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SUMMARY,

The present investigation is concernesd with tha com~-

putation'of three-dimensional fturbulent boundary layers., A

S
£
2

nuwmerical mebthol has been developed to solve the three-dimensit

ing an iterative scheme based essentidlly

E

.bauniary layer eguation:
on the Crank-Nicholson finite difference approximation. The schome
also employs “ streamline-{ype transformation which enables the
individual velocity profilss to be iterated for indepsndently of
each other so improving tns efficiency of the calculation., The
effective viscosity is computed from the mixing leagin concept and
an empirical correlation for the outer 1-a,ye£-. The logarithmic law
of_the wall is used as the effective wall condition, A listing of
a computéf program written in Foriran iv to calculate boundary
layer developument using tiis method is also included.

Extensive comparisons of tha present theory with bota
experiment and alternative theories have been included.  Two-
dimensional flows have been calculated with reasonabls success,
préd.ictioné far which compare favourably with caleunlations based
on Heazd's entrainment approacn; and two.severe cases were treated
cémpetently. In the first the pressure gradient was suddenly
removed from an equilibrium layer, and in the second the lovwWas
mainvainad in a near-separating condition, Thelpseuda-three—
dimensional flows considered show that crossilow.angles can be

treated quite successfully while in three-dimensional comparisons,

even though the crossflow iz predicted well, the erossflow augle
tends to be significantly underestimated. The fwo threse=dimensional
tuplbidient boundary layers calculated provide good overall sgreement

with experiment.



@ present work provides a firm basis on wnich to
igate the three-dimensional turbulentv boundary
layer and the enclosed ran will provide a useful tool for
predicting such flows. It is felt however that the effective
viscosity model used in the outer layer should be more broadly
based by considering muwre experimental configurations for the
purpose of the empirical correlation, A great bensfit will be
obtained overall by considering tnis problem even on a two-
dimensionsl basis. Nevertiieless the present scheme is capable

of copiug adegquately with varying Uypes of boundary layer de-

yvelopment in botn two and three dimensions.
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INTRODUCTION.

Since the beginning of this cenbtury an over increasing
amount of atvention has been given to the investigation of boundary
layers with a wew o being able to completely understand the
behaviour of the boundary layer and its effects as they cccur in
varicus branenes of engineering and teehnology, notsbly in the

eeronautical and compressor and turbine fields. t must be expected

that the purpose of the current intensive research is to provide

ot

he designer with a tool for determining performance characteristics

without having to resort to the laborious process of rig simulation,

and from this point of view il must be admitted that the capabilifties
of the seience at the present time are poor.

Methods currently available for calculating turbulent two-
dimens Lonal bouniaxy layers aré numerous anl generally (with a few
exceptions) of poor performmance and restricted application since
they are greatly dependent on empirical information extracted from
a smell number of experiments. There, moreover, is an inereasing
awareness at the present time that methods of calculation generated
for the two-dimensiond! boundary layer are of limited practical
applinatiaﬁ unless they can be modified to take account of three-
dimensional effects, The purpose of the present investigation
is in fact to geuerate a metnod for calculating three-dimensional
turbulent boundary layers. Y

There is a tendency when referring to a boundary layer as
being three-dimensional to mean simply that a crossflow componeilt

of velocity exists (i.e. there is flow within the boundary layer

norimal to the flow at the outer edge) ‘'so that the problen mizght in
the mathematical sense still be two-dimensional. The expression
'three~dimensional' will here be reserved for flows three-dimeunsional

in the mathematical sense i.e. in the more resiricted seanse. and



(vii)

boundary lajyers whose parametérs are dependent on two space
varisbles only but also contzin crossflows will be referred to as
'pseudo-three-dimensional'.

A method is presented for calculating laminar or turbulent
boundary layers over two- (w;tn or witlout crossflows) or three-
di;zel-.si;:na-.l'salut;on spaces. The solution scheme to be discussed =
restricted to the problsem of steady, incompressible flow over a smooth,
flat or developabls, impermeable swrface - 13 based on the boundary
layer approximation to the time-averaged turbulent Navier~Stokes
equations, complemented by an effective viscosity function wnich
makes use of the mixing length concepb. The scheme to be discussed
uses the legaritnmic law of the wall, which is well substanti-a.te'd
for the two-dimensional turbulent boundary layer, as the boundary
condition at the wall and a frequently postulated extension of tais
law to three dimensions, In this manney skin friction at ths wall
is provided implicitly. The only_atéer assumption required to extend
the twn:-dimnaiona.l calculation to tlree dimensions i.:: the assumption
that in the turbulent boundary layer the shear stress vector is
parallel to the maximum rate of strain vector oi". the moa.;a. flov. It
must be streased hoyever that the computer program waich has been
wri£%an is structured in such a way as tp make it reasonably siﬁple
to test effective viscosity hypotheses different to thakw used in the
_ present calculations. The numerical method is essentially an iterative
scheme based on the Crank-Nicholson finite difference approximation,
The general approacn to the problem is similar tc that employsd by

Spalding in two-dimcnalons &l though the mathematical techmiques used

= Wtk L
L

hevre nave necessarily been chosen so as to facilitate the three-
dimensi onal caleulation,
n A iy \ 1 wif? o - P 5 £ 14 ’ i 441 4 .4
Towodrd the aixl of' this .-‘.»!!"I.-"u..»u,l.l_",. RS TRty R L2 G » EeNTIoN

wed a similar dpprogch.to the sane

oft the guthor that Nash had attem
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problem but had based his calculations on the turbulent kinetic
energy ¢quation as initiated by Bradskaw in two-dimensions, The
only experiment for which predictions of Nash and the present method
have been compared show that both methods have more or less the

saime capaﬁilities feor' calculating crossflows,

Owing to the introduction of a transfarmation closely
resembling streamline ccordinates the time taken to generate
solutions using the present method on the IBM 5360/65 computer
was fournd to be reascnabl:,: efficient. 3

One problem that wes thought would present some difficulty
in the present csaleulation methaé;was that of' preseribing the
side boundary conditions to the problem,glthough if sufficient
care is taken itwas found that this difficulty can quite easily
be overcome, g

We now proceed to give a short account of the contents
of the chapters which constitute this present work. Chapter Cne
gives a briefl description of the concept of the béundary layer and
states the equations governing the motion of the three-dimensional
turbulent boundary layer while in Chapter Thr‘ée are collected a
number of experimental and theoretical results which will either
be useful in the derivation of the scheme for the solution of the
boundary layer equations considered in Chapter Four or be used as a
check on the results obtained, Chapter Two gives a brief swmnmary
ol the methods presently in use for caleulating two-dimensional
boundary layers and the attempts that have been mede to include

crossflos ‘effects or to caleculate three-dimensional boundary layers.
Particular attention has been paid {0 the amount of empirdic
fopnation necessary for each of these metnods in two dimensions ang
the feasibility of' obtaining the additional empiricism nesded to

extend the individual methods scope of application beyond the two-
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dimensional case. Also ineluded in Chapter Two is a more de-
tailed account of the reasons for the choice of the approach to
the problem used in theé present investigation.

A description of the proposed solution scheme 1s to be
found in Chapter Four and a listing of the computer program written

ool
wills

in Fortran IV is supplied as an appendix. In Chapter Five
progran has been used to simulade a number of two-dimensional ex-
periments with reasonable success. The empiriceal constants inherent
in the assumptions underlying the calculations were adjusted to ensure
agreement with a two--c':‘imensiona.l experiment, The two constants required
for the law of the wall were found to be adeguately represented by .
their accepted experimental values i.e. in the usual notation
e = el A= 1,9

and as might be expected it was found necessary to take the same
value for k in Prandtl's mixing length hypothesis as that used in
the logarithmic law of the wall. The only other empirical inform tion -
that involved in determining the position of the outer region of the
boundary layer 1.e. the region in which the mixing length ceases to
provide an adequate explanation of the flov - was obtained empirically
to provide agreement with ore relarding two-dimensionzl experiment,

Having determined the empirical constants and hypotheses to
be used ard validifying the choice by simulating a number of other

two-dimensional experiments (Chapter Five) & number of pseudo-

2

three-dimensional eni three-dimensional boundary layers were simulated
Chapter Six with. some successThe triangular model ror the polar plot
was largaly confirmed by these calculations, which also gave & vely
convincing account of the process of crossflow reversal, "L".-'.q- finite

difference scheme was verified by means of a simulation of =z laminax

boundery layer for which an analytic solu tion existeds
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1.0) Introduction,

The concept .of the boundary layer was introduced
by Pr@ndtl at the beginning of this century to explain why
in the flow of a real fluid over a streamlined body the strean-
line pattern at high Reynolds numbers very closely resembles
that of a perfect (i.e. frictionless) fluid. In such flows,
Prandtl suggested ,the effects of the viscosity of the fluid
are confinsd to & narrow region enveloping the body and the
fluid in the remaining region is for all practical purposes
inviscid,

In non-viscous fluids contacting layers of the fluid
moving relative to each other experisnce no tangential forces
(i.e. frictional or shearing forces) but only normal (pressure)
forces and fluid layers close to an immersed body move over the
body without experiencing any retarding effects. In real fluids

“however fricticnal forces come into pley and effect shearing
stresses between adjacent layers of fluid possessing relative
motion, aand in particular prevent layers of fluid ad jacent to an
immersed body from sliding over the body i.e. a 'no-slip' conditicn
is introduced. This means that even in a fluid whose internal
relative motion is not of such a magnitude as to produce frictional
forces, the containing vessel or any immersed body-moving relative
to the fluid may produce significant frictional forces througliout

the region termed its bounda layer. This layer is that region
¥ &

o

over which the velocity of the fluid varies between the zer

o]

velocity of the fluid relattive to the wetted surface: ani th

velocity in the body of the fluid at a point where the flow can

be considered Trictionless. Characteristically this region is
very narrow so that velocity gradients through tHe layer and
particularly close to the wetted surface are very large oence
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1,0) contd.

giving rise to the shearing stresses previously described.

Also at high Reynolds numbers the phenomenon known as

r

turbulence i.e. the amplification of smell oscillations within
tna flow,

Lo

lays &

significant part in determining the behaviour

cause of 2

of ths flow close to the immeysed body and is effectively the
=L

further increase in the shearing stress within the
boundary layer.

It is tnhe purpose of -the present chagter to consider
the equations of motion governing the flow within the boundary

layer and in these to take account of' the effects of turbulence.

Tha three-dimensional turbulent boundary layer eguztions,

The equations governing the flow of 2w gﬂ&v::e:m- Pets fluid,

the equations which in fact form the basis of the whole science

of fluid mechanics, are the Navier-Stokes equations which can be
written for the

steady flow of an incompressible fluid with zero
body forces as

au u 1 dp . P L
Tl s B e R e it el e ) op e + —= .
ax ay 9z o0 ox ay” 9z (1.2.1)
av v av 1 dp s v s '
S R e R A S ) A8 e + ki
ay 92 p ay = SR ays Pk (Lsd 2)
a aw i 1 2p P Fw Pw <
Use ¢+ Voo Woem = == == 4y 4 = 1.1.3)
o ) p az ox” oy z (1.1.3)
a , gv v
iy sy - - O ‘r. ._: 'J.
ox oy = Oz Aake )
where u,v,w are the localised velocity components asscciated with
the rectangular co-ordinate directions x,y,z respectively, p is
the pressure and p,v are th

ths fluid propérties density andpkinemat
- - - t



3-

contd,

viscosity. These four eguations contain four unknowns u,v,w,p

and it is thus possible, at least in theory, to solve for ths

four unknowns from equations (1.l.1-4) once the proper boundary
conditions have been prescribed. In practice these equations
have been solved in their entirity only in a selected pumber of'
simple cases, In particular the sguations governing the flow
of a perfect fluid are as above but with the second order terms
deleted. This simplification is significant in that although the
solution of the eguations is consideradbly simplified &t the same
time the conditions needed to bg_specifie& at boundaries in a real
fluid cannot all be satisfied. :

The most promising approach to the solution of equations
(1.1.1~4) in many cases of practical interest is to use the boundary
layer concept to divide the solution space into two regions. In
the first region, the main body of the fluid, wviascous forces are
to be ignored and the flow is to be treated as inviscid., The second
region is the boundary layer in which although viscous forces need be
congidered it is possible to obtain simplifiad equations of motion
which hold throughout this region. Before doing this however
consideratién must be given to the problem of turbulence.

In laminar fluid flow, characterised by low Reynolds
numbers, the fluid particles during the course of their motion move
along regular smooth paths. As the Reynolds number is increased
hovever the regular motion of the fluid particles breaks down
and superimposed on the overall teandency of the flow are random
flu:tuations of the individual particles giving rise to turbulens

=

motion ani high vorticity. The process of change from laminar

motion to turbulent motion is termed transition ani is of particular

relevance to boundary layers.



1.1) contd.
The usual approach to the problem of turbuleénce is to
sﬁbstitute for the velocity components u,v,w, which are varying
randomly with time about some mean value at any particular point,

composite velocities of the form

us=1u+ ul (T:1.5)

where u is the mean value at a point of the component of motion

in the direction of tne co-ordinate axis x i.e.

to+T
E:%—f u dt
to

where the integration is taken over a sufficiently long period
o time T to ensure that u is independent of time. The component
of velocity u' is thus the fluctuation about this mean such that

T o
Defining expressions of tae form typified by equation (1.1.5) for
u,V,w,p, stbstituting these into the Navier-Stokes equations and
averaging ths equations over a time interval T leads after manipulation

teo the equaticns

au T T i - Pu P &Fu
[
.../_3 aie 2 T ¥ 1 ey oy R i S
G e G RN ) (T5de5)

o v L Py gy L5 otey
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contdy

]
T
I
£
=
+
I
<
=
+
i
N
iy
L]
v
o
o,

aw _ : =
4 il (1.1.9)

where the bars have been dropped from the time-averaged velocity
components and pressure for convenience since eguations (1.1.5—9)

hold for laminar flow if the fluctuating components are taken as

zero. The additional terms on the right hand sides of equations
(1.1.6-8) compared with the original Navier-Stokes equations can

be seen to play a role similar to the viscous terms on the rignﬁ

hand sides of eguations (1.1.1-3). For this reason the main effect
of the turbulence on the mean motion is To imbue the motion with
Fdditional stresses which are called apparent or Reynolds stresses.

It should be noted that the equations for the tims-averaged quﬁntities

u,v,w,p cannot now be sclved unless additional information is provided

‘for ths evaluation of the terms which contain time-averaged

fluctuating quantities.

As has already been stated it is possible to introduce
into the full Na%ier~5tokas equations some simplifying assumptions
relevant to the flow in theé boundary layer. This boundary layer
approstimation holds when the boundary layer thickness is small' in

comparison with a'characterifstic length', and is tantamount to
it &8 :

Ler)
e
0
o
Q
e
>
o
o
3
{11

assuming that the rate at which guantitiess change a
(=] - (=]

is much greater’ than the rate of change of

=%

layer is traverse

el Es
e [

quantities in directions parallel to the plane o:

the boundary layer is developing.  Thus, if z is the perpendicuilar



contd.

distance measured from the

wall into the body of the fluid and

X,y are co-ordainate axes in the plane of the wall, second

order derivatives with respect to x and y can be disregarded in

preference to other terms in the Navier-Stokes eguations. Although

the reasoning given

associated with the

is the same and because a detailed

here lacks the

boundary layer

more rigorous treatment of ten
aporoximations the consequence

derivation of thz boundary

layer eguetions for two-dimensional flow is provided by

H.Schlichting [1] and the extensions to three-dimensional and

Jfurbulent flows are very similar and throv 1ittle light onto the

mechanism of the flow no more will be said here beyond guoting

the boundary layer equations for three-dimensional turbulent

motion:
gu au sk op
uax-r-vay-l-waz i
v ad o _ Lo
uax+vay+waz— oY
gu "> B N
x oy T ane

(1.1.10)

(131 3L)

(1.3:12)

The efflective kinematic viscosities, defined such that

s s T
ReX dg Shcln Aoy
ey oz dz A

were originally

between ths

of vistosity v in Stokes' laiw.

in equations (l.l.13-1k

effective Kinematic viscosities

The laminar

very close to the wall and are usually ignored,

equation associated with the

-
&

direction reduces

and tha

shear

(1.2:33)

(L aLah)

invroduced by Bousinesq who drew the analogy

e o N 13 ] -y s
coeliliciens

are significant only in a narrow re

The

as

a2

stress

glon

consequeance



T

COntd s

of the boundary layer approximations to

Thus, p is & function of x and y only ani can be determined
from the freestream pressure distribution i.e. the velocity
distribution at the outer edge of ths boundary layer must be
known in order that the pressure distribution can be derived

from Bernoulli's equation:

p +% p(U* + V) = constent (1.2.15)

whare U,V are the freestream veioﬁity components assoclated
with the x,y di~ections respsctively. It should be noted
that the consequence of equation (1.1.15) in the boundary layer
equations is to-impo.se a condition of irrotationality on the
freestream velocity distribution.

The three equations (1.1.10-12) involve the unknowns
u,v,w and it is thus possible to solve these equations for
u,v,w, once the correct boundary conditions biave been prescribed,

if Vg pey can be correlated with the mean velocity field. An

alternative approach is to make use of the turbulent energy squation

.?: % |.§:§ T du T 9V
ua}{+vay+:raz+uw e Wil
+ v 'f.éw’p'+w't +e€=0 (1.1.26)

(obtained by manipulating tle Navier-Stokes equations, time—
averaging and making use of the notation introduced in egquation
(141.5)) to provide an eguation from which the turbulent shear
stress can be determined if the turbulent kinetic energy

t= (' xtty w'z)



1.1)

1.2)

m

time averaged quantity

= wip' + w't
e

can be provided by some empirical sources

The three-dimensionsl momentum integral equations.

(dissipation of turbulent energy by viscous forces) and the

A simplification to the equations goveming the behaviour

of the boundary layer is introduced by integrating the boundary

layer equations (1.1.10-12) through the thickness of the boundary

layer to provide the momentum integral eguations. When such an

approach is employed it has become customary to write the boundary

layer equatiopns in 'streamline co-ordinates! i.e. to replace

the x,y co-ordinates by the co-ordinate system formed by the
2

projection perpendicular to the wall & the external streamlines

4o

ani their orthogonal trajectories. Velocity components within

the boundary layer parallel to the wall are resclved similarly.

We consider a co-ordinate system in which ¢ is the metric measured

along a streamline 7 = constant and denote the velocity components

within the boundary léyer in the direction of &,n increasing by

ug, Uy respectively so that at the edge of the boundary layer

1.11_=U1 ’ u5=0.

Integrating the boundary layer momsntum equations as described

and using the continuity equation to eliminate w the following

equations are cbtalned py:

50, Lo 80y au ;
1. Brnihitss 3 & Uiz + gua ) ok
12  haoop o (201 + & )
I,Ia Jl'_‘_; ) -.-
e ""IE (0:.,1 - 923) = b.‘."-_

flg dg )

(1

2 1)

.
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304 1l 063 gUs o 1 A e b
Ui aé h.: &Tj 2 aé 62-!- IIQUJ. an (Qim+922+51 )
R R (1.2.2)
s & _""‘""2

e i) Uz = | 2408
Gz2 --f ( = U:.) s dz, 631 = f e dz
; L % :
® oa 2
. . £ = -
i bt chee B
o] A #

the displacement thicknesses:

o

5.* 3[ ( -%i‘)dz gt -f P dx (1.2.4)
o (s]

and the coefficients of friction:

el S R = To2 &
G = Leils e . (1.2 .3)
b | %pUig fa %pU:._z

where 7oz, Toz are the components of the turbulent shear stress

at the wall in the &,n directions i.e.

= 1
zf.).i. :,5_‘:1 Sl (1.2.6)
-~ '1,.. 1 »

i
o
.

F
-

e
Lt
8
{
P

4
[
Q

the lef't hand sides being evaluated at z
factor hy is that associated witha 7 and is assumed to be a

function of ¢,n such that
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as® =% 2 48 + na® a4 + ad.

In 2 similar way it is possibie to obtain energy integral

Eal

equations but these are rarely used as a means of calculation
and will not be discussed here. . Equations (1.2.1-2) will need
obviously be f.:.upplameﬁted by other relationships since these
two equations contain seven independent unknowns (;Sz* was
eliminated using 8&* = 031 = 043). In the two-dimensional

problem the one momentum integral equation contains the three

, unknowns

611 ¥ 51* H] cfi - 1

It should be pointed out that all the equations
summarised in tais chapter are generally accepted as being
applicable to boundary layers developing over boundariss of
Ae0all : : m o
terge curvature (in comparison with the boundary layer thickness)

and not only on flat surfaces.



CHAPTER YR

METHDS OF COMPUTING BOUNDARY LAYERS,




2.0)

ntroivction.

The numerous and varied methods that are currently
available faor the calculation of the two-dimensional turbulent
boundary layer testify both to the large amount of attention
taat has been given to the problem over the last ten to twenty
years and also to the lack of reliance the individual contributors
placed on contemporary methods of solution.

These calculation methods can be broadly divided into
two groups the first of which, by far the largest and most |
profuse, are those termed integral methods in which %he boundary
1éyer equztions are abandoned in favour of the momentum integral
equations so reducing the problem space by one dimension. In
tha two-dimensional boundary layer, integral metaods are generally
based on the assumption that the shape and scale of the velocity
profile are adequately represented by two parameters. As a means
of caleulating these parameters the integral equation (waich
contains fhree unknowns any two of which on the basis of this

assumption specify tae third) is solved in conjunction with some
4 1

‘ancillary relation, which will have to be determined from empirical

correlations in combination possibly with some hypothesis. It
is the different approzches employed in fulfi;ling this last re-
quirement that have given rise to the diversity of current
calculation methods of this type.  The second group of calculatioﬁ
methods inecludes those methods which are based on the boundary
layer equations with the necessary additional assumptions made
concerning the fluctuating eomponents of velocity.

Although at first sight the prospect of gendérating
empirical relations to explain the small scale behaviour of iie
turbulent terms of the boundary layer equations, tne process o

turbulence not being understood, seems quite formidable when



12,

contd,

compared with that of correlating gross boundary layer
paramaters whose signii'icance is more easily appreciated,

this in fact transpires uot to be so. The prominence of
integral methods is mare easily understood when one realises
taat they were calculation methods developed with the intention
of being applicd to the slide rule ani desk machine. These
same methods & computation would obviously make the solution
of the boundary layer equations too lengthy a task. Today,
witn the development of the high speed computer, one would
expect to see some movement away from this one-sided situation
but regretfully thnis is not so to any marked extent. The
present author is of the view that since methods based on the
boundary layer equations are more readily adapted to three-
dimensions, once a satisfactory two-dimensional method has been
developed,more time could be profitably spent in improving

the methods of calculation based on these equations.

-

Integral methods of calculation.

Restricting the present discussion to two-dimeasional
boundary layers (i.e. where the problem is dependent only on
two space variables and the velocity component v assoclated
with the third dire§tion is identically zero) we will adopt

the notation gensrally used in this context:

8= 611 , &% = 8% , U=Ug , 6, = ¢,
i 14

and introduce the shape factor H, and the Reynolds number RS

based on the momentum thickness
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2.1) contd.

A 5* 2 ﬂj. ;
o= 3 3 Re - ] (2.1-1)

The momentum integral equation can now be written

Hg = Op % ~ (He1) Fo —g (2:2.2)
ax 2 il

' Equation (2.1.2) is solved for R, the shape factor H
ani coefficient of friction Ca being provided respectively

by an empirical auxiliary equation which is usually of the form

(8. 3:3)

Ble:

aH - 8
6= = X L2

where L, M are in the most general case functions of H, Ra, and

a skin friction equation which can reliably be assumed to be

of tha forn

Cp 7 f(RgsH) - . (2.1.4)

It is also generally considered that specifying the parameters

R.,H is sufficient to define uw/U as a iunction of z/6.

el
Thompson [2] has given a thorough assessment of tae
dependability of the various two-dimensional auxiliary equations,
as distinguished by different L,M in equation (2.1.3), available
for calculating two-dimensional incompressible turbulent boundary
layers ani compared theoretical predictions with a wide range of
published experimental results. A point of fundamental impertance
revealed by Thompson (by the discrepancy between measured 6
L}
development and that as predicted by the momeatum integral equation
evaluated using experimental shape factor distributions) is the
presence of waat are almost certainly significant three~dimensional
effects in the majority of what were intended to be two-dimenslonal

boundary layers. The effectiveness of the various auxiliary
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equations was compared using the measured RG distributions and
Thompson concluded as a result of his calculations that
Ywith tone exception of the entraimnment equation
of Head, no shape factor equation provides satis-
factory agreemeni with more than one half of the
measured developments that have been used!
He also points out that established methods have been generally
accepted on the basis of only a few comparisons with experiment
that have produned comparatively good results. Thompson taus
concludes that,sith the exception of Head's entrainment method [3]
which gave reasonable agreement wita exgefiment, all methods for
calculating two-dimensional turbulent boundary layers are generally
indifferent to very poor. Two additional points made by Thompson
cannot be stressed too often. The first is that two-dimenslional
experimental results must be accompanied by some indications as
to the effects of convergence or divergence of the flow and,
secondly, coﬁputation methods must be compared with a wide range
of experiments bef'ore their validity can be established. Thompson,
ratner surprisingiy in view of tane poor performance he atiributes
to integral metnods in general, appears to dismiss calculation
methods based on the boundary layer equations with the remark:
'In the case of turbulent flows, no universal expression
is known relating the Reynolds'! stresses to the mean
velocity distribution,-ani no exact solution of the
boundary layer equations are possible.!
Other integral psthods have been developed which make
use oi' the so—-called energy integral equation and the moment of
3

momentum integral equation which determine the growths of' the

energy thickness
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. =f (1 . (%)7 ¢ g (2.1.5)

o

ani the moment of momentum thickness

6, =[ z'( ..ﬁ)% dz (2.1.6)

respectively in a mamner similar fo the way equation (2:152)
determined the growth of the momentum thickness 8, The shape
factor equation is carried overQSﬁmilarly to provide an equation
for the developments of the shape factérs based on &%*, Gz
respectively. Comments concerning the performance of these
methods will be deferred until the next section.

It has only been in receut years that integral methods
have with much success been applied to three-dimensional boundary
layer calculations - all such attempts have though to the know-
ledge of the present author been restricted!to pseudo-three-
dimensional boundary layers and no attempt has yet been made to
solve thé three-dimensional integral equations over a two-
dimensional (x,y) space. A review of the state of the knowledge
(1965) of' three-dimensional turbuleat boundary layers, particularly
with reference to calculation methods, has been made by
Cooke [4] who noted that' all contemporary calculation methods
assumed small or zero cross flows-and used established two=-
dimensional velocity profiles and skin friction equations for
the three-dimensional. streamwise counserparts. .Cooke also re=
viewed the various proposals put forward for -the representation
of' the crosaflow velocity profiles and more recently Cumpsty

has made comparisons of experimental three-dimensional velocitr
f ! W
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profiles with those obtained from the various proposed pre-
diction methods., Cumpsty [5] has shown that the stream-
wise velocity profiiles and skin fricton can quite adequately
be approximated to by the two-dimens lonal velocity profile
families and skin friction laws. The triangular representation
of the crossflow profiles, generally ascribed to Johnston,
is alsv considered by Cumpsty [6] to be applicable in a wide
range of situations and to be easily extended to cases where
crossover profiles exist. ©Some means of effecting the calculation
of' the parameters on which Johnston's triangls depends are still
yet to be formulated however. The crossflow profile proposed by

Mager

Uz

W a( _.e)‘ 8s (2.1.7)

where & is the boundary layer thickness and @ is a parameter
representing the extent of the crossflow, Cumpsty consilered
to be applicable only in ths case of modest crossflows and in
a selected number of other situations,.

Calculations of pseudo-three-dimensional boundary
layers have been made by P.D.Smith [7] who considered the flow
over an infinite swepl wing and compared his calculations with
some of his own experimental data. Smith tested in all six
different variants of integral methods anl found in all his
calculations consideruble discrepancies between theory and
experiment which Smith attributed to either the inapplicability
of' the two-dimensional skin friction law to three-dimensionzl
flow or to the neglect of certain terms in the derivation of
the streamwise momentum integril equation. Smith considered

the former to be the more likely cause., Mager's croagsflow
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representation and a power laﬁ approximation to the streamwise
Iprofiles were used throughout Smith's calculations.

The same problem was considered both tneoretically
and experimentally by Cumpsty and Head [8] who extended the
entrainment method of Head to account for crossflow (a possibility
also investigated by P.D.Smith), A family of two-dimensional
vélocity profiles constructed by fhompson was used in conjunction
with equation (2,1.7) to represent taue velocity distributions.
Predictions of 6, H and crossflow profiles were found to be con-
siderably underestimated the 3i;cua.tion being improved somewhat
by a small adjustment to the spanwise velocity which produced
ttolerable agreement' with expsriment. There seems to be some
doutt as to the fleasibility of attempting the experimental
simulation of the infinite swept wing, a point wnich Cumpsty and
Head alude to but Snith dismisses. The type of flow studied by
Cham and Head [9] would seem to be more reliably two-dimension
(in the mathematical sense), the experiment being concerned with
a rotating circular disc. In this case the velocity representation of
Thompsen was said to be of considerable accuracy and that of Mager
reasonable although to produce overall agreement of the theory
(similer to that of Cumpsty and Head) with experiment a 30%
reduction in entrainment as compared with the two-dimensional

theory was required.

2,2) Mathods based on the boundary layer equations.

The obvicus apprcach to the selution of the boundary
o

layer equations iz to assume that the local turbulent shear

stress can be empirically related to the mean velocity. Such

an approach has been mude by Spalding and Patankar [10] who
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solved the heat-, mass- and momentum transfer equations for
the two-dimensionzl turbulent boundary layer. The equations
were written in terms of 2 non-dimensional stream function to
account for boundary layer growth and the logarithmic law of
the wall was employed as the effective wall condition. The:
calculations performed by Spalding and Patankar made use of

Prandtl's mixing length although the point is made that any

other hypothesis for ¥ could conveniently be incorporated

into their solution scheme. Spalding and Patankar, being primarily

concerned with the problem of heat transfer, gloss over the
capabilities of their method for compﬁting turbulent boundary
layers but the few predictions that are available appear to
give plausible agreement with experiment,

Eradshaw, Ferris and Atwell [11] chose %o base
their calculation method on the turbulent energy equation on
the assumption that the turbulent shear stress was lilely to
be more closely related to other properties of the turbulence
than to the mean velocity field. Bradshaw in the solution to

the two-dimensionszl problem defined the length parameter L

Le =789
where T = = u'w! is the kinematic shear stress outside the

laminar sublayer, and introduced functions

L 'r‘”2
BT A s
G s (ptw? + tw')
- TifB_
" max
e T
el L)
(V]

where L/ § ani G were taken to be functions of 2/5 and a Was
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taken as constant. These assumptions allowved the boundary
layer equations (1.1.10,12,16) to be solved for u,w, . As
with the method of Spalding the boundary conditions for u at
the wall was the logarithmic law of the wall. The additional
assumption of a linear shear stress relationship at the wall
and in the freestream 7 £ 0 completed the boundary condi%ions
for the problem.

1e situation with respect to thg dependability
of the methods of Spalding and Bradshaw is very much as des-
cribed by Thompson to be the case for integral methods; the
published literature on both these methods shows only a few
comparisons with experiment which have all the appearances of
showing reasonable agreement.

Recently Nash [12] has extended the method of

Bradshaw and calculated a three-dimensional boundary layer
(a simulation of the experiment of Hounung and Joubert [13])
with promising results, The only additional assumption made,
over those introduced by Bradshaw was that the shear stress and
the maximum rate of strain of the mean flow have & common line

of' action at any point i.e.

sle

Wt vt oz B
9z

A recent investigation [14] made to determine how
prediction methods of all types would compare in calculating
two-dimensional turbulent boundary layer developments came to the
conclusion that 'most prediction methods do rather well'. Some

P

attempt was made as part of this s tudy to rank the different methods

in order of performance by placing each method into one of three
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groups. The first group comprised of two me thods based on
each 01'; the energy integral equation and moment o momentum
integral equation, one based on the turbulent energy equation
(in associaﬁon with the boundary layer equations) and two based
on the boundary layer equations, Calculations ovased on the

entrainment approach fell mostly. within the seconi group.

2.3) Proposed solution scheme.

Having developed a method of calculating two-
dimensional turbulent boundary layers the amount of effort
necessary to extend the calculation method to the three-
dimensional p_x-oblam is primarily influenced by whether the
original method is based on an integral equation or on the
boundary layer equations._ The additional assumptions required
to extend an integral method are considerable, witness to this

'being provided by the additional infomation necessary for the
extension of the two-dimensional method to f_:he pseudo-three—
dimensional problem, while it would appear to be a relatively
simple matter to extend el ther of the itwo main methods of solving
the boundary layer equations.

Having formulated the problem the relative merits
of the methods are reversed when the prospect of solving the
equations is considered - it is undoubtedly simpler to solve
the momentum integral equations together with any ancillary
relations over a two-dimensional space than it is to solve the
complete boundary layer equations over a three-dimensional space.
In deciding on the approach to the problem of calculating three—

dimensional boundary layers therefore we must weigh the mathematical
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considerations against the problem inherent in attempting to
supply all the necessary empirical information for the de-
finition of the problem., It would almost seem that the choice
has been made for us when we see that while it has been found
possible to solve the boundary layer equations over a three-
dimensional. space the momentum integral equations have nsver
been solved in more than one dimension.

~Since it would appear that it will not be possible
for some time to satisfactorily correlate crossflow velocity
profiles and skin friction values we will restrict our attention
in the present work to the boundary layer equations. The work
of Nash only became known to the present author towards the end
of the present investigation so that it was fortuitous that it
was decided to omit the turbulent energy eguation and concentrate
on the effective viscosity approach to the problem. This decision
was partly made on the basis that the mixing length analogy of
Prandtl has found application in such a wicl'e variety of situations
besides boundary layers that the reasons offen given for its
rejection seem not altogether acceptable. In addit;i.on it was
felt that theturbulent energy equation was too dependent on

empirical information.
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3.0) Introduction,

Having in Chapters One and Two derived the equations
of motion for th; three~dimensional turbulent boundary layer
and decided what dpproach to take in solving these equations ,
we now examine a number of physical properties of the turbulent
boundary layer waich will be required to facilitate the solution
scheme to be presented in Chapter Four,

The nature of the turbulent boundary layer equations
in their two-dimensional form (i.e. the equations independent
of y, with v identically zero) presents two main difficulties
in any proﬁosed numerical method of solution. The first of
these is the pertinent fact that the two equations available
for the determination of u and w even when the correct boundary
conditions have been prescribed are still not fully defined.
The effective viscosity is as yet undetermined so that some
empirical information is required to enablé it to be calculated
from the velocity field. The second problsm concerns the
difficulties inherent in trying to apply as the boundary
condition at the wall tne obvious fact that all velocity components
must vanish there., Extending any solution method to facilitate
the computation of three-diménsiona.l boundayy layers will
obviously increase the difficulties originating from these twc
sSources. In this chapter certain experimental andi theoretical
observations will be presented with the prime purpose ol over-
coming the difficulties associated witih the solution of the
two-dimensional turbulent boundary layer equations and to
hypothesise, with tne aid of the limited three-dimensional
data availall e, relationships that will enable the two-dimensional

methol of solution to be extended to three-dimensionse.
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It is also anticipated that the boundary layer
praéerties to be discussed here will provide a means of
establishing the calculations to be presented in Chapters
Five and Six,

. The discussion contained in the remainder of
this chapter will be concerned with two-dimensional twrbulent

boindary layers except where it is explicitly stated otherewise.

3.1) The effective viscosity concepts

The form of the boundary layer eguations (1.1;10—12)
makes use of the effective viscosity function as introduced
by Bousinesq and although this device enables the equations
to be expressed in a familiar fomm (the equations are now in
line with _'the laminar equations except that the kinematic
viscbslty v is replaced by a turbulence exchange coefficient)
the problem of how to account Ve (= vex) with the velocity
field is still present. :
The earliest attempt to allow for the effect
of turbulence in the boundary layer equations was Prandtl's
now well-known mixing length hypothesis which from physical

considerations of the mechanism of turbulence deduced that

(3.1:1)

where the so-called mixing length € is still an unknown
function but indications are that it is not influenced by the
magnitude of' the velocity and it is a purely local function,
The concept of the mixing length has been proved to be very
useful and,with simple postulations made concerning ¢, has been

applied to turbulent wall flows (including pipe and channel
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flows in addition to the more usual boundary layer problem)
and also to free turbulent flows (where fluid mixing takes
place in the absence of a solid wall). With reference to
boundary layers a number of arguments have been proposed for
the determination of the mixing length ¢ and von Karman by

means of a similarity hypothesis suggested

du Jo®u

"aE/'a?" £3i 0

iz et

where k! is an empirical constant. The alternative presentation

however

¢ = Kz (5:1.3)
where Kk is another empirical constant, being simpler than
equation (3.1.2) has been widely used in the calculation of
turbulent boundary layers and has been credited with giving
satisfactory results when applied to the region near the wall.
Beyond this region the mixing length is generally assumed to

tend to some constant value,

The law of the wall,

It has been @preciated for a long time that points
taken near the wall from a mean velocity boundary layer profile

can be rescaled into what is known as the law of' the wall which

states
= = f(zur> : (3.2.1)
¢ v

wiiere u is the so called friction velocity and f is a univeral
function, If T is the total stress (i.e. the sum of viscous

and turbulent stvesses) and 7o is the value 7 attains at the wall
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then the friction velocity is defined
u = E 0202
= (3.2.2)

The coefficient of friction c-.f can now be written:

0o = -2%%)2 (3.2.3)

Equation (3.2.1) readily follows from a dimensional argument
applied in the region of the wall. Prior to the devel opment
of the mixing length analogy the law of the wall was some-
times taken to be a power law in.the absence of any better
representation., In the laminar sublayer adjacent to the
wall, where viscoﬁs stresses can be assumed to suppress auy
turbulence effects, the law of the wall can be plausibly ex-

pounded as a linear relationship, viz:

ﬁ = 2, . (3.2.4)

A pa.rticula.rlj' relevant conclusion concerning the
form of the function f can be cbtained by assuming, as experiment
has shown to be the case, taat there is a fully turbulent region
outside the laminar sublayer in which the local shearing stress 7
is approximately constant and equal to that at the wall. Making
this assumption in conjunction with Prandtl's mixing length
analogy, equation (3.1.1) ysing either von Karman's or the
simplified model (equations (3.1.2,3) respectively) for the mixing

length results in the equation
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-?é' = _lir_ (302.5)
Kz

which integrates to give

u= uT én z + ¢
K

where ¢ is a constant of integration (a function of x). This
last equation is usually rewritten to bring it into line with

the law of the wall as

B g g za 8
e én T+ A (3.246)
T v )

where A iz a constant - presumably the same constant for all
turbulent boundary layer mean velocity profiles, in which
form it is known as the logarithmic law of the wall,

The logarithmic law of the wall has been well
established experimentally. It was first formulated Irom
observations of turbulent flow in pipes and was later extended
t0 include the mean velocity in a turbulent boundary layer,
Ludwieg and Tillman (1949) from experimental data concluded
that f for flows in boundary layers was independent ol pressure
gradient and established the logarithmic law experimentally.
The logarithmic law is now believed to be applicable generally
independently of the prevailing boundary conditions - boundary
layers, pipes, channels (althougn different constants are
required) - and typical constants quoted for boundary layer
flows are

£ = 040 |y A=-k9

-3
wheré the law can generally be assumed to hold for
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away from separation. The form of the velocity profile
in the inner part of the boundary layer is plotted in

figure (3.2.1).

A second derivation of the logarithmic law
of the wall of especial interest is that due to Millikan,

Defect laws of the fom

-u _p ' (3.2.7)

where F is a function of z/z' (where various length scales

z' have been proposed), parameters such as u,l/U and termel
dependent on the pressure gradient, have frequently been pro-
posed for the outer part of the mean velocity profile.
Millikan (1938) assumed that F was dependent on the scaled

distance z/8 only

P——;T—“— = F(%) | (5.2.8)

(the same argument holds for a more generalised form however)
and that this defect law extended far enough into the boundary
layer I‘or. there to be a region, generally referred to as the
overlap region, in which the velocity profile is equally well
represented by the law of the wall and the defect law equation

(3.2.8). Obtaining from each of these eguations an expression
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and equating them the equation

[ [3
vl

&

au, f.@I}:_ - F.(_é) (3.2.9)

Y :
results where the dash denotes differentiation with respect to
the argument of the function. The two sides of equation
(3.2.9) canbe independently functions of zu?/v,z/a respectively
only if bota sides are equal to a constant and if this constant
is taken to be 1/k the logarithmic law of ths wall immediately
follovs. |

A detailed discussion of the law of tne wall has
been given bﬁ Coles [15] who also analysed a wide range of
experimental data to give a very convincing argument as to the
validity of the logarithmic law of the wall in the turbulent

boundary layer.

303) The effective viscosity function of Mellor anl Gibson.

Mellor and Gibson [16] in response to the work of
Clauser [17], who investigated the effect of pressure gardient
on equilibrium turbulent boundary layers i.e. boundary layers
in which the velocity defect equation (3.2.7) assumes the
simple fom of equation (3.2.8), generated an effective viscosity
function to span the boundary layer outside the laminar sublayer,
Clauser [18] had shown that it was possible to analyse the outer
region (80%) of an equilibrium boundary layer by assuming the

effective viscaosity to be of the form
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p, =K U 8 (3.3:3)

where K, an absolute constant, was taken to be 0.016. The
equilibrium flow profiles investigated by Clauser were those

for which the parameter

o e
' .=irg ax (3.3.2)

was held constant so that the defect law can be written

u
T

U-u _ F(% % ﬁ.) : (3.3.3)

Clauser generated two equilibrium flows experimentally - those
" characterised by B' = 1.8 and 8.0 respectively. Mellor and

Gibson concluded as a result of their analysis that the

effective viscosity model defined by equation (3.3.1) in tle

outer region and the simpler mixing length model (equations
(3.1.1,3))

Ju

- (3.3.4)

v = K22

e

in the overlsp region suffice to predict defect profiles in

equilibrium turbuleant flows in the range

s R R
with 'considerable precision'!s, For B' < =0.5 no solution was
found to exist to satisfy the boundary conditions and the flow
was considered separated (B' > O were decelerating flows,

-0.5 < B' < 0 accelerating).
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In a second paper Mellor [19] extended the effective
viscosity model formerly proposed to include the laminar sub-
layer where Vo must tend to v as z tends to zero. The
restriction to equilibrium profile flows was also removed and
the choice for the effective viscosity function parameter is
reinforced by Mellor by a dimensional argument. The effective

viscosity function expresses ve/v as a function of { where

5.3
B ko o }
ks v 0z
as follows
Ye = ¢(L) <1
v (5:3.5)
]
e = il <8< UL
- )
v
K' 3
A KU&* .._le§... <
; v

where ¢({) is a prescribed function. Figure (3.3.1) shows the
composite effective viscosity model as proposed by Mellow. Since
{ increases and then decreases fo zero again as the boundary
layer is traversed from the wall the above formulation (equation
(3.3.5)) for v, is not quite correct as it is intended that the

third expression should hold exclusively in the wter part of the

boundary layer.
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It has already been mentioned that an alternative
approach in the outer part of the boundary layer might be to
assume that the mixing length € tends to some constant value.

An examination of experimental-data presented by Maise anl_
McDonald [20] would seem to support the latter of these
alternatives i.e. that the mixing length rather than the
effective viscosity should be taken as constant in this region.

We might also note here that because of the lack
of turbulence measurements in three-dimensional boundary layer
flows we are in a position to do no more than make the obvious
extensions to three dimensions of the wiscosity models discussed
above. That is we will assume tiat the shear stress at any point

acts in the same direction as the maximum rate of strain i.ec.

= v = Vv

Yex ey e
and that the above formulations hold in three dimensions so
long as u is replaced by the resultant velocity q parallel to

the wall

q = T

3.4) The work of Coles.

Coles [lS].has suggested that it is possible to
represent the mean velocity profiles of two-dimensional in-
compressible boundary layers as a linecar combination of two

functions viz

ele

v

. I‘(&) + h(x,32) (3.l.1)

T
where £ is the usual law of the wall and h is an arbitrary

function of x, z except that it is negligibly small in some
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narrow region near the wall. Coles points out that in certain
special cases, notably for uniform pipe and channel flows and
the boundary layer on a flat plate in a uniform stream, equation

(3.4.1) is found from experiment to have the special form

where 7 is a flow parameter independent of x,z.

Coles made an extensive survey of mean velocity profile
mgasurements in various two-dimensional boundary layer flows
examining the form of the function h(x,z) and concluded that
h(x,2z) reduced to a second universal similarity law by which

equation (3.4.1) can be amended bto

- =f(zur>+ -]-'-n'w(—z'> (3e4e3)
St e KE oLy

where 7 is now a profile parameter. The function w, which is
tabulated by Coles ani shown in figure (3.4.l), is called the

law of the wake and is claimed to be common to all two-dimensional
turbulent boundary layer flows and to be characteristic of the mean-
velocity profile at separation ar re-attachment. If the wake w is
normalised so that

w(0) =0 , w(l) =2

2

f% dw = 1

(]

Coles has shown the profile parameter 7 to be related to Cp and &%

respectively by
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g = -;lc- én (_SEI_) + A+ 2—; (3okals)
- "

ST LN
T 1+ 7 (3e4s5)

by which § and 7 are uniquely defined. Equations (3ekoks,5)
in effect provide a skin friction law,

Letting u_ approach zero equations (3.443,5) reduce

to
3
E =2 W(ZS) : (3-4-6)

which shows that at points of separailzion or reattachment the
velocity profile is the pure wake function.

It is of interest to note that a defect law can
be obtained from Coles'wake model equation (3.4.3) and written

explicitly as

et ) 16 4)
ok -(-%,w) (3ula7)

Equation (3.4.7) is not only valid within the logarithmic
region but,according to Coles' formulation,will also apply now
to all two-dimensional boundary layers and not only to equilibrdium
flows (i.e. it applies to the gencral boundary layer where 7 is a
function of x and not just to equilibrium boundary layers where
7 is constant), The determination of v and three of U, U 0,7
will completely specify the velocity profile.

Having formulated a general theory for two-dimensional

velocity profiles by means of combinations of the law of the wall
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and the law of thé wake Coles postulated as to how these might
be applied to the yawed boundary layer. The general profile

Coles tentatively wrote as

g9=4p +4, (3.4.8)

where g is the velocity vector parallel to the wall on which
the boundary layer is developing while 9 corresponds to the
law of the wall and g, to the law of the wake. The law of
the wall asserts that close to the wall the flow remains

basically unidirectional as the boundary layer is traversed

in the z direction )

2 = 4 ff(fiz) (3.4.9)
v ;
g, being the vector having the same direction as the limiting

surface shear stress and q, is the usual friction velocity

To =p 4 g (3.4.10)

The contribution to the resultant velocity from the wake component
of' the flow _qw,which again presumably will be negligibly small

close to the wall, Coles postulates will be of the form

% z.

QeeB R W g w(*g) (5,12)
where w, a function of two space co-ordinates (x and y), was
defined as a tensor in the general three-dimensional case. It
readily follows that the generalised friction law is

5 2 it
N=g, f(ﬁ) $ e ag (3.4.12)

v 1 E

The existence of a region close to the wall in

the three-dimensional boundary layer in which the velocity
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profile is approximately collateral is quite well sub-
stantiated and it can also be reliably assumed that the
outer part of this region (and the inmer part of the skewed
profile) is logarithmic in character [13,21,22], The
logarithmic law of the wall holds as in twe dimensions except
that the region over which it is operative is more restricted.
The evidence concerning the law of the wake in
three dimensions is not quite so definitive. In an in-
vestigation of the velocity profiles in plane of symmetry
flows Pierce [23] shows that the law of the wake is applicable
except near separation. . In analysihg velocity profiles in
the skewed boundary layer havever there is a tendemcy to examine
the wake fuuction by considerirng

e w@ (3.4.:13)

(see figure (3.5.1) for notation used) which is immediately
deducible from equation (3.4.8). Such an approach is surely
misleading since while Coles presumably intended the law of the
wake to take account of the streamwise velocity profile the
1eftlhand side of equation (3.4.13) can be associated more with
the crossflow velocity profile for small or moderate angles of

yaw (i.eo Bo). This might be appreciated more when it is pointed
out that the left hand side of equation (3.4.13}Xbecomes singular -
for the special case of collateral flows. It is interesting to
note that the curves obtained by plotting this expression as a
function of z/8 (see figure (3.4.l)) although decidedly different
from the wake function do have a typical shape f13,22]. Coles

has outlined a method of analysing skewed velocity profiles [15]
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to obtain a more realistic test of the wake function and the
data analysed in this way ([15] and discussion in [21]) although
not providing any definite confirmation of the applicability
of the wake function to three-dimensional flows does realise

profiles which are more wake=like in form than those obtained

from equation (3.4.13).

3.5) Johnston's triangular model for yawed flows.

A scheme to describe the yawed velocity profile
which has met with considerable success is the so-called
triangular model, Johnston [21] has established that if data
from a yawed velocity profile are plotted in polar co-ordinates
(i.e. if ug is plotted as a function of uy to cbtain in effect
the locus of the tip of the velocity vector projected on to the
wall) then the points fall along two straight lines (see figure
(3.5.1)). Thus to specify us as a function of us we need only
know the values assumed by Po, y,where y (the outer angle of
the triangle) is the parameter denoting the shearless nature of
the flow%ﬂgéy?élated by Johnston to the main flow turning angle
@ (radians) by

tan y = = 2a
for circular-arc-shaped streamlines. The second angle Bo is
related to the frictional character of the flow.

We will adopt the notation introduced by Johnston
and denote the two separate regions of the triangle by I and II
and refer to quantities at the apex of the triangle by appending
a suffix p as in figure (3.5.1). The outer part of region I was
considered by Johnston to be in the logarithmic region (although
qT/v is only 16 - whereas Hornung and Joubert

the maximum value of zp
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encountered 2, qT/v values as high as 150). The relative
sizes of regions I and II is considerably misrepresented by
the polar plot ani because uz increases very rapidly close to
the wall this region is very narrov indeed, so narrow in fact

that it is difficult to obtain extensive measurements corresponding

to the inner side of the triangle.

Velocity defect law for yawed flows.

Hornung and Joubert [13] analysed the data from their
own experiment to examine the plausibility of a three-dimensiomal

defect law of the form

|g _Bp] () (3.6.1)
m@m&?g Yas W

where g is g at the point at which the defeet,¥ Q - g f,attains

a maximum value. The formm of the left hand side of equation
(3.6.1) in fact treats the velocity relative to the moving

external stream which according to the outer edge of Johnston's
triangle is collateral (at 'p' ascan be seen from figure (3.5.1)

the maénitu&e of Q = g attains its maximum)., The data of Hornung
and Joubert showed little scatter when plotted according to

equation (3.6.1) but Johnston (in a discussion in [24]) subsequently
showed by analysing data from various sources that the scatter was

cons iderable,
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Introduction,

It is the purpose of the present chapter to describe
a method af solution of the boundary layer equations which will
be suitable for the computation of two- or tihree-dimensional,
laminar or turbulent boundary layers.

Sections 4.l-2 of this chapter are concerned with
developing a grid upon which finite difference approximations
to the boundary layer equations can be conveniently based. The
grid moreover must be devised in such a way that it can expand
or contract to keep pace with boundary layer thickness development.
Having transformed the boundary layer equations in accordance i
with this grid system in section 4.3-5 finite difference scheme
is provosed whose principle features are the use, for the boundary
condition at the wall in the turbulent boundary layer, of the
logarithmic law of the wall and the introduction of a trans-
formation which considerably simplifies the calculation of wvelocity
profiles in the three-dimensional. boundary layer. Having described
in section L4t how the law of the wall is to be used as a boundary
condition the next four sections proceed to discuss in some detail
the proposed finite difference scheme, The present method is
similar to that of Spalding and Patankar [10] in that it solves
‘the boundary layer equations in conjunction wita an effective
viscosity function, but it differs in the way it treats the
logarithmic law at the wall and also in that it abandons the stream
function in favour of a geometric transformation to account far
boundary layer growth since the former is inapplicable to three
dimensions.

Section 4.9 discusses a computer program which has been
written flor the IBM S360/65 computer to calculate boundary layer
development using the method described. A copy of the program is

appendices together with a detailed description
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of its structure.

4.1) Solution mesh.

It is proposed that the solution scheme to be
presented will solve the boundary layer equations over a
rectangular area of the wall in question, the velocity components
being calculated at the nodes of a mesh positioned over this
rectangle. The plane of the wall is taken to be the plane 7 = 0,
where z is assumed to be measured positive into the body of
the fluid, ani the directions of the x and y axes are parallel
to the wall and such that the primanj direction of flow is taken
as the direction of the x-axis ani the co-ordinate axes X,y,z
form a right hand set.

The parabolic nature of the boundary layer equations
necessitates a marching type solution procedure so it is proposed
to march in the x direction ani to confine the calculation between
¥y = constant planes. With such an arrangement it will be possibple
to set up a three-diimensional rectangular mesh, aligned with the
rectangular axes, over the solution space and base the finite
difference approximations to the boundary layer equations on
velocity components at the nodes of the mesh, At each marching
step u,v,w will be found at the nodes of the mesh in an X = constant
plane before advancing to the next plane a distance f downstream
to repeat the procedure. In what follows the grid at x = )

(i.e. the & th step) will be referred to asz.solution face £. At
any solution face u,v will be calculated at all node points on
this face, while wwill be calculated at points on the plans

midway between adjacent solution faces where the mesh lines

intersect this plane.
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Reference to any particular node can be made by
enumerating its grid reference (£¢,m,n) where ¢ denotes the
solution face on which the node falls, m denotes the vertical
line on this face on whicnh the node falls (this line will be
referred to as section m on face ¢ or simply section (&,m))
and n denotes the number of the node as enumerated from the
wall (point n on section (&,m) or point (£,m,n)). Thus the
classification: solution face, section, point describes the
mesh in a manner suitable for the proposed solution scheme
(see figure L4.l.1).

The grid spacing in.the %752 directions will be
denoted by f,g,h respectively and the number of sections on
a solution face by M and the number of points on a section
by N,

The abowve solution mesh must obviously contain the
boundary layer i.e. the region over which significant changes
in u,v occur. This will mean that since the boundary layer
growth downstream will be unknowvn at the commencemenb of the
solution some means of adjusting the grid as the solution pro-
gresses must be devised. This will be discussed further in
section 4.2, It might also be noted here that even across a
solution face appreciable difflerences in boundary layer thickness
may occur, To compensate for this and also to allow for more
points over the region where large changes in velocity occur
i.e. near the wall, the following scheme is proposed: at each
sthulon foc
seewon the grid illustrated in figure 4,1.2 in which a specified
number of the mesh intervals near the wall have been subdivided
will be used.

: ; . aﬂuﬁp«‘;aL
- Although the same grid will be used at each seedion
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its vertical scale, as dictated by h, will be subject to -
variation in a manner to be discussed in the next section
i.e. h should more correctly be replaced by h&' This will
compensate for boundary layer growth as the calculation
proceeds.

The grid in figure 4l2 has been obtained by
dividing the A increments of width h near the wall each
into w smaller increments of width h/r.a. It should be noted
that N is now taken to refer to the number of points at each

section and not to the number of h increments.

Derivation of an adjustable mesh to accommodate boundary
layer growth,

As a simple means of adjusting the grid spacing so
as to compensate for the effect of boundary layer growth the
mesh illustrated in figure 4.2.1 will be used. The figure
shows a cross section throigh-a y = constant plane - the
cross sections through all such planes being the same.Planes
radiating from the line x = X, z = 0 will constitute the
grid planes which will be positioned so that they approximately
keep pace with the boundary layer‘ growth between solution faces
ahix= X, where velocity profiles will be known and x = xﬁﬂ
where they are to be calculated., This can readily be arranged
by varying the position of the line x = X, z = 0 and the in-
clinations of the planes, The grid can also be chosen so as to
ensure that the z increments will be constant over the solution
fdece at'x = x, as well as at x = Xprs although the z increment
will obviously not be the same at both faces. Using such a
suhuxﬁe it will be possible to adjust the grid at each step to

progressively allow for changes in the rate of growth of the
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boundary layer,

Figure 4.2.2 shows the possibilities of the proposed
mesh when inclined mesh planes and subdivided mesh intervals
near the wall are incorporated.

Transforming from z to ¢ using

z = ag(x - X) (4e2.1)
will proiuce in x,y,£ co-ordinate systemn the grid discussed
above since in a plane x = constant ¢ is simply proportional
to z and surfaces ¢ = constant are planes passing through the
line x = X, z = 0. Knowing the grid spacing required at
solution faces € and €+1 to be h& and.-h.%1 respectively then
X is determined by noting that at the first grid plane from the
wall we have £ = ¢&; say where &4 is a constant so that at

x = x, equation (4.2.1) becomes
h& = a'gi(x& A x)

and at.x =%
£+1

h = afs(x > 41

L41 v

Dividing these last two expressiomns

h&+; = x6+1 e
h& x&—x
so that
X:x& h{’,f
h =i
L+1s £

since Xpps = Xp + f. The arbitrary scaling factor a is now

chosen 50 that the increment in ¢ between adjacent £ = constant

mesh plancs is the same as the z increment at X=X, thus equation

(4+2.1) becomes

h, = ah&(xa - X)
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so that

L _ 7
a —_—
and the required transformation is

P =gl le (- x) v 1) (4r2.2)
hdf

Since the boundary layer growth between adjacent
solution faces will not be known before the solution method
proceeds to calculate velocity components at solution face
€+1 it will be necessary to make an initial guess at the
transformation equation (4.2.2). waltke mesh is adjusted more
precisely to accommodate the thickest part of the boundary layer

at successive solution faces will be dealt with in a later

section, .

4.3) Transformation of the boundary layer equations.

To implement the grid described in section 4.2 the
boundary layer equations will be transformed so that the
perpendicular distance measured from the wall will be substituted
for by £ using the relation

z = &ax + D) (4e3.1)
where a and b are constants (given by equation (4.2.2)) chosen
to regulate the grid and scale ¢ conveniently. The boundary
layer equations (1.1.10-12) transfommed into x,y,£ co-ordinates

are
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u %& - Eiég %% + v g& + ax1+b g% =
v v &, ‘(5125)9 2 (ve -g-g) (4e3.2)
vV e % (%) S5
Do nLz L 2 (o3 b

where the assumption that Yok vé has been introduced,

ey

At this stage it is proposed to introduce a contraction
into the transformed equations which will considerably simplifly

the finite difference scheme to be considered later., We write

S e (4e3.5)

where q is the magnitude of the vector sum of velocity components

u and v
1

q = (u*+v?)2 (4e3.6)

The equation (4.3.5) is suggestive of streamline co-ordinates
but since no account is taken of the w component of velocity

this is not quite so. The line along which the derivate

éi is to be taken is the ;ocus of poiuts in a £ = constant
plane at -which the vector sum of the velocity components u and
v is tangential to tﬂe line, and the increment in s along

this 1line is given by

i
8 = (&x® + &°)° (4e3.7)

Without any apology, in what follows, we refer to such lines
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as streamlines despite the fact that these so-called stream-
lines can only be related to actual streamlines in the
limiting case at the wall and in the freestream. In
addition we will replace ve’ in equations (4.3.2-3) by v;
such that
'

Ve = (ax+b)ve (443.8)
50 that the three-dimensional turbulent boundary layer
equations now become

au =380 + W du
9% T Taxiv ¢

au av 2 e S
U%*T&* axd 3% (”e 32.) (44349)
ov -afu + w v
925 ax+b  0f -
au N i d o
v&.vE. Lo 2 (ve 3;;> (4.3.10)
du v aé du 1 i
& Yoy ax+b 09 T axeb 9 9 (43.11)

It should be noted that the two momentum equations now contain
only derivatives with respect to s and ¢ (except for the pressure
terms which are prescribed functions). This will be seen to be
an advantage when approximating to the momentum equations in the
three~dimensional case since derivatives with respect to x and
¥ are not present explicity. To preserve tanis state of affairs
it should be appreciated that only a transformation of the z co-
ordinate is applicable,

Equations (4.3.9-11) are the forms of the boundary layer

equations that will be solved using finite difference techniques.
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| Before proceeding to approximate to the three-
dimensional boundary layer equations (4.3.9=11) a number
of' complications which arise in the section of the boundary
layer adjacent to the wall must be considered. Firstly,
because close to the wall in the turbulent boundary layer
the changes in velocity (and also in velocity gradient normal
to the wall) are so great over small distances normal to the
wall, it is.not possible to obtain an estimate of derivatives
normmal to the wall at a point simply by subtracting functional
values at points equidistant on either side of the point of
interest. In particular the velocit& u at a small distance

h from the wall divided by h will not provide a realistic

estimate of the gradient g% at a point a distance h from

the wall (remembering u at the wall is zero). The same problem
does not however arise in laminar boundary layers since although
changes in velocity near the wall are great the velocity gradient
normal to the wall is approximately constant over a small dis tance
close to the wall,

Secondly, owing to the presence in the turbulent
boundary layer of a laminar sublayer, it is not feasible to
provide an empirical relationship for the effective viscosity
within a narrow region close to the wall.,

The consequence of the above complications is that
it would be extremely difficult in a finite difference scheme
to impose as the inner boundary the fact that all velocity
components must vanish at the wall., To overcome this problem

the present method proposes that the logarithmic law of the wall

should be used as the wall boundary condition. This will mean
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that the region between the wall and the inner limit of the
logarithmic region, which includes the laminar sublayer, need
not enter into the finite difference scheme and the difficulticg
mentioned above it is to be expected will not arise, The
present section is thus concerned wi th interpreting the
logaritamic law of the wall in such a way as to make it
accessible as a boundary condition and to generate a number of
relations that will be required in the development of' the finito
dif'ference scheme,

It is well established (section 3.2) that in the two-
dimensional turbulent boundary layer within a region close to
the wall but not adjacent to it points from the velocity profile

fall along the logarithmic curve:

4 - L en %9 42 (4ekal)
T e .

where q is the component of the velocity parallel to the wall

(and hence in the direction of the mainstream) at a distance

z from it, 9, is the so called friction velocity, v is the kinc-

matic viscosity and k, Aare empirical constants. It has been

noticed, and it is particularly well illustrated by Johnson's

polar plots (section 3.5), that even in three-dimensional Eann'ujA

layers there is a region close to the wall in whica the flow is

essentially coplanar i.e., the direction of q remains fixed as

this region is traversed‘perpendicularly to the yall and Coles |

suggested that the logarithmic law is valid within this region

where it assumes the fom of equation (4.4.l) where q is now

given by equation (4.3.6). It will be assumed here for the pum

of the present computational scheme that, in the three-dimenslonk
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boundary layer, there is a region close to the wall in which
the flow is both .coplanar and where points from the velocity
profile fall upon the logarithmic law of the wall.

As has been stated previously the finite difference
aporoximation to the three-dimensional boundary layer equations
i3 not attempted at all grid points up to the wall but only ab
each section up to some grid point which is known to be the
point closest to the wall which could, on the basis of the
accepted limits for the logarithmic region, be regarded as being
within the logarithmic region. This point will be referred to
as the log-point and its grid reference will be denoted by
n=n*, It is within the region bounded by the grid lines
aboveland below this log-point that we must assume that the
flow is both coplanar and the logarithmic law is operative.

Transforming the logarithmic law of the wall viz

T .].‘. £&n (E.X'i'b)fq.r + A (}_‘_.)‘}--2)

4
2Tk
v
it is in the same co-ordinate system adopted in the bounlanry

layer ejuations (4e3.9-11). Rewriting equation (4.4.2) as

us= lql- ET £n (%‘i’b) éqT e KA) (4-4.3)
K v

or in a similar form in which u is replaced by v, we have an
expression for u or v which when applied in the vicinity of
the log-point only involves ¢ explicitly on the right hand side

since wlen q is coplanar
%
q

u
?1' ’

are functions of %,y only as is qT. Thus
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differentiating equation (4.4.3) with respect to £ it

is possible to write

A -3 9 (leadial)
9¢ q e
which with
3 s
; ¢ = Zn (4dsa5)
qT

can be written

R

where suffix n in q, etec refers to the point at which q is
evaluated. When applying this last expression at any section
un* and ¢ should be those values obtained at that section., A
point of particular interest in equation (4.4.6) is the re-
semblance of the right hand side to the finite difference
approximation to the derivative,

Another expression which will be required at the

log-point is obtained from the definition of the operator 5%
(equation (4.3.5)) and equation (4.4.3) and is
au
Fr EuLa e 611&. fq (4.1;-.7)
where f1,f3 are functions of x,y only, and from which it
readily follows that
én fn* ﬁ% + én én*+t 2
R PR
n¥+4 n*-1 n¥*—1 o*
+ £n 6n“‘--:. -gi; =0 (%e4448)

én*

n¥+1
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with a similar expression in which u is replaced by v. From

equation (4.4.2) we will also require the following relation

Qwy = Loe (1 + % ¢n 311-2 ) (4eli-a9)

IR

We are now faced with the following situation: the

boundary layer momentum equations can be approximated to at

the log-point using only velocity components at and above %his
point and because points below the log-point will not be available
use will have to be made of the relationships contained in
equations (L4ehe6) and (L4eke8~9) to makeuwp this deficiency.
Bquations (4eke6) and (4e4.9) do however demand that € i.e.

Q. be known so that the logarithmic law (4l o2) must be solved

for q. at the log-point i.c.

q_n* = ;L'x £n (a'mb)én*q'r + A
9. U

must be solved for q_r. This last equation can al ternatively be

rewritten as

e ==4én €+ B
where (L4els10)
B=en Maxb)édn.
v

and canbe solved far € using the iterative scheme

: (r) £y
LT+ _ (D) (1 e I{’,n e(r} B) (lotso11)
+ €

once B is prescribed, The iterative scheme represented by
equation (4.4.11) has been obtained from an application of the
Newton-Rap hson iterative method and can be shown to have a quadratic

rate of comvergence. We might also note here that the use of the
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above scheme for pfescribing the inner boundary condition in

the momentum equations has the advantage of implicitly supplying
a value for the coefficient of friction at thelwall.

The inner boundary condition in the continuity equation
is sligatly dif'ferent from that in the momentum equation in that
we will be integrating the former with respect to ¢ through the
thickness of the boundary layer which will demand that we integrate
from the wall and thus impose as the inner boundary condition the
fact that the velocity components vanish at the wall. It would
not be expected that this approach would be at gll impracticable
but in order to be consistent with the method in which the momentum
equations were treated we choose not to integrate from the wall
i.e. to integrate throusgh all the nodes from and including the
wall, but to impose the inner boundary condition effectively
at n = n*, This is readily accomplished if it is assumed that
to a reasonable degree of approximation the q component of
velocity between the wall and the point n = n* can be represented

by a pover law of the form
I

L (4) S

which ensures agreement witih the logarithmic law of the wall

at the log-point in g and-%%. The form of equation (4.4.12)

anticipates € to be of the order of 6 or 7 and this is of particular
relevance when considered in the context of equation (4.4.6). The
assumption of the power law equation (4.4.12) together with that

of coplanar flow close to the wall enables us to integrate the

continuity equation (4.3.11) with respect to & and deduce that

LiﬂP’“ﬁfﬁ S Aeprvclave s Ci)e:wh-'t.a;B



"-i--’i-)

)

contd,
- 2X +D qu . 9v ag- ol
A 3 T ‘5(3”63'“ b 0E ). Wederid
€

which can be used to obtain w at the log-point, together with

L I o T g
e Eppn

for w between the log-point and the wall,

m |-

(Lol o1l)

fhe interpretation of the logarithmic law of the wall
as the inner boundary condition obviously only applies to
turbulent flow. Laminar flow could be treated in a similar
fashion simply by substituting a linear relationship in place
of the logarithmic one (since the velocity gradient close to
the wall in a laminar boundary layer is essentially constant)
and genefally putting € equal to unity. It should be noted that
this is essentially no different to applying a zero velocity

condition at the wall.

General discussion of the solution scheme.,

Having, in sections 4.1-3 of this chapter, derived a
mesh upon which a finite difference scheme can be based and
havipg transformed the boundary layer equations to facilitate
the use of this mesh it is now possible to generate a solution
scheme.

The parabolic nature of the boundary layer equations
makes it necessary when solving these equations using finite
difference techniques to employ a marching type solution
procedure and to do this we generalise the more well-known implicit
schemes to the three variable non-linear problem. Thus knowing
velocity prfiles at all sections o‘n a solution face profiles at

the next solution face can be calculated and so on downstreanm.
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While soiving for the velocity profiles at each
solution it will be desirable, primarily because of the
non-linear fleatures of the boundary layer equations, to
iterate to the correct solﬁtion from an initial guess of it.

An iterative scheme will also enable the grid transformation,
equation (4.3.1), to be adjusted to accommodate the boundary
layer growth precisely and in addition allow the inner boundary
condition as described in section 4.4 to be applied correctly.

In addition with an implicit scheme the iteration can be repeated
until the accuracy of the solution is within a required tolerance,

At each solution face individual sections will be
considered in turn and corresponding to every point on each
section finite difference approximations will be made to the
momentum equations. This will produce a system of linear
algsbraic equations involving the unknown u,v components of
velocity at all points on each section; +the solution of these
linear equations will provide it is anticipated better estimates
of these same velocity components. Having iterated at all
sections for u,v finite difference approximations will then be
made to the continuity equatior supplying in a similar way better
estimates of the w component of velocity. It is expected that
successive repetitions of the above procedure will provide an
iteraﬁive scheme which will converge to the correct velocity
profiles.

IDetails oi the solution scheme are provided in the

following two sections.
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Finite difference approximations to the three-dimensional
momentum equations.

The present section is concerned with a means of
improving approximations to the u and v components of veloci ty
at points on a solution face when the u and v profiiles are knavn
at all sections on the adjacent upstream solution face (denoted
as solution face ¢). This will be done as has already been
mentioned by setting up finite difference approximations to
the momentum equations corresponding to the points on each
profile. A means of improving the approximations to the w
velocity components, which will be stored on the plane midway
between faces ¢ and £+1, is to be discussed in the next section.

There are numerous ways uf'setting up a finite
difference approximation to differential equations especially
when the equations are non-linear,and dependinéjﬁow it is done
will determine the rate of convergence of the iteration process.
To énable the most attractive scheme to be determined or at
least to provide some room to manoeuvre it is proposed to in-
troduce into the scheme to be described a number of weighting
factors the variation of which will it is anticipated lead to the
development of a satisfactory solution scheme.

We now proceed to set up the finite difference
approximation to the momentum equations corresponiing to the
n th point at section m (figure (4.6.1)). Since the momentum
equations are written in streamline co-ordinates the finite
difference approximation need necessarily be based on the stream-
line through the point of interest. It is thus necessary to
fit from the n th point on section (£+1l,m) a streamline back to

face € and calculate:
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1) the x,y co-ordinates of the point where the momentum
equations are to be approximated on this streamline

2) the point where the streamline intercepts the n th grid
line on face ¢ ani

3) the length of the streamline

i.e. tne values of a,B,y,s from figure (4.6.1) need be known.

The method used to fit the stremaline will be discussed in

Appendix Al and for the moment it will be assumed that

@,8,y,s can be calculated,

It can be seen from the diagram that the point
at which the momentum equations are to be approximated can be
varied by changing the value of the weight ¢a(¢s = 1 = ¢1), the
well known Crank-Nicholson scheme being based on ¢z = 0.5.
It is also apparent tnat the streamline through point n on
section (£+l,m) is not necessarily the same as those at points
n-1orn+1 on the same section.Hovever, for the purpose of
the approximationsto the momentum equations at point n, they will
be "a.ssume‘d to be the same.

In order to approximate to the momentum equations
at the point of current interest the quantities indicated in
figure (4.6.2) are required where the notation is self'-explanatory.
The quantities necessary on section (¢,m+$) can be obtained by.
interpolating between the known profiles at face ¢ and those on
section (£+1,m) are provided from the las}{ iterated solutions
at face &+1., Values assumed by the transformed effective viscosity
function v; (where in figure (4.6.2) the dash and the subscript
have been omitted for convenience) will have to be evaluated from

currently available velocity components on the basis of some
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hypothetical function in the case of turbulent flow.
The actual finite difference approximation to
the momentum equation corresponding to the x direction is
given in Appendix A2 together with the resulting linear equation
+1  rdi T4

relating u:; e

i :
(where the superscripts denote
-1’ 'n n+1

iteration, the section being understood as (Gl,m)) The equations
generated to relate the iterated v components of velocity are .
very similar.Hence it has been found necessary only to make

brief mention of these at the end of Appendix A2. Table

4.6.1 lists the relaxation factors used and provides some

measure of explanation of their relevance., The manner in which
weights were used was made partly in reference to 'Difference
Methods for Initial-Value Problems' by Richtmyer [25] and the
allusions to particular cases is based on the simpler finite
difference schemes prese;nted by Richtmyer.

Remembering what has been stated in section (L.4)
with regard to the points where the momentum equation will be
approximated to it can be seen that equation (A2,2) can be
applied for

n = n%*+l, n%+2, e N=1
slight modifications being necessary when n =M, It might be

pointed out now that introducing the transformation

S e
93 S“ax“’ay

enables equaitions to be set up relating the iterated u,v
velocity components at each section on face €41 independently
of each other and also of the same unknowns at adjacent gections,
‘coupling between the sections being provided via the continuity ‘

equation. t is considered that this is a significant simplification



le6)

57

contd.
in the present metinod.,

To provide an approximation of the momentum
equations at the log-point (n = n*) it is necessary to make
use oi some of the relations developed in section 4.4 where
the logarithmic law of the wallwas used to generate re-
lationships between different quantities in the neighbourhoad
of the log-point. The approximations will be made to the
momentum equations on the assumption that u and v velocity
components will not be available flor incorporation into the
finite difference scheme at n = n* - 1, The re;sulting
approximations to the terms in the momentum equation are
given in Appendix A3 and Appendix A4 then explains how they
are to be calculated for laminar flows.

Applying equation (A3.6) at n = n* and equation
(A2.2) at the points stated above (remembering that uy is
prescribed as the freestream boundary condition) there results
a system of N - n* linear equations in N - n* unknovns:

T
U D= ntoin® ¥l oes Nel

These N - n* equations form a tri-diagonal system except that
when w > 1 the equation corresponding to the point (£€,m,\w)
has one term displaced off the triple-diagonal since it relates

uz n = (A1l)w, A, Awtl

hovever this is easily remedied as explained in Appendix A2
so that the system of equations can now be assumed to be tri-
diagonal and solved accordingly (see Appendix A5). The
velocity profile at section (€+1,m) can thenb e completed by

using the law of the wall (see section 3.2) to generate
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r B
o, Ve fer-n= 1.2 n*-1
n’ n 3=y was .

14..7) Finite difference approximation to the equation of continuity.

Having obtained iterates for the u,v velocity
components in section 4.6 the continuity equation must now
be approximated to in order that improved estimates of the
W component of velocity can be determined. The continuity
equation being linear in w means that knowing u and v components
across any two adjacent solution faces w profiles can be obtained
midway between these faces by directly integrating the continuity
equation with respect ‘to Ea '

The equation of continuity is left in its rectangular
cartesian co-ordinate form (equation (4.3.11)) and approximated
to at the point (€+%, m,n=%) as shown in figure (4.7.1). The
values of the components shown can be found by suitably averaging
known values and can be used to provide an approximation to the

continuity equation thus

= " Lty
Ug=uy 3 v2§gv1 ¥ a g 1 U u&
a X, 1+ b h
2
1 e G NE UL
+ ax, iF T W N e 0 (4e7.1)
+3 —_—— o

From this eéua.tion values of w at points successively further

from the wall can be calculated until the profile at section

(¢+%, m) is complete. Repetition at different sections will

enable iterated profiles across the whole mid-flace to be detemmined.
Equation (4.7.1) might be applied from the wall (n=1) using the
conlition that w=0 at the wall but in preflerence to this we will
interpret the wall boundary condition used for the momentum

equation in a way which will make it applicable here and apply
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equation (4.7.1) only for
n = n*+l, n*+2, e N

We have already shown that at the log-point the wall condition

gives equation (4.4.13) which we approximate to by

_ . ax, 1+b Sl AR - 4 B a ug
1 +‘; L+z A
€

to be applied at n = n*, where the notation will be made clear
by figure (4.7.2). Values o w between the log-point and the

wall can be obtained by referring to equation (L.l.l4)

L # -j;
Wn = (i) Wn* ('j-i-o?oj)
£

which is applicable for n = 1,2, ... n*-1,

It will be noticed that when equations (4.7.1,2)
are applied at the end sections i.e..the sections denoted by
m=1, m=M, values of v are required at poim s lying outside the
solution sﬁace. Thus v profiles (or alternatively-%% prfiles)
will need be specified as a boundary condition at the bounding

¥ = constant planes to establish the flow of fluid into the

solution space,

Recapitulation of the initial and boundary conditions.

We will now collect %together for future reference
the initial and boundary conditions that have arisen in the
discussion of the present solution scheme. The conditions
listed below are those relevant to the solution of the general

three-dimensional boundary layer and considerable simplifications
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can be expected wnen the scheme is used for the solution of
tiie two-dimensional or pseudo-three-dimensional problems,

The only initial condition required is the
specification of u and v velocity profiles at all sections
across the initial solution face - w profiles are not required.
The boundary conditlon to be provided in the freestream is the
definition of the wvelocity components U,V at all points over
the area of the wall of interest while at the bounding
¥y = constant planes either v or'§§ need be specified. The
latter condition, which is only applicable to the general
three-dimensional boundary layer or toplane of symmetry flows,
is more feadily satisfied than might first appear to be the
case and some of the methods that have successfully been used
to provide this boundary condition can be found in the discussion
of the three-dimensional boundary layers treated in Chapters Five
and Six,. |

In addition of course we must yet specify some

hypothesis for the effective viscosity.

4.9) The computer program,

The listing of a computer program that has been
written in Fortran IV for the IBM 8360/65 computer to calculate
boundary layer development using the method outlined in this
chapter is included as Appendix A6 while Appendix A7 contains
a description of the program structure (with flow diagrams) and
discusses the requirements necessary flor the implementation aof
the program,

The program was written in such a way that it
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would be able to cater for three-dimensional, pseudo-three-
dimensional,plane of symmetry or two-dimensional boundary
layers, whether laminar or turbulent simply by varying a few
input parameters, All initial conditions need be specified
by card !nput wnile the boundary conditions and the effective
viscosity function are provided via subroutines which are
referred 'to within the structure of tne program. Empirical
and physical constants, the mesh specification and solution
weights and tolerances are all to be provided as card input.
A facility has also been included to allow changes in forward
steps, frequency of output, etc as the solution progresses.
A thorough description of such matters is, as has been

mentioned, contained in Appendix A7,
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Introduction.

Having programmed the solution scheme described
in Chapter Four in Fortran for the IBM $360/65, it was first
necessary to investigate the effects of step sizes and solution
weights on the stability and rate of convergence of the iterative
process before proceeding to determmine those values for the
empirical constants which would ensure the best possible agreement
between calculation and experiment,

Since no particular difficulties have been found con-
cerning the stability of the present calculations, no further
consideré.ﬁ.on of tais aspect of the solution scheme will be given
in this chapter; some detailed observdtions relating to stability
can be found in Appendix AS however.

The choice of weights used in all the calculations
to be discussed is shmvﬁ in the last column of Table 4.6.1.
Firstly it will be noticed that all the weights introduced arise
in the two-dimensional scheme and so no further consideration need
be given to this problem when three-dimensionszl .Calculatci ons are
being considered in Chapter Six,., Although the valuss assigned
to the weights ¢u,¥a, ees §7 weré decisive in determmining the most
satisfactory scheme (especially ¢i,¢s) the overall method was not
particularly sensitive to any of tnese. The relaxation factor
g however did prove to have a critical effect on the rate of con-
vergence of the calculation; ¢s = 0.75 was found to produce the
best overall results.

We must next consider what values to assign to the
empirical constants amd determine the most efficacious effective
viscosity model; an experiment ('E') of Schubauer and Spangenberg [26]
was used as the original basis for this choice (Section 5.1). Because

‘ - . ' - :] 1
the constant x appears in both the logarithmic law of the wall and
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in Prandtl's mixing length concept, initial tests were made to
determine if this constant need necessarily be the same in its

two applications., In order to obtain a smooth curve for tie
lo_garitkimic law of the wall (equation (3.2.)) from the computed
velocity profiles, it was found that in both instances k should be
the same and that it could be taken Yo assume its usually accepted
value of O.4l. Similarly it was found that the constant A could
satisfactorily assume ifs accepted value of 4.9, For the purpose

of determining the log-point, the minimum value of 2:q'r' for which
v

the logarithmic law of the wall could be assumed to be valigd
was taken to be 30. :

Some difficulty was encountered however while attempting
to find a representation for Vo in the outer layer., Originally
Clauser's representation for this region (equation (5.3.1)).'@:3.5
applied'to the calculation of the above experiment. However,
with the value of K quoted by Clauser (0.016) tane shape factor H
did not increase quickly enoug., hetter results being given by
K = 0.011, Since the empirical c;mstants KyA are quite well
detemined, if was not considered unreasonable to adjust K, which
nas little experimental verification, so as to ensure that the
calculation agreed with experiment in this particular case. However
when used to calculate anything other than retarding boundary layers
‘this simple form for vy in the outer layer was not found to give

satisfactory results. In addition, neither of the simple alternatives

considered, wasrs the outer layer was variously defined
1) L = kz z S do*
L = Kdé* z = dd*

(where d is an empirical constant)
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2) o= ¢ < K2
> v
" KUe@
ve ._ KUe@ G2 _;T

(ef equation (3.3.5) where K is now a different

empirical consta.nt)

were found to offer any improvencat. To effect a remedy
to this situztion it was decided to adopt equation (3.3.1)
but to maixe K dependent on the pressure gradient, consequently

K was made a function of

=104 & W
r=10% 5 = . (5.0.1)
viz
K = 0.016 + 0.00015 I o d540.2)

Equation (5.0.2) was formulated to ensure detailed agreement
with experiment 'E' of Schubzuer and Spangenberg (Section 5.1) .I
Equation (5.0.2) is highly tentative, and may quite easily be
replaced in the computer program by any other model that may

be preferable, but has been found to give reasomable results

in most of the calculations considered in this chapter.

The following sections of this chapter are then
concerned with comparing the predictions of this calculation
scheme with a number of experiments of varying boundary layer
development. Also comparisons are made with predictions bc";.sed
on Head's method., Head's method has been used partly because
a computer program was readily available for doing this and
partly because the method has been shovn to give good results
when considered in the light of boundary layer calculation methods
at large. The actual program used to compute boundary layers

using the entrainment approach was one developed by Rolls-Royce
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Limited and inevitably the conStants and empirical functions
used are not identical to those broposed in Head's original
formulation of the methol. In addition it must be pointed

out that this latter program firstly assumes as an initial
condition that H = 1.32, so that the method could not be applied
to all the experiments considered and secondly,will not predict
separation by predicting zero skin friction, this being avoided
by the imposition of an upper limit on H(2.7). Separation is
generally assumed to have occurred Jjust before this maximum is

achieved.

Schubauer ani Spangenberg,

Schubauer and Spangenberg [26] investigated the
effects of forced mixing (i.e. that induced by the introduction
of fixed obstacles on the wall) on a boundary layer developing
under an adverse pressure gradient leading to eventual separation.
Three experiments (those denoted 'C', 'D', 'E'), made in the absence
of forced mixing, will be considered heré. ‘These experiments
were concernzd with incompressible flovs over a smooth flat wall
and were, in the opinions of the authors, accurately two-dimensional .
Thompson [2] in his review claims that only experiment 'D' is
closely two-dimensional, altnough no more than slight discrepancies
are exhibited by the other two. The experimental results for these
three runs are plotted in figures (5.1.1.-9) together with the
values recalculated by Thompson. No values for the skin friction
are quoted in reference [26] the only indication being the comment
that 'values of the local skin friction coefficients Cp ees WOXC
found to decrease monotonically from around 0,0032 at x = 0 to

around 0.0003 at the indicated separation point, Failure to reach zero
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is attributed to the fact that the dust method indicates
the upstream extreme of a fluctuating separation point',

Expsriment 'E' was, as has already been mentioned,
used to determine values for the empirical quantities contained
in ‘_cha present caiculation method and this should be barne in
mind in the I‘ollowing-compa.risons between the present calculation
method ani experiment,

Included in figuares (5.1.1-9) are predictions both
of the present method and also calculations based on the method
of Head. Both sets of calculations predict separation with
reasonable accuracy in experiments 'C' and 'D' whereas, while
predictions for experiment 'E' tend tbv.'ard‘éeparation at the
required point, the present'meﬂlod recovers Jjust before separation
is achieved. Neitner calculation is able to correctly predict
the sudden increase in shape factor immediately prior to separation
in 'C' or 'E' although it might be expected that the discrepancy
here is caused by the three—é.imensiona.l effects indicated by
Thompson, since in the experiment which was shown to be precisely
two-dimensional ('D') H is predicted accurately.

Overall both methods agree quite closely ani give
reasonable agreement with experiment. The calculation based
on the entrainment approach consistently predicts an R9 growth
slightly greater than the present method, and similarly with H
development to a less marked extent. On the basis of the three
present comparisons it is difficult to say which is giving
the better results.

Plotted in figure (5.1.8) is the H development
predicted using K = 0,011 (the constant value chosen to ensure

the best overall agreement with experiment and obtain separation
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at the required point). It can be seen that in this case H

increases too quickly over the first few feet and maintains

this discrepancy throughout, and it was partly as an attemnpt

to remedy this that K was made dependent on the pressure

gradient parameter T (equations (5.0.1,2)). In choosing the

present model for K(D) é compromise had to be reached between

letting (in experiment 'E') the flow tend toward separation

at x = 16! and allowing H to maintain the low values indicated

by experiment for x > 12', The discrepancy still apparent may

be attributable to a three-dimensional effect which occurred

for x > 12', Although the agreement between predicted H for

experiment 'E' and experiment is not entirely satisfactory the

present model for K(I) was retained on the basis of experiment

'D' which Thompson indicates is precisely two-dimensional and

which the present method predicts very well even close-to separation,

To conclude the discussion on the comparisons oi the

present theory with the experiments of Schubauer and Spanéenberg

we make the following points

1) the predicted skin friction values exhibit, at the beginning
of the calculation, a certain amount of scatter which, as can
be seen from figure (5.1.6) (where the points represent the
calculaﬁed values) are soon smootihed out and the cp curves
given have been draw through the mean values

2) &ll the experimental information shown in figures (5.1.1-9)
has been taken from reference [2]

3) the fact that the R, curves predicted by the present method

0
agree more closely with the theoretical values calculated by
Thompson (see Section 2,1) than with the experimental points

would reinforce the conclusions made by Thompson concerning
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3) contd.

the tiree-dimensional natures of the present flaws (see

figures (5.1.1,7)).

Bradshaw and Ferriss.

Bradshaw and Ferriss [27] investigated the effect
of the sudden removal of pressure gradient on an equilibrium
bourdary layer. The experiment was devised both as a severe
test far boundary layer calculation methods and also to obtain
detailed turbulence meas;xrements on which to base future methods.

The equilibrium boundary layer imvestigated by
Bradshaw and Ferriss was one which ma:‘:‘,ntained a pressure distri-
bution corresponding to U a ¥ ,°*2%% (the experiment was denoted

by 'a = =0.255') and another experiment (denoted 'a = -0,255 ~+0')

. investigated the effect of the transformation of the boundary

layer from this equilibrium flow in an adverse pressure gradient
to eventual equilibrium in zero pressure gradient., This latter
boundary layer was considered to be a particularly severe test

of any calculation method since the flow was dominated by the
advection of turbulent kinetic energy from upstream, so tha_.t the
turbulent energy is unlikely to be dependent upon local condi®ions
only.

The predictions of the present method and comparisons
with experiment are shown in figures (5.2.1-7). Head's method
was not used to calculate this experiment because of the large
initial H values involved, The &%,0 predictions are quite good
in the equilibrium boundary layer, both increasing linearly from
their initial values, although despite this the shape factor H is

in error and is predicted to have an equilibrium value of 1.7L

The experimental
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skin friction values in figure (5.2.4) were measured directly.
In the equilibrium bouwndary layer Cp is consi erably under-
estimated by the present calculation. The predictions shown in
figures (5.2.1-4) for the experiment 'a = =0,255 - 0O' are good
particularly when it is remembered that it is this case which
Bradshaw and Ferriss considered to be the severe test for cal-
culation methods.

The experimentdl and predicted velocity profiles for
botn expe?iments are plotted in figures (5.2.5,6). In both cases
a slight discrepancy introduced in the input velocity profile, as
compared with the experimental profile, at the oubter edge of the
bouniary lajyer is progressively removed as the calculation proceeds,
whereas error is being introduced near the wall., The point of
inflexion in the velocity profiles is predicted quite well, although
Bradshaw and Ferriss point out that it is not reproduced by
Thompson's velocity profile family.

All the experimental velocity profiles measured by
Bradshaw and Ferriss, correspond to the logarithmic law (equation
(3.2.6)) with A = 5,85 whereas the present calculation was performed
with A= 4.9, It was anticipated that this difference between
theory and experiment might help account for the observed dis-
crepancies in the calculated velocity profiles but a number of
computer runs made with this amended value for A failed to produce
any significant differences from the original calculation.

Bradshaw and Ferriss, as a means of emphasising the poor
perfomance of a number of calculation methods,compared 9%% as
predicted by the various methods with experimental values. The
methods of Head, von Doenhoff and Tetervin, Spence and Maskell

were considered. Figure (5.2.7) shows the predictions of Head's
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methodl as reported in reference [27] and that of the present

calculation. All the other methods listed above gave predictions

for - @ %H}_{ less than that given by Head and on this comparison
the present method flares very well,

In addition we may add that, _in reference to
the two-dimensional nature of the flow, Bradshaw and Ferriss
noted that for the equilibrium flow the 'tunnel provides as
good an approximation to the two-dimensional flow as one can
expect in a tunnel of reasonable width' whereas with the flow
'a = =0.255 -» O' they noted that 'after the removal of the

pressure gradient the boundary layer started to diverge'.

Schubauer ani Klebanoff.

Schubauer and Klebanoff [28] investigated the
turbulent boundary layer developing over a simulated aerofoil
with curved (convex) surfaces between x = 0 and x = 7' (radius
of curvature 23') and between x = 18! and x = 28' (31' radius).
Detailed measurements of velocity profiles together with turbulent
shearing stress profiles were made up to separation. Reported
values for the surface shearing stress, obtained by extrapolating
the turbulent shearing stress profiles to the wall, need in the
opinion of Coles [15] be reduced by 31% because of the excessively
large values obtaincd. In view of this experimental skin friction
values will not be used here for the purpose of comparison,

Thompson [2] considered that the flowvas closely
two-dimensional only in the initial region of favourable pressure
gradient, and in the region of rising pressure (x > 20') the flow
was said to be 'less accurately two-dimensional as separation is

approached!, The discrepancies between the two-dimensional theory
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and experiment encountered by'Thomps on may be due in part to
either the convergence of the flow or the downstream curved
surface,

The predictions of the present method for this
experiment are shown in figures (5.3.1-4). The experimental
Cp values shown in figure (5.3.3) have been computed from the
logarithmic law of the wall using the experimental velocity
profiles. No noticeable discrepancies occur -in the predicted
momentum thickness until x = 24' while H is evidentialy in error
at x = 20', There is considerable scatter in the experimental
skin friction values but it appears t}_la.t the calculated value
deviates from the experimental as early as x = 14',

Al so shown in figures (5.3.1-4) are the curves
obtained by treating the flow downstream of x = 14' as a plane
of symmetry flow in which flow convergence has been introduced
into the motion. The degree of convergence that has been imposed
is simply that necessary to account for tle observed discrepancies
and in particular to induce separation at the required point,

The convergence, as effected by a cross-flow velocity gradieut

on tne plane of symmetry given by

Zo_ L (x;“*)s (/ aed) (5.3.1)

was found to be sufficient to ensure reasonable overall agreement

with experiment altaough 6 is now somewhat greater than that
indicated by experiment. The computer program was used so that

it assumed on the axis of symmetry (y = 0)

lim Vot e
y=->0 V_I(éi) (

L9 |
.
i
.
)

o

where the function £ (which was taken from one of the three-
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dimensional calculations to be considered in Chapter 8ix, and
which was found to be of the same general shape for boundary
layers developing in adverse pressure gradients) is plotted
and tabulated in Appendix A7.
Velocity profile comparisons are shown in
figure (5.3.4). Predictions from the two-dimensional calculations
are good even up to x = 20' but are in considerable error by
x = 24'., The velocity profiiles as given by the axially symmetric
calculation are in reasonable agreemen‘t with experiment overall,
The predictions for this experiment based on the
entrainment method are in very close ggreement with the pr;a—
dictions of the present method as given by the two-dimensional

calculation,

5.4) Spangenberg, Rowland ani Mease,

| In an investigation into near separating flows
Spangenberg, Rowland andi Mease [29] made detailed mean velocity
and turbulence measurements in two boundary layers (denot'ed L%
and 'B') in both of which the skin friction was maintained at
small values over prolonged distances of a smooth flat wall.
Experiment 'B' was closer to separation i.e. smaller skin friction
values (as given by the logarithmic law of the wall from the mean
velocity profiles) were maintained, than experiment ‘'A'., The
maximum pressure gradient that could be produced in the duct was
introduced f-rom X = 0 and then reduced so as to Jjust prevent
separation, altaough small areas of transitory stall still intermittent
occurred along a large portion of the test surface length.

Of the two experiments only experiment 'A' is simulated

e
o

here. The experimental velocity distribution of experiment 'A' wa
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empirically fitted by Spangenberg, Row'l.and.and Mease to
U= 94.92 (x+0.83)"°*%?® (ft/sec) (5.1)

No attempt has been made to simulate experiment 'B' because as
noted by the experimenters 'the difflerences between the two
pressure distributions were of the same order as the reading
errors and no consistent change was indicated!, Because of this
the experimental data from both experiments ’n'z-a.s been plotted for
comparison with m

These predictions for experiment 'A' from both
the present calculation and Head's methdd are shown in figures
(5elel=4). The pertinent fact conceming the present simulation
is the large difference between the predictions fob the two cal-
culations. The prediction from the entrainment approach remains
close to the experimental points for x < 80" but then fails to
recover ani separation is predicted at x = 110". The present
method tends overall to remain closer to the pﬁ:ints corresponding
to experiment 'A' than experiment 'B' (although the scatter of
points in figure (5.4.3) does leave this matter in some doubt as
far as H is concerned) and the flov is not predicted to separate
until 190",

The present method then performs considerably
better than Head's in this comparison, altihough as one might
expect and a s indeed was intimated by Spangenberg, Rowland and Mease
the classical boundary layer approximations are not entirely valid
in near separating flows such as that considered here. In addition
it must be pointed out that a characteristic of this type of ilow

is the presence of random cross-stream currents within the boundary
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layer although 'checks on either side of the duct centre line
showed essentially the same mean flow conditions across the

duct?,

5 .5) Conclusions.

The present chapter contains a number of comparisons
of the present theory with experiment and enables the adequacy
of these predictions to be judged in the light of predictions as
provided by a well-tried and, in the context of calculation methods
at large, accurate calculation method, namely that due to Head.

The predictions of the present theory are moderately good and are
generally at least as good as those given by Head. The present
theory has also provided realistic predictions of two experiments
whic h both provide quite severe tests for any calculation method

viz Bradshaw and Ferriss's experiment in which the pressure gradient
was suddenly removed from an equilibrium boundary layer and the near
separating fiow of Spangenberg, Rowland and Mease [27,29],

The main drawback inherent in attempting to determine
the adequacy of the calculations presented in this chapter is the
lack of any experimental quantitative information conceming the
two-dimensional character of the flow. It would be extremcly useful
if in two-dimensional expei-imental investigations adequate consideration

were given to this point,
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6.0) Introduction,

L
We are nov in a position to be able to extend

the preaictions considered in Chapter Five to include both
pseudo-three-dimensional boundary layers and three-dimensional
boundary layers proper. Sections 6.1-4 are concerned with the
pseudo-three-dimensional cases i.e. cross-flows exist within

the boundary layers although the flows are dependent on only

two space variables, Sections 6.2-4 provide comparisons of the
present theory with experiment while sections 6.1-3 also consider
alternative methods of calculation. Section 6.5 is concerned with
an axially symmetric laminar stagnation flow which is included as
a check on the three-dimensiomal calculation method, while the next
two sections consider the predictions of two three-dimensional
boundary layers both concerning the secondary flow induced up stream
of a circular cylinder mounted perpendicularly on a flat surface.
The latter of these two experiments (section 6.7) was intensively
investigated andi so enables some detailed comparisons betwecn the ory
and experiment to be made,

It will be recalled from Chapter Four that the extension
of' the two-dimensional calculation method to three dimensions entails
two further assumptions concerning the flow. These are firstly, the
existence of a planar velocity profile in the inner part of logarithmic
region at the wall, as exemplified by Johnston's triangular model for
the flow (section 3.5), and secondly that the shear stress acts in the
same direction as the maximum rate of strain i.e.

v C Tt
ex ey

(section 3.3). Further the definition of the effective viscosity
paramcter K as defined as a function of T in equation (5.0.2) will

be retained, but T will necessarily be amended as follows
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r = 104 gii -g-% (6.0,1)

Equation (6.0.1) is thus a generalisation of equation (5.0.1)
and reduces té it for two-dimensional flow, It was also found
necessary hovever to impose a lower limit on K (0.007) in equation
(5.0.2) since values of T encountered in the three-dimensional
calculations were low enough to provide a necgative K from equation
(5.0.2). The complete function K(I) is plotted in Appendix A7.

As in Chapter Five the section headings in this
chapter will refer to the names of the original experimenters or,
in the case of sections 6.1,5, to the original investigator of the

]

particular theory considered,

Cumpsty ani Head (1967).

Cumpsty and Head [30] in an application of their
theory for calculating pseudo-three-dimensional boundary layers
(section 2.1) considered the hypothetical case of an inf'inite swept
wing for which they predicted boundary layer developments for a number
of wing and flow configurations,.

The swept wing was assumed to have, over the forward
part of the chord, a region of constant freestream velocity (equal
to that in the undisturbed. flow) followed by a region in which the
chordwise velocity decreased linearly while the spanwise velocity
remained constant, Measuring x, normal to the leading edge, from
the beginning of the region of adverse pressure gradient, the velocity
components are given for x > 0 by

U

Qo cosay (l=kx)
] (6.1.1)

V = Qo sindgg

]

where Qo is the undis turbed freestream velocity,ap is the angle of

sweep and & the velocity gradient. The wing being assumed infinitve
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the flow is independent of spanwise position (y).
The cases treated by Cumpsty and Head were those
Ko

listed in Table 6.1.1 all of which were calculated with,following

initial conditions at x = 0

811 = 0,00234"
Ho =13 ; (6.1.2)
Ry = 2690
11

It was decided to simulate the same cases with the present
theory to provide a check on tne feasibility of the predictions
provided by the solution scheme for a pseudo-three-dimensional

flow. !

As with Cumpsty and Head, the case

gy = NSl S 00267
was used as an initial test. The predictions from both calculation
methods for this flow are shown in figures (6.1.1—4), where

611, H, ¢, and fo developments have been plotted (cfx is the

f
component of the resultant skin friction in the chordwise

(i.e. x) direction and Bo is the angle between the freestream
velocity and the limiting flow direction at the wall.) The two
predictions agree reasonably well although the present calculation
proceeds a little more slowly towards separation and consequently
predicts a slower growth for H and fo. A typical velocity profile
from the present calculation (x = 1.2') is shown in figure (6.1.5)
where it has been plotted in terms of streamwise (ui) and crossflow
(V1) velocity components. The crossflow component of velocity
exhibits tne typical shape for such a prfile and also the polar
velocity plot (v4 plotted as a function of uy) has its expected

triangular shape, The dashed portion of this latter profile
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indicates the region within which the calculation method assumes
a coplanar flov i.,e. corresponds to the region between the log-
point and the wall,

Those cases listed in Table 6.l.1 where the velocity
gradient (parameter k) is varied while the sweep 0o remains constant
are treated in figures (6.1.6-9). Again the present calculation
predicts a later separation than the predictions of Cumpsty and Head.,
the discrepancy between the two calculations increasing as the velocity
gradient parameter is decreased, The momentum thickness predictions

wle
are in close agreement as before,asd the shape factor devel opment
as given by the present calculation is cqnsid erably lower than that
calculated by Cumpsty and Head even allowing for the later separation
in the present method. Separation however occurs at approximately
the same value of H owing to the very rapid increase in % in the
present method as separation is approached,

It must be appreciated that the process of separation
encountered in all the cases treated so flar in this section is
radically different from that observed in two-dimensional separation.
Separation is caused essentially by the curvature of the streamlines.
beeause ¥he paths followed by particles of the fluid near the wall
are deflscted towards the spanwise direction so that all such particles
at different spanwise positions are being deflected towards a common
streamline, Separation must thus occur along tais line. Shape factors
‘encountered at separation in such an instance, as is borne out by
tae prosént calculations, are thus less than those met with in two-
dimensional separation since the streamwise component of skin friction
cp, does not in the former case necessarily tend to zero.

Considering now thne efflects of varying the angle of

sweep of the wing while the velocity gradient remains constant, we
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see that a marked_difforence in pred&uted behaviour exists between
the two calculations as is shown in figures (6.1.10-13). With
increasing sweep the entrainment calculation predicts that the
separation point will first move dovnstream and then upstreanm
'again(ﬁs 4o is increasedl The present theoxry on the other hand
predicts a slight upstream movemant of the point of separation as
®o increases for smaller angles of sweep, and then a more marked
dovnstrezm movement for larger angles. The present theory moreover
shows a more complicated behaviour pattern as can be seen from
011, ¢, predictions given in figures (6.1.10,12). Both predictions
show momentum thicknesses to be largely independent of sweep angle,
very little variation ogcurring for x < 1.0', while the development
of shape factor is markedly different for the four sweep angles
considered, the present theory indicating a.slower H growth as before.
The crossflow angles predicted by the two calculations agree only
in the magnitude of the angles to be expected while the pattern of
behaviour encountered as ao is increased differs considerably
(see figure (6.1.13)).

As can be seen from equation (6.1.2) the boundary
layers as calculated by Cumpsty and Head were dependent on
Reii, 011, H only for initial conditions., It was thus thought
necesgsary in the present investigation to determine if the same
were true hére and consequently the case ap = 0°, ¥ = 0.25 was re~
run with ¥, U, V all doubled. At x = 1,3' H was found to have

varied by 0,0005, c, by 10°° and 6 by */4o%.

While considering the problem of the infinite
swept wing it was thought worthwhile to further test the capabilities
of the present method of calculation by considering an additional

hypothetical flow, namely that in which a 'cross over! profile exists.
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Such a profile may occur when the curvature of the external
streamline chnngeé sign so that the external flow induces in
the boundary layer a crossflow contrary to that initially present.
The resultlis, wnen the change in curvature is rapid enough, that
within the boundary layer two separate crossflows, acting in
opposite directi ons, exist. The newly imposed cfossf‘lm is in-
troduced at the wall ani gradually extends its influence outward
until the original crossflow is entirely removed, It was found
that wit: the present calculation scheme such a situation arose
when in equations (6.1;1) with ap = 35° the velocity gradient

parameter k was made dependent on x as follows

k=1=1x,

The extermal streamline for this flow then possesses a point
of inflexion at x = 0.5'. With the same initial conditions
as used previously (i.e. as given by equation (6.1.2)) this flow
was calculated as far as x = 1.2'; the predictions are plotted
in figure (6.1.14) .- The usual parameters 611, H, Cpys Bo have
*been plotted for completeness although for the present purpose
only the crossflow angle fo is relevant. The curvatw'e of the
streamline upstream of the point of inflexion decreases progressively
so that tha crossflov angle fo begins to decrease well before
it is actually reached, and would be expected to tend assymptotically
to zero if no further curvature were introduced. However since
the curvature of the external flow changes sign fo is to be expected
to also change sign and, as can be seen from figure (6.1.14),
Bo passes through zero at x = 0.,83' and begins to increase in
magnitude again as the flow continues downstream,

If such a flow were calculated using the ususl

agsumptions implicit in the entrainment calculations for three-
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dimensional boundary layers (section 2,1) it would be necessary
to assume that the flov in fact was coplanar at the point where
Bo = 0 and that the reversed crossflow is introduced only after
the original crossflow is removed. An examination of the velocity
profiles obtained in the present calculation would indicate that
this is far from the truth.

In figure (6.1.15) streamwise and crossflov velocity
profiles are plotted far x = 0.6', 0.9', 1.2' and it can be seen
that at x = 0.9' a definite 'crossover' crossflow profile exists.
It has of ten been posmlated'that the i)ola.r plot of such a 'crossover!
profile would be expected to exhibit a double triangle (i.e. -approﬁnﬁte
to three straight lines) but the predict;i.on d the present calculation
indicates that this is in fact not so (see figure (6.1.15)). It can
also be seen that even af'ter the crossover profile has been removed
there is some delay before the outside edge of the Johnston's triangle
is reinstated as a straight lins. A more detailed selection of polar
plots is given in figure (6.1.16) where the profiles at x = 0.?5'(0.05').2
have been plotted., One minor point to be noticed from this figure _
is that the assumption at the wall of a coplanar velocity profile
might now be called into doubt for the purpose of the present

calculation (see the profile at x = 0.75'). However this assumption

' seems generally to have coped with the situation quite well and even

so it would be possible to remove this assumption and replace it by
a more general one for such a situation as this,
Figure (6.1.17) shows the limiting streamline at the
wall and in the freestream for this latter flow. The point of
G@Mwa{»:
inflexion of the external streamline is shown and also,the point

of zero crossflow angle Po (where the two streamlines are parallel).

The present theory has thus given feasible results
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for the boundary layer flow over an infinite swept wing (for
which predictions. with experiment are given in the next two
sections) and also proviied a very convincing explanation of the
behaviour of the Tlow within the boundary layer in which there is

a gevere point of inflexion in the external streamline,

Cumpsty and Head (1970).

As a meé.ns of estimating the effectiveness of the
boundary layer calculations performed by Cumpsty and Head [30]
and discussed in the last section, an attempt was made to simulate
experimentdly an infinite swept wing. Cumpsty and Head [8]
consequently measured the flow over a wing of 18" chord swept at
61°, in a wind tunnel of 48" working section width., Mean velocity
profiles were measured downstream of the line of minimum pressure
up to the separation line at two spanwise positions.

The predictions for this experiment based on the
present theory are shown in figures (6.2.1=3) where some predictions
of Cumpsty and Head have also been included (the experimental results
included in these figures (circles) are those obtained with the
'slender traverse gear'). Figure (6.2.1) shows the predictions
of both methods when infinite swept ﬁing theory is used, not only
to infer spanwise independence of the flow, but also to determine
the direction of the mainstream flow since only the magnitule
of the velocity of the flow has been recorded experimentally The'dewn=
stream'pressure distribution has been used in both calculations).

For both cabulations the assumption that the V component of velocity
is constant over the chord and equal to that at the leading edge

(v{’.-e)’ leads to an inadequate explanation of the flow since the
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rates of change of all paramcters plotted 611, H, Ca Po are
underestimated, the present calculation giving the poorer of
the two-predictions.

In an attempt to reduce the discrepancy between
the experimental results and their calculations Cumpsty and.Head
imposed an additional spamvise velocity (a 5% increase in V was
introduced, the pressure distribution remaining the same ) on the
flow in order to reconcile the observed and predicted momentum
thickness (611) development. Thi.s assumption produced a slight
improvement i-n sha.pe factor development and considerably improved
that of fo as is shown in figure (6.2.2). The present théony, in
conjunc tion with the same assimption V = l.OEVbe, also predicts an
improved 014 development, although the changes in H, Bo are here

‘only slight. There is however some movement towards the separation
of the flow.

Figure (6.2.3) shows the various displacement
and momentum thicknesses which are dependent on the crossflow
as determined by experiment ani also as calculated by the present
theory. The various thicknesses shown have been predicted better
ﬂlmlthé Po comparisons shown previously would indicate, as is also
the improvemen’ in prediction achieved by incresasing the crossflow
from V =V, (curve 1) to V= 1,05 Voo (curve 2).

The assumption that the flow over the experimental
arrangement is equivalent to the thearetical infinite swept wing
is obviously suspect. Apart from the problem of how to detemine
the direction of the flow outside the boundary layer when only the
resultant velocity there is known, we need obviously consider the
possibility of a spanwise dependence of the flow, Cumpsty and Head

measwred the pressure distributions across the chord at two spanwise
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positions (denoted 'upstream' and 'downstream') anl the

difference in the static pressure coefficient cp was found

to be as much as 0.04 at the point of minimum pressure and

0.08 at the trailing edge. It was thought more realistic within
the present calculation scheme to introduce this observed spanwise
pressure gradient into the calculation rather than proceeding

to investigate further the effects of difflerent assumptions

for V in the pseudo-three-dimensional context.

Two attempts have been made to reconcile theory
and experiment by introducing the difference in static pressure
at the two spanwise positions. Both calculabions were computed
using a three-dimensional mesh and iéposed on the flows considered
above spanwise gradients in U,V respectively sufficient to account
for the encountered pressure diécrepancies. A spanwise veloci ty
gradient in U had a slight effect, largely at the trailing edge,
but in the reverse direction to that required. A similar gradient
in V produced no significant change in predicted developments,

We conclude theref'ore that theory and experiment
canllargely be reconciled by an overall increase in spanwise
velocity, while the experimentally observed spanwise pressure
gradient could not readily be used to explain the still apparent
discrepancy in shape factor development, This latter discrepancy
might still be attributable to some variation in the direction
of the flow in the mainstream not already considered although

it would appear that the fault more likely'lies with the calculation

schemes considered.

P.D.Smithe
The experiments of P.D.Smith (7] were, as was

that considered in the last section, concerned with a simulated
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iifinite swept wing. The measurements (mean velocity profiles)
were made on the lower swface of a flat plate below which there
was fixed a porous circular cylinder fitted with a Thwaites flap.
Boundary layer saction was applied to the circular cylinder to
prevent separation on the cylinder, The different exp erimental
configurations were obtained by varying the inclination of the
Thwaites flap ani the distance between tne plate and cylinder;
all experiments were performed with both the plate and cylinder
jnclined at 265° to the mainstream flow.

Only three of the nine runs investigated by Smith
are considered here,these are 'runs 1,5,6', the experimental
results for which are shown in figures (6.3.1-3)« Also included
in these figures is one set of predictions calculated by Smith.
This prediction, shown by the dashed line ('method 3' as denoted
by Smith) is based essentially on the entrainment approach and |}
assumes a power profile for the streamwise velocity and Mager's
relation (equation (2.1.7)) for the crossflow, 'Method 3' gave
the best results overall of the six calculation methods (all
integral methois) considered by Smita. The solid limcs in
figures (6.5.1—3) are the predictions for the flow based on the
present theory.

Both predictions indicate slightly exaggerated
momentum thickness (011) growths, the two calculations giving
very similar results. Shape factor predictions based on the
present method are poor and only in the severest flow ('run Q') is
H predicted at all well and even then the calculation tends to
separation at the trailing edge, a feature not exhibited by the

experiment. Crossflow angle predictions from both theories are

reasonable.
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The tendency for the present calculation to over-
estimate shape factor development is the reverse of that noted
in the swept wing considered in section 6.2, although as there
the effectiveness of the calculation scheme is obviously confounded
with any extraneous three-dimensional effects within the experiment.
Since in section 6.2 no such effect could be shown to explain the
discrepancy in H predictions we are inevitably led to expect the
same here. Indeed tne sweep of the wing in the present case is not
as severe as that considered previously and so presumably the f1ow
is more reliably pseudo-three-dimensional.,

The mainstream velocity distribution used in the
present calculation was, as in section 6.2, based on the use of
infinite swept wing theory to detemmine the direction of the flow.

No data has been publishad in the present case to establish the

pseudo-three~dimensional nature of the flow.

Hoadley,

The experiment of Hoadley [31]} was concerned with
the flow in a diffuser in which swirl had been introduced into
the motion. The dimensi ons of the experimental arrangement are
shown in figure (6.4.1); the mean velocity profiles were measured
at the axial positions shown,

The present theory predicts this flow quite well as
is shown in figures (6.4.2<5). The curves in these graphs were
computed using the velocity distribution measured by Hoadley. Both
the magnitude Q ani the deviation from the axial direction ao of the
mainstream velocity field were measured; the values are shoz.vn

tabulated in Table 6.4.1, It can be seex that the ado values possess
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a great deal of scatter and since it is the rate of change
off this quantity that will determine the development of the
crossflow within the boundary layer the possibility of being
able to predict this aspect of the flow does not seem very
encouraging. Resolving Q into its components U,V we see
these values appear more reasonably distributed and it was
from a linear interpolation of these values that the prediction
was calculated.

| The main discrepancy vetween theory and experiment
is the marked increase in rates of change of the boundary layer
parameters as separation is approached which results in separation
being predicted before it is achieved experimentally. The scatter
in the data could obviously have been the reason for the excessive
Po predictions which in previous calculations has been predicted
somewhat more accurately.

The results obtained here are obviously very

encouraging since the likelihood of extraneous three-dimensional
effects in the present experimental arrangement are much less

than taose encountered in the infiinite swept wing simulation,

6.5) . Froessling.

As a check on the finite difference approximations
to the three-dimensional boundary layer equations (1.1.10-12) it
was decided to simulate a laminar boundary layer for which a known
solution existed. That chosen was the axisymmetric stagnation
flow against a flat surface [1] which, since the calculation was
performed over a rectangular grid, was three-dimensional as far

as the present calculation scheme was concerned,
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N.Froessling [32] solved the complete Navier-
Stokes equations for this flow but, because the terms which
are deleted in the course of the ﬁoundazy layer approximations
cancel of thai;r own accord from the Navier-Stokes equations,
the problem can equally be treated as a boundary layer flow. In
the latter case if the mainstream potential distribution i'ss

assumed to be given by
.

Ui=iax V = ay
"it is possible to write the velocity components within the

boundary layer as

u = axg¢'
v = ay¢'
w = -2.];? (o)

where ¢, a function of (4

FE
ngz’

must satisfy
¢l3 o5 2¢¢n =1 + ¢n|
with the boundary conditions

¢
=0 2¢'=1

0 : ¢=¢ =0

1l

Froessling has tabulated the functions ¢,¢'. Although, as
mentioned above, the flow is three-dimensional as far as the present
calculation is concerned it is obvious from the above considerations
that boundary layer is both coplanar and of constant thickness.

The boundary layer was solved by starting the
calculation at a point sligutly away from the stagnation point
and by inputing a sine profile as a first approximation to the

streamwise velocity profile. The calculation was then continued
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downstream until the ¢,¢' profiles had settled down to the fifth
signficant figure and the solutions at individual faces were
convergent to a tolerance of 10" *2, The ¢,¢"' profiles cbtained
are plotted in figure (6.5.1) and tabulated in table 6.5.1.

The difference between the ¢ computed here and
that calculated by Froessling is as little as */ao% at { = 3.6
where it must be remembered in the present calculation ¢' is
calculated directly and then integrated to obtain ¢, so that any
error in ¢ at the edge of the boundary layer is the accumula tion
of those arising in ¢' in the boundary layer. The present
comparison thus verifies the adequacy of the finite difference

scheme used in the present calculations.

Hornung anl Joubert.

Hornung and Joubert [13] investiaged experimentally
the secondary flow within the boundary layer upstream of a cylinder
mounted perpendicularly on a flat plate. This experiment, as is
that to be considered in the next section, is one of the few
instances in which detailed mean velocity profile measurements have
been made in a three-dimensional turbulent boundary lagyer.

The flat plate on which the boundary layer was
developing, was 20' long and approximately 5' wide at the position
of the model. The model was of semi-circular section (22" diameter)
on the upstream side and faired at the rear, It was mounﬁed 178
from the leading edge of the plate.

The effect of the model was to induce a region
of recirculation upstream and it was over the region prior to
separation that the mean velocit_;} and yaw profiles were measured,
The precise plositions were the experimental measurements were made

all
8 shown in figure (_6.6.1).
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The present calculation of this flow has been
perfo.fmed over the mesh shown in figure (6.6.1) over which
the mainstream flow was assumed to be approximated to by the
potential flow about a near circular cylinder between parallel
walls as given by Kennard [33]. The velocity components for tais
flow are given in Appendix A9. As can be seen in figure (6.6.1)
the solution was started at x = =4' where planar velocity profiles
were input, the same profile being used at all sections across
this face. The solution was matched on the axis of symmetry at
x = =2,125"' to the experimental data; both the initial conditions
and potential distribution were amended to ensure agreement at
this matching point. In addition.to effectimg a solution using
the present scheme.,it was necessary to impose as boundary conditions
v distributions outside the boundary planes y = 0',-2', The symmetry
condition was used at y = 0' and at y = =2' two alternative

boundary conditions were considered, viz.

£(z) (6.6.1)

1

<<

(L+ay) £(2) (6.6.2)

<1<

These conditions allowed the v prdiles outside the solution space |
to be calculated iteratively from the solution witain the space

at the same x, i.e. a and the function f were obtained by applying
either of the two above boundary conditions as a condition of
continuity on the %prof‘iles. While these alternative conditions
gave virtually the same results when used in the calculation scheme
the latter was found to give a more favourable explanation of the

behaviour of v across the boundary y = -2', and was retained for

tae purpose of the present calculation.
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The calculation was performed over nine sections
at each face,while th: configuration of points at each section
was the same as that detailed in Appendix A8; the program
computed 18 solution faces in 8,3 mins on the IBM §360/65 before
reac hing separation. Once separation is reached at any section
on a solution face the calculation method breaks down for all
sections on that face.

Detailed comparisons between theory and experiment
are given in figures (6.6.2-9) where boundary layer parame ter
(Gii,H,cf,ﬁo) comparisons are made at sectional planes
y =0', -0.5', -1' and x = =2,125", —1!.75' and velocity profile
comparisons at all posi tions where the above two sets of planes
intersect, The disposition of points and planes where comparisons
have been made are also shown in figure (6.6.1).

Before proceeding to discuss these predictions we
will repeat that the solution was started at x = =4' with uniform
initial conditons with respect to y and zéro cross flow. The main-
stream distribution used was the potential distribution about a
near c:i_t_-cular cylinder bétween parallel walls (Appendix A9) and
the boundary conditions used were the symmetry condition at y = O
and equation (6.6.2) at y = -2', The solutionwas matched so as to
agree with experiment at x = =2,125', y = 0',

Figure (6.6.2) would suggest that the present theory
has indicated separation at approximately the correct point although
611, H are developing a little too quickly along the axis of symmetry,
The correct pattern of behaviour has been predicted as y increases
in magnitude (figures (6.6.2-4)). Predictions for 611, H show
development being retarded as we move away f'rom the axis of

symmetry and also the commencement of a region of increase in skin
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friction with increasing x at y = -<1', both of which are in
agreement with experiment. Crossflow angles are also being
predicted competently altaough at y = =1' Bo is underestimated
by some 3%%.

Considering comparisons at x = constant planes
figures (6.6.5,6) we can see that the shaps of all the profiles
has been predicted quite well, The main shortcoming again is
in the wunderestimation of the crossflow angle fo. It is relevant
to note for the purpose of these comparisons that the increment g
for the y direction was 0.25'., Both calculation and experiment
indicate with y increasing both 611, H tending to a constant value
at each plane, The slight difference between theory and exp er.iment
here might‘ obviously be accounted f'or by the presence of some
additional effects caused by the presence of the wind tunnel walls,
In this respect it might also be noted that the effect of the
region of recirculation upstream of the cylinder appears to have
had little effect upon the mainstream velocity distribution in
this region,

Figures (6.6.7,8) shov the experimental and computed
mainstrean and crossflov velocity distributions for y =-0',-0.5',-1!
at both x = =2,125" and x = =1,75" respe.ctively. The run numbers
included are those'asaigned by Hornung and Joubert. Streamwise
velocities are predicted quite well while the crossflow profiles
are underestimated at y = =1' as would be expected from the observation
made above concerning fBo. A slight assymmetry of the flow is also
apparent from the experimental data.

Figure (6.6.9) shows comparisons between calculated

and experimental polar plots. The plots at y = =0.5"' are in error
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only at the wall while the plots for y = =1' show an overall
discrepancy. The two sections of the curves corresponding

to the present calculation in figure (6.6.9) relate to the
calculated velocity profile and the assumed planar profile between
the log-point and the wall respectively.

It must be pointed out that more correctly the
solution scheme demands that the initial condition be secified
across the initial solutinn face and not just at one section on
it as was done here. This point might very largely explain the
discrepancies encountered in the f,predictions (see figures (6.6.4,5)).
In view of this the present calculation has provided excellent
agreement wita experiment.

This experiment has also been simulated by
Nash [12] who solved the turbulent energy equations (section 2.2).
Nash started his calculations at x = =7' in a manner similar to
that employed here and ma.i;ched calculation to experiment at the same
point. The crossflows as predicted by Nash were underestimated

by the same order of magnitule as those in the present calculation.

East and Hoxey.

The experimental arrangement investigated by East
and Hoxey [22] was very similar to that considered by Hornung
and Joubert (section 6.6). The model used had a semicircular
leading edge of 24" diameter and was mounted on a flat plate of
9'9" width, The experimental measurements were considerably more
intensive than those of Hornung and Joubert as can be seen from
figure (6.7.1). This enabled the experimental mainstream W:relocj.*-,y
distribution to be used as a basis for the calculation to be con-

sidered below ani also meant that the calculation could realistically
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be matched to the observed conditions across a x = constant
'plane,

Figure (6.7.1) shovs the mesh over which the
calculatior was developed. Uniform mainstream velocity
profiles were input at x = -40" and the solution was then
continued to x = -30", the mainstream velocity distribution
being basically that obtained by extrapolating from the ex-
perimental distribution for x > -30" out was modified slightly
(together with the init%al conditions) to produce the correct
H, 611 distribution at x = -=30". Beyond x = -30" the solution
was continued up t; separation using the experiméntal velocity
distribution,

Equation (6.6.2) ani the symmetry condition were
used as the respective boundary conditions as outlined in
section 6.6. Ten sections were used at each face while the
array of points used at each section was again the same as that
used in section 6.6. The program computed 28 solution faces
up to separation in 14.35 minutes on the IBM. S$360/65.

The comparisons between theory and experiment shown
in figures (6.7.2-14) are at the sectional planes indicated
in figure (6.7.1) where the circles represent the experimental
points. The usual boundary layer parameters 611, H, Cps Po
are shown plotted in figures (é.7.2—8) at y = 0,3,6,9", x ==30,
-26, =23", while figures (6.7.9-14) show predictions for the
crossflov boundary layer thicknesses 062*%, 613,023 Por convenience
when plotting Po,823*,813 changes in sign across the plane of symmetry
have been ignored and instead where the sign of the experimental
quantity is the opposite of that shown a vertical line has been

drawn through the circle at that point. Figures (6.7+6,12) show
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both these sets of parameters plotted at the plane where
theory was matched to experiment. With respect to 011
a marked assymmetry of the flow is apparent and the
calculation was necessarily matched to the average for
both sides of the plane of symmetry. As is readily
apparent the crossflow at this initialising plane is less
than that indicated by experiment; an attempt was made
to account for this by imposing a crossflow at x = =40" but this
was found to produce a marked change in 614 at x = -30" and
it was not possible to readjust the pressure distribution.
for x < =30" to remedy this in the limited time available.
However, as was the case in previous comparisons, the cross-
flow is being predicted somewhat more accurately than the
crossflow angle [o predictions ';vould indicate.

ﬁ‘he comparisons of 611, H, Cps Bo at the y=constant
planes show that the correct type of behavicw is being
predicted., The movement towards the separation of the 'flcm
along y = 0 is not being predicted to occur as quickly as
the experiment although at the other y = constant planes Ce
predictions are closer to experiment. Crossflow angles Bo
on the other hand are being quite seriously underestimated.
The overall behaviour here is not much different from that
found in the experiment of Hornung and Joubert.

Considering now the same parameters at sectional
planes x = constant, Firstly we notice here a slightly
different type of behaviour to that encountered in the last

section, although in the present problem it must be
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remembered that the area of the wall of interest is some-
what more restricted than that considered previously.
The most apparent difference is that whereas before the
momentum thickness 644 attained a maximum on the plane of
symme try énd then tended to a constant value as we moved
away , here we observe that 6,4 on the plane of symmetry
attains a minimum and then a maximum at some short distance
away . This would appear to be due to the relative
remoteness of the wind tunnel walls in thé present flow
so presenting less resistence to the‘divergence of the
flow on the plane of symmetry. The assymmetry of the
flow at x = -23" is more marked than that further upstream
as is the error in the crossflow angle ﬁo.‘

With respect to the boundary layer thicknesses
82*, 013,022 plotted in figures (6.7.9-14) it would appear
that the greater part of the discrepancies here can be
traced to the incorrect initial condition at x = =30", and
it can be seen that the correct type of behaviour is being
predic ted overall,

With respect to the data shown plotted in
figures (647.2-8) the skin friction values at y = 3,9"
and x = -23" have been obtained by averaging the experimental
values at the planes one inch on;side of the plane concerned
and all the experimental Co values plotted are those obtained
by Preston tube measurements,

There is also some need to point out here that
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6.7) contd.
no attempt was made in the present calculation to ensure
the irrotationality of the mainstream flow (section 1.1)
for x < =30". The result of this was that although the
velocity profiles settled down assymptotically at the edge
of the boundary layer, at the last one or two points a
slight twist in the velocity vector q was apparent. This
effect increased as x increased within the range
~40" < x ¢ =30" to a maximum of 1° at x = =-30", ¥y = 9"
and then decreased for x > -30". Although the effect of
this pecularity on the calculation scheme was probably very
slight it was necessary to take it into account when
analysing the crossflow velocity profiles and consequently
for this purpose it was necessary to ignore a few outer

points.

6.8) Conclusions.

Chapter Six conbains comparisons between the
present theory and both experiment and alternative theories
for three-dimensional and pseudo-three-dimensional boundary
layer flows.

With regard to the pseudo-three-dimensional
flows the present theory although apparently able to predict
momentum thickness 611 and crossflow development with
reasonable competence, was in error in calculating shape
factor development, This deficiency could not be attributed
to extraneous spanwise velocity gfadients although it'-may still
have been caused by a deviation of the flows from infinite

. swept wing theory (in the pseudo-three-dimensional context).



6.8)

98.

contd.

However since P.D.Smith's extensions to Head's entraimment
calculation predict H quite well for this flow this is

thought unlikely to be so. The other possibility is that

the model employed for the effective viscosity in the present
calculations is at fault. Improvements in this model, in

the two-dimensional context, should be further imvestigated
although the lack of proven reliable two-dimensional experiments
makes this not altogether an easy matter, Crossflows have been
predicted with reasonable accuracy thus confirming the
plausibilii;y of the three-dimensional effective viscosity

model il.e,.

The two three-dimensional turbulent boundary layer
flows considered have provided good agreement between
theory and experiment. It would appear that although there
is a tendency in these calculations to underestimate the
crossflow angle Bo this same tendency is not exhibited in the
crossflow thickness 83* predictions which are calculated

reasonably well.
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The present work has been concerned with the extension
of existing two-dimensional turbulent boundary layer calculation
methods to three dimensions. I£ was decided to employ the
effective viﬁcosity approach within the present calculations
basically because it provided the method which required the least
empirical infomation both to establish the two-dimensionél cal-
culation and then to extend this to three dimensions. Although
the mixing length conceptris generally recognised as a plausible
model for the flow away from both the wall and freestream it was
necessary to assess thoroughly tae capability of the model in the
outer edge of the boundary layer. As a result a simple model of
the flow wasdeveloped for the outer la}er (see Appendix A7) from
a two-dimensional retarding boundary layer and was consequently
used as tie basis of all the calculations considered here (in both
two and three dimensions).

The two-dimensional calculations presented here have
provided reasonable agreement with experiment and compared
favourably wita predictions for the same experiments as provided
by Head's entrainment method. The pseudo-three-dimensional cal-
culations have proved to provide the same measure of’ agreement.
with experiment although here the predictions for the infinite
swept wing, presumably because of the inapplicability of the
effective viscosity model to this type of flow, gave disappointirg
shape factor predictions. The two experimental three-dimensional
turbulent boundary layers considered (both of the retarded flow type
essentially) gave good agreement with experiment. The crossflow
thickness &;* was calcdlated quite well though the crossflow
angle fo waé seriously underestimated. The present investigation

nevertheless shows the feasibility of computing three-dimensional
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flows with the aid of only a few simple assumptions for the ex-
tension of the two-dimensional computation scheme ,and the present
finite difference scheme provides a good framework on which to
calcilate the three-dimensional turbulent boundary layer,

The only other attempt made to calculate the turbulent
three-dimensional problen to the knowledge of the present author,
ﬁas.by Nash who solved the turbulent energy equation and the few
indications that there are in the literature point to the fact that
both methods are predicting crossflows with the same accuracy .

The present caleculation scheme employs a streamline
type of transformation which allows the iterative scheme which has
been developed to calculate the iterated u,v .velociiy profiles at
each section (a line through the boundary layer perpendicular to the
wall) independently of each other and independently of the same profiles
at adjacent sections along the éametnan&ﬂng plane., This has the
advantage that the resulting set of linear algebraic equations that
have to be solved, as well as being tri-diagonal,will have the same
number of unknowns at each solution as the number of points at each
- section., The equations relating the unknown u,v.velocity component
profiles at any section moreover are the same (i.e. the equations
relating the u's are the same as those relating the v's) the differences
appearing only on the 'right hand sides's Both profiles can thus be
calculated simultaneously. The finite difference scheme used has been
substantiated by comparison to a laminar bound ary layer for which an
analytic solution exists. The boundary ‘condition at the wall in the
turbulent case has been verified in that it provides accurate predictions
for the coefficient of skin friction.

The included computer program pfovides an efficient’
computation scheme; three section iterations were computed per second

on average on the IBM S360/65, seven iterations per step were required
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on average once the calculation had settled down and while the
caleulation was not close to separation, A realistic three-
dimensional boundary layer calculation takes of the order of ten
minutes, In addition if a two-dimengiOHal version of the present
program were proiuced both the computer storage and runuing time
would be considerably reduced for that problem (the established
values f'or the solution weights might also be written implicitly
into the program to the same effect). The program has been
structured in such a way as to allow alternative effective viscosity
models to be readily incorporated should this be desirable,

It would also facilitate easier use of the enclosed
program, especially for three-dimensional cglculations, if some means
were incorporated into the program for setting up the velocity profilcs
at the commencementof a calculation. There is also an obvious need
for having the effective viscosity model used here more broadly based and
taking into account more_varied boundary layer flows; it appears
that it will be sufficient to do this on a purely two dimens ional
basis.

With regard to further developments to the present
calculation scheme: it would be useful and comparatively & mple
if the introduction of body .forces were facilitated to enable
computations to be made for rotating systems andi also if the surface
curvature of the wall could be allowed for. The present investigation
moreover, together with that of Nash, lend considerable support to the
future development of the differential approach to three-dimensional

turbulent boundary layer problems as opposed to the integral approach,



102.

ACKNOWLEDGEMENTS

I would like to adknoéﬁge the guidance of
Professor R.Hetheri ngton who supefvised me during
the course oflthe present work and the help received
from the Mathematics Department of the Universi ty of
Aston in Birmingham,. I would also like to thank
Rolls-Royce Limited, Derby for kindly allowing me to

L

make use of their computing facility.



103.

R.OT ATT 0N,

Owing to the profusion of symbols used only those of general
interest are listed below. Where symbols have been used for more
than one application the notation below has been restricted to one
particular chapter. Those symbols not listed have application
to one section or appendix only and where this is so explanations

concerning their use will be found in that section or appendix.

a constant in grid transformatione quation (4.3.1) (Chapter 4)
A empirical constant in law of the wall equation (3.2.6)
b constant in grid transformation equation (4.3.1)
2
c magnitude of coefficient of skin friction (cp? + c.?)
iy fi iLa
cfi,cfa components of Co in streamwise and crossflow directions
: respectively, equation (1.2.5)
Cox component of cp in x direction
f,g,h increments of grid associated with x,y,£ directions
(Chapter 4)
§q %
H shape factor —=—
611
K constant in effective viscosity functione quation (3.3.5)
/. Prandtl's mixing length, equation (3.1.1) (Chapter 3)
&,m,n counters on grid associated with x,y,¢ directions
n* counter on grid associated with log-point
M,N number of sections on solution face, and points on a
section
P pressure
q velocity component in the bou?dany layer parallel to
the wall (u+v?)?
q, three-dimensional form of friction velocity u
Q velocity component in the freestream parallel to the

wall (Ua+va)%’(:’U1)
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u,v,w
uin"‘i-i
U.,Uj_

@B,y
Po

011,012 }
21,032

K
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iteration counter

Reynolds number based on 611

streamwise distance, equation (4.3.5)

velocity components in the boundary layer associated
with x,y,z directions

velocity components in the boundary layer associated
with the streamwise and crossflow directions

friction velocity, equation (3.2.2)

velocity components in the freestream associated with
X,y directions

wake function, equation (3.4.3) (Chapter 3)
streamline section coordinates, fig.(4.6.1) (Chapter L)

angle between limiting streamline at the wall and
external streamline ,

velocity gradient parameter, equation (6.0.1)
'boundary layer thickness'

z at which q = iQ

displacemen’ thicknesses, equation (1.2.4)
factar in wall condition, equation (L.l4.5)

effective viscosity function parameter, equation (3.3.5)
(also stagnation flow variable, section 6.5

momen tum thicknesses, equation (1.2.3)

constant in Prandtl's mixing length, equation (3.1.3),
and logarithmic law of the wall equation (3.2.6)
number of large increments subdivided at the wall
kinematic lamimar viscosity

ef'fective viscosity

transformed effective viscosity, equation (4.3.8)

effective viscosity appearing in x,y momentum equations
respectively

transformed z co-ordimate, equation (4.3,1)
density

shear stress
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To slear stress at the wall

components of shear stress at the wall in streamwise,

ToasTe3
crossflow di~ections respectively, equations (1.2.6-7)

¢ function in effective viscosity model, equation (3.3.5)
(also function in stagnation flow, section 6.5)

qbl = l—g?l 1= 1,8
Pa finite difference solution weights, table 4.6.1

number of subdivisions per large increment at the wall.

The fluctuating components of turbulent quantities have
been denoted by dash and the time-averaged quantities by a bar (which

generally for convenience has been omitted in connection with u,v,w).
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When moking finite difference approximations to the three-
dimensional boundary layer equations written in streamline co-
ordinates (section 4.6), it is necessary to be able to detemmine
tne position of the streamline (as defined in section 4.5) through
any'grid point. It is with this problem that the present appendix
i3 concerned.

Figure (Al.l) below, which takes a section through a
{ = constant plane, summarises the situation. The three grid
points A,B,C are on the upstream solution face where veloclity

profiles have previously been calculated so that at these points

the directions of the velocity vectors are known,

B E C

>

Figure (Al.1)

while tihe wvelocity profiles at the section through the point D on
‘the downstream solution face are currently being calculated so that
only estimates of' the velocity components at D are available. The
airuamliuu DE iz fitted between D and the line AC so that at the
ernd point D the direction of the streamline is parallel to the current

estimate of the velocity direction while at E the direction is as

given by interpolating velocity components between the points A,B,C.
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The method used to determine the position of the

streamline will.now be described. A parasbolic curve requiring
four parameters to define (scale, orientation and lateral and
transverse diéﬁgiememts) is fitted between D and the line AC.
Obviously specifying any point E on AC where the direction of the
velocity is known a quadratic curve DE could be fitted since there
are four conditions tobe satisfied (position and directional
conditions a£ both D ard.E). The position of E will hovever be
detemined so that if the intercept of the tangents to the quadratic
at D and E is F then the two intercept lengths DF, EF are the same,
If more than one such point E exists.along AC (or AC extended) then
that providing the shortest intercept length will be chosen.

| For convenience the notation used in this appendix
will not be related except in a superficial way to that used else-
where., The information needed to determine the arc DE is summarised
in figure (Al.2) where it is:hoped the notation is seli-explanatory.
It should be noted that y as shown iﬁ this diagram increases with de-

creasing y and is thus measured in the opposite Fense to y as defined

in section 4.6 (the same will apply to B which is to be introduced below).

P
« YA
A g g )
X
f
Y
0 u, 4,
A
Shp e v ! Vo

|
| ¥O ¥ ¥

Figure (Al.2)




112 ¢

t any point spscified by y on the line denoted by AC in
figure (Al.l) the velocity components in the X,y directions can
be detemined by quaatic interpolation between the three points

y=+-1, 0, 1, i.e,

Uy = o+ 4 =1
uy 5 1 2;L+h.; VP + u¢2u:§ e (AL.1)

with a similar expression for Ve It is anticipated that u will
nowhere be zero so that the direction of the streamline at any point

can be represented by

= =

u
Letting y now denote the point where the required streamline cuts
the line AC the quadratic needs then satisfy the two directional

conditions

v* v :
% ty =y (A1.2)
Yy

where y is yet to be determined and is chosen such that the angles
EDF, DEF in figure (Al.3) belov are the same., This latter condision

leads to the expression

tan't* D
A g

§ tan'tp

[}

“"t(jrrtu

B =——dg—FE

Firure (Al.3).
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2

1 s - = .

y *+ 2Tt - 1=0 _ (A1.3)
af'ter some manipulution, where

S Y8
tD e
T -t
T - - t (Al.h.)
e T

which has to be solved for y. Remembering that in the most
general case ‘i:y is the ratio of two quadratics in y we sea that the
above condition ‘is equivalent to a qu_g::-tic equation in y providing ,
it is to be expected, up to four soluti,onsi..

Since no solution can in the most general case be obtained
explicitly from the system of equations (Al.l-4) it becomes necessary
to establish an iterative scheme and this we do now. Assuming we
have an estimate ?;r) to a solution y we first evzluate tyFr} from
equations (Al.1,2) and then Ty(r) using this estimate of ty from
(Al.4), equation (Al.3) it is suggested can then be solved to obtain
an improved estimate of y !

(Tl

tD(r+1) = L?—E- B = $F) * Jl' + () (AL.5)

wnere the sign associated with the square root is chosen consistently
thirouzhiout. It is immediately apparent that if the above iterative
scheme is converg-nt it will yield real roots and the two solutions
obfu‘inad by considering alternative signs in equation (Al.5) will be
of' opposite sign. In the pseudo-three-dimensional problam where )
uy, vy are constant for all y the solution can be obtained without
iteration.

Although only two roots are provided by equation (Al.5) it is

not thought necessary to investigate the other two since in the
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particular cases when this has been done the remaining roots have
been found to be eitler imagipary or to lack any plausibility as
meaningful solutions. No further consideration will then be given
to this point since the present scheme has provided reasonable
solutions in all the cases treated.

We must however discuss where the above solution scheme
breaks dowti. The only apparent cause of trouble in e quation(Al.5)
is when T becomes singular which is so when

ty(r) = L ke

and for this to be consistent with a solution we require y = 0 i.e.

to = - t* implies y = 0 (AL.6)
whare we have the situation in figure (.Al.h,) (which incidentally in-
cludes the simple ‘c;vfo-dimensional problem). Excepting this case
it has been found that the choice of sign in equation (Al.5) is given

by considering the sign of tp + t* as follows

%y oA B O implies y > 0  (+ sign)
(A1.7)
1o+ t* <0 implies y < 0 (- sign)
=\,
—tant
]
A
=tant=—t

Fimure (JU lji')
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Being in a position to calculate ywe can naow proceed to
£it a curve between the end points of the streamline which are
fiow known. It has been foind adecuate for the purpose of the
present finite difference scheme to restrict the point at which the
finite daifference approximation is to be taken to the mid-point of
the streamline which in the present calculations will considerably
simplify the algebra. Even in this simplified problem the algebra
necessary to fi% the quadratic and detemine its mid-point and
length is tedious so we will here only quote the results of the

manipulations to determine «,B,s shown in figure (AL.5)

3 N
¥ :
A (2.8
1+tDt* '
7 2
3
t +tD+2tD t (AL.9)

L
P=1g ~ Lt t

5= a(% en(b+c) + c) 1
where
T E

a =73 dl+tD :
By

1+ tDt*
¢ = J1+b°

] (41.10)

The above ecquations for a,8,s may become singular when
23
BT T

which it can readily be shown is inconsistent
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Figure (Al.5) :

with a solution, and in addition the expression for s does not
hold when
tD = 5%
in which case the streamlines is linear and the length s should then
be calculated fram
5§ = 2a when b = O g (A1.11)

while expressions for a,f remain unchanged.

The equations (Al.1-11) in this appendix thus form the
basis of the streamline calculation subroutine which is included
in the computer program listing (Appendix A6). Agein it will be

emphasised that the signs . of B,y used in this appendix are opposite

to those used in Chapter Four.
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APPENDIX A2,

FINITE DIFFERENCE APPROYIMATIONS TC THE MOMENTUM

EQUATIONS AT THE POINT (£+1,m,n).
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This appendixz provides atdetailed deseription of the
finite difference approximations to tne momentum equitions
referred to in section 4.6. The notation used is that indicpted
in figure (4.6.2) fﬁr the computable quantities, and the unknown
quantities (i.e. iterates) will be referred to by subscripting
u,v by their point number ani superscripting them by r (iteration
number) e.ge. uﬁ_i. The weights to be introduced will be denoted
by ¢(y=l=¢) subscripted by an integer which by reference to table
4.6.1 will distinguish between their different uses.

We begin by stating the finite difference approximations

to the individual terms of the x momentum equation (equation

(4.3.9)) which, using the contractions ~

C == ag(¢a Uy it gaua) + Wa

D

a(x, + af) + b

can be written:

q_;_ﬁsl: a4 (-ﬂa _i+¢au1-u&1)
r
.;.952(1(‘/‘3“ +¢Jaua-u52) :
5 .

(&3 +¢aua"u&)

-aeu+w  qu_ G o
ax+b d¢ D (¢i Y2 N
r’fj.nc
e T : Ug—1
+ (;fq, n+4 n=1 + ¢y EL‘ ))
28, finc
: inc

Bk - n ' - U, =u, Hy oo Uy
ax+ b at (uc a§> Dé"nc (v&:a -—-“-‘es -2 = véi —--———6" —

it Us=1 1]
3 -...-_:L-...._. bs VS oot e R vi Ug=ug
Dcinc ¢ <
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ur ur ur ¥
t s (Va R RS D o W )) (A2.1)
cinc finc

Substituting these approximations into the relevant equation
and collecting together terms involving the iterated u components

on to the left hand side:we obtain

r

u Uia il 0 e ira il

nﬂ<..m gy - = Safa __&,3!5.1&)
2s £ 2§inc Déinc

r / Ir Ura Ut 2
ol (B8 fs )

1rc

ed finc inc

r i) z!!ﬁ _Q Ura ﬂ'-’ 4 g Ui P
b 70 ( Wit 5. 2 %é’i 2

"

== 42 q4 (¢ous- &1) - B Qa(%uz"ugz)

Jrrz
28 s

il’\
- %? Qs(¢aua“u&a)

- (¢&(u&snu£1) + Papg(us=uy))

znéinc
1 by : !
30 Pu * D_éinc |_¢i(v63(u'5 3_u&g)—v‘51(u52-%1))
+ au(¥a (o) ¥ o (2m0s))] (42.2)
where
ol av
puz(uaafv—a;) (A2.3)
’ £ +a,m+f8

Here as in figure (4.6.2) v refers to the transformed effective
viscosity v(: (equ-*'.tion (-'....3.8)) wnich will have to be evaluated
f'rom some hypothetical relationship at the points indicated in
figure (4.6.2).

As mentioned in section 4.6, when thée above equations are

evaluated at n = Aw special care should be taken and in particular
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subscripts n-1 in the above equations (and n~1 in figure (4.6.2))
should be replaced by n—w. In additon to make the resulting
set of equations tri-diagonal this equati onwhich we suppose can

be written

74 £ o3 Sl 1 e
tau +Bu ., =8 (A2.14)

uI'
7 “new +1

where n = A and a,8,y,98' can all be calculated, is transformed
into

r r 1< =5k
yu,_ +au +Bu =3 (A2.5)

by introducing
R LR e (A2.6)
This equation (A2.5) now confarms to the geleral format.

The finite difference approximation to the momentum equation
corresponding to the y direction (equation (4.3.10)) is very similar
to that given above for the x momentum equation and we will only
list the diff'erences. Following through the same process that led

5 ’ A2 3 s 161 F i 5 o 1
to cquatlon( .2) we find that the cosfficients of Vs Vs Vo b
are identical to those corresponding to the u's pn the left hand side

of equation (A2.2) while on the right hand side u where it occurs

explicitly is replaced by v and Pu is replaced by Pv;

/- U a
P = AU AU
v Uy (42.7)
L+ a,m+B

(the definition of C remains unchanged) . Okker points mentioned
above with respect to the x momentum equation obviously apply equally
to the y momentum equztion.

Thus we are able to relate the three iterated velcecity
components in both x,y directions by an equation which has the form
of cquation (A?.ﬁ) where mU'r'eow_;r at any section f'or the same n,r the

coefficients a,B8,y are identical for the iwo equations relating u's



1204

and v's respectively. This me ans faet in addition that all the
unknown u (or v) iterated components at any section are related

by a tri-diagonal set of linear algebraic equations and the matrix
of coefficients of the unknowns is the same for both u and v, the
differences being on the right hand sides. Such a situation obviously

simplifies the problems associated with the storage of coefficients

and the solution of the linear equations.



APPENDIX A3

FINITE DIFFERENCE APPROXIMATIONS TO THE

MOMENT UM EQUATIONS AT THE LOG=POINT AT

SECTI ON (E';m).




Not being able to apply the finite difference approxi-
mations developed in Appendix A2 when n=n* we must consider tais
particular case separately. To approximate to the momentum
equation associsated with the x-direction at the log-point we proceed
as was outlined in section 4.6 making use of equations obtained in
section Lolie

As in Appendix A2 we will first state the finite difference
approximations to the individnsl terms of equation (4.3.9) using

the notation of figure (4.6.2). These are as follows:-
ﬂ =Ue ;L. .§3
1% 2 % (l-e&n g,_)
in R
Jj%ﬁ ¥a u, + $5Ua {2
n &a/&a a
_miég / g, +doUo-y,
in £/ éa - .

g
+ $edz ( fain T ST, )
5

S
< _ge o (4‘3 N $Paug -U,. )

S

(using equations (4.4.8,9)) which we rewtkte
i :
g o (qbs +j§s E:.Ez) Q2

r
(waun + qbaug—u&a>
)

+ '%‘:6 (qs + g2 E1(1~Ej3))

t & -
<~'+a U s T aus f’e:».) (A3.1)

S

defining E1,Ez as follows (Late an amLwe Q\E& ook %\"5 Qo
gmmg andoetiod €= So | €5- S, €k o)



E4 =1 ==¢n &?
€ (41
E_Cn" &
% 61153(53
In &5/ &, -~
:l+ = 3 A-z
tn dof E. (A3.2)

L

To continue:

-7 +W i
-~ *
a 7

ax+b &
€ fn
# by = (1 + Cnd
2D 'é—*‘:-"
n~3
Un=1ln ur "'U.r u, =u :
(wm B 4 yugy BneaTln v gr s ) (43.3)
inc F =
inc ine

(using equation (4e4.6)) where C,D are defined in Appendix A2, and

]
—]-'-'—-—--Q p‘ﬂ_
ax+b d¢\ Ve 9¢) "
—gﬁ-i—‘ﬁ v (a,, =u, ) - v, Ezu
D& £a \“a T ke ]
inc

e o
L "E'éé)‘é (va (ua"U.g) et viEaug>
inc

gra it o IR b g, el N e : 3% 4
+ Bgl-zc _Ga (un+:. un) v,_r..aun> (A3.4)

(using equation (4.k.6)) where we have introduzed ancther contraction

L

Ea = m (A505)

Equationg (A3.1-5) are all to be applied at n=n*., Substituting

4.

tie finite difference approximations to the individual terms into

P e WA 3 7 1 . iy i | = L g -

equation (4.3,9) and collecting together temms in W, u, . onto the
+1

lef't hand side we have



2 Di?ifr (Ya + ViEa) )

Sine

ur (ﬁg‘é‘rﬁ (%‘FQB Es.(l'Ea)>

C 2n ! ‘r: 5": ; e
2D ' nz éinc Deznc g)

5% ( bs + 5° E‘E"> g $U3 %

S

- &5 (asta Ea(1-Es)) o0 ~ g,
S

5 ‘QQD ‘ﬂ?q/‘?fMUS + Uy §,
€ fn
0 S 2nthl ol
#7 2D % s (¢1¢4(ua-u3)+¢1(u53“u52))

1 o
ol B ﬁn (g = 0p0) = 5, v, B

i %. B8 (v (ug=uz) = v, ugBs ) (A3.6)

A I
€in

c

which again is to be applied at n=n*." The finite difference
equation corresponding to the y momentum equation can be cbtaincd
by precisely the same means as were described in Appendix A2

(P Pv are also as defined in this last appemiix). The only

u’
outstanding coms ideration is the probleir of obtaining ¢ which

occdrs in equation (A3.6) as well as in the definitions of E;,Es.
Only approximations to ¢ will be available initially since e will

be cbtained of necessity f'rom an estimate of q at the log-point

'LJ&J.‘LI'J.G equ =tions (h_.i}-elo,ll). More accurate values of € are
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L)d

The finite diff'erence equations obtained in sections
L6 2nd 4.7 and Agpendices A2, A3 were concerned exclusively
wita turbulent flows anl as yet Little mention bas been made
ayer. - Although cur prime concern here

the turbulent problen the program as written will cater far

(S5
L]

i S Y
ACAREY LA

[
o

w

Witnin the boundary layer eguations tie only slteration

Tres 4=

necessary ior the eguations to hold for lasinar Tlovs is that
- . . . ' -
tha transformed effective viscosity s snould be replacad by

the transformed kinematic viscosity »!

v® = (ax+b)p' "
This al terati s;.:n is readily carried into tie finite difference
approximation to the momentum equations.In addition in these
approximations however we need insert a different boundary
cordition at the wall. Obviously in laminor floivs the mssh o
the wall maey be somewhat coarser thc_xn that necéssary for turbulent
flows but however we will still require that tie grid points at
the wall will be close enough to ensure that tie gradients of ‘
the u,v profilss over the first itwo grid intervals zre constant,

We can now mezke use of equztion (A3.6) if we apply it at n=n*=l

and put
gg =1
e =1
Ei =0
Egat-=: 0
(B3 3s now vedundant). Putting ¢ =1 with n=n¥=l also allovs 1
L

firite difference apygroximation to the conitirulty equation at the

T | SR LT e L S S G o R R ba 11aed
walillsgbtained 1In Secyioll e/ O L& Usels
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A systen of I tri-diagondl linear algebraic equations in

the I unkuowns ui(i S al - Tagg e )

Gauy + Sailg = 84
U, +g.us o+ ogliu, =0 Ti=y wo ar Ll
LA R ‘81 ita i 393
3 u o = 8
J"I—-:..U'I-—:."' S I

where the coefficients a,B,¥,8 are known, can be solved using the

2
1
2
I

o)

md is= 2,3, i

g

8 =5 " g PN A e LA

.(Zi
where the equals sign has its usual programaming significance and
operations are to be perfommed in precisely the ‘order indicated, the

solution being finally given by

u, = Si i A R S T

It might be noted here, and it is of particular relevance

to the present solub on scheme, that when we have two sets of 1
linear equations in respectively U, Vyosay and the coelfl

the v, are the sam¢ as tiiose of the corresponding u

=

between the two sets of egquations being confined solely to tae right
hand sides, the sdcond set can be solved simultanecisly wita tae

e -

firet with only a stight increase in storage regquirentnis.






INTEGER GMEGA :

REAL NUSNULLyNUL24MUL;NU2,KsKAPPA, KAPPAL

EXTFERNAL ACQQY

COMAON HMIN, VCUT,HM,HN,LAMDA,DHFGA,NN[NC.NSLAP.LT;NU,
lUL(lO,SO]'lelO'SOI'Ut10:501;V{10,SO},H{lO,SOl,BLTllO).
2P1(10),P2(10)sLOGPT(10),NOPTS(10),V0(50),V00(50),
3XL|YO|F1C’H'&T,BT,NSTEPrMSHAXtLFREOjMFREO!
4?511,P§IZ,PSIB,PSIQ,PSI5,PSIb,PSI?,PSIB,

COMILON KﬁPPA KAPPAL s Ky A, CHIN ITN 1ITPAY TOL ,SOSsNOSOS
1ULL.ULZ,UL2,VL1,VL2,VL3,Ul,U2,U3,V1,V2,V3, 01:02,03,
2NUL1,HUL2,NU1,HU2.XI,XIHC,PIB,PZB,ALPHAgBETA,GAMMA,S,EPS:
3A1(50),A2(50),A3(50),A4(50) 4A5(50),
QD,DI,02,Tll,T121T21,T22,HAPE,RT11,QT,CF'CFX,CFl,CFZ:PHI
DIMENSION HEADYL(20),HEAD2(20),TAPHI(10)

MIN=1

MOUT=

REAL(MIN,60) (HEAD1(1),1=1,20)

REANDIMING60) (HFAD2(1)31=1,20)

REAND(MIN:62) KAPPA,KAPPAL K, A,CMIN

READ(MING,61) MM,NN,LAMDA,OMEGA,NMINC, NSLAP LT, NSMhX:
ITMAX,LFREQ, MFREQ

READ(MIN, 62) XLsYD,F,GyTHETA,NU

READ{MIN.G62) PS11,PS12,PS13,PS14,PS15,PS16,PSIT,PSI8

PE;‘-\H{""];'\'1()2} H‘-l(Nl,N=l,NN1 2

READ(MINGG62) (A2(N),N=1,NN)

READIMIN,66) (TAPHI(M),M= l,Mm

REAND(MIN,63) TOL

PHI1=1.0-PSI]

PHI?=1,0-PS12

PH13=1.0~-PS13

PHI4=1.0-P514

PHIS=1.0-=P5S1I5
»H]Lml.O PSI6
PHIT= 1.0=-PS

I
r"rl, '131-‘-:1 SJI

£o -‘j

0COLACY99
CO02ACSY
QC0DZAL99
0CO03ACSI
0004AT99
C005ACS9
0006AC99
00DTAC99
Q0008BAC99Q
0U09AC99
0010ACS9
0011AC99
001 2ACS9
0013AC99
DO20AC99
003CAC99
0040ACS2
0050AC99
0062AC99
0070AC99
0080AC99
0085AC99
0090AC99
0100AC99
0110AC99
0113ACS99

01 1L6AEST

0120AL99
0130DAC99
C140AC99
0150AC9%
0160AC99
0170ACS9
0130AC99
013904C99
0200AC99



DO 1 M=1,4MM

0205AC99

(K%

UU=4C99U (XL, YO+ (M=1)=G) 0210AC99
VV=2CS9V (XL, YO+ (P=1)%G) 0220AC99
PI=TAPHI(M)Y+(A1({1)/A2(1)) 0230AC99
DO 1 H=1,4NN 0240AC99
ULIMyN)=UU=A1(N)-PI=xVV=A2(N) 0250AC99
VL(M,")=VV=AY(N)+P T =UUSA2(N) " 0270AC99
U(Meti)=0.0 0290AC99
VIM<N)=0.0 0300AC99
W(MeN)=0.0 0310AC99
CONT INUE 0320AC99
Ul=ULC1,NN) 0330AC99
Vi=VL (1, NN) : 0340AC99
Ql=SQRT(ULl#*#=2+V]®u2 0350AC99
H=THETA/ACOOT(ACO9Y 31y NMINC NN, OMEGA1+035151450,04.0) 0360AL99
CSTFR=ACI9T(ACIOY 3y 1 o NMINC y NN, OMEGA+H:13040:,0.0Y) O370AC99
HAPF=DSTER/THETA 038QAC99
RTHFT=THETA=Q1/NU ' 0390AC99
WRITE(MOUT y64) (HEADYI(1),1=1,20), : : 0400AC9S
1 [HEAD21(1),1=1,20)yXLaNSMAX,F,TOL 0D410AC99
WRITE(MOUT :65) THETAZHAPE ,RTHET ,NU, 0420AC99
1 PSI1,PSI2,PSI13,PS14,PSI5,PS16,PSIT,PSI8 ; 0430AC99
AT=0.0 D440OAC99
BT=1.0 0450AC99
NSTFP=1 ' 0460ACSS
CONT INUE 04TOACS9
CALL AC99H I : 0475AC99
CALI AC991 . 0480AC99
CAL! AC990 0490AC9S
IFEHNSTEP=NSMAX) 34535 0495AC99
XL=XL+F : 0500AC99
H=He (AT« XL4BT) : 0510AC99
AT=4AT/JUAT=E+1.0) E _ { 05204L99
BT=1.0-AT*XL ; 0530AC99
DO & M=1,MM ; 0560AC99
DO 4 N=1 NN ;

O5TOALCSY
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&0
61
62
63
64

65

UL[M,yN)=UIM,N)

0580AC99
VLIKMMN)=VIM;N) 0590ALC99
CONT INUE 0600ALY9T
NSTEP=NSTEP+1 0610AC29
GO TO 2 0620AC99
CALI EXIT 0630AC99
FORMAT(20A4%4) 0640ACSY
FORMAT (1113} % 0650AC99
FORMAT(B8F10.61} 0660AL99
FORMAT(E1Q.3) 06TOAC99
FORMATULIHL///201H 425X,20A4//)//1H 5X,30HTHE CALCULATION STARTS FO680AC99
1R0M

2ANCF OF,;E10.3,16H BEING SATISFIED)

=yF10.6417H AND PROCEEDS FOR,13,9H STEPS OF,F10.6,15H,A TOLERO690AL99

. O0700AC99
FORMAT(1HO316Xs2THINITIAL CONDITIONS ARE 011=,F10.6,4H H=,F10.6, O710ACO99
& 0 =,F10e3,20H (LAMINAR VISCOSITY=,F11.841H)/1H+,39Xy1H~/1H ,0720AC99
270X%<«3H011/1H+,70X,1H-/1HO0,50X, 31HSDLUTIDN PROCEDURE WEIGHTS WERE/ 0730AC99
32(45X%X,4F10.4/1//1H1) 0740AC99
66 FORMAT(10F8.4) 0750AC99
END 0760ACSS
SUBROUTINE AC991 f 1000ACSY
THIS SUBROUTINE CALCULATES VELOCITY PROFILES 1 ACS9

AT THE DOWNSTREAM SOLUTION FACE 1 AC99
INTFGER GMEGA 1001AC99
“REAL MNUZNULYaNUL2,NU1,NU2,K; KAPPA,KAPPAL 1002AC99
COMMON MINyMOUT s MM NN o LAMDA , OMEGA s NMINC ; NSLAP LT oNU, 1003AC99
IUL{10,50),VL{10450)3UL20,50);V(10,50);W(10,50),BLT(10), 1004AC99
ZP1{10),P2(10),LOGPT(10),NAOPTS(10),V0O(50),V00(50}, 1005AC99
IXL YO, F3 Gy Hs AT BTy NSTERPyNSMAX s LFREQ, MFREQ, 1006AC99
4PST1,PST2,PS13,PS14,PS15,PS16,PS1T7,PS18, 1007AC9%
SPHIT, “HI?,PHlB,PHIé,PHIS,PHI&.PHIT,PHIB 1008AC99

COMMON KAPPASKAPPAL e Ky AyCMIN, I TN, I TMAX, TOL »SOS+NOSOS,

1009AC99 -

-



[

A T

n

o
o

SULZ3 UL 3, VLY, V2, VL 3y Ly U253 U2 WL, V23 V3501 502,03, V1 ACSS
Li, JL AL, hh;1XI,XINCs?13;D?Q:AL9HA,ErTﬂ.3ﬁ7Mﬂ;5;{03, LT RCOS
(=7 )3 42050), A3 (50),A4(30) ,A3(59), FOLTZzAC93
U B {~-')i‘l-|~1 E24 L3 LB ACIS
CSTEP TNl LG 23AC99
N

: ; 1330AC99
ook : 1C-45ACS9

A Py e

1a5GL099

CONVENUYE FOG0OACT9
CALL "3c59h s LGIRACY?
C ARV SAGH X ; TURONAC99
CONVINUE 1690AC92
IF LT H): S hga 11040AC99
T = \ gl “ 11 YURC9D
UST =011y NIER AL 5 tinn) 1123RC99
IF(",ilih{“1211/LLlW,}J)} C.L0)) 55,56456 1125AC 3
HRE = 1i3CAC99
vn:u:f{“,wwiwa(”,wui 1132AC92
Z3TE 51 : 11354C99
USCEY U NN 2L 114L4099
MSChi= od) 114%2AC99
N =WCRT SR : : 1145A£99
DE e in=ANiL ‘ L1554C99
1 1 USCeUL (1, N)

(v . 1160AC99
0% Y= 15C VL [ ) 4VSCUSUL (#, 1) 117*'f09

{ i Rl YL 118%AC99
B el = o’ ALY LEQD "[‘lJr‘}
Va] i

Sl) = i N . : 12U AC99
{ P THUE F 12122C99
¢ 1 UG e i : . : Y215A099
CALESREYGD 12254099
PT=1 T4 1 : 123.8099
PN T2y 124 5AC973
=L FINCT0

L2

HS=TEL =156 10 : ; L290AC99
4 I s SR 1 | ) 126CGAC9S
LY RSTER S SHNGENS 127430RC97



12

13
14

15

16
17

GO TO 16

CALL AC99B(Z2,1.0)

ELMAX=BLT(1)

DO 14 M=1,MM

IF(BLMAX-BLT(M)}) 13,14,14

BLMAX=BLT(M)

CONT I NUE

IF{ABS(BLMAX+NSLAP-NN)~0.01) 8,8,15
HLP1=(BLMAX—NMINCH+LAMDA) =H% (AT# (XL4+F)+BT)
1 / {NN-NMINC+LAMDA-NSLAP)
AT=(HLP1I-H)Y/(F=H)

BT=1.0-AT=XL

GO 10 4

RETURN
FORMATULIHO,5Xy3HELL 35X 16,E12.5,16)

END

SUBROUT INE AC992

THIS SUBROUTINE ITERATES ONCE FOR THE VELOCITY
PROFILES AT THE DOWNSTREAM SOLUTION FACE
INTFGER OMEGA e '
PEAL AU NULLZNUL2sNUL;NUZ2, Ky KAPPA; KAPPAL
COMMON MIN,; MOUT  MMa NN LAMDA , OREGA s NMINC ; NSLAP, LT ;NU,
JUL(10,50),VL{10,50),U(10,50),V(10,50),W{10,5C),BLT(10),
2P1010}1,P2010),LOGPT(10),NOPTS(10),VO(50),V00(50),
3XL,YU,F161H1LT’BT,HSTEP.NSHAX:LFREQ;HFREQ’
4PST1,PST2,PS13:PS14,PSI5,PSI6,PS1T7,PSI8;
S5PHI) 3 PHIZ s PHIZZPHI4,PHIS, PHI&; PHIT s PHIB
COMHON  KAPPA,KAPPAL 3Ky Ay CHIN, ITN, ITMAX,TOL ,SOS,NDSOS
IUleUL?gULB'VL1!VLZ‘VLB:UlrU2|U3,V1|V2gV31Ql102:Q3t

ZNULT NULZ2, NUYT,NU2, XT3 XINC, PIR P28, ALPHA,BETA;GAMMA +S, EPS,
Bi'-l'[:)'D ,.:'\:?[5(;‘}rf\3[5013A{1{50]1A5{50}}

12804C99
1290AL9%
1300AC99
1510AC99
1320AC99
1330AC99
1340AL99
1350AC99
1260AC99
1365AL99
1370AC99
1380AC99
1390AC99
1400AC99
1410AC99
1420AC99

2000AC99
2 AC99
2 AC99
2001AC99
2002AC099
2003AC99
2004A099
2005AC99
2006ACS9
2007AC99
2008BAC99
20094AC99
2G10AC99
ZOLLAGI
2012ACS9



WO - AN - a w V. a9

:'JDSTQR{].O),C': D: EliEZ!E

FRa WRE O W

2013AC99

S0S=0.0 : 2020AC99
NOSNS=0 2030AC99
DO 1 M=1,MM 2040AC99
CALY AC9SRI(M) 2050AC99
CONT INUE " 2060AC99
M=1 207T0AC99
N=LOGPT (M) 2080AC99
NEQ=1 2090AC99
IL=1 2093AC99
1LP1=1 2096AL99
CALl AC99S(M,N)} 2100AC99
CALI ACSOM({MyN) 2110AC99
CALL ACSID(MaN,IL,ILPL) 2115AC99
CALI AC99F(MsN) 2120AC99
N=N+1 2130AC99
CALl AC99S(MsN) 2150AC99
NEQ=NEQ+1 2140AC99
CALL AC99M{M4N) 2160AC99
CALt AC99D(M N, 1L ILP1) 2165AC99
CALl AC99G(NEQ.M4N) _ 2170AC99
IF{N-NOPTS(M)+1) 3:4,4 2180AC99
CALI AC99Z (NEQ) 2190AC99
S0S1=0.0 220CAC99
11=1 OGPT(M)-1 2210AC99
DO 5 [=14NEQ 2220AC99
J=T+11 E 2230AC99
SOS1=SOS1+(SORTIU(M; ) 5x2+V(M,.))ex2) 2240AC99
1 ~SQRTIA4(TI)&s%24AS5(1)==2) )ux2 2250AC99
CONT INUE 2260AL99
NOSNS=NOSOS+NEQ 227T0AC99
SOS=S05+SOS1/(UIMsNN)#524V (M NN)=e2]) _ 2280AC99
DO 6 1=1sNEQ 2290AC99
J=1+11 2300AC99
UM« JI=PSTIE#ALI T )+PHIBEU{ M, Jd) 2310AC99

ViMeJ)=PSIB«AS( 1 )+PHIB# VM, d}

2320AC99



&

64

10
11

12

CONT INUE
GO TO (T75:64),LT
N=LOGPT (M)

C2=SO0RT{U(MyN)%£24+V(M;N)s=2)

ALPHA=1.0

CALI AC99L (N)
QT=KA2PPAL#Q2/EPS
DZ=(AT*=(XL+F)4BT)#H/OMEGA

- N=hN-1

00 T I=14wN
IP=1+DZ2«QT/NU
IF(ZP-11.0) 653;65,66
QI=QT#*ZP

GO T0 67
QI=0T*(ALOGI(ZP)/KAPPAL+A)
UlM1)=U[M,N+1)=0QI/Q2
VIMI)=VI(M,N+1)20Q1/Q2
CONT INUE '
IF(M=MM) 83959

M=M+1

GO TO 2
D=AT#(XL+0.5%#F)+BT
=]

N=LOGPTI(M)

CALL AC99C(MsN}

CALI AC99W(MyN)
IF(N=NN) 12,13;13

N=hN+1

GO AU Y]

CONTINUE

IF(M=MA) 14415:15
M=M+1 1

GO TO0 10

RETURN

END

2330AC99

2335AC99
2340AC99
2350AC89
2360AC29

2370AC99

237T3AC99
237T6AC99
2380AC99
2390AC99
2394AL99

2398AC99

2402A099
2406AC99
2410AC99
2414AC99
2418AC99
2420AC99
2430AC99
2440AC99
2450AC99
2460ALC99
24T0ACS9
2480AL99
2490ACS9
2500ACY99
2510AC99
2520AC99
2530AC99
2540AC99
25504099
2560AC99
2570AC99
2580AC99
2590ACL99



SUBROUTINE AC9%9A

INTFGER OMEGA }

REAL NUZNULY4NUL2,NU14NU2,K,KAPPA,KAPPAL

COMMON  MIN,MOUT yMM,;NN; LAMDA, OMEGA,NMINC sNSLAP s LT oNU,
LULI10,5C)sVL{10550),U(10550)¢V(10,50):%(10,50),BLT(10),
2P1010),°2(10),LOGPT(1C),NOPTS(10),V0(50),V00(50),

3XL YO, FyGyHy ATy BTy NSTEP,NSMAX L FREQ, MFREQ,
4PST14PSI2,PSI3,PST14,PS15,PS16,PS17,PSIB,
EPHI1PHIZyPHI33PHI4,;PHI5,PHI&6PHIT,PHIB -

COMMON  KAPPA,KAPPAL 4Ky AsCMIN, TTN,ITMAX,;TOL +S0S,NOSOS,
1ULL.UL2,UL3, VLY VL2,VL3,Ul,U2,U3,V1,V2,V3,01,02,Q3,

2NULT ,HUL2,NUY , NU2 9 X1 4 XINC, P16, P2B,ALPHA,BETA yGAMMA S ,EPS,

3A1(50),42{(50),A2(50),A4(50)4A5(50),
4DSTAR(10),C4D,E14E2,E3

DO 1 N=14NN

VO(N}=0.0

RETURN

END

SUBROUTINE ‘AC99B(IT,AS)

THIS SUBROUTINE CALCULATES THE BOUNDARY LAYER
THICKNESS AT EACH SECTION

INTFGER OMEGA

REAL NU,NULL;NUL2,NU1,NU2,K,KAPPA,KAPPAL -

COMMEOH MINgMOUT s MMy NN LAMDA; OMEGA NMIMNC ;NSLAP LT NU,
IUL(10,50),VL(10:,50),U120,50),V(10:50)W(10,50),ELT(10),
2P1(10),P2(10),LOGPT(10),NOPTS(10),V0(50),V00(50),

XL YO, F3 Gy Hy AT s BTy NSTERZNSMAX; LFREQ, MFREQ,
4PS11,PS12,PSI3,PS14,PSI5;PS1&,PS1T7,PS18,

S5PHIN, THI2yPHI3PHI4,PHIS,PHI G, PHIT PHIB

COMMON KAPPAKAPPAL, Ky Ay CMIN,ITN, ITHAX,TOL ,SOS,NOSOS,

AOOOAC99
AODO1AC99 .
AUOZAC99

AODZAC99
ADO4ACH9S
ADOSACY9
AGOGACI9
AQDTAC9S
ADOBAC99
AGO9AC99
AG10AC99
AG11ACS99
AD12ACSY
AD13AC99
AD20AC99
AD30AC99
AO40AC99
AD50AC92
AUGDOALCH99

BOOOAC99
B AC99
B AC99
BOO1ACS9S
BOOZACS9
BOO3ALGS
BOO&AC99
BOO5ACSS
EQOD6ACYY
BOOTACSS
BOOBALCO99
BEQO9ACSY



1UL1.UL2,UL3,VL1,VL2,VL3,Ul,U2,U3,V1,V2,V3,0Q1,02,03,

ZHULT RUL2yNUL, NU2 ¢ XT o XINC4P1B, PZE,ALPHA'BETA;uAMHA,S EPS,

341 (50) 5 A2(50),A3(50)3A4(50),A5(50),
4DSTAR(L10)sCyDyEL4E2,E3
GOITO (1,2),1F
1 10L1=0.99
GO 10 3
2 T0L)1=0.999
3 CONTINUE y
DO B M=1,MM
ONPY=(1.0-AS)*SORT(UL(M;NN)##24VL [MyNN)=%2)
1 +ASESQRT(UIMyNN) 224V (MyNN)#%2)
QB=TOL1*QNP1
NeNN-1
4 QM=11.0-AS)*SORT(ULIMyNY=#2+VL(M,N)=%2)
1 +ASESQRT(UIMyN) %22+ V My N #22)
If (ON-QB) 63645
N=N-1
GNP 1=QN
GO 10 4
6 BLYIM)=N+({QB-ON)/(QNPL1-QN)
GN 10 (7:8)417
7 ELTIMI=ELTIM)-NMINC+LAMDA
8 CHONTINUE
BT TURN
END

v

SUBROUTINE AC99C{M4sN)
THIS SUBROUTINE SETS UP ALL THE NECESSARY

QUANTITIES FOR THE FINITE DIFFERANCE APPROXIMATION
TO THE CONTINUITY EQUATION
INTHGER OMEGA

BO1OAL99
BOL1AC99
BED12AC99
B013AC99
BO20OAC99
BO3CAC99
BO40OAC99
BO50GAC99
BO60ALCYI9
BEOTOACSY
BOBOACY99
BO90OAC99

B10OOALS9 -

B11OACSS
B120ACY93
B130OACS9S
B140AC99
B150AC9S
B160OACS9
BE170AC99
B1B8OAL99
B190ACS9
B200ACS9
B210UAC99
B220AC99
B230AC92

CCcOOACEY

2 AC9%
C ACS9
C ACS9

CO01AC9S



o]

REAL "U,NULI NULZ2,NUl:NU2,K,KAPPA;KAPPAL

COMMON MINgMOUT s MMaNN, LAMDA  OMEGA; NMINC s NSLAP LT 4sNU,
1UL110,50),VL(10,50),U(10450),V(10,50),W(10,50),£€LT(10),
ZP1(10),P2(10),LOGPT{10)4NOPTS(10),V3(50),V0G(50],
3XL,YO,F,G,H,hT,BT.NSTEP,NSMAX,LFREQ,HEREQ,
4PS11,PS12;PSI3:PS14,PSI5,PSI16,PSIT,PS1I8B,;
5PHI1 4 FHI2, PHI3 s PHI4,PHIS PRIG,PHIT,PHIB

COMMODN KAPPA,KAPPAL s Ky A CMIN, ITN,ITMAX,TOL ,S0S,NOSOS,
1UL1-UL2:UL3;VL1:VLZgVLBQUl,UZQUB:VIQV2'V3101tQZlQBl
ZHULT s NUL2, UL yHU2 s XT3 XINCsP1BsP2By ALPHAZBETA yGAMMA4S,EPS,y
IALI50)A2(50),A3(50),,A4(50),A5(50),
4DSTLR(10)4Cy D3 ELLE2,E3

IF(N=NMINCY 1431,2

XI=0i{2H) /OMEGA

XINC=H/DMEGA

GO 10 3

XI=(h=NMINC+LAMDA)%H

XINC=H

IF{N=LOGPT(M)) 4,4,11

Ul=UL(M4yN)

3=V N)

U2=0.5%(U1+U3)

IF{N=Y) 5,5:6

Vi=vQO(N)

230 1 {8 T |

V1i=0.5%(VLIM=14%)+VIM=1,N))

V2=(1.52 (VLIMsNY+VIM,sNY)

IF(m—-MM) B,9,9

V3=t 5= (VLIM+#1 M) +VIM+1sN))

GO TH 10 .

V3=v00I(iHN)

Q2=SCRT(UZ2=sx2+V2=%2)

ALPHA=0.5

CALI AC99LI{N)

G010 18

XI=A1-Q.5¢XIHC

CO0O2AC99
CO034C99
Co04AC99
COO5AC99
CUO0O6AC99
COOTACS9
CO0OBAL99
COD9ACQ9
C010AL99
CD011AC99
CG12AC99
CO13ALC99
Co20AC99
CDO30AC99
CO40ACO9
CO50AL99
CO6OACH9
COTOAC99
C0B80DALC99
CLY0ACS9
C100AC99
C110AC99
Cl20ACS9
Cl30AC99
Cl40AC99
C15CAC99
Cl60AL99
C170AC99
C1804C99
Cl190AC99
C200AC99
C210AC99
C220AL99
Cz30AL99
C240ALG9
C250AC29



alalel

s
14
15

16
5

18

Ul=0,.5=(UL{M,NY+UL{MsN~-1))

U3=0e5=(UIMN)+U(MaN=-1))

IFUM=L) 12512903

V1=0.5#(VO(N)+VO(N=-1))

GO 10 14

V1=0e25# (VLIM=1,N)4VLI{M=1,N-1)+V(M=1,N)+V(M=1,N~-1))
IF{M=MM) 15;16416 A

V3=0,25% (VLIM41 3 N)#VLIM+1 yN=1) 4V M+ 1, NI+V(M+1,N-1))
GONTR 17

V3=0.5%(VOO(N)+VOO(N=-1))

NUL=0.5%# (UL{MyN=1)+U({MyN-1))

NU2=0e5= {UL(M,N)+U[M,N))

RETURN '

END

SUBKOUTINE AC99D(MyN,IL,ILP1)
THIS SUBROUTINE CALCULATES THE LAMINAR OR
TURBULENT VISCOSITY TERMS :
- MELLOR AND GIBSON VISCOSITY MODEL ¢
INTFGER OMEGA :
REAI NU,NULL,NUL2,NU13NU2,K,KAPPA,KAPPAL
COMKON MINSMOUT s MMy NNy LAMDAy DMEGA,NMINC,NSLAP LT sNU,
1UL(10,50),VLI10,5C),U(10,50),V(10,50),H(10,50),BLT(10),
2P1(10),P2(20),LOGPT(10),NOPTS{10),V0(50),V00(50),
XLy YO, FsGyH AT ;BT NSTEP ¢ NSMAX,, LFREQ,MFREQ,
4PST13PSI2,PSI34PS514,PSTI5,PS16,PSIT,PSIB,
5PHI1,PHI2,PHI3,PHI4,PHIS5,PH]I&, PHIT,PHIB
COMMON KAPPA; KAPPAL 4Ky AyCHMIN,ITN,ITMAX,TOL 4 SOS,NOSOS,
1UL1.UL2,UL3,VL]1,VL2,VL3,U1,U2,U3,V1,V2,V3,01,Q2,03,
ZNULY,HUL2 3 NUL NU2 XT3 XINCyPLB+P2By ALPHA,BEETA ;GAMMA 4S,EPS,
3A1(50), A2050),A3150),A4(50),A5(50),
4DST4AR(10),CyDsELHE2,E3

C260AC99
C27T0ALCSS

C280AC99.

C290AC99
C3004C99
C310AC99
C320AC99
C330AL99
C340AC99
C350AC99
C360AC99
C370QAC99
C3B0OAC99
C390ACH9%

DOOOAC99
D AC99
D AC99
D AC99
DOO1AC99
DOD2AC99
DOO3AC99
DOO4ACS9
DOOS5AC99
DOOGACSS
DOOTAC9S
DOOBACSS
DOO9ACY99
DO10AC99
DDO11ACSS
DC12AC99
DO13AC99

L r



—

DSTR=DSTAR (M)

IF{N-LOGPT(M)) 1:1:4

GO TO (£2,;3):LUT
NUI=AC99E(D.0,DSTB4LTyILP1)
NULT=AC99E({Q0.OsDSTByLTyIL)

GO TO 7

Q=SCRT(U2##2+V2%%2)
LETA=KAPPA==22(XI-0.5#XINC)=Q/EPS

. NU1=AC99E(ZETA,DSTB,LT,ILP1) %

U o

3]

IF(7ETA.GT.DSTB) ILP1=2
Q=SORT(ULZ2#=2+VL22#2)
LETA=KAPPA##2%(X1-0.5#XINCY*Q/EPS
NULY=AC99E(ZETA,DSTB,LT,IL)
IF(7ETA.GT DSTRBY TL=2
GO T0 7
60 TO. 536 )3ET
“"Ul—a’-CQ?E{0.0sDSTE’.,LT,lLPll *
NULI=AC99E(0.0:DSTB:LT,!L'
GO 10 7
DO=SQRT(U2#%24V2¢52)-SORT(Ul%%2+V]1%%2)
DQ=ABS(DQ)
ZETA=(KAPPA*[X1-0.5%XINC))##22DQ/XINC
NULl=ACO99FE(ZETA,DSTEBsLT,ILP1)
IF(7ETAGT.OSTBY TLPYI=2 :
DO=S0PT(UL2#%24V0L2#%2)~SQRT(UL1#%x24VL1##2)
DO=4ABS(DQ)
ZETA=(KAPPA®(XI=0.52XINC) ) *222D0Q/XINC
NUL1=ACI99E(ZFTA,DSTB,LT,IL)
IF(7ETA.GT.DSTB) IL=2
GO TO (B849),LT
NU2=AC99F10.0,DSTE4LT,ILPL)
NULZ=AC99E(0.04DSTB,LT,IL)
6D . .TO 10
DO=SQRT(U3#%24V32#2)-SQRT(U2%#24+V2%a2)
+=ABSL{DO) ¢
ZFT&:{KAPPAﬁ[XIiO.SEXIUCI)**2*DO/XINC

D020AC993
DO30DACS9
DU40AC99
DO50ACY9
DO60OAC99
DOT7OAC99
DOBOACSS
DO90OALY9
D100AC99
D110DAC99

D120AC99 -

D130AC99
D140AC99
D15GAC99
D160AC99
D170AC99
D180OACY99
D190CAC99
D200ALC99

D210AC9Y

D220AC99

- D230ACY99

D240AC99
DZ50AC99
DZ260AC99
D270AC99
D280AC99
D290AC99
D300OAC99
D310AC99
D320AC99
D330AC99
D340AC99
D350AC9%
D360ACS9
D370AC99



=Y Y

10

W

L%

NUZ2=AC99E(ZETADSTBsLT,ILP1)
IFI7ETA.GTLESTB) TLP1=2
DOQ=SCRT(UL3##2+VL3#%2)~-SORT(UL2¢%22+V ] 28%2)
DO=ABS(DQ)

ZETA={KAPPA#(XI+0.5#XINC) )=22=D0/XINC
NUL?=AC99E(ZETA,DSTBsLT,IL)

IF{Z ETASGT-DS B s 2

RETURN 5

END g

FUNCTION AC99E(ZETA,DSTAR,LT,11) :

" THIS FUNCTION PROVIDES THE LAMINAR DR TURBULENT

VISCDSITY FUNCTION .
- MELLOR AND GIBSON VISCOSITY MODEL

GO TO (142),LT
ACSSE=DSTAR
RETURN
GO TO 139:5)s11
IF(ZETA-DSTAR) 444,5
ACSYE=2ETA
RETURN
ACOSE=DSTAR
RETURN
END

D280AC99
D390AC99
D40ODAC99
D410ACS99
D420AC99
D430AC99
D440AC99
D450AC39
D460AC99

ECODAC99
E AC99
E AC99
E AC99
EC20AC99
EO30ACS9
EC4OACS9
EOS50AL99
EC6QACS9
EOTOAC99
EGBOAC99
EC90ACH9
E100ACS9
E110AC99

ob b
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SUBRCUTINE AC99F (M,N)
THIS SUBROUTINE SETS UP THE COEFFICIENTS TO THE
'2-EQUATIONS® AT THE FIRST POINT IN THE
*LOG-REGION?®

INTFGER OMEGA

REAI NUsNUL1,NUL24NUL,NU24KyKAPPA,KAPPAL

COMMON  MIN,MOUT s MMyNNyLAMDA, OMEGA yNMINC yNSLAP LT yNU,

JUL{10:50)yVL(10450),U(10550),V(10,50),W(10,5C),BLT(10),

2P1(i0),P2(10),LOGPT(10),NOPTS(10),VO(50),V00(50),

3XLyY0,FyGyHy ATy BTy NSTEP, NSMAXy LEREQ, MFREQ,
4PSI1,PS12,PSI3,PS14,PS15,PS16,PS17,PS18,

SPHI1,PHI2,PHI3,PHI4,PHI5,PHI6,PHIT,PHIB
COMMON  KAPPA,KAPPAL yKyAsCMIN, ITH, ITMAX,TOL ,SOS,NOSDS,

JUL1-UL2,UL3, VL1, VL2, VL3,Ul4U2,U3,V1,V2,V3,01,02,03,

2NULY s NUL 2, NUL 3 NU2 4 X1y XINC,P1B,P2By ALPHA,BETA GAMMA +S,EPS,

"3A1(50),A2(50),A3(50) 4A4(50),A5(50),

4DSTAR(10)4CyDyEL,E2,E3
et 0 e o Ml 0 1 B

1 E3=1.0/N
GO 10 3
2 E3=FPS*(N-0.5) :
3 A1(1)=02/54C/(2.0%D=EPSeX])

1 +(NU2+NUL1/E3)/(2.0#D#XINCe=2)
A211)==1{U2/(2.0D*XINC#%2) -
£4(1)=UL2%02/S-C*UL2/(2.0%D*EPS=XI)

1 +D1E+(NUL2= {UL3=UL2)=NUL1*UL2/E3)/(2.02D=XINC#%2)
£5(1)=VL2¢02/5-CeVL2/(2.0%D*EPS=X])

1 40254 (NUL2#(VL3=VL2)-NUL1*VL2/E3)/(2.0%D=XINC=52)
LETLRN
END

=

FOOOAC99
F AC99
F AC99
F AC99
FOOL1AC99
FOO2AC99
FOO3ACY9
FOO4AC99
FOO5AC99
FCO6ACY9
FOOTAC99
FOOBAC99
FOO9ACY9
FOLOACSY
FOL1AC99
FO12AC99
FOL3AC99
FO15AC99
FO17AC99
FO19AC99
FO20AC99
FO30ACY9
FC40ACS9
FG50AC99
FO60ACY9
FOTGAC99
FOBOACS9
FC9OALY9
F100AC99
F110AC99



SUBROUTINE AC99GINECsMsN)
THIS SUBROUTINE SETS UP THE COEFFICIENTS TO THE
LINEAR ALGESRAIC EQUATIONS AT THE GENERAL POINT
INTFGER OMEGA
REAL NU;"ULL,NUL2,NUL,NU2,K;KAPPA,KAPPAL
COMMON MINyMOUT MM NNy LAMDA,OMEGAs NMINC yNSLAP, LT'NU1
JUL(10+50),VLI10,50),U(10,50),V(10,50),3W(10,5C)BLT(10),
CZP1(10),P2(10),LOGPT(10)4NOPTS(10),VO(50),V00150),
3XLy YO,F,U.H ATsPT NSTEPyNSMAX, LFREQ,MFREQ,
4PS11,4PS12,PS13,PS14,PS15,PS16,PS517,PS18,
5PHI1 ,PHI2,PHI3,PH14,PHIS,PHI6+PHIT,,PHIB
COMMDH KAPPA,KAPPAL,K;&;CMIN;1TN;ITMAX,TDL;SUS|NDSUS|
1ULl.UL2,UL3,VL1,VL2,VL3,Ul,U2,U3,V]1,V2,V3,Q1,0Q02,Q3,
2"'UL},l'lULZ,NU].;NUZ|XlcXINC,P].B,PEE:ALPHA,BETA-GAMMA,SiEPS'
3A1(50),A2(50),A3(50),A4(50),A5(50),
QDSTﬂQ{10’!C!DgF1rE2,F3
AL(HNEN)=PHI2=#PSI3%Q2/S+PS11%PSIS5% (NUL+NU2)/(D*XINC##2)
A2 (NEQ)= PSI12#PSI3%Q3/(2.0#S)+C«PSI1#PSI4/(2.0#D#XINC)
1 -PST1=PS15#NU2/ (D« XINC»=2)
A3(1if0D-1)= PSI12#*PSI3201/(2.0%2S)-C*#PSI1#PS14/(2.0#D#XINC)
1 -PSTI1xPSISeNUL/(DeXINC=#2)
AG (NEN)=-PS125Q3+ (PHI3«U3-UL3)/(2.0%S)-PHI2= Q2% (PHI3*U2-UL2)/S
1 SI2=CQl=(PHI3*U1-UL1)/(2.0%S)
2 —C*{PHII*(ULB‘ULI1+PSIlﬁpH14ﬂ[U3“Ul}}IKZ-O*D*XI“C1
3 +P1B+(PHIT®*(NUL2#(UL3-UL2)~-NUL1#(UL2-UL1))
4 4PST1#PHIS* (NU2#(U3-U2)-NU1#%(U2=U1)) )/ (D=XINC#=#2)
AS(HNEQ)==PSI2#Q3#(PHI3*V3-VL2)/(2.0%S)=PHI2#N2= (PHI3*V2-VL2}/S
1 -pPSI2#Q1*(PHI3=V1-VL1)/(2.0#S)
2 ~Cx(PHI1#(VL3~VL1)+PST1%PHI4*(V3-V1))/(2.0#D*XINC)
3 1P2E+lPHIl*(”UL2*[VL3 VL2)=NUL1=(VL2=-VL1))
4 S11#PHIS={NU2% (V3-V2)=NULl*(V2=-V1)) ) /(D=XINC*=2)
IF (N~ “VI'L! 23142 :
1 N1=WMINC-OMEGA
A (HNEQ)=A4 (NEQ)+A3(NEQ- 11'(U[T'r?\"11 ~U(MsN1))
ASINEQ)=ASINEQ)I+A3(NFQ-1)2(V(MsN-1)=V(MsN1})
2 IF(N="OPTS(MI+1) 443,3

GOODACO99
G AC99
G LC99
GO0O1AC99
GDOZ2AC99
GOD2AC99
GUD4AC99
GOOS5AC99
GOOGLALC99
GOOTAC99
GDOBALC99
GO09ALC99
GO10AC99
GO11AC99
GO12AC99
G013AC99
GO20AC99
GUC30ACY99
G040OAC99
GC50AC99
GO60ALC99
GO70AC99
GOBOACY99
GDYOAL99
G100ACS99
G110AC99
G120AC99
Gl30AC99
G140AC99
G150AC99
G160AC99
G1BOALC99
G190OAC99
GZ00OAC99
G210AC99
G220ALC99



w N —

v

A4(NEQ)=A4NEQ)-A2(NEQ)«U(M,N+1)
ASINEQ)=A5(NEQ)=A2(NEQ)#V(M,N+1)
RETURN 5
END

SUBROUTINE AC9S9H
RETURN
END

FUNCTION AC99I(M,N,GAMMA;VEL,MM)
THIS FUNCTION INTERPOLATES VELOCITY COMPONENTS
DIMENSION VEL(10,50)
IF (MM=1) Y,):2
ACI9I=VEL(M,N)
RETURN
IF(H=1) 343,4
1=2
AG=GAMMA-1 .0
GO 70T
IF(H=MM) 645,5
I=MH=1
f\G:LsA.‘"*‘l-a‘i"'loo
GO TO0 7
I=M
AG=GAMMA
CONTINUE :
SUVELLT+1 N -2 0=VEL(TyNI+VFL{T-1,N)) /2.0
(VEL{I+1sN)-VEL({T=1,N)1/2:0

AR
e

BE

"o

G2320AC99
G240AC99
G250AC99
G260AC99

HOOOAC99
HO10AC99

HO20AC99

1000AC99
1 AC99
1020AC99
1030AC99
1040AC99
I050AC99
I1060AC99
107TOAC99
1080AC99
1090AC99
1100AC99
I1110AC99
1120AC99
1130AC99
1140AC99

I 1504699

116CAC9S
1170AC99
1180AC99

G



wm >

CC=VvELI1,N)
ACOYI=AA2AG= #2458 % AG+CC

RETURN
END

FUNCTION ACI99J(M,BETA, PRMyMM)

THIS

FUNCTION

DIMFENSICON PRM(10)

IF{MM=1)

10l

ACS9J=PRNM(M)

RETURN

IF(M=-1) 3,34

1=2

AG=KLETA-1.0

GO TO 7
IF(M=MM)
I=MM=-1

6:535

AG=HETA+1.0

GO T0 7
I=M

AG=HKETA
CONTINUE

-

INTEPOLATES PARAMETERS

AA=T[PRM({1+1)-2.0=PRMUTI)+PRM{I-1)1)/2.0
BEB=i( PREGL+1)=PRU I=233 /250

CC=PRMI(TI)

f‘-C‘)"!J=ﬁ\.&"ﬂG“ a2 2+BB*AG+CC

RETURN
END

1190AC99
1200ACS9
1210AC99
1220LC99

JOOOAC99
J  AC99
JO20AC99
JO30ACY9
JU4UACYY
JC59AC99
JOG6OACY9
JUTOACY9
JGBOACI9
JGYOACIY
J100ACY9
J119AC99
J120AC99
J130AC99
J140AC99
J150AC99
J160ACY9
J1TOAC99
J180OAC99
J19GACYS
J200ACY9
J210AC99
J220A099

v



SUBROUTINE AC99L(N)
THIS SUBROUTINE FITS THE *LOG LAW OF THE WALL®

INTFGER OMEGA ‘

REAT NU,NUL1,NUL2,NU1,NU2,K,KAPPA, KAPPAL

COMMON HIN,MOUT,MM.NN,LﬁHDA:UHEGA;HMINC,NSLAP.LT,NU:
1UL(10,501;VL(10,501sU{10:501:V(lO;SOl:Hl10150}:BLT(101|
ZPl{10},P2(101.LOGPT(IO},NUPTS(lOl;VOISOIsVOU(SO):
BXL1Y01‘- ;G,HrAT,BTtNSTEp|”SMJ‘-\X'LFREQ,MFREQ’
4PSI1,PS512,PSI3,PSI4,PS15,PS16,PSIT,PSIB,
SPHI14PHIZ2,PHI3,PHI4,PHIS,PHI6,PHIT,PHIB :
COMMON KAPPAKAPPAL y Ky A5 CMIN, ITN, ITMAX,TOL ,SDS,NOSOS,
IULl-ULZ,ULB,VLl,VLZ,VLB,Ul,UZ,UB,VI,VZ,VB,OI,OZ,QB.
ZNULl,WULZ,NUl:NUZ;XI-XINC:PlB.PZBgALPHA,BETA,GAMHA,S,EPS;
3A1(50)5A2(50)4A3(50),A4(50),A5(50),
4DSTAR(10),C,D,EL1,E2,E3

GO TO (142),LT

EPS=1.0

RETURN

MAXTT=20

TOL1=0.00001

B={AT= (XL+ALPHA=F )+BT)*H=N«KAPPAL%Q2
E=ALOG(B/(OMEGA#NU) ) +KAPPAL=A

EPS1=6.0

DO 4 I=1,MAXIT
EPS=EPS1%(1.0~(EPS1+ALOG(EPS]1)-B)/(1.0+4EPS1))
IF(IEPS-EPS1)#%2~TOL1) 5,5,3 )

EPS1=EPS

CONTINUE -

WRITE(MOUT,6) Q24N,ALPHA,EPS,EPS]

CONTINUE

RETURN

FORMAT (1HO , 5X33HEL 145X, F12.63165,3F12.6)

END :

LOOOAC99
L AC99
LGO1ACS?
LOD2ACY99
LOO3AC99
LOD4AC99
LOOS5AC99
LOOLACY99
LOOTAC99
LOOBAL99
LOO9ACS9
LO10OAC99
LO11AC99
LO12AC99
LO13AC99

LO20AC99 .

LO30AC99
LO40OACSS
LOS50AC99
LO60AC99
LGTOAC99
LOBOAC99
LO9OACSI
L100AC99
L110AC99
L12GACS9
L130AC99
L140AC99
L150AC99
L160AC93
L165AC993
L17D0AC99
L1BOAC99

gk
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SUBROUTINE AC99M(M,N)
THIS SUBROUTINE SETS UP ALL THE NECESSARY
QUANTITIES FOR THE FINITE DIFFERANCE APPROXIMATION
T0 THE MOMENTUM FQUATIDh
INTFGER DMEGA
RE Al MU.ﬁULl,NULZ,NUI.NUZ:K.KAPPA.KAPP&L
COMMECN MINyMOUT s MMy NNy LAMDA,DOMEGA,NMINC ,NSLAP,LT NU,
IUL(1G,450),VL(10,50),U(10,50),V(10,50),¥W(10450),BLT(10),
2P1(10),P2(10),LOGPT(10),NOPTS(10),V0(50),V00(50),

" 3XLs YO, F3GyHy ATy BTo NSTEP,NSMAX,LFREQ,MFREQ,

4PS11,PS12,PSI13,PS14,PS15,PSI6,PSIT7,PSI8,

SPHI1 s PHIZ2,PHI3:PHI 44 PHISPHI&E,PHIT,,PHIB

COMMON KAPPA,KAPPAL s Ky Ay CMIN;ITN, ] THMAX,TOL ,SOS,NDOSDS,
1ULl.UL2,UL3,VLY,VL2,VL3,Ul,U2,U3,V1,V2,V3,01,02,03,
2NULT o NUL2yNUL NUZ2,XT o XINC,P1B,P2B, ALPHA, EETA.uAMMA S+EPS,
3A1(50), A2(50) 4 A3(50!.A4150) AS5(50)
4DSTAR(10)3sCyDsEL1+E24E3

IF{N=NMINC) 1,52,2

X1=(N#H) /JOMEGA

XINC=H/OMEGA

GO TQ 3

XI=(N=NMINC+LAMDA) =H

XINC=H

IF(N=-LOGPT(M)) 4,445

Ul=ﬂ.0

V1=04s0

UL1=0.0

VL1=0.0

Q=030

GO 10 9

IF{N-NMINC)Y 76,7

NM1=N-0OMEGA

GO TO 8

NM1=N~1

ULL=AC99T (M, NM1, GAMMA, UL 4 MH)

VL1= AC’GI(H,AHl,GAMMA,VL.MM]

MOOOAC99
M AC99
M AC99
M. AC99
MOO1ACY9
MOO2AC99
MOD3AC99
MOO4ACS9
MCOSAC99
MOOGAC99
MOOTAC99
MOOBAC99
MOO9ACIY
MO10AC99
MO11AC99
M0O12AC99
MO13AC99
MO20AC99
MO30AC99
MO4OAC99
MD50ACY9
MOGOACY9
MOTOAC99
MOBOACY9
MO9OACY9
M1OCAC99
M110AC99
M120AC99
M130ACY9
M140AC99
M15CAC99
M160AC99
M170ACO9
M18OAC99
M190AC99
M200AC99
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143

Ul=U(M; NM1)

Vi=V(M,NM1)
QI=SQRT((PHII*UL1+PSI1+#Ul) =22+ (PHI1*VL1+PSI1sV])#&a2)
UL2=AC99T1(M,MN,GAMMA, UL s MM)
VL2=ACY99T1 (M, Ny GAMMA, VL y MM)

U2=U({M,N)

V2=V (MsN)

Q2= %PRT({PHII*UL2+PSII*U2)**2+tPHI1*VL2+PSIl¢V2)**21
UL3=ACSII (MyN+13GAMMA, UL y MM)

VL3=AC99T (M, N+1, GAMMA, VL 4 MM)

U3=l{MaN+1)

V3=V{M,N+1)
Q3=SQRT((PHI1#UL2+PSI1%U3) %22+ (PHI1«VL3+PSI1xV3)#x2)
IF(N=-LOGPT{M)) 10,10511

CALL AC99L(N)
C=—&T*Xl&lPHIl*UL2+PSIl*U2)+ACQ9I(M,N.EETA,H.HM}
D=AT#(XL+ALPHA®F)4+BT

P1B=AC99J(M,BETA;P1, MM}

P2B=AC99J(M,BETA,P2,MM)

RETURN

END

M21GAC99
MZ220AC99
M230AC99
M240AC99
MzZ50ACS9
M260AC99
MzTCGACS9
M2BOAC99
M290AC99
M300AC99
M310AC99
M220AC99
M330AC99
M340AC99
M350AC99
M390AC99
M4OOAC99
M410AC99
M&20AC99
M430ACGS
M440AC99
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AT

L= lul"\ib——'

SULCLUT ENE AEST0)
THIS SUEREUTINESSETS
INTEGER CMEGA
REAE (U NN 0
SXTFRNAL ACS9Y
CoOMMCN MINMCUT ¢ MM NNy LAMC A,
BlESS 58 Ve llzn)iisutlf
PYUN ) y P2EI0) Ny LGP TG NE
ALY GyFaSaHy AT g BTy NSTEPR ,
ES IR S 2y RSTS “QIQ,PSI
PHI],nklf,
COMUEY ~ KAPPA,K
ULlaUL:t“LB VLI VL 20 301402,
NUL Fg MUL 20 MU T U208 o T8
A (=500 )iy 8210 50 AZES
5y B ":Hfllyfl

T -L,{*Tk{xL+r)+LTl
CALY JAEDSEY e8]
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DO =1 414
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=LREAT V)
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-
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En
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DME

KAPBAL

GANMINC

y PSTGaPSTZyPST 8,
PHI3 »PHI4;PHIS,PHTG,PHIT,PHILS

CiaP1By

U3

s HSLAP LT NU,
S0 VL0 50 ), W10, 50 BLTLL10),
IPTSELA) yYC (SC) VOO {50)
NSMAX  LFREQ,,MFREQ,
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NIV ZACI9
QGozACI9
NO03AC99
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CuOsSANC99
o2 EAC9Y9
AGATACII
0UDBRACY272
OOO9AC99

PEIIACHS:

DO11AC99
0012AC99
0Ll 3ACe7
NG2C0AC99
9023AC99
0026AC99
0G39AC99

0U40ACSD
U'FJ\LQQ
Ou6UAC99
BOTOACIT
COYDACI9
0100AC99
D11CACY9Y
N120AC99
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ClL6GACHY
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RT11=Q1*T11/NU

QT=RAPPAL2Q2/EPS

IF(1 T.EQ.1) QT=0.0
CF=2.0=(QT/Q1)#=#2

CFX=CFeU2/Q2

CFY=CF%Vv2/Q2
CF1=CFX#Ul/Q1+CFY=*V1/Q1l
CF2=CFX#V1/Q1-CFY=U1/Q1l
PHI=(V12U2-V2+U1)/(U1=U2+V1xV2)
I11=1

IF(NSTEP-(NSTEP/LFREQ)*LFREQ) 6,1,6

MM1=M-1

IF(MM1-(MM1/MFREQ) #MFREQ) 6,2,6
11=2
DO 3 M=1,NMINC
Al(H)=N=H]1/OMEGA
DO 4 N=WMINC NN

ALY =(N-NMINC+LAMDA)*H1

DO 5 N=1,NN ;
U2=ti{M,N)
V2=v(M,;N)

A2(W)=V2/U2
A3()=(Ul=U24V1®V2)/Qlex2
A4(i)=(V1eU2-Ul%V2)/Q1#&2
AS(M}=(Vl*UZ-V2*Ul1/(U1*U2+V1*V2}
CONT INUE
CALI AC?9P(M,11)
CONT INUE
RETURN

ND

0210ACS9
0220AL99
0225AC99
0230AC99
D24CAC99
02504C99
0z60AC99
02704099
D280AC99
0285AC99
0290AC99
N292AC99
0294AC99
0296AC99

N300AC99 -

C310AC99
0320AC99
0330AC99
0340AC99
0350AC99
0360AC99
N37T0ACSS
0380AC99
D390AC9S
04U0AC9S
0410AC99
0420AC99
0430AC99
D440ACY99
0450AC99

v



SUBROUT INE AC99P(M,11)

INTFGER OMEGA

COMMODN MINyMOUT ;MM 3NNy LAMDA 3 OMEGA  NMINC yNSLAP, LT sNU,
IUL(1C,50),VL(10,50),U(10,50),VI(10:50),W(10,50),BLT(10),
2P1(10),P2(10),LOGPT(10),NOPTS(1C),VO(50),V00(50),

3XLs YO FysGyHy AT 4BT 3 NSTEPNSMAX,LFREQ,MFREQ,
4PST1,PS124PSI3,PS14,PSI5,PS16,PS17,PSI8,
S5PHI1,PHI2,PHI3;PHI4,PHIS5,PHI6,PH]IT,PHIS

COMMON KAPPAKAPPAL s Ky AsCMIN, ITN; I TMAX,TOL ;S0S,N0OS0OS,
l1uLl.Ut2,UL3,VL1,VL2,VL3,Ul,U2,U3,V1,V2,V3,01,02,03,
ZNULT ¢ NUL2,NUL 4 NU2, X1 4 XINCsP1E,P2B, ALPHA,BETA,GAMMA,S,EPS,
3A1(50),A2(50),A3(50),A4(50) A5(50),
4D,D1,02,T11,T12,721,T722,HAPE;RT11,QT, tF CFX,CF1,CF2,PHI

IF((II-1)=%(LFREQ+MFREQ-2)) Z4+2,1
1 WRITE(MOUT,T70)
2 XLPlL=XL+F

Hl=H# (AT#XLP1+BT)

YM=YO+(M-1) %G :

WRITE(MOUT,71) NSTEPsMyXLP1,YM,HY1,ITN,LOGPT(M),EPS

WRITE(MOUT s 72) DaBAPESRT LD YD 23T, T2, 1215122

HQITE(MUUT,?B) QT+ CF,CFL,CE2,CFEXsPHI
N=LOGPT I M)

CALI AC99S (M N)
WRITE(MOUT,76) ALPHA,BETA,GAMMA, S
CALI AC99S(M,NN)
WRITE(MOUT »76) ALPHA; BETA,GAMMA,S
GOLTE S, 3 Y]]
3 WRITE(MOUT 74)
DO 4 YN=1,NN 2
WRITE(MOUT ,75) ALCHYUIMaNY s VIMeNY s WIMeNY s AZIN),
1 A3{M1,nétﬂl.a5iul
4 CONTINUE
WRITE(MOUT,70)
5 RETURN
T0 FORMAT(1HY)

"

POLOUOAC99
POO1AC99
PLO2ACI9Y
POD3ACY99
POO4AC9I
POOSAC99
POOGAC99
POOTAC99
POOBACS9
PODO9ACS9
PU1DACSY
PO11AC99
PO12AC99
PO13AC99

PO20AC9S

PO30AC99
P032AL99
PO34AC99
PO36ACY99
PO040GAC99
PO50ACS3I
PU6UACS9
POTOALCS9
PCBOAC99
PO9DACS9
P10OAC99
PL1DACSS
P120AC99
P130ACS9
P140AC99
P150AC99
P160ACSY9
P170ACS9
P19CAC99
P200AC99
P210ACS9

Ok



L FDRMAT{IHO.ZX.4HF&CE.IQ,ZX,BH,SFCTIDN,Ié,6x,2HX=,F11.6.2X,3H,Y=, P220AC99
1F11.6/1H 100X, 1H#/1H 46X,31HTHE Z INCREMENT WAS ADJUSTED TO, P230AC99
2F12-.9,30H AND THE SOLUTION CONVERGED IMN,13,16H ITERATIONS WITH, P245AC99
34H N =,13,7H AND C=,F10.6/1H+,110X,1H-) ) P245AC99

72 FORMAT(1HO,6X,4CH THE PROFILE PARAMETERS ARE AS FOLLOWS —-,12X,2HS=PZ250AC99
1:1Fl0a635Xy 2HH=3F9.5,43X,5HR =1F1l0.3/1H+,58X41HC/1H ,90X,3H211/1H+P260AZ99
235043 1H=/1H ,8X,1H&,15X,1H=/1H 1 IX3y3HS1=,F10.6,3X%X,3HS2=4F10.6,3%, P2T70AC99
BQHOIl=,F10.6,3X,4H012=,F10.6,3X,4H021=,F10.6.3X,4H022=,F10-6/1H+: P2BOACYY -
QTX,]HC,15X,lHCg15X;1H—,16X.1H—,16X,1H*,léX,lH—l P290AC99

73 FORMATI1HO,7Xs3HQ =,F10.7,3%,3HC =9F10e733X,4HC =,F10.7,3X:4HC =P300AC99
1,F10.7,3X%,4HC =9F104795X,2H0=4F10.6/1H+,92X,1H//1H 48X,1HT,15X, P319AC99
2 HF <« 15X, 2HF1 4 15X 2HF 24 15X 2HFX/1H4,8X, 1H() P320AC99

T4 FORMAT(1HO,3X, BHDISTANCE ; 8X, 31HRECTANGULAR VELOCITY COMPONENTS ,7X,P330AC99
L7HT ANGENT» 11Xy 12H' STREAMWISE * 3 10X, THTANGENT/1H ,3X,BHFROM THE47X,P340AC99
25HANGLE 10X, 17THVELOCITY PROFILES,8X,S5HANGLE/1H 19Xy 4HWALL 12X, 1HU,P350AC99

312X« 1HV, 12X, 1HW, 11X,3H0-U,12X,2HULl ,11X,2HV]1,10X,4H0-QS/) P260AC99
75 FORMATI3X1F10e6,2X33(3X9F10e4)33X3F9e6,2X32(3XsF10.6),3X,F9.6) P37T2AC99
76 FORMAT(1H ,4F12.6) P3BOAC99
END P390AC99

SUBROUTINE AC99Q QOGOACS9
THIS SUBROUTINE SETS UP THE FREESTREAM Q

AC99

EOUNDARY CODITION FOR THE THREE- Q AC99
DIME"ISIONAL BOUNDARY LAYER 0 AC99
INTFGER OMEGA QUO01AC99
REAL HU,MNULL1,NUL2,NUL,NU2,K,KAPPA,KAPPAL QO02AC99
COMMON MINyMOUT s MFy NNy LAMDA OMEGA, NMINC yNSLAP, LT yNU, QO03AC99
1UL(10G,50),VL(10,50),U(10,50),V(19:;50),W(10,50C),BLT(10), NO04AC99
ZP1(10),P2(1C),LOGPT(10),NOPTS(10),VU(50),V00(50), QO05AC99
3XLy YOy FyGyHy AT, BT, NSTEP,NSMAX,LFREQ,MFREQ, QUO6ACO9
4PS11,PS12,PS13,PS514,PS15,PS16,PS17,PSI8, QUOT7AC99

5PHIN ,pHI2:pHIB|?HI‘71PHIB,FHIb, DHI?,pHIB QL0o8ALC99



COMNMON KAPPA;KAPPAL Ky A CMIN, ITH,ITMAX,TOL, SDS,NOSOS, QO09AC99
1VL1.UL2,UL3,VL1,VL2,VL3,Ul,U2,U3,V1,V2,V3,01 102,03, Q010AC99
ZNULT yNUL 23 NUL 3 NU2 XT3 XINC,P1B4sP2By ALPHAL,BETA SAKMA,S,EPS, QOU11AC9S
3A1 (5 )1, A2(50),A3(50):A4(50),A5(50), Q212AC99
4DSTAR(10),C4D4ELE2,4E3 QO13AC99

DO 1 M=]1,MM

QU2GAC99
UM NNI=ACO9U(XL+F Y0+ (M=1)=G)

NC30AC99
VIMeHNN)=ACO9VIXL+F,Y0D+(M~-1)=G) QO040AC99
PL{M)= (U(My;NN)+ULIM,NN) )= (U(MaNN)-UL(M,NN)) /(2.0%F) QO50AC99

1 +IVIMaNN)+VLIMZNN) Yo (VIMaNNI=VLIM,NN) ) /(2.0%F) QO60ALY9
P2ir)= (UIMy;NNI+UL(MyNN)I* (ACOUIXL+0.5%F , YO+M%G) QGTOACSS
1 —ACOSU(XL+0.52F ,YO+(1M=2)«G))/(4.0+0) QOBOALCYY
2 HIVIMyNN)I+VL(M,NN) ) * (AC99VIXL+0.5#F , YO +M#G) Q090DACH9
3 ~ACI9VIXL+0.5#F,YO+(M~-2)%G) )/ (4.0%G) Q100AC99
1 CONTINUE Q110AC99
VO (NH)=ACO9V(XL+0.5%F,Y0-G) Q120AC99
VOOINN)I=ACO9V(XL4+0.5%F ,YO+MM&G) Q130AC99
RETURN ' Q140ACS9
END Q150AC99
SUBROUTINE AC99R (M) - ROOOJACSY
THIS SUBROUTINE SETS UP LAMINAR OR TURBULENT R AC99
VISCOSITY FUNCTION PARAMETERS R AC99

. — MELLOR AND GIBSON VISCOSITY MODEL R AC99

INTFGFR OMEGA RUO1ACSS
REAL "U,NULL,NUL2,NUL,NU2,K,KAPPA,KAPPAL ROO2AC99
EXTFRNAL AC99Y RCO2LCS9
COMMON MINMOUT y MM g NNy LAMDA, OMEGAZNMINC ¢ NSLAP LT 4NU, ROO3ACH99
UL (1¢,50),VL(10,50),U(10,50),V(10,50),W(10,50),BLT(10), ROO4ACSY
2P1{10)},P2(10C),LOGPT(10),NOPTS(10),VY0(50),V00(50), RCOS5AC99
ALy YO,FyGyHy AT BT NSTEP,NSMAX,LFREQ,MFREQ, POOGACYSY

4PS11,PS512,PS13,PS14,PSI5,PS16,PSIT,PS18,

RGOTAC99



oo ~J

5PHI1,PHI2,PHI3,PHI4,PHI5,PHI&,PHIT7,PHIB

CDHI'ADN

luLl-uL2,UL3,vVL1,VL2,VL3,Ul,U2,U3,V1,V2,V3,0Q1,02,Q3,

ZNULT NUL2,NUL,NU2, X1, XINC,P1B,P2B,ALPHA,BETA,GAMMA,S,EPS,

3A1(50),A2(50),A3(50),A4(50),A5(50),
4DSTAR(10)sCyDsE1+E2,E3

1

AL=0.5

GO T iy
DSTAR(M)=NU/(AT* (XL+AL*F)+BT)

RETURN

2)4LT

CAL! AC99S({M,NN)
Ul=4C991 (M, NN, GAMMA, UL  MM)
VI=4C99T (M, NN, GAMMA, VL  MM)
U3=U(M;NN)

V3=V (M NN)
Q1=SCRT(Ul=%2+V]1+%2)
Q3=SCRT(U3#=%2+V3%=2)

DQ=03-Q1l

Q2=06.5#(0Q3+Q1)
Hl=H# (AT*(XL+ALPHA=F )}+BT)

Ql=02

UI:OQS*(U3+U1)

V1=0.5#(V3+V1)

TH11=AC99T{ACO9Y My NMINC 4 NOPTS(M) OMEGA,H1+1:1,0,ALPHA)
AA=1,0E 4#TH11+(DQ/S)/Q2 .

‘K=0.016+0.00015«AA

IF{Kh-0.007) 7,7,8

K=0.007
CONT INUE

-

DSTAR(M)=K#02= .

RETIIRN
END

ACIIT(ACO9Y, My NMINC,NOPTS(M) ,0MEGA,;H;1,0,0,ALPHA)

ROOBACL99
ROGCIALST
RO1DAC99
RO11ACSY
RD12ACS9
RO13AC99
RO17AC99
RO2OACH9S
ROC30AC99
RO4VACS9
RUSOACS9
RGC60ALC99
ROTOACS9
RUBOACSY
ROSOAC99
R100AC99
R110AC99
R120AL99
R130AC99
R140AC99
R150AC99
R160AC99
R170ACH9
R1BOACSI
R190AC99
RZ00OAC99
R210AC99
R220AC99
R23VAC99
R240AC939
RZ5DAL99
R260JAL99
R27OACS9

G
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SUBROUTINE AC99S{M,.N)
THIS SUBROUTINE FITS 'SIREAMLINES' BETWEEN POINTS
ON THE DOWNSTREAM SOLUTION -FACE AND THE UPSTREAM
SOLUTION FACE
INTFGER OMEGA
REAL NU;NUL1,NULZ2,NUYl,NU2,K;KAPPA;KAPPAL
COMKMON MINgMOUT, M NN, LAMBA3OMEGA,NMINC yNSLAP,LT yNU,
JUL(104550),VLI10,50),U(10,50),V(10450)4W(10,50),BLT(10),
2P1(10),P2(10),LIGPT(10),NOPTS(19),VO(50),V00(50),
3XLyYDsFy Gy H AT s BT NSTEPNSMAXsLFREQsMFREQ,
4P511,PS$12,PS13,PS14,PS15,PS16,PS1T,PSIB,
5PHI1sPHI2,PHI3,PHI4,PHIS,PHI&,PHIT,,PHIB
COMMON KAPPA, KAPPAL s Ky AyCMIN, ITHN, I TMAXTOL ,SOS,NOSDS
1ULl.ULZ,UL3,VLY,VL2,VL3,U)l,U2,U3,V1,V2,V3,01,G2,03,
2NULT 3 NUL2,NUL,NU2, X1y XINCyP1ByP2B, ALPHA,BETA ,GAMMA,S,EPS,
3A1(50)402(50),A3(50)43A4(50),A5(50),
4DSTAR(10)4C4D,EL1LE2,E3
TOL1=0.001
T0L?2=0.001
TOL3=0.001
MAXTIT=10
TSTAR=V(M;N)/U(MsN)
TGAMA=VL(M,;N) /UL (MyN)
TG=11.0
AA=TSTAR+TGAMA
IECABSTAAY=TOLLY 1,1ls2
GAMMA=0.0
GO 10 7

SO00ACS9
S ACS9
S AC99
S AC99
SO01ACSS

S002AC99 .

SO003AC99
S004AC99
SO05AC92
SO006AC99
SOOTACS9
SUOBALC99
SO09ALC99
SO01CAC99
SO011ACS9
SO012AC99
S013ACS9
SO020ACS9
S030AC99
S04CACS9
SO50AC99
SO60AC99
SC7TOALC99
SOBOAC99
S030ACS9

S100ACS9

S110AC99
S120AC99
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IF(AA) 3,3,4

SGN==1.0
GO 70 5 =
SGN= 1.0

GAMMA=—TSTAR=2F /G

DO &6 I=1,MAXIT

TGAMA=ACIOI (MyN, GAMMA VL s MM) JACOQT (M N, GAMMA UL 9 MM)
T=(1.0-TSTAR=TGAMA)/(TSTAR+TGAMA)
TG==T+SoN=#SQRT(1.0+4T=#2) r
ERRNR=GAMMA+TG=F /G

GAMMA==TG=F /G

IF(AES(ERROR)=TOL2) 7,736

CONTINUE

WRITE(MOUT,11) M,N

CALE EXIT

ALPHA=(2.043.0+TG#TSTAR-TG=#2)/(4.0=(1.0+TG=#TSTAR))
BETL==F# (TSTAR+TG+2.0%TG##2%TSTAR) /(4.0=Gx({1.0+TG=xTSTAR))
AS=F=SCRT(1.0+4TG=+2)/2.0 '
ES=(TG-TSTAR)}/(1.0+TG*TSTAR)

CS=502T(1l.04BS=+2)

IF(ABSIES)-TOL3) 8,8,9

$=2.0%AS

GO T0 10

S=AS+=(ALNG(BS+CS)I/BS+CS)

RETURN

FORMAT(LHO,5X,3HES]1,5X,216)

END

S130DAC99
S140AC99
S150AC99
S160AC99
S170AC99
S180AC99
S190AC99
S200AC99
S210AC99
S220AL99
S230AC99
S240AC99
S250AC99
S260LC99
SZTCAC99
S280AL99
S290AC99
S300AC99
S310ACS9
S322AC99
S330AC99
S240AC99
S350AC99
S360AC99
S3T0AC99
S380AC99
$390AC99

yiey"
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FUNCTION ACOOT(P  MyNMINCyNOPTSyOMEGA,H,11,12,13,4)
THIS FUNCTION CALCULATES THE INTEGRAL OF THE
FUNCTION R THROUGH THE LOUNDARY LAYER

INTFGER OMEGA

Tl-’—ll-S*lQ{MfD‘11!129I3|A,+R[H|NV-INC'I1|IZtI31r\)1

1J=NMINC-1

DO 1 I=1,1J

Ti=F14R My I, 1Yy T2y T34AY 2

T2=U.5*[F".{H,NMI"JC| il,12’13[!&’+RIM'NDPTSQI].1121I31A}’

" II=NMINC+1

1J=NOPTS~-1

DO 2 I=11,1J
T2=T24R (M3 13112125 135 A)
ACY9T=H=(T1/OMEGA+T2)
RETURN

END

FUNCT ION AC99VIX.Y)
AC949V=0.0

RETURN

END

TOOUACSI

8 7 AC99

T ACS9
TO10AC99

T02GAC99

TO30AC99
TC4OACY9
TO50AC99
TU60AC9Y
TOTOAC9Y
TOB0ACY9
T0924C99Y
T100AC99
T110AC99
T120AC99
T130AC99

VUOCACS9
VO1CACS9
VG20AC99
VO30ACS99



SUBROUTIMNE AC99W({M,yN)
TH1S SUBROUT IME CALCULATES W AT ANY POINT

ITNTEGER OMEGA R

REAI NU,NUL1,NUL2,NUl,NU2,K,KAPPA, KAPPAL ;
COMMON MIN,MOUT,MM,NN, LAMDA,OMFGA,NMINC ,NSLAP,LT sNU,
1UL(10,50),VL(10,50),U(10,50),V(10,50),W(10,50),BLT(10),
2P1(10),P2(10),LOGPT(10)4NOPTS(20),V0(50),V00(50),
3XLsYO3F3CsHs AT BT ,NSTEP,NSMAX,LFREQ,MFREQ,
4PS11,PS12,PSI12,PSI4,PSI5,PS164PS17,PSI8,
SPHI1,PHI2,PHI3,PHI4,PHIS,PHI6,PHI7,PHIE

COMMCHN KAPPAKAPPAL Ky AyCHMIN, I TN, ITMAX,TOL,S0S,N050S,
1ULl.UL2,UL3,VL]1,VL2,VL3,Ul,U2,U3,V1,V2,V3,0Q1,02,0Q03,
2NULT ,MUL2 3 NUYL  NU2 4 XTI XINC,P1E,P2B,ALPHA,EBETA ,GAMMA,S,EPS,
3AL(50), A2(50)4,A3(50),A4(50),A5(50) 4
4DSTAR(L1U) CyDyEL,E2,E3

IF(N=LOGPT(M)) 1,1,2

C=AT#U2/ (D=EPS)

GO-T03

C=(AT#XI/D)= (NU2-NU1)}/XINC

E={U3-U1)/F+(V3-V1)/(2.0%G)=C

IF(K=LOGPT(M)) 4,4,6

W(MaMN)=—(D*X1/(1«0+1.0/EPS) )*E

DO 5 I=1,4N .

WIMeI)=(FLOAT(I)/N) 2% (1.0+1.0/EPS)#uW(MyN) Z
RETURN

WM« NI=WIM;N=1)-DoEaXINC

RETURN

END

SUEBERCUTINE AC99X
THIS SUBRDUTINE DETERMINES THE NUMEER OF

POINTS AND THE LOG POINT AT EACH SECTION
INTFGER OMEGA

REAL MNU,NUL1,NUL2,NUl1,NU2,K:KAPPA,KAPPAL

WO00O0ALCO9
W AC99
WOO1ACS9
WOoD2AC99
WOD3AC99
WOO4AC99
WOD5AC99
{00&EAC99

WOOT7ALC99

WOOBACO99
WOO9AC99

W010AC99 .

WO11AC99
WO12AC99
WJ13AC99
WO20UAC99
WO30AL99
W040AC99
WOS50AC99
WC6OAL99
WOTOAC99
WCBOAC99
WO9CALC99
W100AC99
W110AC99
W120AL99
W130AC99
W140AC99

XO00O0OAC99
X AC99
X AC99
X001ACS9
X002AC99

—-

(9



H W (S

v

o~

COoMMON MIN,MOUT, MM, NN, LAMOA,OMFGA,NMINC JNSLAP, LT ,NU,
IUL(10,50)yVL(10350),U(10950),V(10,50) :W(10,50),BLT(10),
2P1(10),P2(10)4LOGPT(10),NOPTS(10),V0L50),V00(50),
BXL, YO,F,G;H; AT'ngpl'JSTEp'\JST.‘AX, LF‘DEQ,“FREO|
4PST1,P512,PSI3,PS14,PS15,PS16,PS1T,PS18,
S5PHI1,PHIZ24PHI3yPHI4,PHIS, PHI&4PHIT,PHIB

COMMON KAPPAs KAPPAL 4 Ky AqCMIN, ITN, I TMAX,TOL ,S0S,NOSOS,
IULYL.UL2,UL3, VLY VL2,V0L3,Ul,U2,U3,V1,V2,V3,Q1,02,Q3,
2NULT UL 23 NUL NU2 3 X1 o XTINC,P1EWP2By ALPHAZBETA GAMMASHEPS,
3A1(50),A2(50)4A3(50),A4(50)3;A5(50)," :
4DSTAR(10),C3DsE12E2,E3

CALI AC99B(2,0.0)

DD 2 M=1,MM

NOPTS(M)=BLT{M)+NSLAP+]

IF(WAOPTS{MI=NN) 2,2,1

NOPTS(M)=NN

CONT INUE

GE R Ea5) e kT

DO 4 H-_-I.'MM

LOGPT (M) =1

RETURN

Nl=KMINC-OMEGA

DO b M=1,MM

DO & N=2,N1

Q2=S0RT(UL(MyN)e224VL(M,N)=%2)

ALPHA=0.0

CALI AC93L(N)

C=MNeKAPPAL#H#Q2/(OCMEGA=NU#*EPS)

IELE—EMENY SIS 5 ilianl

CONT INUE

WRITE(MOUT 49) NSTEPsM,C

N=N1

LOGPT(M)=N

CONT INUE

RETURN

FORMAT(1HO ¢5X33HEX]1¢5X432169F12.6)

END

XDO3AC99
X004AL99
XQ05AC99
X006AL99
X00DTAC99
XC08AC99
X009AC99
XO10AC99
X011AC99
X012AC99
XU13AC99
X020AC99
XD30AC99
X04U0OALC99
X050AC99
XO06CAC99
X0TOAC99
X080AC99
XC9CALC99
X100AC99
X110AC99
X120AC99
X130AC99
X1404C99
X150AC9S
X160AC99
X170AC99
X18DAC99
X190AL99
X2D00AC99
X210AC99
X2204C99
X230AC99
X240AC99
X250AC99
X260AC99
X270AL99
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FUNCTION ACS99Y(MyN,11,12,13,AL)
THIS FUNCTION PROVIDES THE ARGUMENTS NECESSARY
TO CALCULATE THE DISPLACEMENT AND MOMENTUM
THICKNESSES
INTFGER OMEGA
REAI XNU,NUL1,NUL2,NU1,NU2,K,KAPPA,KAPPAL
COMMON MIN,MOUT, MM, NN, LAMDA, OMEGA, NMINC yNSLAP, LT s NU,
1UL(1C,50),VL(10,50),U(1D0,50),V(10,50),%W(10,50),BLT(10),
2P1(10),P2(10),L2GPT(10),NOPTS(10),V0(50),V00(50),
3XLs YO FyGyHy AT BT NSTEP,NSMAX,LFREQ7MFRERQ,
4PSI14PSI2,PS13,PS14,PS15,PS16,PS17,PS18,

. 5PHI1 PHI2,PHI3,PHI4,PH]15,PHIG6,PHIT,PHIB

COMMECN KAPPAKAPPAL  KyA,CMIN, ITN, ITMAX, TOL ,S0OS,NOSOS,
1UL1.UL2,UL3,VL1,VL2,VL3,Ul,U2,U3,V]1,V2,V3,01,02,03,
2NULT UL 2,NUL s HU2, X1 o XINC,P1E,P2By ALPHA,BETA,GAMMA,S,EPS,
3A1(50),A2(50),A3(50),A4(50),A5(50),
4DSTAR(10)4C4,D,E1,E2,E2

IF(NY 1,1,2

Ud=0.0

VV=0.0

GO TO0 3

CONT INUE > :

UAL=( Y. 0-AL)=UL(M,N)+AL=U{M,N)
Vh'l_:{1-()‘»'\1.]'*VL[M,N"‘AL*V(M'”)
Uu=(L AL=UL+VAL®V]1)/Q1l%=2
VV=ILUAL=V]1-VAL=#UL1)/Ql*=2

CONT INUE

AA=1 -O

IF(11) 4,5,4
AA=LAs(1.0-UU)=s11

1F(12) 64746

AA=ALsUUsn]2

IF(13) 8,9,:,8

LAh=uhaVVxe]3

AC99Y=AA

RETULRN

END

YOOCACS9
Y AC99
Y ACS3
Y AC99
YOO1AC99
YOO2AC99
YCO3AC99
YOD4AZG9
YOO5AC99
YOD6AL99
YJ0TACS9
YOOBAC9S
YOD9ACZS9

- YO10AC99

YO11AC99
YO12AC99
YO13AC99
YO2OACL99
YO30AC99
YO40AC99
YC50ACS9
YO6O0ACS9

OTOACO99
YO75AC99
YUBOACL99
YUB5AC99
YUOCACS99
Y100ACHS
Y110AC99
Y120ACS9
Y139AL99
Y140AC99
Y150AC99
Y16DACS9
Y170AC99
Y180ACS9
Y195ACL99

)



SUBROUTINE AC99Z (NEQ)
THIS SUBROUTINE SOLVES THE LINEAR ALGEBRAIC EQUATIONS

INTFGER OMEGA %

REAI NUZNUL1,NULZ2,NU1,NU2,K,KAPPA,KAPPAL

COMMON MIN;MOUT MMy NN; LAMDA, OMEGAHIMINC s NSLAP, LT yNU,
IUL(10,50):VLE105350);U(10,50) ,V110,50),M110,50):BLTL10),
2P1(10),P2(10),LOGPT(10)4NOPTS(10),VO(50),V00(50),
3XLsYO,FyGyHyAT BT NSTEP ,NSMAX,LFREQ,MFREQ,
4PS11,PSI2,PS13,PS14,PS15,PS16,PSIT7,PSI8,
5PHI14°HI2,PHI3,PHI4,PHIS,PHI&,PHIT,PHIB

COMMON KAPPAKAPPAL y Ky Ay CMIN, TTN, ITMAX, TOL »S0OS,NOSOS,
JULI-ULZ2,UL3,VL1,VL2,VL3,Ul,U2,U3,¥1:V2,V3,01,02,03,
2HNULT yNUL2,HUL s NU2 4, XTI 4 XINC,P1B,P2E,ALPHA,BETA,GAMMA,S,EPS,
3A1(50),A2(50),A3(50); A4150),A5(50),
4DSTAR(10)43CyD,E1,E2,E3

DO 1 I=2,NEQ

A3DI=A3(1-1)/7A1(1-1)

AL(1)=A1(1)-A2(1I-1)%A3D1

A4(1)=Aal1)=-A&(1-1)=A3D] : 3

AS{T)=A5(1)-A511-1)=A3D1
CONTINUE

A4 (HEQ)=A4 (NEQ)/ALINEQ)
ASLIHEN)=AS({NEQ) /AL (NEQ)
P‘D 7 'fszEQ

I=NFO~-J+1

ARGl =(AGLT)-A2(1)=A&(TI+1))/7A1(1])
AS(E)=(ASLI)I-A2(1)eAS(I+1))/A2{1])
CONT I1NUE

RETURN

END

ZOOCAC99

2 AC99
Z001ACY9
ZU02AC99
Z0D3AC99
Z004AC99
2G05AC99
LOO6AC99
Z00TAC99
Z200BAC99
ZO009AC99
Z0190AC99
Z01YAC99
20124C99
2013AC99
2020AC99
2030AC99
2040AC99
LC50AC99
Z060AC99
Z0OTOAC99
2080AC99

209GAC99

Z100AC99
2113JAC99
Z120AC99
Z130AC99
2140AC99
Z150AC99
216DAC99
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Introduc tion.

The present appendix contains a description of the
structure of the computer program listed in Appendix A6 as well
as instructions for using the program.

The calculation scheme is based on that presented in
detail in Chapter Four and Appendices Al-5 where finite differeuce
approximations have been made to tae t ransformed boundary layer
equations (4.3.9-11). We note here that the boundary layer
equations were éransfoxmed using equation (4.3.1) and that the
effective viscosity A has beenr eplaced by vé as given by
equation (4.3.8).

The program itself is effectively built up of three
major subroutines which determine tne overéll progress of the
calculation. The first subroutine, the 'main program', provides the
control in that it reads in the data and calls on another subroutine
AC991 to compute velocity profiles at each solution face before pro-
ceeding to output the results of the calculation. Subroutine AC991
calculates each solution Tace by repeatedly calling AC992 waich at
each pass performs one complete iteration of the boundary layer
equations., The main program and subroutine AC991 are thus primarily
concerned with the organisation of the calculation while subroutine
AC992 contains the basic calculation scheme, alfaough some calculation,
such as ammending the side boundary conditions and the grid development
between iterations, is contained in subroutine AC991, These three
ma jor subroutines call upon numerous others which will be detailed
later.

Flow diagrams are included below to give a descriptive
account of the progress within these three ma jor subroutines, while
following these we will give a more détailed breakdown of the common

storage and the subroutines used. Finally =n account of how the
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program should be used is included together with subroutine and

data input for a sample application (that of Hornung and Joubert

considered in section 6.6).
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Common storage.

The items of data stored in common are listed below
with array sizes where these are relevant. The program included
will cater with a 10 x 50 grid although obviously it would be very
easy to alter the program in this respect to suit any particular
need, Reference below to 'this face'! is to the solution face
currently being calculated,"last face! to that immediately pre-
ceeding. Individual items will be referred to the standard

notation used in the remainder of this work.

MIN Card input ?nit number

Mout Printer output unit number

MM : M

NN N

LAMDA A

OMEGA w

NMINC A

NSLAP minimum number of slack points to be accommodated

above boundary layer edge

LT =1, laminar flow

=2, turbulent {low

NU v
UL,VL u,v components of velocity at points on last face
(each 10 x 50 array)
u,v u,v components of velocity at points on this face
(10 x 50)
W w component of velocity at points on mid-face (10 x 50)
BLT 5 at each section (10)
PL,Pe pressure terms in x,y momentum equations at each
section (10)
LOGPT the log-point at each section (10)
NOPY'S 'the number of points at each section (10)

Vo, V00 crossflow velocity profiles at side boundary planss (50)



XL
Y0

F,G,H
AT, BT
NSTEP
NSMAX

L- ,MFREQ

PSIl,-8

PHI1,-8

KAPPA,=L
.

K,A

CMIN

ITN

ITMAX

TOL

S08

NOSOS

115 A
4

ALPHA, .4 .S

EPS

AL 7RD SRS

DSTAR

C,oan3

DL' - .E‘IKI .
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i)

¥ at first section

f,8,h

a,b

number of this solution f ace

maximum number of soluﬁion faces to be calculated

frequency of full velocity profile outputs in x,y
' directions

= 1,8

=
H
|

¢, 1= 1,8

k as it appears in effective viscosity function,
logarithmic law of the wall

K,A :

minimum value of qu/z)for which law of the wall

is assumed valid
iteration counter at this face
maximum number of iterations at each solution face
tolerance to which solution is to be iterated
accunulated error sum of squares for current iteration
number o points at which same hgs been accumulated
quzntities appearing in finite differance approximati ons

to momentum equations (see figure (4.6.2)) and
continuity equation (see figure(4.7.1,2) g

«,B,y,s streamline coordinates (see figure (L4.6.1))
€

coefficients of linear algebraic equations (B0)eS
effective viscosity parameter (10)

contractions used in finite difference approximations
to momenfum equations at_wall

boundary layer parameters for output

The last two sets of variables partitioned by dashed lines

are alternalive storages.

Althouzh the overall calculation is referred to a 10 X 50
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grid, at section I the number of points at which the solution is
caleulated (NOPTS(I)) may be reduced to avoid calculating excessive
points at sections where the boundary layer is thinnest, At least
NSLAP ' *slack points! are accommodated above the boundary layer
edge (80.s99) at all sections however.

The arrays Al,-5 are used for storing the coefficients
of the linear algebraic equations described in section L.6. Remgbering

3

that the first point to be used in the finite difference scieme is

the log-point the general equation is then

B AU e e L e B B S e :
3,i-1 n*+i-2 1,1 n¥+i=y 2,1 ‘n*+d 4,1

AU B g e L SRR LN SRR B e RS
3y,i=s D¥+i-z 1,4 ‘N¥4i-t 2,1 n¥+l 5,1

The output facility caters for full velocity profile
outputs only at sections where these are specified and elsewnere
only boundary layer parameters are output. For example, if' LFREQ=2
and MFREQ=3 velocity profiles would be output at sections 1,4k,7,10
(assuming there were ten sections at each face) at faces 2,4,6,...

The diagram below shows a plan of 't.:wo adjacent
solution flaces ani indicates '..-rhere the various velocity profiles

are stored.



. ; uVv uv

e e S i i Je e T e N e
|
|
|

w,D W,D X w.D w,D
VoL S P2 I bls . Vlpj.o
|
| 5.4
l
| UL VL UL VL ~ JuLwi UL VL

'last face’

ARRAY STORAGE

099‘[
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Subroutines.

Included below are brief notes on the subroutines
that maxe up the present program. More detailed information can
be obtained by referring to the program listing in Appendix A6 or
to the flow diagrams included above where the sequence of some
of the subroutines has been included. Subroutines AC99A,-H,=V
as included in the program listing have only restricted application,

some possibilities for their extended use however will be given

later.

Main program

Reads data input, sets up initial conditions. Updates

solution before each face is calculated.

Subroutine AC991

Controls velocity profile calculation at current
solution face. Adjusts grid as and when necessary. Outputs error
message Ell when solution at this face will not converge to required

tolerance, calculation then continues.

Subroutine AC992-

Controls calculation of one complete iteration

Subroutine AC99A

Sets up side flow boundary condition. Zero crossflow
subroutine included will cater for both two-dimensionzal and

pseudo-three-dimensional calculations. Called before each iteration.

Subroutine AC99B (IT,AS)
Calculates boundary layer thicknesses across a section
and stores in BLT(10). To calculate & at last face AS = 0.0, at

this face AS = 1.0 (and pro rata). In addition if
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Subroutine AC99B (IT,AS) (contd.)

IT'= 1 S0.09 calculated for oulput ani stored as
number of large increments from wall
I =02 So.099 calculated far grid control and s tored

in terms of grid point numbers.

Subro utine AC99C(M,N)

Sets up quantitics for approximation to continuity

equation at point (M,N).

Subroutine AC99D(ees)

Calculates effective viscosity terms.

Function AC99E(...)

Laminar or turbulent effective viscosity moiel,

Subroutine ACH9F(M,N)
Sets up linecar algebraic equations corresponding to
approximations to momentum equations at log-point at section M.

Weights listed in the last column of Table 4.6.1 are implied.

Subroutine AC99G(NEQ,M,N)

Sets up linear algebraic equations (equation NEQ at
section M) corresponding to approximations to momentum equations at
point M,N (not log-point)

Subroutine AC99H
Called before calculation at each face to allow forward

step sizes, output frequencies, etc. to be altered as required.

Function AC99I (M,N,GAMMA, VEL,MM)
Interpolates velocity components stored in VEL(10,50).
At point N,array VEL is inferpolated to provide VEL at

M+GAMMA, Will not cater for Mi=2.
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Func tion AC99J (M,BETA,PRM ,MM)
Interpolates parameters stored in PRM(10).

W
Array PRY is interpolated to provide PRM at M+BETA(M#2) .

Subroutine'AC99LtN)

Calculates € by solving lagarithmic law of* wall
(equations (4.4.10,11)). Puts e=1 for laminar flow. For turbulent
flow requires a, gz set up in common. Error message ELL output

when solution will not comverge.

Subroutine AC99M(M,N)
Sets up quantities for approximations to momentum

equations at point (M,N) (see figures (4.6.1,2)).

Subroutines AC990,-P

Respectively calculate and print output quantities.

Subroutine AC99Q

Sets up freestream condition by calling AC99U,-V.

Subroutine ACY9R(M)

Sets up effective viscosity function parameters in

DSTAR(10) at each section, !

- Subroutine AC99S{M,N)
Calculates a,PB,y,s corresponding to streanline through
point (M,N) on this solution face (see Appendix Al). Outputs error

message ES1 wien solution will not converge, computation discontinued.
g ’ i

Function AC99T(R,ess)

Integrates thé function R through the boundary layer
using the trapezium rule.
Functions AC99U,-V(X,Y)

Calculate the U,V components of velocity respectively

in the mainstream at the point X,Y.
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Subroutine ACHIW(NM,N)
Calculates W at point (M,N) from approximation to

continuity equsztion,

Subroutine AC99X
Calculates NCOPTS, LOGPT at eacﬁ section based on last
solution face. Puts LOGPT = 1 for laminar flow and for turbulent
ensures
2 < LOGPT < w(A-1)
If zq_‘_/v > CMIN at point w(A-1) error message EXL

output, and proceeds with upper bound for LOGPT.
Function AC99Y(M,N,I,J,K,AL)
Supplies integrand for AC99T to evaluate
u I HiJ 3:K e
Us Us TUa -
o
58
at section (M,N) (AL as,in AC99B).
UL,V1,Ql must be set up as for freestream prior to
entry in common.
Subroutine AC99Z (NEQ)
Solves the set of NEQ tri-diagonal linear algebraic

equations (see Appendix A5).
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To use the progsram.

The input requirements for the computer program are
shown below. The majority of the symbols used will be found in
the list of symsols (p.103) and a few comments will now l:te made
concerning the remainder,

Item 3. With the program as included thne following

limitations need be imposed

3 <M <10 or My='L

N < 50

A2

wz1 *
Explanations of NSLAP, LT, NSMAX, ITMAX, LFREQ, MFREQ can be
found in the common storage 1list included previously.

Item L. Xo,yo are the coordinates of the Tirst
section on the initial solution face and 814 is the momentum
thickness at this face.

Items 6 and 7. Surplus blank cards should be removed.
The velocity profiles should be specified on Ehe me sh defined
previously and the streamwise velocity profile should be scaled
to unity at the boundary layer edge.

Item 8. Specifies the crossflow to be included at
the commencement of the calculation., TanBe is sgpecified at each
s-ection.

All quantities listed are retained throughout the cal-
culation unless changed in AC99H,

Sample subroutines and input data are included following
the data listing (these are those used to simulate the experiment
of Hormung and Joubert described in section 6.6). In the subroutine
AC99A listed VO is calculated from the symmetry condition and VOO from

equation (6.6.2). Subroutine AC99H changes forward step and output
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frequencies during the course of the calculation (N.B. halving

the forward step when NSTEP = 4 causes the shorter step to be
applied before face 4 is calculated). The U,V velocity distribution
used is that given in Appendix A9.

There then follows the prof'ile used to account for
crossflow at the commencement of the calcilation and that used
to account for the convergency of the flow in section 5,3. Tables
and graphs are included for both cases.

During the course of the calculation error messages
may be output to signify that some fault has occurred with the
calculation. The course followed as each of these errors is
encountered and the cause is listeé below:

Ell Error sum of squares has failed to reach required

-~

tolerance in specified maximum number of iterations.
Output NSTEP, S0S, NOSOS.

Calculation continues to next face.

EL1 Iteration process for calculating € has failed to

converge.

Output Q2, N, ALPHA and last two iterates.

Calculation continues using last iterate.

ES1 Iteration process for calculating streamline has
failed to converge.
Point M,N at wihich error occurred output.

Program discontinued,

EX1 zqr/b within range in whica log-point may fall, is
always less than CMIN.
Output section concerned (L,M) and value of
qu/v at outermost point.
Continue calculation with log-point set at this

outermost point,
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It should also be pointed out here that a trans-
formed version of the effective _viscosit_-; func tion equation
(3.3.5) has been used within the program. The model, employed
outside the laminar sublayer only, can be written such that the

transformed effective viscosity vé is a function of (' where

§re o« £ |ag
73
as follaovs
vé=§' v ¢ K Qag*
vé:KQd“‘ Elos 180 4%
where
a* =

U,
LR
0
The empirical function incorporated into the progran

K = K(I)
is defined as follows

K = 0.016 + 0,00015 T I' > =60

1}

wheres

ik G4 09
=710 ) %

The function is shown plotted toward the end of this appendix.

As mentioned previously alternative effective viscoszity
models could easily be incorporated into the program.

\

Finally we refer back to the discontinuities %ﬁ
in shape f‘gctor predictions at the commencement of the calculations
considered in Chapter Five. We note here that the same feature
was Seen in Bo predictions in Chapter Six and as a result it is
considered preferable where possible to vary Po at the beginning
of the calculation to ensure agreement between predicted crossflows

( 82* say) and the crossflow required as an initial condi%ion.
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: HCORNUMNG AND JCOURERT
SECCNDARY FLOW INDUCED BY CYLINDER BETWEEN PARALLEL WALLS

CeblD C.410 D11 4.9 30.0

9 48 210 e G R S B A

-4.0 C.0 0.25 s o 0e 25 0.03 0.0C017
Q.5 0.9 e e 1.0 1.0 0.0 s I
«4C87 <4641 « 4974 «5214 « 5404, «5561 « 5696
«5918 «E011 L6096 . 6174 6246 <6311 6373
<6485 «€536 « 6584 96629 « 10820 . #1485 « 18473
« 86443 « 8636 «8922 k20 e 2291 « 9437 «9560
«9743 « 98089 s Z85Y9 « 58983 «2928 « 9949 s 9965
«3985 2 599¢C « 3934 « 5596 «97998 8 = « 93959 1.0CC0
411 « 466 « 488 « 497 « 500 « 459 <437
« 429 « 433 « 48 472 s 466 461l +455
<443 <438 «432 427 « 371 s « 260
o 112 «137 « 109 «085 « 065 «049 036
017 S0LL 006 <603 000 .090 009
‘3C03 «COC. «CCG «00C «+000 «0C0 «0u0
« SO0 «.CO0 «COD « 890 « 0G0 « 000 «000

SAMPLE INPUT — THAT USED TO SIMULATE THF

-

SECTION 6,

&}

0.75

.55—‘13
«6431
« 316!
« 661
« 9977
Y0005

« 493
« 447
212
- f.: r.) P
« 007
« 000

« 007

EXPERTMENT OF HORNUNG AND JOUBERT,

Ll



SUBKOUTINE AC99A

INTFGER OMEGA

REAL NU,NUL1,NUL2,NUL1,NU2,K,KAPPA,KAPPAL

COMMON  MINyMOUT MM, HN, LAMDA ; OMEGA, NMINC ;NSUAP, LT 4NU,
1UL(10,50),VL(10550),U(10,50),V(10,50),4(10,59),BLT(10),
2PL(10),P2(10),L0GPT(10),NOPTS(10),V0(50),V00(50),
3XLy YO, F3GyHy AT BT, MSTEP,NSMAX , LFREQ, MFREQ,
4PS11,PS12,P513,PS14,PS15,PS16,PS17,PS18,
SPHI1,PHI2,PHI3,PHI4,PHI5,PHI6,PHIT,PHIB :
COMNMON  KAPPA,KAPPAL,K,A,CHMIN, ITN,1TMAX, TOL,SOS,NOSOS,
JULTUL2 UL 3, VLT YU 2NE 3 UL U2 3 VL s V2 V3,01 .02 .03,

2NULY ;UL 2, NUL ¢ NU2 XT3 XINC,P1B, P28, ALPHA,BETA yGAMMA,S, EPS ,
3A1(50),A2(50),A3(50),A4(50),A5(50),
fiDSTﬁR(1’3],C,0,F1,E2,E3

DO 1 H=1,NN
VO(N)Y==0,5(V(2,N)+VL{2Z,N))

VOO (M) =VOO(NN)2(2.08 (VIMMyNI+VLIMMN) ) ZIVIMMAZMN) +VL (MM
1 —(VIMH=1yN)+VL(MM=14N))/Z(VI(MHM-1 ,NN)+VL(M1=1,NN)))
1 CONTIMNUE : ;
RETUAN
END

e N )

ADQGACY9Y
ADQL1ACS9
ADD2AC99
ACO3AC99
ALD4ACO9
AODSACS2
ADOG6AC9S
AODTAC99
AGO3ACS9
ADOIALCSY
ADL1DAC99
A011AC99
AD12AC99
AD13AC99
AD2GACS9
AD30ALC99
AQ4OAC99
AOS5DAC99
AD6CAC99
AOTIOACS9
AOBOAC99

HSOHEL

qulSil
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s
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H="Vb60o
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SUBROUT INE AC99H

INTFGER

OMEGA

REAL NU,MNULL,NUL2,NUL,NU2,K,KAPPA,KAPPAL

COMMON

F".II'I' MOUT s MM, NN, L;’«"-'D-‘\.D"EG,’H‘-"I-"‘-I'-1C ,NSLAP SR g"iUg
IUL(10,50);VLIY0,50)5U(10,50),V(10,50) 3y (10,50),BLT(10),

2P1(10),P2(10),L0OGPT(10),N0PTS(10),V0(50),V00(50),
3XLs YO FyGeHy AT, BT, NSTEP,NSMAX, LFREQ, MFREQ,
40511,0512,PS13,PS14,PS15,PS16,PS17,PS18,

S5PHIN  PHIZ2,PHI3,PHIL,PHIS,PHIG;PHIT,PHIB
KAPPA,KAPPAL,K,A,CMIN, ITN, ITHMAX,TOL,SOS,NOSOS,
1UL1.UL2,UL3,VLL1,VL2,VL3,ULl,U2,U3,V1,V2
ZNULT ,MUL2,MUL,NU2, XTI 3 XINC,P1B+P2ByALPHA,RETAGAMMA ,S+EPS,
3AL(50),A2(50),A3(50),A4(50),A5(50),
“QUST&R{10}|C!D)E].:E21E3

IFI(NSTEP-

COMMON

NSMax=21
F=E /230
GO TQ 6

&Y 251452

IF(NSTEP-12) 4,3,4

MFRFQ=1

GO TO 6 -
IF(WNSTEP-

NSHMAX=39
F=F/4.0
LEREFO=]
RETHRN
END

16) 6,5,6

1V3,Q1,02,Q3,

HODOACHD
HOO1AC99

- HOO2AC93

HUD3AC93
HUO4ALC97
HONOSAC99
HOD6ALCH9
HJ07AC99
HOOBACY9

"HO09AC99

H210AC99
HO11AC99

HQ12AC99-

HO13AC99
HC20AC99
HO32AC99
HO0GOUACIY
HO50GAC99
HO6OALCSS
HOTOACO9S
HGAOAC99
HO90ACS3
HLO0QACSY
HLI1OACS9
H12CACS9
H130AC99
H140AC39

bL k



FUNCTION AC99U(X,Y)
PI=3.,142

A=5.0

BE=37.18

UDE=1.679

SX=2.0=Pl=eX/A
SY=2.0=P1%Y/A
CSX=(EXP(SX)+EXP(-SX))/2.0
CSY=COS(SY)

H=CSX-CSY
ACG9U=8=(UDB-2.0=PI={CSX#CSY-1.0)/(A=Hx#%2))
RETURN 5

END

FUNCTION AC99VIX,Y)

Pl=14,142

A=5.0

E=37.18

SX=2.0%#PT=X/A ¢
SY=2.0«PlasY/A
CSX=[EXPISX)+EXP(=SX))/2.0 3.
CSY=CDS{SY)
SSA=(EXP(SX)=EXP(-SX))/2.0
SSY=SIN(SY)

H=CSA-CSY
ACOIV=-2.0#PT#BeSSX&SSY/(AxH==2)
RETURN

END

YOG ACSY
UODL1AC9Y
usdzAC99
UOO3ACIT
UON4AC99
UDO5AC99
UUOEACH?D
UODTALCHY
ULOBACY?
VOOSACS?
UC10AZ99
US11AC99
UO12AC9Y

&

V2O0ACI9
VUO1A4C99
VCGZACY99
VOO3ACS?
V3044099
VI05AL99
VOOEAL 99
VSOTAC99
VOOBALCY9
VOOYAL99
VO10ACL99
VO11AC99
VO12AC99
VO13AC99

Uy b
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HE PROFILE USED TO ALLOW ¥FOR CROSSFLOW AT START OF

—

CACULATION =~ THE FUNCTION f,, WHICH I8 SCALED TO
GIVE REQUIRED CROSSFLOW, IS TABULATED AGAINST

” n

— — :u‘-wl—

B 9990 50

n fE n fz

0.1 0.411 6.0 0212
NDe2 O0.466 TD Died 12
0.3 C.4E8 8.0 U.138
Cet 0497 9.0 0.109
0.5 0.500 10.0 0.085
0.6 0.4S9 11.0 0.065
0.7 0e497 12.0 0049
0.8 0.493 13.0 0,036
0.9 0.489 14.0 0.025
1.0 O«483 15.0 C.017
153 C.478 16.0 04011
I, 0.472 170 0.006
13 0.466 18.0 0.003
10(1 G-‘l(zl 19-0 0-000
15 0.455 20.0 0.000
1.6 0.449 2140 0.000
127 0.443 L 0.000
1.8 0.438 23.0 0.000
A 1.9 Ce432 2440 0.000
2.0 0.427 25.0 0.000
26.0 0.000
3.0 Ce371 270 0.000
4,0 0.313 2840 0.000
5.0 0.260 29.0 0.000
; 30.0 0.000
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PROFILE USED TO ALI.O FOR CONVERGENCY ON PLANE

THE Pk L
ITimit v

x]

OF SYNMETRY - THE FUNCTION fy= "y 5" ¥ IS TABULATED
AGAINST = = o
¢ Y i
n fl Y 1
Csl 1.2061 6.0 l1.2141
0.2 1.3815 T.0 11722
C.3 1.4472 8.0 1l.1374
Ca4 14775 9.0 1-.1087
0.5 1.4918 10.0 1.0852
0.6 1.4978 11.0 1.0662
Ce7 1.4990 12.0 1.0508
C.8 1.4975 13.0 10385
0.9 1.4942 14.0 1.0287
1.0 1.4898 15.0 1.0211
AT 14847 16.0 L Q15
1 1.4792 17.0 l«ClOT
1.3 134735 18.0 1.C074
1.4 1.4675 19.0 1.C049
1.5 1.4616 20.0 1.C032
H
11(3 10(1558 21.0 l.fﬂl‘?
1.7 1.4498 22.0 1.0010
108 ln‘iq('ll 23-0 l-CGOS
18 1.4384 24.0 1.C001
2.0 1.4328 25.0 1.00G0
26.0 1.0000
3.0 b ST T R 27.0 1.0000
4.0 1.3169 28.0 1.0000
540 1.2632 29.0 1.€000
30.0 1.0000
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TABLLITY CONS TDERATIONS
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A numver of additional simulatious of experiment
'E' of Schubauer ani Spangenberg (see section 5.1) were made
with the intention of obtaining an indication of the effects
of step sizes and initial conditions on the solution scheme;
we will discuss these now.

The figures at the end of this appendix show the
effects of varying initial conditions. The solution scheme
seems to be insensitive to changes in the initial value of the
shape factor H (leaving 6 unchanged) as is shown in figure
(AE’.ZL). It seems strange that by increasing H at the start of
the calculation the value of H as separation is approached should
be reduced, even though in tﬁe three separate calculations made
H tends to the same value (approximately) within a shart distance
of the start of the calculation. RG’ cf devel opments are surprisingly
only slightly affected by initial H despite the apparently large
discrepancies in H at x = 16 '. The soluti on scheme is however
more sensitive to changes in the value assumed Dby RB at the
beginning of the calculation as is shown by figures @8.2,5). Al
three runs shown start with H = 1.3 at x = 0, curve (2) being
the run plotted in figures (5.1.8-9) while curves (1),(3) bave R,
increased, reduced respectively: by 3%6. This imposed difference
in RG is maintained throughout the calculations and the flow
corresponding to curve (1) is predicted to separate just short
of x = 16,

It is difficult to state what the precise physical
effects of the above considerations would be, except to say tonat
the ef‘f‘uct of varying Re at x = 0 is very much as might be
expected, but it is obviously of some consequence that the disturbed

initial conditions do not produce any instability in the solution.
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We now proceed to discuss the effects of step
sizes on the solution scheme. All the computer runs mentioned

above were made using the following grid specification:-

N =148 A=2 w = 10
and the grid was continuously adjusted so that the large z
~increment at any section was

b= 2;4 ainin

where 8p.see i3 the boundary layer thickness corresponding td

u = 0.999U. The marching step f for experiment 'E' was (from

0) 24 steps of & follawed by 48 steps of & (all units in

I

x
feet)., Over the first twelve feet the forward step varied
from 4 to 1.33 boundary layer thiclénesses and for x > 12 (where
changes were ocourring much more rapidly) the forward step was
from 0.33 to 0.15 boundary layer tnicknesses. Such a run took
3 minutes on the IBM S360/65 computer, 7-8 iterations being re-
quired on average at each step to obtain velocity components correct
t'o L significant figures. The calculation made using the grid
specified above will be used as the basis of tc'.:cnnpe.risons with
the calculations to be discussed below.

If for x < 12" we take f = 1 (everywhere at least
2,66 boundary layer thicknesses) H changes by only 7% at x = 12°
‘and if £ = % for x < 12' H changes by only /i dh at x = 12°, For

s

x > 12' if we take f = % the change produced in H (between x = 12!
and x = 18') is less than b, c, being increased by 1.4% which
however for the small values encountered at x = 18" the absolute
change was less than 10°°, Such changes confim the marching
step chosen as being adequate.

Next a run was made with the number of points at

each section reduced by a factor of two as follows:-
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N = 23 X = D0 oyrah

h(large z incremeat) %2 8o.999

which results in the smaller mesh intervals at the wall being
increased by a factor of 4 (the run took 1.2 minutes, the number

of iterations/step remaining on average unchanged). At x = 18'

 the differences encountered (starting the calculation from x = 0)
were greater than those obtained above, H being reduced by 1%, but
this was not considered excessive since the integral thicknesses
had to be obtained (using the trapezium rule) from a much coarser
mesh and H is very sensitive to changes in &%, 6. It is anticipated
that the mesh used throughout all the present calculations is finer,
with respect to the z increment (being based on N = 48), than need
necessarily be the case and it is expected that N may be reduced,
without signifiicant loss of accuracy, to economise on computer
storage and time. Even so the scheme based on N = 48 is still
economical in terms of computer time although it must be admitted
that since the three-dimensional progran is being used for a two=-

dimensional calculation computer storage could be reduced considerably.
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APPENDIX A9

POTENTIAL FLOV ABOUT A NEAR-CIRCULAR CYLINDER

.
1

BETWEEN PARALLEL WALLS
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Kennard [33] gives the potential distribution for a
stream flowing between parallel walls a distance a apart and
about a near-circular cylinder mounted midway between the walls

as t

where U,V are the velocities associated with the x,y directions
respectively, Uo and B are constants to be determined and H

is given by

i H = cosh Al cos 20y
a a

For the purpose of the simulation discussed in section

6.6 we choose
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8n b Usis B3 i, = 3718

so that the radii of the cylinder are approximately

rs = ra = 0.9167

o lle






TABLE 4.6.1

WEIGHTING FACTORS USED IN APPENDICES
A2, A3

a
NG,

193,

Plausiblel s

Purpose va)
i Range I Particular Cases [25] Values Used.
e ; W TR 1
s Specifies point at which 0<y¢y <k gar O RApantet sphcue 2
finite difference approximation ¢ Y =z Crask-Nichalson
is to be made Q&‘ Bl Lzasonen
Yra specifiies weight between points 0sy<X® i %‘t % allows longer h than ¢, = O with 0
n-1, n, n+l in approximation toqdu/d=m - s e g e
—
f p e Y S -
Y3 Specifies to what . u 0< ¢ <1 g = 0 :.Lter'au:_i.on -1 u..fed 1
extent approx_i_ s ¢f§ = 1 iteration r used
v mation to Y, s = O iteration r-1 used 1
4 terms is dependent T 0 €¢ <1 Y = 1 Tdovation # dBes
on r-1 th or r th — - z . = 1
s iteration. gu (viscous) 0% ¢ <1 ¥.= 0 iteration r-1 used
¢ ¢s = 1 iteration r used
Ye as ¢a butat n = n* 0O<s¢g<l i 0
P&
v specifies one of two approximations =a0%L 1]
& p pp s S5
to au/9¢ at n=n* § i
Je overall solution weight 4> 0 g{: =1 iteration r-l1 discounted 0.75
(relaxation factor) ° x

If ¢4 = O ¢4,¥s have no effect.




TABLE

£ 1
Qe L ok

CASE
INFINITE

TREATED IN
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TARLE 6,5, 1
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FIG (3.51) Johnston's triangular model[21].
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