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Abstract

In efficiency studies using the stochastic frontier approach the main focus is to explain inefficiency
in terms of some exogenous variables and computation of marginal effects of each of these determinants.
Although inefficiency is estimated by its mean conditional on the composed error term (the Jondrow et al.
(1982) estimator), the marginal effects are computed from the unconditional mean of inefficiency (Wang
(2002)). In this paper we derive the marginal effects based on the Jondrow et al. estimator and use the
bootstrap method to compute confidence intervals of the marginal effects.
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1 Introduction

In stochastic frontier models the two main objectives are to estimate underlying production technology

and observation-specific technical inefficiency. While estimating inefficiency, the empirical studies in this

literature examine whether differences in inefficiency among producers can be explained in terms of some

exogenous (environmental) variables. A natural question in this context is how to compute the marginal

effects of these environmental variables on inefficiency. For this, first we need a model that includes these

environmental variables in the specification of inefficiency, and then a point estimator of inefficiency. Models

in which the environmental variables enter into the mean and/or the variance of inefficiency have been

proposed in some earlier studies, e.g., Kumbhakar, Ghosh and McGuckin (1991), Reifschneider and Stevenson

(1991), Huang and Liu (1994), and Battese and Coelli (1995).1 Wang (2002) examined this model thoroughly

by allowing the environmental variables to enter into the mean and the variance of inefficiency and derived

the formula for calculating marginal effects of the environmental variables on inefficiency. However, his

derivation of the marginal effects was based on the unconditional mean of inefficiency, although the estimator

of inefficiency was based on the conditional mean – the Jondrow et al. (1982) (henceforth JLMS) estimator.

In this paper we derive the marginal effects of environmental variables on inefficiency where inefficiency

is estimated using the Jondrow et al. (1982) formula. We consider a model in which the environmental

variables appear in both the mean and the variance of inefficiency as well as in the variance of the noise

term. Based on this model we show that there are three channels through which the environmental variables

can effect the estimated inefficiency. We show that even if these variables do not enter into either the mean

or the variance of inefficiency, they can affect inefficiency via the variance of the noise component. This is

a new result which comes from the fact that the JLMS estimator (shown later) depends on the variance of

the noise component. Since the JLMS estimator is universally used for estimating inefficiency, it should also

be used to compute the marginal effects. That is, both inefficiency and its marginal effects should be based

on the same formula.

The variance of the noise component in our model is made a function of the same environmental variables

that affect the mean and/or the variance of inefficiency. Since we use the JLMS estimator which (as shown

later) is a function of the mean and the variance of inefficiency as well as the variance of the noise component,

the marginal effects of environmental variables will have a component coming from the variance of the noise

term. This extra component was absent from the Wang (2002) formula and has not been discussed in any

studies before because the JLMS estimator was not used in the literature to compute marginal effects.2

1Although chronologically last, in the efficiency literature these models are known as the Battese-Coelli (1995) model.
2Wang (2002) used the unconditional mean of inefficiency (which is independent of the variance of the noise term) to compute
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We apply European banking data and estimate inefficiency as well as the marginal effects. We compare

our marginal effects with those based on Wang (2002). We also compute confidence intervals of the marginal

effects using bootstrap procedure. Our results show that the marginal effects based on the Wang (2002)

formula tend to overestimate marginal effects in our application.

2 A Stochastic Frontier Model with Environmental Variables

Consider a stochastic production frontier model in a cross-sectional setting, viz.,

yi = β′xi + vi − ui, (1)

ui ∼ N+(µi, σ
2
ui), (2)

vi ∼ N(0, σ2
vi), (3)

µi = c0 + δ′zi, (4)

σui = exp(c1 + γ′zi), and (5)

σvi = exp(c2 + ρ′zi), (6)

where ui is the non-negative technical inefficiency component, which follows a truncated normal distribution.

The vector of environmental variables zi are allowed to affect the pre-truncation mean and variance of ui,

µi and σ2
ui, respectively. The noise component is vi distributed normally with zero mean and variance σ2

vi

which is assumed to be a function of zi as well.3 Following Jondrow et al. (1982), it can be shown that the

distribution of ui given the composed error εi = vi−ui is truncated normal with mean µ̃i = (µi σ
2
vi−εi σ

2
ui)/σ2

i

and standard deviation σ∗i = σui σvi/σi, where σ2
i = σ2

ui + σ2
vi. Thus the point estimator of ui is given by

the conditional mean, i.e.,

E(ui|εi) = µ̃i + σ∗i
φ(µ̃i/σ∗i)
Φ(µ̃i/σ∗i)

, (7)

where φ and Φ denote the standard normal density and distribution functions, respectively. The estimator

in (7) is known as the JLMS estimator in the efficiency literature.

Wang (2002) used the formula in (7) to calculate inefficiency but he used the post-truncation mean of

ui, i.e., E(ui|ui > 0) = σui

[
Λi + φ(Λi)

Φ(Λi)

]
, where Λi = µi/σui, to compute the marginal effects. In other words,

the marginal effects and this is why the extra term was missing in his derivation.
3Note that σ2

ui = exp(2c1 + 2γ′zi) and σ2
vi = exp(2c2 + 2ρ′zi).
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his marginal effects are computed from ∂E(ui|ui>0)
∂zli

, where zli is the l-th element of zi. More specifically, the

formula for the marginal effects in Wang (2002) is:

∂E(ui)
∂zli

=δl

{
1− Λi

φ(Λi)
Φ(Λi)

−
[

φ(Λi)
Φ(Λi)

]2
}

+ γl σui

{
(1 + Λ2

i )
φ(Λi)
Φ(Λi)

+ Λi

[
φ(Λi)
Φ(Λi)

]2
}

,

(8)

where δl and γl are the coefficients associated with zli in (4) and (5), respectively.

To derive the formula for the marginal effects based on the JLMS estimator in (7), i.e., ∂E(ui|εi)
∂zli

, we

define mi = µ̃i/σ∗i and gi = φ(mi)/Φ(mi). After a lengthy and tedious algebra (which are skipped here but

available from the authors upon request) the marginal effects of the l-th environmental variable on E(ui|εi)

is found to be:

∂E(ui|εi)
∂zli

=δl

[
σ2

vi

σ2
i

(1−mi gi − g2
i )

]

+ γl
1
σ2

i

{
σ2

vi σ∗i
[
gi(1 + m2

i ) + mi g
2
i

]− 2σ2
∗i(εi + µi)(1− g2

i −mi gi)
}

+ ρl
1
σ2

i

{
σ2

uiσ∗i
[
gi(1 + m2

i ) + mi g
2
i

]
+ 2σ2

∗i(εi + µi)(1− g2
i −mi gi)

}
,

(9)

where δl, γl and ρl are the coefficients associated with zli in (4), (5) and (6), respectively. This result shows

that the marginal effects of zl have three components which identify three separate channels through which

zl affects the estimated inefficiency. These components/channels are related to µi, σui and σvi functions.

That is, if µi, σui and σvi are functions of zi, then each element of zi affects inefficiency via the three channels

given by the three terms on the right-hand-side of (9). On the other hand, if σui and σvi are constants, then

the marginal effects come only from the mean and it is δl multiplied by an adjustment function which is

positive.4 Similarly, if µi is constant (i.e., ui follows a truncated-normal distribution with heteroskedasticity)

the first term in (9) drops out and the channels by which zl affects inefficiency are through the variances of ui

and vi. The same holds true when µi = 0 (i.e., ui follows a half-normal distribution with heteroskedasticity).

If µi = 0 and σ2
vi is a constant, then zl affects inefficiency through σ2

ui and this is captured by the second

term in (9). Finally, the new result in (9) comes from the last term that captures the effect via σ2
vi. This

term is new and is not explored in the literature.5 This component is interesting because it shows that if

σ2
vi is a function of zi, these variables can also affect inefficiency even if µi = 0 and σ2

ui is a constant.

4Note that this function is similar to the one in (8) (equation (9) in Wang (2002, p.244)), except for the extra term of σ2
vi/σ2

i .
5It can be seen from (8) that the Wang (2002) formula did not have this component although he allowed the variance of the

noise component, σ2
vi, to depend on z variables (in the application part). This is because E(ui|ui > 0) does not depend on σ2

vi.
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3 Empirical Application

As an empirical illustration, we use an unbalanced panel data of European banking industry obtained from

Bankscope.6 The data set covers 15 European countries7 for 17 years (during the period 1993 and 2009) with

a total of 6,733 bank-year observations. Although we considered a cross-sectional model and our derivation

of marginal effects is based on that cross-sectional model, the panel extension of it is trivial. For this we

add an extra subscript t to zi, µi, σ
2
ui and σ2

vi, and specify the model as in Wang (2002):8

yit = β′xit + vit − uit, (10)

uit ∼ N+(µit, σ
2
uit), (11)

vit ∼ N(0, σ2
vit), (12)

µit = c0 + δ′zit, (13)

σuit = exp(c1 + γ′zit), and (14)

σvit = exp(c2 + ρ′zit). (15)

In this application we use a single output (loans) and three inputs (personnel expenses, physical capital

expenses, and interest expenses). We use three different measures of bank risk as environmental variables,

viz., credit risk (loan loss provision/total assets), solvency risk (equity/total assets) and liquidity risk (liq-

uidity/total assets). We also control for year and country effects. Thus the data matrices for our model

are:

yit: ln(loans),

xit: 1, ln(personnel expenses), ln(physical capital expenses), ln(interest expenses), country dummies,

year dummies,9

zit: credit risk, solvency risk, liquidity risk.

The parameters in (10) and (13)-(15) are estimated by maximizing the log-likelihood function, which for
6See bankscope2.bvdep.com for details.
7These are Austria, Belgium, Denmark, Finland, France, Germany, Great Britain, Greece, Ireland, Italy, Luxembourg, the

Netherlands, Portugal, Spain, and Sweden.
8There are, of course, many other ways of specifying inefficiency in panel models (see for example, Kumbhakar and Lovell

(2000), Kumbhakar et al. (2012), among others.)
9One country dummy and one year dummy are dropped to avoid multicollinearity.
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the i-th bank at time t is (Kumbhakar and Lovell (2000)):

Lit = −1
2

lnσ2
it + ln

[
φ

(
yit − β′xit + µit

σit

)]
− ln

[
Φ

(
µit

σuit

)]
+ ln

[
Φ

(
µ̃it

σ∗it

)]
. (16)

The MLE of the parameters are used to calculate the point estimates for technical inefficiency using (7) and

the marginal effects of an environmental variable on the estimated technical inefficiency using (9). To save

space and concentrate on the marginal effects, we report and compare the marginal effects on E(uit|εit) and

on E(uit|uit > 0).10

Since our focus is on the marginal effects we are not reporting parameter estimates and estimated

inefficiency. The marginal effects of each risk variable against itself, holding all other variables at their

means, are reported in Figure 1. For comparison we report the marginal effects calculated from both (8)

and (9). It can be seen that the marginal effects based on (8) are much higher for the last two risk measures,

while for credit risk it is opposite only in the range -0.034 to -0.004. Thus policy implications will be different

depending on which formula is used to calculate the marginal effects. Since the JLMS estimator is used to

estimate inefficiency, it is natural to use it for calculating marginal effects.

A natural question after estimating the marginal effects of a particular environmental variable is to

check whether these are statistically significant. The JLMS estimator does not have a known distribution.

The same holds for the marginal effects. However, it is possible to use bootstrap procedure to construct

confidence intervals for the marginal effects. Figure 2 reports the marginal effects along with their confidence

intervals obtained via the following bootstrap procedure:

Step 1: Calculate the marginal effects from (9), using the estimated parameter vector via MLE, i.e.,

[β̂, ĉ0, δ̂, ĉ1, γ̂, ĉ2, ρ̂], in (10).

Step 2: Generate a pseudo-sample using the parameter estimates in Step 1. Draw v∗it from N(0, σ̂2
vit),

and u∗it from N+(µ̂it, σ̂
2
uit), ∀i = 1, . . . , N and t = 1, . . . , T , where µ̂it = ĉ0 + δ̂′zit, σ̂2

uit = exp(2ĉ1 + 2γ̂′zit)

and σ̂2
vit = exp(2ĉ2 + 2ρ̂′zit). Then, generate y∗it = β̂′xit + v∗it − u∗it.

Step 3: Obtain MLE of the parameters using the pseudo-sample, {y∗it, xit, zit}N,T
i=1,t=1, generated in Step

2. Then, use the estimated parameters to calculate the marginal effects from (9).

Step 4: Repeat the previous two steps B times.11 This gives us a sample of (1 + B) marginal effects

for each observation. The 95% confidence interval for a particular observation is then constructed using the

2.5th and 97.5th percentiles from the sample of (1 + B) marginal effects.
10The simplest case is to compute marginal effects from the pre-truncation mean of uit, i.e., E(uit) = µit which are simply δl.

This will make the marginal effects monotonic, while in our case as well as in Wang (2002) the marginal effects are non-monotonic.
11B in this example is set to be 99.
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Using (9) and the bootstrap procedure for each risk measure, it can be seen that the sign, magnitude, and

significance of the marginal effects do not always stay the same along the distribution of each risk variable.

Note that the marginal effects and their 95% confidence intervals are observation-specific. If the zero line is

inside the 95% confidence interval, then the marginal effect is insignificant.

4 Conclusion

In this paper we derived marginal effects of environmental variables (z) on estimated inefficiency using the

Jondrow et al. (1982) (JLMS) estimator which is widely used in the efficiency literature. Our results show

that the z variables can affect inefficiency through three channels. We show that even if these variables do

not enter into either the mean or the variance of inefficiency, they can affect inefficiency via the variance

of the noise component if it depends on z. This is a new result. We also show how to compute confidence

intervals of these marginal effects using bootstrap. Finally, we illustrate these using a panel of European

banks. In our application, we find that the Wang (2002) formula overestimates the marginal effects compared

to our formula.
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Figure 1: Marginal effects of risk variables
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Figure 2: Confidence intervals of marginal effects of risk variables
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