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Abstract 

This thesis presented a detailed research work on diamond materials. Chapter 1 is an overall 

introduction of the thesis. In the Chapter 2, the literature review on the physical, chemical, 

optical, mechanical, as well as other properties of diamond materials are summarised. Followed 

by this chapter, several advanced diamond growth and characterisation techniques used in 

experimental work are also introduced. Then, the successful installation and applications of 

chemical vapour deposition system was demonstrated in Chapter 4. Diamond growth on a 

variety of different substrates has been investigated such as on silicon, diamond-like carbon or 

silica fibres. In Chapter 5, the single crystalline diamond substrate was used as the substrate to 

perform femtosecond laser inscription. The results proved the potentially feasibility of this 

technique, which could be utilised in fabricating future biochemistry microfluidic channels on 

diamond substrates. In Chapter 6, the hydrogen-terminated nanodiamond powder was studied 

using impedance spectroscopy. Its intrinsic electrical properties and its thermal stability were 

presented and analysed in details. 

As the first PhD student within Nanoscience Research Group at Aston, my initial research 

work was focused on the installation and testing of the microwave plasma enhanced chemical 

vapour deposition system (MPECVD), which will be beneficial to all the future researchers in 

the group. The fundamental of the on MPECVD system will be introduced in details. After 

optimisation of the growth parameters, the uniform diamond deposition has been achieved with 

a good surface coverage and uniformity. Furthermore, one of the most significant contributions 

of this work is the successful pattern inscription on diamond substrates by femtosecond laser 

system. Previous research of femtosecond laser inscription on diamond was simple lines or dots, 

with little characterisation techniques were used. In my research work, the femtosecond laser 

has been successfully used to inscribe patterns on diamond substrate and fully characterisation 

techniques, e.g. by SEM, Raman, XPS, as well as AFM, have been carried out. After the 

femtosecond laser inscription, the depth of microfluidic channels on diamond film has been 

found to be 300~400 nm, with a graphitic layer thickness of 165~190 nm. Another important 

outcome of this work is the first time to characterise the electrical properties of hydrogen-

terminated nanodiamond with impedance spectroscopy. Based on the experimental evaluation 

and mathematic fitting, the resistance of hydrogen-terminated nanodiamond reduced to 0.25 

MΩ, which were four orders of magnitude lower than untreated nanodiamond. Meanwhile, a 

theoretical equivalent circuit has been proposed to fit the results. Furthermore, the hydrogen-

terminated nanodiamond samples were annealed at different temperature to study its thermal 

stability. The XPS and FTIR results indicate that hydrogen-terminated nanodiamond will start to 

oxidize over 100
º
C and the C-H bonds can survive up to 400

º
C. This research work reports the 



 

fundamental electrical properties of hydrogen-terminated nanodiamond, which can be used in 

future applications in physical or chemical area. 

 

Key Words: Diamond, Nanodiamond, Nanotechnology, Microwave Plasma-Enhanced CVD, 

Raman Spectroscopy, Femtosecond Laser, Impedance Spectroscopy. 
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PL photoluminescent 

FTIC fluorescein isothiocyanate 
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1 Introduction 

Diamond-based materials have been developed in 1970s and its applications had a 

tremendous progress in the last two decades. The diamond materials have several particular 

properties, such as extreme hardness (~100 GPa), chemical stability in acid/alkali solution, very 

low coefficient of friction, highest thermal conduction (2,000 W.m
-1

.K
-1

), high carriers mobility 

(2,400 cm
2
.V

-1
.s

-1
 for electrons, 2,100 cm

2
.V

-1
.s

-1
 for holes), wide bandgap (5.47 eV) and 

biocompatibility. 

However, the extremely scarce storage and supply of diamond in nature and the difficulties 

of the high-temperature high-pressure (HTHP) method has encouraged scientists to find a new 

method to produce diamond. Hence, the chemical vapour deposition (CVD) method has been 

developed to enable the feasibility of fast-growth of diamond on heteroepitaxial/homoepitaxial 

substrates.  

The development of nanodiamond created a new subject in diamond research. Early research 

proved that the nanodiamond can be used in in-vivo drug delivery carriers, electrochemical 

catalyst, biomedical markers, and bacterial binding sensors, etc. In the nano/sub-nano scale, the 

small size effect of diamond modifies its property and distinguishes it as in macro-scale. 

However, little research was done on its electrical properties for its extremely small grain size. 

Thus, the characterisation of the electrical properties of nanodiamond forms an important part of 

this thesis. 

In Chapter 2, the intrinsic properties of both diamond and nanodiamond will be introduced 

and compared as a literature review for the thesis. The specific area covers its electrical, optical, 

chemical, as well as mechanical properties. Some of the state-of-the-art applications have also 

been presented at the end in this chapter. 

Chapter 3 demonstrates the advanced techniques utilised in the research of diamond 

materials. The microwave plasma enhanced CVD (MPECVD) and hot-filament CVD (HFCVD) 

hosted in Aston University will be introduced. Then, the other characterisation method, such as 

SEM, XPS, AFM, Raman spectroscopy, FTIR and impedance spectroscopy, will be illustrated 

for both diamond films and nanodiamond. 

Chapter 4 reports the diamond growth on different substrates using the MPECVD system. 

The optimised growth conditions have been obtained, which laid a solid foundation for future 

research work. 

In Chapter 5, the femtosecond laser technique was used to fabricate microfluidic channels on 

a single-crystalline diamond substrate. The fs-laser inscribed channels were then characterised 

by SEM, Raman, XPS as well as AFM. Based on these techniques, the composition of the 
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graphitic layer formed on the micro-channels was determined. By comparing the AFM profiles 

before and after the removal of the graphitic layer, the average thickness can be deduced from 

the cross-sectional images. This work developed an ultra-fast laser inscription technique to 

fabricate microfluidic channels on diamond substrates.  

The electrical properties of hydrogen-terminated nanodiamond were investigated in Chapter 

6. The impedance of nanodiamond decreases by four orders of magnitude after hydrogen-

plasma treatment. An equivalent circuit has been proposed to correlate with the conduction 

mechanism. Arrhenius relationship explains the different in activation energy levels existing 

between room temperature and 400˚C. The hydrogen-terminated nanodiamond has been further 

annealed at different temperature and characterised by FTIR and XPS. The results proved that 

the nanodiamond started to oxidise over 100˚C and survived up to 400˚C in air.  

Finally, the previous research has been summarised and future research directions are 

proposed. This PhD project has built a fundamental research work for future potential 

applications of femtosecond laser inscription on diamond and the biological applications of 

nanodiamond. 
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2 Characteristics and Properties of Diamond Materials 

2.1 Introduction 

2.1.1 Diamond and Crystal Structure 

Diamond is an allotrope of carbon (C), and is one of the hardest materials in the world which 

is widely used as a gemstone and in jewellery.
[1]

 Carbon is located in Group IV of the periodic 

table, which contains 6 protons in the atom core and 6 electrons outside the core. It has 16 

isotopes, while two states of them are stable (
12

C and 
13

C). The electrons configuration of 

carbon is 1s
2
2s

2
2p

2
. Classified by the different bonds types, the carbon atoms can form sp + 2π, 

sp
2 
+ π, and sp

3
 hybridization, as shown in Figure 2.1.

[2]
  

 

Figure 2.1 The carbon family classification scheme outline and the structures.
[1]

 

 

The sp
2
 hybridization is shown in Figure 2.2, where the angle existing between the two 

atoms is 120˚ degrees, and all the covalent bonds (π bonds) are in the same plane. Comparing 

with the sp
2
 hybridization and π bonds, the sp

3
 hybridization was formed by a 2s electron 

moving to 2p orbital because of an excitation. The covalent bonds are named σ (sigma) bonds, 

which is even stronger than the π bonds. The angle between two σ bonds is 109.5˚ degrees.  
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Figure 2.2 Carbon sp
2
 (left) and sp

3
 (right) orbitals and structure.

[1]
 

 

In diamond, there is only periodic C sp
3
 hybridization. It is arranged in the format of face-

centred cubic (fcc) crystal structure (Figure 2.3), which is widely known as the diamond lattice. 

In the diamond cubic structure the lattice constant (a) of diamond is 3.567 Å, and the space 

group is Fd3m-Oh
7
. Each C atom has four sp

3
 bonds connecting with four neighbouring C atoms 

and the bond length is 1.54 Å. Every lattice has eight atoms per unit cell and no infrared 

absorption in the one-phonon region. The diamond atomic density is 1.77×10
23

/cm
3 

and its 

specific gravity is 3.52±0.01 (density: 3.5-3.53 g/cm
3
).

[3]
 

Figure 2.3 The diamond cubic crystal structure of carbon sp
3
 hybridization.

[4]
 

 

2.1.2 Classification of Diamond 

Diamond can be classified into four categories according to its different impurity types, as 

seen in Figure 2.4 and Table 2.1.
[5]

 Pure diamond is only constructed by carbon sp
3
 structure in 

lattice. However, some impurities can be cooperated into the diamond and the basic 

classification is based on the existence of the nitrogen, as well as other impurities. Type I 

diamond contains a high nitrogen content of 500~3,000 ppm and type II has a lower nitrogen 
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content of less than 5 ppm. The type I diamond could be separated to type Ia and type Ib. Both 

types have nitrogen impurities in the bulk, but in a different format. The type Ia has aggregated 

nitrogen atoms whilst the nitrogen impurities in type Ib diamond are isolated apart from each 

other. In type Ia diamond, the different link between the nitrogen could be divided into two 

types, IaA and IaB, as shown in Figure 2.4. 

In IaA type diamond, the nitrogen atoms are aggregated in pairs. On the other hand, the 

nitrogen atoms in IaB type diamond have a vacancy in the centre, the so-called ‘4N+V’ 

structure. In contrast, the Ib type also has nitrogen impurities, but the nitrogen atoms are 

distributed separately. 

 

Table 2.1 Classification of diamond.
[5]

 

 

For type II diamond, there is a rare content of nitrogen impurities, usually N < 5ppm. The 

difference between type IIa and IIb diamond can be distinguished by the non-nitrogen 
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impurities than nitrogen. Type IIa type contains no other impurities, while the IIb type also 

contains boron. The IIa type diamond has the highest thermal conductivity and the extreme 

hardness when comparing with the other types of diamond. The boron impurities make IIb 

diamond a p-type semiconductor with a blue or grey colour. 

 

Figure 2.4 The classification chart of diamond.
[5]
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2.2 Diamond Properties 

2.2.1 Electrical Properties 

Diamond has a tetrahedral sp
3
 covalent bonded carbon atomic structure. It has been widely 

known as a wide-bandgap semiconductor with a bandgap (Eg) of 5.47 eV at room temperature 

(300 K). The resistivity of type Ia, Ib and IIa diamond have been reported ranging from 

10
16

~10
18 

Ω.m.
[6],[7]

 While in contrast, type IIb diamond has a much lower resistivity of 1~10
5
 

Ω.m and its boron dopants have an activation level of 0.35~0.38 eV above the valence band, as 

shown on Figure 2.5. To create an n-type semiconductor, phosphorous (P) and nitrogen (N) can 

be used as dopants. The phosphorous-dopant will generate a donor energy level of 0.6 eV and 

the nitrogen dopant will create 1.7 eV below the conduction band minimum.
[3]

 In addition, the 

C-H bonds on the single crystalline diamond will create a negative electron affinity (NEA) 

barrier height χ, which varies from -1.27 eV (diamond: 1×1) surface to +0.38 eV (diamond 2×1) 

surface on (111) diamond.
[8]

 For a (100) diamond surface, the NEA will be -2.2 eV.
[9]

 

For an intrinsic semiconductor, the carriers generated from the thermal activation are much 

more than that produced from the doping impurities. The electron density n(E) can be deduced 

from the Fermi-Dirac distribution F(E) as well as the energy state per unit volume N(E), which 

is expressed by 

 ( )  
 

   
    
  

    
    (    )     

    (    )     
                   Equation 2.1 

The probability of electron states with an energy, F(E) is calculated by Equation 2.1. The 

Fermi level EF is the energy of the probability at one-half and k is the Boltzmann constant.
[10]

 

Thus, the electron density in the conduction band can be expressed by Equation 2.2, whilst Nc 

is the effective density-of-states (DOS) in the conduction bands. Ec and Ev represent the level of 

conduction band and valence band, respectively. 

 

Figure 2.5 Bandgap structure of diamond and impurities doping in diamond.
[11],[12]
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 ( )     
 (     )                                        Equation 2.2 

For diamond material, Nc is given by Equation.2.3: 

    (
    

   

  )                                         Equation 2.3 

me
* 

is the density-of-states effective electron mass and h is Planck’s constant. Similarly, the 

holes in the valence band can be calculated by Equation 2.4. 

    (
    

   

  )                                         Equation 2.4 

Combined Equation 2.3 and 2.4, the intrinsic carrier concentration for diamond is expressed by 

  
          

                                       Equation 2.5 

while Eg is the bandgap width, n is the electron concentration and p is the holes concentration.
[16]

 

 

Table 2.2 Electronic properties of semiconductor materials comparing with diamond.
[17]-[19]

 

Properties Ge Si GaAs SiC (3C) 
SiC 

(4H) 

SiC 

(6H) 
GaN Diamond 

Band Gap 

(eV) 
0.66 1.1 1.4 2.23 3.2 2.86 3.39 5.47 

Band Gap 

Type 
Indirect Indirect Direct Indirect Indirect Indirect Direct Indirect 

Lattice 

Constant 

(Å) 

5.660 5.431 5.653 4.359 3.073 
a: 3.08 

c: 15.1 

a: 3.19 

c: 5.19 
3.567 

Density 

(g/cm
3
) 

5.60 2.42 5.32 3.16 3.16 3.16 6.1 3.52 

Dielectric 

Constant 
16.0 11.8 12.8 9.72 9.6 

a: 9.66 

c: 10.0 

a: 9.5 

c: 10.4 
5.68 

Mobility 

(cm
2
/V.s) 

Electron 3,900 1,350 8,600 1,000 900 450 900 1,800 

Holes 1,900 480 400 50 100 50 400 1,600 

Thermal Conductivity 

(W/cm.K) 
0.58 1.51 0.54 4.9 4.9 4.9 1.3 20.9 

Saturation 

Velocity 

(10
7
 cm/s) 

0.6 1.0 2.0 2.7 2.7 2.7 2.0 
Ve: 2.5 

Vh: 1 
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According to Equation 2.5, the intrinsic thermal activation exceeds ~1,000˚C. These 

properties of diamond make it a suitable substrate material for electric power devices. 

Compared with the other semiconductor materials, the diamond-based devices can reduce the 

possibility of malfunction caused by overheating due to the heat sink of the substrate because of 

its highest thermal conductivity.
[10],[13]

 In addition, the hole and electron mobility of diamond is 

also extraordinary among various types of common semiconductors, as shown on Table 2.2. In 

summary, the conducting mechanism of p-type semiconductor is the mobility of holes, which is 

created from the acceptor. On the other hand, the donor in semiconductor induces electrons and 

creates an n-type energy level. The p-type doping of diamond has been realised by boron 

acceptor (EAB=0.37 eV) and is utilised as a substrate for many devices. The B-doped diamond 

will lower the activation energy and enable Ohmic contacts. However, the n-type dopants 

phosphorous donor (EDP=0.62 eV) and nitrogen donor (EDN=1.7 eV) are shallow donor in 

diamond. The shallow donor will introduce new energy levels in a semiconductor, which will 

alter its fundamental electronics properties. Thus, the n-type doping of diamond is not 

promising.
[14]

 The p-channel diamond MESFETs and MISFETs, transistors, as well as bipolar 

structures have been developed and reviewed in relevant articles.
[15]

 

 

2.2.2 Optical Properties 

Diamond can transmit ultraviolet from the visible to the infrared regions and it is one of the 

rare materials that has a wide far-infrared transmission range (light wavelength: 30-450 μm), as 

well as excellent resistance to thermal shock. Because of these optical properties, diamond can 

be fabricated as a microwave shield window for visible and ultraviolet radiation.
[20]

 In this 

section, the optical properties of diamond will be reviewed.
1
 

In optics, the refractive index, n, of a certain materials (optical medium) is used to describe 

the propagation of light in that material. Take the value n in vacuum at 0˚C as 1, the refractive 

value of diamond nd can be calculated by: 

                                                       Equation 2.6 

or 

   
       

        
                             Equation 2.7 

where θ represent the angle of incidence formed by the interface and the transmission path of 

light in each medium. The velocity of light in vacuum (vVacuum) is 299,792 km/s, and 123,083 

km/s in diamond (vDiamond). Thus, the refractive index of diamond is nd =2.39225, corresponding 

                                                           
1
 This work is also a cooperative research program with Dr. M. Vladimir, Aston Institute of Photonic Technology.  
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to the light wavelength of 1.026 μm, as shown on Figure 2.6.
[20],[22]

 On the other hand, the 

Cauchy relationship indicates that the relationship between refractive index nd and wavelength λ, 

which can be calculated as: 

        
      

      
    ∑    

  (   ) 
            Equation 2.8 

    
 

   
 

                                           Equation 2.9 

or throughout Sellmeier dispersion equation: 

     
   

 

     
  

   
 

     
                             Equation 2.10 

The parameters A1, A2, are 0.3306, 4.3356, and λ1, λ2 are 0.175 μm, 0.106 μm, which were 

calculated from Equation 2.10, respectively.
[23]

 The refractive index of diamond versus light 

wavelength is plotted by Figure 2.6.  

 

Figure 2.6 Diamond refractive index relationship with light wavelength.
[22]

 

 

The refractive index of diamond can be deduced by Equation 2.10 and nd = 2.39225 

corresponding with the light wavelength of 1.026 μm.
[24]

 The transmission ratio versus the 

wavelength of light is shown on Figure 2.7. The significant absorption at mid-wavelength 

infrared absorption is derived from the impurities and crystal defects of diamond. The 

absorption ratio is calculated by A= -log10(T), where A is the absorption and T represents the 

transmission rate. The infrared absorption in diamond can be derived from the nitrogen 

impurities incorporated in diamond film. The nonlinear refractive index is defined as: 
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                                              Equation 2.11 

        ( )   
                                      Equation 2.12 

while n0 is the linear refractive index and E is applied optical electrical field.
[25]

 The nonlinear 

refractive index is critical for the high-power devices. The n2 is determined by several different 

physical parameters. The empirical expression for n2 is 

   
 (    )(  

   ) 

  [      
(  

   )(    )

   
  ]

                           Equation 2.13 

while χ
(3)

 = 1.8×10
-13

 and n
2
 for diamond is 1.3×10

-15
 cm

2
.W

-1
.
[26]

  

 

Figure 2.7 Diamond optical transmission versus light wavelength.
[22]

 

 

In diamond optics, the dispersion is related to the velocity of the light, which is related to its 

frequency. The group velocity dispersion (GVD) can be recognised as the group delay 

dispersion parameter D, which is calculated as: 

     
  

  
                                              Equation 2.14 

For the light wavelength of 1026 nm, the GVD coefficient is 1.4741.
[23]

 The electron 

relaxation time τ is defined as the average free time of a carrier in semiconductor and inversely 

proportional to the scattering probability, which is expressed as: 

  
  

   
  

       

   
  

    

 
                                Equation 2.15 
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while the electron mobility in diamond is 1,800~2,500 cm
2
/V.s, and an average effective mass 

of m
* 
= (ml.mt

2
)

1/3
. ml

 
is longitudinal electron mass and mt is transversal electron mass.

[27]
 

 

2.2.3 Chemical Properties 

The traditional carbon electrode, e.g., glassy carbon (GC), carbon fibre or carbon nanotubes 

(CNTs) are indispensable materials, for their low cost, large surface-to-area ratio and wide 

potential window. The conductive boron-doped diamond film can be used as an alternative 

material to the traditional carbon electrodes. The electrochemistry properties have been 

reviewed by Pleskov, Fujishima, and Nebel et al.
[28]-[30]

 The boron doped diamond electrode can 

drive the photoelectrochemistry reactions with different solutions, as shown in Figure 2.8. The 

electrochemical reaction was measured by Standard Hydrogen Electron (SHE), which 

represented the reaction: 2H
+
+e

-
→H2. 

 

Figure 2.8 Energy band diagram for diamond with various redox couples at pH 4.5.
[28]

 

 

One of the most important diamond electrode properties is the wide potential window. 

Figure 2.9 shows the cyclic voltammetry (CV) response of different types of diamond 

electrodes. Cyclic voltammetry measurement is an electrochemical measurement based on the 

potential-dynamic principles. In the CV measurement, Figure 2.9 (a) is the CV plot of a high 

quality polycrystalline diamond electrode and Figure 2.9 (b) belongs to the low quality 

polycrystalline diamond electrode. Figure 2.9 (c) and (d) are the platinum electrode and highly-
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oriented pyrolytic graphite (HOPG), respectively. The solution is 0.5 M H2SO4, with a scan rate 

of 200 mV.s
-1

.
[28]

  

 

Figure 2.9 Cyclic Voltammetry of different types of electrodes: (a) high quality 

polycrystalline diamond electrode; (b) low quality polycrystalline diamond electrode; (c) 

platinum; (d) highly-oriented pyrolytic graphite (HOPG). The solution is 0.5 M H2SO4 

with a scan rate of 200 mV.s
-1

.
[28]

 

 

From Figure 2.9, it is obvious that the high-quality diamond electrode has a relative wide 

potential window of approx. 3.55V, comparing with the low-quality diamond (2.2V), platinum 

(1.5V), and HOPG (2V). The high-quality diamond demonstrated a wide electrochemistry 

window, which enable the possibility of detecting reactions in this range. As shown on Figure 

2.10, the peak on the CV plot was assigned as the Epc (reduction peak, Quadrant I) and Epa 

(oxidization peak, Quadrant IV), and their heights on Y-axis were ipc and ipa, respectively.
[29]

 The 

relationship can be expressed as 

          
     

 
                                     Equation 2.16 

   
   

   
                                                Equation 2.17 

while n is the amount of electron take part in the process. If the reaction is a reversible 

electrochemistry process, k =1. When the process is irreversible, k is higher or lower than 1. On 
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the other hand, as the charge-transfer resistance Rct was determined by the electrochemical 

impedance method. The exchange current j0 is given by 

       (    )                                     Equation 2.18 

while R is the gas constant (8.314 J.K
-1

.mol
-1

), T is the Kelvin Temperature and F is the Faraday 

constant. According to this equation, the transfer coefficient α (cathodic reaction) or β (anodic 

reaction) can be calculated as 

  ( )      (
  

  
)(

   |  |

  
)                            Equation 2.19 

while E is the voltammetry potential and γ is the CV scanning rate.
[30]

 

 

Figure 2.10 Cyclic Voltammetry results.
[31]

 

 

2.2.4 Mechanical Properties 

Diamonds highest strength is derived from the carbon sp
3
 bonds. It is quite difficult to 

dislocate the bonds between any two carbon atoms. The Young’s modulus E of a material is 

defined as the ratio of uniaxial stress σ versus uniaxial strain ε measured by stress. 

  
 

 
                                             Equation 2.20 

The Young’s modulus of polycrystalline diamond varies from 400 to 800 MPa and 2,000 to 

3,000 for single crystal diamond. The summary of diamond mechanical properties is shown in 

Table 2.3.  

On another hand, diamond was also measured in the Mohs hardness, which is a type of 

scratch hardness method for solid-state materials relating to its indentation hardness. The 
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relationship between the Mohs number M and the indentation hardness H (kg/mm
2
) has been 

determined by 

                                               Equation 2.21 

The diamond material has a Mohs number of 10, comparing with other materials, e.g. 

tungsten (7.5), chromium (8.5), and boron (9.5). 

 

Table 2.3 Summary of Mechanical Properties for CVD Diamond
[20],[32]-[34]

 

Properties 
Polycrystalline CVD 

Diamond 

Singlecrystalline CVD 

Diamond 
Nanodiamond 

Hardness (GPa) 85~100 70~100 70~145 

Fracture Toughness 

(MPa) 
5.5 3.4 6.9~9.8 

Tensile Strength 

(MPa) 
400~800 2,000~3,000 63~67 

Compressive Strength 

(GPa) 
>90 >90 >47 

Young’s Modulus 

(GPa) 
1,220 1,140 776~925 

 

2.3 Diamond Extraordinary Properties 

In this section, the properties of diamond are summarised. Diamond material has the 

following key features: (1) super-wide band gap semiconductor (~5.47 eV) with an 

extraordinary breakdown voltage of over 100 V; (2) the highest thermal conductivity among the 

natural materials and (3) chemical inertness with a very wide potential response window. 

Meanwhile, the refractive index of diamond is as high as 2.4 in the visible light. Other 

properties related to diamond are listed in Table 2.4. 
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Table 2.4 Other specific properties of diamond material.
[35]-[37]

 

Properties Values Units 

Hardness
*
 10,000 kg/mm

2
 

Strength (tensile) >1.2 GPa 

Strength (compressive) >110 GPa 

Lowest Compressibility 8.3×10
-13

 m
2
.N

-1
 

Young’s Modulus
*
 1,050-1,220 GPa 

Thermal Conductivity
*
 20.9 W/cm.K 

Poisson’s Ratio 0.2-0.1 N/A 

Debye Temperature
*
 2,200-1,860 K 

Melting Temperature 3,820 K 

Dielectric Constant 5.7 N/A 

Thermo Expansion Coefficient 1×10
-6

 /K (@300K) 

Friction coefficient 0.1 N/A 

*
 denotes the highest value in solid materials. 
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2.4 Diamond Films 

2.4.1 Growth of Diamond Film 

Chemical vapour deposition (CVD) method has been widely used in the synthesis of thin-

film coating on other substrates. The diamond CVD deposition technique has been studied since 

early 1980s. The substrates used in CVD diamond growth can be either on the diamond film, 

which is referred to as homoepitaxial growth, or on other non-diamond substrate which is 

defined as heteroepitaxial growth.
[38]

 The first high-temperature high-pressure (HTHP) method 

for diamond CVD deposition was reported by Wentorf, et al.
[39]

 The growth condition diagram 

is shown in Figure 2.11. The experimental growth condition was as high as 1,300 K at a 

pressure of 3.1×10
7
 Pa. As an alternative method, i.e. plasma-assisted CVD method was 

developed, the diamond films could be deposited under a carbon-contained species atmosphere. 

The heteroepitaxial growth of diamond films can be accomplished by thermal or plasma-

assisted CVD techniques, in which a hydrocarbon carbon source gas is mixed in hydrogen gas. 

Figure 2.11 Diagram of diamond growth with different carbon source and condition phase 

(at 1,300 K/3.1×10
7
 Pa).

[40]
 

 

In the plasma-assisted CVD system, the plasma is stimulated by electrical discharge from a 

microwave generator. The plasma generates the atomic hydrogen as well as carbon precursors 

in the chamber. 
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Figure 2.12 (a): schematic diagram of MPECVD system, and (b): the source gas flow 

distribution in the reaction chamber.
[38]

 

 

The growth rate of diamond from gaseous reactants is fundamentally based on the flux of the 

species on the substrates surface and the products generated from it, as well as the temperature 

inside the chamber. For the gas dissociation, electric discharge, microwave/RF and hot-filament 

are usually applied. The crystalline orientation and quality of diamond film is not only 

determined by different types of carbon precursor, but also includes the oxygen concentration. 

e.g. hydrocarbons, alcohols, ketones, and carbon monoxide. The most abundant gas species, 

which take part in the deposition, are methyl radicals and acetylene molecules. The hydrogen 

gas is required to be sufficient in the reaction chamber and served as a reducing agent. 

Meanwhile, graphite and other non-diamond species are also deposited with diamond 

simultaneously. The substrates are commonly pre-treatment of adhering micrometre diameter 

diamond particles to enhance the nucleation or scratching on the surface. Different substrates 

and CVD diamond deposition are summarised in Table 2.5. Compared with the other types of 

diamond deposition methods, the MPECVD method has a little contamination with a lower 

temperature and pressure. Besides, the deposition area of MPECVD system is as high as 100 

cm
2
. 

During the reaction process, the hydrogen serves the critical role in reducing the percentage 

content of carbon source gas. The hydrogen molecules have been detached by the environment, 

e.g. hot-filament, or microwave plasma, and then presented in the state of hydrogen radicals, 

which are highly reactive hydrogen atom.
[20]

 The reaction can be expressed as 
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→                                           Equation 2.22 

Under the circumstances of CVD synthesis, the carbon sp
2
 phase was deposited as the same 

time as the growth of diamond. However, the presence of hydrogen radicals can etch away the 

carbon sp
2
 species. At the same time, the hydrogen radical can terminate the surface dangling 

carbon bonds and prevent it from being substituted by a non-diamond element. A suitable 

condition for diamond growth has been proven to be between 700˚C and 1,200˚C.
[3] 

For polycrystalline diamond growth, the ‘nuclei’ or so-called ‘nucleation’ process is helpful 

for the initial deposition process. Before the diamond heteroepitaxial growth on another 

substrate, the nucleation seeding or scratching micrometre diamond particles on the substrate 

surface is always applied.  

 

Table 2.5 Different types of CVD diamond deposition.
[38]

 

 

2.4.2 Applications of Diamond Films 

The properties and growth of diamond films have been reviewed in the previous sections. In 

this section, the applications of diamond films will be introduced. 
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 Piezoresistive Devices 

The diamond films can be applied in both sensors and MEMS technology; it has the highest 

thermal conductivity, a low thermal expansion coefficient and high chemical inertness. The 

boron-doped diamond film has been proven to have semi-conductive properties, as described in 

Sec.2.2. Thus, it exhibits the potential ability for piezoresistive devices. For the piezoresistive 

materials, the resistance has a relationship with the loaded compressive stress.
[41]

 The 

piezoresistivity is expressed by 

  
(    )

 
                                             Equation 2.23 

where K is the Gauge factor, and ε is the strain of diamond film. R and ∆R are the resistance 

without strain force and the resistance changed with loaded strain force. Adamschik, et al. 

investigated high oriented diamond (HOD) films deposited on a p-type silicon wafer.
[42]

 The 

HOD film was deposited on a 3-inch silicon substrate on the (100) plane by using the bias-

enhanced nucleation (BEN) method, as shown in Figure 2.13. The free-standing diamond 

cantilever was fabricated by boron-doped method to create piezoresistive at the end of the beam. 

Figure 2.13 Diamond cantilever structure by dry etching on an HOD film.
[41]

 

 

 MEMS Acceleration Sensor 

The diamond based acceleration MEMS device was proposed by Kohn, et al. and shown on 

Figure 2.14.
[43]

 The substrate was a HOD film and a silicon seismic mass was hold by four 

diamond piezoresistive beams. The seismic silicon was fabricated by the reactive ion etching 

(RIE) method. The Young’s modulus is 825 GPa and the fracture strength is 4.7 GPa, with the 

corresponding resonance frequency at 4.5 kHz. The ultimate measuring limit was ranging as 
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high as 7,000 G and response time is around 10 ms. The diamond acceleration MEMS devices 

can survive up to 700˚C and maintain a consistent performance up to 500˚C. 

 

Figure 2.14 Left: diamond-based MEMS acceleration sensor with Si seismic mass; Right: 

piezoresistive beam and attached the suspension element.
[43]

 

 

 Field Emission Devices 

For a single crystalline diamond film, it will exhibit a charge-up phenomenon during SEM 

observation. A reasonable explanation for this is the hydrogen termination on the surface, which 

can enhance the surface conductivity. In the previous chapters, the hydrogen terminated boron-

doped diamond and its properties on negative electron affinity (NEA) have been introduced. It 

described how electrons were excited to the conduction band of H-terminated diamond; they 

would be spontaneously emitted to the vacuum band presumably across a small barrier on the 

C-H surface.
[3]

 Based on this property, the field emission device was fabricated on a 

heteroepitaxial undoped (100) diamond film, which was deposited on Ir (100) substrate by 

Yamada, et al.
[44]

 According to the I-V characteristics of the hydrogenated and oxidised 

diamond surface shown in Figure 2.15, and the emission was uniform in the 3 mm × 3 mm area. 

The threshold voltage was measured to be 40 V/μm and the corresponding current was 10
-11

 A. 

The emission barrier height coefficient (γ) can be calculated through Equation 2.24. Δo / ΔH 

expresses the slope of the F-N plot extracted from the hydrogenated and oxidised surface. 

  (
  

  
)
 

                                             Equation 2.24 
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Figure 2.15 The I-V relationship between the oxidized and hydrogenated surface 

heteroepitaxial diamond film.
[44]

 

 

 HOD film pH Sensors 

Denisenko, et al. investigated a pH sensor based on a diamond substrate. The H-terminated 

thin layer occupies a 3-10 nm thick on boron doped diamond surface, which exhibit a p-type 

characteristic with a hole density of 10
13

/cm
2
.
[45]

 The principle was based on field effect 

transistor (FET). There is an open channel on the sensor, where the solution can be directly 

contacted with. The open channel protects the substrate from strong acid/alkali solution. With 

the different H
+
/OH

-
 density in the solution, the corresponding electric field has an influence on 

the resistance between the source and drain. The forming channels were gradually depleted with 

the increasing OH
-
 ion radicals, while the surface C-H dipoles were also influenced. Because of 

the extreme wide bandgap of the diamond substrate, there was no charge transfer effects 

occurred between the diamond and two solution interface. 

Figure 2.16 Left: image of pH sensor based on HOD diamond film and its structure; Right: 

the relationship between grain current and gate bias potential of diamond substrate pH 

sensor.
[45]
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 Ultraviolet Sensor 

The single crystalline diamond has a wide bandgap of 5.47 eV, which corresponds to a light 

wavelength of λ =227 nm. While the absorption occurs on the diamond film, it will generate 

electron-hole pairs. Thus, the diamond material is photon-sensitive to the ultraviolet light (λ 

<227 nm). Hayashi, et al. developed a highly-oriented diamond UV detector on Si substrate 

with a Pt electrode, as shown on Figure 2.17.
[46]

 The output voltage was measured between 

20~80 V with an ArF laser source irradiation at λ =193 nm. The transient output signal pulse 

was between 1.1~3.8 ns. The results demonstrated that the UV sensor has a transient response to 

the ultraviolet laser pulse. The grain size of the crystal boundaries in HOD films is smaller than 

that of polycrystalline diamond films, and their crystal quality is much more superior. 

Figure 2.17 Left: schematic diagram of the diamond UV sensor structure, and Right: the 

relationship of the output voltage and the bias voltage under the 193 nm laser 

irradiation.
[46]

 

 

 Biosensor 

Recently, diamond has been considered a promising candidate for bioelectronics applications 

for its electronic and chemical properties. Successful applications of impedance spectroscopy 

have been reported for immunosensors, enzyme sensors, and DNA sensors. In this section, the 

electrochemical equivalent circuit models and impedance spectroscopy experiments of different 

kinds of diamonds will be reviewed.
2
 

DNA molecule detection is a basic application in molecular diagnostics. Faradic and non-

Faradic impedance spectroscopy has been utilised to study the DNA hybridization by recording 

                                                           
2
 This section was partially included in the previous publication by the author. 
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the impedance modifications in DNA attached layers before and after hybridization. If a 

semiconductor is used as a signal sensor, its field effect can be induced by the binding of the 

negatively charged DNA, resulting in the interfacial impedance at the measuring frequencies. 

Takahashi et al. investigated a chlorination/-amination/-carboxylation process on H-terminated 

diamond for persevering and analysing DNA clips.
[47]

 In 2002, Yang et al. modified the 

nanocrystalline diamond with alkenes and concluded that DNA bonding on diamond material 

would be much better than that on other substrates.
[46]

 Then, several other methods including 

chemical reduction and direct amination on diamond with DNA, enzyme, and proteins were 

investigated by using cyclic voltammetry and other electrochemistry methods.
[47]

 To study the 

electrical response and the hybridization-induced effects, the impedance data were analysed 

using equivalent circuit with constant phase elements (CPE). The electrochemical equivalent 

circuit of DNA-modified diamond film is shown in Figure 2.18.
[48]

 

In the equivalent circuit, Rs represents the ohmic resistance of the electrolyte solution. The 

paralleled resistor R1 and capacitor C1 reflects the properties of the molecular layer and the 

double layer. R2 and CPE =(A
-1

(jω)
-α

), where A and α are non-integral, adjustable parameters, 

which describe the impedance of the space charge region of the BDD electrode. 

 

Figure 2.18 EIS equivalent circuit of DNA-modified diamond film. 

 

Between 2006 and 2007, Nebel et al. applied the photochemistry technology to attach alkene 

modules on undoped diamond and electrochemical reduction of diazonium salts to attach 

nitrophenyl-linker molecules on boron-doped CVD diamond.
[51]

 Thiolmodified single-stranded 

probe DNA (ss-DNA) was bonded to diamond by hetero-bifunctional cross-linker. Then, the 

substrate surfaces were exposed to fluorescence-labelled target ss-DNA to investigate 

hybridization on the DNA-FET structure. CVD diamond growth process and photochemistry 



Chapter 2: Characteristics and Properties of Diamond Materials 

43 

 

methods were introduced and x-ray photoelectron spectroscopy, atomic force microscopy, and 

fluorescence microscopy were utilized to characterise the surface with DNA. 

Figure 2.19 shows the EIS properties of DNA-modified nanodiamond films. The impedance 

was shown by Nyquist plot, which were detected from ss-DNA exposure to 4-base mismatched 

DNA and after exposure to complementary DNA in pH 7.4 phosphate buffer with 1 mM 

Fe(CN6)
3-/4-

. The Nyquist plot indicated discriminating hybridization of matched and 

mismatched DNA. The author gave interpretation of these results, which depends on several 

factors, including variations of ss-DNA and double-strand DNA layers, external electric fields, 

as well as the effect of redox molecules such as Fe(CN6)
3-/4-

 on the dielectric and conductivity 

properties of DNA films on diamond.
[51]

 

Figure 2.19 Nyquist plot of nanodiamond film biosensor with 1mM Fe(CN6)
3-/4-

 solution.
[51]

 

 

Yang et al. in 2007 investigated the properties of the antibody–antigen–modified BDD 

surfaces.
[52]

 The diamond samples were all p-type BDD (deposition concentration: 10
18

 cm
-3

), 

on p-type Si (100) substrate using the MPECVD method. EIS experiments were performed 

using human immunoglobulin G (human IgG, Sigma I4506) and human immunoglobulin M 

(human IgM, Sigma I8260) linked to surfaces, whereas binding experiments were performed 

using the complementary antibodies antihuman IgG (Fc specific, Sigma F9512) and antihuman 

IgM (m-chain specific, Sigma F5384). Figure 2.19 shows Nyquist plots of Z' and Z'' from 

100Hz to 1.1 MHz, with 10-mV root-mean-square (rms) modulation for different kinds of 

antibody-antigen-modified diamond surfaces. After anti-IgG and anti-IgM modified, the Cole-

Cole plot had only slightly changed in real component response (Z' changes from 110 to 112 Ω 

at 200 kHz). Then the impedance Z' (before and after exposure to anti-IgG) increased from 110 

to 190 Ω at 200 kHz. The author also gave the electrochemistry equivalent circuit, as shown in 

Figure 2.20. 
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Figure 2.20 Equivalent circuit model representation of the IgG-modified semiconductor 

interfaces and used to fit the data on n-type and p-type silicon.
[53]

 

 

 Diamond Electrochemical Electrode  

The BDD applications for surface electrochemistry pre-treatment are reported in this chapter. 

For the chemical stability and surface reproducibility, BDD is an excellent candidate for 

contaminated water treatment. Suffredini et al. utilised EIS measurement to illustrate 

differences after cathodic/anodic pre-treatment on the diamond films. A 0.06 cm × 1.0 cm BBD 

electrode that was deposited by HFCVD technique on a silicon wafer was used as a working 

electrode in EIS experiments. The gases in the vapour deposition process were methane, H2 and 

trimethyl boron, and the boron content was 4500-5000 ppm. The EIS measurement was 

performed with 0.5 mol L
-1

 H2SO4 and 1 × 10
-3

 mol L
-1

 K4Fe(CN)6 or 0.5 × 10
-3

 mol L
-1

 

ferrocene. Figure 2.21 shows the Nyquist plot obtained at 0.06 V after anodic and cathodic pre-

treatments. The resistance calculated from the Nyquist plot at high-frequency range for the 

anodically treated BDD is similar to the previous reports for the same solution at an oxidised 

BDD. When the BDD surface was performed cathodic treatment, the resistance reduced as 

shown in Figure 2.21. However, the factor was relative smaller than the previous reports. The 

author explained that the inner or the surface structure of the BDD material could be modified 

by this treatment and lead to fast electron transfers consequence. Figure 2.21 presents Nyquist 

plots obtained at 0.37 V in a 0.5 × 10
-3

 mol L
-1

 ferrocene + 0.5 mol L
-1

 H2SO4 solution for the 

BDD electrode after anodic and cathodic pre-treatment. The value of the high-frequency 

resistance element after the cathodic surface pre-treatment is also obvious as in Fe(CN)6
4–/3– 
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couple. The EIS experiments demonstrated that a discontinuous passive layer or an internal 

carriers transportation of the BDD would decrease the surface blocking, which is caused by the 

cathodic pre-treatment.
[53]

 

Figure 2.21 The Nyquist plots for the boron-doped diamond electrode in K4Fe(CN)6 + 

H2SO4 after (a) anodic pre-treatment at 3.0V or (b) cathodic pre-treatment at -3.0 V.
[54]
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2.5 Nanodiamond 

2.5.1 Synthesis, Characterisation, and Properties of Nanodiamond 

 Introduction 

The first nanoscale diamond particles were developed by the USSR during the 1960s’ by the 

detonation method.
[54]

 At the beginning of 1990s, nanodiamond particles with a diameter 

ranging of 4~5 nm were investigated. It was widely known that the carbon sp
3
 clusters should 

be either stabilized with terminal functional groups or linked with sp
2
 carbon structures. The 

non-functionalised nanodiamond exhibits similar properties as the bulk films. The surface of 

nanodiamond has a transformation from sp
3
 carbon to sp

2
 clusters with octahedral, 

cuboctahedral and spherical structures. The surface of nanodiamond can be composed by 76% 

graphitization shell, including onion-like, small/large carbon clusters.
[55]

 The characteristics and 

applications of nanodiamond has been summarised and listed on.
[56]

 

 

 Synthesis 

Nanodiamond can be synthesized by different methods, e.g. detonation, laser ablation, 

HPHT milling, autoclave synthesis, ion irradiation on graphite, electron irradiation on carbon 

onions, ultrasonic cavitation and PECVD. The detonation method is one of the most common 

commercial methods of nanodiamond production.
[55],[56]

 

Figure 2.22 (a) detonation species and common diameter of nanodiamond; (b) phase 

diagram of nanodiamond synthesis condition, including pressure and temperature; (c) the 

schematic of detonation process and products.
[55]

  

 

Figure 2.22 (a) shows the raw materials of detonation nanodiamond. The raw materials 

contains a negative oxygen balance, which is composed by a mix of 60 wt.% TNT 

(C6H2(NO2)3)CH3 and 40 wt% hexogen (C3H6N6O6). Then, they were detonated in a huge, 
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closed and heavy metallic chamber within an atmosphere of N2, CO2 and H2O. After the 

detonation process, the residues will be collected and transferred to purification process. 

 

Table 2.6 Characteristics and applications of nanodiamond materials.
[56]

 

 

In Fig.2.24 (b), the phase diagram demonstrates that the appropriate temperature and 

pressure for nanodiamond (point A, named as Jouguet point). As the pressure and temperature 

deviates from the diamond-graphite equilibrium line, the explosive residues will be replaced by 
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graphite products.
[57]

 Figure 2.22 (c) explains the different zones in the detonation chamber by 

temperature gradient distribution. In zone (I), the detonation was caused by the first detonation 

shock wave and chemical reactions decomposed the explosive molecules. Zone (III) indicates 

the Chapman-Jouguet plane (red line in Figure 2.22 (b)), which is the equilibrium condition for 

nanodiamond production. The zone IV~VII represents the expanding detonation products, 

carbon nanoclusters, coagulation of liquid nanodroplet, and crystallization/agglomeration of 

nanodiamond, respectively. The nanodiamond synthesised by this method was named as 

detonation nanodiamond (DND). 

 

 Post-synthesis processing 

The biological applications of nanodiamond required extremely high purity of diamond 

phase in DND. However, the detonation residues contain both the graphite-like materials (25-45 

wt.%) and incombustible impurities, e.g. metal and metal oxidize (1-8 wt.%).
[58]

 The impurities 

of DND are much higher than the HTHP diamond films. After the post-synthesis process of 

DND, the composition of DND can be including carbon (~80-89 wt.%), nitrogen (~2-3 wt.%), 

hydrogen (~0.5 wt.%), oxygen (~5-10 wt.%) and incombustible residues (~0.5-8 wt.%).
[59]

  

The tentative structure scheme of DND particles is shown on Figure 2.23. The non-diamond 

carbon includes graphite nanocrystals, graphite ribbons, carbon onions, and other amorphous 

carbon.
[56]

 Most of them are located tightly outside the DND particles.
[60]

 In order to remove the 

internal impurities, the tight DND agglomerates should be isolated. It is relatively easier to 

remove the metal from the DND complex surface by using liquid oxidization, e.g. H2SO4/CrO3, 

H2SO4/HNO3, HCl, KClO3/H2SO4.
[61]

 Other purification scheme includes KOH/KNO3, Na2O2, 

HNO3/H2O2, within a certain atmosphere of pressure and sulphuric or perchloric acids. 
[56]

 

Figure 2.23 Tentative scheme of DND particles and their soot-like structure outside the 

cores (Left) and commercial DND particles after post-synthesis process (Right).
[59]
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There is alternative method for DND by treating DND in an environment with elevated 

temperature, which can reduce the requirement of oxidization chemicals. This method was 

named as ozone method and it is more efficient for carbon sp
2
 removal in industrial scale. An 

optimisation temperature for DND heat treatment was verified at 400~430˚C.
[62]

 The surface 

hydrogen atmosphere method is a novel approach for DND purification, but the carbon sp
2
 

could not be effectively removed from the nanodiamond core. 

 

 Characterisation 

After the well-purification process, the nanodiamond particles contain relatively negligible 

non-diamond phases. Figure 2.24 demonstrated the DND particles through transmission 

electron microscopy (TEM). The TEM image illustrated that the nanodiamond particle was built 

up by sp
3
 carbon phase, with an outer graphitic shell, or amorphous carbon structures. The 

outside dangling bonds can be terminated with C-H bonds or other functional groups. 

 

Figure 2.24 An individual nanodiamond particle, which is constituted by a high oriented 

diamond core, has a clean facet shape around the inner carbon sp
3
 core.

[59]
 

 

Figure 2.25 shows the Raman spectroscopy (325 nm ultraviolet laser excitation) of different 

types of nanodiamonds. The diamond characteristic peak is shown in inset a, while the 

combination of peaks can be deconvoluted into (I): larger scattering domain, and (II) smaller 

scattering domain, respectively. The broad shoulder at 1500-1800 cm
-1

 in the fitting spectrum 

(inset b) was derived from the oxidized nanodiamond surface and carbon sp
2
 atoms, as well as 

the absorbed molecules. The nanodiamond core was surrounded by a graphitic layer, which 

could be proven by the Raman analysis. The G-band of graphitic layer can be observed at 1590 

cm
-1

 and diamond peak was not significant. After the purification process, the diamond peak at 
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1328 cm
-1

 is clearly observed on the Raman spectra as well as the oxidized sample. It could be 

concluded that the outer thin layer was removed from the inner core by the oxidization air. 

Fourier transform infrared (FTIR) can also provide an effective insight on the nanodiamond 

surface functional groups.
[63]

 The characteristic peaks for nanodiamond after post-synthesis 

process can be O-H stretch (3200-3600 cm
-1

) and bend (~1635 cm
-1

), C=O stretch (1700-1800 

cm
-1

), and C-H stretch (2850-3000 cm
-1

). The O-H groups are derived from the surface absorbed 

water and C=O bonds can be derived from ketone, aldehyde, carboxylic acid, ester, anhydride, 

cyclic ketone, lactone, and lactam, etc.
[64]

 A detailed discussion on Raman and FTIR 

applications on characterisation will be introduced in Chap. 3. 

 

Figure 2.25 Left: Raman spectroscopy and deconvolution of different types of 

nanodiamond (oxidized, purified and detonation soot). Right: TEM images of these three 

types of nanodiamonds. 

 

 Modification 

Different types of functional groups can be found on the DND surface and also can be 

applied to covalent functionalization. It is more likely to perform surface modification with 

nanodiamond after deep purification and ozone oxidization, for the rich –COOH groups on its 

top. The MPECVD method with a H2 atmosphere at 700˚C can effectively reduce the surface –

COOH groups as well as the other oxygen species.
[65]

 The surface modification diagram is 

shown on Figure 2.26. The precise control on the diamond surface required simple and unitary 

surface termination. Nanodiamond particles with carboxylic groups (-COOH, shown on Figure 

2.26 green area) were utilised as the preliminary raw materials. The surface can be 
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functionalised by high temperature treatment (red zone), or wet chemical method (blue zone). 

Heating DND powder in NH3, Cl2, and F2 can form stable C=N, acylchlorides, and C-F group, 

respectively.
[66],[67]

 Annealing DND in a H2 rich atmosphere can reduce the C=O or C-O-H 

bonds and transform them to C-H. Other biofunctional groups, including hydrophilic and 

hydrophobic polymer brush, have been synthesised as well.
[68]

 A hydroxylated DND with alkyl 

chains with carboxylic acid chlorides on surface hydroxyl groups had been synthesised by 

Krueger, et al.
[69]

 

 

Figure 2.26 The surface modification process of nanodiamond. 

 

2.5.2 Nanodiamond Applications 

As the techniques to fabricate nanodiamond where developed, the applications of 

nanodiamond were also widely explored. The nanodiamond inherits t most of the diamond film 

properties, e.g. extreme hardness and Young’s modulus, biocompatibility, fluorescence, as well 

as chemical stability. In this section, the applications utilised these properties of nanodiamond 

will be introduced. 

 

 Fluorescence and biological fluorescent label 

In nanodiamond, the nitrogen-vacancy (NV) centre can generate a photoluminescent (PL) 

property. The NV centre can be fabricated in a nanodiamond core with high energy irradiation 

after annealing in vacuum atmosphere at 600-800˚C.
[70]

 PL nanodiamond can also be produced 
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by chemical linking or absorption.
[71],[72]

 The synthesised PL nanodiamond has the advantage of 

biocompatibility, non-toxic, which is suitable for future potential in-vivo biological image 

application. 

The nanodiamond has an intrinsic absorption wavelength of 236.4 nm, which is quite closed 

to that of natural diamond films.
[56]

 The NV defect-related has an absorption wavelength at 576 

and 638 nm, corresponding to the NV
0
 and NV

-
 centres, respectively. Both HPHT nanodiamond 

and DND can generate an intrinsic PL without high energy treatment, which can be detected by 

microscopy or flow cytometer conveniently.
[73]

 Figure 2.27 shows the DND powder with 

different surface modification, e.g. –NH2, fluorescein isothiocyanate (FTIC), as well as dye 

tetramethylrhodamine (TAMRA). The TAMRA-DND can be applied in tracing in cytotoxicity 

environment.
[74]

 

 

Figure 2.27 Images of DND powder modified with NH2, FITC and TAMRA on the surface 

of the particles.
[56]

 

 

 Non-insoluble medicine drug delivery  

The DND powder is insoluble in water, which can inhibit the mutation of cells and reduce 

the chances of a secondary tumour.
[75]

 The preliminary experiments suggested that 

nanodiamond, e.g., detonation, HPHT, and natural, can be selected as the drug delivery carriers. 

The most important factors to drug delivery nanodiamonds are their surface functionalization, 

the drug release-duration and shielding capability.
[76]

 

M. Chen, et al. reported a 4-6 nm nanodiamond powder for water-insoluble drug delivery.
[77]

 

The TEM images are shown in Figure 2.28. After an ultrasonic bath, centrifugation and milling 

treatment, the nanodiamond was surface modified with strong acid to form carboxyl groups. 

The surface carboxylic groups can promote nanodiamond to be a stable suspension in water. 
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Then, 4-Hydroxytamoxifen (4-OHT) was selected as a water-insoluble cancer therapeutic for 

this delivery system. The results proven that the nanodiamond served as a biocompatible 

platform for enhanced water dispersion of this drug. K. Liu, et al. investigated nanodiamond-

conjugated paclitaxel with covalent bonds, which could be applied in lung carcinoma cell 

delivery.
[78]

 Other applications have been summarised and reviewed by E. Osawa, et al.
[79]

 

Figure 2.28 Left: TEM image of pristine nanodiamond; Right: 4-OHT residue on the 

nanodiamond surface to drug interface.
[79]

 

 

 Lubrication for Engines 

DND powder can be an addictive in lubrication and decrease ~5% of fuel consumption and 

enhance engine lifetime.
[58]

 The lubrication mechanism can be derived from the nanodiamond 

reduced friction by polishing sliding surfaces and provided tribology performance when 

dispersed in fuel. Preliminary study revealed that nanodiamond for lubrication might be 

embedded into carbon steel surface, which will reduce friction and enhance wear resistance. It is 

reasonable to predict that nanodiamond in the metal surface can separate the sliding surface and 

protect the metal-to-metal adhesion interface. 

 

 Biomarkers 

C. Fu, et al. had developed surface modified nanodiamond as cellular biomarker 

applications.
[80]

 A 100nm DND was surface modified with carboxyl groups by H2SO4:HNO3 

(9:1 in volume) bath at 75˚C for 3 days, and following then by 0.1 M NaOH solution at 90˚C for 

2 hours, and finally by 0.1 M HCl at 90˚C for 2 hours. The oxidized DND was then linked with 

amino groups with N-(3-dimethylaminopropyl)-N’-ethyl-carbodiimide hydrochloride. The 

observation of single digit DND using functionalized DND for live Hela cell is shown on 

Figure 2.29. It is obvious to find out that most of the loaded DND particles are located along 
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the cytoplasm. The separation between two particles is approximate 1 μm. The DND and 

fluorescence labelled DNA molecule was excited by 514 nm Ar-ion laser. The biomarkers 

photophysical properties did not deteriorate after surface functionalization and interact with 

DNA molecules by forming covalent bonding.  

Figure 2.29 (a) bright-field and epifluorescence images of HeLa cell after loaded DND 

biomarkers. (b) single epifluorescence image of a single HeLa cell with enlarged zoom.
[80]

 

 

 Cold Water Cleaning 

In 2012, X. Cui and H. Ye, et al. developed surfactant-mediated nanodiamond to remove 

triglyceride away from hydrophobic surface in cold water.
[81]

 The nanodiamond was prepared 

with oxidized, reduced, ω-alkylcarboxylic acid and ω-alkylamidoamine modification. 

 

Figure 2.30 The principles of nanodiamond lipid removal. (a) nanodiamond absorption 

can promote insertion of surfactant in lipid layer, as well as tristearin lift-off. (b) 

surfactant lipid budding process. (c) and (d) solubilisation process with/without 

nanodiamond.
[81]
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The results proven that the nanodiamond could improve the lipid removal and roughen the 

surface in order to enhance surfactant absorption by providing negative curvature on the surface 

sites. On the other hand, the strong electrostatic interaction existing between the nanodiamond 

and surfactant improves the absorption ability. The principle of nanodiamond lipid removal was 

shown as Figure 2.30 and it provided a novel tool for cold-water cleaning. 

 

2.6 Summary 

In this chapter, the fundamental properties of diamond materials, including single/poly-

crystalline diamond films and nanodiamond, were introduced. Diamond can be considered as a 

superior material to alternatives with extraordinary properties, such as extreme mechanical 

hardness, high electronic saturation velocity and carrier mobility, the best thermal conductivity, 

very high optical refractive index and biocompatibility. Besides, the synthesis methods and 

applications of diamond-related materials have been reviewed as well. In the next chapter, the 

different characterisation methods on diamond materials will be introduced. 
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3 Growth and Characterisation of Diamond Materials 

3.1 Introduction 

The previous chapter focuses on the literature review on diamond properties and the 

principles of chemical vapour deposition. This chapter will discuss the various techniques used 

to growth and characterise diamond materials. The chemical vapour deposition (CVD) reactors 

are mostly utilised to deposit the diamond films and other microscopy or spectroscopy 

equipment are used to characterise the specific properties of the materials. There are different 

types of CVD reactors for diamond film synthesis. More specifically, microwave plasma 

enhanced chemical vapour deposition system (MPECVD), and hot-filament chemical vapour 

deposition system (HFCVD) will be built up and discussed in details. Then, the different 

techniques usually used to characterise the diamond materials, are introduced in this chapters. 

 

3.2 Chemical Vapour Deposition Reactor for Diamond Growth 

In the past, the deposition of diamond depended on the high-temperature high-pressure 

technique (HTHP), which was limited because of its extreme growth condition (>2,000˚C, >10 

GPa). Thus, it cannot be used to deposit large-area or large-scale growth of diamond films. 

Today, we have a wide range of chemical vapour deposition (CVD) techniques which are used 

for the fabrication of diamonds. Chemical vapour deposition is defined as a group of process 

which involves deposition a solid material based on a gaseous phase environment. It is one of 

the most common processes to produce high-purity thin films. The CVD process has the 

advanced characteristics, such as fine crystalline grains, high-purity, etc. The CVD systems are 

classified by the different energy sources used to promote the reaction, e.g. microwave plasma 

assisted (MPECVD), hot filament (HFCVD) and arc discharge CVD (DC Arc-jet CVD), etc. In 

this section, the MPECVD and HFCVD deposition systems hosted in Aston University will be 

introduced. 

 

3.2.1 Microwave Plasma Enhanced Chemical Vapour Deposition System 

Microwave plasma enhanced CVD allows the synthesis of diamond films on substrates at a 

low temperature and pressure, which is generally more suited for commercial manufacturing 

requirements. The traditional HPHT method to deposit the diamond films has been proven as 

too difficult to be economical for commercial purposes. In the MPECVD method, the glow-

discharge (non-isothermal) plasma is generated by a microwave generator in a chamber, which 

is filled with deposition gas in a high-frequency electric field at a relative low pressure. The 

electrons are quickly accelerated to high energy levels above ~5,000˚C, whilst the heavier ions 
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remain very low temperature. Under the assistance of the high-frequency electric field, the 

precursor gas molecules, e.g. CH4, C2H2, are ionised by the electric field and become ions and 

electrons.
[84]

 Typical CVD diamond growth required optimised conditions, such as low pressure 

(about 1-25 kPa) and various kinds of source gases in the reaction chamber. The source gas 

always includes the carbon sources gas (e.g. CH4, C2H2) and the hydrogen gas, which plays a 

critical role during the deposition process. The phase diagram of carbon is shown on Figure 

3.1.
[83]

 The formation of diamond sp
3
 is determined by the thermodynamic condition inside the 

reaction chamber. 

Figure 3.1 Carbon phase diagram.
[83]

 

 

The MPECVD technique enables the deposition of diamond on a wafer larger than 15 cm (6 

inch) with relatively lower pressure and lower temperature, which can be applied in the future 

microelectronics devices. Another important attribute of the MPECVD technique is the ability 

to control the properties of the diamond films by regulating the gas flow rate and the 

concentration of the carbon-sources gases (CxHy) and the hydrogen. The possible deposition 

types include the single crystalline diamond with and/without various dopants (e.g. phosphorous, 

nitrogen, or boron) and polycrystalline diamond film with grain size from several nanometres to 

micrometres. The basic reaction in general CVD systems involves the decomposition of 

hydrocarbons which can be expressed as: 

     ( )    (   )     ( )                            Equation 3.1 

The hydrogen ions selectively etch non-diamond species during the diamond deposition 

process with a common microwave power at a frequency of 2.45 GHz. The MPECVD film 
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deposition system has three unique properties: firstly a relatively high substrate temperature 

which is typically around 700~1,200˚C; secondly a gas pressure of around 20~150 Torr (1 Torr 

=133.3 Pa); and thirdly a low methane concentration of 1~5% with diluted hydrogen gas.
[85]

 The 

typical structure of ASTeX
TM

-type MPECVD is shown in Figure 3.2.
[86]

  

 

Figure 3.2 Left: 1.5 kW ASTeX
TM

 MPECVD system in Aston University (Seki Technotron 

Corp.); Right: the reactor chamber with plasma inside. 

 

The schematic drawing of the ASTeX
TM

 MPECVD system in Aston University and each 

component is illustrated by Figure 3.3. The standard configuration and parameters are shown as 

below. 

 

Figure 3.3 Schematic drawing of ASTeX
TM

 5010 MPECVD and its accessories. 
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The input gas source includes: 0~1,000 sccm (standard cubic centimetre) hydrogen, 0~10 

sccm methane, and 0~100 sccm Argon gas (or Helium). In the reactor chamber, the CH4 and H2 

molecules were dissociated thermally by the plasma and then fragmented into hydrocarbons as 

well as atomic hydrogen. Figure 3.4 shows the structure of the MPECVD system in 

Nanoscience Group of Aston University. The operation procedure will be attached in Appendix 

1 and the diamond films deposited on silicon wafer will be discussed in Chap.4. 

 Operation pressure: 1.3~6.7 kPa (approx. 10-50 Torr). 

 Pumping speed: 5.6×10
-3

 m
3
/sec (20 m

3
/hr). 

 Leak threshold: < 8.0×10
-8 

Pa.m
3
/sec (6.0×10

-7 
Torr/sec). 

 Incident Power: 600 W. 

 Substrate Temperature: 800-1,000˚C 

 Carbon content: C:H ratio: 1:99. 

 Gas flow rate: 20~200 sccm. 

 Vacuum pump type: oil rotary pump. 

 Vacuum seal: Elastomer O-rings. 

 Reactor chamber: Quartz bell jar. 

 Cooling system: Force air blower. 

 

Figure 3.4 Structure of MPECVD system in Nanoscience group of Aston University. 

 

3.2.2 Hot-Filament Chemical Vapour Deposition Reactors 

Other types of reactors are also used for diamond deposition, e.g. hot-filament (HF) CVD, 

DC-plasma CVD, thermal RF plasma CVD, plasma jet, and combustion CVD, etc. In this 
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section, the HFCVD built in Aston University will be introduced. The condition for HFCVD is 

different with the MPECVD, because the mechanism of carbon sp
3
 formation. The MPECVD 

utilises the microwave to ignite plasma and breaks the C-H in methane, while the HFCVD uses 

the thermal dynamic method.   

 

Figure 3.5 Schematic diagram of HFCVD in Aston University. 

 

In the HFCVD reactor structure, the hot-filament can be made of tungsten (melting point 

3,422˚C) or tantalum (melting point 2,996˚C). The hot-filament will be heated up to 

2,000~2,200˚C and placed 5~10 mm above the substrate (as seen on Figure 3.5). A 

thermocouple was embedded in the substrate and the thermocouple measured the real-time 

temperature on the stage. 

The home-built HFCVD system in the Aston Nanoscience group is shown in Figure 3.6.  

The typical parameters of HFCVD system are listed as follow.
[87]

 The condition can be 

further optimised in the future work. 

 Filament temperature: 2,200˚C ~2,300˚C 

 Substrate temperature: 800˚C~850˚C 

 Gas flow rate: CH4 : H2 =1~2%, 100~200 sccm 

 Carbon content: 0.5%~2% 

 Chamber pressure: 20~100 Torr (26.6~133.322 mbar) 
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Figure 3.6 Home-built HFCVD system in Aston University. 

 

3.3 Diamond Characterisation 

In this section, the equipment and techniques used to characterise the diamond materials will 

be discussed.  

 

3.3.1 Scanning Electron Microscopy 

The scanning electron microscope (SEM) technology was first developed in the 1930’s and 

the first commercial application was in 1965. The SEM utilises a beam of high-energy electrons 

to characterise a sample by scanning its surface topological structures from where the signal 

reflected from the sample contains the information of material texture, external morphology and 

orientation of crystals. The magnification range varies from 20X to 30,000X or even higher, 

corresponding to a minimum spatial resolution of 50 to 100 nm.
[88]

 The sample under 

measurement should be solid-state and the vacuum level should be stable between 10
-5

~10
-6

 

mbar. Chemical elements below atom number 11 cannot be detected due to their minimum size. 

If it is an insulated sample should be coated by conductive metal layer. 

For the signal generated from the electron beam, the primary electrons (PE), including 

secondary electrons (SE) and backscattered electrons (BSE), can be detected by the device. The 

others products include the Auger electrons, cathodoluminescence (e.g. photon UV, IR, vis).
[89]

 

As the energy exchange process occurs at the surface of the sample, the PE will be generated by 

both elastic and inelastic scattering. The specimen will be collected by a specialised detector 

and utilised to create 2-D images. 
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The SEM techniques can be used to characterise the diamond growth morphology, crystal 

orientation, coverage, and other properties. Figure 3.7 shows the SEM images of cubo-

octahedral diamond nuclei grown on (100) silicon.
[90]

 

Figure 3.7 SEM images of cubo-octahedral diamond nuclei growing on (100) Si wafer. Left: 

top-view, Right: side-view.
[90]

 

 

To characterise the diamond crystal growth morphology, the parameter α has been defined as 

a growth parameter by: 

  √  
    

    
                                            Equation 3.2 

where v100 and v111 are the diamond growth rate of (100) and (111), respectively.
[91]

 The 

different parameters α and corresponding growth morphology are shown on Figure 3.8. 

Figure 3.8 Growth rate parameter and corresponding morphology in SEM, Left: α=3; 

Middle: 1.5<α<2; Right: 2<α<2.5.
[92]

 

 

The diamond films grown <100> silicon substrate by ASTeX
TM

 MPECVD are shown in 

Figure 3.8.
[93]

 The bias nucleation was applied with bias voltage of 170-200 V and current of 

300-400 mA. The microwave power for nucleation was set to 1,000W with a pressure of 20 

Torr. The total gas flow was set to 306 sccm (H2:CH4=300:6). The duration for nucleation was 

15 mins and temperature was measured at ~800˚C. Then, the parameters were modified for 
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subsequent produce growth. The microwave power was set to 1,300W and pressure was fixed at 

35 Torr. The carbon gas source and hydrogen ratio was changed to 15: 180 with additional CO 

gas of 5 sccm. The whole deposition duration took 40 hours with a substrate temperature of 

650˚C. It was shown that most of the diamond nuclei were aligned with the (100) faces parallel 

to the substrate whilst the <110> plane direction parallel to each other. 

 

Figure 3.9 Diamond crystals growth aligned with the orientation <100>.
[93]

 

 

The SEM images of diamond film grown on Si (111) wafer are presented in Figure 3.10.
[94]

 

The deposition system was 5 kW at 2.45 GHz using a CH4-H2-O2 gas mixture. The chamber 

pressure was maintained at 100-120 Torr with a total gas flow of 400 sccm (CH4: 0.25~8.0%, 

O2: 0.0~3.0%). The microwave power was set at 4 kW during the whole process. In Figure 3.10, 

various samples are shown with different levels of oxygen. It is obvious from Figure 3.10 that 

the oxygen gas flow has a significant influence on the final diamond grain size after deposition.  

Figure 3.10 SEM micrograph of diamond films deposited by MPECVD, with oxygen 

concentration varies from 0%~3.0%, with a power of 4 kW and 100 Torr, respectively.
[94]

 

 

The SEM can also be used to characterise the nanodiamond powder, as shown in Figure 

3.11. Due to the extremely high surface energy, the ultradispersed nanodiamond is made up of 
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the conglomerates in the order of one micron in size, rather than the isolated particles with 

characteristic diameters. The dried powder tended to form particles with a few hundred 

nanometres to several microns.
[95]

 It was found difficult to break the aggregates into several 

nanometres independent nanoparticles by ultrasonic bath. 

 

Figure 3.11 SEM images of nanodiamond powder with heat treatment in hydrogen 

atmosphere (500˚C for 3 hours).
[95]

 

 

3.3.2 X-ray Photoelectron Spectroscopy 

X-ray Photoelectron Spectroscopy (XPS) can be used to analyse the composition and 

chemical state as well as the bonding state in a quantitative method. In XPS, photoelectrons are 

ejected from core atomic levels due to transfer on energy from an incident X-ray photon. After 

the photoelectrons are emitted, the kinetic energy (Ek) of the electron is quantitatively analysed 

by the spectrometer. The binding energy of the electrons (EB) is the parameter that varies with 

different elements. The relationship between the parameters can be expressed as: 

                                                Equation 3.3 

where hν is the photon energy, EK is the kinetic energy of the energy collected by the 

photoelectron spectrometer and W is the work function.
[96]

 The principle and process of 

photoemission shown in Figure 3.12. An electron from the K shell is ejected because of the 

incident X-ray. After a photoelectron is emitted, the corresponding ionized atom will relax, 

leading to X-ray fluorescence emitted electrons. Then energy will be analysed and hence a 

spectrum of electron intensity versus energy is generated and displayed. The XPS spectra can be 

quantitatively analysed with each corresponding orbitals. The energy resolution ΔE is defined 

by the peak width, which is often measured by full width at half maximum (FWHM). The XPS 

testing should be taken under an ultra-high vacuum environment, with an atmosphere of 10
-8

 to 

10
-10

 mbar.
[97]
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Figure 3.12 Schematic diagram of the photoionization principle of XPS, a 1s electron 

ejection from an atom.
[96]

 

 

When a pure element has a change in its chemical bonding, there will be also a change in 

binding energy of a core electron, which is named as ‘chemical shift’. The core binding energies 

changed by electrostatic interaction between electrons and nucleus. The electrostatic shielding 

will be influenced by nuclear charges from other electrons in the atom, or removal/addition of 

electronic charge in bonding.
[98]

 

A typical XPS analysis of a diamond film has been plotted on Figure 3.13.
[99]

 The diamond 

sample has been loaded in an ultra-high vacuum (UHV) chamber equipped with an X-ray 

photoelectron spectrometer. The C1s spectra were recorded with a pass energy of 10 eV by 

using mono-chromatized Al Kα X-ray (1486.6 eV). The carbon sp
2
, sp

3
, C-O, and C=O were 

located at 284.6 eV, 285.3~285.5 eV (+ 0.7~0.9 eV), 286.1~286.4 eV (+1.5~1.8 eV) and 287.6 

eV (+3.0 eV), respectively.
[97]
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Figure 3.13 C1s XPS spectra of a diamond sample.
[99]

 

 

In Figure 3.13, the narrow view of peak C1s has been synthesized into three peaks, named 

as peak A, B, C. respectively. The binding energy has a shift of 0.3 eV for this sample because 

of the surface dielectric properties. The scale of binding energy was calibrated with Ag 3d5/2 

core level. The peak A (sp
2
), B(sp

3
) and C(C-O) were found located at 284.5 eV, 285.7 eV and 

287.0 eV, respectively. The FWHMs of peak A, B, and C were 1.00 eV, 1.37 eV, and 1.70 eV, 

respectively. 

 

3.3.3 Atomic Force Microscopy 

Atomic Force Microscopy (AFM) was developed in the early 1980s and commercially 

applied in the 1990s. AFM technology is based on the scanning probe method and the minimum 

resolution can be as small as nanometre-level. It consists of a piezoelectric cantilever beam, 

which works as a precious scanning probe. A focused laser beam was utilised to measure the 

movement on the vertical direction. While the beam scans the sample surface, the laser spot 

intensity will be different and the photodiode sensor will generate various corresponding current. 

The change in current is detected and analysed by the computer. Figure 3.14 shows an AFM 

image of a DNA-functionalised and hybridised surface of single-crystalline diamond film.
[100]

 

The AFM (Molecular Imaging Pico Plus) cantilevers were used in oscillating-mode with a 

spring constant of 3.5 N/m. The RMS (root mean square) roughness overs this large area 

detected by AFM was less than 1Å, which indicated a relatively smooth surface. 
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Figure 3.14 AFM image of surface morphology of highly boron-doped single crystalline 

diamond film.
[100]

 

 

The AFM profile after being DNA-functionalised and hybridised is shown in Figure 3.15. 

The thickness of the DNA layer can be calculated by measuring the scratch area with AFM 

(Figure 3.15 a). The height between the tilted arrangement and the diamond substrate was 90Å. 

The topographic surface image (Figure 3.15 b) revealed that the collective DNA oligomers had 

a periodicity of ~30-50 nm with an amplitude current of ±5Å. 

 

Figure 3.15 (a). Left: AFM measurement and profile at the boundary of DNA-modified 

diamond film. (b). Right: detailed topographic AFM image of DNA-modified diamond 

surface.
[100]
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3.3.4 Raman Spectroscopy 

Raman spectroscopy is a type of vibrational spectroscopy, while other important techniques 

use mid-/near-IR spectroscopy, etc. Raman spectroscopy is suitable for symmetric vibrations 

and non-polar groups, whilst the IR spectroscopy is better at asymmetric vibrations of polar 

groups.
[101]

 Raman spectroscopy was based on the theory of inelastic scattering of light as well 

as the Raman scattering effect, which was named by its discoverer, Sir. C.V. Raman.  

The Raman effect is derived from a molecule’s deformation, which is produced by an 

oscillating electromagnetic wave, e.g., laser. At the induction of the energy from laser, the 

molecules will have a periodical deformation while vibrating at a characteristic frequency νm. 

Such oscillating dipoles generate three different types of frequencies: Rayleigh scattering 

(frequency: νo, the same frequency as the excitation source), Stokes (frequency: νo-νm), and 

Anti-Stokes (frequency: νo+νm). The emitted photons from Rayleigh scattering then can be 

detected by the sensor and transferred to Raman spectroscopy.
[101]

 

Raman spectroscopy is an effective method to characterise the carbon or carbon-related 

materials with non-destructive approaches. The most common Raman spectra feature peaks in 

graphitic carbon are the G and D peaks, which exist at 1560-1620 cm
-1

 and ~1360 cm
-1

, 

respectively. The G peak can be derived from the C sp
2
 bond stretching and the D peak is due to 

the sp
2
 atom rings breathing mode.

[102]
 The G peak can be assigned as the zone centre photons of 

E2g symmetry, whilst the D peak is associated with the K-point photons of A1g symmetry. The 

Raman spectra at 1332 cm
-1

 can be attributed as the diamond T2g zone centre mode.
[103]

 

Figure 3.16 Raman spectra of natural diamond.
[104]

 

 

The Raman characteristic spectra of diamond is a single sharp peak at 1332 cm
-1

, as shown 

in Figure 3.16.
[104]

 For the non-optimum CVD growth, some other Raman peaks can be spotted, 

e.g., 1150 cm
-1

 and 1260 cm
-1

. These two peaks are related to the nanocrystalline phase diamond 
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particles and vibrational density of state (VDOS) of diamond.
[105]

 In some CVD diamond films, 

a broad shoulder can be found at 1550 cm
-1

, which is derived by amorphous sp
2
-bonded carbon 

or silicon carbide.
[106]

 

 

Figure 3.17 Raman spectrum of (A) tetrahedral amorphous carbon film, (B) low quality 

CVD diamond film, and (C) the VDOS of diamond.
[105]

 

 

Figure 3.17 shows three Raman spectra of a tetrahedral amorphous carbon (ta-C) film, a 

low quality CVD diamond film grown by MPECVD device and the vibrational density of states 

(VDOS) of diamond. For the (B) and (C), the peaks located at 1150 cm
-1

 and 1450 cm
-1

 were 

referred to as ν1 and ν3. Nemanich et al. has argued that the 1150 cm
-1

 and 1450 cm
-1

 peak were 

related to nanocrystalline or amorphous carbon.
[108]

 However, Ferrari et al. suggested that the 

peak was the characteristics of transpolyacetylene. In addition, the sharp peaks, which are 

located at 1175 cm
-1

 and 1260 cm
-1

, can be attributed to the VDOS from ~X and ~L point near 

the grain boundaries.
[105]

 

For the diamond film with defects, the most notable Raman peaks could be spotted at 1490 

and 1630 cm
-1

, as seen in Figure 3.18.
[106]

 The peaks are collected from confocal Raman on 

different analysis depths. The Raman spectroscopy of detonation nanodiamond samples are 

shown in Figure 3.19. There are only two wide shoulders at ~1350 and ~1640 cm
-1

 and no 

obvious diamond sp
3
 peak at 1333 cm

-1
 can be observed.

[107]
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Figure 3.18 First order diamond Raman spectra and damaged characterisation peak at 

~1450 1490, 1630 and 1680 cm
-1

.
[106]

 

 

Figure 3.19 Raman spectra of detonation nanodiamond sample: line 1-untreated ND 

powder, line 2-ND under 900˚C ammonia-treatment, line 3-ND under 1000˚C carbon 

tetrachloride treatment.
[107]

 

 

The assignment of diamond and other carbon-related materials in Raman spectra is 

summarised in Table 3.1. 
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Table 3.1 Raman Spectra and assigned functional groups 

Raman Position Assignment 

1150 
(a) nanocrystalline diamond or amorphous carbon

[105]
 

(b) transpolyacetylene
[108]

 

1230~1240 defective nanocrystal diamond
[108],[109]

 

1332 typical diamond characterisation peak 

1350 D peak of sp
2
 A1g symmetric

[102],[103]
 

1400 disordered graphitic component
[109]

 

1450 transpolyacetylene
[108]

 

1470~1490 
(c) defective nanocrystal diamond

[109]
 

(d) vacancies in diamond above 1100
°
C

[106]
 

1500 disordered sp
3
-bonded carbon

[109]
 

1530~1580 disordered graphitic carbon
[107][109]

 

1560-1620 G peak of sp
2
 E2g asymmetric

[102],[103]
 

1630 <100> split-interstitial, so-called “dumbell” defect
[106]

 

1640 defective nanocrystal diamond
[109]

 

 

 

3.3.5 Fourier-Transform Infrared Spectroscopy 

Infrared (IR) light is a type electromagnetic radiation outside the visible light, which is 

always emitted by the thermal radiation of objects. For infrared spectroscopy, the IR radiation is 

transmitted through a sample, in which a certain percentage will be absorbed and the other will 

pass through. The resulting IR spectrum represented the molecular absorption and transmission 

properties. Therefore, no two compounds can produce the exactly same IR spectrum. The 

energy level will be determined by the potential energy surface, the mass of the atoms as well as 

the associated functional groups. In addition, the IR spectrum can be quantitative and the 

absorption/transmission is a direct indication of the corresponding functional groups.
[110]

 The 

final analyst required for a frequency spectrum, which gave the intensity at each different 

frequency. The Fourier-Transformation algorithm will be used as decoding to accomplish the 

plot from the IR spectrum results.  

If the molecule is symmetric, the vibration band cannot be detected by FTIR but only by 

Raman spectroscopy. The asymmetric structure molecule, e.g. CO, can be active in IR spectrum. 

The organic functional group can exhibit six types of vibration modes: symmetric/asymmetric 
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stretching, scissoring, rocking, wagging and twisting. However, the symmetric stretching, 

scissoring and twisting vibration mode cannot be detected by FTIR (IR inactive). All the 

vibration modes are shown in Figure 3.20. The main IR absorption peak and corresponding 

characteristic compounds that commonly found in diamond-related materials are listed in Table 

3.2.
[111]

 

 

Figure 3.20 The six types of molecule vibration modes. The symmetric stretching, 

scissoring, and twisting vibration mode can not be IR active. 

 

The FTIR results of singlecrystalline diamond films were investigated by Linares, et al.
[112]

 

A free-standing natural IIa and a singlecrystalline diamond were used as standard samples. The 

optical properties were measured by BioRad FTIR spectroscopy, as shown in Figure 3.21 (a) 

and (b). The common features of these two spectra are the strong peaks at ~1975 cm
-1

, 2020 

cm
-1

 and 2159 cm
-1

, which are considered as the inherent two-phonon lines associated with the 

C-C bonds. 

Figure 3.21 FTIR spectra of (a) natural IIa diamond film, (b) CVD single crystalline 

diamond film.
[112]
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Table 3.2 Characteristic infrared absorption wavenumber and compounds 

Bonding Compounds Specific Bond Absorption (cm
-1

) Intensity 

C-H 

Alkyl 
Methyl 

2960-2870 Strong 

2960-2850 Strong 

Methylene 1470-1350 Strong 

Vinyl 
C=CH, C=CH2 3080-3020 Medium 

Cis-disubstituted alkenes 700-670 Strong 

C=C 
sp

2
 

 
1680-1640 Medium 

Terminal alkynes 2260-2100 Sharp 

C-O 

Alcohols 

Primary 1060-1040 Strong 

Secondary 1100 Strong 

Tertiary 1200-1150 Medium 

Phenols  1200 

 
Ether Aliphatic 1120 

Carboxylic acids  1300-1250 

Esters  1300-1100 

C=O 
Ketones  1775-1685  

Carboxylic acids Saturated 1710  

O-H  

Monomeric: Alcohols, Phenols 3640-3160 Broad 

Hydrogen: Alcohols, Phenols 3600-3200 Broad 

Carboxylic acid 3000-2500 Broad 

N-H Amines Primary 
3500-3300 Medium 

1650-1580 Medium 

C-N 
Aliphatic amines 

 
1220-1020 

Medium 
C=N 1700-1615 

 

Figure 3.21 (a) has two broad shoulders at 1280 and 1370 cm
-1

, which are related with the 

nitrogen atoms in diamond (A and B centre incitation). The A centre is derived from three 

nitrogen atoms in a cluster together with a vacancy, and lead to an absorption at 415 nm 

wavelength. The B centre has four nitrogen atoms on the lattice site corresponding to the peak at 
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1370 cm
-1

, while the substituted nitrogen has an absorption peak at 1130 cm
-1

. Deduction from 

the FTIR results, the nitrogen content can be less than 10 ppm, the purest form of the diamond. 

On the other hand, Jiang, et al. studied the detonation nanodiamond powder with FTIR 

(Figure 3.22).
[113]

 The significant shoulder at ~3430 cm
-1

 is derived from the surface water 

absorption. The tiny peaks at ~2980-2950 cm
-1

 can be attributed to the methyl bonds, while the 

~619 cm
-1

 peak is from the vinyl bonds. The ketones characteristic peak locates at ~1750 cm
-1

. 

The ~1630 cm
-1

 peak represents C=C bonds and C-O alcohol characteristic peak exists at ~1050 

cm
-1

 to ~1130 cm
-1

. Other peaks and the corresponding functional groups can be found in Table 

3.2. It is difficult to define the surface functional groups with Raman spectroscopy because of 

the incorporation of the sp
2
 graphitic layer. In addition, the Raman spectroscopy cannot 

represent the C-H bonds that are formed by the hydrogen plasma treatment. However, the FTIR 

can detect varieties of functional groups, including the C-H bonds and overcome the other 

limitations. The FTIR can be complimentary technique to Raman spectroscopy. 

Two different methods were adopted to remove the non-diamond content on the DND 

particle surface, One of them is to immersed into perchloric-nitric-hydrochloric acids (6:1). The 

other one is to mix sample with 98% H2SO4, fuming H2SO4 and 65% HNO3 (2:1:1). Each 

sample was purified and then dried at 140˚C for 5 hours. The FTIR spectra were collected using 

a Digilab FTS 15/90 FTIR spectrometer. The DND sample was mixed with potassium bromide 

and pressed into a KBr pellet. 

Previous research revealed that the characteristic peak at 1332 cm
-1

 could not be detected on 

diamond powder with a diameter less than 5 nm.
[114]

 Two broad bands were observed between 

the region of 2500-1100 cm
-1

, but the phonon confinement effect forbade the appearance of 

such phonon process with infrared excitation.
[115]

 The absorbance at ~1260 cm
-1

 was derived 

from the nitrogen induced one phonon or the defect structure mode. Other absorbance peak 

located at ~3350, ~1650 and ~600 cm
-1

 could be linked to the amide groups in different formats. 

On the other hand, the peak at 1733-1740 cm
-1

 was assigned as the absorbance of surface 

carbonyl bonds, i.e. C=O and –COOH.
[115]

 The peak located at 1760 cm
-1

 is related to the 

ketonic groups, which indicated a rigid cyclic structure. In addition, the 1130 cm-1 was either 

νC-O-C or the –OH groups. 
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Figure 3.22 FTIR spectra of DND powder: (a) DND powder purified by HClO4 and HNO3; 

(b) DND powder purified by H2SO4 mixed with fuming H2SO4 and HNO3; (c) DND 

powder treated by hydrogen plasma for 4 hours.
[113]

 

 

Hydroxyl stretching vibration (between 3550-3200 cm
-1

) was observed after heating DND 

above 800˚C. The author determined them to be the characteristic peak of νOH and νNH on the 

DND particles’ surface. These peaks were detected after thermal treatment, this represents that 

these peaks on the surface are stable at temperatures up to 800
°
C. The C-H bonds after hydrogen 

treatment are found at 2955 to 2852 cm
-1

 after fitting the shoulder, which correspond to the 

νasCH3, νasCH2, νsCH3, and νsCH2.
[114]

 In addition, the sharp peak at 1697 cm
-1

 was considered as the 

presence of the cyclic carbon in cyclic lactams together with nitrogen element. The FTIR 

absorbance and peak assignments have been shown in Table 3.3.
[113],[114]
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Table 3.3 FTIR absorbance and assignments. 

IR 

Range
3
 

Absorbance 

(cm
-1

) 
Assignment Remarks 

3590s-

3430s 

3558-3590 νOH Bonded –OH 

3434-3425 

νOH water, tertiary alcohol 

νNH amide 

2980-

2850s 

2965-2955 νasCH3 CH3 asymmetrical stretching 

2928-2927 νasCH2 CH2 asymmetrical stretching 

2873-2871 νsCH3, νCH CH3 symmetrical stretching, 

C-H bending 
2852 νCH2 CH2 bending 

1776m 

1783-1780 

νC=O 
cyclic ketonic, cyclic lactam 

ester, carboxylic groups 
1759-1755 

1736 

1676m 1679-1676 νC=O amide I 

1630m 1632-1630 δOH, νCO water, amide II (C-O) 

1590m 1597-1587 δNH amide II 

1460w 1460 δas CHx asymmetrical stretching 

1261m 

1261-1254 νCO 
epoxy, ester, or δCNH (amide III), νCCO (=C-OH), N-

induced/defect in DND, νCN, νCC 
1217m 

1190sh 1194-1187 

νas COC, δOH ether, or water 

1130s 1130-1225 

1047sh 1049-1043 δOH water 

618w 619-618 

δCCC, δNCO amide IV 

550b ~550 

 

  

                                                           
3 Peak shape abbreviations: s: small; m:medium; w: wide; sh: sharp; b: broad. 
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3.3.6 Impedance Spectroscopy 

Impedance spectroscopy (IS) is a relatively novel and useful method in characterising the 

electrical properties of materials, both on the surface and in the bulk. It can be utilised to 

investigate the boundary mobile electrons dynamics in the bulks or interfacial regions of 

solid/liquid materials, e.g., semiconductors, dielectrics, ionics, as well as mixed electronic-ionic, 

etc.
[115]

 The working background of IS will be introduced in this section as an analysis method 

of simple solid-state material and the principle of function will be discussed. The most common 

and standard approach to measure the impedance can be achieved by applying a single-

frequency current/potential to the interface and examining the parameters, which include 

amplitude and phase shift, real and imaginary parts. Then response signal is then analysed by 

either analogue circuitry or the fast Fourier transform (FFT) method.
[116],[117]

 

Figure 3.23 Dielectric permittivity over a wide frequency range.
[118]

 

 

The fundamental of the AC impedance spectroscopy is based on the material dielectric 

response to a certain applied electric field, as seen in Figure 3.23. As the applied AC electric 

excitation varies, the mechanism of polarization will change. For the impedance measurement, a 

suitable frequency range will be 10
-3

-10
7
 Hz, which involves both the dielectric relaxation and 

ionic relaxation.    

In Ohm’s law, the frequency domains voltage V(jω) and current I(jω), relationship and the 

impedance, Z(jω), is defined as Z(jω)=V(jω)/I(jω). The complex Z(jω) is composted by the real 

Re(Z) and imaginary Im(Z) parts, which is expressed as: 
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Consider a simple RC parallel circuit with an AC signal:        (    ) , the 

impedance and the modulus of the circuit will be calculated as: 
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   Equation 3.10 

Figure 3.24 shows the relationship between the real and imaginary part of the impedance. 

The plot is based on a vector diagram via plotted     on the axis composed by real part versus 

imaginary part. In the semicircle, ω is the frequency in radius and θ is the phase shift. 

 

Figure 3.24 A simple RC parallel circuit and corresponding impedance plot. 

 

When ω is approaching to 0, it is obvious that the intercept distance on the real part axis is R, 

which represents when the AC frequency is closed enough to 0, the resistance can be considered 

as the DC resistance and derived from the plot. This plot was named as Cole-Cole plot and 

introduced by Barsoukov, et al.
[119]

 

When it is not a perfect semicircle, the centre of the circle will not be on the Z’ axis and the 

capacitance will be replaced by a Constant Phase Element (CPE), as shown on Figure 3.25. 
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Figure 3.25 Non-perfect semicircle response and corresponding equivalent circuit with a 

CPE. 

 

Here, the CPE is described as: 

  (
 

  
)
  

 
 

 
                                        Equation 3.11 

while 0< β <1. When β =1, the CPE will be an ideal capacitor and the whole model will be the 

same as RC parallel circuit. Similarly, if β =0, the CPE will be an inductance. 

 

Figure 3.26 Semi-infinite RC parallel model, corresponding Warburg equivalent circuit 

model (Left) and impedance spectroscopy response (Right). 

 

Consider the semi-infinite RC parallel circuit composed only by resistors and capacitors, the 

circuit model will be the same as Figure 3.26. It is quite similar to the transmission line in 

microwave circuit. The impedance spectroscopy response will be composed by a CPE with a 

constant phase of 45˚. A linear relationship is following the CPE and has a constant angle 

against both the axis. This model is named as Warburg element and the solution is: 

    (  )                                          Equation 3.12 
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In a common electrical circuit, the elements in the circuit will be transformed into another 

state, as shown in Table 3.4.
[120]

 

 

Table 3.4 Electronic element and corresponding impedance element 

Electronic Element Explanation Impedance (Ohm) Admittance (Siemens) 

R Resistance R 1/R 

C Capacitance 1/jωC jωC 

L Inductance jωL 1/jωL 

W Semi-infinite Warburg 1/Y0√   Y0√   

Q CPE Y0(jω)
α
 1/Y0(jω)

α
 

 

Impedance spectroscopy can be used to characterise the electrical properties by using the 

equivalent circuit in a non-destructive method. Theoretically, a model composed by a 

succession of RC parallel circuits in series could be used to describe the different conduction 

mechanism. The complex impedance will be expressed as: 

   ∑
  

     
   

 
 
                                       Equation 3.13 

    ∑
   

   

     
   

 
 
                                       Equation 3.14 

In these two equations, n represents the different conduction paths, which can be attributed 

as the contribution from grain interior (GI), grain boundary (GB) and electrode.  

The impedance spectroscopy can be applied in characterising the electrical properties of 

diamond and diamond-like materials. Curat, et al. applied the impedance spectroscopy to study 

the n-type phosphorus-doped diamond film.
[121]

 The sample was phosphorous-doped 

homoepitaxial diamond film grown by MPECVD. Four heavily phosphorous doping areas were 

formed at the square corners with P
+
 contact with Au electrodes. The impedance spectroscopy 

was carried out with a Solartron 1260A with a frequency from 0.1 Hz up to 10 MHz and an 

amplitude potential of 0.05V. The impedance spectroscopy (Cole-Cole plot) is seen in Figure 

3.27. 

The equivalent circuit was extracted from the Cole-Cole plots with an RC parallel circuit 

(plots at 25˚C and 50˚C) and two RC parallel circuit in series from 75˚C ~300˚C (RC)(RC). At 

low temperature range, the impedance response was only one semi-circle, which indicated that 
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there is only one conduction mechanism in the material. As the temperature rose above 75˚C, an 

additional semicircle extended to low frequency range. The resistance and capacitance were 

extracted from the equivalent circuit. The capacitance derived by fitting the semicircles 

indicated that two different capacitance values exsisted at 10
-9 

and 10
-12

 farad level. 

Figure 3.27Cole-Cole plots of the P-doped homoepitaxial diamond film at different 

temperature varied from 25˚C to 300˚C.
[122]

 

 

The capacitance can be linked with the microstructure by a physical model composed of 

grain interior, grain boundaries and electrode behaviour. The simple model (Brick model) 

structure could be described as a two-phase mixture in a series layer, as seen in Figure 

3.28.
[122],[123]

  

In Figure 3.28, the model has a cross section area of A and length of L, δ represented the 

grain boundary width, whilst d represented the grain size of the crystalline.
[123]

 The electronic 

current can be considered as one-dimension and the effect at corners is negligible. The only two 

paths for electron transportation are through the grain interior or grain boundaries. According to 

the relative different magnitude of grain interior and grain boundary, one or two paths may be 
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involved during the conduction progress. This model has been widely applied in many materials 

and characterised the bulk resistance.
[124]

 

Figure 3.28 Brick model of idealised polycrystalline material.
[122]

 

 

In terms of grain interior electrical response, the capacitance can be expressed by: 

    ∑     
 

 
 
    ∑     

  

 
 ∑      

 
   

 
                  Equation 3.15 

where ε0 is the permittivity of free space (8.85×10
-12

 F/m) and εgi is the grain interior relative 

dielectric constant. Meanwhile, the grain boundary capacitance can be calculated as: 

    ∑     
 

 
 
    ∑ ∑     

  

 
 
   

 
                          Equation 3.16 

where εgb is the grain boundary relative dielectric constant. The total number of the blocks is n, 

which can be calculated as: 

  
  

(   ) 
                                            Equation 3.17 

Hence, when the size of grain boundary size δ is infinitesimal, it is an approximation n ≈ 

A.L/d 
3
. In this case, Cgi/Cgb can be expressed as: 

   

   
 

  

 

   

   
                                           Equation 3.18 

This Equation indicates that the grain capacitance and grain boundary is proportional to the 

grain boundary width δ and the reciprocal of grain size d. Meanwhile, the εgb and εgi were in the 

same magnitude for the same material. Thus, empirical capacitance value for diamond materials 

indicated that the grain boundary capacitance is located in 10
-9

 F level, and the grain interior 

capacitance can be 10
-12

 F. The capacitance response derived from the electrode is around 10
-6

 F 

level.
[125],[126] 

In 2008, Bevilacqua, et al. investigated the electrical properties of aggregated DND powder 

(SuperSyndia SSX 0-3.5) with Solartron 1260 impedance system and 1296 dielectric interface. 
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The experiment was carried out in a stainless steel chamber, which can be filled with ambient 

gas or air. The impedance spectra have been shown in Figure 3.29.
[127]

 

Figure 3.29 Cole-Cole plot for DND powder measured in air at (a) 350-450˚C, (b) 450-

550˚C, (c) 450-550˚C after several circles.
[127]

 

 

The impedance exhibited a resistance greater than 10
13

Ω/sq, which is similar to the typical 

high quality polycrystalline diamond film. The DND powder was considered as the mixture of 

sp
3
, sp

2
 and impurity species. The author assumed that the DND sample in electrical 

measurement could be considered as the three dimensional network, which was different with 

the continuous diamond film. Numerical fitting on the semi-circle response exhibited a 

capacitance at nanofarad level, which was thought to be grain-boundary conduction, rather than 

grain interior conduction. As the heating temperature at 550˚C, the agglomeration at the grain 

boundaries occurred at the same time as the uniformation of the sp
2 
species.

[127]
 

 

3.4 Summary 

In this chapter, the equipment for diamond growth and properties characterisation has been 

introduced. The structures of MPECVD and HFCVD system were demonstrated. The SEM has 

been used to observe the surface morphology of diamond materials. The XPS can distinguish 

the impurities in diamond materials. The Raman and FTIR spectrum can be applied to find out 

the functional group on diamond. For Raman spectrum, it is more obvious to distinguish the 

difference between carbon sp
2
 and sp

3
 bonds, while in FTIR, all the surface functional groups 

can be determined. In addition, the IS can be utilised to detect the electrical properties and find 

out the conduction mechanism. 
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4 Diamond Film Growth with MPECVD System 

4.1 Introduction 

In this chapter, the diamond growth on different substrate using MPECVD method has been 

studied. The synthesis of diamond film growth was performed using an ASTeX
TM

 5010 system 

(Seki. Corp.), as introduced in Chap.3. The detailed synthesis process of diamond (100) 

substrates is covered in Sec.4.2, including the analysis and optimisation. Based on the optimised 

conditions, the diamond film growth on silicon (111) substrate, diamond-like carbon (DLC) 

film and silica fibres are reported, respectively. 

 

4.2 Diamond Growth on (100) Silicon Wafer 

In the 1990’s, Stoner et al. firstly investigated bias enhanced nucleation for diamond growth 

on Si (100) oriented substrate.
[128]

 Y. Hayashi, et al. then developed highly-oriented (100) 

diamond (HOD) films.
[129]

 In 1996, the heteroepitaxial HOD growth on β-phase silicon carbide 

films with extremely low angular spread was successfully synthesised by Kawarada, et al.
[130]

 

All these diamond deposition process were performed with bias-enhanced nucleation (BEN), 

which created a better nucleation effect before the diamond growth. Comparing the previous 

works with hundreds of hours growth duration, we presented diamond synthesis on (100) silicon 

wafer without BEN device in this section. For the MPECVD system configuration in our group, 

we can only perform the diamond growth without any voltage bias.
4
 

In this section, diamond films were deposited on silicon wafers with the following 

procedures: pre-heating, nucleation, growth, and surface-termination. The parameters were 

adjusted in order to optimise the growth condition. 

 

4.2.1 Experimental Process 

A boron doped p-type (100) silicon wafer, with a diameter of 100 mm and thickness of 500 

μm, was cut into ~1.5×1.5 cm
2
 pieces and used as the deposition substrates. The silicon wafer 

was immersed in acetone and isopropanol solution, and then taken ultrasonic bath at 60˚C for 30 

mins to remove surface organic contaminations. Different processes for substrate preparation 

have been applied in order to find out a suitable deposition condition. After this process, the 

silicon wafer was rinsed by de-ionised (DI) water and dried by flushing compressed N2 gas. 

Followed by these steps, the silicon wafer was boiled in 95% sulphuric acid (120˚C), as well as 

Aqua Regia (HCl: HNO3=3:1, 80˚C) for 1 hour each. The surface graphite content and metal 

                                                           
4
 BEN module was not included in ASTeX

TM
 5010 system in our group. 
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species were totally removed by this acidic etching. Finally, the silicon wafer was flushed by DI 

water and dried. 

The diamond substrate was carefully transferred to the molybdenum stage and installed into 

the quartz bell-jar of the MPECVD system. The chamber was vacuumed and flushed with 

hydrogen gas for 10 mins. After the microwave power was turned off, the methane flow was cut 

off and the hydrogen gas atmosphere protected the substrate surface from being oxidised. The 

growth condition is listed in Table 4.1, while the optical images were randomly obtained at four 

positions by Olympus BX41 at 20× lens, as shown on Figure 4.1~Figure 4.9. From the optical 

images, the surface of silicon wafer after deposition is clearly observed. The diamond particles 

distribution coverage was not ideal and they did not coalesce together, except for sample 0819 

and 0824. Most of the diamond particles were grown separately, while some of them got 

agglomerated in some of the scratched areas. This phenomenon indicated an unsuitable 

condition for diamond growth. For sample 0819 and 0824, the surface was fully covered by 

diamond film, which created a uniform coverage.  

 

Table 4.1 MPECVD diamond growth conditions. 

Sample 

Nucleation Growth 

Gas flow 

rate 

(CH4/H2) 

Pressure 

(Torr) 

Power 

(W) 

Duration 

(hour) 

Gas flow 

rate 

(CH4/H2) 

Pressure 

(Torr) 

Power 

(W) 

Duration 

(hour) 

0806 N/A 200/2 50 1000 2 

0809 200/4 50 1000 1 200/2 55 900 6 

0810 200/4 50 1000 1 200/2 55 950 6 

0812 200/4 50 1000 1 200/2 55 850 6 

0813 200/4 50 1000 1 200/2 50 900 6 

0816 200/4 50 1000 1 200/2 50 850 6 

0818 200/4 50 1000 1 200/2 50 950 6 

0819 200/4 50 1000 1 200/2 40 950 6 

0823 200/4 50 1000 1 200/2 40 850 6 

0824 200/4 50 1000 1 200/2 40 900 6 
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Figure 4.1 Optical image of Sample 0806 

 

Figure 4.2 Optical image of Sample 0810 
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Figure 4.3 Optical image of Sample 0809 

 

Figure 4.4 Optical image of Sample 0812 
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Figure 4.5 Optical image of Sample 0813 

 

Figure 4.6 Optical image of Sample 0816 
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Figure 4.7 Optical image of Sample 0818 

 

Figure 4.8 Optical image of Sample 0819 
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Figure 4.9 Optical image of Sample 0823 

 

Figure 4.10 Optical image of Sample 0824 
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4.2.2 Results and Characterisation 

Some of the selected samples have SEM images taken of them, as shown in Figure 

4.11~Figure 4.15 with four different magnifications. For the crystal orientation, all samples 

demonstrated a randomly oriented crystal direction on the (100) silicon wafer. As described in 

Sec.4.2.1, the uniform deposited diamond layer on sample 0824 was found consistent with 

previous results. The diamond particles were deposited on the surface with an average 

agglomerated particle diameter of ~1 μm. In Figure 4.11~Figure 4.15, a small percentage of the 

particles coalesced together, but most of them were apart from each other. 

The diamond deposition was based on a layer of silicon carbide, which was formed by the 

reaction between the silicon wafer and the carbon source gas. Most of the silicon substrate was 

uniformly covered by SiC layer. However, some part of it was exposed, as labelled in red labels 

in figures. 

 

Figure 4.11 SEM images of sample 0809 
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Figure 4.12 SEM images of sample 0810 

 

Figure 4.13 SEM images of sample 0812 
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Figure 4.14 SEM images of sample 0813 

 

Figure 4.15 SEM images of sample 0816 
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Figure 4.16 SEM images of sample 0824 

 

To verify the surface diamond composition, a Raman spectrometer (Nicolet Almega XR 

dispersive Raman, Thermo Ltd.) equipped with an optical microscope (Olympus TE-coated Si 

CCD), was used to characterise the samples. All the results were shown below. 

 

Figure 4.17 Raman spectra of sample 0806 
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Figure 4.18 Raman spectra of sample 0809. 

 

The significant peak at 521 cm
-1

 in Figure 4.17 was attributed to the zone centre optical 

phonon from Si and the peak at 967 cm
-1

 was derived from the interface between SiC/Si.
[131][132]

 

Besides, the 1200 cm
-1

 peak has been reported as a lattice vibration of Si1-xCx epitaxial layer on 

Si (100) substrate.
[133]

 The sharp peak at 1332 cm
-1

 is a characteristic peak of diamond. The 

sharp peaks at 1900~2100 cm
-1

 were noise signal, which were most likely to be caused by the 

outer space emitted ray, as they were not spotted in the rest of other Raman results. The 2738 

cm
-1

 is assigned as the 2D peak.
[134]

 The Raman results proven that the silicon substrate had a 

reaction with carbon and some part of the surface had transformed to SiC. It was no uniform 

diamond films deposited on whole of all the silicon substrates. 

In Figure 4.18, the diamond Raman characteristic peak was not observed. There were only 

peaks of silicon at 521 cm
-1

 and SiC at 970 cm
-1

. The results indicated that on the surface there 

were no diamond films deposited at all, but a layer of SiC formed. 

As seen in Figure 4.19, the Raman spectroscopy of sample 0810 has a strong background 

noise from ~1700 cm
-1

 up to ~3200 cm
-1

 (Figure 4.19). A broad shoulder was found at ~1650 

cm
-1

, which could be assigned as the existence of polycrystalline as well as graphite 

compositions.
[135]

 The evidence of the presence of diamond composition was found at 1335 cm
-1

. 

On the other hand, the silicon characteristic peak was also observed at 521 cm
-1

. It can be 

proven that the diamond has been successfully deposited on the silicon wafer. However, the 

diamond layer was not fully covered on the surface. Some part of the silicon substrate was still 

exposed. 
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Figure 4.19 Raman spectra of sample 0810 

 

The Raman spectroscopy results of sample 0812 were similar with sample 0810. However, 

no diamond or carbon characteristic peaks can be observed in the Raman results of sample 0812, 

0813 and 0816 which are not shown, but are similar to Figure 4.18.  

The sample 0818 shows Raman spectra with three peaks of silicon substrates, SiC, and 

diamond. The broad G shoulder was weaker compared to other samples.  

 

Figure 4.20 Raman spectra of sample 0818 



Chapter 4: Diamond Film Growth with MPECVD System 

99 

 

 

Figure 4.21 Raman spectra of sample 0819 

 

The Raman spectra images of sample 0819 and 0824 were similar, which corresponds to a 

uniform diamond film. There are only two sharp peaks at 521 cm
-1

 and 1332 cm
-1

, which 

indicated that the Raman spectra only contained the information of silicon substrates and 

diamond layers. 

The Raman spectra of sample 0823 have two significant peaks at 521 cm
-1

 and 1333 cm
-1

. In 

addition, another three weak shoulders are observed at 1207 cm
-1

, 2519 cm
-1

 and 2866 cm
-1

, 

respectively. The 1207 cm
-1

 was derived from Si1-xCx, as described before. The second-order 

phonon at 2519 cm
-1

 and 2866 cm
-1

 could be associated with glassy carbon.
[136],[137]

 

 

Figure 4.22 Raman spectroscopy of sample 0823. 
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Figure 4.23 Raman spectroscopy of sample 0824. 

 

The SEM and Raman results indicate that a suitable deposition power for Si wafer can be 

between 950~900 W. 

 

4.2.3 Analysis 

To understand the growth mechanism of diamond films on silicon wafers, Stoner, et al. 

utilised XPS to characterise the carbon 1s and silicon 2p peaks as a function of pre-treatment 

process.
[138]

 The XPS spectroscopy was used by Riber dual-anode equipped with Mg Kα source. 

 

Figure 4.24 XPS analysis of diamond film nucleation on silicon substrate: (a) carbon 1s 

peak progressions; (b) silicon 2p peak progressions.
[138]
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The carbon 1s and silicon 2p core-level peaks were plotted in Figure 4.24 (a) and (b). 

During the first hour, the percentage of C-Si at 282.8 eV was constant, indicated that carbon 

was confined at the surface of the silicon surface. After 1.5 hour deposition, the significant C-C 

peak was found at 284.3 eV. It is suggested that the surface etching started occurring, and 

formed an interfacial SiC layer. After 2 hours of deposition, the C-C peak took over 90% of all 

the surface composition. It is the evidence of carbon formation on the silicon surface. 

For the silicon species evolution, it was only Si-Si bonding at 99.0 eV before deposition. 

After 5 mins deposition, the Si-C bonding 100.3 eV became dominant in the spectrum. By 2 

hours deposition time, both the Si-Si and Si-C bonding energy decreased, suggesting that the 

surface had been covered by C-C bonds. 

Figure 4.25 XPS analysis of diamond deposition on silicon substrate: (a) carbon 1s peak 

progressions; (b) silicon 2p peak progressions.
[138]

 

 

The XPS spectrum of diamond film deposition versus deposition time after 1 hour nucleation 

process was demonstrated in Figure 4.25. The diamond deposition time was defined as when 

the nucleation procedure finished. In Figure 4.25, the C-Si bonding peak was significant at the 

beginning. After 2 hours diamond growth, the C-Si was no longer visible and the C-C bonding 

peak increased. When the deposition time reached 5 hours, there were only C-C peaks in the 

XPS spectrum. Correspondingly, there was only Si-Si peak before nucleation process, After one 

hour deposition, the Si-C started to form, which indicated the surface has been covered by Si-C 

layer. Accompanied with the deposition time, the intensity of Si-C bonding peak decreased, and 

finally disappeared after 5 hours.  
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Figure 4.26 The schematic drawing of the diamond evolution process on silicon substrate, 

contains both the nucleation and growth process.
[138]

 

 

The schematic drawing of diamond growth and nucleation process is plotted in Figure 4.26. 

The nucleation and growth can be summarised as follows: 

(a) Before the deposition process, the surface of silicon substrates contained both amorphous 

carbon, organic and absorbed oxide species. 

(b) Most of the surface organic species were etched away by hydrogen plasma. Meanwhile, 

some of the oxide species were converted into SiO2 at the same time. 

(c) As the nucleation process continued, the surface SiO2 was removed and formed a layer of 

SiC. At this time, some carbon clusters were deposited on the SiC layer. 

(d) Clusters start to form sp
3
 phase diamond bonds. 

(e) As the SiC layer became thicker, more diamond particles are generated at the nucleation 

site.(so-called “nuclei”) 

(f) At the same time of diamond nuclei deposited, the etching process from the hydrogen 

plasma continues as well. Finally, this evolution reached to a balanced process and the diamond 

nuclei became to coalesce together. A certain deposition speed of diamond film was confirmed. 

In summary, the nucleation process required a relative high carbon flux, which increased the 

SiC layer deposition speed and created diamond nuclei. 

To characterise the diamond growth and crystalline morphology, Wild et al.
[139]

 used 

parameter α to define the different lengths of the [100] and [111] planes, definition the different 

growth rates of the [100] and [111] planes which could be expressed as: 

  √ 
    

    
                                              Equation 4.1 



Chapter 4: Diamond Film Growth with MPECVD System 

103 

 

Figure 4.27 shows the α-parameter curves and the uniaxial growth by using CH4 and H2 

source gas.
[140]

 The pressure was 90-140 Torr. In the diagram, the various parameter α was 

plotted in the CH4/H2-Ts plane. Here, the CH4/H2 is the effective carbon concentration of the 

source gas. This diagram illustrated that the parameter α for a specific CVD deposition would 

determine the shape and the orientation of growth. 

 

Figure 4.27 Diagram of α-parameter, uniaxial growth orientation of MPCVD diamond 

films.
[140]

 

 

The cross section profile of diamond deposited film on silicon wafers was characterised by a 

dual-beam focused ion beam (FIB)/SEM system (FEI dual Beam Strata 235, FEI Company, US). 

The substrate used to perform FIB milling was sample 0824, which was the best uniform 

deposition so far. The SEM cross-section image of FIB milled diamond films on silicon wafers 

is shown on Figure 4.28. The surface diamond has been etched by Mg
+
 ions beam. It is obvious 

to observe the boundary between the silicon and diamond layer (red arrows in Figure 4.28). A 

columnar growth of diamond can be clearly visible in the figure. The different colour in SEM 

image is derived from their difference in material composition and electrical conductivities. 

This result proves that the columnar growth occurred with diamond facet of fastest growth, and 

the average size of grains gradually increased with the film thickness. 

Previous reports of transmission electron microscopy proven that the thin silicon carbide 

layer was ~10 nm, while some carbon clusters were formed before the diamond nucleation was 

deposited.
[138]

 According to the results of diamond deposition on (100) silicon wafer, the 
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orientation of diamond nuclei should be influenced by the substrate crystalline orientation. 

Besides, ordered chemical bonding is formed across the interface. 

 

Figure 4.28 Cross-section SEM image of FIB milled diamond film deposited on (100) 

silicon wafer. 

 

4.2.4 Optimization 

The thickness of diamond layer Tdiam was calculated by the weight increased after deposition 

(Wincr) divided by the density of diamond (ρdiam) and the surface area on silicon wafer (Sarea), 

which could be expressed as: 

      
     

              
                                    Equation 4.2 

and the relative growth rate is defined as  

  
     

         
                                          Equation 4.3 

while Woriginal is the weight of Si wafer before diamond deposition. Due to the difference in the 

shape of the silicon substrate as a result of manual cutting of the substrates, the thickness 

calculation may not be sufficiently accurate to determine the diamond growth rate. Thus, the 

relative growth rate seems to become more realistic and reasonable. The relative growth rate 

was plotted in Figure 4.29. 
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Figure 4.29 Relative growth rate of diamond deposition on silicon (100) wafer with 

different growth condition. 

 

From Figure 4.29, the most suitable deposition condition for our ASTeX
TM

 system was set 

to 40 Torr with a microwave power of 950 W. Besides, a suitable condition also included the 

surface film coverage. Based on the previous experimental results, we performed the same 

deposition process on silicon (100) wafer with the optimised condition. The SEM images were 

shown in Figure 4.30. 

In the low magnification (×200) of Figure 4.30, a completely uniform diamond random-

oriented polycrystalline film was fully covered on the silicon substrate, which proven that the 

deposition condition was suitable. It is obvious that the diamond nucleations on the surface in 

×1,000 magnification image are uniform. In higher magnification images (×40,000, ×65,000), 

the crystalline grains were clearly presented. Most of them were unperfected crystalline 

boundaries. However, the stacking crystal planes and uniaxial growth directions were still 

available, as shown in red labels. The evidence of a uniform random-oriented diamond film 

indicated an epitaxial SiC film of high quality was formed during the nucleation process.
[142]
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Figure 4.30 SEM images of diamond deposition on silicon wafer after optimization. The 

<100> direction and <211> direction are labelled in figures, respectively. 

<100> 

<211> 
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4.3 Diamond Deposition on (111) Silicon Wafer 

Diamond growth on (111) silicon substrates has been carried out by many researchers.
[143]

 A 

cubo-octahedral single-crystalline diamond particle with 1.5 μm diameter was observed on 

silicon wafers. The flow gas consisted of CH4, H2 and CO2. In this research, the diamond 

deposition on (111) silicon wafer was performed without CO2 gas source. 

The diamond deposition on (111) silicon wafer was similar with the deposition process on 

the (100) substrate. The pre-treatment surface cleaning and nucleation procedure was as same as 

the wafer. The deposition condition was set to a 4 sccm/200 sccm methane/hydrogen flow rate. 

The atmosphere was set to 40 Torr with a microwave power of 950 W. The deposition duration 

lasted 6 hours and surface deposition was characterised by SEM, as shown in Figure 

4.31~Figure 4.33.  

 

Figure 4.31 Random-oriented diamond particles distributed on (111) silicon wafer. 

 

Figure 4.32 (111) plane on individual diamond particles. 
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Figure 4.31 shows the surface of the (111) silicon wafer, with random-oriented diamond 

particles. Most of the particles were independent, but some got coalesced. The (111) facets of 

the crystalline diamond are paralleled to the substrate surface and their [110] edges aligned with 

the silicon substrates [110] direction.
[144]

 Figure 4.32 gave a detailed profile of (111) facet of an 

individual diamond particle. The (100) facets beside the (111) facet were perfect, and the 

second crystallisation occurred on (111) facet.
[141]

 The growth α-parameter was 3>α>1.5, 

approximately. 

 

Figure 4.33 (100) planes of individual diamond particles 

 

 

Figure 4.34 (100) planes and secondary crystallisation on this facet. 

 

Two (100) facets on each nanodiamond were presented in Figure 4.33 and Figure 4.34, with 

α≈1.5. The secondary crystallisation could be clearly observed in the right side of Figure 4.34, 
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right hand image. From the previous results, the same deposition condition was also suitable for 

diamond growth on (111) silicon wafer. To deposit thicker and uniform diamond films, a longer 

time will be required.  

 

4.4 Diamond Film Growth on DLC Substrates 

The diamond also can be deposited on diamond-like carbon (DLC) substrate. The original 

substrate was M42 tool steel (purchased commercially) with a 1.3 µm interlayer of 

Chromium/Chromium. The DLC layer was deposited on the top surface with hydrogen 

terminated treatment. The growth condition for DLC layer was slightly different from the 

condition on diamond film. The nucleation condition was 20 Torr, 800 W with 100 s.c.c.m total 

flow rate (10% methane), while the growth condition was 50 Torr, 1,000 W with 100 s.c.c.m 

total flow rate (2% methane). The duration was 60 mins for nucleation and 240 mins for growth, 

respectively. 

The failed deposition can be attributed to: (1) non-uniform coverage on the top of DLC 

surface; and (2) warp of Cr3C2 layer during the deposition process. To overcome the first one, a 

longer pre-heating and nucleation time should be required. For the later one, it might be the 

derived from the temperature difference between the multilayers, which lead to a stress 

distribution. Thus, a more suitable and controllable temperature during the deposition should be 

found out and applied. 
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Figure 4.35 Failure diamond deposition on DLC film. The surface coverage was low and 

diamond particles were separated.  
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Figure 4.36 Successful diamond film deposition on DLC substrate. Random-oriented and 

uniform diamond film was observed in SEM images. Figure 4.36 (d) was taken at the edge 

of sample, where the multiple-layers were obviously detected. 

 

Figure 4.37 Left: cross-section view of successful diamond film deposition on DLC layer. 

Right: cross-section view of a failed diamond film deposition on DLC layer. 
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4.5 Diamond Growth on Silica Fibres 

The silica fibres were purchased form Photonics group in Aston University.
5
 The surface 

high reflective material coating may provide a research area in laser transmission technology. 

The diamond growth on silica fibres was performed and the results were shown on Figure 4.38. 

The growth condition was set to 4/200 (methane/hydrogen) s.c.c.m. flow rate, with an 

atmosphere of 40 Torr and a microwave power of 900W. In Figure 4.38 (a), the cross sectional 

SEM image view of diamond coated silica fibre was demonstrated. Figure 4.38 (b) and (c) 

demonstrated the different interlayers, and a diamond film thickness of ~1 μm could be deduced 

from the image. Figure 4.38 (d) described a broken area on the top of outer diamond film. It is 

clearly that the boundary between diamond and silica fibre was as its original appearance. 

Figure 4.38 (e) and (f) are the top-view images of the diamond coating. It was a uniform 

deposition with some secondary nucleation. 

 

4.6 Summary 

In this chapter, the diamond film deposition was performed using the ASTeX
TM

 5010 

MPECVD system. The growth condition was studied and characterised with SEM and Raman 

on different substrates. The basic mechanism of diamond deposition was also introduced with 

silicon wafer. Thus, the optimised condition was found for the future large scale heteroepitaxial 

deposition. In the following chapters, MPECVD will also be utilised and discussed. 

 

                                                           
5

 This work is a preliminary study for potential collaboration with Aston Institute of Photonics 

Technologies (AIPT) group. 
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Figure 4.38 Diamond deposition on silica fibre (a)-(d): cross-section SEM images; (e)-(f): 

top-view SEM images on diamond coated surface. 
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5 Femtosecond Laser Inscription on Single-Crystalline Diamond 

5.1 Introduction 

Single-crystalline diamond films possess some extremely remarkable properties, such as 

high mechanical hardness (~100 GPa), highest thermal conductivity (2×10
3
 W.m

-1
.K

-1
), wide 

bandgap (5.47 eV), high electric breakdown field (~2×10
7
 V.cm

-1
), high carrier mobility (2,400 

cm
2
.V

-1
.s

-1
 for electrons, 2,100 cm

2
.V

-1
.s

-1
 for holes) and chemical inertness, as well as 

outstanding biocompatibility.
[145]

 The diamond films therefore have been utilized as substrate 

materials in power devices,
[146]

 cantilever scanning probes,
[147]

 microelectro-mechanical systems 

(MEMS),
[148]

 and biological/electrochemical electrodes,
[149]

 etc. However, little progress on in-

vivo biocompatible devices has been reported, for the extreme hardness of diamond increases 

the difficulty of the fabrication of nano/micrometer structures on its surface.
[150]

 Previously, 

surface modification on diamond substrates was performed by focused ion beam (FIB) 

technology, which required a relatively longer time (up to hours) to complete the entire 

fabrication process.
[151]

 Reactive ion etching (RIE) is an alternative method with an inefficient 

etching rate of ~10 μm.h
-1

 on the diamond surface. For FIB and RIE techniques, both the harsh 

environmental requirements and diamond crystal lattice has limited their practical applications 

in addition to their unsatisfactory etching efficiency.
[152]

 

Recently, femtosecond (fs) laser technology has attracted great interest in the scientific and 

manufacturing communities for its precision and damage-free fabrication capability.
[153]

 The fs-

laser technology has enabled the micro-structuring of different materials, including metals, 

dielectrics as well as semiconductors, for the applications in photonic devices.
[154]

 Furthermore, 

a number of research groups have carried out the fs-laser inscription on diamond and diamond-

like carbon materials. Ozkan et al. investigated the periodical ripple patterns after fs-laser 

irradiation and attributed it as the light reflection from the surface and the laser-generated 

plasma.
[155]

 M. Shinoda et al. applied the fs-laser technology to fabricate ~300 μm long 

parallelepiped pillar structures on single-crystalline diamond.
[156]

 H. Jeschke et al. proposed a 

non-equilibrium model for transition from diamond to graphitized composition induced by the 

fs-laser.
[157]

 However, few results related to near-infrared fs-laser inscription on diamond 

substrates have been reported. In this chapter, we report a three-dimensional microfluidic 

channel structure, which was fabricated by Yb:YAG 1026 nm femtosecond laser irradiation on 

a single-crystalline diamond substrate. The femtosecond laser irradiation energy level was 

optimized at a 100 kHz repetition rate with a sub-500 femtosecond pulse duration. A typical 

femtosecond laser system and the laser dot focused on diamond sample is shown in Figure 5.1. 
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Figure 5.1 Femtosecond laser beam focused through a 20× objective lens. The substrate 

mounted on a computer controlled air bearing stage. 

 

The morphology and topography of the microfluidic channel were characterized by SEM and 

AFM. Raman spectroscopy indicated that the irradiated area was covered by a layer of graphitic 

materials. By comparing the AFM cross-sectional profiles before/after removing the graphitic 

materials, it could be deduced that the microfluidic channel has an average depth of ~410 nm 

with periodical ripples which was perpendicular to the irradiation direction. Besides, the 

graphitic layer thickness was approximately around 200 nm. This work proves the feasibility of 

using ultra-fast laser inscription technology to fabricate microfluidic channels on biocompatible 

diamond substrates, which offers a great potential for biomedical sensing applications. 

 

5.2 Experimental 

5.2.1 Femtosecond Laser System 

The experimental setup of the fs-laser equipment is shown in Figure 5.2. Sub-500 fs-laser 

pulses were generated by a mode-locked Yb:YAG laser system with a center wavelength of 

1026 nm (Amplitude System s-Pulse HP) and a repetition rate of 100 kHz. Inscription work was 

carried out under a 20× objective (Mititoyo MPlan Apo NIR Series) with a numerical aperture 

of 0.4. The effective laser spot size had an approximate diameter of 2 μm. The fs-laser power 

was set at 17.5 nJ per pulse. The single-crystalline diamond was secured to a sub-nanometer 

precision XY air-bearing stage with a mechanical Z-translation (ABL1000, Aerotech) system. 

The motion of translation stages was controlled through a custom written CNC program. A 

piece of polished single-crystalline diamond film with a size of 3×3 mm
2
 and 0.7 mm thick 

(Element Six Ltd) was used as the substrate in this experiment. Before the fs-laser irradiation, 
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the diamond was subjected to the process of removing surface contaminations.
[150]

 After 

finishing surface cleaning process, the diamond substrate was fixed on a flat glass slide for 

insertion into the fs-inscription system. 

 

Figure 5.2 Schematic illustration of experimental setup of femtosecond laser inscription 

system. 

 

5.2.2 Post-procedure  

After processing, the diamond substrate was subjected to the following further process: (1) 

immersion in acetone and isopropanol ultrasonic bath (room temperature, 30 mins for each) to 

remove organic contamination; (2) boiling in aqua regia (70˚C, 2 hours) to remove metallic 

contamination; (3) boiling in 95% H2SO4+ 36% HNO3 (9:1, 100˚C, 8 hours) to partially remove 

the graphitic layer generated by the fs-laser.
[157][158] 

Finally, in order to fully remove the residue 

of the graphitic material, a hydrogen-plasma etching process was performed using a microwave 

plasma enhanced chemical vapor deposition system (MPECVD, Seki Technotron Corp. 

ASTeX
TM

 5010). The hydrogen plasma was ignited by a 2.45 GHz microwave generator at 900 

W and maintained for 6 hours, with a diluted hydrogen gas flow rate of 200 s.c.c.m under 50 

Torr pressure.  

 

5.2.3 Characterisation Equipment 

A Raman spectrometer (Nicolet Almega XR dispersive type, 785 nm, Thermo Ltd) equipped 

with an optical microscope (Olympus TE-Si CCD), was used to observe and locate the graphitic 

area.  
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The topography of the fs-laser induced pattern was characterised by a contact mode AFM 

(Autoprobe M5, Park Scientific Instrument) with a scanning area of 100×100 μm
2
.  

The X-ray photoelectron spectra were recorded by a Thermofisher ESCALAB 250 X-ray 

Photoelectron Spectrometer equipped with a hemispherical sector energy analyser. A 

monochromated Al Kα X-ray source (1486.5 eV) was used to analyse the resolution. It found 

the at source excitation energy is 10 kV, the emission current is 15 mA and the analyser pass 

energy of 80 eV with step size of 0.1 eV were used throughout the experiments. 

The SEM images were collected by FEI phenom SEM system and CFEI Quanta 3D FEG 

FIB-SEM system. 

The AFM data was collected by Autoprobe M5 from Park Scientific Instruments. A total 

area of 100×100 µm of each pattern was analysed subjected to fs-laser inscription. 

 

5.3 Characterisation and Results 

5.3.1 Topography 

After the fs laser exposure, the patterns on the diamond sample were visually inspected using 

an optical microscope (Olympus BX41, 20× lens). Zigzag patterns, cross-finger patterns and 

fully graphitized rectangle blocks are demonstrated in Figure 5.3.  

 

Figure 5.3 Overview optical image of micro-channel structures fabricated on single 

crystalline diamond substrate. Each pattern was processed using different parameters. 
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The fs laser patterning parameters are shown in Table 5.1. Each pattern took less than 1 min 

to write. The zigzag pattern was designed to demonstrate the type of intricate 3-D structures that 

can be fabricated using this approach. The rectangle block pattern was specifically designed so 

that a large area on the diamond substrate was processed by the fs-laser to enable SEM, Raman 

spectroscopy and XPS analysis to be carried out with greater efficiency. 

 

Table 5.1 fs-laser processing parameters for each pattern 

Pattern information Laser Parameters 

Pattern ID Pattern Type Pattern size (μm) Energy per pulse (μJ) 

A2 Zigzag 200×200 17.5 

B1 Zigzag 200×200 35.0 

B2 Zigzag 200×200 31.5 

B3 Zigzag 200×200 28.0 

B4 Zigzag 200×200 24.5 

B5 Cross-finger 300×200 21.0 

B6 Cross-finger 300×200 17.5 

C1 Rectangle 360×120 17.5 

C2 Rectangle 360×120 21.0 

C4 Rectangle 360×120 28.0 

D1 Rectangle 360×120 17.5 

D3 Rectangle 360×120 21.0 

D5 Rectangle 360×120 24.5 

E1 Rectangle 480×120 17.5 

E3 Rectangle 480×120 21.0 

 

5.3.2 SEM Images 

The topological images of the fs-laser inscribed zigzag patterns before post-procedure are 

demonstrated from Figure 5.4 to Figure 5.8. The fs-laser inscribed cross finger patterns are 
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shown in Figure 5.9 and Figure 5.10. Finally, the fully graphitization fs-laser inscribed 

rectangle pattern is shown in Figure 5.11. 

 

Figure 5.4 SEM images fs-inscribed zigzag pattern on diamond substrate (A2). 

 

Figure 5.5 SEM images fs-inscribed zigzag pattern on diamond substrate (B1). 
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Figure 5.6 SEM images fs-inscribed zigzag pattern on diamond substrate (B2). 

 

 

Figure 5.7 SEM images fs-inscribed zigzag pattern on diamond substrate (B3). 
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Figure 5.8 SEM images fs-inscribed zigzag pattern on diamond substrate (B4). 

 

 

Figure 5.9 SEM images fs-inscribed cross-finger pattern on diamond substrate (B5). 

 



Chapter 5: Femtosecond Laser Inscription on Single-Crystalline Diamond 

123 

 

 

Figure 5.10 SEM images fs-inscribed cross-finger pattern on diamond substrate (B6). 

 

 

Figure 5.11 SEM images fs-inscribed cross-finger pattern on diamond substrate (C1). 
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In order to make a comparison before and after the graphitic layer was removed, the SEM 

images after post-procedure removing the surface graphitic materials are shown on Figure 5.12 

to Figure 5.19. 

 

Figure 5.12 SEM image of fs-laser inscribed pattern (A2) after removing graphitic layer. 

 

 

Figure 5.13 SEM image of fs-laser inscribed pattern (B1) after removing graphitic layer. 
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Figure 5.14 SEM image of fs-laser inscribed pattern (B2) after removing graphitic layer. 

 

 

Figure 5.15 SEM image of fs-laser inscribed pattern (B3) after removing graphitic layer. 
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Figure 5.16 SEM image of fs-laser inscribed pattern (B4) after removing graphitic layer. 

 

 

Figure 5.17 SEM image of fs-laser inscribed pattern (B5) after removing graphitic layer. 
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Figure 5.18 SEM image of fs-laser inscribed pattern (B6) after removing graphitic layer. 

 

 

Figure 5.19 SEM image of fs-laser inscribed pattern (C1) after removing graphitic layer. 

 

5.3.3 Raman Spectroscopy 

The Raman spectra collected from diamond substrate without irradiation is shown in Figure 

5.20. The Raman spectra of fs-laser inscribed patterns on diamond substrate before and after 

removing surface graphitic layer are shown in Figure 5.21 to Figure 5.28.  



Chapter 5: Femtosecond Laser Inscription on Single-Crystalline Diamond 

128 

 

 

Figure 5.20 Raman spectra of diamond substrate without inscription. 

 

 

Figure 5.21 Raman spectra of fs-laser inscribed pattern A2. 

 

 

Figure 5.22 Raman spectra of fs-laser inscribed pattern B1. 
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Figure 5.23 Raman spectra of fs-laser inscribed pattern B2. 

 

 

Figure 5.24 Raman spectra of fs-laser inscribed pattern B3. 

 

 

Figure 5.25 Raman spectra of fs-laser inscribed pattern B4. 
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Figure 5.26 Raman spectra of fs-laser inscribed pattern B5. 

 

 

Figure 5.27 Raman spectra of fs-laser inscribed pattern B6. 

 

 

Figure 5.28 Raman spectra of fs-laser inscribed pattern C1. 
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5.3.4 X-ray Photoelectron Spectroscopy 

The XPS measurement was performed on substrates A2, B1, B2, B3, B5, B6, and C1, which 

was focused on a spot with 120 μm diameter. A total of seven scans were collected from the 

sample. The binding energy levels are plotted on the X-axis, while Y-axis represents the signal 

intensity collected by the detector. The quantitative counts do not represent the amount of each 

element on the surface. It is only a relative signal collected from the photoelectron spectroscopy. 

 

Figure 5.29 XPS spectra of diamond film substrate without fs-laser irradiation. 
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Figure 5.30 XPS spectra of pattern A2. 

 

Figure 5.31 XPS spectra of pattern B1. 
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Figure 5.32 XPS spectra of pattern B2. 

 

Figure 5.33 XPS spectra of pattern B3. 
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Figure 5.34 XPS spectra of pattern B5. 

 

 

Figure 5.35 XPS spectra of pattern B6. 
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Figure 5.36 XPS spectra of pattern C1. 

 

5.3.5 Atomic Force Microscope 

The Atomic Force Microscope (AFM) was used to characterise the morphology of the fs-

laser inscribed diamond surface and the periodical structures on it. The AFM results of pattern 

A2, B1, B2, B3 and C1 are collected and plotted in Figure 5.37~Figure 5.41.  

 

Figure 5.37 AFM morphology of fs-laser inscribed pattern A2, before (left) and after 

graphitic layer removal (right). 
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Figure 5.38 AFM morphology of fs-laser inscribed pattern B1, before (left) and after 

graphitic layer removal (right). 

 

 

Figure 5.39 AFM morphology of fs-laser inscribed pattern B2, before (left) and after 

graphitic layer removal (right). 

 

 

Figure 5.40 AFM morphology of fs-laser inscribed pattern B3, before (left) and after 

graphitic layer removal (right). 
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Figure 5.41 AFM morphology of fs-laser inscribed pattern C1, before (left) and after 

graphitic layer removal (right). 

 

5.4 Analysis 

5.4.1 Topography 

It is seen that the texture of the channel shows a well-defined shape as expected. For the 

zigzag patterns, the micro-channels can be clearly observed. The whole structure is shown in 

Figure 5.4 (a) ~5.8 (a), and high magnification images of channels are listed in the rest of the 

images. It is obvious that the micro-channels have a very rough morphology, which is covered 

by a layer of graphitic materials. The ripples formed by the fs-laser were perpendicular to the 

irradiation direction. In Figure 5.9 and 5.10, the cross fingers were overlapped and the 

boundaries were not clearly distinguished. This overlapped area can be attributed to the distance 

designed between the fingers and the laser energy intensity was excessive. The fully graphitised 

pattern is shown in Figure 5.11 and the whole rectangle area has been irradiated.  

It is apparent that the part of the channel near a corner shows a rough and porous ‘lava-like’ 

morphology, which consists of hollowed and crystalline materials. During the inscription 

process, the fs-laser had been focusing on the irradiated channels for a relatively longer time at 

the corner of the channel due to the change in direction. Therefore, this area experienced 

increased exposure to the fs-laser irradiation and more fragmental diamond crystals were 

exposed and detected in Raman spectra. 

The corresponding images after removing graphitic layer are demonstrated in Figure 5.12 ~ 

5.19. In these figures, it shows a less porous, but more uniform morphology comparing with the 

images in Figure 5.4 ~ 5.11. It can be seen that the channels’ surface morphology becomes 

smoother and periodical ripples are revealed.  

For laser pulses irradiating dielectric materials at the picosecond-level or even longer, the 

heating mechanism can be explained as an increase in the kinetic energy of the conduction band 
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electrons followed by the transfer of energy to the crystal lattice. This thermal dissipation will 

influence the surrounding lattices and finally reach a thermal equilibrium with them. In 

comparison, for femtosecond-level irradiation, the photon energy transfers from free electrons 

to the lattice within only hundreds of femtoseconds, which is much shorter than the free time of 

diamond atomic lattice collisions (10
-11

~10
-13

 seconds).
[162]

 As the fs-laser photon energy (1.21 

eV) is higher than the reconstruction energy of diamond surface π-bonds (~0.68 eV), the laser 

pulse energy will lead to multi-photon absorption and rapid ionization of the surrounding 

materials to create a dense electron plasma.
[163]

 Thus, there is no thermal equilibrium between 

the lattice and electrons, while the phase transformation is driven by hot-electron plasma 

induced by the fs-laser pulses. The surrounding diamond materials were maintained stable due 

to high thermal dissipation, whilst the fs-laser irradiated area received an incident laser energy 

sufficient for the phase transformation.
[164]

 

After removing the surface graphitic layer, the ripples in the channels can be clearly 

observed and the ripple fringes have a periodical repetition. Shinoda and Bhardwaj, et al. 

suggested that the spatial period fringe Λ can be deduced by Equation 5.1:
[165][166]

 

                                                        Equation 5.1 

where λ is the induced fs-laser free space wavelength, and n is the refractive index. Furthermore, 

the refractive index n can be calculated by Sellmeier equation, as shown in Equation 5.2: 

     
   

 

     
  

   
 

     
                                     Equation 5.2 

A1, A2, λ1 and λ2 are Sellmeier coefficients. In our experiment, λ is 1026 nm and the Sellmeier 

coefficients of diamond materials are: A1=0.3306, A2=4.3356, λ1=0.175 μm and λ2=0.106 μm. 

Thus, the corresponding refractive index can be deduced as n = 2.39. From Equation 5.1, one 

can calculate that the theoretical value of the spatial period fringe Λ is around 215 nm. In the 

SEM image in Figure 5.3 (d), the spatial period observed for our sample is in a good agreement 

with the theoretical prediction. 

 

5.4.2 Composition Analysis 

In Figure 5.20, a diamond characteristic peak at 1332 cm
-1

 derived from T2g mode of 

significant magnitude was observed.
[168]

 Besides, in Figure 5.21 and Figure 5.22, another minor 

shoulder at 1450 cm
-1

 could be associated with the nanocrystalline diamond. The bending curve 

at higher frequency can be derived from the background scattering of the graphitic layer.
[169]

 

Thus, the diamond feature peak became sharper after removing graphitic layer and flatter in the 

full Raman range.  
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In Figure 5.22~Figure 5.28, the Raman spectra before removing the graphitic layer had two 

relatively broader shoulders. The wide shoulders located at ~1320 cm
-1

 (D peak), which are 

derived from the K-point photons from the breathing mode of A1g symmetry, and ~1600 cm
-1

 (G 

peak). After fitting the Raman spectra (b), the D peak was found at 1317 cm
-1

 with a FWHM of 

3.8 cm
-1

. The intensity ratio of I(D)/I(G) was determined as ~1.8, which suggested that the area 

might be covered by nano-crystalline graphite.
[170]

 After the surface graphitic layer was removed, 

the Raman spectra shows a sharp peak at 1332 cm
-1

 and a minor shoulder at ~1450 cm
-1

. The 

diamond characteristic peak is always located at 1332 cm
-1

, which can be derived from the T2g 

zone centre mode. The minor shoulder can be associated with the nano-crystalline phase 

diamond. The evidence proven that most of the graphitic materials were removed after the 

chemical/hydrogen plasma etching processes. 

 

Figure 5.42 Left: SEM image of ‘Lava-like’ structure at the corner of fs-inscribed area; 

Right: Raman spectra at this area. 

 

Figure 5.42 Left-hand: SEM images obtained from the corner of the fs-laser irradiated area 

and ‘lava-like’ structure; Right-hand: Raman spectrum obtained from this area as shown in 

Figure 5.4 upper-left. For the Raman spectra, there are four characteristic Raman peaks, which 

are located at 1600 cm
-1

, 1337 cm
-1

, 1243 cm
-1

, and 1190cm
-1

. The peak located at ~1600 cm
-1 

can be attributed to the G peak, which is always assigned to carbon zone centre photons of E2g 

symmetry.
[168]

 The other three Raman peaks can be considered as split peaks, which is indicative 

of the presence of inhomogeneous micro stress on the diamond grains.
[169]

 The peak at 1337 cm
-

1
 corresponds to the diamond feature peak. The peak at 1190 cm

-1
 might be attributed to either 

the CC interring stretch vibration or ν1 mode of transpolyacetylene (trans-PA).
[170]

 The latter 

was derived from the sum and combinations of C=C chain stretching and C-H wagging modes. 

The sharp peak at 1243 cm
-1

 was also evidence of the existence of trans-PA on the surface, 

G peak 

D peak 
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which is not often observed. As the carbon sp
2
 sites have a 50-230 times higher absorption 

sensitivity than the carbon sp
3
 bonds, the Raman spectrum still proves this area with diamond 

sp
3
 dominant.

[161]
 From the SEM image shown in Figure 5.28, it can be seen that this area is 

constructed by hollowed and crystalline materials. 

 

Table 5.2 Synthesized XPS peaks of each fs-inscribed patterns. 

  sp
2
 sp

3
 C-O C=O O-C=O 

Substrate 

Binding Energy (eV) 284.6 285.3 286.1 287.6 288.6 

FWHM (eV) 0.9 0.6 0.9 1.3 0.6 

At.% 8.5 % 83.3 % 5.8 % 1.8 % 0.6 % 

A2 

Binding Energy (eV) 284.6 285.3 286.1 287.6 288.6 

FWHM (eV) 0.9 0.9 1.6 1.9 1.9 

At. % 23.0 % 37.4 % 27.9 % 4.6 % 7.2 % 

B1 

Binding Energy (eV) 284.6 285.3 286.1 287.6 288.6 

FWHM (eV) 0.9 0.7 1.3 1.0 1.6 

At. % 28.1 % 41.4 % 21.3 % 3.5 % 5.7 % 

B2 

Binding Energy (eV) 284.6 285.3 286.1 287.6 288.6 

FWHM (eV) 0.9 0.9 1.4 1.2 1.6 

At. % 20.9 % 48.1 % 22.0 % 4.0 % 5.2 % 

B3 

Binding Energy (eV) 284.6 285.3 286.1 287.6 288.6 

FWHM (eV) 0.9 0.9 1.2 1.3 1.7 

At. % 22.4 % 53.8 % 16.2 % 3.7 % 4.0 % 

B5 

Binding Energy (eV) 284.6 285.3 286.1 287.6 288.6 

FWHM (eV) 0.8 0.9 1.2 1.3 1.3 

At. % 53.2 % 23.4 % 16.5 % 3.3 % 3.6 % 

B6 

Binding Energy (eV) 284.6 285.3 286.1 287.6 288.6 

FWHM (eV) 0.9 0.9 1.2 1.3 1.3 

At. % 27.1 % 47.3 % 18.4 % 3.8 % 3.4 % 

C1 

Binding Energy (eV) 284.6 285.3 286.1 287.6 288.6 

FWHM (eV) 0.9 0.9 1.1 1.4 1.5 

At. % 12.3 % 63.7 % 15.7 % 5.3 % 3.0 % 

 

In the XPS analysis, all the C 1s core peaks were sorted and synthesized with different 

carbon binding and chemical bonds (Figure 5.29 ~ Figure 5.36). Each peak was synthesized to 

be composed by carbon sp
2
, sp

3
, C-O, C=O and O-C=O, which are located at 284.6, 285.3, 

286.1, 287.6 and 288.6 eV, respectively. Because of the dielectric properties of the diamond 

substrate, a charging effect of 2.3~2.5 eV was shifted before analysis. All the synthesized results 

and fitting curves were plotted in Figure 5.29 ~ Figure 5.36. The synthesized peaks were 

analysed quantitatively by Gaussian-Lorentzian method and listed in Table 5.2. The full-width 

at half-maximum of sp
2
 and sp

3
 peaks were constrained to 0.7~0.9 eV, whilst the others were 
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~1.5 eV.
[171]

 The synthesis method was assumed to be 80% Gaussian and 20% Lorentzian by 

approximating the contribution of the background.
[172]

 

The XPS results have been deconvoluted into several peaks and the synthesized results are 

listed in Table 5.2. For the diamond substrate without fs-laser irradiation, the sp
3
 composition is 

83.3%. This ratio is much lower than the typical concentration of a single crystalline diamond. 

A reasonable explanation is the effective examination depth of XPS is approximately around 1-

10 nm. The surface carbon structure of diamond cannot be sp
3
 or dangling bonds, but composed 

by sp
2
, carbon-oxygen bonds, carbon-nitrogen bonds or other bonds. Thus, the sp

3
 content on 

the surface deduced by XPS is lower than in the bulk. 

After the fs-laser inscription the sp
3
 content was reduced significantly, which proved the fs-

laser inscription process transformed the carbon sp
3
 into other carbon bonds, e.g. sp

2
 graphitic 

content. For the inscription process was performed in an open air, a certain percentage of 

carbon-oxygen, carbonyl and carboxyl bonds might be formed on the diamond substrate surface. 

Both Raman and XPS spectra results indicated that the fs-laser inscription process had 

significantly modified the carbon sp
2
/sp

3
 ratio, as well as the other carbon-related groups within 

the exposed area. On the other hand, the ratio of the C-O, C=O, and O-C=O was not fully 

determined by the pulse power, but also the fs-laser focused dot position on the diamond surface. 

 

5.4.3 Morphology and Structure 

The cross-section profile of the fs-laser inscribed area has been extracted from the AFM 

results, as shown in Figure 5.43~Figure 5.47. A reference surface roughness measurement was 

obtained by a scanning a 30×30 μm
2
 area on an un-inscribed area. The root mean square (RMS) 

roughness of the substrate was 4.9 nm.
[150]
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Figure 5.43 The cross-section profile of fs-laser inscribed periodical structure A2 extracted 

from the AFM results. 

 

 

Figure 5.44 The cross-section profile of fs-laser inscribed periodical structure B1 extracted 

from the AFM results. 
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Figure 5.45 The cross-section profile of fs-laser inscribed periodical structure B2 extracted 

from the AFM results. 

 

 

Figure 5.46 The cross-section profile of fs-laser inscribed periodical structure B3 extracted 

from the AFM results. 
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Figure 5.47 The cross-section profile of fs-laser inscribed periodical structure C1 extracted 

from the AFM results. 

 

The other RMS value has been summarised in Table 5.3. It is obvious that the RMS value 

reduced significantly after the graphitic layer has been removed throughout the post-procedure. 

It can be deduced that the graphitic layer has a thickness of 165~190 nm. The graphitic layers 

generated by the fs-laser irradiation not only covered the channels, but also accumulated 

partially on the edges of the channels where no inscription occurred. This phenomenon was 

consistent with the results from Okuchi et al.
[173]

 The mean value of maximum depth (RTM) 

was defined as the maximum between the top and bottom of the groove structure. After the 

graphitic layer was removed from the surface, the RTM value of each pattern was increased as 

well. In Figure 5.43 ~ Figure 5.47, it can be seen that the cross-sectional profile of the 

microfluidic channel was asymmetric. Other shoulder peaks were observed to be associated 

with each valley peak. Similar results were reported in the fs-laser inscription on fused silica.
[174]

 

This can be explained as the existence of mirrors in the optical path, or the attachments being 

tilted between diamond substrate and the glass slide. Either of the above factors will result in a 

tilted plasma dot in the diamond substrates, which leads to an asymmetric inscription. However, 

these asymmetric structures can be tuned and controlled by the optimization of the process. 
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5.5 Summary 

In conclusion of this section, we have demonstrated that femtosecond laser-induced 

microfluidic channels can be fabricated on single-crystalline diamonds. The morphology of the 

fs-laser inscribed area was also demonstrated as well. The fs-laser inscription technique offers a 

faster and more convenient approach to develop 3D devices and structures on diamond 

substrates, when compared with conventional techniques such as FIB and RIE, etc. Future work 

will emphasize on the characterization of these devices for biomedical sensing and the 

theoretical modelling of the inscription process, especially with the laser focused inside the bulk 

of the diamond substrates. This could offer a potential for the fabrication of self-embedded 

devices and nanostructures for a number of advanced sensing applications.  

 

Table 5.3 RMS value of diamond substrate and fs-laser inscribed area 

Pattern 

Name 

RMS (nm) Mean RTM(nm) 

Before removing 

graphitic layer 

After removing 

graphitic layer 

Before removing 

graphitic layer 

After removing 

graphitic layer 

substrate 4.9 N/A N/A N/A 

A1 64 143 245 410 

B1 129 196 N/A 364 

B2 214 336 393 445 

B3 141 249 304 482 

C1 192 322 N/A 219 
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6 Properties and Thermal Stability of Hydrogen-Terminated 

Nanodiamond 

6.1 Introduction 

Detonation-synthesised nanodiamond (DND) has been previously introduced and 

characterised in Chapter 2 and Chapter 3. DND powder has been utilised as in-vivo drug 

delivery carriers, electrochemistry catalysts, biomarkers, and biosensors, due to its superb 

chemical stability and biocompatibility.
[175]~[179]

 To achieve these qualities, the manipulation of 

diamond surface properties is especially critical to its future physical and chemical 

applications.
[180]

 

The surface of any individual DND particle is surrounded by a ‘sootlike’ structure, which is 

composed by several free graphitic layers, metallic residues, as well as other sp
2
/sp

3
 non-

diamond species.
[181]

 The detonation soot also contains 25~45 wt.% graphite-like structures and 

incombustible impurities (metals and metal oxides 1~8 wt.%). After preliminary purification, 

the DND powder can be considered as a composite, which is composed of carbon (80~89%), 

nitrogen (2~3%), hydrogen (0.5%), oxygen (~10%) and incombustible residue (<8%). The final 

product consists of a mixture of diamond (90~99%) and non-diamond carbon (1~10%). 

The oxidised DND powder can be removed from the surface by chemical/physical 

modification. The oxidisation can be formed by purifying DND powder with liquid oxidizer, e.g. 

H2SO4/HNO3, KOH/HNO3, Na2O2, CrO3/H2SO4, or HNO3/H2O2 solutions.
[182],[183]

 On the other 

hand, the hydrogen termination is always treated in MPECVD to perform hydrogen surface 

termination to establish a p-type electrical conduction, which is hydrophobic to water. The 

electrical path and conduction methods of p-type films have been thoroughly studied 

before.
[184]~[187]

 However, the DND powder has an average grain size in the nanometre range, 

which might present different electrical properties when compared with the two dimensional 

diamond films. Therefore, the study of DND powder’s deaggregation, modification, surface 

characterisation, as well as thermal stability has attracted great interest. Previous research based 

on FTIR, NMR, XRD had revealed that the surface of DND powder was composed of various 

carbon species (e.g. C-C, C=C, C-Hx, C-O or C=O).
[188]

 In addition, photoemission spectroscopy 

(PES) and XPS were also utilised to characterise the thermal annealing effect on DND 

powder.
[189],[190]

 Also, Xie et al. had investigated the graphitisation surface of nanodiamond.
[191]

 

However, fewer reports related to the AC electrical properties have been investigated. Recently, 

Jackman’s group has reported the impedance spectroscopy (IS) results on both aggregated 

DNDs in the as-received state and monodispersed DNDs.
[192],[193]

 The electrical properties of 

surface-modified DNDs are difficult to characterise for its measurement and instruments.  
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In this chapter, we have designed a novel testing system, which is suitable for impedance 

measurement of DND powder. This setup will create a more stable testing environment and 

collect a more accurate IS data. Also, both untreated DND samples and hydrogen-terminated 

DNDs (H-DND) were used to perform the IS measurement in order to investigate the 

contribution from the C-H bonds. Then, the thermal stability of DNDs was studied based on IS 

measurement at different annealing temperature. Finally, the FTIR and XPS studies provided an 

insight into the evolution of the physical and chemical modification on H-DND. 

 

6.2 Experimental 

‘As-received’ state DND powder from SIGMA-Aldridge Company with an average grain 

size of 4-6 nm was used as the original sample. The morphology of the untreated 4-6 nm DND 

powder was characterised by scanning electron microscope (SEM), as shown in Figure 6.1. The 

extreme small nanometre-scale nanodiamond powder aggregate and form particles with a grain 

size of 50~150 nm. This state of nanodiamond can be named as ‘sootlike’ state. 

The hydrogen termination process was carried out using an ASTeX
TM

 5010 (Seki 

Technotron Corp., 2.45 GHz, 1.5 kW) microwave plasma enhanced chemical vapour deposition 

(MPECVD) system. A custom-designed molybdenum container was then placed into the 

chamber in order to constrain the DND powder during the whole hydrogen termination process. 

The microwave plasma was set at 900 W with an atmosphere pressure of 50 Torr. The hydrogen 

flow rate was maintained at 200 sccm during the 10 mins hydrogen plasma treatment process. 

An infrared thermometer (model: Williamson Pro 92-40-C, measurement range: 475-1475˚C) 

recorded the real-time temperature which was 850˚C. After finishing the hydrogen plasma 

treatment, the DND sample was kept in the vacuum chamber until the temperature decreased to 

room temperature. Then, the DND sample was carefully transferred into the testing cell to begin 

the next step. 

Until now, the direct measurement on a single nanodiamond particle is unavailable, hence 

we have designed a testing system for IS measurement. The whole testing system cell was 

constructed by two copper plates, as shown in Figure 6.2. The substrate plate was electroplated 

with high-purity nickel. A hollowed ceramic washer was pasted on the substrate after heating up 

to 150
º
C. Another stainless steel bolt served as the top electrode and the other copper plate held 

up the top electrode with two isolated ceramic screws. This setting can ensure the top electrode 

is isolated from the substrate. Two metal springs were fitted in the ceramic screws to provide a 

relative constant force on the DND sample. The pressure on the DND sample was critical 

during the measurement of such porous material or powder, as the springs would make an 
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influence to the porosity/density of the powder sample and consequently impacted on the IS 

response.
[194]

 

 

Figure 6.1 SEM images of detonation nanodiamond with average grain size of 4-6 nm; 

magnification (a)-(d): 5 μm-500 nm. 

 

The IS measurement was performed in standard atmosphere at elevated temperatures varying 

from 50˚C to 400˚C by Autolab PGSTAT 302N electrochemical system (Windsor Scientific 

Ltd), which was linked to the testing cell. The maximum heating temperature was limited to 

400˚C for the DND sample would experience a catastrophic weight loss and phase change at 

temperatures higher than 400˚C.
[195]

 The ESCALAB 250 X-ray photoelectron spectrometer 

(Thermo Corp.), which is equipped with a monochromatised Al Kα (1486.5 eV) X-ray source, 

has been employed to analyse the surface bonding states of the DND powder. The chamber 

pressure was set to 5×10
-10

 mbar and the analysis pass energy was 20 eV. The DND sample was 

attached to the testing stage with double-sided conductive carbon tape. The infrared spectra was 

collected by a Thermo IR 200 FTIR spectrometer with KBr compressed pellets, which was 
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prepared by mixing 25 mg DND powder with 250 mg potassium bromide (SIGMA-Aldrich 

Corp.). All the pellets were stored into a desiccator with silica gel to get rid of the absorbed 

water. Each portion of H-DND was annealed at different temperatures from 50˚C to 400˚C. 

 

Figure 6.2 Cross-sectional view of schematic structure of testing cell. 

 

6.3 Results 

6.3.1 Raman Spectroscopy 

The Raman spectroscopy of untreated DND sample is shown in Figure 6.3.  

 

Figure 6.3 Raman spectra of untreated DND sample. 
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It is known that carbon sp
2
 has two broad shoulders located at 1350 cm

-1
 and 1550 cm

-1
, 

corresponding to the D and G peak, respectively.
[196]

 Furthermore, the diamond sp
3
 will 

demonstrate a sharp peak at 1332 cm
-1

. As seen in the Raman spectra, no characteristic peak of 

diamond is demonstrated. In addition, the background noise was too strong to observe the 

intrinsic carbon sp
2
 peaks. This can be attributed to the graphite layer having a higher Raman 

absorption than diamond sp
3
 structure.

[197]
 Thus, the Raman spectroscopy may not be considered 

suitable for characterising DND sample in this experiment.  

 

6.3.2 Impedance Spectroscopy 

The impedance spectroscopy is useful for investigating the electric and dielectric properties 

of different types of ionic, electronic and mixed conductive ceramics.
[184]

 Impedance 

spectroscopy has already been successfully utilised in characterising electronic properties of 

polycrystalline, nanocrystalline, δ-doping, and nanodiamond.
[184],[187],[192],[193]

 In essence, the 

impedance technique involves the measurement of both real and imaginary parts of complex 

impedance as a function of frequency, which can be expressed as: 

 ( )                                              Equation 6.1 
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                                     Equation 6.2 

    ∑
   

   

      
   

 
 
                                    Equation 6.3 

where Z(ω) is the complex AC impedance as a function of the angular frequency ω. Z′ and Z″ 

are the real and imaginary parts of impedance, respectively. The real part impedance is derived 

from material resistance while the imaginary one is from its capacitance. The variable n can take 

values between 1 and 3, which corresponds to the different conduction paths. When the real part 

of impedance versus imaginary part is plotted in one figure as a function of frequency, it is 

called Cole-Cole plot. The Cole-Cole plot can be fitted with an equivalent circuit and the 

conduction mechanism can be deduced.
[184]~[187]

  

The impedance spectroscopy results of untreated DND sample and H-DND under different 

annealing temperature have been plotted as shown in Figure 6.4. The Same amount of diamond 

was taken in each time of measurement and presented in the format of a Cole-Cole plot. The 

Cole-Cole plot of untreated nanodiamond is shown on Figure 6.4 (a), which can be fitted as a 

near-perfect semicircle. The diameter of the fitted semicircle that intercepted on the Z′ axis 

indicates the real part of its impedance. The single semicircle demonstrated that only one 

conduction mechanism existed for the conduction within the untreated DND sample.  
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Figure 6.4 Impedance spectroscopy of (a) untreated DND; (b) H-DND measured at room 

temperature; (c) H-DND annealed at 50˚C and 100˚C; (d) H-DND annealed at 150˚C and 

200˚C; (e) H-DND annealed at 250˚C and 300˚C; (f) H-DND annealed at 350˚C and 400˚C. 

 

In order to analyse the impedance data, a single resistor-capacitor (RC) parallel equivalent 

circuit can be used to simulate the electrical properties, as shown in Figure 6.5 (a). The fitting 
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procedure used here is as same as the one described by Kleitz et al.
[199]

 Here, the RC parallel 

circuit can be used to characterise the impedance contributed from the stacked DND powder, 

which is calculated to be around 7×10
9
 Ω by fitting the arc with its equivalent circuit. 

 

Figure 6.5 Equivalent circuit extracted from Cole-Cole plot before/after hydrogen 

termination treatment. 

 

The Cole-Cole plot of the H-DND sample at room temperature is shown in Figure 6.5 (b), 

which consists of a semicircle at high frequency range and a straight line at low frequencies. 

The diameter of the fitted semicircle intercepts the Z′ axis, indicating the resistance of H-DND 

is around 2.46×10
5
 Ω. This value is four orders of magnitude less than untreated DND samples. 

It is obvious that the low-frequency spectra of H-DND form a straight line at 45˚ angle to both Z′ 

and Z′′ axis. This phenomenon indicates the corresponding equivalent circuit may consist of a 

Warburg diffusion component (see Figure 6.5 (b)).
[200]

 The complex Warburg impedance Zw is 

composed by a constant phase element (CPE), which is expressed as 

      (  )    ( )  [   ( 
  

 
)      ( 

  

 
)]         Equation 6.4 

where Z represents the impedance and ω is the angular frequency. The exponent σ is the 

frequency-dependent correction factor with a value between 0 and 1. If σ is 1, the CPE 

component is a pure capacitor, whilst for 0 it is for a pure resistor. When the exponent σ equals 

to 0.5, the equation of CPE can be expressed as 

   (
  

√ 
)(   )                                           Equation 6.5 

which is named as the Warburg diffusion element. The Warburg diffusion element can be used 

to characterise infinite-length approximation of DND particles stacked together and their mutual 

interaction after the hydrogen passivation process. Preliminary analysis for the presence of the 
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Warburg element can be attributed to the water absorption on the surface and the colloidal 

properties of the DND powder.
[201]

 Besides, the formation of C-H bonds on DND particles’ shell 

enhances the conductivity of them and possibly enables an infinite-length approximation of 

their electrical properties. A similar result could be found in the electrochemical properties of 

DND fabricated electrode by Zang et al. The author attributed the 45˚ low frequency linear 

portion to the inhomogeneous porous structure, which lead to a non-ideal capacitive element.
[202]

 

As the temperature increased up from 50˚C to 100˚C, the diameter of the semicircle changed 

while the Warburg effect was significantly weakened (Figure 6.4 (c)).
[204]

 The resistance, Rp, 

increased up to over 5.2 MΩ. This phenomenon can be explained by the absorbed water 

evaporating from the DND particles surface while heating in air.
[191],[199]

 The absence of water 

not only limited the Warburg diffusion effect, but also increased the resistance Rp, at the same 

time. At this temperature, the Warburg effect has become negligible and the overall impedance 

increased with the increasing temperature. When the temperature reached 150˚C, the Warburg 

effect almost disappeared, while Rp exceeded more than 150 MΩ, as shown on Figure 6.4 (d). 

Previous research proven that the water has been totally evaporated from the outer shell at this 

temperature. The Warburg effect completely disappeared at temperatures of 200˚C and 250˚C as 

Rp increased up to 1.84 GΩ and 2.22 GΩ, respectively. At 250˚C, the sample demonstrated a 

maximum resistance value, which was four orders of magnitude higher than the H-DND sample 

measured at room temperature. The increase in the resistance could be explained as the 

incorporation of oxygen onto the DND surface,
[204]

 and further evidence will be provided 

throughout XPS and FTIR measurement. While the temperature increased up from 300˚C to 

350˚C, the resistance decreased from 0.834 GΩ to 0.246 GΩ. The drop of the resistance can be 

derived from the thermal activation of non-diamond phase impurities on the DND particles. 

Finally, as the temperature increased up to 400˚C, the impedance increased again to 0.8˚C, as 

shown on Figure 6.4 (f). At this temperature range, the Warburg effect appeared again as it was 

in room temperature range, which suggested that the phenomenon to be associated with the 

surface homogeneity on the DND particles.
[205]

 The resistance error results from the following 

two factors: Autolab equipment system error (±0.2%) and numerical fitting error (±5%). 

In Figure 6.6, the Arrhenius relationship was plotted by Ln(Rp) versus 1000/T across a range 

of temperatures between room temperature to 400
°
C. It is obvious that the resistance Rp, 

continuously increases together with the environment temperature up to 150˚C. At this stage, 

the main conduction mechanism may derive from the surface absorbed water, which provides a 

conduction path between the aggregated DND particles. Comparing with the as-received DND 

powder without any hydrogen-plasma treatment, the resistance decreases 10
4
 times. A 

reasonable explanation is that the post-procedure of DND, like thermal oxidization and acid-

purification, generates a dielectric layer on the surface outside the particles’ shell.
[185]

 In 
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addition, as the temperature increased up from 170˚C to 225˚C, the resistance Rp decreased 

together with the increasing temperature. The Arrhenius relationship can be expressed as: 

     
    
                                         Equation 6.6 

  ( )        (
    

 
) (

 

     
)    ( )              Equation 6.7 

where Eact represents the activation energy of a certain kind of semiconductor and k is the 

Boltzmann’s constant. From the Arrhenius relationship, an activation energy of Eact1=0.089 eV 

can be calculated from the data between 170˚C to 225˚C, which could be associated with the 

thermal activation of the hydrogen-termination on H-DND. Finally, for the temperature at 

250˚C and 350˚C, an activation energy of 0.63 eV can be allocated. The relationship of 

activation energy at different temperature levels and the oxidization evolution process will be 

concluded in next section. 

  

 

Figure 6.6 Arrhenius relationship of resistance Rp extracted from the Cole-Cole plot. 
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6.3.3 Fourier-Transform Infrared Spectra 

To understand the thermal stability of H-DND, we have performed thermal annealing 

experiments on H-DND samples, at different temperature varying from 50˚C up to 400˚C. 

Figure 6.7 shows the FTIR results of untreated DND samples, as well as H-DND samples post 

annealing. 

 

Figure 6.7 FTIR analysis of untreated DND, H-DND and H-DND annealed from 50˚C to 

400˚C. All the DND powder was performed thermal annealing treatment in air and then 

pressed into KBr pellets. 

 

All the FTIR spectra samples demonstrated a significant peak located at 1630 cm
-1

 (δOH bend 

mode), which was derived from the water absorption on the untreated DND surface.
[206],[207]

 For 

the untreated DND powder spectra, one small peak located at 619 cm
-1

 was observed and 

disappeared after H-termination. This peak can be associated with the carbon amide bonds on 

the particles’ surface and it is worth noting that it did not appear in air.
[188]

 The peak around 
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1126 cm
-1

 in the untreated sample might be assigned as either the ether group (vC-O-C) or the δOH 

vibration from water. Here, it is more likely to be associated with the water absorbed on the 

surface of the DND powder rather than the ether group. This peak disappears after h-termination, 

but starts to remerge at temperatures above 10
°
C. A possible explanation was the formation of 

C-H bonds on the surface after H-termination enhanced the hydrophobic properties of the DND 

particles.
[205]

 The peak at 1126 cm
-1

 became weakened after H-termination, which could be 

explained by the fact that the H-termination enhanced the hydrophobic properties. The peak at 

1255 cm
-1

, which can be associated with the C-O groups, is not significant in the untreated 

sample. However, it became dominant as the annealing temperature reached 150˚C or above. 

This result proven that the H-DND particles started to oxidise at 150˚C. Another weak peak 

located at 1336 cm
-1

 proven that the existence of the C-N bonds (e.g. cyclic carbon in cyclic 

lactams, -C=N).
[188]

 This peak survived after the H-termination treatment and enlarges with the 

increasing annealing temperature. Eventually, this peak vanished at 350˚C above. The 1731 cm
-

1
 peak could be assigned as ester or organic amide on the DND sample but disappeared after 

hydrogen plasma treatment. After annealing at 300˚C, the 1731 cm
-1

 peak re-appeared, which 

implied that the presence of C=O bonds. After the hydrogen plasma termination, the H-DND 

exhibited surface modification with two broad peaks at 2930 cm
-1

 and 2960 cm
-1

. These two 

peaks corresponded to alkyl sp
3
 C-H (-CH3/-CH2) bonds stretching vibration mode. In summary, 

the FTIR results proven that the hydrogen-termination process functionalised by the DND 

surface with C-H bonds and removed a certain percentage of carbon-oxygen compounds. 

 

6.3.4 X-ray Photoelectron Spectroscopy 

The XPS technique has been applied to determine the relative composition of the DND 

samples. The survey spectra have been recorded for untreated DND, H-DND, and thermal 

annealed DND powder, as shown in Figure 6.8. The significant C1s peaks between binding 

energy (BE) 280.0 eV and 290.0 eV have been normalised in order to highlight the order 

impurity peaks. The minimal chromium impurities (Cr 2p1/2p3: 584.7/575.7 eV) can be derived 

from the post-synthesis process by using a Cr2O3/H2SO4 mixture to oxidise sp
2
 carbon 

elements.
[208]

 From the survey spectra, there is no evidence that other metallic impurities are 

present in the DND sample. It is because of this that the as-received DND sample might be 

purified with acid mixture (e.g., hydrochloric acid/nitric acid mixture).
[203],[209]

 The O1s peaks 

are located at 529.4 eV, which can be associated with the surface ether, hydroxyl, and carbonyl 

bonds.
[189]

 The N1s spectrum included two components with fitted peaks at 400.8 eV and 397.8 

eV. The N 1s spectrum at 400.8 eV is the evidence of interaction with oxygen and the other one 

represents nitrogen atoms incorporated into the DND cores.
[210]
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Figure 6.8 XPS survey spectra of DND samples. The top of these C1s peaks have been cut 

off to highlight the other contents. 

 

For the untreated DND samples, impurities such as oxygen and nitrogen can be attributed to 

the reaction occurring during the detonation process, which contains oxygen-deficient 

trinitrotoluene (TNT) and hexogen composition.
[211]

 After the hydrogen termination process, the 

oxygen composition content has significantly decreased, while nitrogen and chromium peaks 

remain as before. The percentage of each composition has been listed in Table 6.1. From the 

table, it is clearly observed that the chromium content for each sample is constant before/after 

hydrogen plasma treatment. As the annealing temperature increased up to 150˚C or above, the 

oxygen percentage increased as well. Meanwhile, the nitrogen concentration slightly increased 

together with the increasing annealing temperature from 50˚C to 350˚C.  
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Table 6.1 XPS survey analysis and content of all the elements in DND sample. 

Sample 
N1s Content 

(at.%) 

O1s Content 

(at.%) 

C1s Content 

(at.%) 

Cr2p Content 

(at.%) 

Untreated 1.5 4.2 94.0 0.3 

H-terminated 2.6 1.6 95.5 0.3 

50˚C 1.6 1.7 96.3 0.4 

100˚C 1.6 2.0 96.1 0.3 

150˚C 1.6 1.9 96.2 0.3 

200˚C 1.8 2.5 95.4 0.3 

250˚C 2.0 3.3 94.4 0.3 

300˚C 2.0 5.3 92.3 0.4 

350˚C 2.0 4.9 92.8 0.3 

400˚C 1.7 5.0 93.0 0.3 

 

6.4 Analysis 

6.4.1 Electrical Properties 

According to the Equation 6.3, when n=3, this equation indicates that there are three 

conduction mechanisms in the semiconductor material namely: electrode, grain interiors (GI) 

and grain boundaries (GB).
[184]~[187]

 It was already established in literature that the capacitance 

associated with grain boundary (CGB) is 2-3 orders of magnitude higher than the capacitance 

associated with the grain interior (CGI). The parameters Rp and Cp were extracted from the fitting 

equivalent circuit and shown in Table 6.1. The paralleled resistance Rp and capacitance Cp 

represent the intrinsic resistivity and the dielectric properties of the H-DND. The Rp was varying 

together with the evaluating temperature but the parallel capacitance Cp was constantly located 

at pico-farad (pF) level, which suggested Cp has little relationship with the surface modification 

and the thermal annealing process. 

Comparing the IS response of the H-DND with the untreated DND sample, a Warburg 

component was found in the equivalent circuit in the hydrogen-terminated sample. Zang and 

Portet et al. proposed similar Warburg components, which were observed in electrochemical 

experiments on DND powder.
[202],[212]

 The origin of the Warburg component can be attributed 
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from: (1). the porous structure and the surface roughness; (2). the infinite-element 

approximation of the material.
[201][202]

 Both of the proposed mechanisms are feasible. At a 

temperature range lower than 100
 º
C, the aggregated DND can be considered as a certain kind of 

porous material with a grain size of micrometers.
[181]

 On the other hand, the aggregated DND 

powder can be considered as a 3-D dimensional network of individual DND particles in the 

proposed equivalent circuit model, which is different from continues single/polycrystalline 

diamond film.
[202]

 The hydrogen plasma treatment might contribute to surface mutual 

interactions with the presence of the C-H bonds on the surface between each DND particle, 

which was linked together to form an infinite-element network. 

Chaudhary et al. reported a DND capacitance of ~10 pF between the temperature ranging 

from 23 to 150˚C and attributed it to a grain boundary contribution.
[193]

 Bevilacqua et al. studied 

the impedance response of the untreated DND powder and concluded that a ‘grain-interior-like’ 

electrical conduction below 350˚C, but possibly switched to surface-interface conduction at 

higher temperature.
[192]

 In our IS measurement of H-DND, there was only single semicircle 

response observed while the temperature heating up, which indicated only one conduction 

mechanism occurred during the whole process (Figure 6.4 (a)-(f)). The average grain size 

indicates that the effect of the small-size and the large surface area-to-volume ratio may reduce 

the capacitance Cp, compared with the capacitance calculated in single/poly-crystalline diamond 

films. The hydrogen-termination treatment enhanced the grain boundary conduction on the 

surface of the DND particles and grain interior effect from the core was undermined. Thus, the 

GB conduction in the IS plot dominated, whilst little evidence for GI conduction was found.
[213]

 

Hence, we associated that the capacitance with the grain boundaries conduction contribution for 

H-DND. 

During the temperature elevating process, two Activation energy levels, Eact1 and Eact2, were 

calculated from the Arrhenius plot, which suggested two different types of conduction 

principles. It is noteworthy that Eact1 located between 170
º
C and 225

º
C, accompany with the 

significantly increase of resistance Rp. Followed by the slightly decreasing resistance Rp, the 

Arrhenius curve had a slight drop and an activation energy Eact1, of 0.089 eV was deduced. It is 

known that the hydrogen-termination on single-crystalline diamond film can improve the 

surface conduction and create a negative-electron-affinity (NEA) surface.
[214]

 Landstrass et al. 

proposed that the conduction might be caused by the movements of hydrogen and defects from 

nonactive sites during the annealing process.
[215]

 Botev et al. presented an activation energy of 

0.1 eV from undoped diamond film by charged-based deep-level transient spectroscopy (Q-

DLTS) method.
[216]

 Mori et al. assumed an existence of surface conductive layer caused by 

chemical absorption or oxidization.
[217]

 Here, we suggested that the mechanism might be 



Chapter 6: Properties and Thermal Stability of Hydrogen-Terminated Nanodiamond 

161 

 

explained as the contribution from surface hydrogen-termination charge carriers on the DND 

outside shell. 

At the temperature from 250
º
C to 350

º
C, the activation Eact2=0.63 eV could be calculated by 

fitting the Arrhenius curve. This level of activation is closed to the n-type phosphorous doping 

in diamond film.
[218]

 However, further XPS analysis proven that the DND powder was 

completely free of phosphorous element. Various explanations to this activation energy level 

have been proposed by other researchers. Ye et al. studied the dielectric properties of 

nanocrystalline diamond film and found an activation energy of 0.67 eV. The author assumed 

that the phenomenon might be the change of the crystal field caused by thermal expansion, or 

by surface bond concentration of nanosized particles.
[194]

 Werner and Huang et al. have assigned 

this effect to the space charge limited current and Poole-Frenkel mechanism for the non-linear 

electrical response.
[221],[222]

 Here, we associated the activation energy with the crystalline defects, 

or the surface sp
2
 carbon phase (non-diamond materials), which had been reported in undoped 

diamond film.
[221],[224]

 

 

6.4.2 Thermal Stability 

The FTIR and XPS study focused on the thermal stability of the H-DND. In comparison, the 

CVD diamond film can be oxidized while heating in an oxygen atmosphere over 500˚C.
[223]

 

Previous reports on diamond powder with a micrometer-range grain size indicated the 

oxidization temperature was 477˚C.
[192]

 Zou et al. found that 5-nm DND started to incorporate 

with the oxygen in air at 228˚C by thermogravimetric analysis (TGA) and completely oxidized 

over around 600˚C.
[225]

 Based on the FTIR and XPS analysis on DND powder in our research, 

the state of the DND powder had incorporation with oxygen occurred between the temperature 

of 100˚C and 150˚C. At this range, the C-O bonds formed in the state of hydroxyl groups. The 

C=O bonds appears at annealing temperatures higher than 300˚C. The incorporation of the 

nitrogen could be divided into two states: the first one can be derived from the nitrogen atoms in 

the core of the DND particles during the detonation process, and the other one is the surface 

cyclic carbon lactams (C=NH).
[185]

 The later one can be demolished while the temperature is 

higher than 350˚C. As the annealing temperature increases over 400˚C, the homogeneity of 

DND powder was enhanced. The FTIR results also revealed that the C-H bonds could survive in 

the environment temperature as high as 400˚C after hydrogen-termination process. 
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Figure 6.9 C1s XPS spectra data, fitted curves (in square) and synthesized peaks, which 

has been assigned as C sp
2
 (284.6±0.1 eV), C sp

3
 (285.4±0.1 eV), C-O (286.3±0.1 eV), and 

C=O (287.3±0.1 eV). 
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The C1s core peaks on intrinsic, H-terminated and after 400
°
C annealing samples were 

extracted from wide survey spectra and synthesized on Figure 6.9. The sp
2
 hybridized carbon 

peak can be synthesized and observed at 284.6 eV, which has been reported ~0.8 eV lower than 

the sp
3
 peak. The C-O/C=O peaks locate at +1.7 and +3.0 eV higher than the sp

2
 band, 

respectively.
[190],[191]

 

In Figure 6.9, it is obvious to observe that the C1s core peak centre shifted from 284.9 eV up 

to 284.6 eV after H-termination process. This significant change proves that the concentration 

of the C-O/C=O bonds have been removed during the H-termination process. During the 

thermal treatment, the oxygen concentration increases as the temperature changes because of the 

oxidisation on the DND’s particles. Therefore, the C 1s core peaks shift from the lower BE to 

higher BE. When the temperature of the stage reaches 400˚C, the C 1s peak of H-DND has a 

higher BE even than the untreated sample. It is reasonable to predict the thermal treatment 

oxidises the DND surface and the oxygen content increases. 

 

Table 6.2 Synthesis of C1s peak 

Sample C1s Synthesis Peaks 
Binding Energy 

(eV) 

FWHM 

(eV) 

Concentration 

(At.%) 

untreated 

sp
2
 

sp
3
 

C-O 

284.6 

285.4 (sp
2
+0.8) 

286.3 (sp
2
+1.7) 

1.47 

1.74 

1.40 

27.3 

58.9 

13.8 

H-terminated 

sp
2
 

sp
3
 

C-O 

284.6 

285.4 (sp
2
+0.8) 

286.3 (sp
2
+1.7) 

1.66 

1.45 

1.32 

66.6 

27.0 

6.4 

400˚C annealed 

sp
2
 

sp
3
 

C-O 

C=O 

284.6 

285.4 (sp
2
+0.8) 

286.3 (sp
2
+1.7) 

287.3 (sp
2
+2.7) 

1.57 

1.03 

1.61 

0.78 

45.75 

11.51 

41.53 

1.21 

 

To analyse the surface oxidisation reaction quantitatively, the C1s peak has been synthesized. 

The curves fit three critical samples from the spectra (untreated, H-terminated and after thermal 

treated at 400˚C). All the fitted curves using Lorentzian-Gaussian method with a full-width half-
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maximum (FWHM) value lower than 1.8 eV as shown on Figure 6.9. The synthesized peaks 

data extracted from the synthesis have been listed on Table 6.2. The C sp
2
 shoulder is located at 

~284.6 eV after calibration, which is 0.8 eV BE lower than the sp
3
 component. Moreover, the 

carbon-oxygen bonds (C-O) are +1.7 eV higher than sp
2
 feature peak. The presence of sp

2
 

component is in agreement with the previous investigation that the graphitic shells are 

surrounding the DND cores by HRTEM.
[191]

 The synthesized peak located at 287.3±0.1 eV can 

be assigned as the carbonyl (C=O) bonds. It is worth to note that the C-O and C=O bonds 

content decreased after H-termination and significantly increased after thermal treatment at 

400˚C. Meanwhile, the sp
2
 bonds varied as the different treatment that applied on the DND 

samples, which indicated that the reaction possibly occurred on the surface shell outside the 

core. 

The thermal stability of DND over 400˚C was studied by Thermogravimetric Analysis 

(TGA), as shown in Figure 6.10. At the temperature lower than 100˚C, the weight loss of DND 

can be explained as the loss of absorbed water on the DND outer surface. As the temperature 

reached ~450˚C, the irreversible phase transformation occurred and the weight loss dropped 

dramatically.
[225]

 As high as the annealing temperature reached 600~650˚C, the DND sample 

was completely oxidised and vanished. 

 

Figure 6.10 TGA measurement of untreated DND, and hydrogen-terminated DND sample 

in air. 
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6.5 Summary 

Figure 6.10 shows the evolution process of DND powder, which can be summarised as 

following: 

1. The as-received stated DND powder is a mixture of aggregated nanodiamond, surface 

absorbed water, and metal residues resulting from the detonation process. For the 

nanodiamond surface, most of the original bonds are C-O, and C=O bonds.(Figure 6.11 

(a)) 

2. After hydrogen plasma treatment, the surface of nanodiamond was transformed to C-H 

bonds and most of the oxygen content was removed. At this stage, the surface C-H bonds 

serve as links between DND cores and surface absorbed water. Hence, the conduction 

path leads to a Warburg diffusion effect, which represents an infinite-length 

approximation of DND particles stacked together and mutual interaction after hydrogen 

passivation process.(Figure 6.11 (b)) 

3. At this temperature, the surface of DND powder was incorporated with nitrogen in air and 

formed cyclic lactam (=NH/-NH2). The water absorption still exists on the outer shell. 

Thus the conduction was mainly driven by the absorbed water and the Warburg effect 

remained.(Figure 6.11 (c)) 

4. As the annealing temperature reached 200˚C, the surface of the DND was oxidised and 

hydroxyl bonds (-OH) were formed. (Figure 6.11 (d)) 

5. After the DND was annealed at 300˚C, the C=O (carbonyl) was generated. The resistance 

at this stage was at its maximum. (Figure 6.11 (e)) 

6. Finally, when the DND powder was heated at 400˚C, the nitrogen content was removed 

completely from the surface. The Warburg effect appeared again as it was in the room 

temperature range, which suggested the phenomenon might be associated with the surface 

homogeneity of the DND particles.(Figure 6.11 (f)) 
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Figure 6.11 Surface chemical bonds evolution of DND (before/after hydrogen plasma 

treatment, and modification under different annealing temperature). 

 

In this chapter, the thermal stability and conduction mechanism of hydrogen-terminated 

DND was introduced. This research was the fundamental work for future DND applications, e.g. 

surface modification on DND.
[226]

 The H-DND can be utilised as the raw material for future 

functionalised ω-alkylcarboxylic acid and ω-alkylamidoamine acid nanodiamond in triglyceride 

removal application. 
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7 General Discuss of Future Work 

In the next stage, highly-oriented (100) diamond films will be deposited on (100) silicon 

wafer and DLC substrates. In addition, the MPECVD method for diamond growth can be 

extended to deposit other carbon-based materials including carbon nanotubes (CNTs) and 

graphene. Previous research has been proven that the success of CNTs and grapheme can be 

synthesised onto metal substrates (e.g. copper). This work required a cleaner bell-jar chamber in 

the CVD system and more accurate flow control. Moreover, confocal Raman and TEM are both 

necessary for the characterisation of CNTs and graphene. 

For the femtosecond laser inscription technique, the ultra-fast patterning on diamond has 

been achieved. The next step is to utilise physical vapour deposition (PVD) to fabricate metal 

electrodes, which can be further developed into electronic devices such as UV detectors. 

Besides, the physical model of femtosecond laser propagation in diamond is an interesting topic. 

The group has initiated the modelling work in collaboration with Dr. Vladimir Mezentsev. The 

2-D plot of transient Gaussian laser energy distribution can be simulated by COMSOL 

software.
6
 The critical problem is that the existing numerical model is based on the inscription 

inside the bulk, which is not suitable for the surface inscription. Besides, the femtosecond laser 

inscription can be utilised in some of the other carbon-based materials as well. 

After the electrical properties of nanodiamond were investigated and the equivalent circuits 

were proposed, the detailed conduction mechanism can be further studied. In addition, other 

surface modification on nanodiamond can be researched and the fundamental conduction 

mechanism will be linked with the crystal lattice, dopant or surface modification. This work 

may require Nuclear Magnetic Resonance (NMR) equipment and a better metal-semiconductor 

contact (C-Au/Pt) to reduce the influence of non-Ohmic contact. 

As the development in carbon-based electro-spun fibres in our group, the future study will be 

extended to a diamond coated fibres with the MPECVD system. Meanwhile, the DND particles 

could also be added in the DMF solution to improve the mechanical and chemical properties of 

these fibres. 

For the future research, the nanodiamond particles synthesised by Spark Plasma Sintering 

(SPS) technology can be studied for super high volume-to-surface ratio materials. This material 

can be utilised as a supercapacitor material or a water-insoluble drug delivery carrier. 

 

                                                           
6
  COMSOL

®
 Multiphysics 



Chapter 8: Conclusion 

169 

 

 

 

 

 

 

 

 

 

 

 

Chapter 8: Conclusion 

  



Chapter 8: Conclusion 

170 

 

8 Conclusions 

In conclusion, this thesis has presented a systematically investigation of diamond material, 

including its properties, characterisation and application. The thesis started from a literature 

review of the diamond basic properties and several other applications in Chapter 2. Then, the 

most common techniques used for characterising nano-carbon materials were summarised in the 

Chapter 3. Following by Chapter 3, the main work was introduced in another three chapters.  

The successful installation of the MPECVD system enabled the potential carbon-related 

materials (including diamond) deposition on a variety of substrates, which was presented in 

Chapter 4. The preliminary work studied the feasibility of diamond deposition on silicon wafers 

(100) and (111), diamond-like carbon films and silica fibres. The successful deposition of 

random-oriented and (111) diamond crystals on different substrates has provided a solid 

foundation work for the future research tasks. Based on the analysis from SEM and Raman, a 

suitable deposition condition for a uniform and well-coverage diamond film was revealed. This 

study built up a solid fundamental work for the future research work. 

One of the main achievements of this thesis is the femtosecond laser inscription on a 

diamond substrate. The femtosecond laser technique is an ultra-fast inscription method on the 

diamond surface. After characterisation by SEM, Raman spectroscopy, XPS and AFM, the 

graphitic composition that formed on the inscribed area was studied. The results proved that the 

area under laser irradiated was changed to carbon sp
2
 state with periodical ripples. An effective 

method to completely remove the graphitic layer by strong acid solvent and H
+
 plasma etching 

has also been developed. By comparing the depth from the AFM results, the femtosecond laser 

inscribed channels have an average graphitic layer of ~ 200nm. Future work will emphasise on 

the applications of these inscribed structures for biological sensing and theoretical modelling of 

the inscription process. 

The other achievement of this project is the impedance studies of the hydrogen-terminated 

nanodiamond. A custom-designed testing cell was designed to measure the real-time electrical 

properties of the nanodiamond at different temperatures. Then, the electrical response was 

collected and plotted by real part versus imaginary part. The electrical conduction mechanism of 

hydrogen-terminated nanodiamond was firstly investigated and surface oxidization process on 

nanodiamond was characterised by FTIR and XPS. The final results indicated the C-H bonds 

play a critical role during the conduction process, which could successfully sustain under a 

temperature of 400 
°
C. It is the one of the earliest studies on the electrical properties of the DND 

materials. This research provided an insight into the evolution of the physical and chemical 

properties of the nanodiamond at elevated temperatures.  
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In summary, the diamond materials have been proven to have outstanding properties, such as 

hardness, high thermal conductivity, high carrier mobility, chemical inertness and bio-

compatibility, etc. This thesis has introduced and investigated several aspects of diamond 

material’s properties, and also demonstrated its potential applications. All these works have 

built up a solid fundamental study, which can be also extended to a further thorough research. 
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10 Appendix 

 

Standard Operation Process (SOP) of MPECVD System in Aston University 

 

Important Tips: 

1. Please always check the main release valve, make sure it is closed before the experiment. 

2. The main release valve can be open only when the chamber is vacuum (about 0 Torr on 

MKS 250 pressure controller). It must not be used to release in other situation. 

3. Do not start the plasma (microwave) without confirming the gas inside the chamber is 

appropriate. 

4. If there is no experiment for a long time, please leave the chamber vacuum. 

5. Use the flow controller system (MKS 250 and flow control valve) and its pipe to pump out 

dangerous/unknown gas. 

 

1. Preparation (Security Examination) 

i. Check the main release valve (Fig.1) is closed. 

ii. Check the gas control panel (Fig.2): main valve and three gas valves are all closed. 

iii. Plug the main power (Fig.3) into the socket and turn on the power switch (Fig.4). 

iv. Turn on the four switches (Fig.5, Fig.6) on the wall which supply power to the PIRANI 11 

barometer(Fig.7), main rotary fan pump(Fig.8), cyclic water cooling system(Fig.9), 

Bronkhost flow controller and MKS 250 pressure controller(Fig.10), respectively.  

v. Turn on the MKS 250 pressure controller and check the pressure inside the chamber. If the 

pressure is higher than 0.000×100 Torr, please follow these steps: 

vi. Turn off the main pump valve (Fig.11), turn on the MKS 250 pressure controller and turn 

the mode switch to the close. Turn off the pressure control valve (Fig.12) as well as the 

main release valve, and then turn on the rotary fan pump. Open the pressure controller 

valve and set to manual (Man. On the panel, now the pressure control is 100% open). Wait 

several minutes till the pressure in the chamber is lower than 0.010×100 Torr. Shut the 

pressure controller and the valve, then open the Main valve and pump out the rest gas 

inside chamber. Wait until the pressure is lower than 0.000 Torr (about 20 mins). 

vii. Turn on the main switch (microwave power and cooling fan power) on the control panel of 

the ASTEX (Fig.13). Check that the Local/Remote light is on (for local setting) on the 

microwave power generator (Fig.14). 

 

2. Gas supplement  

i. Make sure the main release valve is shut off, and there is no air in the chamber (Avoid 

mixing the air with the hydrogen). 

ii. Double check all the valves on the gas flow control panel are closed, as well as the two 

main valves on the wall. 

iii. Open the hydrogen and methane storage cage and turn them on, record the pressure data. 

iv. Make sure that the pressure in the chamber is 0.000 or lower. Open the valves on the wall 

(×2, H2 and CH4) and on the panel (×3, Argon, H2 and methane), as well as the main valve 

on the panel. 
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3. Pre-treatment process 

i. Turn on the pressure control valve and set the MKS 250 pressure controller to manual (100% 

open). Turn off the main pump valve.  

ii. Set the hydrogen flow value for pre-treatment (about 200-300 s.c.c.m) and set the MKS 

250 pressure controller to auto (usually, we set 20 Torr for next step to generate the 

palsma). 

iii. Leave several minutes till reach the set pressure and barometer maintain stable, now the 

hydrogen gas is filling inside the chamber. 

 

4. Start plasma 

i. Set the power below 3/75 (equals to about 600 W), and press ‘HV on’. 

ii. Examine that the light blue plasma inside the chamber (around the bell jar, or below that).  

iii. Carefully increase the microwave power, until the bowl shape plasma generates (light blue 

mixed with a bit grey). Now the power level should be around 800-1000. If the bowl does 

not generate, please turn off the power and turn the power lower than 3/75, then increase 

again. Repeat this procedure until the bowl plasma is shown. 

iv. Changing the phase shifter (Fig.15) to make the reflect microwave power is low enough 

(often around 0 Watt). 

 

5. Pre-heating 

i. Gradually increase the pressure to 50 Torr, change the power level up to 1200 W. 

ii. Wait for 10 minutes, the surface becomes pink and a bit red, wait for several minutes till it 

is stable. 

 

6. Nucleating  

i. Increase the methane flow rate (2-6 s.c.c.m). Maintain the pressure and microwave power 

for a certain time (1 hour). 

 

7. Diamond growth 

i. Decrease the methane flow rate to 2 s.c.c.m. Maintain the pressure and microwave power 

for a certain time (more than 2 hours) 

 

8. Surface H-termination process 

i. Turn off the methane gas and maintain the condition for at least 20 minutes. 

 

9. Cooling 

i. Turn off the microwave power. 

ii. Reduce the H2 gas to 200 s.c.c.m, maintain the state for at least 20 minutes.  

iii. Turn off the H2 gas flow. Wait for the pressure get lower than 3 Torr. Then, switch off the 

flow control valve and turn the MKS 250 panel controller for ‘auto’ to ‘off’. 

iv. Open the main valve. Vacuum the chamber. 
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10. Take out sample 

i. When the chamber is cooling down, take off the four bolts under the sample holder. 

Carefully take out the metal holder inside. 

ii. Weight the sample with electrical balance, and record the data. 

 

11. New sample installation setup 

i. Pre-clean process to clean the Mo holder surface. 

ii. Weight the substrate with electrical balance, and record the data. 

iii. Put the substrate on to the holder (square area on the top), and then vertically insert the 

metal holder inside the chamber. Screw the four bolts tightly (Fig.16). 

 

12. Chamber Vacuum process 

i. Turn off the main release valve. 

ii. Keep the pressure control pipe is shut down (MKS 250 controller panel is switching to 

‘off’) and the pressure control valve is off. 

iii. Open the main vacuum valve, pipe out the air inside the chamber (the pressure on MKS 

250 is lower than 0.000, about 20 minute). 

iv. Turn off the main vacuum valve. 

 

13. Cut off power supply 

i. Turn off the microwave main power switch. 

ii. Turn off the gas supply valve (on panel ×3, on wall ×2, main valve on panel). 

iii. Turn off the gas storage (outside), record the pressure data. 

iv. Turn off the rotary vacuum pump. 

v. Turn off the two switches inside the control box of the MWCVD. 

 

Figures: 

  

Fig.1 Main release valve                                       Fig.2 Gas control panel 

Main Valve 
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Fig.3 Main power and socket                         Fig.4 Switch for main power supply 

  

Fig.5 Power supply for barometer and pump          Fig. 6 Power supply for MKS 250 

  

Fig.7 PIRANI 11 barometer                                     Fig.8 main rotary fan pump 

MKS 250 pressure controller 
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Fig.9 cyclic water cooling system                        Fig. 10 Bronkhost flow controller and MKS  

                                                                                          250 pressure controller 

  

              Fig.11 Main pump valve                                         Fig.12 Pressure control valve 

  

    Fig.13 control panel of the ASTeX
TM

                            Fig.14 Microwave power generator 

Main pump valve 

Bronkhost gas flow controller 
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 Fig.15 Phase shifter of the microwave power               Fig. 16 Screws under the sample holder 

            generator 

 


