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SUMMARY. 

  

is concerned 

   putation of three-dimensional turbulent boundary 

  

hod has been developed to solve the three- 

  

numerical me 

iterative scheme based essentially      EB bourlaxy ér equations using 

on the Crank-Nicholson finite difference approximation. 

  

also employs a streamline-type transformation which enable 

individual velocity profiles to be iterated for independently of 

@ach other so improving the efficiency of the calculation. The , Eas 

effective viscosity is computed from the Mixing length concept and a As 

an empirical correlation for the outer layer. The logaritniic law 

  ef the wall is used as the effective wall condition. A listing of 

a computer prograin written in Fortran IV. to calculate boundary a 

dayer development using this method is also included, 

Extensive comparisons af the present theory with bota 

   experiment and alternative theories have been included. Ty 

dimensional flows have been calculated with reasonable success, y 

prédictions for which compare favourably with calculations based 

  

on Head's entrainment approach, and two severe cases were treated 

S suddenly. 

  

competently. In the first the pressure gradient 

renoved from an equilibrium layer; and in the second the flovwas De 

maintained im a nearseparating condition, The pseudo-thres— 

dimensional flows considered show that crossflov.angles can be 

    

even though the crossflo: 

  

with experiment.



  

   ill provide a useful tool for 

  

It is felt however that the effective 

viscosity model used in the outer layer should be more broadly 

  

   

  

nsidering more experimental configurations for the 

the empirical correlation. will “be 

  

16d overall by considering this problem evel on a two- 

dimensional basis. Nevertheless the present scheme is capable 

of coping adequately with varying types af boundary layer de- 

velopment in bote two and three dimensions.
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Since the beginning of this century an over increasing 

of attention has bem given to the investi on of bounds 

    

    

    to being able to completely unter 

boundary layer’ and its effects as they occur in 

s branches of engineering and technology, notably in the 

  

aeronautical end compressor and turbine fields. It must be expected 

that the purpose of the current intensive research is to provide 

E
i
 

he designer with a tool for determining performance characteristics 

Without having to resort to the laborious process of rig simulation, ~ 

and from this point of view it must be admitted that the capabilities 

of the science at ths present time are poor. 

Methods currently available for calculating turbulent two- 

dimensional boundary layers are numerous ani generally (with a few 

exceptions) of poor performance ani restricted application since 

they are greatly dependent on empirical information extracted from 

4@ small number of experiments. There, moreover, is an increasing 

awareness at the vresent time that methods of calculation generated 

for the two-dimensiona’ boundary layer are of limited practical 

appli cation unless they can be modified to take account of: three- © 

dimensional effects. The purpose of the present investigation 

is infact to generate a method for calculating three-dimensionmal 

turbulent boundary layers. 

  

There is a tendency when referring to a boundary 

being three-dimensional to mean simply that a crossflow component   

  

of velocity exists (i.e. re is flow within ti boundary layer 

normal to the flow at the outer edge) ‘so that 

   mensi 

  

the mathematical sense still be two. 

  

onal’ will here be reserved for 

  

'thiee—dim 

     



(vid) 

boundary layers whose paraneters are dependent on two space 

variables only but also contain crossflows will be referred to as 

  

*pseudo-three-dimensional'. 

sesented for calculating laminar or turbulent 

  

boundary layers over two- (with or without crossflovs) or three- 

nal solution spaces. The solution scheme to be discussed — 

  

restricted to ths problem of steady, incompressible flow over a smooth, 

flat ox developable, impermeable surface - is based on tne boundary 

layer approximation to the time-averaged turbulent Navier-Stokes 

equations, complemented by an effective viscosity function waich 

makes use of the mixing length concept. The scheme to be discussed 

uses the legaritnmic law of the wall, which is well Sibstantiated 

for the two-dime@isional turbulent boundary layer, as the boundary 

condition at the wall and a frequently postulated extension of this 

law to three dimensions. In this manner skin friction at ths wall 

is provided implicitly. The only nee assumption required to extend 

ms is the assumption   the two-dimensional calculation to three dimension: 

that in the turbulent boundary layer the shear stress vector is 

parallel to the maximum rate of strain vector of the pean flov. It 

mus% be stressed hovever that the computer program waich has been 

written: is structured in such a way as to make it reasonably siagio 

to test effective viscosity hypotheses different to thaw used in the 

_ present calculations, The numerical method is essentially an iterative 

scheme based on ths Crank-Nicholson finite difference opproximation. 

  

The general approach to the problem is similer te that ad “by 

10ugh the a 

  

Spalding in two-dimensions al P S 

  

ssarily been chosen so as ¢ 

  

dimensional calculation. 

Toward the end of th   ipvestigat tec te the atten 

   of the author that Nash had 

 



(vii) 

problem but had based his calculations on the turbulent kinetic 

  

energy Cquation 4s initiated by Bradshaw in two-dimensions. The 

only experiment for which predictions of Nash and the present method 

d show that both methods have more or less the      have been compa 

same capabilities for calculating crossflows. 

Owing to the introduction of a transformation closely 

resembling streamline coordinates the time taken to generate 

solutions using the present method on the IBM S360/65 computer 

was found to be rae oni efficient. % 

One problem that wes thought would present some difficulty 

in the present calculation method was that of prescribing the 

side boundary conditions to the problem,yal though ae sufficient 

care is taken itwas found that this difficulty can quite easily 

be overcome, c 

We nov proceed to give a short account of the contents 

of the chapters which constitute this present work. Chapter One 

gives a brief description of the concept of the boundary layer and 

states the equations governing the motion of the three-dimensional 

turbulent boundary layer while in Chapter Thee are collected a 

number of experimental and theoretical results which will either 

be useful in the derivation of the scheme for the solution of the 

boundary layer equations considered in Chapter Four or be used as 2 

check on the results obtained, Chapter Two gives a brief summary 

of the methods presently in use for caloilating two-dimensional 

dude 

  

boundary layers and the attempts that have been made to ir 

crossflo: effects or to calculate three-dimensional boundary layers. 

Particular attention has been paid to the amount 

    

formation necessary for each of these methods in t 

 



dimensional case. Also included in Chapter Two is a more de= 

  

tailed account of the reasons for the choice of the approach to 

the problem used in the present investigation. 

A description of the proposed solution scheme is to be 

found in Chapter Four anda listing of the computer program written 

in Fortran IV is supplied as an appendix. In Chapter Five this 

program has been used to simulate a number of two-dimensional ex 

‘periments with reasonable success. The empirical constants inherent 

in the assumptions underlying the calculations were adjusted to ensure 

agreement with a two-dimensional experiment. The two constants required 

for the law of the wall were found to be adequately represented by ; 

their accepted emerimental values i.e. in'the usual notation 

k= 0.41 A=4.9 

and as might be expected it was found necessary to take the sane 

value for « in Prandtl's mixing length hypothesis as that used in 

the logarithmic law of the wall. The only other empirical inform tion - 

that involved in determining the position of the outer region of the 

boundary layer i.e. the region in which the mixing length ceases to 

provide an adequate explanation of the flov - was obtained empirically 

+o provide agreauent with one retarding two-dimensional experiment. 

Having determined the empirical constants and hypotheses to 

be used and validifying the choice by simulating 2 number of other 

two-dimensional experiments (Chapter Five) a number of pseudo- 

three-dimensional eni three-dimensional boundary layers were 

      

Chapter Six with some success The triangular model for the 

was largeély confirmed 

¢onvincing account of 

  

rence scheme was verified by me 

    

er for which an analytic solution 

  

boumiery lay
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1.0) Introduction. 

The concept .of the boundary layer was introduced 

by Prandtl at the beginning of this century to. explain why 

in the flow of a real fluid over a streamlined body the strean— 

line pattern at high Reynolds numbers very closely resembles 

that of a perfect (i.e. frictionless) fluid. In such flows, 

Prandtl suggested ,the effects of the viscosity of the fluid 

are confined to a narrow region enveloping the body and the 

fluid in the remaining region is for 411 practical purposes 

inviscid. 

In non-viscous fluids contacting layers of the fluid 

moving relative to each other experience no tangential forces 

(i.e. frictional or shearing forces) but only normal (pressure) 

forces and fluid layers close to an immersed body move over the 

pody without experiencing any retarding effects. In real fluids 

“however frictional forces come into play and effect shearing 

stresses between adjacent layers of fluid possessing relative 

motion, and in particular prevent layers of fluid adjacent to an 

immersed body from sliding over the body i.s. a tno-slip* condition, 

is introduced. This means that even in a fluid whose internal 

relative motion is not of such a magnitude as to produce frictional 

forces, the containing vessel or any immersed body- moving relative 

+o the fluid may produce significant frictional forces throughout 

the region termed its boundary layer. This layer is thet region 

  

over which the velocity of the fluid varies bet 

velocity of the fluid relattive to the wetted surface ani the: 

velocity in the body of the fluid at a point w    
be considered frictionless. 

  narrow ‘so that veloci 

  particularly close to the wetted surface are very lange hence



2,0), 

Ted), 

contde 

  

to the shearing stresses previously described. 

Also at high Reynolds numbers the phenomenon known as 

turbulence i.e. the amplification of smell oscillations within 

  

  of the flow close to the immersed body 

c 

  

boundary layer. 

and is effectiv 

  

of a further increase in the shearing stress within the 

‘icant part in determining the behaviour 

It is the purpose of the present chapter to consider 

the equations of motion governing the flow within the boundary 

layer and in these to take account of the effects of turbulence. 

The three-dimensional turbulent boundary layer equations. 

yea 
The equations governing the flow of ae sevreze fluid, 

the equations which in fact form the basis of the whole science 

of fluid mechanics, are the Navier-Stokes equations which can be 

written for the steady flow of an incompressible fluid with zero 

body forces as 

wv, we, we. le fe ere eV 
ae Vay * an =p ay” Cart * ay? * aa? 

  

ox oy Oz. 

    e u,v,w are the localised velocity 

    

ths pressure and p,v are ths fluid properties densi 

wular co-ordinate directions x,y,z respectivel 

+7 

onents associated 

andy 

  

(ae 2) 

(T.1.2) 

(1.1.3) 

{ 7 x (2.1.8) 

   



3. 

contd, 

viscosity. These four equations contain four unknowns u,v,W,p 

and it is thus possible, at least in theory, to solve for the 

four unknowns from equations (1.1.1-4) once the proper boundary 

conditions have been prescribed. in practice these equations 

have been solved in their entirity only in a selected number of 

Simple casess In particular the equations governing the flov 

of a perfect fluid are as above but witn the second order terms 

deleted, This simplification is significant in that although the 

solution of the equations is considerably simplified at the same 

time the conditions needed to be specified at boundaries in a real 

fluid cannot all be satisfied. - 

The most promising approach to the solution of equations 

(1.1.1-4) in many cases of practical interest is to use ths boundary 

layer concept to divide the solution space into two regions. In 

the first region, the main body of the fluid, viscous forces are 

to be ignored and the flow is to be treated as inviscid. The second 

region is the boundary layer in which although viscous forces need be 

considered it is possible to obtain simplified equations of motion 

which hold throughout this region. Before doing this however 

consideration must be given to the problem of turbulence. 

In laminar fluid flow; characterised by lov Reynolds 

numbers, the fluid particles during the course of their motion move 

along regular smooth paths. As the Reynolds number is increased 

  

however the regular motion of the fluid particles breaks 

and superimposed on the overall tendency of the flov are random 

  

fluctuations of the individual particles giving rise to tur‘bu 

  

motion ani high vorticity. The process of cl 

  

motion to turbulent motion is termed transition 

yelevance to boundary layers.



ao) 

  

contd. 

The usual approach to the problem of turbulence is to 

substitute for the velocity components u,v,w, which are varying 

vandomly with time about some mean value at any particular point, 

composite velocities of the form 

weu¢u! (1.1.5) 

where u is the mean value at a point of the component of motion 

in the direction of tne co-ordinate axis x i.e. 

to+T 

t=% | u dt 

to 

where ths integration is taken over a sufficiently long period 

of time T to ensure that u is independent of time. The component 

of velocity u' is thus the fluctuation about this mean such that 

ay ae SO 

Defining expressions of the form typified by equation (1.1.5) for 

U,V,W,D, Substituting these into the Navier-Stokes equations and 

  

averaging the equations over a time interval T leads after manipulation 

to the equations 

Hy, _ HB. Le zs aces ay tape oat te ee) 

  

(gd) e
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1.1) contd. 

ow OnoR OWl Le Oy Pw fw Pw 
Bi a Na ray Gt age 

  -(2 T38 28 Soran pd: Wie \ és Bi eit toy ) (1.1.8) 

dia eee ba Be, OE 219 (2.1.9) 

where the bars have been dropped from the time-averaged velocity 

components and pressure for convenience since equations (2.1.69) 

hold for laminar flow if the fluctuating components are taken as 

zero. The additional terms on the right hand sides of equations 

(1.1.6-8) compared with the original Navier-Stokes equations can 

be seen to play a role similar to the viscous terms on the rigat 

hand sides of equations (1.1.1-3). For this reason the main effect 

of the turbulence on the mean motion is to imbue the motion with 

additional stresses which are called apparent or Reynolds stresses. 

It should be noted that the equations for the time-averaged quantities 

u,Vv,W,p cannot now be solved unless additional information is provided 

for the evaluation of the terms which contain time-averaged 

fluctuating quantities. 

As has already been stated it is possible to introduce 

into the full Nevier. cles equations some simplifying assumptions 

relevant to the flow in the boundary layer. This boundary layer 

timation holds when the boundary layer thickness is small in 

  

ape 

comparison with a'charactertstic length’, and is tantamount to 

assuming that the rate at which quantities change as the boundary 

        

vr is traversed is much greater than the rate of c 

  

in directions parallel to the plane or the wa 

ey is developing. — Th z is the    



ao) contd. 

distance measured from the wall into the body of the fluid and 

X,y are co-ordinate axes in the plane of the wall, second 

order derivatives with respect to x and y can be disregarded in 

preference to other terms in the Navier-Stokes equations, Atheuah 

the reasoning given here lacks the more rigorous treatment of ten 

the boundary layer aporoximations the consequence 

  

associated wit 

is the same and because a detailed derivation of ths boundary 

layer equations for two-dimensional flow is provided by 

H.Schlichting [1] and the extensions to three-dimensional and 

, turbulent flows are very similar, and throy little light énto the 

mechanism of the floy no more will be said here beyond quoting 

the boundary layer equations for three-dimensional turbulent 

motion; 

oa oa Ri #, 2 cass 0 gees Vege Noon a name eee (ars (1.1.10) 

a x Wee One eG aX Dee trop ON gr cep ay hae Cea Ct AD). 

1 

go Be, Bu oe ee (1.1.22) 

The effective kinematic viscosities, defined such that 

—— 
Pee a uty! (t.2533) 

ES pee 
vey gn eee viw? (eet) 

were originally introduced by Bousinesq who drew the analogy 

   
     

atie viscositic 

  

between the effective kine 

  The 1    of vistosity v in Stokes’ law. 

  

in equations (1.1.13-14) are significant only in’a narrow r 

  

yall and are usually ignored, The mo 

  

e to 

  

very 

   Lices ¢   equation essocinted with the 2 direction re



7. 

1.1) contd. 

of the boundary layer approximations to 

Thus, p is a function of x ani y only and can be determined 

from the freestream pressure distribution i.e. the velocity 

distribution at the outer edge of the boundary layer must be 

known in order that the pressure distribution can be derived 

from Bernoulli's equation: 

p+ p(U* + V*) = constant (X,2615) 

where U,V are the freestream velocity component s associated 

with the x,y di-ections respectively. It should be noted 

that the consequence of equation (1.1.15) in the boundary layer 

equations is to impose a condition of irrotationality on the 

freestream velocity distribution. 

The three equations (1.1.10-12) involve tne unknowns 

u,v,w and it is thus possible to solve these equations for 

i Uu,v,w, once the correct boundary conditions have been prescribed, 

if vee ey can be correlated with the mean velocity field. An 

alternative approach is to make use of the turbulent energy equation 

OE oe oon Ot etre ota are) ae Oe ay Oe ae pata a2 

@ fimo es 
#5 3 wipt + we) +650 (1.1,18) 

(obtained by manipulating the Navier-Stokes equations, time- 

   averaging and making use of the notation introduced in equation 

  

ation from which the turbulent 20 

  

(1.1.5)) to provide an eg 

stress can be determined if the turbulent kinetic ene 

    

(ul? 4 vt? 4 wt?)



1.1) 

1¢2) 

contd. 

e (dissipation of turbulent energy by viscous forces) and the 

time averaged quantity 

  

wip? + w't 

i
 

can be provided by some empirical source. 

The three-dimension2] momentum intesral equations. 

A simplification to the equations governing the behavi our 

of the boundary layer is introduced by integrating the boundary 

layer equations (1.1.10-12) through the thickness of the boundary 

layer to provide the momentum integral equations. When such an 

approach is employed it has become customary to write the boundary 

layer equations in ‘streamline co-ordinates' i.e. to replace 

the x,y co-ordinates by the co-ordinate system formed by the 

projection perpendicular to the wall @ the external streamlines 

and their orthogonal trajectories. Velocity components within 

the boundary layer parallel to the wall are resolved similarly. 

We consider a co-ordinate systen in which € ae the metric measured 

along a streamline n = constant and denote the velocity components 

within the boundary layer in the direction of €,7 increasing by 

Us» Ug respectively so that at the edge of the boundary layer 

Uz, =U, ,» Uy =0. 

Integrating the boundary layer Momentum equations as described 

  

and using the continuity equation to eliminate w the folloavin, 

equations are obtained bys 

 



1.2) contd. 

  Us B8as |b O8aa , 9 Wi 6. 4 ee Ue (014+022+ 51") 
0€ ha 67 og heli an 

Us dha e-6 +2n 3 G24 = - (i252) 

The momentum thicknesses are defined: 

us\ uw ute 
as=/[ @-%) Hee toa =~ [ Se aie 

4 
° 3° 

CaS i Bt) Wag , “aa = Fe? dz (1.2.3) 
4S G toa i) Ue p 22 = v. 2 ce 

0 aNeer ae 

the displacement thicknesses: 

es 

82% -/ ( - aye ees te = a dz (1.204) 

° ° 

and the coefficients of friction: 

ete = Toa 5 c, = > ¢c, = — (255) 
ea 4pu." fa one 

where Tos, Toa are the components of the turbulent shear stress 

at the wall in the €,7 directions i.e. 

  

OG net Pea Gre ; la ws W (2.2.6) 

2 dug p ; 
a Se ou wt (Tey) 

the left hand sides being evaluated at z = 0. The metric 

iated with 7 and is assumed to bea 

  

factor hg is that as 

function of €,n such that



10. 

ntde 2 6 
ss gi ce Des arene a ds ae os + he” dy + dz". 

In a similar way it is possible to obtain energy integral 

equations but these are rarely used as a means of calculation 

and will not be discussed here. Equations (1.2.1-2) will need 

obviously be supplemented by other relationships since these 

two equations contain seven independent unknowns (go* was 

eliminated using 62* = 621 = O42) In the two-dimensional 

problem the one momentum integral equation contains the three 

, unknowns 

Pas sera moa hee 

It should be pointed out that all the equations 

summarised in this chapter are generally accepted as being 

applicable to boundary layers developing over boundaries of 

Arad : ‘ a 
forge curvature (in comparison with the boundary layer thickness) 

and not only on flat surfaces.



CHAPTER TWO. 

HODS OF COMPUTING BOUNDARY LAYERS, 

 



2.0) introduction. 

The numerous and varied methods that are currently 

available for ths calculation of the two-dimensional turbulent 

boundary layer testify both to the large amount of attention 

that has been given to the problem over the last ten to twenty 

years and also to the lack of reliance the individual contributors 

placed on contemporary methods of solution. 

These calculation methods can be broadly divided into 

two groups the first of which, by far the largest and most 

profuse, are those termed integral methods in which the boundary 

layer equitions are abandoned in favour of the monentum integral 

equations so reducing the problem space,by one dimension, In 

the two-dimensional boundary layer, integral metnods are generally 

based on the assumption thzt the shape and scale of the velocity 

profile are adequately represented by two parameters. As a means 

  

of calculating these parameters the integral equation (waich 

conterns three unknowns any two of which on the basis of this 

assumption specify the third) is solved in conjunction with some 
t 

ancillary relation, which will have to be determined from empirical 

correlations in combination possibly with some hypothesis. It 

is the different approaches employed in fulfilling this lest re- 

quirement that have given rise to the diversity of current. 

calculation methods of this type. ° The second group of calculation 

methods includes those methods which are based on the boundary 

layer equations with the necessary additional assumptions mde 

concerning the fluctuating components of velocity. 

   Although at first sight the prospect of genérating 

irical relations to explain the small. scale behaviour of the 

  

turbulent terms of the boundary layer equations, the process af 

     turbulence not being understood, seems



2.0) 

2.1) 

bea 

that of correlating gross boundary layer 

  

  y appreciated, 

  

se signisicance is more easi 

this in fact transpires not to be so. The prominence of 

integral methods is mae easily understood when one realises 

that they were calculation methods developed with the intention 

of being applicd to tne slide rule ani desk machine. These 

same methois o& computation would obviously make the solution 

of the boundary layer equations too lengthy a task. Today, 

with the development of the high speed computer, one would 

expect to see some movenent away from this one-sided situation 

but regretfully tnis is not so to any ‘marked extent. The 

present author is of the view that since methods based on ths 

boundary layer equations are more readily adapted to three- 

dimensions, once 4 satisfactory two-dimensional method has been 

developed,more time could be profitably spent in improving 

the methods of calculation based on these equations. 

t 

ods of calculation. 

  

tegral _m: 

Restricting the present discussion to two-dimensional 

boundary layers (i.e. where the problem is dependent only on 

two space’ variables and the velocity component v associated 

with the third direction is identically zero) we will adopt 

the notation generally used in this context; 

6 = G2, = i, Ua Uy on = 0, 

and introduce the shape’factor H, and the Reynolds number Ry 

based on the momentum thickness



13. 

2.1) contd. 

we = ae ou (2.1.1) 

Shoes Z - (m1) 5 & (2.1.2) 
dx U 

  

" Equation (2.0.2) is solved for Ro» the shape factor H 

and coefficient of friction Cp being provided respectively 

by an empirical auxiliary equation which is usually of the form 

(2263). fl
e.
 

aH 1 2 Oa oe Ly 

where L, M are in the most general case functions of H, Ros and 

a skin friction equation which can reliably be assumed to be 

of the forn 

ep = £(R,,H) i (2.1.4) 

It is also generally considered that specifying the parameters 

R.,H is sufficient to define u/U as a function of 2/@. 6? 

Thompson [2] has given a thorough assessment of the 

dependability of the various two-dimensional auxiliary equations, 

as distinguished by different L,M in equation (2.1.3), available 

for calculating two-dimensional incompressible turbulent boundary 

ge of    layers ani compared theoretical predictions with a wide ran 

  

published experimental results. A point of fundamental imp 

revealed by Thompson (by the discrepancy between measured 9 ip 

  

equation 

  

. 
development that as predicted by the momentum int 

evaluated using experimental shape factor distributions) is the 

    presence of woat are almost certainly sig ‘icant three- 

effects in the majority of what were intended to be two-dimensional 

  

boundary layers. The effectiveness of the various



Ve 

2.1) contd. 

equations was compared using the measured R distributions and 

s calculations that 

  

Thompson coneluded as a result of 

“with tne exception of the entrainment equation 

of Head, no shape factor equation provides satis- 

factory agreement with more than one half? of the 

measured developments that have been used! 

He also points out that established methods have been generally 

accepted on the basis of only a few comparisons with experiment 

that have produced comparatively good results, Thompson taus 

concludes that,with the exception of Head's entrainment method 3] 

which gave reasonable agreement vita experinent, all methods for 

calculating two-dimensional turbulent boundary layers are generally 

indifferent to very poor. Two additional points made by Thompson 

cannot be stressed too often. The first is that two-dimensional 

experimental results must be accompanied by some indications as 

to the effects of convergence or divergence of the flow and, 

secondly, come atatien methods must be compared with a wide range 

of experiments before their validity can be éstablished. Thompson, 

ratner surprisingly in view of tae poor performance he attributes 

to integral methods in general, appears to dismiss calculation 

methods based on the boundary layer equations with the remark: 

‘In the case of turbulent flows, no universal expression 

3: nea relating the Reynolds' stresses to the mean 

velocity distribution, ani no exact solution of the 

boundary layer equations are possible.' 

  

Other integral methois have been developed which 

use of the so-called energy integral equation and the moment of 

  

mentum integral equation which determine the growths of the 

    

energy thickne



2.1) 

15. 

contd. 

= 

ove =| @- G)) = dz (2.1.5) 

ani the moment of momentum thickness 

> [ 30-23 & (2.1.6) 

respectively in a manner similar to the way equation (2.1.2) 

determined the growth of the momentum thickness 9, The shape 

factor equation is carried over “similarly to provide an equation 

for the developments of the shape acters based on 6**, 6, 

respectively, Comments concerning the performance of these 

methods will be deferred until the next section. 

It has only been in recent years that integral methods 

have with much success been applied to three-dimensional boundary 

layer calculations — all such attempts have though to the know- 

ledge of the present author been restricted'to pseudo-three- 

dimensional boundary layers and no attempt has yet been made to 

solve hie three-dimensional integral equations over a two-~ 

dimensional (x,y) space. A review of the state of the knowledge 

(1963) of three-dimensional turbulent boundary layers, particularly 

with reference to calculation methods, has been made by 

Cooke [4] who noted coat all contenporary calculation methois 

assumed small or zero cross flovs-and used established two- 

  

dimensional velocity profiles and skin friction equa for 

the three-dimensional. streamwise counterparts. Cooke also re- 

df 

  

the representation 

  

8 put for 

  

viewed the various propo: 

  

of the crossflow velocity profiles and more recently C 

has made comparisons of 
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profiles with those obtained from the various proposed pre- 

diction methods. Cumpsty {5] has shown that the stream- 

wise velocity profiles and skin fricton can quite adequately 

be approximated to by the two-dimensional velocity profile 

families and skin friction laws. The triangular representation 

of the crossflow profiles, generally ascribed to Johnston, 

  

is also considered by Cumpsty [6] to be applicable in a wi 

range of situations and to be easily extended to cases where 

crossover profiles exist. Some means of effecting the calculation 

of the parameters on which Johnston's triangle depends are still 

yet to be formulated however. The crossflov profile proposed by 

Mager 

u INE i. = «G-4) ie (2357) 

where 6 is the bouniary layer thickness and a is a parameter 

representing the extent of the crossflov, Cumpsty consilered 

to be applicable only in the case of modest ‘crossflows and in 

a selected number of other situations. 

Calculations of pseudo-three-dimensional boundary 

layers have been made by P.D.Smith [7] wno considered the flow 

over an infinite swept wing and compared his calculations with 

some of his own experimental data, Smith tested in all six 

different variants of integral methods ani found in all his 

calculations considerable discrepancies between theory and 

  

experiment which Smith attributed to either the inapplicability 

of the two-dimensional skin friction law to three-dimensi onal 

flow or to the neglect of certain terms in the derivation of 

  

th considered 

  

the streamwise momentum integral equation, 

the former to be the more likely cause. Mager's crossflow
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representation and a power oy approximation to the streamwise 

profiles were used througnout Smith's calculations. 

The same problem was considered both theoretically 

and experimentally by Cumpsty and Head [8] who extended the 

entrainment method of Head to account for crossflow (a possibility 

also investigated by P.D.Smith). A family of two-dimensional 

velocity profiles constructed by Thompson was used in conjunction 

with equation (2.1.7) to represent the velocity distributions. 

Predictions of 6, H and crossflow profiles were found to be con- 

siderably underestimated the Buon being improved somewhat 

by a small adjustment to the spanwise velocity which produced 

‘tolerable agreement' with experiment. There seems to be some 

doutt as to the feasibility of attenpting tae experimental 

simulation of the infinite swept wing, a point which Cumpsty ani 

Head alude to out Smith dismisses. The type of flow studied by 

Cham and Head [9] would seem to be more reliably two-dimensional 

(in the mathematical sense), the experiment’ being concerned with 

a rotating cixcular disc. In this case the velocity representation of 

Thompsen was said to be of considerable accuracy and that of Meger 

reasonable although to produce overall agreenemt of the theory 

(similer to that of Cumpsty and Head) witha experiment a 30% 

reduction in entrainment as compared with the two-dimensional 

theory was required, 

Wathods based on the boundary layer equations. 

  

The obvious appreach to the solution of the boun 

  

layer equations is to assume that the local turbulent sh 

stress can be empirically related to the mean velocity. 

an approach has been inudé by Spalding and Patankar [10] who
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solved the heat-, mass- and momentum transfer equations for zi 

the two-dimensional turbulent boundary layer. The equations 

were written in terms of a non-dimensional stream function to 

account for boundary layer growth and the logarithmic law of 

the wall was employed as the effective wall condition. The 

calculations performed by Spalding and Patankar made use of 

Prandtl's mixing length although the point is made that any 

other hypothesis for toe could conveniently be incorporated 

into their solution scheme. Spalding and Patankar, being primarily 

concerned with the problem of heat transfer, gloss over the 

capabilities of their method for computing turbulent boundary 

layers but the few predictions that are available appear to 

give plausible agreement with experiment. 

Sradshaw, Ferris and Atwell [21] chose to base 

their calculation method on the turbulent energy equation on 

the assumption that the turbulent shear stress was lilely to 

be more closely related to other properties of the turbulence 

than to the mean velocity field. Bradshaw in the solution to 

the two-dimensional problem defined the length parameter L 

Learnt? 

where T == u'w! is the kinematic shear stress outside the 

laminar sublayer, and introduced functions 

  

  

ty 79/2 

Be hes 

Gs (ptwt_ + tw? 
tT pila. 

"max 
i 

ass 
t 

where L/ 8 and G were taken to be functions of 2/8 and @ was
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taken as constant. These assumptions allowed the boundary 

layer equations (1.1.10,12,16) to be solved for u,w,7 As 

with the method of Spalding the boundary conditions for u at 

the wall was the logarithmic law of the wall. The additional 

assumption of a linear shear stress relationship at the wall 

and in the freestrean tT = 0 completed the boundary conditions 

for the problem. 

The situation with respect to the dependability 

of the methods of Spalding and Bradshaw is very much as des- 

cribed by Thompson to be the case for integral methods; the 

published literature on both these methods shows only a few 

comparisons with experiment which have all the appearances of 

showing reasonable agreement. 

Recently Nash [12] has extended the method of 

Bradshaw and calculated a three-dimensional boundary layer 

(a simulation of the experiment of Hounung and Joubert [13]) 

with promising results. The only additional assumption made, 

over those introduced by Bradshaw was thet the shear stress and 

the maximum rate of strain of the mean flow have a common line 

of action at any point i.e, 

    

utw! os viw! al
e 

lz
 

A recent investigation [14] made to determine how 

prediction methods of all types would compare in calculating 

two-dimensional turbulent boundary layer developments came to the 

conclusion that 'most prediction methods do rather well'. Some 

i 

  

attempt was made as part of this study to rank the differer 

in order of performance by placing each method into one of three
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groups. The first group comprised of two me thods based on 

each of the energy integral equation and moment & momentum 

integral equation, one based on the turbulent energy equation 

(an association with the boundary layer equations) and two based 

on the boundary layer equations. Calculations oased on the 

entrainment approach fell mostly within the second group. 

265), Proposed solution scheme. 

Having developed a method of calculating two- 

dimensional turbulent boundary layers the amount of effort 

necessary to extend the calculation method to the three- 

dimensional problem is primarily influenced by whether the 

original method is based on an integral equation or on the 

boundary layer equations. The additional assumptions required 

to extend an integral method are considerable, witness to this 

, being provided by the additional infomation necessary for the 

extension of the two-dimensional method to the pseudo-three- 

dimensional problem, while it would appear to be a relatively 

simple matter to extend either of the two main methods of solving 

the boundary layer equations. 

Having formulated ths problem the relative merits 

of the methods are reversed when the prospect of solving the 

equations is considered - it is undoubtedly simpler to solve 

the momentum integral equations together with any ancillary 

relations over a two-dimens{ional space than it is to solve the 

complete boundary layer equations over a three-dimensional space. 

In deciding on the approach to the problem of calculating three- 

    dimensional boundary layers therefore we must weigh the atical
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considerations against the problem inherent in attempting to 

supply all the necessary empirical information for the de- 

finition of the problem. It would almost seem that the choice 

has been made for us when we see that while it has been found 

possible to solve the bouniary layer equations over a three- 

dimensional. space the momentum integral equations have never 

been solved in more than one dimension. 

_Since it would appear that it will not be possible 

for some time to satisfactorily correlate crossflow velocity 

profiles and skin friction values we will restrict our attention 

ain the present work to the boundary layer equations. The work 

of Nash only became known to the present author towards tne end 

of the present investigation so that it was fortuitous that it 

was decided to omit the turbulent energy equation and concentrate 

on the effective viscosity approach to the problem. This decision 

was partly made on the basis that the mixing length analogy of 

Prandtl has found application in such a wide variety of situa tions 

besides boundary layers that the reasons ie given for its 

rejection seem not altogether acceptable. In addition it was 

felt that theturbulent energy equation was too dependent on 

empirical information.
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Introduction. 

Having in Chapters One and Two derived the equations 

of motion for the three-dimensional. turbulent boundary layer 

and decided what approach to take in solving these equations , 

we now examine a number of physical properties of the turbulent 

boundary layer which will be required to facilitate the solution 

scheme to be presented in Chapter Four. 

The nature of the turbulent boundary layer equations 

in their two-dimensional form (i.e. the equations independent 

of y, with v identically zero) presents two main difficulties 

in any proposed numerical method of solution. The first of 

these is the pertinent fact that the two equations available 

for the determination of u and w even when the correct boundary 

conditions have been prescribed are still not fully defined. 

The effective viscosity is as yet undetermined so that some 

empirical information is required to enable it to be calculated 

from the velocity field. The second problex concerns the 

difficulties inherent in trying to apply as the boundary 

condition at the wall the obvious fact that all velocity components 

must vanish there. Extending any solution method to facilitate 

the computation of Horee-dinenss onal boundary layers will 

obviously increase the difficulties originating from these two 

sources. In this chapter certain experimental and theoretical 

observations will be presented with the prime purpose of over 

coming the difficulties associated with the solution of the 

two-dimensional turbulent boundary layer equations and to 

hypothesise, with the aid of the limited three-dimensional 

duta availaiie, relationships that will enable the two-dimensional 

method of solution to be extended to three-dimensions.
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It is also anticipated that the boundary layer 

properties to be discussed here will provide a means of 

establishing the calculations to be presented in Chapters 

Five and Six, 

The discussion contained in the remainder of 

this chapter will be concerned with two-dimensional turbulent 

boundary layers except where it is explicitly stated otherewise. 

The effective viscosity concept. 

The form of the boundary layer equations (1.1.10-12) 

makes use of the effective viscosity function as introduced 

by Bousinesgq and although this device enables the equations 

to be expressed in a familiar fom (the equations are now in 

line with the laminar equations except that the kinematic 

viscosity v is replaced by a turbulence exchange coefficient) 

the problem of how to account y, (s Yoo with the velocity 

field is still present. ; 

The earliest attempt to allow for the effect 

of turbulence in the boundary layer equations was Prandtl's 

now well-known mixing length hypothesis which from physical 

considerations of the mechanism of turbulence deduced that 

(3.161) 

  

where the so-called mixing length @ is still an unknown 

function but indications are that it is not influenced by the 

magnitude of the velocity and it is a purely local function, 

The concept of the mixing length has been proved to be very 

useful and,with simple postulations made concerning &, has been 

applied to turbulent wall flows (including pipe and channel
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flovs in addition to the more usual boundary layer problem) 

ani also to free turbulent flows (where fluid mixing takes 

place in the absence of a solid wall). With reference to 

voundary layers a number of arguments have been proposed for 

the determination of the mixing length & and von Karman by 

means of a similarity hypothesis suggested 

au /a?u =) 
d2/ dz (3.1.2) f= x! 

    

where x! is an empirical constant. The alternative presentation 

however 

&= kz Gaetan) 

where kK is another enpirical constant, being simpler than 

equation (3.1.2) has been widely used in the calculation of 

turbulent boundary layers and has been credited with giving 

satisfactory results when applied to the region near the wall. 

Beyond this region the mixing length is generally assumed to 

tend to some constant value. 

The Law of the wall. 

It has been appreciated for a long time that points 

taken near the wall from a mean velocity boundary layer profile 

can be rescaled into what is known as the law of the wall which 

states 

i, = +(r) (3.2.2) 
v 

where uw iis the so called friction velocity and f is a univoral 

function, If T is the total stress (i.e. the sum of viscous 

and turbulent stresses) and To is the value 7 attains at the wall
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then the friction velocity is defined 

gas ee (5<2.2) 

Cp = or) (3.2.3) 

Equation (3.2.1) readily follows from a dimensional argument 

applied in the region of the wall. Prior to the devel opment 

of the mixing length analogy thé law of the wall was some- 

times taken to be a power law in.the absence of any better 

representation. In the laminar sublayer adjacent to the 

wall, where viscous stresses can be assumed to suppress any 

turbulence effects, the law of the wall can be plausibly ex- 

pounded as a linear relationship, viz: 

Bo eu, sae I : (3.2.4) 

A particularly relevant conclusion concerning the 

form of the function f can be obtained by assuming, as experiment 

has shown to be the case, that there is a fully turbulent region 

outside the laminar sublayer in which the local shearing stress 7 

is approximately constant and equal to that at the wall. Making 

this assumption in conjunction with Prandtl's mixing length 

analogy, equation (3.1.1) ysing either von Karman's or the 

simplified model (equations (3.1.2,3) respectively) for the mixing 

length results in the equation
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eee (5.2.5) a” = 

which integrates to give 

us ee én z+c 

where c is a constant of integration (a function of x). This 

last equation is usually rewritten to bring it ‘into line with 

the law of the wall as 

= = < on re A (3.2.6) 
T v ; 

where A is a constant - presumably the same constant for all 

turbulent boundary layer mean velocity profiles, in which 

form it is known as the logarithmic law of the wall. 

The logarithmic law of the wall has been well 

established experimentally. It was first formulated from 

observations of turbulent flow in pipes and was later extended 

to include the mean velocity in a turbulent boundary layer. 

Ludwieg and Tillman (1949) from experimental data concluded 

that f for flows in boundary layers was independent of pressure 

gradient and established the logarithmic law experimentally. 

The logarithmic law is now believed to be applicable generally 

independently of the prevailing bounlary conditions - boundary 

layers, pipes, channels (although different constants are 

required) - and typical constants quoted for boundary layer 

flows are 

R= Oshd iy Ag 

® 
where the law can generally be assumed to hold for
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away from separation. The form of the velocity profile 

in the inner part of the boundary layer is plotted in 

figure (3.2.1). 

A second derivation of the logarithmic law 

of the wall of especial interest is that due to Millikan, 

Defect laws of the fom 

=F : (3.207) 

  

where F is a function of 2/z' (where various length scales 

z' have bem proposed), parameters such as a/v and De 

dependent on the pressure gradient, have frequently been pro- 

posed for the outer part of the mean velocity profile. 

Millikan (1938) assumed that F was dependent on the scaled 

distance 2/8 only 

(3.2.8) 

  

(the same argument holds for a more generalised form however) 

and that this defect law extended far enough into the boundary 

layer for there to be a region, generally referred to as the 

overlap region, in which the velocity profile is equally wel 

represented by the law of the wall and the defect law equation 

(3.2.8). Obtaining from each of these equations an expression
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z oa a ¢ fn by £7 
a vee and equating them the equation 

7 

ol
es
 ot er(Mn) = - G) (3.2.9) 

results where the dash denotes differentiation with respect to 

the argument of the function. The two sides of equation 

(3.2.9) canbe independently functions of au,/v,2/6 respectively 

only if bota sides are equal to a constant and if this constant 

is taken to be 1/x the logarithmic law of the wall immediately 

follows. 

A detailed discussion of the law of the wall has 

been given by Coles [15] who also analysed a wide range of 

experimental data to give a very convincing argument as to the 

validity of the logarithmic law of the wall in the turbulent 

boundary layer, 

The effective viscosity function of Mellor ani Gibson. 

Mellor and Gibson [16] in response to the work of 

Clauser [e7, who investigated the effect of pressure gardient 

on equilibrium turbulent boundary layers i.e. boundary layers 

in which the velocity defect equation (3.2.7) assumes the 

simple fom of equation (3.2.8), generated an effective viscosity 

function to span the boundary layer outside the laminar sublayer. 

Clauser [18] had shown that it was possible to analyse the outer 

region (80%) of an equilibrium boundary layer by assuming the 

effective viscosity to be of the form
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vy, = KU oF (52331) 

where K, an absolute constant, was taken to be 0.016. The 

equilibrium flow profiles investigated by Clauser were those 

for which the parameter 

at dp Bt= eal ae (32352) 

*(4 » BY : (3.3.3) 

  

Clauser generated two equilibrium flows experimentally - those 

1.8 and 8.0 respectively. Mellor and characterised by B' 

Gibson concluded as a result of their analysis that the 

effective viscosity model defined by equation (3.3.1) in tke 

outer region and the simpler mixing length model (equations 

(3.1.2,3)) 

(3.3.4) 
    

in the overl@ region suffice to predict defect profiles in 

equilibrium turbulent flows in the range 

sa O55 6S BS 9 

with ‘considerable precision', For #' < -0.5 no solution was 

found to exist to satisfy the boundary conditions and the flow 

was considered separated (8' > 0 were decelerating flows, 

-0.5 < Bt < 0 accelerating).
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In a second paper Mellor hg] extended the effective 

viscosity model formerly proposed to include the laminar sub- 

layer where ri must tend to v as z tends to zero. The 

restriction to equilibrium profile flovs was also removed and 

the choice for the effective viscosity function parameter is 

reinforced by Mellor by a dimensional argument. The effective 

viscosity function expresses v/v as a function of ¢ where 

  

a2 (2 

as follows 

we = 4(6) Cou 
v (3.525) 

ve =¢ di< 0 < ues 
> v 

v 

where ¢(€) is a prescribed function. Figure (3.3.1) shows the 

composite effective viscosity model as proposed by Mellow, Since 

¢ increases and then decreases to zero again as the boundary 

layer is traversed from the wall the above formulation (equation 

(355 55))o cor Dy is not quite correct as it is intended that the 

third expression should hold exclusively in the ater part of the 

boundary layer.
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It has already been mentioned that an alternative 

approach in the outer part of the boundary layer might be to 

assume that the mixing length ¢ tends to some constant value. 

An examination of experimental data presented by Maise ani 

McDonald [20] would seem to support the latter of these 

alternatives i.e. that the mixing length rather than the 

effective viscosity should be taken as constant in this region. 

We might also note here that because of the lack 

of turbulence measurements in three-dimensional boundary layer 

flows we are in a position to do no more than make the obvious 

extensions to three dimensions of the ‘viscosity models discussed 

above. That is we will assume tiat the shear stress at any point 

acts in the same direction as the maximum rate of strain i.e. 

v 
ex ey e 

and that the above formulations hold in three dimensions so 

long as u is replaced by the resultant velocity q parallel to 

the wall 

ans Aw we 

The work of Coles. 

Coles [15] has suggested that it is possible to 

represent the mean velocity profiles of two-dimensional in- 

compressible boundary layers as a linear combination of two 

functions viz 

2 #(Zr) + h(x,z) 3.lel) 
T v 

where f is the usual law of the wall and h is an arbitrary 

function of x, z except that it is negligibly small in some
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narrow region near the wall. Coles points out that in certain 

special cases, notably for uniform pipe and channel flows and 

the boundary layer on a flat plate in a unifom stream, equation 

(3.4.1) is found from experiment to have the special form 

a, es *(=r) + en 3) (3.4.2) 

where 7 is a flow parameter independent of x,z. 

Coles made an extensive survey of mean velocity profile 

measurements in various two-dimensional boundary layer flows 

examining the form of the function h(x,z) and concluded that 

h(x,z) reduced to a second universal similarity law by which 

equation (3.4.1) can be amended to 

2 = (Sr) + 7G) (ues 
Ce oe Ne ae ) 

where 7 is now a profile parameter. The function w, which is 

tabulated by Coles and shown in figure (3.4.1), is called the 

law of the wake and is claimed to be common to all two-dimensional 

turbulent boundary layer flows and to be characteristic of the mean- 

velocity profile at separation or re-attachment. If the wake w is 

normalised so that 

WO) 20 jo wl) = 2 
a 

cs dw=1 

° 

Coles has shown the profile parameter 7 to be related to oe and §* 

respectively by
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2 = 2 én :) t+At a (Bebeel) 
a v 

HOU cae (3ath.5) 
+! 

by which 6 and 7 are uniquely defined. Equations (3.4.45) 

in effect provide a skin friction law. 

Letting u_ approach zero equations (3.4.3,5) reduce 

to 

ui. i WfZ 
Us 32 *G) (3.4.6) 

which shows that at points of eospatd oa or reattachment the 

velocity profile is the pure wake function. 

It is of interest to note that a defect law can 

be obtained from Coles'wake model equation (3.4.3) and written 

explicitly as 

20) 26-4) 
a7F @) (3.407) 

Equation (3.4.7) is not only valid within the logarithmic 

region but,according to Coles! formulation,will also apply now 

to all two-dimensional boundary layers and not only to equilibrium 

flows (i.e. it applies to the general boundary layer where 7 is a 

function of x and not just to equilibrium boundary layers where 

m is constant), The determination of v and three of U, u_,6,7 

will completely specify the velocity profile. 

Having formulated a general theory for two-dimensional 

velocity profiles by means of combinations of the law of the wall



3.4) contde 

and the law of thé wake Coles postulated as to how these might 

be applied to the yawed boundary layer. The general profile 

Coles tentatively wrote as 

Q=a, +3, (3.468) 

where g is the velocity vector parallel to the wall on which 

the boundary layer is developing while Qe corresponds to the 

law of the wall and Qy to the law of the wake. The law of 

the wall asserts that close to the wall the flow remains 

basically unidirectional as the boundary layer is traversed 

in the 2 direction ¢ 

gee 7a #(2r) (3.4.9) 
a ‘i 

being the vector having the same direction as the limiting 4, 

surface shear stress and a, is the usual friction velocity 

Toe p eae (3.4.10) 

The contribution to the resultant velocity from the wake component 

of the flow Q,swhich again presumably will be negligibly small 

close to the wall, Coles postulates will be of the form 

a @ 
Ge eet de “@) (3.4.11) 

where 7, a function of two space co-ordinates (x and y), was 

defined as a tensor in the general three-dimensional case. It 

readily follows that the generalised friction law is 

Q=4, *(r) + ~ TQ (3.4.12) 
T 

The existence of a region close to the wall in 

the three-dimensional boundary layer in which the velocity
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profile is approximately collateral is quite well sub- 

stantiated and it can also be reliably assumed that the 

outer part of this region (and the inner part of the skewed 

profile) is logarithmic in character [P3521 ,22). The 

logarithmic law of the wall holds as in two dimensions except 

that the region over which it is operative is more restricted. 

The evidence concerning the law of the wake in 

three dimensions is not quite so definitive. In an in- 

vestigation of the velocity profiles in plane of symmetry 

flows Pierce [23] shows that the law of the wake is applicable 

except near separation. . In analysihg velocity profiles in 

the skewed boundary layer havever there is a tendency to examine 

the wake fuuction by considering 

gerne *G) (341.13) 

(see figure (3.5.1) for notation used) which is immediately 

deducible from equation (3.4.8). Such an approach is surely 

misleading since while Coles presumably intended the law of the 

wake to take account of the streamwise velocity profile the 

left hand side of equation (3.1.13) can be associated more with 

the crossflow velocity profile for small or moderate angles of 

yaw (i.e. Bo). This might be appreciated more when it is pointed 

out that the left hand side of equation (3.4013)¥ becomes singular - 

for the special case of collateral flows. It is interesting to 

note that the curves obtained by plotting this expression as a 

function of 2/6 (see figure (3.41)) although decidedly different 

from the wake function do have a typical shape (2352805 Coles 

has outlined a method of analysing skewed velocity profiles [15]
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to obtain a more realistic test of the wake function and the 

data analysed in this way ([15] and discussion in {21]) al though 

not providing any definite confirm2tion of the applicability 

of the wake function to three-dimensional flows does realise 

profiles which are more wake=like in form than those obtained 

from equation (3.4.13). 

Johnston's triangular model for yawed flows. 

A scheme to describe the yawed velocity profile 

which has met with considerable success is the so-called 

triangular model. Johnston [21] has established that if data 

from a yawed velocity profile are plotted in polar co-ordinates 

(i.e. if ug is plotted as a function of uz to obtain in effect 

the locus of the tip of the velocity vector projected on to the 

wall) then the points fall along two straight lines (see figure 

(3.5-1)). Thus to specify ug as a function of uz we need only 

know the values assumed by Bo, y,where y (the outer angle of 

the triangle) is the parameter denoting the shearless nature af 

the Aon ee Saas by Johnston to the main flow turning angle 

@ (radians) by 

tan y == 2a 

for circulay-arc-shaped streamlines. The second angle Bo is 

related to the frictional character of the flow. 

We will adopt the notation introduced by Johnston 

and denote the two separate regions of the triangle by I and II 

and refer to quantities at the apex of the triangle by appending 

a suffix p as in figure (3.5.1). The outer part of region I was 

considered by Johnston ane in the Logarithmic region (although 

the maximum value of 5 a/v is only 16 - whereas Hornung and Joubert
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encountered 2, a/v values as high as 150). The relative 

sizes of regions I and II is considerably misrepresented by 

the polar plot ani because us increases very rapidly close to 

the wall this region is very marrov indeed,so narrow in fact 

that it is difficult to obtain extensive measurements corresponding 

o to the inner side of the triangle. 

Velocity defect law for yawed flows. 

Hornung and Joubert [13] analysed the data from their 

own experiment to examine the plausibility of a three-dimensiom1 

defect law of the form 

Is-al F @) (3.6.2) 
lg -3,| \ 

Congonsrt 3 taste 
where g, is q at the point at which the defeet,} Q- 9 } attains 

a maximum value. The fom of the left hand side of equation 

(3.6.49) in fact treats the velocity relative to the moving 

external stream which according to the outer edge af Johnston's 

triangle is collateral (at 'p' ascan be seen from figure (Sided) 

the magnitude of Q - g attains its maximum), The data of Hornung 

and Joubert showed little scatter when plotted according to 

equation (3.6.1) but Johnston (in a discussion in [24]) subsequently 

showed by analysing data from various sources that the scatter was 

considerable,



CHAPTER FOUR 

A FINITS DIFFERENCE METHOD OF SOLUTION OF THB 

BOUND ARY LAYER EQUATIONS.
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Introduction. 

It is the purpose of the present chapter to describe 

a method of solution of the boundary layer equations which will 

be suitable for the computation of two- or three-dimensional, 

laminar or turbulent boundary layers. 

Sections 4.1-2 of this chapter are concerned with 

developing a grid upon which finite difference approximations 

to the boundary layer equations canbe conveniently based. The 

grid moreover must be devised in such a way that it can expand 

or contract to keep pace with boundary layer thickness development. 

Having transformed the boundary layer equations in accordance zi 

with this grid systen in section 4.3 a finite difference scheme 

is provosed whose principle features are the use, for the boundary 

condition at the wall in the turbulent boundary layer, of the 

logarithmic law of the wall and the introduction of a trans- 

formation which considerably simplifies the calculation of velocity 

profiles in the three-dimensional. boundary layer. Having described 

in section 4.4. hav the law of the wall is to be used as a boundary 

condition the next four sections proceed to discuss in some detail 

the proposed finite difference scheme. The present method is 

similar to that of Spalding and Patankar [10] in that it solves 

the boundary layer equations in conjunction with an effective 

viscosity function, but it differs in the way it treats the 

logarithmic law at the wall anj also in that it abandons the stream 

function in favour of a geometric transformation to account for 

boundary layer growth since the former is inapplicable to three 

dimensions. 

Section 4.9 discusses a computer program which has been 

written for the IBM 8360/65 computer to calculate boundary layer 

development using the method described. A copy of the program is 

included in the appendices together with a detailed description
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of its structure. 

Solution mesh. 

It is proposed that the solution scheme to be 

presented will solve the boundary layer equations over a 

rectangular area of the wall in question, the velocity components 

being calculated at the nodes of a mesh positioned over this 

rectangle. The plane of the wall is taken to be the plane z = 0, 

where z is assumed to be measured positive into the body of 

the fluid, ani the directions of the x and y axes are parallel 

to the wall and such that the primary direction of flow is taken 

as the direction of the x-axis and the co-ordinate axes x,y,z 

form a right hand set. 

The parabolic nature of the boundary layer equations 

necessitates a marching type solution procedure so it is proposed 

to march in the x direction ani to confine the calculation between 

y = constant planes, With such an arrangenent it will be possible 

to set up a three-Gimensional rectangular mesh, aligned with the 

rectangular axes, over the solution space and base the finite 

difference approximations to the boundary layer equations on 

velocity components at the noies of the mesh, At each marching 

step u,v,w will be found at the nodes of the mesh in an x = constant 

plane before advancing to the next plane a distance f downstream 

to repeat the procedure. In what follovs the grid at x = Xe 

(i.e. the € th step) will be referred to as.solution face &. At 

any solution face u,v will be calculated at all node points on 

this face, while wwill be calculated at points on the plano 

midway between adjacent solution faces where the mesh lines 

intersect this plane.
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Reference to any particular node can be made by 

enumerating its grid reference (¢,m,n) where € denotes the 

solution face on which the node falls, m denotes the vertical 

line on this face on which the node falls (this line will be 

referred to as section m on face ¢ or simply section (£,m)) 

and n denotes the number of the node as enumerated from the 

wall (point n on section (£,m) or point (€,m,n)) Thus the 

classification: solution face, section, point describes the 

mesh in a manner suitable for the proposed solution scheme 

(see figure 4.1.1). 

The grid spacing in the XY 9 directions will be 

denoted by f,g,h respectively and the number of sections on 

a solution face by M and the number of points on a section 

by Ne 

The above solution mesh must ovviously contain the 

boundary layer i.e. the region over which significant changes 

in u,v occur, This will mean that since the boundary layer 

growth downstream will be unknown at the commencement of the 

solution some means of adjusting the grid as the solution pro- 

gresses must be devised. This will be discussed further in 

section 4.2, It might also be noted here that even across a 

solution face appreciable differences in boundary layer thickness 

may occur. To compensate for this and also to allow for more 

points over the region where large changes in velocity occur 

i.e. near the wall, the following scheme is proposed: at each 

or. grid illustrated in figure 4.1.2 in which a specified 

number of the mesh intervals near the wall have been subdivided 

will be used. 

. . . salut free 
Although the same grid will be used at each seeticn
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its vertical scale, as dictated by h, will be subject to - 

variation in a manner to be discussed in the next section 

i.e. h should more correctly be replaced by hy: This will 

compensate for boundary layer growth as the calculation 

proceeds. 

The grid in figure 412 has been obtained by 

dividing the A increments of width h near the wall each 

into w smaller increments of width h/w. It should be noted 

that N is now taken to refer to the number of points at each 

section ani not to the number of h increments. 

Derivation of an adjustable mesh to accommodate boundary 
layer growth, 

As a simple means of adjusting the grid spacing so 

as to compensate for the effect of boundary layer growth the 

mesh illustrated in figure 4.2.1 will be used. The figure 

shows a cross section through-a y = constant plane ~ the 

cross sections through all such planes being the same.Planes 

radiating from the line x = X, z = 0 will constitute the 

grid planes which will be positioned so that they approximately 

keep pace with the bouniary layer grovth between solution faces 

at x= Xp where velocity profiles will be known and x = ae 

where they are to be calculated, This can readily be arranged 

by varying the position of the line x = X, z = 0 and the in- 

clinations of the planes. The grid can also be chosen so as to 

ensure that the z increments will be constant over the solution 

face at x = X, as well as at x= Fo. although the z increment 

will obviously not be the same at both faces. Using such a 

scheme it will be possible to adjust the grid at each step to 

progressively allow for changes in the rate of growth of the



4.2) 

42. 

contd. 

boundary layer. 

Figure 4.2.2 shows the possibilities of the proposed 

mesh whsn inclined mesh planes and subdivided mesh intervals 

near the wall are incorporated. 

Transforming from 2 to € using 

z = a€(x = X) (4.2.1) 

will proiuce in x,y,é co-ordinate system the grid discussed 

above since in a plane x = constant € is simply proportional 

to z and surfaces ¢ = constant are planes passing through the 

line x = X,2=0. Knowing the grid Spacing required at 

solution cece & and £+1 to be hy and hd respectively then 

X is determined by noting that at the first grid plane from the 

wall we have €= é, say where €1 is a constant so that at 

x = X, equation (4.2.1) becomes 

hy = aga (x, - xX) 

and at x = zy2 

h xe 
een aga (ae it 

Dividing these last two expressions 

  

  

ae = Pike =e 
hy x7 x 

so that 

X= Xe h, 2 

he, he 
since Xe Ry + f£. The arbitrary scaling factor a is now 

chosen so that the increment in € between adjacent € = constant 

mesh planes is the same as the z increment at x = Xe thus equation 

(4.2.1) becomes 

h, = aby (x, - x)
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so that 

LL ie £ 
  

and the required transformation is 

z=€ toa De (x- x,) + 1) (4.2.2) 
hf 

€ 

Since the boundary layer growth between adjacent 

solution faces will not be known before the solution method 

proceeds to calculate velocity components at solution face 

+1 it will be necessary to make an initial guess at the 

transformation equation (4.2.2). How the mesh is adjusted more 

precisely to accommodate the thickest part of the boundary layer 

at successive solution faces will be dealt with in a later 

section, 

Transformation of the boundary layer equations. 

To implement the grid described in section 4.2 the 

boundary layer equations will be transformed so that the 

perpendicular distance measured from the wall will be substituted 

for by € using the relation 

z = é(ax +b) es3s0)) 

where a and b are constants (given by equation (4.2.2)) chosen 

to regulate the grid and scale € conveniently. The boundary 

layer equations (1.1.10-12) transformed into x,y,€ co-ordinates 

are
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M8 ML, BM, Ly RL ax” axtb ° Gé a * axa “8g 

ye yk 8 Rm ; 
Urged tax * (aneo)* 06 (% 7) (42342) 

  

  

Soa ax+b Be + a * Geb 0€ 

Be i +> #0 (403 04) 

where the assumption that wees Yey = Ye has been introduced. 

At this stage it is proposed to introduce a contraction 

into the transformed equations which will considerably simplify 

the finite difference scheme to be considered later. We write 

q 5, +v 2 (423.5) 3. 

where q is the magnitude of the vector sum af velocity components 

u ani v 

a= (utevye (4103.6) 
The equation (4.3.5) is suggestive of streamline co-ordinates 

but since no account is taken of thé w component of velocity 

this is not quite so. The line along which the derivate 

ag is to be taken is the locus of points in a € = constant 
os 

plane at-which the vector sum of the velocity components u and 

v is tangential to the line, and the increment in s along 

this line is given by 

‘4° 

6s = (a&* + dy)? (43-7) 

Without any apology, in what follows, we refer to such lines
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as streamlines despite the fact that these so-called stream 

lines can only be related to actual streamlines in the 

limiting case at the wall ani in the freestream. In 

addition we will replace vs in equations (4.3.2-3) by » 

such that 

v, = (axtd) » (4.03.8) 

so that the three-dimensional turbulent boundary layer 

equations now become 

  

  

vZ+va. i & (ve %) (43.9) 

v2.v4. 2 2 (% #) (453-10) 

2.8. — e a = s 0 (403411) 

It should be noted that the two momentum equations now contain 

only derivatives with respect to s and € (except for the pressure 

terms which are prescribed functions). This will be seen to be 

an advantage when approximating to the momentum equations in the 

three-dimensional case since derivatives with respect to x and 

y are not present explicity. To preserve this state of affairs 

it should be appreciated that only a transformation of the z co- 

ordinate is applicable, 

Equations (4.39-11) are the forms of the boundary layer 

equations that will be solved using finite difference techniques.
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Wall boundary condition. 

Before proceeding to approximate to the three- 

dimensional boundary layer equations (4.3.9-11) a number 

of complications which arise in the section of the boundary 

layer adjacent to the wall must be considered. Firstly, 

because close to the wall in the turbulent boundary layer 

the changes in velocity (and also in velocity gradient normal 

to the wall) are so great over small distances normal to the 

wall, it is ‘not possible to obtain an estimate of derivatives 

normal to the wall at a point simply by subtracting functional 

values at points equidistant on either side of the point of 

interest. In particular the nreleciey u at a snall distance 

h from the wall divided by h will not provide a realistic 

estimate of the gradient & at a point a distance $h from 

the wall (remembering u at the wall is zero). The same problem 

does not however arise in laminar boundary layers since although 

changes in velocity near the wall are great the velocity gradient 

normal to the wall is approximately constant over a small dis tance 

close to the wall, 

Secondly, owing to the presence in the turbulent 

boundary layer of a laminar sublayer, it is not feasible to 

provide an empirical relationship for the effective viscosity 

within a narrow region close to the wall. 

The consequence of the above complications is that 

ait would be extremely difficult in a finite difference scheme 

to impose as the inner boundary the fact that all velocity 

components must vanish at the wall. To overcome this problem 

the present method proposes that the logarithmic law of the wall 

should be used as the wall boundary condition. This will mean
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that the region between the wall and the inner limit of the 

logarithmic region, which includes the laminar sublayer, need 

not enter into the finite difference scheme and the difficultios 

mentioned above it is to be expected will not arise. The 

present section is thus concerned with interpreting the 

logaritamic law of the wall in such a way as to make it 

accessible as a boundary condition and to generate a number of 

relations that will be required in the development of the finite 

difference scheme, 

It is well established (section 3.2) that in the two 

dimensional turbulent boundary. layer within a region close to 

the wall but not adjacent to it points from the velocity profile 

fall along the logarithmic curve: 

Se ken 28, aA (dete) 
CA ee 

where q is the component of the velocity parallel to the wall 

(and hence in the direction of the mainstream) at a distance 

2 from it, a. is the so called friction velocity, v is the kine- 

matic viscosity and x, Aae empirical constants. It has been 

noticed, and it is particularly well illustrated by Johnson's 

polar plots (section 3.5), that even in three-dimensional boiniary. 

layers there is a region close to the wall in which the flow is 

essentially coplanar i.e. the direction of q remains fixed as 

this region is traversed perpendicularly to the wall and Coles his 

suggested that the logarithmic law is valid within this region 

where it assumes the fom of equation (4.4.1) where q is now 

given by equation (4.3.6). It will be assumed here for the pun) 

  

of the present computational scheme that, in the three-dimens
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boundary layer, there is a region close to the wall in which 

the flow is both ‘coplanar ani where points from the velocity 

profile fall upon the logarithmic law of the wall. 

As has been stated previously the finite difference 

aporoximation to the three-dimensional boundary layer equations 

is not attempted at all grid points up to the wall but only at 

each section up to some grid point which is known to be the 

point closest to the wall which could, on the basis of the 

accepted limits for the logarithmic region, be regarded as being 

within the logarithmic region. This point will be referred to 

as the log-point and its grid reference will be denoted by 

n=n*, It is within the region bounded by the grid lines 

above and below this log-point that we must assume that the 

flow is both coplanar and the logarithmic law is operative. 

Transforming the logarithmic law of the wall viz 

teen eer )) ea +A (4e!22) 
ages D   

it is in the same co-ordinate systen adopted in the bounlary 

layer equations (4.3.9-11). Rewriting equation (4.4.2) as 

  

e
f
 Ge (en (ee) Ea «) OA) 

K v 

or in a similar form in which u is replaced by v, we have an 

expression for u or v which when applied in the vicinity of 

the log-point only involves € explicitly on the right hand side 

since when q is coplanar 

2
I
<
 u 

a , 

are functions of x,y only as is As Thus
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differentiating equation (4.4.3) with respect to € it 

is possible to write 

  

2.t & (eel els) 
9g a 

which with 

* 

78 bn (40405) 
4, 

can be written 

eee a (detie6) 

where suffix n in a etc refers to the point at which q is 

evaluated, When applying this last expression at any section 

u,* and ¢ should be those values obtained at that section. A 

point of particular interest in equation (4.4.6) is the re- 

semblance of the right hand side to the finite difference 

approximation to the derivative. 

Another expression which will be required at the 

log-point is obtained from the definition of the operator Z 

(equation (4.3.5)) and equation (4.4.3) and is 

Bet, + tng ta (rele 7) 

where f1,f2 are functions of x,y only, and from which it 

readily follows that 

  

én on on + én onese aa 

€ Eiger na nt-1 n¥—4 n* 

Zi -0 (240468) 
és 
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with a similar expression in which u is replaced by v. From 

equation (4.4.2) we will also require the following relation 

Ge, = Ine ¢ + 2 tn Sntes ) (4eke9) 

n* 

We are now faced with the following situation: the 

boundary layer momentum equations can be approximated to at 

the log-point using only velocity components at and above this 

point and because points below the log-point will not be available 

use will have to be made of the relationships contained in 

equations (4ele6) and (4ele8-9) to makeup this deficiency. 

Equations (4.4.6) and (4.4.9) do however demand that ¢ i.e. 

q, be known so that the logarithmic law (4.4.2) must be solved 

for a, at the log-point i.e. 

Sas 3 4 én (axtd) E49, +A 

q, v 

must be solved for a This last equation can alternatively be 

rewritten as 

e=-éne+B 

where (4-04610) 

Ben Klaxctd) E6 Ine + KA 

v 
  

and canbe solved far € using the iterative scheme 

: (7) Con Prt) 20aF) é #3 Ea (ele) 
ee € 

once Bis prescribed. The iterative scheme represented by 

equation (4.4.11) has been obtained from an application of the 

Newton-Raphson iterative method and can be shown to have a quadratic 

rate of convergence. We might also note here that the use of the
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above scheme for preseribing the inner boundary condition in 

the momentum equations has the advantage of implicitly supplying 

a value for the coefficient of friction at the wall. 

The inner boundary condition in the continuity equation 

is sligatly different from that in the momentum equation in that 

we will be integrating the former with respect to € through the 

thickness of the boundary layer which will demand that we integrate 

from the wall and thus impose as the inner boundary condition the 

fact that the velocity components vanish at the wall, It would 

not be expected that this approach would be at all impracticable 

but in order to be consistent with the method in which the momentum 

equations were treated we choose not to integrate from the wall 

i.e. to integrate through all the nodes from and including the 

wall, but to impose the inner boundary condition effectively 

atn=n*, This is readily accomplished if it is assumed that 

to a reasonable degree of approximation the q component of 

velocity between the wall and the point n = n* can be represented 

by @ power law of the form 

aL 
€ 

22 (4 (ete612) 
qe one 

which ensures agreement with the logarithmic law of the wall 

at the log-point in q and a The form of equation (4.4.12) 

anticipates ¢ to be of the order of 6 or 7 and this is of particular 

relevance when considered in the context of equation (4.4.6). The 

assumption of the power law equation (4.4.12) together with that 

of coplanar flow close to the wall enables us to integrate the 

continuity equation (4.3.11) with respect to é and deduce that 

Canes hk Acaenclovcs, oe mw xy)
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eek ot b a, av aD a aes (=: f. 6 a (ales 3) 
€ 

which can be used to obtain w at the log-point, together with 

et ie 1+ 

Wye ( ) 

for w between the log-point and the wall, 

a
l
e
 

(dot DA) 

The interpretation of the logarithmic law of the wall 

as the inner boundary condition obviously only applies to 

turbulent flow. Laminar flow could be treated in a similar 

fashion simply by substituting a linear relationship in place 

of the logarithmic one (since the velocity gradient close to 

the wall in a laminar boundary layer is essentially constant) 

and pee putting ¢ equal to unity. It should be noted that 

this is essentially no different to applying a zero velocity 

condition at the wall. 

General discussion of the solution scheme. 

Having, in sections 4.1-3 of this chapter, derived a 

mesh upon which a finite difference scheme can be based and 

having transformed the boundary layer equations to facilitate 

the use of this mesh it is now possible to generate a solution 

scheme. 

The parabolic nature of the boundary layer equations 

makes it necessary when solving these equations using finite 

difference techniques to employ a marching type solution 

Procedure and to do this we generalise the more well-known implicit 

schemes to the three variable non-linear problem. Thus knowing 

velocity prfiles at all sections on a solution face profiles at 

the next solution face can be calculated and so on downstream.
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While soiving for the velocity profiles at each 

solution it will be desirable, primarily because of the 

non-linear features of the boundary layer equations, to 

iterate to the correct solution from an initial guess of it. 

An iterative scheme will also enable the grid transformation, 

equation (4.3.1), to be adjusted to accommodate the boundary 

layer growth precisely and in addition allow the inner boundary ° 

condition as described in section 4.4 to be applied correctly. 

In addition witn an implicit scheme the iteration can be repeated 

until the accuracy of the solution is within a required tolerance, 

At each solution face individual sections will be 

considered in turn and corresponding to every point on each 

section finite difference approximations will be made to the 

momentum equations. This will produce a system of linear 

algebraic equations involving the unknown u,v components of 

velocity at all points on each section; the solution of these 

linear equations will provide it is anticipated better estimates 

of these same velocity components. Having iterated at all 

sections for u,v finite difference approximations will then be 

made to the continuity equation supplying in a similar way better 

estimates of the w component of velocity. It is expected that 

successive repetitions of the above procedure will provide an 

iterative scheme which will converge to the correct velocity 

profiles. 

Details of the solution scheme are provided in the 

following two sections.
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Finite difference approximations to the three-dimensional 

momentum equations. 

The present section is concerned with a means of 

improving approximations to the u and v components of velocity 

at points on a solution face when the u and v profiles are knovn 

at all sections on the adjacent upstream solution face (denoted 

as solution face ¢). This will be done as has already been 

mentioned by setting up finite difference approximations to 

the momentum equations corresponding to the points on each 

profile. A means of improving the approximations to the w 

velocity components, which will be stored on the plane midway 

between faces ¢ and +1, is to be discussed in the next section. 

There are numerous ways EP eetiine up a finite 

difference approximation to differential equations especially 

when the equations are non-linear,ani depending hor it is done 

will determine the rate of convergence of the iteration process, 

To enable the most attractive scheme to be determined or at 

least to provide some room to manoeuvre it is proposed to in- 

troduce into the scheme to be described a number of weighting 

factors the variation of which will it is anticipated lead to the 

development of a satisfactory solution scheme. 

We now proceed to set up the finite difference 

approximation to the momentum equations corresponding to the 

n th point at section m (figure(4.6.1)). Since the momentum 

equations are written in streamline co-ordinates the finite 

difference approximation need necessarily be based on the stream- 

line through the point of interest, It is thus necessary to 

fit from the n th point on section (€+1,m) a streamline back to 

face € and calculate:
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1) the x,y co-ordinates of the point where the momentum 

equations are to be approximated on this streamline 

2) the point where the streamline intercepts the n th grid 

line on face @ ani 

3) the length of the streamline 

i.e. the values of a,8,y,s from figure (4.6.1) need be known. 

The method used to fit the stremaline will be discussed in 

Appendix Al and for the moment it will be assumed that 

a,8,y,s can be calculated. 

It can be seen from the diagram that the point 

at which the momentum equations are to be approximated can be 

varied by changing the value of the weight ¢a(¢s = 1 - ya), the 

well known Crank-Nicholson scheme being based on #4 = 0.56 

It is also apparent tnat the streamline through point n on 

section (£+1,m) is not necessarily the same as those at points 

n-1orn+1 on the same section.Hovever, for the purpose of 

the approximationsto the momentum equations at point n, they will 

be ‘assumed to be the same. 

In order to approximate to the momentum equations 

at the point of current interest the quantities indicated in 

figure (4.6.2) are required where the notation is self-explanatory. 

The quantities necessary on section (€,m+&) can be obtained ay 

interpolating between the knovn profiles at face @ and those on 

section (£+1,m) are provided from the last iterated solutions 

at face €+1. Values assumed by the transformed effective viscosity 

function vs (where in figure (4.6.2) the dash and the subscript 

have been omitted for convenience) will have to be evaluated from 

currently available velocity components on the basis of some
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hypothetical function in the case of turbulent flow. 

The actual finite difference approximation to 

the momentum equation corresponding to the x direction is 

given in Appendix A2 together with the resulting linear equation 

ttt, yrtt ( 
g Mao 9 Ua, ve where the superscripts denote relating ut i 

iteration, the section being understood as (¢+1,m)) The equations 

generated to relate the iterated v components of velocity are 

very similar.HWence it has been found necessary only to make 

brief mention of these at the end of Appendix A2. Table 

4.6.1 lists the relaxation factors used and provides some 

measure of explanation of their relevance. The manner in which 

weights were used was mide partly in reference to ‘Difference 

Methods for Initial-Value Problems' by Richtmyer [25] and the 

allusions to particular cases is based on the simpler finite 

difference schemes epeeenned by Richtmyer. 

Remembering what has been stated in section (4.1) 

with regard to the points where the momentum equation will be 

approximated to it can be seen that equation (A2.2) can be 

applied for 

n= n¥+l, n*+2, ... N-l 

slight modifications being necessary when n =Aw., It might be 

pointed out nov that introducing the transformation 

Shay a a 
935 =" dx *% ay 

enables equations to be set up relating the iterated u,v 

velocity components at each section on face ¢+1 iniependently 

of each other and also of the same unknowns at adjacent sections, 

coupling between the sections being provided via the continuity 

equation. + is considered that this is a significant simplification
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in the present metnod. 

To provide an approximation of the momentum 

equations at the log-point (n = n*) it is necessary to make 

use of some of the relations developed in section 4.4 where 

the logarithmic law of the wallwas used to generate re- 

lationships between different quantities in the neighbourhood 

of the log-point. The approximations will be made to the 

momentum equations on the assumption that u and v velocity 

components will not be available for incorporation into the 

finite difference scheme at n=n*-1, The pesul sine 

approximations to the terms in the momentum equation are 

given in Appendix A3,and Appendix A} thenexplains how they 

are to be calculated for laminar flows. 

Applying equation (A3.6) at n = n* and equation 

(A2.2) at the points stated above (remembering that Uy is 

prescribed as the freestream boundary condition) there results 

a system of N - n* linear equations in N - n* unknowns: 

uy Dia oo* Siu" Fels see) Nod 

These N — n* equations form a tri-diagonal systen excep% that 

when w > 1 the equation corresponding to the point (¢,m,Aw) 

has one term displaced off the triple-diagonal since it relates 

uns (Ael)oy Aw, Awd 

however this is easily remedied as explained in Appendix A2 

so that the system of equations can now be assumed to be tri- 

diagonal and solved accordingly (see Appendix A5). The 

velocity profile at section (€+1,m) can thenbe completed by 

using the law of the wall (see section 3.2) to generate
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Finite diiverence approximation to the equation of continuity. 

Having obtained iterates for the u,v velocity 

components in section 4.6 the continuity equation must now 

be approximated to in order that improved estimates of the 

w component of velocity can be determined. The continuity 

equation being linear in w means that knowing u and v components 

across any two adjacent solution faces w profiles can be obtained 

midway between these faces by directly integrating the continuity 

equation with respect to &ée ' 

The equation of continuity is left in its rectangular 

cartesian co-ordinate form (equation (4.3.11)) and approximated 

to at the point (e+, m,n—y) as shown in figure (4.7.1). The 

values of the components shown can be found by suitably averaging 

known values and can be used to provide an approximation to the 

continuity equation thus 

ms os =n Us~U4 2 = g a ores Ug Uy. 

a Xp i+ b h 
+e 

de ede kee 
ae EE Tia es 0 (4.721) 

eta we = 

From this equation values of w at points successively further 

from the wall can be calculated until the profile at section 

(é+3, m) is complete. Repetition at different sections will 

enable iterated profiles across the whole mid-face to be determined, 

Equation (4.7.1) might be applied from the wall (n=1) using the 

condition that w=0 at the wall but in preference to this we will 

interpret the wall boundary condition used for the momentum 

equation in a way which will make it applicable here and apply
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equation (4.7.1) only for 

n= n¥+l, n¥+2, ... N 

We have already shown that at the log-point the wall condition 

gives equation (4.4.13) which we approximate to by 

= a 2X, 14d —u, Woeve ee a& Ug 

™, =~ te Ca See Sate 
2 de = 

€ 

to be applied at n = n*, where the notation will be made clear 

by figure (4.7.2). Values ¢& w between the log-point and the 

wall can be obtained by referring to equation (4.4.14) 

LE ~ 

m= ( 2) Ts (46743) 
on* 

which is applicable for n= 1,2, ... n*-1. 

It will be noticed that when equations (4..7.1,2) 

are applied at the end sections i.e. the sections denoted by 

m=1, m=M, values of v are required at points lying outside the 

solution es Thus v profiles (or alternatively - prfiles) 

will need be specified as a boundary condition at the bounding 

y = constant planes to establish the flow of fluid into the 

solution space, 

Recapitulation of the initial and boundary conditions. 

We will now collect together for future reference 

the initial and boundary conditions that have arisen in the 

discussion of the present solution scheme. The conditions 

listed below are those relevant to the solution of the general 

three-dimensional boundary layer and considerable simplifications
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can be expected when the scheme is used for the solution of 

the two-dimensional or pseudo-three-dimensional problems. 

The only initial condition required is the 

specification of u ami v velocity profiles at all sections 

across the initial solution face - w profiles are not required. 

The boundary condition to be provided in the freestream is the 

definition of the velocity components U,V at all points wer 

the area of the wall of interest while at the bounding 

y = constant planes either v or = need be specified. The 

latter condition, which is only applicable to the general 

three-dimensional boundary layer or toplane of symmetry flows, 

is more readily satisfied than might first appear to be the 

case and sone of the methods that have successfully been used 

to provide this boundary condition can be found in the discussion 

of the three-dimensional boundary layers treated in Chapters Five 

and Six, 

In addition of course we must yet specify some 

hypothesis for the effective viscosity. 

The computer progran. 

The listing of a computer program that has been 

written in Fortran IV for the IBM 8360/65 computer to calculate 

boundary layer development using the method outlined in this 

chapter is included as Appendix A6 while Appendix A7 contains 

a description of the program structure (with flow diagrams) and 

discusses tae requirements necessary for the implementation of 

the program. 

The program was written in such a way that it



4.9) contd, 

would be able to cater for three-dimensional, pseudo-three- 

dimensional,plane of symmetry or two-dimensional boundary 

layers, whether laminar or turbulent simply by varying a few 

input parameters. All initial conditions need be specified 

by card Vnput while the boundary conditions and the effective 

viscosity function are provided via subroutines which are 

referred te within the structure of the program. Empirical 

and physical constants, the mesh specification and solution 

weights and tolerances are all to be provided as card input. 

A facility has also been included to allow changes in forward 

steps, frequency of output, etc as the solution progresses. 

A thorough description of such matters is, as has been 

mentioned, contained in Appendix A7.
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Having programmed the solution scheme described 

in Chapter Four in Fortran for tae IBM 8360/65, it was first 

necessary to investigate the effects of step sizes and solution 

weights on ‘the stability ani rate of convergence of the iterative 

process before proceeding to determine those values for the 

empirical constants which would ensure the best possible agreement 

between calculation and experiment. 

Since no particular difficulties have been found con- 

cerning the stability of the present calculations, no further 

consideration of tais aspect of the solution scheme will be given 

in this chapter; sone detailed observations relating to stability 

can be found in Appendix AS however. 

The choice of weights used in all the calculations 

to be discussed is shown in the last column of Table 4.6.1. 

Firstly it will be noticed that all the weights introduced arise 

in the two-dimensional scheme and so no further consideration need 

be given to this problem when three-dimension2l calculations are 

being considered in Chapter Six, Although the values assigned 

to the weights $1, ¢a, eos ¥7 were decisive in determining the most 

satisfactory scheme (especially #1,%5) the overall method was not 

particularly sensitive to any of these, The relaxation factor 

Ye however did prove to have a critical effect on the rate of con- 

vergence of the calculation; ¢g = 0.75 was found to proiuce the 

best overall results. 

We must next consider what values to assign to the 

empirical constants ani determine the most efficacious effective 

viscosity model; an experiment ('E') of Schubauer and Spangenberg [26] 

was used as the original basis for this choice (Section 5.1). Because 

the constant « appears in both the logarithmic law of the wall and
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in Prandtl's mixing length concept, initial tests were made to 

determine if this constant need necessarily be the same in its 

two applications. In order to obtain a smooth curve for the 

logarithmic law of the wall (equation (3.2.6)) from the computed 

velocity profiles, it was found that in both instances x should be 

the same ani that it could be taken to assume its usually accepted 

value of 0.41. Similarly it was found that tae constant A could 

satisfactorily assume its accepted value of 4.9, For the purpose 

of determining the log-point, the minimum value of 24, for which 

v 

the logarithmic law of the wall could be assumed to be valiéd 

was taken to be 30. t 

Some difficulty was encountered however while attempting 

to find a representation far Ws in the outer layer, Originally 

Clauser's representation for this region (equation (eso) ines 

applied to the calculation of the above experiment. However, 

with tae value of K quoted by Clauser (0.016) tae shape factor H 

did not increase quickly enougi, better results being given by 

K = 0.011. Since the empirical corgi ts «,A are quite well 

determined, it was not considered unreasonable to adjust K, which 

has little experimental verification, so as to ensure that the 

calculation agreed with experiment in this particular case. However 

when used to calculate anything other than retarding boundary layers 

“this simple form for Ye in the outer layer was not found to give 

satisfactory results. In addition, neither of the simple alternatives 

@ the outer layer was variously defined 

  

  considered, whe 

1) £= «Kz 2 < dé 

4 = Kid* Zz > dé* 

(where d is an empirical constant)
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(cf equation (3.3.5) where K is now a different 

empirical constant) 

were found to offer any improveneat. To effect a remedy 

to this situstion it was decided to adopt equation (3.4.1) 

but to maxes K dependent on the pressure gradient, consequently 

K was made a function of 

=10 & w ee : (5.0.1) 

viz 

K = 0.016 + 0.00015 r (5.0.2) 

Equation (5.0.2) was formulated to ensure detailed agreement 

with experiment 'E' of Schubsuer and Spangenberg (Section Bele 

Equation (5.0.2) is highly tentative, and may quite easily be 

replaced in the computer progran by any other model that may 

be preferable, but has been found to give reasonable results 

in most of the calculations considered in this chapter. 

The following sections of this chapter are then 

concerned with comparing the predictions of this calculation 

scheme with a number of experiments of varying boundary layer 

development. Also comparisons are made with predictions based 

on Head's methoi. Head's method has been used partly because 

a computer program was readily available for doing this and 

partly because the method has been shovn to give good results 

when considered in the light of boundary layer calculation methols 

at large. The actual program used to compute boundary layers 

using the entrainment approach was one developed by Rolls-Royce
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Limited and inevitably the constants and empirical functions 

used are not identical to those proposed in Head's original 

formulation of the method. In addition it must be pointed 

out that this latter program firstly assumes as an initial 

condition that H = 1.32, so that the method could not be applied 

to all the experiments considered and secondly,will not predict 

separation by predicting zero skin friction, this being avoided 

by the imposition of an upper limit on H(2.7). Separation is 

generally assumed to have occurred just before this maximum is 

achieved. 

Schubauer ani Spangenberg. 

Schubauer and Spangenberg [26] investigated the 

effects of forced mixing (i.e. that iniuced by the introduction 

of fixed obstacles on the wall) on a boundary layer developing 

under an adverse pressure gradient leading to eventual separation. 

Three experiments (those denoted 'C', 'D', 'Et), made in the absence 

of forced mixing, will be considered here. ‘These experiments 

were concerned with incompressible flavs over a smooth flat wall 

and were, in the opinions of the autaors, accurately two-dimensioml. 

Thompson [2] in his review claims that only experiment 'D' is 

closely two-dimensional, altnough no more than slight discrepancies 

are exhibited by the other two. The experimental results for these 

three runs are plotted in figures (5.1.1.-9) together with the 

values recalculated by Thompson. No values for the skin friction 

are quoted in reference [261 the only indication being the comment 

that "values of the local skin friction coefficients Ch eee wore 

found to decrease monotonically fron around 0.0032 at x = 0 to 

around 0.0003 at the indicated separation point. Failure to reach zero



5.1) 

66. 

contd. 

is attributed to the fact that the dust method indicates 

the upstream extreme of a fluctuating separation point'. 

Experiment 'E' was, as has already been mentioned, 

used to determine values for the empirical quantities contained 

in the present calculation method and this should be borne in 

mind in the following comparisons between the present calculation 

method and experiment. 

Included in figures (5.1.1-9) are predictions both 

of the present method and also calculations based on the method 

of Head. Both sets of calculations predict separation with 

reasonable accuracy in experiments '0' and 'D' whereas, while 

predictions for experiment 'E' tend Pop aranceneccion at the 

required point, the present method recovers just before separation 

is achieved. Neither calculation is able to correctly predict 

the sudden increase in shape factor immediately prior to separation 

in 'C' or 'E' although it might be expected that the discrepancy 

here is caused by the these-dimenaionel effects indicated by 

Thompson, since in the experiment which was shown to be precisely 

two-dimensional ('D') H is predicted accurately. 

Overall both methods agree quite closely ani give 

reasonable agreement with experiment. The calculation based 

on the entrainment approach consistently predicts an Ry growth 

slightly greater than the present method, ani similarly with H 

development to a less marked extent. On the basis of the three 

present comparisons it is difficult to say which is giving 

the better results. 

Plotted in figure (5.1.8) is the H development 

predicted using K = 0.011 (the constant value chosen to ensure 

the best overall agreement with experiment and obtain separation
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at the required point). It can be seen that in this case H 

increases too quickly over the first few feet and maintains 

this discrepancy throushout, and it was partly as an attenpt 

to remedy this that K was made dependent on the pressure 

gradient parameter T (equations (5.0.1,2)). In choosing the 

present model for K(D) a compromise had to be reached between 

letting (in experiient 'E') the flov tend toward separation 

at x = 16! and allowing H to maintain the low values indicated 

by experiment for x > 12', The discrepancy still apparent may 

be attributable to a three-dimensional effect which occurred 

for x > 12', Although the agreement between predicted H for 

experiment 'E' and experiment is not entirely satisfactory the 

present model for K(I) was retained on the basis of experiment 

'D' which Thompson indicates is precisely two-dimensional and 

which the present method predicts very well even close to separation, 

To conclude the discussion on the comparisons of the 

present theory with the experiments of Schubauer and Seneembors 

we make the following points 

1) the predicted skin friction values exhibit, at the beginning 

of the calculation, a certain amount of scatter which, as can 

be seen from figure (5.1.6) (where the points represent the 

Galenlated values) are soon smootied out and the Cp, curves 

given have been drawn through the mean values 

2) all the experimental information shown in figures (5.1.1-9 ) 

has been taken from reference [2] 

3) the fact that the R, curves predicted by the present methai 
Q 

agree more closely with the theoretical values calculated by 

Thompson (see Section 2,1) than with the experimental points 

would reinforce the conclusions made by Thompson conceming
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the three-dimensional natures of the present flavs (see 

figures (5.1.1,7)). 

Bradshaw and Ferriss. 

Bradshaw and Ferriss [27] investigated the effect 

of the sudden removal of pressure gradient on an equilibrium 

bouniary layer. The experiment was devised both as a severe 

test for boundary layer calculation methods and also to obtain 

detailed turbulence Searueerere on which to base future methods, 

The equilibrium boundary layer investigated by 

Bradshaw and Ferriss was one which haiheainga a pressure distri- 

bution corresponding to U a ae Ste (the experiment was denoted 

by 'a = -0.255') and another experiment (denoted 'a = -0.255 +0') 

investigated the effect of the transformation of the boundary 

layer from this equilibrium flow in an adverse pressure gradient 

to eventual equilibrium in zero pressure gradient, This latter 

boundary layer was considered to be a particularly severe test 

of any calculation method since the flow was dominated by the 

advection of turbulent kinetic energy from upstream, so that the 

turbulent energy is unlikely to be dependent upon local conditions 

only. 

The predictions of the present method and comparisons 

with experiment are shoyn in figures (5.2.1-7). Head's method 

was not used to calculate this experiment because of the large 

initial H values involved, The 6*,@ predictions are quite good 

in the equilibrium boundary layer, both increasing linearly from 

their initial values, although despite this the shape factor H is 

in error and is predicted to have an equilibrium value of 1.71 

compared with the experimental value of about 1.54. ‘The experimental
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skin friction values in figure (5.2.4) were measured directly. 

In the equilibrium boundary layer ce is consi erably under- 

estimated by the present calculation. The predictions shown in 

figures (5.2.1-4) for the experiment 'a = -0.255 > 0' are good 

particularly when it is remembered that it is this case which 

Bradshaw and Ferriss considered to be the severe test for cal- 

culation methods. 

The experimental and predicted velocity profiles for 

bota experiments are plotted in figures (5.2.5,6). In both cases 

a slight discrepancy introduced in the input velocity profile, as 

compared with the experimental profile, at the outer edge of the 

bouniary layer is progressively removed as the calculation proceeds, 

whereas error is being introduced near the wall. The point of 

inflexion in the velocity profiles is predicted quite well, although 

Bradshaw and Ferriss point out that it is not reproduced by 

Thompson's velocity profile family. 

All the experimental velocity profiles measured by 

Bradshaw and Ferriss, correspond to the logarithmic law (equation 

(3.2.6)) with A = 5.85 whereas the present calculation was performed 

with A= 4.9. It was anticipated that this difference between 

theory and experiment might help account for the observed dis- 

crepancies in the calculated velocity profiles but a number of 

computer runs made with this amended value for A failed to produce 

any sigificant differences from the original calculation. 

Bradshaw and Ferriss, as a means of emphasising the poor 

performance of a number of calculation methods, compared = as 

predicted by the various methods with experimental values. The 

methods of Head, von Doenhoff and Tetervin, Spence and Maskell 

were considered. Figure (5.2.7) shows the predictions of Head's
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method as reported in reference (27] and that of the present 

calculation, All the other methods listed above gave predictions 

for = 6 = less than that given by Head and on this comparison 

the present method fares very well. 

In addition we may add that, An reference to 

the two-dimensional nature of the flow, Bradshaw and Ferriss 

noted that for the equilibrium flow the ‘tunnel provides as 

good an approximation to the two-dimensional flow as one can 

expect in a tunnel of reasonable width' whereas with the flow 

"a = -0.255 » 0' they noted that ‘after the removal of the 

pressure gradient the boundary layer started to diverge’. 

Klebanoff, 

  

Schubauer and Klebanoff [28] investigated the 

turbulent boundary layer developing over a simulated aerofoil 

with curved (convex) surfaces between x = 0 and x = 7! (radius 

of curvature 23') and between x = 18' and x = 28' (31' radius). 

Detailed measurements of velocity profiles together with turbulent 

shearing stress profiles were made up to separation. Reported 

values for the surface shearing stress, obtained by extrapolating 

the turbulent shearing stress profiles to the wall, need in the 

opinion of Coles [15] be reduced by 31% because of the excessively 

large values obtained. In view of this experimental skin friction 

values will not be used here for the purpose of comparison, 

Thompson [2] considered that the flow vas closely 

two-dimensional only in the initial region of favourable pressure 

gradient, and in the region of rising pressure (x > 20') the flor 

was said to be ‘less accurately two-dimensional as separation is 

approached’, The discrepancies between the two-dimensional theory
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and experiment encountered by Thompson may be due in part to 

either the convergence of the flow or the downstream curved 

surface. 

The predictions of the present method for this 

experiment are shovn in figures (5.3.1-4). The experimental 

Cj, values shown in figure (5.3.3) have been computed from the 

logarithmic law of the wall using the experimental velocity 

profiles. No noticeable discrepancies occur in the predicted 

momentum thickness until x = 2i.' while H is evidentialy in error 

at x = 20', There is considerable scatter in the experimental 

skin friction values but it appears that the calculated value 

deviates from tae experimental as early as x = 1,', 

Also shown in figures (5.3.1-4,) are the curves 

obtained by treating the flow downstream of x = 14' as a plane 

of symmetry flow in which flow convergence has been introduced 

into the motion, The degree of convergence that has been imposed 

is simply that necessary to account for the observed discrepancies 

and in particular to induce separation at the required point, 

The convergence, as effected by a cross-flow velocity gradient 

on tne plane of symmetry given by 

a =s : Cy (/ sec) (525.1) 

was found to be sufficient to ensure reasonable overall agreement 

with experiment altaough 6 is now somewhat greater than that 

indicated by experiment. The computer program was used so that 

it assumed on the axis of symmetry (y = 0) 

yoo V 
Limeeev lL #) (5.32) 

where the function f (which was taken from one of the three-
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dimensional calculations to be considered in Chapter Six, and 

which was found to be of the same general shape for boundary 

layers developing in adverse pressure gradients) is plotted 

and tabulated in Appendix A7. 

Velocity profile comparisons are shown in 

figure (5.3.4). Predictions from the two-dimensional calculations 

are good even up to x = 20' but are in considerable error by 

x= 24", The velocity profiles as given by the axially symmetric 

calculation are in reasonable agreement with experiment overall. 

The predictions for this experiment based on the 

entrainment method are in very close agreement with the oe 

dictions of the present method as given by the two-dimensional 

calculation. 

Spangenberg, Rowland ani Mease, 

In an investigation into near separating flows 

Spangenberg, Rowland ani Mease [29] made detailed mean velocity 

and turbulence measurements in two boundary layers (ashoted txt 

and 'B') in both of which the skin friction was maintained at 

small values over prolonged distances of a smooth flat wall. 

Experiment 'B' was closer to separation i.e. smaller skin friction 

values (as given by the logarithmic law of the wall fran the mean 

velocity profiles) were maintained, than experiment 'A', The 

maximum pressure gradient that could be produced in the duct was 

introduced from x = 0 and then reduced so as to just prevent 

separation, altaough small areas of transitory stall still intermittent 

occurred along a large portion of the test surface length. 

Of the two experiments only experiment 'A' is simulated 

here. The experimental velocity distribution af experiment 'A' was
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empirically fitted by Spangenberg, Rowland and Mease to 

U = 94.92 (x+0.83)7° °°? (ft/sec) (5 deel) 

No attanpt has been made to simulate experiment 'B' because as 

noted by the experimenters ‘the differences between the two 

pressure distributions were of the same order as the reading 

errors and no consistent change was indisated'. Because of this 

the experimental data from both experiments has been plotted for 

comparison with Sloat on 

These predictions for experiment 'A' from both 

the present calculation and Head's method are shown in figures 

(5.4.1-4.). The pertinent fact concerning the present simulation 

is the large difference between the predictions fob the two cal- 

culations, The prediction from the entrainment approach remains 

close to the experimental points for x < 80" but then fails to 

recover ani separation is predicted at x = 110". The present 

method tends overall to remain closer to the points corresponding 

to experiment 'At than experiment 'B' (although the scatter of 

points in figure (5.4.3) does leave this matter in some doubt as 

far as H is concerned) and the flov is not predicted to separate 

until 190". 

The present method then performs considerably 

better than Head's in this comparison, although as one might 

expect and as indeed was intimated by Spangenberg, Rowland and Mease 

the classical boundary layer approximations are not entirely valid 

in near separating flows such as that considered here. In addition 

it must be pointed out that a characteristic of this type of flow 

is the presence of random cross-stream currents within the boundary
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layer although ‘checks on either side of the duct centre line 

showed essentially the same mean flow conditions across the 

duct'. 

  

The present chapter contains a number of comparisons 

of the present theory with experiment and enables the adequacy 

of these predictions to be judged in the light of predictions as 

provided by a well-tried and, in the context of calculation methods 

at large, accurate calculation method, namely that due to Head. 

The predictions of the present theory are moderately good and are 

generally at least as good as those given by Head. The present 

theory has also provided realistic predictions of two experiments 

which both provide quite severe tests fo any calculation method 

viz Bradshaw and Ferriss's experiment in which the pressure gradient 

was suddenly renoved from an equilibrium boundary layer and the near 

separating nee of Spangenberg, Rowland and Mease [27,29]. 

The main drawback inherent in attempting to determine 

the adequacy of the calculations presented in this chapter is the 

lack of any experimental quantitative information conceming the 

two-dimensional character of the flow. It would be extremely useful 

if in two-dimensional experimental investigations adequate consideration 

were given to this point.
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6.0) Introduction, 

5: We are nov in a position to be able to extend 

the predictions considered in Chapter Five to include both 

pseudo-three-dimensional boundary layers and three-dimensional 

boundary layers proper. Sections 6.1-4 are concerned with the 

pseudo-three-dimensional cases i.e. cross-flows exist within 

the boundary layers although the flows are dependent on only 

two space variables, Sections 6.2-). provide comparisons of the 

present theory with experiment while sections 6.1-3 also consider 

alternative methods of calculation. Section 6.5 is concerned with 

an axially symmetric laminar stagnation flow which is included as 

a check on the three-dimensional calculation methoi, while the noxt 

two sections consider the predictions of two three-~dimensional 

boundary layers both concerning the secondary flow induced upstream 

of a circular cylinder mounted perpendicularly on a flat surface. 

The latter of these two emeriments (section 6.7) was intensively 

investigated ani so enables some detailed comparisons between the ory 

and experiment to be made, 

It will be recalled from Chapter Four that the extension 

of the two-dimensional calculation methoi to three dimensions entails 

two further assumptions concerning the flow. These are firstly, the 

existence of a planar velocity profile in the inner part of logarithmic 

region at the wall, as exemplified by Johnston's triangular model for 

the flow (section 3.5), and secondly that the shear stress acts in the 

same direction as the maximum rate of strain i.e. 

v Sy, 
ex ey 

(section 3.3). Further the definition of the effective viscosity 

parameter K as defined as a function of T in equation (5.0.2) will 

be retained, but T will necessarily be amended as follows
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Tr = 1o* ca a (6.0.1) 

Equation (6.0.1) is thus a generalisation of equation (5.0.1) 

and reduces to it for two-dimensional flow. It was also found 

necessary hovever to impose a lower limit on K (0.007) in equation 

(5.0.2) since values of T encountered in the three-dimensional 

calculations were low enough to provide a nogative K from equation 

(5.0.2). The complete function K(D) is plotted in Appendix A7. 

As in Chapter Five the section headings in this 

chapter will refer to the names of the original experimenters or, 

in the case of sections 6.1,5, to the original investigator of the 

particular theory considered, 

Cumpsty ani Head (1967). 

Cumpsty and Head [30] in an application of their 

theory for calculating pseudo-three-dimensional boundary layers 

(section 2.1) considered the hypothetical case of an infinite swept 

wing for which they predicted boundary layer developments for a number 

of wing and floy configurations. 

The swept wing was assumed to have, over the forward 

part of the chord, a region of constant freestream velocity (equal 

to that in the undisturbed flov) followed by a region in which the 

chordwise velocity decreased linearly while the spanwise velocity 

remained constant, Measuring xy normal to the leading edge, from 

the beginning of the region of adverse pressure gradient, the velocity 

components are given for x > 0 by 

U Qo cosap (1=xx) 
] (6.1.1) 

V = Qo sindgg 

where Qo is the undisturbed freestream velocity,ap is the angle of 

sweep and x the velocity gradient. The wing being assumed infinite
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the flow is independent of spanwise position (y). 

The cases treated by Cumpsty and Head were those 

listed in Table 6.1.1 all of which were calculated with follering 

initial conditions at x =0 

612 = 0.0023)" 

ay Jie ; (65152) 

R 2690 
O44 

It was decided to simulate the same cases with the present 

theory to provide a check on tne feasibility of the predictions 

provided by the solution scheme for a pseudo-three-dimensional 

flow. t 

As with Cumpsty and Head, the case 

Gy = 95° 5k 2.06267. 

was used as an initial test, The predictions from botn calculation 

methods for this flow are shown in figures (6.1.1-4), where 

611, H, ¢ oc and Bo developments have been plotted (cp. is the 
f; 

component of the resultant skin friction in the chordwise 

(i.e. x) direction and fo is the angle between the freestream 

velocity and the limiting flow direction at the wall.) The two 

predictions agree reasonably well although the present calculation 

proceeds a little more slowly towards separation and consequently 

predicts a slower growth for H and Bo. A typical velocity profile 

from the present calculation (x = 1.2") is shown in figure (6.1.5) 

where it has been plotted in terms of streamwise (uz) and crossflow 

(va) velocity components. The crossflov component of velocity 

exhibits tne typical shape for such a prfile and also the polar 

velocity plot (v4 plotted as a function of u,) has its expected 

triangular shape. The dashed portion of this latter profile
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indicates the region within which the calculation method assumes 

a coplanar flov i.e. corresponds to the region between the log- 

point and tne wall. 

Those cases listed in Table 6.1.1 where the velocity 

gradient (parameter x) is varied while the sweep ao remains constant 

are treated in figures (6.1.6-9). Again the present calculation 

predicts a later separation than the predictions of Cumpsty and Head, 

the discrepancy between the two calculations increasing as the velocity 

gradient parameter is decreased, The momentum thickness predictions 

are in close agreement as peres eee shape factor devel opment 

as given by tne present calculation is consid erably lower than that 

calculated by Cumpsty ani Head even allowing for the later separation 

in the present method, Separation however occurs at approximately 

the same value of H owing to the very rapid increase in _ in the 

present method as separation is approached. 

It must be appreciated that the process of separation 

encountered in all the cases treated so far in this section is 

radically different from that observed in two-dimensional separation. 

Separation is caused essentially by the curvature of the streamlines. 

because the paths folloved by particles of the fluid near the wall 

are deflected towards the spanwise direction so that all such particles 

at different spanwise positions are being deflected towards a common 

streamline, Separation must thus occur along tais line, Shape factors 

‘encountered at separation in such an instance, as is borne out by 

tne present calculations, are thus less than those met with in two- 

dimensional separation since the streamwise component of skin friction 

Cp, does not in the former case necessarily tend to zero. 

Considering now the effects of varying the angle of 

p of the wing while the velocity gradient remains constant, we
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see that a marked difference din heat ated behaviour exists between 

the two calculations as is shown in figures (6.1.10-13). With 

increasing sweep the entrainment calculation predicts that the 

separation point will first mqe doynstream and then upstream 

again(as dp is increased), ‘The present theory on the other hand 

predicts a slight upstream movement of the point of separation as 

@ increases for smaller angles of sweep, and thon a more marked 

downstrecm movement for larger angles. The present theory moreover 

shows a more complicated behaviour pattern as can be seen from 

24, Cp. predictions given in figures (6.1.10,12). Both predictions 

show momentum thicknesses to be largely independent of sweep angle, 

very little variation occurring for x < 1.0', while the development 

of shape factor is markedly different for the four sweep angles 

considered, the present theory indicating a slower H growth as before. 

The crossflow angles predicted by the two calculations agree only 

in the magitude of the angles to be expected while the pattern of 

behaviour encountered as a is increased differs considerably 

(see figure (6.1.13)). 

As can be seen from equation (6.1.2) the boundary 

layers as calculated by Cumpsty and Head were dependent on 

Ro. 641, H only for initial conditions. It was thus thought 

necessary in the present investigation to determine if the same 

were true iene and consequently the case ao = 0°, kK = 0.25 was re~ 

run with v¥, U, V all doubled. At x = 1.3' H was found to have 

varied by 0.0005, c, by 10° and @ by */,0%. £x 

While considering the problem of the infinite 

swept wing it was thought worthwhile to further test the capabilities 

of the present method of calculation by considering an additional 

hypothetical flow, namely that in which a ‘cross over' profile exists,
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Such a profile may occur when the curvature of the external 

streamline changes sign so that the external flow induces in 

the boundary layer a crossflow contrary to that initially present. 

The eats when the change in curvature is rapid enough, that 

within the boundary layer two separate crossflows, acting in 

opposite directions, exist. The newly imposed crossflow is in- 

troduced at the wall ani gradually extends its influence outward 

until the original crossflow is entirely removed. It was found 

that wit: the present calculation scheme such a situation arose 

when in equations (6.1.1) with ao = 35° the velocity gradient 

parameter x was made dependent on x as follows 

k=l-x. 

The external streamline for this flow then possesses a point 

of inflexion at x = 0.5'. With the same initial conditions 

as used previously (i.e. as given by equation (6.1.2)) this flow 

was calculated as far as x =1.2'; the predictions are plotted 

in figure (6.1.14). The usual parameters 611, H, Coys Bo have 

+been plotted for completeness although for the present purpose 

only the crossflow angle Bo is relevant. The curvatwre of the 

streamline upstream of the point of inflexion decreases progressively 

so that the crossflov angle Bo begins to decrease well before 

it is actually reached, and would be expected to tend assymptotically 

to zero if no further curvature were introduced. However since 

the curvature of the external] flow changes sign fo is to be expected 

to also change sign and, as can be seen from figure (6.1.14), 

Bo passes through zero at x = 0,83" and begins to increase in 

magnitude again as the flow continues downstrean, 

If such a flow were calculated using the usul 

assumptions implicit in the entrainment calculations for three-
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dimensional boundary layers (section 2.1) it would be necessary 

to assume that the flov in fact was coplanar at the point where 

Bo = 0 and that the reversed crossflow is introduced only after 

the original crossflov is removed, An examination of the velocity 

profiles obtained in the present calculation would indicate that 

this is far from the truth. 

In figure (6.1.15) streamwise and crossflov velocity 

profiles are plotted for x = 0.6", 0.9", 1.2" and it can be seen 

that at x = 0.9! a definite 'crossover' crossflow profile exists. 

It has often been postulated that the polar plot of such a ‘crossover! 

profile would be expected to exhibit a double triangle (i.e. -approximate 

to three straight lines) but the Seite ¢ the present calculation 

indicates that this is in fact not so (see figure (6.1.15)). It can 

also be seen that even after the crossover profile has been renoved 

there is some delay before the outside edge of the Johnston's triangle 

is reinstated as a straight line. A more detailed selection of polar 

plots is given in figure (6.1.16) where the profiles at x = 0.75'(0.05"): 

have been plotted. One minor point to be noticed from this figure 

is that the assumption at the wall of a coplanar velocity profile 

might now be called into doubt for the purpose of the present 

calculation (see the profile at x = 0.75'). However this assumption 

seems generally to have coped with ‘the situation quite well and even 

so it would be possible to remove this assumption and replace it by 

amore general one for such a situation as this. 

Figure (6.1.17) shows the limiting Shien ie at the 

wall and in the freestream for this latter flow. The point of 

apraieut > 
inflexion of the external streamline is shown and also,the point 

of zero crossflow angle Bo (where the two streamlines are parallel) . 

The present theory has thus given feasible results
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for the boundary layer flow over an infinite swept wing (for 

which Pi oaier iene. with experiment are given in the next two 

sections) and also provided a very convincing explanation of the 

behaviaur of the Tlow within the boundary layer in which there is 

a severe point of inflexion in the external streamline, 

Cumpsty and Head (1970). 

As a means of estimating the effectiveness of the 

boundary layer calculations performed by Cumpsty and Head [30] 

and discussed in the last section, an attempt was made to simulate 

experimentaly an infinite swept wing. Cumpsty and Head [8] 

consequently measured the flow over a wing of 18" chord swept at 

61°, in a wind tunnel of 48" working section width. Mean velocity 

profiles were measured downstream of the line of minimum pressure 

up to the separation line at two spanwise positions. 

The predictions for this experiment based on the 

present theory are shown in figures (6.2.1-3) where some predictions 

of Cumpsty and Head have also been included (the experimental results 

included in these figures (circles) are those obtained with the 

"slender traverse gear’), Figure (6.2.1) shows the predictions 

of both methods when infinite swept wing theory is used, ‘not only 

to infer spanwise independence of the flow, but also to determine 

the direction of the mainstream flow since only the magnitule 

of the velocity of the flow has been recorded experimentally {The'down- 

stream'pressuve distribution has been used in both calculations). 

For both cakulations the assumption that the V component of velocity 

is constant over the chord and equal to that at the leading edge 

(Vp) leads to an inadequate explanation of the flow since the
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rates of change of all parameters plotted 611, H, Cop Bo are 

underestimated, the present calculation giving the poorer of 

the two predictions. 

In an attempt to reduce the discrepancy between 

the experimental results and their calculations Cumpsty aa Head 

imposed an additional spamvise velocity (a 5% increase in V was 

introduced, the pressure distribution remaining the same ) on the 

flow in order to reconcile the observed and predicted momentum 

thickness (6,1) development. his assumption produced a slight 

improvement in shape factor development and considerably improved 

that of Bo as is shoyn in figure (6.2.2). The present oe in 

conjunction with the same assimption V = 1.05V,., also predicts an 

improved 6,4 development, although the changes in H, Bo are here 

oni slight. There is however some movement towards the separation 

of the flow. 

Figure (6.2.3) shows the various displacement 

and momentum thicknesses which are dependent on the crossflow 

as determined by experiment ani also as calculated by the present 

theory. The various thicknesses shown have been predicted better 

tha the fo comparisons shown previously would indicate, as is also 

the improvement in prediction achieved by increasing the crossflow 

from V = V,, (curve 1) to V= 1.05 Vee (curve 2). 

The assumption that the flow over the experimental 

arrangement is equivalent to the thearetical infinite swept wing 

is obviously suspect. Apart from the problem of how to determine 

the direction of the flow outside the boundary layer when only the 

resultant velocity there is known, we need obviously consider the 

possibility of a spanwise dependence of the flow. Cumpsty and Head 

measured the pressure distributions across the chord at two spanwise
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positions (denoted 'upstream' ani ‘downstream') ani the 

difference in the static pressure coefficient cS was found 

to be as much as 0.04 at the point of minimum pressure and 

0.08 at the trailing edge. It was thought more realistic within 

the present calculation scheme to introduce this observed spanwise 

pressure gradient into the calculation rather than proceeding 

to investigate further the effects of different assumptions 

for V in the pseudo-three-dimensional context. 

Two attempts have been made to reconcile theory 

and experiment by introducing the difference in static pressure 

at the two spanwise positions. Both calculations were computed 

using a three-dimensional mesh and Agee on the flows considered 

above spanwise gradients in U,V respectively sufficient to account 

for the encountered pressure discrepancies. A spanwise veloci ty 

gradient in U had a slight effect, largely at the trailing edge, 

but in the reverse direction to that required. A similar gradient 

in V produced no significant change in predicted developments. 

We conclude therefore that theory and experiment 

pe eral be reconciled by an overall increase in spanwise 

velocity, while the experimentally observed spanwise pressure 

gradient could not readily be used to explain the still apparent 

discrepancy in shape factor development. This latter discrepancy 

might still be attributable to some variation in the direction 

of the floy in the mainstream not already considered although 

it would appear that the fault more likely lies with the calculation 

schemes considered. 

P.D.Smith. 

The experiments of P.D.Smith {7] were, as was 

that considered in the last section, concerned with a simulated
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infinite swept wing. The measurements (moan velocity profiles) 

were made on the lower sw'face of a flat plate below which there 

was fixed a porous circular cylinder fitted with a Thwaites flap. 

Boundary layer section was applied to the circular cylinder to 

prevent separation on the cylinder. The different exp erimontal 

configurations were obtained by varying the inclination of the 

Thwaites flap ani the distance between the plate and cylinder; 

all experiments were performed with both the plate and cylinder 

inclined at 26$° to the mainstream flov. 

Only three of the nine runs investigated by Smith 

are considered here,these are ‘runs 1,5,6', the exerimental 

results for which are shown in figures (6.3.1-3). Also included 

in these figures is one set of predictions calculated by Smith. 

This prediction, shown by the dashed line ("method 3' as denoted 

by Smith) is based essentially on the entrainment approach and } 

assumes a power profile for the streamwise velocity and Mager's 

relation (equation (2.1.7)) for the crossflov. ‘Method 3" gave 

the best results overall of the six calculation methods (all 

integral methois) considered by Smith. The solid lines in 

figures (6.3.1-3) are the predictions for the flow based on the 

present theory. 

Both predictions indicate slightly exaggerated 

momentum thickness (O12) growths, the two calculations giving 

very similar results. Shape factor predictions based on the 

present method are poor and only in the severest flow (‘run 6') is 

H predicted at all well and even then the calculation tends to 

separation at the trailing edge, a feature not exhibited by the 

experiment. Crossflow angle predictions from both theories are 

reasonable.
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The tendency for the present calculation to over 

estimate shape factor development is the reverse of that noted 

in the swept wing considered in section 6.2, although as there 

the effectiveness of the calculation schane is obviously confounded 

with any extraneous three-dimensional effects within the experiment. 

Since in section 6.2 no such effect could ve shown to explain the 

discrepancy in H predictions we are inevitably led to expect the 

same here. Indeed tie sweep of the wing in the present case is not 

as severe as taat considered previously and so presumably the fl ow 

is more reliably pseudo-three-dimensional, 

The mainstream velocity distribution used in the 

present calculation was, as in section 6.2, based on the use of 

infinite swept wing theory to determine the direction of the flow. 

No data has been published in the present case to establish the 

pseudo-three-dimensional nature of the flow. 

Hoadley. 

The experiment of Hoadley [31]} was concerned with 

the flow in a diffuser in which swirl had been introduced into 

the motion. The dimensi ons of the experimental arrangement are 

shown in figure (6.4.1); tne mean velocity profiles were measured 

at the axial positions shown, 

The present theory predicts this flow quite well as 

is shown in figures (6.4.2-5). The curves in these graphs were 

computed using the velocity distribution measured by Hoadley. Both 

the magnitude Q ani the deviation from the axial direction ao of the 

mainstream velocity field were measured; the values are phon 

tabulated in Table 6.4.1. It can be sem that the Q@ values possess
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a great deal of scatter and since it is the rate of change 

of this quantity that will determine the development of the 

crossflov within the boundary layer the possibility of being 

able to predict this aspect of the flow does not seem very 

encouraging. Resolving Q into its components U,V we see 

these values appear more reasonably distributed and it was 

from a linear interpolation of these values that the prediction 

was calculated. 

; The main discrepancy vetween theory and experiment 

is the marked increase in rates of change of the boundary layer 

parameters as separation is approached which results in separation 

being predicted before it is achieved experimentally. The scatter 

in the data could obviously have been the reason for the excessive 

Bo predictions which in previous calculations has been predicted 

somewhat more accurately. 

The results obtained here are obviously very 

encouraging since the likelihood of extraneous three~dimensi onal 

effects in the present experimental arrangenent are much less 

than taose encountered in the infinite swept wing simulation, 

As a check on the finite difference approximations 

to the three-dimensional boundary layer equations (1.1.10-12) it 

was decided to simulate a laminar boundary layer for which a known 

solution existed, That chosenwas the axisymmetric stagnation 

flow against a flat surface {21 which, since the calculation was 

performed over a rectangular grid, was three-dimensional as far 

as the present’ calculation scheme was concerned,
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N.Froessling [32] solved the complete Navier- 

Stokes equations for this flow but, because the terms which 

are deleted in the course of the Basia layer approximations 

cancel of their own accord from the Navier-Stokes equations, 

the problem can equally be treated as a boundary layer flow. In 

the latter case if the mainstream potential distribution 43 

assumed to be given by 

U = ax V = ay 

it is possible to write the velocity components within the 

boundary layer as 

u = ax¢! 

v = ay¢! 

w= -2lav ¢ 

where $, a function of ¢ 

must satisfy 

o'? = 2g6" = 1+ g" 

with the boundary conditions 

g 

CS come hiss ob 

u 0 +: ¢=¢'=0 

Froessling has tabulated the functions ¢,¢'. Although, as 

mentioned above, the flow is three-dimensional as far as the present 

calculation is concerned it is obvious from the above considerations 

that boundary layer is both coplanar and of constant thickness. 

The boundary layer was solved by starting the 

calculation at a point slightly away from the stagnation point 

and by inputing a sine profile as a first approximation to the 

streamwise velocity profile. The calculation was then continued
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downstream until the ¢,#' profiles had settled down to the fifth 

signficant figure and the solutions at individual faces were 

convergent to a tolerance of 10°*7, The ¢,¢' profiles obtained 

are plotted in figure (6.5.1) and tabulated in table 6.5.1. 

The difference between the ¢ computed here and 

that calculated by Froessling is as little as */ao% at ¢ = 3.6 

where it must be remembered in the present calculation ¢" is 

calculated directly and then integrated to obtain ¢, so that any 

error in ¢ at the edge of the boundary layer is the accumulation 

of those arising in ¢' in the boindary layer. The present 

comparison thus verifies tne adequacy of the finite difference 

scheme used in the present calculations. 

Hornung ani Joubert. 

Hornung and Joubert [13] investiaged experimentally 

the secondary flow within the boundary layer upstream of a cylinder 

mounted perpendicularly on a flat plate. This experiment, as is 

that to be considered in the next section, is one of the few 

instances in which detailed mean velocity profile measurements have 

been made in a three-dimensional turbulent boundary layer. 

The flat plate on which the boundary layer was 

developing, was 20' long and approximately 5' wide at the position 

of the model. The model was of semi-circular section (22" diameter) 

on the upstream side and faired at the rear. It was mounted Ty) 

from the leading edge of the plate. 

The effect of the model was to induce a region 

of recirculation upstream and it was over the region prior to 

separation that the mean yal oel ty and yaw profiles were measured, 

The precise positions were the experimental measurements were made 

ote 
is Shown in figure (6.6.1).
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The present calculation of this flow has been 

performed over the mesh shown in figure (6.6.1) over which 

the mainstream flow was assumed to be approximated to by the 

potential flowy about a near circular cylinder between parallel 

walls as given by Kennard (33]. The velocity components for this 

flow are given in Appendix A9. As can be seen in figure (6.6.1) 

the solution was started at x = -4' where planar velocity profiles 

were input, the same profile being used at all sections across 

this face. The solution was matched on the axis of symmetry at 

x = -2.125' to the experimental data; both the initial conditions 

and potential distribution were amended to ensure agreement at 

this matching point. In addition,to effecting a solution using 

the present scheme it was necessary to impose as boundary conditions 

v distributions outside the boundary planes y = 0',-2'. The symmetry 

condition was used at y = O' and at y =-2' two alternative 

boundary conditions were considered, viz. 

u £(2) (6.631) 

<
i
 

(l+ay) f(z) (6.6.2) 

<
i
 

These conditions allowed the v pr@iles outside the solution space 

to be calculated iteratively from the solution within the space 

at the same x, i.e. a and the function f were obtained by applying 

either of the two above boundary conditions as a condition of 

continuity on the 7 profiles. While these alternative conditions 

gave virtually the same results when used in the calculation scheme 

the latter was found to give a more favourable explanation of the 

behaviour of v across the boundary y = -2', and was retained for 

tne purpose of the present calculation.
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The calculation was performed over nine sections 

at each face,while th» configuration of points at each section 

was the same as that detailed in Appendix A8; the program 

computed 18 solution faces in 8.3 mins on the IBM 8360/65 before 

rea hing separation. Once separation is reached at any section 

on a solution face the calculation method breaks down for all 

sections on that face, 

Detailed comparisons between theory and experiment 

are given in figures (6.6.2-9) where bouniary layer parameter 

(01451, ¢,,B0) comparisons are made at sectional planes 

y =0', -0.5', -1' and x = -2,125', -1.75' and velocity profile 

comparisons at all posi tions where the above two sets of planes 

intersect, The disposition of points and planes where comparisons 

have been made are also shown in figure (6.6.1). 

Before proceeding to discuss these predictions we 

will repeat that the solution was started at x = -4.' with uniform 

initial conditons with respect to y and bere cross flow. The main- 

stream distribution used was the potential distribution about a 

near circular cylinder between parallel walls (Appendix A9) and 

the boundary conditions used were the symmetry condition at y = 0! 

and equation (6.6.2) at y = -2'. The solutionwas matched so as to 

agree with experiment at x = -2,125', y = 0'. 

Figure (6.6.2) would suggest that the present theory 

has indicated separation at approximately the correct point although 

611, H are developing a little too quickly along the axis of symmetry. 

The correct pattern of behaviour has been predicted as y increases 

in magnitwie (figures (6.6.2-.)). Predictions for 611, H show 

development being retarded as we move away from the axis of 

symmetry and also the commencement of a region of increase in skin
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friction with increasing x at y = -1', both of which are in 

agreement with experiment. Crossflow angles are also being 

predicted competently altaough at y = -1' Bo is underestimated 

by some 3%. 

Considering comparisons at x = constant planes 

figures (6.6.5,6) we can see that the simpe of all the profiles 

has been predicted quite well. The main shortcoming again is 

in the underestimation of the crossflov angle fo. It is relevant 

to note for the purpose of these comparisons that the increment g 

for the y direction was 0.25'. Both calculation and experiment 

iniicate with y increasing both 642, H tending to a constant value 

at each plane. The slight difference between theory and ex eriment 

here might obviously be accounted for by tne presence of some 

additional effects caused by the presence of the wind tunnel walls. 

In this respect it might also be noted that the effect of the 

region of recirculation upstream of the cylinder appears to have 

had little effect upon the mainstream velocity distribution in 

this region, 

Figures (Gabe) show the experimental and computed 

mainstrean and crossflov velocity distributions for y =-0',-0.5',-1" 

at both x = -2,125" and x = -1.75' pessect val: The run numbers 

included are those assigned by Hornung and Joubert. Streamwise 

velocities are predicted quite well while the crossflow profiles 

are underestimated at y = -1' as would be expected from the observation 

made above concerning Bo. A slight assymmetry of the flow is also 

apparent from the experimental data, 

Figure (6.6.9) shows comparisons between calculated 

and experimental polar plots. The plots at y =-0.5' are in error
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only at the wall while the plots for y = -1' show an overall 

discrepancy. The two sections of the curves corresponding 

to the present calculation in figure (6.6.9) relate to the 

calculated velocity profile and the assumed planar profile between 

the log-point ani the wall respectively. 

It must be pointed out that more correctly the 

solution scheme demanis that the initial condition be gmecified 

across the initial solution face and not just at one section on 

it as was done here. This point might very largely explain the 

discrepancies encountered in the Aypredictions (see figures (6.6.4,5))-« 

In view of this the present calculation has provided excellent 

agreement wita experiment. 

This experiment has also been simulated by 

Nash fa2] who solved the turbulent energy equations (section OY) 6 

Nash started his calculations at x = -7' in a manner similar to 

that employed here and matched calculation to experiment at the same 

point. The crossflow as predicted by Nash were underestimated 

by the same order of magnitude as those in the present calculation. 

East and Hoxey. 

The experimental arrangenent investigated by East 

and Hoxey [22] was very similar to that considered by Hornung 

and Joubert (section 6.6). The model used had a semicircular 

leading edge of 24" diameter and was mounted on a flat plate of 

9'9" width, The experimental measurements were considerably more 

intensive than those of Hornung and Joubert as can be seen from 

figure (6.7.1). This enabled the experimental mainstream veLot ty. 

distribution to be used as a basis for the calculation to be con- 

sidered below ani also meant that the calculation could realistically
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be matched to the observed conditions across a x = constant 

plane. 

Figure (6.7.1) shovs the mesh over which the 

caiculation was developed. Uniform mainstream velocity 

profiles were input at x = -40" and the solution was then 

continued to x = -30", the mainstream velocity distribution 

being basically that obtained by extrapolating from the ex- 

perimental distribution for x > -30" but was modified slightly 

(together with the initial conditions) to produce the correct 

H, 6,4’distribution at x = -30", Beyond x = ~30" the solution 

was continued up Be separation using the experimental velocity 

distribution. 

Equation (6.6.2) and the symmetry condition were 

used as the respective boundary conditions as outlined in 

section 6.6. Ten sections were used at each face while the 

array of points used at each section was again the same as that 

used in section 6.6. The progran computed 28 solution faces 

up to separation in 14.35 minutes on the IBM. 8360/65. 

The comparisons between theory and experiment shovn 

in figures (6.7.2-14) are at the sectional planes indicated 

in figure (6.7.1) where the circles represent the experimental 

points. The usuzl boundary layer parameters 631, H, Cos Bo 

are shovn plotted in figures (6.7+2-8) at y = 0,3,6,9", x =—30, 

=26, -23", while figures (6.7.9-14) show predictions for the 

crossflov boundary layer thicknesses 52*, 612,022. Por convenience 

when plotting fo, $a*,@12 changes in sign across the plane of symmetry 

have been ignored and instead where the sign of the experiment al 

quantity is the opposite of that shown a vertical line has been 

drawn through the circle at that point. Figures (6.7.6,12) shar
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both these sets of parameters plotted at the plane where 

theory was matched to experiment. With respect to 6411 

a marked assymmetry of the flow is apparent and the 

calculation was necessarily matched to the average for 

both sides of the plane of symmetry. As is readily 

apparent the crossflow at this initialising plane is less 

than that indicated by experiment; an attempt was made 

to account for this by imposing a crossflow at x = -.0" but this 

was found to produce a marked change in 64, at x = -30" and 

it was not possible to readjust the pressure Maser en enons 

for x < -30" to remedy this in the limited time available. 

However, as was the case in previous comparisons, the cross- 

flow is being predicted somewhat more accurately than the 

crossflow angle Bo predictions would indicate. 

The comparisons of 614, H, Cos Bo at the y=constant 

planes show that the correct type of behavicw is being 

predicted. The movement tovards the separation of the flow 

along y = 0 is not being predicted to occur as quickly as 

the experiment although at the other y = constant planes Cp 

predictions are closer to experiment. Crossflow angles Bo 

on the other hand are being quite seriously underestimated. 

The overall behaviour here is not much different from that 

found in the experiment of Hornung and Joubert. 

Considering now the same parameters at sectional 

planes x = constant, Firstly we notice here a slightly 

different type of behaviour to that encountered in the last 

section, although in the present problem it must be
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remembered that the area of the wall of interest is some- 

what more restricted than that considered previously. 

The most apparent difference is that whereas before the 

momentum thickness 644 attained a maximum on the plane of 

symmetry and then tended to a constant value as we moved 

away, here we observe that 641 on the plane of symme try 

attains a minimum and then a maximum at some short distance 

away. This would appear to be due to the relative 

remoteness of the wind tunnel walls in the present flow 

so presenting less resistence to the oivertence of the 

flow on the plane of symmetry. The assymmetry of the 

flow at x = -23" is more marked than that further upstream 

as is the error in the crossflow angle Bow 

With respect to the boundary layer thicknesses 

éa*, 012,022 plotted in figures (6.7.9-14) it would appear 

that the greater part of the discrepancies here can be 

traced to the incorrect initial condition at x = -30", and 

it can be seen that the correct type of behaviour is being 

predicted overall. 

With respect to the data shown plotted in 

figures (6.7.2-8) the skin friction values at y = 3,9" 

and x = -25" have been obtained by averaging the experimental 

values at the planes one inch onreita of the plane concerned 

and all the experimental Ce values plotted are those obtained 

by Preston tube measurements. 

There is also some need to point out here that
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contd. 

no attempt was made in the present calculation to ensure 

the irrotationality of the mainstream flow (section 1.1) 

for x < -30". The result of this was that although the 

velocity profiles settled down assymptotically at the edge 

of the boundary layer, at the last one or two points a 

slight twist in the velocity vector q was apparent. This 

effect increased as x increased within the range 

-1,0" <x < -30" to a maximum of 1° at x = -30", y = 9" 

and then decreased for x > -30". Although the effect of 

this pecularity on the calculation, scheme was probably very 

slight it was necessary to take it into account when 

analysing the crossflow velocity profiles and consequently 

for this purpose it was necessary to ignore a few outer 

points. 

Conclusions. 

Chapter Six contains comparisons between the 

present theory and both experiment and alternative theories 

for three-dimensional and pseudo-three-dimensional boundary 

layer flows. 

With regard to the pseudo-three-dimensional 

flows the present theory although apparently able to predict 

momontum ‘thickness 011 and crossflov development with 

reasonable competence, was in error in calculating shape 

factor development. This deficiency could not be attributed 

to extraneous spanwise velocity gradients although it'may still 

have been caused by a deviation of the flows from infinite 

swept wing theory (in the pseudo-three-dimensional context).
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contd. 

However since P.D.Smith's extensions to Head's entrainment 

calculation predict H quite well for this flow this is 

thought unlikely to be so. The other possibility is that 

the model employed for the effective viscosity in the present 

calculations is at fault. Improvements in this model, in 

the two-dimensional context, should be further investigated 

although the lack of proven reliable two-dimensional exeriments 

makes this not altogether an easy matter. Crossflows have been 

predicted with reasonable accuracy thus confirming the 

plausibility of the three-dimensional effective viscosity 

model i.e. 

The two three-dimensional turbulent boundary layer 

flows considered have provided good agreement between 

theory and experiment . It would appear that although there 

is a tendency in these calculations to underestimate the 

crossflow angle Bo this same tendency is not exhibited in the 

crossflow thickness 63* predictions which are calculated 

reasonably well.
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The present work has been concerned with the extension 

of existing two-dimensional turbulent boundary layer calculation 

methods to three dimensions. It was decided to employ the 

effective viscosity approach within the present calculations 

basically because it provided the method which required the least 

empirical inforaztion both to establish the two-dimensional cal- 

culation and then to extend this to three dimensions, Although 

the mixing length conceptcis generally recognised as a plausible 

model for the flow away from both the wall and freestream it was 

necessary to assess thoroughly tne capability of the model in the 

outer edge of the boundary layer. As a result a simple model of 

the flow wasdeveloped for the outer layer (see Appendix A7) from 

a two-dimensional retarding boundary layer and was consequently 

used as the basis of all the calculations considered here (in both 

two and three dimensions). 

The two-dimensional calculations presented here have 

provided reasonable agreement with experiment and compared 

favourably wita predictions for the same experiments as provided 

by Head's entrainment method. The pseudo-three-dimensional cal- 

culations have proved to provide the same measure. of agreement 

with experiment although here the predictions for the infinite 

swept wing, presumably because of the inapplicability of tne 

effective viscosity model to this type of flow, gave disappointing 

shape factor predictions. The two experimental three-dimensional 

turbulent boundary layers considered (both of the retarded flow type 

essentially) gave good agreement with experiment. The crossflow 

thickness 63* was calculated quite well though the crossflow 

angle Bo was seriously underestimated. The present investigation 

nevertheless shows the feasibility of computing three-dimensional
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flows with the aid of only a few simple assumptions for the ex- 

tension of the two-dimensional computation scheme ,and the present 

finite difference scheme provides a good framework on which to 

calculate the three-dimensional turbulent boundary layer. 

The ‘only other attempt made to calculate the turbulent 

three-dimensional probley to the knowledge of the present author, 

was by Nash who solved the turbulent energy equation and the few 

indications that there are in the literature point to the fact that 

both methods are predicting crossflows with the same accuracy. 

The present calculation scheme employs a streamline 

type of transformation which allows the iterative scheme which has 

been developed to calculate the iterated u,v velocity profiles at 

each section (a line through the boundary layer perpendicular to the 

wall) indepeniently of each other and independently of the same profiles 

at adjacent sections along the same marching plane. This has the 

advantage that tne resulting set of linear algebraic equations that 

have to be solved, as well as being tri-diagonal,will have the same 

number of unknowns at each solution as the number of points at each 

section. The equations relating the unknown u,v,velocity component 

profiles at any section moreover are the same (i.e. the equations 

relating the u's are the same as those relating the v's) the differences 

appearing only on the 'right hand sides'. Both profiles can thus be 

calculated simultaneously. The finite difference scheme used has been 

substantiated by comparison to a laminar boundary layer for which an 

analytic solution exists. The boundary ‘condition at the wall in the 

turbulent case has been verified in that it provides accurate predictions 

for the coefficient of skin friction. 

The included computer program provides an efficient’ 

computation scheme; three section iterations were computed per second 

on average on the IBM $360/65, seven iterations per step were required
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on average once the calculation had settled down and while the 

caleulation was not close to separation, A realistic three- 

dimensional boundary layer calculation takes of the order of ten 

minutes, In addition if a two-dimensional version of the present 

program were proiuced both the computer storage and runuing time 

would be considerably reduced for that problem (the established 

values for the solution weights might also be written implicitly 

into the program to the same effect). The program has been 

structured in such a way as to allow alternative effective viscosity 

models to be readily incorporated should this be desirable. 

It would also facilitate easier use of the enclosed 

program, especially for three-dimensional calculations, if some means 

were incorporated into the program for setting up the velocity profiles 

at the commencenentof a calculation, There is also an obvious need 

for having the effective viscosity model used here more broadly based and 

talking into account more varied boundary layer flovs; it appears 

that it will be sufficient to do this on a purely two dimensional 

basis. 

With regard to further developments to the present 

calculation scheme: it would be useful and comparatively <mple 

if the introduction of body forces were facilitated to enable 

computations to be made for rotating systems and also if the surface 

curvature of the wall could be allowed for, The present investigation 

moreover, together with that of Nash, lend considerable support to the 

future development of the differential approach to three-dimensional 

turbulent boundary layer problems as opposed to the integral approach,
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NO DA TT ONS: 

Owing to the profusion of symbols used only those of general 

interest are listed below, Where symbols have been used for more 

than one application the notation below has been restricted to one 

particular chapter. Those symbols not listed have application 

to one section or appendix only and where this is so explanations 

concerning their use will be found in that section or appendix. 

constant in grid transformation e quation (4.3.1) (Chapter 4) 

empirical constant in law of the wall equation (3.2.6) 

constant in grid transformation equation (4.3.1) 

magnitude of coefficient of skin friction (cpt + a2). 

components of op in streamwise and crossflow directions 

respectively, equation (1.2.5) 

component of Cp in x direction 

increments of grid associated with x,y,é€ directions 
(Chapter 4) 

* 
shape factor ot 

O14 

constant in effective viscosity functione quation (3.3.5) 

Prandtl's mixing length, equation (3.1.1) (Chapter 3) 

counters on grid associated with x,y,é directions 

counter on grid associated with log-point 

number of sections on solution face, and points on a 
section 

pressure 

velocity component in the boundary layer parallel to 

the wall (u?4v?)® 

three-dimensional form of friction velocity a, 

velocity component in the freestream parallel to the 

wall (U?+v?)? (= Us)



044,912 ] 

924922 

K 

104-6 

iteration counter 

Reynolds number based on 644 

streamwise distance, equation (40345) 

velocity components in the boundary layer associated 
with x,y,z directions 

velocity components in the boundary layer associated 
with the streamwise and crossflow directions 

friction velocity, equation (3.2.2) 

velocity components in the freestream associated with 
x,y directions 

wake function, equation (3.4.3) (Chapter 3) 

streamline section coordinates, fig.(4.6.1) (Chapter 4) 

angle between limiting streamline at the wall and 
external streamline , 

velocity gradient parameter, equation (6.0.1) 

"boundary layer thickness’ 

z at which q = iQ 

displacement thicknesses, equation (1.2.4) 

factar in wall condition, equation (4.4.5) 

effective viscosity function parameter, equation (3.3.5) 
(also stagnation flov variable, section 6.5 

momentum thicknesses, equation (1.2.3) 

constant in Prandtl's mixing length, equation (3.1.3), 
and logarithmic law of the wall equation (3.2.6 

number of large increments subdivided at the wall 

kinematic lamimr viscosity 

effective viscosity 

transformed effective viscosity, equation (4.3.8) 

effective viscosity appearing in x,y momentum equations 

respectively 

transformed 2 co-ordinate, equation (4.3.1) 

density 

shear stress
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shear stress at the wall 

components of shear stress at the wall in streamwise, 

crossflov directions respectively, equations (1.2.6-7) 

  

function in effective viscosity model, equation (3.3.5) 
(also function in stagnation flow, section 6.5, 

= 1, i= 1,8 

finite difference solution weights, table 4.6.1 

number of subdivisions per large increment at the wall. 

The fluctuating components of turbulent quantities have 

been denoted by dash and the time-averaged quantities by a bar (waich 

generally for convenience has been omitted in connection with u,v ,W).
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When making finite difference approximations to the three- 

dimensional boundary layer equations written in streamline co- 

ordinates (section 4.6), it is necessary to be able to detemine 

tne position of the streamline (as defined in section 4.3) through 

any grid point. It is with this problem that the present appendix 

is concerned. 

Figure (Al.1) below, which takes a section through a 

6 = constant plane, summarises the situation. The three grid 

points A,B,C are on the upstream solution face where velocity 

profiles have previously been calculated so that at these points 

the directions of the velocity vectors are known, 

  

      

  

while the velocity profiles at the section through the point D on 

  

“the downstream solution face are currently being calculated so that 

only estimates of the velocity components at D are available. The 

streamline DE is fitted between D and the line AC so that at the 

end point D the direction of the streanline is parallel to the current 

estimate of the velocity direction while at B the direction is as 

given by interpolating velocity components between the points A,B,C.
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The method used to determine the position of the 

streamline qida nor be described, A parabolic curve requiring 

four parameters to define (scale, orientation and lateral and 

trans verse eadesvenente) is fitted between D and the line AC. 

Obviously specifying any point E on AC where the direction of the 

velocity is known a quadratic curve DE could be fitted since there 

are four conditions tobe satisfied (sosition and directional 

conditions ee both D and.E). The position of E will hovever be 

detemined so that if the intercept of the tangents to the quadratic 

at D and E is F then the two intercept lengths DF, EF are the same. 

If more than one such point E exists. along AC (or AC extended) then 

that providing the shortest intercept length will be chosen. 

; For convenience the notation used in this appendix 

will not be related except in a superficial way to that used else- 

where, The information needed to determine the arc DE is summarised 

in figure (Al.2) where it is hoped the notation is seli-explanatory. 

It should be noted that y as shown in this diagram increases with de- 

creasing y and is thus measured in the opposite peree to yas defined 

in section 4.6 (the same will apply to @ which is to be introduced belay). 
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At ar point spscified by y on the line denoted by AC in 

figure (Al.1) the velocity components in the x,y directions can 

be detemined by qud@atic interpolation between the three points 

y =-1, 0, 1, ise. 

= Sectootes y+ aS ae (A2.1) 

with a similar expression for Vys It is anticipated that u will 

nowhere be zero so that the direction of the streamline at any point 

can be represented by 

t= el
e 

Letting y now denote the point where the required streamline cuts 

the line AC the quadratic needs then satisfy the two directional 

conditions 

a v +* = = Ey = ly (41.2) 
wu, 

¥. 

where y is yet to be determined and is chosen such taat the angles 

EDF, DEF in figure (Al.3) belovy are the same, This latter condition 

leads to the expression 

tan't® D 
g 
  

f tan'tp 
tant,       
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2 

t) + eIt)-1=0 (A2.3) 

after some manipulation, where 

2S | Gy, ee 

ltt T = y. (AL.4) 

tt+ 6 

which has to be solved for y. Remembering that in the most 

general case t is the ratio of two quadratics in ywe see that the 

above condition i equivalent to a quartic equation in y providing , 

it is to be expected, up to four solutions! | 

Since no solution can in the most general case be obtained 

explicitly from the system of equations (Al.1-4.) it becomes necessary 

to establish an iterative scheme and this we do now. Assuming we 

have an estimate y?) to a solution y we first evaluate te from 

equations (A1.1,2) and then Dy. a using this estimate of a from 

(Al.4), equation (Al.3) it is suggested can then be solved to obtain 

an improved estimate of y ; 

(+4) 
oy = od == 6") + jpe oe oT (22:5) 

where the sign associated with the square root is chosen consistently 

throushout. It is immediately apparent that if the above iterative 

  

scheme is converg-nt it will yield real roots and the two solutions 

obtained by considering alternative signs in equation (A1l.5) will be 

of opposite sign. In the pseudo-three-dimensional problan where ) 

   a ‘ee are constant for all y the solution can be obtained without 

iteration. 

Although only two roots are provided by equation (A1.5) it is 

not thought necessary to investigate the other two since in the
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particular cases when this has been done the remaining roots have 

been found to be either imaginary or to lack any plausibility as 

  

meaningful solutions. No further consideration will then be given 

to this point since the present scheme has proviced reasonable 

solutions in all the cases treated. 

We must however discuss where the above solution scheme 

breaks down. The only apparent cause of trouble in equation(Al.5) 

is whea T becomes singular which is so when 

He = hee 

and for this to be consistent with a solution we require y = 0 i.e. 

to = - +* implies y = 0 (A1.6) 

where we have the situation in figure (Al.4) (waich incidentally in- 

cludes the simple two-dimensional problem). Excepting this case 

it has been found that the choice of sign in equation (Al.5) is given 

by considering the sign of to + t* as follows 

B to ate oO implies y>0O (+ sign) 
(42.7) 

to + t* <0 implies y<0 (- siga) 

es tant” 
  

  -tan't:       
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Being in a position to calculate ywe can now proceed to 

fit a curve between the end points of the streamline which are 

   
now kno: It has been foind adecuate for the purpose of the 

present finite difference scheme to restrict the point at xhich the 

finite difference approximation is to be taken to the mid-point of 

  

the streamline which in the present caleulations will considerably 

simplify the algebra. Even in this simplified problem the algebra 

necessary to fit the quadratic and detemine its mid-point and 

length is tedious so we will here only quote the results of the 

manipulations to determine a,8,s shown in figure (a1.5) 

  

2 . eis 5 
i 245tpt ty (a2 18) 

ltt) t* 4 

7 a 
* ti +tyret, ti (42.9) 

oy 
Sea cia Ge ies 6 he Ltt)? 

a= G én(d+c) + °) 

where 

-£ Jit? asa Al+ty ; 

ne ty - 

d+ to* 

c = \l+b? 
(41.10) 

The above equations for a,f8,s may become singular when 

a 
fas 

which it can readily be shovn is inconsistent



  

s/2 

s/2 

cc f         
Figure (41.5) y 

with a solution, and in addition the expression for s does not 

hold when 

ty = th 

in which case the streamline is linear and the length s should then 

be calculated from 

8 = 2a when b = 0 i. (AL.211) 

while expressions for a,@ remain unchanged. 

The equations (Al.1-11) in this appendix thus form the 

basis of the streamline calctilation subroutine which is included 

in the computer program listing (Appendix AG). Again it will be 

emphasised énet the signs.of 8,y used_in this appendix are opposite 

to those used in Chapter Four. 
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FINITE DIFFERENCE APPROXIMATIONS TO THE MOMENTUM 

EQUATIONS AT THE POINT (¢+1,m,n).
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This ape. rovides atdetailed description of the 

    

finite difference approxims s to tae momentum equitions 

referred to in section 4.6. The notation used is that indicated 

in figure (4.6.2) for the computable quantities, and the unknown 

quantities (i.e. iterates) will be referred to by subscripting 

u,v by their point number ani superscripting them by r (iteration 

number) e.g. ude The weights to be introduced will be denoted 

by ¢(#=1-$) subscripted by an integer which by reference to table 

4.6.1 will distinguish between their different uses. 

We begin by stating the finite difference approximations 

to the individual terms of the x momentum equation (equation 

(4..3.9)) which, using the contractions : 

C= 2¢( ga Gye $aUa) + Wa 

D a(x, + of) +d 

can be written: 

a _ te Yo We , + gala - y, 

r 
+ da a uy, + gata wa) : 

3 

= =u +e aa( $s Ui, + $a Uo ts) 

8 } 

- aguww = =gu_ f = 
axth .agS—CO (1 eg Mea : 
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oer Bi ye 
+ tls (» Page on = Vy Pn neg )) (A2.2) 

Since Sine 

Sudstituting these approximations into the relevant equation 

and eee Le together terms involving the iterated u components 

on to the left hand side.we obtain 

  

i 
- e Qs(Psts-U, ») 

(da(a, -U,,) + Yada (us-us)) 
Dan, 

1 ie 7 t 

tae Dees [#2 en (%e o> 4 ea Me a-% 1) 

+ ats (?a(uarte)4(ua-us))] (42.2) 

where 

p,=(v2+vZ 3) (a2.3) 
$ €+a,m+h 

Here as in figure (4.6.2) v refers to the transformed effective 

' 
viscosity v, (equation (4.3.8)) which will have to be evaluated 

  from s hypothetical relationship at the points indicated in ne 

figure (4.6.2). 

  

As oned in section 4.6, when the above e 

  

evaluated at n = Aw special care should be taken and in particular
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subscripts n-1 in the above equations (and n-1 in figure (4.6.2)) 

should be replaced by n-w. In additon to make the resulting 

set of equations tri-diagonal this equation,which we suppose can 

be written 

+ au + Bur = 6 (A2..1-) 
ut 

YS new n+i 

where n = Aw and a,8,y,6' can all be calculated, is transformed 

into 

= r Ei me yu, tau+hu = 8 (A2.5) 

by introducing 

6 = 6h % vurst = wea Rs (A2.6) 

This equation (A2.5) now conforms to the geieral format. 

The finite difference approximation to the momentum equation 

corresponding to the y direction (equation (4.3.10)) is very similar 

to that given above for the x momentum equation and we will only 

list the differences. Following through the same process that led 

to equation(A2,2) we find that the cosfficients of aes vo ele 

are identical to those corresponding to the u's pn the left hand side 

of equation (A2.2) while on the right hand side u where it occurs 

explicitly is replaced by v and Fe is replaced by Pi 

w WH P= ct oa 

eo Noon ‘y) (42.7) 
t+a,m+h 

(the definition of C remains unchanged).  Okker points mentioned 

above with respect to the x momentum equation obviously apply equally 

to the y momentum equation. 

Thus we are able to relate the three iterated velocity 

components in both x,y directions by an equation which has the form 

  

of equation ( 22.5) where moreover at any section for the same n,r the 

coefficients a,6,y are identical for the two equations relating u's
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and v's respectively, This mans tae¢ in addition that all the 

unknown u (or v) iterated components at any section are related 

by a tri-diagonal set of linear algebraic equations and the matrix 

of coefficients of the unknowns is the same for both u and v, the 

diffexences being on the right hand sides. Such a situation obviously 

simplifies the problems associated with the storage of eoeEricients 

and the solution of the linear equations.



APPENDIX AZ 

FINITE DIFFERENCE APPROXIMATIONS TO THE 

MOMENTUM EQUATIONS AT THE LOG-POIN? AT 

SECTION (4,0).



Not being able to apply the finite difference approxi- 

mations developed in Appendix A2 when n=n* we must consider tais 

particular case separately. To approximate to tne momentum 

equation associated with the x-direction at the log-point we proceed 

as was outlined in section 4.6 making use of equations obtained in 

section 4.4. 

As in Appendix A2 we will first state the finite difference 

duel         approximations to the indivi terms of equation (4.5.9) using 

the notation of figure (4.6.2). These are as follows:- 

2 =e = & 
4 %s fa A-pa ) 

bn. 2 (te w+ gag-U 

4 fabs fou, ,+Gotio—U, | 
én &5/€2 ec ape ea 

r 
+ eda (= Patan Yy ) 

8 

  

r 
re $e qo Se Bae 

s 

+ gas os ) 

(using equations (4.4.8,9)) which we rewtite 
is 5 

a 35 7 (% + BBs) Qa 

(#2 zs es) 

+ $° (qs + G2 Ei(1-E,)) 

. 2 S 
co Vives Tests wee) (A3.2) 

5 

defining Ez,E2 as follors (whate as aitwe odl make var 8) Ro 

falooes contains §\- Say £25 Sn iiSe2 Sen)
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Been etn 5? 
& $4. 

z én E 

2 en €3/ €a 

Sie 2 (A322) 
‘ 

To continue; 

x ma _gu+w_ du _ by As a davai, 4, 
ax+b aé ae 

+ ¢7 4 Cm) 
4 nd 

xv 
Yada ae e Gale “nee a data 2 Cean ba ) (A3.3) 

ene See ' 

  

(using equation (4.4.6)) where C,D are defined in Appendix A2, 
© 
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axtb 3¢\ “e ag) = 

ewe ¥% (up —u,) - vp Bou 
Dé. fa \ fa fa ae 

‘inc 

+ 5 (% (ure) Yat) 
rine 

gts r r xr z 
se Es Cae 7 uy, )- vsBaty) (A354) 

(using equation (4.4.6)) where we have introduced another contraction 

  

(A3.5) 

  

Equations (A3,1-5) are all to be applied at n=n*. Substituting 

tie finite difference approximations to the individual terms into 

y 
equation (1.5.9) and collecting together terms in Uy u on to the 

nea 

left hand side we have



ty
 Bia

 
=
 p 

C igus 

AD « a 

+ oe Ya + Y4Es) ) 

alt dete 

ie Gece (as+aa (1-8) ) 

a 
2D nt €, De 

uta th uta th ‘< & $y = date _ baits *2) 

‘ine ine 

a (49! Nt) Go Bees, 
8 

ge (Qs+c_ E1(1-Ea)) ents nee 
  

  

s 

ot b go hiana pare h 
€ Oe 

Ce Gaeta 
> $7 dp ne ae (Yate (aomta)+¢s(u, —u,_)) 

L ¢ 
Be tae Beat in i) ¥ 1 aE) 

ap = ais (Ya(ug—ug) - Vy UgEs ) (43.6) 

fire 

which again is to be applied at n=n*. The finite difference 

equation corresponding to the y momentum equation can be obtained 

by precisely the same means as were described in Appendix A2 

Ne The only: 

  

(P,> EF are also as defined in this last appendii. 

outstanding com ideration is the problem of obtaining ¢ which 

ocetirs in equation (A3.6) as well as in the definitions of E,,E5. 

  

Only approximations to ¢€ will be available initially s 

    ty from an estimate of q at the log     be obtained of nece 

using equations (4.4.10,11). More accurate values of ¢ are



 



 



  

The finite difference equations obtained in secti 

es A2, AS were concerned exclusively 

  

4.06 and 4.7 and Agpe: 

  

a turbulent flows and as yet little mention has been nm 

    

conce 

  

of the Laminar boundary Although oir pra 

  

s the turbulent problem tne progran as written will cater for 

  

Within the boundery layer equations the on: 

necessary for the equations to hold for laminar flovs is that 

: 
the transformed effective viscosity ee should be replaced by 

the transformed kinematic viscosity y' 

p® = (axeb)p' 

This. mlceration is readily carried into tHe finite difference 

approximation to the momentum equations.In addition in these 

approximations however we need insert a different boundary 

cordition at the wall. Obviously in laminar’ flows the mséh at 

the wall will be close enough to ensure that the gradients of 

the u,v profiles over th: first two grid intervals are constant. 

We can nov make use of equation (A3.6) if we apply it at nen*=1 

send put 

yy at 

€ ar 

EB, =0 

Es =1 

  

= 2 With * 

    continuity eaua    to’ be used. 
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A syste of I tri-diagondl linear algebraic equations in 

the. I- unknowns a, (2 Se 2 saad) 

MU, + Pate = Oy 

ay 2 & + ho
y i oO
 

fm i) to
 

oe
 ti
 1 B 

  

oe
 

I ‘ : i t LF tt oP
 

where the coefficients a,6,y,5 are known, can be solved using the 

  

tei, LoS eed 

  

wnere the equals sign has its usual programming significance and 

operations are to be performed in precisely the ‘order indicated, the 

solution being finally given by 

    

linear equations in respectively Wye: V5 Say 

  

the vy are the samé as those of the corresponding uss the di 

between the two sets of equations being confined solel: 

    

hand sides, the second set can be solved simultansou 

    first with only a slight increase in storag



 



INTFGER OMEGA 
REAI pee NUL Ly 

RAL AGSS 
} PING 

LOLs 50),VLO 
P1L(10),?2(10) 

3XLq¥0)F+GsH, A 
4PS11_,PS12,PSI 
5PHI1,PHI2, PHI 
COMMON = KAPP 
LUL1,UL2,;UL3,V 

    

2NUL1NUL2,NULsNU2,XI,XINCyP1B, P28, ALPHA; LETA yGAMMAsS,EPSy 

3A1(50)5A2(50)— 
40,D1,02,T11,T 
DIMFNSION HEA 
MIN=1 
MOUT= 
READ(MIN, 60) 
READUMIN, 60) 
READ( MIN: 62) 
REAN(MIN, 61) 

  

READ (MIN, 62) 

READ( MIN: 62) 
REAN (MIN, 62) 
READ( MIN, 62) 
READ(MIN, 66) 

D(MIN, 63) 
PHT1=1.0-PSI1] 
PHI7=1.0-PS12 
PHI 3=1.0-PS13 
PHIS=1.0-PS14 
PHI5=1.0- PSI5 
PHIH=1.0-PSI6 
PHI7=1. SIT 
PHIK=1.0-PSI8 

        

NUL 2,;NULSNU2Z9Ks KAPPA, KAPPAL 

Y 
MOUT;MM,NN,LAMDA,OMEGA,NMINCsNSLAP»LT sNUp 

10,50) ,U(10,50)2V(10250) »W(10,50) sBLT(10)5 

sLOGPT(10),NOPTS(10),V9(50),VO0(50) + 
Tr BT sNSTEP,NSMAX, LFREQ,MFREQs 

3yPS14,PSI5sPS16,PS17sPS185 
3,PH1I4,PHI5,PHI6,PHITsPHI8 

Ay KAPPAL Ky Ay CMIN,LTNs TTMAXs TOL »SOSsNOSOSy 

Lis VL2¢VL3.U1,U2,U3 2V19V29V31Q12022039 

A3(50),A4(50) ,A5(50) 2 
12,721,T22yHAPEsRT11, 01 »CFsCFX,CF1sCF 2, PHI 

D1(20),HEAD2(20),TAPHI (10) 

(HEAD1(1),1=1:20) 
(HEAD2(1);1=1,20) 
KAPPA, KAPPAL sK3 A, CMIN 
MM,NN»yLAMDA, OMEGA, NMINCs NSLAPsLT»NSMAX 

ITMAX, LFREQ, MFREQ 

XLsYO.F 1G, THETA, NU 

PSI1sPS12,PS13,PS14,PS15yPS16sPSI7,PS18 
CALCN) sN=1_eNN) 5 
(A2(N)yN=1,NN) . 
(TAPHI (HM) »M=1,MM) 

TOL 

OLO1LAC99 
COOZAC99 
C0dZAC99 
0003AC99 
0004AC99 
GOO5AC99 
0006AC99 
OOOTACID 
Q00B8AC99 
Q009AC99 
0010AC99 
O911AC99 
0012AC99 
O013AC99 
0020AC99 
0030AC99 
0040AC99 
0950AC99 
0069AC99 
O079AC99 
0080AC99 
0085AC99 
0090AC99 
0100AC99 
011GAC99 
O113AC99 

+ O11GAT9D 
O120AC99 
O130AC99 
O140AC99 
O150AC99 
O160AC99 
O17GAC99 
O189AT99 
G190AC99 
O209AC99



DO 1 M=1,MM 
UU=4C99U(XL,YO+(M-1) #6) 
VV=AC99V (XL, YO+( M-1)46) 
PESTAPHI(M)#CALT(1)7A2(1)) 
DO 1 N=1,NN 
ULEM,N)=UU2A1(N)—PT&VV@A2(N) 
VL (mp N=VVEALON) +P T#UU RAZ (ND 

     W(MeN) 

1 CONTINUE 
UL=ULC1,NNY 
VI=VL(1,NN) 
QL=SQRT(UL##24V1 #2) 
H=THETA/AC99T( ACO9V,1,NMINC,NN;OMEGA1-0319120;0-0) 
OSTFR=ACS9T(AC99Yy La NMINCyNNyOMEGA+Hs11010,0-0) 
HAPF=DSTER/THETA 
RTHET=THETA#Q1/NU 

WRITE(MOUT,64) (CHEADI(1),1=1,20)4 
1 (HEAD2(1),1=1120)sXLaNSMAX oF e TOL 
WRITE(MOUT,65) THETAsHAPE »RTHETsNUy 

L PST1sPSI2yPS13sPS14,PSI15,;PS16,PSI171PS18 
AT=020 
BT=1.0 

NSTFP=1 

2 CONTINUE 
CALI ACOOH 

CALI. AC991 
CAL! ACI90 
IF (NSTEP-=NSMAX) 39595 
XL=EXL4F 

=He (AT#XL4+BT) 
T/UAT#E4+ 150) 

BT=1.0-AT#XL 

DO 4 M=14Mm 

DO'S N=14h 

we
 

  

   

  
      

    

0205AC99 
0210AC99 
0220AC99 
0230AC99 
0240AC99 
0250AC99 

~ O2TOAC99D 
O290AC99 
O300AC99 
03190AC99 
Q320AC99 
0330AC99 
.0340AC99 
0350AC99 
O360AC99 
O370AC99 
O380AC99 
0390AC99 
O400AC99 
0410AC99 
O0420AC99 
0430AC99 
0440AC99 
0450AC99 
O460AC99 
O470AC99 
O0475AC99 
O480AC99 
9490AC99 
Q495AC99 
O500AC99 
O510AC99 
O520AC99 
O530AC99 
O560AC99 
O570AC99



UL(M,N)=UCM,N) O580AC99 

een =V(MsN} O590AC99 

4 CONTINUE O600AC99 

Aeteee hee ; 0610AC99 

GO TO 2 O620AC99 

5 CALI EXIT 0630AC99 

60 FORMAT(20A4) 5 0640AC99 

61 FORMAT(1L113) - F O650AC99 

62 FORMAT(8F10.6) O660AC99 

3 FORMAT(E10.3) O670AC99 

64 FORMATCLHI///201H 925X:20A4//)//1H +5Xs30HTHE CALCULATION STARTS FO680AC99 

one X=yF10e6+17H AND PROCEEDS FOR, 13,9H STEPS OF 1F10-6,15HrA TOLEROG90AC99 

ANCE OF ,E10.32316H BEING SATISFIED) OTOOAC99 

65 w FORMAT 1HOs16ke SHINEE ME CONDITIONS ARE 011=,F10.6,4H He 2F10.6, OFLOACID 

27H UR =,F10-.3120H (LAMINAR VISCOSITY=,F11-841H)/1H+,39X,1H-/1H »0720AC99 

270X%-3HO1L/1H+s 70X_ 1H-/1HO:50X,31LHSOLUTION PROCEDURE WEIGHTS WERE/ 0730AC99 

32(45X,4F10.4/3//1H1) O740AC99 
66 FORMAT(1OF8.4) O750AC99 

END 0760AC99 

SUBROUTINE AC991 5 1000AC99 
THIS SUBROUTINE CALCULATES VELOCITY PROFILES 1. Ac99 
AT THE DOWNSTREAM SOLUTION FACE 1 AC99. 

INTFGER- OMEGA 1001AC99 
> REAL NU,NUL1,NUL2,NUL,NU2Z, Ky KAPPA, KAPPAL 1002AC99 
COMMON MIN, HOUT, MMyNNyLAMDA, OMEGAsNMINC;NSLAPsLT sNUy 1003AC99 

LUL (10,59) 2 VL(10950)1U(10,50)5V(10,50),W(10,50) ,BLT(10)5 1004AC99 
2P1(10),P2(310),LOGPT(10) ,NOPTS(10),VG(50).VO0(50), 1905AC99 
4XL+YOsF 2 SoH AT eB Ty NSTEPyNSMAXsLEREQs MFREQ? 1006AC99 
4PSI1¥4PST2,PS132PS14,PS15¢PS16,PS17 PSI 8s hi 1O07AC99 
SPHI1;PHI2,PHI3,PHI4,PHI5,PH16,PHIT,PHIS 1008AC99 
COMMON KAPPAyKAPPALs Ky Ay GMIN, 1 TN: LTMAXs TOL »SOS »NOSOSs 1009AC99



  

    

  

     

   

aoe eee Vi2,VC3, U1, 2 wV1gV2qV3,OD 902, 
2 2yNU1,NU2 ee eee ALPHA, ee FEPS y, 

iso ee A438) 1 A5( 59), 
1Cy GS bl bests 

TE PSO mya 2 

  

Lid % 

31 NAVAL Cee rheh)) : 
GA ALM NN ZUM WN = 6.601) 55556556 

SE ee 

NN AMLGOY 9 NAD 

SL Cs SY 

VLCM aS) eV SCURUL (HN) 

    

1USgActog 
TE9GAC9F 

  

LL25AC Pie] 
1i3eACcg9 
1132AC99 
11 35AC99 
11444099 
Lis 2Aco9 
114S5AC99 
11554099 
L1S6cAcg99 
PLICACID 
LVS SACIO 
TESBACIY 

UGACID 
JACI9 

  

  

    
   



12 

13 
14 

AS: 

16 
it 

GO TO 16 
CALL ACIOB(2.1.0) 
BLMAX=BLT(1) 
DO 74 M=1,MM 
IF (BLFMAX-BLT(M)) 13514914 
BLMAX=BLT(M) 
CONTINUE 
TF CABS (BLMAX#NSLAP-NN)-0.01) 8,868,125. 
HLP1= (BLMAX-NMINC+LAMDA) #H# CAT® (XL4F)48T) 

i 7 (NN-NMINC+LAMDA-NSLAP) 
&T=CHLP1-H)/(F#H) 
BT=1.0-AT#XL 
GO 10 4 
RETURN 
FORMAT (1HOs 5X5 3HE11;5X316,E12.5,16) 
END 

SUBROUTINE AC992 
THIS SUBROUTINE ITERATES ONCE FOR THE VELOCITY 
PROFILES AT THE DOWNSTREAM SOLUTIGN FACE 

INTFGER OMEGA 

REAL NUsNUL1sNUL29NU1L,NU2,KsKAPPA,KAPPAL 
COMMON MIN, MOUTs MMaNNyLAMDA, OMEGA, NMINC pNSLAP,LT NU, 

1UL (10,50), VL(10150),U(10,50),V(10,50),W(10,5C) ,BLT(10)5 
2P1(10),P2(10),LOGPT(10) ,NOPTS(10),VO(50),VO0(50), 
3XLsV¥O,F2GrHs ATs BT aNSTEPyNSMAXyLFREQ,MFREQ, 
4PS11,PST2,PS13:PS14sPS154PS16,PS17,PS18¢ 
SPHI1,PHI2,PHI3,PHI4,PHI5,PHI6,PHI7;PHIB 
COMMON KAPPA, KAPPALs Ka AsCMIN, ITN, LTMAX: TOL ,SOS,NOSOS, 
LULL+UL2;UL3y VL 1s VL2_VL3,U1,U2,U3.V1yV29V3701 7025032 
2NULT,NUL2+NULyNU2,X1yXINCs PIR, PZB. AL PHA, BETA, GAMMA yS EPS» 
341(50),A2(050),A3 (50) 2A4(50),A5(50)5 

1280AC99 
1290AC99 
13004099 
1310AC99 
1320AC99 
1330AC99 
13490AC99 
1359AC99 
1365AC99 
1365AC99 
1370AC99 
1380AC99 
1390AC99° 
1400AC99 
1410AC99 
1420AC99 

2000AT99 
i AC99 
2 AC99 
2001AC99 
2002AC99 
2003AC99 
2004AC99 
2005AC99 
2006AC99 
2007AC99 
2008AC99 
20094099 
2G10AC99 
2011AC99 
2012AC99



a nia EO SNE ee he Cee oe ee rere a tenth laren Ors 

4DSTAR(10),C, Ds Els E2;£3 2013AC99 

SOS=0.0 2020AC99 
NOSNS=0 2039AC99 
00 1 M=1,MM 2040AC99 
CALE ACOSR(M) i 2050AC99 

1 CONTINUE : ~ 2060AC99 
M=] 2070AC99 

2 N=LOGPT(M) Ear bs z 2080AC99 
NEQ=1 2090AC99 
It=1 4 2093AC99 
ILP1=1 2096AC99 
CALI ACOOS (M,N) 2100AC99 
CALI ACOSM(M,N) 2110AC99 

CALI ACOID( M,N, IL, ILPL) 2115AC99 

CALI ACOSFIMsN) 2120AC99 
3 N=Nt] 2130AC99 

CALL ACOOS(MsN) 2150AC99 
NEQ=NEQ+1 ; = 2140AC99 
CALL ACOOM(M,N) 2160AC99 
CALL ACOSD(MsNaTLeILPl) 2165AC99 

CALt ACS9G(NEO,M,N) is 2170AC99 

IF(N-NOPTS(M)41) 35494 v 2180AC99 
4 CALI AC99Z(NEQ) 2190AC99 

S$OS1=0.0 

  

; = 2200AC99 
11=1 OGPT(M)-2 : 2210AC99 
DO 5 T=1,NEQ 2220AC99 
J=I+11 : 2230AC99 
SOS1=SOS14(SQRT(U(M, J) #x24V(M, J) #22) See 2240AC99 

1 —SQRTCA4(T)#*24A5( 1) #82) ) 822 2250AC99 
5 CONTINUE 2260AC99 

NOSAS=NOSOS+NEQ 2270AC99 
SOS=SOS+SOS1/ (UCM NN) &*24V(HaNN) #62) _ : 22B0AC99 
DO 6 I=1;NEQ 2290AC99 
J=I¢th 2300AC99 
U( Hs SISPSTO2AG(T)+PHIBEU( Ms J) 2310AC99 
V(M+S)=PSTB€AS(T )+PHIBOVIM, 3) 2320AT99



6 

64 

65 

66 
67 

10 
au 

12 

13 

14 

CONTINUE 
GO TO (75;64)5LT 
N=LNGPT(M) 
C2=SQRT (UCM, NI ##24V(MyN) 882) 
ALPHA=1.0 
CALI ACOOLIN) 
QT=KADPAL#Q2/EPS 
DZ=(AT#(XL+F)4BT)#H/OMEGA 
N=N-1 
00 7 I=1,N 
ZP=1*DZ«QT/NU 
IF(7P-1120) 65565366 
QI=OT*ZP 
GO TO 67 
CI=OT#(ALOG(ZP)/KAPPAL+A) 
U(Me1L)=U(MyN+1) #Q1 702 
VUMeT)=VUMsN41)*Q1/Q2 
CONTINUE / 
IF(M-MM) 8,939 
M=M41 
GO TO 2 
D=AT®(XL40.5#F)+BT 
11 
N=LOGPT(M) 
CALL ACOOC( MSN) 
CALI ACOOW(M,N) 
IF(N-NN) 12,13,13 
N=N+1 

GO 70 11 
CONTINUE 
TF(M-MA) 14,15215 
M=M+1 
GO TO 10 
RETURN 
END 

2330AC99 
2335AC99 
2340AC99 
2350AC99 
236CAC99 
-2370AC99 
2373AC99 
23764099 
2380AC99 
2390AC99 
2394AC99 
2398AC99 | 
2402AC99 
2406AC99 
2410AC99 
2414AC99 
241 8AC99 
2420AC99 
2430AC99 
2440AC99 
2450AC99 
2460AC99 
2470AC99 
2430AC99 
2490AC99 
2500AC99 
2510AC99 
2520AC99 
2530AC99 
2540AC99 

25504099 
2560AC99 
2570AC99 
2580AC99 
2590AC99 

wt 
tol



SUBROUTINE AC99A 
INTFGER OMEGA : 
REAL NU,NULL,NUL2;NUL_,NU2,Ky KAPPA, KAPPAL 
COMMON = MIN, MOUT»MMyNNs LAMDAs OMEGA, NMINC NSLAP sLToNUy 
1UL(10,50),VL(10550),U010;50) +V(10,50)2W(10,50),BLT(10)% 
2P1(10),°2(10),LOGPT(1C) sNOPTS(10),VO(50),VOO(50), 
3XLyY¥OrF.GrHs ATs BTsNSTEPsNSMAXsL FREQ) MFREQy 
4PS11,PS12,PS13,;PS14;PSI5sPSI16,PSI172PSI8y 
SPHI1_PHI2,PH13_PHI4,PHI5yPHI 65 PHIT,PHI8 
COMMON  KAPPA,KAPPALs Ks As CMIN,ITN2 TTMAXs TOL sSOS:NOSOS, 
LULL-+UL2,UL3,VL15 VL2,VL3,U12U2;U3sV1sV29V39Q01 1021935 
2NUL] yNUL2,NUL,NU2,XTP_XINC,P1B,P2B, ALPHA: BETA yGAMMAsSyEPSe 
3A1(50),42(50)1,A3(50).A44(50),A5(50) 5 
4DSTAR(10),C,0,E1,E2,E3 

DO 1 N=1,NN 
VO(N}=0.0 
VOOUN)=0.0 
RETURN 
END 

  

SUBROUTINE ‘AC99B(1T,AS) 
THIS SUBROUTINE CALCULATES THE BOUNDARY LAYER 

THICKNESS AT EACH SECTION 
INTFGER OMEGA 
REAL NU,NULL+NUL2sNU1,NU2,K,KAPPA,KAPPAL - 
COMMON MIN, MOUTyMMyNNyLAMDA, OMEGASNMINCaNSLAP SLT INU, 

1UL (10,50), VL(10750).U(10,50) »¥(101590) »W110550),BLT(10)¢ 
2P1(10)5P2(10),LOGPT(10) sNOPTS(10),V0(50) »VOO(50)» 
3XL2YOsF5GyH, ATs BT,NSTEP)NSMAX,LFREQ,MFREQ, 
4PSI14PS122PS13.PS14:°SI5sPS16,PSI17;PS1By 
SPHI1, TH12,PHI3,PHI4,PH1I5,PHI6,PHI7sPHI8 
Cob KAPPA, KAPPAL, Ky Ar ChINe LTNs 1 TMAXs TOL ySOS sNOSOSs 

    

AQOOACID 
AOOLAC99 
ADOZAC99 
AQO3AC99 
ADQ4AC99 
ADO5AC99 
AGOGATID 
AQUTACSD 
AQOBACID 
AGOIATID 
AG1OAC99 
AG1L1AC99 
AQ12AC99 
AOD13AC99 
A02Z0AC99 
A030AC99 
AQ4OACI99O 
AO50AC99 
AQ60ACI99 

BOOOAC99 
B ACSS 
6 AC99 
BOOLACSD 
BOOZAC99 
BOOSAC99 
BOO4AT99 
BOO5SAT99 
BOO6AC99 
BOOTACSS 
BOOSATIO 
BOO9ACS9



a
A
a
f
o
 

UL 1.UL2,UL3_ VL Ly VL2-VL3_U1,U2,U3 9V19V21V32Q1 1023035 

2NUL1,NUL2,NUL,NU2,XT_XINCP1BsP2B, ALPHAsBETAsGAMMAsS 2 EPS) 

341 (50),42(50),A3 (50) sA4(50)2A5(50) 5 
4DSTAR(10),C.D,E1L,E22E3 
GO 10 (122),1T 

1 TOL1=0.99 
60 T0 3 

2 TNL1=0.999 = 
3 CONTINUE 

  

ONP1=(1+0-AS)#SQRT(UL(MyNN) #*24VL(M NN) #2) 
1 +AS*®SQRT(UC My NN) &#24V (My NN) ##2) 

QB=TOL1*QNP1 

NENN-1 
4 ON=(1.0-AS)#SORT(UL (M,N) #24VL (MyN)#*2) 

1 +AS#SQRT(UCM YN) #8 24V 0M ND Re2) 

If (ON-QB) 62625 
N=N=1 

ONP1=QN 
GO 10 4 

6 ELTIM)=N4+(QB-ON) /CQNP1-QN) 

GO 10 (7,8)s1T 
7 ELT UM)=BLT (H)-NMINC+LAMDA 
8 CONTINUE 

RETURN 
END 

wu 

SUBROUTINE AC9OCIMsN) 
THIS SUBROUTINE SETS UP ALL THE NECESSARY 

QUANTITIES FOR THE FINITE DIFFERANCE APPROXIMATION 

TO THE CONTINUITY EQUATION 

INTEGER OMEGA 

BOLOACSS 
BOLLAC99 

BO12AC99 

BOL3SAC99 
BO2Z0AC99 
BO30AC99 
BO4OAC99 
BOSOAT99 
BO60AC99 
BOTOAT9O9 
BOBOACID 
BOI0AC99 
BLOOAC99 
B1L1OAC99 
B1l20AC99 
B130AC99 
B140AC99 
B150AC99 
B1L60AC99 
B17OAC99 
BL80AC99 
BLOOAC99D 
B200AC99 
B210AC99 
B220AC99 
B230AC99



REAL NU,NUL1,NUL2,NU1L_;NU2) Ks KAPPA, KAPPAL 
COMMON MIN, MOUTsMMyNNyLAMDAsOMEGAs NMINC »NSLAPyLT yNUy 

1UL (10,59), VL(10, 50) +U(10,50),V(10,50) ,W(10,50) sBLT(10), 
2P1(10),P2(10),LOGPT(10) yNOPTS(16)4V9(50) sVOG(50)5 
3BXLyYOaF1GyHs ATs BT yNSTEPsNSMAXsLFREQ,MFREQs 
4PS11,?S123PS5132°S14sPS159PS16,PS17sPS1Bs 
5PH114°H12,) PHI3sPHI4, PHI5,PHI6,PHI7,PHI8 
COMMON KAPPA, KAPPAL sKyAyCMINy 1TNs IT TMAX, TOL,SOS2NOSOS, 

LULL ©UL2,UL3, VL1,VL2_VL3,U1,U2,U3yV1_9V21V32Q1102203% 
ZNULL sNUL2,NULsNU2sX%1_,XINCsP1B,P2B; ALPHA, BETA yGAMMAsSyEPSy 

3A1(50):A2(50)5A3(50) 144(50),A5(50)5 
40ST4R(10),C,0,E1,E2,E3 
IFUN-NMINCY 1,192 
XIT=CiN 4H) OMEGA 

XINC=H/OMEGA 

GO TO 3 
XIT=CN-NMINC+LAMDA)#H 
XINC=H 
IF(N-LOGPT(M)) 424,11 
UL=UL(M,N) 

US=U(MsN) 
U2=0.5*% (UL+U3) 
IF CMT) 55576 
Vl=VO(N) 
GO 10 7 
V1l=0. 52 (VECM-19N)4+V(M-1aNP) 

9e 52 (VLUMgNIEVEIMGN) ) 

F(M—-MM) 83939 
V3=0.5"(VLIM+1L SI) tVIMF1 SN) } 
69 TO 10 
V3=vOO[N) 

QZ=SCRT(U2#* 24V2F#2) 

ALPHA=0-5 
CAL! ACOSLIN) 
60 10 18 
X1=X1-065#XINC 

      

Co024C99 
COO3AC99 
CO04AC99 

CGO5AC99 
COOGAC99 
COOTAC99 
COOBAC99 
COO9AC99 
CO10AC99 
CO11AC99 
CO12AC99 
CO13AC99 
CO20AC99 
CO30AC99 
CO40AC99 
CO50AC99 
CO60AT99 
COTUAC99 
CO80AC99 
CU90AC99 
C1O0AC99 
C1l10AT99 
C120AC99 
C130AC99 
C140AC99 
C150AC99 
C160AC99 
C170AC99 
C1BOACID 

C19GAC99 
C200AC99 
C210AC99 
C220A4099 
C230AT99 
C240AC99 
C250AC99 

 



a
a
0
 

Ul=G. 5*(UL(M,N)4+UL (M,N-1)) 
U3=0.5%(UCMyN)tU(MyN=19) 
IF(M-1) 12,12,13 

V1=0.5#(VO(N)4VO(N=1)) 
GO 10 14 
V1=0625#(VLUM-1LyN)4VL(M-1_N-1)4V(M-1.N)4V(N—-1,N—1)) 
IF(M-HM) 15,16116 F 
V3=20-.258(VL(M+1)N)+VLOM#1N-1)4V(M41¢NI4+V(M+1yN-1)) 
GO 10 17 
V3=0.5*(VOOUN)4VOO(N=1)) 
NUL=0.5*(UL(M,N-1)4U(M)N-1)) 
NU2=0.5*(UL(M)N)4U(M3N)) 
RETURN : 
END 

      

SUBROUTINE AC99D(M,N,IL,ILP1) 
THIS SUBROUTINE CALCULATES THE LAMINAR OR 
TURBULENT VISCOSITY TERMS 

- MELLOR AND GIBSON VISCOSITY MODEL é 
INTFGER OMEGA 
REAL NU,NUL1L,NUL2,NU1,NU2,Ky KAPPA, KAPPAL 
COMMON MIN, MOUT»MMyNN,LAMDA, OMEGA, NMINC,NSLAP)LT sNUy 

1UL (10,50), VL(10, 503,U(10,50),V(10;50),W(10,50),BLT(10), 
2P1(10),P2(10),L9GPT(10),NOPTS(10),VO(50),V00(50)5 
BXLyYOsF yGyHy ATs BT eNSTEP 1 NSMAX yLFREQsMFREQ, 
4PSI1,PS12,PS13;PS14,PST5,PS16,PSI7T;PSIBy 

5PHI1,PHI2,PHI3,PH14,PHI5,PH16, PHITsPHI8 
COMMON KAPPA, KAPPALsKsArCMIN,1TTN« I TMAX, TOL sSOS,NOSOS, 

LUL1-2UL2,UL3,VL1) VL2¢VL3.U1,U2sU3.V11V21V35015921939 
ZNUL1, UL2,NUL)NU2,X1,XINCyP18sP2B, ALPHA, BETA yGAMMAsSyEPS_ 
3A1(50).A2(50),A3(50),44(50)2A5(50)5 
40ST4AR(10),Cs0rE1,E2,E3 

C260AC99 
C2TOAC9S 
C280AC99. 
C290AC99 
C300AC99 
C310AC99 
C320AC99 
C330AC99 
C340AC99 
C359AC99 
C3260AC99 
C3TOAC99 
C3B0AC99 
C390AC99 

DOOOAC99 
D ACS9 
D AC99 
D ACS9 
DOOLAC99 
DOO2ZAC99 
DOO03AC99 
DOO4AC9D 
DOO5AC99 
DOOGAC99 
DOOTAC99S 
DIOSAC99 
DOO9ATID 
DYLOACID 
DOLIAC99 
DCL2AC99 
DOL3ZAC99



~ 
DSTR=DSTAR(M) 
IF (N-LOGPT(M)) 19194 
GO TO (2,3)aLT 
NU1=AC99E(0.0,DSTByLT,ILP1) 
NUL1=AC99E(0.0sDSTByLTsIL) 
GOTO 7 
Q=SCRT(U2"#24V2""2) 
ZETA=KAPPA®®2*(X1-0.5#XINC)*Q/EPS 

_ NUL=ACOSE( ZETA, OSTByLTsILPL) “ 

w
s
 

IF(7ETA.GT.OSTB) ILP1=2 
Q=SORT(UL2##24+VL2e82) 

ZETA=KAPPA#&2%(XI-O.5*8XINC)*Q/EPS 
NUL1T=ACO9E(ZETA,;DSTByLTyIL) 

IF(7ETA.GT.DSTB) IL=2 

GO 10 7 

GO TO (5,6);LT 
NUL=AC99E(0.0,DSTBsLT,ILP1) * 
NUL1=AC99E(0.0,DSTB,LT,IL) 
GO= FOR 
DO=SQRT (U2**24+V2e82)-SORT(UL¥#24+V1%#2) 
DQ=ABS(DQ) 
ZETA=(KAPPA#(XI-O0.5#XINC) ) ##22DQ/XINC 
NUL=ACOSE(ZETA,DSTBrLT,ILP1) 

TF(7ETA.GT.DSTB) ILP1=2 
OO=SO°T(UL2##24VL2ee2)-SQRT(UL Lex 24VL1e%2) 
DQ=A4BS(0Q) 
ZETA=(KAPPA®(XI=065#XINC) ) #*2#DO/XINC 
NULI=ACO9E(ZETA,DOSTBsLT, IL) 
IF(7ETA.GT.DSTB) TL=2 
GO TO. (8,9),LT 
NuU2 99E10.0,;DSTBsLT,ILP1) 

NUL2=AC99E(0.0,0STByLT, IL) 

GO TO 10 

DOQ=SQRT (U3 ##24+V3e#2)—-SORT(U2Z##24V2"82) 
Q=ABS( D0) : 

ZETA=(KAPPA*(XI40.5"XINC) ) ##2"DQ/XINC 

    

  

DO20AC99 
DO30AC99 

DU40AC99 
DOSCACS9 
DO60AT99D 
DOTOAC99 
DOBOACS9 
DOIOAC99 
DLOOAC99 
DLLOAC99 
D120AC99 
D130AC99 
D140AC99 
D1I50AC99 
DI6O0ATI9 
D17UAC99 
DI80AC99 
D190AC99 
D290AC99 
D210AC99 
O0220AC99 
0230AC99 
D240AC99 
O0250AC99 
DZ60AC99 
O2TOAC99 
O280AC99 
0290AC99 
D300AC99 
D31GAT99 
D320AC99 
D330AC99 
D340AC99 
D350AC99 
D360AC99 
D370AC99



1
9
0
0
 

10 

W
N
 

w 
NU2=AC99E( ZETA, DSTBaLT, ILPL) 
IF(7ZETA.GTeDSTB) ILP1=2 
DQ=SCRT(UL3#*24+VL3#%2)-SORT(UL2##24+VL2%2) 
Q=4E8(0Q) 

ZETA=(KAPPA#(X1+0.5#XINC) )##2*DQ/XINC 
NUL2=ACOSE(ZETA,DSTByLTy IL) 
IF(7ETA.GT.DSTB) IL=2 
RETURN 
END . 

  

FUNCTION ACOSE(ZETAsDSTAR,LT,1IL) 
~ THIS FUNCTION PROVIDES THE LAMINAR ‘OR TURBULENT 
VISCOSITY FUNCTION 

- MELLOR AND GI&SON VISCOSITY MODEL 
GO TO (1,2)sLT 
ACOGE=DSTAR 

RETURN 
GO TO (3,5),11 
IF(7ETA-DSTAR) 49455 

ACSYE=ZETA 

RETURN 

ACOSE=DSTAR 

RETURN 
END 

D389AC99 
D390AC99 
D400AC99 

D410AC99 
D420AC99 
D430AC99 
0440AC99 
D450AC99 
D460AC99 

ELOOAC9S 
E ACD 
E AC99 
5 AC99 
EC20AC99 
EO30AC99 
EG40AC99 
EO50AC99 
EQ69AC99 
EQTOAC99 
EGBOACI9O 
EGCSOACS9 
ELOOACS9 
E1LOAC99 

b
e
t
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SUBROUTINE ACOSF(M,N) 
THIS SUBROUTINE SETS UP THE COEFFICIENTS TO THE 
"2 ATIONS' AT THE FIRST POINT IN THE 
"LOS-REGION* 

INTFGER OMEGA 
REAL NUyNUL1)NUL2sNUL)NU2sK, KAPPA, KAPPAL 
COMMON = MIN,MOUT,MMyNNyLAMDA, OMEGA yNMINC yNSLAP SLT yNUo 
1UL(10150)5VL(10,50),U(10,50)4V(10,50) »W(10,5C) sBLT(10)5 
2P1(10),P2(10),LOGPT(10) NOPTS(10),V0(50) sVO0(50), 
3XLyYO1F 1GyHp ATs 2TaNSTEPyNSMAXy LEREQsMFREQ 
4PS11,PS12,PS13_PS141PS15¢PS16sPS1TsPS1Bs 
SPHI1,PHI2,PHI3,PHI4sPHI5,PHI6,PHI7,PHIB8 
COMMON  KAPPA,KAPPAL,K,A2CMIN, TTNs TTMAX, TOL ySOS yNOSOS, 
LUL1+UL2,UL 3. VL14 VL2,VL3;U11U2,U31V1sV22V3201 1021039 
2NUL1yNUL2,NUL,NU2.X1+XINCyP1ByP2By ALPHA, BETA GAMMA sSyEPSy 
3A1L(50)A2(50),A3(50) 1A4(50),A5(50)» 
4DSTAR(10),CsDyE1,E2,E3 
GO TO (122),LT 

1 £3=1.0/N 
GO TO 3 

2 E3=FPS*(N-0.5) ‘ 
3B AL(1)=02/54C/( 2.08 D#EPS#X1) 

1 +(NU2+NU1/E3)/02.0#D#XINC##2) 
A2(1)=-NU2/(2208D#XINC##2) = 
£4(1)=UL2*02/S-C#UL2/(2.0#D#EPS#XI) 

st +P1B4+(NUL2*{UL3-UL 2)-NUL1®UL2/E3)/(2-02D#XINC#*2) 
A5(1)=VL2#Q2/5-C#VL2/(2-0*D#EPS#XI) 

1 +2264 (NUL2*(VL3-VL2)-NUL1#VL2/E3)/(2.0#D*®XINC#*2) 
RETURN 
END 

    

  

FOOOAC99 
F ACD 
F Ac99 
F  AC99 
FOO1AC99 
FOOZAC99 
FOO3AC99 
FOO4AC99 
FOO5AC99 
FOOACI9 
FOOTAC99 
FOOBAC99 
FOO9AC99 
FO10AC99 
FOL1AC99 
FO12AC99 
FOL3AC99 
FOLS5AC99 
FO17AC99 
FO19AC99 
FO20AC99 
FO30AC99 
FO40AC99 
FOSOAC99 
FO60AC99 
FOTOAC99 
FOBOAC99 
FO9OAC99 
FL00AC99 
FL10AC99



SUBROUTINE ACOSG(NEQ:MiN) 
THIS SUBROUTINE SETS UP THE COEFFICIENTS TO THE 

LINEAR ALGESRAIC EQUATIONS AT THE GENERAL POINT 

INTFGER OMEGA 
REAL NU,NUL1sNUL2,;NU1,NU2,;KyKAPPA,KAPPAL 
COMMON MIN» MOUT+MMsNNyLAMDAsOMEGAs NMINC yNSLAP +s LTsNUy 
1UL(10750),VL(10 50) .U( 10,50) 1V(19,50),W(10,5C) sBLT(10)5 
2P1(10),P2(10) ,LOGPT(10),NOPTS(10),VO(50),VO0(50), 
3XL+YOr Fs Gs Hs ATs PTeNSTEPyNSMAX,LFREQsMEREQs 
4PS11,PS12,PS13,PS14;PS15sPS16,PSI17,PS18y 
5PH11,PHI12,PH13_PH14,PHI5,PHI6,PHI7,PHI8 
COMMON KAPPA, KAPPALs Kr ArCMIN, ITN: LTMAXs TOL s SOS; NOSOS» 
LUL1«UL2,UL3yVL1_VL29VL35U1,U2,U3)V1sV2sV31Q1 1021039 

2NUL] »NUL2,;NUL,NU2,X1¢XINCyP1B, P28, ALPHA, BETA GAMMA y Sa EPSo 

3A1L(50).A42(50)5A3(50)4A4(50) sA5(50)9 
4DSTAR(10),C1D, EL E2,F3 

AL(NEQ)=PHI2*PSI3*Q2/S+PSI 1*PSI5*(NUL+NU2) /(D*XINC##2) 

AZ(NEC)= PS12*PS13*Q3/(2.0#S)4+C#PSI1#PSI4/(2.0#D*XINC) 
Bs: —PST1L®PSI5#NU2/ (D#XINC##2) ‘ 

EQ-1L)= PS12*PS13*01/(2.0*S)—-C#PSI1*#PSI4/ (2.0%D*XINC) 
—PSI1*PSIS#NUL/ (D#XINC##2) 

AA (NEQ) =-P$ 128036 PHI3#U3- UL3)/(2.0*S)—PHI2* Q2* (PHI3*U2-UL2)/5S 

-PS12*Q1#(PHI3*U1-UL1)/(2.0*S) 

-C#(PHI1#(UL3-UL1)+PSI1®PHI4# (U3-U1) )/(2.0#D*XINC) 

4#P1B4(PHIL* (NUL 2s (UL3-UL 2)-NUL1#(UL2-UL1)) 

+PST1e#PHI5*(NU2*(U3—U2)—-NU1L* (U2-U1)))/(D#XINC##2) 

AS (NEQ)=-PS12#Q3#( PHI 3#V3-VL3)/(2.0#S)—PHI2#92#(PHI3Z#V2-VL2)/5 
—PST2#Q1* (PHIZ®VI-VL1)/(2.0#8S) 

—C¥(PHIL#®(VL3-VL1)4+PS11*PH14#(V3~V1) 1/(2.0#D*#XINC) 

ee eS aera es VL2)-NUL1*(VL2-VL1)) 

S11#PHIS*(NU2* (V3-¥2)-NUL*(V2-V1)))/(D#XINC##2) 

TF (N= eine: 29122 
1 Nl=MINC-OMEGA 

4 (NEQ)=A4 (NEQ)¥A3 (NEQ—1)# (U(M,N-1)-U(MyN1)) 
AS(NEQ)=A5(NEQ)+A3(NEQ-1)#(V(M:N-1)-V(MiN1)) 

2 IF(N-NOPTS(UM)41). 45393 
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GOOOACS9 
G Acog 
G Acg9 
GOO1AC99 
G902AC99 
G003AC99 
GO04AC99 
GO05AC99 
GOOGAC99 
GOO7AC99 
GOO8ACI9 
GOO9AC99 
GO10AC99 
GO11AC99 
GO12AC99 
GO13AC99 
GO20AC99 
GO30AC99 
G040AC99 
GO50AC99 
GO60AC99 
GOTOACID 
GOBOAC99 
GO90AC99 
G100AC99 
G110AC99 
G120AC99 
G130AC99 
G140AC99 
GIS0AC99 
G160AC99 
G180AC99 
G190AC99 
GZ00AC99 
G210AC99 
G220AC99



w
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A4(NEQ)=A4(NEQ)-A2(NEQ)#UCM, NFL) 
AS(NEQ)=A5 (NEQ)-AZ(NEQ)#V(M N41) 
RETURN 2 
END 

SUBROUTINE AC99SH 
RETURN 

END 

FUNCTION AC99I(M,N,GAMMA,VEL,MM) 

THIS FUNCTION INTERPOLATES VELOCITY COMPONENTS 

OIMFNSION VEL(10,50) 

IF (MM-1) 1,152 
ACODI=VEL(M,N) 

RETURN 

TRUM IS soy 
T=2 
AG=GAMMA-120 
GO 70 7 

TE (H=KM) 269535 
I= us 
AGSGAMMA41 20 
oO To? 

   

  

7 AMMA 

CONTINUE 
AR=CVELCT+1,N)-2.08VELCT NJ #VEL(I-1,NI)/2.0 

(VEL (I41,;N)-VEL (1-1 9N)1/260 
    

G230AC99 
G240AC99 
G25GAC99 
G260AC99 

HOOOAC99 
HO1GAC99 
HO20AC99 

1OQ9AC99 
1 AC99 
TO20AC99 
1030AC99 
1040AC99 
TO50AC99 
1060AC99 
IOTOAC99 
TO0B0AC99 
TO99AC99 
TIOOAC99 
T110AC99 
1120AC99 
T130AC99 
1140AC99 
-1150AC99 
T16C0AC99 
T170AC99 
11L80AC99 

G
i
t



* FUNCTION ACI9J(M,BETAs PRM, MM) 

w
t
 

CC=VELLT ND 
ACOYI=AASAG# EZ4E8# AG4CC 
RETURN 
END 

THIS FUNCTION INTEPOLATES PARAMETERS 

DIMFNSICN PRM(10) 

IF(MM-1) lol,2 
ACIIJ=PRM(M) 
RETURN 

IF(M-1) 3,394 
1=2 
AG=KETA-1.0 

GO TO 7 

IF (M-VM) 6,555 
T=MM-1 
AG=RETA+1.0 

GO TO 7 
I=M 

AG=KETA 

CONT INUE 
KA=CPRM(141)—2.08PRM(T) +PRMCI-1) 1/220 

BB=CPRHCI41)=PRM( I-17 200, 

  

CC=PRM(1) 
ACIS J=AA#AG# #24 BB*AG4CC 
RETURN 

END 

1199AC99 
120GAC99 
1210AC99 
1220AC99 

JGOOAC99 
J AC99 
JO20AC99 
JO30ACI9 
JSG40AC99 
JOS5SOACI9 
JO6SAC99 
JUTOACID 
JGB8OAC99 
JGIGACI9D 
J1OGACS9 
J1LLOACID 
J120AC99 
J130AC99 
J1L40AC99 
J1L50AC99 
JL60AC99 
J170AC99 
JIBCAT99 
JLOGACSS 
J200AC99 
J210AC99 
J220A099 

ei
le



SUBROUTINE AC9S9L(N) 
THIS SUBROUTINE FITS THE "LOG LAW OF THE WALL®* 

INTFGER OMEGA : 
REAL NU,NUL1yNUL2,;NU1,NU2,Ky KAPPA, KAPPAL 
COMMON MIN, MOUTsMMyNNyLAMDA, OMEGA, NMINC»NSLAPyLT NU, 

1UL (10150), VL(10s50),U(10,50) 5V(10,50),W(10,50),BLT(10)5 
2P1(10),P2(10),LOGPT(10),NOPTS(10),VO(50),VO0(50), 
3XL+VOsFsG;Hs AT, BTsNSTEP yNSMAX, LFREQ,MFREQy 
4PS11yPS12,PS13)PS14,PS15,PS16yPSIT,PSIB, 
SPHI1,PHI2,PHI3,PHI4, PHI5,PH16)PHI7,PHIB: 
COMMON KAPPAsKAPPAL Ky AsCMINe ITN: I TMAX; TOL »S0SyNOSOS, 
LULL+UL2,UL 35 VL1)VL25VL3,U1sU2)U31V1,V29V37Q1 492703 
2NUL1LsNUL2sNU1sNU2sXIyXINCyP1ByP2By ALPHA, BETA, GAMMA, S2EPS, 
3A1(50)342(50) 1A3(50)4A4(50),A5(50), 
4D0STAR(10),C,D0,E1,E2,63 
GO TO (1y2)sLT 
EPS=1.0 
RETURN 

  

TOL1=0.90001 
B=(AT=(XL+ALPHASF )4BT) #HaN®KAPPAL#Q2 
B=Al OG(B/(OMEGA#NU) )+KAPPAL HA 
EPS1=6.0 
DO 4 J=l,MAXIT 
EPS=EPS1#(1.0-(EPS1+ALOG(EPS1)-B)/(1.0+EPS1)) 
TFC CEPS-EPS1)*#*2=TOLT) 5,553 : 
EPSI=EPS 
CONTINUE r 
WRITE(MOUT,6) Q2;N,ALPHA,EPS,EPS1 
CONTINUE 
RETURN z 
FORMAT (1HO, 5X, 3HEL1,5XyF12.631 65 3F 1206) 
END 

  

LOOOATID 
& AC99 
LGOLAC99 
LOO2AC99 
LOO3AC99 
LOO4AT9S. 
LOO5AC99 
LOOGAC99 
LOOTAC99 
LOOBAC99 
LOO9AC99 
LOLOACS9 
LOL1AC99 
LO12AC99 
LO13AC99 
LO2Z0AC99 
LO30AC99 
LO4OAC99 
LOS0AC99 
LO690AT99 
LGTOAC99 
LOB0AC99 
LO90AC9S9 
L1O0AC99 
LILOAC99 
L12GACS9 
L130AC99 
L140AC99 
L150AC99 
L169AC99 
L165AC99 
LITOAT99S 
L189AC99 

“
H
i
e
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SUBROUTINE AC9OM(M,N) 
THIS SUBROUTINE SETS. UP ALL THE NECESSARY 

QUANTITIES FOR THE FINITE DIFFERANCE APPROXIMATION 
TO THE MOMENTUM EQUATION 

INTFGER OMEGA 
REAL NUsNUL 1 yNULA Nua AUER TK APPA sRAPEAL 
COMMON MIN, MOUTsMMyNNyLAMDA,OMEGA,NMINC »NSLAP LT pNUy 
1UL(1G6,50),VL(10,;50),U(10,50) ,V(10150) »W(10,50) »BLT(10)y 
2P1(10),P2(10),LOGPT(10),NOPTS(10),V0(50),V00 (50), 

“ 3XL1Y¥OrFs1GeHs ATs BT,NSTEP;NSMAX,LFREQ,MFREQ, 
4PS11yPS12,PST3,PS14sPS155PS16,PSI 7s PSI 8s 
5SPHI1,PHI2,PHI3,PHI4;PHI5,PH16,PHI7,PHI8 

COMMON KAPPA, KAPPAL, Ky Ar CMINs 1TNy 1 TMAXs, TOL ,SOS,NOSOS, 

LUL1-UL2,UL3,VL1_,VL25 VL39U1,U2;U3,V1_V2sV31Q1 1021034 
2NUL1T,;NUL2,NU1,NU2,X1,XINC,PIB,P2B, ALPHA, BETA s GAMMA, S,EPS, 
3A1(50)242(50),A3(50) .A4(50),A5(50) 5 
4DSTAR(10),C,D,E1,E2,E3 
IF(N-NMINC) 19222 
X1=(N#*H) /OMEGA 
XINC=H/ OMEGA 

GO TO 3 

XT=CN-NMINC4+LAMDA) #H 

XINC=H 

TF(N-LOGPT(M)) 43495 
Ul=0.0 
V1=0.0 

UL1=0.0 

  

IF(N-NMINC) 7,677 
NM1=N-OMEGA 
GO TO 8 
NM1=N~-1 
ULL=ACO9T(UM,NML,GAMMA,UL, MM) 
VLI=ACS9T(M,NM1s GAMMA, VL_ MM) 

  

MOOOAC99 
M ACO 
mM AC99 
mM. AC99 
MOO1AC99 
MOOZAC99 
M003AC99 
MOO4AC99 
MCO5AC99 
MOOGAC99 
MOOTAC99 
MOOBAC99 
MOO9AC99 
MO1OAC99 
MO11AC99 
MO12AC99 
MO13AC99 
MO20AC99 
MO30AC99 
MO49AC99 
MO50AC99 
MO6DAC99 
MOTOAC99 
MOBOACIS 
MO9OAT99 
M100AC99 
M110AC99 
M120AC99 
M130AC99 
M140AC99 
Mi50AC99 
M160AC99 
M1T70AC99 
M180AC99 
M190AC99 
M200AC99 

 



10 
11 

UL=U(M,NM1) 
V1=V(MyNM1) 
Q1=SQRT( (PHI IT*UL1#PST1*U1) ##2+(PHI1*#VL14+PSI1#V1)##2) 
UL2=AC99T(M,Ny GAMMA, UL yMM) 
VL2=AC99T(MyNy GAMMA, VL y MM) 
U2=U(MyN) 
V2=V(M,N) 
Q2= a OCOSL (MENT Sean Hite ee ee 
UL3=AC99I (MyN+1,GAMMA,UL,MM) 
VL3=ACO9T(M,N+1,GAMMA, VL oMM) 
U3=U(M,N41) 
V3=vV(MyNF1) 
Q3=SQRT ((PHI1L*UL34+PS11#U3 ) #824 (PHI1*VL3+PSI1#V3)##2) 
IF (N-LOSPT(M)) 10,10,11 
CALI ACOSLIN) 
C=-AT#*XIT#(PHIL#UL24PS11#U2)4+AC991 (M,N,BETA,WyMM) 
D=AT® (XL+ALPHA#E )4BT 
P1B=AC99JS(M,BETA,P1,MM) 
P2B=ACO9J(M, BETA, P2,MM) 
RETURN 
END 

    

      

M210AC99 
M220AC99 

M230AC99 
M249AC99 
MZ50AC99 
M260AC99 
M2ZTGAC99 
M280AC99 
M290AC99 
M300AC99 
M310AC99 
M320AC99 
M330AC99 
M340AC99 
M350AC99 
M390AC99 
“4O00AC99 
M419AC99 
M420AC99 
M43CAC99 
M440AC99 

g
i
t



    

2 
UTINE “SETS: UP SThE. SUTPUT GUANTIES 

  

    

  

   

    

      

    

   

   

   

J, NUL1,NUL2,NUL,NU2,K, KAPPA, KAPPAL 
ACTON: 
MIN, MCUTs MM NN, LAMDCA, OMEGA, NMINC»NSLAP LT yiUy 

3) LOGPTCLG) NIPTS(1O) VEC SS) 5 VOO(50) » 
Hi A Sa Boyle release anes 
+PST3,PS14,PSIS,;PSIGyPSI7, PST 8s 

M11, Ph1?,PHI3,PHI4, HIS) PHLG, PHI7,PHI8 

JLZ:VLLe VE 2, VL 3 sUL U2 ;U3sV1liV25V3501 1924035 

2(50),A3 CE 
2rd 

oe CMTE (KLAR) #87) 
C9SC(1,1.9) 

    yy A4(50)2A5(59) 5 

  

‘INE »NOPTS(¥), 0 

    

COA HL, 1,07541.6) 
IMINC NOP TS(#) ,OMEGA,H1,6,6,91,1-0) 

PING, NOPTS(™) sD AyHLylyl1091.0) 
ACID a Ma NM INC sNOPTS (4) OAUEGA,H1 91 9515120) 

COG Ma AM INCa NOP TS(4)s OMEGA HT, 9 92912150) 
SY at MING pNOPTS(M) pCMEGATHL 5990125160) 

  

    

sVECTO PSO) ULC, 50)» V(10,50),W(1G,) 50) s5BLT(10), 

KAPDPA,KAPPAL Ky A, CHIN, TTN, IT TMAX, TOL, SOS ,NOSOS, 

pNUL,NU2, AT» XING P18, P28; ALPHA BETA sGAMMAGSs EPS, 

L,T22,HAPE, 2711, 97, CFsCEX,CF1,CF2,PHE 

OOGSACID 

0 ACID 

OIOLAcggs 
O90ZAC99 
OG02AC99 

HOOSATCSD 

O994hC99 
So0sacgg 

NVO6EACID 

G07 ACID 
OGODRACID. 

HO99KCID 

OC LIACID 
OU1LACID 

OOLZACI9 

OU13AC99 
AG2CAC9I9 

9923AC99 

6AC99 
QATCID 

    

    

Q100AC99 
O11GACIYD 
O1L20AC99 

  

‘O17 9AT99 

  

u
b



N
O
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RT11=Q1*T1L1/NU 
QT=KAPPAL#Q2/EPS 
IF(1T.EQe1) QT=0.0 

Ox(QT/Q1I##2 
FeU2/Q2 

CFY=CF#V2/02 
CFI=CEX#UL/Q1+CFY*V1/Q1 
CF2=CFX#V1/QI-CFY#U1/Q1 
PHI]=(V1#U2-V2#U1)/(U1*U24+V1#V2) 
I=? 
IF (NSTEP-(NSTEP/LFREQ)*LFREQ) 61196 
MM1=M-1 
TF(MM1-(MMI/MFREQ)#MFREQ) 6,216 
tia. 

      

MINC,NN 

ALUN) =(N-NMINC+LAMDA)*HL 

00 5 N=1,NN i 

U2=U(M IN) 

V2=V(MsN) 
A2(W)=V2/U02 
AZ(N)=(UL#U2Z4V18V2)/Q1 882 

AG (WN) =(V1*U2-U1*V2)/Q1##2 

AS(N)=(V1#U2-V2"UL)/(UL#U24V14V2) 
CONTINUE 

CALI ACIOP(MyITT) 

CONTINUE 
RETURN 

END 

   

O210AC99 
O220AC99 
0225AC99 

O230AC99 
O240AC99 
02504099 
O260AC99 
O270AC99 
O2B80AC99 
O285AC99 
0290AC99 
0292AC99 
0294AC99 
0296AC99 
N300AC99 
O310AC99 
0320AC99 
0330AC99 
0340AC99 
O350AC99 
O360AC99 
O37TOACI9 
O380AC99 
O390AC99 
O400AC99 
0410AC99 
O0420AC99 
0430AC99 
0440AC99 
0450AC99 (b



SUBROUTINE AC99P(M,I1) 
INTFGER OMEGA 
REAL NUyNULL,NUL2,;NU1,NU2,KyKAPPAs KAPPAL 
COMMON MIN, MOUT,MMyNNyLAMDA,OMEGAsNMINC yNSLAP LT aNUy 

LUL (10,50), VL(10,50),U( 10,50) ,V(10s50),W(10,;5),BLT(10)_ 
2P1(10),P2(10),LOGPT(10),NOPTS(19),V0(50),VO0(50), 
3XL1YO.F1SsHy ATs BT sNSTEPsNSMAX,LFREQ,MFREQ? 
APST1sPST2,PSI3:PS14sPSI5,PS16,PS17,PSI18y 
SPHI1,PHI2,PHI3,°H14,PHI5,PHI6,PHI7;PHI8 
COMMON KAPPAsKAPPAL Ky ArCMINyITNy I TMAX: TOL ySOS;NOSOS, 
LUL1+UL2;UL3yVL1_yVL2,VL3,U1,U2,U3_V1,V2sV3101192;03y 
2NULT sNUL2,NU1,NU2,X1,XINCsP1B,22B, ALPHA, BETA ,GAMMAsS;,EPS> 
3A1(30)+A2(50)1A3(50)1A4(50) 4A5(50)4 
40,D1,02,T11,T12,T21,T22,HAPE,RT113;QT, CF yCFXyCF1,CF2,PHI 
IF(CTI-1) #(LFREQ+MFREQ-2)) 25291 

1 WRITE(MOUT,70) 
2 XLP1I=XL4+F 

H1=H* (AT#XLP1+BT) 
YM=YO+(M-1)#G 
WRITE(MOUT,71) NSTEPsM,XLP1,YMyHly,TTN,LOGPT(M) »EPS 
WRITE(MOUTs72) O,HAPE,RT11201,02,T11,T12,T21,T22 
WRITE(MOUT,73) QT,CF,CF1,CF2,CFX,PHI 
N=LOGPT(M) 
CALI ACO9S(M,N) 

WRITE(MOUT,76) ALPHA, BETA, GAMMA, S 
CALI -CO9S(MyNN) 
WRITE(MOUT,76) ALPHA, BETA,GAMMA, S 
GO 10 (5,3),11 

3 WRITEC(MOUT, 74) 
00 4 N=l,NN : 
WRITE(MOUT, 75) AL(N), UCM ND, V(MeN) sWOMIN) gA2EN) » 

   

1 AZB(N),A4(N),A5(0N) 
4 CONTINUE 

WRITE(MOUT;70) 
5 RETURN 

70 FORMAT(1H1) 

POOGACOS 
POO1AC99 
PLOZAC99 
POO3AC99 
POO4AC99 
POOSAC99 
POOGACID 
POOTACS9 
POOBACID 
POOSAC9D 
PU1LOAC99 
POLLAC99 
PO1L2AC99 
PO13AC99 

PO20AC99 
PO30AC99 
PO32AC99 
PO34AC99 
POQ36AC99 
PO4OACIS 
POSOACS9 
PO69AC99 
POTGAC99 
PCBOAT99 
POSDATC99S 
P1lOUAC99 
PLLOACOS 
Pi20AC99 
P130AC99 

P140AC99 
PI50AC99 
P160AC99 
PLTSAC99D 
PLOCACIS 
P200AC99 

P210AC99 

o
N
t
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zee FORMAT (LHOs 2X) 4HFACEy 14, 2X_ 8H, SECTION, 14y 6X, 2HX=9F11.6)2X) 3H Y=) P220AC99 
LFI1~6/1H ,100X,1H#/1H 46X,31HTHE Z INCREMENT WAS ADJUSTED TO, P230AC99 
2F12-9,;30H AND THE SOLUTION CONVERGED IN,13,16H ITERATIONS WITH, P249AC99 
34H N =,13y7H AND C=,F10.6/1H+,110X, 1H-) ; P245AC99 

72 FORMAT(1HO,6X:4GH THE PROFILE PARAMETERS ARE AS FOLLOWS -112X,2HS=P250AC99 
11F 10.6) 5X1 2HH=,F 9.55 3X_5HR =+F10.3/1H+,58X ,1HC/1H 190X,3HO11/1H4+P260AC99 
290%, 1H-/1H 58X,1H#,15X,1H#/1H 9 1X,3HS1=,F10.643Xs 3HS2=4F10.6,3X, PZTOACID 
34HO11=5 F106) 3X, 4HOL2=4F10.643X1 4HOZ1=4F 10. 613X14HO22= 9 F 10.6/1H4y P280AC99 - 
47X21HC115X_ LHC y15X_ 1H 16X_ 1H-y16Xy1H-»16Xy1H-) P299AC99 

73 FORMAT(1HO,7X:3HQ =,F10.7)3%y3HC =,F10.7) 3% 4HC =yF10.7,3Xs4HC + =P300AC99 
1,F10.7,3X,4HC =9F10.715Xs 2HO=,F10.6/1H+,92X,1H//1H y8X21HT715X_ P31GACID 
21HF«15X_2HF1,15X_2HF2,15X_2HFX/1H+,8X,1H() | P320AC99 

74 FORMAT (1HOs3X,B8HDISTANCE,8&X,31HRECTANGULAR VELOCITY COMPONENTS 17X,9330AC99 
LTHTANGENT, 11X,12H"STREAMWISE*, 10X,7HTANGENT/1H »3Xy8HFROM THE s47XsP340AC99 
25HANGLEs10X,17HVELOCITY PROFILES,8X,5HANGLE/1H 1 5Xs4HWALL,12X_ 1HU,9359AC99 
312X+1HV,12X_ LHW, 11Xy 3HQ—-Uy12Xy2HU1L,11X%,2HV1,10X,4HO-OS/) P360AC99 

TD, FORMAT (3XaF 1006s 2X1 31 3XyF 1004) 9 3X9F 9069 2%12( 3XaF 1006) 9 3X 7F 906) P379AC99 
76 FORMAT(IH »4F12.6) P3B0AC99 

END P390AC99 

SUBROUTINE AC99Q QO00AC99 
THIS SUBROUTINE SETS UP THE FREESTREAM Q AC99 
BOUNDARY CONDITION FOR THE THREE- Q AC99 
DIMENSIONAL BOUNDARY LAYER Q AC99 

INTFGER OMEGA QUO1LACISD 
REAL NUyNULLsNUL2,NU1,NU2sK,KAPPA,KAPPAL Q002AT99 
COMMON MIN, MOUT, MM yNNyLAMDAs OMEGA, NMINC sNSLAP)LT yNUy Q903AC99 
1UL(10,50)5VL(10,50) ,U(10,50)1V(19,50)2W(10;50) sBLT(10), Q004AC99 
2P1(10)2P2(10),LOGPT(10),NOPTS(106);V0(50),VO0(50), QO05AC99 
3XL2¥OrFsGrHyATsPTyNSTEPsNSMAX,)LFREQ,MFREQ, QLO6AT99 
4PS11yPS12,PS13,PS14,PS15,PS16,PSI7T,PS18; 

QUO7AC99D 
SPHI1,PH12,)PHI3,PHI4,PHI5,PHI 6, PHI7,PHIB Q008AT99



a
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COMMON  KAPPAsKAPPALsKyAyCMIN, ITN, TTMAX, TOLs SOS sNOSOS» 
1UL1-UL2,UL3yVL1y)VL23VL3,U1,U2s;U3,V15V2;V3191 102,03, 
2NULT NUL 2,NUL+NU2,X1yXINCyP1B,P2By ALPHA, BETA GAMMAyS2 EPS» 
BAL(5 3,A2(50),A3(50),A4(50),A5(50)5 
4DSTAR(10).C,D:E1s;E29E3 
DO 1 M=1,MM 
UCMsNNI=ACOQU(XL+F ,YO+(M—1) #6) 
V(MeNN)=ACIOV(XL+F ,YO+(M—1)96) 
PL(M)= (UCMyNN)+ULOMSNN) )#(UCM)NNI-UL(M)NN) ) /(2.08F) 

1 + (VOM a NNDFVL (Ma NND 2 # (VOM) NND-VL (Ma NND) 702 008F 
P2(M)= (UCM, NNI4UL (MyNN) )* (ACI9U(XL4+0.5*F yYO+M#G) 

-ACI9U(XL40.5#F ,YO#(M-2) #6) 1/( 4.086) 
2 #(V0M,)NNIFVL(MyNN) )® (ACIOV(IXL4+0.5#F,YO+M#G) 
a ~ACOIVIXL4+0.5%F ,YO+(M-2)#G6) )/(4.086) 

1 CONTINUE 
VO(NN)=ACOOV(XL+0.5#F 2 Y0-G) 
VOOUNND=ACOOV(XL4+0.5#F yYO+MM#G) 
RETURN 
END 

    

SUBROUTINE AC99OR(M) - 
THIS SUBROUTINE SETS UP LAMINAR OR TURBULENT 
VISCOSITY FUNCTION PARAMETERS 

~ 7 MELLGR AND GIBSON VISCOSITY MODEL 
INTFGER OMEGA 
REAL NU,NULL,NUL2,NUL,NU2,KsKAPPAsKAPPAL 
EXTFRNAL AC9OY 
COMMON MIN, MOUT, MM pNNyLAMDAs OMEGA NMINC »NSLAP SLT yNUy 

1UL (10,50) VL(10,50),U(10,50).V(10,50),W(10150) +BLT(10), 
2P1(10)4P2(10),LOGPT(10),NOPTS(10)sVO(50),VOO(50), 
3Xb YO, Fs GsHs AT, BT yNSTEP»NSMAX,LFREQ,MFREQy 
4PSIVePST2sPSI3sPS14sPS15_PST6yPSI7sPS18y 

QO09AC99 
QOLOAC99 
QOLLAT9S 
QO12AC99 
Q013AC99 
QU2GAC99 
QO30AC99 
Q040AC99 
Q050AC99 
QG60AC99 
QGTOAT9S 
QO80AT99 
QO90AC99 
Q10GAT99 
Q11OAT99 
Q129AC99 
Q130AC99 
Q140AC99 
Q150AC99 

ROODAC99 
R AC99 
R AC99 
R AC99 
RUOLACIOD 
RGO2ZAC99 
ROO2ZLC99 
ROO3AC99 
ROO4SACO9D 
RCOS5SAC9O9 
ROO6AC99 
RGOTACID



5PHI1,PH12,yPHI3,PHI4, PH15,y PHI 6y PHI 7_)PHI8 

COMMON KAPPA, KAPPALsKyAyCMINgITNe I TMAX, TOL sSOS,NOSOS» 
LULL-UL2,UL3,VL1yVL29VL3yU1sU2,U35V11V21V31911023039 
2NUL1,NUL2;NUL,NU2s;X1,XINC,P1B,P2B; ALPHA, BETA, GAMMArSsEPSo 

3A1(50),A2(50),A3(50),A4(50),A5(50)9 
40STAR(10)+C, Dr, E1,E2,E3 

   
AL=0.5 
GO TO 
DSTAR( 
RETURN 

CALI A 
=4C9 

C9. 
(M 
(rv 
QR 
QR 
Se 
25 

*( 
Ql=62 
Ul=0.5 
V1=0.5 

THLI=A! 

AA=1.0 

“K=0-01 

1 

TEUK=C 
K=0.00 
CONTIN 
DSTAR( 

RETURN 

END 

CV seri 
MY=NU/CAT#® (XL+AL*F)4+BT) 

C99S(M,NN) 
91 (MyNN,GAMMA,UL,MM) 
S1(MyNNy GAMMA, VL y MM) 

NN) 
aN) 

T(UL##24V1le#2) 
T(U3#* 24+V3"8#2) 
Ql 
*(Q3+Q1) 
AT#* (XL+ALPHA*F )+BT) 

*(U3+U1) 
#(V34V1) z 
CIOTLACIOY»MsNMINCsNOPTS(M) »OMEGA,H1.14110sALPHA) 

E 4*TH11*(0Q/S)/02 
640.00015#AA 
2007) 71798 
7 ; 
UE 3 
M)=KeQ2e - : 
ACIITCACIIYy My NMINCyNOPTS(M) yOMEGAyHe 1 9920, ALPHA) 

ROODBACID 
ROGIACID 
ROLOAC9D 

ROLLAC9S 
ROLZAC99 
RO13AC99 
ROLTACID 
RO2Z0AC99 
ROZ0AC99 
RO4VAC99 
RUSOACIID 
RO6OACID 
ROTOAC9D 
RUBOAC9D 
RUSOAT99S 
R100AC99 
R110AC99 
R120AC99 
R1390AC99 
R140AT99 
R150AC99 
R160AC99 
R17OAC99 
R1L80AC99 
R19OAC99 
RZ00AT99 
R210AC99 
R229AC99 
R23VAC99 
R240AC99 
R259AC99 
R269AC99 
R27T0AC99 

"
e
S
b
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SUBROUTINE AC99S{(M,N) 
THIS SUBROUTINE FITS "STREAMLINES* BETWEEN POINTS 

ON THE DOWNSTREAM SOLUTION -FACE AND THE UPSTREAM 
SOLUTION FACE 

INTFGER OMEGA 
REAL NU,NUL1,NUL2;NU1sNU2)K,KAPPAs KAPPAL 
COMMON MIN, MNOUT,MityNN,yLAMDA,OMEGA,NMINC yNSLAP,LT yNUy 

1UL (10,50), VL(10, 50) sU(10)50),V(101 50) »W(10;50) ,BLT(10)% 
2P1(10),P2(10)+LOGPT(10) sNOPTS(19)5VO(50)sVOO(50) 9 

BXLyYOs Fy GrHeATs BT yNSTEP yNSMAX,LFREQ:MFREQs 
4PS11,PS12_PS13,PS14sPS15;PS16;PS17sPSIB, 
5PHI1_PHI 2, PHI3,PH14,PHI5sPHI6,PHI7,PHI8 
COMMON KAPPA, KAPPALsKyAaCMINs ITNa LTMAX, TOL SOS sNOSOSy 
1UL1-UL2,UL3,VL1,VL2,VL3.U1,U2,U3,V11V21V31Q1102,03» 
2NUL1,NUL2,NU1,NU2)X1yXINCyP18yP2B, ALPHA, BETA :GAMMA,S EPS» 
3A1(50),42(50)5A3(50) ,A4(50),A5(59) 2 
40STAR(10),C,;0,E1,E2,E3 
TOL1=0.001 
TOL?=0.001 
TOL3=0.001 
MAXIT=10 
TSTA (M,N) /U0M ND 
TGAMA=VL(MyN)/UL(MaN) 
TG=.0 

AA=TSTAR+TGAMA 
IFCABSCAA)=TOL1) 1,152 
GAMMA=0.0 
60 107 

      

SOOUAC99 
5 AC99 
s AC99 
S AC9OD. 
SOO1AC99 
SOO2ZAT99 
S$903AC99 
SOO4AC99 
SOOS5SAC99 
SOO6AC99 
SOOTAC99 
SUD8AC99 
SOO9ACI99 
SO1CAC99 
SO11AC99 
$O12AC99 
S$O13AC99 
SO20AC99 
SO3Z0AC99 
SO4CAC99 
SO50AC99 
SO60AC99 
SOTOACID 
SOB89ACI9 
SO9CACT99 
S1OUAT99 
$11S5AC99 
S$120AC99



10 
11 

IF(AA) 34394 
SGN=-1.0 
GO TO 5 = 
SGN= 1.0 

GAMMA=-TSTAR#F/G 
DO 6 1=1,MAXIT 
TGAMA=ACI9IT(MaNyGAMMAs VL yMM) SACO9I (MyNy GAMMA y UL MM) 

T=(1.0-TSTAR#®TGAMA)/(TSTAR+TGAMA) 

GN#SORT (1.047 ##2) 
ERROR=GAMMA+TG#F/G 
GAMMA=-TG#F/G 

IF(ABS(ERRORI-TOL2) 71796 
CONTINUE 
WRITE(MOUT,11) MyN 

CALE EXIT + 

ALPHA=(2.043.0#TG#TSTAR-TG##2)/(4.0#(1.04+TG#TSTAR) ) 
BET Fe (TSTAR+TG+2.0%TG#*2*TSTAR)/(4.08G%(1.0+TG*TSTAR) ) 
AS=FeSORT(1.047TG##2)/2.0 
BS=(TG-TSTARI/(1.04TG#*TSTAR) 
CS=SORT(1.04+BS##2) 
IF(ABS(BS)-TOL3) 8,8,9 
$=2-08AS 
GO TO 10 
S=AS*(ALOG(BS+CS)/BS+CS) 
RETURN = 
FORMAT (1LHO, 5Xs 3HES1 5 5Xs 216) 
END 

   

      

$130AC99 

$140AC99 
S150AC99 
$160AC99 
S17OAC99 
S$189AC99 
S190AC99 
S200AC99 
S21GAC99 
S220AC99 
S$230AC99 
S240AC99 
S250AC99 
S$269AC99 
S27CAC99 
S$280AC99 
S290AC99 
S300AC99 
S3190AC99 
$329AC99 
$330AC99 
S340AC99. 
S350AC99 
S$360AC99 
S370AC99 
S38VAC99 
$390AC99 

“
S
b
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FUNCTION ACOST(PR »MyNMINCsNOPTS,OMEGA,Hs11s129132A) 
THIS. FUNCTION CALCULATES THE INTEGRAL OF THE 
FUNCTION R THROUGH THE BOUNDARY LAYER 

INTFGER OMEGA 
T1=0.5#(R(My0,11,12,13,A)+R( My NMINC,I1,122139A)) 
IJ=NMINC-1 
OO Tel elS 
TL=T14R(M, 1,11, 12,139A) = 
T2=0.54( RUM NMINC, 11,12, 13,A)+R(MyNOPTS, 11,12,132A)) 

ITIT=NMINC+1 
IJ=NOPTS-1 
DO ? I=11,1J 
T2=T24R(My1,1T1,12,132A) 
ACOST=H#(TL/OMEGA+T2) 
RETURN 

END 

  

FUNCTION ACOOVIXsY) 

AC99V=0.0 

RETURN 

END 

TOOGAT9D 
T AC99 
ne AC99 
TO1OACTC99 
TO2GAT99 
TOZ9AC99 
TO40AC99 
TOSOAC99 
TO60AC9Y 
TOTOAC99 
TOBOAC99 
TO9DAC9S 
T1OGOAC99 
T110AC99 
T120AC99 

T130AC99 

VUOOAC99 
VO1CAC99 
VG2Z0AC99 
VO39AC99



SUBROUTINE ACOOW(MyN) 

THIS SUBROUTIME CALCULATES W AT ANY POINT 

INTEGER OMEGA 
REAL NU,;NUL1,NUL2;NU1,;NU2,KyKAPPAs KAPPAL 
COMMON MIN,MOUT,MMyNNyLAMDAs OMEGA,NMINCNSLAP,LT aNUy 
1UL(10,50)4VL(10,50),U(10550) 1V(10,50).W(10,50) ,BLT(10)9 
2P1(10),P2(10),LOGPT(10),NOPTS(10),V0(50),V00(50)5 
BXL2YOsFyGyHs ATs ST yNSTEPyNSMAX,LFREQyMFREQ, 
4PST1,PSI2,PS13yPS14,PS15,PS16,PSI17,PSI8y 
5PHI1, PH12,PHI3, PHI 4, PHI5,PHI 6, PHI 7,PHIS 
COMMON KAPPAyKAPPAL a Ky As CMIN, IT TNsITTMAXs TOLySOSsNOSOSy 
LUL1-+UL2,UL3,)VL1_VL2,VL32U12U2U39V11V21V31012Q2903y 
2NUL1T yNUL2,;NU1L,NU2,X1aXINCyP1B,P2B,ALPHA, BETA sGAMMAsSyEPSy 

3A1(50)1A2(50)4A3(50),A4(50) ,A5(50) 9 
4DST4R(10),C,D,E1,E2,E3 
TF(N-LOSPT(M)) Lyl92 
C=AT#U2/(D#EPS) 
GO 10 3 
C=(AT#X1/D) # (NU2—NUL)Y/XINC 
£=(U3-U1)/F+(V3-V1)/(2.0"%G6)-C 
IF(N-LOGPT(M)) 49436 
W(MsN)=-(D¥X1/(1.041.0/EPS) )#E 
00 5 IT=1,N 
W(MsLI=(FLOAT(IV/N)##(1.04+1.0/EPS)#W(MyN) i 
RETURN 
WOM. N)=W(M,N-1)-DeE#X INC 
RETURN 
END 

SUBROUTINE AC99X 
THIS SUBROUTINE DETERMINES THE NUMBER OF 
POINTS AND THE LOG POINT AT EACH SECTION 

INTFGER OMEGA 

REAL NU,NUL1,NUL2,;NU1,NU2.KsKAPPA, KAPPAL 

WOOOAC99 
eee) 

WOO1AC99 
WOOZAC99 
WOO3AC99 
WGO4AC99 
WOO5AC99 
WOOEAC99 
WOOTAC99 
WOOBAC99 
WOO9ACOD 
WO1LOAC99 
WOLLAC99 
WO1L2AC99 
WO13AC99 
WO20AC99 
WO30AC99 
WO40AC99 
WO50AC99 
WO6DAC99 
WOTGAC99 
WOBOAC99 
WO9CAC99 
W100AC99 
W1L1OAC99 
W120AC99 
W130AC99 
W140AC99 

XOO0AT99 
x AC99 
x AC99 
XOO1LAC99 
X002AT99 

oy



n
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COMMON = MIN,MOUT, Mi, NNyLAMDA,ONFGA,NMINC ;NSLAP LT yNUy 
1UL(10559),VL(10,50),U(10,50),V(10,50).W(10,50) ,ELT(10)5 

2P1(10),P2010),LOGPT(10),NOPTS(10),VG(50),VO0(50)_ 
3XL1YOyFyGr He AT BT eNSTEPyNSMAXs LFREQ) MFREQy 
4PS11,°S12,PS13sPS14,9S15,PSI6,PSI7T,PSI8y 
5PHI1,PHI2, PHI3y PHI 4, OHI5, PHI 6, PHI 7,PHI8 
COMMON KAPPA, KAPPALsKsAyCMIN, ITN, LTMAX, TOL, SOSsNOSOSy 

LULL +UL2,UL3,VL1sVL2)VL3,U1;U2:U3sV15V21V31Q1992203% 
2NUL1 NUL 2, NUL NUZ XT XINCs P1Ey P2Bs ALPHA, BETA, GAMMA; Sy EPS 
3A1(50),A2(50).A3(50),A4(50),A5(50), 
4DSTAR(10),C,0,E1,E2,E3 
CAL! ACI9B(2,0.0) 
DO.? M=1,MM 
NOPTS(M)=BLT(M)+NSLAP41 
TF(WOPTS(MI-NN) 29252 
NOPTS(M)=NN 
CONTINUE 
GO TO (3,5),LT 
DO 4 M=1,MM 
LOGPT(M)=1 
RETURN 
NL=NMINC-OMEGA 
DO & M=1,MM 
DO 6 N=2,N1 5 
Q2=SORT(UL (M,N) ##24VL (M,N) #82) 
ALPHA=0.0 
CALI ACOSLI(N) 
C=N#KAPPAL#H#Q2/ (OQMEGA®NUS EPS) 
IF(C-CHIN) @5757 
CONT INUE 
WRITE(MOUT,9) NSTEPsM,C 
N=N1 
LOGPT(M)=N 
CONTINUE 
RETURN 
FORMAT (1HO,5Xy 3HEX1s 5X%y216,F 1206) 

END 

X003AC99 
XO04AC99 

XOO5AC99 
X006AC99 
XOO7AC99 
XCOSAC99 
X909AT99 
XG1OAC99 
XOL1ACOD 
X912AC99 
X013AC99 
XU20AC99 
X030AC99 
XU40AC99 
XO50AC99 
XO6CACI9 
XOTOAC99 
X9BGACI9 
XCICATID 
X1LOGAC99 
X119AC99 
X120AC99 
X1390AC99 
X140AC99 
X1504C99 
X160AC99 
X17TOAC99 
X189AC99 
X190AC99 
X290AC99 
X21V0AC99 
X220AC99 
X230AC99 
X240AC99 
X259AC99 
X260AC99 
X27T0AC99 
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FUNCTION AC99Y(MyNyI1s12;13;AL) 
THIS FUNCTION PROVIDES THE ARGUMENTS NECESSARY 
TO CALCULATE THE DISPLACEMENT AND MOMENTUM 

THICKNESSES 
INTFGER OMEGA 
REAl NU,NUL1,NUL2.NU1,NU2,K, KAPPA, KAPPAL 
COMMON MIN, MOUTsMMyNNaLAMDAs OMEGA, NMINC yNSLAPs LT yNUy 
UL (10,50). VL(10150),U(19,50),V(10;50)1W(10,50),BLT(10)> 
2P1(10),?2(10),LOGPT(10) sNOPTS(10)1VO(50),VO0(50) 5 
BXLyYOyFySyHy AT» BT a NSTEPyNSMAX,LFREQyMFREQ, 
4PS11,PS12_PS13,PS14,PS15yPS16yPSI7TyPSIBy 
5PHI1,PH12,PHI3,PH14,PHI15,PHI6,PHI7,PHI8 
COMMON KAPPA, KAPPAL Ks As COMIN, ITN, I TMAXsTOL,SOS,NOSOSy 
LUL1-+UL2,UL3,VL1sVL22VL3,U1,U2,U39V1_V29V3291 5923034 
2NUL1 4 NUL2,NU1L,NU2,X1,XINCsP1B,P2B, ALPHA: BETAsGAMMAsSyEPSy 

3A1(50),A2(50),A3(50),A4(50),A5(50)5 
4DST4R(10),C,0,E1L,E2,E3 
IF(N) 1ly1,2 
UU=0.0 
VV=0.0 
GO TO 3 3 : 
CONTINUE 

UAL=(1.0-AL) #UL(M,N)#AL#U(MN) 
VAL=(1.G-AL) ®VL(M,N)4+AL#V(M,N) 
UU=(UALEULF+VAL#V1)/Q1H¥#2 
VV=CUAL*V1-VAL#U1)/Q1##2 
CONT INUE 
AA=1.20 
LF(11) 41594 
AA=GAe(1.0-UU) #811 
TF(12) 64716 
AA=AAeUUSET2 
IF(13) 8,938 
MASK ARV Ve eT 
LCOSY=AAK 
RETURN 

END 

  

YOOCAC99 
Y  acg9 
Y Ac99 
Y  Acgg 
YOOLAC99 
YOO2AC99 
YOO3AC99 
YOO4AC99 
YOO5AC99 
YOO6AC99 
YOO7TAC99 
YOOBAC99 
YOO9AC99 
YO1L9AC99 
YOLLAC99 
YO12AC99 
YO13AC99 
YO20AC99 
YO30AC99 
YO40AC99 
YC50AC99 
YO6OAC99 
YOTOAC9D 
YO75AC99 
YO80AC99 
YO85AC99 
YU9CATOD 
Y100AC99 
Y110AC99 
Y120AC99 
Y130AC99 
Y140AC99 
Y150AC99 
Y169AC99 
Y170AC99 
Y1B80AC99 
Y196A099 

S
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SUBROUTINE AC99Z(NEQ) 
THIS SUBROUTINE SOLVES THE LINEAR ALGEBRAIC EQUATIONS 

INTEGER OMEGA 2 
REAL NUyNUL1,NUL2,NUL,NU2)K,KAPPA, KAPPAL 
COMMON MIN, MOUT + MM,NNyLAMDA, OMEGA, NMINC sNSLAP LT yNUy 

1UL (10,50), VL(10,50),U(10,50)4V(10,50) »W(10,50) sBLT(10), 
2P1(10),P2(10),LOGPT(10),NOPTS(10),V0(50) ,VO0(50)5 
3XL2Y¥OyFyGyHy AT, BT yNSTEPyNSMAX pLFREQ, MFREQ, 
4PSI1yPS12)PS13PS14,°S15,PS16,PSIT2PSI By 
5PHI14°HI2,PHI3)PHI4,PHI5yPHI 6, PHI7yPHIB8 
COMMON KAPPA, KAPPALsKyAyCMIN, 1 TNs LTMAXy TOL» SOS ,NOSOS, 
LUL1+UL2,UL3,VL1_VL2)VL39U19U2;U3,V1.V21V31Q1 102103, 
2NUL1TyNUL2,NUL,NU2,X1,XINCsP1ByP2E, ALPHA, BETAsGAMMAsS,EPS> 
3A1(50),A2(50)1A3(59),A4(50)sA5(50)5 
4DSTAR(10),C,0,E1,E2,E3 
DO 1 1=2,NEQ 
A3DI=A3(I-1)/A1(I-1) 
AL(1)=AL(1)-A2(1-1)#A3D1 
AGI 
AS(T)=A5(1)-AS( 1-1) #A3D1 
CONTINUE 
AG (HEOV=AS(NEQ)/ALINEQ) 
AS(NEQ)=AS(NEQ)/Al(NEQ) 
DO 7? J=2,NEQ 

  

I=NF J+l 
ASCE I= CASCTI-A2CT)V#AGUT4AL) SALT) 
AS(TI=CAS(CIT)-A2(T)®AS(T41))/ A101) 
CONTINUE 
RETURN 

END 

4(1)-A4 (1-1) #A3D1 : E 

ZOOOAC9D 
z AC99 
ZOOLAC99 
ZEO02AC99 
Z003AC99 
ZO004AT99 
ZGO5AC99 
ZGO6AC99 
ZUOTAC9OD 
ZO0O8AT9D 
ZOO9ACI99D 
ZOIOACIO 
ZOLIAC99 
20124099 
Z013AC99 
ZO20AC99 
Z2G3GAC99 
Z940AC99 
ZC530AC99 
ZO60AT9OI 
ZOTOACS9S 
ZO80AC99 
ZO9CAC99 
Z100AC99 
Z119AC99 
Z120AC99 
Z130AC99 
Z149AC99 
Z150AC99 
Z169AC99 

o
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PROGRAM DESCRIPTION



Introduction. 

The present appendix contains a description of the 

structure of the computer program listed in Appendix A6 as well 

as instructions for using the program. 

The calculation scheme is based on that presented in 

detail in Chapter Four and Appendices Al-5 where finite differeuce 

approximations have been made to the transformed boundary layer 

equations (4.3.9-11). We note here that tne boundary layer 

equations were gee gas using equation (4.3.1) and that the 

effective viscosity ve has beenr eplaced by ve a@s given by 

equation (4.5.8). 

The program itself is effectively built up of three 

major subroutines which determine the overall progress of the 

calculation. The first subroutine, the 'main program’, provides the 

control in that it reads: in the data and calls on another subroutine 

AC991 to compute velocity profiles at each solution face before pro- 

ceeding to output the results of the calculation. Subroutine AC991 

calculates each solution face by repeatedly calling AC992 which at 

each pass performs one complete iteration of the boundary layer 

equations. The main program and subroutine AC991 are thus primarily 

concerned with the organisation of the calculation while subroutine 

AC992 contains the basic calculation scheme, altnougn some calculation, 

such as ammending the side boundary conditions and the grid devel opment 

between iterations, is contained in subroutine AC991. These three 

major subroutines call upon numerous others which will be detailed 

later. 

  

Flow diagrams are included below to give a deser 

account of the progress within these three major subroutines, while 

following these we will give a more detailed breakdown of the common 

storage and the subroutines used. Finally en account of how the
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program should be used is included together with subroutine and 

data inout for a saaple application (that of Hornung and Joubert 

considered in section 6.6).
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Common storage. 

The items of data stored in common are listed below 

with array sizes where these are relevant. The program included 

th a 10 x 50 grid although obviously it would be very 

  

will cater w 

easy to alter the program in this respect to suit any particular 

need. Reference below to 'this face' is to the solution face 

currently being calculated, 'last face' to that immediately pre- 

ceeding. Individual items will be referred to the standard 

notation used in the remainder of this work. 

MIN Card input unit number 

Mout Printer output unit, number 

MM M 

NN N 

LAMDA x 

OMEGA @ 

NMINC Aw 

NSLAP minimum number of slack points to be accommodated 
above boundary layer edge 

Lt =1, laminar flow 

=2, turbulent flow 

NU v 

UL,VL U,V components of velocity at points on last face 
(each 10 x 50 array) 

U,V u,v components of velocity at points on this face 
(10 x 50) 

y w component of velocity at points on mid-face (10 x 50) 

BLT § at each section (10) 

PE P2 pressure terms in x,y momentum equations at each 
section (10) 

LOGP? the log-point at each section (10) 

NOPT'S the number of points at each section (10) 

vo, voo crossflow velocity profiles at side boundary planes (50)
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xL Xp 

ee) y at first section 

F,C,H £,8,h 

AT, BT a,b 

NSTED number of this solution face 

NSMAX maximum number of solution faces to be calculated 

L-,MFREQ frequency of full velocity profile outputs in x,y 

directions 

PSI1,-8 #, i= 158 

PHI1,-8 $ i= 1,8 

KAPPA»-L kK as it appears in effective viscosity function, 

4 logarithmic law of the wall 

K,A K,A x 

CMIN minimum value of aq./v for which law of the wall 

is assumed valid 

ITN iteration counter at this face 

ITMAX maximum number of iterations at each solution face 

TOL tolerance to which solution is to be iterated 

sos accumulated error sum of squares for current iteration 

NOSOS number d points at which same has been accumulated 

ULL, woe quantities appearing in finite difference approximati ons 

P2B to momentum equations (see figure (1..6.2)) and 
continuity equation (see figure(4.7.1,2)). 

ALPHA,...S a,B,y,8 streamline coordinates (see figure (4.6.1)) 

EPS S 

AL,-5 coefficients of linear algebraic equations (50) 

DSTAR effective viscosity parameter (10) 

Cy e005 contractions used in finite difference approximations 

- . . « 0 momentum equations at_wall Fee eae anes 

D,.-sPHI_ _ boundary_layer parameters for output_ _ 

The last two sets of variables partitioned by dashed lines 

are alternative storages. 

Although the overall calculation is referred to a 10 x 50
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grid, at section I the number of points at which the solution is 

calculated (NOPTS(I)) may be reduced to avoid calculating excessive 

points at sections where the boundary layer is thinnest, At least 

NSLAP ‘'slack points’ are accommodated above the boundary layer 

edge (80.999) at all sections havever. 

The arrays Al,-5 are used for storing the coefficients 

of the linear algebraic equations described in section 4..6. Remabering 
© 

that the first point to be used in the finite difference scheme is 

the log-point the general equation is then 

Bee AO ee hier Og ie ge Be eee eee oe 
3,i-2 n*¥+i-2 a,i n¥ting 252. Otte Sgt 

BON ies MVS Remit B Se ae a eae pa Wu gi eahyoe V ete 
ayina n*¥+ing a,i- n¥+ina @,i n¥si Bai 

The output facility caters for full velocity profile 

outputs only at sections where these are soecified and elsewnere 

only boundary layer parameters are output. For example, if LFREQ=2 

and MFREQ=3 velocity profiles would be mitput at sections 1,4,7,10 

(assuming there were ten sections at each face) at faces 2,4,6, 006 

The diagran below shovs a plan of two adjacent 

solution faces ani indicates eee the various velocity profiles 

are stored.
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Included below are brief notes on the subroutines 

that make up the present program. More detailed information can 

be obtained by referring to the program listing in Appendix A6é or 

to the flow diagrams included above where the sequence of some 

of the subroutines has been included. Subroutines AC99A,-H,-V 

as included in the program listing have only restricted application, 

some possibilities for their extended use however will be given 

later. 

Main program 

Reads data input, sets up initial conditions. Updates 

solution before each face is calculated. 

Subroutine AC991 

Controls velocity profile calculation at current 

solution face. Adjusts grid as and when necessary. Outputs error 

message Ell when solution at this face will not converge to required 

tolerance, calculation then continues. 

Subroutine AC992- 

Controls calculation of one complete iteration 

Subroutine AC99A 

Sets up side flow boundary condition. Zero crossflow 

subroutine included will cater for both two-dimensional and 

pseudo-three-dimensi onal. calculations. Called before each iteration. 

Subroutine AC99B (IT,AS) 

Calculates boundary layer thicknesses across a section 

and stores in BLT(10). To calculate 5 at last face AS = 0.0, at 

this face AS = 1.0 (and pro rata). In addition if
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Subroutine AC99B (IT,AS) (contd.) 

Tier ae $0.99 calculated for output and stored as 

number of large increments from wall 

It 2 $0999 calculated for grid control and s tored u 

in terms of grid point numbers. 

Subroutine AC99C (M,N) 

Sets up quantitics for approximation to continuity 

equation at point (M,N). 

Subroutine AC99D(...) 

Calculates effective viscosity terms. 

Function AC99E(...) 

Laminar or turbulent effective viscosity moiel. 

Subroutine AC99F(M,N) 

Sets up linear algebraic equations corresponding to 

approximations to momentum equations at log-point at section M. 

Weights listed in the last column of Table 4.6.1 are implied. 

Subroutine AC99G(NEQ,M,N) 

Sets up linear algebraic equations (equation NEQ at 

section M) corresponding to approximations to momentum equations at 

point M,N (not log-point) 

Subroutine AC99H 

Called before calculation at each face to allow forward 

step sizes, output frequencies, etc. to be altered as required. 

Function AC99I (M,N,GAMMA, VEL,MM) 

Interpolates velocity components stored in VEL(10,50). 

At point W,array VEL is interpolated to provide VEL at 

M+GAMMA, Will not cater for MM=2,
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Fune tion AC99d (M, BETA, PRM ,MM) 

Interpolates parameters stored in PRM(10). 

WA 
Array PRM is interpolated to provide PRM at M+BETA (M42) « 

Subroutine acgon(N) 

Calculates ¢ by solving lagarithmic law of wall 

(equations (4.4.10,11)). Puts e=1 for laminar flow. For turbulent 

flow requires a, qa set up in common, Error message EL1 output 

when solution will not comerge. 

Subroutine AC99M(M,N) 

Sets up quantities for approximations to momentum 

equations at point (M,N) (see figures (4.6.1,2)). 

Subroutines AC990,-P ' 

Respectively calculate and print output quantities. 

Subroutine AC99Q 

Sets up freestream condition by calling AC99U,-V. 

Subroutine AC99R(M) 

Sets up effective viscosity function parameters in 

DSTAR(10) at each section. t 

Subroutine AC99S(M,N) 

Calculates «,6,y,s corresponding to streamline through 

point (M,N) on tiis solution face (see Appendix Al). Outputs error 

message ES1 when solution will not converge, computation discontinued, 

Function AC99T(R,...) 

Integrates the function R through the boundary layer 

using the trapezium rule. 

Functions AC99U,-V(X,Y) 

Calculate the U,V components of velocity respectively 

in the mainstream at the point X,Y.
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Subroutine AC99W(M,N) 

Calculates W at point (M,N) from approximation to 

continuity equation. 

Subroutine AC99X 

Calculates NOPTS, LOGPT at en section based on last 

solution face. Puts LOGPT = 1 for laminar flow and for turbulent 

ensures 

2 < LOGPT < w(A-1l) 

If za /v > CMIN at point w(A-1) error message EX1 

output, and proceeds. with upper bound for LOGPT. 

Function AC9SY(M,N,I,J,K,AL) 

Supplies integrand for AC99T to evaluate 

re a Jd K 
ees us da wa dz 

Us Va Ua 
oO 

iS 
at section (M,N) (AL as,in AC99B). 

U1,V1,Q1 must be set up as for freestream prior to 

entry in common. 

Subroutine AC99Z (NEQ) 

Solves the set of NEQ tri-diagonal linear algebraic 

equations (see Appendix AS).



  To use the program. 

The input requirements for the computer program are 

shown belov, The majority of the symbols used will be found in 

the list of symools (p.103) and a few comments will now be made 

concerning the remainder, 

Item 3. With the program as included the following 

limitations need be imposed 

3 <M <10 or M=1 

N < 50 

Az22 

o21 is 

Explanations of NSLAP, LT, NSMAX, ITMAX, LFREQ, MFREQ can be 

found in the common storage list included previously. 

Iten 4. x0,Yo are the coordinates of the first 

section on the initial solution face and 01, is the momentum 

thickness at this face. 

Items 6 ani 7. Surplus blank cards should be removed. 

The velocity profiles should be specified on the mesh defined 

previously and the streamwise velocity profile should be scaled 

to unity at the boundary layer edge. 

Item 8. Specifies the crossflow to be included at 

the commencement of the calculation, Tan8o is specified at each 

section, 

All quantities listed are retained throughout the cal- 

culation unless changed in AC99H, 

Sample subroutines ani input data are included following 

the data listing (these are those used to simulate the experiment 

of Hornung and Joubert described in section 6.6). In the subroutine 

AC99JA listed VO is calculated from the symmetry condition and VOO from 

equation (6.6.2). Subroutine AC99H changes forward step and output
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frequencies dwing the course of the calculation (N.B. halving 

the forward step when NSTHP = 4 causes the shorter step to be 

applied before face 4 is calculated). The U,V velocity distribution 

used is that given in Appendix A9. 

There then follows the profile used to account for 

crossflow at the commencement of the calcalation and that used 

to account for the convergency of the flow in section 5.3. Tables 

and graphs are incluied for both cases. 

During the course of the calculation error messages 

may be output to signify that some fault has occurred with the 

calculation. The course folloved as each of these errors is 

encountered and the cause is ais Ged below: 

Ell Error sum of squares has failed to reach required 

tolerance in specified maximum number of iterations. 

Output NSTEP, SOS, NOSOS. 

Calculation continues to next face. 

ELL Iteration process for calculating ¢ has failed to 

converge. 

Output Q2, N, ALPHA and last two iterates. 

Calculation continues using last iterate. 

ESL Iteration process for calculating streamline has 

failed to converge. 

Point M,N at which error occurred output. 

Program discontinued, 

EXL aq /v within range in which log-point may fall, is 

always less than CMIN. 

Output section concerned (L,M) and value of 

aq /¥ at outermost point. 

Continue calculation with log-point set at this 

outermost point.



1%. 

It should also be pointed out here that.a trans- 

formed version of the effective viscosity function equation 

(3.3.5) has been used within the program. The model, employed 

outside the laminar sublayer only, can be written such that the 

transformed effective viscosity ue is a function of ¢' where 

Cleric ss | 
9g 

as follows 

Bare oe Ci eK QG* 

vy =KQ a* ¢'>K Q at 

where ‘ 

a= 

2 
Us ee 

° 

The empirical function incorporated into the program 

K = K(T) 

is defined as follows 

K = 0.016 + 0.00015 T T > -60 

= 0.007 T < -60 

where 

P= 104 s a 

The function is shown plotted toward the end of this appendix. 

As mentioned previously alternative effective viscosity 

models could easily be incorporated into the program. 

Finally we refer back to the discontinuities cuit ect 

in shape factor predictions at the commencenent of the calculations 

considered in Chapter Five. We note here that the same feature 

was Se€@N in Po predictions in Chapter Six and as a result it is 

considered preferable where possible to vary fo at the beginning 

of the calculation to ensure agreenent between predicted crossflows 

( 6a* say) and the crossflow required as an initial condition,
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» INPUT — THAT USED TO SIMULATE THR EXPRRTK    ANT? OF HORNUNG AND JOUUB 

  

SECTION 6.6



SUBROUTINE AC9I9A 

    

ADOGATOD 
INTEGER OMEGA ADOLAC99 x 
REAL NU,NULL»NUL2,NUL,NU2Z) Ky KAPPA, KAPPAL ADO2ZAC99 a 
COMMON = MIN, MOUT, MM, MN, LANDA, OMEGA, NMINC »NSLAP,LT NU, AGO3AC99 a 

LUL (10,50) ¢VL(10150),U(10,50) 1V(10,50),H(10,59),BLT(10), ALO4ACI9 SI 
2P1(10),P2(10),LOGPT(10) ,NOPTS(19) ,V0(50),VO0(50), ADOD5AC99 a 
3XL1YOyFoGyHy AT: BT NSTEPyNSMAX,LEREQsMFREQ, AD06AC99 2 
4PS11,PS12,PS13,°S14,PS15,PS16,PS17,?°S18, ADD TACID 3 
SPHI1, PHI 2, PHI 3s PHI4,PHI5,PHI6sPHI7,PHIB ADOSAC99 a 
COMMON KAPPA, KAPPAL) Ky AyCMIN, ITN, 1 TMAX, TOL, SOS ,NOSOS, ADOIACS9 a 
LUL1.UL2,UL3,VL1)VL2,VL3,U1,U2,U32V1,V2.V3991702,Q35 AQLOAC9D 
2NULT, IUL2,)NUL,NU2sX1yXINCyP1B,P28) ALPHA, BETA yGAMMA,S, EPS» AOLLACI9 
3A1(50)1A2(50),A3(50),A4(50) A5(50)4 AQ12AC99 
4DST&R(10),C,0,E1, £2263 z AQ13AC99 
DO 1 N=1,NN AU2GAC99 
VO(N)=-0,52(V(2yN)4VL(29N)) A039AC99 
VOOCNI=VOO(NN)# (2.08 (VIMMyNDFVLONM AND) Z0OVOMM NN) FVLOMM,NND ) AKO4SOACIO 

1 —(VOMM-1)N)4VLCMM=19N)) 2 0V 0M 19NN) + VLOMM=1 NN) )) AU59AC99 
1 CONTINUE . : ; AD6CACI9 

RETURN AOTIAC99 
END AOBDATCII    

° 
= 

“
B
l
t
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SUBROUTINE AC99H 

INTFGER OMEGA 
REAL NU,? 

  

{ULLyNUL2,NUL,NUZ,Ky, KAPPA, KAPPAL 
COMMON MIN,MOUTsMMsNNyLAMOA,OMEGAsNMINC sNSLAP LT yNUy 

LUL (10,50), VL(10,50),U(10,590),V(10150) ,0 (10,50) ,8LT(10), 

Z2P1L(10),22(10),LOGPT(10),NOPTS(10),V0(50),VO9(50), 
3XL+YOrFsGeHs ATs BT NSTEPsNSMAXsLFREQ, MFREQ, 
42S11,°S12,PST3,PS14,PS15,PS16,PSI7TyPS18, 
SPHI1,PHI2,PHI3,PHI4,°HI5,PHI6,PHI7,PHI8 
COMMON KAPPA, KAPPAL1K,ArCMINs ITN, ITTMAX,TOL,SOS,NOSOS, 
LUL1-+UL2,UL3,VL1)VL2,VL3,U1,U2,U3,V1,V2 
2NUL1LyUL2,NULsNU2;X1LyXINCsP1ByP2By ALPHA BETA rGAMMA 1S yEPSy 

3AL(50)4A2(50) 1A3(50)12A4(50) ,A5(50) 4 
_ #OSTAR(10),C;0,E1,£2,E3 

IFINSTEP=4) 2,152 

NSMAX=21 

F=F/2.0 
60 10 6 

TF CNSTEP—=12)) 4535.5 

MPRFQ=1 
GO 10 6 
IF(WSTEP-16) 6,516 
NSMAX=39 
F=F/4.0 
LFREQ=1 
RETURN 

END 

9V3191192,93,5 

HOOGAT99 
HOOLAC99 
HOO2ZAC99 
HY93AC99 
HOO4AC99 
HOOSAC9S 
HOO6AT99 
HOO7AC99 
HOOBAC9S 
HOOIACID 
HOLOACID 
HOLLAC99 
HO1L2AT99 
HOL3AC99 
HO29AC99 
HO39AC99 
HO40AC99 
HOSGAC99D 
HO60AC9I9 
HOTOAC99D 
HOBOACI9 
HOFOACID 
HLODAC9OD 
HLLOACS9 
H120AC99 
H1395AC99 
H1L40AC99 

b
L
b



FUNCTIO 

PI=3.14 
A=5.0 
2=37.18 

  

UDB=1.699 

N 

2 

ACIIU(XsY) 

SX=7.08P1*X/A 
SY=7.0#PI#Y/A 

    
H=CSX 

RETURN 
END 

FUNCTIO 

PI=1.14 
A=5.0 
b=37.18 

N 
2 

EXP(SX)+EXP(-SX))/2.9 
SESH 

=ESY 
AC99U=8# (UDB-2.0#P Te (CSX*#CSY-1.0)/ (A®He#2)) 

ACG9OVIX,Y) 

SX=7 .O#PTHX/A Y 
SY=?.08PIT#Y/A 
CSX=(EXP(SX)4+EXP(-SX))/2.0 
cSy=COS(SY) 
SSK=(EXP(SX)-EXP(-SK))/2.0 
SSY=SIN(SY) 
H=CSZ%-CSY 
ACQ9Y 
RETURN 

END 

  
  

2   O#P1®B# SSX#SSY/(A¥H*#2) 

UINSACID 

OLACI9D 
AC99 

VUOQSAC9I 
UGO4AC99 
UIO5AC99 
ULO6ACI9 
UIOTACID 
UGOBACID 
UOO9ATSI 
UCG1LOATIID 
US1L1LACID 
UOL2ZAC9Y9 

    

VI90AC99 

Vud1LAC99 
VOGZAC99 

VGO3ACS9 

V5044AC99 

V205AC99 

VOO6 

VSOTACID 
VOO08AC99 

VIO9ATOD 

VILOACIS 
VOLLACIS 

VOLZAT99 

VO13AC99 

   

O
v
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THE PROFILE USED TO ALLOW FOR CROSSFLOW AT START OF 

       

  

  

TION = THE FUNCTION f,, WHICH 16 SC. 

QUIR SSFLOW, IS TABULATED AG. 

Zz 7 si Ene 
3 o.999. 

q fy n fy 

O.1 0.411 6.0 0.212 

0.2 0.466 7.0 0.172 

O.3 C.488 8.0 0.138 

0.4 0.497 9.0 0.109 

0.5 0.500 10.0 6.085 

0.6 0-499 11-0 0.065 

0.7 0.497 12.0 0.049 

0.8 0.493 13.0 0.036 

0.9 0.489 14.0 0.025 

1.0 0-483 15.0 6-017 

lel C478 16.0 0.011 

1.2 0.472 17.0 0.006 

1.3 04466 18.0 0.003 

1.4 0-461 19.0 0.000 

1.5 0.455 20.0 0.000 

1.6 0.449 21.0 0.000 

Lats 0.443 22.0 t 0.000 

1-8 0.438 23.0 0.000 

= Lied 0.432 24.0 0.000 

2.0 0.427 2520 0.000 

26.0 0.000 

3290 C371 27.0 0.000 

4.0 0.313 26.0 0.000 

5.0 0.260 29.0 0.000 

30.0 0.009              
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TO ALLOY FOR CONVERGENCY ON PLANE 

OF SYMMETRY - THE FUNGTION e,= 12718 Y tg TABULATED 
THE PROFILE US 

  

  

  

E 17> yso V 
AGAINST = = =r 
Bee 8 9090 2k 

7 fy 7 fy 

Cel 1.2061 6.0 1.2141 

0.2 1.3815 7.0 he li22 

0.3 1.4472 ne 8.0 1.1374 

0.4 1.4775 9.0 1.1087 

0.5 1.4918 10.0 1.0852 

0.6 1.4978 11.0 1.0662 

0.7 1.4990 12.6 1.0508 

C.8 1.4975 13.0 1.0385 

0.9 1.4942 14.0 1.0287 

1.0 1.4898 15.0 1.0211 

lel 1.4847 16.0 1.0152 

1 ane 124792 17.0 1.C107 

1.3 1.24735 18.0 1.C074 

V4 1.4675 19.0 1.0049 

1.5 1.4616 20.0 1.6032 

t 
1.6 1.4558 21.0 1.C019 

1.7 1.4498 22.0 1.0010 

1.8 1.4441 23.0 1.CG05 

1.9 1.4384 24.0 1.cool 

2-0 1.4328 25.0 1.0069 

26.0 1.0000 

3.0 Gediine oss 27.0 1.0000 

4.0 1.3169 28.0 1.0000 

5.0 1.2632 29.0 1.¢000 

30.0 1.0000              
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APPENDIX As. 

TABI LITY CONS TDERATIONS



16. 

A numver of additional simulations of experiment 

'g' of Schubauer and Spangenberg (see section 5.1) were made 

with the intention of obtaining a indication of the effects 

of step sizes ani initial conditions on the solution scheme; 

we will discuss these now. 

The figures at the end of this appendix show the 

effects of varying initial conditions. The solution scheme 

seems to be insensitive to changes in the initial value of the 

shape factor'H (leaving @ unchanged) as is shown in figure 

(A&-1). It seems strange that by increasing H at the start of 

the calculation the value of Has’ separation is approached should 

be reduced, eve though in the three separate calculations made 

H tends to the same value (approximately) within a shart distance 

of the start of the calculation. Ro» ce developments are surprisingly 

only slightly affected by initial H despite the apparently large 

discrepancies in H at x = 16 3". The soluti on scheme is however 

more sensitive to changes in the value assumed by Ry at the 

beginning of the calculation as is shown by figures (A8. 2,3) « AL 

three runs shown start with H= 1.3 at x = 0, curve (2) being 

the run plotted in figures (5.1.8-9) while curves (1),(3) have Ry 

increased, reduced Sep eriively by 33%. This imposed difference 

in Ry is maintained throughout the calculations and the flow 

corresponding to curve (1) is predicted to separate just short 

of x = 16", 

It is difficult to state what the precise physical 

effects of the above considerations would be, except to say that 

the effect of varying Ry at x = O is very much as might be 

expected, but it is obviously of some consequence that the disturbed 

initial conditions do not produce any instability in the solution.



186. 

We now proceed to discuss the effects of step 

sizes on the solution scheme. All the computer runs mentioned 

above were made using the following grid specification:- 

N = 48 Az=2 w=10 

and the grid was continuously adjusted so that the large z 

increment at any section was 

oe 
he = 00. Timm es 

where &9.999 is the boundary layer thickness corresponding to 

u = 0.999U. The marching step f for experiment 'E' was (from 

os: 0) 24 steps of % followed by 48 steps of > (all units in 

feet). Over the first twelve feet the forward step varied 

from 4 to 1.33 boundary layer thicknesses and for x > 12 (where 

changes were oceurring much more rapidly) the forward step was 

from 0.33 to 0.15 boundary layer tnicknesses. Such a run took 

3 minutes on the IBM $360/65 computer, 7-8 iterations being re- 

quired on average at each step to obtain velocity components correct 

to 4, significant figures. The calculation made using the grid 

specified above will be used as the basis of comparisons with 

the calculations to be discussed below. 

If for x <12' we take f = 1 (everywhere at least 

2.66 boundary layer thicknesses) H changes by only 3% at x = 12" 

‘and if f = 4 for x < 12' H changes by only 4/ach at x =12'. For 
. 

x > 12' if we take f = 4 the change produced in H (between x = 12' 

and x = 18') is less than 1%, Cp being increased by 1.4% which 

however for the small values encountered at x = 18! the absolute 

change was less than 10°, Such changes confim the marching 

step chosen as being adequate. 

Next a run was made with the number of points at 

each section reduced by a factor af two as follows:-



187. 

N = 23 A=2 wed 

h(large z increment) = 3 80.999 

which results in the smaller mesh intervals at the wall being 

increased by a factor of 4 (the run took 1.2 minutes, the number 

of iterations/step remaining on average unchanged). At x = 18! 

the differences encountered (starting the calculation from x = 0) 

were greater than those obtained above, H being reduced by 13%, but 

this was not considered excessive since the integral thicknesses 

had to be obtained (using the trapezium rule) from a much coarser 

mesh and H is very sensitive to changes in 6*, 6. It is anticipated 

that the mesh used throughout all the present calculations is finer, 

wita respect to the z increment (being based ‘on N = 48), than need 

necessarily be the case and it is expected that N may be reduced, 

without significant loss of accuracy, to economise on computer 

storage and time. Even so the scheme based on N = 48 is still 

economical in terms of computer time although it must be admitted 

that since the three-dimensional progran is being used for a two- 

dimensional calculation computer storage could be reduced considerably.
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APPENDIX AQ 

POTENTIAL FLOW ABOUT A NEAR-CIRCULAR CYLINDER 

BETWEEN PARALLEL WALLS



191. 

  

  
  

Kennard [33] gives the potential distribution for a 

stream flowing between parallel walls a distance a apart and 

about a near-circular cylinder mounted midway between the walls 

as t 

v= - 208 sinn 20 sin Sm 

where U,V are the velocities associated with the x,y directions 

respectively, Uo and B are constants to be determined and H 

is given by 

For the purpose of tae simulation discussed in section 

6.6 we choose



a=5, 

so that the radii of the cylinder are approximately 

Ta el
ls
 

Uo = 63.17, 

ra 0.9167 

B= 37.18 

192.



 



WEIGHTING FACTORS USED IN APPENDICE: 

TABLE 4.6.1 

A2, A3 

  

Purpose 

  

  

  

  

  

  

193, 

     icular Cases [25] Values Used. 

  

  

  

  

  

  

    

a Specifies point at which O<ys 
finite difference approximation 
is to be made 

Ya specifies weight between points O<cy¢< 
n-1, n, n+l in approximation toqdu/ as 

bs Specifies to what ; ga Oo<¢< 
extent approxi- ds 

; mation to 4 
if terms is dependent & Oo<¢< 

on rl th or r th $ 
vs iteration. ga (viscous) Oo<g¢es 

9g 

ve as Y2 butat n = n* Oo<¢<1 

ue specifies one of two approximations & = 0,1. 
to du/aé at n=n* : 

Yo overall solution weight yoo   (relaxation factar) ~     

If $1 = 0 $4,¥s5 have no effect. 

  

  

  

    

0 explicit scheme Zz 
4 Crank-Nicholson 
ad Laasonen 

4 allows longer h than yg = 0 with 0 
same convergence 

0 iteration ml used 1 

aL iteration r used : 

0 iteration r-1 used Le 
ak iteration r used 

0 iteration r-1l used 1 
a iteration r used 

0 

al 

aL iteration rl discounted 0.75 

  
 



  

CASES TREATED IN THE SIMULATION OF THE 
INFINITE SWEPT WING 

  

49K. 

  

        

[ ce, (cesares) 0.90 Lee) 35. 52.65, 

A (4097) +25 25 +25 225 
+267 

    

TABLE E6461 

EXPERIMENTAL DATA USFD IN THE SIMULATION 
OF HOACLEY’S DIFFUSER 

  

  

        

x 9 OG, U 

INS FICS DEGREES | FI7S 

-13 87.23 30.5 75.2 | 
3 85.38 30.2 7308 

11 76.36 32.8 64.2 
19 69.52 34.0: 7.6 

Pao 59.02 3202 49.9 

  

   



    

FUNCTIONS 4,6" DERIVED IN. THE SOLUTION OF THE, 

  

RIC LAMINAR STAGNATION FLOW 

  

  

  

g ¢° % 

0.00 0.0000 0.c000 
0.15 0.1857 0.0139. 
0.30 0.3489 0.€540 
0645 0.4898 "0.1169 
0.60 6.6091 0.1993 

0.75 0.7078 0.2981 
0.90 0.7872 0.4102 
165) 0.84594 - 5330 
1.20 0.8966 0.6639 
£435 0.9312 0.8010 

1.50 . 069557 0.9425 
ie 65 0.9725 1.0872 
1.20 0.9835 1.2339 
1.95 0.9905 1.3819 
Zev 0.9947 1.5308 

2.25 0.9972 1.6802 
2.40 0.9985 1.9298 
2.55 0.9993 1.9796 
2.70 0.9996 221295 
2.85 0.9998 -2795 

3.00 0.9999 2.4295 
9615 1.0C00 2.5795 
3.30 1.9000 2.7294 
2.45 1.6000 2.€794 
3.60 1.0000 3.0294       
 



 



  

el
a 

     spanning curve 

    
i Toy 100" 1000 

on —p 
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FIG (3.3.1) Composite effective viscosity 

function proposed by Mellor [19].
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(ii) the scatter of data points for | 

2qsinB 

Q sinh, 
  (13,221. 

region! cea region IT 

ere Up 

  

  

  

“i U=@ Am 

FIG (3.51) Johnston's triangular model[2il.
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FIG(4.1.1) Solution face, section, point notation 

on the solution mesh, 
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FIG(4].2) Subdivision of increments near the 

wall (\=2,w23, Nel O, M:8).
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FIG(4.2.0 An adjustable grid. 
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ie 
Xx   

FIG(422) Anillustration of the proposed 

solution mesh,



point 

  

FIG(4.6.1) The streamlines through points on 

section (l+1,m) and the point (**) at 

which the momentum equations are 

tobe approximated. ; 

section(l,m+3) section 
(l4Lm)     

  

  

Le ee) ae 

Us Vie inc . 

wy, Ma Ye + . 

Yu Yu : Sine : 
Se ee 

Vy; Se 

ds 

FIG(462) Values necessary forthe finite 

difference approximations to the 

momentum equations.
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solution face +1 

FIG (47) Values necessary for the finite 

difference approximation to the 

continuity equation. 

    
FIG (4:72) Values necessary for the finite 

difference approximation to the 

continuity equation at the log-point.
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