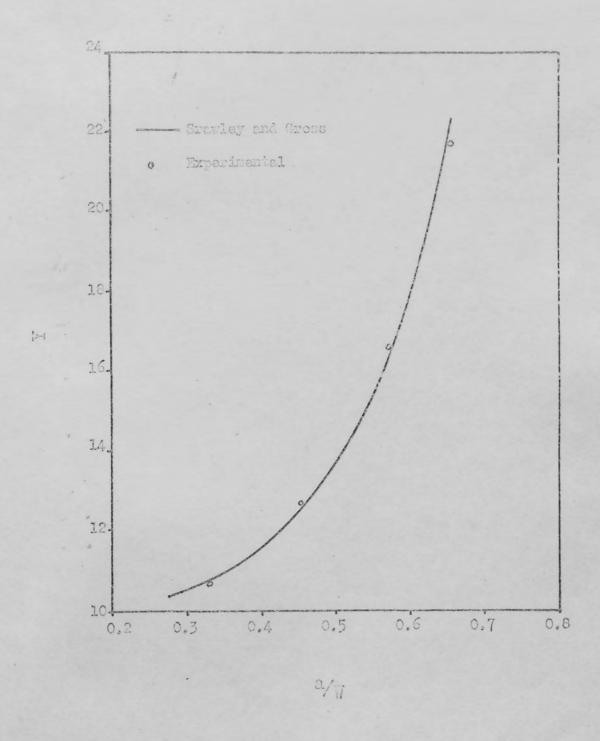


Fig. A5. Boundary Collocation (98) and Experimental Compliance Calibration Data.

ACKNOWLEDGMENTS.

The author thanks Dr. J.T. Barnby and Mr. J. Dodd for helpful discussions, and Bradley and Foster Ltd. for the facilities extended during the course of this work.

BIBLICGRAPHY.

- 1. Avery. "Tandbook of Mochanical Wear." Univ. of Mich. Press.
- 3. Taggart. Hardbook of Mineral Dressing. Chapman and Hall.
- 4. Rey & Formand. Int. Mineral Processing Cong. 1960. p. 349.
- 5. Dodd & Jackson. Metallurgia. September, 1967. p.107.
- 6. Norman. Hodern Castings. May, 1958. p.89.
- 7. Kempe. Symposium on Wear of Materials. Ottowa. March, 1967.
- 6. White. J.I.S.I. v.198, 1960, Discussion p.175.
- 9. Murakami. Oka & Mishigori. Tech. Rep. Tokoku Univ. 1950.(3) n 59.
- 10. Kinzel & Franks. 'Alloys of Iron and Chromium.' Vol. 1. Mcgraw Hill 1940.
- Il. Bungardt, Kunne & Rorn. Arch. Eisenhüttenw. v.29, 1958. p.193.
- 12. Griffing, Forgong & Healy. Trans. A.I.M.E. v.224, 1962. p.148.
- 13. Jackson. J. L.S. I. February, 1970.
- 14. Bradley & Fester. Internal Report Number. R.D. 66/17.
- 15. Kuo. J.I.S.I. v.173, 1953. p.363.
- 16. Lane & Grant. Trans. A.S.H. v.44. 1952. p.113.
- 17. Climax Molybdenum. Brochure 'The Role of Molybdenum in Abrasion Resistant Materials. 1962.
- 18. Bradley & Foster. Internal Report Number. R.D. 67/9.
- 19. Eichelman & Eull. Trans. A.S.H. v.45, 1953. p.77.
- 20. Andrews. J.I.S.I. v.203, 1965. p.721.
- 21. Grange. Met. Prog. April, 1961. p.73.
- 22. Holloway. PhD. Thesis, Univ. of Aston, 1970.
- 23. Irvine. 'The Effect of Cobalt in Steels.' Proc. of the Journees Internationales des Applications du Cobalt, Brussels 1964.
- 24. Hawkes & Mehl. Trans. A. I.M.E. v. 172, 1947. p.467.

- 25. Comm. Trans. A.S.M. v.41, 1949, p.35.
- 26. Rickard. J.U. I.R.A. Report W.A. 16. May 1969.
- 27. Powell Trans. A.S.M. v.50, 1958, p.478.
- 28. Gina. J.I.T.I. v.406, 1954, p.177.
- 29. Karlson & Thamas. Trans. A.S.H. v.55, 1962, p.462.
- 30. Ruessanelli & Moskovitz. Ibid. v.59, 1966, p.223.
- 31. Gerberiah, Remaingr, Zackay & Farker. Paper 24. Int. Gonf. on Fracture. Haifa 1969.
- 32. Gerlerich, Ermings, Hertz & Zackey. Trans. A.S.H. v.61, 1968, p.843.
- 73. Gold & Koppenaal. Ibid. v.62, 1969, p.607.
- 34. Zackay Parker, rahr & Busch. Ibid. v.60, 1967, p.252.
- 35. Norman. Eng. and Min. J. v.158, 1957, p.102.
- 36. Paltiym. A.F.S. Cast Metals Res. J. March 1969.
- 37. Bradley & Foster. Internal Report Number. R.D. 66/2.
- 38. Griffith. Phil. Trans. Roy. Soc. A221, 1920, p.163.
- 39. Inglis. Grans. Inst. Naval Architects. v.60, 1913, p.219.
- 40. Orowan. Trans. Inst. Eng. Shipbuilders. 1945, p.165.
- 41. A.S.T.M. S.T.P. 381.
- 42. Irwin. 'Eracturing of Metals' A.S.M. 1948, p.147.
- 43. Orowan. Welding Res. Suppl. v.20, 1955, p.157s.
- 44. Irwin. J. Appld. Hech. v.24, 1957, p.361.
- 45. Irwin. 'Structural Mechanics' Perg. Press 1968.
- 46. Neuber. Kerbspaunungslehre. Berlin, 1958.
- 47. Kuhn. S.A.E. A.S.M.E. 1964.
- 48. Barenblatt. Advances in Appld. Mech. Volume V11, 1962.
- 49. Barnby. Welding and Metal Fab. Feb. 1969, p.71.
- 50. Cottrell. Proc. Roy. Soc. A276, 1963, p.1.
- 51. Greenwood. 'Fracture Toughness Theory and Practice'. Symposium, Sheffield, 1968.
- 52. Irwin. Proc. lst. Symp. on Naval Struc. Mech. Perg. Press, 1960.

- 53. Yukara & McMullin. J. Basic Erg. v. 63, 1761, p. 451.
- 54. Weiss. Preprint 62-WA-270. A.S.M.E.
- 55. Jackson. Dettelle Mem. Inst. U.M. I.C. Memo 178, 1963.
- 56. Srawley & Beachem. Rep. 5460 U.S. Navel Les. Lab. 1960.
- 57. I.S.I. Pub. 120. 'Free ture Toughness of Lugh Strength Haterials'.
- 58. Paris & Johnson. Eng. Brest. Nech. v.J.; 1968, p.3.
- 59. Walker. 'Practure Youghness Theory and Practice'. Symposium, Shefffield, 1968.
- 60. Boyle, Sullivan & Krafft. Weld. J. Hes. Supp. v.41, 1962, p.428s.
- 61. Irwin. J. Appld. Mech. C4E, v.4, 1952, p.651.
- 62. Irani, May & Elliott. B.I.S.R.A. Report, NG/A/81/67.
- 63. Petch. J.I.S.I. v.174, 1955, p.25.
- 64. Stroh. Proc. Roy. Soc. A223 1954, p.404.
- 65. Swith & Barkhy. Met. Sc. J. v.1, 1967, p.1.
- 66. Cottrell. Frems. A.I.M.E. v.212, 1958, p.192.
- 67. Zener. 'Procturing of Metals'. A.S.M. 1958, p.3.
- 68. Hall. Phil. Mag. v.7, 1958, p.1468.
- 69. McMahon & Cohen. Acta. Net. v.13, 1965, p.591.
- 70. Barnby. Int. Conf. on Fracture. Haifa, 1969.
- 71. Wells. Brit. Weld. J. v.10, 1963, p.563.
- 72. Cottrell. I.S.I. Pub. 69, 1960, p.281.
- 73. Burdekin & Stone. J. Strain Analysis. v.1, 1966, p.145.
- 74. Hahn & Rosenfield. Acta. Met. v.13, 1965; p.293.
- 75. Knott. Metallurgia. March, 1968, p.93.
- 76. Beachem. Trans. A.S.H. v.56, 1965, p.318.
- 77. Crussard. J.I.S.I. v.183, 1956, p.146.
- 78. Ashby. Bolton Landing Conf. New York, 1966.
- 79. Gurland. J. Trans. A.I.M.E. v.227, 1963, p.1146.
- 80. McKlintock. J. Appld. Mech. 1965.

- 81. Gurland & Plateau. Trans. A.S.H. v.56, 1963, p.442.
- 82. Edelson & Baldwin. Ibid. v.55, 1962. p.230.
- 83. Palmer & Smith. Bolton Landing Conf. New York: 1966.
- 84. Puttick. Phil. Nag. v.4, 1959, p.964.
- 85. Boeuwkas. Proc. 3rd. Sagamore, Hot. Res. Conf., 1956, p.89.
- 86. Krafft. Appld. Mat. Res. April, 1964, p.88.
- 87. Birkle, Wei & Pellisier. Trans. A.S.M. v.59, 1966, p.981.
- 88. A.S.T.H. S.T.P. 410.
- 89. B.I.S.R.A. Proposed Spec. for Fracture Toughness Testing of High Strength Materials. Report MG/EB/312/67.
- 90. B.I.S.R.A. Recommended Clip Gauge Design for Free ture Toughness Testing. Report NG/E/308/67.
- 91. Dieter. Mechanical Metallurgy'. McGraw Hill, 1961, p.284.
- 92. Guthrie & Jolley. B.C. I.R.A. Journal. Ceptember, 1967.
- 93. Tipper. Metallurgia. v.39, 1949, p.133.
- 94. Barnby. Acta. Met. v.15, 1967, p.903.
- 95. Irwin & Kies. Welding Res. J. Supp., v. 85, 1954, p.193s.
- 96. Sullivan. Mat. Res. Stäs. v.4, 1964, p.20.
- 97. Roberts. 1bld. v.9, 1969, p.27.
- 98. Srawley & Gross. Thid. v.7, 1967, p.155.
- 99. Wessell. J. Eng. Frac. Mech. v.l, 1968, p.l.
- 100. Terry & Richards, Private communication.