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SYNOPESIS

Iwo non-linear programming algorithms for the minimum weight design
of structural frames are presented in this thesis. The first, which is
applied to rigidly jointed and pin jointed plane frames subject to deflexion
constraints, consists of a search in a feasible design space. Successive
trial designs are developed so that the feasibility and the optimality of the
designs are improved simultaneously. 1t is found that this method is
restricted to the design of structures with few unknown variables.

The second non-linear programming algorithm is presented in a
general form. This consists of two types of search, one improving feasibility
and the other optimality. The method speeds up the 'feas!l’c direction'
approach by obtaining a constant weight direction vector that is influenced
by dominating constraints. For pin jointed plane and space frames this
method is used to obtain a 'minimum weight' design which satisfies restric-
tiong on stresses and deflexions. The matrix force method enables the design
requirements to be expressed in a general form and the design problem is
automatically formulated within the computer. Examples are given to explain
the method and the design criteria are extended to include member bucklinge.

Fundamental theorems are proposed and proved to confirm that
structures are inter-related. These theorems are applicable to linear
elastic structures and facilitate the prediction of the behaviour of one
structure from the results of analysing another, more general, or related
structure. It becomes possible to evaluate the significance of each member
in the behaviour of a structure and the problem of minimum weight design is
extended to include shape. A method is proposed to design structures of
optimum shape with stress and deflexion limitations. Finally a detailed
investigation is carried out into the design of structures to study the

factors that influence their shape.
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5.% Schwedler Dome Design

The Schwedler Dome shown in plan in figure (5.9) and in elevation
in figure (5.10) was designed undcr two independent load systems. The first
load system consisted of a 99,675 kN load acting vertically downwards at
ecach joint. The vertical deflexions of points A and B shown in figure (5.9)
were not to cexceed 5.08 mm and 2.54 mm resgpectively when this load case was
acting. The second load system was a single &980375 kN load acting horiz-
ontally and to the right at joint A. Under this load system thc horizontal
deflexions at nodes A and B were not to exceed 30.32 mm and 10,16 mm respec-
tivelye.

Youngs modulus for the material was 207 kN/mm2 and the stresses in
the members were once again limited in both tension and compression to
0,147 kN/mm2° The 54 members of the dome were collected together into 9 area
groups as tabulated in figure (5.10)s The design problem was therefore one
of 9 variables, the values of which were limited by upper and lower bounds
of 6451.60 m.m2 and 1290.3%2 mmz.

The final design was obtained using the first algorithm with
valués of t2 = 0,001 and t3 = 0,0001, and is given in table (5.3). The
value of the weight function corresponding to this design was found to be
8.2925 x 108 mm3 and was achieved after 20 iterations of the optimization

procedure.

1
.
=~

Buckling of Members

In all the previously described examples no allowance is made for
the possibility of the buckling of compression members in the final designs
obtained. Short structural members in compression fail by crushing or

yielding of the material, however, slender structural members in compression
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yield by buckling before the crushing stress.has been reached. For a given
cross—sectional area the longer such a strut is the lower will be the load
necessary to cause buckling.

This presents no real difficulty when dealing with the design of
statically determinate structures. In practical situations the framework
members will consist of sections selected from the safe load tables. It is
observed that if the designer is restricted to using only those sections
for which the radius of gyration increases, or retains substantially the same
value as the area increases, there will be negligible loss in economy. Thus
a solution is obtained to the optimization problem by restricting slightly
the choice of sections and taking a lower bound on the arcea of compression
members as the area required to carry safely the known axial compressioil.

If the area has to be increased above this value to satisfy a deflexion
congtraint, the allowable stress will not be less than the value originally
assumed due to the isostatic properties.

When dealing with statically indeterminate structures member
stresses vary with changes in member areas and therefore a lower bound area
technique is no longer practical. In this case should an area be increased
to satisfy a deflexion constraint the allowable stress of the corresponding
member or any other member may well decrease making any initially selected
lower bound areca un-economical. It'therefore becomes necessary to recalculate
allowable compressive stresses at each solution vector in order to evaluate
the corresponding normalised constraints.

A theoretical formula, from which buckling may be predicted was
produced by Euler for an ideal axially loaded strut. In practice however
struts depart from ideal behaviour due to imperfections in the material,

friction in the pinned ends, initial curvature etc. As a result of this



more practiCal formulae have been put forward including that by Rankine-
Gordon.

A practical formula used in structural engineecring is the Perry-
Robertson formula. This allows for non-ideal conditions by assuming an

initial curvature in the strut. The formula is as follows

O’(*: = O’i + (n+ 1)60“\/’&@1* (n+ 1)cre>2 —le‘e}
2 _ 2 '

o0 e 502

where Oé is the Buler critical stiress given by

2 2 2
Ue = E']T r /l . : eo e 503

* *
In these equations Uc and o are the allowable member stresses in compression

t
and tension, E is Young's modulus of the material and 1 and r are respec-
tively the length and radius of gyration of the member under consideration.
The symbol 7] is a number embodying the initial curvature of the strut and
the geometrical shape of the section. This formula is used to form Table 17

of B.S.4L9, which deals with allowable compressive stresses, using a factor

of safety of 1,7 and a value of 7 given by
2 L
T] = 003(1/1001‘) eece 5-

The shapes of the curves obtained when relating allowable stress
with slenderness ratio (= 1/r) are plotted in figure (5.11) for the Euler,
‘Rankine—Gordon, and Perry-Robertson cquationsf The Perry-Robertson formula
is found to best fit reality and is employed in the computer programm when
evaluating the compressive stress constraints of the area groups.

Al any stage during the optimization procedure the only member

propertiecs available arc the cross—-sectional areas. It is therefore



necessary to obtain a rolatioﬁship between the minimum radius of gyration
and the cross-sectional area. The minimum radius of gyratioﬁ is chosen
because it is this that will yield the largest valuc of slenderncss ratio
and it is about the corresponding axis that buckling will occur.

Figure (5.12) shows a plot of the radius of gyration against the
cross~sectional area of selected mild steel equal angle sections from the
safe load tables. Figure (5.13) shows a similar plot for selected standard
mild steel channels and universal beams. The result is a scetter of points
through which any number of lines and curves can be fitted to give a
continuous relationship between area and radius of gyration. Tor use in the

computer program the following linear relationships werc utilised

r = 0.09991667 A 1 eee 565
if 0< A< 2253.9 mn° ]
or r = 18 + 0,0019307 A ]
if 2253.9 < A < 12500 | ces 5.5

When the final design is obtained each area group is associated
with a corresponding minimum value for the radius of gyration. When selec-
ting actual discrete sections it is desirable if possible to choose sections
which lie near to the straight line relationships between r and A which are
represented in figures (5.12) and (5.13) by the lines ab and bc.

The flexible nature of the proposed method makes it possible to replace the
linear relationships of equations (5.5) and (5.6) with any other desired

relationship with the minimum of effort.



Tower Dasign
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The tower SfruCturo shown in figure (5.14) has a total of 19 joints
and 54 members of which 9 are redundant members. This structurc was designed
so as to satisfy stress and deflexion limitations under two separate loading
cases. The components of the loading cases arc shown in figure (5.15) where
the vertical and horizontal forces are separated. The first load case
consisted of a vertical force acting at cach joint of the structure to
simulate self weight. Additional forces were applied at the ends of the
cantilevers to similate the weight of the transmission cables. The second
load casc consisted of these forces together with horizontal forces applied
at‘each level in the structure. In this load case additional horizontal
forces were also applied at the ends of the cantilever arms to represent sway
of the transmissibn cable,

The horizontal sway of the tower was limited to 4.6 mm and the
member stresses throughout the structure were limited to 0.16 kN/mm2 in
tension. The stresses in the compression members were not to exceed the
allowable values obtained from the Perry-Robertson formula of equation (5.2)
when.using the relationship of equations (5.5) and (5.6) to relate member
érea and radius of gyration.

The members of the structure were grouped into 10 area groups, as
indicated in figure (5.14)land the design was further limited by imposing
upper and lower bound values on these area groups of 500 mm2 and 10000 mm2
respectively.

The design was carried out once again using the first of the two

proposed algorithms. The decrease in the volume of successive boundary

solutions is shown in figure (5.16), where the volume of the first boundary

solution is taken as 100%. It can be seen from this graph that initially

the volume decrcases rapidly. However, the curve gradually beccomes less



steep as the number of iterations increases and the Cinal result 5s appro--
achgdu This result ié obtained with.a value of tg = 0,005,

The percentage change in the most affected variable belween
guccessive boundary solutions is shown in figure (5.17). In the early stages
of the design there is a considerable alteration of the variables due to the
{raversing of the feasible design space. In certain itprations of the design
process all the variables arc altered by a similar amount. In others,
however, a major alteration occurs in one of the variables and the remainder
arc only slightly affected. This explains the irregular nature of the graph,
of figure (5.17), with the valleys corresponding to the former case and the
peaks to the latter case. As the final design i1s approached this graph is
seen to become less irregular and converges to a value of less than 1%.

The valﬁes of the variables at each.of the boundary solutioﬁs
obtained are plotted in the graph of figure (5.18). Once again it is noticed
thét there is a considerable variation in the initial stages of the design.
Eventually however the curves become less irregular and the variables settle
down about their final values.

The final design obtained is given in table (5.4) and corresponds
to a structural volume of 5.20 x 108 mm3. This table gives the sectional
areas required for the various groups together with the corresponding minimum
radius of gyration. This table also gives the first boundary solution
obtained. 1In the final design both buckling and deflexion criteria were
active, the vertical deflexion at the top of the tower being 4.596 mm,

very close to its permissible value of 4.6 mm.

1
.
(o)

Cantilever Desigus

In order to investigate the computer time and storage requirements

of the proposed methods when applied to designs of increasing size and
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complexity, a series of three-dimensional cantilever structurcs werce congsie
derced. The first of thesec is shown in figure (5.19) and consists of 12 joints
and 28 members of which 4 are redundants. The members of this structurce are
divided into 7 area groups which arce also indicated in the figurec.

The second cantilever is shown in figure (5.20) and is an extension
of the first. The span has been increased from 6.25 metres to 11,5 metres
by the addition of a further 8 joints and 28 members. The second cantilever
is therefore 8 times redundant and has an additional 7 area groups which are
alsgo indicated in the figure.

The third cantilever is a similar extension of the second with a
span of 15.75 metres. This structure is shown in figure (5.21) and now has
28 joints, 84 members of which 12 are redundant, and 21 arca groups. The
fourth and fifth cantilever structures are obtained in an identical fashion.,
These have spans of 19 metres and 21.25 metres respectively and are shown
in figures (5.21) and (5.22)., The fourth cantilever has 36 joints, 112 mem=-
bers of which 16 are redundants, and 28 area groups. Finally the fifth
cantilever has Ak joiﬁts, 140 members of which 20 are redundants, and 35 area
groups.

Each of these cantilevers was subjected to two independent loading
cases so as to deflect the structure in a vertical plane and also to twist
the structure. To conveniently describe this loading arrangement the overall
structure may be divided into 10 sections numbered from 1 to 10 in figures
(5.19) to (5.2%). Forces are applied to cach of these sections in an
identical manner, only the magnitude of the forces varying from section to
section. This loading is indicated in figure (5.24) where it can be seen -
that the first load case consists of two equal vertical forces applied at
nodes such as A and B along the upper surface of the cantilever. The

magnitudes of thesec forces when applied to the various sections are given in
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the second column of the table of figure (5.2&) and represcent a vertical
uniformly distributed load of 30 kN/metre run.

The scecond loading casc is also given in this figure and consists
of a vertical force applied at nodes such as B along the upper surface of
the cantilever together with a horizontal force at nodes such as C along
the soffit of the cantilever. This load casc has the effect of twisting the
cantilever and the valucs of the forces corresponding to the various crosgs-
sections are given in the third and fourth columns of the tabtle.

The design criteria to be satisfied by the final minirnum weight
designs included both deflexion and stress considerations. The deflexion
at any cfoss—section was not to exceed 1/325 of the distance of that cross-
section from the supports. The stress criteria were of itwo typesg, the stress
of ecach member in tension being restricted to 0.16 kN/mm2 but that in
compression being dependent upon the buckling considerations mentioncd
carlier. Young's modﬁlus of the material was taken as 207 kN/mm2 and values
of the tolerances were t1 = tz = 0,001 and t3 = t‘[£ = 0.0001.

The cantilever designs described above represent a range of designs
with increasing complexity. The first is a problem with 7 design variables,
14k siress constraints and & deflexién constraints. The fifth is a problem
with 35 design variables, 70 stress constraints and 20 deflexion constraints.

The progress of each design is given in graphical form in figures
(5.25) to (5.29). Curve a of these figures represents the decrease in the
structural volume at successive boundary solutions, where the volume of the
first boundary solution is taken as 100%. In common with the previous
design examples these curves become less stecp as the final result approaches.
Curve b in figures (5.25) to (5.29) represent the percentage change of the .

valucs of .the most affected variables between one boundary solution and the
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next. These curves arc scen to be irregular but are similarr to thosze
obtained in othcr designse.

In all five cantilever designs it is noticcable that in the first
few cycles of the process the percentage change of the most affected variable
is large. This is due to the geometry of the structurc and the grouping of
the members. Each successive stage of the overall cantilever contributes an
additional 7 arca groups to the design problem. The additional span to the
cantilever due to each stage becomes progressively less, however, and as a
result the overall length of corresponding area groups in successive stages
is less. In this way group number 30 of the fifth cantilever is less expen-
sive than group number 2. The initial iterations of the design process
attempt to gain ddvantage from this fact by allocating more weight to the-
less expensive area groups although in the final design it is obvious that
the more expensive area groups should have larger cross-sections. This fact
soon becomes apparent in the design process and weight is transferred from
the cheaper end of the structure to the more expensive but structurally
effective end of the structure.

This observation could have been utilized before commencement of
the design broccss by the allocation of varying upper bound limits to the
various arca groups. In the present designs a lower bound of 4090 mm2 and an
upper bound of 12000 mm2 was imposed on all the area groups. However if this
upper limit were successively reduced for the additional stages of the canti-
lever then the cheaper area groups at the free end of the structure would be
prevented from taking unnecessarily large values in the early part of the
design.

Cantilevers 1, 2 and 3 were designed using the first of the two
proposed algorithms. This entailed the evaluation of a slopc matrix at each
boundary solution. In an attempt to reduce computer time the remaining

cantilevers, & and 5, having respectively 28 and 35 unknown variables, were



designed using the second of the proposed algorithms. This algorithm does
not require the evaluation of so many slope matrices or the accurate location
of the boundary of the feasible space. In this manner during the design of
the fourthb cantilever ouly 4 slope matrices were produccd and for the fifth
cantilever, 7, whercas for the first three designs 16, 18 and 29 slope
matrices were requircd before the final result was obtained.

In figures (5.28) and (5.29) the boundary solutions at vhich a new
slope matrix was evaluated are shown by the triangalated points on curve a.
Following the production of a new slope matrix this curve becomes more stecpe.
Thise indicates that a better direction of search is being pursued resulting
in a greater weight saving. This is especially so in figure (5.29) and is
accompanied by a jump in curve b which indicates that the new direction of
search is once again pointing into the feasible design space.

In figure (5.30) the curve a from each of the figures (5.25) to
(5,29) is plotted. It can be seen from this figure that the volume of the
final design expresscd as a percentage of the volume of the first boundary
solution varies for each design. This, however, is more a measure of the
efficiency of the initially selected feasible solution than it is of the
final design. For the first two cantilevers the buckling stress conditions
of the members dominated the design throughout and for the third cantilever
the deflexion criteria were on the verge of violation in the final designe
It is evident from figure (5.,30) that the initial feasible solutions selected
for these designs become increasingly inefficient as the final designs
obtained had volumes of 5k.5%, 2,5% and 36.3% of the respective initial
volume.

This increasing inefficiency je due to the initial allocation of

large scctional properties to the cheaper arca groups toward the ends of the



cantilevers. When deflexion criteria arc not dominant this is unnecessary
due to the TClﬂtiVOlyvlithOT loads carricd by these members. JIn the designs
of cantilevers & and 5 the deflexion criteria become more dominant due to
the increasing span of the cantilevers as well as the additional loading.
The efficiency of the initial designs selected for these cascs shows an
immediate improvement, the volumes of the final designs being respectively
45 ,2% and 43.5% of the initial designs.
The deflected shape of the fifth cantilever is plotted in figurec
(5.31) at various stages of its design. After 5 iterations of the design
process the deflected shape is given by curve a in the figurc. This is seen
to Be well within the desired limits and at this stage the stress criteria
dominate the design. After 3 more iterations the volume of the structure
has recduced to 60,2% of the initially selected volume and the transfer of
volume from the end of the cantilever toward the supports has resulted in
the deflexion at cross-section 10 reaching its permissible upper bound value.
The deflected shape of the structure is now given by curve b in the
figure. Once the deflexion becomes critical the design process redistributes
the structural material in such a way as to decrease the volume while at the
séme time decreasing the maximum deflexion. The effect of this is shown in
the figure by curves ¢ and d which represent the deflected shape after 12 and
17 iterations when the volume of the cantilever was 52.8% and 48.7% of the
initially selected volume. At both of these stages of the design it is the
stress criteria which are critical, however, after 22 iterations the defle-~
xion at the end of the cantilever is once again at its maximum value. The
deflected shape of this final design is given by curve e in the figure and

the structure now has a volume 4%,5% of that of the first feasible design.

“Phe final volumes of the five cantilevers designed are plotted in



figure (5.32)e Assuming the densily of the material to be 7.69 x 1OMB]<I\‘/mm3
the actual weights of the five designs vary between 1,428 kg of the first
caﬁtilGVCr and 15,370 kg of the fifth cantilever.

The computer time required to obtain these final designs is plotted
in figure (5.33)0 Without prior knowledge of the 1ikeiy behaviour of any
particular design it is not possible to make an accuralc cstimate of the
computer time that will be required to carry out a desi‘gnu Furthermore due
to the size of a design problem it may be impossible to complete a design
in the maximum time available for one run on the computer.

Facilities which write and read the current information concerning
the design to and from a magnetic tape were therefore included in the comp-
uter programme. When embarking upon a design the first priority is to form
the load transformation matrices of the structure which remains unaltercd
throughout the desigﬁ. These are then dumped‘onto magnetic tape and are
inmediately available for any further runs necéssary to continue the design
from a current best solution. This enables wastage of computer time to he
avoided.

The total time graph of figure (5.33) indicates that the computer
time required increases rapidly as does the number of variables involved and
the size of the structure being designed. Curve 1 of this figure covers the
designs of the first three cantilevers which used the first of the two
proposed non—lineér programming algorithms. Curve 2 covers the designs of
cantilevers 4 and 5 which employed the second algorithm. It is noticeable
from comparison of these two curves that the second algorithm represents a
saving of computer time over the first aigorithm.

This fact is substantiated in the graph of figure (5.3%) where

the time per iterations of the design process is plotted for each of the
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designs. lHere again curve 1 represents the first of the proposed algorithms
and curve 2 the sccond. It is also noticcable from this grabh that the
second algorithm is more efficicnt in terms of computer time.

Finally the computer storage requirecments for the five designs
are plotted in figure (5.35). From this figure it can be seen that, in
commonn with the time requirements, the storage requirements increasc at a
greater rate as the complexity of the design increases. In this figure
curve a represents the storage requirements when the design is initially
entered into the computer and the load transformation matrices arc formed.
On the other hand curve b represent the computer storage requirements of
successive runs when information concerning the design is already stored on
magnetic tapee.

The final designs obtained for the five cantilevers are tabulated

in tables (5.5) and (5.6).

5.7 Conclusions

For the specific optimization problems defined in chapter 3 the
proposed mecthod makes use of the special features of these problems to
improve the process of obtaining the final result. The application of the
method is general. However its use in the minimum weight design of static
and hyperstatic structures directly has shown to be promising.

The method may be extended to deal with rigidly jointed stfuctures
having non-linear objective functiohs. This can be achieved by considering
the objecctive function coefficients to be variable quantities equal to the
instantaneous partial derivativés of the objective function with respect to
the corresponding design variables. Since, as described in Chapter 2, the

non-linear objective function is convex toward the origin, the use of such



a function will accelerate the progress of the design.

It is not possible to determine with any certainty how closely
the solutions to the non-linear design problems posed in this chapter approach
local optimao. If the solution of a particular problem was commenced from
sceveral widely different initial feasible solutions, and the same final
solution was obtained cach time, it could probably be concluded that a global
optimum had been attained. This procedure has not, however, becn uscd in
the present work. It is felt that this technique is of very limited appli-

cation as il obviously results in a great increase in computer time.



Group No, Arca (n1n12)
1 3hl7 12k
2 3546,6%80
3 3171.6065
L 1290,9651
5 130%,5715
6 1306.5135
7 1290,7716
8 1291.3522
9 1328.7715

10 1291.3522
11 1291.5458
12 1291.4167
13 1290.9651
14 1308, 384k
15 1298.0619
16 4516,055%

Table 5.1 : FINAL SOLUTION VECTOR



MEMBER FORCES (kN)

MGEZ?r INITIAL DESTGN FTNAL DESTGN
Load Systemn Load System Load System Load System 2

1 =33k Bl ~617439 ~196.69 ~L06.92
2 -186.81 ~476,51 -1Lk2.02 ~399.62
3 -427.29 -455.12 -329.85 ~3%19.51
L, -8L4..36 87.71 -77.61 129,68
5 -28%.06 ~226.02 -185,69 -145.12
6 W73k -75.89 123435 3k.71
7 ~-153.09 -127.68 -127.03 ~105.98
8 31.69 35470 73.60 70.93
9 76.90 | 182.47 122.96 261.59
10 48.59 35%.03 92.90 403,80
11 90.07 102.18 234.30 328.97
S 12 41,15 ~13%9,56 122,81 -65.60
13 111.93 118.06 227.39 216,81
1k -61.85 -46,95 -60.74 -43,11
15 111,58 92.89 138.39 115.21
16 -37.5k ~31.11 -83.55 -69.42
17 21.97 71.71 -57.07 -64,05
18 olily ,05 218,04 86.72 ~7 3k
19 63.17 248,01 -26.99 84,25
20 54,31 19.34 -22.70 -49.10
21 215,41 162,40 9k.33 61.88

Table 5.2

VARIATION OF MEMBER FORCES




Group No, Area (mn)
1 1290.32
2 1290.32
3 1290,32
L 5009.15
5 54ho,89
6 3271.15
7 5008,85
8 6042 ,96
9 5863.90

SCHWEDLER DOME DESIGN

Table 5.3



Area (mn?)
Group No. FinaT‘Minimum Radius
1at Feaﬁib}c Final Romuit of Gyration (mm)
Solution
1 3052.19 3300, 9k 2l 37
2 152,86 1791.17 17,76
3 2396.09 2677.81 23455
ke 598437 1275470 12.65
5 - 2645.88 2449 ,72 22.73
6 2708.8% 2262,81 22,37
7 .50Q4076 7%2.18 7.26
8 3016.80 2131.8k 21.14
9 5428,28 1266.91 12,54
10 640,62 500,00 4,96

Table 5.4 : TOWER DESIGN SECTIONAL PROPERTIES




Final Value of Area Groups (o)
Cantilever No.
Group No, 1 2 3
1 760 1381 o 3455
2 290k 4262 5968
3 1114 1549 2429
L 2598 3165 3028
5 704 1435 2073
6 1766 2131 5739
7. 1030 2453 1508
8 - 839 1756
9 - 2387 4023
10 - 1129 1805
T - 1579 2121
12 - 869 1821
13 _ - 1056 2278
14 : - 926 867
15 - - 849
16 - - 1655
17 - - 1084
18 - - 1017
19 - - 581
20 - - 750
21 - - : 438

: d
Table 5.5 : FINAL RESULT OF CANTILEVERS 1, 2 and 3



Final Arca (mmz) : Final Arca (mmz)
Cantilever No. Cantilever No.
Group Group
No. No .
L 5 L 5

1 760 10473 22 1337 6683
2 7675 11072 23 1072 6711
3 k790 320k ol 1642 5088
le 5145 3864 25 1492 6093
5 L5hs 2931 26 728 5587
6 1:829 3173 27 1421 6337
7 194k 1769 28 96L 5558
8 5549 5429 29 - 4384
9 8690 9173 30 - 4381
10 - 2492 2417 31 - 5178
11 Lok L4449 32 - 5657
12 3651 4259 33 - 5459
13 331k 5768 3h - 5774
14 1978 4592 35 - 4857
15 2201 | 6955
16 4966 7289
17 2682 | 458k
18 2541 6036
19 - 2567 5367
20 2477 6732
21 1095 5962

Table 5.6 : FINAL RESULT OF CANTILEVERS L and 5
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Plan indicating member numbering and joint numbering

Figure 5.9. Schwedler dome.



- i e

G- O%6

—_—

772

ared. group ne.

Figure 5.

O ® g O AW N

comprises

s

1O.

Schwedler

Elevation
members 3 4
y 2 5
" | 6
. 21 22
" 20 23
" 19 24
" 39 40
" 38 4l
. 37 42
dome

27

25
26
45
43

44

13
14
15
31
32
33
49
50

51

i

M



~asen v i ety stz masem

Rankine - Gordon \\
N
~N
~
Perry - Robertson - ~ .
\\ ~ - -
. ‘\\\‘—:ﬁ
} s
O 100 200 200
Vo) ———

a. o = og E ‘rra/({/r)z
P (=S

¥+ a*e(n+l) o O o
c. gc":r_f_; [GT (h+1) o _j{(? (‘12 E> 9% EH

2

(g
W

n=03 (t/100r)°

Figure 5. 11 Comparison of formulae



uol1BJAD JO  sSnipDYH

CCOY

0101074

‘21°6¢ 240514

-

]

Ol

SNIpDJ

o2

uo1pJAD jo

(ww)

doe




U
x
X X
o}
L I \
O ®) °0 )
< o N =

™M
(uw) uoIDIAB jo  snipDJ

eC

3000 50C0 7000

1000

»I

Radius of gqyration

Figure 5.13



Ve
>
U
pury
(v
k\

iput Buidagunu juel pup sdnodb cw.:uv_ 2JN12NJ1S  J2MO] +1°¢ 24nbid

uw
—4—
wy
S
wornoAzZ|z apls 3A}02dsiad UOl}DA2|2 1jU04}
i /
/.. 2 w4
o) / 9
\ / \ i
/, TN
..\»v.iﬂ'r... . b ~
/O m (\
\ vu i
\
\ |
A N S wy
Vol
1 _~ H
!
\
Y i




' 2anb14

240300435 Jomor  Jo Buippo g
DB hE
i ERET (ppoj po2p)
SLUC L0y | 25D2 pDO| /
N3 9x2
N3E X < NYE X2

NX¥ X 2

NX 2¢

o/
>
N8I X 2
, N3 G- 2% 2

——,




2SD2422D  SlI12WNJOA g) ‘s 24nbi4

Qi

2WnjoA 9

oL

oe

06

f

ww Ol X 4§/
3

. aunjoA Y, GO

OO0l




—r

O

-
-
%

! i —

(20t
100
§OL

O
3 3

2bupyd 9,

20 -

Percentage

Figure 5.17



SDIQDISDA | LC  UOIIDJ23D  2A15S202n5 @' 5 24nbi4

ey UOIInd2 3

raVYal

G o2 Ol

OO0

C0o07¢

000¢

/4
Y,

016100 4

®

e v

©000Ss
®

® 0009

ANE W) D24D




™2

4
&
L}
(Ev
4 - —L
5 6-25 N
Side elevation
\
\

e

7y}

lsometric

plans

Top ond bottom

area groupings shown,
brackets indicating where
top and bottom diifer.

Figure 5.19 Cantilever |



L Ciress seection  Ne.

W)

I oz

r““ ¥
side e¢levation

4
E )
0 TIE

X

top and bottom pians

additional area groupings
only are indicated.

Figure 5.20. Cantilever 2



o e o s~y .
Crots section Peo.

-
=
Yy

side elevaticn
T 7

f)

£ 2l Bl
(XD “-__‘C
3z

top and bottom plans

Figure 5.21. Cantilever 3



Crozs  Section o,

23 3

S mwam\-ﬂ\; Y
S N 251 125
za-”"‘g-»n_ \ 2__[(&\(* 2 3 t
0 A, FE P,
e T T 22
‘Sih/
‘ J'/ /

¥ m -

side  elevation

S5m

top and bottem plans

Figure 5.22 Cantilever 4



Cross seciiol fe.

| e 3 4 5 6 7 & 9

‘ | 2125 m. |

side elevation

g Y

top and bottom plans

Figure 5.23. Cantilever 5



Ly G LG Lo i)
ﬁ.zz 'E\!\‘;_

A /5,) 3 VB
G .
/ _{u >/ i &
\ | \ Ly (R
typical crocs-sections M!ﬂ
load case | E 30 EN/m. rum. load case 2
I S T AN, R R T 02 T WA Al SOt 50 S ST T R X YSRGS A R T GG S T o AT AT
c.s.No| Ly (kN) Lo (kN) L 3 (m) S max .

:
| 48-75 60-93 24 .37 000 )
2 45 - 00 56 - 25 22 50 (9. 23 !
3 41 25 5056 20 62 2169 ok
4 37. 50 46-67 18- 75 35-39
5 33 75 4218 6 - 87 4231
6 30-00 | 3750 I5 <00 48 47
7 | 26 - 25 328l 13-12 53-84
8 22 - 50 2812 (- 25 58. 47
9 18 - 75 2343 9 - 37 62 - 31

7 -50 65 - 39

Figure 5.24. Loading arrangements



! @»E:.cuu uBiszp to  ssauboid 62 G 24nbig

oy UoIIDI :
L} ¢l ¢l ¢ |

] C- )

oZ

Oo¥

09

,
410D siUineisuco  Buipong

4108

*OO0 |
2iQoiDA p2103LiD 1sow up abubudg, (@) 2A4ND

D4z T 423D 30UY %oo\o D sD P25S24dX2  2wnjoa (D) 2A4ND oo

e




o2
{

oo bBuipong

2 Jzasplauns ubisap

oy UoI1DJ2)!
&1 L) Gl

N

o

10

ssa4bosd

92 's 2.n514

SANTD

(®)

=

f
Q
o<

—‘{»
Q .
d
(wal

2 = suWnjor %, OO!

0¢

0] 4

09

og

COl

-1 021

%o




¢ JzAzpupd - ubiszp  jo  ssasBosd  L2°G 24nbi

5 2d 61 9l 158 Ol L 4 |
/
Q 4 0¢
© q
{DT1I%IE0

0h%

o9

oe

. Ty m e — -, ) 2 O t
W Ol % (822 = aunoa’, GOt
=g en
e i

OOl

1021

Oyl

(¢]
0\




¥ JzAzjijuoo — ubiszp  jo ss2:004d ‘gz s 24nbi1d

°U UsEIzY
Gl L1
g n °
ol
Oy
o9
o8
ool
Wy O X 260 -82 = zunjoa 7, OO 7
<021




Figure 5.29.



£
o
e (G (Z

)

volst pdu

2]
7
o

ey

5

‘o¢c 2dnbid

4

‘o

JBAD[IIUDD

AP

AU

T

oz

)%

oy




NN
ermissible dczﬂo:ct.g(.\ N
P 5 d¢ N

shape. \ ‘\\\\

7
/

7
2944
/

|

horizontal scale l*— 2“T‘5 -

vertical  scale lo-ml% *! \\

//
/7
’d

a. —_ . shape after 5 iterations vol = 75 6%
b . " 8 o W = 60-2%
P T 7 X = 52-8%
d o w7 Y= 48-7h
e _ _______ " " 22 te w = 43-5%

Figure *5.31.  Deflected shape of stage S at various
stages due to load case |




|

(7]

Sl JZA3Z|IUDD +

pauID}qO  S2WR|CA [DUl4  Zg s 2.nbid

¢ Z

< OOl

1 06l

2WNJOA

X

ww Ol




7

|

curve

.( =
&
U
f..
(]

“-?

‘rﬂ

[
(W)

o

LriCeTs

nai

N

-.‘xO”r'”«w

s r 1
a4 T2YW 5
.F t Pk ol
CONLHEVET DNao.

0

curve

150 r
100 -

J21ndulod

N

1
O
(P

time

Total

3

"

S,

Figure



|G

L

QuC USISBD L0 UoIDI21: uad
o4 J2ABITUDD
G ' 4
G v
$ T
2 uuyuoto 2 2ZAJND
j wypsobiop | 2A4ND

- OOl

-1 002

-+ 00¢

1
o
O
W

< 009

2w} J2indwod

(so2s)




€jusadnbal 280p2oys Jo3ndwod  g¢tg 2unbid

SU O JBAZIIUDD ¢ v ¢ vi |
J ] ] I T
2dor Bow uo
B34CIT JE puUD ©@ BUSn SUNJ BAISSZODRS Q. 2AJND
€asliiow Jg pun g@ Buwwdoy ung DI D 2AJND 108

I
@)
O
2Bpio3s J231ndwod O S¥D0|q

\ | 4 osi




CUAPTER 6

A et .

THIOREMS OF STRUCTURAL VARLATTONS

6.1 Introduction

A complete analysis of a structurce involves the delermination of
all the nodal displacements and the member ferces. In the case of a first
order hyperstatic structure, the force 7. in a. given member i is cvaluated

i

from

where pi is the force in the member of a corresponding basic statically
determinate structure with the redundant member removed. The force in the
redundant member is r* and fi is the force in member-i produced by unit
equal and opposite forces acting instead of the redundant member.

Equation (6.1) can be generalised to several redundants and then
used to analyse genecral hyperstatic structures. To do this the redundant
mempers are removed ahd the resulting basic structure is analysed under two
systems of loads. The first is the actual externally applied load system
while the second consists of pairs of equal and opposite unit forceso
Compatibility conditioné are then utilized to derive the values of the redun-
dants., Once these are obtained, the actual forces in all the members and
the nodal deflexions are evaluated. This is in fact the basis of the

compatibility method - generally referred to as the matrix force method,

which can be stated mathematically as

Evaluate:

B L+



and

X = 1? 1. - D .
= =l B X eee 003

from the coudition that

O = F‘ I./ - 1? bl .
- b ~b : —pr l“r oo Ok

where p is the vector of moember forces, L is the applied load vector or
matrix that corresponds to the nodal displacements X, The force transform-
ation matrix is B while I' is the overall flexibility matrix. Suffix b refers
to the basic statically determinate structure while suffix r refers to the
redundants. The manner in which matrix force method was formulated indicated
that, from the beginning, its originators realiscd that hyperstatic structures
form an extension to statically determiﬁate ones.

Major contributions to the fundamental theories of structural
analysis were made during the lasl century. Notably Mohr (37) and
Castigliano (38) discovered that the forces and displacements of a structure
can be derived by considering the strain energy of the structure. Earlier,
Maxwell (39) carried out defléxion calculations of structures by removing
a member of the structure and replaging it with a pair of egual and opposite
forces. It was found later that this work and thaf of Mohr was, in fact,

a special approach to a more general‘one due to Muller-Breslau (40), who
was the first to enunciate the compatibility method fully.

The dual approach, often known as the equilibrium method or the
matrix displacement method, was also derived using the contributions

referred to above. This method can be stated mathematically as

Solve

kA) E ooo 605



{o calculatle

R ) !‘S‘A“Xﬂ @ o 0 606

where A is the displacement transformation matrix, k is the assemblage of
member stiffness submatlrices and K is the overall stiffness matrixe

The cquilibrium and the compatibility methods arc the only two
distinct basic methods for the analysis of hyperstatic structures. Nearly
every contribution made to structural theory in the 20th century can be
recognised as an application of these two basic methods. An interesting
genealogy of these was given by Matheson (/1) who also showed the inter-
connecting relationships of the various methods.

Historical requircments forced the classical theorists of the
last century to concentrate upon the analysis of hyperstatic structures by
inserting 'redundant'! members into a more elementary structure. However,
the work of Maxwell,-Mohr and Muller-Breslau clearly indicates that they
indeed understood that there is a hierarchy of structures in which the
analysis of complex structures can be obtained from the more elementary ones.
Perhaps they only partially recognised the significance of this hierarchye

The reverse process that predicts the exact behaviour of elemen-
tary structures from more general ones has been less obvious and has
éttracted less attention. This is one concern of this chapter and gives
rise to the development of the theorems in structural variations. In the
second half of this century matrix methods have been utilized to produce
general computer techniques for the analysis of complex structures
(Livesley, Jennings and Majid, etc.)o Once such an analysis is carried out,
the proposed theorems can be applicd to analyse a multitude of derived

structurces, without further resort to either of the basic methods. These

theorems can also be used to predict the behaviour of a structure from the



. R T o T hor 1 o e - .. . . . .
results of another which has the same shape but with different material

and cross-scctional propertics. The significance of the theorcms becomes
more apparent when they are employed to design stractures and particularly

when the geometry and the topology of the structure constitute the basic

design variables,

6.2 The Theorems of Structural Variations

These theorems predict:

(i) The forces and the deflexions throughout a structure when
the cross-~sectional properties of all the members are varied proportion~-
ally;

(ii) The forces and the deflexions throughout a structure when
the cross-sectional properties of one or more members are altered indepen-
dently;
(iii) Consequently it Lecomes possible to predict the forces and
the displacements throughout a resulting, derived stiucture when one or more
members of a parent structure are totally removed, while the cross-sectional

properties of the remaining members are altered independently.

6.2.1 Assumptions

It is assumed that the stress-strain relationship of the material
of the structure is linear elastic and obeys Hooke's law. TFurthermore it is

assumed that no gross deformation takes place in the structure and thus

frame instability is ruled out. This implies that the load deflexion rela-

tionship is also assumed to be linear and that the principle of super-

Position is valid.

.Throuaghout this paper only pin-jointed frames are considered,

HOWover, the fundamental principles expounded herc do not change qualitat-
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~ively il thoey were genceralised so that they nay also cover rigidly jointed

- . . ,
- ures or pin-joint strructuros T ) ; {4
structurcs. r pin-gointed structurces, membors and Jjoints arc subjected to
direct loads while the arcas of the members arc considered to be basic
variables. The extension of the present work to include riaid structures

requires the inclusion of the second moment of areas of the members as
further basic variables. The members and the joints arc theu considered to

sustalin forces as well as moments and undergo translations as well as rota-

tionse

6.2.2 The Unit Load Matrix

The influence of the variation in the area of any member on the
rest of a structure can be predicted by first applying a pair of egual and
opposite unit loads to the structure so that they act axially at the ends of
that member. An analysis of the structure under this pair of loads makes it
possible to study the effect of that member on the rest of the structurec.

To study the independent cffect of every member requires the application of
pairs of unit loads té each member. For convenience these forces can be
resolved so that their components may act parallel to the overall reference,
Xy, Y, Z axes of the structure. A matrix consisting of all these components
is hereinafter called the unit load matrix.

The sign conventions are shown in Figure (6.1) where the local
member axes P, Q, R of a member ab are also indicated. End a of the member
is considered as the first end and an arrow on the member, poinfing to the
second end b, indicates the direction of positive.é axis. Applying external
positive loads Wa and Wb at a and b respectively, the components of these

forces can be readily expressed in terms of the direction cosines of the



member as

W = 1 0 W

aX P a
w . .

Ay mp 0] Ub
waZ nP 0]

s 00 607
VX 0 s
0

Yby Mp
wa 0) nPJ

and w, are the components of W in X, Y and Z directions respe-

where w A
X' 'y Z

ctively and 1P3 my, and n, are the direction cosines of the P axis of the

member.

il

For Wa = -1 and Wb -1, equations (6.7) reduce to

®0e 6.8

|
~

1
et
1
=
!
jo]
et
3
s}

{ Yax YaYy Yaz Ybx Yoy bz ;

These components are indicated in Figure (6.1). The éomponents
of the unit external loads at the ends of the other members are similar and
once these are collected together, %hey can be expressed as a matrix C which
is the unit load matrix.

Suppose a member g is connected to joint i at its first end and
Joint j at its second end, while another member h is similarly connected to

s and t, A part of matrix C with the contributions of these members is of

the form



o

transpose of the well-known displace

earlier,

clsewhere (Majid 35).

+m

+n

Ph

Ph

W

The formal construction of A

co

at 1

at s

at j

at t

It can be readily observed that the unit load matrix

ment transformation matrix

¢

A

and hence C automatically

vee 6.9

is the
mentioned

is given
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Ge2:% Analysis Under Unit Loads

T~ 4 . PR e o pu . . n R 1
While analysing a structure under the actual oxternal loads L, it

is now possible at the same time to evaluate the joint displacements X and

the member forces £ due to the unit load matrix. This is particularly
convenient because instead of constructing C, its transposc A, which has in
any case to be constructed, can be used in the analysis. Compounding L and

Ay an inversc transformation of the form given by equations (6.5) results

in the joint displacements, thus

[xx 1= K" [La"] : vee 6410
Premultiblying [5 Z] by kA, yields the member forces, thus

p£] = ka xz] soe 6,11

Alternatively if p and X are known or when L is a null vector, X

and f can be obtained from

x= KA

and eeco 6012

The solution of L = KX when L is a rectangular matrix of an order less than
Ky does not require the inversion of K. However when loads C are also
applied, [L AT] has an order higher than K and it is more economical to

invert K.

6,2.4 Variation of Forces with Those of Mcmber Areas

The first theorem of structural variation predicts the forces in

the membc;s of a structure when the area of a given nuember (or wembers) is
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. raricd, T ~iv ~essi :
being varied. To derive an expression for the new force in any member, let

the original arca of the given member be A, while the change in ils area be

6A. When OA is positive the member size increases and defining @ as SA/A,

it follows that @ is also positive, On the other hand, for decrcasing arca,
- . - . '
bA is negative and so is a. If A ig the remaining new arca of the decrease

ing member then

A = A - OA, 1
a =~ SA/A i ver 6.1%
1
and hence A = (1 + o)A ]

In particular for ilhe total removal of a member
A-0A =0 and @ = -1,

Consider now a general three-dimensional pin-jointed hyperstatic
structure such as that shown in Figure (6,2). The structure is subject to

a general sct of external loads

= LIS L
L Ly 5y al

wvhere d is the total degrces of freedom. There are n members in the struc-

ture and the resulting tensile forces in these are

p2 seece pn]

1
Consider that the area of member i is being varied from Ai to Ai

by an amount of &A.. This member, which is shown to be comnected to joints
i
1
a and b, can be split into two new members of arcas Ai and 6Ai. The corres-

1 " . . o -
ponding forces would be p; and b, respectively. This is possible provided
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that
t 1A -
= p. 4

pl 1i ])J_ S

and - ese 6.111:
t 1 1"

p. /AL = p. /\ = ) =

]1/ i Pl/ ; pi/é) A o ]
where o ig the stress in member i as well as in each part of that member.

It follows from equations (6,13) and (6.14) that

o
i

- O p .
A 1

o]
i

(1 + a)pi

Any member of this structure, such as the new member joining ab,

"
with area OA. and force p., can be removed without altering the member
i i

forces elscwhere, provided that the member is replaced by two equal and
1
opposite external forces pi, acting at a and b and in the same direction as
the member. This is shown in figure (6.2b) where, for clarity, a part of
the structure is shown isolated. However, the case to be considered is the
total removal of this member without compensation by external forces, i.e.
1

with the net external force pi = 0,

In figure (6.2c) the original structure is shown subject to a

second external system of only itwo equal and opposite unit loads at a and b

acfing axially to ab. The resulting member forces due to these are given as

£ = {f - f see0 f.. LI f .}

where f . is the force in member 1 due to unit loads acting axially to
11

1 1
: ; i1 it i : .. and ..
member i. Since member i is split into two members, the forces fll a ii

t

shown in the figure arc given as
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£f.. = ~af,,
il ii
an(l N e v o 6n16
: 1
£f.. = (1 + a)f..
11 11
LN 0 . . 1"t
Under these unit loads the member with arca & A. and force f.. can be removed
i

. - . . 1 .
provided it 1s compensated by equal and opposite forces .. at a and b. The
: it
N . 1
total external forces now acting at these points will therefore be 1 ~ f..
ii

as shown in figure (6,2d).

The magnitude of the unit loads can alwvays be increased by a factor

r and the resulting member forces become {r f . r f . . r f .

a 9 { a T1i a 21 °° Q mg
1 . '

The two parts of member i will then sustain forces raf.. by 6 A. and rqf.. by
ii i ii

' 1
Aio The removal of 6Ai will therefore require compensation of Q}f'i and the
71

11

net externally applicd loads at a and b become - rafii' It follows that,

under the actual external loads L, if 5Ai is removed without compensation

then

r - Y f_.. - p. = O ‘ A e o e 6017

This, together with cquations (6,15) and (6.16) give

= -— X . ece 6018
r, = (Lpi/(l +cmfii) |

1
In the remaining member, which has an area Ai, the force due to

' - -
the actual external loads is p., while the change in this force was shown to
1

' -
be QLf... The final force‘”’i is therefore given by
ii

! t L N 6019

Using equations (6.15), (6.16), (6.18) and (6.19) it follows that

; ees 6.20
T = pi(i +a)/(1 +cufii)
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The force i: r other moi I .
rece in any other member j is also Tourd by the superposition

£ 7 and »r f T 3 s 1 . . . .
of Pj and »af:-o i1 general the final force in membor j dae to the varia-

Ji

tion of the areca of member i is given by

T. = Pp. +tr . £ . .
J IJ ax J1 . ©60 6:21

The factor r, is hercinafter called the variation factor. Comparind
equation (6.21) ana (6.1), it is immcdiatoly evident that the variation in
the area of a member has the same effect on the forces of the other members
as its complete removal. In fact when a member i is completely removed then

ai = -1 and equation (6,18) gives the removal factor r, as
i

Ir. = p./(l"’f..) es e 6'22
1 1 1 .

More generally, considering the structure as a whole and varying
every member independently, the forces 7 in all thc members, duc to the

variation of any member can be expressed in matrix form as
Z__T = P+RL . e e 6023

The vectors 7, P and L and the matrix R are best defined by first expanding

equation (6.23). This takes the form

—_— LK K J O
. = 2 * R, 2 20 2
. A
: ) " eee 6,24
R . AL
T, . A . L
z; E . J J
° : 9-
' A
Ui 2 9 eee 8 R, L —n
-n
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In these equations j is a typical member, vectors i, P and A are of order
nz x 1 while matrix R is of order nr X. nza Fach subvector p of cquatlions
(6;2&) consists of the mewber forces throughout the structére due to the
external loads only. The subvector lﬁ contains the forces in all the

members due lo the application of unit cqual and opposite tensile forces at

the ends of member j, thus

.}\-. = £ . T . o0 f..‘ cee ¢ e «25
=J {13 23 33 fnjz 0-25

On the other hand 1% defines the forces in the members due to the external

loads, while member j is also altered. Hence

l'Tj = {6.77_ g ) soe 6926

where Wij is the force in member i due to the external loads, while member J

is changing. The Kronecker %'is defined as

6i'= 1, forifi,
ces 6427
&, = 0, for i =]
i
For instance Vector_ﬂs is
‘ia = w w 0] T see s g eee 6.28
-3 { 1,3 2,3 4,3 n,>3

The matrix R is diagonal in which each submatrix Bj is also diagonal. A non-

zero element r of R, is given by , -
kk =J :
- - - & p./ f..;

T rj(i 6k) K PJ 33 W

where k = 1, 2, 3, eeo N j
1 e i eeo 6029

81{ = 1, for k —’:j H

and 8k = 0, for k #3
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T 2 e o \ 4-35 oy o Ral o _" I .
It is noticed that when k = j, O, = 1 and r. (1 - 5}) vanishes. The first
, : <

of equations (6.29) therefore reduces to

e T —pj/fjj eoes 0630

Substituting this in cquation (6.24) reduces 7, . in member j to zero as
shown in equation (6.28). As an illustration the submatrix R3 of order

n x n is derived by using equations (6.29) and (6.30) as

BB = |ry; O 0 0O ... ©
O r O O °
3 .
0 0 - T 0 .
Py/ 5z : oo 631
O O O r Y
3~ .
. (6]
O & ® 068 000 s 000 ) O 'r
L 3]
6o2.5 Variation of Deflexions with Proportional Changes in Arcas

The second theorem predicts the deflexions throughout the structure
when all the members of the structure are varied proportionally. Consider
the set of stiffness equations (6.5) which gives the deflexions of the struc-
ture with fixed areas. An element Kuv of the overali stiffness matrix
consists of accumulative stiffnesses of the form Al contributed by the
mcmbers, For each member the area A is to be varied while { is kept cons-
tant, depending on the length, Young's modulus and direction cosines of the
member .

Thus

J
K = ZA.“' ece 6032
uv J 3

3=1
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The summation covers J membors, such as Js comected to a given joint. In
most cases only one member contributes to K. and in the case of pin-
. uv

jointed structurecs only the elements on the loading diagonal of K rcceive
contributions from more than one member.,

Consider that every area in the structure is varied proportion-
ally so that a( = 3A/A), is kept constant for all the mombers. At a glven

*

instant, the area Ak Tor member k is given by

%

A]{ = f\k(j + Q,) coe 6933

*
The new element Kuv’ of the stiffness matrix, now becomes

. J J
K Nl 1ra) ) 6.5k
= A. . = 1+ A. . eoce e
i ZlJ J HJ ¢ ZEJ' J HJ ’

Y
J=1 , o J=1
In this manner the entire overall stiffness matrix changes to

E = (1 +(L)-I_{' eve 6035

*
where (1 + @) is a scalar quantity. The new deflexions X may be obtained

* % ’ .
by solving L = K X , which, using equation (6.35) may be written as

*
=

-1 ees 6436

I~
il
=
+
Q
=
It

But from equations (6.5), Eﬁi L =X, it follows that

-&* 1 —-_X- ceoe 6.37

Equations (6,37) indicate that once the original structure is analysed under

the external loads for X, the new structure need not be re-analysed. For a
. *
given degrece of frecdom e, dividing the corresponding elements of X and X
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T which is the deflexi ~e anv Do c g .
by e! exion -before any member variations, it follows

that

_ . - / 3 -0
Yy = X/;\c = j/\l'{ CL) eoeo 65"

which is the cquation of a hyperbola. It is noticed that when & = 0,
iseo belfore any variations in the areas, the non-dimensional deflexion
y = x*/x is unitys It is also interesting to note that the slope of the
hyperbole at @ = 0, y =1 is -1, indicating thal for any structurc the

. o
curve cuts the y axis al an angle of 45 ,

6.2.6 Variation of Deflexions with Individual Arecas

This theorem of structural variations predicts the deflexions
throughout the structure when the area of one (or more) member is varied
independently or when they are totally removed, thus resulting in a new
structure,

Consider a hyperstatic structure with a total of t redundant
members. From equatidns (6,3) and (6.4) the flexibility equations for this

structure for m loading points become
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[ | I e .
X = Ii‘
M * o0 F ]l
1 L1,k 1,0 "
XZ ¢ o L2
. I e . ¢
—bh ° . o
X e °
J ° o LJ
X . F F L
m . myk m,Y m
. ® 90000000 s 0Lt EPLsrI L0 OGO OEBRSS 6 o e a o 6.39
0 F OODDF J co o 4 Kia
kk,1 k,m o kyk 1—\k,Y 1
. . . vz
. ° . 2
. . . T
[} * [ 2 i
O F ..."F F e o0 F 77—
Y1 Y m Y,k Y,Y t
L 4 L i J

where, for convenience, k =m + 1 and Y =m + t.
Consider the case when the area of any, say the last, redundant

member is varied. The force 7. in any other redundant member i will be
i

given by equation (6.21), which becomes

f.
i i at it

Each redundant member can be removed from the structure provided that equal
and opposite axial forces 7, are applied to the structure instead of the
i

member. Equations (6.39) can then be written, treating the forces 7 as
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external forces, as

12 = F R O D 1 L
L 1k lyr~1 1y 1
!
by : L,
F .
—bb : . : .
14 .
j : : L,
11 . F ... F o L
m : my kK m,Y -1 1m,']’ m
0 ; ... F F ... T 0
K, 1 K, m K,k -1 e,y Py " Yot Mit
: : : : : : Pi ¥ oy it
O E ees E F ees E E + f
Y-1,1 Y -1,m Y -1,k Y-1,0-1 ¥ -1,Y || Pt-1"Tat -1,
0 F ... F F ... F F ar
Y,l Y,m Y,k Y, Y"'l YaY t
= - 4 L J

e 6.40

In these equations?rt is variable béecause the area of member t is being

varied. Hence both @& and Lo are variables., Similarly the joint deflexions
are also variables and for this reason they are denotled, in equations (6.&0),

by V¥ to differentiate them from the initial deflexions x. On the other hand

although each 7. is changing, the forces pi for i =1, 2, ... t, are con-
i

stants and predetermined before varying member t.

Each element of the entire matrix F in equation (6.40) is of the

form

! e 00 6‘41



t

o . ~ a1 a1 e
where ¢ and 0 are constants while the new arca At is & variable. The

. - . ) ' ! .
quantity 1atfit 1s dependent on At and has the form p/\t vhere p is also a

constant. llence a displacement Wj’ evaluated from cquation (6.40), has the

form

Vo= ¢ 0 /A, + P, + (9 +0 /1)) 2 ve. Gulz

The quantities ¢? 0 and p are all constants, obtained by multiplying a row
of I' by the column on the right hand side of cquation (6.40) and then collec-
ting the terms.

Furthermore, the last equation, in (6.40) is of the form

0 = ¢ + O/At + PAt + (P + G/At) W£

which gives L in the form

T, = —(¢>+F)A; + VALZ)/(¢ + pA;) ees 6,43

where Vv is also a constant. It should be stressed that the constants ¢, 6
and P in the numerator and denominator of equation (6.43) are all different
from eaéh other and from those of equation (6.42).

Substituting for 7, from equation (6.43) into equation (6.42) and

collecting the similar terms, it is found that

' 1o '3 ! '2 .
€ € € e A +EA V. +EA"VY. = 0 .o 0Lk
R TR e T A 58 Y5 T et g
l -
where € , €, 4. 86 are arbitrary constants. Now when At = 0, i.e. when
1 2

member t is removed, equation (6.44) remains true for all values of Wj,

1 . . _
i.e. when A = 0, [¢j|> 0 and therefore equation (6.4k) gives €, = 0, thus

1 1o 13 ! e A2 ¥ = 0
€ e A’ +EA V. +EATV. =
2At + €3At + &AL 5% ' 6t 3



1

Dividing through by At’

we obtain

1 ! '

+ e_A  +g,A + e V., + ¢ I _ ‘
i) 3t 4t Cskj ) cGAng = 0 eve 6,45

This formally proves that the variation of any displacement Y. with changes
in the area of any one redundant member is hyperbolicl

The constants € can be obtained from the boundary conditiohs,
However, the equation of the hyperbola can be explicitiy derived more
clegantly as follows

Let in be the deflexion at j due to a unit force at the ends of
member i. Increasing this unit load by a factor Yoo the displacement at j
becomes raixji' Using the principle of superposition to add the displacef

ments raixji and Xj which is due to the actual loading, we obtain

eee 6,46

wj = Xj + raini

The factor 1, is the variation factor given by equation (6.18)., The non-

a

'
dimensional deflexion y is thus given by

‘ .
= = = e o0 6.
A TR T Ty 1 G 47

where, using cquation (6.18) for r,

; ... 6.48
Cqi = %P5/ [Xj(l * aifii)J

Denoting the constant D as pini/Xj cquation (6.48) becomes

' ee. 6,49
Cqy = -aiD/(1 + aifii)

1

But from equation (6.47), y =1+ Cai and using this with equation (6.49),

it follows that



+f.. a,y - w. (T - -
y 1L CL.']_ M a’i(lii D) - 1 == 0 s 00 GGFO

. . . . 1
This equation is hyperbolic for the variables y and a. It is noticed that

¢
when @ = O, y = 1 indicating that the original deflexion is unaltered. On

T

t
- - - Py h s _ - . -
the other hand when member i ig totally removed at @ = -1, then y is given

%
by vy , thus

y = 1+c = 1+D/(1-1) : Ceee Go51

When dealing with statically determinate structures the member
forces remain unaltered aé the area of any member is varied. TFurthermore
the matrix f is a unit matrix. This implies that a pair of equal aind oppo-
site forces applied axially and at the ends of any member are carried solely

by that member. For such structures equation (6,40) reduces to the form

L
¥y 1
- F L
L ~bb 2

. . ees 6052
) L
IFJ 3
¥ L
nm m

Considering the case when the area of member k is varied, equation

(6.41) gives the form of each element of the matrix Ebb as

Hence the displacement U .y evaluated from equations (6.52) also has
J

this form



. t
leCe ‘qr: = ¢ o+ 0 /]\
J k

which is a special case of equation (6.42),

Equations (6.46) and (6.47) may be applicd to statically decter-
minate structures, However, care must be taken that a member is not totally
removed, thus leading to the formation of a mechanism. When this is the
case, as fkk is equal to unity, the value of y* obtained from equation (6.51)
is infinite.

It is advantageous to generalise equation (6.46), in a manner
similar to equations (6.23) and (6.24), 1In this case, if X is the displace-
merit vector corresponding to L, X is the vector of displacements due to unit
loads, V¥ is the final displacement vector and E* is the maﬁrix of variation

factors, then equation (6,46) is generalised to become

Vo= 5*13.*2 | ' ees 6453

In its expanded form, these equations have the form

B 7 7 "- q ~ -
= R* 0) 0 X
\1!1 - _J_C. + _'1 ‘__.* tes @0 s er 0000 -~ —1
0 0 X
% = g 2 2o
. . . 9 . ) .
: ° ) ..'_ .... *A.‘A‘ ° see 6.54
¥ x . 0o ‘R, O %
J = =3, =J
° . o _c_)_ .
. . . N . X
* e O
q’n x [ E R R R R R o R X
- - L L 4 L J

where j is a typical member, vectors V¥, X and X are of order n.d x 1, while

* -
R is a diagonal matlrix of order ned x n.d. The subvector x consists of the

nodal displacements due to the external loads. The subvector zj contains

the nodal displacements due to unit loads at the ends of member j, thus



_’)_(:j = gX»l\i XZJ cep e XiJ seeceo Xd\'} } eoce 6’55

*
Similarly for wj- The submatrix R. is of the form
~J

*

By = %, %L , ves 6456

in which le is the variation factor for mewber j. The identity mafrix L
and E; are of order d x do |

In the case when more than one member is being varied independ-
ently, it is first necessary to alter one of these by the required amount
and evaluate the resulting forces and displacements, before proceeding to
alter the next member. In the case of rigidly jointed structures where
axial and flexural stiffnesses are significant, it is necessary to change
the area and the second moment of area of a varying member independently,
and not simultaneously.

In most cases, and particularly when structures are being designed,
it is often necessary to study the effect of varying one or a few members,
on a nﬁmber of deflexions or forces. In these cases the first and the third
theorems become particularly useful. The second theorem is used‘whon all
the members are being altered. This theorem becomes specially useful when
the design parameter is the topology or the shape of the structure. In
these cases, it is often required to evaluate the weight of the remaining

structure when one or more members are being totally removed.

6.3 Application to a Plane Frame

The simple hyperstatic frame shown in figure (6.3a) is selected
as an example to illustrate the efficacy of the theorems. The frame has two

redundant members and may be analysed by any of the two basic methods. The



theorcms of structural variations can then be used to predict the behaviour
of any one of the ninc derivatives shown in figures (6.3Dh) tb (6.33) .
Every member of the ten frames shown may have a differont cross—gscction from
every other member,

For instance consider the case when the area of ecach member of
the frame in figure (6.3a) is first reduced by a factor of O.k (0 = -0,4)
and then the vertical member is removed resulting in the frame shown in
figure (Go,3b). In the original frame members (1) and (2) have an area A

gl

of 7.312 square inches while members (%) and (4) have arca A 5 7 8.5670
9 .

square inches, the distance 1 is 100 inches and the modulus of elasticity is
134 x lO3 tons per square inch. The frame is subject to a horizontal load
of 10 tons at the common joint B. Using matrix displacement method (equa-
tions (6.10) and (6.,11)) to analyse the frame, it is found that

~L -4 A
X, = 97.50 x 10 inch, v, = -17.60 x 10 ~ inch, = 1.77 x 1077 inch,

B XB3

f = 0,546 tons and = 2.020 tons, where and v_ are the horizontal and
33 Py ’ *B B

vertical deflexions at joint B under the actual load of 10 tons. With

a = -0,k and the above values of X and XBB’ equation (6.38) gives y as

* - -4
1.6700, Xy as 162,50 x 10 8 inch and Xp3 as 2.95 x 10"~ inch. The value of
p3 and f33 on the other hand do not change due to an all round alteration of

member areas, This follows from the fact that

*

'}E = (1+(1,)1_{_ s e e 6057

and hence using equation (6.37) it follows that

1 * ) X = k AX 6.58
P = kAX = T e k A (1 + a X k AX eee O

where k* is the new member stiffness matrix. The constant D, therefore,

also remains unaltered at a value of 0.,0365. From cquation (6.51), the value
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*
of vy is calculated to be 1,804,

In figure (6.4) the variation of y with @ for the framc of
figure (693a) is shown as curve (1), Curve (2) shows the manncr in which
y*, for the horizontal deflexion at B, varies with the arca of member 3.
curve (3) to curve (6) gives the variation of y at different valucs of & _,
each curve also being hyperbolic. From these curves and curve (7), for
instance, it is found that if only half the arca of member 3 is removed
while the other members are intact, then g for the horizontal deflexion at
B will be 1,024, giving Xy as 99.7k x 10~4 inch. From these curves it is
noticed that to obtain the frame of figure (6.3b) it is possible to move
frqm A to E on curve (7) then move vertically to D. However, a better route
is to move to B on curve (1), followed by a movement to D on curve (2).

This route involvés less calculations since movement to B does not change
the member forces.

The frame of figure (6.,3c) is derived from that of figure (6.3a)
in a similar manner, Oneyway of achieving this aim is to double the areas
of all the members first, then remove members 1 and 4 and finally reduce
the area of member 3 to half its original value.

When doubling the member areas G is equal to 1 and equation (6.38)
is used to calculate the new value of x as 48,78 x lO"Lt inches. This
equation is also used to calculate the new matrix_z, however, the matrix f
containing the member forces due to the dummy load matrix remains unaltered.
To remove member 1 the removal factor r1 is calculated from equation (6.18)

with a value of o = -=1. The removal factor thus obtained has a different
1

value under each set of loads applied to the structure. Using this set of
values, the deflexions and forces throughout the resulting structure as well
as the behaviour under the dummy load matrix may be predicted using equatious

(6.21) ané (6.4G). 1In this way it is found that the horizontal deflexion of
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, "
B increcases to 110.11 x 10 * inches. An exactly similar procedure is

adopted to remove member & which further increases ihe horizoantal deflexion
of ‘B to 188,11 x 107k incheso

The structure is now statically determinate and matrix f obtained
after the removal of member 4 is a unit ﬁatrix. Any further alieration of
member areas must be with a value of @ less than -1 to avoid obtaining an
infinite removal factor from equation (6.18)., Such an altcration with
a = -1 would lecad to the formation of d mechanisne,

To reduce the area of member 3 to half its original value G3 is
set to -0.75 and equations (6,18) and (6.21) give the required horizoatal

deflexion at B as 318,86 x 10._[i inches.,

6ok General Applications of the Theorems

A significant use of the theorems is in the analysis of a number
of large strucfures that are all derivatives of a more general parent struc-
ture, The latter can be first analysed on a large computer and its results
can be kept on the backing store of the same computer, or more conveniently,
of that of a smaller coﬁputer. These results may then be usecd repeatedly at
different future dates to analyse one of the derived structures. A further
use of the theorems is to satisfy the new gtructural design code (recommended
following the Ronan point disaster). A requirement of this code is the
safety of the structure, both from stress and deflexion points of view, when
any one member of the structure is removed as a result of an accident or for
repair. The theorems can be conveniently used to analyse all these different
derived structures.

The shape of a structure, both its topology and geometry, is of
prime importance from the engincering point of view., Hitherto this has

been decided upon by intuition, where experience has been the main factor.



The theorcms of structural variations may play a significant part in

deciding the shape of a structure., There are two methods to achieve this
aim, The first method is to arrange a network of possible nodes to cover

the feasible space and then develop a "ground structure! by‘joining every
node to every other node. The actual shape of the structure is then obtained
by removing those memhers and Joints from the groand structure that do not
have a significant function. The second, and morc modcést, method is to
combine several candidate topologics to form the initial ground structure,

The theorems of structural variations become useful with both these methods

in selecting the final shape from the ground structure.

6.5 Conclusions

The theorems of structural Variétions, that were proved in this
chapter, confirm that structures are closely reclated to each other. Thus
the analysis of a general structure can be used to predict the behaviour
of a variety of other derived structures. These theorems also suggest that
the results of analysing a structure can be preserved for future use in the
analysis of other derivéd structures.

The theorems enable the prediction of the behaviour of a structure
after the total removal of some of its members while changing the areas of
the other members independently. From a definition of the stiffness of a
member, k = EA/1 or k = EI/l, it is evident that the theorems are equally
true when the moduli of elasticity E of thé members are varying. Hence the

theorems can also be applied in the analysis of one structure from the

results of a different structure made out of a different material,

Tt is demonstrated how the theorems can be used in satisfying the

newly recommended codes and for the design of structures where the geometry

and the topology are fundamental design parameters. It is these latter

aspects that are discussed in more detail in the following chapter.
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O% =-075

Variations of horizontal deflexion at joint B of the
frame in figure 6.3a.with member areas.

curve (1) variation of y with o for the whole
structure

curve (20 variation of y¥ with oG

curves (3) to (6) variation of y at different values
of oLy

curve (7) variation of y* with o other areas
remaining at initial values.



CHAPTER 7

et e et

SHAPE AS A DESIGN PARAMETER

7.1 Introduction

There are a number of constraints that combine to determine the
final desigun of a structure, including factors affeéting shape. The more
significant of these constraints are

(i) Functional constraints that affect the geometry of the
structure, including the existence or the removal of elements or joints that
detract from the efficacy of the structure,

(ii) Aesthetic or architectural constraints that affect signifi-
cantly the appearance of the structure as well as the shape or size of its
- componentse.

(iii) Stress constraints which are imposed as safety requirements
and

(iv) Deflexion constraints which may constitute functional, gcome-
irical or safety requirements. These prevent the struétural components from
separating.

These constraints often interact. For instance in hyperstatic
structures, compatibility constraints must also be satisfied when stress or

deflexions are to be restricted.

There are a variety of methods to satisfy the above constraints
and these result in the selection of structures of different shape. Although
all of these are adequate only one can claim the merit of being optimal.

The design synthesis itself invariably consists of at least the

following three steps

(i) Deciding upon the distribution of structural joints and the

mamner in which these are linked together, i.e. the topology of the structurec.
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(ii) The geomelry associated with a given topology may be varied
until the position of the joints and ihe inclination of the members are
defined,

(iii) The seleclion of member properties to satisfy the design
requirementso.

This chapter is concerned with all three of thesc steps and attem-
pts to select the various aspects so that an objective function, which
relates to the structural volume, is minimized, Hitherto the appearance of
a structure is often derived by intuition where experience is the main
factor. For this reason theoretical procedures are proposed here to decide

the geometry and the topology of structures.

7e2 Design for Optimum Shape

The method to be put forward here is to design pin-jointed
structures for minimum weight, where topology as well as geometry are funda-
mental design variables. The functional requirements for the existence of
any member or joint afe the satisfaction, under several load vectors, of
stress and deflexion constréints. In the proposed method it is possible to
form the ground structure, from which the synthesis commences, by covering
the design space with a network of nodes in the manner suggested by Dorn,
Gomory and Greenberg (30). To reducc computation however, it is suggested
that several candidate topologies are combined to form the initial ground
structure. In this respect engineering experience is utilized with advan-
tages However during the.design procgdure, nodes or members are removed 1in

a manner dictated by the design requirements, thus obtaining new shapes for

the structure.

The proposed design method makes use of the theorems of structural

variation given in detail in Chapter 6 of this thesis. It is convenient



161

however to restate thom briefly at this stage.

These theorems suggest that it is possible, withoutl prior analysis
of ‘a derived structure, to exactly forecast

(i)  The forces in the members of a derived siructurc, when the
arca of a member (or members) of a parent structure is being varied; or
totally rcemoved. If pi and pj are the forces in members i and j due to the
external loads and Wi and Wj are these forces when the ‘area of member i is
altered, without altering the externalvloads, then the first theorem of

structural variation states that

3
1

P, (1 + ai)/(1 + aifii) | ve. 7.1

and
. .+ i
J i Teitji

waere @i is the ratio of the change in the area of member i, 6ai to the

original area a.. The quantities fii and fji are the forces in members i
i ,

and j when unit loads are applied at the ends of member i. Finally T i is

given by

= -q.p./(1 + a.f..) oo 743
rdi aipl/( CL1 ii

(ii) The deflexions throughout the structure may also be exactly
predicted when all the members of the structure are varied proportionally.
i *
If X is the vector of joint deflexions in the structure and X are the

resulting deflexions when every member is varied by a constant ratio @, then

the sccond theorem states that

*
X = —t— X
- 1+a —

oo 0 7.4



where 1/(1 + a) is a scalar quantity. Such a change of the member areas
does not affect the member forces,

(iii) Finally the variation in the deflexions throughout the
structure can also be predicted when one or more members are being varied
independently. If Xj is the deflexion at a Joint j duc to external loads
and qa is this deflexion after changing member i, then the third theorem

states that

= - & QG
ﬂfj X, i Py in / (1 + : fii) cee 705

In this hyperbolic relationship %ﬁ.is the deflexion at j due to unit loads
acting at the ends of member i, When member i is totally removed
a. ( = 8a./a.) takes the value of -1.

i i 71

The above exact formulae make it possible to forecast

(i) The necessary changes of the volume of a resulting structure, to main-
tain design feasibility, while members are being altered or removad, and
hence

(ii) To decide upon a policy of removing members and/or joints, thus

changing the shape of the structure.

702.1 Assumptions

The proposed method is limited by the following assumptions:
(i) That the load-deflexion behaviour of the structure is elastic and
linear;

(ii) That the global optimum of the mathematical non-linear programming
Problem lies within the boundaries of the feasible domain. Usually the
naturc of the problem, the derivation of the constraints and the sectional
Properties of the available members define the boundaries of the feasible

domain. However, the global optimum can only be obtained if the initial as



well as the resulting malhematical programming problems have convex congt-

raints and objective function. Using matrix displaccment, it is possible

to satisfy this condition.

(iii) It is also assumed that there is a continuous set of sections to
select the scclional properties of the members. In practice, a continuous
set of sections cannot be manufactured and +the problem can be resolved by
using integer programming techniques. The use of integer programming,
however, grossly reduces the Capabilitf of any non-linear programming method.
For this reason integer programming has been avoided. Previous workers have

shown however that the approximation involved by this assumption is not

always unreasonableo

703 The Tactics of Geometrical Synthesis

The fact that it is possible to evaluate the forces 7 and the
displacements_f can be utilized to calculate, in advance, the material saving
achieved by altering the topology of a structure. This forecast is made by
first predicting the weight of the new fecasible structﬁre with each member
removed in turn. Membe;s are then arranged in a benefit vector b in the
order in which their removal contributes to save weight. The member that
reduces the weight most is removed first. Provided the structure remains
feasible, further members listed in b are also removed. During the constr-
uction of the benefit vector both stress and deflexion constraints are

considered. Details for each case are now given,

73,1 Dominating Stress Constraints

In the case where stress constraints dominate, the stress (2 in

member j due to the removal of member i is given by

— sece 706
o5 = Tyi/3
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’ . y ) N i T Rt -1~ 1 § > *
fhe allowable siress in this member ig 0. and for fully stressed conditions
5 . 28 SC ]

its area may be changed by 8a. so that
J

Oj = Wji/(aj + Saj) e e 707

Equations (7.6) and (7.7) give

5 /o
a . = a.o, O“ - a.
J J J J J
In which
1-if 7, > 0; O =0 s cee 748
Ji J t
and
% %
2 - 1f T < 0; 0, =0
J1 J c

* *
where O{ and Oé are the allowable stresses in tension and compression respe-

ctively,
Equations (7.8) represent two straight lines expressing the fully
stressed condition in member j. When 03 = 0 then 6aj = aj indicating that

* *
this member can be removed altogether. On the other hand, for —0; <0 <O

J t’
5aj is negative and the area of the member can be reduced. Otherwise, to

achieve fully stressed condition, the area has to be increased.

From equation (7.2) the stress in j is

Gj = (pj + rai fji)/aj see 7.9

Therefore, equation (7.8) gives the change in area necessary to render j

Tully stressed as

*
= + . f..) a. o0, - a. ces 7010
Baj aj(pj Tai Tji / J o J J
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The corresponding change in the volume of the structurec is

tr . f.,
1.8a, = 1l.a (&L Ji
J NN *

a,o .

NN

where lj is the length of the member.

When all the n members arc altered, the total increase Ov, in the
i

volume of the structure due to the removal of member i is

6V>. = {l.a.[“l‘*‘( .+ .f..)o_).j XX ¢]l
; P r&lJl/Jaj]f 7

provided that i # j as i is being removed. The removal of i reduces the
volume by liai and the net saving in volume is 1iai - 6vi. This is the

difference between the old volume v and the néw volume Vi. Thus

V. = v -+ 6\7. - ]-.a. XY 7012
1 1 1 1
where
n
= 1
© o) e
k=1

and the new volume is obtained from equations (7.11) and (7.12) to be

n

E 3
= + f..)/o. eoe 7413
Y Z lJ'(pj Titji / i’

Jj=1

. i : T, I
The quantity Wj = pj + rs fji is an element of a vector X t

is convenient to normalise the behaviour of vector 7, as in Chapter L, so
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that an inspection of the resulting normalised vector

G may indicate the
constraint that violates the design Tequiroﬁentso An clcement g.. of G
953 G
corresponding to Wji is of the form
a /a, @)
g.. = 1 - 7../a. O,
Ji Ji" 73 3
In which
* *
o. = O, for 7,, >0 :
j ¢ T Ty 20 e Toll
and
* *
o . = =0 for m.,, <O
J c Ji

where d is a conveniently selected constant. It is possible for the clements
of Ei’ corresponding to the removal of member i, to be all positive., In
that case member i can be removed without the necessity of increasing the
weight of the new structure.

In real structures several members are often grouped togcether to
have the same sectional properties. Assuming that there are ng groups in a
structure, one of which k is the group that member j belongs to, and denoting
9ei to the value of the most criticél normalised stress constraint associated
with area group k, equations (7.13) and (7.14) can be combined to calculate
the new volume of the structure as

n

v, = le ay (1 - gki/d) eee 7615

J=1

provided that the summation does not cover member 1o

It is significant to point out that when r, = @, ﬁhi becomes

infinite,'and hence drives g.. to =% and \ to +o, This indicates that the
Jji
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removal of member i renders the structure (or part or it) into a mechanism.

Care should be taken, therefore, to place i as the last element of the
benefit vector so that this momber may not be rcmoved. Similarly the
removal of i that causes large forces wsi indicates that it is not advant-
ageous lo remove such a member.

In thig manner it is possible té forecast the order in which
members should be removed. This is accomplishea by scanning the members so
that they may be placed in the benefit vector in the order of their decreas—
ing benefit.

Equation (7.15) is such that one member in each group is assumed
fully stressed. This does not however produce a fully stressed design since

v, is used only to forecast the order of member removal. The outcome of
1 .

this forecast is influenced by many other factors as will be shown later.

7302 Dominating Deflexion Constraints
In the case.where deflexion constraints dominate, equation (7.5)
gives the deflexion V. at node j after the removal of member i. In this

case ai'= -1 and equation (?.5) reduces to

llI = XJ. + pi XJi/(l - fii) cee 7016

On the other hand, for an all round proportional increase of the members by

a constant factor &, equation (7.4) gives the deflexion at node j as

x*. = x./(1 +a) ves To17
J J

* . .
After such an all round increase in, which is the deflexion at J due to a

unit load at the ends of member i, is also related to in by equation (7.4)
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which may be rewrititen as

%

Xip T xji/(l + a) ees 7418

Consider now the case where the all round increase of the structural members
is followed by the removal of member i. Equation (7.16) can be used to

*
calculate the final deflexion ¢j at j. This takes the form

*

* * .
]lfj : xj + pi in/(j - fii) LI 7019

Member i can only be removed provided that the all round increase in the

members is sufficient to prevent W* rrom exceeding the allowable deflexion
Aj at j. This condition is achieved by substituting Aj for w; in equation
(7.19)0 This, together with equations (7.17) and (7.18) gives the unknown

(! = X FAY + . Ny /ANN ] - f..

which, by using equation (7.16) becomes

= - A, A. eees 7020
%54 (s - 85)/8

The suffixes j and i are allocated to @ to indicate that the all round
factor q is calculated for the condition in which member i is being removed

and the deflexion at j is becoming critical.

A similar expression can be obtained for each deflexion constraint

and each member. The largest . for any member k amongst these is denoted
J

a*. This set of a* gives the value by which all the areas of the resultiing

k

structure should be increased so that any member k can be removed without

violating any of the deflexion constraints.
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- -1 " s st R _ .
At this stage it is possible to predict the new volume of the
.S . X “ . . N .
resulting structurc. Consider the case when, for instance, member k has to
be removed. The predicted volume Vi of the new structure is given by the

sum of the original volume £la and the increase in this volume 5%la, less

the volume saved for removing member k. Thus

* . *
= =1 .
Vk K ak(l +\Lk) + zg: li a; (1 +<1k) cos 721

Using this equation, the new volume of the structure due to the removal of
each member can be forecast,

Consideration of members for removal is embarked upon only if the
structure is feasible and will remain so. However, in the early stages of
the design process some members may act>as a burden on the structure. These
have negative overall removal factors. Their removal, therefore, saves not
only their own weight but also some of the weight of the remaining structure.
Members of this type are placed at the top of the benefit vector for early

removal,

7e3.3 The Preparation of the Benefit Vector

So far two methods have been devised for the preparation of the
benefit vector, depending upon whether stress or deflexion constraints are
dominant. These two methods are combined to prepare a single overall bene-
fit vector using the "Mini-Max" principle. For the removal of a given
member m, the larger of the two values of v obtained Hy equations (7.15)

and (7,21) decides the position of member m in vector b. This ensures that

weight is.not saved at the expense of feasibility.
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As an example, a structurce with seven members and an original
volume of 30 units is considered for the pr&paration of the benefit vector.
It is assumed that table (7.1) gives the new volume of the resulting struc-
ture, due to the rcmoval of cach member. Thesc figures are obtainable using
cquations (7.15) and (7.21). It only stresses were considered,; then the
second column of this table suggests that member 6 with a maximum volumetric
benefit of 10 units would appear as the first element of the bencfit vector.
Similarly the last column of the table suggests that, when considering
deflexion only, member 1 gives the maximum benefit. The table also indicates
that the removal of members such as 6 or 7 saves material without violating
stresses but actually causes the violation of deflexion coanstraints. Indeed
the last column suggests that these members can only be removed if the volume
of the rqsulting siructure is‘increased to 41 or 31 units respectively.

In table (7.1) the larger value in each row is underlined to
indicate that it decides the pocition of that member in the benefit vector,
An inspection of these figures enables the arrangement of these members so
that the first member in the list may be removed with the largest reduction
in the volume of the structure and without léss of any feasibility. For this
reason member 5 forms the first eleﬁent of vector b. Removal of this member
represents a possible saving of 4 units in volume. Similarly the other
members are graded in vector b, which is shown, in its final form in table
(7.2).

The benefit vector only gives the order in which members may be
removed from the structure provided that this results in a feasible and
lighter structure. However the removal of several members may alter the
geometry of the initial structure significantly, and possibly render the
For this reason, in the actual computer programmé,

forecast erroneous,

Preparcd for the proposed method, care was taken to terminate the process of
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member removal as soon as this cntailed increascs in the overall weight

of the structure. This prevented the removal of cssential members. Care
was also taken that members of equal benefit had the same order in vector b,
so that they were removed simultaneously. This is particularly nccessary

in symmetrical structures where the removal of one member at a time may

distort symmetry.

7 The Mathematical Programming

Matrix displacement mcthod was used to formulate the mathematical

programming problem. At a given instant, the problem is of the form

Minimize Z = Z{: 1. a. ‘ cee (022
i i

subject to the deflexion constraints

(A xA'L < 2 cee 7023

— e -

and stress constraints

* — 1 ,_1 * N
o < atkaAa(A kA L < o oo 7e2L
= ¢ a L4 22 ot e
and further
a. > 0
i

with 1 = 1, 1, n,

where Z is the objective function, matrix A is the displacement transform-

ation matrix whose transpose is A . The member stiffnesses are given by k

and for a-pin-jointed structure matrix a is diagonal having the areas of the
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members as its diagonal elements. The load matrix is L and (Q' k ﬂ)~1 L
arc the actual joint displacemenls that are limited by their permissible
values given by vector Av Usually not all the displacements of a structure
are con$trainod and therefore, when deriving a feasible solution, only the
active deflexion constraints of inequalities (7.23) arc safeguarded, The
vectors gi and gi contain the permissible compressive and tensile stresses.

The design problem gives rise to a set of non-lincar constraints
with a linear objective function. However it is now shown that the mathe-
matical problem is in fact of a new type fundamentally different from those
covered by available algorithms.

Once a member or joint in a structure is removed, the initial
mathematical programming problem itself changes basically. This is BeCause
as members or groups of members are removed the number of variables as well
as the number of stress constraints are reduced. TFurthermore, unless the
existence of some unloaded joints is an architectural necessity. these Jjoints
may also be removed, hence reducing the number of deflexion constraints. The
composition of each rémaining constraint also changes during this process.
These factors contribute to modifying the dimensions of the mathematical
problem, the objective function and the boundary of the feasible regione

The effect of the removal of a member on the non-linear program-
ming problem is shown diagrammatically in figure (7.1). Variables x, and
X_ represent two area groups, each one consisting of several members. In
figure (7.1a), point a represents a boundary solution before a member is
removed. The boundary itself is represented by a dotted curve (1). At this

stage, line (2) represents the constant objective function Zlo The removal

of a member from group X, alters the boundary of the feasible area from

curve (1) to curve (3). The gradient of the objective function also changes

due to a reduction in the effect of xl. The value of the objective functlon



Z2 is now represented by linc (4) which also passes through point a. In
this figurc line (5) represents the ney objective funclion, corresponding
in value to the original Z10

It is noticed that point a is now within the new fcasible area,
indicaling that feasibility has improved. As a result a further member may
be removed, which may give rise to an infeasible solution as shown in
figure (7.1b). IHere point a remains fixed at its original position, while
the boundary of the feasible area is once again altered and is now represcn-
ted by curve (6). Lines (7), (8) and (9) represent the new objective func-
tions corresponding to constants ZB,Z2 and 21 respectively, with Z3 as the
latest value.

A new boundary solution can be obtained at the intersection of the
line of steepest ascent ab with the boundary of the feasible region. This
is best achieved by first restoring the origiﬁal value Z2 to the new objec-
tive function. In the case of dominating locai factors or as the optimal
solution is approached, the possibility may, increasingly, arise where the
feasible region is considerably displaced with respect to the original point
a. In these circumstances the steepest ascent does not yield awfeasible
solution and it is necessary to adopt a new direction vector. Such a case
is also shown in figure (7.1b), where the original point a is now represen-
ted by al. A movement from a1 to b1 only yields another infeasible solution.

For this reason it is necessary to select a new direction vector that moves

towards a feasible point such as bz.

Zokol Determination of a Feasible Solution

It was shown above that the mathematical programming problem under

consideration is continuously changing. Furthermore it was shown that once

a solution becomes infeasible a direction vector orthogonal to the constant
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objective fuaction may not result in a feasible solution. When using the
non-linear programning method, described in éhapter L of this thesis, it is
clear that the dircction vector of scarch has ‘o be continuously changed,
in a dynamic manner, to cater for these circumstances.

Consider a general n dimensional problem in which the new solution

vector Eb is obtained from an older one x by
~a

where &x is the direction vector of search while the step length M defines
the magnitude of this vector. To evaluate the elements of this unew direction
vector it is necessary first to calculiate the slopes of the new constraints.
These correspound to point a, in figure (7.1b). In this manner the slope
matrix S is constructed in which each element sij is the partial derivative
of ‘constraint j with respect to a variaﬁle i. The elements of S are then
once again weighted so that the sensitivity of the inactive constraints is
damped down. However, this process is now performed in a manner that main-
tains the elements of the column for the most critical, negative normalised

constraint, as constant. An element of the resulting modified slope matrix

*
S is given by

*

sij = Sij/ [1 + B(gj - gmin)j ces 7426

where g . is the value of the most negative normalised constraint. The
mir

factor B is a convenient constant. Increasing thevvalue of B rotates the

direction vector towards the normal of the most critical constraint.

*

Equation (7.26) also demonstrates that when gmin = gj’ then Sij = Sij'

* -
s..<<s.. and the corresponding const-
N

On t : i
n the other hand for 95 >> 9nin? "ij

raint j becomes ineffective.



An element 5xi of the direction vector 8x may be obtaincd Ly

[« N - *
the sum of the eclements of the corresponding row of S , i.c
. v » - © ‘e

where m is the total number of constraints currently in the problem. The
larger elements in ég in equation (7.27) correspond to the more beneficial
variable in the programming problem., To improve these variables most effec-
tively at the expense of the inferior variables, the deviation of the elements
of ﬁg from the average is magnified. A magnification power D is therelore

*
applied to cach element i of dx to convert it to & X thus

E3

SX. = - (6X./e)D cee 7028
1 1

vhere e’'is the average value of the n elements of 5xi, i.ce

n

[S] = Z&Xi/n e 7529

i=1

An inspection of equation (7.28) reveals that increasing D rotates
the direction vector towards a line parallel to the axis of the most bene-
ficial variable. In figure (7.1b) for instance, if x1 is a more beneficial
variable than x , then large values of D tend to rotate a1 b2 to become
Parallel to x1 axis while P directs it to become normal to the feasible
boundary given by curve (6). To illustrate these new aspects of the mathe-~

matrical programming problem consider the following example, which consists

of a simple, but non-linear preblem of two variables X, and x, subject to

the constraints
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GO/X? + &/xg < 6
11/x,  + 13/x2 < 7
1 2
1/x + lIL/x2 < 8

1 2

required to minimize

Before removing a constituent element associated with a variable

= 2,25, x,_ = 2,65

such as x,, let a feasible boundary solution be given by x 5

1

1
and z = 25. After the removal of the constituent element of Xl’ suppose
that z changes to 20, with x_  and XZ remaining at their original values but
now infeasible. This state of affairs, as well as the boundaries of each
of the modified constraints are shown graphically in figure (7.2), where the
feasible space is shown shaded. It is noticed that the current solution at

point a with x = {2025 2965§ is infeasible violating the first constraint.
—-a

’

An ascent step is obtained with A = 2.5 and 0x = {-1/3 -1/5}
so that the original value of 25 is restored to the objective functiono

Equation (7.25) now gives the new solution vector X = §3.08 %.15}. This

corresponds to point b on the graph. Line ab is influenced by both the

coefficients ¢ and c_, in the objective function, and hence is not perpen-

1

dicular to the line of constant z. Point b is less infeasible compared to a,

nonetheless a feasible direction vector has yet to be calculated. At point a,

a partial derivative of the first constraint with respect to x4 and with

values of x, = 2.25 and x_ = 2.65, is equal to 16.46. The other elements
1 : 2

of the slope matrix are calculated in a similar manner. These are
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- ~
5 = S1q 5.5 513 = 16,60 2.970 0,013
o4 S50 Sy 0,380 1,890 1.780

L ] L J

*

with B = O, equation (7.26) gives S S and with D = 1, equations {(7.28)

and (7.29) give
& x = {-1.6569 ~0,34%0}

with 2z =z, =z =5, the value of A= 02/6 X, ci) is 0.748 and a new solu-
tion represented by point ¢ in the figure, can be calculated from equation

(7.25), with point c replacing b, hence

Point ¢ is noticed in figure (7.2) to be feasible.
A better direction of search which improves the optimality of the
problem further can be obtained by changing the values of Band D. With

p = 2, for instance

16,4600 0.1084 0.0003

0.3800 0,0690 0,0L49L

* - * .
Comparing S and S , it is noticed that, in § , the first column, correspond-

ing to the violated constraint (1) is unaltered. The other two columns
corresponding to the non-critical constraints have been reduced considerably.

In this manner the influence of the non-critical constraints on the new

direction vector is reduced. With D = 3, equations (7.28) and (7.29) now
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give

§x = {-=7.319k -0,0001 }

Recalculating A, equation (7.25) gives a new solution. This is represented

by point d in the figure and for which

= {3.92 2.65 }

Aﬁ

Points b, ¢ and d are all on the original line of the constant objective
function z = 25. It is noticed that point e which is the intersection of
line ad with the boundary of the feasible region yields an improved solution

compared to point f obtained with ac.

75 The Design Procedure

The design procedure starts by déveloping the ground structure,
either from a network of nodes or, more conveniently, from the combination
of a number of candidate structures. The members are then grouped together
so that those in a group may all have the same cross-section. The design
constraints are now formulated. These include aesthetic constraints which
are satisfied either by removing certain members or joints, or by permanently
including other members or joints. To do this it may be necessary to impose
certain artificial deflexion constraints at some nodes so that these are
never removed from the final structure. The design constraints may also
include upper and lower bounds on sectional properties due to practical
considerations which may prevent the selection of certain unacceptable member

Properties.

Once a ground structure is developed the design problem is formu-

lated automatically by the computer, and the sectional properties of the

members are set- at their lower bound values. The search process of Chapter &
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is initiated by the computer, by embarking upen the stage 1 ascent mode.o
This increases the volume of all the groups equally until the first feasible
boundary solution is obtained. From this a new and improved boundary solu-
tion is derived using stages 2 and 3 of the non-linear programming procedure
before the removal of any members takes place.

Before leaving subsequent boundary solutions however the policy
for removing members is tested. This consists of first arranging the members
in the appropriale order in the benefit vector. The less advantageous
members are then removed provided that feasibility is not lost, or that once
an infeasible structure is obtained, additional volume is not required to
restore feasibility. In this way several boundary solutions are airived at
by repeatedly using stages 2 and 3 of theAnoh—linear programming procedure,
until finally the optimum design is located. At cach boundary solution it
is possible for the topology of the structure to change, which may also
involve the removal of superfluous joints. These are joints that contrib-
ute neither to the maintenance of equilibrium nor to the rigidity of the
structure.

As the optimum design is approached, there arises the possibility
that once a member is removed the structure becomes indefinitely infeasible.

This is when a direction vector that restores feasibility without increasing

the structural volume is unobtainable. In that case the member in question

is restored and the constant weight mode, stage 2, is commenced. The final

design is attained when such a move is impossible.

The following possibilities may arise during the design procedure:

(i) The derived structure may turn out to be statically deter-

minate. 1In that case no further members can be removed.

(ii) More frequently, in cases where deflexion constraints are
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governing, the derived local optimum structure is hyperstatic. llerc the
search continucs, cven though the resulting structurcs have increased weighte
This search is terminated when case (i) is arrived at. In this manner all
the possible derived structures become available. Amongst these there some-
times exists a structure which is not the lightest but is more cconomical
from an overall construction point of view. It is this latter structurec
which interests engineers most.

The proposcd procedure does not claim that the design obtained is
globally optimum. The removal of a vital member erroneously may exclude this
and divert the search to one of the remaining local optima. It is to safe-
guard against this possibility that the computer programme devised for the
propdsed method includes facilities:

(a) Not to remove members at the early stages since the areas of the mem-
beré may bear false relationships to each other. This may lead to the
erroneous removal of important members which can never be reinttodiced into
the structure. Instead attention is directed to reduce weight without
altering the shape of the structure, thus improving the relationships between
the areas and making the forecast of the benefit vector more realistic.

(b) At each boundary solution member removal is terminated as soon as
:feasibility can only be maintained at the expense of additional volume.

In the following chapter the proposed method is used to carry out

a series of design studies.



Table 7.1 : The New Volume of a Structure with Seven Members

New Volume By:
Member
Number Equation Equation
(15) (21)
1 29 25
2 26 30
3 40 39
L 27 28
5 21 26
6 20 41
7 2k 31

Table 7.2 : The Benefit Vector

6
Member Order 5 L 1 2 7 3

‘ Lo 41
Possible New Volume 26 28 29 30 31




new boundary

Figure 7.1 a.

Figure  7.1lb.

Figure 7 1. Variation of the mathematical problem.
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CHAPTER 8

DESIGN STUDIES

8.1 Introduction

In this section a number of design examples arc given, not only
to demenstrate the efficacy of the proposed method, but also to carry outl an
investigation into the various factors that influence £he shape of the final
design. These factors include the nature and number of deflexion or stress
constraints, the type of loading and the number of loading cases, including
the self weight of the strucﬁure as well as the effect of the shape of the

initial ground structure upon the final shape.

8.2 Hand Design

In order to demonstrate numerically.and graphically some of the
steps involved in the proposed method the plané frame of figure (8.1),
previously dealt with in Chapter 6, is again considered. This is now taken
as a ground structure f;om which it is required to obtain a structure having
minimum volume and optimum topology. In figure (8.1), point A is subject to
a horizontal load H of 10 tons (99.64 kN) and the horizontal deflexion of
this node is not to exceed 0,1 inches (2.54 mm). The members of the struc-
ture are initially grouped together into two areca groups so that the progross

of the design may be represented as a two-dimensional graph. In this manner

members BC and BE are grouped with common area a1 and members BA and AD with

common area az.

Using the matrix displacement method the problem is formulated as

Minimize:

7 = 2/2‘a1+(1+/2)a2
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A first boundary solution is obtained using stage 1 of the non-

. . . 2
linear optimization procoedure as a, = 7,3%1% cquarc inches (4718 mn™) and

1 -
. . - 2 . .
a_ = 8.567 souarc inches (5527 mn®). In figurre (8.2) the entlire nrocoss up

9 : i
to the final optimum design is given graphically. Curve 1 on thig figure is
the bLoundary of the feasible region before any mzmber is roemoved, aud the
current design is indicated by point A on this boundary.

In table (8,1) the results of analysing this structure under the
external load are given in the third columi. The last four columns give the
‘horizontal and vertical deflexion at point A and the mewmber forces due to
unit equal and opposite forces acting at the end of each member in turne
These are the resultls of matrix multiplications of the type given Dby
cquations (6.10) and (6.11). The removal factor r of each member, obtained
from cquation (7.3), is also given in the last row of the tables

Using these factors the deflexions and the forces, duc to the

romoval of cach member, were calculated. These are tabulated in table (8.2).

As it is the deflexion of node A that dominates the design, the factor

which gives the amount by which all the arcas have to be increased before

: .3 a2ti 7.0 ‘he
any member can be removed was calculated using cquation (7.20). The

- I . . S oW i ‘he te o From an inspection
resulting values are given as the last row in the table. i a ST

of these values it is evident that member AD is the lcast efficient and
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with h1h0,0 cublic inches, the cureront

volume of Lhe efpruntura bofore the

reimoval of any mombhoeir,

Having renoved monidyme & PR ; : . .
aving roanoved moniber AD {he non-linonr programing probhlom 1s

altered and may now be restatoed as

Minimizoe

/
7= 242 a, + ,\,/{_3 a

subject to the deflexion constraint

A

2 /2 (2a, + a )L/ {ha (1 a,)} < 0.01%

and 0

N
W
O
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The new boundary of the feasible region jg shown in Cigure (8.2)
as curve 2 and the current design as point B. The new feasible boundary
passcs through B,

The design was then continued by obtaining another boundary solution
vector. This caused a movement which maintained constant volumz to C and
then, reducing the volume, to D on the boundary curve 2. At this point
a, is 8.91 square inches and a, = 4,00 square inches.

The structure is now once again inspected for possible member
removal and it is found that member AB reaches the top of the beneflfit vector
with o = 0.1726., It is interesting to note that at this stage mcember AC has
This indicates that the removal of this mcmber

an infinite value for a.

leads to the Tormation of a mechanism.

Duc to the removal of member AB the volume of the feasible structure
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Arca group a2 has been eliminated frow the design. The o cnt
design is indicated by point I in figure (8.2) on the new noundary curve 5.
This boundary is now a vertical straight line die Lo the absence of the
sccond area groupn. The final step in the desiga is to formally reduce &, to
zero, and point ¥ verticnally below E gives the final valuc of a, o8
10,554 squarce inches.

This strdctuvrc was then designed starting with the same ground
structure but with the mecmbers grouped together in different manners. I"ljog-
ress toward the final shape as recorded above is shown in figure (8.5a). 1In
figure (8.3b) progress toward the final shape is shown when members AB and
AC forim the first area group while members AD and AE form the second arca
group. The final design shape, in this case, differs from the first having
menbers AC and AB as shown.

When the members of the ground structure are not grouped so that
the arca of each member may vary independently yet another final design
shape is obtaincd. Progress of the design in this casc is shown in figure
(8.3¢) and leads to a structurc with three members AB, AC and AE. Once this

stage is reached it is found that no further members can be removed without
e 1s rea . ;
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an overall increase in the volume of the structure. It is noticed however

that the velume of the final structure is the

1s those of the two

previous designse. In fact the final shape of figures (8.

and (8.3%) can

s obtained fiom the final shane in ¢4 o . .
be obtained firom the final shape in figure (8 s 30 ) })y mals g el ther ak) or a_/
: ) & e

cqual to zero.

1 it is dinleresting to return once more

3

Before leaving this sectic

h the houndary

~

¢

to figure (8.2). In this figure it is noticed that aléhou
of the feasible design space is continually changing, all threc positions
of this boundary pass through the optimum point F. Thig indicates that the
non-linear programming procedure, above, could have been caployed to oblain
the final result by mercly eliminating the members of‘group 2 when their

-

crogs—~sectional area became zero. Indeed this is the approach adopted by

Dobbs and TFelton. It is to he expected however that the proposed method

saves computer time and storage by eliminating inefficient members, thereby
reducing the size of the problem, before member areas assume a zero valuoe,

This is especially so when area grouping is employed as an insignificant

member may be grouped with a structurally important member.

8.3 Design of Manging Structures

The second study was concerned with ground structures consisting
of a number of hanging members all meceting at a single free joint. These
meubers were grouped together into pairs so that the ground structures were
symmetrical. The modulus of elasticity of the material was taken as

2 .
70 kN/mmz. The lower bound on the member areas was 5 mm  while the upper

The

bound was 2000 mmZ, thus allowing a wide variation in the member areas.
design requirements included deflexion constraints and there were always two

stress constraints on cach member. These limited the allowable tensile and
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'figure (8.5). It was found that once the allowable vertical deflexiocn

. 2

. e aive otreoens A L/ ca - Z

compressive strosses to 0.1379 KN/mm™ ang -0, 105k kN/mmz respectivaely
/ cespectively .

rev .

The first investigation was initina

ted with ten members and Tive

L

arca groups which is shown as ground struciure (T) in €icriee (8 The
¢ ructure (1) in figure (Ook).  The

“q~t e xony o su b B ~ b i ~ PR R . -
structure was subject to two loads L and L9, each one being 89 kN, acting
~ o I

1 ¢
PR indenendent ] P Ny et e M . % . . - .

as ltwo independent leading cases. This structure was initially designed so

43 1 e Ao oo @ i~ S R T AP g R SO R - . . ;

that the stresses are satisfactory while the vertical deflevion at ithe common
Atk J g] 30" sy aelatclel 1 T NP b -

joint J does not exceed O.1 mm. The final shape obtained was a statically
determinate structure consisting of two members shown by design (a) in

ST, ¢ . reeultna memt v y
figure (8.4). The resulting members werc of the same area group and had an

4

arca of 1811.09 mmz. It was found that the vertical deflexion at J in the
derived struclture was exactly 0.1 mm vhile the stresses were satisfactory.
The structure was then redesigned several times with the severity
of the vertical deflexion constraint reduced, by increasing the allowable
deflexion at J in steps of 0.05mm up to 0.35 mm. Each time the final design
had the same shape but the volure of the structure reduced as the deflexion
constraint was relaxed. This is indicated by the full line in the graph of

D

6]
IS

came

greater than 0,26 mm this line became horizontal and no further saving in
the volume of the structure could be obtained. Thisg was because at this
point it was the stress constraints that began to dominate the design.

The second investigation was initiated with a ground structure of

. . s NN
eleven members. This was achieved by adding a vertical member, as a sixth

area group, to the original greund structurc. This structure 1s given as

ground structure (II) in figure (8.4k). With the vertical deflexion at J

once again limited to O.1 mm, the final design resulted in a statically

indeterminate structure with three members. This is given as design (a) in

figure (8,4) with the vertical member having an area of 1479,52 mm~ and the
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two inclined moembers having an arca of 637 mm™, It is lo be noticed that

+the inscrtion of the vertical mher inte 40 ; _
the inscrtion of the vertical member into the ground structurc has roduced

the volume of the final

ign by 30%. This indicates that for a defloxion

,,,,,, M Na B O IO - . .
constraint of this type and severity the most effcctive distribution of the

structural volume is toward the centre line of the region coéorod by the
ground structure.

This structure was also redesigned several times, cach time
reducing the severity of the deflexion Eonstraint at J. The resulting
variation of the volume of the structure is shown as a dashed line in the
graph of figure (8.5). Once again the structural volume required decreases
as the deflexion constraint is eased until the stress constraints become
dominant, at which point the curve levels off. It is nqticed, however, that
as the deflexion constraint became less dominant, the shape of the final
design changed to that shown as design (g) in figure (8.4), with five memberss
Finally with thé deflexion at J limited to 0.3 mm, the vertical member became
useless and was omitted from the final design. At this stage, in common
with the ten member ground structure, design (a) was obtained as the best
shape for the structure.‘ For larger values of this deflexion both ground

structures gave the same shape for the final structure with the two inclined

2
members both having a sectional area of 7094k mm .
It should be pointed out that in every case, where the deflexion

constraint dominated, the value of this deflexion was exactly equal to its

allowable value. This was also the case with stresses when stress const-

raints dominated.

A further design example was also initiated with a ground struc-~

ture of ten hanging members and the same dimensions and material properties

as the previous example. The design requirement was altered, however, by
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removing the vertical deflexion constraint ]

and imposing a horizontal

T e Tmitatson o o g Ty :
defliexion limitation at J together with slress constraints. as boefore,.
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Once again the value of the limiting deflexion was alterod by increments and,

i

. L o e .
in figure (8.6), the variation of the volume of
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final design is shown
B E R S E £ o am i S > N .
against the scverity of the imposed deflexion The various shapes obtlained

. T e . S ey A L B O SO S sy e T - . ;
are also indicated in this figure and shown in figure (8.4},

ined for this

It is noticed that, once again, the topologies obt:
series of designs depend upon the severity of the deflexion constraint. As
this is eased the best shape changes from design (c) to (b), then (e) ang
finally to (a). It is interesting to compare the shapes obtained when
severe vertical or horizontal deflexion limitations are imposed. In the
former casge the volume of the structure was distributed abeut the centre line
of the ground structure. This was emphasised when the eleven member ground
structure was used to commence the design. In the latter case, however,
the volume is distributed away from the centre line. In this way the hori-
zontal displacement of node J is more effectively restricted. However, a
balance is struqk between this effectiveness and the length of the structura
members involved. TFinally, as a vertical member is useless when restricting
the horizontal displacement, the same resultls are obtained when using the
eleven member ground structure.

A fourth set of designs were initiated by ground structure (I) but
with both horizontal and vertical deflexions constrained simultaneously. In
Tigure {8.7) the variation of the volume of the final design is shown plotted
against the severity of the horizontal deflexion constraint. The ratio
between the two allowable deflexions is also given numerically for cach
These ratios were

design, adjacent to the corresponding point on the graph.

obtained from the two separate deflexions of figures (8@5) and (8.6). Tt



was decided to investigate how the
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both these deflexion consgtraints were imposcd simuiltancously. TFor this
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reason the numerical values of these deflexion constraints were sclected

o

from the final design slructures having the same weight as when thesc

deflexions were imposed individually,

It i

¥

noticed that while the deflexion constraints dominated, the
final design always had the design shape (£). This shape has, not uncxpec-
tedly, a combination of the propertics required of the final design shapes
obtained when the horizontal and vertical deflexions were constraincd
independently. When the severity of the allowable deflexions was reduced
and lhe stress constraints became critical, design shape (a), once more
emerged as the final design. In every case where the deflexion constraints
dominate both the horizontal and vertical deflexion at node J was egual to
its allowable value,

In figure (8.7) the final design shown boxed had a volume of
L,72 x 105 mm3 and thg deflexion constraints were 0,252 mm vertically anc
0,6 mm horizontally. It was noticed that with this final design both the
deflexion constraints were critical while the stress constraints were also
on the point of criticality. These stress and deflexion constraints were
therefore imposed on a new design to investigate further the influeince of
the shape of the ground structure upon the shape of the final design.

For this purpose the structure was redesigned.twice. The first
was initiated with the eleven member ground structure (I1). This also
produced the final design shape (£) with exactly the same volume as that
obtained starting from ground structure (I). However, when the design was
initiated with a ground structurc of 45 members grouped into 23 area gfogpS,

as shown in figure (8.8), it was noticed that the final design gave a
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statically determiinate structure with a volume reduced +o 4 65 x 107 jm”
-l . Lo\ o < il e
This is shown as design () in figure (8.4 S R .
o 1y Tigure (8.4) which is made up of moembers

that are non-existent in ground structures (1) and (1I)

o
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In figure (8.9) the progress toward the final design, starting

st e 4.5 oy e - N ey 1 . N
with the 45 mewber ground structure, is shown. It is noticed

£ 1he <ctruchture was altered 292 +timew ) \,.‘ e de .
of the structurce was altered 22 times before the optimum geometry was
AT B o g3 E . " o y - . .
obtained. It is also noticed in the figure that several local optima were
located, but the non-linear mathematical programming method used overcame

these in its progress to a final statically determinate result. It is
interesting to note that to overcome stagnation al a local optimum, it is
neccssary Lo increase the volume of the structure before reducing it again.
These investigations show that the final shape of the structure,
both its volume and its degree of redundancy, depends upon the ‘type and

numbers of the design constraints and their severity. They also show that

the final shape depends upon the original shape of the ground structure.
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Design of Trusses

As a further example the ground structure shown in figure (8,10)
was selected for the design of various trusses subject to different loads
and design criteria. The ground structure is pin-jointed with support A
fixed in position while support G is on a roller., In this ground structure

cach of the 9 joints is connected to every other joint by a member so that

'

there is a total of 36 members. In the figure, the dashed lines connecting

joints A to H, A to G and G to J represent straight members coaxial with

members AJ, JH and HG.

Throughout the following series of designs the allowable member

. 2 . ; .
stresses were 0,16 kN/mmg in tension and O.1 KN/mm” in compression. In the
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rirst instance howoever tho vertical lonsde Vi - .
first i owever thoe vertical loads, applied at Jjoints J and H were

v

sach congidered lo be equnl to 150 kKN and + iy :
each considered 1o be equal to 150 kN and to act simultancously. The

o

modulus of elasticity of the material was taken as 207 KN/mm’

o
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n the Tirst design to be congidered, in addition to the stress
constraints, the design reguirements alse limited the vertical deflexion at

S 3 4 | I A eint e o e » s :
J and B to 6.5 mn. The members were grouned together into thirleen arca

groups in a manner indicated in the second column of table (8.3), Lower and

XS]

upper bound valucg were imposed upon these groups of 5 mm” and 12000 mm

respectively. The volume of the first local optimum obtained was

7 3 .
8.%30 x 10" mm~ and the shape of the structure is shown in figure (8.10) as

design {a). It is noticed that this structure is symmetrical and statically

indetorminate with 20 members of which 5 are redundant. At this stage of
the design 6 of the arca groups have been completely remcved and the mathe-
matical problem is now one of 7 variables, The current values of these
variables are giVen in the fourth column of table (8.3) where the superfluous
arca groups are indicated with a dash.

It is also noliced in this current design that joints A and N

and J and G are connected to each other, This means that during the const-

o~

ruction of this structure parallel elements should be used to connect these

joints which by-pass the intermediate joints. Such an effort may add to

the cost of the structure and lead to the selection of an alternative design.

The proposed algorithm, however, does not terminate at such a

design and further removal of members from the local optimum design initially

led to an increase in the volume of the remaining structure. After removing

- : , \ < ai ing and the
the five redundant members the volume was once again reduclng e

resulting statically determinate structure was lighter than design (a) having

a volume of 7,60 x 107 mm>. This structure is shown as design (b) in
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Seure (8.10) and the seelional Tromeied - .
L3 guare (8.10) and the scetional propertics of the 5 remaining area groups

arc given in the final column of table (8.3). Tn this do i
. @ B G O L

Coceinte J and H oare osactlw e . .
at joints J and H are cxactly equal to their 1i miting value., It is also

noticed that joints A, W and J, G are no longer directly i1inked and there-

o

fore thig structure does not involve any constructional difficultices.
m o s o R S .
the ground structure of figure (8.10) was used to initiate a series

of redesigns. The resulting structures were to be subjcct to the same

loading conditicns and stress constraints bul more severe deflexion limit-
ations. The allowable deflexions at J and H were limited to % mm first and
then to 2 mm. The manner in which the volume of the design procecded and the
number of topological changes that were made are shown in figure (£.11) by

graphs (1) and (2) respectively., In both cases the lowest volume recorded

was with 29 members, having the shape shown in figure (8.10) as design f(c).

This structure has 1k redundant members and 10 remaining area groups. The

sectional properties of the area groups are given in the sccond and third
53
colJumns of table (8.%4) and correspond to structural volumes of 2,1% x 10 mm

8 3

and 3.21 x 10 mm~ respectivelyo

A further local optimum was obtained which had 19 members. Once
again the shape was the same for both the design criteria and is shown as

design (d) in figure (8.11). This structure has only 5 of the original 13

. a . . g - - e
member groups and the crogs—sectional areas of these are indicated in the

fourth and {ifth columns of table (8.4) with corresponding structural volumes

= 8 3
of 2.17 x 1O8mm) and 3.47 x 10 mm”™ .

I+ is intercsting to note that the area groups remaining in these

designs with severe deflexion limitations are different from those romaining

in the previous design. It is also noticed that the computer has automati-

cally removed the joint at D. The statically determinate structurc as

obtained by the computer, therefore, had only 1% members and graphs (1) and
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(2) of tigure (8.11) show that sue
& + : o4/ SR0W that such a structure e v . .
at o such a structure ig very heavy compared to

designs (c) or (a).

It is noticed in figures (8.10) ana (8.11) that although design (c)
is lighter than design (d) frow a construction costl point of view it is
cheaper to adopt design (d) as this bas far fewer members and has no over-
lapping of members at joints J and H.

The tiruss was again redesigned but this time the allowable defle-
xions at J and H were different, Joint.J was allowed to deflecl not moie

than 2 mm while joint H was limited to a maximum of 5 mm. The progress of

the dosign for
figure (8.11) as graph (3).

The structure with the least volume obtained, 2.66 x 108 mmz7 has
18 mewbers and 6 remaining area groups, the properties of which are given
in table (8.5). 7This is shown in figure (8.10) as design (e) where it is
noticed that thé final shape is unsymmeirical. The area groups differ from
those remaining when the design criteria were symmetrical and the volume of
the structure is distributed so that the deflexion at J is 2,000 mm and that
at H is 2.978 wm. Once ;gain therefore both of the limited deflexions are
at their maximum allowable value in the final design. The statically deter-

minate structure in this case proved to be by far the heaviest.

8.5 Design Including Self Weight

A major facility of the computer procedure was the capability of

dealing with not only the case of several loading conditions; but also the

inclusion of the structure'!s own weight. This latter facility was found to

speed up the design operation considerably. This is due to the fact that on

the removal of a structural member the loads applied to the structure are

reduced,
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the ground structure of figure (8.10) was once again used to

initiate the design of two further trusses. The members of the ground
gtructure, however, were now collected into 26 independent area groups
hict ould range 1 railue between S .2 k Y 2 3 ;
which could range in valuc between 5 mu” and 12000 ma” . For bolh desiagns
the truss was subject to two loading conditions. In the first condition I
i
was 150 kN while L2 wvas removed. Under the second load condition L, was
2
150 kN while L1 was remcoved. In both cases variation in the sclf weight of
the members was included as a design parameter. To achieve this the density
. -8 7

of the material was taken as 7.69 x 10 kN/mmJ, The weight of any member
in the structure was represented by equal vertical forces acting at the two
joihts to which the particular member was connccted. In this way forces
wvere applied to every single joint in the structure.

The inclusion of self weight into the problem necegsitated an
alteration in the procedure to determine the benefit vector. To achieve
this the load vector at any stage was of two types, the actual external
loading and the self loading. Each of the structural members had a different
self load vector which contained the forces due to the weight of all the
members except the corresponding member° To predict the behaviour of the
structure on the removal of a member, the behaviours under the external load
vector and the corresponding self load vector were congidered independently.

. n ~s . a8 . R B -
The results obtained were then summated using the principle of superposlition,.

In this way the unknown factor aji of equation (7.20) was now given by

- AN/ A oo Ool
J/ J

Here a was the all round increase in the arcea of the mewbers
Jji
: j ts in a limiting value & . for
necessary before the removal of member 1 results g ;
E i i It rere the deflexions at node J after
the deflexion at node Jje 1ij and V... wer

. . oy~ Fl e i ubj ‘he external loadin
the removal of member i when the structure 1s subject to the externa ading



sctor and the sclf load vector e ey . .
vecltor ¢ H 5 () oad vector corresponding to member i respectively.
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Returning to the curront design, apart from stress conslraints,

the deflexions at joints J and 1 were initially rest

stricted to an allowable
3 In figure (8.12) the variati
3 M. Lo Ligur vediZz) The variation of the volume of the structure is

shown as its shape was altered. The structure with lowest weight was
obtained at once with 22 members in 12 remaining arca groups. The cross-
sectional arceas of those groups are given in the fourtﬁ column of table (8.6)
where the avea grouping is also indicated together with the initial feasible
values.

The shape of this least volume design is shown in figure (8.12).
It is noticed that this is symaetrical and once againAincludes undesirahle
members connecting joints A to I and G to J. The final statically deter-
minate structurc was obtlained after four changes in topology. Although this

8 3 : 8 3 ..
has a volume of 1.294 x 107 mm” as compared with 1,276 x 107 mm” of the

least volume design, it is clear that it is casier and cheaper to construct.
This structure has 5 remaining area groups the cross—sectional properties of
which are given in the final column‘of table (8.6).

In the second design the ground structure was once again subject
to the same two loading cases but with unsymmetrical design requirements.

No deflexion requirement was imposed at H. However, under the first loading

condition the allowable deflexion at J was limited to 3 mm while with the

seccond loading case acting this deflexion was limited to 2 mm.

The results of the design process are sumnarised in figure (8.13).

It is noticed that the structure with the lowest weight was obtained in two

steps. This structure is shown in the figure and is noticed to be unsymmet-~

rical as is to be expected from the imposition of unsymmetrical deflexion

criteria. Automatically proceeding to the statically determinate structure

indicated the existence of another local optimum. The shape of this structure
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ig also shown in the figure an g 18 . Coas
is a gure and has 18 members. Before obtltaining the

tatically determinate structure the commt o S . .
Siali C< Y L H ¢ structure the \,\.)1111;1_,\'{,(3)“ i"?t'\lt()iﬂ&‘tl(l{il_i.:)" removed the

joint at L so that this structure has only 1% members.

Once agai ‘heve is 1ittle it ] i i f
nce again theve is little difference in volume between the least

volume design and the statically determinate design. It is noticed in both
these designs that the volume of the structure is distributed toward the
pinned support A thercby restricting the deflexion of node J in an efficient
manner .

The foregoing truss designs have indicated that with heavy Jloads

. and severc deflexion criteria the least volume design is often statically

indeterminate.

8.6 Design of Cantilever Truss

The ground structure shown in figure (8,14) was obtained by super-
imposing a number of familiar structures. A selection of these candidate
structures, commonly sclected by practising designers, are the X, N and K
type trusses shown in figure (8.15). This ground structure has 21 joints
and 72 members collected into 26 area groups as tabulated in figure (8.14).
A ground étructure with this number of joints, three of which are fixed in

position, would require 207 members if every joint were to be connected to

- PO . o 11 ore duces
every other joint. The use of the reduced ground structure therefore reduces

N R PR 2 -5
the size of the initial problem and eliminates undesirably long compression

members such as that necessary to connect joints A and P.

. e s ) C
The designed structure was required to sustain its self weight and

two independent loading casese. The first load case consisted of point loads

of 50 kN acting vertically at joints J, X, L, M, N and P. The second‘case

consisted of vertical loads of 100 kN at X, 150 kN at M and 50 kN at P
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The clastic modulus and the density of the structural material was

AN
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907 kN/mm” and 7.069 x 10 KN/mm”.,  The member stresses were to be Limited

to 0.1 kN/mmz in compression and 0,16 kN/mm2 in tension. The deflexions at
joints B and C were limited to 1/240 of their distance from A. On the cther
hand a more severe deflexion limitation was imposed at.D and E, These
deflexions were limited to 1/300 of their distance from A. Therce were no
deflexion limitations imposed at I or G, It is clecar éhat the trial and
errov approach, usually adopted by practising designers is not very help-

ful in thig desigu. It is also clear that the outcome of the design exercise
cannot be forecast intuitively,

The variation of the volume of the structure with its topological
changes is shown in figure (8,16). It was noticed that for the first seven
changes in the shape of the structure, the stress considerations dominated
the design. After this stage, however; both étress and deflexion conside-
rutions became critical. The structure with tﬁe lowest volume cobtained is
shown in the figure. This had 20 joints and 42 members in 20 remaining area
groups. The cross—-sectional areas of‘these groups are given in the thira
column of table (8.7) which also indicates the initial feasible arcas
allotted to the groups.

Having obtained the structure of least volume the automatic
process reduced the structure to one which was statically determinate. This
had 20 joints and 34 members but a considerably higher volume. This is

shown in figure (8.17).

Tt is interesting to note that in the design of least volume both

stross and deflexion criteria are critical. The structural volume 1s

distributed so that the deflexion at B is exactly equal to its maximum

allowable value together with the compressive stresses in members AB and CD.
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P . ~4 . 41, S N 1 T e .
The portion of the structure beyond peint D, away from the supports, i

in

allocated just sufficient volume to praovoent

violation of the tensile stress
constraint of mambers MJ and UG, It is alse noticed that the redundant
members arce contained in the part of the structuprs belween A and II over
which the defloxion constraints are imposed,
The design of this structure was initiated several times, but from
different positions on the graph of figure (8.16), by manually intervening

and removing joints and members, The volume of thz structurce however was
never improved below that shown in the figurec.

It is noticed in the figure that joint Q with its connecting
members may be removed to be replaced by members JD and RS. Such an alter-
ation, however, does not reduce the volume of the structure. Furthermore
instability and construction considerations may prevent this.

The ground structure of figure (8.1h) was also used to initiate a
design with a more normal deflexion requirement. The two load cases of the
previous design were once again applied and the structurse was reguired to
support its own weight. At each of the nodes B, C, D, E, F and G the vertical
deflexion was not to exceed 1/240 the distance from A,

The progress of this design and the structure of least volume
obtained is given in figure (8.18). It is noticed that once again the
stressces dominate the design for the first 7 topological changes whereupon
the vertical deflexion at G also becomes critical. The inclusion of this
constraint into the design has resulted in the selection of a structure with
L8 members and 21 joints. Also, by comparison of this with the structure
selected in the previous design it can be seen that the section of the canti-

lever between nodes E and G now contains more redundant members.
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8,7 Conclusions

Structures, subject to o i
rucltures, subject to onc lToading case, designed to satisiy
satisly

fress constraints only, ma irn cut . .
stress sLra s onlyy may turn cut to be statically determinate. However
. ~eae a1 ot o kBT e R =T e -

the preceding design studies have shown that structures subject to dominating

K AP N T ot e oy . - -
deflexion requirenents and under several loading cases arc often hyperstatic,

This is also the case wilh unsymmcetrical design conditions., Turtherwore it
has been shown that slruclures selected as stat£cally determinate may be
very heavy, although in some cases these may be better from a constructional
stand point.

It has also been shown that it is advantageous to include +hz self
weight of the structure as a design variable., This is because incliuding the
weight of a member makes its position in the benefit vector more realistic.
Including the self weight also enables the removal of long members. These
arce either heavy or buckle easily, and in either case are unsuitable.

The investigation also showed that the final shape of a structure
depends upon the shape of tﬁe initial ground structure and the severity as
well as the nature of the design constraints. The first cxample considered
showed {that the manner in which the members are grouped together also affects
the shape of the final design.

T+ was found that the shape of a structure at its final stage
could be considerably different from that of an initial ground structure.

It was also found that many of these shapes could be unusual and difficult

to select intuitivelyo This was particularly the case when the design

requirements were varied and themselves unusual. It was shown that for a

‘given set of design requirements, more than one shape could be obtained.

The structure with least volume is not always the cheapest to construct but

iratlable z - > the
the proposed method makes several shapes available and from these the

Cheapest may be adopted.
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Table 8.5

Group




Group Comprises
NO o Members
1 AJ, JH, HG
o CD, DE
3 AB, BC, “EF, FG ‘
Iy DJ,\DH ié68;63<ﬂ2
5 JB, JC, HE, HF 1818.1L
6 AC 525,51
CE
EG 132@;oof,f3
9 | cH yi@&6a53‘
10 JE - 1046;02§ 
11| AD 790.65
12 | DG 7996
13 BH 78.
14 EJ
15 BG
16 FA
4 17 BF
18 BE
19 CF
20 BD
21 D
22 CG
23 EA
2k AH
25 GJ
26 AG
Table 8.6 : Properties of /thf/

design of figure (8

. Elna‘l Area

— (fnmz )




Table 8.7

Area Group

et

Initial area
insquare
millimetres

Fipnal value
in square
- millimetres

ol

i

O N oy

Properties of i ial
shown in flgures (8.1[_1)

19039 Ak
B646.30° | |
16965.85 |
10760.68
7962. 10 .

s |
1122949
58855;68:”'
v o
|

,;Qf5upifemgVed,
8hmosn s | ‘

. 3633.65

_ group removed |

_group removed |

the structures
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CHAPTER 9

SUGGES

FOR FURTHER WORK

rmesremny

Iy N .
The dynamic searc + . .
yhamc search method of non-linear programming is succossful

- A o > e B N

in designing both rigid and pin Sointes es w i
P Jointed frames when subject to deflexion

o8

~iteria. The design probler ) ! ) '
criter gn prov.iem can be formulated using either the matrix

isplacement or matrix force metl 5 } - ;
displacen rix force methods. However, the size of the design is

limited by the concept of sub-optimization and as a result no attempt has

been made to produce a computer program capable of designing general

structures that utilizes this method.

With a few refinements this could be achieved and the proposed
procedure forx-n the basis of a pfactical design method for redundant frames
with small numbers of variables. Stress constraints, including buckling
considerations, may also be introduced with little difficulty. However, it
may be found that with an increasing number of constraints the method
becomes lecss efficient.

The alternate mode non-linear programming algorithms proposed are
encouraging and these may be extended to deal with rigidly jointed,fra.me‘sa

In this way a practical automatic désign procedure could be produced for

. . - : ‘ . - ; d be
such frames as well as pin jointed frames. In such a procedure it woul

. . o . fo
necessary to formulate the force transformation matrices automatically for

all types of frame.

For the pin jointed frames dealt with in this thesis the permis-

i ] C roblem as functions
sible compressive stresses have been introduced into the pr

. . hgle
i ; hieved by using a sing
of the unknown cross-sectional arcas. This was acl y

to include several types of

general relationship for the radius of gyration

i ‘e the determination of
section. A more exact approach however would involve

and the least radius of gyration

N . . » . ~ea
a suitable relationship between the are
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c h t [¢] f 1 )
for e§01 ype of section used. Dye to the flexible nature of the p 4
. ropose

method these relationships could be easily introduced into th t
’ the automatic

design procedure.

¥hen designing rigidly jointed frames the effects of axial

deformations could be introduced into the design problem by replaci 1
Cile (S j‘ng —tﬂle

unknown sectional areas by functions of the unknown second moments of
R 5 [ areae.

| Due to the bending of members a further variable would also be introduced

into the design problem, namely, the distance to the extreme fibres of a

section from the neutral axis. This may be eliminated by determining a

relationship with the second moment of area for various types of section.

In this way all the constraints and the objective function can be expressed
in terms of the second moinent of area.

The alternate mode algorithm can readily be adapted to deal with
the resulting non-linear objective function. This can be achieved by
coﬁsidering the objective function coefficients to be variable quantities
equal to the instantaneous partial derivatives of the objective function
with respect to the corresponding design variable. The convex nature of the
objective -function wil.l probably accelerate the progress of the design as

was demonstrated in this thesis in connection with dynamic search.

It should also be possible to develop an automatic optimum non-

linear elastic design procedure based on the proposed algorithms.

The theorems of structural variation put forward in this thesis

have been proved capable of calculating in advance the effect of variation

. R LTt i
or removal of members upon the behaviour of pin jointed structures is

i ture b
therefore possible to calculate the volume of a fierlved structure by

the propert-
studying its parent structure. These facts may be used to vary prop |

i conomy. Once the
ies of structural members for the purpose of deglgn economy .

: assity for the analysis
ground structure is analysed there 1s 1o further necassity




of the deriyed structures,

These theorems may be utilized to produce a computer proced
- . edure

to obtain the minimum weight design of structures of fixed geomet Wi
i . - - QI 'Y vinen

ing the alternate de - ;
using @ “ mode procedure a large proportion of the computer time

is spent deciding upon the direction of constant weight’

By using the

theorems of structural variation this is available without further aﬁalysi”'
L S

and thus it is possible to avoid a considerable amount of computation,

The work presented on minimum weight design with shape as a design

variable 1s encouraging as it avoids arbitrary decisions and selects the
shape of a structure as dictated by the design requirements and by a
scientific method. The extension of the proposed theo'rems of structural
variation to include rigidly jointed structures does not involve any funda-
mental difficulty. It is possible, therefore, to produce computer methods,

based on these theorems, to design such rigid jointed structures with fixed

or variable shape for minimum weight.



10.

11.

12.

13.

14,

15.

16,

17.

203

REFERENCES

Maxwell, J. C., Scientific Papers
k]

ii, pp. 175-177, 1869.
Michell, A.G.M., Phil. Mag. S.6. Vol. 8. No 47, 190!
. Y » 3 ke

AN O J. ! st 1 )
Hcyman, 3 Plastic d. esign of beams and plane frames for minimum
material consumption‘, Quat. App e Math,, Vol. 8 1951
) e , .

Heyman, J., 'Plastic design i ini
, _ gn of plane frames for minimum weight',

Struct. Eng., Vol, 31, 1953,

Foulkes, J., 'Minimum weight design and theory of plastic collapse'!
Quat. Appl. Math., Vol, 10, 1953, ’

Foulkes, J., 'Minimum weight design of structural frames',
Proc. Roy. Soc., Vol. 223, 195k,

Livesley, R. K., 'The automatic design of structural frames',
Quat. J. Mech. Appl. Math., Vol. 9, Part III, 1956,

Kicher, T. P., 'Optimum design =~ minimum weight versus fully stressed!,
Proc. A.S.C.E., Vol. 92, No. ST6, 1966.

Rubinstein, M.F., & Karagozian, J., 'Building design using linear
programming', Proc. A.S.C.E. Vol. 92, No. ST6, 1966.

Majid, K.I., & Anderson, D., 'Optimum design of hyperstatic structures',
J. Num. Meth. in Eng. to be published.

Hadley, G., 'Non-linear and Dynamic programming', Addison-Wesley
Publishing Co., 196&.

Moses, F., 'Optimum structural design using linear programming’,
Proc. A.S.C.E., Vol. 90, No. ST6, 196k%.

Toakley, A. R., 'The optimum elastic-plastic design of rigid jointed

sway frames', Research report No. 4, Dept. of Civ. Eng.,

Univ. of Manch. 1967.

"An elastic-plastic analysis for framed

Jennings, A., & Majid, K.I.
9% ’ I . Struct. Eng., Vol. 43,

structures loaded to collapse',
1965.

Toakley, A. R., 'Optimum design using available sections', Proc. A.S.C.E.,
Vol. 9k, No. ST5, 1968.

'An algorithm for mixed integer problems ', Rand. Corpe.,

Gomory, R. E.,
P-1885, 1960.

alysis of space frames using
Paper Ck., Int. Conf. on
£ Surrey, 1966.

tComputer an
chniques',
University o

Jennings, A., & Majid, K.T.,
sparse matrix te
Space Structures,



204

18.  Toakley, A. R., 'The optimum design of triap

Int. J. of Mech, Sci., Vol gilated frameworks!',

10‘ b} 19680

19. Schmit, L.A., & Kicher, T.P.. 15 .

selectz o »ynthesis of material and configuration

ion', Proc. A.S.C.E., Vol, 88 righration
o Yole 00, No. ST3, 1962.

20. Schmit, L.A., & Morrow, W.M., 'Structural synthesis with buckli
* v _..ll’lg

COMStraintS' p C \ S { E w
CCe Asd. - ) 3
k) . 3 Ol. 89’ N( e DTQ, ‘9‘();\,

, v ign
parameter hierarchy', Proc. A.S.C.E., Vol. 89, No, STL

1963,

21. Schmit, Le.A., & Mallet, R.H., 'Structural synthesis znd the d
' ynt 2 es

2. Brown, D.M., & - : ¥ timi i
2 rOWn, , Ang, H, Sf’ 'Structural optimization by non-linear
programming', Proc. A.S.C.E., Vol. 92, No. ST6, 1966,

;:3 R()Ze 9 . Bu- 5 ! h gl"ad en pl"O ectlon m tho fOI‘ non~iinear Urogranl" ng‘
Y \] I e 1 t e (1 l e Nl )
J. SOCs Ind\lst. Applg }’13.'»110, \‘Ol. 9, I\O. Lf.', 196—'—0

o, . Schmit, L.A., & Fox, R.L., 'An integrated approach to structural
synthesis and anslysis', A.I.A.A., J., Vol. 3, No. 6,
1965. ‘

25. Palmer, A.C., 'Optimal structural design by dynamic programming’,
Proc. A.S.C.E., Vol. 9%, No. ST8, 1968.

26.  Bellman, R. E., 'Dynamic Programming', Princetown University Press, 1957.

27 Pearson, C. E., 'Structural design by high speed computing machines',
Conf. on Electronic Computation of the A.S.C.E.,
Kansas City, 19568.

28. Hemp, W. S., 'Studies in the theory of Michell structures',
11th Int. Cong. Appl. Mech., Munich 196L.

29. Chan, H.S.Y., 'Optimum structural design and linear programming',
Coll. of Aeronautics, Rep. No. 175, 19654,

& Greenberg, H.J«, 'Automatic design of

30. Dorn, W.S., Gomory, R.E.,
J. de Mécanique, Vol. 3, No. 1,

optimal structures',

1964,

10ptimizing the shape of pin-jointed

31. Palmer, A.C., & Sheppard, D.J.,
I.C.E., Vol. &7, 1970.

structures', Proc.

L.P;, ‘Optimization of truss geometry’,

32.  Dobbs, M.W., & Felton, °
A.S.C.E., Vol. 95, No. ST10, 1969.

Proc.

. . i 3
33. Clarkson, J., 'The elastic analysls of flat grillages’, Cambridge

University Press, 1965.

i ' E C tion
34.  Wolfe, P., 'Methods of non-linear programming’, The Rand Corporation,
) R-4O1-PR., 1962.




Toakley, A. R., 'The op’él_ri\ﬁﬁm\”\“icl\ef
' Resgearch Report N
Manch. , 6.

Castigliano, A., 'fl‘lléor/éﬁéj d
ses applic

)

tions!



PUBLISHED WORK

The work presented i wapt 2 i
presented in Chapter 2 of this thesis has heen published

in the form of a paper, written jointly by thie author and Professor K.T,Majid

The paper, entitled 'Optimum Design of Frames with Defiexion Constiraints by
Non-Linear Programming' was published in 'The Structural Engineer!,
Volume 49, Number 4, April 1971.

The work of Chapter 4 has been presented at a symposium of the
Planning and Transport Research and Computation Co. Ltd., entitled 'Cost
Models and Optimizatiorn in Road Location, Design and Construction', held in
London from 8th to 11th June 1971. This paper also written jointiy with
Professor K.I.Majid is entitled 'On the Optimization of Problems with Non-
Linear Constraints' and will be published shortly in the proceedings of the
above symposium,

A paper on the theorems of structural variation, based on the work
presented in Chapter 6 has been submitted to Professor Sir John Baker, OBE.,
Sc.D., F.R.S., C.Eng., for consideration for publication by the Royal Society.

It is hoped to follow this in the near future by a paper that encompasses the

work presented in Chapters 7 and 8.





