```
THE UNIVERSITY OF ASTON IN BIRMINGHHM
Department of Mathematics
```

A NUERICAZ SOLUTION OF THE THREE-DINENSIONAL TURBULENT BOUNDARY LAYER EQUATIONS

```
M.J.DRUMM
```

Supervisor:- Professor R.Hetherington

$$
\begin{aligned}
& \text { The en } \\
& 533 \cdot 6011311 \text { DeN }
\end{aligned}
$$

$$
\text { avidin } 138197
$$

SUMMARY.

The present investigation is concemed with the computation of three-iimensional turbulent boundary layers. A numbrical method has been developed to solve the three-dimensional bountary layer equations using an iterative scheme based essentially on the Crank-Nicholson finite dffference approximation. The schome also employs a streamline-type transformation which enables the individual velocity profiles to be iterated for independently of each other so improving the efficiency of the calculation. The effective viscosity is computed from the mixing lengti concept and an empirical correlation for the outer layer. The logarithnic law of the wall is used as the effective wall condition. A listing of a computer prograin written in Fortran IV to calculate boundary layer devolopment using this method is al so included.

Extensive comparisons of the present theory with both experiment and alternative theories have been included. Twodimensional flows have been calculated with reasonable success, predictions for which compare favourably with calculations based on Head's entrainment approach, and two severe cases were treated competentiy. In the first the pressure gradient was suddenly removed from an equilibrium layer, and in the second the flowwas maintained in a noar-separating condition. The pseudo-threedimensional flows consiaved show that crossflow. angles can be treated quite successfully while in three-dimens ional comparisons, even though the crossfiow is predicted well, the crossflow ande tends to be significantly underestimated. The two three-dimensionsl turbulent boundary layers calculated provide good overall agreement with experiment.

The present work provines a firm basis on which to furthor investigate the three-dimens:onal turbulent boundary layer and the enclosed program will provide a useful tool for predicting such flows. It is felt however that the effective viscosity model used in the outer layer should be more broadly based by consilering more experifiental configurations for the purpose of the empirical correlation. A great benefit will be obtained overall by considering this problem even on a two dimensionsl basis. Nevertheless the present scheme is capable or coping adequately with varying types of boundary layor development in both two and three dimensions.
\qquad
.
Page No.
Summary
Intraduetion
Chapter One:
THE ILRBULEIVI BOUNDARY LAYER
1.0) Introduction 1
1.1) The three-dimensional turbulent boundary 2 layer equations.
1.2) The three-dimensional momentum integral 8 equations
Chapter Two.
METHODS OF COMPURING BOUDARY LAYERS.
2.0) Introduction 11
2.1) Integral methods of calculation 12
2.2) Methods based on the boundary layer equations 17
2.3) Proposed solution scheme 20
Chapter Three.
PRJPERTIES OF THE TURBULENI BOUNDARY LAYER
3.0) Introduction 22
3.1) The effective viscosity concept 23
3.2) The law of the wall 24
3.3) The effective viscosity function of Mellor 28
3.4) The work of Coles31.
3.5) Johnaton's trimgular model for yawed Llows 36
3.5) V looity defect law for yawed flows 37

Chaoter Four

A FINITE DIFFEREINE IETHOD OF SOLUTION OF TIAC BOUNDARY LAYER EQUATIONS
4.0) Introiuction 38
4.1) Solution mesh 39
4.2) Derivation of an adjustable mesh to accommodate 42
4.3) Transformation of the boundary Iayer equations 43
4.4) Wall bouniary conaltion 46
4.5) General điscussion of the solution scheme 52
4.6) Finite difference approximations to the three- 54 dimencional momentum equations
4.7) Finite difference approximation to the 58 equation of continuity
4.8) Recapitulation of the initial and boundary 59 conaitions
4.9) The computer program 60
Chapter Five
TNO-DIMENS IONAL CALCULATIONS
5.0) Introduction 62
5.1) Schubauer and Spangenberg 65
5.2) Bradshaw and Ferriss 68
5.3) Schubauer and Klebanotf 70
5.4) Spangenberg, Rowland and Mease 72
5.5) Conclusions 74
Chapter Six
ATMYES-DIEENSHEMAL CALCIJLATIONS
6.0) Introauction75
6.7) Cumpety and Hetd (1967) 75
6.2) Cumpety arid Head (1970) 82.
6.3) P.D.Smitis8
Pare No.
Chayter Six (contd)
6.4) Hoadley 86
6.5) Froessiing 87
6.6) Hormung end Joubert 89
6.7) East and Hoxey 93
6.8) Conclusions 97
CONCLUSIONS 99
ACKNOWLEDGENENIS 102
NOTATION 103
REFERENCES 106
APPZNDICES 110
TABLES 193
FIGEAS t

INTRODUCTION.
Since the beginning of this century an over increasing amount of attention has been given to the investigation of boundary layers with a riv.: to being able to completely understand the behaviour of the boundary layer and its effects as they occur in various branches of engineering and technology, notably in the aeronautical and compressor and turbine fields. It must be expected that the purpose of the current intensive research is to provide the designer with a tool for determining performance characteristics without having to resort to the laborious process of rig simulation, and from this point of view it must be admitted that the capabilities of the science at the present time are poor.

Methods currently available for calculating turbulent twodimensional boundary layers are numerous and generally (within a few exceptions) of poor performance and restricted application since they are greatly dependent on empirical information extracted from a snail number of experiments. There, moreover, is an increasing awareness at the present time that methods of calculation generated for the two-dimensiona boundary layer are of limited practical application unless they can be modified to take account of threedimensional effects. The purpose of the present investigation is in fact to generate a method for calculating three-dimensional turbulent boundary layers.

There is a tendency when referring to a boundary layer as being three-dimensional to mean simply that a crossflow component of velocity exists (i.e. there is flow within tho boundary layer normal to the flow at the outer edge) so that the problem might in the mathematical sense still be two-dimensional. The expression

[^0]```
bounlary layers whose parameters are dependent on two space variables only but also contain crossflows will be reforred to as 'pseuado-three-dimensional'.
A methou is presented for calculating laminar or turbulent
``` bounaiay layers over two- (with or without crossflows) or threedimeirsional solution spaces. The solution scheme to be discussed restricted to the problem of steady, incompressible flow over a smooth, flat or developable, impermeable surface - is based on the boundary layer approximation to the time-averaged turbulent Navier-Stokes oquations, complemented by an effective viscosity function which makes use of the mixing lengtin concept. The schome to be discussed uses the logaritimic law of the wall, which is well substantiated for the two-dimensional turbulent boundary layer, as the boundary condition at the wall and a frequentiy postulated extension of this law to three dimensions. In this manner skin friction at the wall is proviaed implicitly. The only other assumption required to extend the two-dimensional calculation to thee dimensions is the assumption that in the turbulont bounlary layer the she ar stress vector is parallel to the maximum rate of strain vector of the mean flow. It mins \(t\) be stressed harever that the computer program which has been writter is structured in such a way as to make it reasonably simple to test effective viscosity hypotheses different to that used in the present calculations. The numerical method is essentially an iterative scheme based on the Crank-Nicholson finite difference approximation. The general approach to the problem is similar to that employed oy Spalding in two-dimens ons al though the mathematical techniques used here have nocossarily bean chosen so as to facilitate the threedineasional calculation.
problem but had based his calculations on the turbulent kinetic onerey equation as initiatod by Bradshaw in two-dimensions. The only experiment for which predictions of Nash and the present method have been compared show that both methods have more or less the same capabilities for calculating crossflows.

Owing to the introduction of a transformation closely resembling streamline coordinates the time taken to generate solutions using the present method on the IBM S360/65 computer was found to be reasonably efficient.

One problem that was thought would present some difficulty in the present calculation method was that of prescribing the side boundary conditions to the problem, al though if suffecient care is taken itwas found that this difficulty can quite easily be overcome.

We now proceed to give a short account of the contents of the chapters which constitute this present work. Chapter One gives a brief description of the concept of the boundery layer ana states the equations goveming the motion of the three-dimensional turbulent boundary layer while in Chapter Three are collected a number of experimental and theoretical results which will either be useful in the derivation of the scheme for the solution of the boundary layer equations considered in Chapter Four or be used as a check on the results obtained. Chapter Two gives a brief surmary of the methods presently in use for calculating two-dimensional boundary layers and the attempts that have been made to include crossflo: effects on to calculate three-dimensional boundary layers. Particular attention has been paid to the amount of empirical information necessary for each of these methoas in two dimensions and the feasibility of obtaining the additional empiricism needed to extend the individual methods scope of application beyond the two-
dimensional case. Also included in Chapter Two is a more detailed account of the reasone for the choice of the anproach to the problem used in the present investigation.

A description of the proposed solution scheme is to be found in Chapter Four and a listing of the computer program written in Fortran IV is supplied as an appendix. In Chapter Five this program has been used to simulate a number of two-dimensional experiments with reasonable success. The empirical constants inherent in the assumptions underlying the calculations were adjusted to ensure agreement with a two-dimensional experiment. The two constants required for the law of the wall were found to be adequately represented by their accepted experimental values i.e. in the usual notation
\[
k=0.41 \quad A=4.9
\]
and as might be expected it was found necessary to take the same value for \(k\) in Prandtl's mixing length hypothesis as that used in the logarithmic law of the wall. The only other empirical inform tion that involved in detemining the position of the outer region of the boundary layer i.e. the region in which the mixing length ceases to provide an adequate explanation of the flow - was obtained empirically to provide agreement with one retarding two-dimensional experiment.

Having determined the empirical constants and hypotheses to be used ard validifying the choice by simulating a number of other two-dimensional experiments (Chapter Five) a number of pseudo-three-dimensional ani three-dimensional boundary layers were simulated in Chapter Six with some success the triangular model for the polar plot was largaly confirmed by these calculations, which also gave a very convincing account of the process of crossflar reversal. The finite difference scheme was verified by means of a simulation of a laminar bouniary layer for which an analytic solution existed.

Thro. ghout what follows references (p.106) will be referped to by numbers in square brackets and en will refor to the natural logaritinm.


THE TPIRBUT जTTT BOUNIDARV IAYER

\section*{1.0) Introduction.}

The concept of the boundary layer was introduced by Prandtl at the beginning of this century to explain why in the flow of a real fluid over a streamlined body the streanline pattern at high Reynolds numbers very closely resembles that of a perfect (i.e. frictionless) fluid. In such flows, Prandil suggested, the effects of the viscosity of the fluid are confined to a narrow region enveloping the body and the fluid in the remaining region is for all practical purposes inviscid.

In non-viscous fluids contacting layers of the fluid moving relative to each other experience no tangential forces (i.e. Arictional or shearing forces) but only normal (pressure) forces and. fluid layers close to an immersed body move over the body without experiencing any retarding effects. In real fluids however frictional forces come into play and effect shearing stresses between adjacent layers of fluid possessing relative motion, and in particular prevent layers of fluia adjacent to an immersed body from sliding over the body i.e. a 'no-slip' conaition is introduced. This moans that even in a fluia whose intemal relative motion is not of such a magnitude as to produce frictional forces, the containing vessel on any immersed body-moving relative to the fluid may produce significant frictional forces throughout the region termed its boundary layer. Mhis layer is that regton over which the velocity of the fluid varies between the zero velocity of the fluid relattive to the wetted surface and the velocity in the body of the fluid at a point where the flow can be consikerea frictionless. Characteristically this region is very narrow so that velocity gradients through the layer and particularly close to the wetted surface are very lavge hence
1.0) conta.
giving rise to the shearing stresses previously described.
Also at high Reynolds numbers the phenomenon known as turbulence i.e. the amplification of small oscillations within the flor, plays a significant part in determining the behaviour of the flow close to the immersed body and is effectively the cause of a further increase in the shearing stress within the boundary layer.

It is the purpose of the present chapter to consider the equations of motion governing the flow within the boundary layer and in these to take account of the effects of turbulence.
1.1) The three-dimensional turbulent boundary layer equations.

The equations goveming the flow of ancoud fluid, the equations which in faot form the basis of the whole science oif fluid mechanics, are the Navier-Stokes equations which can be written for the steady flow of an incompressible fluid with zero body forces as
\[
\begin{gather*}
u \frac{\partial u}{\partial x}+v \frac{\partial u}{\partial y}+w \frac{\partial u}{\partial z}=-\frac{1}{\rho} \frac{\partial p}{\partial x}+v\left(\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{*}}+\frac{\partial^{2} u}{\partial z^{\alpha}}\right)  \tag{1.1.1}\\
u \frac{\partial v}{\partial x}+v \frac{\partial v}{\partial y}+w \frac{\partial v}{\partial z}=-\frac{1}{\rho} \frac{\partial p}{\partial y}+v\left(\frac{\partial^{2} v}{\partial x^{*}}+\frac{\partial^{2} v}{\partial y^{2}}+\frac{\partial^{2} v}{\partial z^{2}}\right)  \tag{1.1.2}\\
u \frac{\partial w}{\partial x}+v \frac{\partial v}{\partial y}+w \frac{\partial v}{\partial z}=-\frac{1}{\rho} \frac{\partial p}{\partial z}+v\left(\frac{\partial^{2} w}{\partial x^{2}}+\frac{\partial^{2} w}{\partial y^{*}}+\frac{\partial^{2} w}{\partial z^{*}}\right)  \tag{1.1.3}\\
\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}+\frac{\partial w}{\partial z}=0 \tag{1.1.4}
\end{gather*}
\]
where \(u, v\), \(w\) are the localised velocity components associated with
the rectangutar co-orainate directions \(x, y, z\) respectivel \(y\), \(p\) is
the pressure and \(\rho, v\) are the fluid properties density andplinematic

\section*{1.1) contã.}
viscosity. These four equations contain four unknowns \(u, v, w, p\) and it is thus possible, at least in theory, to solve for the four unknowns from equations (1.1.1-4) once the proper boundary conditions have been prescribed. In practice these equations have been solved in their entirity only in a selected number of simple cases. In particular the equations governing the flow of a perfect fluid are as above but with the second order terms deleted. This simplification is significant in that although the solution of the equations is consilerably simplified at the same time the conditions needed to be specified at boundaries in a real muid camot all be satisfied.

The most promising approach to the solution of equations (1.1.1-4) in many cases of practical interest is to use the boundary layer concept to divide the solution space into two regions. In the first region, the main body of the fluid, viscous forces are to be ignored and the flow is to be treated as inviscid. The second region is the boundary layer in which although viscous forces noed be considered it is possible to obtain simplified equations of motion which hold throughout this region. Before doing this however consideration must be given to the problem of turbulence.

In laminar fluid flow; characterised by low Reynolds numbers, the fluid particles during the course of thei motion move alons regular smooth paths. As the Reynolds number is increased homever the regular motion of the fluid particles breaks down and superimposed on the overall tendency of the flow are pandom Muetuations of the individual particles giving rise to turbulent motion ank high vorticity. The process of change from Iaminar motion to turbulent motion is termed transition and is of perticular relevance to boundary layers.

The usual approach to the problem of turbulence is to substitute for the velocity components \(u, v, w\), which are varying randomly with time about some mean value at any particular point, composite velocities of the form
\[
\begin{equation*}
u=\bar{u}+u^{\prime} \tag{1.1.5}
\end{equation*}
\]
where \(\bar{u}\) is the mean value at a point of the component of motion in the direction of the coordinate axis \(x\) ie.
\[
\bar{u}=\frac{7}{T} \int_{t_{0}}^{t_{0}+T} u d t
\]
where the integration is taken over a sufficiently long period. of time \(T\) to ensure that \(\bar{u}\) is independent of time. The component of velocity \(u^{\prime}\) is thus the fluctuation about this mean such that
\[
\overline{u^{i}}=0
\]

Defining expressions of the form typified by equation (1.1.5) for \(u, v, w, p\), substituting these into the Navier-Stokes equations and averaging the equations over a time interval \(T\) leads after manipulation to the equations
\[
\begin{array}{r}
u \frac{\partial u}{\partial x}+v \frac{\partial u}{\partial y}+w \frac{\partial u}{\partial z}=-\frac{I}{\rho} \frac{\partial p}{\partial x}+v\left(\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{3}}+\frac{\partial^{2} u}{\partial z^{2}}\right) \\
-\left(\frac{\partial}{\partial x} \overline{u^{12}}+\frac{\partial}{\partial y} \overline{u^{3} v^{2}}+\frac{\partial}{\partial z} \overline{u^{1} w^{2}}\right) \\
u \frac{\partial v}{\partial x}+v \frac{\partial v}{\partial y}+w \frac{\partial v}{\partial z}=-\frac{I}{\rho} \frac{\partial \rho}{\partial y}+v\left(\frac{\partial^{2} v}{\partial x^{3}}+\frac{\partial^{2} v}{\partial y^{2}}+\frac{\partial^{3} v}{\partial z^{2}}\right) \\
 \tag{1.1.7}\\
-\left(\frac{\partial}{\partial x} \overline{u^{1} v^{1}}+\frac{\partial}{\partial y} \overline{v^{12}}+\frac{\partial}{\partial z} \overline{v^{3} w^{1}}\right)
\end{array}
\]
1.1) contã。
\[
\begin{gather*}
u \frac{\partial w}{\partial x}+v \frac{\partial w}{\partial y}+w \frac{\partial w}{\partial z}=-\frac{1}{\rho} \frac{\partial w}{\partial z}+v\left(\frac{\partial^{2} w}{\partial x^{2}}+\frac{\partial^{2} w}{\partial y^{\prime}}+\frac{\partial^{2} w}{\partial z^{2}}\right) \\
-\left(\frac{\partial}{\partial x} \overline{u^{T} w^{\prime}}+\frac{\partial}{\partial y} \overline{v^{\prime} w^{\prime}}+\frac{\partial}{\partial z} \overline{w^{12}}\right)  \tag{1.1.8}\\
\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}+\frac{\partial w}{\partial z}=0 \tag{1.1.9}
\end{gather*}
\]
where the bars have been dropped from the time-averaged velocity components and pressure for convenience since equations (1.1.5-9) hold for laminar flow if the fluctuating components are taken as zero. The additional terms on the right hand sides of equations (1.1.6-8) compared with the original Navier-Stokes equations can be seen to play a role similar to the viscous terms on the right hand sides of equations (1.1.1-3). For this reason the main effect of the turbulence on the mean motion is to imbue the motion with additional stresses which are called apparent or Reynolds stresses. It should be noted that the equations for the time-averaged quantities \(u, v, w, p\) cannot now be solved unless additional information is provided for the evaluation of the terms which cantain time-averaged fluctuating quantities.

> As has al ready been stated it is possible to introduce into the full Navier-Stokes equations some simplifying assumptions relevant to the flow in the boundary layer. This boundary layer approsimation holds when the boundary layer thickness is small in comparison with a'characteristic length', and is tantamount to assuming that the rate at which quantities change as the boundary lajer is traversed is much greater than the rate of change of quantities in directions parallel to the plane of the wall on which the boundary layer is developing. Thus, if \(z\) is the perpendicular
1.1) contd.
distance measured from the wall into the body of the fluid and \(x, y\) are co-orainate axes in the plane of the wall, second order derivatives with respect to \(x\) and \(y\) can be disregarded in preference to other terms in the Navier-Stokes equations. Al though the reasoning given here lacks the more rigorous treatment of ten associated with the boundary layer approximations the consequence is the same and because a detailed derivation of the boundary layer equations for two-dimensional flow is provided by H.Schlichting [ 1\(]\) and the extensions to three-dimensional and , turbulent flows are very similar and throw little light onto the mechanism of the flor no more will be said here beyond quoting the boundary layer equations for three-dimensional turbulent motion:
\[
\begin{gather*}
u \frac{\partial u}{\partial x}+v \frac{\partial u}{\partial y}+w \frac{\partial u}{\partial z}=-\frac{1}{\rho} \frac{\partial p}{\partial x}+\frac{\partial}{\partial z}\left(v_{\text {ex }} \frac{\partial u}{\partial z}\right)  \tag{1.1.10}\\
u \frac{\partial v}{\partial x}+v \frac{\partial v}{\partial y}+w \frac{\partial v}{\partial z}=-\frac{1}{\rho} \frac{\partial p}{\partial y}+\frac{\partial}{\partial z}\left(v_{\text {ey }} \frac{\partial v}{\partial z}\right)  \tag{1.1.11}\\
\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}+\frac{\partial w}{\partial z}=0 \tag{1.1.12}
\end{gather*}
\]

The effective kinematic viscosities, defined such that
\[
\begin{align*}
& v_{\text {ex }} \frac{\partial u}{\partial z}=v \frac{\partial u}{\partial z}-\overline{u^{1} w^{i}}  \tag{1.1.13}\\
& v_{\text {ey }} \frac{\partial v}{\partial z}=v \frac{\partial v}{\partial z}-\overline{v^{\prime} w^{\prime}} \tag{1.1.14}
\end{align*}
\]
were originally introduced by Bousinesq who drew the analogy between the effective kinematic viscosities and the coefflcient of viscosity \(\nu\) in Stokes' law. The laminar shear stress terms in equations (1.1.13-14) are significant only in a narrow region very close to the wall and are usumily ignored. The momentam equation associnted with the 2 direction reduces as a consequence
1.1) contã.
of the boundary layer approximations to
\[
\frac{\partial y}{\partial z}=0
\]

Thus, \(p\) is a function of \(x\) and \(y\) only and can be determined from the freestream pressure distribution i.e. the velocity distribution at the outer edge of the boundary layer must be known in order that the pressure distribution can be derived from Bernoulli's equation
\[
\begin{equation*}
p+\frac{1}{2} \rho\left(U^{2}+V^{2}\right)=\text { constant } \tag{1.1.15}
\end{equation*}
\]
where \(U, V\) are the freestream velocity components associated with the \(x, y\) di ections respectively. It should be noted that the consequence of equation (1.1.25) in the boundary layer equations is to impose a condition of irrotationality on the freestream velocity distribution.

The three equations (1.1.10-12) involve the unknowns \(u, v, w\) and it is thus possible to solve the se equations for \(u, v, w\), once the correct boundary conditions have been prescribed, if \(\nu_{\text {ex, }} \nu_{\text {ey }}\) can be correlated with the mean velocity field. An alternative approach is to make use of the turbulent energy equation
\[
\begin{align*}
& u \frac{\partial \bar{t}}{\partial x}+v \frac{\partial \bar{t}}{\partial y}+w \frac{\partial \bar{t}}{\partial z}+\overline{u^{\prime} w^{\prime}} \frac{\partial u}{\partial z}+\overline{v^{\prime} w^{\prime}} \frac{\partial v}{\partial z} \\
& \quad+\frac{\partial}{\partial z}\left(\frac{I}{\rho} \overline{w^{\prime} p^{\prime}}+\overline{w^{2} t}\right)+\varepsilon=0 \tag{1.1.16}
\end{align*}
\]
(obtained by manipulating the Navier-Stokes equations, timeaveraging and making use of the notation introduced in equation (1.1.5)) to provide an equation from which the turbulent shear stress can be determincd if the turbulont kinetic energy
\[
t=\frac{1}{2}\left(u^{12}+v^{1^{2}}+w^{12}\right)
\]
1.1) contd. \(\varepsilon\) (aissipation of turbulent energy by viscous forces) and the time averaged quantity
\[
\frac{1}{\rho} \overline{w^{1} p^{1}}+\overline{w^{1} t}
\]
can be provided by some empirical source.
1.2) The three-dimensional momentum integral equations.

A simplification to the equations goveming the behaviour of the boundary layer is introduced by integrating the boundary layer equations (1.1.10-12) through the thickness of the boundary layer to provide the momentum integral equations. When such an approach is employed it has become customary to write the boundary layer equations in 'streamline co-ordinates' i.e. to replace the \(x, y\) co-ordinates by the co-ordinate system formed by the projection perpendicular to the wall \(\&\) the external streamlines and their orthogonal trajectories. Velocity components within the boundary layer parallel to the wall are resolved similarly. We consider a co-ordinate system in which \(\xi\) is the metric measured along a streamline \(\eta=\) constant and denote the velocity components within the boundary layer in the direction of \(\xi, \eta\) increasing by \(u_{1}, u_{2}\) respectively so that at the edge of the boundary layer
\[
u_{1}=U_{1}, \quad u_{2}=0
\]

Integrating the boundary layer momentum equations as described and using the continuity equation to eliminate \(w\) the follawing equations are obtained Df:
\[
\begin{align*}
U_{1} \frac{\partial \theta_{11}}{\partial \xi} & +\frac{2}{h_{2}} \frac{\partial \theta_{12}}{\partial \eta}+\frac{\partial U_{1}}{\partial \xi}\left(2 \theta_{11}+\delta_{1} *\right) \\
& +\frac{U_{1}}{h_{2}} \frac{\partial h_{2}}{\partial \xi}\left(\theta_{11}-\theta_{22}\right)=\frac{c_{f_{1}}}{2} \tag{1.2.1}
\end{align*}
\]
1.2) contd.
\[
\begin{align*}
U_{1} \frac{\partial \theta_{21}}{\partial \xi} & +\frac{I}{h_{2}} \frac{\partial \theta_{22}}{\partial \eta}+2 \frac{\partial U_{1}}{\partial \xi} \theta_{21}+\frac{1}{h_{2} U_{1}} \frac{\partial U_{1}}{\partial \eta}\left(\theta_{11}+\theta_{22}+\delta_{1} *\right) \\
& +2 \frac{U_{1}}{h_{2}} \frac{\partial h_{2}}{\partial \xi} \theta_{21}=\frac{c_{f_{2}}}{2} . \tag{1.2.2}
\end{align*}
\]

The momentum thicknesses are defined:
\[
\begin{align*}
& \theta_{11}=\int_{0}^{\infty}\left(1-\frac{u_{1}}{U_{1}}\right) \frac{u_{1}}{U_{1}} d z, \quad \theta_{21}=-\int_{0}^{\infty} \frac{u_{1} u_{2}}{U_{1}{ }^{2}} d z \\
& \theta_{12}=\int_{0}^{\infty}\left(1-\frac{u_{1}}{U_{1}}\right) \frac{u_{2}}{U_{1}} d z, \theta_{22}=-\int_{0}^{\infty} \frac{u_{2}^{2}}{U_{1}{ }^{2}} d z \tag{1.2.3}
\end{align*}
\]
the displacement thicknesses:
\[
\begin{equation*}
\delta_{1} *=\int_{0}^{\infty}\left(1-\frac{u_{1}}{U_{1}}\right) d z, \delta_{2} *=-\int_{0}^{\infty} \frac{u_{2}}{\tilde{U}_{1}} d z \tag{1.2.4}
\end{equation*}
\]
and the coefficients of friction:
\[
\begin{equation*}
c_{f_{1}}=\frac{\tau_{01}}{\frac{1}{2} \rho U_{1}{ }^{2}}, \quad c_{f_{2}}=\frac{\tau_{02}}{\frac{1}{2} \rho U_{1}{ }^{2}} \tag{1.2.5}
\end{equation*}
\]
where \(T_{01}, T_{02}\) are the components of the turbulent shear stress at the wall in the \(\xi, \eta\) directions i.e.
\[
\begin{align*}
& \frac{\tau_{01}}{\rho}=\nu \frac{\partial u_{1}}{\partial z}-\overline{u_{1}^{\prime} w^{2}}  \tag{1.2.6}\\
& \frac{\tau_{02}}{\rho}=\nu \frac{\partial u_{2}}{\partial z}-\overline{u_{2}^{\prime} w^{\prime}} \tag{1.2.7}
\end{align*}
\]
the left hand sides being evaluated at \(z=0\). The metric factor ha is that associated with \(\eta\) and is assumed to be a function of \(\xi, n\) such that
1.2) contd.
\[
\mathrm{d} s^{2}=\frac{I}{U_{1}} 2 \mathrm{~d} \xi^{2}+h_{s}{ }^{2} \mathrm{~d} \eta^{2}+\mathrm{d} \cdot z^{2}
\]

In a similar way it is possibie to obtain energy integral equations but these are rarely used as a means of calculation and will not be discussed here. Equations (1.2.1-2) will need obviously be supplemented by other relationsinips since these two equations contain seven independent unknowns ( \(83^{*}\) was eliminated using \(\delta_{2}{ }^{*}=\theta_{21}-\theta_{12}\) ). In the two-dimensional problem the one momentum integral equation contains the three , unknowns
\[
\theta_{11}, \delta_{1}^{*}, c_{f_{1}} \text {. }
\]

It should be pointed out that all the equations summarised in this chapter are generally accepted as being applicable to boundary layers developing over boundaries of small curvature (in comparison with the boundary layer thickness) and not only on flat surfaces.

CHAPTER TWO.

METHOD OF COMPUTING BOUNDARY LAYERS.

\section*{2.0) Introiuction.}

The numerous and varied methods that are currentiy available for the calculation of the two-dimensional turbulent bolndary layer testify both to the large amount of attention that has been given to the problem over the last ten to twenty years and also to the lack of reliance the individual contributors placed on contemporary methods of solution.

These calculation methods can be broadly divided into two groups the first of which, by far the largest and most profuse, are those termed integral methods in which the boundary layer equations are abandoned in favour of the momentum integral equations so reducing the problem space.by one dimension. In the two-dimensional boundary layer, integral methods are generally based on the assumption that the shape and scale of the velocity profile are adequately represented by two parameters. As a means of calculating these parameters the integral equation (which contains three unknowns any two of which on the basis of this assumption specify the third) is solved in conjunction with some ancillary relation, which will have to be detemined from empirical correlations in combination possibly with some hypothesis. It is the different approaches employed in fulfilling this last requirement that have given rise to the diversity of current calculation methods of this type. The second group of calculation methods includes those methods which are based on the boundary layer equetions with the necessary additional assumptions made concerning the fluctuating components of velocity.

Although at first sight the prospect of generating empirical relations to explain the small scale behuviour of the turbulent termis of the boundary layer equations, the process of turbulence not being understood, seems quite formidable when
2.0) cont \(\dot{\alpha}\).
compared with that of correlating gross boundary layer parameters whose significance is more easily appreciated, this in fact transpires not to be so. The prominence of integral methods is mare easily understood when one realises that they were calculation methods developed with the intention of being applied to the slide rule ani desk machine. These same methods \(\hat{a}\) computation would obviously make the solution of the boundary layer equations too lengthy a task. Today, with the development of the high speed computer, one would expect to see some movement away from this one-sided situation but regretfully this is not so to any marked extent. The present authon is of the view that since methods based on the boundary layer equations are more readily adapted to threedimensions, once a satisfactory two-dimensional method has been developed, more time could be profitably spent in improving the methods of calculation based on the se equations.
2.1) Integra? methods of calculation.

Restricting the present discussion to two-dimensional
boundary layers (i.e. where the problem is dependent only on two space variables and the velocity component \(v\) associated. with the third direction is identically zero) we will adopt the notation generally used in this context:
\[
\theta=\theta_{11}, \delta^{*}=\delta_{1}^{*}, U=U_{1}, c_{f}=c_{I_{1}}
\]
and introduce the shape factor \(H\), and the Reynolds number \(\mathrm{R}_{\theta}\) based on the momentum thickness
2.1) contd.
\[
\begin{equation*}
H=\frac{\delta^{*}}{\theta}, \quad R_{\theta}=\frac{\theta U}{v} \tag{2.1.1}
\end{equation*}
\]

The momentum integral equation \(c\) an now be written
\[
\begin{equation*}
\frac{d R_{\theta}}{d x}=\frac{c_{f}}{2} \frac{U}{v}-(H+1){ }_{\bar{U}}^{R_{\theta}} \frac{d U}{d x} \tag{2.1.2}
\end{equation*}
\]

Equation (2.1.2) is solved for \(R_{\theta}\), the shape factor \(H\) ani coefficient of friction \(c_{f}\) being provided respectively by an empirical auxiliary equation which is usually of the form
\[
\begin{equation*}
\theta \frac{\partial H}{d x}=M-L \frac{\theta}{U} \frac{d U}{d x} \tag{2.1.3}
\end{equation*}
\]
where \(I, M\) are in the most general case functions of \(H, R_{\theta}\), and a skin friction equation which can reliably be assumed to be of the form
\[
\begin{equation*}
c_{f}=f\left(R_{\theta}, H\right) \tag{2.1.4}
\end{equation*}
\]

It is also generally considered that specifying the parameters \(R_{\theta}, H\) is sufficient to define \(u / U\) as a sunction of \(z / \theta\).

Thompson [2] has given a thorough assesment of the dependability of the various two-dimensional auxiliary equations, as distinguished by different \(I, M\) in equation (2.1.3), available for calculating two-dimensional incompressible turbulent boundary layers and compared theoretical predictions with a wide range of published experimental results. A point of fundamental importance revealed by Thompson (by the discrepancy between measured \(\theta\) development and that as predicted by the momentum integral equation evaluated using experimental shape factor distributions) is the presence of wat are almost certainty significant three-dimensional effects in the majority of what were intended to be two-dimensional boundary layers. The effectiveness of the various auxiliory
2.1) contd.
equations was compared using the measured \(\mathrm{R}_{\theta}\) distributions and Thompson concluded as a result of his calculations that

> (with the exception of the entrainment equation of Head, no shape factor equation provides satisfactory agreement with more than one half of the measured developments that have been used'

He also points out that established me thods have been generally accepted on the basis of only a few comparisons with experiment that have produced comparatively good results. Thompson thus concludes that, with the exception of Head's entrainment method [3] which gave reasonable agreement with experiment, all methods for calculating two-dimensional turbulent boundary layers are generally indifferent to very poor. Two additional points made by Thompson cannot be stressed too of ten. The first is that two-dimensional experimental results must be accompanied by some indications as to the effects of convergence or divergence of the flow and, secondly, computation methods must be compared with a wide range of experiments before thoir validity can be established. Thompson, ratier surprisingly in view of the poor performance he attributes to integral methods in general, appears to dismiss calculation methods based on the boundary layer equations with the remark: 'In the case of turbulent flows, no universal expression is knawn relating the Reynolds' stresses to the mean velocity distribution, and no exact solution of the boundary layer equations are possible.'

Other integral methods have been devel oped which make use of the so-called energy integral equation and the moment of momentum integral equation which determine the growths of the
2.1) contd.
\[
\begin{equation*}
\delta^{* *}=\int_{0}^{\infty}\left(1-\left(\frac{u}{U}\right)^{2}\right) \frac{u}{U} d z \tag{2.1.5}
\end{equation*}
\]
and tho moment of momentum thickness
\[
\begin{equation*}
\theta_{z}=\int_{0}^{\infty} z\left(1-\frac{u}{U}\right) \frac{u}{U} d z \tag{2.1.6}
\end{equation*}
\]
respectively in a manner similar to the way equation (2.1.2) determined the growth of the momentum thickness \(\theta\). The shape factor equation is carried over similarly to provide an equation for the developments of the shape factors based on \(\delta^{* *}, \theta_{z}\) respectively. Comments concerning the performance of these methods will be deferred until the next section.

It has only been in recent years that integral methois have with much success been applied to three-dimensional bound ary layer calculations - all such attempts have though to the knowledge of the present author been restricted 'to pseudo-threedimensional boundary layer's and no attempt has yet been made to solve the three-dimensional integral equations over a twodimensional \((x, y)\) space. A review of the state of the knowledge (1963) of three-dimensional turbulent boundary layers, particularly with reference to calculation methods, has been made by Cooke [4] who noted that all contemporary calculation methad assumed small or zero cross flaws and used established twodimensional velocity profiles and skin friction equations for the three-dimensional. streamwise counterparts. Cooke also reviewed the varians proposals put forward for the representation of the crossflow velocity profiles and more recently Cumpsty has made comparisons of experimental three-dimensional velocity
2.1) contd.
profiles with those obtained from the various proposed prediction methods. Cumpsty [5] has shown that the streamwise velocity profiles and skin fricton can quite adequately be approximated to by the two-dimens ional velocity profile families and skin friction laws. The triangular representation of the crossflow profiles, generally ascribed to Johnston, is also considered by Cumpsty [6] to be applicable in a wide range of situations and to be easily extended to cases where crossover profiles exist. Some means of effecting the calculation of the parameters on which Johnston's triangle depends are still yet to be formulated however. The crossflar profile proposed by Mager
\[
\begin{equation*}
\frac{u_{2}}{\tilde{U}_{1}}=\alpha\left(1-\frac{2}{\delta}\right)^{2} \frac{u_{1}}{\tilde{U}_{1}} \tag{2.1.7}
\end{equation*}
\]
where \(\delta\) is the boundary layer thickness and \(\alpha\) is a parameter representing the extent of the crossflow, Cumpsty consiliered to be applicable only in the case of modest crossfllows and in a selected number of other situations.

Calculations of pseudo-three-dimensional boundary layers have been made by P.D.Smith [7] who considered the flow over an infinite swept wing and compared his calculations with some of his own experimental data. Smith tested in all six different variants of integral methods and found in all his calculations considerable discrepancies between theory and experiment which Smith attributed to either the inapplicability of the two-dimensional skin friction law to three-dimensional flow or to the neglect of certain terms in the derivation of the streanwise momentum integral equation. Smith considered the former to be the more likely cause. Mager's crossflow
2.1) contd.
representation and a power law approximation to the streanwise profiles were used throughout Smith's calculations.

The same problem was considered both theoretically and experimentally by Cumpsty and Head [8] who extended the entrainment method of Head to account for crossflow (a possibility also investigated by P.D.Smith)。 A family of two-dimensional velocity profiles constructed by Thompson was used in conjunction with equation (2.1.7) to represent the velocity distributions. Predictions of \(\theta, H\) and crossflow profiles were found to be considerably underestimated the situation being improved somewhat by a small adjustment to the spanwise velocity which produced 'tolerable agreement' with experiment. There seems to be some doutt as to the feasibility of attempting the experimental simulation of the infinite swept wing, a point which Cumpsty and Head alude to but Srith dismisses. The type of flow studied by Cham and Head [9] would seen to be more reliably two-dimensional (in the mathematical sense), the experiment being concerned with a rotating circular disc. In this case the velocity representation of Thompson was said to be of considerable accuracy and that of Mager reasonable although to produce overall agreenent of the theory (similer to that of Cumpsty and Head) with experiment a \(30 \%\) reduction in entrainment as compared wi th the two-dimensional theory was requirea.
2.2) Mathods based on the boundary layer equations.

The obvious apprcach to the solution of the boundary
layer equations is to assume that the local turbulent shear stress can be empirically related to the mean velocity. Such an approach has been made by Spalding and Patankar [10] who

\section*{2.2) contd.}
solved the heat-, mass- and momentum transfer equations for the two-dimensionsl tucbulent boundary layer. The equations were written in terms of a non-dimensional strean function to account for boundary layer growth and the logarithmic law of the wall was employed as the effective wall condition. The calculations performed by Spalding and Patankar made use of Prandtl's mixing length al though the point is made that any otieer hypothesis for \(\nu_{e x}\) could conveniently be incorporated into their solution scheme. Spalding and Patankar, being primarily concerned with the problem of heat transfer, gloss over the capabilities of their method for computing turbulent bo linảary layers but the few predictions that are available appear to give plausible agreement with experiment.

Bradshaw, Ferris and Atwell [11] chose to base their calculation method on the turbulent energy equation on the assumption that the turbulent shear stress was likely to be mone closely related to other properties of the turbulence than to the mean velocity field. Bradshaw in the solution to the two-dimensional problem defined the length parameter L
\[
L_{\varepsilon}=\tau^{3 / 2}
\]
where \(\tau=-\overline{u^{\prime} w^{2}}\) is the kinematic shear stress outside the laminar sublayer, and introduced functions
\[
\begin{aligned}
& \frac{L}{\delta}=\frac{\tau^{3 / 2}}{\varepsilon \delta} \\
& G=\frac{\left(\overline{p^{1} W^{1}}+\overline{t w^{1}}\right)}{T \tau_{\max }^{1 / 2}} \\
& a=\frac{\tau}{\bar{t}}
\end{aligned}
\]
where \(I / \delta\) and \(G\) were taken to be functions of \(z / \delta\) and a was
2.2) contd.
taken as constant. These assumptions allowed the boundary layer equations (1.1.10,12,16) to be solved for \(u, w, T\). As with the method of Spalding the boundary conditions for \(u\) at the wall was the logarithmic law of the wall. The additional assumption of a linear shear stress relationship at the wall and in the freestream \(T \leq 0\) completed the boundary conditions for the problem.

The situation with respect to the dependability of the methods of Spalding and Bradshaw is very much as described by Thompson to be the case for integral methods; the published literature on both these methods shows only a few comparisons with experiment which have all the appearances of showing reasonable agreement.

Recently Nash [12] has extended the method of Bradshaw and calculated a three-dimensional boundary layer (a simulation of the experiment of Hounung and Joubert [13]) with promising results. The only additional assumption made, over those introduced by Bradshaw, was that the shear stress and the maximum rate of strain of the mean flow have a common line of action at any point i.e.
\[
\overline{u^{\top} w^{\top}}: \overline{v^{\top} W^{\top}} \quad:: \frac{\partial u}{\partial z}=\frac{\partial v}{\partial z}
\]

A recent investigation [14] made to determine hor prediction methods of all types would compare in calculating two-dimensional turbulent boundary layer developments came to the conclusion that 'most prodiction methods do rathorwell'. Some attempt was made as part of this study to rank the different methods in order of performance by placing each method into one of three
2.2) contd.
groups. The first group comprised of two me thods based on each of the energy integral equation and moment of momentum integral equation, one based on the turbulent energy equation (in association with the boundary layer equations) and two based on the boundary layer equations. Calculations based on the entrainment approach fell mostly within the second group.

\section*{2.3) Proposed solution scheme.}

Having developed a method of calculating twodimensional turbulent boundary layers the amount of effort necessary to extend the calculation method to the threedimensional problem is primarily influenced by whether the original method is based on an integral equation or on the boundary layer equations. The additional assumptions required to extend an integral method are considerable, witness to this being provided by the additional information necessary for the extension of the two-dimensional method to the pseudo-threedimensional problem, while it would appear to be a relatively simple matter to extend ei ther of the two main methods of solving the boundary layer equations.

Having formulated the problem the relative merits of the methods are reversed when the prospect of solving the equations is considered - it is undoubtedly simpler to solve the momentum integral equations together with any ancillary relations over a two-dimensqonal space than it is to solve the complete boundary layer equations over a three-dimensional. space. In deciding on the approach to the problem of calculating threedimensional boundary layers therefore we must weigh the mathematicel.
2.3) conta.
considerations against the problem inherent in attempting to supply all the necessary empirical information for the definition of the problem. It would almost seem that the choice has been made for us when we see that while it has been found possible to solve the bouniary layer equations over a threedimensional space the momentum integral. equations have never been solved in more than one dimension.

Since it wor:ld appear that it will not be possible for some time to satisfactorily correlate crossflow velocity profiles and skin friction values we will restrict our attention in the present work to the boundary layer equations. The work of Nash only became known to the present author towards the end of the present investigation so that it was fortuitous that it was decided to omit the turbulent energy equation and concentrate on the effective viscosity approach to the problem. This decision was partly made on the basis that the mixing length analogy of Prandtl has found application in such a wide variety of situa tions besides boundary layers that the reasons of ten given for its rejection seem not altogether acceptable. In addition it was felt that theturbulent energy equation was too dependent on empirical information.

\section*{CHAPTER THREE}

PROPERTIES OF THE TURBUTENT BOUNDARY LAYER.
3.0) Introauction.

Having in Chapters One and Two derived the equations of motion for the three-dimensional turbulent boundary layer and decided what approach to take in solving the se equations, we now examine a number of physical properties of the turbulent boundary layer which will be required to facilitate the solution scheme to be presented in Chapter Four.

The nature of the turbulent boundary layer equations in their two-dimensional form (i.e. the equations independent of y , with v identically zero) presents two main difficulties in any proposed numerical method of solution. The first of these is the pertinent fact that the 'two equations available for the determination of \(u\) and \(w\) even when the correct boundary conditions have been prescribed are still not fully defined. The effective viscosity is as yet undetermined so that some empirical information is required to enable it to be calculated from the velocity fiell. The second problea concerns the difficulties inherent in trying to apply as the boundary condition at the wall the obvious fact that all velocity components must vanish there. Extending any solution method to facilitate the computation of three-dimensional boundary layers will obviously increase the difficulties originating from these two sources. In this chapter certain experimental and theoretical observations will be presented with the prime purpose of overcoming the difficulties associated with the solution of the two-dimensional turbulent boundary layer equations and to hypothesise, with the aid of the limited three-dimensional data available, relationships that will enable the two-dimensional. methol of solution to be extended to three-dimensions.
3.0) contd.

It is also anticipated that the boundary layer properties to be discussed here will provide a means of establishing the calculations to be presented in Chapters Five and Six.

The discussion contained in the remainder of this chapter will be concerned with two-dimensional turbulent boundary layers except where it is explicitly stated otherewise.

\section*{3.1) The effective viscosity concept.}

The form of the boundary layer equations (1.1.10-12)
makes use of the effective viscosity function as introduced by Bousinesq and although this device enables the equations to be expressed in a familiar form (the equations are now in line with the laminar equations except that the kinematic viscosity \(v\) is replaced by a turbulence exchange coefficient) the problem of how to account \(\nu_{\mathrm{e}}\left(=v_{e x}\right)\) with the velocity field is still present.

The earliest attempt to allow for the effect of turbulence in the boundary layer equations was Prandtl's now well-known mixing length hypothesis which from physical considerations of the mechanism of turbulence deduced that
\[
\begin{equation*}
v_{e}=e^{2}\left|\frac{\partial u}{\partial z}\right| \tag{3.1.1}
\end{equation*}
\]
where the so-called mixing length \(l\) is still an unknown function but indications are that it is not influenced by the magnitude of the velocity and, it is a purely local function. The concept of the mixing length has been proved to be very useful and,with simple postulations made concerning \(l\), has been applied to turbulent wall flows (including pipe and channel
3.1) contd.
flars in addition to the more usual boundary layer problem) and also to free turbulent flows (where fluid mixing takes place in the absence of a solid wall). With reference to boundary layers a number of arguments have been proposed for the determination of the mixing length \(e\) and von Karman by means of a similarity hypothesis suggested
\[
\begin{equation*}
e=k^{t}\left|\frac{\partial u}{\partial z} / \frac{\partial^{2} u}{\partial z^{2}}\right| \tag{3.1.2}
\end{equation*}
\]
where \(\kappa^{2}\) is an empirical constant. The alternative presentation however
\[
\begin{equation*}
e=k z \tag{3.1.3}
\end{equation*}
\]
where \(\kappa\) is another empirical constant, being simpler than equation (3.1.2) has been widely used in the calculation of turbulent boundary layers and has been credited with giving satisfactory results when applied to the region near the wall. Beyond this region the mixing length is generally assumed to tend to some constant value.
3.2) The law of the wall.

It has been appreciated for a long time that points taken near the wall from a mean velocity boundary layer profile can be rescaled into what is known as the law of the wall which states
\[
\begin{equation*}
\frac{u_{u}^{u}}{u_{T}}=f\left(\frac{z u_{\tau}}{v}\right) \tag{3.2.1}
\end{equation*}
\]
where \(u_{\tau}\) is the so called friction velocity and \(f\) is a univeral function. If \(\tau\) is the total stress (i。e, the sum of viscous and turbulent stresses) and \(T_{0}\) is the value \(T\) attains at the wall
3.2) contd.
then the friction velocity is defined
\[
\begin{equation*}
u_{\tau}=\sqrt{\frac{\tau_{0}}{\rho}} \tag{3.2.2}
\end{equation*}
\]

The coefficient of friction \(c_{f}\) can nav be written:
\[
\begin{equation*}
c_{f}=2\left(\frac{u_{i}}{\tilde{U}^{\tau}}\right)^{2} \tag{3.2.3}
\end{equation*}
\]

Equation (3.2.1) readily follows from a dimensional argument applied in the region of the wall. Prior to the development of the mixing length analogy the law of the wall was sometimes taken to be a power law in the absence of any better representation. In the laminar sublayer adjacent to the wall, where viscous stresses can be assumed to suppress any turbulence effects, the law of the wall can be plausibly expounded as a linear relationship, viz:
\[
\begin{equation*}
\frac{u^{u}}{u_{T}}=\frac{z u_{T}}{v} \tag{3.2.4}
\end{equation*}
\]

A particularly relevant conclusion concerning the form of the function \(f\) can be obtained by assuming, as experiment has shown to be the case, that there is a fully turbulent region outside the laminar sublayer in which the local shearing stress \(\tau\) is approximately constant and equal to that at the wall. Making this assumption in conjunction with Prandtl's mixing length analogy, equation (3.1.1) using either von Karman's or the simplified model (equations \((3.1 .2,3)\) respectively) for the mixing length results in the equation
3.2) contd.
\[
\begin{equation*}
\frac{\partial u}{\partial z}=\frac{u_{\tau}}{k z} \tag{3.2.5}
\end{equation*}
\]
which integrates to give
\[
u=\frac{u}{k}{ }^{\tau} \ln z+c
\]
where \(c\) is a constant of integration (a function of \(x\) ). This last equation is usually rewritten to bring it into line with the law of the wall as
\[
\begin{equation*}
\frac{u}{u}=\frac{I}{\kappa} \ln \frac{z u_{T}}{\nu}+A \tag{3.2.6}
\end{equation*}
\]
where A is a constant - presumably the same constant for all turbulent boundary layer mean velocity profiles, in which form it is known as the logarithmic law of the wall. The logaritimic law of the wall has been well established experimentally. It was first formulated from observations of turbulent fllow in pipes and was later extended to include the mean velocity in a turbulent boundary layer. - Ludwieg and Tillman (1949) from experimental data concluded that \(f\) for flows in boundary layers was independent of pressure gradient and established the logarithmic law experimentally. The logarithmic law is now believed to be applicable generally independently of the prevailing boundary conditions - boundary layers, pipes, channels (although different constants are required) - and typical constants quoted for boundary layer flows are
\[
k=0.4 .2, \quad \mathrm{~A}=4.9
\]
where the law can generally be assumed to hold for
3.2) contd.
\[
\frac{z u_{\tau}}{\nu}>30
\]
away from separation. The form of the velocity profile in the inner part of the boundary layer is plotted in figure (3.2.1).

A second derivation of the logarithmic law of the wall of especial interest is that due to Millikan. Defect laws of the form
\[
\begin{equation*}
\frac{U-u}{u_{T}}=F \tag{3.2.7}
\end{equation*}
\]
where \(F\) is a function of \(z / z^{\prime}\) (where various length scales \(z^{\prime}\) have been proposed), parameters such as \(u_{\tau} / U\) and terms dependent on the pressure gradient, have frequently been proposed for the outer part of the mean velocity profile. Millikan (1938) assumed that \(F\) was dependent on the scaled distance \(z / \delta\) only
\[
\begin{equation*}
\frac{U-u}{u_{T}}=F\left(\frac{z}{\delta}\right) \tag{3.2.8}
\end{equation*}
\]
(the same argument holds for a more generalised form however) and that this defect law extended far enough into the boundary layer for there to be a region, generally referred to as the overlap region, in which the velocity profile is equally well represented by the law of the wall and the defect law equation (3.2.8). Obtaining from each of these equations an expression
3.2) contd.
\(\frac{z}{u_{T}} \frac{\partial u}{\partial z}\) and equating them the equation
\[
\begin{equation*}
\frac{z u_{\tau}}{\nu} f^{\prime}\left(\frac{z u_{\tau}}{\nu}\right)=-\frac{z}{\delta} F^{\prime}\left(\frac{z}{\delta}\right) \tag{3.2.9}
\end{equation*}
\]
results where the dash denotes differentiation with respect to the argument of the function. The two sides of equation (3.2.9) can be independently functions of \(z u_{T} / v, z / \delta\) respectively only if both sides are equal to a constant and if this constant is taken to be \(1 / K\) the logarithmic law of the wall immediately follows.

A detailed discussion of the law of the wall has been given by Coles [15] who also analysed a wide range of experimental data to give a very convincing argument as to the validity of the logarithmic law of the wall in the turbulent boundary layer.
3.3) The effective viscosity function of Mellor ani Gibson.

Mellor and Gibson [16] in response to the work of Clauser [17], who investigated the effect of pressure gardient on equilibrium turbulent boundary layers i.e, boundary layers in which the velocity defect equation (3.2.7) assumes the simple form of equation (3.2.8), generated an effective viscosity function to span the boundary layer outside the laminar sublayer. Clauser [18] had shown that it was possible to analyse the outer region ( \(80 \%\) ) of an equilibrium boundary layer by assuming the effective viscosity to be of the form
3.3) contd.
\[
\begin{equation*}
\nu_{e}=K U \delta^{*} \tag{3.3.1}
\end{equation*}
\]
where \(K\), an absolute constant, was taken to be 0.016 . The equilibrium flow profiles investigated by Clauser were those for winch the parameter
\[
\begin{equation*}
\beta^{\prime}=\frac{\delta^{*}}{\tau_{0}} \quad \frac{d p}{d x} \tag{3.3.2}
\end{equation*}
\]
was held constant so that the defect law can be written
\[
\frac{U-u}{u_{\tau}}=F\left(\frac{z}{\delta}, \beta^{\prime}\right)
\]

Clauser generated two equilibrium flows experimentally - those characterised by \(\beta^{\prime}=1.8\) and 8.0 respectively. Mellor and Gibson concluded as a result of their analysis that the effective viscosity model defined by equation (3.3.1) in the outer region and the simpler mixing length model (equations \((3.1 .1,3))\)
\[
\begin{equation*}
v_{e}=\kappa^{3} z^{2}\left|\frac{\partial u}{\partial z}\right| \tag{3.3.4}
\end{equation*}
\]
in the overlap region suffice to predict defect profiles in equilibrium turbulent flows in the range
\(-0.5<B^{1}<\infty\)
with 'considerable precision'。 For \(\beta^{\prime}<-0.5\) no solution was found to exist to satisfy the boundary conditions and the flow was considered separated ( \(\beta^{\prime}>0\) were decelerating flows, \(-0.5<\beta^{1}<0\) accelerating).
3.3) contd.

In a second paper Mellor [19] extended the effective viscosity model formerly proposed to include the laminar sublayer where \(v_{\mathrm{e}}\) must tend to \(v\) as \(z\) tends to zero. The restriction to equilibrium profile flows was also removed and the choice for the effective viscosity function parameter is reinforced by Mellor by a dimensional argument. The effective viscosity function expresses \(v_{\mathrm{e}} / v\) as a function of \(\zeta\) where
\[
\zeta=\frac{\kappa^{2} z^{2}}{v}\left|\frac{\partial u}{\partial z}\right|
\]
as follows
\[
\begin{array}{lc}
\bar{v}_{\mathrm{e}}=\phi(\zeta) & \zeta<11 \\
\frac{v_{\mathrm{e}}}{v}=\zeta & 11<\zeta<\frac{\mathrm{KU} \delta^{*}}{v} \\
\frac{v_{\mathrm{e}}}{v}=\frac{K U \delta^{*}}{v} & \frac{K U \delta^{*}}{v}<\zeta
\end{array}
\]
where \(\phi(\zeta)\) is a prescribed function. Figure (3.3.1) shows the composite effective viscosity model as proposed by Mellow. Since \(\zeta\) increases and then decreases to zero again as the boundary layer is traversed from the wall the above formulation (equation (3.3.5)) for \(v_{e}\) is not quite correct as it is intended that the third expression should hold exclusively in the auter part of the boundary layer.
3.3) contd.

It has already been mentioned that an alternative approach in the outer part of the boundary layer might be to assume that the mixing length \(l\) tends to some constant value. An examination of experimental data presented by Maise and McDonald [20] would seem to support the latter of these alternatives i.e. that the mixing length rather than the effective viscosity should be taken as constant in this region.

We might also note here that because of the lack of turbulence measurements in three-dimensional boundary layer flows we are in a position to do no more than make the obvious extensions to three dimensions of the viscosity models discussed above. That is we will assume tiat the shear stress at any point . acts in the same direction as the maximum rate of strain i.e.
\[
v_{\mathrm{ex}}=v_{\mathrm{ey}}=v_{\mathrm{e}}
\]
and that the above formulations hold in three dimensions so long as \(u\) is replaced by the resultant velocity \(q\) parallel to the wall
\[
q=\sqrt{u^{2}+v^{2}}
\]

\section*{3.4) The work of Coles.}
Coles [15] has suggested that it is possible to represent the mean velocity profiles of two-dimensional incompressible boundary layers as a linear combination of two functions viz
\[
\begin{equation*}
\frac{u}{u_{\tau}}=f\left(\frac{z u_{\tau}}{v}\right)+h(x, z) \tag{3.4.1}
\end{equation*}
\]
where \(f\) is the usual law of the wall and \(h\) is an arbitrary function of \(x, z\) except that it is negligibly small in some
3.4) contd.
narrow region near the wall. Coles points out that in certain special cases, notably for uniform pipe and channel flows and the boundary layer on a flat plate in a unifom stream, equation (3.4.1) is found from experiment to have the special form
\[
\begin{equation*}
\frac{u}{u}_{\tau}=f\left(\frac{z u_{\tau}}{v}\right)+g\left(\pi, \frac{z}{\delta}\right) \tag{3.4.2}
\end{equation*}
\]
where \(\pi\) is a flow parameter independent of \(x, z\).
Coles made an extensive survey of mean velocity profile measurements in various two-dimensional boundary layer flows examining the form of the function \(h(x, z)\) and concluded that \(h(x, z)\) reduced to a second universal similarity law by which equation (3.4.1) can be amended to
\[
\frac{u_{u}}{u_{T}}=f\left(\frac{z u_{T}}{v}\right)+\frac{1}{\kappa} \pi w\left(\frac{z}{\delta}\right)
\]
where \(\pi\) is now a profile parameter. The function \(w\), which is tabulated by Coles and shown in figure (3.4.1), is called the law of the wake and is claimed to be common to all two-dimensional turbulent boundary layer flows and to be characteristic of the meanvelocity profile at separation or re-attachment. If the wake \(w\) is normalised so that
\[
\begin{aligned}
& w(0)=0, \quad w(I)=2 \\
& \int_{0}^{2} \frac{z}{\delta} d w=1
\end{aligned}
\]

Coles has shown the profile parameter \(\pi\) to be related to \(c_{f}\) and \(\delta^{*}\) respectively by
3.4) conta.
\[
\begin{align*}
& \frac{U}{u_{\tau}}=\frac{I}{\kappa} \ln \left(\frac{\delta u_{\tau}}{\nu}\right)+A+\frac{2 \pi}{\kappa} \\
& \frac{\kappa \delta^{*} U}{\delta u_{\tau}}=1+\pi \tag{3.4.5}
\end{align*}
\]
by which \(\delta\) and \(\pi\) are uniquely defined. Equations (3.4.4,5) in effect provide a skin friction law.
\[
\text { Letting } u_{\tau} \text { approach zero equations }(3.4 \cdot 3,5) \text { reduce }
\]
to
\[
\begin{equation*}
\frac{u}{U}=\frac{1}{2} w\left(\frac{z}{\delta}\right) \tag{3.4.6}
\end{equation*}
\]
which shows that at points of separation or reattachment the velocity profile is the pure wake function. It is of interest to note that a defect law can be obtained from Coles'wake model equation (3.4.3) and written explicitly as
\[
\begin{align*}
\frac{U-u}{u_{\tau}} & =-\frac{I}{\kappa} \ln \left(\frac{z}{\delta}\right)+\frac{\pi}{\kappa} \cdot\left(2-w\left(\frac{z}{\delta}\right)\right) \\
& =F\left(\frac{z}{\delta}, \pi\right) \tag{3.4.7}
\end{align*}
\]

Equation (3.4.7) is not only valid within the logarithmic region but, according to Coles formulation, will also aply now to all two-dimensional boundary layers and not only to equilibrium flows (i.e. it applies to the general boundary layer where \(\pi\) is a function of \(x\) and not just to equilibrium boundary layers where \(\pi\) is constant). The determination of \(v\) and three of \(U, u_{\tau}, \delta, \pi\) will completely specify the velocity profile.

Having formulated a general theory for two-dimensional velocity profiles by means of combinations of the law of the wall
3.4) contd.
and the law of the wake Coles postulated as to how the se might be applied to the yawed boundary layer. The general profile Coles tentatively wrote as
\[
\begin{equation*}
\underline{q}=q_{f}+q_{w} \tag{3.4.8}
\end{equation*}
\]
where \(g\) is the velocity vector parallel to the wall on which the boundary layer is developing while \(g_{f}\) corresponds to the law of the wall and \(q_{w}\) to the law of the wake. The law of the wall asserts that close to the wall the flow remains basically unidirectional as the boundary layer is traversed in the z direction
\[
\begin{equation*}
q_{f}=q_{\tau} f\left(\frac{z q_{\tau}}{v}\right) \tag{3.4.9}
\end{equation*}
\]
\(q_{\tau}\) being the vector having the same direction as the limiting surface shear stress and \(q_{T}\) is the usual friction velocity
\[
\begin{equation*}
\underline{\tau}_{0}=\rho \quad q_{\tau} \quad q_{T} \tag{3.4.10}
\end{equation*}
\]

The contribution to the resultant velocity from the wake component of the flow \(q_{w}\), which again presumably will be negligibly small close to the wall, Coles postulates will be of the form
\[
\begin{equation*}
q_{w}=\frac{1}{\kappa} \quad \pi q_{\tau} \quad w\left(\frac{z}{\delta}\right) \tag{3.4.11}
\end{equation*}
\]
where \(\pi\), a function of two space co-ordinates ( \(x\) and \(y\) ), was defined as a tensor in the general three-dimensional case. It readily follows that the generalised friction law is
\[
\begin{equation*}
\underline{Q}=q_{\tau} f\left(\frac{\delta q_{\tau}}{\nu}\right)+\frac{2}{\kappa} \pi q_{\tau} \tag{3.4.12}
\end{equation*}
\]

The existence of a region close to the wall in
the three-dimensional boundary layer in which the velocity
3.4) contd.
profile is approximately collateral is quite well substantiated and it can also be reliably assumed that the outer part of this region (and the inner part of the skewed profile) is logarithmic in character [13,21,22]. The logarithmic law of the wall holds as in twc dimensions except that the region over which it is operative is more restricted.

The evidence concerning the law of the wake in three dimensions is not quite so definitive. In an investigation of the velocity profiles in plane of symmetry flows Pierce [23] shows that the law of the wake is applicable except near separation. In analysing velocity profiles in the skewed boundary layer havever there is a tendency to examine the wake fuuction by considering
\[
\begin{equation*}
\frac{2 g \sin \beta}{Q \sin \beta_{0}}=w\left(\frac{z}{\delta}\right) \tag{3.4.13}
\end{equation*}
\]
(see figure (3.5.i) for notation used) which is immediately deducible from equation (3.4.8). Such an approach is surely misleading since while Coles presumably intended the law of the wake to take account of the streamwise velocity profile the left hand side of equation (3.4.13) can be associated more with the crossflow velocity profile for small or moderate angles of yaw (i.e. \(\beta_{0}\) ). This might be appreciated more when it is pointed out that the left hand side of equation \((3 \cdot 4 \cdot 13) \gamma\) becomes singular for the special case of collateral flows. It is interesting to note that the curves obtained by plotting this expression as a function of \(z / \delta\) (see figure (3.4.1)) although decidedly different from the wake function do have a typical shape \([13,22]\). Coles has outlined a method of analysing skewed velocity profiles 「15]
3.4) contd.
to obtain a more realistic test of the wake function and the data analysed in this way ([15] and discussion in [21]) although not providing any definite confimation of the applicability of the wake function to three-dimensional flows does realise profiles which are more wake-like in form than those obtained from equation (3.4.13).
3.5) Johnston's triangular model for yawed flows.

A scheme to describe the yawed velocity profile which has met with considerable success is the so-called triangular model. Johnston [21] has established that if data from a yawed velocity profile are plotted in polar co-ordinates (i.e. if \(u_{z}\) is plotted as a function of \(u_{1}\) to obtain in effect the locus of the tip of the velocity vector projected on to the wall) then the points fall along two straight lines (see figure (3.5.1)). Thus to specify \(u_{3}\) as a function of \(u_{1}\) we need only know the values assumed by \(\beta_{0}, \gamma\), where \(\gamma\) (the outer angle of the triangle) is the parameter denoting the shearless nature of which is the flow related by Johnston to the main flow turning angle \(\alpha\) (radians) by
\[
\tan \gamma=-2 \alpha
\]
for circular-arc-shaped streamlines. The second angle Bo is related to the frictional character of the flow.

We will adopt the notation introduced by Johnston and denote the two separate regions of the triangle by I and II and refer to quantities at the apex of the triangle by appending a suffix \(p\) as in figure (3.5.1). The outer part of region I was considered by Johnston to be in the logarithmic region (al.though the maximum value of \(z_{p} q_{T} / v\) is only 16 - whereas Hornung and Joubert
3.5) contd.
encountered \(z_{p} q_{/} / v\) values as high as 150). The relative sizes of regions I and II is considerably misrepresented by the polar plot and because \(u_{1}\) increases very rapidly close to the wall this region is very narrow indeed, so narrow in fact that it is difficult to obtain extensive measurements corresponding to the inner side of the triangle.

\section*{3.6) Velocity defect law for yawed flows.}

Hornung and Joubert [13] analysed the data from their own experiment to examine the plausibility of a three-cimensional defect law of the form
\[
\begin{equation*}
\frac{|\underline{Q}-\underline{q}|}{|\underline{\underline{q}-\underline{p}}|}=F\left(\frac{z}{\delta}\right) \tag{3.6.1}
\end{equation*}
\]
component of farts Q where \(q_{p}\) is \(q\) at the point at which the a maximum value. The form of the left hand side of equation (3.6.1) in fact treats the velocity relative to the moving external stream which according to the outer edge of Johnston's triangle is collateral (at ' p ' as can be seen from figure (3.5.1) the magnitude of \(\underline{Q}\) - \(q\) attains its maximum). The data of Hornung and Joubert showed little scatter when plotted according to equation (3.6.1) but Johnston (in a discussion in [24]) subsequently showed by analysing data from various sources that the scatter was cons iderable.
4.0) Introduction.

It is the purpose of the present chapter to describe a method of̂ solution of the boundary layer equations which will be suitable for the computation of two- or three-dimensional, laminar or turbulent boundary layers.

Sections 4.1-2 of this chapter are concerned with developing a grid upon which finite difference approximations to the boundary layer equations can be conveniently based. The grid moreover must be devised in such a way that it can expand or contract to keep pace with boundary layer thickness development. Having transformed the boundary layer equations in accordance with this grid system in section 4.3 a finite difference scheme is prooosed whose principle features are the use, for the boundary condition at the wall in the turbulent boundary layer, of the logarithmic law of the wall and the introduction of a transformation which considerably simplifies the calculation of velocity profiles in the three-dimensional. boundary layer. Having described in section 4.4 haw the law of the wall is to be used as a boundary condition the next four sections proceed to discuss in some detail the proposed finite difference scheme. The present method is similar to that of Spalding and Patankar [10] in that it solves the boundary layer equations in conjunction witin an effective viscosity function, but it differs in the way it treats the logarithmic law at the wall and also in that it abandons the stream function in favour of a geometric transformation to account for boundary layer growth since the former is inapplicable to three dimensions.

Section 4.9 discusses a computer program which has been written for the IBM S360/65 computer to calculate boundary layer development using the method described. A copy of the program is included in the appendices together with a detailed description
```

4.0) contd.
of its structure。

```

\section*{4.1) Solution mesh.}

It is proposed that the solution scheme to be presented will solve the boundary layer equations over a rectangular area of the wall in question, the velocity components being calculated at the nodes of a mesh positioned over this rectangle. The plane of the wall is taken to be the plane \(z=0\), where \(z\) is assumed to be measured positive into the body of the fluid, and the directions of the x and y axes are parallel to the wall and such that the primary direction of flow is taken as the direction of the \(x\)-axis and the co-ordinate axes \(x, y, z\) form a right hand set.

The parabolic nature of the boundary layer equations necessitates a marching type solution procedure so it is proposed to march in the \(x\) direction and to confine the calculation between \(y=\) constant planes. With such an arrangenent it will be possible to set up a three-dimensional rectangular mesh, aligned with the rectangular axes, over the solution space and base the finite difference approximations to the boundary layer equations on velocity components at the nodes of the mesh. At each marching step \(u, v, w\) will be found at the nodes of the mesh in an \(x=\) constant plane before advancing to the next plane a distance \(f\) downstream to repeat the procedure. In what follows the grid at \(x=x_{e}\) (i.e. the \(l\) th step) will be referred to as. solution face \(l\). At any solution face \(u\), \(v\) will be calculated at all node points on this face, while wwill be calculated at points on the plane midway between adjacent solution faces where the mesh lines
4.1) contd.

Reference to any particular node can be made by enumerating its grid reference \((\ell, m, n)\) where \(l\) denotes the solution face on which the node falls, m denotes the vertical line on this face on which the node falls (this line will be referred to as section \(m\) on face \(\ell\) or simply section \((\ell, m)\) ) and \(n\) denotes the number of the node as enumerated from the wall (point \(n\) on section \((\ell, m)\) or point \((l, m, n)\) ). Thus the classification: solution face, section, point describes the mesh in a manner suitable for the proposed solution scheme (see figure 4.1.1).

The grid spacing in the \(x, y, z\) directions will be denoted by \(f, g, h\) respectively and the number of sections on a solution face by \(M\) and the number of points on a section by \(N\) 。

The above solution mesh must obviously contain the boundary layer i.e. the region over which significant changes in \(u, v\) occur. This will mean that since the boundary layer growth downstream will be unknown at the commencement of the solution some means of adjusting the grid as the solution progresses must be devised. This will be discussed further in section 4.2. It might also be noted here that even across a solution face appreciable differences in boundary layer thickness may occur. To compensate for this and also to allow for more points over the region where large changes in velocity occur i.e. near the wall, the following scheme is proposed: at each solution face section the grid illustrated in figure 4.1 .2 in which a specified number of the mesh intervals near the wall have been subdivided will be used.

Although the same grid will be used at each soetion face
4.1) contd.
its vertical scale, as dictated by \(h\), will be subject to variation in a manner to be discussed in the next section i.e. h should more correctly be replaced by \(h_{e}\). This will compensate for boundary layer growth as the calculation proceeds.

The grid in figure 4.52 has been obtained by dividing the \(\lambda\) increments of width \(h\) near the wall each into \(\omega\) smaller increments of width \(h / \omega\). It should be noted that \(N\) is now taken to refer to the number of points at each
- section and not to the number of \(h\) increments.
4.2) Derivation of an adjustable mesh to accommodate boundary layer growth.

As a simple means of adjusting the grid spacing so as to compensate for the effect of boundary layer growth the mesh illustrated in figure 4.2.1 will be used. The figure shows a cross section throingha \(y=\) constant plane - the cross sections through all such planes being the same.Planes radiating from the line \(\mathrm{x}=\mathrm{X}, \mathrm{z}=0\) will constitute the grid planes which will be positioned so that they approximately keep pace with the boundary layer growth between solution faces at \(x=x_{l}\) where velocity profiles will be known and \(x=x_{l+1}\) where they are to be calculated. This can readily be arranged by varying the position of the line \(x=X, z=0\) and the inclinations of the planes. The grid can also be chosen so as to ensure that the \(z\) increments will be constant over the solution face at \(x=x_{\ell}\) as well as at \(x=x_{\ell+1}\) although the \(z\) increment will obviously not be the same at both faces. Using such a scheme it will be possible to adjust the grid at each step to progressively allow for changes in the rate of growth of the
4.2) contd.
boundary layer.
Figure 4.2 .2 shows the possibilities of the proposed. mesh when inclined mesh planes and subdivided mesh intervals near the wall are incorporated.

Transforming from \(z\) to \(\xi\) using
\[
\begin{equation*}
z=a \xi(x-x) \tag{4.2.1}
\end{equation*}
\]
will proiluce in \(x, y, \xi\) co-ordinate system the grid discussed above since in a plane \(x=\) constant \(\xi\) is simply proportional to \(z\) and surfaces \(\xi=\) constant are planes passing through the line \(x=X, z=0\). Knowing the grid spacing required at solution faces \(\ell\) and \(l+1\) to \(b\) e \(h_{l}\) and \(h_{l+1}\) respectively then \(X\) is determined by noting that at the first grid plane from the wall we have \(\xi=\xi_{1}\) say where \(\xi_{1}\) is a constant so that at \(x=x_{l}\) equation \((4 \cdot 2.1)\) becomes
\[
h_{e}=a \xi_{1}\left(x_{e}-x\right)
\]
and at \(x=x_{l+1}\)
\[
h_{l+1}=a \xi_{1}\left(x_{l+1}-x\right)
\]

Dividing these last two expressions
\[
\frac{h_{l+1}}{h_{l}}=\frac{x_{l+1}-x}{x_{l}-x}
\]
so that
\[
x=x_{l}-\frac{h_{l} f}{h_{l+1} h_{l}}
\]
since \(x_{l+1}=x_{l}+f\). The arbitrary scaling factor a is now chosen so that the increment in \(\xi\) between adjacent \(\xi=\) constant mesh planes is the same as the \(z\) increment at \(x=x_{e}\) thus equation (4.2.1) becomes
\[
h_{e}=a h_{e}\left(x_{e}-x\right)
\]
4.2) contd.
so that
\[
\frac{l}{a}=\frac{h_{e^{f}}}{h_{l+1}-h}
\]
and the required transformation is
\[
z=\xi\left(\frac{h_{l+1}^{-h} l}{h_{e^{f}}}\left(x-x_{e}\right)+1\right)
\]

Since the boundary layer growth between adjacent solution faces will not be known before the solution method proceeds to calculate velocity components at solution face ell it will be necessary to make an initial guess at the transformation equation \((4.2 .2)\). How the mesh is adjusted more precisely to accommodate the thickest part of the boundary layer at successive solution faces will be dealt with in a later section.
4.3) Transformation of the boundary layer equations.

To implement the grid described in section 4.2 the boundary layer equations will be transformed so that the perpendicular distance measured from the wall will be substituted for by \(\xi\) using the relation
\[
\begin{equation*}
z=\xi(a x+b) \tag{4.3.1}
\end{equation*}
\]
where \(a\) and \(b\) are constants (given by equation (4.2.2)) chosen to regulate the grid and scale \(\xi\) conveniently. The boundary layer equations (1.1.10-12) transformed into \(x, y, \xi\) coordinates are
4.3) contd.
\[
\begin{gather*}
u \frac{\partial u}{\partial x}-\frac{a \xi}{a x+b} u \frac{\partial u}{\partial \xi}+v \frac{\partial u}{\partial y}+\frac{I}{a x+b} w \frac{\partial u}{\partial \xi}= \\
U \frac{\partial U}{\partial x}+v \frac{\partial V}{\partial x}+\frac{I}{(a x+b)^{2}} \frac{\partial}{\partial \xi}\left(v_{e} \frac{\partial u}{\partial \xi}\right)  \tag{4.3.2}\\
u \frac{\partial v}{\partial x}-\frac{a \xi}{a x+b} u \frac{\partial v}{\partial \xi}+v \frac{\partial v}{\partial y}+\frac{I}{a x+b} w \frac{\partial v}{\partial \xi}= \\
U \frac{\partial U}{\partial y}+v \frac{\partial v}{\partial y}+\frac{I}{(a x+b)^{2}} \frac{\partial}{\partial \xi}\left(v_{e} \frac{\partial v}{\partial \xi}\right)  \tag{4.3.3}\\
\frac{\partial u}{\partial x}-\frac{a \xi}{a x+b} \frac{\partial u}{\partial \xi}+\frac{\partial v}{\partial y}+\frac{1}{a x+b} \frac{\partial v}{\partial \xi}=0 \tag{4.3.4}
\end{gather*}
\]
where the assumption that \(v_{\text {ex }}=v_{\text {ex }}=\nu_{e}\) has been introduced.
At this stage it is proposed to introduce a contraction into the transformed equations which will considerably simplify the finite difference scheme to be considered later. We write
\[
\begin{equation*}
q \frac{\partial}{\partial s} \equiv u \frac{\partial}{\partial x}+v \frac{\partial}{\partial y} \tag{4.3.5}
\end{equation*}
\]
where \(q\) is the magnitude of the vector sum of velocity components \(u\) and \(v\)
\[
\begin{equation*}
q=\left(u^{2}+v^{2}\right)^{\frac{1}{2}} \tag{4.3.6}
\end{equation*}
\]

The equation ( 4.3 .5 ) is suggestive of streamline coordinates but since no account is taken of the w component of velocity this is not quite so. The line along which the derivate \(\frac{\partial}{\partial s}\) is to be taken is the locus of points in a \(\xi=\) constant plane at which the vector sum of the velocity components \(u\) and v is tangential to the line, and the increment in s along this line is given by
\[
\delta s=\left(\delta x^{2}+\delta y^{2}\right)^{\frac{1}{2}}
\]

Without any apology, in what follows, we refer to such lines
4.3) contd.
as streamlines despite the fact that these so-called streamlines can only be related to actual streamlines in the limiting case at the wall and in the freestream. In addition we will replace \(\nu_{e}\) in equations (4.3.2-3) by \(\nu_{e}^{\prime}\) such that
\[
\begin{equation*}
v_{e}=(a x+b) v_{e}^{\prime} \tag{4.3.8}
\end{equation*}
\]
so that the three-dimensional turbulent boundary layer equations now become
\[
\begin{align*}
& q \frac{\partial u}{\partial s}+\frac{-a \xi u+w}{a x+b} \frac{\partial u}{\partial \xi}= \\
& U \frac{\partial U}{\partial x}+v \frac{\partial v}{\partial x}+\frac{1}{a x+b} \frac{\partial}{\partial \xi} \cdot\left(v_{e}^{\prime} \frac{\partial u}{\partial \xi}\right)  \tag{4.3.9}\\
& q \frac{\partial v}{\partial s}+\frac{-a \xi u+w}{a x+b} \frac{\partial v}{\partial \xi}= \\
& U \frac{\partial U}{\partial y}+V \frac{\partial V}{\partial y}+\frac{1}{a x+b} \frac{\partial}{\partial \xi}\left(v_{e}^{\prime} \frac{\partial v}{\partial \xi}\right)  \tag{4.3.10}\\
& \frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}-\frac{a \xi}{a x+b} \frac{\partial u}{\partial \xi}+\frac{1}{a x+b} \frac{\partial w}{\partial \xi}=0 \tag{4.3.11}
\end{align*}
\]

It should be noted that the two momentum equations now contain only derivatives with respect to \(s\) and \(\xi\) (except for the pressure terms which are prescribed functions). This will be seen to be an advantage when approximating to the momentum equations in the three-dimensional case since derivatives with respect to \(x\) and \(y\) are not present explicity. To preserve this state of affairs it should be appreciated that only a transformation of the \(z\) coordinate is applicable.

Equations (4.3.9-11) are the forms of the boundary layer equations that will be solved using finite difference techniques.

\section*{4.4) Wall boundary condition.}

Before proceeding to approximate to the threedimensional bound ary layer equations (4.3.9-11) a number of complications which arise in the section of the boundary layer adjacent to the wall must be considered. Firstly, because close to the wall in the turbulent boundary layer the changes in velocity (and also in velocity gradient normal to the wall) are so great over small distances normal to the wall, it is not possible to obtain an estimate of derivatives normal to the wall at a point simply by subtracting functional values at points equidistant on either side of the point of interest. In particular the velocity \(u\) at a small distance \(h\) from the wall divided by \(h\) will not provide a realistic estimate of the gradient \(\frac{\partial u}{\partial z}\) at a point a distance \(\frac{1}{2} h\) from the wall (remembering \(u\) at the wall is zero). The same problem does not however arise in laminar boundary layers since altiough changes in velocity near the wall are great the velocity gradient normal to the wall is approximately constant over a sinall distance close to the wall.

Secondly, owing to the presence in the turbulent boundary layer of a laminar sublayer, it is not feasible to provide an empirical relationship for the effective viscosity within a narrow region close to the wall.

The consequence of the above complications is that it would be extremely difficult in a finite difference scheme to impose as the inner boundary the fact that all velocity components must vanish at the wall. To overcome this problem the present method proposes that the logarithmic law of the wall
4.4) contd.
that the region between the wall and the inner limit of the logarithmic region, which includes the laminar sublayer, need not enter into the finite difference scheme and the difficultios mentioned above it is to be expected will not arise. The present section is thus concerned with interpreting the logaritnmic law of the wall in such a way as to make it accessible as a boundary condition and to generate a number of relations that will be required in the development of the finito difference scheme.

It is well established (section 3.2) that in the two dimensional turbulent boundary layer within a region close to the wall but not adjacent to it points from the velocity profile fall along the logaritimic curve:
\[
\begin{equation*}
\frac{q}{q_{T}}=\frac{1}{\kappa} \ln \frac{z q_{T}}{v}+A \tag{4.4.1}
\end{equation*}
\]
where \(q\) is the component of the velocity parallel to the wall (and hence in the direction of the mainstream) at a distance \(z\) from it, \(q_{\tau}\) is the so called friction velocity, \(v\) is the kinomatic viscosity and \(\kappa\), Aare empirical constants. It has been noticed, and it is particularly well illustrated by Johnson's polar plots (section 3.5), that even in three-dimensional baumary. layers there is a region close to the wall in which the flow is essentially coplanar i.e. the direction of q remains fixed as this region is traversed perpendicularly to the wall and Coles has suggested that the logarithmic law is valid within this region where it assumes the form of equation (4.4.1) where \(q\) is nor given by equation (4.3.6). It will be assumed here for the purpose of the present computational scheme that, in the three-dimensiomi
4.4) contd.
boundary layer, there is a region close to the wall in which the flow is both coplanar and where points from the velocity profile fall upon the logarithmic law of the wall.

As has been stated previously the finite difference aporoximation to the three-dimensional boundary layer equations is not attempted at all grid points up to the wall but only at - each section up to some grid point which is known to be the point closest to the wall which could, on the basis of the accepted limits for the logarithmic region, be regarded as being within the logaritnmic region. This point will be referred to as the log-point and its grid reference will be denoted by \(n=n^{*}\). It is within the region bounded by the grid lines above and below this log-point that we must assume that the flow is both coplanar and the logarithmic law is operative.

> Transforming the logarithmic law of the wall viz
\[
\frac{\mathrm{q}}{q_{\tau}}=\frac{1}{k} \ln \frac{(a x+b) \xi q}{\nu}+\mathrm{A}
\]
it is in the same co-ordinate system adopted in the boundary layer equations (4.3.9-11). Rewriting equation (4.4.2) as
\[
u=\frac{u}{q} \frac{q_{\tau}}{\kappa}\left(\ln \frac{(a x+b) \xi q_{\tau}}{\nu}+k A\right)
\]
or in a similer form in which \(u\) is replaced by \(v\), we have an expression for \(u\) or \(v\) which when applied in the vicinity of the log-point only involves \(\xi\) explicitly on the right hani side since when \(q\) is coplanar
\[
\frac{u}{q}, \frac{v}{q}
\]
are functions of \(x, y\) only as is \(q_{\tau}\). Thus
4.4) cont .d.
differentiating equation (4.4.3) with respect to \(\xi\) it is possible to write
\[
\begin{equation*}
\frac{\partial u}{\partial \xi}=\frac{u}{q} \frac{q_{\tau}}{k \xi} \tag{4.4.4}
\end{equation*}
\]
which with
\[
\begin{equation*}
\epsilon=\frac{\kappa q_{n}^{*}}{q_{\tau}} \tag{4.4.5}
\end{equation*}
\]
can be written
\[
\begin{equation*}
\frac{\partial u}{\partial \xi}=\frac{u_{n}^{*}}{\epsilon \xi} \tag{4.4.6}
\end{equation*}
\]
where suffix \(n\) in \(q_{n}\) etc refers to the point at which \(q\) is evaluated. When applying this last expression at any section \(u_{n} *\) and \(\epsilon\) should be those values obtained at that section. A point of particular interest in equation (4.4.6) is the resemblance of the right hand side to the finite difference approximation to the derivative.

Another expression which will be required at the log-point is obtained from the definition of the operator \(\frac{\partial}{\partial s}\) (equation (4.3.5)) and equation (4.4.3) and is
\[
\begin{equation*}
\frac{\partial u}{\partial s}=f_{1}+\ln \xi f_{2} \tag{4.4.7}
\end{equation*}
\]
where \(f_{1}, f_{z}\) are functions of \(x, y\) only, and from which it readily follows that
\[
\begin{align*}
&\left.\ln \frac{\xi_{n^{*}}}{\xi_{n^{*}+1}} \frac{\partial u}{\partial s}\right|_{n^{*}-1}+\left.\ln \frac{\xi_{n^{*}+1}}{\xi_{n^{*}-1}} \frac{\partial u}{\partial s}\right|_{n^{*}} \\
&+\left.\ln \frac{\xi_{n^{*}-1}}{\xi_{n^{*}}} \quad \frac{\partial u}{\partial s}\right|_{n^{*}+1}=0 \tag{4.4.8}
\end{align*}
\]
4. \%) contd.
with a similar expression in which \(u\) is replaced by \(v\). From equation (4.4.2) we will also require the following relation
\[
\begin{equation*}
q_{n^{*}-1}=q_{n^{*}}\left(1+\frac{1}{\epsilon} \ln \frac{\xi_{n^{*}-1}}{\xi_{n^{*}}}\right) \tag{4.4.9}
\end{equation*}
\]

We are now faced with the following situation: the boundary layer momentum equations can be approximated to at the log-point using only velocity components at and above this point and because points below the log-point will not be available use will have to be made of the relationships contained in equations (4.1.6) and (4.4.8-9) to make up this deficiency. Equations (4.4.6) and (4.4.9) do however demand that \(\epsilon\) i.e. \(q_{\tau}\) be known so that the logarithmic law (4.4.2) must be solved for \(q_{T}\) at the log-point i.e.
\[
\frac{q_{n^{*}}}{q_{\tau}}=\frac{1}{\kappa} \ln \frac{(a x+b) \xi_{n^{*}} q_{\tau}}{\nu}+A
\]
must be solved for \(q_{\tau}\). This last equation can alternatively be rewritten as
\[
\epsilon=-\ln \epsilon+B
\]
where
\[
\begin{equation*}
B=\ln \frac{k(a x+b) \xi_{n^{*}} q_{n^{*}}}{\nu}+\kappa A \tag{4.4.10}
\end{equation*}
\]
and can be solved for \(\epsilon\) using the iterative scheme
\[
\begin{equation*}
\epsilon^{(r+1)}=\epsilon^{(r)}\left(1-\frac{\epsilon^{(r)}+\ln \epsilon^{(r)}-B}{1+\epsilon^{(r)}}\right) \tag{4.4.11}
\end{equation*}
\]
once \(B\) is prescribed. The iterative scheme represented by equation (4.4.11) has been obtained from an application of the Newton-Raphson iterative method and can be shown to have a quadratic rate of convergence. We might also note here that the use of the
4.4) contd.
above scheme for prescribing the inner boundary condition in the momentum equations has the advantage of implicitly supplying a value for the coefficient of friction at the wall.

The inner boundary condition in the continuity equation is slightly different from that in the momentum equation in that we will be integrating the former with respect to \(\xi\) through the thickness of the boundary layer which will demand that we integrate from the wall and thus impose as the inner boundary condition the fact that the velocity components vanish at the wall. It would not be expected that this approach would be at all impracticable but in order to be consistent with the method in which the momentum equations were treated we choose not to integrate from the wall i.e. to integrate through all the nodes from and including the wall, but to impose the inner boundary condition effectively at \(n=n^{*}\). This is readily accomplished if it is assumed that to a reasonable degree of approximation the \(q\) component of velocity between the wall and the point \(n=n^{*}\) can be represented by a power law of the form
\[
\frac{q}{q_{n^{*}}}=\left({\frac{\xi}{\xi_{n}}}^{{ }^{\frac{I}{\epsilon}}}\right.
\]
which ensures agreement with the logarithmic law of the wall at the log-point in \(q\) and \(\frac{\partial q}{\partial \xi}\). The form of equation (4.4.12) anticipates \(\epsilon\) to be of the order of 6 or 7 and this is of particular relevance when considered in the context of equation (4.4.6). The assumption of the power law equation (4.4.12) together with that of coplanar flow close to the wall enables us to integrate the continuity equation ( 4.3 .11 ) with respect to \(\xi\) and deduce that (ignoring the depmdence of eon \(x, y\) )
4.4) contd.
\[
\begin{equation*}
w=-\frac{a x+b}{I+\frac{l}{\epsilon}} \xi\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}-\frac{a \xi}{a x+b} \frac{\partial u}{\partial \xi}\right) \tag{4.4.73}
\end{equation*}
\]
which can be used to obtain w at the log-point, together with
\[
\begin{equation*}
\frac{\mathrm{w}}{w_{\mathrm{n}^{*}}}=\left(\frac{\xi}{\xi_{\mathrm{n}^{*}}}\right)^{1+\frac{1}{\epsilon}} \tag{4.4.14}
\end{equation*}
\]
for w between the log-point and the wall.
The interpretation of the logarithmic law of the wall
as the inner boundary condition obviously only applies to turbulent flow. Laminar flow could be treated in a similar fashion simply by substituting a linear relationship in place of the logarithmic one (since the velocity gradient close to the wall in a laminar boundary layer is essentially constant) and generally putting \(\epsilon\) equal to unity. It should be noted that this is essentially no different to applying a zero velocity condition at the wall.

\section*{4.5) General discussion of the solution scheme.}

Having, in sections 4.1-3 of this chapter, derived a mesh upon which a finite difference scheme can be based anà having transformed the boundary layer equations to facilitate the use of this mesh it is now possible to generate a solution scheme.

The parabolic nature of the bounary layer equations makes it necessary when solving these equations using finite difference techniques to employ a marching type solution procedure and to do this we generalise the more well-known implicit schemes to the three variable non-linear problem. Thus knowing velocity prfiles at all sections on a solution face profiles at the next solution face can be calculated and so on downstream.

While solving for the velocity profiles at each solution it will be desirable, primarily because of the non-linear features of the boundary layer equations, to iterate to the correct solution from an initial guess of it. An iterative scheme will also enable the grid transformation, equation (4.3.1), to be adjusted to accommodate the boundary
layer growth precisely and in addition allow the inner boundary condition as described in section 4.4 to be applied correctly. In addition with an implicit scheme the iteration can be repeated until the accuracy of the solution is within a required tolerance.

At each solution face individual sections will be considered in turn and corresponding to every point on each section finite difference approximations will be made to the momentum equations. This will produce a system of linear algebraic equations involving the unknown \(u, v\) components of velocity at all points on each section; the solution of the se linear equations will provide it is anticipated better estimates of these same velocity components. Having iterated at all sections for \(u, v\) finite difference approximations will then be made to the continuity equation supplying in a similar way better estimates of the w component of velocity. It is expected that successive repetitions of the above procedure will provide an iterative scheme which will converge to the correct velocity profiles.

Details of the solution scheme are provided in the following two sections.

\section*{4.6) Finite difference approximations to the three-dimensional \\ momentum equations.}

The present section is concerned with a means of improving approximations to the \(u\) and \(v\) components of velocity at points on a solution face when the \(u\) and \(v\) profiles are knawn at all sections on the adjacent upstream solution face (denoted as solution \(f\) ace \(\ell\) ). This will be done as has already been mentioned by setting up finite difference approximations to the momentum equations corresponding to the points on each profile. A means of improving the approximations to the \(w\) velocity components, which will be stored on the plane midway between faces \(\ell\) and \(\ell+1\), is to be discussed in the next section.

There are numerous ways of setting up a finite difference approximation to differential equations especially when the equations are non-linear, and depending how it is done will determine the rate of convergence of the iteration process. To enable the most attractive scheme to be determined or at least to provide some room to manoeuvre it is proposed to introduce into the scheme to be described a number of weighting factors the variation of which will it is anticipated lead to the development of a satisfactory solution scheme.

We now proceed to set up the finite difference approximation to the momentum equations corresponaing to the \(n\)th point at section \(m\) (figure (4.6.1)). Since the momentum equations are written in streamline co-ordinates the finite difference approximation need necessarily be based on the streamline through the point of interest. It is thus necessary to fit from the \(n\)th point on section ( \(\ell+1, m\) ) a streamline back to face \(l\) and calculate:
4.6) contd.
1) the \(x, y\) co-ordinates of the point where the momentum equations are to be approximated on this streamline
2) the point where the streamline intercepts the \(n\)th grid line on face \(\ell\) ani
3) the length of the streanline
i.e. the values of \(\alpha, \beta, \gamma\), \(s\) from figure (4.6.1) need be known. The method used to fit the stremaline will be discussed in Appendix Al and for the moment it will be assumed that \(\alpha, \beta, \gamma, s\) can be calculated.

It can be seen from the diagram that the point at which the momentum equations are to be approximated can be varied by changing the value of the weight \(\psi_{1}\left(\phi_{1}=1-\psi_{1}\right)\), the well known Crank-Nicholson scheme being based on \(\psi_{1}=0.5\). It is also apparent tinat the streamline through point \(n\) on section ( \(\ell+1, \mathrm{~m}\) ) is not necessarily the same as those at points \(n-1\) or \(n+1\) on the same section.However, for the purpose of the approximations to the momentum equations at point \(n\), they will be assumed to be the same.

In order to approximate to the momentum equations at the point of current interest the quantities indicated in figure (4.6.2) are required where the notation is self-explanatory. The quantities necessary on section ( \(\ell, \mathrm{m}+\chi)\) can be obtained by interpolating between the knawn profiles at face \(l\) and those on section ( \(\ell+1, \mathrm{~m}\) ) are provided from the last iterated solutions at face \(l+1\). Values assumed by the transforned effective viscosity function \(\nu_{\mathrm{e}}^{\prime}\) (where in figure (4.6.2) the dash and the subscript have been omitted for convenience) will have to be evaluated from currentily available velocity components on the basis of some
4.6) contd.
hypotinetical function in the case of turbulent flow.
The actual finite difference approximation to the momentum equation corresponding to the \(x\) direction is given in Appendix A2 together with the resulting linear equation relating \(u_{n-1}^{r+1}, u_{n}^{r+1}, u_{n+1}^{r+1}\) (where the superscripts denote iteration, the section being understood as \((\ell+1, m)\) ) The equations generated to relate the iterated \(v\) components of velocity are very similar. Hence it has been found necessary only to make brief mention of these at the end of Appendix A2. Table 4.6.1 lists the relaxation factors used and provides some measure of explanation of their relevance. The manner in which weights were used was made partly in reference to 'Difference Methods for Initial-Value Problems' by Richtmyer [25] and the allusions to particular cases is based on the simpler finite difference schemes presented by Richtmyer.

Remembering what has been stated in section (4.4) with regard to the points where the momentum equation will be approximated to it can be seen that equation (A2.2) can be applied for
\[
n=n^{*}+1, n^{*}+2, \ldots N-1
\]
slight modifications being necessary when \(n=\lambda \omega\). It might be pointed out now that introducing the transformation
\[
q \frac{\partial}{\partial s} \equiv u \frac{\partial}{\partial x}+v \frac{\partial}{\partial y}
\]
enables equations to be set up relating the iterated \(u, v\) velocity components at each section on face \(l+l\) independently of each other and also of the same unknowns at adjacent sections, coupling between the sections being provided via the continuity
equation. It is considered that this is a significant simplification
4.6) contd. in the present method.

To provide an approximation of the momentum equations at the log-point ( \(n=n^{*}\) ) it is necessary to make use of some of the relations developed in section 4.4 where the logarithmic law of the wall was used to generate relationships between different quantities in the neighbourhood of the log-point. The approximations will be made to the momentum equations on the assumption that \(u\) and \(v\) velocity components will not be available for incorporation into the finite difference scheme at \(n=n^{*}-1\). The resulting approximations to the terms in the momentum equation are given in Appendix A3, and Appendix A/ then explains how they are to be calculated for laminar flows.

Applying equation (A3.6) at \(n=n^{*}\) and equation (A2.2) at the points stated above (remembering that \(u_{N}\) is prescribed as the freestream boundary condition) there results a system of \(N-n^{*}\) linear equations in \(N-n^{*}\) unknowns:
\[
u_{n}^{r} \quad n=n^{*}, n^{*}+1, \ldots N-1
\]

These \(N\) - \(n^{*}\) equations form a tri-diagonal system except that when \(\omega>7\) the equation corresponding to the point ( \(\ell, m, \lambda \omega)\) has one term displaced off the triple-diagonal since it relates
\[
u_{n}^{r} \quad n=(\lambda-1) \omega, \lambda \omega, \lambda \omega+1
\]
however this is easily remedied as explained in Appendix A2 so that the system of equations can now be assumed to be tridiagonal and solved accordingly (see Appendix A5). The velocity profile at section ( \(\ell+1, m)\) can then \(b\) e completed by using the law of the wall (see section 3.2) to generate
4.6) contd.
\[
u_{n}^{r}, v_{n}^{r} \text { for } n=1,2, \ldots n^{*}-1
\]
4.7) Finite difference approximation to the equation of continuity.

Having obtained iterates for the \(u, v\) velocity components in section 4.6 the continuity equation must now be approximated to in order that improved estimates of the w component of velocity c an be determined. The continuity equation being linear in \(w\) means that knowing \(u\) and \(v\) components across any two adjacent solution faces w profiles can be obtained midway between these faces by directly integrating the continuity equation with respect to \(\xi\).

The equation of continuity is left in its rectangular cartesian co-ordinate form (equation (4.3.11)) and ap proximated to at the point \(\left(\ell+\frac{1}{2}, m, n-\frac{1}{2}\right)\) as shown in figure (4.7.1). The values of the components shown can be found by suitably averaging known values and can be used to provide an approximation to the continuity equation thus
\[
\begin{align*}
\frac{u_{3}-u_{1}}{f} & +\frac{v_{3}-v_{1}}{2 g}-\frac{a \xi_{n-\frac{1}{2}}}{a x_{l+\frac{1}{2}}+b} \frac{u_{\ell_{3}}^{\prime}-u_{\ell_{1}}^{\prime}}{h} \\
& +\frac{1}{a x_{l+\frac{1}{2}}+b} \frac{w_{n}^{r+1}-w_{n-1}^{r+1}}{h}=0 \tag{4.7.1}
\end{align*}
\]

From this equation values of \(w\) at points successively further from the wall can be calculated until the profile at section \(\left(\ell+\frac{1}{2}, m\right)\) is complete. Repetition at different sections will enable iterated profiles across the whole mid-face to be determined. Equation (4.7.1) might be applied from the wall ( \(n=1\) ) using the conlition that \(w=0\) at the wall but in preference to this we will interpret the wall boundary condition used for the momentum equation in a way which will make it applicable here and apply
4.7) contd.
equation (4.7.1) only for
\[
n=n^{*}+1, n^{*}+2, \ldots N
\]

We have already shown that at the log-point the wall condition gives equation (4.4.13) which we approximate to by
\[
\begin{equation*}
w_{n}=-\frac{a x_{l+\frac{1}{2}}+b}{1+\frac{1}{\epsilon}} \xi_{n}\left(\frac{u_{3}-u_{1}}{f}+\frac{v_{3}-v_{1}}{2 g}-\frac{a u_{2}}{\left(a x_{l+\frac{1}{2}}+b\right) \epsilon}\right) \tag{4.7.2}
\end{equation*}
\]
to be applied at \(n=n^{*}\), where the notation will be made clear by figure \((4 \cdot 7 \cdot 2)\). Values of \(w\) between the log-point and the wall can be obtained by referring to equation (4.4.14)
\[
\begin{equation*}
w_{n}=\left(\frac{\xi_{n}}{\xi_{n^{*}}}\right)^{1+\frac{1}{\epsilon}} w_{n^{*}} \tag{4.7.3}
\end{equation*}
\]
which is applicable for \(n=1,2, \ldots n^{*}-1\).
It will be noticed that when equations (4.7.1,2) are applied at the end sections i.e. the sections denoted by \(m=1, m=M\), values of \(v\) are required at points lying out side the solution space. Thus \(v\) profiles (or al ternatively \(\frac{\partial v}{\partial y}\) profiles) will need be specified as a boundary condition at the bounding \(y=\) constant planes to establish the flow of fluid into the solution space.
4.8) Recapitulation of the initial and boundary conditions.

We will now collect together for future reference
the initial and boundary conditions that have arisen in the discussion of the present solution scheme. The conditions listed below are those relevant to the solution of the general three-dimensional boundary layer and considerable simplifications
4.8) contd.
can be expected when the scheme is used for the solution of the two-dimensional or pseudo-three-dimensional problems.

The only initial condition required is the specification of \(u\) and \(v\) velocity profiles at all sections across the initial solution face - w profiles are not required. The boundary condition to be provided in the freestream is the definition oi the velocity components \(U, V\) at all points over the area of the wall of interest while at the bounding \(y=\) constant planes either \(v\) or \(\frac{\partial v}{\partial y}\) need be specified. The latter condition, which is only applicable to the general three-dimensional boundary layer or to plane of symmetry flows, is more readily satisfied than might first appear to be the case and some of the methods that have successfully been used to provide this boundary conaition can be found in the discussion of the three-dimensional boundary layers treated in Chapters Five and Six.

In addition of course we must yet specify some hypothesis for the effective viscosity.

\section*{4.9) The computer program.}

The listing of a computer program that has been written in Fortran IV for the IBM S360/65 computer to calculate boundary layer development using the method outlined in this chapter is included as Appendix A6 while Appendix A7 contains a description of the program structure (with flow diagrams) and discusses the requirements necessary for the implementation of the program.

The progran was written in such a way that it
4.9) contd.
would be able to cater for three-dimensional, pseudo-threedimensional,plane of symmetry or two-dimensional boundary layers, whether laminar or turbulent simply by varying a few imput parameters. All initial conditions need be specified by card Input while the boundary conditions and the effective viscosity function are provided via subroutines which are referred to within the structure of the program. Empirical and physical constants, the mesh specification and solution weights and tolerances are all to be provided as card input. A facility has also been included to allow changes in forward steps, frequency of output, etc as the solution progresses. A thorough description of such matters is, as has been mentioned, contained in Appendix A7.

\section*{5.0) Introduction.}

Having programmed the solution scheme described
in Chapter Four in Fortran for the IBM S360/65, it was first necessary to investigate the effects of step sizes and solution weights on the stability and rate of convergence of the iterative process before proceeding to determine those values for the empirical constants which would ensure the best possible agreement between calculation and experiment.

Since no particular difficulties have been found concerning the stability of the present calculations, no further consideration of this aspect of the solution scheme will be given in this chapter; some detailed observations relating to stability can be found in Appendix A8 however.

The choice of weights used in all the calculations to be discussed is shown in the last column of Table 4.6.1. Firstly it will be noticed that all the weights introduced arise in the two-dimensional scheme and so no fucther consideration need be given to this problem when three-dimensional calculations are being considered in Chapter Six. Although the values assigned to the weights \(\psi_{1}, \psi_{2}, \ldots \psi_{7}\) were decisive in determining the most satisfactory scheme (especially \(\psi_{1}, \psi_{5}\) ) the overall method was not particularly sensitive to any of these. The relaxation factor \(\psi_{8}\) however did prove to have a critical. effect on the rate of convergence of the calculation; \(\psi_{8}=0.75\) was found to produce the best overall results.

We must next consiler what values to assign to the empirical constants and determine the most efficacious effective viscosity model; an experiment ('E') of Schubauer and Spangenberg [26] was used as the original basis for this choice (Section 5.1). Because the constant \(k\) appears in both the logarithmic law of the wall and
5.0) contd.
in Prandtl's mixing length concept, initial tests were made to determine if this constant need necessarily be the same in its two applications. In order to obtain a smooth curve for the logarithmic law of the wall (equation (3.2.6)) from the computed velocity profiles, it was found that in both instances \(\kappa\) should be the same and that it could be taken to assume its usually accepted value of 0.41 . Similarly \(i t w\) as found that the constant \(A\) could satisfactorily assume its accepted value of 4.9. For the purpose of determining the log-point, the minimum value of \(\frac{\mathrm{zq}}{\nu}\) for which the logarithmic law of the wall could be assumed to be valied was taken to be 30 .

Some difficulty was encountered however while attempting to find a representation for \(\nu_{e}\) in the outer layer. Originally Clauser's representation for this region (equation (3.3.1)) was applied to the calculatio on of the above experiment. However, with the value of K quoted by Clauser ( 0.016 ) tine shape factor \(H\) did not increase quickly enoug, better results being given by \(K=0.011\). Since the empirical constants \(k, A\) are quite well determined, it was not considered unreasonable to adjust \(K\), which has little experimental verification, so as to ensure that the calculation agreed with experiment in this particular case. However when used to calculate anything other than retarding boundary layers this simple form for \(\nu_{e}\) in the outer layer was not found to give satisfactory results. In addition, neither of the simple alternatives considered, where the outer layer was variously defined
1) \(\quad e=k z \quad z \leq d \delta^{*}\)
\[
e=k d \delta^{*} \quad z \geqslant d \delta^{*}
\]
(where dis an empirical constant)
5.0) contd.
2)
\[
\begin{array}{ll}
\nu_{e}=\zeta & \zeta \leqslant \frac{K U \theta}{\nu} \\
\nu_{\mathrm{e}}=K U \theta & \zeta \geqslant \frac{K U \theta}{v} \\
\text { (cf equation }(3.3 .5) \text { where } K \text { is now a different } \\
\text { empirical constant) }
\end{array}
\]
were found to offer any improvemeat. To effect a remedy to this situstion it was decided to adopt equation (3.3.1) but to maize \(K\) dependent on the pressure gradient, consequently K was made a function of
\[
\begin{equation*}
\Gamma=10^{4} \quad \frac{\theta}{U} \quad \frac{d U}{d x} \tag{5.0.1}
\end{equation*}
\]
viz
\[
\begin{equation*}
K=0.016+0.00015 \mathrm{r} \tag{5.0.2}
\end{equation*}
\]

Equation (5.0.2) was formulated to ensure detailed agreement with experiment ' \(E\) ' of Schubauer and Spangenberg (Section 5.1). Equation (5.0.2) is highly tentative, and may quite easily be replaced in the computer progran by any other model that may be preferable, but has been found to give reasonable results in most of the calculations considered in this chapter.

The following sections of this chapter are then concerned with comparing the predictions of this calculation scheme with a number of experiments of varying boundary layer development. Also comparisons are made with predictions based on Head's methot. Head's method has been used partiy because a computer program was readily available for doing this and partly because the method has been shawn to give good results when considered in the light of boundary layer calculation methods at large. The actual program used to compute boundary layers using the entrainment approach was one developed by Rolls-Royce
5.0) contd.

Limited and inevitably the constants and empirical functions used are not identical to those proposed in Head's original formulation of the method. In addition it must be pointed out that this latter program firstly assumes as an initial condition that \(H=1.32\), so that the method could not be applied. to all the experiments considered and secondly, will not predict separation by predicting zero skin friction, this being avoided by the imposition of an upper limit on \(H(2 \cdot 7)\). Separation is generally assumed to have occurred just before this maximum is achieved.

\section*{5.1) Schubauer and Spangenberg.}

Schubauer and Spangenberg [26] investigated the effects of forced mixing (i.e. that induced by the introduction of fixed obstacles on the wall) on a boundary layer developing under an adverse pressure gradient leading to eventual separation. Three experiments (those denoted \(C^{\prime},^{\prime} D^{\prime},{ }^{\prime} E^{\prime}\) ), made in the absence of forced mixing, will be considered here. These experiments were concerned with incompressible flavs over a smooth flat wall and were, in the opinions of the autiors, accurately two-dimensional. Thompson [2] in his review claims that only experiment ' \(D\) ' is closely two-dimensional, altiough no more than slight discrepancies are exhibited by the other two. The experimental results for these three runs are plotted in figures (5.1.1.-9) together wi th the values recalculated by Thompson. No values for the skin friction are quoted in reference [26] the only indication being the comment that 'values of the local skin friction coefficients \(c_{f} \ldots\) were found to decrease monotonically from around 0.0032 at \(x=0\) to
5.1) contd.
is attributed to the fact that the dust method indicates the upstream extreme of a fluctuating separation point \({ }^{\prime}\).

Experiment ' \(E\) ' was, as has already been mentioned, used to determine values for the empirical quantities contained in the present calculation method and this should be borne in mind in the following comparisons between the present calculation method and experiment.

Included in figures (5.1.1-9) are predictions both of the present method and also calculations based on the method of Head. Both sets of calculations predict separation with reasonable accuracy in experiments \({ }^{\prime} C\) ' and ' \(D\) ' whereas, while predictions for experiment ' \(E\) ' tend toward separation at the required point, the present method recovers just before separation is achieved. Neither calculation is able to correctly predict the sudden increase in shape factor immediately prior to separation in ' \(C\) ' or ' \(E\) ' although it might be expected that the discrepancy here is caused by the three-dimensional effects indicated by Thompson, since in the experiment which was shown to be precisely two-dimensional ('D') H is predicted accurately.

Overall both methods agree quite closely and give reasonable agreement with experiment. The calculation based on the entrainment approach consistently predicts an \(R_{\theta}\) growth slightly greater than the present method, and similarly with \(H\) development to a less marked extent. On the basis of the three present comparisons it is difficult to say which is giving the better results.

Plotted in figure (5.1.8) is the \(H\) development predicted using \(K=0.011\) (the constant value chosen to ensure the best overall agreement with experiment and obtain separation
5.1) contd.
at the required point). It can be seen that in this case \(H\) increases too quickly over the first few feet and maintains this discrepancy throughout, and it was partly as an attenpt to remedy this that \(K\) was made dependent on the pressure gradient parameter \(\Gamma\) (equations (5.0.1,2)). In choosing the present model for \(K(\Gamma)\) a compromise had to be reached between letting (in experiment ' \(E\) ') the flow tend toward separation at \(x=16^{\prime}\) and allowing \(H\) to maintain the low values indicated by experiment for \(x>12^{1}\). The discrepancy still apparent may be attributable to a three-dimensional effect which occurred for \(x>12^{\prime}\). Although the agreement between predicted \(H\) for experiment ' \(E\) ' and experiment is not entirely satisfactory the present model for \(K(\Gamma)\) was retained on the basis of experiment 'D' which Thompson indicates is precisely two-dimensional and which the present method predicts very well even close to separation.

To conclude the discussion on the comparisons of the present theory witin the experiments of Schubauer and Spangenberg we make the following points
1) the predicted skin friction values exhibit, at the beginning of the calculation, a certain amount of scatter which, as can be seen from figure (5.1.6) (where the points represent the calculated values) are soon smootined out and the \(c_{f}\) curves given have been drawn through the mean values
2) all the experimental information shown in figures (5.1.1-9) has been taken from reference [2]
3) the fact that the \(R_{\theta}\) curves predicted by the present method agree more closely with the theoretical values calculated by Thompson (see Section 2.1) than with the experimental points would reinforce the conclusions made by Thompson concerning
5.1) contd.
3) contd.
the three-dimensional natures of the present flavs (see figures (5.1.1,7)).

\section*{5.2) Bradshaw and Ferriss.}

Bradshaw and Ferriss [27] investigated the effect of the sudden removal of pressure gradient on an equilibrium bound ary layer. The experiment was devised both as a severe test for boundary layer calculation methods and also to obtain detailed turbulence measurements on which to base future methods.

The equilibrium boundary layer investigated by Bradshaw and Ferriss was one which maintained a pressure distribution corresponding to \(U \alpha x^{-0.255}\) (the experiment was denoted by ' \(\mathrm{a}=-0.255^{\prime}\) ') and another experiment (denoted ' \(\mathrm{a}=-0.255 \rightarrow \mathbf{0}^{\prime}\) ') investigated the effect of the transformation of the boundary layer from this equilibrium flow in an adverse pressure gradient to eventual equilibrium in zero pressure gradient. This latter boundary layer was considered to be a particularly severe test of any calculation method since the flow was dominated by the advection of turbulent kinetic energy from upstream, so that the turbulent energy is unlikely to be dependent upon local conditions only.

The predictions or the present method and comparisons with experiment are shawn in figures (5.2.1-7). Head's method was not used to calculate this experiment because of the large initial H values involved. The \(\delta^{*}, \theta\) predictions are quite good in the equilibrium boundary layer, both increasing linearly from their initial values, although despite this the shape factor \(H\) is . in error and is predicted to have an equilibrium value of 1.71 compared with the experimental value of about 1.54. The experimental
5.2) contd.
skin friction values in figure (5.2.4) were measured directly. In the equilibrium boundary layer \(c_{f}\) is consid erably underestimated by the present calculation. The predictions shown in figures (5.2.1-4) for the experiment ' \(a=-0.255 \rightarrow 0\) ' are good particularly when it is remembered that it is this case which Bradshaw and Ferriss considered to be the severe test for calculation methods.

The experimental and predicted velocity profiles for boti experiments are plotted in figures \((5 \cdot 2 \cdot 5,6)\). In both cases a slight discrepancy introduced in the input velocity profile, as compared witin the experimental profile, at the outer edge of the boundary layer is progressively removed as the calculation proceeds, whereas error is being introduced near the wall. The point of inflexion in the velocity profiles is predicted quite well, although Bradshaw and Ferriss point out that it is not reproduced by Thompson's velocity profile fanily.

All the experimental velocity profiles measured by Bradshaw and Ferriss, corresp ond to the logarithmic law (equation (3.2.6)) with \(A=5.85\) whereas the present calculation was performed witin \(\mathrm{A}=4.9\). It was anticipated that this difference between theory and experiment might help account for the observed discrepancies in the calculated velocity profiles but a number of computer runs made wi th this amended value for A failed to produce any significant differences from the original calculation.

Bradshaw and Ferriss, as a means of emphasising the poor performance of a number of calculation methods, compared \(\theta \frac{\partial H}{d x}\) as predicted by the various methods with experimental values. The methods of Head, von Doenhoff and Tetervin, Spence and Maskell were considered. Figure \((5.2 .7)\) shows the predictions of Head's
5.2) contd.
method as reported in reference [27] and that of the present calculation. All the other methods listed above gave predictions for \(-\theta \frac{d H}{d x}\) less than that given by Head and on this comparison the present method fares very well.

In addition we may add that, in reference to the two-dimensional nature of the flow, Bradshaw and Ferriss noted that for the equilibrium flow the 'tunnel provides as good an approximation to the two-dimensional flow as one can expect in a tunnel of reasonable width' whereas with the flow ' \(\mathrm{a}=-0.255 \rightarrow 0\) ' they noted that 'after the removal of the pressure gradient the boundary layer started to diverge'.

\section*{5.3) Schubauer anả Klebanoff.}

Schubauer and Klebanoff [28] investigated the turbulent boundary layer developing over a simulated aerofoil with curved (convex) surfaces between \(x=0\) and \(x=7^{\prime}\) (radius of curvature \(23^{\prime}\) ) and between \(x=18^{\prime}\) and \(x=28^{\prime}\) (31' radius). Detailed measurements of velocity profiles together with turbulent shearing stress profiles were made up to separation. Reported val. ues for the surface shearing stress, obtained by extrapolating the turbulent shearing stress profiles to the wall, need in the opinion of Coles [ I 5 ] be reduced by \(31 \%\) because of the excessively large values obtaincd. In view of this experimental skin friction values will not be used here for the purpose of comparison. Thompson [2] considered that the flow was closely two-dimensional only in the initial regi on of favourable pressure gradient, and in the region of rising pressure \(\left(x>20^{\prime}\right)\) the \(f l o w\) was said to be 'less accurately two-dimensional as separation is approached'. The discrepancies between the two-dimensional the ory

\section*{5.3) contd.}
and experiment encountered by Thompson may be due in part to either the convergence of the flow or the downstream curved surface.

The predictions of the present method for this experiment are shown in figures (5.3.1-4). The experimental \(c_{f}\) values shown in figure \((5 \cdot 3.3)\) have been computed from the logarithmic law of the wall using the experimental velocity profiles. No noticeable discrepancies occur in the predicted momentum thickness until \(\mathrm{x}=24^{\prime}\) while H is evidentialy in error at \(x=20^{\prime}\). There is considerable scatter in the experimental skin friction values but it appears that the calculated value deviates from tine experimental as early as \(\mathrm{x}=14^{\prime}\).

Al so shown in figures ( \(5 \cdot 3.1-4\) ) are the curves obtained by treating the flow downstream of \(x=14^{\prime}\) as a plane of symmetry flow in which flow convergence has been introduced into the motion. The degree of convergence that has been imposed is simply that necessary to account for the observed discrepencies and in particular to induce separation at the required point. The convergence, as effected by a cross-flow velocity gradient on the plane of symmetry given by
\[
\begin{equation*}
\frac{\partial V}{\partial y}=-\frac{1}{3}\left(\frac{x-14}{5}\right)^{5}(/ \mathrm{sec}) \tag{5.3.1}
\end{equation*}
\]
was found to be sufficient to ensure reasonable overall agreement with experiment although \(\theta\) is now somewhat greater than that indicated by experiment. The computer program was used so that it assumed on the axis of symmetry ( \(y=0\) )
\[
\lim _{y \rightarrow 0} \frac{v}{V}=f\left(\frac{z}{\delta}\right)
\]
where the function \(f\) (which was taken from one of the three-
5.3) contd.
dimensional calculations to be considered in Chapter Six, and which was found to be of the same general shape for boundary layers developing in adverse pressure gradients) is plotted and tabulated in Appendix A7.

Velocity profile comparisons are shown in
figure (5.3.4). Predictions from the two-dimensional calculations are good even up to \(x=20^{\prime}\) but are in considerable error by \(x=24^{\prime}\). The velocity profiles as given by the axially symmetric calculation are in reasonable agreement with experiment overall.

The predictions for this experiment based on the entrainment method are in very close agreement with the predictions of the present method as given by the two-dimensional calculation.
5.4) Spangenberg, Rowland and Mease.

In an investigation into near separating flows Spangenberg, Rowland and Mease [29] made detailed mean velocity and turbulence measurements in two boundary layers (denoted 'A' and ' B ') in both of which the skin friction was maintained at small values over prolonged distances of a smooth flat wall. Experiment ' B ' was closer to separation i.e. smaller skin friction values (as given by the logarithmic law of the wall from the mean velocity profiles) were maintained, than experiment 'A'. The maximum pressure gradient that could be produced in the duct was introduced from \(x=0\) and then reduced so as to just prevent separation, altiough small areas of transitory stall still intermittent occurred along a large portion of the test surface length. of the two \(\operatorname{experiments}\) only experiment \(' A\) ' is simulated here. The experimental velocity distribution of experiment ' \(A\) ' was
5.4) contd.
empirically fitted by Spangenberg, Rowland and Mease to
\[
\begin{equation*}
U=94.92(x+0.83)^{-0.33}(f t / \mathrm{sec}) \tag{5.4.1}
\end{equation*}
\]

No attenpt has been made to simulate experiment ' \(B\) ' because as noted by the experimenters 'the differences between the two pressure distributions were of the same order as the reading errors and no consistent change was indicated'. Because of this the experimental data from both experiments has been plotted for comparison with calculation.

These predictions for experiment 'A' from both the present calculation and Head's method are shown in figures (5.4.1-4). The pertinent fact concerning the present simulation is the large difference between the predictions fof the two calculations. The prediction from the entrainment approach remains close to the experimental points for \(\mathrm{x}<80^{\prime \prime}\) but then fails to recover and separation is predicted at \(\mathrm{x}=110\) ". The present method tends overall to remain closer to the points corresponding to experiment ' A ' than experiment \({ }^{\prime} \mathrm{B}\) ' (al though the scatter of points in figure (5.4.3) does leave this matter in some doubt as far as \(H\) is concerned) and the flow is not predicted to separate until 190".

The present me thod then performs considerably better than Head's in this comparison, although as one might expect and a s indeed was intimated by Spangenberg, Rowland and Mease the classical boundary layer approximations are not entirely valid in near separating flows such as that considered here. In addition it must be pointed out that a characteristic of this type of flow is the presence of random cross-stream currents within the boundary
5.4) contd.
layer although 'checks on either side of the duct centre line showed essentially the same mean flow conditions across the duct'.

\section*{5.5) Conclusions.}

The present chapter contains a number of comparisons of the present theory with experiment and enables the adequacy of these predictions to be judged in the light of predictions as provided by a well-tried and, in the context of calculation methods at large, accurate calculation method, namely that due to Head. The predictions of the present theory are moderately good and are generally at least as good as those given by Head. The present theory has also provided realistic predictions of two experiments whic \(h\) both provide quite severe tests foc any calculation method viz Bradshaw and Ferriss's experiment in which the pressure gradient was suddenly removed from an equilibrium boundary layer and the near separating flow of Spangenberg, Rowland and Mease [27,29].

The main drawback inherent in attempting to determine the adequacy of the calculations presented in this chapter is the lack of any experimental quantitative information conceming the two-dimensional character of the flow. It would be extremely useful if in two-dimensional experimental investigations adequate consideration were given to this point.

CHAPTER SIX

THREE-DIMEINSIONAL CALCULATIONS

\section*{6.0) Introduction.}

We are nar in a position to be able to extend the predictions considered in Chapter Five to include both pseudo-three-dimensional boundary layers and three-dimensional boundary layers proper. Sections 6.1-4 are concerned with the pseudo-three-dimensional cases i.e. cross-flows exist within the boundary layers al though the flows are dependent on only two space variables. Sections 6.2-4 provide comparisons of the present theory with experiment while sections 6.1-3 also consider alternative methods of calculation. Section 6.5 is concerned with an axially symmetric laminar stagnation flow which is included as a check on the three-dimensional calculation method, while the next two sections consider the predictions of two three-dimensional boundary layers both concerning the secondary flow induced upstream of a circular cylinder mounted perpendicularly on a flat surface. The latter of the se two experiments (section 6.7) was intensively investigated and so enables some detailed comparisons between the ory and experiment to be made.

It will be recalled from Chapter Four that the extensi on of the two-dimensional calculation method to three dimensions entails two further assumptions concerning the flow. These are firstly, the existence of a planar velocity profile in the inner part of logarithmic region at the wall, as exemplified by Johnston's triangular model for the flow (section 3.5), and secondly that the shear stress acts in the same direction as the maximum rate of strain i.e.
\[
v_{\mathrm{ex}}=v_{\mathrm{ey}}
\]
(section 3.3). Further the definition of the effective viscosity paramoter \(K\) as defined as a function of \(\Gamma\) in equation (5.0.2) will be retained, but \(\Gamma\) will necessarily be amended as follows
6.0) contd.
\[
\begin{equation*}
\Gamma=10^{4} \quad \frac{\theta_{11}}{Q} \quad \frac{\partial Q}{\partial s} \tag{6.0.1}
\end{equation*}
\]

Equation (6.0.1) is thus a generalisation of equation (5.0.1) and reduces to it for two-dimensional flow. It was also found necessary however to impose a lower limit on \(K\) ( 0.007 ) in equation (5.0.2) since values of \(\Gamma\) encountered in the three-dimensional calculations were low enough to provide a nogative K from equation (5.0.2). The complete function \(K(I)\) is plotted in Appendix A7.

As in Chapter Five the section headings in this chapter will refer to the names of the original experimenters or, in the case of sections \(6.1,5\), to the original investigator of the particular theory considered.
6.1) Cumpsty and Head (1967).

Cumpsty and Head [30] in an application of their theory for calculating pseudo-three-dimensional boundary layers (section 2.1) considered the hypothetical case of an infinite swept wing for which they predicted boundary layer developments for a number of wing and flav configurations.

The swept wing was assumed to have, over the forward part of the chord, a region of constant freestream velocity (equal to that in the undisturbec. flow) followed by a region in whicin the chordwise velocity decreased linearly while the spanwise velocity remained constant. Measuring \(x_{\text {, }}\) normal to the leading edge, from the beginning of the region of adverse pressure gradient, the velocity components are given for \(\mathrm{x}>0\) by
\[
\left.\begin{array}{l}
U=Q_{0} \cos \alpha_{0}(1-\kappa x)  \tag{6.1.1}\\
V=Q_{0} \sin \alpha_{0}
\end{array}\right\}
\]
where \(Q_{0}\) is the undisturbed freestrean velocity, \(\alpha_{0}\) is the angle of sweep and \(k\) the velocity gradient. The wing being assumed infinite
6.1) contd.
the flow is independent of spanwise position (y).
The cases treated by Cumpsty and Head were those
He
listed in Table 6.1.1 all of which were calculated with following initial conäitions at \(x=0\)
\[
\begin{align*}
\theta_{11} & =0.00234^{\prime} \\
H & =1.41  \tag{6.1.2}\\
R_{\theta_{11}} & =2690
\end{align*}
\]

It was decided to simulate the same cases with the present theory to provide a check on the feasibility of the predictions provided by the solution scheme for a pseudo-three-dimensional flow.
\[
\begin{aligned}
& \text { As with Cumpsty and Head, the case } \\
& \alpha_{0}=35^{\circ}, \kappa=0.267
\end{aligned}
\]
was used as an initial test. The predictions from boti calculation methods for this flow are shown in figures (6.1.1-4), where \(\theta_{11}, H, c_{f x}\) and \(\beta_{0}\) devel opments have been plotted ( \(c_{f x}\) is the component of the resultant skin friction in the chordwise (i.e. x) direction and \(\beta_{0}\) is the angle between the freestream velocity and the limiting flow direction at the wall.) The two predictions agree reasonably well although the present calculation proceeds a little more slowly towards separation and consequently predicts a slower growth for \(H\) and \(\beta\). A typic al velocity profile from the present calculation ( \(x=1.2^{\prime}\) ) is shown in figure (6.1.5) where it has been plotted in terms of streamwise \(\left(u_{1}\right)\) and crossflow ( \(\mathrm{v}_{1}\) ) velocity components. The crossflaw component of velocity exhibits the typical shape for such a prefile and also the polar velocity plot ( \(v_{1}\) plotted as a function of \(u_{1}\) ) has its expected triangular shape. The dashed portion of this latter profile

\section*{6.1) contd.}
indicates the region within which the calculation method assumes a coplanar flaw i.e. corresponds to the region between the logpoint and the wall.

Those cases listed in Table 6.1.1 where the velocity gradient (parameter \(k\) ) is varied while the sweep \(\alpha_{0}\) remains constant are treated in figures (6.1.6-9). Again the present calculation predicts a later separation than the predictions of Cumpsty and Head, the discrepancy between the two calculations increasing as the velocity gradient parameter is decreased. The momentum thickness predictions whife
are in close agreement as before, and the shape factor development as given by the present calculation is consid erably lower than that calculated by Cumpsty and Head even allowing for the later separation in the present method. Separation however occurs at approximately the same value of \(H\) owing to the very rapid increase in \(\frac{\partial H}{d x}\) in the present method as separation is approached.

It must be appreciated that the process of separation encountered in all the cases treated so far in this section is radically different from that observed in two-dimensional separation. Separation is caused essentially by the curvature of the streanlines. because the paths folloved by particles of the fluid near the wall are deflected towards the spanwise direction so that all such particles at different spanwise posi\%ions are being deflected towards a common streamline, Separation must thus occur along this line. Shape factors encountered at separation in such an instance, as is borne out by tine present calculations, are thus less than those met with in twodimensional separation since the streamwise component of skin friction \({ }^{c} \rho_{1}\) does not in the former case necessarily tend to zero. Considering nor the effects of varying the angle of sweep of the wing while the velocity gradient remains constant, we
6.1) contd.
see that a marked difference in predicted behaviour exists between the two calculations as is shown in figures (6.1.10-13). With increasing sweep the entrainment calculation predicts that the separation point will first move domstrean and then upstream again(as \(\alpha_{0}\) is increased). The present theory on the other hand predicts a slight upstream movement of the point of separation as \(\alpha_{0}\) increases for smaller angles of sweep, and then a more marked downstrean movement for larger angles. The present theory moreover shows a more complicated behaviour pattern as can be seen from \(\theta_{11}, c_{f x}\) predictions given in figures (6.1.10,12). Both predictions show momentum thicknesses to be largely independent of sweep ancle, very little variation occurring for \(\mathrm{x}<1.0^{\prime}\), while the development of shape factor is markedly different for the four sweep angles considered, the present theory indicating a slower H growth as before. The crossflow angles predicted by the two calculations agree only in the magnitude of the angles to be expected while the pattern of behaviour encountered as \(\alpha_{0}\) is increased differs considerably (see figure (6.1.13)).

As can be seen from equation (6.1.2) the boundary layers as calculated by Cumpsty and Head were dependent on \({ }^{\mathrm{R}} \theta_{11}, \theta_{11}, H\) only for initial conditions. It was thus thought necessary in the present investigation to determine if the same were true here and consequently the case \(\alpha_{0}=0^{\circ}, k=0.25\) was rerun with \(v, U, V\) all doubled. At \(x=1.3^{\prime} H\) was found to have varied by \(0.0005, c_{f x}\) by \(10^{-6}\) and \(\theta\) by \(1 / 40 \%\).

While considering the problem of the infinite swept wing it was thought worthwhile to further test the capabilities of the present method of calculation by considering an additional hypothetical flow, namely that in which a 'cross over' profile exists.
6.1) contd.

Such a profile may occur when the curvature of the external streamline changes sign so that the external flow induces in the boundary layer a crossflow contrary to that initially present. The result is, when the change in curvature is rapid enough, that within the boundary layer two separate crossflows, acting in opposite directions, exist. The newly imposed crossflow is introduced at the wall and gradually extends its influence outward. until the original crossflow is entirely removed. It was found that wit: the present calculation scheme such a situation arose when in equations (6.1.1) with \(\alpha_{0}=35^{\circ}\) the velocity gradient parameter \(k\) was made dependent on \(x\) as follows
\[
k=1-x .
\]

The external streamline for this flow then possesses a point of inflexion at \(\mathrm{x}=0.5^{\prime}\). With the same initial conditions as used previously (i.e. as given by equation (6.1.2)) this flow was calculated as far as \(x=1.2^{\prime}\); the predictions are plotted in figure (6.1.14). The usual parameters \(\theta_{11}, H, c_{f x}, \beta o\) have - been plotted for completeness although for the present purpose only the crossflow angle \(\beta_{0}\) is relevant. The curvature of the streamline upstream of the point of inflexion decreases progressively so that the crossflav angle \(\beta_{0}\) begins to decrease well before it is actually reached, and would be expected to tend assymptotically to zero if no further curvature were introduced. However since the curvature of the external. flow changes sign \(\beta_{0}\) is to be expected to also change sign and, as can be seen from figure (6.1.14), \(\beta_{0}\) passes through zero at \(x=0.83^{\prime}\) and begins to increase in magnitude again as the flow continues downstrean.

If such a flow were calculated using the usurl assumptions implicit in the entrainment calculations for three-
6.1) contd.
dimensional boundary layers (section 2.1) it would be necessary to assume that the flar in fact was coplanar at the point where \(\beta_{0}=0\) and that the reversed crossflow is introduced only after the original crossflow is removed. An examination of the velocity profiles obtained in the present calculation would indicate that this is far from the truth.

In figure (6.1.15) streamwise and crossflow velocity profiles are plotted for \(x=0.6^{\prime}, 0.9^{\prime}, 1.2^{\prime}\) and it can be seen that at \(\mathrm{x}=0.9\) ' a definite 'crossover' crossflow profile exists. It has of ten been postulated that the polar plot of such a 'crossover' profile would be expected to exhibit a double triangle (i.e. approximate to three straight lines) but the prediction of the present calculation indicates that this is in fact not so (see figure (6.1.15)). It can also be seen that even after the crossover profile has been removed there is some delay before the outside edge of the Johnston's triangle is reinstated as a straight line. A more detailed selection of polar plots is given in figure (6.1.16) where the profiles at \(x=0.75^{\prime}\left(0.05^{\prime}\right)\) have been plotted. One minor point to be noticed from this figure is that the assumption at the wall ô̂ a coplanar velocity profile might now be called into doubt for the purpose of the present calculation (see the profile at \(\mathrm{x}=0.75^{\prime}\) ). However this assumption seems generally to have coped with the situation quite well and even so it would be possible to remove this assumption and replace it by a more general one for such a situation as this.

Figure (6.1.17) shows the limiting streamline at the wall and in the freestream for this latter flow. The point of appareut is inflexion of the external streamline is shown and also the point of zero crossflow angle \(\beta_{0}\) (where the two streamlines are parallel).
6.1) contd.
for the boundary layer flow over an infinite swept wing (for which predictions with experiment are given in the next two sections) and also proviied a very convincing explanation of the behaviour of the flow within the boundary layer in which there is a severe point of inflexion in the extermal streamline.

\section*{6.2) Cumpsty and Head (1970).}

As a means of estimating the effectiveness of the boundary layer calculations performed by Cumpsty and Head [30] and discussed in the last section, an attempt was made to simulate experimentāly an infinite swept wing. Cumpsty and. Head [8] consequently measured the flow over a wing of \(18^{\prime \prime}\) chord swept at \(61^{\circ}\), in a wind tunnel of \(48^{\prime \prime}\) working section width. Mean velocity profiles were measured downstream of the line of minimum pressure up to the separation line at two spanwise positions.

The predictions for this experiment based on the present theory are shown in figures (6.2.1-3) where some predictions of Cumpsty and Head have also been included (the experimental. results included in these figures (circles) are those obtained with the 'slender traverse gear'). Figure (6.2.1) shows the predictions of both methods when infinite swept wing theory is used, not only to infer spanwise independence of the flow, but also to determine - the direction of the mainstream flow since only the magnitude of the velocity of the flow has been recorded experimentally . The 'down stream'pressure distribution has been used in both calculations). For both calulations the assumption that the \(V\) component of velocity is constant over the chord and equal to that at the leading edge \(\left(V_{l e}\right)\), leads to an inadequate explanation of the \(f l o w\) since the
6.2) contd.
rates of change of all parameters plotted \(\theta_{11}, H, c_{f x} \beta_{0}\) are underestimated, the present calculation giving the poorer of the two predictions.

In an attempt to reduce the discrepancy between the experimental results and their calculations Cumpsty and Head imposed an additional spanvise velocity (a \(5 \%\) increase in \(V\) was introduced, the pressure distribution remaining the same) on the flow in order to reconcile the observed and predicted momentum thickness ( \(\theta_{11}\) ) development. This assumption produced a slight improvement in shape factor development and considerably improved that of \(\beta_{0}\) as is shown in figure (6.2.2). The present theory, in conjunction with the same assumption \(V=1.05 \mathrm{~V}_{\text {le }}\), also predicts an improved \(\theta_{11}\) development, al though the changes in \(H, \beta_{0}\) are here only slight. There is however some movement towards the separation of the flow.

Figure (6.2.3) shows the various displacement and momentum thicknesses which are dependent on the crossflow as determined by experiment and also as calculated by the present theory. The various thicknesses shown have been predicted better then the \(\beta_{0}\) comparisons shown previously would indicate, as is also the improvement in prediction achieved by increasing the crossflow from \(V=V_{l e}\) (curve 1) to \(V=1.05 V_{l_{e}}\) (curve 2). The assumption that the flow over the experimental arrangement is equivalent to the theoretical infinite swept wing is obviously suspect. Apart from the problem of how to determine the direction of the flow outside the boundary layer when only the resultant velocity there is known, we need obviously consider the possibility o \(\hat{i}\) a spanwise dependence of the flow. Cumpsty and Head measured the pressure distributions across the chord at two spanwise
6.2) contd.
positions (denoted 'upstream' and 'downstream') anl the difference in the static pressure coefficient \(c_{p}\) was found to be as much as 0.04 at the point of minimum pressure and 0.08 at the trailing edge. It was thought more realistic within the present calculation scheme to introduce this observed spanwise pressure gradient into the calculation rather than proceeding to investigate further the effects of different assumptions for V in the pseudo-three-dimensional context.

Two attempts have been made to reconcile theory and experiment by introducing the difference in static pressure at the two spanwise positions. Both cal culations were computed using a three-dimensional mesh and imposed on the flows considered above spanwise gradients in \(U, V\) respectively sufficient to account for the encountered pressure discrepancies. A spanwise veloci ty gradient in \(U\) had a slight effect, largely at the trailing edge, but in the reverse direction to that required. A similar gradient in \(V\) produced no significant change in predicted developments.

We conclude therefore that theory and experiment can largely be reconciled by an overall increase in spanwise velocity, while the experimentally observed spanwise pressure gradient could not readily be used to explain the still apparent discrepancy in shape factor development. This latter discrepancy might still be attributable to some variation in the direction of the flow in the mainstream not already considered although it would appear that the fault more likely lies with the calculation schemes considered.
6.3) P.D.Smith.

The experiments of P.D.Smith [7] were, as was that considered in the last section, concerned with a simulated
6.3) contd.
infinite swept wing. The measurenents (mean velocity profiles) were made on the lower surface of a flat plate below which there was fixed a porous circular cylinder fitted with a Thwaites flap. Boundary layer saction was applied to the circular cylinder to prevent separation on the cylinder. The different experimental configurations were obtained by varying the inclination of the Thwaites flap ani the distance between the plate and cylinder; all experiments were performed with both the plate and cylinder inclined at \(26 \frac{1}{2}^{\circ}\) to the mainstream flow.

Only three of the nine runs investigated by Smith are considered here, these are 'runs \(7,5,6\) ', the experimental results for which are shown in figures (6.3.1-3). Also included in these figures is one set of predictions calculated by Smith. This prediction, shown by the dashed line ('method 3' as denoted by Smith) is based essentially on the entrainment approach and assumes a power profile for the streamwise velocity and Mager's relation (equation (2.1.7)) for the crossflow. 'Method 3' gave the best results overall of the six calculation methods (all integral methoas) considered by Smith. The solid lines in figures (6.3.1-3) are the predictions for the flow based on the present theory.

Both predictions indicate slightly exaggerated momentum thickness \(\left(\theta_{11}\right)\) grow ths, the two calculations giving very similar results. Shape factor predictions based on the present method are poor and only in the severest flow ('run 6') is H predicted at all well and even then the calculation tends to separation at the trailing edge, a feature not exhibited by the experiment. Crossflom angle predictions from both theories are reasonable.
6.3) contd.

The tendency for the present calculation to overestimate shape factor devel opment is the reverse of that noted in the swept wing considered in section 6.2 , al though as there the effectiveness of the calculation scheme is obviously confounded with any extraneous three-dimensional effects within the experiment. Since in section 6.2 no such effect could be shown to explain the discrepancy in \(H\) predictions we are inevitably led to expect the same here. Indeed the sweep of the wing in the present case is not as severe as tinat considered previously and so presumably the flow is more reliably pseudo-three-dimensional.

The mainstream velocity distribution used in the present calculation was, as in section 6.2, based on the use of infinite swept wing theory to determine the direction of the flow. No data has been puolished in the present case to establish the pseudo-three-dimensional nature of the flow.

\section*{6.4) Hoadley.}

The experiment of Hoadley [31] was concerned wi th the flow in a diffuser in which swirl had been introduced into the motion. The dimensions or the experimental arrangement are shown in figure (6.4.1); the mean velocity profiles were measured at the axial positions shown.

The present theory predicts this flow quite well as is shown in figures \((6 \cdot 4 \cdot 2-5)\). The curves in the se graphs were computed using the velocity distribution measured by Hoadley. Both the magnitude \(Q\) and the deviation from the axial direction \(\alpha_{0}\) of the mainstream velocity field were measured; the values are shown tabulated in Table 6.4.1. It can be seen that the \(\alpha_{0}\) values possess
6.4) contd.
a great deal of scatter and since it is the rate of change of this quantity that will determine the development of the crossflow within the boundary layer the possibility of being able to predict this aspect of the flow does not seem very encouraging. Resolving \(Q\) into its components \(U, V\) we see these values appear more reasonably distributed and it was from a linear interpolation of these values that the prediction was calculated.

The main discrepancy oetween the ory and experiment is the marked increase in rates of change of the boundary layer parameters as separation is approached which results in separation being predicted before it is achieved experimentally. The scatter in the data could obviously have been the reason for the excessive \(\beta\) o predictions which in previous calculations has been predicted some what more accurately.

The results ootained here are obviously very encouraging since the likelihood of extraneous three-dimensional effects in the present experimental arrangenent are much less than those encountered in the infinite swept wing simulation.

\section*{6.5) - Froessling.}

As a check on the finite difference approximations to the three-dimensional boundary layer equations (1.1.10-12) it was decided to simulate a laminar boundary layer for which a known solution existed. That chosen was the axisymmetric stagnation flow against a flat surface [I] which, since the calculation was performed over a rectangular grid, was three-dimensional as far as the present calculation scheme was concerned.
6.5) contd.
N.Froessling [32] solved the complete NavierStokes equations for this flow but, because the terms which are deleted in the course of the boundary layer approximations cancel of their own accord from the Navier-Stokes equations, the problem can equal.ly be treated as a boundary layer flaw. In the latter case if the mainstream potential distribution is assumed to be given by ,
\[
U=a x \quad V=a y
\]
it is possible to write the velocity components within the boundary layer as
\[
\begin{aligned}
& u=a x \phi^{\prime} \\
& v=a y \phi^{\prime} \\
& w=-2 \sqrt{2 v} \phi
\end{aligned}
\]
where \(\phi\), a function of \(\zeta\)
\[
\zeta=\sqrt{\frac{a}{v}} z,
\]
must satisfy
\[
\phi^{\prime 2}-2 \phi \phi^{\prime \prime}=1+\phi^{\prime \prime}!
\]
with the boundary conditions
\[
\begin{array}{ll}
\zeta=0 & : \phi=\phi^{\prime}=0 \\
\zeta=\infty & : \phi^{\prime}=1
\end{array}
\]

Froessling has tabulated the functions \(\phi, \phi^{\prime}\). Although, as mentioned above, the flow is three-dimensional as far as the present calculation is concerned it is obvious from the above considerations that boundary layer is both coplanar and of constant thickness. The boundary layer was solved by starting the calculation at a point slightly away from the stagnation point and by inputing a sine profile as a first approximation to the streanwise velocity profile. The calculation was then continued
6.5) contd.
downstream until the \(\phi, \phi^{\prime}\) profiles had settled down to the fifth signficant figure and the solutions at individual faces were convergent to a tolerance of \(10^{-13}\). The \(\phi, \phi^{\prime}\) profiles obtained are plotted in figure (6.5.1) and tabulated in table 6.5.1.

The difference between the \(\phi\) computed here and that calculated by Froessling is as little as \(1 / a 0 \%\) at \(\zeta=3.6\) where it must be remembered in the present calculation \(\phi^{\prime}\) is calculated directly and then integrated to obtain \(\phi\), so that any error in \(\phi\) at the edge of the boundary layer is the accumulation of those arising in \(\phi^{\prime}\) in the boundary layer. The present comparison thus verifies the adequacy of the finite difference scheme used in the present calculations.

\section*{6.6) Hornung and Joubert:}

Hornung and Joubert [13] investiaged experimentally the secondary flow within the boundary layer upstream of a cylinder mounted perpendicularly on a flat plate. This experiment, as is that to be considered in the next section, is one of the few instances in which detailed mean velocity profile measurements have been made in a three-dimensional turbulent boundary layer.

The flat plate on which the boundary layer was developing, was \(20^{\prime}\) long and approximately \(5^{\prime}\) wide at the position of the model. The model was of semi-circular section (22" diameter) on the upstream side and faired at the rear. It was mounted \(17^{\prime}\) from the leading edge of the plate.

The effect of the model was to induce a region of recirculation upstream and it was over the region prior to separation that the mean velocity and yaw profiles were measured. The precise positions wiere the experimental measurements were made is shown in figure (6.6.1).
6.6) contd.

The present calculation of this flow has been performed over the mesh shown in figure (6.6.1) over which the mainstream flow was assumed to be approximated to by the potential flow about a near circular cylinder between parallel walls as given by Kennard [33]. The velocity components for this flow are given in Appendix A9. As can be seen in figure (6.6.1) the solution was started at \(\mathrm{x}=-4^{\prime}\) where planar velocity profiles were input, the same profile being used at all sections across this face. The solution was matched on the axis of symmetry at \(x=-2.125^{\prime}\) to the experimental data; both the initial conditions and potential distribution were amended to ensure agreement at this matching point. In addition, to effecting a solution using the present scheme, it was necessary to impose as boundary conditions v distributions outside the boundary planes \(\mathrm{y}=0^{\prime},-2^{\prime}\). The symmetry condition was used at \(y=0^{\prime}\) and at \(y=-2^{\prime}\) two alternative boundary conditions were considered, viz.
\[
\begin{align*}
& \frac{v}{V}=f(z)  \tag{6.6.1}\\
& \frac{v}{V}=(1+\alpha y) f(z) \tag{6.6.2}
\end{align*}
\]

These conditions allowed the \(v\) profiles outside the solution space to be calculated iteratively from the solution witnin the space at the same \(x\), i.e. \(\alpha\) and the function \(f\) were obtained by ap plying either of the two above boundary conditions as a condition of continuity on the \(\frac{V}{V}\) profiles. While these alternative conditions gave virtually the same results when used in the calculation scheme the latter was found to give a more favourable explanation of the behaviour of \(v\) across the boundary \(y=-2^{\prime}\), and was retained for the purpose of the present calculation.

The calculation was performed over nine sections at each face, while the configuration of points at each section was the same as that detailed in Appendix A8; the program computed 18 solution faces in 8.3 mins on the IBM \(\mathrm{S} 360 / 65\) before rexhing separation. Once separation is reached at any section on a solution face the calculation method breaks down for all sections on that face.

Detailed comparisons between the ory and experiment are given in figures ( \(6 \cdot 6.2-9\) ) where boundary layer parameter \(\left(\theta_{11}, H, c_{f}, \beta_{0}\right)\) comparisons are made at sectional planes \(y=0^{\prime},-0.5^{\prime},-1^{\prime}\) and \(x=-2.125^{\prime},-1.75^{\prime}\) and velocity profile comparisons at all positions where the above two sets of planes intersect. The disposition of points and planes where comparisons have been made are also shown in figure (6.6.1).

Before proceeding to discuss the se predictions we will repeat that the solution was started at \(x=-4^{\prime}\) wi th uniform initial conditons with respect to \(y\) and zero cross flow. The mainstream distribution used was the potential distribution about a near circular cylinder between parallel walls (Appendix A9) and the boundary conditions used were the symmetry condition at \(y=0^{\prime}\) and equation \((6 \cdot 6.2)\) at \(y=-2^{\prime}\). The solutionwas matched so as to agree with experiment at \(\mathrm{x}=-2.125^{\prime}, \mathrm{y}=0^{\prime}\).

Figure (6.6.2) would suggest that the present the ory has indicated separation at approximately the correct point although \(\theta_{11}, H\) are developing a little too quickly along the axis of symmetry. The correct pattern of behaviour has been predicted as \(y\) increases in magnitude (figures (6.6.2-4)). Predictions for \(\theta_{11}\), H show development being retarded as we move away from the axis of symmetry and also the commencement of a region of increase in skin
6.6) contd.
friction with increasing \(x\) at \(y=-1\), both of which are in agreenent with experiment. Crossflow angles are also being predicted competently altiough at \(y=-1^{\prime} \beta_{0}\) is underestimated by some \(33 \%\).

Considering comparisons at \(\mathrm{x}=\) constant planes figures \((6.6 .5,6)\) we can see that the shape of all the proriles has been predicted quite well. The main shortcoming again is in the underestimation of the crossflow angle \(\beta\) o. It is relevant to note for the purpose of the se comparisons that the increment \(g\) for the \(y\) direction was \(0.25^{\prime}\). Both calculation and experiment indicate with \(y\) increasing both \(\theta_{11}, H\) tending to a constant value at each plane. The slight difference between theory and experiment here might obviously be accounted for by the presence of some additional effects caused by the presence of the wind tunnel walls. In this respect it might also be noted that the effect of the region of recirculation upstream of the cylinder appears to have had little effect upon the mainstream velocity distribution in this region.

Figures \((6.6 .7,8)\) shaw the experimental and computed mainstream and crossflow velocity distributions for \(y=-0^{\prime},-0.5^{\prime},-I^{\prime}\) at both \(x=-2.125^{\prime}\) and \(x=-1.75^{\prime}\) respectively. The run numbers included are those assigned by Hornung and Joubert. Streamwise velocities are predicted quite well while the crossfllow profiles are underestimated at \(y=-l '\) as would be expected from the observation made above concerning \(\beta_{0}\). A slight assymmetry of the flow is also apparent from the experimental data.

Figure ( 6.6 .9 ) shows comparisons between calculated and experimental polar plots. The plots at \(y=-0.5^{\prime}\) are in error
6.6) contd.
only at the wall while the plots for \(\mathrm{y}=-1\) ' show an overall discrepancy. The two sections of the curves corresponding to the present calculation in figure (6.6.9) relate to the calculated velocity profile and the assumed planar profile between the log-point and the wall respectively.

It must be pointed out that more correctly the solution scheme demands that the initial condition be specified across the initial solution face and not just at one section on it as was done here. This point might very largely explain the discrepancies encountered in the \(\beta_{0}\) predictions (see figures \((6 \cdot 6.4,5)\) ). In view of this the present calculation has provided excellent agreement witi experiment.

This experiment has also been simulated by Nash [12] who solved the turbulent energy equations (section 2.2). Nash started his calculations at \(x=-7^{\prime}\) in a manner similar to that employed here and matched calculation to experiment at the same point. The crossflows as predicted by Nash were underestimated by the same order of magnitude as those in the present calculation.

\section*{6.7) East and Hoxey.}

The experimental arrangenent investigated by East and Hoxey [22] was very similar to that \(\infty\) nsidered by Hornung and Joubert (section 6.6). The model used had a semicircular leading edge of \(24^{\prime \prime}\) diameter and was mounted on a flat plate of \(9^{\prime} 9^{\prime \prime}\) width. The experimental measurements were considerably more intensive than those of Hornung and Joubert as can be seen from figure (6.7.1). This enabled the experimental mainstream velocity distribution to be used as a basis for the calculation to be considered below and also meant that the calculation could realistically
6.7) contd.
be matched to the observed conditions across a \(x=\) constant plane.

Figure (6.7.1) shavs the mesh over which the caiculation was developed. Uniform mainstrean velocity profiles were input at \(x=-40^{\prime \prime}\) and the solution was then continued to \(x=-30^{\prime \prime}\), the mainstream velocity distribution being basically that obtained by extrapolating from the experimental distribution for \(x>-30\) " but was modified slightly (together with the initial conditions) to produce the correct H, \(\theta_{11}\) distribution at \(x=-30 \prime\). Beyond \(x=-30 \prime\) the solution was continued up to separation using the experimental velocity distribution.

Equation (6.6.2) and the symmetry condition were used as the respective boundary conditions as outlined in section 6.6. Ten sections were used at each face while the array of points used at each section was again the same as that used in section 6.6. The program computed 28 solution faces up to separation in 14.35 minutes on the IBM. S360/65.

The comparisons between theory and experiment shawn in figures (6.7.2-14) are at the sectional planes indicated in figure (6.7.1) where the circles represent the experimental points. The usual boundary layer parameters \(\theta_{11}, H, c_{f}, \beta_{0}\) are shorn plotted in figures (6.7.2-8) at \(y=0,3,6,9\) ",\(x=-30\), \(-26,-23^{\prime \prime}\), while figures (6.7.9-14) show predictions for the crossflow boundary layer thicknesses \(\delta_{2} *, \theta_{12}, \theta_{22}\). For convenience when plotting \(\beta 0, \delta_{2}{ }^{*}, \theta_{12}\) changes in sign across the plane of symmetry have been ignored and instead where the sign of the experimental quantity is the opposite of that shown a vertical line has been
- drawn through the circle at that point. Figures \((6.7 .6,12)\) shaw
6.7) contd.
both these sets of parameters plotted at the plane where theory was matched to experiment. With respect to \(\theta_{11}\) a marked assymmetry of the flow is apparent and the calculation was necessarily matched to the average for both sides of the plane of symmetry. As is readily apparent the crossflow at this initialising plane is less than that indicated by experiment; an attempt was made to account for this by imposing a crossflow at \(x=-40^{\prime \prime}\) but this was found to produce a marked change in \(\theta_{11}\) at \(x=-30 \prime\) and it was not possible to readjust the pressure distribution for \(x<-30^{\prime \prime}\) to remedy this in the limited time available. However, as was the case in previous comparisons, the crossflow is being predicted somewhat more accurately than the crossflow angle \(\beta_{0}\) predictions would indicate.

The comparisons of \(\theta_{11}, H, c_{f}, \beta_{0}\) at the \(y=\) constant
planes show that the correct type of behaviour is being predicted. The movement towards the separation of the flow along \(\mathrm{y}=0\) is not being predicted to occur as quickly as the experiment although at the other \(y=\) constant planes \(c_{f}\) predictions are closer to experiment. Crossflow angles \(\beta_{0}\) on the other hand are being quite seriously underestimated. The overall behaviour here is not much different from that found in the experiment of Hornung and Joubert.

Considering now the same parameters at sectional
planes \(x=\) constant. Firstly we notice here a slightly
different type of behaviour to that encountered in the last section, although in the present problem it must be
6.7) contd.
remembered that the area of the wall of interest is somewhat more restricted than that considered previously. The most apparent difference is that whereas before the momentum thickness \(\theta_{11}\) attained a maximum on the plane of symmetry and then tended to a constant value as we moved away, here we observe that \(\theta_{11}\) on the plane of symmetry attains a minimum and then a maximum at some short distance away. This would appear to be due to the relative remoteness of the wind tunnel walls in the present flow so presenting less resistence to the divergence of the flow on the plane of symmetry. The assymmetry of the flow at \(x=-23^{\prime \prime}\) is more marked than that further upstream as is the error in the crossfll ow angle \(\beta_{0}\).

With respect to the boundary layer thicknesses \(\delta_{2}^{*}, \theta_{12}, \theta_{23}\) plotted in figures (6.7.9-14) it would appear that the greater part of the discrepancies here can be traced to the incorrect initial condition at \(x=-30^{\prime \prime}\), and it can be seen that the correct type of behaviour is being predicted overall.

With respect to the data shown plotted in figures (6.7.2-8) the skin friction values at \(y=3,9^{\prime \prime}\) and \(x=-23^{\prime \prime}\) have been obtained by averaging the experimental values at the planes one inch on eifer side of the plane concerned and all the experimental \(c_{f}\) values plotted are those obtained by Preston tube measurements.

There is also some need to point out here that
6.7) contd. no attempt was made in the present calculation to ensure the irrotationality of the mainstream flow (section l.1) for \(x<-30^{\prime \prime}\). The result of this was that although the velocity profiles settled down assymptotically at the edge of the boundary layer, at the last one or two points a slight twist in the velocity vector \(q\) was apparent. This effect increased as \(x\) increased within the range \(-40^{\prime \prime}<x<-30^{\prime \prime}\) to a maximum of \(1^{\circ}\) at \(x=-30^{\prime \prime}, y=9^{\prime \prime}\) and then decreased for \(x>-30^{\prime \prime}\). Al though the effect of this pecularity on the calculation, scheme was probably very slight it was necessary to take it into account when analysing the crossflow velocity profiles and consequently for this purpose it was necessary to ignore a few outer points.
6.8) Conclusions.

Chapter Six contains comparisons between the present theory and both experiment and alternative theories for three-dimensional and pseudo-three-dimensional boundary layer flows.

With regard to the pseudo-three-dimensional flows the present theory although apparently able to predict momentum thickness \(\theta_{11}\) and crossflav development with reasonable competence, was in error in calculating shape factor development. This deficiency could not be attributed to extraneous spanwise velocity gradients although it•may still have been caused by a deviation of the flows from infinite
6.8) contd.

However since P.D.Smith's extensions to Head's entrainment calculation predict \(H\) quite well for this flow this is thought unlikely to be so. The other possibility is that the model employed for the effective viscosity in the present calculations is at fault. Improvements in this model, in the two-dimensional context, should be further investigated although the lack of proven reliable two-dimensional experiments makes this not altogether an easy matter. Crossflows have been predicted with reasonable accuracy thus confirming the plausibility of the three-dimensional effective viscosity model i.e.
\[
v_{\mathrm{ex}}=v_{\mathrm{ey}}=v_{\mathrm{e}}
\]

The two three-dimensional turbulent boundary layer flows considered have provided good agreement between theory and experiment. It would appear that although there is a tendency in these calculations to underestimate the crossfilow angle \(\beta_{0}\) this same tendency is not exhibited in the crossflow thickness \(\delta_{a}{ }^{*}\) predictions which are calculated reasonably well.

The present work has been concerned with the extension of existing two-dimensional turbulent boundary layer calculation methods to three dimensions. It was decided to employ the effective viscosity approach within the present calculations basically because it provided the method which required the least empirical information both to establish the two-dimensional calculation and then to extend this to three dimensions. Although the mixing length concept is generally recognised as a plausible model for the flow away from both the wall and freestream it was necessary to assess thoroughly the capability of the model in the outer edge of the boundary layer. As a result a simple model of the flow wasdeveloped for the outer layer (see Appendix A7) from a two-dimensional retarding boundary layer and was consequently used as the basis of all the calculations considered here (in both two and three dimensions).

The two-dimensional calculations presented here have provided reasonable agreement with experiment and compared favourably with predictions for the same experiments as provided by Head's entrainment method. The pseudo-three-dimensional calculations have proved to provide the same measure of agreement with experiment although here the predictions for the infinite swept wing, presumably because of the inapplicability of the effective viscosity model to this type of flow, gave disappointing shape factor predictions. The two experimental three-dimensional turbulent boundary layers considered (both of the retarded flow type essentially) gave good agreement with experiment. The crossflow thickness \(\delta_{2}^{*}\) was calculated quite well though the crossflow angle \(\beta_{0}\) was seriously underestimated. The present investigation nevertheless shows the feasibility of computing three-dimensional
flows with the aid of only a few simple assumptions for the extension of the two-dimensional computation scheme, and the present finite difference scheme provides a good framework on which to calculate the three-dimensional turbulent boundary layer.

The only other attempt made to calculate the turbulent three-dimensional problem, to the knowledge of the present author, was by Nash who solved the turbulent energy equation and the few indications that there are in the literature point to the fact that both methods are predicting crossflows with the same accuracy.

The present calculation scheme employs a streamline type of transformation which allows the iterative scheme which has been developed to calculate the iterated \(u, v\),velocity profiles at each section (a line through the boundary layer perpendicular to the wall) independently of each other and independently of the same profiles at adjacent sections along the same marching plane. This has the advantage that the resulting set of linear algebraic equations that have to be solved, as well as being tri-diagonal, will have the same number of unknowns at each solution as the number of points at each section. The equations relating the unknown \(u, v\), velocity component profiles at any section moreover are the same (i.e. the equations relating the \(u\) 's are the same as those relating the \(v^{\prime} s\) ) the differences appearing only on the 'right hand sides'. Both profiles can thus be calculated simultaneously. The finite difference scheme used has been substantiated by comparison to a laminar boundary layer for which an analytic solution exists. The boundary condition at the wall in the turbulent case has been verified in that it provides accurate predictions for the cofficient of skin friction.

The included computer program provides an efficient.
computation scheme; three section iterations were computed per second on average on the IBM \(S 360 / 65\), seven iterations per step were required
on average once the calculation had settled down and while the calculation was not close to separation. A realistic threedimensional boundary layer calculation takes of the order of ten minutes. In addition if a two-dimensional version of the present progran were produced both the computer storage and running time would be considerably reduced for that problem (the established values for the solution weights might also be written implicitly into the program to the same effect). The program has been structured in such a way as to allow alternative effective viscosity models to be readily incorporated should this be desirable.

It would also facilitate easier use of the enclosed progran, especially for three-dimensional calculations, if some means were incorporated into the progran for setting up the velocity profilos at the commencementof a calculation. There is also an obvious need for having the effective viscosity model used here more broadly based and taking into account more varied boundary layer flows; it appears that it will be sufficient to do this on a purely two dimensional basis.

With regard to further developments to the present calculation scheme: it would be useful and comparatively imple if the introduction of body forces were facilitated to enable computations to be made for rotating systems and also if the surface curvature of the wall could be allowed for. The present investigati on moreover, together with: that of Nash, lend considerable support to the future development of the differential approach to three-dimensional turbulent boundary layer problems as opposed to the integral approach.

\section*{ACKNOWLEDGEMENTS}

\begin{abstract}
I would like to acknowighe the guidance of Professor R.Hetherington who supervised me during the course of the present work and the help received from the Mathematics Department of the University of Aston in Birmingham. I would also like to thank Rolls-Royce Limited, Derby for kindly allowing me to ,
make use of their computing facility.
\end{abstract}

Owing to the profusion or symbols used only those of general interest are listed below. Where symbols have been used for more than one application the notation below has been restricted to one particular chapter. Those symbols not listed have application to one section or appendix only and where this is so explanations concerning their use will be found in that section or appendix. a constant in grid transformation equation (4.3.1) (Chapter 4)
A empirical constant in law of the wall equation (3.2.6) b constant in grid transformation equation (4.3.1) \(c_{f} \quad\) magnitude of coefficient of skin friction \(\left(c_{f_{1}}^{a}+c_{f_{a}^{2}}^{2}\right)^{\frac{1}{2}}\) \({ }^{c_{f_{1}}}, c_{f_{a}}\) components of \(c_{f}\) in streamwise and crossflow directions respectively, equation (1.2.5)
\(c_{f x} \quad\) component of \(c_{f}\) in \(x\) direction
\(f, g, h \quad\) increments of grid associated with \(x, y, \xi\) directions
H
shape factor \(\frac{\delta_{1} *}{\theta_{11}}\)
K constant in effective viscosity functione quation (3.3.5)
\(e \quad\) Prandtl's mixing length, equation (3.1.1) (Chapter 3)
\(\ell, m, n \quad\) counters on grid associated with \(x, y, \xi\) directions
n* counter on grid associated with log-point
M,N number of sections on solution face, and points on a section
p
pressure
\(q\) velocity component in the boundary layer parallel to the wall \(\left(u^{2}+v^{2}\right)^{\frac{1}{2}}\)
three-dimensional form of friction velocity \(u_{T}\)
velocity component in the freestream parallel to the wall \(\left(U^{2}+V^{2}\right)^{\frac{1}{2}}\left(\equiv U_{1}\right)\)
\begin{tabular}{|c|c|}
\hline r & iteration counter \\
\hline \(\mathrm{R}_{\theta_{11}}\) & Reynolds number based on \(\theta_{11}\) \\
\hline \(s\) & streamwise distance, equation (4.3.5) \\
\hline u, v,w & velocity components in the boundary layer associated with \(\mathrm{x}, \mathrm{y}, \mathrm{z}\) directions \\
\hline \[
\left.\begin{array}{l}
u_{1}, v_{1} \\
u_{1}, u_{2}
\end{array}\right\}
\] & velocity components in the boundary layer associated with the streamwise and crossflow directions \\
\hline \({ }^{u} \tau\) & friction velocity, equation (3.2.2) \\
\hline U,V & velocity components in the freestream associated with \(\mathrm{x}, \mathrm{y}\) directions \\
\hline w & wake function, equation (3.4.3) (Chapter 3) \\
\hline \(\alpha, \beta, \gamma\) & streamline section coordinates, fig.(4.6.1) (Chapter 4) \\
\hline \(\beta_{0}\) & angle between limiting streamline at the wall and external streamline, \\
\hline \(\Gamma\) & velocity gradient parameter, equation (6.0.1) \\
\hline \(\delta\) & 'boundary layer thickness' \\
\hline \(\delta_{i}\) & \(z\) at which \(q=i Q\) \\
\hline \(\delta_{1}{ }^{*}, \delta_{2}{ }^{*}\) & displacement thicknesses, equation (1.2.4) \\
\hline \(\epsilon\) & factor in wall condition, equation (4.4.5) \\
\hline \(\zeta\) & effective viscosity function parameter, equation (3.3.5) (also stagnation flow variable, section 6.5) \\
\hline \[
\left.\begin{array}{l}
\theta_{11}, \theta_{12} \\
\theta_{21}, \theta_{22}
\end{array}\right\}
\] & momentum thicknesses, equation (1.2.3) \\
\hline \(\kappa\) & constant in Prandtl's mixing length, equation (3.1.3), and logarithmic law of the wall equation (3.2.6) \\
\hline \(\lambda\) & number of large increments subdivided at the wall \\
\hline \(v\) & kinematic laminar viscosity \\
\hline \(\nu_{\text {e }}\) & effective viscosity \\
\hline \(\nu_{e}{ }^{\prime}\) & transformed effective viscosity, equation (4.3.8) \\
\hline \(v_{\text {ex }}, v_{\text {ey }}\) & effective viscosity appearing in \(x, y\) momentum equations respectively \\
\hline \(\xi\) & transformed \(z\) co-ordinate, equation (4.3.1) \\
\hline \(\rho\) & density \\
\hline & shear stress \\
\hline
\end{tabular}

1) Schlichting, H.,
2) Thompson, B.G.J.,
3) Head, M.R.,
4) Cooke, J.C.,
5) Cumpsty, N.A.,
6) Cumpsty,N.A.,
7) Smith, P.D.,
8) Cumpsty, N.A., and Head, M.R.,
9) Cham, T.S., and Head,M.R.,
10) Spalding, D.B., and Patankar, S.V.,

Boundary Layer Theory. McGraw-Hill, New York, Fourtin Edition, 1960.

A Critical Review of Existing Methods of Calculating The Turbulent Boundary Layer, A.R.C. R. \& M. 3447, 1967.

Entrainment in the Turbulent Boundary Layer, A.R.C. R.\& M. 3152, 1960.

Three-Dimensional Turbulent Boundary Layers, A.R.C. C.P.635, 1963.

A Critical Examination of the Use of a Two-Dimensional Turbulent Profile Family to Represent Three-Dimensional Boundary Layers, A.R.C. C.P.1068, 1968.

Crossflow in Turbulent Boundary Layers, A.R.C. C.P.1067, 1968.

Calculation Methods for Three-Dimensional Turbulent Boundary Layers, A.R.C. R.\& M. 3523, 1968.

The Calculation of Three-Dimensional Turbulent Boundary Layers, Part IV.. Comparison with measurements on the rear of a sweptwing, Aero Quart. 21, 2, 121-32, 1970.

Turbulent boundary layer flow on a rotating disc, J.Fluid Mech.37, 1, 129-147, 1969.

Heat and Mass Transfer in Turbulent Boundary Layers, Morgan-Grampian, London. 1967.
11) Bradshaw, P., Ferriss, D.H., and Atwell,N.P.,
12) Nash, J.F.,
13) Hornung, H.G., and Joubert,P.N.,
14)
15) Coles, D.,
16) Méllor, G.L., and. Gibson,D.M.,
17) Clauser,F.H.,
18) Clauser, F.H.,
19) Mellor, G.L.,
20) Maise, G., and
McDonald, H.,
21) Johnston,J.P.,

Calculation of boundary layer development using turbulent energy equations, J.Fluid Mech. 28, 3, 593-616, 1967.

The calculation of three-dimensional turbulent boundary layers in incompressible flow, J.Fluid Mech. 37, 4, 625-642, 1969.

The mean velocity profile in three-dimensiona turbulent boindary layers, J.Fluid Mech. 15, 3, 368-385, 1963.

Proceedings, Computation of Turbulent Boundary layers, Volume 1, AFOSR-IFPSTANFORD CONFERENCE, 1968.

The law of the wake in the turbulent bound ary layer, J.Fluid Mech. 1, 2,191-226, 1956.

Equilibrium turbulent bound ary layers, J.Fluid Mech. 24, 2, 225-253, 1966.

Turbulent boundary layers in adverse pressure gradients, J.Aero.Sci. 2l, 91-108, 1954.

The Turbulent Boundary Layer, Advances in Applied Mechanics, Volume IV, 1-51, 1956.

The effects of pressure gradients on turbulent flow near a smooth wall, J.Fluid Mech. 24, 2, 255-274, 1966.

Mixing Lengti and Kinematic Eddy Viscosity in a Compressible Boundary Layer, AIAA Journal 6, 1, 73-80, 1968.

On the Three-Dimensional Turbulent Boundary Layer Generated by Secondary Flow, Trans ASME , Series D, 82, 233-248, 1960.
22) East,L.F., and
Hoxey,R.P.,
23) Pierce,F.J.,
24) Joubert, P.N.,

Perry, A.E., and Brown, K.C.,
25) Richtmyer, R.D.,
26) Schubauer, G.B., and
Spangenberg,W.G.,
27) Bradshaw, P., and Ferriss, D.H.,
28) Schubauer,G.B., and
Klebanoff, P.S.,
29) Spangenberg, W.G., Rowlana, W.R., and Mease, N.E.
30) Cumpsty,N.A., and Head, M.R.,
31) Hoadley, D.,
32) Froessling, N.,

Low-speed three-dimensional turbulent boundary layer data, Part 1, R.A.E. Tech Report 69042, 1969.

The Law of the Wake and Plane of Symmetry Flows in Three-Dimensional Bound ary Layers, Trans ASME, Series D, 88, 101-103, 1966.

Critical Review and Current Developments in Three-Dimensional Turbulent Bound ary Layers, Fluid Mechanics of Internal Flow, 210-237, Elsevier, Amsterdam, 1967.

Difference Methods for Initial-Value Problems, Interscience, New York, 1957.

Forced mix ing in boundary layers, J.Fluid Mech. 8, 1, 10-32, 1960.

The Response of a Retarded Equilibrium Turbulent Boundary Layer to the Sudden Removal of Pressure Gradient, N.P.L. Aero. Report, 1145, 1965.

Investigation of Separation of the Turbulent Boundary Layer, NACA Report 1030, 1951.

Measurements in a Turbulent Boundary Layer Maintained in a Nearly Separating Condition, Fluid Mechanics of Internal Flow, 110-151, Elsevier, Amsterdam, 1967.

Calculation or Three-Dimensional Turbulent Boundary Layers, Part I. Flow over the rear of an infinite swept wing, Aero.Quart. 18, 1, 55-84, 1967.

Ph.D. Thesis, Cambridge, 1969 •

1940 see [1], p. 92
33) Kennard, E.H.,

Irrotational flaw of̂ Frictionless Fluids, Mostly of Invariable Density, David Taylor Model Basin, Washington D.C., Report 2299, 1967.

When mking finite difference approximations to the threedimensional boundary layer equations written in streamline coordinates (section 4.6), it is necessary to be able to determine tho position or the streanline (as defined in section 4.3) through any grid point. It is with this problem that the present appendix is concerned.

Figure (Al.1) belor, which takes a section through a \(\zeta=\) constant plane, summarises the situation. The three grid points \(A, B, C\) are on the upstream solution face where velocity profiles have previously been calculated so that at these points the directions of the velocity vectors are known,


Figuxe (AI.1)
while the velocity profiles at the section through the point \(D\) on the downstream solution face are currently being calculated so that only estimates oin the velocity components at \(D\) are available. The streanline DE is fitted between D and the line AC so that at the end point \(D\) the direction of the streamline is parallel to the current estimate of tho velocity direction while at \(E\) the direction is as given by interpolating velocity components between the points \(A, B, C\).

The method used to determine the position of the streamline will now be described. A parabolic curve requiring four parameters to define (scale, orientation and lateral and transverse disfectements) is fitted between \(D\) and the line \(A C\). Obviously specifying any point \(E\) on \(A C\) where the direction of the velocity is known a quadratic curve \(D E\) could be fitted since there are four conditions to be satisfied (position and directional conditions at both \(D\) ard.E). The position of \(E\) will havever be determined so that if the intercept of the tangents to the quadratic at \(D\) and \(E\) is \(F\) then the two intercept lengths \(D F, E F\) are the same. If more than one such point \(E\) exists along \(A C\) (or \(A C\) extended) then that providing the shortest intercept length will be chosen.

For convenience the notation used in this appendix will not be related except in a superficial way to that used elsewhere. The information needed to determine the arc DE is summarised in figure (Al.2) where it is hoped the notation is self-explanatory. It should be noted that \(y\) as shown in this diagram increases with decreasing \(y\) and is thus measured in the opposite sense to \(y\) as defined in section 4.6 (the same will apply to \(\beta\) which is to be introduced below).


At any point specified by \(\gamma\) on the line denoted by AC in figure (Al.1) the velocity components in the \(x, y\) directions can be detemined by quatic interpolation between the three points \(y=-1,0,1\), i.e.
\[
\begin{equation*}
u_{\gamma}=\frac{u_{1}-2 u_{0}+u_{1}}{2} \quad \gamma^{2}+\frac{u_{1}-u_{1}}{2} \gamma+u_{0} \tag{AI..}
\end{equation*}
\]
with a similar expression for \(v_{\gamma}\). It is anticipated that \(u\) will nowhere be zero so that the direction of the streamline at any point can be represented by
\[
t=\frac{v}{u}
\]

Letting \(y\) now denote the point where the required streamline cuts the line \(A C\) the quadratio needs then satisfy the two directional conditions
\[
\begin{equation*}
t^{*}=\frac{v^{*}}{u^{*}} \quad t_{y}=\frac{v_{y}}{u_{y}} \tag{1}
\end{equation*}
\]
where \(\gamma\) is yet to be determined and is chosen such that the angles EDF, DEF in figure (Al.3) belav are the same. This latter condition leads to the expression


Figure (A1.3).
\[
\begin{equation*}
t_{D}^{3}+2 T t_{D}-1=0 \tag{Al.3}
\end{equation*}
\]
after some manipulation, where
\[
\left.\begin{array}{l}
t_{D}=\frac{y g}{f}  \tag{Al.4}\\
T=\frac{1-t^{*} t}{t^{*}+t^{t} y}
\end{array}\right]
\]
which has to be solved for \(\gamma\). Remembering that in the most general case \(t_{y}\) is the ratio of two quadratics in \(\gamma\) we see that the above condition is equivalent to a quartic equation in \(\gamma\) providing, it is to be expected, up to four solutions:

Since no solution can in the most general case be obtained explicitly from the system of equations (Al.1-4) it becomes necessary to establish an iterative scheme and this we do now. Assuming we have an estimate \(\gamma^{(r)}\) to a solution \(\gamma\) we first evaluate \(t_{\gamma}{ }^{(r)}\) from equations (Al. 1,2 ) and then \(T_{y}^{(r)}\) using this estimate of \(t_{y}\) from (Al.4), equation (Al.3) it is suggested can then be solved to obtain an improved estimate of \(y\)
\[
t_{D}{ }^{(r+1)}=\frac{y^{(r+1)} g}{f}=-T^{(r)} \pm \sqrt{1+T^{(1)^{2}}}
\]
where the sign associated with the square root is chosen consistently throughout. It is immediately apparent that if the above iterative scheme is converg nt it will yield real. roots and the two solutions obtained by considering alternative signs in equation (Al.5) will be of opposite sign. In the pseudo-three-dimensional problam where \(u_{\gamma},{ }^{v} \gamma\) are constant for all \(\gamma\) the solution can be obtained without iteration.

Although only two roots are provided by equation (Al.5) it is not thought necessary to investigate the other two since in the
particular cases when tinis has been done the remaining roots have been found to be either imaginary or to lack any plausibility as meaningful solutions. No further consileration will then be given to this point since the present scheme has provided reasonable solutions in all the cases treated.

We must however discuss where the above solution scheme breaks down. The only apparent cause of trouble in equation(Al.5) is when \(T\) becomes singular which is so when
\[
t_{\gamma}^{(r)}=-t^{*}
\]
and for this to be consistent with a solution we require \(y=0\) i.e.
\[
\begin{equation*}
t_{0}=-t^{*} \quad \text { implies } y=0 \tag{AI.6}
\end{equation*}
\]
where we have the situation in figure (Al.4.) (which incidentally includes the simple two-dimensional problem). Excepting this case it has been found that the choice of sign in equation (Al.5) is given by considering the sign of \(t_{0}+t^{*}\) as follows
\[
\left.\begin{array}{lll}
t_{0}+t^{*}>0 & \text { implies } y>0 & (+ \text { sign })  \tag{AI.7}\\
t_{0}+t^{*}<0 & \text { implies } y<0 & (- \text { sign })
\end{array}\right]
\]


Being in a position to calculate \(y\) we can now proceed to fit a curve between the end points of the streamline which are now know. It has been fornd adecuate for the purpose of the present finite difference scheme to restrict the point at which the finite difference approximation is to be taken to the mid-point of the streamline which in the present calculations will considerably simplify the algebra. Even in this simplified problem the algebra necessary to fit the quadratic and determine its mid-point and length is tedious so we will here only quote the results of the manipulations to determine \(\alpha, \beta\), s shown in figure (Al.5)
\[
\begin{align*}
& \alpha=\frac{1}{4} \frac{2+3 t_{D} t^{*}-t_{D}^{2}}{1+t_{D}^{t^{*}}}  \tag{Al.8}\\
& \beta=\frac{f}{4 g} \frac{t^{*}+t_{D}+2 t_{D}^{3} t^{*}}{1+t_{D}^{t^{*}}}  \tag{AI.9}\\
& s=a\left(\frac{1}{b} \ln (b+c)+c\right) \\
& a=\frac{9}{2} \sqrt{1+t_{D}^{2}} \\
& b=\frac{t_{D}-t^{*}}{1+t_{D}^{t^{*}}} \\
& c=\sqrt{1+b^{2}} \tag{AI.100}
\end{align*}
\]
where

The above equations for \(\alpha, \beta\),s may become singular when
\[
t_{D}=-\frac{I}{t^{*}}
\]
which it can readily be shown is inconsistent


Figure (Al. 5 )
with a solution, and in addition the expression for \(s\) does not hold when
\[
t_{D}=t^{*}
\]
in which case the streamline is linear and the length s should then be calculated from
\[
\begin{equation*}
s=2 a \quad \text { when } b=0 \tag{AI.11}
\end{equation*}
\]
while expressions for \(\alpha, \beta\) remain unchanged.
The equations (Al.1-11) in this appendix thus form the basis of the streamline calculation subroutine which is incluaded in the computer program listing (Appendix A6). Again it will be emphasised that the signs. of \(\beta, \gamma\) used in this appendix are opposite to those used in Chapter Four.

\section*{APPFNDIX \\ A2.}

FINITE DIFFERENCE APPROXIMATIONS TO THE MOMERPTUM
EQUATI ONS AT THE POINI \((l+1, m, n)\).

1

This appendix provides atdetailed description of the finite difference approximations to the momentum equations referred to in section 4.6. The notation used is that indicated in figure (4.6.2) for the computable quantities, and the unknown quantities (ie. iterates) will be referred to by subscripting \(u, v\) by their point number and superscripting them by \(r\) (iteration number) eeg. \(u_{n-1}^{r}\). The weights to be introduced will be denoted by \(\phi(\psi=1-\phi)\) subscripted by an integer which by reference to table 4.6.1 will distinguish between their different uses.

We begin by stating the finite difference approximations to the individual terms of the x momentum equation (equation (4.3.9)) which, using the contractions
\[
\begin{aligned}
& C=-a \xi\left(\phi_{1} u_{l_{2}}+\psi_{1} u_{2}\right)+w_{2} \\
& D=a\left(x_{l}+\alpha f\right)+b
\end{aligned}
\]
can be written:
\[
\begin{aligned}
& q \frac{\partial u}{\partial s}=\frac{\psi_{2}}{2} q_{1}\left(\frac{\psi_{3} u_{n-1}^{r}+\phi_{3} u_{1}-u_{l_{1}}}{s}\right) \\
&+\phi_{2} q_{2}\left(\frac{\psi_{3} u_{n}^{r}+\phi_{3} u_{2}-u_{\ell_{2}}}{s}\right) \\
&+\frac{\psi_{2}}{2} q_{3}\left(\frac{\psi_{3} u_{n+1}^{r}+\phi_{3} u_{3}-u_{\ell_{3}}}{s}\right) \\
& \frac{-a \varepsilon u+w}{a x+b} \frac{\partial u}{\partial \xi}=\frac{c}{D}\left(\frac{\phi_{1} u_{l_{3}}-u_{\ell_{1}}}{2 \xi_{i n c}}\right. \\
&\left.+\psi_{1}\left(\psi_{4} \frac{u_{n+1}^{r}-u_{n-1}^{r}}{2 \xi_{i n c}}+\phi_{4} \frac{u_{3}-u_{1}}{2 \xi_{i n c}}\right)\right) \\
& \frac{I}{a x+b} \frac{\partial}{\partial s}\left(v_{e}^{\prime} \frac{\partial u}{\partial \xi}\right)=\frac{\phi_{1}}{D \xi_{i n c}}\left(v_{\ell_{2}} \frac{u_{l_{3}}-u_{\ell_{2}}}{\xi_{i n c}}-v_{\ell_{1}} \frac{u_{\ell_{2}}-u_{\ell_{1}}}{\xi_{i n c}}\right) \\
&+\frac{\psi_{1}}{D \xi_{i n c}}\left(\phi_{5}\left(\nu_{a} \frac{u_{3}-u_{2}}{\xi_{i n c}}-\nu_{1} \frac{u_{2}-u_{1}}{\xi_{i n c}}\right)\right.
\end{aligned}
\]
\[
\begin{equation*}
\left.+\psi_{5}\left(v_{3} \frac{u_{n+1}^{r}-u_{n}^{r}}{\xi_{i n c}}-v_{1} \frac{u_{n}^{r}-u_{n-1}^{r}}{\xi_{\text {inc }}}\right)\right) \tag{A2.1}
\end{equation*}
\]

Substituting these approximations into the relevant equation and collecting together terms involving the iterated \(u\) components on to the left hand side. we obtain
\[
\begin{align*}
& u_{n-1}^{r}\left(\frac{\psi_{3} \psi_{3}}{2 s} q_{1}-\frac{C}{D} \frac{\psi_{1} \psi_{4}}{2 \xi_{i n c}}-\frac{\psi_{1} \psi_{5}}{D \xi_{i n c}^{4}} u_{1}\right) \\
& +u_{n}^{r}\left(\frac{\phi_{2} \psi_{3}}{s} q_{3}+\frac{\psi_{1} \psi_{5}}{D \xi_{i n c}^{s}}\left(\nu_{1}+\nu_{2}\right)\right) \\
& +u_{n+1}^{r}\left(\frac{\psi_{2} \psi_{3}}{2 s} q_{3}+\frac{C}{D} \frac{\psi_{13} \psi_{4}}{2 \xi_{\text {inc }}}-\frac{\psi_{1} \psi_{5}}{D \xi_{\text {inc }}^{5}} \nu_{2}\right) \\
& =-\frac{\psi_{2}}{2 s} q_{1}\left(\phi_{3} u_{1}-u_{l_{1}}\right)-\frac{\phi_{2}}{s} q_{2}\left(\phi_{3} u_{2}-u_{l_{2}}\right) \\
& -\frac{\psi_{2}}{2 s} q_{3}\left(\phi_{3} u_{3}-u_{\ell_{3}}\right) \\
& -\frac{C}{2 D \xi_{i n c}}\left(\phi_{1}\left(u_{l_{3}}-u_{e_{1}}\right)+\psi_{1} \phi_{4}\left(u_{3}-u_{1}\right)\right) \\
& +P_{u}+\frac{1}{D \xi_{i n c}^{2}}\left[\phi_{1}\left(v_{l_{3}}\left(u_{l_{3}}-u_{l_{2}}\right)-v_{l_{1}}\left(u_{l_{2}}-u_{e_{1}}^{1}\right)\right)\right. \\
& \left.+\psi_{1} \phi_{5}\left(v_{3}\left(u_{3}-u_{2}\right)-v_{1}\left(u_{2}-u_{1}\right)\right)\right] \tag{A2.2}
\end{align*}
\]
where
\[
\begin{equation*}
P_{u}=\left(U \frac{\partial U}{\partial x}+V \frac{\partial V}{\partial x}\right)_{l+\alpha, m+\beta} \tag{A2.3}
\end{equation*}
\]

Here as in figure (4.6.2) \(\nu\) refers to the transformed effective viscosity \(v_{\mathrm{e}}^{\prime}\) (equation (4.3.8)) which will have to be evaluated from some hypothetical relationship at the points indicated in figure (4.6.2).

As mentioned in section 4.6, when the above equations are evaluated at \(n=\lambda \omega\) special care should be taken and in particular
subscripts \(n-1\) in the above equations (and \(n-1\) in figure (4.6.2)) should be replaced by \(n-\omega\). In additon to make the resulting set of equations tri-diagonal this equation, which we suppose can be written
\[
\begin{equation*}
\gamma u_{n-\omega}^{r}+\alpha u_{n}^{r}+\beta u_{n+1}^{r}=\delta^{\prime} \tag{4}
\end{equation*}
\]
where \(n=\lambda \omega\) and \(\alpha, \beta, \gamma, \delta^{\prime}\) can all be calculated, is tranaformed into
\[
\begin{equation*}
\gamma u_{n-1}^{r}+\alpha u_{n}^{r}+\beta u_{n+1}^{r}=\delta \tag{A2.5}
\end{equation*}
\]
by introducing
\[
\begin{equation*}
\delta=\delta^{\prime}+\gamma\left(u_{n-1}^{n-1}-u_{n-\omega}^{n-1}\right) \tag{A2.6}
\end{equation*}
\]

This equation (A2.5) now conforms to the general format.
The finite difference approximation to the momentum equation corresponding to the \(y\) direction (equation (4.3.10)) is very similar to that given above for the x momentum equation and we will only list the differences. Following through the same process that led to equation(A2.2) we find that the cosfficients of \(v_{n-1}^{r}, v_{n}^{r}, v_{n+1}^{r}\) are identical to those corresponding to the \(u\) 's on the left hand side of equation (A2.2) while on the right hand side \(u\) where it occurs explicitly is replaced by \(v\) and \(P_{u}\) is replaced by \(P_{V}\) :
\[
\begin{equation*}
P_{V}=\left(U \frac{\partial U}{\partial y}+V \frac{\partial V}{\partial y}\right) \tag{A2.7}
\end{equation*}
\]
(the definition of C remains unchanged). Ohker points mentioned above with respect to the x momentum equation obviously apply equally to the y momentum equation.

Thus we are able to relate the three iterated velocity components in both \(\mathrm{x}, \mathrm{y}\) directions by an equation which has the form of equation ( 12.5 ) where moreover at any section for the same \(n, r\) the coofficients \(\alpha, \beta, \gamma\) are identical for the two equations relating \(u\) 's
and \(v^{\prime} s\) respectively. This me ans in addition that all the unknown \(u\) (or v) iterated components at any section are related. by a tri-diagonal set of linear algebraic equations and the matrix of coefficients of the unknowns is the same for both \(u\) and \(v\), the differences being on the right hand sides. Such a situation obvious? y simplifies the problems associated with the storage of coefficients and the solution of the linear equations.

Not being able to apply the finite difference approximations developed in Appendix \(A 2\) when \(n=n^{*}\) we must consider this particular case separately. To approximate to tine momentum equation associated with the \(x\)-direction at the log-point we proceed as was outlined in section 4.6 making use of equations obtained in section 4.4 .

As in Appendix A2 we will first state the finite difference approximations to the individual terms, of equation (4.3.9) using the notation of figure ( \(4 \cdot 6 \cdot 2\) ). These are as follows:-
\[
\begin{aligned}
q \frac{\partial u}{\partial s}= & \frac{\psi_{6}}{2} q_{3}\left(1-\frac{1}{\epsilon} \ln \frac{\xi_{3}}{\xi_{1}}\right) \\
& \left(\frac{\ln _{3} \xi_{3} / \xi_{1}}{\ln \left(\xi_{3} / \xi_{3}\right.}\left(\frac{\psi_{3} u_{n}^{r}+\phi_{3} u_{2}-u_{e_{2}}}{s}\right)\right. \\
& \left.-\frac{\ln \xi_{2} / \xi_{1}}{\ln \xi_{3} / \xi_{2}}\left(\frac{\psi_{3} u_{n+1}^{r}+\phi_{3} u_{3}-u_{l_{3}}}{s}\right)\right) \\
& +\phi_{6} q_{3}\left(\frac{\psi_{3} u_{n}^{r}+\phi_{3} u_{2}-u_{l_{2}}}{s}\right) \\
& +\frac{\psi_{6}}{2} q_{3}\left(\frac{\psi_{3} u_{n+1}^{r}+\phi_{3} u_{3}-u_{l_{3}}}{s}\right)
\end{aligned}
\]
(using equations ( \(4.4 .8,9\) )) which we rewrite
\[
\begin{align*}
& q \frac{\partial u}{\partial s}=\left(\phi_{6}+\frac{\psi_{6}}{2} E_{1} E_{2}\right) q_{3} \\
&\left(\frac{\psi_{3} u_{n}^{r}+\phi_{3} u_{2}-u_{l_{2}}}{s}\right) \\
&+ \frac{\psi}{2}^{6}\left(q_{3}+q_{2} E_{1}\left(1-E_{3}\right)\right) \\
&\left(\frac{\psi_{3} u_{n+1}^{r}+\phi_{3} u_{3}-u_{l_{3}}}{s}\right) \tag{A3.1}
\end{align*}
\]
defining \(E_{1}, \mathrm{E}_{2}\) as follows (where as aloe we will make use of the following contractions \(\xi_{1}=\xi_{n-1}, \xi_{2}=\xi_{n}, \xi_{3}=\xi_{n+1}\) )
\[
\begin{align*}
\mathrm{E}_{1} & =1-\frac{1}{\epsilon} \ln \frac{\xi_{3}}{\xi_{1}} \\
\mathrm{E}_{3} & =\frac{\ln \xi_{3} / \xi_{1}}{\ln \xi_{3} / \xi_{3}} \\
& =1+\frac{\ln \xi_{2} / \xi_{1}}{\ln \xi_{3} / \xi_{3}} \tag{A3.2}
\end{align*}
\]

To continue:
\[
\begin{align*}
\frac{-a \varepsilon u+w}{a x+b} \frac{\partial u}{\partial \xi} & =\psi_{7} \frac{C}{\partial D} \frac{\psi_{1}\left(\psi_{4} u_{n}^{r}+\phi_{4} u_{2}\right)+u_{l_{2}} \phi_{1}}{\epsilon \xi_{n}} \\
& +\phi_{7} \frac{C}{2 D}\left(1+\frac{\xi_{n+\frac{1}{2}}}{\xi_{n-\frac{1}{2}}}\right) \\
\left(\psi_{1} \phi_{4} \frac{u_{3}-u_{2}}{\xi_{i n c}}\right. & \left.+\psi_{1} \psi_{4} \frac{u_{n+1}^{r}-u_{n}^{r}}{\xi_{i n c}}+\phi_{1} \frac{u_{l_{3}}-u_{l_{2}}}{\xi_{i n c}}\right) \tag{A3.3}
\end{align*}
\]
(using equation \((4 \cdot 4.6)\) ) where \(C, D\) are defined in Appendix \(A 2\), and
\[
\begin{align*}
& \frac{1}{a x+b} \frac{\partial}{\partial \xi}\left(v_{e}^{\prime} \frac{\partial u}{\partial \xi}\right)= \\
& \quad \frac{\phi_{1}}{D \xi_{i n c}}\left(v_{\ell_{2}}\left(u_{l_{3}}-u_{l_{2}}\right)-v_{l_{1}} E_{3} u_{l_{3}}\right) \\
& +\frac{\psi_{1} \phi_{5}}{D \xi_{\text {inc }}^{n}}\left(v_{2}\left(u_{3}-u_{2}\right)-v_{1} E_{3} u_{2}\right) \\
& +\frac{\psi_{1} \psi_{n}}{D \xi_{\text {inc }}^{r}}\left(v_{2}\left(u_{n+1}^{r}-u_{n}^{r}\right)-v_{1} E_{3} u_{n}^{r}\right) \tag{A3.4}
\end{align*}
\]
(using equation (4.4.6)) where we have introduced another contraction
\[
\begin{equation*}
E_{3}=\frac{1}{\epsilon\left(n-\frac{1}{2}\right)} \tag{A3.5}
\end{equation*}
\]

Equations (A3.1-5) are all to be applied at \(n=n^{*}\). Substituting tie finite difference approximations to the individual terms into equation ( 4.3 .9 ) and collecting together terms in \(u_{n}^{r}, u_{n+1}^{r}\) on to the left hand side we have
\[
\begin{align*}
& u_{n}^{r}\left(\psi_{3}\left(\phi_{6}+\frac{\psi_{6}}{2} \quad E_{1} E_{3}\right) \frac{q_{3}}{s}\right. \\
& +\frac{C}{2 D} \frac{\psi_{4} \psi_{2}}{\epsilon \xi_{n}}-\frac{C}{2 D} \phi_{7} \frac{2 n}{n-\frac{1}{2}} \frac{\psi_{1} \psi_{A}}{\xi_{i n c}} \\
& \left.+\frac{\psi_{1} \psi_{5}}{D \xi_{i n c}^{2}}\left(v_{3}+v_{1} E_{3}\right)\right) \\
& +u_{n+1}^{r}\left(\frac{\psi_{3} \psi_{6}}{2 s}\left(q_{3}+q_{2} E_{1}\left(1-E_{2}\right)\right)\right. \\
& \left.+\frac{C}{2 D} \phi_{7} \frac{2 n}{n-\frac{1}{2}} \frac{\psi_{1} \psi_{4}}{\xi_{i n c}}-\frac{\psi_{1} \psi_{5}}{D \xi_{i n c}} \nu_{3}\right) \\
& =-\left(\phi_{6}+\frac{\psi_{6}}{2} E_{1} E_{2}\right) q_{2} \frac{\phi_{3} u_{2}-u_{l a}}{s} \\
& -\frac{\psi_{6}}{2}\left(q_{3}+q_{2} E_{1}\left(1-E_{2}\right)\right) \frac{\phi_{3} u_{3}-u_{e_{3}}}{s} \\
& -\frac{C}{2 D} \psi_{7} \frac{\psi_{1} \phi_{4} u_{2}+u_{e_{2}} \phi_{1}}{\epsilon \xi_{n}} \\
& -\phi_{7} \frac{C}{2 D} \frac{2 n}{n-\frac{1}{2}} \frac{1}{\xi_{i n G}}\left(\psi_{1} \phi_{4}\left(u_{3}-u_{2}\right)+\phi_{1}\left(u_{e_{3}}-u_{e 2}\right)\right) \\
& +P_{u}+\frac{I}{D} \frac{\phi_{1}}{\xi_{i n c}}\left(v_{e_{2}}\left(u_{e_{3}}-u_{l_{2}}\right)-v_{l_{1}} u_{l_{2}} E_{3}\right) \\
& +\frac{1}{D} \frac{\phi_{5} \psi_{1}}{\xi_{\text {inc }}^{2}}\left(\nu_{2}\left(u_{3}-u_{2}\right)-\nu_{1} u_{2} E_{3}\right) \tag{A3.6}
\end{align*}
\]
which again is to be applied at \(n=n^{*}\). The finite difference equation corresponding to the \(y\) momentum equation can be obtained by precisely the same means as were described in Appendix A2 \(\left(P_{u}, P_{V}\right.\) are also as defined in this last appendix). The only outstanding cons ideration is the problems of obtaining \(\epsilon\) which occurs in equation \((A 3.6)\) as well as in the definitions of \(E_{1}, E_{3}\) 。 Only approximations to \(\epsilon\) will be available initially since \(\epsilon\) will be obtained of necessity from an estimate of \(q\) at the log-point using equations (4.4.10,11). More accurate values of \(\epsilon\) are
obtained as the iteration progresses until finally when tio procedure
has converged the tme valus of \(\epsilon\) can be used to obtain the co-
enIicient Oİ friction at the waII Irran equation (4.4.5).
\[
\text { APPBNDIX } \quad \text { A } 4
\]

MODIFICATIONS NSCESSARY TO THE FINITE DIFFERENCE SCHEME FOR IT TO BE APPLIC ABIE TO THE LANANAR PROBTIEM.

The finite difference equations obtained in sections
```

4.6 and 4.7 and Appendices A2, A3 were concerned exclusively
with turbulent flows anj as yet little mention has becn made
of the laminar boundary lavor. Although our prime concern here
is the turbulent problen the program as written will cater for
lauinar Mows.
Within the boundary layer equations the only alteration
necessary for the equations to hold for laminar flows is that
the transformed effective viscosity v}\mp@subsup{v}{e}{\prime}\mathrm{ should be replaced by
the transformed kinemetic viscosity v'

```
    \(\nu^{\prime}=(a x+b) \nu^{\prime}\)
This alteriation is readily carried into thie finite difference
approximation to the momentum equations. In addition in these
approximations however we need insert a different boundary
condition at the wall. Obviously in laminar flows the mesh at
the wall may be somewhat coarser than that necessary for turbulent
flows but however we will still require that tre grid points at
the wall will be close enough to ensure that the gradients of
the \(u, v\) profiles over the first two grid intervals are constant.
We can now make use of equation (A3.6) if we apply it at \(n=n^{*}=1\)
and put
\[
\begin{aligned}
& \psi_{7}=1 \\
& \epsilon=1 \\
& E_{1}=0 \\
& E_{3}=1
\end{aligned}
\]
( \(\mathrm{E}_{3}\) is now medundant). Putting \(\epsilon=I\) with \(n=n^{*}=1\) allso allows the finite difference epproximation to the continuity equation at the Wall. obtained in section 4.7 to be used.
```

APPENDIX A5
SOLURION OF TRI-DIAGONAL IINEAR ALCBBEAIC
EOUATIONS.

```

A system of I tri-diagonal linear algebraic equations in
the I unknowns \(u_{i}(i=I, 2, \ldots\) I)
\[
\begin{aligned}
\alpha_{1} u_{1}+\beta_{1} u_{2} & =\delta_{1} \\
y_{i-1} u_{i-1}+\alpha_{i} u_{i}+\beta_{i} u_{i+1} & =\delta_{i} \quad i=2,3, \ldots I-I \\
y_{I-1} u_{I-1}+\alpha_{I} u_{I} & =\delta_{I}
\end{aligned}
\]
where the coefficients \(\alpha, \beta, \gamma, \delta\) are known, can be solved using the following algorithm
\[
\left.\begin{array}{l}
\alpha_{i}=\alpha_{i}-\left.\beta_{i-1} \frac{\gamma_{i-1}}{\alpha_{i-1}}\right|_{i=2,3, \ldots I} \\
\delta_{i}=\delta_{i}-\delta_{i-1} \frac{\gamma_{i-1}}{\alpha_{i-1}}
\end{array}\right]_{I}=\frac{\delta_{I}}{\alpha_{I}} \quad i=I-I, I-2, \ldots I .
\]
where the equals sign has its usual programming significance and operations are to be performud in precisely the order indicated, the solution being finally given by
\[
u_{i}=\delta_{i} \quad i=I, 2, \ldots I
\]

It might be noted hore, and it is of particular relevance to the present solut on scheme, that when we have two sets of I linear equations in respectively \(u_{i}, v_{i}\) say and the coefficients, of the \(v_{i}\) are the sane as those of the corresponaing \(u_{i}\), the difrerences between the two sets of equations being confined solely to the right hand sides, the second set can be solved simultaneonsly wita the firet with only a slight increase in stomage requirements.
```

APPENDIX

INTFGER OMEGA
REAI NU,NUL1,NUL 2,NU1,NU2,K,KAPPA,KAPPAL
EXTFRNAL AC99Y
COMMON MIN,MOUT,MM,NN, LAMDA, OMEGA, NMINC, NSLAP,LT,NU,
3XL, YO, F, G, H, AT, ET, NSTEP, NSMAX,LFREO, MFREC,
4 PSI1, PSI2, PSI3,PSI4,PSI5,PSI6,PSI7,PSI8,
$5 \mathrm{PHI}, \mathrm{PHI} 2, \mathrm{PHI} 3, \mathrm{PHI4}, \mathrm{PH} 15, \mathrm{PHI} 6, \mathrm{PHI7}, \mathrm{PHI} 8$
COMMON KAPPA,KAPPAL,K, A, CMIN,ITN,ITMAX,TOL, SOS, NOSOS,
OUL1.UL2, UL $3, V L 1, V L 2, V L 3, U 1, U 2, U 3, V 1, V 2, V 3, Q 1, Q 2,03$,
2NUL1, NUL2, NU1, NU2, XI, XINC,P1B, P2B, ALPHA, EETA,GAMMA, S, EPS,
$3 A 1(50), A 2(50), A 3(50), A 4(50), A 5(50)$
4D, D1, D2, T11, T12, T21, T22, HAPE,RT11, QT,CF,CFX,CF1, CF 2, PH1
DIMFNSION MEADI(20), HEAD2(20), TAPHI(10)
$M I N=1$
MOUT $=3$
READ (NIN, 60) (HEADI(I), $1=1,20$)
REAT) (M1N, 60) (HFAD2(I), $I=1,20)$
READ(MIN,62) KAPPA,KAPPAL,K,A,CMIN
READ(MIN,61) MM,NN,LAMDA,OMEGA,NMINC, NSLAP,LT,NSMAX,
) ITMAX,LFREQ,MFREQ
READ(MIN, 62) XL,YO, F,G,THETA, NU
READ (MIN,62) PSI1,PSI2,PSI3, PSI4,PSI5,PSIG,PSIT,PSI8
$\operatorname{READ}(N 1 N, 62)$ (A1(N), $N=1, N N)$
READ (MIN,62) (A2(N), $N=1$, NN)
REAT) (MIN, 66) (TAPHI (M), M $=1$, MM)
0010AE99
0011 AC99
0012 AC99
0013 AC99
0020AC99
0030AC99
0040 AC99
0050AC99
0060AC99
0070 AC99
0080 AC99
0085 AC99
0090 AC99
0100AC99
0110 AC99
0113 AC9 9
0116 AC9 9
REAN(MIN,63) TOL
$\mathrm{PHII}=1.0-\mathrm{PSII}$
$P H I 2=1.0-$ PSI 2
PHI $3=1.0-$ PS 13
PHI $4=1.0-$ PSI 4
PHTL $=1.0-$ PSI 5
PHI $6=1.0-$ PSI 6
PH17 $=1.0-$ PS 17
PHI $8=1.0-$ PSI 8

```
DO 1 M=1,MM
0205AC99
UU}=\triangle\C99U(XL,YO*(M-1)\approxG
VV=\DeltaC99V (XL,YO*(1-1)* *G)
0220AC99
PI=TAPHI (M) * (AI(1)/A2(1))
0230AC99
0240AC99
DO 1 N=1,NN
UL(M,N)=UU*A1(N)-PI*VV*A2(N)
0250AC95
0270AC99
0290AC99
0300AC99
0310AC99
0320AC99
0330AC99
.0340AC99
0350AC99
0360AC99
0370AC99
0380AC99
0390AC99
0400AC99
0410AC99
0420AC99
0430AC99
0440AC99
0450AC99
0460AC99
0470AC99
0475AC99
0480AC99
0490AC99
0495AC99
0500AC99
0510AC99
0520AC99
0530AC99
0560AC99
0570AC99
```

UL $(M, N)=U(M, N)$
VL $(M, H)=V(M, N)$
4 CONTINUE
NSTFP=NSTEP 1
GO TO 2

```
    HUL1.LL2,LL 3,VL1,VL2,VL3,U1,L2,L3,V1,V2,V3,O1,C2,03,
    2.UL1, UL2,NU1,NUZ,XI,XINC,P1巴,D2Z,ALDHA,DETA,GA%HF,S,EDS,
    2N1(2),A2(50),A3(50),44(30),45(5)),
    4CSTAR(2)),C,C,E1,E2,E3
    1F(.STEP-1) 1,1,2
    1 !T:=-1
    , IC IC 3
    2 i }\Gamma:=
    3CCN1INU:
    CNLI SC,S90
    CNLI ^C;7X
    4 CCNIINUN
    IF(1T:) 5,5,?
    5 CO i** = !,',!
    USC= (%, `!)/UL(%,!!)
    IF(..6S(/&.(%,NN)/LL(%,VV))-C.501) 55,56,56
55 V5C=0.0
    VSCU=:(%,NO)/UL('%,NO)
    <0 10 5?
56 VSC=V(%,NN)/VL(V,\becauseV)
    VSCU=,.)
57 : 1=NCDTS(N)
    #E क }\because=1,N
```



```
G \(V.N)=/SC&VL(!,N)+VSCU&UL (M,N)
    CO % !=:!1, \%
    U(1P. () = (%,N:)
7 V(V..) =f(V,NN)
    8 colv INoE
    CAL1 &C;G.
    GALI AC392
    1|:=1T:+1
    IF{1T:) 12,12,?
% IF(SNS/NCSOS-TCL) 16,16,10
10 IF(1T:-1[%/&) 12,12,21
!1 H211E(MCUT,17) %STEP,SOS,NOSOS
```

101.1.AC29

1,11LC99
1012AC93
10: 3 AC99
1020AC97
$1030 A C 99$
$16.40 \mathrm{AC97}$
1.1501 .697

10608699
$1070 \mathrm{AC9} 9$
103.jAC99

1690 AC 97
1100 AC99
111. AC99

1123: 189
$1125 \Delta C$ 79
1:30.iC99
1132 AC99
$1135 A C 99$
1140 C. 99
1142AC99
1145AC99
1150 AC9
116 AC9
117:AC99
1130469
1190~C9
1200 AC99
121.0ノC99

1215 A.C99
122. 2 C 99

123:14C99
124 JAC97
1250 AC99
1260 AC 9)
$1270: 697$

GO TO 16
1280AC99
12 CALI AC99B(2,1.0) 1290 AC99
BLMAX=BLT(1)
1300 AC99
1310 AC99
1F(BLMAX-BLT(M)) $13,14,14$
1320 AC99
13 BLMAX=BLT(M)
14 CONT INUE
IF $(\triangle B S(B L M A X+N S L A P-N N)-0.01) 8,8,15$
1330 AC 99
1340 AC99
1350 AC99
15 HLP $=(B L M A X-N M I N C * L A M D A) * H *(A T *(X L \div F)+B T)$
1360 AC99
$1 /(N N-N M I N C+L A M D A-N S L A P)$
1365 AC99
1370 AC99
1380AC99
1390 AC99
$B T=1 \cdot 0-A T * X L$
GO TD 4
1390 AC99
1.400 AC99
16 RETURN
1410 AC 99
END
1420 AC99
SUBROUTINE AC992
THIS SUBROUTINE ITERATES ONCE FOR THE VELOCITY
PROFILES AT THE DOWNSTREAM SOLUTION FACE
INTFGER OMEGA
PEAI NU, NUL L,NUL $2, N U 1, N U 2, K, K A P P A, K A P P A L$
COMMON MIN,NOUT, MM, NN, LAMDA, OMEGA, NMINC, NSLAP, LT, NU,
$1 U L(20,50)$, $V L(10,50), U(10,50), V(10,50), W(10,5 C), B L T(10)$.
2P1 (20), P2 (10), LOGPT(10), NOPTS(10), VO(50), VOO (50),
$3 X L, Y O, F, G, H, A T, B T, N S T E P, N S M A X, L F R E Q, M F R E Q$,
4PSI1,PSI2,PSI3,PSI4,PSI5,PSI6,PSIT,PSI8,
5PHI1, PHI 2,PHI3,PHI4, PHI5, PHI6, PHI7, PHI 8
COMGON KAPPA,KAPPAL,K,A,CMIN, ITN, ITMAX,TOL, SOS, NOSOS,
1UL1.UL2,UL 3,VLI,VL2,VL 3, U1, U2, U3, V1, V2, V3, Q1, D2, Q3,
2NUL1, NUL $2, N U 1, N U 2, X 1, X I N C, P 1 B, P 2 E, A L P H A, B E T A, G A M M A, S, E P S$, $3 A 1(50), A 2(50), A 3(50), A 4(50), A 5(50)$,

```
4DSTAR(10),C,D,E1,E2,E3 2013AC99
    SOS=0.0
    NOSOS=0
    DO I M=1,MM
    CALI AC99R(M)
1 CONTINUE
    M=1
2 N=LOGPT(M)
    NEQ=1
    IL=1
    ILP\=1
    CALI AC99S(M,N)
    CALI AC99M(M,N)
    CALI AC99D(M,N,IL,ILP1)
    CALI AC99F(M%N)
3 N=N+1
    CALI AC99S (M,N)
    NEQ=NEQ*1
    CALI AC99M(M,N)
    CALI AC99D(M,N%IL,ILPI)
    CALI AC99G(INEO,M,N)
    IF(N-NOPTS}(M)+1) 3,4,
4 CALI AC99Z(NEQ)
    SOS 1=0.0
    I1=1 OGPT(M)-1
    DO }5I=I,NE
    J=I + II
    SOSI=SOSI +(SQRT (U(M,J)**2*V(M,J)**2)
    1-SQRT(A4(I)**2*A5(I)**2))**2
5 CONTINUE
    NOSOS=NOSOS*NEQ
    SOS =SOS +SOS I/(U(M,NN)**2+V(H,NN)=#2).
    DO 6 I=1,NEQ
    J=1*11
    U(M*J)=PSIB*A4(I)*PHIB*U(M,J)
    V(M*J)=PSI8*A5(I)+PHI8*V(M,J)
```

2013AC99
$20204 C 99$
2030 AC99
2040 AC99
2050AC99
2060AC99
2070AC99
2080AC99
2090AC99
2093AC99
2096 AC99
2100 AC99
2110 AC99
2115 AC99
2120AC99
2130 AC99
2150 AC99
2140 AC99
2160 AC99
2165 AC99
2170 AC99
$2180 A C 99$
2190 AC99
2200 AC99
2210 AC99
2220AC99
2230AC99
2240 AC99
2250 AC99
2260AC99
2270AC99
2280AC99
2290AC99
2300 AC99
2310 AC99
2320 AC99

6 CONI INUE
2330 AC 99
GO TO $(75,64), L I$
2335 AC99
2340 AC99
2350 AC99
2364 AC99
$A L P H A=1.0$
2370AC99
CALI AC99L(N)
$Q T=K A D P A L * Q 2 / E P S$
$D Z=(A T *(X L+F)+B T) * H / O M E G A$
2373 AC99
2376 AC99
$\mathrm{N}=\mathrm{N}-1$
2380AC99
OO $7 \mathrm{I}=1, \mathrm{~N}$
2390AC99
$Z P=I * D Z * O T / N U$
IF $(7 P-11.0) 65,65,66$
2394 AC99
2398 AC99
2402 AC99
2406AC99
2410 AC99
2414 AC99
2418 AC99
$2420 A C 99$
75 IF ($\mathrm{N}-\mathrm{MM}$) $8,9,9$
2430AC99
2440 AC99
8 $M=M+1$
GOTO 2
$9 D=A T *(X L+0.5 * F) \div B T$ $M=1$
$10 \mathrm{~N}=\operatorname{LOGPT}(\mathrm{M})$
11 CALI AC99C(M,N)
CALI AC99W(M,N)
If (iN-NN) $12,13,13$
$12 \mathrm{~N}=\mathrm{N}+1$
GOTO 11
2450 AC99
2460AC99
2470 AC99
2480AC99
2490 AC99
2500AC99
$2510 A C 99$
2520 AC99
2530 AC9 9
2540 AC 99
2550AC99
IF (K,MM) $14,25,15$
$14 M=M+1$
2560 AC99 GOTO 10

2570 AC99
15 RETIRN
2580 AC99
END

```
SUBRDUTINE AC99A
AOOOAC99
INTFGER DMEGA
AOO2AC99
REAI NU,NUL1,NUL2,NU1,NU2,K,KAPPA,KAPPAL
CONMON NIN,MOUT,MM,NN,LAMDA,OMEGA,NKINC,NSLAP,LT,NU,
IUL(10,50),VL(10,50),U(10,50),V(10,50),W(10,50),BLT(10),
2P1(10),D2(10), LOGPT(10),NOPTS(10),VO(50),VOO(50).
3XL,YO,F,G,H,AT,BT,NSTEP,NSMAX,LFREQ,MFREQ,
4PS11,PSI2,PSI3,PSI4,PSI5,PSI6,PSI7,PSI8,
5PHI1,PHI2,PHI3,PHI4,PHI5,PH16,PHI7,PHI8
COMMON KAPPA,KAPPAL,K,A,CMIN,ITN, ITMAX,TOL,SOS,NOSOS,
1UL1.UL2,UL3,VL1,VL2,VL3,U1,U2,U3,V1,V2,V3,Q1,Q2, 23,
2NUL1,NUL 2,NU1,NU2,XI, XINC,P1E,P2B,ALPHA,BETA,GAMMA,S,EPS,
3A1(50),A2(50),A3(50),A4(50),A5(50),
4DSTAR.(10), C,D,E2,E2,E3
    DO & N=1,NN
    VO(N) =0.0
1.VOO(N)=0.0
    RETURN
    END
A002AC99
A003AC99
A004AC99
A005AC99
A006AC99
A007AC99
A008AC99
A009AC99
AO10AC99
AO11AC99
AO12AC99
A013AC99
A020AC99
A030AC99
A030AC99
A050AC99
A060AC99
```

THIS SUEROUTINE CALCULATES THE BOUNDARY LAYER

```
THIS SUEROUTINE CALCULATES THE BOUNDARY LAYER
B AC99
B AC99
INTFGER OMEGA
REAI NU,NUL1,NUL2,NU1,NU2,K,KAPPA,KAPPAL
COMMON MIN,MOUT,MM,NN, LAMUA,OMEGA,NMINC,NSLAP,LT,NU,
IUL(10,50),VL(10,50),U(10,50),V(10,50),W(10,50), BLT(10),
2P1(10),P2(10), LOGPT(10),NOPTS(10), VO(50), VOO(50).
3XL,YO,F,G,H,AT,BT,NSTEP,NSMAX,LFREQ,MFREQ%
4PSI],PSI2,PSI3,PSI4,PSI5,PSIG,PSI7,PSI8,
5PHI1, rHI2,PHI3,PHI4,PHI5,PHI6,PHI7,PHI8
B AC99
B002AC99
B002AC99
B004AC99
B004AC99
B006AC99
B00OAC99
B007AC99
    COMMON KAPPA,KAPPAL,K,A,CNIN,ITN,ITMAX,TOL,SOS,NOSOS,
    B008AC99
    B009AC99
```

IUL1. UL 2, UL 3, VL1,VL2,VL $3, U 1, U 2, U 3, V 1, V 2, V 3, Q 1, Q 2, Q 3$,
BOLOAC99
2NUL 1, NUL 2, NUI, NU2, XI, XINC,P1B, P2E, ALPHA,BETA, GAMMA,S, EPS, $3 A 1(50), A 2(50), A 3(50), A 4(50), A 5(50)$,
4DSTAR (10) , C, D, E1, E2,E3
GO $10(1,2)$, IT
1 TOL $1=0.99$
GOTO 3
2. $T \cap L I=0.999$

3 CONTINUE
DO \& $M=1, M M$
$O N P 1=(1.0-A S) * S Q R T(U L(M, N N) * * 2+V L(M, N N) * * 2)$
1
$+A S * S Q R T(U(M, N N) * \# 2+V(M, N N) * * 2)$
$Q B=T O L I * Q N P 1$
$N=N N-1$
$4 O H=(2 . O-A S) * S C R T(U L(M, N) * 2+V L(M, N) * * 2)$
$1+A S * S Q R T(U(M, N) * 2 \div V(M, N) * * 2)$
If $(O N-Q B) \quad 6,6,5$
$5 N=N-1$
$Q N P 1=Q N$
GO 104
$6 \quad$ ELT $(M)=N+(Q B-Q N) /(Q N P I-Q N)$
GO $10(7,8)$, IT
7 (ELT $T(M)=$ ELT $(M)-N M I N C+L A M D A$
8 CIONT INUE
RITURN
END

BO11AC99
B012AC99
B013AC99
B020AC 99
B030AC99
B040AC99
B050AC99
B060AC99
B070AC99
B980AC99
B090AC99
B100AC99
B110AC99
B120AC99
B130AC99
B140AC99
B150AC99
B160AC99
B170AC99
B180AC99
B190AC99
B200AC99
B210AC99
E220AC99
B230AC99 TO THE CONTINUITY EQUATION

C AC99

```
    REAL NU,NUL1,NUL2,NU1,NU2,K,KAPPA,KAPPAL
```

COMMON MIN,MOUT, MM, NN, LAMDA, OMEGA,NMINC,NSLAP,LT,NU,
$1 \cup L(10,53), V L(10,50), \cup(10,50), V(10,50), W(10,50), Q L T(10)$, $2 P 1(10), P 2(10), L O G P T(10), \operatorname{NOPTS}(10), V 0(50), V 00(50)$,
$3 X L, Y O, F, G, H, A T, B T, N S T E P, N S M A X, L F R E Q, M F R E Q$,
4PSI1,PSI2,PSI3,PSI4,PSI5,PSI6,PSI7,PSI8,
$5 \mathrm{PHI} 1, \mathrm{FHI} 2, \mathrm{PHI} 3, \mathrm{PHI} 4, \mathrm{PHI5} 5, \mathrm{PHI} 6, \mathrm{PHI} 7$, PHI 8
COMMON KAPPA,KAPPAL,K, A, CMIN,ITN, ITMAX,TOL,SOS,NOSOS,
IUL1.UL2, UL 3,VLI,VL2,VL3,U1, U2, U3,V1,V2,V3,Q1, Q2, Q3, 2NUL1,NUL2,NU1,I!U2,XI,XINC,P1B,P2B, ALPHA,BETA,GAMMA,S,EPS, $3 A 1(50), A 2(50), A 3(50), A 4(50), A 5(50)$,
4DSTAR(10), C, D, E1, E2, E3
IF (iN-NNI:NC) $1,1,2$
$1 \times I=(i+* H) /$ OMEGA
XINC. $=\mathrm{H} / \mathrm{OMEGA}$
GOTO 3
$2 \times I=(i,-N M I N C+L A M D A) * H$ XINC $=\mathrm{H}$
3 IF (N-LOGPT(M)) 4,4,11
$4 \mathrm{Ul}=11 \mathrm{~L}(\mathrm{M}, \mathrm{N})$
U3=11 (M, N)
$U 2=0.5 *(U 1+U 3)$
IF $(\mathrm{N},-1) 5,5,6$
5 VI = VO (N)
GOTO 7
$6 V 1=\{1,5 *(V L(M-1, \because)+V(M-1, N))$
$7 \quad V 2=0.5=(V L(M, N)+V(M, N))$
IF $(11-M M) \quad 8,9,9$
$8 V 3=1,5 *(V L(M+1,1)+V(M+1, N))$
GOTO 10
$9 \vee 3=V 00(11)$
10 Q2=SQRT (U2**2*V2**2)
$A L P H A=0.5$
CALI AC99L(N)
GO TO 18
$11 \times I=X I-0.5 * \times I N C$

C003AC99
COO4AC99
C005AC99
COOGAC99
C007AC99
COOBAC99
COO9AC99
CO10AC99
CO11AC99
CO12AC99
CO13AC99
CO20AC99
CO30AC99
CO4OAC99
C050AC99
CO6OAC99
CO70AC99
CO80AC99
C690AC99
C100AC99
C110AC99
C120AC9S
C130AC99
C. 140 AC9 9

C150AC99
C160AC99
C170AC99
C180AC99
C190AC99
C200AC99
C210AC99
C220AC99
C230AC99
C240AC99
C250AC99

```
Ul=0.5*(UL (M,N)*UL (M,N-1))
U3=(1.5*(U(M,N)+U(M,N-1))
IF(N-1) 12,12,13
12V1=i).5*(.VO(N) +VO(N-1))
GO TO 14
13V1=1.25*(VL(M-1,N)+VL(M-1,N-1) +V(M-1,N)+V(M-1,N-1))
14 IF (M-MM) 15,16,16
15V3=0.25*(VL(M+1,N) +VL(M+1,N-1)+V(M+1,N) +V(M+1,N-1))
GO TO 17
16 V3=0.5*(V00(N) +V00(N-1))
17 NU1 =0.5*(UL(M,N-1)+U(M,N-1))
NU2=0.5*(UL (M,N) +U(M,N))
18 RETURN
END
C270AC9
C280AC99
C290AC99
C300AC99
C310AC99
C320AC99
C330AC99
C340AC99
C350AC99
C360AC99
C370AC99
C380AC99
C390AC99
SUBKOUTINE AC99O(M,N,IL,ILPI)
D000AC99
- MELLOR AND GIBSON VISCOSITY MODEL
INTFGER OMEGA
REAI NU, NUL1,NUL 2,NU1,NU2,K,KAPPA,KAPPAL
COMMON MIN,MOUT,MM,NN,LAMDA, DMEGA,NMINC,NSLAP,LT,NU:
IUL \((10,50), V L(10,50), U(10,50), V(10,50), W(10,50), \operatorname{BLT}(10)\), 2P1(10), P2(20), LDGPT(10), NOPTS(10), VO(50), VOO (50),
\(3 \times L, Y O, F, G, H, A T, B T, N S T E P, N S M A X, L F R E Q, M F R E Q\), 4PSI1,PSI2,PSI3,PS14,PSI5,PSI6,PSI7,PSI8,
5PHI1, PHI2, PHI3, PHI4, PHI5, PHIG, PHIT,PHI 8
COMMON KAPPA,KAPPAL,K,A,CMIV,ITN,ITMAX,TOL,SOS,NOSOS,
1UL1.UL2, UL 3,VL1,VL2,VL3,U1,U2,U3,V1,V2,V3,O1, Q2, Q3,
2NUL 1, NUL 2,NU1,NU2,XI,XINC,P1B,P2B, ALPHA,EETA,GAMMA,S,EPS, \(3 A 1(50), A 2(50), A 3(50), A 4(50), A 5(50)\),
4DSTAR (10), C, D, E1, E2, E3

DSTA＝DSTAR \((M)\)
\(\operatorname{IF}(N-\operatorname{LOGPT}(M)) 1,1,4\)
D020AC99
1 GO TO \((2,3)\) ，LT
2 NUI \(=\) AC99E \((0.0\), DSTB，LT，ILP1）
NUL \(1=A C 99 E(0.0\), DSTB，LT，IL）
GO TO 7
\(3 Q=\operatorname{SCRT}(\mathrm{U} 2 * * 2+V 2 * * 2)\)
ZET \(\angle=K A P P A * * 2 *(X I-0.5 * X I N C) * Q / E P S\)
NUI＝AC99E（ZETA，DSTB，LT，ILPI）
IF（7ETA．GT。DSTB）ILPI＝2
\(Q=S O R T\)（UL2＊＊2＊VL2＊＊2）
ZETA \(=K A P P A * 2 *(X I-0.5 * X I N C) * Q / E P S\)
NUL \(1=A C 99 E(Z E T A, D S T B, L T, I L)\)
IF（7ETA．GT．DSTB）IL＝2
GOTO 7
4 GO TO \((5,6)\) ，LT
5 NU1＝AC99E（0．0，DSTE，LT，ILP1）
NUL \(1=A C 99 E(0.0, D S T B, L T, I L)\)
GO 107
\(6 D Q=S Q R T(U 2 * * 2+V 2 * * 2)-S O R T(U 1 * * 2+V 1 * * 2)\)
\(D Q=\triangle B S(D Q)\)
ZET \(A=(K A P P A *(X I-0.5 * X I N C)) * * 2 * D Q / X I N C\)
NU1＝AC99E（ZETA，DSTB，LT，ILP1）
IF（7ETA．GT．DSTB）ILPI＝2
\(D Q=S Q O T(U L 2 * * 2 * V L 2 * * 2)-S Q R T(U L 1 * * 2+V L 1 * * 2)\)
\(D Q=A B S(D Q)\)
ZETA＝（KAPPA＊（XI－0．5＊XINC））＊＊2＊DO／XINC
\(N U L 1=A C 99 E(Z E T A, D S T B, L T, I L)\)
IF（7ETA．GT．DSTB）\(\quad I L=2\)
7 GO TO \((8,9)\), LT
8 NU2 \(=\) AC99F（0．0，DSTE，LT，ILP1）
NULン \(=A C 99 E(0.0, D S T B, L T, I L)\)
GOTO 10
9 \(D Q=S Q R T(U 3 * * 2 * V 3 * * 2)-S Q R T(U 2 * * 2 * V 2 * * 2)\)
\(D Q=\angle B S(D Q)\)
\(Z E T A=(K A P P A *(X I+0.5 \approx X I N C)) * * 2 * D Q / X I N C\)

D030AC99
DC40AC99
D050AC99
D060AC99
DO70AC99
D080AC99
D090AC99
D100AC99
D110AC99
D120AC99
D130AC99
D140AC99
D150AC99
D160AC99
D170゙AC99
D180AC99
D190AC99
D200AC99
D210AC99
D220AC99
D230AC99
D240AC99
D250AC99
D260AC99
D270AC99
D280AC99
D290AC99
D300AC99
D31GAC99
D320AC99
D330AC99
D340AC99
D350AC99
D360AC99
D370AC99
ELOOAC99
```

```
```

 NU2=AC99E(ZETA,DSTB,LT,ILP1)}\mathrm{ D380AC99
    ```
```

 NU2=AC99E(ZETA,DSTB,LT,ILP1)}\mathrm{ D380AC99
 IF(7ETA.GT.DSTB) ILPI=2
 IF(7ETA.GT.DSTB) ILPI=2
 DQ=SQRT(UL 3**2*VL3**2)-SQRT(UL2**2*VL2**2)
 DQ=SQRT(UL 3**2*VL3**2)-SQRT(UL2**2*VL2**2)
 DC=\triangleES(DQ)
 DC=\triangleES(DQ)
 ZETA}=(KAPPA*(XI+0.5*XINC))**2*DQ/XINC
 ZETA}=(KAPPA*(XI+0.5*XINC))**2*DQ/XINC
 NUL>=AC99E(ZETA,DSTB,LT,IL)
 NUL>=AC99E(ZETA,DSTB,LT,IL)
 IF(7ETA.GT.DSTB) IL=2
 IF(7ETA.GT.DSTB) IL=2
 10 RETURN
10 RETURN
-
-
END
END
D390AC99
D390AC99
D400AC99
D400AC99
D410AC99
D410AC99
D420AC99
D420AC99
D430AC99
D430AC99
D440AC99
D440AC99
D450AC99
D450AC99
D460AC99
D460AC99

```
D450AC
```

```
D450AC
```

```
FUNCTION AC99E(ZETA,DSTAR,LT,II)
```

FUNCTION AC99E(ZETA,DSTAR,LT,II)
- MELLOR AND GIBSON VISCOSITY MODEL
- MELLOR AND GIBSON VISCOSITY MODEL
GO TO (1,2).,LT
GO TO (1,2).,LT
1 AC99E=DSTAR
1 AC99E=DSTAR
RETURN
RETURN
2 GO TO (3,5),II
2 GO TO (3,5),II
3 IF(7ETA-DSTAR) 4,4,5
3 IF(7ETA-DSTAR) 4,4,5
4 ACSYE=ZETA
4 ACSYE=ZETA
RETURN
RETURN
5 ACQSE=DSTAR
5 ACQSE=DSTAR
RETURN
RETURN
END

```
END
```

```
E AC99
E AC99
E AC99
EC20AC99
E030AC99
E040AC99
EO50AC99
E060AC99
E070AC99
E080AC99
EU90AC99
E100AC99
E110AC99
```

SUBROUTINE AC99F(M,N)

THIS SUBROUTINE SETS UP THE COEFFICIENTS TO THE

 C.
 INTFGER OMEGA
REAI NU, NUL1,NUL2,NU1,NU2,K,KAPPA,KAPPAL
COMMCN MIN,MOUT,MM,NN, LAMDA,OMEGA,NMINC,NSLAP,LT,NU,
$1 U L(10,50), V L(10,50), U(10,50), V(10,50), W(10,50), B L T(10)$,
2P1(i0), P2(10), LOGPT(10), NOPTS(10), VO(50), VOO (50),
3XL, YO, F, G, H, AT, ET, NSTEP, NSMAX, LEREQ,MFREQ,
4PSI1,PSI2,PSI3,PSI4, PSI5,PSI6,PSIT,PSI8,
5PHI1, PHI2, PHI3, PHI4, PHI5, PHI6, PHI 7, PHI 8
COMFON KAPPA,KADPAL,K, A, CMIN, ITN, ITMAX,TOL, SOS, NOSOS,
F AC99
FOO1AC99
F002AC99
F003AC99
F004AC99
F005AC99
FOOGAC.99
F007AC99
F008AC99
F009AC99
IUL1. UL2, UL 3,VL1, VL2, VL 3, U1, U2, U3, V1, V2, V3, O1, Q2, O3,
FO11AC99
F012AC99
F013AC99
F015AC99
F017AC99
F019AC99
F020AC99
F030AC99
F040AC99
FC50AC99
FU60AC99
F070AC99
FOBOAC99
F090AC99
F100AC95
F110AC99

| NE $A C 996(N E Q, M, N$) | G000AC99 |
| :---: | :---: |
| THIS SUBROUTINE SETS UP THE COEFFICIFNTS TO THE | G AC99 |
| LINEAR ALGEERAIC EQUATIONS AT THE GENERAL POINT | G AC99 |
| INTFGER OMEGA | G001AC99 |
| REAI NU, NUL1, NUL 2,NU1, NU2,K,KAPPA,KAPPAL | G002AC99. |
| COMHON MIN,MOUT, MM, NN, LAMDA, OMEGA, NMINC, NSLAP, LT, NU, | G003AC99 |
| $1 \mathrm{UL}(10,50), \mathrm{VL}(10,50), \mathrm{U}(10,50), \mathrm{V}(10,50), W(10,50), \operatorname{BLT}(10)$, | G004AL99 |
| 2P1(10), P2(10), LOGPT(10), NOPTS(10), VO(50), VO0150), | G005AC99 |
| 3XL, YO, F, G, H, AT, RT, NSTEP, NSMAX, LFREQ, MFREQ, | 6006AC99 |
| 4PS11,PS12,PSI3,PSI4,PSI5,PS16,PSI7,PSI8, | 6007AC99 |
| $5 \mathrm{PH} 11, \mathrm{PHI} 2, \mathrm{PHI} 3, \mathrm{PH} 44, \mathrm{PHI5}, \mathrm{PHI6}$, PHI7, PHI 8 | G008AC99 |
| COMMON KAPPA,KAPPAL, K, A, CMIN, ITN, ITNAX, TOL, SOS, NOSOS, | G009AC99 |
| IUL1.UL2, UL 3, VL. $1, V L 2, V L 3, U 1, U 2, U 3, V 1, V 2, V 3, Q 1, Q 2, Q 3$, | G010AC99 |
| 2NUL1, NUL 2, NU1,NU2, X1, XINC,P1E, P2B, ALPHA, EETA, GAMMA, S, EPS, | 6011AC99 |
| $3 A 1(50), A 2(50), A 3(50), A 4(50), A 5(50)$. | G012AC99 |
| YDSTAR(10), C, D, E1, E2, F3 | G013AC99 |
| A1 (NE2) $=$ PH12*PSI $3 * 02 / 5+$ PSI $1 * P S I 5 *($ NU1 + NU2) / (D*XINC* 21 | G020AC99 |
| A2 (NEC) $=$ PS 12*PS 3 *Q3/(2.0*S)*C*PSI1*PSI4/(2.0*D*XINC) | 6030AC99 |
| -PSI1*PS $15 * N U 2 /(D *$ XINC**2) | G040AC99 |
| A3(1)EQ -1$)=$ PSI $2 * P S I 3 * 01 /(2.0 * S)-C * P S I 1 * P S I 4 /(2.0 * D * X I N C) ~$ | G050AC99 |
| -PSII*PSI5*NU1/(D*XINC**2) | 6060AC99 |
| $A 4(N E \cap)=-P S I 2 * Q 3 *(P H 13 * U 3-U L 3) /(2.0 * S)-P H I 2 * C 2 *(P H I 3 * U 2-U L 2) / S$ | G070AC99 |
| -PSI2*Q1*(PHI3*U1-UL1)/(2.0*S) | G080AC99 |
| -C*(PHII*(UL3-UL1) +PSII*PHI4*(U3-U1) / ($2.0 * D *$ XINC $)$ | G090AC99 |
| 3 +P1B+(PHI1*(NUL2*(UL3-UL2)-NUL 1* (UL2-UL1)) | G100AC99 |
| 4 +PSI1*PHI5*(NU2*(U3-U2)-NU1*(U2-U1)) / (D*XINC**2) | G110AC99 |
| $A 5($ NE 0$)=-\mathrm{PS} 12 * Q 3 *(P H 13 * V 3-V L 3) /(2.0 * S)-P H I 2 * 22 *(P H I 3 * V 2-V L 2) / S$ | 6120AC99 |
| -PSI2*Q1*(PHI3*V1-VL1)/(2.0*S) | G130AC99 |
| | G140AC99 |
| +P2B+(PHI1*(1)UL2*(VL3-VL2)-NULI*(VL2-VLI)) | G150AC99 |
| 4 +PSI1*PHI5*(NU2*(V3-V2)-NU1*(V2-V1)) / (D*XINC**2) | G160AC99 |
| IF (N-NMINC) $2,2,2$ | G180AC99 |
| 1 N1 = INMINC-OMEGA | G190AC99 |
| $A 4(N E C)=A 4(N E Q) * A 3(N E Q-1)=(U(M, N-1)-U(M, N 1))$ | G200AC99 |
| $A 5(N E Q)=A 5(N E Q)+A 3(N E Q-1)=(V(M, N-1)-V(M, N 1))$ | G210AC99 |
| 2 IF (N-NOPTS $(M)+1) 4,3,3$ | G220AC99 |

$3 A 4(N E Q)=A 4(N E Q)-A 2(N E Q)=U(M, N+1)$
$A 5(N E Q)=A 5(N E Q)-A 2(N E Q) * V(M, N+1)$
4 RETUR:N
END

G230AC99
G240AC99
G250AC99
G260AC99

SUBROUT INE AC99H
HOOOAC99
RETURN
HOLOAC99
END
HO2OAC99

FUNCTION" AC99I (M, N,GAMMA, VEL,MM)
THIS FUNCTION INTERPOLATES VELOCITY COMPONENTS
DIMFNSION VEL $(10,50)$
IF ($\mathrm{MM}-1) 1,1,2$
1 AC99I $=\operatorname{VEL}(M, N)$ RETURN
2 IF $(i,-1) 3,3,4$
$3 \mathrm{I}=2$
$A G=\zeta . A M M A-1.0$
GOTO 7
4 IF (مーMM) 6,5,5
$5 I=M M-1$
$A G=1, A M M A+1.0$
GOTO 7
$6 I=M$
$A G=G, A M M A$
7 CONTINUE
$A A=(V E L(I+1,1)-2.0 * V E L(I, N) \div \operatorname{VFL}(I-1, N)) / 2.0$
$B E=(V E L(1+1, N)-V E L(1-1, N)) / 2.0$

1000AC99
1 AC99
I 020AC99
1030AC99
1040 AC 99
1050AC99
1060 AC 99
1070AC99
1080AC99
I090AC99
1100 AC 99
I110AC99
I120AC99
1130 AC 99
1140 AC 99
I150AC99
I160AC99
1170 A99
1180AC99

```
CC=VEL(I,N)
AC99I=AA*AG**2*SS*AG*CC
END

FUNC.TION AC99J(M,BETA,PRM,MM)
J000AC99
THIS FUNCTIDN INTEPOLATES PARAMETERS
DIMFNSION PRM(10)
J AC99
J020AC99
IF \((M M-1) 1,1,2\)
J030AC99
1 AC99J=PRN(M)
Ju4ÚAC99
RETURN
J050AC99
2 IF \((M-1) 3,3,4\)
\(3 \mathrm{I}=2\)
\(A G=\hbar E T A-1.0\)
GOTO 7
4 IF \(\left(M_{1}-N M\right) 6,5,5\)
5 I \(=M M-1\)
\(A G=B E T A+1.0\)
GO TO 7
\(6 \mathrm{I}=\mathrm{M}\)
\(A G=H E T A\)
7 CONT INUE
\(A A=(P R M(I+1)-2.0 \approx P R M(I)+P R M(I-1)) / 2.0\)
\(B E=(\) PRN \(A(1+1)-P R N(I-1)) / 2.0\)
\(C C=P R M(I)\)
\(A C 94 J=A A * A C * 2+B B * A G+C C\)
RETURN
END
1060 AC99
Ju70AC99
J080AC99
J090AC99
J100AC99
J110AC99
J120AC99
J130AC99
J140AC99
J150AC99
J160AC99
J170AC99
J180AC99
J190AC99
J200AC99
J210AC99
J220A099
```

SUBROUTINE AC99L(N)
THIS SUBROUTINE FITS THE "LOG LAW OF THE WALL"
INTFGER OMEGA
REAI NU,NUL1,NUL2,NU1,NU2,K,KAPPA,KAPPAL
COMMON MIN,MOUT,MM,NN,LAMDA,OMEGA,NMINC,NSLAP,LT,NU,
IUL(10,50),VL(10,50),U(10,50),V(10,50),W(10,50),BLT(10).
2P1(10),P2(10), LOGPT(10),NOPTS(10), VO(50),VOO(50),
3XL,YO,F,G,H,AT,BT,NSTEP,NSMAX,LFREQ,MFREQ,
4PSI1,PSI2,PSI3,PSI4,PS15,PSI6,PSI7,PSI8,
5PHI1, PHI2,PHI3,PHI4,PHI5,PHI6,PHI7,PHI8
COMMON KAPPA,KAPPAL, K,A, CMIN, ITN, ITMAX,TOL,SOS,NOSOS,
IUL1.UL2,UL 3,VL1,VL2,VL 3,U1,U2,U3,V1,V2,V3,Q1, Q2,Q3,
ZNUL 1,NUL 2,NU1,NU2,XI,XINC,PIR,P2B,ALPHA,BETA,GAMMA,S,EPS,
3A1(50),A2(50),A3(50),A4(50),A5(50),
4DSTAR(10), C,D,E1,E2,E3
GO TO (1,2),LT
1 EPS=1.0
RETURN
2 MAXIT=20
TOLT=0.00001
B=(AT* (XL+ALPHA*F)+BT)*H*N*KAPPAL*Q2
E=AIOG(B/(DMEGA*NU))+KAPPAL*A
EPS 1=6.0
DO \& I =1,MAXIT
EPS=EPS 1*(1.0-(EPS 1+ALOG(EPS1)-B)/(1.0+EPS1))
IF((EPS-EPS1)**2-TOL1) 5,5,3
3 EPS1=EPS
4 CONTINUE
WRITE(HOUT,6) Q2,N,ALPHA,EPS,EPSI
5 CONTINUE
RETIIRN
6 FORMAT(1HO,5X,3HEL1,5X,F12.6,I6,3F12.6)
END

```

LOOOAC99
L AC99
L001AC99
L002AC99
L003AC99
LOO4AC99
LOO5AC99
L006AC99
L007AC99
LOO8AC99
LOO9AC99
LO10AC99
L011AC99
L012AC99
L013AC99
LO20AC99
LO30AC99
LO40AC99
LO50AC99
LO60AC99
LO70AC99
LO80AC99
LO90AC99
L100AC99
L110AC99
L120AC99
L130AC99
L140AC99
L150AC99
L160AC99
L165AC97
L170AC99
L180AC99

SUBROUTINE AC99M(M,N)
MOOOAC99
THIS SUBROUTINE SETS UP ALL THE NECESSARY
M AC99

\section*{QUANTITIES FOR THE FINITE DIFFERANCE APPROXIMATION}

M AC99
TO THE MOMENTUM EQUATIDN
INTFGER OMEGA
REAI NU,NUL 1, NUL 2,NU1,NU2,K,KAPPA,KAPPAL
COMMON MIN,MOUT,MM,NN, LAMDA, OMEGA, NMINC, NSLAP, LT, NU,
\(1 U L(10,50), V L(10,50), U(10,50), V(10,50), W(10,50), B L T(10)\), 2P1 (10), P2 (10), LOGPT (10), NOPTS 110\(), \operatorname{VO}(50), \operatorname{VOO}(50)\),
\(3 X L, Y O, F, G, H, A T, B T, N S T E P, N S M A X, L F R E Q, M F R E Q\),
4 PSI1,PSI2,PSI 3, PSI4,PSI5,PSI6,PSI7,PSI 8,
\(5 \mathrm{PHI} 1, \mathrm{PHI} 2, \mathrm{PHI} 3, \mathrm{PHI} 4, \mathrm{PHI5} 5, \mathrm{PHI} 6, \mathrm{PHI7}, \mathrm{PHI} 8\)
COMMON KAPPA,KAPPAL,K,A,CMIN,ITN,ITNAX,TOL, SOS, NOSOS, 1UL1.UL2,UL 3, VL1,VL2,VL3,U1,U2,U3,V1,V2,V3, Q1, Q2, Q3,
2NUL1,NUL \(2, N U 1, N U 2, X 1, X I H C, P 1 B, P 2 B, A L P H A, E E T A, G A M M A, S, E P S\), \(3 A 1(50), A 2(50), A 3(50), A 4(50), A 5(50)\).
4DSTAR (10) , C, D, E1,E2,E3
IF (N-NMINC) \(1,2,2\)
\(1 \times I=(N * H) / O M E G A\)
XINC \(=H /\) OMEGA
GO TO 3
\(2 X I=(N-N M I N C+L A M D A)=H\)
XINC. \(=\mathrm{H}\)
\(3 \operatorname{IF}(N-\operatorname{LOGPT}(M)) 4,4,5\)
\(4 \mathrm{Ul}=0.0\)
\(\mathrm{VI}=0.0\)
\(U L I=0.0\)
\(V L I=0.0\)
\(\mathrm{Q} 1=0.0\)
GO TO 9
5 IF (N-NMINC) \(7,6,7\)
6 NMI = N-OMEGA
GOTO 8
\(7 \mathrm{NMI}=\mathrm{N}-\mathrm{I}\)
8 ULI \(=A C 99 I(M, N M I, G A M M A, U L, M M)\)
\(V L .1=A C 99 I(M, N M 1, G A M M A, V L, M M)\)
M. AC99

MOO1AC99
MOO2AC99
M003AC99
MOO4AC99
MCO5AC99
MOOGAC99
MOOTAC99
M008AC99
MOO9AC99
MO10AC99
MO11AC99
MO12AC99
MO13AC99
MO20AC99
MO30AC99
MO4 OAC99
MO50AC99
MO60AC99
MO70AC99
MO8つAC99
M090AC99
M100AC99
M110AC99
M120AC99
M130AC99
M140AC99
Mi50AC99
M160AC99
M17OAC97
M180AC99
M190AC99
M200AC99
\(\mathrm{UI}=\mathrm{U}(\mathrm{M}, \mathrm{NMI})\)
\(V 1=V(M, N M 1)\)
QI=SQRT((PHII*UL.1+PSII*U1)**2+(PHI1*VL1+PSI1*V1)**2)
. M230AC99
UL \(2=A C 99 I(M, N, G A M M A, U L, M M)\)
\(V L 2=A C 99 I(M, N, G A M M A, V L, M M)\)
M240AC99
M250AC99
M260AC99
M27CAC99
M280AC99
M290AC99
M300AC99
M310AC99
M320AC99
M330AC99
M340AC99
M350AC99
M390AC99
M400AC99
N410AC99
M420AC99
M430AC99
M440AC99
```

```
SUEKCLTINE ACGGO
```

```
SUEKCLTINE ACGGO
    THIS SUEROUTINE SETS UP THE GUTPUT OUANTIES
    THIS SUEROUTINE SETS UP THE GUTPUT OUANTIES
INTFGER CMEGA
INTFGER CMEGA
REAI NU, NUL1,NUL2,NU1,NU2,K,KAOPL,KAODAL
REAI NU, NUL1,NUL2,NU1,NU2,K,KAOPL,KAODAL
EXTFRNAL ACF9Y
EXTFRNAL ACF9Y
CONNCN MIN,MCUT,M,NN,LANDA,ONESA,NMINC,NSLAP,LT,NU,
CONNCN MIN,MCUT,M,NN,LANDA,ONESA,NMINC,NSLAP,LT,NU,
IUL(10,50),VL(10,50),U(10,50),V(10,50), V(10,50), LLT(10),
IUL(10,50),VL(10,50),U(10,50),V(10,50), V(10,50), LLT(10),
2P1(10), P2(10), LOGPT(10),NJPTS(10),VC(50), VOO(50),
2P1(10), P2(10), LOGPT(10),NJPTS(10),VC(50), VOO(50),
ZXL,YJ,F,G,H,AT, IT,NSTEP,NSMAX,LFPEC,MFREC,
ZXL,YJ,F,G,H,AT, IT,NSTEP,NSMAX,LFPEC,MFREC,
4PSI1,NSI?,PSI3,DSI4,PSI5,PSI6,PSI7,PSI8,
4PSI1,NSI?,PSI3,DSI4,PSI5,PSI6,PSI7,PSI8,
SPH11, ती12, PHI3,PH14,PHI5,PH16,PHI7,PHIB
SPH11, ती12, PHI3,PH14,PHI5,PH16,PHI7,PHIB
CONADN KADPA,KAP弓IL,K,A,CNIN,ITV,ITMAX,TOL,SDS,NOSOS,
CONADN KADPA,KAP弓IL,K,A,CNIN,ITV,ITMAX,TOL,SDS,NOSOS,
1UL1.UL2,UL 3,VL1,VL2,VL3,U1,U2,U3,V1,V2,V3,Q1,Q2,C3,
1UL1.UL2,UL 3,VL1,VL2,VL3,U1,U2,U3,V1,V2,V3,Q1,Q2,C3,
&NUL1,NUL2,NU1,:UU2,XI,XIYC,P1P,P2Z,NLPHA,BETA,GANMA,S,EPS,
&NUL1,NUL2,NU1,:UU2,XI,XIYC,P1P,P2Z,NLPHA,BETA,GANMA,S,EPS,
3A1(,)), A?(50),A3(50),A4(50),A5(50),
3A1(,)), A?(50),A3(50),A4(50),A5(50),
4D,D1,N2,T11,T12,T21,T22,HAPE,PT11,NT,CF,CFX,CF1,CF2,PHI
4D,D1,N2,T11,T12,T21,T22,HAPE,PT11,NT,CF,CFX,CF1,CF2,PHI
    H1=1:*( N T* (KL+F)+ET)
    H1=1:*( N T* (KL+F)+ET)
    CALI ACGSC(1,1.2)
    CALI ACGSC(1,1.2)
    DC % 
    DC % 
    ALDA.A=1.0
    ALDA.A=1.0
    N=L:S.OT(N)
    N=L:S.OT(N)
    U2=1.(N,N)
    U2=1.(N,N)
    v2= ( (v,N)
    v2= ( (v,N)
    C2 =SCRT(UZ**2+V2**2)
    C2 =SCRT(UZ**2+V2**2)
    CALI AC3FL(N)
    CALI AC3FL(N)
    C=Hi*?LT(N)
    C=Hi*?LT(N)
    UI=1.(1',N-4)
    UI=1.(1',N-4)
    V1=v(i,}\N-4
    V1=v(i,}\N-4
    :1=S@?T(U1**2+VI**2)
    :1=S@?T(U1**2+VI**2)
    C1 = AC,PT(AC93Y,N,NM1NC,NOPTS(N),OM[CA,H1,1,(1,0,1.C)
```

```
    C1 = AC,PT(AC93Y,N,NM1NC,NOPTS(N),OM[CA,H1,1,(1,0,1.C)
```

```


```

```
    T11= AC马GT(AC9GY, N,NINC,NOPTS(N),ONEGA,H1,1,1,0,1.O)
```

```
    T11= AC马GT(AC9GY, N,NINC,NOPTS(N),ONEGA,H1,1,1,0,1.O)
    T12= &C77T(NC99Y,N, NINC,NOPTS(%),DMESA,H1,1,0,1,1.0)
    T12= &C77T(NC99Y,N, NINC,NOPTS(%),DMESA,H1,1,0,1,1.0)
    T21=-ACGGT(AC9GY,A,NMINC,NOPTS(%), DMESA,H1,O,1,1,1.0)
    T21=-ACGGT(AC9GY,A,NMINC,NOPTS(%), DMESA,H1,O,1,1,1.0)
    T22=-\CSSTIACFSY,*,\becauseMNC,NOPTS(M),OMEGA,H1,0,O,2,1.0)
    T22=-\CSSTIACFSY,*,\becauseMNC,NOPTS(M),OMEGA,H1,0,O,2,1.0)
    FAPF=E1/T11
```

```
    FAPF=E1/T11
```

```

DOD0AC99
0 AC99
0001 AC99
\(0002 A C 99\)
0002AC99
9003AC99
0004 AC9 9
5005AC99
90064C．99
00つ7ACク？
DOORAC9？
n009AC99
06loAC99
0011 AC 99
DO12AC9？
0613AC97
n020AC99
0023AC99
0026 AC99
\(0030 A C 99\)
0045AC9？
0050AC99
0060AC99
0070 AC99
C09．9AC99
0100AC99
0110 AC99
012 UAC99
0130 AC9
0140 AC99
\(01504 C 98\)
\(01604 C 99\)
017 ）AC99
C180AC99
0130AC99
C200AC99
```

 RT11=Q1*T11/NU O210AC99
 QT=KAPPAL*Q2/EPS
 IF(1T.EQ.1) QT=0.0
 CF=2.0*(QT/Q1)**2
 CFX=CF*U2/Q2
 CFY=CF*V2/Q2
 CFI=CFX*U1/QI+CFY*VI/Q1
 CF2=CFX*V1/Q1-CFY*U1/Q1
 PHI=(VI*U2-V2*UI)/(UI*U2*VI*V2)
 II=1
 IF(NSTEP-(NSTEP/LFREQ)*LFREQ) 6,1,6
 1 MMI=M-1
IF(MMI-(MMI/MFREQ)*MFREQ) 6,2,6
2 II =?
DO 3 N}=1,NMIN
3 Al(N)=N*HI/OMEGA
DO }4\textrm{N}=\textrm{NMINC,NN
4 Al(iN)=(%-NMINC+LAMDA)*HI
DO 5 N=2,NN
U2=U(M,N)
V2=V(M,N)
A2(iN)=V2/U2
A3(iv)=(U1*U2+V1*V2)/Q1**2
A4(iv)=(V1*U2-U1*V2)/Q1**2
A5(N)=(V1*U2-V2*U1)/(U1*U2*VI*V2)
5 CONTINUE
6 CALI AC99P(M,II)
7 CDNI INUE
RETURN
END
0225AC99
0225AC99
0230AC99
0240AC99
0250ムC99
0260AC99
O270AC99
0280AC99
0285AC99
0290AC99
0292AC99
0294AC99
0296AC99
0300AC99
C310AC99
0320AC99
0330AC99
0340AC99
0350AC99
0360AC99
0370AC99
0380AC99
0390AC99
0400AC99
0410AC99
0420AC99
0430AC99
0440AC99
0450AC99

```
```

 SUBROUTINE AC99P(M,II)
 INTFGER OMEGA
 REAI NU,NUL1,NUL2,NU1,NU2,K,KAPPA,KAPPAL
 COMMON MIN,MOUT,MM,NN,LAMDA,OMEGA,NMINC,NSLAP,LT,NU,
 IUL(10,50),VL(10,50),U(10,50),V(10,50),W(10,50),BLT(10),
 2P1(10),P2(10), LOGPT(10),NOPTS(10),VO(50),VO0(50),
 3XL,YO,F,G,H,AT,BT,NSTEP,NSMAX,LFREQ,MFREQ,
 4PSI1,PSI2,PSI3,PSI4,PSI5,PSIG,PSI7,PSI8,
 5PHI1,PHI2,PHI3,DHI4,PHI5,PHI6,PHI7,PHI8
 COMNON KAPPA,KAPPAL,K,A,CMIN,ITN,ITMAX,TOL,SOS,NOSOS,
 1UL1.UL2,UL3,VL1,VL2,VL3,U1,U2,U3,V1,V2,V3,Q1,Q2,Q3,
 2NUL1,NUL 2,NU1,NU2,X1,XINC,P1E,P2B,ALPHA,BETA,GAMMA,S,EPS,
 3A1(,0),A2(50),A3(50),A4(50),A5(50),
 4D,D1,D2,T11,T12,T21,T22,HAPE,RT11,QT,CF,CFX,CF1,CF2,PHI
 IF((II-1)*(LFREQ+MFREQ-2)) 2,2,1
 1 WRITE(MOUT,70)
2 XLP1=XL*F
Hl=H*(AT*XLPI*BT)
YM=YO+(M-1)*G
WRITE(MOUT,71) NSTEP,M,XLPI,YM,HI,ITN,LOGPT(M),EPS
WRITE(MOUT,72) D,HAPE,RT11,D1,D2,T11,T12,T21,T22
WRITE(MOUT,73) QT,CF,CF1,CF2,CFX,PHI
N=L\capGPT (M)
CALI AC99S(M,N)
WRITE(MOUT,76) ALPHA, BETA,GAMMA,S
CALI AC99S(M,NN)
WRITE(MOUT,76) ALPHA,BETA,GAMMA,S
GOTO (5,3),II
3 WRITE (MOUT,74)
DO \& N=1,NN
WRITE(MOUT,75) Al(:N),U(M,N),V(M,N),W(M,N),AZ(N),
1
4 CONTINUE
WRITE(HOUT,70)
5 RETURN
70 FORMAT (1H1)
POOOAC99
P001AC99
P002AC99
P003AC99
P004AC99
P005AC99
P006AC99
P007AC99
POO8AC99
POO9AC99
PU10AC99
P011AC99
PO12AL99
P013AC99
PO20AC99
P030AC99
P032AC99
PO34AC99
PC36AC99
PO40AC99
P050AC97
P060AC99
P070AC99
PU8OAC99
P090AC99
Pl0UAC99
P110AC99
P120AC99
P130AC99
P140AC99
P150AC99
P160AC99
P175AC99
P190AC99
P200AC99
P210AC99

```

71 FORMAT \(11 H O, 2 X, 4\) HFACE, \(14,2 X, 8 H\), SECTION, \(14,6 X, 2 H X=, F 11.6,2 X, 3 H, Y=\), \(1 F 11.6 / 1 \mathrm{H}, 100 \mathrm{X}, 1 \mathrm{H} * / 1 \mathrm{H}, 6 \mathrm{X}, 31 \mathrm{HTHE} Z\) INCREMENT WAS ADJUSTED TO, 2F12.9,30H AND THE SOLUTION COIVERGED IN, I3, 16 H ITERATIONS WITH, \(34 \mathrm{H} \mathrm{N}=, I 3,7 \mathrm{H}\) AND \(\mathrm{C}=, \mathrm{F} 10.6 / 1 \mathrm{H}+, 110 \mathrm{X}, 1 \mathrm{H}-1\)

P220AC99 P230AC99 P240AC99 P245AC99
72 FORMAT \((1 H O, 6 X, 40 H\) THE PROFILE PARAMETERS ARE AS FOLLOWS \(-, 12 X, 2 H S=P 250 A C 99\) \(1, \mathrm{~F} 10.6,5 \mathrm{X}, 2 \mathrm{HH}=, \mathrm{F} 9.5,3 \mathrm{X}, 5 \mathrm{HR}=, F 10.3 / 1 \mathrm{H}+, 58 \mathrm{X}, 1 \mathrm{HC} / 1 \mathrm{H}, 90 \mathrm{X}, 3 \mathrm{HO} 11 / 1 \mathrm{H}+\mathrm{P} 260 \mathrm{AC} 99\) \(2,90 \mathrm{X}, 1 \mathrm{H}-11 \mathrm{H}, 8 \mathrm{X}, 1 \mathrm{H}=, 15 \mathrm{X}, 1 \mathrm{H}=11 \mathrm{H}, 7 \mathrm{X}, 3 \mathrm{HS} 1=, \mathrm{F} 10.6,3 \mathrm{X}, 3 \mathrm{HS} 2=, \mathrm{F} 10.6,3 \mathrm{X}, \mathrm{P} 270 \mathrm{AC} 99\) \(34 \mathrm{HO} 11=, F 10.6,3 x, 4 \mathrm{HO} 12=, F 10.6,3 \mathrm{X}, 4 \mathrm{HO} 21=, F 10.6,3 x, 4 \mathrm{H} 022=, F 10.6 / 1 \mathrm{Ht}\), P280AC 99 \(47 \mathrm{X}, 1 \mathrm{HC}, 15 \mathrm{X}, 1 \mathrm{HC}, 15 \mathrm{X}, 1 \mathrm{H}-16 \mathrm{X}, 1 \mathrm{H}-, 16 \mathrm{X}, 1 \mathrm{H}-, 16 \mathrm{X}, 1 \mathrm{H}-1\)

P280AC99
P290AC99
73 FORMATI \(1 \mathrm{HO}, 7 \mathrm{X}, 3 \mathrm{HO}=, \mathrm{F} 10.7,3 \mathrm{X}, 3 \mathrm{HC}=, \mathrm{F} 10.7,3 \mathrm{X}, 4 \mathrm{HC}=, F 10.7,3 \mathrm{X}, 4 \mathrm{HC}=\mathrm{P} 300 \mathrm{AC} 99\) \(1, F 10.7,3 \mathrm{X}, 4 \mathrm{HC}=, \mathrm{F} 10.7,5 \mathrm{X}, 2 \mathrm{HO}=, \mathrm{F} 10.6 / 1 \mathrm{H}+, 92 \mathrm{X}, 1 \mathrm{H} / / 1 \mathrm{H}, 8 \mathrm{X}, 1 \mathrm{HT}, 15 \mathrm{X}\), P 310 C 9 C \(21 \mathrm{HF} \cdot 15 \mathrm{X}, 2 \mathrm{HF} 1,15 \mathrm{X}, 2 \mathrm{HF} 2,15 \mathrm{X}, 2 \mathrm{HFX} / 1 \mathrm{H}+8 \mathrm{X}, 1 \mathrm{H}()\)

P320AC99
74 FORMAT \(11 \mathrm{HO}, 3 \mathrm{X}, 8\) HDISTAVCE, \(8 X, 31\) HRECTANGULAR VELOCITY COMPONENTS, \(7 X\), P 33 UAC 99 17 HT \(\triangle\) NGEVT, \(11 \mathrm{X}, 12 \mathrm{H}^{\prime}\) STREAMWISE', \(10 \mathrm{X}, 7\) HTANGENT / \(1 \mathrm{H}, 3 \mathrm{X}, 8 \mathrm{HFROM} \mathrm{THE,47X}, \mathrm{P340AC99}\) 25 HANGLE, \(10 X, 17\) HVELOCITY PROFILES, \(8 \mathrm{X}, 5 \mathrm{HANGLE} / 1 \mathrm{H}, 5 \mathrm{X}, 4 \mathrm{HWALL}, 12 \mathrm{X}, 14 \mathrm{H}, \mathrm{P} 350\) AC 99 312 X . \(1 \mathrm{HV}, 12 \mathrm{X}, 1 \mathrm{HW}, 11 \mathrm{X}, 311 \mathrm{Q}-\mathrm{U}, 12 \mathrm{X}, 2 \mathrm{HUl}, 11 \mathrm{X}, 2 \mathrm{HVI}, 10 \mathrm{X}, 4 \mathrm{HO}-\mathrm{QS} / 1\)

P360AC99
75. FORNAT \((3 X, F 10.6,2 X, 3(3 X, F 10.4), 3 X, F 9.6,2 X, 2(3 X, F 10.6), 3 X, F 9.6)\)

76 FORMAT ( \(1 \mathrm{H}, 4 \mathrm{~F} 12.6\) ) END

\section*{Q000AC99}

THIS SUBROUTINE SETS UP THE FREESTREAM
C AC99 BOU:IDARY COIDITION FOR THE THREE-

Q AC97 DIME'SSIONAL BOUNDARY LAYER

Q AC99
INTFGER OMEGA
QU01AC99
REAI NU, NUL 1, NUL 2,NU1,NU2,K,KAPPA,KAPPAL
QU02AC99
COMMON MIN, MOUT, MHI, NN, LAMDA, OMEGA, NMINC, NSLAP, LT, NU,
Q003AC99
\(1 U L(10,50), V L(10,50), U(10,50), V(10,50), W(10,50), B L T(10)\),
2004 AC99
2P1(10), P2 (10), LOGPT(10), NOPTS(10), VO(50), VOO (50),
QU05Aこ99
\(3 \times L, Y O, F, G, H, A T, B T\), NSTEP, NSMAX, LFREQ, MFREQ,
QU06AC99
4PS11,PS 12,PSI3,PSI4,PS15,PSI6,PSI7,PSI8,
5 PHI1, PHI 2, PHI 3, PHI4, PHI5, PHI6, PHI \(7, \mathrm{PHI} 8\)

QU07AC99
QOOBAC99
```

COMMON KAPPA,KAPPAL,K,A,CMIN,ITN,ITMAX,TOL,SOS,NOSOS, QOO9AC99
IUL1.UL2,UL 3,VL1,VL2,VL3,U1,U2,U3,V1,V2,V3,Q1,Q2,Q3, 0010AC99
2NUL1,NUL2,NU1,NU2,XI,XINC,P1E,P2B,ALPHA,BETA,GANHA,S,EPS, QU11AC99
3A1(5),A2(50),A3(50),A4(50),A5(50),
4DSTAR(10),C,D,E1,E2,E3
DO 1 M=1,MM
U(M,NN)=AC99U(XL+F,YO+(M-1)*G)
V(M*NN})=AC99V(XL+F,YO+(M-1)*G
Pl(M)=(U(M,NN)+UL(M,NN))*(U(M,NN)-UL(M,NN))/(2.0*F)
1 +(V(M,NN)+VL(M,NN))*(V(M,NN)-VL(M,NN))/(2.0*F)
P2(N})=(U(M,NN)+UL(M,NN))*(AC99U(XL+O.5*F,YO+M*G
-AC99U(XL+0.5*F,YO+(M-2)*G))/(4.0*G)
1
2
3
-AC99V(XL+0.5*F,YO+(M-2)*G))/(4.0*G)
1 CONT INUE
$\operatorname{VO}($ iNi: $)=A C 99 V(X L+0.5 * F, Y O-G)$
$\mathrm{VOO}(\mathrm{NN})=A C 99 \mathrm{~V}(X L+0.5 * \mathrm{~F}, \mathrm{YO}+\mathrm{MM} * \mathrm{G})$
RETURN
END
QU11AC99
Q012AC99
QO13AC99
QU20AC99
QO30AC99
QU40AC99
QO50AC99
Q060AC99
QO7JAC99
Q080AC99
Q090AC99
Q10UAC99
Q110AC99
Q120AC99
Q130AC99
Q140AC99
Q150AC99

```
```

SUBKOUTI'NE ACGOR(M)
THIS SUBPOUTINE SETS UP LAMINAR OR TURBULENT
VISCOSITY FUNCTION PARAMETERS
- MELLOR AND GIBSON VISCOSITY MODEL
INTFGFR OMEGGA
REAI NU,NUL1,NUL2,NU1,NU2,K,KAPPA,KAPPAL
EXTFRNAL AC99Y
COMMON MIN,MOUT,MM,NN,LAMDA,OMEGA,NMINC,NSLAP,LT,NU,
IUL(10,50),VL(10,50),U(10,50),V(10,50),W(10,50),BLT(10),
2P1(10),P2(10),LOGPT(10),NOPTS(10),VO(50),VOO(50),
3XL,YO,F,G,H,AT,BT, NSTEP, NSMAX, LFREO, MFREO,
4PSI1,PSI2,PSI3,PSI4,PSI5,PSI6,PSI7,PSI8,

```
ROOOAC99
R. AC99
R AC99
R AC99
RU01AC99
R002AC99
RU02AC99
RO03AC99
R004AC99
ROO5AC99
R.OO6AC99
```

5PHI1,PHI2,PHI3,PHI4,PHI5,PHI6,PHI7,PHI8 RO08AC99
COMMON KAPPA,KADPAL,K,A,CMIN,ITN,ITMAX,TOL,SOS,NOSOS, ROO9AC99
IUL1.UL2,UL 3,VL1,VL2,VL 3,U1,U2,U3,V1,V2,V3,Q1,Q2,Q3, RO1JAC99
2NUL1,NUL2,NU1,NU2,X1,XINC,P1B,P2B,ALPHA,EETA,GAMMA,S,EPS, RO11AC99
3A1(50),A2(50),A3(50),A4(50),A5(50), RO12AC99
4DSTAR(10),C,D,E1,E2,E3
AL=0.5
GD TO (1,2),LT
1 DSTAR (M) =NU/(AT*(XL+AL*F)*BT)
RETIIRN
2.CALI AC99S(M,NN)
UI=AC99I (M,INN,GAMMA,UL,MM)
VI=AC99I(M,NN,GAMMA,VL,MM)
U3=U(M,NN)
V3=V(M,NN)
Q1=SCRT(U1**2+V1**2)
Q3=SQRT(U3**2+V3**2)
DQ=03-Q1
Q2=0.5*(Q3+Q1)
HI=H*(AT*(XL+ALPHA*F)+BT)
Q1=02
Ul=0.5*(U3+U1)
V1=0.5*(V3+V1)
TH11=AC99T(AC99Y,M,NMINC,NOPTS(M),OMEGA,H1,1,1,0,ALPHA)
AA=1.OE 4*TH11*(DQ/S)/Q2
K=0.016+0.00015*AA
IF(K-0.007) 7,7,8
7K=0.007
8 CONTINUE
DSTAR(M)=K*Q2**
1 AC99T(AC99Y,M,NMINC,NOPTS(M),OMEGA,H,1,0,0,ALPHA)
RETIIRN
END
R013AC99
RO17AC99
R02.0AC99
RO3OAC99
RO4UAC99
RU50AC99
RU60AC99
RO7OAC99
RU8OAC99
RU90AC99
R100AC99
R110AC99
R120AC99
R130AC99
R140AC99
R150AC99
R160AC99
R170AC99
R180AC99
R190AC99
R200AC99
R210AC99
R220AC99
R23UAC99
R240AC99
2250AC99
R260AC99
R270AC99

```

```

2 \mp@code { I F (\triangle A) ~ 3 , 3 , 4 ~ S 1 3 0 A C 9 9 }
3 SGN=-1.0
GO TO 5 -
4 SGN= = 1.0
5 GAMMA=-TSTAR=F/G
DO 6 I =1,MAXIT
TGANA=AC79I(M,N,GAMMA,VL,MM)/AC99I(M,N,GAMMA,UL,MM)
T=(1.0-TSTAR*TGAMA)/(TSTAR+TGAMA)
TG=-T+SJN*SQRT(1.O+T**2)
ERROR=GAMMA+TG*F/G
GAMMA=-TG*F/G
IF(\triangleES(ERROR)-TOL2) 7,7,6
6 CONTINUE
WRITE(MOUT,11) M,N
CALI EXIT
7 ALPHA}=(2.0*3.0*TG*TSTAR-TG*2)/(4.0*(1.0+TG*TSTAR)

* BETA=-F*(TSTAR+TG+2.0*TG**2*TSTAR)/(4.0*G*(1.0+TG*TSTAR))
AS=F*SCRT(1.0+TG**2)/2.0
ES=(TG-TSTAR)/(1.0+TG*TSTAR)
CS=SORT(1.0+ES**2)
IF(ABS(ES)-TOL3) 8,8,9
8 S=2.0*AS
GO TO 10
9 S=AS* (ALOG(BS+CS)/BS+CS)
10 RETURN
11 FORMAT(1HO,5X,3HES1,5X,216)
END

```

S130AC99
S140AC99
S150AC99
S160AC99
S170AC99
S180AC99
S190AC99
S200AC99
S210AC99
S220AC99
S230AC99
S240AC99
S250AC99
S260AC99
S270AC99
S280AC99
S290AC99
S300AC99
5310 AC99
S32 JAC99
S330AC99
S340AC99
S350AC99
S360AC 99
S370AC99
S38UAC9
5390AC99


THIS SUBROUTIME CALCULATES \(W\) AT ANY POINT
INTFGER OMEGA
REAI NU,NUL1,NUL2,NU1,NU2,K,KAPPA,KAPPAL
COMMON MIN,MOUT,MM,NN,LAMDA,OMEGA,NMINC,NSLAP,LT,NU,
IUL \((10,50), \operatorname{VL}(10,50), U(10,50), V(10,50), W(10,50), \operatorname{BLT}(10)\), 2P1 (10), P2(10), LOGPT (10), NOPTS(10), VO(50), VOO (50),
\(3 X L, Y O, F, C, H, A T, B T, N S T E P, N S M A X, L F R E Q, M F R E Q\),
4PSI1,PSI2,PSI3,PSI4,PSI5,PSI6,PSI7,PSI8,
5 PHI1, PHI 2, PHI 3, PHI4, PHI5, PHI6, PHI7, PHI 8
COMMON KAPPA, KAPPAL,K, A, CMIN, ITN, ITMAX, TOL, SOS, WOSOS,
1UL1.UL2, UL 3, VL1, VL2, VL3, U1, U2, U3, V1, V2, V3, Q1, Q2, Q3,
2NUL 1, ,UL 2, NU1,NU2, XI, XINC, P1E, P2B, ALPHA, BETA,GAMMA,S,EPS,
3A1(50), A2 (50), A3 (50), A4 (50), A5 (50),
\(4 D S T \triangle R(L U), C, D, E 1, E 2, E 3\)
IF(iJ-LOGPT(M)) \(1,1,2\)
\(1 C=A T * U 2 /(D * E P S)\)
GO 103
\(2 C=(A T * X I / D) *(N U 2-N U 1) / X I N C\)
\(3 E=(113-U 1) / F+(V 3-V 1) /(2.0 * G)-C\)
IF \((N-\operatorname{LDGPT}(M)) 4,4,6\)
\(4 h^{\prime}\left(M_{*} \cdot N\right)=-(D * X I /(1.0+1.0 / E P S)) * E\)
\(D O\) 万 \(I=1, N\)
\(5 W(M \cdot I)=(\operatorname{FLOAT}(I) / N) * *(1.0+1.0 / E P S) * W(M, N)\)
RETHRN
\(6 W(M * N)=W(N, N-1)-D * E * X I N C\)
RETURN
END

W AC99
WOO1AC99
W002AC99
W003AC99
W004AC99
WOO5AC99
WOOGAC99
WOOTAC99
W008AC99
W009AC99
WU1OAC99
W011AC99
W012AC99
WO13AC99
W020AC99
W030AC99
W040AC99
h050AC99
WCSOAC99
WO7GAC99
WO80AC99
WO90AC99
W100AC99
W110AC99
W120AC99
W130AC99
W140AC9

XOOOAC99
SUEROUTINE AC99X
\(\times \quad\) AC99
\(\times \quad\) AC99
X001AC99
X002Aこ99

COMMON MIN, MOUT, MH, NN, LAMDA, ONFGA,NMINC,NSLAP,LT,NU,
X003AC99
IUL \((10,50), \operatorname{VL}(10,50), U(10,50), V(10,50), W(10,50)\), ELT \((10)\), 2P1 (i0), P2́ (10), LOGPT(10), NOPTS(10), VO(50), VOO (50),
\(3 X L, Y O, F, G, H, A T, B T, N S T E P, N S M A X, L F R E Q, M F R E Q\),
4 PSI1,PSI2,PSI 3,PSI4,?SI5,PSI6,PSI7,PSI8,
5 PHI 1, PHI 2, PHI 3, PHI 4, DHI 5 , PHI 6, PHI 7 , PHI 8
COMNON KAPPA,KAPPAL,K,A,CNIN,ITN,ITMAX,TOL,SOS,NOSOS,
1UL1.UL2, UL 3, VL1,VL2,VL3, U1, U2, U3, V1,V2, V3, Q1, 22,03,
\(2 N U L 1, N U L 2, N U 1, N U 2, X I, X I N C, P 1 E, P 2 B, A L P H A, B E T A, G A M M A, S, E P S\), \(3 A 1(50), A 2(50), A 3(50), A 4(50), A 5(50)\),
\(4 \operatorname{DSTAR}(10), C, D, E 1, E 2, E 3\)
CALI AC99B(2,0.0)
DO \(\geqslant M=1, M M\)
\(\operatorname{NOPTS}(M)=B L T(M)+N S L A P+1\)
IF (NOPTS \((M)-N N) 2,2,1\)
\(1 \operatorname{NOPIS}(M)=N N\)
2 CONTINUE
GO TO \((3,5), L T\)
3 DO \(4 \quad M=1, M M\)
\(4 \operatorname{LOGPT}(M)=1\)
RETURN
\(5 \mathrm{NL}=\mathrm{IVMINC}-\) OMEGA
\(D O\) o \(M=1, M M\)
DO \& \(v=2, N 1\)
\(C 2=S O R T(U L(M, N)=2+V L(M, N)=* 2)\)
\(A L P H A=0.0\)
CALI AC97L (N)
\(C=N=K A P P A L * H * O 2 /(O M E G A * N U * E P S)\)
IF (f.-CNIN) \(6,7,7\)
6 CONI INUE
WRITE(MOUT, 9) NSTEP,M,C
\(N=N 1\)
\(7 \operatorname{LOGPT}(M)=N\)
8 CONT INUE
RETIIRN
9 FORMAT ( \(1 \mathrm{HO}, 5 \mathrm{X}, 3 \mathrm{HEX} 1,5 \mathrm{X}, 216, \mathrm{~F} 12.6\) )
END

X004AC99
XOO5AC99
X006AC99
X007AC99
X008AC99
X009AC99
XO10AC99
\(\times 011 A C 99\)
X012AC99
XO13AC99
XU20AC99
X030AC99
XU4OAC99
XO50AC99
\(\times 060 A C 99\)
X07UAC99
X080AC99
X090AC99
X100AC99
X110AC99
\(\times 120 A C 99\)
\(\times 130\) AC99
\(\times 140 \triangle C 99\)
X150AC99
\(\times 160\) AC 99
X170AC99
\(\times 180\) AC99
X190AC99
\(\times 200\) AC99
\(\times 21 \cup A C 99\)
\(\times 220\) AC99
\(\times 230\) AC99
\(\times 240\) AC99
\(\times 250\) AC 99 \(\times 260 A C 99\)
\(\times 270\) AC99

THIS FUNCTION PROVIDES THE ARGUMENTS NECESSARY
Y AC99
TO CALCULATE THE DISPLACEMENT AND MOMENTUM
THICKNESSES
Y AC99
INTFGFR OMEGA
REAI NU, NUL1,NUL2,NU1,NU2,K,KAPPA,KAPPAL
COMMON MIN,MOUT,MM, NN, LAMDA, OMEGA, NMINC, NSLAP,LT,NU,
YOOLAC99
YOO2AC99
YOO BAC99
\(1 \cup L(10,50), \operatorname{VL}(10,50), U(10,50), V(10,50), W(10,50), B L T(10)\),
YOO4AC99 2P1 (10), P2(10), LOGPT (10), NOPTS(10), VO(50), VOO(50), \(3 \times L, Y O, F, G, H, A T, B T, N S T E P, N S M A X, L F R E Q ; M F R E Q\),

YOO5AC99
4 PSI1, PSI2,PSI3,PSI4,DS \(15, P S I 6\), PSI 7, PSI 8,
YO06AC99 5 PHIl, PHI2, PHI3, PHI4, PHI5, PHI6, PHI7, PHI 8
COMMCY KAPPA, KAPPAL, K, A, CMIN, ITN, ITMAX,TOL, SOS, NOSOS,
Y007AC99
Y008AC99
Y009AC99
1UL1.UL2, UL 3, VL1,VL2,VL 3,U1,U2, U3, V1,V2, V3, Q1, 22, Q3, 2NUL1, NUL 2,NU1,NU2,XI, XINC, P1E, P2B, ALPHA, RETA,GAMMA,S,EPS,

YO10AC99
Y011AC99 \(3 A 1(50), A 2(50), A 3(50), A 4(50), A 5(50)\),
4DSTAR (10), C, D, E1,E2,E3
YJ12AC99
\(\operatorname{IF}(N) 1,1,2\)
\(1 U U=0.0\)
\(V V=0.0\)
GO TO 3
YO13AC99
YO20AC99
Y030AC99
YO40AC99
YO50AC99
2 CONT INUE
\(U A L=(? .0-A L) \neq U L(M, N)+A L * U\left(M_{2} N\right)\)
\(V A L=(1.0-A L) * V L(M, N)+A L * V(M, N)\)
\(U U=(U A L * U 1+V A L * V I) / Q 1 * * 2\)
\(V V=(U A L * V I-V A L * U 1) / Q I * * 2\)
3 CONTINUE
\(A A=1.0\)
IF (11) 4,5,4
\(4 \dot{A} A=厶 A=(1.0-U U)=11\)
5 IF(12) 6,7,6
\(6 \quad A A=\triangle A * U U *=12\)
7 IF (13) 8,9,8
\(8 \quad A A=\Delta A * V V * * I 3\)
Y060AC99
YO7OLC99
Y075AC99
YO 80AC99
Yし85AC97
YU90AC99
Y100AC99
Y110AC99
Y120AC99
Y130AC99
Y140AC99
Y150AC99
Y160AC99
Y170AC99
Y180AC99
\(A C 99 Y=A A\)
END
Y190AC99
\begin{tabular}{|c|c|}
\hline SUBROUTINE AC99Z (NEQ) & 20004C99 \\
\hline THIS SUBRDUTINE SOLVES THE LINEAR ALGEBRAIC EQUATIDNS & \(2 \quad A C 99\) \\
\hline INTFGEP. OMEGA & 2001AC99 \\
\hline REAI NU, NUL1,NUL2,NU1,NU2,K,KAPPA,KAPPAL & Z002AL99 \\
\hline COMNON MIN,NOUT,MM, NN, LAMDA, OMEGA, HMINC, NSLAP,LT, NU, & Z003AC99 \\
\hline IUL (10,50), VL \((10,50), \cup(10,50), V(10,50), W(10,50)\), BLT \((10)\), & Z004AC99 \\
\hline 2P1(10), P2(10), LOGPT (10), NOPTS 110\()\), VO(50), VOO(50), & 2005AC99 \\
\hline \(3 \times L, Y O, F, G, H, A T, B T, N S T E P, N S M A X, L F R E Q, M F R E Q\), & 2006AC99 \\
\hline 4 PSI1, PSI 2, PSI3, PSI4, DSI5,PSI6,PSI7,PSI 8, & Z007AC99 \\
\hline 5PHI1, गHI2, PHI3, PHI 4, PHI5,PHI6, PHI7, PHI 8 & Z008AC99 \\
\hline COMMON KAPPA,KAPPAL, K, A, CMIH, ITN, ITMAX, TOL, SOS, NOSOS, & 2009AC99 \\
\hline 1UL1.UL2, UL 3,VL1,VL2, VL 3, U1, U2, U3, V1, V2, V3, Q1, Q2, Q3, & 2010AC99 \\
\hline 2NUL1, NUL 2, NU1,NU2, XI, XINC, P1E, P2E, ALPHA, EETA,GAMMA,S,EPS, & 2011AC99 \\
\hline \(3 A 1(50), A 2(50), A 3(50), A 4(50), A 5(50)\), & 2012AC99 \\
\hline CDSTAR (10), C, D, E1, E2, E3 & Z013AC99 \\
\hline DO \(1 \mathrm{I}=2\), , NEQ & Z020AC99 \\
\hline \(A 3 D 1=A 3(I-1) / A 1(I-1)\) & 2030AC99 \\
\hline \(A 1(1)=A 1(I)-A 2(I-1) * A 3 D 1\) & 2040AC99 \\
\hline \(A 4(I)=A 4(1)-A 4(I-1) * A 3 D 1\) & ZC50AC99 \\
\hline \(A 5(I)=A 5(I)-A 5(I-1) * A 3 D 1\) & 2060AC99 \\
\hline 1 CONTINUE & 2070AC99 \\
\hline \(A 4(I N E O)=A 4(N E Q) / A 1(N E Q)\) & 2080AC99 \\
\hline \(A 5(N E O)=A 5(N E Q) / A 1(N E Q)\) & 2090AC99 \\
\hline DO \(\geqslant J=2, N E Q\) & 2100AC99 \\
\hline \(\mathrm{I}=\mathrm{NFO}-\mathrm{J}+1\) & 211JAC99 \\
\hline \(A 4(1)=(44(I)-A 2(I) * A 4(I+1)) / A 1(I)\) & Z120Aこ99 \\
\hline A5(1) \(=(45(I)-A 2(I) * A 5(I+1)) / A 1(1)\) & 2130 AC99 \\
\hline 2 CONTIIUE & 2140 AC99 \\
\hline RETURN & 2150 AC99 \\
\hline END & 2160AC99 \\
\hline
\end{tabular}

The present appendix contains a description of the structure of the computer program listed in Appendix A6 as well as instructions for using the program.

The calculation scheme is based on that presented in detail in Chapter Four and Appendices Al-5 where finite differe..ce approximations have been made to the transformed boundary layer equations (4.3.9-11). We note here that the boundary layer equations were transformed using equation (4.3.1) and that the effective viscosity \(\nu_{e}\) has been \(r\) eplaced by \(\nu_{e}^{\prime}\) as given by equation (4.3.8).

The program itself is effectively buil.t up of three major subroutines which determine the overall progress of the calculation. The first subroutine, the 'main program', provides the control in that it reads in the data and calls on another subroutine AC991 to compute velocity profiles at each solution face before proceeding to output the results of the calculation. Subroutine AC991 calculates each solution face by repeatealy calling AC992 which at each pass performs one complete iteration of the boundary layer equations. The main progran and subroutine \(A C 991\) are thus primarily concerned with the organisation of the calculation while subroutine AC992 contains the basic calculation scheme, altiough some calculation, such as ammending the side boundary conditions and the grid development between iterations, is contained in subroutine AC991. These three major subroutines call upon numerous others which will be detailed later.

Flow diagrams are included below to give a descriptive account of the progress within the se three major subroutines, while following these we will give a more detailed breakdown of the common storage and the subroutines used. Finally en account of haw the
program should be used is included together with subroutine and data input for a sanple application (that of Hornung and Joubert considered in section 6.6).
```

FLOW DTAGRAN - MAIN DROGRAM

```
                    START

RIO DTAGRAK - SURROUTINE AC991



\section*{Common storage.}

The items of data stored in common are listed below with array sizes where these are relevant. The program included will cater with a \(10 \times 50\) grid although obviously it would be very easy to alter the program in this respect to suit any particular need. Reference below to 'this face.' is to the solution face currently being calculated, 'last face' to that immediately preceeding. Individurl items will be referred to the standard notation used in the remainder of this work.

MIN Card input unit number MOUE Printer output unit number MM M

NN N

LAMDA \(\lambda\)

OMEGA \(\omega\)
NMINC \(\lambda \omega\)
NSLAP minimum number of slack points to be accommodated above boundary layer edge

IT \(=1\), laminar fllow
=2, turbulent flow

NU
\(\nu\)

UL,VL u,v components of velocity at points on last face (each \(10 \times 50\) array)

U,V u,v components of velocity at points on this face \((10 \times 50)\)

W\% W component of velocity at points on mid-face \((10 \times 50)\)

BIT \(\delta\) at each section (10)
P1,P2 pressure terms in \(x, y\) momentum equations at each section (10)

LOGPT the log-point at each section (10)
NOPI' the number of points at each section (10)
VO, VOO crossflow velocity profiles at side boundary planes
\begin{tabular}{|c|c|}
\hline XL & \(\mathrm{x}_{\ell}\) \\
\hline YO & y at first section \\
\hline F, G, H & \(f, g, h\) \\
\hline AT, BT & a,b \\
\hline NSTEP & number of this solution \(f\) ace \\
\hline NSIMAX & maximum number of solution faces to be calcuilated \\
\hline L-, MFREQ & frequency of full velocity profile outputs in \(x, y\) directions \\
\hline PSII, -8 & \(\psi_{i} \quad i=1,8\) \\
\hline PHIL, -8 & \(\phi_{i} \quad i=1,8\) \\
\hline KAPPA, - & \(\kappa\) as it appears in effective viscosity function, logarithmic law of the wall \\
\hline K, A & K, A \\
\hline CMIN & minimum value of \(z q_{T} / \nu\) for which law of the wall is assumed valid \\
\hline ITN & iteration counter at this face \\
\hline ITMAX & maximum number of iterstions at each solution \(f\) ace \\
\hline TOL & tolerance to which solution is to be iterated \\
\hline SOS & accumulated error sum of squares for current iteration \\
\hline NOSOS & number of points at which same has been accumulated \\
\hline & quentities appearing in finite difference approximations to momentum equations (see figure (4.6.2)) and continuity equation (see figure \((4.7 .1,2)\) ). \\
\hline ALPHA, ... S & \(\alpha, \beta, \gamma\), s streamline coordinates (see figure (4.6.1)) \\
\hline EPS & \(\epsilon\) \\
\hline Al , -5 & cofficierits_of linear algebraic_equations (50) _ \\
\hline DSTAR & effective viscosity parameter (10) \\
\hline C, ...E3 & contractions used in finite difference approximations \\
\hline - - & to momentum equations at wall - - - - - \\
\hline \(\mathrm{D}_{2} \ldots \mathrm{PHI}\) & boundary_layer parampters for output _ - \\
\hline
\end{tabular}

The last two sets of variables partitioned by dashed lines are alternative storages.
grid, at section I the number of points at which the solution is calculated (NOPTS(I)) may be reduced to avoid calculating excessive points at sections where the boundary layer is thinnest. At least NSLAP 'slack points' are accommodated above the boundary layer edge ( \(\delta 0.929\) ) at all sections however.

The arrays Al, -5 are used for storing the coefficients of the linear algebraic equations described in section 4.6. Remabering that the first point to be used in the finite difference scheme is the log-point the general equation is then
\[
\begin{aligned}
& a_{3, i-1} u_{n^{*}+i-2}+a_{1, i} u_{n^{*}+i-1}+a_{2, i} u_{n^{*}+i}=a_{4, i} \\
& a_{3, i-1} v_{n^{*}+i-2}+a_{1, i} v_{n^{*}+i-1}+a_{2, i} v_{n^{*}+i}=a_{5, i}
\end{aligned}
\]

The output facility caters for full velocity profile outputs only at sections where these are specified and elsewhere onl.y boundary layer parameters are output. For example, if \(\mathrm{LFREQ}=2\) and \(M F R E Q=3\) velocity profiles would be output at sections \(1,4,7,10\) (assuming there were ten sections at each face) at faces \(2,4,6, \ldots\)

The diagram below shows a plan of two adjacent solution faces and indicates where the various velocity profiles are stored.

'Iast facé

ARRAY STORAGE

\section*{Subroutines.}

Included below are brief notes on the subroutines that make up the present program. More detailed information can be obtained by referring to the program listing in Appendix A6 or to the flow diagrams included above where the sequence of some of the subroutines has been included. Subroutines AC99A, \(-\mathrm{H},-\mathrm{V}\) as incluaded in the program listing have only restricted application, some possibilities for the ir extended use however will be given later.

Main program
Reads data input, sets up initial conditions. Updates solution before each face is calculated.

Subroutine AC991
Controls velocity profile calculation at current solution face. Adjusts grid as and when necessary. Outputs error message Ell when solution at this face will not converge to required tolerance, calculation then continues.

Subroutine AC992.
Controls calculation of one complete iteration

Subroutine AC99A
Sets up side flow boundary conaition. Zero crossflow subroutine included will cater for both two-dimensional and pseudo-three-dimensional. calculations. Called before each iteration. Subroutine AC99B (IT, AS)

Calculate boundary layer thicknesses across a section and stores in \(\operatorname{BLI}(10)\). To calculate \(\delta\) at last face \(A S=0.0\), at this face \(A S=1.0\) (and pro rata). In addition if
```

Subrouti.ne AC99B (IT, AS)(contd.)
IT = 1 \deltao.99 calculated for output ani stored as
number of large increments from wall
IT = 2 \deltao.99s calculated for grid control and stored
in terms of grid point numbers.

```
Subroutine AC99C (M,N)
    Sets up quantitios for approximation to continuity
equation at point ( \(M, N\) ).
Subroutine AC99D(...)
    Calculates effective viscosity terms.
Function AC 99E (... )
    Laminar or turbulent effective viscosity model.
Subroutine AC99F(M,N)
    Sets up linear algebraic equations corresponding to
approximations to momentum equations at log-point at section M.
Weights listed in the last column of Table 4.6.1 are implied.
Subroutine AC99G(NEQ,M,N)
    Sets up linear algebraic equations (equation NEQ at
section \(M\) ) corresponding to approximations to momentum equations at
point M,N (not log-point)
Subroutine AC99H

Called before calculation at each face to allow forward step sizes, output frequencies, etc. to be altered as required. Function AC99I (M,N,GAMMA, VEL,MM)

Interpolates velocity components stored in \(\operatorname{VEL}(10,50)\). At point \(\mathbb{N}\),array VEL is interpolated to provide VEL at \(M+G A M M A\). Will not cater for \(M M=2\).

Function AC99J (M, BETA, PRM ,MM)
Interpolates parameters stored in PRM(10).
Array PRM is interpolated to provide PRM at \(M+B E T A(X \neq 2)\).

Subroutine AC99L(N)
Calculates \(\epsilon\) by solving lagarithmic law of wall
(equations \((4 \cdot 4 \cdot 10,11)\) ). Puts \(\epsilon=1\) for laminar flow. For turbulent flow requires \(\alpha, q_{2}\) set up in common. Error message ELI output when solution will not corverge.

Subroutine AC99M (M,N)
Sets up quantities for approximations to momentum equations at point \((M, N)\) (see figures \((4.6 .1,2)\) ).

Subroutines AC990,-P
Respectively calculate and print output quentities.

Subroutine AC99Q
Sets up freestream condition by calling AC99U, \(-V\).

Subroutine AC99R(M)
Sets up effective viscosity function parameters in \(\operatorname{DSTAR}(10)\) at each section.

Subroutine AC99S (M,N)
Calculates \(\alpha, \beta, \gamma, s\) corresponding to streanline through point ( \(M, N\) ) on tinis solution face (see Appendix Al). Outputs error message ESI when solution will not converge, computation discontinued. Function \(\operatorname{AC99T}(R, \ldots)\)

Integrates the function \(R\) through the boundary layer using the trapezium rule.

Functions AC99U, \(-V(X, Y)\)
Calculate the \(U, V\) components of velocity respectively in the mainstream at the point \(X, Y\).

Subroutine AC99W(M,N)
Calculates \(W\) at point ( \(M, N\) ) from approximation to continuity equation。

Subroutine AC99X
Calculates NOPMS, LOGPT at each section based on last solution face. Puts LOGPT \(=1\) for laminar flow and for turbulent ensures
\[
2 \leqslant \text { LOGPT } \leqslant \omega(\lambda-1)
\]

If \(\mathrm{zq} / \nu>\) CMIN at point \(\omega(\lambda-1)\) error message EXI output, and proceeds with upper bound for LOGPT.

Function AC99Y(M,N,I, J, K, AL)
Supplies integrand for AC99P to evaluate
\[
\int_{0}^{\infty}\left(1-\frac{u_{1}}{U_{1}}\right)^{I} \frac{u_{1}^{J}}{U_{1}} \frac{v_{1}^{K}}{U_{1}} d z
\]
at section ( \(M, N\) ) (AL as As in AC99B).
UI,VI, QI must be set up as for freestream prior to
entry in common.
Subroutine AC992 (NEQ)

> Solves the set of NEQ tri-diagonal linear algebraic
equations (see Appendix A5).

\section*{To use the program.}

The input requirementis for the computer program are shown below. The majority of the symbols used will be found in the list of symools (p.103) and a few comments will now be made concerning the remainder.

Item 3. With the program as included the following limitations need be imposed
\[
\begin{aligned}
& 3 \leqslant \mathbb{M} \leqslant 10 \quad \text { or } M=1 \\
& N \leqslant 50 \\
& \lambda \geqslant 2 \\
& \omega \geqslant 1
\end{aligned}
\]

Explanations of NSiAP, IT, NSMAX, ITMAX, TFREQ, MFREQ can be found in the common storage list included previously.

Item 4. \(x_{0}\),yo are the coordinates of the first section on the initial solution face and \(\theta_{11}\) is the momentum thickness at this face.

Items 6 and 7. Surplus blank cards should be removed. The velocity profiles should be specified on the mesh defined previously and the streamwise velocity profile should be scaled to unity at the boundary layer edge.

Item 8. Specifies the crossflow to be included at the commencement of the calculation. Tan \(\beta_{0}\) is specified at each section.

All quantities listed are retained throughout the calculation unless changed in AC99H.

Sample subroutines and input data are included following the data listing (these are those used to simulate the experiment of Hormung and Joubert described in section 6.6). In the subroutine AC99A listed VO is calculated from the symmetry condition and V00 from equation (6.6.2). Subroutine AC99H chanses forward step and output
```

frequencies during the course of the calculation (N.B. halving the forward step when NSTPP $=4$ causes the shorter step to be applied before face 4 is calculated). The U, V velocity distribution used is that given in Appendix A9.

```

There then follows the profile used to account for crossflow at the commencement of the calculation and that used to account for the convergency of the flow in section 5.3. Tables and graphs are incluied for both cases.

During the course of the calculation error messages may be output to signify that some fault has occurred with the calculation. The course followed as each of the se errors is encountered and the cause is listed below:

Ell Error sum of squares has failed to reach required tolerance in specified maximum number of iterations. Output NSTEP, SOS, NOSOS. Calculation continues to next face.

ELI Iteration process for calculating \(\epsilon\) has failed to converge.

Output Q2, N, ALPHA and last two iterates. Calculation continues using last iterate.

ESI Iteration process for calculating streamline has failed to converge.

Point M,N at which error occurred output.
Program discontinued。

EXI
\(\mathrm{zq}_{T} / \nu\) within range in which log-point may fall, is always less than CMIN.

Output section concerned. ( \(L, M\) ) and value of
\(\mathrm{zq}_{\tau} / \nu\) at outermost point.
Continue calculation with log-point set at this outermost point.

It should also be pointed out here that a trans-
formed version of the effective viscosity function equation (3.3.5) has been used within the program. The model, employed outside the laminar sublayer only, can be written such that the transformed effective viscosity \(\nu_{e}^{\prime}\) is a function of \(\zeta^{\prime}\) where
\[
\zeta^{\prime}=\kappa^{2} \xi^{2} \quad\left|\frac{\partial q}{\partial \xi}\right|
\]
as follars
\[
\begin{array}{ll}
\nu_{e}^{\prime}=\zeta^{\prime} & \zeta^{\prime}<K Q d^{*} \\
\nu_{e}^{\prime}=K Q d^{*} & \zeta^{\prime}>K Q d^{*}
\end{array}
\]
where
\[
d^{*}=\int_{0}^{\infty}\left(1-\frac{u_{1}}{U_{1}}\right) d \xi
\]

The empirical function incorporated into the program
\[
K=K(\Gamma)
\]
is defined as follows
\[
\begin{aligned}
K & =0.016+0.00015 \Gamma & & \Gamma>-60 \\
& =0.007 & & \Gamma<-60
\end{aligned}
\]
whers
\[
\Gamma=10^{4} \quad \frac{\theta}{Q 11} \frac{\partial Q}{\partial s}
\]

The function is shown plotted toward the end of this appendix.
As mentioned previously alternative effective viscosity models could easily be incorporated into the program.

Finally we refer back to the discontinuities axhuited in shape factor predictions at the commencement of the calculations consillered in Chapter Five. We note here that the same feature was seen in \(\beta_{0}\) predictions in Chapter Six and as a result it is considered preferable where possible to vary \(\beta_{0}\) at the beginning of the calculation to ensure agreement between preaicted crossflows ( \(\delta 2^{*}\) say) and the crossflow required as an initial condition.
iter 1
Heading Cards

item 2
Empirical Constants \(x\)



Invut Velocity Prosile

Crossflow Velocity Profile

Tan \(\beta\) at imout，at each section

\(\square\) toleaanee

HORNUNG AND JCUBERT
SECCNDARY FLOW INDUCED BY CYLINDER BETWEEN PARALLEL WALLS

```

SUBROUTINE AC99A AOOGAC99
INTFG「R OMEGA
REAI NU,NUL1,NUL2,NU1,NU2,K,KAPPA,KAPPAL
COMEON MIN,MOUT,MM,NN,LAMDA,OMFGA,NMINC,NSLAP,LT,NU,
IUL(10,50),VL(10,50),U(10,50),V(10,50),W(10,50),BLT(10),
2P1(10),P2(10),LOGPT(10),NOPTS(10),VO(50),VOO(50),
3XL,YO,F,G,H,AT,BT,NSTEP,NSMAX,LFREQ,MFREQ,
4PSI1,PSI2,PSI3,DSI4,PSI5,PSI6,PSI7,PSI8,
5PHI1,PHI2, PHI3,PHI4,PHI5,PHIG,PHI7,PHI8
CONMON KAPPA,KAPPAL,K,A,CMIN,ITN,ITMAX,TOL,SOS,NOSOS,
IUL1.UL2,UL 3,VL1,VL2,VL3,U1,U2,U3,V1,V2,V3,Q1, \2,Q3,
2NUL1,IUL2,NU1,NU2,XI, XINC,P1B,P2\&,ALPHA,BETA,GAMMA,S,EPS,
3A1(50),A2(50),A3(50),A4(50),A5(50),
ADSTAR(10),C,D,E1,E2,E3
DO 1 }\because=1,N
VO(N)=-0,5*(V(2,N)+VL(2,N))
VOO(N)=VOO(NN)*(2.O*(V(MM,N)+VL(MM,N))/(V(MM,NN)+VL(MM,NN))
I
-(V(MM-1,N)+VL(MM-1,N))/(V(MM-1,NN)+VL(MM-1,NN)))
1 CONTINUE
RETURN
END
SUBKOUTINE AC99A AOOGAC99
AOO1AC99
A002AC99
A003AC99
A004AC99
A005AC99
A006AC99
AOD7AC99
A003AC99
A009AC99
A010AC99
AO11AC9?
A012AC99
AO13AC99
A020AC99
A030AC99
A040AC99
AU50AC99
A060AC90
A070AC99
A080AC99

```
```

SUBROUTINE AC99H
HOOOAC99
INTFGER OMEGA
REAI NU,NUL1,NUL2,NU1,NU2,K,KAPPA,KAPPAL
COMMON MIN,MOUT,MM,NN,LAMDA,ONEGA,NMINC,NSLAP,LT,NU,
1UL(10,50),VL(10,50),U(10,50),V(10,50),N(10,50),BLT(10),
ZP1(10),P2(10),LDGPT(10),NOPTS(10),VO(50),VOO(50),
3XL,YO,F,G,H,AT,BT,NSTEP, NSMAX,LFREQ,MFREQ,
4PSI1,DSI2,PSI3,PSI4,PSI5,PSI6,PSI7,PSI8,
5PHI1, PHI 2, PHI3,PHI4, DHI5,PHI6, PHI7,PHI 8
COMMON KAPPA,KAPPAL,K,A,CNIN,ITN,ITMAX,TOL,SOS,NOSOS,
IUL1.UL2,UL 3,VL1,VL2,VL 3,U1,U2,U3,V1,V2,V3,Q1,Q2,Q3,
2NUL1,NUL2,NU1,NU2,XI,XINC,P1B,P2B,ALPHA,BETA,GAMMA,S,EPS,
3A1(50),A2(50),A3(50),A4(50),A5(50),
4DSTAR(10),C,D,E1,E2,E3
IF(NSTEP-4) 2,1,2
1 NSMAX=21
F=F/2.0
GO TO 6
2 IF(iNSTEP-12) 4,3,4
3 MFRFQ=1
GO TO 6
4 IF(iNSTEP-16) 6,5,6
N NSMAX=39
F=F/4.0
LFRFQ=1
6 RETIIRN
END

```

HOOOAC99
HOOLAC9?
H002AC99
H003AC99
H004AC99
HOO5AC99
HOOOAC99
HJO7AC99
HOOBAC99
H009AC9?
HOIOAC99
HO11AC99
H012AC99
HO1 3 AC99
HO2のAC99
HO30AC99
HO4OAC79
H050AC99
HO6OAC99
HO7DAC99
HORDAC99
HO9OAC97
H1OOAC99
H110AC99
H120AC93
H130AC99
H140AC99
```

FUNCTION AC99U(X,Y)
PI=3.142
A=5.0
E=37.18
UDE=1.679
SX=7.0*PI*X/A
SY=7.0*PI*Y/A
CSX=(EXP(SX)+EXP(-SX))/2.0
CSY=COS(SY)
H=CSX-CSY
AC9%U=B*(UDB-2.0*PI*(CSX*CSY-1.0)/(A*H**2))
RETURN
END

```
FUNCTION AC马9V \((X, Y)\)
\(P I=1.142\)
\(A=5.0\)
\(\mathrm{e}=37.18\)
S \(X=7.0\) * I * \(\mathrm{X} / \mathrm{A}\)
\(S Y=2.0 * P I * Y / A\)
\(C S X=(E X P(S X)+E X P(-S X)) / 2.0\)
\(\operatorname{CSY}=\operatorname{COS}(S Y)\)
SSX \(=(E X P(S X)-E X P(-S X)) / 2.0\)
\(S S Y=S I N(S Y)\)
\(H=C S X-C S Y\)
\(A C \ni \ni V=-2.0 * P I * B * S S X * S S Y /(A * H * * 2)\)
RETURN
    END

リOリOAC99
U001AC99
U002AC99
U003AC99
UOD4AC99
UDO5AC99
UUO6AC73
UUO7AC？9
U008AC99
11009AC99
UOLOAK99
U911AC99
UU12AC9
－

VOOOAC99
VU014C99
VOO2AC9．
VOOBAC99
V0044C99
V005AC99
V006AC99
V：JO7AC99
V008AC99
VJ09AC99
VJ10AC99
VO11AC99
VO12AC99
VO13AC99

THE PROFILE USED TO ALLOW FOR CROSSFLON AT START OF CACULATION - THE FUNCTION \(\mathrm{f}_{2}\), wHICH IS SCATED TO GIVE REQUIRTO CROSSFLO: I, IS TABULATED AGAINST
\[
\frac{z}{\delta}_{0.999}=\frac{\eta}{24}
\]
\begin{tabular}{|c|c|c|c|}
\hline \(\eta\) & \(\mathrm{f}_{2}\) & \(\eta\) & \(\mathrm{f}_{2}\) \\
\hline 0.1 & 0.411 & 6.0 & 0.212 \\
\hline 0.2 & 0.466 & 7.0 & 0.172 \\
\hline 0.3 & c. 488 & 8.0 & 0.138 \\
\hline 0.4 & 0.497 & 9.0 & 0.109 \\
\hline 0.5 & 0.500 & 10.0 & 0.085 \\
\hline 0.6 & 0.499 & 17.0 & 0.065 \\
\hline 0.7 & 0.497 & 12.0 & 0.049 \\
\hline 0.8 & 0.493 & 13.0 & 0.036 \\
\hline 0.9 & 0.489 & 14.0 & 0.025 \\
\hline 1.0 & 0.483 & 15.0 & 0.017 \\
\hline 1.1 & C. 478 & 16.0 & 0.011 \\
\hline 1.2 & 0.472 & 17.0 & 0.006 \\
\hline 1.3 & 0.466 & 18.0 & 0.003 \\
\hline 1.4 & 0.461 & 19.0 & 0.000 \\
\hline 1.5 & 0.455 & 20.0 & 0.000 \\
\hline 1.6 & 0.449 & 21.0 & 0.000 \\
\hline 1.7 & 0.443 & 22.0 & 0.000 \\
\hline 1.8 & 0.438 & 23.0 & 0.000 \\
\hline 1.9 & 0.432 & 24.0 & 0.000 \\
\hline 2.0 & 0.427 & 25.0 & 0.000 \\
\hline & & 26.0 & 0.000 \\
\hline 3.0 & C. 371 & 27.0 & 0.00.0 \\
\hline 4.0 & 0.313 & 28.0 & 0.000 \\
\hline 5.0 & 0.260 & 29.0 & 0.000 \\
\hline & & 30.0 & 0.000 \\
\hline
\end{tabular}

THE PROFILE USED TO ALIOW FOR CONVERGENCY ON PLANE OF SYMMETRY - THE FUNCTION \(f_{1}=\underset{Y \rightarrow 0}{\text { Iimit }} \frac{V}{V}\) IS TABULATED AGAINST \(\frac{z}{\delta_{U .999}}=\frac{\eta}{24}\)



Profiles used to allow (i) for convergency on plane of symmetry: \(\hat{f}_{1}=\operatorname{limit}_{y \rightarrow 0} \frac{V}{V}\), and (ii) for crossflow at input: \(\left\{_{2} \propto v_{1}\right.\)


The function \(K(\Gamma)\)

APPENDIX A8.

STABILITY
CONS IDERATIONS

A number of additional simulations of experiment 'E' of Schubauer and Spangenberg (see section 5.1) were made with the intention of obtaining an indication of the effects of step sizes and initial conditions on the solution scheme; we will discuss these now.

The figures at the end of this appendix show the effects of varying initial conditions. The solution scheme seems to be insensitive to changes in the initial value of the shape factor H (leaving \(\theta\) unchanged) as is shown in figure (A8.1). It seems strange that by increasing \(H\) at the start of the calculation the value of \(H\) as separation is approached should be reduced, even though in the three separate calculations made \(H\) tends to the same value (approximately) within a short distance of the start of the calculation. \(R_{\theta}, c_{f}\) developments are surprisingly only slightly affected by initial. H despite the apparently large discrepancies in \(H\) at \(x=16 \frac{1}{2}^{\prime}\). The solution scheme is however more sensitive to changes in the value assumed by \(R_{\theta}\) at the beginning of the calculation as is shown by figures \((A 8 \cdot 2,3)\). All three runs shown start with \(H=1.3\) at \(x=0\), curve (2) being the run plotted in figures (5.1.8-9) while curves (1), (3) have \(R_{\theta}\) increased, reduced respectively by \(33 \%\). This imposed difference in \(R_{\theta}\) is maintained throughout the calculations and the flow corresponding to curve (1) is predicted to separate just short of \(x=16^{\prime}\).

It is difficult to state what the precise physical effects of the above considerations would be, except to say that the effect of varying \(R_{\theta}\) at \(x=0\) is very much as might be expected, but it is obviously of some consequence that the disturbed initial conditions do not produce any instability in the solution.

We now proceed to discuss the effects of step
sizes on the solution schems. All the computer runs mentioned above were made using the following grid specification:-
\[
N=48 \quad \lambda=2 \quad \omega=10
\]
and the grid was continuously adjusted so that the large \(z\) increment at any section was
\[
h=\frac{1}{24} \quad \delta 0.999
\]
where \(\delta_{0.999}\) is the boundary layer thickness corresponding to \(u=0.999\) U . The marching step \(f\) for experiment \(' \mathbb{E}\) ' was (from \(x=0\) ) 24 steps of \(\frac{1}{2}\) followed by 48 steps of \(\frac{1}{8}\) (ali units in feet). Over the first twelve feet the forward step varied from 4 to 1.33 boundary layer thicknesses and for \(x>12\) (where changes were occurring much more rapidly) the forward step was from 0.33 to 0.15 boundary layer tinicknesses. Such a run took 3 minutes on the IBM S360/65 computer, \(7-8\) iterations being required on average at each step to obtain velocity components correct to 4 significant figures. The calculation made using the grid specified above will be used as the basis of 'comparisons with the calculations to be discussed belon.

If for \(x<12^{\prime}\) we take \(f=1\) (everywhere at least 2.66 boundary layer thicknesses) \(H\) changes by only \(\frac{1}{4} \%\) at \(x=12^{\prime}\) and if \(f=\frac{1}{4}\) for \(x<12^{\prime} H\) changes by only \(1 / 10 \%\) at \(x=12^{\prime}\). For \(x>12^{\prime}\) if we take \(f=\frac{1}{4}\) the change produced in \(H\) (between \(x=12\) ' and \(x=18^{1}\) ) is less than \(\frac{1}{2} \%, c_{f}\) being increased by \(104 \%\) which however for the small values encountered at \(x=18^{\prime}\) the absolute change was less than \(10^{-5}\). Such changes confim the marching step chosen as being adequate.

Next a run was made with the number of points at
\[
\begin{array}{lll}
N=23 & \lambda=2 \quad w=5 \\
h(\text { large } z \text { increment })=\frac{1}{12} \delta_{0.999}
\end{array}
\]
which results in the smaller mesh intervals at the wall being increased by a factor of 4 (the run took 1.2 minutes, the number of iterations/step remaining on average unchanged). At \(x=18^{\prime}\) the differences encountered (starting the calculation from \(x=0\) ) were greater than those obtained above, \(H\) being reduced by \(1 \frac{1}{2} \%\), but this was not considered excessive since the integral thicknesses had to be obtained (using the trapezium rule) from a much coarser mesh and \(H\) is very sensitive to changes in \(\delta^{*}, \theta\). It is anticipated that the mesh used throughout all the present calculations is finer, with respect to the \(z\) increment (being based on \(N=48\) ), than need necessarily be the case and it is expected that \(N\) may be reduced, without significant loss of accuracy, to economise on computer storage and time. Even so the scheme based on \(N=48\) is still economical in terms of computer time although it must be admitted that since the three-dimensional progran is being used for a twodimensional calculation computer storage could be reduced considerably.


FIG(AB.1) Schubauer and Spángenberg [26], experiment ' \(E\) ' Effect of varying initial \(H\) in present calculation


Fig(A8.2) Schubauer and Spangenberg [26], experiment ' \(E\) ' Effect of varying initial \(R_{\theta}\) in present calculation.


FIG(A8.3) Schubauer and Spangenberg [20], experiment ' \(E\) '. Effect of varying initial \(R_{\theta}\) in present calculation

APPENDIX A9

POTENTIAL FLOW ABOUT A NEAR-CIRCULAR CYLINDER
BETWEEN PARALLEL WALLS


Kennard [33] gives the potential distribution for a stream flowing between parallel walls a distance a apart and about a near-circular cylinder mounted midway between the walls as
\[
\begin{aligned}
& U=U_{0}-\frac{2 \pi B}{a H^{3}}\left(\cosh \frac{2 \pi x}{a} \cos \frac{2 \pi y}{a}-1\right) \\
& V=-\frac{2 \pi B}{a H^{\alpha}} \sinh \frac{2 \pi x}{a} \sin \frac{2 \pi y}{a}
\end{aligned}
\]
where \(U, V\) are the velocities associated with the \(x, y\) directions respectively, \(U_{0}\) and \(B\) are constants to be determined and \(H\) is given by
\[
H=\cosh \frac{2 \pi x}{a}-\cos \frac{2 \pi y}{a}
\]

For the purpose of the simulation discussed in section 6.6 we choose
\[
a=5, \quad U_{0}=63.17, \quad B=37.18
\]
so that the radii of the cylinder are approximately
\[
r_{1} \doteq r_{2} \doteq 0.9167
\]


\section*{TABLE 4.6.1}

WEIGHIING FACTORS USED IN APPENDICES
A2, A3
\begin{tabular}{|c|c|c|c|c|c|}
\hline & Purpose & Plausible Range & \multicolumn{2}{|l|}{Particular Cases [25]} & Values Used. \\
\hline \(\psi_{1}\) & Specifies point at which finite difference approximation is to be made & \(0 \leqslant \psi \leqslant 1\) & \(\psi_{1}=0\)
\(\psi_{1}=\frac{1}{2}\)
\(\psi_{1}=1\) & explicit scheme Crank-Nicholson Lasonen & \(\frac{1}{2}\) \\
\hline \(\psi_{3}\) & specifies weight between points \(n-1, n, n+1\) in approximation toq \(\partial u / \partial s\) & \(0 \leqslant \psi<1\) & \[
\psi_{2}=\frac{1}{6}
\] & allowis longer \(h\) than \(\psi_{2}=0\) with same convergenc \(\epsilon\) & 0 \\
\hline \(\psi_{3}\) & Speciries to what extent approxi-
\[
\frac{\partial u}{\partial s}
\] & \(0<\psi \leqslant 1\) & \[
\begin{aligned}
& \psi_{3}=0 \\
& \psi_{3}=1
\end{aligned}
\] & iteration \(r-1\) used iteration \(r\) used & 1 \\
\hline \(\psi_{4}\) & \begin{tabular}{l}
mation to \\
terms is dependent
\[
\frac{\partial u}{\partial \xi}
\]
\end{tabular} & \(0 \leqslant \psi \leqslant 1\) & \(\psi_{4}=0\)
\(\psi_{4}=1\) & iteration \(r\) - 1 used iteration \(r\) used & 1 \\
\hline \(\psi_{5}\) & iteration.
\[
\frac{\partial u}{\partial \xi} \text { (vis cous) }
\] & \(0 \leqslant \psi \leqslant 1\) & \[
\begin{aligned}
& \psi_{5}=0 \\
& \psi_{5}=1
\end{aligned}
\] & iteration r -l used i.teration \(r\) used & 1 \\
\hline \(\psi_{6}\) & as \(\psi_{2}\) butat \(n=n^{*}\) & \(0 \leqslant \psi<1\) & & & 0 \\
\hline \(\psi_{7}\) & specifies one of two approximations to \(\partial u / \partial \varepsilon\) at \(n=n^{*}\) & \(\psi=0,1\) & & & 1 \\
\hline \(\psi_{8}\) & overall solution weight (relaxation factor) & \(\psi>0\) & \(\psi_{\mathrm{s}}=1\) & iteration \(\mathrm{r}-\mathrm{l}\) discounted & 0.75 \\
\hline
\end{tabular}

If \(\psi_{1}=0 \quad \psi_{4}, \psi_{5}\) have no effect.

\section*{\(T \triangle B L E \quad 6.1 .1\)}

CASES TREATED IN THE STMULATION OF THE INFINITE SWEPT WING
\begin{tabular}{|l|l|l|l|l|}
\hline\(\alpha_{0}\) (CFGRESS) & 0.0 & 17.5 & 35.0 & 52.5 \\
\hline \multirow{3}{*}{ (/FCOT) } & .25 & .25 & \begin{tabular}{l}
.2 \\
.25 \\
.267 \\
.3
\end{tabular} & .25 \\
\hline
\end{tabular}

TABLE E.4.1
EXPERINENTAL DATA USFD IN THE SIMLLATION OF HOACLEY'S DIFFUSER
\begin{tabular}{|l|l|l|l|l|}
\hline\(x\) & \(Q\) & \(\alpha_{0}\) & \(U\) & \(V\) \\
IIIS & FT/S & DEGRFES & FT/S & \(F T / S\) \\
\hline-13 & 87.23 & 30.5 & 75.2 & 44.3 \\
3 & 85.38 & 30.2 & 73.8 & 42.9 \\
11 & 76.36 & 32.8 & 64.2 & 41.4 \\
19 & 69.52 & 34.0. & 57.6 & 38.9 \\
27 & 59.02 & 32.2 & 49.9 & 31.5 \\
\hline
\end{tabular}

\section*{TABLP 6.5.1}

THE FOTCOIOTS \(\phi, \phi^{\prime}\) DERIVED IN ThE SOLTTTION OF THE AXIALLV SYMMECRIC IANTNAR STAGNATTON FLOW
\begin{tabular}{|c|c|c|}
\hline \(\zeta\) & \(\phi^{\prime}\) & \(\phi\) \\
\hline 0.00 & 0.0000 & 0.1000 \\
\hline 0. 15 & 0.1857 & 0.0139 \\
\hline 0.30 & 0.3489 & 0.6540 \\
\hline 0.45 & 0.4898 & -0.1169 \\
\hline 0.60 & 0.6091 & 0.1993 \\
\hline 0.75 & 0.7078 & 0.2981 \\
\hline 0.90 & C. 7872 & 0.4102 \\
\hline 1.05 & 0.8494 & 0.5330 \\
\hline 1.20 & 0.8966 & 0.6639 \\
\hline 1.35 & 0.9312 & 0.8010 \\
\hline 1.50 & 0.9557 & 0.9425 \\
\hline 1.65 & 0.9725 & 1.0872 \\
\hline 1.80 & 0.9835 & 1.2339 \\
\hline 1.95 & 0.9905 & 1.3 .319 \\
\hline 2.10 & 0.9947 & 1.5308 \\
\hline 2.25 & 0.9972 & 1.6802 \\
\hline 2.40 & 0.9985 & 1.8298 \\
\hline 2.55 & 0.9993 & 1.9796 \\
\hline 2.70 & 0.9996 & 2.1295 \\
\hline 2.85 & 0.9998 & 2.2795 \\
\hline 3.00 & 0.9999 & 2.4295 \\
\hline 3.15 & 1.0000 & 2.5795 \\
\hline 3.30 & 1.0000 & 2.7294 \\
\hline 3.45 & 1.0000 & 2. 8794 \\
\hline 3.60 & 1.0000 & 3.0294 \\
\hline
\end{tabular}
```

FIGURES

```


FIG (3.2.1) Semi-logarithmic plot of the law of the wall.


FIG (3.3.1) Composite effective viscosity function proposed by Mellor [19].


FIG (3.4.1) (i) Coles' law of the wake [15] and (ii) the scatter of data points for \(\frac{2 q \sin \beta}{Q \sin \beta_{0}}[13,22]\).

\section*{region I}
region II


FIG (3.5.1) Johnston's triangular model[21].
198.


FIG(4.I.I) Solution foce, section, point notation on the solution mesh.


FIG(4.1.2) Subdivision of increments near the wall ( \(\lambda=2, \omega=3, N=10, M=8\) ).


FIG(4.2.1) An adjustable grid.


FIG(4.22) An illustration of the proposed solution mesh.


FIG(4.6.1) The streamlines through points on section ( \(t+1, m\) ) and the point ( \((\%)\) at which the momentum equations are tobe approximated.


FIG(4.6.2) Values necessary for the finite difference approximations to the momentum equations.


FIG (4.7.1) Values necessary for the finite difference approximation to the continuity equation.


FIG (4.7.2) Values necessary for the finite difference approximation to the continuity equation at the log-point.

 Notation as in figure (5.1.1)


FIG (5.13) Schubauer and Spangenberg [26], experiment ' C' Notation as in figure (5.1.1)


FIG (5.1.4) Schubover and Spangenberg [26], experiment ' \(D\) ' Notation as in figure (5.1.1)


FIG (5, 1.5) Schubauer and Spangenberg [26], experiment 'D' Notation as in figure (5.1.1)


FIG \((5,1.6)\) Schubauer and Spangenberg 1261, experimen Notation as in figure (5.1.1)





FIG(5.1.9) Schubouer and Spangenberg [26], experiment ' \(E\) '
Notation os in figure \((5.1 .1)\).


FIG(52.1) Bradshaw and Ferriss [27]



FIG(522) Bradshaw and Ferriss [27]
- o experiment _ _ present theory


FIG(5.23) Brodsiow and Ferriss [27]
- expeniment - oresent oneory|


FIG(5.24) Bradshiow and Ferriss [27]


FlG(525) Bradshow and Ferriss [27]



FIG(527) Bradshow and Ferciss [27]



FIG(5.32) Schubaver and Klebanoff [28]












FIG (6.1.5) Cumpsty and Head [30] The hypothetical infinite swept wing present theory






FIG 6.110 ) Cumpsty and Head 130 ]
The hypothetical infinite swept wihg



FIG(6.1.2) Cumpsty and Head [30]
The hypothetical infinite swept wing



EIG (6.1.14) Cumpsty and Head [30]
The hypothetical 'crossover' flow
\(\left(\alpha_{0}=35^{\circ} ; k=1-x\right)\)
present theory



EIG(6.1.15) Cumpsty and Head \([30\) ) \(\left(\alpha_{0}=35^{\circ} ; k=1-x\right)\)
present theory


EIG(6.116) Cumpsty and Head 1301
1.0 limiting streamline -1 present theory
\(y(t)\)
0.5 . 0.0
\[
x(t)-
\]


FIG (6.2.1) Cumpsty and Head 181
The simulated infinite swept wing \(\mathrm{V}=\mathrm{V}_{\text {le }}\)


FIG(6.2.2) Cumpsty and Head [8]
The simulated infinite swept wing
\(\mathrm{V}=1.05 \mathrm{~V} \mathrm{le}\)


FIG (6.2.3) Cumpsty and Head 181 The simulated infinite swept wing curve \(\begin{array}{ll}1 & V=12 \\ 2 & V=1.05 \mathrm{~V} \text { le }\end{array}\)

FIG(6.31) P. D.Smith [7]
Run 1



FlG 6.32 ) P.D. Smith \([7]\)
Run 5
247.


\section*{FIG(6.3.3) P.D.Smith [7]}

Run 6


FIG 6.4.1 Hoadley's Diffuser




FIG(6.4.4) Hoadley [31]



FIG 6.5.1 Axially symmetric laminar stagnation flow

\(\times \quad\) positions at which mean velocity profiles measured
\(\rightarrow \sim\) sections through which, and positions ot which comparisons between theory and experiment are made

FIG (6.6.1) Hornung and Joubert [13]


FIG(6.6.2) Hornung and Joubert [|3]
\[
y=0
\]


FIG(6.6.3)
\(\begin{gathered}\text { Hornung and Joubert }[13] \\ \text { Notationas in figure ( } 6.6 .2)\end{gathered}\)
\(y=-.5^{\prime}\)


FIG(6.6.4) Hornung and Joubert [13] Notationas in figure (6.6.2)
\(y=-1^{\prime}\)


FIG(6.6.5) Hornung and Joubert [13] Notation as in figure (6.6.2) \(x=-2.125^{\prime}\) : solution matched to expt at \(y=0\)


EIG(6.6.6) Hornuing and Joubert [13] \(\ldots{ }_{x=-1.75^{\prime}}^{\text {Notation as in figure (6.6.2) }}\)


EIG( 6.6 .7\()\) Hornung and Joubert [13]
———present throry

O. 0.08

\section*{FIG(6.6.9) Hornuing and Joubert [13]}
- present theory

\(t \rightarrow\) solution face at which theory
is matched to experiment
remaining notation as in figure (6.6.1)

FIG(6.7.1) East and Hoxey [22]

\(\frac{\$}{} \begin{aligned} & \text { negative experimental value } \\ & -40 \quad \text { present theory }\end{aligned}\)
\(-30 \quad\) x(irs) -20

FIG(6.7.2) East and Hoxey (22] \(y=0\)
265.


FIG(6.7.3) East and Hoxey [22]
Notation as in figure (6.7.2) \(y=3^{\prime \prime}\)


FIG(6.7.4) East and Hoxey [22]
Notation as in figure (6.7.2)
\(y=6^{\prime \prime}\)


FIG(6.7.5) East and Hoxey [22] \(\frac{1.1}{1.1}\) Notation as in figure (6.7.2)
\(y=9^{\prime \prime}\)


FIG(6.7.6) East and Hoxey [22] Notation as in figure (6.7.2) \(x=-30^{\prime \prime}\); solution matched to expt at this face


FIG(6.7.7) East and Hoxey [22] . \(\quad\) Notation as in figure (6.7.2) \(x=-26^{\prime \prime}\)


FIG(6.7.8) East and Hoxey [22]
Notation as in figure (6.7.2)
\(x=-23^{\prime \prime}\)


FIG(6.7.9) East and Hoxey [22]
Notation as in figure (6.7.2) \(y=3^{\prime \prime}\)




FIG(6.7.73) East and Hoxey [22]
Notation as in figure (6.7.2) \(x=-26^{\prime \prime}\)
```


[^0]: 'threc-dimensional' will here be reserved for flaws three-dimensional. in the mathematical sense i.e. In the more restricted sense, and

