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Thesis Summary 

Tissue Transglutaminase (TG2) and FXIIIa, members of the transglutaminase (TG) family, 

catalyses a transamidating reaction and form covalent bond between or within proteins.  

In bone development, both enzymes expressions correlate with the initial of the 

mineralisation process by osteoblasts and chondrocytes.  Exogenous TG2 also promotes 

maturation of chondrocytes and mineralisation in pre-osteoblasts. 

To understand the role of endogenous TG2 in osteoblast mineralisation, the TG2 

expression was examined during the human osteoblast (HOB) mineralisation.  The 

expression of the endogenous TG2 increased during the mineralisation, yet, its expression 

was not essential for mineral deposition due to the compensation effect by other 

members in the TG family.  The extracellular transamidating activity of HOBs was found 

increased during mineralisation and a shift from FXIIIa dominant- to TG2-dominant 

crosslinking activity was suggested after differentiation.  However, the transamidating 

activity of both TG2 and FXIIIa were not critical for cell mineralisation. 

On the other hand, Exogenous TG2 was found to enhance wild type HOB and TG2 

knockdown HOB mineral deposition.  The transamidating activity of TG2 was not required 

but most likely a close conformation was essential for this enhancement.  Results also 

demonstrated that exogenous TG2 may activate the β-catenin pathway through LRP5 

receptor thus contribute in cell mineralisation.  This enhancement could be abolished by 

addition of β-catenin inhibitors. 

Finally, using of TG2 crosslinked collagen gel for bone and cornea repair was evaluated.  

Crosslinked collagen gel showed promising results in improving HOB mineralisation, 

human corneal fibroblast (hCF) proliferation and migration.  These effects might be 

resulted from the trapped TG2 within the collagen matrix and the alteration of matrix 

topography by TG2. 

Key words: FXIIIa, close conformation, LRP5, β-catenin, human corneal fibroblast 
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1. Transglutaminase 

Transglutaminases (TGs) are a group of enzymes that catalyse the post-translational 

modification of proteins at glutamine residues through an acyl-transfer reaction.  The 

enzymes are widely distributed from bacteria (Ando et al., 1989, Nonaka et al., 1989, 

Kanaji et al., 1993) to plants (Serafini-Fracassini et al., 1995, Serafini-Fracassini et al., 2002) 

and animals (Clarke et al., 1959, Chung, 1972, Aeschlimann et al., 1995, Kim et al., 1995, 

Zhang and Masui, 1997).  In the mammalian transglutaminase (EC 2.3.2.13) family, the 

availability of calcium is essential for enzymes to form a covalent bond between the γ-

carboxamide group of peptide-bound glutamine and the ε-amino group of a peptide-

bound lysine/ a primary amine.  The first documented mammalian transglutaminase was 

derived from the soluble fraction of guinea pig liver by Clarke and co-workers in 1959.  

Fifty more years later, there are 9 members reported in higher vertebrates, TG1-7, factor 

XIIIa (FXIIIa) and band 4.2, and each of them have been characterised to some degree 

(reviewed by Griffin et al., 2002, Lorand and Graham, 2003, Esposito and Caputo, 2005, 

Mehta, 2005).  The key characteristics of these mammalian TGs are summarised in Table 

1.1.  This thesis focuses on two well studied TGs, TG2 and FXIIIa, in particular their roles in 

the mineralisation process of bone formation as well as their application in biomedical 

sciences. 

1.1. Transglutaminase 2 (TG2) 

TG2, also known as tissue transglutaminase (tTG), cytosolic transglutaminase (TGc), 

erythrocyte transglutaminase and endothelial transglutaminase, is ubiquitously expressed 

in all kinds of tissue.  Its transamidating activity is regulated by calcium and GTP/GDP 

binding in which binding of calcium results in active TG2 and binding of GTP/GDP results in 

inactive TG2 (Smethurst and Griffin, 1996).  Besides its primary function as a transamidase, 
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TG2 also has GTPase/ATPase activity (Takeuchi et al., 1994), protein disulfide isomerase 

activity (Hasegawa et al., 2003) and may even function as a protein kinase (Mishra and 

Murphy, 2004). 

1.1.1. Transamidating and deaminating function 

The transamidation activity in tissue had been first revealed in 1959 by Clarke and co-

workers, and till the mid-1980s, the transamidation and deamination reaction of TG2 was 

well studied (Folk, 1983).  The biochemical mechanism underlying the enzyme action 

involves two major steps.  First, the rate-limiting step is formation of thioester bond 

between TG2 active site cysteine (C277) and the substrate.  In this step, the sulfur of the 

active site C277 performs a nucleophilic attack on the γ-carboxamide group of a glutamine 

residue, and releases an ammonia molecule as a by-product (Fig 1.1A).  At the second 

step, the acyl intermediate is attacked by the nucleophilic substrate (acyl-acceptor).  In 

this stage, if the attacking group is a primary amine, either a small biological amine or a ε-

amino group of a peptide-bound lysine residue, the reaction is called transamidation (Fig. 

1.1B, C, D). However, if a water molecule acts as a nucleophile, it is called deamination 

(Fig. 1.1E). 

Two major outcomes result from TG2 transamidation: modification of the substrate 

protein with small amines or formation of an isopeptide bond between acyl-acceptor and 

acyl-donor proteins.  When the nucleophilic substrate is a small primary amine (Fig 1C), 

the result of transamidation reaction will be addition of a small biological amine to the 

substrate protein which can subsequently change its biological properties.  On the other 

hand, the isopeptide bond can form intermolecularly between proteins (Fig. 1.1C), or 

sometimes crosslinking happens between two proteins via a N,N-bis(γ-glutamyl)polyamine  
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Table 1.1 Summary of mammalian TGs family (adapted from Griffin et al., 2002, Lorand and Graham, 2003, Esposito and Caputo, 2005, Mehta, 2005) 

Protein Alternative name Tissue expression Molecular 
Mass (kDa)/ 
Human  

Activity and 
regulation 

Localisation (and function/ disease) 

FXIIIa 

subunit 
Fibrin-stabilising factor, Laki-

Lorand factor, pro-fibrinoligase, 

plasma pro-TG 

Platelets, astrocytes, dermal 

dendritic cells, chondrocytes, 

placenta, plasma, synovial 

fluid 

83 Thrombin activated; Ca2+ 

activated, reducing agent 

required 

Cytosolic, extracellular; (blood coagulation, bone 

growth, wound healing, ECM stabilisation) 

TG1 TGk, keratinocyte TG, 

particulate TG, membrane-

bound TG, TG-B 

Keratinocytes and brain 90 Protease activated; Ca2+ 

activated, reducing agent 

required 

Membrane, cytosolic; (cell-envelope formation in 

keratinocytes differentiation) 

TG2 TGc, tissue TG, liver TG, 

endothelial TG, erythrocyte TG, 

Gh. Ghα, tTG, 

Ubiquitous 78 Yes; Ca2+ activated, 

reducing agent required 

Cytosolic, nuclear, membrane, cell surface, 

extracellular (cell death, cell signalling ,cell 

differentiation, matrix stabilisation, adhesion 

protein) 

TG3 TGE, epidermal TG, callus TG, 

hair follicle TG, bovine snout TG 

Squamous epithelium, brain 

and hair follicle 

77 Latent (protease 

activated); Ca2+ activated, 

reducing agent required 

Cytosolic; (cell-envelope formation during terminal 

differentiation of kertainocytes, hair shaft 

formation) 

TG4 TGP, prostate TG, major 

androgen-regulated prostate 

secretory protein 

Prostate 77 Yes; Ca2+ activated, 

reducing agent required 

Extracellular; (semen coagulation) 

TG5 TGX Ubiquitous except for the 

CNS and lymphatic system 

81 Yes; Ca2+ activated Cytosolic (Cornified cell formation during 

keratinocytes differentiation) 

TG6 TGY Testis and lung 70 Yes (?) Unknown; (biomarker for developing neurological 

disease in gluten sensitive patients?) 

TG7 TGZ Ubiquitous but 

predominantly in testis and 

lung 

80 Yes (?) Unknown; (unknown) 

Band 4.2 B4.2, ATP-binding erythrocyte 

membrane protein band 4.2 

Red blood cells, bone 

marrow, foetal liver and 

spleen 

72 No enzymatic activity Membrane; (structural protein, membrane skeletal 

component in erythrocyte) 
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bridge (Fig. 1.1D).  There are more than a hundred proteins which have been recognised 

as TG2 substrates and some of them are summarised in Table 1.2. 

The deaminating reaction results in the conversion of an acyl-donor glutamine residue to 

a glutamate residue (Fig.1 E).  The deaminating reaction was first believed to occur under 

certain conditions, such as limited primary amines as acyl-acceptor, thus water acted as 

an attacking group.  It was also reported that deamination was favoured to happen in 

low pH pathological environments (Fleckenstein et al., 2002).  However, recent studies 

suggested that besides being pH-dependent, the deaminating process could also be 

dependent on structure.  Crosslinking of small heat-shock proteins (sHsps) by TG2 

revealed that only one glutamine residue of protein underwent deamination while other 

glutamine residues underwent transamidation (Boros et al., 2006).  Growing evidence 

also demonstrated the propensity for deamination by TG2 is both dependent on 

structure and influenced by pathological conditions (Stamnaes et al., 2008). 
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Figure1.1 Post-translational reactions catalysed by transamidase activity of TG2. (A) Formation of a γ-glutamylthiolester intermediate as a common first step for following reactions.  

(B) The incorporation of amine (H2NR) into the glutamine residue (C) An isopeptide bond forms between a peptide bound lysine residue and a peptide bound glutamine residue 

resulting crosslinking of two proteins (D) A primary amine acts as a bridge between two proteins by crosslinking activity (E) Water molecule is used as an acyl-acceptor to deaminate 

a peptide-bound glutamine residue to a glutamate residue.  
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Table 1.2 Known substrates of the transamidase function of TG2 (adapted from Griffin et al., 2002 and Esposito and Caputo, 2005) 

ECM and cell 
surface 

Cytosol Organelle 
Proteins 

Nucleus Others 

Collagen 
Fibronectin 
Fibronogen 
Vitronectin 
Osteopontin 
Osteonectin 
Osteocalcin 
Laminin  
LTBP-1 
β-casein 
IGFBP-1 
Substance P 
Phospholipase A2 
Midkine 

Actin 
Aldolase A 
β -crystallin 
β -tubulin 
C-CAM 
GADPH 
GST 
Glucagon 
Lipocortin I 
Melittin 
Myosin 
Phosphorylase 
kinase 
RhoA 
Secretory vesicle 
IV 
Tau protein 
Thymosin β 

Histone H2B 
α-oxoglutarate 
dehydrogenase 
Acetycholine 
esterase  
CD38 
Cytochromes 
Erythrocyte 
band III 
 

Core histones 
Importin-α3 
pRB 
Calbindin 
 

Wheat gliadin 
Whey proteins 
Soy Protein 
Pea legumin 
Candida albicans 
surface proteins 
HIV envelope 
glycoproteins gp120 
and gp41 
HIV aspartyl 
proteinase 
Hepatitis C virus core 
protein 
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1.1.2 GTPase/ ATPase function 

Binding and hydrolysis of GTP by TG2 was documented as early as 1980s (Achyuthan and 

Greenberg, 1987, Lee et al., 1989).  It was reported that binding of calcium and binding of 

GTP to TG2 competitively regulated the transamidating activity of the enzyme as well as 

proteolysis of TG2 by trypsin.  The independence of GTPase activity of TG2 from its 

crosslinking activity could be further confirmed by Cys 277 mutant TG2 where mutation of 

the crosslinking active site of TG2 only affected transamidating activity but not GTPase 

activity (Lee et al., 1993) The GTPase of TG2 was proposed to be the same as Gα(h) 

protein, a functional α-subunit of a G-protein associated with α1 adrenergic receptor 

signalling,that participates in activation of phospholipase C enzyme (Im and Graham, 1990, 

Nakaoka et al., 1994, Im et al., 1997).  It was also suggested that oxytocin receptor (Baek 

et al., 1996) and TPα thromboxane A2 receptor (Vezza et al., 1999) exploited TG2 as a G-

protein. 

Unlike binding of GTP to TG2, which suppressed crosslinking activity of TG2, binding of ATP 

to TG2 only affected GTPase activity but not transamidation activity of TG2 (Lai et al., 

1998).  The authors also suggested that the binding sites for GTP and ATP were distinct 

due to binding of ATP greatly inhibiting GTP binding, whereas binding of GTP only reduced 

ATP hydrolysis by 20%.  However, the binding sites of GTP and ATP were demonstrated to 

be located within a 5.5 kDa (47 amino acid) region at the start of the core domain (Iismaa 

et al., 1997).  Later on, the publication of the crystal structure of TG2 in complex with GTP 

(Liu et al., 2002) and ATP (Han et al., 2010) indicated that ATP bound in the GTP/GDP 

binding pocket but with different hydrogen bonds and ionic interactions with TG2. 

The function of the ATPase activity of TG2 was first suggested as an intrinsic kinase by 

Mishra and Murphy (2004).  In several in vitro studies, TG2 was recognised as a kinase 
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protein for insulin-like growth factor-binding protein-3 (IGFBP-3), histones, p53 and 

retinoblastoma protein which might participate in cancer cell biology and cell apoptosis 

(Mishra and Murphy, 2004, Mishra et al., 2006, Mishra and Murphy, 2006, Mishra et al., 

2007).  Besides its intracellular function, recent research also proposed a functional role of 

extracellular TG2 in tissue mineralisation.  As demonstrated by Nakano et al. in 2007 that 

addition of ATP, instead of β-glycerophosphate, to ascorbic acid treated pre-osteoblast 

cells was sufficient enough to induce cell mineralisation.  And ATPase activity of TG2 was 

found to play a major role in this ATP-mediated mineralisation by serving as a source of 

phosphate groups.  Further study from the same group also indicated that MT1-MMP was 

the key regulator of the pro-mineralization function of TG2 in extracellular matrix (Nakano 

et al., 2010). 

1.1.3 Structure and conformation of TG2 

The TG2 structure comprises four distinct domains: an N-terminal β-sandwich domain, the 

catalytic core and two C-terminal β-barrel domains (Fig. 1.2).  Some, but not all, critical 

active and substrates binding sites were revealed after years of studies.  A catalytic triad 

similar to cysteine proteases, but for transamidating activity has been identified, which 

consists of cysteine 277 (C277), histidine 335 (H335) and aspartate 358 (D358) (Liu et al., 

2002).  Mutating cysteine to serine at residue 277 (C277A) has been used to completely 

knock out transamidating and GTP/GDP binding ability of TG2.  Another two conserved 

tryptophan residues, W241 and W332, were also identified as critical residues for TG2 

crosslinking activity.  These two residues were believed to stabilize the enzyme-thiol 

intermediate which formed at the first step of catalysis (Murthy et al., 2002).  Tryptophan 

to alanine mutation at residue 241 (W241A) knocked out transamidating activity without 

altering GTPase activity; whereas, replacing tryptophan at residue 332 with phenylalanine 

(W377F) resulted in loss of GTP/GDP binding ability.  In addition, the tyrosine residue at 
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position 516 (Y516) within the catalytic pocket was also found to be important for 

crosslinking activity.  As suggested by Pinkas and co-workers (2007), in inactive TG2, a 

hydrogen bond formed between C277 and Y516 which was believed to favour the inactive 

state of the enzyme.  Point mutation of this residue to phenylalanine (Y516F) disturbed 

the inactive state of TG2 by greatly changing the conformation of protein.  The same 

authors also suggested a change in enzyme preference for deamination over 

transamidation by mutation of T360A.  Although the details remained unclear, the 

threonine residue 360 (T360) was shown to be important for the second step of the 

catalysis by controlling the entry of the acyl-acceptors to the catalytic site. 

 

Figure 1.2 Structure of TG2 with putative substrate binding sites.  Tg2 was composed of 4 major domains 

including N-terminal β-sandwich domain (aa 1–137), the catalytic core (aa 138–470) and two C-terminal β-

barrel domains (aa 471–583 and 584–686).  The fibronectin binding site was identified by Jeong et al. (1995) 

and Hang et al. (2005).  The postulate binding sites for GTP and ATP was proposed by Iismaa et al. (1997) 

and Han et al. (2010).  The haparan sulphates binding site was identified by Wang et al. (2012).  The catalytic 

triad was identified by Liu et al. (2002).  The calcium binding site was predicted by Fox et al. (1999) and the 

PLC binding site was recognised by Hwang et al. (1995) 

The major GTP/ATP binding site was found to be located at the first 47 residues in the core 

domain (Iismaa et al., 1997).  Yet, later research done by Han et al. (2010) has suggested 

that less hydrogen bonding occurred between ATP and the binding pocket when 

comparing to the GTP complex structure.  Also, there are 2 more residues, S482 and R580, 

which were revealed to specifically participate in GTP binding (Han et al., 2010).  Point 

mutation of R580A resulted in loss of GTP/GDP binding activity and GTP-mediated 
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inhibition of transamidase activity.  This effect was suggested to be related to the 

alteration of enzyme affinity for GTP and GDP  (Begg et al., 2006). 

While several studies used point mutated TG2 to evaluate the relevance of the crosslinking 

activity of TG2 in biological function, one key property of TG2 often overlooked was its 

conformation.  Before being characterised by x-ray crystallography, the presence of 

multiple conformations of TG2 had been suggested.  First, proteolysis studies indicated 

that GTP-bound TG2 showed higher resistance to calpain and trypsin proteolysis when 

compared to TG2 in the presence of calcium (Zhang et al., 1998, Begg et al., 2006).  Also, 

the presence of different sub-populations of TG2 was also found, since different anti-TG2 

antibodies preferentially bound to a distinct population of the enzyme (Fésüs and Laki, 

1977, Monsonego et al., 1998).  In 2007, the two major conformations of TG2 were 

demonstrated using X-ray crystallography (Fig. 1.3): one was GDP-bound (Liu et al., 2002) 

compact form (inactive) and the other was an active site covalent inhibitor bound (Pinkas 

et al., 2007) open form (active).  In the GDP-bound crystal structure (compact form or 

closing form, Fig. 1.3A), the catalytic core domain was inaccessible due to the 2 β-barrels 

domains, which effectively prevent binding of substrate to enzyme.  On the other hand, 

Figure 1.3 Structures of TG2 derived by 

X-ray crystallography (adapted from 

Collighan and Griffin, 2009). (A) GDP-

bound human TG2 and (B) irreversible 

peptide inhibitor-bound human TG2.  

The structures of TG2 are presented 

with its β-sandwich domain at the top of 

the figure. 
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the irreversible inhibitor (Ac–P(DON)LPF-NH2) reacted TG2 resulted in a stable extended 

conformation (open form, Fig. 3B).  In this conformation, the transamidating active sites 

were exposed to substrates and it was assumed that a vicinal disulphide bond between 

Cys370 and Cys371 was the key to stabilise this extended form.  These findings further 

urge future studies to clarify the biological significance of each TG2 conformation. 

1.1.4 Regulation of TG2 gene expression 

The amino acid and cDNA sequences of TG2 in guinea pig liver (Ikura et al., 1988), bovine 

vascular endothelial cells (Nakanishi et al., 1991), mouse macrophages and human 

endothelial cells (Gentile et al., 1991) and chicken erythrocytes (Weraarchakul-Boonmark 

et al., 1992) indicated that TG2 is highly conserved between species.  It is a monomer 

protein consisting of 685-691 amino acids with a molecular weight around 77-85kDa.  

Comparing mouse, guinea pig and human TG2, there is approximately 80% homology 

between these amino acid sequences with 49 of the 51 residues in the active site region 

identical (Gentile et al., 1991).  The expression of human tTG gene (TGM2) was thought to 

be controlled by various activators.  As illustrated in Fig.1.4, there are 4 identified Sp1 

binding sites within TG2 and several activator regulating sites including: retinoic acid 

response elements (RRE-1 and RRE-2), glucocorticoid response element, nuclear factor кB 

response element, interleukin-6 response element and tumor growth factor-β1 response 

element.  Retinoic acid (RA) is one of the most studied activators of TG2.  These retinoid 

response elements are located around 1.7 kb upstream of the transcription start site (Fig. 

5, Nagy et al., 1996).  This activation is a tripartite response: first, ligand activates either 

retinoic acid receptors (RAR)/ retinoid X receptor (RXR) heterodimers or RXR/RXR 

homodimers. And then RRE, through three hexanucleotide half-sites (two canonical and 

one non-canonical), binds to RAR/RXR heterodimers or RXR/RXR homodimers.  Finally, the 

complex binds to the Sp1 binding site which is possibly through other co-activators. 
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Figure 1.4 Schematic illustration of the tissue transglutaminase promoter (adapted from Gundemir et al., 2012).  TGM2 expression is regulated by mainly retinoic acid, inflammation 

factors and stress-related factors.  Retinoic acid response elements (RRE-1, -1731 and RRE-2, -1720), glucocorticoid response element (GRE, -1399), nuclear factor кB response 

element (NF-кB, -1338), interleukin-6 response element (IL-6, -1190), tumor growth factor-β1 (TGF-β1, -900), activator protein-2 (AP-2, -634), hypoxia response element (HRE, -367), 

activator protein-1 (AP-1, -183), CAAT box (-96), GC box (Sp1 binding motifs, -54, -43, +59, +65), TATA box (29), nuclear factor-1 (NF-1, +4, +12), retinoid X receptor (RXR) and retinoic 

acid receptors (RAR). 

 

Figure 1.5 Putative model of tTG and of its promoter (adapted from Griffin et al., 2002).  This model demonstrates the interaction among retinoic acid response elements (RRE-1 and 

RRE-2), retinoid X receptor (RXR)/ retinoic acid receptors (RAR) and specificity protein 1 (Sp-1) binding site upon RA induction. 
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1.1.5 Involvement of TG2 in cell adhesion/ signalling 

The biological role of TG2 is highly related to the location of TG2.  The majority of cellular 

TG2 is predominantly distributed in the cytosol (Bruce and Peters, 1983) and it is also 

found on the plasma membrane (Im and Graham, 1990, Iismaa et al., 2000, Begg et al., 

2006), mitochondria (Piacentini et al., 2002, Rodolfo et al., 2004) and nucleus (Bruce and 

Peters, 1983, Singh et al., 1995, Lesort et al., 1998).  There are also accumulating results 

which show the presence of TG2 and crosslinking activity in extracellular matrix (ECM) 

(Zemskov et al., 2006). Generally, endothelial cells, fibroblasts and smooth muscle cells 

express constitutive levels of TG2; however, TG2 is often considered as a stress-related 

protein as its expression undergoes dramatic change upon stress or injury. 

It has been well studied that TG2 can promote cell-ECM adhesion, cell migration and 

organisation of extracellular matrix protein through two different pathways: syndecan-4–

TG2 complexes and Integrin–TG2 interaction (reviewed by Belkin, 2011).  TG2 was found 

to associate with a membrane protein, heparan sulfate proteoglycan (HSPG) syndecan-4, 

to promote cell-ECM adhesion in an RGD-ligand independent manner (Telci et al., 2008).  

This adhesion pathway was proposed to be critical for cell survival during tissue injury 

and/or remodelling since TG2/fibronectin (FN)/syndecan-4 complexes activated PKCα 

leading to activation of β1 integrin even when the integrins were blocked by RGD peptide.  

The formation of FN/TG2/syndecan-4 complexes could also activate another HSPG family 

protein, syndecan-2, through PKCα (Wang et al., 2010).  Besides functioning as a scaffold 

protein, this complex could also mediate fibronectin fibril formation, which was 

independent of its transamidating activity and occurred in the presence of cell adhesion 

inhibitors (RGD peptides). 
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TG2 was also found to non-covalently interact with β1, β3 and β5 integrin subunits.  Also, 

the binding sites for TG2 and integrin did not overlap on fibronectin protein.  Therefore, 

the affinities of TG2 with these two proteins on the cell surface could significantly enhance 

the interaction of cells with fibronectin and further promote cells adhesion and ECM-

triggered signalling (Akimov et al., 2000, Akimov and Belkin, 2001a, Zemskov et al., 2006).  

Studies also demonstrated that cell surface TG2 could induce integrin clustering in the 

absence of integrin-ligand interactions (Janiak et al., 2006).  These TG2/ integrins 

complexes were found to down-regulate the Src-p190RhoGAP regulatory pathway thus 

amplifying the activation levels of RhoA GTPase and its downstream signalling target, 

ROCK.  Overall, the association of TG2 with cell membrane integrins and extracellular 

matrix protein could be considered as a general amplifier of outside-in adhesion signalling. 

1.1.6 Involvement of TG2 in wound healing 

The involvement TG2 in wound healing has been well described and summarised recently 

(reviewed by Verderio et al., 2005, Telci and Griffin, 2006a).  As illustrated in Fig. 1.6, TG2 

participates in different phases of wound healing process via transamidation-dependent 

and independent mechanisms.  Secretion of TG2 into ECM was observed soon after either 

chemical or mechanical injury of fibroblasts and the released TG2 was found co-localised 

with extracellular matrix proteins (Upchurch et al., 1991).  The TG2 crosslinking activity 

was detected in all layers of skin as demonstrated by a wounded rat dermal skin model 

(Bowness et al., 1988).  Indeed, upregulation of TG2 expression and activity in 

erythrocytes and vascular endothelial cells within wound areas were suggested to support 

and amplify FXIIIa-mediated blood clot formation (Murthy et al., 1991, Barsigian et al., 

1991a, Auld et al., 2001). 
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It has been postulated that TG2-promoted cell adhesion was especially important in the 

wound healing process where TG2/FN complexes could interact with cell membrane 

syndecan receptors and enhance cell adhesion and survival when cells underwent anoikis 

(Telci et al., 2008, Wang et al., 2010, Wang et al., 2011).  In addition, increase in TG2 

mRNA expression was also related to several collagen producing phenotypes at matrix 

remodelling stages (Schnabel et al., 2004, Klingberg et al., 2012, Walter et al., 2005, Ikee et 

al., 2007). It has been also postulated that TG2-promoted cell adhesion has the ability to 

facilitate and to prevent apoptosis of cells (reviewed by Fésüs and Szondy, 2005).  These 

two opposite activities may occur distinctly depending on different cell types, the kind of 

stimuli, the intracellular localization of the enzyme and the type of activity of TG2.  

However, failure of myofibroblasts to undergo apoptosis has been related to abnormal 

scar tissue formation at the end of wound healing (Sayah et al., 1999, Aarabi et al., 2007a, 

Aarabi et al., 2007b).  Therefore, the balance between TG2 pro-apoptotic and anti-

apoptotic abilities may be critical for normal wound healing process or abnormal scar 

tissue formation. 



Page | 33 

 

Figure 1.6 Roles of TG2 in the wound healing process (adapted from Telci and Griffin, 2006a).  Proposed 

roles of TG2 in different phases of wound healing were illustrated.  It was believed that TG2 could stabilise 

extracellular matrix, promote cell survival and participate in matrix remodelling during wound closure.  pFN, 

plasma fibronectin; cFN, cellular fibronectin; PAIs, plasminogen activator inhibitors; sPLA2, secretory 

phospholipase A2 enzyme; TGF-beta1, transforming growth factor beta 1; MMP, matrix metalloproteinase; 

TIMP, tissue inhibitor of matrix metalloproteinase; RGD, peptide fragments containing Arg-Gly-Asp 

recognition sequence for integrins; HSPG, heparan sulfate proteoglycans; FAK, focal adhesion kinase.  

  



Page | 34 

1.1.7 Involvement of TG2 in pathological conditions 

Cancer 

The involvement of TG2 in cancer progression is complicated and seems to be cell type-

dependent.  Nevertheless, intracellular TG2 has been suggested to have both pro- and 

anti-apoptotic ability depended on its localisations and activity state (Milakovic et al., 

2004).  As reviewed by Milakovic and colleagues, once intracellular TG2 was activated by 

stress or trauma-induced intracellular calcium homeostasis, it could perform cross-linking 

of cellular proteins and result in apoptotic death.  However, on the other hand, studies 

have indicated that cytosolic TG2 showed an anti-apoptotic effect via activation of the NF-

κB pathway in pancreatic cancer cells and neuroblastoma cells (Mann et al., 2006, 

Condello et al., 2008).  The increase in TG2 expression has also been related to increased 

drug resistance and poor patient survival rate in specific cancers including pancreatic 

cancer (Verma and Mehta, 2007, Verma et al., 2006), breast cancer (Mangala et al., 2006, 

Mehta et al., 2004), ovarian (Satpathy et al., 2007, Hwang et al., 2008), melanoma (Fok et 

al., 2006) and lung (Park et al., 2010b).  It was also demonstrated by Gundemir and 

Johnson (2009) that translocation of TG2 into the nucleus had a protective effect against 

apoptosis.  Even though there are many conflicting results concerning TG2 expression in 

cancer cells, interestingly, many studies have indicated down regulation of TG2 expression 

in primary tumours and increased TG2 expression as a key factor for secondary tumours or 

chemoresistant cancer cells (Mehta et al., 2004, Herman et al., 2006, Verma and Mehta, 

2007, Cao et al., 2008, Mehta et al., 2010). 

Extracellular TG2, on the other hand, was proposed to be involved in tumour cell survival 

and metastasis.  It has been already demonstrated that extracellular TG2 can promote cell 

growth, survival and migration in normal cells and these mechanisms were believed also 
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operating in cancer cells (reviewed by Mehta et al., 2010).  It was shown in T lymphocytes 

that TG2 was important for T cell transendothelial migration (Mohan et al., 2003).  Also, 

the increased expression of cell surface TG2 in TGF-β treated retinal pigment epithelial 

(RPE) cells was linked to enhancement of cell adhesion and migration (Priglinger et al., 

2004).  In fact, inhibition of endogenous TG2 using small interfering RNA (siRNA) resulted 

in the reversal of drug resistance and the invasive phenotype, whereas overexpression of 

TG2 improved cancer cell invasion and attachment to fibronectin (reviewed by Collighan 

and Griffin, 2009).  Overall, these data implied that the precise role and function of TG2 in 

cancer cell biology may be highly dependent on the cell type, stage of cancer cells and the 

localisation of the TG2.   

Fibrosis and scarring 

TG2 has been long related to abnormal wound healing processes which involves chronic 

inflammatory response and excessive matrix deposition.  Excess ECM crosslinking by TG2 

has been established in several fibrotic disease models including pulmonary (Griffin et al., 

1979, Richards et al., 1991), renal fibrosis (Johnson et al., 1997, Johnson et al., 1999, 

Johnson et al., 2007) and liver fibrosis (Skill et al., 2001, Grenard et al., 2001).  In 

development of tissue fibrosis, chronic inflammation and constant activation of TGF-β 

signalling were observed.  TG2 was related to this chronic stress by having a role in storing 

a large pool of latent TGF-β1 binding protein-1 (LTBP-1) in the ECM via crosslinking.  

Crosslinking ECM also stabilised ECM proteins and rendered the extracellular matrix 

resistant to degradation.  As seen in a recent study, TG2 knockout mice were protected 

from the development of fibrotic lesions in obstructive nephropathy as a result of 

decreasing macrophage and myofibroblast infiltration and TGF-β related ECM over-

expression (Shweke et al., 2008b).  In addition, using a membrane permeable TG inhibitor, 
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R283 (1,3-dimethyl-2[(oxopropyl)thio]-imidazolium), and a membrane-impermeable TG 

inhibitor, R281 (N-benzyloxycarbonyl-l-phenylalanyl-6-dimethylsulphonium-5-oxo-l-

norleucine) both caused a reduction in glomerular and interstitial scarring in a rat subtotal 

nephrectomy model of chronic renal fibrosis (Johnson et al., 2007).  As briefly mentioned 

above, the abnormal hypertrophic scarring, which was characterised by prolonged action 

of myofibroblasts and excessive collagen deposition, also involved TG2 activation (Linge et 

al., 2005).  Using TG2 crosslinking activity inhibitors, therefore, as a potential treatment 

for preventing fibrosis and scar formation was evaluated by several groups and a certain 

level of success was reported.  Putrescine (Fibrostat), a general TGs inhibitor, was shown 

to reduce hypertrophic scar formation in an early stage of clinical trial (Dolynchuk et al., 

1996). 

Vascular calcification 

Vascular smooth muscle cells (VSMCs) have been shown to lose their contractile 

phenotype and switch to a synthetic phenotype in culture (VanBavel and Bakker, 2008) 

and during vascular injury and repair.  Yet, abnormal vascular remodelling may result in 

many diseases including hypertension and vascular calcification.  Atherosclerosis and aging 

are common factors for developing calcification in the arterial wall.  Although the 

mechanism of vascular calcification is a subject of ongoing work, induction of an 

osteochondrogenic phenotype in the VSMCs is generally observed in calcified vasculature.  

In vitro, there are several factors known to induce the osteochondrogenic phenotype 

which are bone morphogenetic protein-2 (BMP-2) (Wang et al., 1993, Roark and Greer, 

1994, Rickard et al., 1994), a member of the transforming growth factor-β superfamily, 

and inorganic phosphate (Pi) (Beck, 2003, Rickard et al., 1994, Beck Jr et al., 2003).  Till 

very recently, the role of TG2 in vascular stiffness was first pointed out by Johnson et al in 

2008 .  In their research, the involvement of TG2 in calcification process was demonstrated 
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that TG2 -/- VSMCs failed to develop an osteochondrogenic phenotype following high Pi 

induction.  They further showed that extrinsic wild type TG2, FXIIIa and GTP-binding site 

mutant TG2 (K173L) but not catalytic site mutant TG2 (C277S) could restore the 

calcification process in knock out cells.  The authors finally concluded that TG2 and its 

activity could negatively affect remodelling in artery wall.  Another study of apolipoprotein 

E (apoE)/ TG2 double knockout mouse model in atherosclerosis suggested that TG2 did 

not influence plaque composition or calcification (Williams et al., 2010); however, the 

researchers also indicated that one or more members of the transglutaminase family may 

have compensated for the deficiency in TG2 expression. 

Transamidating activity may be important for TG2-induced calcification, however, 

Faverman and colleagues (Faverman et al., 2008) proposed the presence of 

another TG2 transamidating independent pathway in developing calcified matrix.  

In their study, activation of β-catenin pathway was observed following interaction 

between extracellular TG2 and low density lipoprotein related-protein 5 (LRP5) 

membrane receptors in VSMCs.  There is growing evidence that TG2 may promote 

vascular calcification by activating the β-catenin signalling pathway.  A study done 

by Beazley et al. (2012) further confirmed the importance of TG2/β-catenin axis in 

vascular calcification.  Even though the later study suggested that TG2 activity was 

necessary for preventing warfarin-regulated calcification.  Overall, these results 

identified a crucial role of TG2 in vascular stiffness and targeting TG2 or its 

downstream proteins could develop a novel therapeutic for the prevention of 

vascular calcification. 
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1.2 Factor XIIIa subunit (FXIIIa) 

FXIIIa protein is one of the most studied members of the TGs and its physiological role in 

blood coagulation cascade has been firmly established.  FXIII is expressed by a wide variety 

of cell types including platelets, monocytes, their bone marrow precursors, monocyte-

derived macrophages, dendritic cells, chondrocytes, osteoblasts, and osteocytes.  The 

166kDa cellular Factor XIIIA (cFXIIIa) is a homodimer of two A-subunits; each of which 

contain 730 amino acid residues.  In plasma (plasma FXIII, pFXIII), FXIII is usually presented 

in a 320kDa tetramer (A2B2) composing of two non-covalently associated catalytic A 

subunits (A2) and two non-catalytic B subunits (B2) (Schwartz et al., 1973).  FXIII protein is 

usually in a latent form and is activated by either enzymatic cleavage of each A subunit at 

the Arg37-Gly38 peptide bond by thrombin or at very high, unphysiological Ca2+ 

concentrations (> 50mM). 

In Fig.1.7, possible activation forms of FXIIIa are summarised.  In physiological conditions, 

FXIII is activated by the concerted action of thrombin and Ca2+.  Thrombin cleaves each A 

subunit 37 amino acid residues from the N-terminus although the enzyme still remains 

inactive without the presence of Ca2+.  When Ca2+ is available at plasma concentrations, 

the B subunits then dissociate from the A subunits and the active site cysteine of the A 

subunits become accessible for the substrate or for alkylating agents.  However, a 

thrombin-independent pathway of zymogen activation was suggested under high calcium 

concentration environment that Ca2+ induces the dissociation of FXIIIb, also activates the 

FXIIIa dimer without involvement of proteolysis (Credo et al., 1978).  Similarly, the cFXIII 

can be activated via thrombin cleavage or via a non-proteolytic pathway.  In this case, a 

lower concentration (2mM with the presence of chaotropic agents) of Ca2+ is sufficient to 

bring about the active configuration of FXIIIa dimer (Polgar et al., 1990). 
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Figure 1.7 Illustration of the plasma and cellular factor XIII activation pathways (adapted from Muszbek et 

al., 2007).  White triangle indicates exposure of the active site cysteine.  Inactive proteolytically cleaved 

intermediate form is presented with a (').  Proteolitically cleaved active form is presented with a (*).  

Enzymatic form without cleavage by thrombin is presented with a (º)  

1.2.1 Structure and Substrate of FXIIIa 

The three dimensional structure of FXIIIa was first revealed by x-ray crystallography by Yee 

et al. in 1994 (Fig. 1.8).  Similar to TG2, FXIIIa consists of 4 domains including a β-sandwich 

domain (a.a. 38-184), the catalytic core (a.a. 185-515) and two C-terminal β-barrel 

domains (a.a. 516-628 and a.a. 629-731).  The three residues (Fig.1.9A): Cys314, His373 

and Asp 396 are recognised as the proteinase-like catalytic triad of FXIIIa (Pedersen et al., 

1994).  The calcium binding site (Fig 1.9B) has also been identified with the carboxylate 

group of Asp438, Glu485, and Glu490 side chains, the carbonyl O atom of Asn436, as well 

as the backbone carbonyl O atom of the Ala457 residue all involved in calcium binding (Fox 

et al., 1999). 
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Figure 1.8 Structure of human FXIIIa (DOI:10.2210/pdb1ggt/pdb).  The four main domains are (1) a β-

sandwich domain (2) the catalytic core C-terminal (3) β-barrel 1 and (4) β-barrel 2. 

 

Figure 1.9 (A) Catalytic site of FXIIIa and (B) calcium binding site of FXIIIa.  Picture is adapted from Muszbek 

et al., 2011.   

FXIIIa has a more restricted specificity for substrate compared to TG2.  In addition 

to 2 primary physiological substrates of FXIIIa, fibrin (Lorand et al., 1962) and α2- 
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plasmin inhibitor (Sakata and Aoki, 1980), another 27 proteins have been identified 

and documented in the TRANSDAB database (http://genomics.dote.hu/wiki).  

Compared to TG2 which has more than 150 listed substrates in the TRANSDAB 

database, most of the FXIIIa substrate are substrates for TG2 as well (Table 1.3). 

Table1. 3 Summary of substrates for FXIIIa (adapted from Muszbek et al., 2011. and the TRANSDAB 

database) 

Coagulation 

factors 

Fibrinolytic 

proteins 

ECM and 

Adhesion proteins 

Cytoskeletal 

proteins 

Fibrin(ogen) α 
chain 
Fibrin(ogen) γ 
chain 
Factor V 

α2- plasmin 
inhibitor 
Lipoprotein A 
Plasminogen 
Procarboxypep
tidase B/U 

Fibronectin 
Osteopontin 
Vitronectin 
Collagen 
Laminin 
Thrombospon-
din 
 

Actin 
Myosin 
Vinculin 

1.2.2 Functions of FXIIIa 

The transamidase activity of FXIIIa is important for its physiological role in the blood 

coagulation cascade.  It serves as a clot stabiliser at the final step of coagulation by 

forming γ-glutamyl-Є-lysyl-isopeptide bonds between fibrin molecules (Fig. 1.10).  The 

field of FXIIIa research has been extended in addition to its contribution to haemostasis for 

the past few decades.  The role of FXIII in the wound healing process, angiogenesis as well 

as its contribution in cartilage and bone development, inhibition of vascular permeability, 

cardioprotection and maintaining pregnancy are suggested by current studies (reviewed 

by Muszbek et al., 2011). 
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Figure 1.10 The blood coagulation cascade and proteins involved (adapted from 

http://blogs.scientificamerican.com/the-curious-wavefunction/2012/07/27/gene-duplication-frees-up-

enzymes-for-molecular-promiscuity/) 

According to clinical data, FXIII-deficient patients suffer not only from severe bleeding 

complications but also poor wound healing and abnormal scar formation (Board et al., 

1993, Anwar et al., 1999, Ivaskevicius et al., 2007).  The relation of FXIIIa deficiency and 

impaired wound healing was also demonstrated in FXIII-deficient mice (Inbal et al., 2005).  

The impaired wound healing process observed in FXIIIa deficiency models could be due to 

low proliferation of fibroblasts and failure of collagen fibre production by fibroblasts (Beck 

et al., 1961).  And the impairment of cell function could be restored using 

supplementation of FXIIIa and FXIIIa crosslinked matrix (Ueyama and Urayama, 1978).  

Besides proliferation, the migration of fibroblasts was also enhanced on FXIIIa treated 

fibrin gel (Brown et al., 1993) and fibrin clot (Grinnell et al., 1980).  A recent study 

suggested that the effect of FXIIIa on fibroblasts involved binding of FXIIIa to integrin αvβ3 
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which leads to cJun upregulation and TSP-1 downregulation (Dardik et al., 2007).  Another 

possible cell to be affected by FXIIIa deficiency is the monocyte/macrophage.  A similar 

effect was found in monocytes, that FXIIIa enhanced cell proliferation and migration and 

inhibited cell apoptosis.  This effect was found to be abolished by the addition of antibody 

against integrin αvβ3 and the activity of FXIIIa was essential for this effect on monocytes 

(Dardik et al., 2007).  However, the effect of FXIIIa deficiency on monocyte/macrophage 

migration still remains questionable since contradictory evidence are reported (Akimov 

and Belkin, 2001b) and requires further study. 

FXIIIa is also a proangiogenic factor and this function is believed to take part in the wound 

healing process.  The effect of FXIIIa in angiogenesis has been well established in several in 

vitro and in vivo models.  FXIIIa could induce a dose-dependent effect on tube formation 

of human umbilical endothelial cells (Dardik et al., 2003).  The same study also showed 

that injection of FXIIIa into cornea sub-epithelium resulted in neovascularisation of cornea.  

Also, the formation of new blood vessels into implants was greatly reduced in FXIIIa-

deficient mice (Dardik et al., 2006).  The mechanism behind the proangiogenesis mediated 

by FXIIIa was found to be crosslinking activity dependent (Dardik et al., 2003).  This effect 

also involved its binding to integrin αvβ3 which enhanced the formation of vascular 

endothelial growth factor receptor-2 (VEGFR-2)/β3 complex and further activating VEGFR-

2 signalling (Dardik et al., 2005). 
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Involvement of TG2 and FXIIIa in physiological bone development 

TGs have long been implicated in the promotion of chondrocyte and osteoblast 

differentiation and matrix mineralization.  It is generally believed that one or more 

members of the TG family are involved in these processes and these effects can be 

mediated by protein cross-linking activity of TGases, by GTPase activity of TG2 or via non-

catalytic signalling effects (reviewed in Nurminskaya and Kaartinen, 2006).  The expression 

patterns of TG2 and FXIIIa in early limb development has been demonstrated in animal 

models.  The immunohistochemistry of embryonic tibia revealed that, during bony collar 

formation, TG2 and FXIIIa were both present throughout the areas of chondrocyte 

condensation with higher levels of both proteins in the hypertrophic zone and epiphyseal 

regions of the long bone, and a slightly lower expression in the zone of chondrocyte 

proliferation.  Later in development, the TGase expression was more restricted, and 

towards the end of embryonic development, the expressions of TG2 and FXIIIa were only 

in the superficial layers of cells (Pechak et al., 1986, Nurminskaya and Linsenmayer, 1996).  

These results suggested an early activation of TG2 and FXIIIa in the mesenchymal 

condensation phase.  And in later development, the expression of these proteins was 

restricted to proliferative chondroblasts close to the epiphyses, and to the pre-

hypertrophic and differentiated hypertrophic chondrocytes.  

Study of TGs expression in the perichondrium/ periosteum area also gave a clue of TGs 

role in osteoblast differentiation (Fig. 1.11).  There was an absence of TGs expression in 

perichondrium (cartilage part) during the mesenchymal condensation phase; however, the 

expression of TGs coincided with the ossification occurring in periosteum (mineralised 

part).  It suggested that TGs were expressed in cells undergoing differentiation into 

osteoblasts.  Therefore, initiation of TGs synthesis by osteoblasts correlated with 

deposition of mineral matrix (Pechak et al., 1986, Nurminskaya et al., 2003). 
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Intriguingly, according to the expression of TGs in long bone development which was 

located at the borderline of differentiated hypertrophic chondrocytes and differentiated 

osteoblasts, Nurminskaya et al. (2003) hypothesised that chondrocyte-derived 

transglutaminase could mediate maturation of preosteoblasts in periosteal bone (refer to 

Fig 1.14 for bone structure).  In fact, they showed that co-culture of pre-osteoblasts with 

hypertrophic chondrocytes significantly increased the mineralisation area and shortened 

the time course for mineralisation while only limited mineralised matrix was found in pre-

osteoblast monoculture.  They further demonstrated that addition of exogenous guinea 

pig TG2 to pre-osteoblast culture could increase mineralisation by 3 to 5- fold over the 

untreated cultures.  Exogenous TG2 also increased gene expressions of bone sialoprotein 

(BSP) and osteocalcin (OCN), molecular markers that indicated osteoblast maturation. 

Many studies have demonstrated that transamidating activity of TG2 was important for its 

role in bone development and TG2 induced mineralisation.  Blocking TG2 with general TGs 

inhibitors, cystamine, resulted in impaired mineralisation in MC3T3-E1 (subclone 14) pre-

osteoblast culture (Al-Jallad et al., 2006).  Later on, the same group emphasised that 

transamidating activity of FXIIIa, but not TG2, was important for pre-osteoblast 

mineralisation (Al-Jallad et al., 2009).  Meanwhile, other research groups proposed 

Figure 1.11 Expression of FXIIIa (and TG2, same pattern) analyzed by immunohistochemistry 

(adapted from Nurminskaya and Kaartinen, 2006).  (A) chicken wing, (B ) chicken tibia, (C) mouse

tibia.  Pictures are taken under 10x magnification objective.  Boxed areas are shown at higher 

magnification in the lower panels.  Perichondrium/periosteum is indicated by arrow points, zone

of hypertrophy is indicated with a H and epiphysis is indicate with a E.  
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different roles that TG2 may play in mineralisation, such as via its ATPase activity (Nakano 

et al., 2007, Nakano et al., 2010) or via activating LRP/ β-catenin axis (Faverman et al., 

2008, Beazley et al., 2012). 

1.3.1 Matrix Maturation Hypothesis 

TGs are well known as matrix stabilisers and there are several bone matrix proteins, for 

example collagen I, fibronectin, OPN and BSP that have been identified as TGs substrates 

(Mosher and Schad, 1979, Kaartinen et al., 1997, Kaartinen et al., 1999, Forsprecher et al., 

2011).  TGs expression level, especially TG2, has been related to secretion and deposition 

of ECM proteins.  Also, crosslinking of ECM proteins has been demonstrated to improve 

cell adhesion, proliferation and differentiation in many studies. 

Type I collagen comprises 90% of the organic bone matrix and is one of the well studied TG 

substrates in mineralised tissues.  Up regulation of TG2 has been related to increase of 

collagen I deposition in many pathologically fibrotic conditions (Jones et al., 2005, Shweke 

et al., 2008a, Telci et al., 2009).  On the other hand, additional FXIIIa potentially lowers 

collagen synthesis in a fibroblast model (Paye et al., 1990, Paye et al., 1989).  However, the 

data remain controversial since lower collagen I expression was found in FXIII-deficient 

mice that underwent a myocardial repair process (Nahrendorf et al., 2006).  It has also 

been suggested that membrane FXIIIa is crucial for collagen deposition and its expression 

was regulated by extracellular type I collagen as part of the ECM-feedback loop (Al-Jallad 

et al., 2011, Piercy-Kotb et al., 2011).  For extracellular collagen, polymerisation could 

occur via intramolecular crosslinking (Chau et al., 2005) or between collagen and other 

non-collagenous bone matrix proteins (Mosher and Schad, 1979, Mosher, 1984, 

Aeschlimann et al., 1995, Kaartinen et al., 2005).  TGs were suggested to play a role in fibre 

organisation via their crosslinking activity.  Indeed, a well organised fibrillar collagen 
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network is the foundation of mineralisation and evidence has shown that TGs could 

promote collagen synthesis and assembly and thus promote cell differentiation (Al-Jallad 

et al., 2006). 

Fibronectin is another important ECM molecule produced by osteoblasts.  It is strongly 

suggested that fibronectin could be involved in the early stage of osteogenesis.  Weiss and 

Reddi (1981) showed the appearance of fibronectin and fibrillar networks of fibronectin 

during mesenchymal precursor cell proliferation and osteoblast maturation.  The mRNA 

and protein levels of fibronectin were found highly increased in the early stage of bone 

development with a subsequent increase in type I collagen expression (Stein et al., 1990, 

Cowles et al., 1998).  In fact, increased TG activity has been linked to an increase in 

extracellular matrix proteins under both physiological and pathological conditions.  It has 

been demonstrated that TG2 over-expression in Swiss fibroblasts led to higher fibronectin 

deposition and synthesis (Telci et al., 2009).  Furthermore, the assembly of fibronectin was 

colocalised with TG2 expression and could be reduced by inhibition of transamidase 

activity in glioblastoma cells (Yuan et al., 2006).  Fibronectin and collagen I were also found 

colocalised with crosslinking activity on the osteoblast cell surface (Al-Jallad et al., 2006).  

It has been demonstrated that crosslinking of fibronectin matrix could fundamentally 

affect collagen deposition (McDonald et al., 1982, Speranza et al., 1987, Dzamba et al., 

1993, Kadler et al., 2008, Shi et al., 2010).  Taken together, TGs could participate in 

fibronectin fibril maturation and thus contribute to collagen matrix formation and 

osteoblast mineralisation. 

In most mineralized tissues, certain non-collagenous proteins, many of which belong to 

the SIBLING (small Integrin binding ligand N-linked Glycoprotein) protein family, were 

found also structured at the macromolecular scale via crosslinking.  OPN and BSP are two 

proteins belong to SIBLING family and their presence, both monomeric and oligomeric 
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forms, in bone have been demonstrated.  OPN has been identified as a substrate of TG2 by 

Prince et al. (1991) where the polymerization of OPN occurred in connective tissues.  TGs 

mediated crosslinking of OPN to fibronectin was suggested (Beninati et al., 1994) and 

altering the conformation of OPN via crosslinking was also reported to increase its binding 

to collagen (Kaartinen et al., 1999).  Furthermore, the co-localisation of oligomerised OPN, 

TG2 and integrin αvβ3 on the cell surface suggested that high molecular weight OPN may 

function as a cell attachment molecule (Wozniak et al., 2000).  Although very little is 

known about the biological role of OPN and BSP oligomerisation, it has been shown that 

surface immobilised and oligomerised OPN and BSP by TGs improved osteoblast adhesion 

(Forsprecher et al., 2011). 

Overall, the putative role of TG2 in osteoblast mineralisation involves promoting matrix 

protein secretion, deposition and maturation via its crosslinking- mediated modification of 

ECM which further enhances cell attachment. 

1.3.2 Putative transamidating independent pathway 

Cell-ECM Adhesion and Signalling 

Currently, there are several models of TG2-containing adhesive/signalling pathways which 

have been proposed.  Among all, involvement of TG2 in RGD dependent integrin signalling 

is one of the well studied pathways.  It was first indicated by Akimov et al. (2000) that TG2 

non-covalently interacted with the β1 and β3 integrins on the cell surface and regulated 

the interaction between Fn and integrin.  In this case, TG2 was proposed as an integrin-

associated coreceptor to improve cell adhesion and spreading.  Later on, this interaction 

between extracellular TG2 and integrins was implied to play a role in Fn deposition 
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(Akimov and Belkin, 2001a, Zemskov et al., 2006), integrin clustering on cell surface (Janiak 

et al., 2006) and cell migration (Akimov and Belkin, 2001b). 

Another important TG2-containing adhesion pathway was also reported by Telci et al. 

(2008) that TG-FN binding to syndecan-4 could associate with integrin β1 signalling 

through PKCα and trigger an RGD-independent cell adhesion process.  These complexes 

were also found to trigger another downstream signal effector, syndecan-2, which 

modulated the cytoskeletal organization through the ROCK pathway to maintain the RGD-

independent adhesion of fibroblasts (Wang et al., 2010) and osteoblasts (Wang et al., 

2011).  Overall, increasing Fn interaction with cell surface integrins and syndecans by TG2 

and further maturation of the cytoskeleton structure has been shown to improve 

fibronectin deposition as well as fibronectin fibril formation, cell differentiation  and the 

promineralising effect of biomaterials (Geiger et al., 2001, García and Reyes, 2005, Chau et 

al., 2005, Forsprecher et al., 2009, Vagaska et al., 2010). 

ATPase activity 

TG2 was also proposed to act as ATPase to regulate the level of local phosphate (Pi) 

concentration within mineral tissue.  Local phosphate (Pi)/ pyrophosphate (PPi) ratio plays 

an active role in regulation of physiological and pathological mineralization (reviewed by 

Sapir-Koren and Livshits, 2011).  PPi is a common by-product of cellular metabolic 

reactions and is considered as an inhibitory molecule for hydroxyapatite (HA) formation.  

Hydrolysis of PPi into 2 Pi molecules takes place in the ECM by the tissue-nonspecific 

alkaline phosphatase (TNSALP) enzyme which is located on the osteoblast cell surface 

(Murshed et al., 2005, Hessle et al., 2002).  TNSALP promoted bone mineralization by 

increasing Pi level, meanwhile, maintaining proper low extracellular PPi concentrations 

and allowing normal bone mineralization.  However, other phosphatases, including plasma 
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membrane Ca2+ transport ATPase 1 (PMCA1) (Stains et al., 2002, Francis et al., 2002, 

Nakano et al., 2004) and ATPase activity of TG2 (Nakano et al., 2007), might also 

contribute to mineralisation by locally raising Pi levels.  Studies further suggested that 

cleavage of guinea pig TG2 by membrane type I- matrix metalloproteinase (MTI-MMP, also 

known as MMP-14) in vitro resulted in approximately a 3-fold increase in the ATPase 

activity of TG2.  The cleaved 56-kDa fragment of TG2 was also demonstrated to have ATP 

binding ability.  Nakano et al. (2010) proposed a hypothesis that MT1-MMP functioned as 

a modulator for extracellular TG2 as part of a regulatory mechanism which could activate 

the pro-mineralisation function of TG2. 

Exogenous TG2 signalling Pathway 

Studies in various cell cultures revealed that addition of exogenous TG2 promoted pre-

osteoblast differentiation (Nurminskaya et al., 2003), chondrocyte maturation to 

hypertrophy (Johnson and Terkeltaub, 2005) and calcification of vascular smooth muscle 

cells  (VSMCs) (Faverman et al., 2008).  These studies demonstrated a correlation between 

extracellular TG2 and the mineralising process in a variety of cell lines.  The following 

observations were also suggested by these researches:  

First, exogenous TG2 promoted pre-osteoblast differentiation and matrix mineralisation in 

a non-crosslinking activity dependent mechanism.  This hypothesis is supported by the 

finding that there are no changes in the pattern of protein crosslinking after treatment of  

pre-osteoblasts with chondrocyte-derived TG2 (Nurminskaya et al., 2003).  Chondrocytic 

cells transfected with mutant inactive TG still reserved the ability to develop hypertrophic 

differentiation.  Meanwhile, extracellular TG2 induced hypertrophy was not affected by 

using GTP-bound, transamidase inactive TG2 (Johnson and Terkeltaub, 2005). 
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Secondly, GTP-bound TG2 acted as a molecular switch for hypertrophic differentiation and 

calcification of the chondrocytes in which its transamidase and GTPase activities were not 

required.  As suggested by (Johnson and Terkeltaub, 2005), this could be due to the 

nucleotide-bound form of TG2 being in an ideal conformation for triggering type X 

collagen expression and calcification of chondrocytes in response to specific agonists.  The 

importance of protein conformation in TG2-induced mineralisation also provides critical 

information that the results should be evaluated carefully when crosslinking inhibitors are 

used.  Since transamidating activity inhibitors are reported to change the conformation of 

TG2 (reviewed by Pinkas et al., 2007). 

Finally, direct binding of TG2 to cell surface protein in pre-osteoblasts, hypertrophic 

chondrocyte and VSMCs without the formation of cross-links in these proteins has been 

demonstrated (reviewed by Nurminskaya and Kaartinen, 2006).  More recently, a potential 

cell surface receptor superfamily was identified to interact with TG2 directly.  TG2 was first 

found to interact with low density lipoprotein receptor related-protein (LRP) 1, one of the 

major endocytic receptors functioning in lipoprotein metabolism (Zemskov et al., 2007).  

This interaction was suggested to play a role in internalisation and degradation of cell 

surface TG2 and further regulate cell adhesion and signalling.  Later on, another member 

of this superfamily, LRP5, was also reported to interact with TG2 and was believed to be 

involved in pathological calcification of vascular smooth muscle.  A clear example has been 

demonstrated in VSMCs that binding of exogenous TG2 to cell membrane LRP5 was 

revealed using immunoprecipitation (Faverman et al., 2008).  LRP5 has been implied in the 

bone formation process for more than a decade since the discovery that loss-of-function 

mutants in LRP5 presented a severe osteoporosis phenotype (Gong et al., 2001).  

Conversely, studies of gain-of-function mutant in LRP5 showed a high bone mass 

phenotype (Boyden et al., 2002, Little et al., 2002a).  Current researches widely agreed 
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that β-catenin signalling, a major component of the canonical Wnt pathway (Fig 1.12), via 

the cell-surface molecule LRP5/LRP6 could directly regulate osteoblast maturation or 

function (reviewed by Ling et al., 2009).  Alternatively, a parallel pathway mediated by 

LRP5 was demonstrated  where increased gut-derived serotonin synthesis was found in 

LRP5-/- mice and specifically deleted LRP5 in duodenum but not osteoblasts resulted in 

low bone mass (Yadav et al., 2008).  It was proposed that the LRP5 functioned indirectly 

through its effects on serotonin synthesis in the duodenum and to regulate bone mass. 

Even though there is a great controversy on whether crosslinking activity is essential for 

the exogenous TG2 induced mineralisation (Beazley et al., 2012), the interaction between 

TG2 and cell membrane LRP5, as well as the downstream activation of β-catenin pathway 

might play a common role in calcified tissue. 

 
Figure 1.12 Scheme of Wnt signalling and its antagonists (adapted from Kawano and Kypta, 2003)(a) Binding 
of Wnt to Frizzled and coreceptors, LRP5/6, activates the canonical pathway.  It involves recruitment of Axin 
to LRP5/6 and subsequent degradation of Axin and the disruption of the link between β-catenin and 
Glycogen synthase kinase 3 beta (GSK-3β).  Intracellular β-catenin is stabilised due to free from 
phosphorylation.  (b) Presence of Wnt signalling antagonists, such as secreted Frizzled-related protein 
(sFRP), Wnt inhibitory factor-1 (WIF-1) and Cerberus (CER), block both the canonical and the noncanonical 
pathways.  Bone morphogenetic protein (BMP) and Nodal are two subsets of transforming growth factor-
beta (TGF-ββββ) superfamily. (c) Interaction among antagonist Dickkopf-1 (Dkk-1) and LRP5/6 and the co-
receptor Kremen 1/2 (Krm, green) triggers LRP5/6 endocytosis.  The canonical pathway is inactive due to 
absence of LRP5/6–Wnt–Frizzled complex.  β-catenin is phosphorylated by GSK-3β thereby undergoes 
degradation.  However, the noncanonical pathway remains active via interaction of Wnt with Fz without 
LRP5/6..  



Page | 53 

1.4 Expression of TGs in cornea tissue and ocular diseases 

Abundant TGs transamidase activity was first demonstrated by Raghunath et al. (1999) 

that they found TGs activity in all ocular tissues especially in ciliary body, zonular fibers, 

and blood vessel walls.  They also suggested TG2 as the predominant crosslinking enzyme 

in ocular tissue in comparison with TG1, TG3 and FXIIIa.  A later study by Barathi et al. 

(2011) clearly demonstrated that TG1 expression (Fig.1.13) had a remarkable 

preponderance for the epithelium while TG2 expression was barely found in epithelium 

but mainly in the corneal subepithelium (CS) and stroma (S).  On the other hand, TG3 and 

TG5 were localised in the entire corneal epithelial, stromal and endothelial layers.  

Although literatures have shown the involvement of TG in ocular wound healing process 

and many numerous ocular diseases, such as pterygium (Kim et al., 1998), dry eye 

(Toshino et al., 2005), cicatricial conjunctivitis (Nakamura et al., 2001)and glaucoma 

(Priglinger et al., 2006), only a few molecular pathways have been studied.  Therefore, the 

elucidation of molecular mechanisms underlying TGs-related ocular disease is needed. 
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Figure 1.13 (A) Structure of eye and cornea. Picture source:  http://www.lab.anhb.uwa.edu.au-

/mb140/corepages/eye/eye.htm (B) Localization of transglutaminases (TGs) in mouse eye as 

demonstrated by immunohistochemistry (adapted from Barathi et al., 2011).  The nuclear DAPI staining is 

shown in blue and the TGs staining is shown in green.  The epithelial layer is highlighted with white line 

and corneal subepithelium and stroma are indicated with CS and S respectively.   
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2. Biomaterial for Tissue Repair 

Since TG2 is widely expressed in a range of tissues and it is involved in several tissue 

developmental and wound healing processes, it is reasonable to assume that a TG2-based 

biomaterial would benefit from the different properties of TG2.  Here, the potential and 

advantage of using TG2 crosslinked biomaterial for soft and hard tissue repair are 

summarised. 

2.1 Tissue engineering 

The term “tissue engineering” is thought to have been first coined in 1988 at a National 

Science Foundation (NSF) workshop by Robert Nerem.  The concept was further extended 

and formalized in a review paper in Science (Langer and Vacanti, 1993) in which the 

authors gave a modern definition: “Tissue engineering is an interdisciplinary field that 

applies the principles of engineering and the life sciences toward the development of 

biological substitutes that restore, maintain or improve tissue function.”  This concept 

introduces a great promise and potential for producing engineered replacements as 

alternative therapies for human disease and injury.  Yet, decades of research since the 

field of tissue engineering was formalized, few successful approaches have been made as 

determined by current engineered constructs approved for clinical use. 

The main progress in this area is first understanding the cell-cell interaction, then selecting 

appropriate matrices based on cell-matrix interaction and finally supplying with extra 

biochemical signalling (growth factors).  Therefore, cell sources, biomaterials and growth 

factors are three fundamental elements in tissue engineering.  In addition, the importance 

of vascularisation of engineered tissues has drawn more attention recently especially in 

reconstructing bioengineered tissue on a larger and more complicated scale (Naderi et al., 
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2011).  Following this classical approach, a certain level of achievement has been made in 

basic research and in the clinic including skin, cartilage, bone, muscle, heart valves, blood 

vessels, esophagus, connective tissue, pancreas, liver, peripheral nerves and tracheal 

constructs (reviewed in Horch, 2006). 

Bioengineered bone substitutes are considered as one of the most studied and successful 

subjects in tissue engineering.  Currently, there is high demand for bone substitutes to 

repair and replace damaged and diseased tissue due to trauma, degenerative disease and 

cancer.  Also, due to the increasing aging population, substitutes to replace, restore, or 

regenerate bone have become a major clinical need in the fields of orthopaedic, spinal, 

dental, cranial, and maxillofacial surgery.  Even though bone implements are only second 

to transfused blood products as the most implanted materials, the availability and quality 

of bone substitutes still fall short of the current requirement.  Therefore, developing 

appropriate bone constructs for clinical use is important.  On the other hand, due to 

regeneration of complex tissues or organs, such as heart, muscle, kidney, liver, and lung, 

are still a distant milestone in tissue engineering, developing comparably “simple” tissue, 

such as cornea, is a more promising short term aim (Ruberti and Zieske, 2008).  Cornea is a 

thin and avascular tissue but with a highly organised matrix layer.  Again, the quality and 

quantity of artificial cornea graft is far behind the clinic demand (Aiken-O'Neill and 

Mannis, 2002, Thompson Jr et al., 2003).  Thus, it is beside the academic challenge but also 

clinical demand in developing a suitable replacement for cornea graft. 

In this thesis, evaluating TG2 crosslinked type I collagen as a biomaterial for both bone and 

cornea reconstruction is one of the aims.  The background and detail of the bone and 

cornea regeneration will be summarised respectively in following sections. 
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2.2 Bone tissue engineering 

According to statistics, the annual medication cost for fractures is $10 billion with over 1.2 

million cases in USA and 5% of overall cases showed delayed healing or non-union after 

surgery.  In fact, there are around 4 million operations involving bone grafting or bone 

substitutes performed around the world each year (reviewed in Brydone et al., 2010).  A 

growing number of joint replacements due to aging societies also highlights the 

requirement of bioengineered bone tissue.  During 2011/2012, there were about 180,000 

cases of primary hip and knee replacement procedures entered into the National Joint 

Registry (NJR) in the UK with around 8.7% of primary joint replacements undergoing 

revision surgery (NJR, 2011).  Therefore, the clinical need for continued advances in bone 

engineering is urgent.  The following sections aim to summarise the bone biology, current 

options available for bone grafting and recent developments in cell engineering. 

2.2.1 Bone biology 

Bones are rigid tissues which provide mechanical support for anchoring muscles, 

facilitating movement and protecting organs.  The detail of the bone structure is 

illustrated in Fig. 1.14.  According to the morphology, there are two forms of bone which 

are cortical (compact) bone and trabecular (cancellous or spongy) bone.  The cortical bone 

is a condensed layer, consisting of densely packed collagen fibrils in concentric lamellae, of 

all bone tissues with low porosity (5-30%).  It accounts for the mechanical property of the 

skeleton and contributes to 80% of the total bone mass of an adult.  The trabecular bone is 

composed of a porous latticework matrix and mainly functions as a reserve of minerals in 

body (Standring and Gray, 2008). Bone tissue contains several types of bone cells and 

bone extracellular matrix.  There are four different cell types in bone: osteoblasts, bone 

lining cells, osteocytes and osteoclasts 
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• Osteoblasts/ bone lining cells/ osteocytes 

Osteoblasts arise from osteoprogenitor cells which synthesise new bone matrix composing 

mainly type I collagen.  Flattened bone lining cells are thought to be quiescent osteoblasts 

which line nonremodeling endosteal bone surfaces.  It has been suggested that bone lining 

cells may regulate bone remodelling signals and they are important in the maintenance of 

mineral homeostasis (Miller et al., 1989).  Osteocytes are star shaped cells that originate 

from osteoblasts trapped inside the matrix they secret.  Osteocytes reside inside lacunae 

and network to each other, in a similar way to the nervous system, via long cytoplasmic 

extensions in tiny canals called canaliculi.  Although osteocytes have lower synthetic 

activity, research has shown that they are actively involved in turnover of bony matrix 

through various mechanosensory mechanisms. 

Mesenchymal stem cells (MSCs) are capable of differentiating into lineages of 

mesenchymal tissue including bone, cartilage, muscle, fat and fibrous connective tissue 

(Pittenger et al., 1999) and they have been isolated from adult peripheral blood, tooth 

pulp and bone marrow.  The canonical Wnt/β-catenin pathway is considered as one of the 

master modulators in differentiation of MSCs to osteoprogenitor cells (Logan and Nusse, 

2004).  In fact, high and low bone mass phenotypes have been associated with activation 

of LRP5, a co-receptor of Wnt protein receptor (Gong et al., 2001, Boyden et al., 2002, 

Little et al., 2002a, Little et al., 2002b).  Furthermore, multipotential myogenic cells give 

rise to osteoprogenitor by dedifferentiation under the right circumstances (Doherty et al., 

1998).  In this case, blood vessel pericytes may undergo dedifferentiation and develop 

other phenotypes such as osteoblasts, chondrocytes, adipocytes, and fibroblasts. 



Page | 59 

 
Figure 1.14 The histology of bone. (A) A human femur (Resource: The Internet Encyclopedia of Science http://www.daviddarling.info/encyclopedia/ETEmain.html) (B) Structure of the 

diaphysis in long bone (C) Enlarged aspect of Haversian systems in compact bone (D) Detail of spongy bone trabculae (Resource: Rutgers University online lecture 

http://www.rci.rutgers.edu/~uzwiak/AnatPhys/APFallLect8.html) 
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Osteoblast precursors go through morphology change, from spindle-like to large cuboidal 

shape, when differentiated into mature osteoblasts.  The mature, functioning osteoblasts 

are usually surrounding by alkaline phosphatase (ALP) positive osteoprogenitor cells in the 

bone remodelling nodules.  Stein et al. (1990) proposed that there are three major stages 

of osteoblast differentiation/ mineralisation which can be summarised in Figure 1.15. 

Highly proliferating osteoblastic cells produce abundant ECM protein including fibronectin 

and type I collagen at the early stage of differentiation.  The proliferation rate declines 

when the early mineralisation marker, ALP, appears and it accompanies the secretion of 

osteopontin and osteonectin.  An increase in osteocalcin expression and mineral 

deposition, composed of calcium and phosphate, can be observed at the onset of 

mineralisation while the ALP expression starts to decline. 

 
Figure 1.15 Three principle stages of osteoblast differentiation- a) proliferation, b) matrix maturation and c) 

mineralisation 

• Osteoclasts 

It is generally believed that osteoclasts are derived from mononuclear precursor cells of 

the monocyte-macrophage lineage in bone marrow (Nijweide et al., 1986).  Two cytokines, 

Receptor activator of nuclear factor κB ligand (RANKL) and macrophage colony-stimulating 

factor (M-CSF), have been identified as key regulators in osteoclast formation.  Both 

stromal cells and osteoblasts are required in osteoclastogenesis and this process is 
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regulated by membrane anchored and soluble RANKL and M-SCF which are secreted by 

stromal cells and osteoblasts (Teitelbaum and Ross, 2003).  RANKL signals through 

Receptor activator of nuclear factor κB (RANK) on osteoclast precursor cells and mediates 

osteoclast differentiation, activation and survival during normal bone modelling and 

remodelling processes and in a variety of pathologic conditions characterized by increased 

bone turnover.  This signalling can be antagonised by osteoprotegerin (OPG) which binds 

to RANKL and prevents binding of RANKL to RANK (Boyce and Xing, 2007).  M-CSF 

promotes survival, proliferation and differentiation of osteoclast precursors and regulates 

the cytoskeleton of cells upon bone resorption. 

Osteoclasts are the main cells known to resorb bone mineral during bone remodelling.  

The interaction between osteoclast and bone matrix relies on cell membrane integrins 

recognising bone matrix peptides.  The β1 integrin is the major anchored integrin 

expressed in osteoclasts which can bind to collagen, fibronectin and laminin.  On the other 

hand, matrix degradation is facilitated by an integrin αvβ3-mediated event that results in 

polarisation of the cell and secretion of resorptive molecules such as hydrochloric acid and 

acidic proteases (Ross and Teitelbaum, 2005). 

2.2.2 Bone development and healing 

Condensation is the initial phase in the development of mesenchymal tissues in which a 

previously dispersed population of cells gathers together to differentiate into a single 

cell/tissue type such as cartilage, bone, muscle, tendon, kidney, and lung (Hall and Miyake, 

2000).  In skeleton development, two ossification mechanisms, endochondral ossification 

and intramembranous ossification, occur after the process of MSCs condensation.  Most of 

the skeleton, including all long bones, are formed via endochondral ossification while 
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intramembranous ossification occurs primarily in the development of flat bones including 

the skull, scapula and mandible. 

As illustrated in Fig. 1.16A, endochondral ossification is a process including formation of a 

cartilage scaffold by direct differentiation of the precursor cells to pre-chondrocytes and 

chondrocytes and followed by its replacement by mineralised bone matrix.  In long bone, 

the primary ossification usually begins at the centre of this model where chondrocytes 

stop proliferating, become hypertrophic, mineralise the matrix and secrete vascular 

endothelial growth factor (VEGF) to attract migration of chondroclasts and promote 

vascular invasion.  Hypertrophic chondrocytes direct adjacent perichondrial cells to 

become osteoblasts, which secrete collagen I-rich matrix resulting in the formation of a 

bone collar.  Hypertrophic chondrocytes then undergo apoptosis and the cartilage matrix 

left behind provides a scaffold for osteoblast mineralisation.  Secondary ossification 

centres are established in epiphysis where again, chondrocytes stop proliferating, become 

hypertrophic and signal the influx of blood vessels and osteoblasts.  The lengthening of 

long bone is facilitated by zones of proliferating chondrocytes (known as the growth-plate) 

in between primary and secondary ossification centres (reviewed in Kronenberg, 2003). 

The development of flat bone and bone widening of long bones occur primarily via 

intramembranous ossification.  This process involves the direct differentiation of 

mesenchymal cells into pre-osteoblasts and osteoblasts, yet is not well characterized as 

endochondral ossification.  Studies indicate the difference in the composition and 

structure of the bone matrix formed via endochondral and intramembranous ossification 

(Scott and Hightower, 1991), however, several common molecular regulators of these 

processes have been identified by recent study (Abzhanov et al., 2007). 
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Figure 1.16 Scheme of endochondral ossification and bone healing process (adapted from Frohlich et al., 

2008). (A) endochondral ossification process (I) a cartilage mould produced by chondrocytes (II) 

hypertrophic chondrocytes express both angiogenic (red circles) and osteogenic (black circles) growth 

factors (III) Vascular invasion and formation of a bone collar (dark blue rectangle) and cartilage is replaced 

with trabecular bone (IV) lengthening of bone. (B) Bone healing process (I) hematoma formation, (II) 

fibrocartilaginous callus formation (III) bony callus formation, and (IV) remodelling of the bony callus.   

When a bone fracture happens, the bone healing process involves four major stages: 

hematoma formation, fibrocartilaginous callus formation, bony callus formation, and 

remodelling of the bony callus (Fig 1.16B).  First, formation of a haematoma due to the 

damage of blood vessels initiates an inflammatory response.  This inflammation 

accompanies the release of signalling molecules involved in new bone formation such as 

fibroblast growth factors (FGFs), BMPs, platelet-derived growth-factor (PDGF) and VEGF.  

Intramembranous and endochondral ossification both mediate the bone healing process 

where bone formation occurs immediately at the cortex and periosteum via 

intramembranous ossification and the internal (chondrified) callus is formed as an initial 

platform for endochondral ossification.  The internal callus further ossifies via 

endochondral ossification and toward the end of ossification, the chondroclasts resorb the 

spongy bone and mechanical continuity is established via remodelling of cortical bone 

(reviewed in Dimitriou et al., 2005). 
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2.2.3 Bone matrix protein and bone mineral 

Bone is composed of 50-70% mineral, 20-40% bone matrix proteins, 5-10% water and less 

than 3% lipids.  The major bone matrix proteins are collagenous matrix proteins in which 

type I collagen is most abundant with trace amounts of type III, type IV and fibril-

associated collagen with interrupted triple helices (FACIT) collagen.  With 85-90% of the 

bone matrix proteins composed of collagen, there are another 10% noncollagenous matrix 

proteins (NCPs) and some of them are found exclusively in bone tissue and cells.  The list 

of identified bone matrix proteins and their putative biological functions are summarised 

in table 1.4. 

Type I collagen is the major collagenous protein in bone.  The collagen types I, III and V are 

known as the fibrillar collagens which are abundant and able to form fibres in the ECM.  

Collagen is composed of a triple helix, which generally consists of two identical α1 chain 

and α2 chain with slight differences in their chemical composition.  Ascorbic acid is 

required for normal collagen I synthesis because it is a cofactor for lysyl hydroxylase in the 

synthesis of hydroxyproline and hydroxylysine in collagen.  Hydroxyproline stabilises the 

collagen triple helix and its absence results in an unstable collagen structure which affects 

synthesis of collagen (Jeffrey and Martin, 1966).  FACIT collagens are a group of nonfibrillar 

collagens which are important for the organisation and stabilisation of ECM by serving as a 

molecular bridge between fibrils or fibrils and other proteins 
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Table 1.4 List and function of bone matrix proteins 

Protein (Chromosome Location)  Characteristics and Function 

Collagen-related proteins 

type I (17q21.23, 7q22.1)  
type X (6q21)  
type III (2q31)  
 
type V (9q34.2-34.3; 2q24.3-31; 
19q13.2) 

 
Most abundant bone matrix protein 
Found in hypertrophic cartilage 
Trace amounts in bone; may regulate 
collagen fibril diameter  
Trace amounts in bone; may regulate 
collagen fibril diameter 

Serum proteins in bone matrix 

albumin (4q11-13)  
a-HS glycoprotein (3q27)  

 
Decreases hydroxyapatite crystal 
growth  
Bovine analog is fetuin 

Glycoaminoglycan-containing 

proteins and leucine-rich repeat 

proteins 

aggrecan (15q26.1) 
 
versican (5q14.3) 
decorin (12q21.3) 
 
biglycan (Xq28) 
hyaluronan (multigene complex)  

 

 
 
Matrix organization, retention of 
calcium/ phosphorus  
Defines space destined to become 
bone 
Regulates collagen fibril diameter; 
binds TGF-β 
Binds collagen; binds TGF-β  
Associates with versican 

Glycoproteins 

alkaline phosphatase (1p36.1-p34) 
 
osteonectin (5q31.3-32)  

 
Hydrolyzes mineral deposition 
inhibitors 
Regulates collagen fibril diameter 

SIBLING proteins 

osteopontin (4q21) 
bone sialoprotein (4q21)  

 
Inhibits mineralization and 
remodelling 
Initiates mineralization 

MEPE (4q21.1)  Regulator of phosphate metabolism 
RGD-containing glycoproteins 

thrombospondins (15q15, 6q27, 

1q21, 5q13, 19p13.1) 
fibronectin (2q34)  
vitronectin (17q11) fibrillin 1 and 

2 (15q21.1, 5q23-31)  

 
Cell attachment 
 
Cell attachment 
Cell attachment 
Regulates elastic fibre formation 

γγγγ-Carboxy glutamic acid–containing 

Proteins 

matrix Gla protein (12p13.1-

p12.3) 
osteocalcin (1q25-q31) 
 
protein S (3p11.2) 

 
 
Inhibits mineralization 
 
Regulates osteoclasts; inhibits 
mineralisation 
Unknown 
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Osteoblasts synthesise several noncollagenous proteins which can be divided into 

different categories including proteoglygans, glycoproteins, glycosylated proteins with 

potential cell-attachment activities, and γ-carboxylated (Gla) proteins.  Osteocalcin (OCN) 

is one of the noncollagenous Gla proteins secreted by osteoblasts.  Although recent 

studies suggested that OCN could mainly play a role in regulating energy metabolism (Lee 

and Karsenty, 2008, Crockett et al., 2011), carboxylation of OCN confers high affinity for 

minerals.  Thus, it was first assumed that osteocalcin, like other Gla proteins, is directly 

involved in the mineralisation process (Lian et al., 1989, Hauschka et al., 1989, Price, 

1989).  Yet, a high bone mass phenotype observed in osteocalcin knockout mice suggested 

that OCN inhibited bone formation (Ducy et al., 1996). 

Alkaline phosphatase (ALP) is the main glycoprotein in bone and presents in two forms, 

anchored form and released form.   Anchored ALP is bound to the osteoblast cell surface 

via a phosphoinositol linkage or within mineralised matrix and the released form is in 

serum (Raymond et al., 1993).  The role of ALP in mineralisation is not yet defined.  

However, the deficiency of ALP is related to hypophosphatasia, a hypomineralisation 

phenotype.  It is generally believed that ALP is involved in hydrolysis of extracellular 

pyrophosphate (PPi), a mineralisation-inhibiting byproduct of nucleotide pyrophosphatase 

(NPP), and maintains the balance of phosphate (Pi)/PPi (Orimo, 2010). 

The mineral content of bone is mostly hydroxyapatite (HA, Ca10(PO4)6(OH)2) with trace 

amounts of carbonate, magnesium, and acid phosphate.  Bone hydroxyapatite crystals are 

approximately 200 Å in dimension and are more soluble than geologic hydroxyapatite 

crystals, thereby allowing them to respond to mineral metabolism.  The mineralisation 

process is associated with the expression of ALP and many other noncollagenous proteins 

and is facilitated by extracellular matrix vesicles (MVs) which are secreted by osteoblasts 

and chondrocytes.  The initial HA precipitation happens within MVs which contain a 
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nucleation core.  The mineralisation starts with recruiting Ca2+ to MVs by calcium-binding 

molecules, including calcium-binding acidic phospholipids and calcium binding proteins.  

Meanwhile, levels of local intra- and perivesicular Pi are increased by the enzymatic 

activity of ALP and nucleoside triphosphate pyrophosphohydrolase that are enriched on 

the MV membrane.  The release of HA crystals from MVs into the extravesicular fluid is 

facilitated by phospholipases and proteases within MVs and further propagation of 

mineral into the matrix requires enzymatic activity of MMPs in MVs, which are capable of 

degrading mineral-inhibiting proteoglycans (reviewed in Anderson, 2003).  Interestingly, 

TG2 is found in MVs secreted by chondrocytes (Aeschlimann et al., 1993, Rosenthal et al., 

1997, Rosenthal et al., 2001), in microparticles (MPs) secreted by smooth muscle cells (van 

den Akker et al., 2012) and its transamidating activity is also found in MVs secreted by pre 

osteoblasts (Johnson et al., 2000).  Although the exactl role of TG2 in these vesicles is 

unclear, it is suggested that the release of TG2-enriched vesicles could be the 

unconventional secretion pathway of TG2 or be directly involved in the mineralisation 

process via a transamidating-dependent or independent pathway. 

2.2.4 Biomaterial for bone repair and regeneration 

Current options for bone grafting including autografts, allografts and synthesised bone 

graft substitutes.  These options are different in their strength and osteoconductive, 

osteoinductive, and osteogenic activity which are summarised in table 1.5.  In the clinic, 

autografts are considered as ideal since they incorporate the patient's own osteogenic 

cells and an osteoconductive mineral matrix.  However, the limited amount and the 

prolonged pain at the harvest site are the major disadvantages of using autografts.  For 

allografts, the decellularisation of tissue is needed to avoid host-versus-graft immune 

response.  In this case, the allograft lacks the osteogenic properties of an autograft. 
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Table 1.5 Bone graft activity by type (modified from a table by Brydone et al., 2010)  

Bone graft Osteo-
conduction 

Osteo-
induction 

Osteogenic Mechanical 
properties 

Autograft 

Cancellous 
Cortical 

 

++ 

+ 

 

 

+ 

+/- 

 

++ 

+ 

 

+ 

++ 

Allograft 

Cancellous 
Cortical 
Demineralised 
bone matrix 

 

++ 

+/- 

++ 

 

+ 

+/- 

+++ 

 

- 

- 

- 

 

+ 

- 

++ 

Bioactive 

composites / 

growth factor 

 

+ 

 

+ 

 

- 

 

+ 

Traditionally, metals such as stainless steel 316L, cobalt chromium alloy, titanium, or 

titanium alloy (Ti-6%Al-4%V) are used in orthopaedic and dental implants.  Although the 

high stiffness of the metal material is appreciated, it results in a significant change in the 

mechanics of the implicated bone and subsequent bone remodelling may decrease the 

strength of surrounding normal bone tissue.  Current strategy of bone graft design is using 

synthesized or nature structural proteins to recreate the structure and chemical 

composition of natural bone.  Common materials used in bone graft are HA, collagen, 

calcium sulphate, silicate-substituted calcium phosphate (Si-CaP) and polyethylene (PE) 

matrix modified with HA.  Addition of osteoinductive growth factors is also found to 

increase osteoinductive property of biomaterial.  Two osteoinductive growth factors of the 

TGF-beta superfamily, rhBMP-7 (OP-1 Implant® /OP-1Putty®, Stryker-Biotec, Hopkington, 

MA, USA) and rhBMP-2 (INFUSEH/InductOs®, Wyeth, UK), are currently available on the 

market.  Although comparable healing results of OP-1/BMP7 and rhBMP2 with autografts 

are reported in clinic, in the USA, the Food and Drug Administration (FDA) advisory 

committee still holds concern of side effects, such as undesired ectopic bone formation, 

which may result in critical complications particularly in cervical spine surgery.  Besides, 

the high cost (BMP-2 is £3,200 and BMP-7 is £2,450 for 100 µg) and short shelf life are two 
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major disadvantages of using these products.  Therefore, a new generation of bone graft is 

required for clinical use. 

2.2.5 TG2 crosslinked collagen gel for bone healing 

Collagen based scaffolds are widely used in a broad range of regenerative medicine 

application.  Using collagen matrix for orthopaedic regeneration offers distinct advantages 

since type I collagen composes more than 90% of the organic fraction in native bone 

tissue.  Even though collagen scaffold has shown clinical success in a range of soft tissue 

repair applications, relatively poor mechanical properties remain a limitation for their use 

in hard tissue regeneration.  In fact, only selected researches have showed some degree of 

success in using collagen scaffolds for bone regeneration (Caiazza et al., 2000, d'Aquino et 

al., 2009, Keogh et al., 2010) compared to other synthetic materials.  The mechanical 

property problem can be overcome by the addition of a second, stiffer phase such as 

hydroxylapatite (HA) or crosslinking collagen-based matrices with glutaraldehyde 

(Weadock et al., 1983), ultraviolet (UV) radiation (Wollensak and Spoerl, 2004), 

dehydrothermal processing (Yannas and Burke, 1980), carbodiimides (Damink et al., 1996) 

and enzymatically crosslinking by microbial transglutaminase (mTG) or TG2 methods (Chen 

et al., 2005, Chau et al., 2005).  All of these methods have shown a certain level of success 

in modifying the degradation rate of collagen matrix, thus, added collagen biomaterial 

advantages in wider medical applications. 
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2.3 Cornea tissue engineering 

According to WHO global statistics in June 2012, there are about 314 million patients 

suffering from impaired vision including 45 million who are bilaterally blind.  However, 

about 85% of all impaired vision and 70% of blindness could be avoidable and cured.  The 

epidemiology of blindness shows that corneal damage remains one of the leading causes 

of blindness (Resnikoff et al., 2004), causing around 2 million new cases of bilateral 

blindness worldwide in 2002.  This number, however, did not include millions of people 

suffering from impaired and low visual acuity due to corneal opacity.  Early research by 

Negrel and Thylefors in 1998 drew attention to the global prevalence of ocular trauma and 

ulceration with an estimated 55 million new cases of ocular injuries occurring each year. 

Of these, 1.6 million people were blind, 2.3 million people had bilaterally impaired vision 

and another 19 million people were unilaterally blind or had low vision after their injuries.   

Corneal abrasion, foreign bodies striking into eyes, chemical burns and corneal ulceration 

are common eye traumas seen in the clinic.  Usually, following injury, cytokines and 

growth factors secreted by the immune cells will mediate interaction between the healthy 

tissue and immune cells in order to restore corneal structure and function. Superficial 

injury usually can heal rapidly within a week.  However, severe trauma usually involves 

stroma damage and loss.  In this case, appropriate treatment is needed or the cornea may 

fail to restore its original structure and function. Consequently, patients may suffer from 

impaired vision or even blindness.   

Ocular trauma is a global problem. However, the prevention of post-wounding blindness 

can be achieved by better medical treatment.  A corneal graft may be highly effective but 

limited due to the availability of the donor, as well as the prognosis of corneal 

transplantation is comparably poor in emergency cases.  Tissue adhesives are currently 
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used in ophthalmic surgery even though most of them are used off-label.  They can 

immediately fill the wound area and replace the damaged stroma matrix which is suitable 

for emergency use. 

2.3.1 Cornea structure 

The cornea is a transparent tissue which is about 0.5 to 0.6mm thick in the centre and 0.6 

to 0.8mm at the periphery.  It is composed of five major layers (Fig. 1.17): epithelial layer, 

Bowman’s layer, stromal layer, Descemet’s membrane and endothelial layer.  Epithelial 

cells, the main cells in epithelium, form a 5-6 cell layered, stratified tissue to protect the 

corneal interior from noxious environmental agents.  The basal layer is a monolayer of 

columnar cells. Above the basal layer are another two layers of wing cells and superficial 

squamous cells with flattened nuclei.  The epithelium comprises 10% of the total depth of 

the cornea and is regenerated by multiplication in the basal layer.  Underneath the 

epithelial layer is a basement membrane where the basal epithelial cells adhere via 

desmosomes.  The components of epithelial basement membrane (EBM) are mainly type 

IV collagen, type VII collagen, laminin-1, laminin-5, perlecan, fibronectin and 

entactin/nidogen (Ljubimov et al., 1995).  

Bowman’s membrane, an acellular layer, consists of irregularly-arranged collagen fibrils.  

The function of Bowman’s membrane is obscure.  Early research implied that the strong 

mechanical strength of Bowman’s layer helps to maintain the shape of the cornea.  A more 

recent hypothesis suggested that cytokine-mediated interaction between corneal 

epithelial cells and stromal keratocytes results in the formation of Bowman’s membrane 

which may involve chemotactic and apoptotic effects on the keratocytes (Wilson and 

Hong, 2000). 
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Figure 1.17. Cornea Histology (H&E staining).  Ep = epithelium, BM = Bowman’s membrane, SP = Substantia 

Propria or Stroma, DM = Descemet’s membrane and En = endothelium.  Adapted from Wheater’s Functional 

Histology, a text and colour atlas, p. 392, Figure 21.15. 

The corneal stroma, which contributes 90% of the total corneal thickness, is composed of 

regularly-arranged collagen fibrils which are produced by keratocytes.  The transparency 

of cornea depends on the corneal stromal ultrastructure where collagen fibres (corneal 

lamellae) are obliquely oriented from one layer to another with 49% of lamellae aligned 

orthogonally (Daxer and Fratzl, 1997).  Keratocytes play a critical role in maintaining 

corneal clarity by synthesizing and organizing stromal constituents.  The average density of 

keratocytes in the central cornea is around 20,500 cells/mm3 in which most of the cells are 

populated in the anterior 10% of the stroma (Patel et al., 2001). Normally, the keratocytes 

are quiescent in healthy cornea. Once injured, keratocytes will transform into repairing 

phenotypes, fibroblasts and myofibroblasts, to restore the damaged ECM (West-Mays and 

Dwivedi, 2006). 

Descemet’s membrane lies between the stromal layer and endothelium and serves as the 

basement membrane of endothelial cells.  Heterogeneity is found vertically across the 

Descemet’s membrane such that type IV collagen alpha 1 and alpha 2 chains and 

fibronectin are expressed on the stromal face, while alpha 3(IV)-alpha 5(IV) chains, 

entactin/nidogen, laminin-1, and perlecan appear on the endothelial face (Ljubimov et al., 
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1995).  The bottom layer of cornea is endothelium, a single sheet of squamous cell 

boundary between the posterior cornea and the anterior aqueous chamber.  The main 

function of the endothelial cells is regulating the hydration of stroma by pumping the fluid 

in and out of the corneal stromal compartments. 

2.3.2 Current treatment for corneal wound 

The prevention of post-wounding blindness can be achieved by better medical treatment.  

A donor corneal graft may be highly effective but limited due to the availability of the 

donor.  Even though with the availability of tissue, donor grafts are typically variable in 

quality from donor to donor and usually with a chance of immunological rejection or 

endothelial decompensation resulting in an 18% failure in corneal transplantation 

(Thompson Jr et al., 2003).  Also, the prognosis of corneal transplantation is comparably 

poor in emergency cases.   

Another option of using amniotic membrane (AM) in ophthalmic surgery was proposed by 

de RÖ (1940) and Sorsby and Symons (1946).  In the past few decades, great success has 

been achieved in the use of AM for repairing severe corneal defects (Kim and Tseng, 

1995), and researches reported several advantages of using AM, including reduction of 

scar formation and inflammatory response in the damaged area (Solomon et al., 2001), 

enhancement of the wound healing process and re-epithelialisation (reviewed by Choi et 

al., 2009), as well as anti-microbial and anti-viral properties (Inge et al., 1991).  A broad 

range of applications for its use in ocular surgery have expanded in the past decades, 

which includes persistent corneal epithelial defects, neurotrophic corneal ulcers, corneal 

perforations, shield ulcers, infectious keratitis, bullous keratopathy, band keratopathy and 

chemical injury.  A more recent approach also demonstrated the potential of using AM as 

a carrier for ocular surface epithelial stem cell transplants, corneal endothelial cell and 
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retinal pigment epithelial substrate (reviewed by Riau et al., 2010).  Despite the great 

benefit brought by using AM, the process of retrieving AM from donor and de-

epithelialisation of AM is complicated.  There is also possibility of disease transmission 

which requires pre-screening of the potential donor.  Additionally, the quality of AM could 

be different from donor to donor and subsequent need for storage of AM product is 

expensive.  Furthermore, the clinical indications of AM grafts or patches are generally 

limited to severe cases of ocular disease/ trauma due to the invasive surgical procedure 

that is required for this treatment.  There is also a great chance of developing a variety of 

suture-related complications in this procedure (Park and Tseng, 2000). 

Alternatively, tissue adhesives are suitable for emergency use in ophthalmic surgery.  

Current products on the market can be divided into 2 classes, synthetic (e.g., 

cyanoacrylate and acrylic-based polymers), and biological (e.g., fibrin glue, biodendrimers 

and riboflavin–fibrinogen compounds) products.  The application of tissue adhesive in 

ophthalmology provides a suture-free option which decreases postoperative discomfort, 

shortens the healing time, lowers the risk of infection as well as reduces surgical time and 

scarring.  Nevertheless delayed re-epithelialisation, toxic metabolites, possible viral 

transmission and scar tissue formation are the main disadvantages of these products 

(Lagoutte et al., 1989, Chan and Boisjoly, 2004).  
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2.3.3 Biomaterial for corneal wound closure and graft 

The properties of an ideal corneal graft include: 

• Biodegradable • Transparency 

• Enhance the healing process • Safe to use 

• Elastic mechanical properties • Reasonable price 

• Persist long enough to allow the 

cornea to regenerate 

 

Biocompatible collagen glue is a prospective solution for treatment of ocular trauma.  

Ideally, the biodegradable and non-toxic collagen glue can be applied to the wound area 

and allow cells to infiltrate.  Using collagen matrix can avoid the inconsistency of product 

quality as seen in using AM membrane.  Furthermore, by crosslinking collagen with TG2, it 

is theoretically possible to improve the matrix stability and cell adhesion.  Finally, 

crosslinked collagen gel may be provided to market at a reasonable price due the 

manufacture process of crosslinked gel being easier and without the need to screen for 

transmissible diseases. 
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3.  Objectives 

The main objectives of this thesis are to examine the expression and possible mechanism 

of action of TG2 in human osteoblast (HOB) mineralisation, as well as to produce TG2 

crosslinked biomaterials with enhanced cell inductive and cell conductive properties for 

soft and hard tissue repair. 

The first approach is to analysis the TG2 expression and extracellular crosslinking activity 

during the HOB cell mineralisation process.  TG2 knock down HOB cell lines will be 

generated in order to study the relationship of TG2 expression and mineralisation.  

Furthermore, in order to evaluate the relationship between transamidating activity of 

endogenous TG2 and cell mineralisation, TG2 crosslinking inhibitors will be used to block 

TG2 activity.  On the other hand, the pro-mineralisation effect of exogenous TG2 will be 

also examined to determine whether this effect is crosslinking activity dependent or 

independent and the possible mechanism.  Following most exogenous TG2-induced 

calcification models (Johnson et al., 2008, Faverman et al., 2008), guinea pig liver 

transglutaminase (gpTG2) will be used to induce HOB mineralisation. 

Finally, the advantage of using TG2 crosslinked biomatrix in soft and hard tissue repair will 

be evaluated.  Type I collagen extracted from rat tail and commercial gpTG2 will be used 

to generate TG2 crosslinked collagen matrix which has been demonstrated in previous 

work done by Chau et al. (2005).  HOBs will be used to represent the hard tissue model 

and human corneal fibroblasts (hCFs) and human corneal epithelial cells (hCECs) will be 

used as target cells to represent the soft tissue model. 
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Chapter II 

Materials and Methods 
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1. Materials 

1.1. General Chemicals 

All water used was distilled using a Barnstead Easypure RoDi ultrapure water purification 

system purchased from Thermo Scientific, Surrey, UK.  Sterilisation of stock solutions and 

chemicals were performed either by filtration through a 0.45µm Millex® Syringe Filter 

Units purchased from Merck Millipore, Watford, UK or autoclaving at 121°C at 1 bar for 1 

hour.  Most general chemicals were purchased from Sigma-Aldrich, Poole, UK unless 

specifically stated: 

Guinea pig liver transglutaminase (gpTG2) was purchased from Zedira GmbH, Germany 

with the activity between 14.7-16 U/mg as stated in certificate of analysis.  Recombinant 

human Factor XIII (His6-rhFXIII) was purchased from Covalab UK Ltd, Cambridge, UK.  

Fibrogammin P was purchase from CSL Behring UK Ltd, West Sussex, UK.  Biotin-

cadaverine was purchased from Zedira GmbH, Germany.  FITC-cadaverine was purchase 

from Cambridge Bioscience Limited, Cambridge, UK.  VECTASHIELD HardSet mounting 

medium with DAPI was purchased from Vector Laboratories LTD., Peterborough, UK.  

Silver (I) nitrate was purchased from Fisher Scientific UK Ltd, Leicestershire, UK.  

Cetylpyridinium chloride, p-Nitrophenyl Phosphate (pNPP) liquid substrate system, 

collagenase from Clostridium histolyticum, fibronectin from human plasma and laminin 

from human fibroblasts were purchased from Sigma-Aldrich, Poole, UK.  Tankyrase PARP 

activity inhibitor, XAV939 was purchased from Stratech Scientific Ltd., Suffolk, UK.  TG2 

activity inhibitors, R283 and R294, were kindly provided from Dr. Russell Collighan. 
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1.2. Cell Culture 

Dulbecco's modified Eagle's medium (DMEM) with high Glucose (4,5 g/L), L-glutamine, 

liquid (200mM), non essential amino acid concentrate (100x) and penicillin/streptomycin 

(100x) solution were purchased from PAA Laboratories Ltd, Somerset, UK.  EpiLife® 

medium with 60 µM Calcium and human keratinocyte growth supplement (HKGS) were 

purchased from Invitrogen Ltd, Paisley, UK. 

1.3. Immunochemicals 

Anti-TG2 (TG100) mouse monoclonal antibody was purchased from Thermo Scientific, 

Surrey, UK.  Plasmatic Transglutaminase 13 (FXIII) antibody and HRP-conjugate 

streptavidin were obtained from Covalab UK Ltd, Cambridge, UK.  Anti- N-cadherin (H-4) 

mouse monoclonal antibody, anti-LRP5 (H-105) rabbit polyclonal antibody, anti-α-tubulin 

(B152) mouse monoclonal antibody, FITC conjugated donkey anti-mouse IgG antibody and 

TR-conjugated goat anti-rabbit IgG antibody were purchased from Santa Cruz 

Biotechnology, Heidelberg, Germany.  Anti-β-catenin rabbit polyclonal antibody was 

purchased from New England Biolabs Ltd, Hertfordshire, UK.  HRP-conjugated anti-mouse 

IgG or rabbit IgG antibodies were purchased from Dako Ltd., High Wycombe, 

Buckinghamshire.  Osteocalcin Human Direct ELISA Kit was purchased from Invitrogen Ltd, 

Paisley, UK.  Pierce Co-Immunoprecipitation Kit was purchased from Thermo Scientific, 

Surrey, UK 
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1.4. Western Blot Chemicals 

Tris-glycine-SDS Buffer (10X Solution) and 40% solution containing 38.67% (w/v) 

acrylamide and 1.33% (w/v) bis-acrylamide were purchased from Melford Laboratories 

Ltd., Suffolk, UK.  Precision Plus Protein™ Dual Color Standards and blot absorbent filter 

paper were purchased from Bio-Rad Laboratories Ltd., Hertfordshire, UK.  Nitrocellulose 

membranes were purchased from Gelman Biosciences, Northampton, UK.  Enhanced 

chemiluminescence ECL reagent was obtained from Amersham Pharmacia, 

Buckinghamshire, UK.  Kodak® BioMax™ XAR Film, LX-24 developer solution and FX-40 

fixer solution were purchased from Sigma-Diagnostics, Poole, UK. 

1.5. Molecular Biology Kits and Reagents 

GenElute™ HP Endotoxin-Free Plasmid Maxiprep Kit was purchased from Sigma-

Diagnostics, Poole, UK.  NovaBlue Singles™ Competent Cells was purchased from Millipore 

(U.K.) Limited, Watford, UK.  Lipofectamine™ 2000 Transfection Reagent was purchased 

from Invitrogen Ltd, Paisley, UK.  Detergent-compatible colorimetric assay kit was 

purchased from Bio-Rad Laboratories Ltd., Hertfordshire, UK 
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2. Methods 

2.1. General Tissue Culture 

2.1.1  HOB cells culture 

Primary Human osteoblast (HOB) cell line, isolated from femoral heads of patients 

subjected to surgery, was a kind gift from Professor S. Downes and Dr. S. Anderson (School 

of Biomedical sciences, University of Nottingham).  All cells were preserved in 10% 

dimethylsulfoxide (DMSO)/ 90% foetal calf serum (PAA) and stored in -80ºC freezer 

overnight before transferring into liquid nitrogen.  To recover cells from liquid nitrogen, 

vials of cells were first thawed at 37ºC and carefully re-suspended in basic culture medium 

(see recipe below).  The cell suspension was transferred into Falcon tissue culture flasks 

and cells allowed to attach for at least 6 hours.  Medium was discarded and replaced with 

fresh culture medium after cell attachment.  All the cells were incubated at a 37ºC, 5% CO2 

incubator with regular change of medium every 4 days.  

HOBs were cultured in Dulbecco's modified Eagle medium (DMEM) -high glucose 

supplemented with 10% (v/v) heat-inactivated fetal bovine serum, 2mM L-glutamine, 1% 

(v/v) non-essential amino acid and 1% (v/v) penicillin-streptomycin antibiotic (complete 

medium, CM). 

2.1.1.1 Differentiation of HOBs 

HOBs, ranging from passage 20 to 24, were subjected to differentiation treatment.  Cells 

were seeded at a density of 8×104/cm2 in complete medium for 16 hours or until cell 

cutlure reached more than 90% of confluency and differentiation treatment was initiated 

by supplementing culture medium with 50 µg/ml ascorbic acid and 10 mM β-



Page | 82  
 

glycerophosphate (differentiation medium, DM).  Medium was replaced every 2 days 

during a 12-day culture for osteoblasts differentiation and mineralisation assays unless 

otherwise indicated. 

2.1.2. hCECs and hCFs cultures 

Primary human corneal epithelial cells (hCECs) and human corneal keratocytes (hCKs) 

were kindly supplied from Dr. Naing Tint (Faculty of Medicine & Health Sciences, 

University of Nottingham).  hCECs were maintained in EpiLife® medium with human 

Keratinocyte Growth Supplement (Invitrogen Ltd, UK).  hCKs were differentiated into 

human corneal fibroblasts (hCFs) and maintained in the fibroblast phenotype using DMEM 

supplemented with 10% fetal bovine  serum (FBS), 1% (v/v) non-essential amino acids and 

2mM L-glutamine.  Additions of 1% (v/v) penicillin-streptomycin antibiotic and 0.2% (v/v) 

NormocinTM were used in medium to prevent bacterial, mycoplasma, and fungal 

contamination.  Media were changed routinely every two or three days during this study.  

All cell lines were cultured in a humidified-atmosphere incubator at 37°C and with 5% (v/v) 

CO2. 

2.1.3. Passaging, thawing and storage of cell cultures 

All cells were incubated in a humidified incubator at 37ºC with 5% CO2 and were routinely 

maintained to ensure the confluency of cell culture were never allowed to reach greater 

than 85% at any one time.  Upon reaching confluency,  monolayer of cells were rinsed with 

phosphate buffered saline (PBS) once and HOBs were detached from the tissue culture 

flask using adequate amount of pre-warmed 0.5% trypsin (PAA, Pasching, Austria) in PBS  

containing 2mM ethylenediaminetetraacetic acid (EDTA) for 5 minutes at 37ºC. Following 

detachment of cells which could be observed using a microscope, HOBs were quickly 
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recovered by addition of a double amount of fresh DMEM with 7% FBS.  The HOB cell 

suspension was centrifuged at 250×g for 5 minutes and the cell pellet was re-suspended in 

appropriate amount of CM and ready for reseeding into corresponding culture vessels. 

For hCEC and hCF cell cultures, a similar passaging protocol was used, except that 0.05% 

trypsin in PBS containing 0.2mM EDTA and 0.25% trypsin in PBS containing 1mM EDTA 

were used respectively to detach the cell monolayer.  The hCEC and hCF cell suspensions 

were centrifuged at 180×g for 7 minutes and re-suspended in the growth medium. 

Cryogenic preservation was used to maintain backups or reserve of cells.  Cells subjected 

to freezing process were detached by trypsin solution and washed once PBS.  The washed 

cell pellet was carefully re-suspended in adequate amount of 10%(v/v) dimethylsulfoxide 

(DMSO)/ FBS.  The DMSO containing cell suspension was divided into several cryogenic 

vials and the vials were allow to placed in the -20 ºC freezer for 2 hours and then in the -80 

ºC freezer overnight before transferring to a liquid nitrogen freezer for long term storage.  

To recover the cells from cryogenic storage, the frozen vials were removed from liquid 

nitrogen and rapidly thawed in 37ºC water bath for 60 to 90 seconds with gentle agitation.  

Once the cell suspension was completely thawed, the content of the vial was transferred 

to a T-75 flask containing 12 ml of culture medium and cultured at 37ºC with 5% CO2.  Cells 

were recovered from cryoprotective agent by a medium change once the cells attached to 

the flask (generally within 6 to 8 hours of thawing). 

2.2. Protein expressions, identifications and interactions  

2.3.5 Protein Concentration 

Lowry protein assay (Bio-Rad RC kit, Life Sciences, Hemel Hempstead, UK) was performed 

to quantify the obtained protein concentration of cell lysate (Lowry et al., 1951).  The 

whole assay was carried out as per manufacturers’ instructions.  In brief, 5 µl of samples 
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(diluted if needed) or bovine serum albumin (BSA) standards (ranging from 0.2-1.5 mg/ml) 

were added to each well of 96-well plate. Following addition of 25 µl of reagent A and 

200µl of reagent B, the mixture were stabilised at room temperature for 10 minutes 

before reading at 750nm using a SpectraFluor® plate reader.  Protein concentrations were 

determined against a linear standard curve produced by duplicate BSA protein standards. 

2.2.2 Collection of Total Cell Lysates and Conditioned Medium 

HOBs were initially seeded in 60 mm petri-dishes (Corning) at a density of 8×104/cm2.  At 

different time points and treatments, HOB cells were detached using pre-warmed 5mM 

EDTA in PBS for 5 minutes at 37ºC and recovered in complete medium.  Cells suspensions 

were centrifuged at 250×g for 5 minutes and cell pellets were washed in PBS once before 

re-suspension again in lysis buffer (0.025M Tris, 0.15M NaCl, 0.001M EDTA, 1% NP-40, 5% 

glycerol; pH 7.4) supplemented with 0.2mMPMSF and 0.1% Protease Inhibitor Cocktail 

(Sigma-Aldrich Company Ltd. Dorset, UK).  After 5 minutes incubation on ice with periodic 

mixing, the lysate mixtures were centrifuged at 13,000×g for 10 minutes at 4ºC to pellet 

the cell debris. 

For collecting conditioned medium, HOBs cultured in either complete medium or 

differentiation medium were switched to serum free DMEM medium 24 hours before 

specified collecting time points.  The resultant conditioned medium was collected from the 

petridish and centrifuged at 250×g for 5 minutes to get rid of cell debris.  The conditioned 

mediums were concentrated using Amicon Ultra-0.5 centrifugal filters with 10kDa cutting 

point (Millipore Limited, Watford, UK) and subjected to total protein quantification. 

A total 50 µg of sample protein or 25 µg of total protein in conditioned medium was add-

mixed with 5X Laemmli sample buffer (60 mM Tris-Cl pH 6.8, 2% SDS, 10% glycerol, 5% β-
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mercaptoethanol, 0.01% bromophenol blue) and adequate distilled water.  Sample 

mixtures were boiled for 5 minutes and placed on ice before loading. 

2.2.3 Western Blotting  

2.2.3.1 Preparation of Sodium Dodecyl Sulphate (SDS) Polyacrylamide Gel 

Acrylamide/ bis-acrylamide gels were cast using Mini-PROTEAN Tetra Cell Casting Module 

(BIO-RAD, Hemel Hempstead, UK) which consisted of a standard 3% (w/v) polyacrylamide 

stacking gel and a separating gel (5-15% (w/v), depending on the application required).  

Separating gels were prepared in 4X Tris-SDS stock solution  containing 1.5M Tris and 0.4% 

(w/v) SDS (pH 8.8) and standard 4% (w/v) polyacrylamide stacking gels were prepared 

using 4X Tris-SDS stock solution (0.5M Tris, 0.4% (w/v) SDS, pH 6.8).  Receipts for different 

concentrations of separating gel were listed in detail as following Table 2.1: 

 Table 2.1 Recipe for preparing different concentration of separating gel 

Stock 

solutions 

Final acrylamide concentration in the separating gel (%) (ml) 

5 6 7 7.5 8 9 10 12 

40% 
acrylamide/ 
bis-acrylamide 

1.875 2.25 2.625 2.8125 3 3.375 3.75 4.5 

4x Tris-
HCl/SDS (pH 
8.8) 

3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 

H2O 9.375 9 8.625 8.4375 8.25 7.875 7.5 6.75 

10% 
ammonium 
persulphate 

0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 

TEMED 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

The mixture of desired concentration was loaded in 80 x 60x 1.5mm module and 500 ml of 

iso-propan-2-ol was added on the surface to flatten the gel.  After 30 minutes of 

polymerisation at room temperature, the iso-propanol was removed and the surface of 

the gel was rinsed with distilled water.  Another layer of 4% stacking gel (487.5 ml of the 

40% (w/v) acrylamide /bisacrylamide solution, 1.25ml of Tris/SDS pH 6.8, 3.23 ml of 
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distilled water, 25µl 10% (w/v) ammonium persulphate and 5µl of 

tetramethylethylenediamine (TEMED)) was poured on the top of separating gel.  A 10/15 

well comb was placed into the mould and allowed to solidify at room temperature for 30 

minutes. 

2.2.3.2 Gel Electrophoresis and Protein Transferring 

Prepared samples were loaded into sample wells and another 3 µl of rainbow marker was 

loaded at the first lane of each gel.  Electrophoresis was performed at first constant 90V 

for 10 minutes and then 120V for 90 minutes until sample marker dye reached the bottom 

of the gel or rainbow marker reached desired resolution.  SDS-PAGE separated proteins 

were transferred from gel to polyvinylidene fluoride transfer membrane using Mini Trans-

Blot cell system (Biorad, Hertfordshire, UK). Briefly, the gel was removed from the plate 

module and washed once with transfer buffer contained 48.8mM Tris-HCl, 39mM glycine 

and 20% (v/v) methanol.  The apparatus was set up as manufacturer’s instruction with gel 

placed near cathode side and membrane at anode side.  Protein transferring was 

performed at constant 200mA for 2 hours on ice.  The transferred protein on the 

nitrocellulose membrane was verified by staining with Ponceau Red solution to ensure 

efficient transfer. 

2.2.3.3 Detection of Protein Using Immunoprobing 

The polyvinylidene fluoride membrane was blocked with 5% (w/v) Marvel dried milk in 

Tris-buffered saline – 0.05% Tween (TBS-T, pH 7.6) for 30 minutes, at room temperature.  

Following blocking step, the membrane was incubated with primary antibodies diluted 

1:200 to 1:1000 in blocking buffer at 4ºC overnight.  Three times washing with TBS-T 

washing solution was performed before incubating with secondary antibodies.  
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Appropriate secondary antibody was diluted 1:2000 in blocking solution and further 

incubation of membrane in secondary antibody at room temperature for 2 hours.  All the 

dilution factor can be found in Table 2.2 below.  Another three- time washing was 

performed and the membrane was incubated with ECL chemiluminescence substrate 

(Amersham, Buckinghamshire, UK) according to the manufacturers’ instructions.  The 

membrane was covered with cling film and the signal was detected by Kodak X-Omat 

chemiluminescence detection film (Roche Diagnostics, East Sussex, UK) in a Kodak Biomax 

exposure cassette.  Exposure time was varied depending on the intensity of signal and the 

resulting film was developed in 20% (v/v) LX-24 developer and fixed in 20% (v/v) FX-40 

fixer. 

Table 2.2 Dilution of primary and secondary antibodies 

Antibodies Dilution 

TG2 (TG100) mouse monoclonal antibody 1:1000 

plasmatic Transglutaminase 13 (FXIII) 

antibody 
1:200 

N-cadherin (H-4) mouse monoclonal 

antibody 
1:1000 

LRP5 (H-105) rabbit polyclonal antibody 1:1000 

α-tubulin (B152) mouse monoclonal 

antibody 
1:1000 

β-catenin rabbit polyclonal antibody 1:1000 

mouse IgG HRP-conjugated antibody 1:2000 

rabbit IgG HRP-conjugated antibody 1:2000 

 

2.2.4 Immunohistochemical Staining 

HOBs were cultured on Four Well Pattern Microscope Slides (TEKDON, INC., Florida, USA) 

and differentiated in DM as mentioned before for 4 hours to 48 hours.  The samples were 

washed with PBS (pH 7.4) and fixed with 3.7% (v/v) para-formaldehyde (PFA) /PBS (pH 7.4) 

at room temperature for 20 minutes.  Three times washing with PBS were applied to 
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samples between each step in the following procedure.  To stop the crosslinking of 

samples by residual PFA, slides were incubated with 30mM Glycine/PBS at room 

temperature for 10 minutes.  Permeabilisation step was only applied to samples which 

were stained for intracellular protein expression.  In order to permeabilise cell membrane, 

5% Triton X-100 was added to sample slides and removed after 2 minutes incubation at 

room temperature.  The sample slides were then blocked with 10% goat serum in PBS at 

room for 30 minutes.  Rabbit polyclonal LRP5 (H-105, Santa Cruz biotechnology, Inc., 

Heidelberg, Germany) antibody or rabbit polyclonal β-catenin (New England Biolabs Ltd, 

Herts, UK) antibody was used, depending on the experiments, in 1:200 dilution using 0.5% 

goat serum/TBS-T.  Incubation of primary antibody was performed at 37ºC for 1 hour or 

4ºC for 16 hours.  Following incubation of goat anti-rabbit IgG-TR conjugated antibody 

(dilute in 1:200, Santa Cruz Biotechnology, Inc., Heidelberg, Germany) was performed at 

37ºC for 1 hour or 4ºC for 16 hours.  All the samples were co-stained with mouse 

monoclonal TG2 (TG100, Thermo Scientific, Surrey, UK) antibody and donkey anti-mouse 

IgG-FITC conjugated antibody (Santa Cruz Biotechnology, Inc., Heidelberg, Germany) at 

1:200 dilution.  Finally, the samples were washed with PBS for three times and with 

distilled water for extra 2 times.  After washing, the slides were allowed to dry against the 

tissue carefully from the edge without damaging the samples.  Samples were mounted in 

VECTASHIELD® HardSet™ Mounting Medium with DAPI (Vector Laboratories LTD, 

Peterborough, UK) and pictures were acquired using Leica TCS MP5 multiphoton 

microscope. 
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2.2.5 Protein Complex Immunoprecipitation (Co-IP) 

The interaction between TG2 and LRP5 receptor was studied using immunoprecipitation 

technique.  The Pierce® Co-Immunoprecipitation kit (Thermo Scientific, Surrey, UK) was 

used in following experiments to avoid contamination by the IP antibody.  The following 

optimised protocol was used for this study. 

2.2.5.1 Lysis of Cell Monolayer Cell Cultures 

Cultured and differentiated HOBs cell lysates were sampled at 4 hours, 1 day and 2 days 

post exogenous 1µg/ml TG2 treatment.  Monolayer of cells was washed once with PBS 

(pH7.4) and lifted up using 5mM EDTA/PBS.  Cell suspension was centrifuged at 250×g for 

5 minutes to pellet the cells and adequate IP Lysis/Wash buffer provided from the kit was 

added to resuspend the cell pellet.  After 5 minutes incubation with periodic mixing on ice, 

the cell lysate was centrifuged at 13,000×g for 10 minutes to pellet the cell debris.  The 

resultant supernatant was transferred to a new microcentrifuge tube and subjected for 

quantification of protein concentration. 

2.2.5.2 Pre-clear Cell Lysate Using Control Agarose Resin 

For clearing, cell lysate contained total 1mg of protein, the sample clearing column was 

constructed with 80μL of the control agarose resin slurry.  Washing the clearing column 

with 1X coupling buffer provided from the kit, the columns were ready to be loaded with 

cell lysates from previous step.  The lysates were incubated with clearing resin at 4ºC for 1 

hour on the orbital shaker with end-to-end mixing.  The columns containing samples were 

centrifuged at 1,000×g for 1 minute to obtain the cleared cell lysates. 
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2.2.5.3 Immobilisation of Antibody 

To prepare the binding column, 25μl of the AminoLink Plus coupling resin slurry was added 

to the each column and washed it twice with 1X coupling buffer.  A total 2 μg of antibody, 

rabbit polyclonal LRP5 antibody or mouse monoclonal TG2 antibody, was adjusted to final 

volume at 200μL and added to pre-packed column.  After addition of sodium 

cyanoborohydride solution, columns with antibody/resin mixtures were incubated at room 

temperature for 90 minutes with gentle shaking.  Once finished coupling, the antibody 

bound resin was washed once with coupling buffer and further incubated with Quenching 

buffer provided from the kit for another 15 minutes at room temperature with gentle 

shaking.  2 times washing with 1X Coupling Buffer plus 6 times washing with Wash solution 

were applied to antibody-coupled resin and the columns were ready to perform Co-IP. 

2.2.5.4  Co-IP 

The prepared columns from previous step were washed with IP Lysis/Wash buffer for two 

times and a total 800µg of whole cell lysates was added to each column.  The columns 

with cell lysate were incubated with gentle rocking at 4ºC overnight allowing the desired 

protein to be caught by the resin-bound antibody.  After incubation, the protein bound 

resin was washed with IP Lysis/Wash buffer for 3 times or more if needed. 

2.2.5.5 Elution of Co-IP and Evaluating Protein Interaction by Western 

Blotting 

The columns were placed in new collection tubes and 10μl of elution buffer was added to 

each column.  The flow through was collected by centrifuging the column at 1000×g for 1 

minute, and another 40μl of elution buffer was added to each column.  With 5 minutes 
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incubation at room temperature without shaking or mixing, the total elution was collected 

by centrifuging at 1000×g for 1 minute.  5X Laemmli sample buffer was added to each 

sample to make a 1X final sample solution and the samples were subjected to Western 

blotting analysis.  TG2/LRP5 binding was confirmed by reciprocal Western blot analyses 

using mouse monoclonal TG2 antibody or rabbit polyclonal LRP5 antibody. 

2.2.6 ELISA 

2.2.6.1 Sample Collection 

HOBs were seeded in 6-cm petri dish the day before differentiation.  Once cells were 

ready, cell layer was washed with PBS (pH 7.4) once before any treatment.  HOBs were 

subjected to different treatments and were collected at specified time points.  24 hours 

prior collecting samples, the medium were switched to 1.5 ml of serum-free medium.  On 

the day of sample collection, conditioned medium was carefully collected by pipette and 

cell debris removed by centrifugation at 250×g for 5 minutes.  Samples were either used 

immediately or stored at -80ºC for future use.  The remaining cell layer was lifted up from 

tissue culture dish using 5mM EDTA/PBS solution, lysised with RIPA buffer (0.1% SDS, 1% 

NP-40, 1% sodium Deoxycholate, 5mM EDTA, 150mM NaCl in 10mM Tris buffer, pH 7.2) 

and total protein concentration was determined using Lowry assay described previously. 

2.2.6.2 Quantification of OCN in Conditioned Medium using ELISA assay 

The osteocalcin level in conditioned medium was determined using Novex® Osteocalcin 

Human Direct ELISA Kit (Invitrogen, Paisley, UK).  As per manufacture’s instructions, 

standards and controls were reconstructed with distilled water and both samples and 

microtiter plates were thawed at room temperature before assay.  25 µl of each standard, 

control or sample was added to appropriate wells and the addition of 100 µl of working 
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anti-OST-HRP conjugate to each testing well was performed before 2-hour incubation at 

room temperature.  The reaction mix was discarded after incubation and the microtiter 

plate was washed with the washing solution for 3 times, each time for 30 seconds.  

Following the washing step, 100 µl of chromogen solution was added to each well and the 

plate was incubated at room temperature in the dark until the colour development had 

finished.  The reaction was terminated by adding 100 µl of stop solution and the optical 

density of the sample was read at 450nm using a SpectraFluor® plate reader.  The 

concentration of each sample was further normalised against the total protein extracted 

from the whole cell layer. 

2.2.7 Zymography 

Collagenase and gelatinase expression was detected using zymography technique adapted 

from Herron and colleagues work (1986).  The recipes for the resolving gel and stacking gel 

are summarised in Table 2.3 below. 

7.5 % Separating gel Stacking gel  

40% acrylamide/ bis-
acrylamide 

3 ml 
40% acrylamide/ bis-
acrylamide 

0.639 ml 

1.5M Tris-HCl pH 8.8 4 ml 0.5M Tris-HCl pH 8.8 1.71 ml 

10X gelatine or 

collagen solution 

(8mg/ml) 

1.6 ml Sucrose solution (50%) 1.71 ml 

Sucrose solution (50%) 3.44 ml Water 2.78 ml 

Water 3.96 ml 
10% Ammonium 

persulfate 
80 µl 

10% Ammonium 

persulfate 
60 µl TEMED 18 µl 

TEMED 10 µl   

Table 2.3 Recipe for preparing separating gel and stacking gel for collagen or gelatine zymography 

The conditioned medium collected on day 8 from HOBs treated with CM, DM, or different 

concentration of inhibitors was mixed with 5X Laemmli buffer to make up final 1X sample 

solution and loaded to the prepared gel.  Electrophoresis was performed at constant 120 V 
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on the ice in a chilled-cabinet (4°C) to avoiding overheating.  After electrophoresis, the gels 

were washed with enzyme renaturing buffer (see Table 2.4 for recipe) for 2 times, each 

time 30 minutes.  Renatured gels were transferred to digesting buffer (see Table 2.4 for 

recipe) and incubated at 37ºC for 48 hours.  Once finished digestion, gels were washed 

with distilled water once and stained with PageBlue Protein Staining Solution (Thermo 

Scientific, Surrey, UK) for 2 hours at room temperature.  Destaining was performed using 

distilled water for at least 4 times until the gel reached desired condition. 

Digesting Buffer (500ml, pH 7.5)  

Tris base (Final Conc. 100mM) 6.055 g 
NaCl (Final Conc. 200mM) 5.845 g 
ZnCl2 (Final Conc. 2.6µM) 0.35 mg 
CaCl2 ·2H2O (Final Conc. 5mM) 0.37 g 
NaN3 (0.02%) 0.1 g 

Renaturing Buffer  
2.5% Triton X-100 in digesting buffer  

Table 2.4 Recipe for preparing digesting buffer and renaturing buffer 

2.3 Determination and Inhibition of Transglutaminase Activity 

2.3.1 Crosslinking activities of TG2 and FXIIIa  

In order to distinguish TG2 enzymatic activity from FXIIIa, a non-specific, cell permeable 

inhibitor- R283 and TG2-specific, non-permeable inhibitor- R294 were used in following 

experiments.  The inhibitory effect of the inhibitors was first examined at protein level 

before in vitro testing.  A modified protocol to evaluate the transglutaminase was used by 

adapting the procedure mentioned by Slaughter et al., (1992) 

2.3.1.1  Sample preparation 

Guinea pig liver Transglutaminase (gpTG2) purchased from Zedira, human recombined 

FXIII purchased from Covalab and Fibrogammin® P manufactured by CSL Behring UK Ltd 

were used in this 96-well plate based assay.  2U/ml of thrombin treatment to activate FXIII 
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for and pre-incubation of enzyme with inhibitors were needed before assay.  The detail of 

setting up was summarised in the Table 2.5 below: 

 2U/ml Thrombin  Inhibitor R283 Inhibitor R294 

TG2 (100ng/well) - - - 

 - + - 

 - - + 

TG2 (100ng/well) + - - 

 + + - 

 + - + 

FXIII 
(100ng/well) 

+ - - 

 + + - 

 + - + 

Fibrogammin P  + - - 

(13.6µg/well) + + - 

 + - + 
Table 2.5 Preparation of sample in summary.  All sample were diluted in 5mM DTT and 5mM CaCl2 in 10mM 

Tris buffer (pH 7.4) and adjusted the volume to 50µµµµl per well.  Thrombin treatment was performed on ice for 

15 minutes.  After activation of enzyme, different concentrations of inhibitors (100µµµµM, 250µµµµM and 500µµµµM) 

were added to pre-activated enzyme and the mixtures were incubated on ice for another 15 minutes. 

2.3.1.2 Biotin Cadaverine Incorporation into N,N'-dimethylcasein Assay 

A 96-well plate was coated with 200µl of 100mg/ml N,N’-dimethylcasein in 100mM Tris-

HCl (pH 8.5) overnight at 4°C.  Two-time washing with PBS, 0.05 % (v/v) Tween20 was 

applied to the coated plate following with another two-time washing with distilled water.  

The plate was then blocked with 250µl of 3% (w/v) BSA in 100mM Tris-HCl (pH 8.5) for 30 

minutes at room temperature.  Plate was once again washed 3 times with PBS, 0.05 % 

(v/v) Tween20 and once more with 100mM Tris-HCl (pH 8.5).  The reaction was initiated by 

addition of 50µl of pre-treated samples and 150µl of 0.1mg/ml biotin-cadaverine in 5mM 

DTT and 5mM CaCl2 in 10mM Tris buffer (pH 7.4).  The reaction was performed at 37°C for 

30 minutes and terminated with 10mM EDTA.  A series washing with PBS, 0.05 % (v/v) 

Tween20 and once more with 100mM Tris-HCl (pH 8.5) was applied to the plate.  

Incorporated biotin-cadaverine into N,N’-dimethyl was detected by incubation with 
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extravidin peroxidase conjugate in 1:2000 dilution for 1 hour at 37oC.  Development of the 

reaction was performed using SIGMAFAST OPD (o-Phenylenediamine dihydrochloride) 

tablets (P9187, each tablet set dissolved in 20ml dH2O yields a ready-to-use buffered 

solution containing OPD and urea hydrogen peroxide).  The colour development was 

terminated by addition of 50µl of 2.5M H2SO4 and the absorbance was read at 450nm 

using a plate reader. 

2.3.2 Cell Surface Crosslinking Activity Assay 

2.3.2.1  Cell Culture and Sample Preparation 

HOBs were cultured and differentiated for 2 days, 6 days and 12 days.  To measure the cell 

surface transglutaminase activity, HOBs, at different time points, were detached from the 

tissue culture flask using 5mM EDTA/PBS.  Obtained cells were centrifuged down, washed 

once with PBS and resuspended in serum free medium.  A final 1×105 HOBs were added to 

each well of 96-well plate.  A parallel set of samples was set up with addition of 2U/ml of 

thrombin to activate FXIIIa crosslinking activity.  To further distinguish the crosslinking 

activity between tissue transglutaminase and FXIIIa, a final concentration of 250µM of 

R283 or R294 was also added to cell suspension.  50ng/well of gpTG2 and 50ng/well of 

human FXIIIa were used as positive controls. 

2.3.2.2 Biotin Cadaverine Incorporation into Fibronectin Assay 

Transglutaminase activity on cell surface was determined by the incorporation of biotin 

cadaverine into fibronectin coated microtiter plate.  96-well plate was coated with 50µl of 

5µg/ml fibronectin solution in 50mM Tris-HCl pH 7.4 overnight at 4ºC.  Before use, the 

plate was washed with 50mM Tris-HCl (pH 7.4) once and preserved in serum free cell 

culture medium.  Samples prepared as described above were added to 96 well plate and 
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the assay was initiated by addition of reaction buffer which contained 0.1mM biotin-

cadaverine and 1mM DTT in serum free medium.  The reaction was performed at 37°C for 

3 hours and terminated using PBS (pH7.4) containing 2mM EDTA.  A detergent solution 

(100µl) consisting of 0.1% (w/v) deoxycholate in 2mM EDTA /PBS (pH 7.4) was then added 

to each well and the mixture incubated with gentle shaking for 10 minutes at room 

temperature.  Further washing of fibronectin layer with 50mM Tris-HCl (pH7.4) was 

performed 3 times before blocking with 3% (w/v) BSA in 50mM Tris-HCl buffer for 30 

minutes at 37ºC.  The incorporated biotin cadaverine was revealed with a 1/2,000 dilution 

of Extravidin peroxidase conjugate (Sigma-Aldrich Co. Ltd) which was incubated for 1 hour 

at 37°C.  After incubation, a series of washes with 50mM Tris-HCl, pH 7.4 were performed 

as above.  Colour development was achieved using SIGMAFAST OPD (o-

Phenylenediamine dihydrochloride) tablets and terminated by 2.5N H2SO4 and the 

resultant absorbance was read at 450nm in a SpectraFluor® plate reader. 

2.3.3 Cell Mediated Incorporation of FITC-Cadaverine into Extracellular 

Matrix  

HOBs were cultured on Four Well Pattern Microscope Slides (TEKDON, INC., Florida, USA) 

and differentiated in DM as mentioned before for 2, 6 and 12 days.  At different time 

points, CM and DM were switched to serum free DMEM containing 0.1mM FITC labelled 

Cadaverine with or without either R283 or R294.  Cells were allowed to crosslink FITC-

cadaverine into extracellular matrix at 37ºC for 24 hours.  After incubation, medium was 

removed and cells were gently washed with PBS (pH 7.4) for three times.  Ice cold 100% 

methanol (-20 ºC) was used to fix the cells for 15 minutes at -20 ºC.  In order to remove 

non-crosslinked FITC-cadaverine, fixed samples were carefully washed with 70% ethanol 

for another three times.  Finally, another 3-time washing with PBS (pH7.4) was applied to 
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sample slides before being mounted in VECTASHIELD® HardSet™ Mounting Medium with 

DAPI (Vector Laboratories LTD, Peterborough, UK).  Sample slides were viewed and 

pictures were acquired using Leica TCS MP5 multiphoton microscope. 

2.3.4 Knockdown TG2 Expression in HOBs 

2.3.4.1 Plasmid Preparation 

�  Plasmid Transformation 

NovaBlue Singles™ Competent Cells (Millipore Limited, Watford, UK) were used for 

transformation of TG2 MISSION® shRNA Plasmid DNA, shRNA 239, 240, 241, 243 and 

MISSION® pLKO.1-puro Non-Mammalian shRNA Control Plasmid DNA (Sigma-Aldrich 

Company Ltd. Dorset, UK), to E. coli.  As described in manufacturer’s instruction, 

microcentrifuge tubes were pre-chilled on ice before aliquot of 20µl competent cells each 

tube.  1µl of shRNA plasmid DNA was added directly to competent cells with gently mix.  

Mixtures were placed on ice for 5 minutes before heat shocking at 42ºC water bath for 

exactly 30 seconds.  2-minute incubation on ice, 140μl of room temperature Luria Broth 

(LB, 1% tryptone, 0.5% yeast extract and 1% NaCl) was added to each tube.  Cell 

suspensions were allowed to grow at 37ºC incubator with shaking at speed 250rpm for 1 

hour.  50μl of cell suspension was spread on Luria Agar (LA, 1% tryptone, 0.5% yeast 

extract, 1% NaCl and 1.5% agar) containing 100mg/L of Ampicillin.  Cells were incubated at 

37ºC incubator overnight and transformed colonies were selected the next day. 

� Plasmid DNA Isolation 

GenElute HP Plasmid Maxiprep Kit (Sigma-Aldrich Company Ltd. Dorset, UK) was used to 

purify plasmid DNA from transformed E. coli.  In brief, selected single cell colonies from 

each group were cultured in 3ml LB medium containing ampicillin at 37°C for 
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approximately 8 hours while shaking at 250 rpm.  These starting cultures were further 

diluted 1:500 in 200ml of LB medium with ampicillin and incubated at 37°C for 16 hours 

with shaking at 250 rpm.  150ml of overnight cell culture suspensions were pelleted by 

centrifuging at 5000×g for 10 minutes.  Supernatant was discarded and resultant cell pellet 

was resupended in Resuspension/RNase A Solution.  Resuspended cells were lysed by 

additional of lysis buffer with gently inverting 6 to 8 times and allowed to be chill on ice for 

3 minutes.  Within 5 minutes, cell lysates were neutralised with chill neutralization 

Solution.  Resultant cell lysates were first filtered through filter column to get rid of cell 

debris and binding solution was added to filtered lysates with gently mixing.  Mixtures 

were transferred to prepared binding column and allowed to pass through the binding 

columns.  After a series washing with wash solution, the DNA bound columns were dried 

for at least 10 minutes by applying vacuum to the columns.  Once the columns were dried, 

DNA plasmids were recovered by adding 1.2 ml of Endotoxin-free water and collected by 

centrifuging down at 1000 x g for 5 minutes.  DNA concentration of samples was 

determined using NanoDrop 3300 Micro-Volume Full-Spectrum Fluorospectrometer. 

2.3.4.2 Generation of Stable Transfected HOBs cell line 

� Determination of Puromycin Working Concentration 

In order to generate stable cell lines expressing the shRNA of interest, it is necessary to 

determine adequate concentration of puromycin in order to select transfected cells.  In 

short, 1×104/well of HOBs were seeded in a 96-well plate and cultured in a 37°C, CO2 

incubator the day before carrying out the assay.  A series dilutions of puromycin, 0, 

0.125ng/ml, 25ng/ml, 50ng/ml, 125ng/ml, 250ng/ml, 500ng/ml, 1µg/ml, 2µg/ml and 

4µg/ml, were prepared in antibiotics-free DMEM and added freshly to HOBs cell culture.  

After 48 hours incubation with puromycin, the cytotoxicity of puromycin was assayed by 
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using Cell Proliferation Kit II (Roche Diagnostics Ltd., West Sussex, UK) as mentioned 

previously in section 2.5.1.  The lowest concentration that killed 100% of the cells was 

chosen as initial working concentration for stable cell line selection. 

� shRNA Transfection and Stable Cell Line Selection 

Stable transfected HOBs were generated using Lipofectamine® 2000 Reagent (Life 

Technologies Ltd, Paisley, UK).  According to manufacturer’s instruction, initial 5×105/well 

of HOBs were seeded in 6-well plate and grown in normal DMEM culture medium without 

antibiotics for 24 hours.  On the day of transfection, well layer was washed with 1× PBS 

once and replaced with 2ml fresh DMEM without antibiotics.  Desired amount of 

lipofectamine reagent was add mixed with DMEM medium without antibiotics and 

plasmid DNA, shRNA 239, 240, 241, 243 and SHC002 was diluted in antibiotics-free DMEM.  

Transfection reagent and diluted DNA were allowed to incubate at room temperature for 

5 minutes separately.  After 5 minutes incubation, lipofectamine and diluted DNA were 

mixed gently in 1:1 ratio and the mixture was further incubated for 20 minutes at room 

temperature.  Once incubation had finished, the lipofectamine/DNA complex was added 

to each well containing cells and medium immediately and HOBs were incubated at 37°C 

in a CO2 incubator for 6 hours.  Transfection was terminated by switching 

lipofectamine/DNA containing medium to fresh antibiotics-free medium after 6 hours.  

HOBs cell culture was allowed to grown at 37°C, CO2 incubator for another 48 hours before 

selection.  To start the selection, post-transfected HOBs cells were cultured in DMEM 

supplemented with 500ng/ml of puromycin until shRNA transfected HOBs were selected.  

Medium was changed every 2 days if needed.  Once stable transfected cells had been 

selected, the knockdown cell lines were cultured in DMEM supplemented with 250ng/ml 

of puromycin for all the following experiments.  The protein expressions of TG2 and FXIIIa 
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in each stable knocked down cells lines were analysis using Western blotting to confirm 

the knock down efficiency. 

2.3.5 Inactivation of gpTG2 Crosslinking Activity Using Inhibitors 

In order to prepare inactive gpTG2, crosslinking inhibitors, R283 an R294 were used to 

block the crosslinking activity.  The concentration of gpTG2 stock solution was first 

adjusted to 0.995µg/ml containing 5mM of CaCl2 and 5mM of DTT and the active TG2 

mixture was allowed to be incubated for 5 minutes on ice.  500mM R283/R294 stock 

solution was used to minimise the volume change and the calcium bound active gpTG2 

was inhibited with a final concentration of 500µM of R283/R294 on ice for another 15 

minutes.  To avoid introducing excess inhibitor to the cell culture, inhibitor-treated gpTG2 

was underwent dialysis to remove unbound inhibitor.  Mini dialysis kit with 1kDa cut out 

point was used to clean up the inactive gpTG2.  According to the instruction, samples were 

loaded into conical bottom of the tubes.  The capped tubes were inserted into floats and 

then with the membrane down, the tubes were placed into a stirred beaker containing 

50mM Tris-HCl buffer (pH 7.4) dialysis solution.  Samples were allowed to be dialysed 

against Tris buffer for 2 hours at 4ºC and then recovered from the dialysis device by 

centrifuging. 

2.4 Cell Biological Behaviours 

2.4.1 Cell Proliferation- XTT Reduction 

The cell proliferations of HOBs, HCFs and HCECs with or without different treatments were 

measured at different time points by using Cell Proliferation Kit II (Roche Diagnostics Ltd., 

West Sussex, UK).  In brief, XTT labelling reagent and electron coupling reagent were 

mixed as manual instruction and 40µl of mixture was added to each well of 96- well plate.  
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Cells and XTT mixture were allowed to be cultured at 37°C in a CO2 incubator for 4 hours.  

Once incubation had finished, 100 µl of culture supernatant from each well was 

transferred to a new microplate and the resultant orange formazan solution was 

spectrophotometrically quantified using ELISA plate reader (absorbance wavelength: 

450nm and reference wavelength: 750nm). 

2.4.2 Mineralisation of HOB Cultures 

HOBs were subjected to different treatments for a 12-day period with regular change of 

medium every 2 days.  On day 12, Mineralised bone matrix, composed of hydroxylapatite 

(Ca10(PO4)6(OH)2), could be visualised using von Kossa staining where the silver ions 

replace calcium and form precipitation complex with phosphate group (Von Kossa, 1901).  

A modified protocol was used to determine the mineralisation of HOBs at day 12 post 

differentiation.  The samples were washed, fixed in 3.7% Paraformaldehyde for 30 minutes 

and further dehydrated in 70% ethanol for 1 hour.  Dehydrated samples were quickly 

washed with distilled water once.  After additional of 2% silver nitrate, samples were 

exposed to UV light for at least 20 minutes, washed with distilled water for 5 times and 

then fixed with 5% sodium thiosulfate for 3 minutes.  Another washing with distilled 

water, samples were viewed at x40 magnification using a Nikon CK2 microscope.  At least 

12 fixed-size, non-overlapping, random fields from each sample were photographed with 

an Olympus DP10 digital camera.  The images were converted into negative images and 

the mineralised area was quantified by using Image J software. 
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2.4.3 Evaluating ALP Hydrolysis Activity During HOBs Mineralisation 

HOB cells cultured directly on tissue culture plate or seeded on collagen matrices were 

allowed to attach to the surface for at least 24 hours before switching to differentiation 

medium (DM).  DM was changed every 2 days, and 24 hours prior sample collection, the 

medium was changed to serum-free DM.  The cultured medium collected at different time 

points were used to determine the release of ALP in the medium and the remained cell 

layer was reserved for testing anchored ALP activity. 

ALP activity was quantified by hydrolysis of p-nitrophenyl phosphate (pNPP, Sigma–

Aldrich) reaction mixture as described in Chapter III.  For analysis of released ALP activity, 

50µl of cell culture medium collected from each group was directly admixed with pNPP 

substrate.  For analysis of anchored form ALP, the cell layer was first washed with PBS, 

replaced with 50µl of fresh medium and directly interacted with pNPP substrate solution.  

The change in absorbance at 405nm was monitored over 20 minutes at 37°C.  The ALP 

activity was expressed as ΔA/min or mU (1 U reflects 1 µmole of product 

formed/minute)/cm2 culture area. 

2.4.4 Determination of Cell Number in 3D Collagen Gel Using 

Multiphoton Microscope 

hCFs were seeded on collagen matrices at the density 3,000 cells/well in a 96-well plate 

format.  The culture medium was changed once at 48 hour and after total 72-hour 

incubation, the cell containing collagen gels were washed with PBS (pH 7.4) twice and 

fixed with 3.7% PFA/PBS (pH 7.4) for 15 minutes.  After fixation, the samples were 

carefully lift from the 96- well plate, placed on the glass slide and a drop of VECTASHIELD® 

HardSet™ Mounting Medium with DAPI (Vector Laboratories LTD, Peterborough, UK) was 

added directly to the samples. 
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Samples were viewed and the images were acquired using Leica TCS MP5 multiphoton 

microscope.  The two photon excitation wavelength used was 785nm and the emission 

bandwidth was set between 395nm to 498 nm.  At least 3 areas were chosen in each 

sample which was repeated in triplicate and an 880µm size depth was scanned at a z-step 

size of 4µm.  3D projection and cross-sectional images of each series of scanning were 

generated using the LAS AF software.  The projected images were further analysed in 

ImageJ for the average cell density on each matrix. 

2.4.5 Migration of hCFs on 3D Collagen Gel 

Cell migration was determined using Boyden assay system.  A transwell protocol adapted 

from Marshall (2011) used modified and used in this study.  As illustrated in Fig.2.1, the 

polycarbonate membrane transwell inserts with 8µm pore size in 24-well plate format 

were coated with NC or TG2 gel at approximately 1.5mm in thickness.  Gels were allowed 

to settle overnight at 37 ºC and the hCFs were seeded at 156 cells/mm2 initially.  In the 

upper chamber, the serum free DMEM culture medium was used and, in order to generate 

chemo-attraction, 10% FBS/DMEM was added into lower chamber.  hCFs were allowed to 

migrate in transwell system for 48 hours.  After incubation, the serum free medium and 

the matrices were carefully lifted from transwell without disturbing the membrane.  The 

cells remained on the upper chamber side of membrane were removed using cotton swab 

and the cells attached to the lower chamber side of membrane were visualised using 

modified Romanowsky staining (Horobin and Walter, 1987).  A commercialised product, 

Diff-Quik® Stain Set (Siemens Healthcare Diagnostics, Surrey, UK), was used and in short, 

the membrane was dipped into fixative solution (Fast green in methanol) for 30 seconds, 

then transferred to Stain solution I (Eosin G in phosphate buffer) for 30 seconds and finally 

stained with Stain solution II (Thiazine dye in phosphate buffer) for 30 seconds.  The 

membranes were allowed to drain and washed with distilled water once in between 
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staining.  The stained membranes were cut out from the insert and placed to glass slide 

with the cells side facing up.  The slides were viewed using a Nikon CK2 microscope.  At 

least 7 fixed-size, non-overlapping, random fields from each sample were photographed 

with an Olympus DP10 digital camera and the cell count was performed using Image J 

software. 

 

Figure 2.1 Illustration of transwell migration assay.  6.5mm Transwell® with 8.0µm Pore Polycarbonate 

Membrane Insert (Corning) was inserted into 24-well plate.  An extra layer of collagen or crosslinked 

collagen was added on the top of membrane and hCFs were seeded on the gel.  The chemo-attraction 

generated by the 10% FBS/DMEM would encourage the migration of fibroblasts from upper chamber to 

lower chamber.  By the end of culture, the cell number on the membrane facing the lower chamber was 

analysed. 

2.4.6 CellPlayer™ 96-Well Cell Invasion assay 

2.4.6.1 Preparation of collagen coated plate and cell culture 

The day before the wound scratching assay, the 96-well plate was first coated with type I 

collagen.  Rat tail collagen I stock solution was diluted into proper concentration using 

0.017M acetic acid with stirring at 4ºC to make sure the collagen solution was dissolved 

completely.  Total 45µg/cm2 of collagen I was then added to a 96 well plate and the plate 

was incubated at 37ºC cell incubator for 1 hour.  After incubation, the collagen solution 

was discarded and the plate was washed with PBS (pH7.4) twice and equilibrated in 1X 

complete culture medium before use.  hCFs were trypsinised from the tissue culture flask 
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and seeded onto collagen coated 96i well plate at the density 8,000 cells/well.  Cells were 

cultured in 10% FBS/DMEM and allowed to form an even monolayer overnight in cell 

incubator. 

2.4.6.2 Scratch wound assay and collagen neutralisation 

Collagen gel and TG2 treated collagen gel were prepared as described before and the 

mixtures were centrifuge for 20 seconds at the top speed using a standard tabletop 

centrifuge to remove bubbles.  The neutralised collagen solutions were kept on ice to 

avoid polymerisation before use.  Once the collagen mixtures were ready, the 96- well 

plate with 90-100% confluence of hCFs was washed once with PBS (pH7.4) and the wound 

scratch was performed on cell layer using the 96-well WoundMaker™ (Essen BioScience, 

Ltd., Hertfordshire, UK).  The wounded cell layer was washed with single strength culture 

medium twice and recovered in culture medium for 5 minutes before the addition of 

collagen gel.  After recovery, the culture medium was carefully pipetted out from each 

well and 50µg/well of native collagen gel or TG2 crosslinked collagen gel was added on the 

top of wound cell layer to avoid bubble formation.  Polymerisation of collagen gel took at 

least 2 hour at 37 ºC.  Once the gel formed, complete medium was added to each well and 

the plate was placed into IncuCyte™ (Essen BioScience, Ltd., Hertfordshire, UK). 

2.4.6.3 Data collection and analysis 

In the IncuCyte™ software, the programme was set to scan 1 image per well, every hour 

for 24 hours.  The invasion of cells was determined by relative wound density (RWD) which 

was acquired using following equation: 
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w (t) = Density of wound region at time (t) 

c (t) = Density of cell region at time (t) 

The Relative Wound Density v1.0 algorithm was used to report the data and the average 

of %RWD from 4 different wells was plotted over the time points to generate a diagram.  

The real time-lapse movies from each well were also generated using the IncuCyte™ 

software. 

 

Figure 2.2 Illustration of cell invasion assay.  The plate was coated with a thin layer of collagen I protein 

before seeding cells.  Once the cell layer had reached 90-100% confluent, a wound scratch was generated 

using Essen®96-well WoundMaker™.  A layer of native collagen or crosslinked collagen gel was directly 

added to the wounded cell layer and culture medium was added after polymerisation of matrices.  Cells 

were allowed to incubate and monitored using Essen® IncuCyte™ for at least 24 hours.  Figure was adapted 

from CellPlayer™ cell invasion application note from Essen BioScience, Ltd. 

2.5 TG2 Crosslinked Collagen Matrices 

2.5.1 Type I Collagen Extraction 

Type I collagen was extracted from rat tail tendons following the same procedure used in 

published paper (Chau et al., 2005).  Briefly, tendons were isolated from freshly obtained 

rat tail, sterilised using 70% (v/v) ethanol for at least 2 hours and allowed to air-dry for 30 

minutes.  The dried tendons were dissolved in 0.017M acetic acid with stirring at 4ºC for 

48 hours.  Resulted collagen supernatant was centrifuged at 13,000×g for 1 hour at 4ºC to 

remove debris.  The dissolved type I collagen supernatant was collected and neutralised to 

pH 7.0 using 1M NaOH.  Neutralised collagen solution was allowed to be stabilised at 4ºC 

overnight with stirring.  After 16 hours incubation, solution was again centrifuged at 
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3,000×g for 20 minutes at 4ºC and resuspended in 0.017M acetic acid.  Finally 

concentration of collagen solution was determined using Lowry method described in 

Chapter II: section 2.  The type I collagen solution was stored and used within 1 month. 

2.5.2 Generating and Modifying TG2 Crosslinked Collagen Gel 

To fabricate three dimensional collagen scaffolds, collagen solution was mixed with 10X 

serum free DMEM at ratio 9:1 to make final concentration at 5mg/ml and further 

neutralised using 1M NaOH to minimise the change of the final volume.  All the 

modification of crosslinked collagen gel happened after neutralisation step.  For 

crosslinked collagen gel and BMP7 incorporated collagen gel, final concentration of 

10µg/ml TG2 (unless specific) and/or 2µg/ml of human recombinant BMP7 (Gibco®, 

Paisley, UK) were added in collagen mixture containing 5mM Dithiothreitol (DTT) and 

5mM CaCl2, pH 7.4 upon neutralising and before polymerising of collagen gel.  All collagen 

mixtures were allowed to polymerise at 37ºC overnight in cell culture incubator and 

washed with PBS twice before using.  

2.5.3 Determining Trapped TG2 in Crosslinked Matrices 

Collagen matrices were prepared for detecting the self incorporation of TG2 into collagen 

gel.  Four different groups were set up in this experiment including 5mg/ml of native 

collagen gel (NC), TG2 (10 µg/ml) crosslinked collagen gel, R283 pre-inhibited TG2 (10 

µg/ml) crosslinked gel and R294 pre-inhibited TG2 (10 µg/ml) crosslinked gel.  Inhibitors 

pre-treated TG2 was prepared.  Matrices were allowed to polymerise at 37 ºC for 16 hours.  

On the day of collection, solidified collagen gels were washed with 1X PBS (pH 7.4) three 

times and directly admixed with 5X Laemmli buffer and boiled in water at 100 ºC for 10 

minutes until the samples were all dissolved.  Electrophoresis on 7.5% SDS-PAGE gel was 

performed and further transferred to PVDF membrane.  Membrane was blocked in 5% 

dried milk in TBS-T and following mouse monoclonal TG2 (TG100, Thermo Scientific) 
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antibody was used at 1:1,000 dilution overnight at 4ºC.  With incubation of secondary anti-

mouse HRP conjugated antibody for 2 hours, the signal was visualised with Amersham ECL 

Western blotting detection reagents (GE Life Sciences). 

2.5.4 Analysis of Crosslinked Gel Surface Topography Using Scanning 

electron microscopy (SEM) 

After polymerisation, both native collagen gel (NC) and crosslinked gel (TG2) were first 

washed with single strength culture medium without serum and fixed with fixative 

solution which contains 2.5% glutaraldehyde and 1% potassium ferrocyanide in normal 

strength culture medium for 2 hours at 37°C.  Additional wash with serum free medium 

was performed and samples were freeze dried at a cycle of 50 hours till the matrices were 

completely dry.  The samples then were sputter-coated with carbon and ready for SEM 

observation.  Fibre diameters were measured at the middle of the longest perceptible part 

of the fibre.  Acquired pixels were converted to standard units (µm) of length 

measurements using SEM image scale bars.  At least 15 fibres were measured in each filed 

and 3 fields were analysed from each sample using Image J software. 

2.6 Statistical Analysis 

The Kolmogorov–Smirnov test was performed to determine the probability distributions in 

all individual data sets.  For experiments that had one independent variable across 3 or 

more experimental groups, an one-way ANOVA was used for statistical analysis.  For 

experiments that had one independent variable between two matched experimental 

groups, a paired t-test was performed for statistical analysis.  For experiments that had 

one independent variable between two sets of experimental groups, data sets were 

subjected to an unpaired t-test.  For experiments that had two independent variables 

across 3 or more experimental groups, a two-way ANOVA (Turkeys multiple comparisons 

test) was used for statistical analysis.  
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Tissue Transglutaminase in 
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1. Introduction 

Bone is a highly dynamic tissue which undergoes continuous remodelling processes in 

response to changes in the mechanical and physiological environment throughout the 

lifetime (reviewed by SC Marks, 2002).  The process of bone remodelling involves two 

reciprocal activities, resorption of bone matrix by osteoclasts and new bone formation by 

osteoblasts.  Osteoblasts arise from mesenchymal origins and orchestrate bone formation 

under the systemic regulation of hormones, cytokines and the extracellular 

microenvironment (Raggatt and Partridge, 2010).  

TGs have been implicated in bone development, matrix maturation, calcification and 

mineralisation in the past decades.  Both TG2 and FXIIIa expression were found in cartilage 

by hypertrophic chondrocytes (Aeschlimann et al., 1993, Aeschlimann et al., 1996, 

Nurminskaya et al., 1998, Johnson and Terkeltaub, 2005) and in MC3T3 pre-osteoblasts 

(Al-Jallad et al., 2006) while TG2 showed even wider expression across primary human 

osteoblasts (HOBs), human osteosarcoma cells HOS and MG-63 (Heath et al., 2001) and rat 

osteosarcoma cells (Kotsakis and Griffin, 2007).  Positive association between increasing 

TG2 expression and promotion of cell differentiation (Nurminskaya et al., 2003, Johnson 

and Terkeltaub, 2005) has been described in in vitro models.  However, the mechanism 

behind TG-mediated mineral deposition has not been well established.  Although most 

TGs functions are attributed to their enzymatic activity, TG2, as a multifunction protein, 

may exert its pro-mineralising activity in a transamidase activity-independent way under 

certain instances (reviewed in Lorand and Graham, 2003, Nurminskaya and Kaartinen, 

2006). 

The expression of TGs in physiological bone development indicated the appearance of TGs 

was related to chondrocyte hypertrophy and osteoblast mineralisation (Nurminskaya and 
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Kaartinen, 2006).  The importance of transglutaminase activity in mineralisation has also 

been demonstrated by Al-Jallad et al. (2006) who showed that the mineralisation of 

mouse pre-osteoblasts was blocked by using transamidase activity inhibitors in vitro, even 

though TG2/FXIIIa double knockouts mice have no abnormality observed in bone 

formation (Williams et al., 2010).  It is reasonable to hypothesise that TG-mediated 

differentiation could be transamidase activity-dependent since several bone matrix 

proteins are known to be TGs substrates, for example collagen I, fibronectin, and 

osteopontin (Mosher and Schad, 1979, Kaartinen et al., 1997, Kaartinen et al., 1999).  

Studies have indicated that these ECM protein assemblies, in the presence of TG2 could 

potentially participate in matrix stabilisation and especially cell adhesion processes 

(Verderio et al., 1998, Chau et al., 2005, Telci et al., 2008, Forsprecher et al., 2009, Wang 

et al., 2011).  Recent work suggests that mineralisation induced by TG crosslinking activity 

may involve a complex interplay between extracellular matrix proteins and local 

adjustment of calcium concentration in mineral tissue (reviewed in Nurminskaya and 

Kaartinen, 2006). 

Another question is whether TG2 and/or FXIIIa crosslinking activities are critical for 

mineralisation.  Al-Jallad et al. (2006) have shown the importance of TG activity in 

mineralisation by using TG activity inhibitors to abolish mineralisation in a mouse pre-

osteoblast model.  Regardless of the expression of TG2 on osteoblasts, it was suggested by 

Al-Jallad and colleagues (2011) that FXIIIa was the dominant transglutaminase which 

contributed to cell surface transamidase activity and matrix deposition.  However, neither 

TG2 knockout mice nor FXIIIa knockout mice were reported to have skeletal or dental 

abnormalities.  This suggests that the enzymatic activity of each individual TG is not 

essential in bone formation or it is very likely that TG2 and FXIIIa can compensate each 

other in the genetic knockout mice (reviewed by Nurminskaya and Kaartinen, 2006).  The 



Page | 112  
 

compensation effect of TGs has been demonstrated in TG2 knock-out (TG2-/-) mice where 

the expression of FXIIIa in femurs of TG2-/- mice was increased (Tarantino et al., 2009).  

Furthermore, by studying the mRNA transcription levels of different TGs in different 

tissues from TG2-/- mice, Deasey et al. (2013) showed up-regulation of TG1 and induction 

of TG3 expression within the joint/ ossifying cartilage of TG2-/- mice.  TG1 and TG3 

compensation for the loss of TG2 expression may also explain the normal skeleton 

development in TG2/FXIIIa double knock-out mice (Williams et al., 2010). 

The aim of this chapter was to evaluate the TG expression and cell surface crosslinking 

activity during mineralisation by using different approaches.  First, the expression pattern 

of TG2 and FXIIIa in whole cell lysates were evaluated using Western blotting analysis.  

Secondly, the cell surface TG2 and FXIIIa activities were determined using in situ FITC- 

cadaverine or in vitro biotin- cadaverine incorporation assay with or without presence of 

TG activity inhibitors.  Finally, TG2 knockdown expression HOB cell lines were generated to 

study how TG2 activity is involved in osteoblast mineralisation. 
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2. Results 

2.1 Mineralisation of HOBs 

HOBs were cultured in complete medium (CM; 10% fetal bovine serum in Dulbecco's 

Modified Eagle Medium) or differentiation medium (DM; CM supplied with 50 µg/ml 

ascorbic acid and 10 mM β-glycerophosphate) for 12 days and the mineralisation was 

determined using von Kossa staining.  As shown in Fig. 3.1, HOBs cultured in CM displayed 

no visible mineral deposition on day 12 while cells cultured in DM showed positive von 

Kossa staining.  It suggested that 12-day differentiation treatment was an appropriate time 

frame to evaluate osteoblast mineralisation in vitro and this model would be used in all 

following experiment. 

 

Figure 3.1 Mineralisation of HOBs visualised by von Kossa staining.  HOBs cultured with complete medium 

(CM) or differentiation medium (DM) were subjected to von Kossa staining on day 12.  The mineral 

depositions were stained in black as indicated by arrows.  The scale bars represent 300 µµµµm. 

2.2 TG2 and FXIII protein expression in HOBs during mineralisation 

By monitoring the TG2 expression in whole cell lysates during the mineralisation process, 

it was found that TG2 levels steadily increased during the whole 12-day culture period (Fig. 

3.2A).  Although the expression of TG2 in the differentiation medium-treated group was 
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lower but not significant at the early stage (day 2), it was approximately 1 fold higher than 

in complete medium at day 12 (Fig 3.2B). 

 

Figure 3.2 Expression of TG2 in whole cell lysate as demonstrated using Western blotting.  Whole cell lysates 

were collected at time point 2 days, 6 days and 12 days post differentiation treatment and Western blotting 

was performed to analysis TG2 protein expression.  A representative western blot result from three 

individual experiments is shown in (A)  αααα-tubulin was used as loading control and normalised data were 

showed in chart (B).  The results represent mean values +/- SEM. from three individual experiments (n=3).  

Statistical analysis was carried out using the two-way ANOVA test (Turkeys multiple comparisons test) and 

the p-values corresponding to p<0.01 was presented with a *٭and p<0.0001 was presented with a ****.  

Low amounts of ~76kDa and ~51kDa FXIIIa fragments were observed in whole cell lysates 

during the entire culture period but a short fragment (<25kDa) was most abundant at all 

time points (Fig. 3.3A).  On the other hand, in conditioned medium, ~90kDa and ~51kDa 

fragments could be detected in HOBs cultured in both CM and DM at all time points and 

~76kDa fragments could be detected in conditioned medium from day 6 in DM treated 
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HOBs (Fig. 3.3B).  Also, a low but visible amount of ~80kDa fragment could be observed in 

DM group on day 12.  However, only the <25kDa fragments were majorly found in the 

biotinylated cell membrane fractions in both groups during mineralisation (Fig 3.3C). 

According to literature, full length FXIIIa (80 kDa) is activated by thrombin which cleaves 

the Arg37-Gly38 peptide bond and releases a 76kDa, transamidase-active subunit, FXIIIa 

(Chung et al., 1974).  Research also has suggested that this cleavage of FXIII mediated by 

thrombin could produce an enzymatic 51 kDa fragment and inactive 19 kDa fragment 

(Greenberg et al., 1988) by further proteolysis of FXIIIa.  In addition to thrombin, platelet 

acid protease (Lynch and Pfueller, 1988) and calpain (Ando et al., 1987) have been shown 

to activate FXIII by cleavage of the Arg37–Gly38 peptide in a similar manner to thrombin.  

Thus, the ~76kDa and ~51kDa FXIIIa fragments found in this experiment could represent 

enzyme-cleaved and active FXIIIa fragments.  Currently, no study reported ~90kDa and 

<25kDa FXIIIa fragments and their possible biological functions.  The anti-FXIIIa antibody 

used in this study was in antiserum form, therefore the ~90kDa and <25kDa FXIIIa 

fragments could be unspecific binding or represent unknown protein bound FXIIIa or 

cleaved FXIIIa fragments.  Although Al-Jallad et al. (2011) suggested a large FXIIIa pool 

could be found in membrane fractions of differentiated mice pre-osteoblast, no full length 

or active FXIIIa fragments were observed in biotinylated membrane protein fractions.  This 

could be due to different cells types and/or different membrane protein extraction 

methods used here and in Al-Jallad’s study.  Therefore, the results in Fig.3.3 showed that 

possible transglutaminase-active FXIIIa fragments and full length FXIIIa could be found 

mainly in cells culture medium but not whole cell lysate and membrane fractions during 

osteoblast mineralisation. 
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Figure 3.3 Detecting FXIII protein in whole cell lysate and conditioned medium using Western blotting.  

Western blotting was performed on whole cell lysate (A), conditioned medium (B) and cell membrane 

protein (C) collected on Day 2, Day 6 and Day 12 post treatment.  αααα-tubulin was used as loading control in 

whole cell lysate samples. 
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2.3 Inhibitory effect of TG inhibitors and cell toxicity 

In order to distinguish TG2 crosslinking activity from FXIIIa, a TG2 specific inhibitor, R294, 

and non-specific inhibitor (block both TG2 and FXIIIa), R283 were used in the following 

assay.  Samples were all treated with or without FXIIIa to activate the FXIII latent form.  

According to the results, R283 was a highly effective inhibitor of TG2 and FXIIIa, at all the 

concentrations used here (Fig. 3.4A). However, R283 was not able to block the crosslinking 

activity of Fibrogammin P as efficiently as purified FXIIIa protein.  This is possibly because 

Fibrogammin P is a human plasma-derived product and contains several excipients 

including human albumin and glucose.  This could potentially lower the inhibitory effect.  

On the other hand, R294 was a TG2-specific inhibitor at lower concentration (<250 µM) 

without significant inhibitory effect on FXIIIa (Fig. 3.4B). 

The cell toxicities of transglutaminase inhibitors were also determined before the using of 

inhibitors for a 24- hour culture period.  As showed in Fig. 3.5, although when R294 used in 

high dose (500 µM) showed significantly lower XTT reduction rate when compared to the 

DM group and the R283 (500 µM) at 48 hours, no significant cell toxicity was found at the 

end of the 96-hour culture period.  Therefore, this suggested that both inhibitors showed 

no significant cell toxicity to the HOBs and could be used during the differentiation 

process. 
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Figure 3.4 Inhibitory assay of inhibitors R283 and R294.  Inhibitory effect of (A) R283 and (B) R294 to TG2 

(100ng/well) and FXIIIa (100ng/well) determined using biotin cadaverine incorporation into N,N’-

dimethylcasein assay.  The samples were pre-treated with or without thrombin (TH) as described in Table 

2.4 before activity assay.  The background absorbance was subtracted from the absorbance value of 

samples.  The results represent mean values +/- S.D where n=3. 
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Figure 3.5 Proliferation of HOBs culture treated with crosslinking activity inhibitors.  HOBs were seeded at 

initial number of 24,000/well in a 96-well plate and treated with CM, DM, 250 µµµµM R283 in DM, 500 µµµµM R283 

in DM), 250 µµµµM R294 in DM and 500 µµµµM R294 in DM.  The proliferation was determined by XTT assay at 0 

hour, 48 hours and 96 hours after treatment.  The medium was changed every 48 hours.  The relative 

proliferation rate was acquired by normalising the absorbance of experimental groups with the CM group.  

Data represents mean value +/- SEM from 4 individual experiments (n=4).  Statistical analysis using the two-

way ANOVA test (Turkey’s multiple comparison test) and results showed that besides at 48 hours, no 

significant difference was found between groups at other time points. 

2.4 Cell surface/ECM transglutaminase mediated incorporation of FITC-

cadaverine into matrix  

In order to see if extracellular TG2 activity increased along with its expression in whole cell 

lysates during mineralisation process, the crosslinking activity of TGs in differentiated 

HOBs was determined.  An in situ method was used to demonstrate cell surface/ECM TG 

crosslinking activity in HOBs cell culture using FITC- cadaverine.  After 2 days (Fig. 3.6), 6 

days (Fig. 3.7) or 12 days (Fig. 3.8) differentiation treatment, HOB cell cultures were 

incubated with FITC-cadaverine with or without R283/R294 for 24 hours in serum free 

differentiation medium.  TG mediated incorporation of FITC-cadaverine into ECM was 

visualised using a confocal microscope. Incorporation of FITC signal could be detected in 

both samples treated in complete medium or differentiation medium during the 
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mineralisation period.  Slightly higher but not quantified signal could be found in DM 

group on day 2 (Fig.3.6) and day 6 (Fig 3.7) when compared to cells cultured in CM.  It 

could suggest that differentiated osteoblasts had higher crosslinking activity in 

extracellular environment (membrane and/or matrix).  Data was not subjected to 

quantification due to unspecific FITC-cadaverine precipitation on the sample slides which 

could not be completely removed during the washing step. 

On the other hand, partial, but not complete, inhibition of substrate incorporation could 

be observed while blocking both TG2 and FXIIIa activity with inhibitor R283 and blocking 

only TG2 activity with R294.  Although none of the inhibitors could abolish the crosslinking 

activity to baseline as in pure protein assay (Fig. 3.4), it might be because of some 

extracellular TG was potentially masked from inhibitors, for example the enzyme on the 

cell surface binding to tissue culture/matrix directly could be prevented from binding to 

inhibitors.  Therefore, it suggested that there would be a minimum crosslinking activity 

presenting in inhibitor-treated in vitro system which should be taken into consideration 

when evaluating data in the future.  However, judging from the different inhibition level 

between R283 and R294, greater inhibitions were found on day 2 cell culture treated with 

R283 suggesting a greater FXIIIa crosslinking effect was detected.  It could imply that the 

crosslinking activity might shift from FXIIIa dominated at earlier stage toward TG2 

dominated at later stage of mineralisation. 
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Figure 3.6 Cell surface/ECM crosslinking activity visualised using FITC cadaverine.  After 2-day culture in 

either CM or DM, cells were cultured in 0.1 mM FITC-cadaverine containing serum free complete medium 

and serum free differentiation medium with or without 250 µµµµM R283 or 250 µµµµM R294 for another 24 hours.  

The images were acquired by using Leica TCS MP5 multiphoton microscope where the incorporated FITC 

cadaverine is shown in green and DAPI staining is shown in blue.  The scale bar represents 10 µµµµm. 
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Figure 3.7 Cell surface/ECM crosslinking activity visualised using FITC cadaverine.  After 6-day culture in 

either CM or DM, cells were cultured in 0.1 mM FITC-Cadaverine containing serum free complete medium 

and serum free differentiation medium with or without 250 µµµµM R283 or 250 µµµµM R294 for another 24 hours.  

The images were acquired by using Leica TCS MP5 multiphoton microscope where the incorporated FITC-

cadaverine is shown in green and DAPI staining is shown in blue.  The scale bar represents 10 µµµµm. 
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Figure 3.8 Cell surface/ECM crosslinking activity visualised using FITC cadaverine.  After 12-day culture in 

either CM or DM, cells were cultured in 0.1 mM FITC-Cadaverine containing serum free complete medium 

and differentiation medium with or without 250 µµµµM R283 or 250 µµµµM R294 for another 24 hours.  The images 

were acquired by using Leica TCS MP5 multiphoton microscope where the incorporated FITC cadaverine is 

shown in green and DAPI staining is shown in blue.  The scale bar represents 10 µµµµm. 

2.5 Crosslinking activity of the cell surface TG2 and FXIIIa  

In order to quantify the crosslinking activity on the cell surface of differentiated cells, 

another method was used in the following experiment.  HOBs cultured in DM for 2 days, 6 

days and 12 days were first detached from culture plate, washed and suspended in serum 

free medium and then subjected to cell surface crosslinking activity assay using the biotin 

cadaverine incorporation method.  This assay was different from the previous in situ 
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system as the cells were detached from the tissue culture plate before assay, therefore, 

only membrane presenting but not extracellular (cell surface and matrix) TGs activity was 

assayed.  In order to activate the latent FXIII pool on cell surface, samples were pre-

activated with thrombin.  Thrombin activation of FXIII was first confirmed using human 

recombinant FXIII protein.  As shown in Fig. 3.9A, there was a 5-fold increase in 

crosslinking activity of FXIII by pre-treatment of thrombin (p<0.01) and a slight increase in 

TG2 activity was also observed after thrombin treatment.  This indicated that treating cells 

with thrombin could amplify the crosslinking effect of latent FXIIIa in osteoblasts.  In HOB 

cell samples, no significant difference in cell surface crosslinking activity was found 

between HOBs cultured in CM and DM during the 12-day culture.  It suggested that the 

cell surface crosslinking activity was not increased after cell differentiation and the 

increase in extracellular FITC-cadaverine incorporation (Fig 3.6, 3.7, 3.8) may resulted from 

trapped TG2 in the matrix. 

Thrombin treatment did not significantly alter cell surface TG activity of HOBs cultured in 

CM.  On the other hand, the cell surface TG activity of differentiated cells could be further 

activated by thrombin treatment at day 2 but not at day 6 and 12.  It suggested a presence 

of FXIII on cell surface at early stage of differentiation.  This effect could be further 

amplified after treating with thrombin such that differentiated HOBs showed higher 

crosslinking activity when treated with TG2 specific inhibitor (R294) than when treated 

with non-specific crosslinking inhibitor (R283) at day 2 (Fig. 3.9B).  This is consistent with in 

situ FITC-cadaverine incorporation assay that a significantly larger pool of latent FXIIIa 

appeared when osteoblasts were treated in differentiation medium at an early stage of 

mineralisation.  However, the cell surface crosslinking activity assay was only repeated in 

twice, further experiments would be necessary to conform this finding. 
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Figure 3.9 Cell surface crosslinking activity determined by biotin cadaverine incorporation assay as described in the Materials and Methods.  (A) TG2 and FXIIIa treated with or without 

thrombin were used as control to validate the assay each time.  The data represents mean values +/- S.D. from a representative experiment.  HOBs cultured in either CM or DM were 

harvested on day2 (B), day 6 (C) and day 12 (D) then seeded on fibronectin pre-coated plate with/without crosslinking inhibitors R283 or R294.  The crosslinking activity was verified by 

spectrophotometrically measuring incorporated biotinylated cadaverine.  The Y axis stands for equivalent amounts of TG2 (ng) in 1*10
5
 HOBs.  Data represents mean values +/- S.D. from 

a representative experiment with triplicate setting.  Statistical analysis was carried out using the one-way ANOVA test (turkey’s post test) and the p-values corresponding to P< 0.05 is 

represented with a *  and p<0.01 is represented with a †.  Yet, this experiment was repeated twice (n=2) and further experiments would be needed for complete statistical evaluation. 
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2.6 Generation of TG2 knockdown HOBs cell lines 

In order to understand the relationship between TG2 expression and mineralisation, TG2 

expression knockdown HOBs were generated for study.  PLKO.1 vector backbone inserted 

with non-mammalian target shRNA was used as a control and commercially available TG2 

shRNA plasmids,TG2 MISSION® shRNA Plasmid DNA (shRNA 239, 240, 241 and 243, Sigma-

Aldrich, Poole, UK), were used to generate stable TG2 knockdown cell lines.  PLKO.1 

vectors contain puromycin resistance gene for mammalian selection and 500 ng/ml of 

puromycin was chosen as selective concentration for transfected HOBs according to cell 

toxicity assay (Fig. 3.10). 
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Figure 3.10 Determining cell toxicity of puromycin using XTT assay.  HOBs were cultured in 0, 0.125ng/ml, 

25ng/ml, 50ng/ml, 125ng/ml, 250ng/ml, 500ng/ml, 1µµµµg/ml, 2µµµµg/ml or 4µµµµg/ml of puromycin /DMEM for 48 

hours and XTT assay was performed.  Data represents mean value +/- SEM, from 3 experiments (n=3). 

HOBs transfected with shRNA 239 (HOB-239), shRNA 240 (HOB-240), shRNA 241 (HOB-

241), shRNA 243 (HOB-243) and shRNA Control Plasmid (HOB-SHC) were selected out by 

treating with 500ng/ml puromycin.  The expression of TG2 and FXIII were detected using 

Western blotting as shown in Fig. 3.11.  The TG2 expression was knocked down in HOB-
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239, HOB-241 and HOB-243 but not in HOB-240.  However, a greater reduction of TG2 

expression was found in HOB-SHC cells compared to wild type HOBs.  Giving the fact that 

although TG2 expression decreased in HOB-SHC cell culture, HOB-239 and HOB-241 still 

presented approximately 60% and 90% of reduction in TG2 expression when compared to 

HOB-SHC. 

Furthermore, the overall FXIII expressions, full length and 76 kDa were found up-regulated 

in all the transfected cells compared to wild type HOBs (Fig. 3.11 C).  It suggested that up-

regulation of FXIIIa compensated the loss of TG2 in this model.  This is consistent with 

studies done by Tarantino et al. (2009) and Deasey et al. (2013) that loss of TG2 was 

compensated by increased FXIIIa in TG-/- mice.  However, the quantification of TG2 and 

corresponding FXIIIa expression in knockdown HOBs was only done once, further 

experiments would be needed to validate this finding was statistically significant. 

 
Figure 3.11 Expression of TG2 and FXIII in TG2 knockdown HOB cell lysates as demonstrated using Western 

blotting.  (A) Whole cell lysates were collected from wild type HOBs (WT), shRNA 239 transfected HOBs 

(HOB-239), shRNA 240 transfected HOBs (HOB-240), shRNA 241 transfected HOBs (HOB-241), shRNA 243 

transfected HOBs (HOB-243) and shRNA control plasmid transfected HOBs (HOB-SHC) cell culture and 

Western blotting was performed to analyse TG2 and FXIIIa protein expression as described in the Materials 

and methods.  αααα-tubulin was used as a loading control and normalised expression of TG2 and both 80kDa 

and 76kDa FXIII fragments were shown in chart (B) and chart (C) respectively. 
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2.7 Mineralisation of TG2 knockdown HOBs 

 

Figure 3.12 Mineralisation of HOBs visualised by von Kossa staining as described in the Materials and 

Methods.  Wild type HOBs (A, E), vector transfected control cell line: HOBs-SHC (D, H) and TG2 knockdown 

HOBs: HOBs-239 (B, F) and HOBs-241 (C, G) cultured on tissue culture plate were treated with DM (A, B, C, D) 

or 1µµµµg/ml of    gpTG2 in DM (E, F, G, H).  After 12 days, samples were fixed and von Kossa staining was 

performed.  Samples were viewed at ×40 magnification using a Nikon CK2 (10× objective) and photographed 

with an Olympus DP10 digital camera (4× optical zoom).  The mineral deposition is stained in black.  The 

scale bars represent 100µµµµm. 
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The mineralisation of TG2 knock down cells was determined in order to further assay the 

mineralisation ability of TG2 knockdown cells and test if adding back exogenous gpTG2 

could recover the effect of reduced TG2 expression.  The TG2 expression knockdown cell 

lines, HOBs-239 and HOBs -241, cultured with or without exogenous TG2 were subjected 

to mineralisation assay on day 12.  According to the von Kossa staining (Fig. 3.12), 

mineralisation occurred in all cell lines grown in differentiation medium.  It suggested that 

knockdown of endogenous TG2 did not affect cell mineralisation.  Even though no 

significant association was found between endogenous TG2 levels and mineralisation (Fig. 

3.13A), exogenous TG2, surprisingly, improved cell mineralisation in a significant manner.  

The exogenous TG2-induced mineralisation could be observed in both wild type and TG2  

knockdown cells with an approximately 2 to 3 fold increase compared to non-treated one 

(Fig. 3.13B). 

 
Figure 3.13 Relative mineralisation of HOBs culture.  The mineralised area was visualised by using von Kossa 

staining and the percentage area of positive staining was quantified by image J.  The diagram represents the 

mean values ±SEM of mineralised area where n=3.  In diagram (A), the statistic analysis was carried out 

using the one way ANOVA (Dunnett’s multiple comparison test).  No significant difference was suggested 

between wild type HOBs and TG2 knockdown HOBs.  In diagram (B), the statistical analysis was carried out 

using the paired t test.  Exogenous TG2 enhanced mineralisation in both wild type and TG2 knockdown 

HOBs.  The p-values <0.05 are presented with a *  and the p-values <0.01 are presented with a ** . 
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3. Discussion 

The aim of this study was to understand the transglutaminase expression, both TG2 and 

FXIIIa, during mineralisation and evaluate the relationship between crosslinking activities 

and expression of enzymes in osteoblast differentiation using several approaches including 

functional inhibitors and gene silencing techniques. 

The expression of full length TG2 analysed by Western blotting was found to steadily 

increase during mineralisation.  This finding was in contrast with previous works which 

suggested that the TG2 protein expression (Al-Jallad et al., 2006) and mRNA level (Piercy-

Kotb et al., 2011) remained constant after differentiating.  On the other hand, it was also 

demonstrated that FXIIIa was detected in HOBs culture during mineralisation and the 

transglutaminase active fragments of FXIIIa distributed mainly in conditioned medium but 

not in whole cell lysates and membrane protein factions.  However, according to cell 

surface crosslinking activity, a clear shift from TG2 dominated crosslinking activity to FXIIIa 

dominated crosslinking activity was observed on osteoblast cell surface 2 days after 

treating with differentiation medium.  This finding supported the model proposed by Al-

Jallad et al. (2011) that expression of FXIIIa on cell membrane occurred only after inducing 

differentiation and this membrane FXIIIa was suggested to be involved in collagen I 

secretory machinery. 

Another trend observed in in situ crosslinking activity was that differentiating osteoblasts 

had mainly TG2 oriented activity in later stages of mineralisation.  According to cell surface 

TG activity assay, there was no significant difference in cell surface crosslinking activity of 

differentiated cells and non-differentiated cells during mineralisation, therefore, the 

increase in FITC-cadaverine incorporation observed in differentiated cell culture may have 

resulted from TG2 trapped in the ECM.  Many studies have showed that the interaction 
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between collagen I and fibronectin in the extracellular matrix is important for a more 

stable matrix formation (McDonald et al., 1982, Dzamba et al., 1993, Shi et al., 2010).  This 

could imply that TGs activity plays a critical role in stabilising the extracellular matrix.  

Although type I collagen could act as a FXIIIa substrate in vitro (Mosher, 1984), no further 

study suggested that crosslinking of collagen I by FXIIIa was found in cell culture systems 

(Barry and Mosher, 1989).  Hence, it would be reasonable to assume that TG2 dominated 

crosslinking activity at later stages of mineralisation could directly contribute to matrix 

stabilisation considering TG2 has a wider range of substrates compared to FXIIIa (Mosher 

and Schad, 1979, Mosher, 1984, Aeschlimann et al., 1995, Kaartinen et al., 2005). 

In this chapter, the correlation between the expression of TG2 and osteoblast 

mineralisation was also examined using TG2 knockdown cells.  Mineralisation assay of TG2 

knockdown cell lines showed that, even with lower endogenous TG2 expression, 

knockdown of TG2 in osteoblasts had no effect on mineralisation.  Since the TG2 

expression was not completely knocked down in the HOBs in this system, the possibility 

that minimum TG2 expression and/or crosslinking activity was sufficient for osteoblast 

mineralisation cannot be ruled out.  Furthermore, the notion that expression of one TG 

isoform could be compensated by other members of the TG family was supported by an 

up-regulation of FXIIIa expression that was observed in TG2 knockdown osteoblasts.  This 

was also consistent with the data that TG2 or FXIIIa or TG2/FXIIIa knockout mice displayed 

no skeletal or dental abnormalities, possibly due to the compensation between TG2, FXIIIa 

and other TGs expression (Nurminskaya and Kaartinen, 2006).  Therefore, the knockdown 

models had their own limitation to study the role of TGs in mineralisation and the 

development of TG2/FXIIIa double knockout model in the future may not be sufficient 

enough to understand how TGs participate in bone development and formation. 
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An unexpected result, however, was that HOBs cultured with exogenous TG2 could 

enhance mineral deposition in both wild type and TG2 knockdown osteoblasts.  Along with 

increasing TG activity observed in situ, these data implied that extracellular TG2 could 

contribute to cell mineralisation.  Several pathways have been proposed for how TG2 

mediates osteoblast mineralisation via transamidating dependent and independent 

mechanisms.  First, TG2 is recognised as a matrix stabiliser and TG2 crosslinked matrix is 

known to increase cell adhesion and HOB proliferation (Chau et al., 2005).  Therefore, a 

matrix stabilised by TG2 could enhance HOB mineralisation by accelerating HOB 

maturation from the proliferation stage to the mineral deposition stage.  Also, 

extracellular TG2 is proposed to contribute to mineralisation through transamidase activity 

independent pathways, mostly likely through ATPase activity (Nakano et al., 2007, Nakano 

et al., 2010) or activation of β-catenin pathway (Faverman et al., 2008). 

Thus, taking these results and the current study into account, a proposed model of TGs in 

cell mineralisation is summarised in Fig. 3.14.  An early increase in membrane FXIIIa after 

treating with DM could be involved in the type I collagen secretion pathway (Al-Jallad et 

al., 2009).  Meanwhile, the matrix organisation and stabilisation process involving both 

FXIIIa and TG2 activity in which the accumulating TG2 in ECM and increasing active FXIIIa 

in medium during mineralisation could modify fibronectin and collagen I fibres.  In 

particular, the localised TG2 in the ECM, compared to FXIIIa in medium, plays a major role 

in crosslinking ECM proteins in later stages of the mineralisation process as demonstrated 

by the in situ FITC incorporation assay.  TG2 may also interact with integrins and syndecans 

which further activate adhesion and proliferation signalling with or without binding of 

ligand to integrins (Wang et al., 2010).  Extracellular TG2 has also been found to interact 

with LRP5 receptors, which consequently activate β-catenin signalling and the canonical 

Wnt pathway (Faverman et al., 2008).  Finally, TG2 is also proposed to behave as an 
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ATPase after MMP cleavage and contribute to mineralisation by regulating extracellular Pi 

concentration (Nakano et al., 2007, Nakano et al., 2010).  In the following chapters, the 

role of extracellular TG2 in mineralisation will be discussed in more detail. 

 

Figure 3.14 A putative scheme of current studies in extracellular TG2 and osteoblasts mineralisation.  (I) 

Presenting of membrane FXIIIa crosslinking activity is stimulated by differentiation medium and it is related 

to collagen I (COL I) secretion.  (II) Membrane and matrix TG2 activity mediates crosslinking of ECM proteins.  

(III) Extracellular TG2 enhances cell adhesion and proliferation via integrin and syndecans.  (IV) Binding of 

TG2 to LRP5 on cell surface triggers osteogenesis gene transcription.  (V) Cleavage of TG2 by MMPs increases 

ATPase activity of TG2 and further regulates the Pi concentration. 
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1. Introduction 

Immunohistochemistry of mammalian mineralized bone tissue showed that TG2 was 

highly expressed not only in osteoblasts located in the perichondrium/periosteum area 

during bone development but also in borderline chondrocytes which are located at the 

advancing edges of the growth plate (Nurminskaya and Kaartinen, 2006).  In fact, 

increasing data has shown that exogenous TG2 could promote pre-osteoblast 

differentiation (Nurminskaya et al., 2003), chondrocyte maturation to hypertrophy 

(Johnson and Terkeltaub, 2005) and calcification of vascular smooth muscle cells  (VSMCs) 

(Faverman et al., 2008). 

TG2 is a multifunctional enzyme whose function is regulated by levels of Ca2+/ nucleotides 

(Lai et al., 1998, Liu et al., 2002) and MMP proteolysis (Belkin et al., 2001, Belkin et al., 

2004) in its microenvironment.  Although the importance of transamidase activity of TGs 

was demonstrated by Al-Jallad et al. (2006), further studies suggested that it was a FXIIIa 

dependent pathway rather than a TG2 mediated effect (Al-Jallad et al., 2009, Al-Jallad et 

al., 2011).  Given the fact that TG2 enzymatic activity may not play a dominant role in 

mineralisation and its activity is transient in non-reducing microenvironments, it is 

reasonable to assume that TG2 also regulates bone mineralisation in a non-transamidating 

dependent manner.  In this chapter, two hypotheses were examined: that TG2/ATPase 

regulates mineralisation and that TG2 stimulates the LRP5/ Wnt/ β-catenin pathway. 

ATPase activity of TG2 

Local phosphate (Pi)/ pyrophosphate (PPi) ratio is suggested to play an active role in 

regulation of physiological and pathological mineralization.  Several enzymes are 

recognised to regulate Pi and PPi concentration extracellularly including tissue non-specific 
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alkaline phosphatase (TNSALP) and plasma membrane Ca2+ ATPase1 (PMCA1).  The 

concept of TG2 involved in regulating Pi levels via its ATPase activity was first raised by 

Nakano et al. (2007).  It was suggested that ATP could induce mineral deposition in a 

similar way to conventional β-GP treatment by serving as an alternative source of 

phosphate groups.  This ATP-induced mineralisation was not affected by TNSALP inhibitor 

but was affected by PMCA inhibitor and TG2 crosslinking inhibitor.  Yet the release of Pi 

from ATP was not suppressed by PMCA inhibitor but was by TG2 inhibitor as 

demonstrated in the same study.  Therefore, Nakano et al. proposed that PMCA1 could 

contribute to mineralisation by pumping calcium to ossified sites and TG2 could act as an 

ATPase in the ECM.  This hypothesis was further expanded by the same group in which 

they showed that MTI-MMP may act as a modulator to activate the pro-mineralization 

function of TG2 (Nakano et al., 2010). 

LRP5/ Wnt/ β-catenin pathway 

Canonical Wnt signalling (Fig 3.1) is suggested as a major pathway to control osteoblast 

differentiation and bone formation in differentiated osteoblasts.  The Wnt/β-catenin 

signalling pathway controlled by LRP5 in bone mass regulation has been widely 

investigated.  Loss-of-function and gain-of-function mutants of LRP5 showed osteoporosis 

and high bone mass phenotypes, respectively, in human diseases (Gong et al., 2001, 

Boyden et al., 2002, Little et al., 2002b).  As seen in Fig. 4.1, under resting conditions, a 

degradation complex forms which comprises two scaffold proteins: Axin and adenomatous 

polyposis coli (APC) and two degradation complex kinases: glycogen synthase kinase 3 

(GSK3) and casein kinase 1α (CK1α).  This complex mediates the phosphorylation of β-

catenin and results in ubiquitination of β-catenin by β-transducin repeat-containing 

protein (β-TrCP).  The ubiquitinated β-catenin is subsequently degraded by the 26S 

proteosome.  Upon Wnt binding to Frizzled and co-receptors LRP5/6, the Dishevelled (Dvl 
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or Dsh) protein is recruited to the plasma membrane and it further aggregates axin to the 

LRP5/6 cytoplasmic tail.  Sequestration of axin by LRP receptors leads to inhibition of β-

catenin degradation complex and thus increases the accumulation of β-catenin and its 

translocation to the nucleus.  Once β-catenin is translocated to the nucleus, it competes 

with Groucho family protein, a transcriptional repressor, from binding to lymphoid 

enhancing factor (LEF) and T-cell factor (TCF) and acts as a transcriptional co-activator to 

modulate downstream gene expression (reviewed by Angers and Moon, 2009). 

Wnt canonical signalling is tightly regulated by Wnt proteins and/or Wnt signalling 

partners.  Several endogenous and synthetic inhibitors targeting different components in 

the Wnt canonical pathway are well studied, including Dickkopf (Dkk), secreted Frizzled-

related protein (sFRP), Wnt inhibitory factor (WIF), XAV939 compound, IWR compound 

and pyrvinium.  XAV939 is a synthetic small molecule which can inhibit tankyrase (TNKS).  

The inhibition of TNKS activity results in prolonging the half life of axin and stabilisation of 

the axin/ APC/ GSK3α/β complex which consequently increases β-catenin degradation. 

The interaction of TG2 and LRP5 was first reported by Faverman and co-workers (2008).  

They demonstrated binding of exogenous TG2 to cell membrane LRP5 and subsequent 

activation of β-catenin signalling including translocation of β-catenin to the nucleus.  

Another cell membrane receptor, N-Cadherin, was also related to osteoblast 

mineralisation and β-catenin signalling.  It was suggested that N-cadherin sequestered β-

catenin at the cytoplasmic membrane by direct protein interaction thus inhibiting WNT 

signalling.  Also, it was recently found that N-cadherin could negatively regulate β-catenin 

signalling via interaction with the LRP5 receptor (Marie, 2009). 
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Figure 4.1 The current model of the Wnt canonical pathway implies that binding of Wnt to LRP5 and Frizzled 

leads to recruitment of axin to LRP5, inhibition of GSK-3β, decrease in phosphorylation of β-catenin and 

subsequent translocation of β-catenin into the nucleus where it activates TCF/LEF transcription factors and target 

genes.  In the absence of Wnt-signal, β-catenin is targeted for degradation mediates by formation of the 

APC/Axin/GSK-3β-complex.  Phosphorylation of β-catenin by CK1 and GSK-3β leads to its ubiquitination and 

following proteasomal degradation.  ββββ-TrCP- ββββ-transducin repeat-containing protein, CK1- Casein kinase 1, Dvl (or 

Dsh) - Dishevelled-1, FRAT- Frequently rearranged in advanced T-cell lymphomas, LEF- Lymphoid enhancing 

factor, TCF- T-cell factor and ub- ubiquitin. 

Therefore, the aim of this chapter was to examine current hypotheses of how extracellular 

TG2 contributes to mineralisation.  To address this goal, first, the involvement of TG2 

crosslinking activity in HOB mineralisation was determined.  Secondly, the possibility of 

enzyme-mediated TG2 cleavage in osteoblast cell culture and its relationship with 

mineralisation were examined and collagenase and gelatinase profiles of differentiated 

HOBs was also analysed.  Finally, the expression and interaction of TG2 and LRP5 were 

examined and the activation of downstream pathway was further evaluated using 

immunohistochemical and β-catenin inhibitor, XAV939.  
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2. Results 

2.1 Mineral deposition of HOBs treated with crosslinking inhibitors  

The expression of endogenous TG2 as well as extracellular crosslinking activity increased 

during the mineralisation were demonstrated in previous chapter, however, TG2 

knockdown HOBs showed no effect on mineralisation and it was plausible that up 

regulation of FXIIIa expression compensated for the loss of TG2.  In order to understand 

whether the crosslinking activity of endogenous TG2 was essential for mineralisation, a 

TG2 specific inhibitor (R294) and a TG2/FXIIIa inhibitor (R283) were used to block the 

endogenous crosslinking activity during mineralisation.  Since both inhibitors showed no 

cell toxicity at working concentrations, HOBs were cultured with R283 or R294 

supplemented DM for 12 days and the mineralised area of HOBs was evaluated at the end 

point.  It appeared in Figure 4.2 that no mineral deposition was detected by von Kossa 

staining in negative control while there was positive staining in DM group.  Surprisingly, 

cells treated with inhibitors still presented positive von Kossa staining after 12 days 

culture.  Further analysis of the mineralised area from each group (Fig. 4.3) suggested that 

mineralisation was not inhibited when treated with non-specific inhibitor (R283) and TG2-

specific inhibitor R294.  This result indicated that crosslinking activity of transglutaminase, 

both FXIIIa and TG2, may not play a dominant role in HOBs mineralisation.  Nevertheless, 

the possibility that residual activity present in the cell/ECM was sufficient for 

mineralisation could not be ruled out. 
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Figure 4.2 Mineralisation of HOBs visualised by von Kossa staining.  HOBs cultured on tissue culture plate were treated with CM, DM, 250 µµµµM R283/DM, 500 µµµµM R283/DM, 250 µµµµM 

R294/DM or 500 µµµµM R294/DM.  After 12 days culture, samples were fixed and stained with silver nitrate to assay the mineralisation of HOBs on day 12.  Samples were viewed at x40 

magnification using a Nikon CK2 and photographed with an Olympus DP10 digital camera.  The mineral deposition was stained in black as indicated by arrow.  The scale bars 

represent 150µµµµm. 
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Figure 4.3 Mineralisation of HOBs culture measured by Von Kossa staining.  The percentage area of positive 

staining was quantified by using image J.  The diagram represents the mean values ±SEM of mineralised area 

from one experiment with 3 replicates.  This experiment has been repeated twice where further 

experiments are needed to confirm this finding is statistically significant. 

2.2 Existence of small TG2 fragments in ECM in HOBs cultured with inhibitors at 

the later stage of mineralisation  

The mineralisation of HOBs was not inhibited by blocking of endogenous TGs activity, in 

contrast, the mineralised area could be potentially higher in R294 inhibitor treated group 

and it requires further experiments to conform this increase was statistically significant.  

Base on this observation, in the following experiments, the possibility of endogenous TG2 

contributing to cell mineralisation via its ATPase activity was examined. 

As suggested by Nakano et al. (2007), ATP could be a resource of phosphate groups for cell 

mineralisation and TG2 might contribute in regulating the release of phosphates via its 

ATPase activity.  Several MMPs, especially membrane type-I MMP (MT1-MMP, MP14), 

were found to modulate the function of extracellular TG2 as part of a regulatory 

mechanism where the pro-mineralization function of TG2 is activated (Nakano et al., 2010).  

In this study, the TG2 expression in whole cell lysate and extracellular matrix was 

determined using Western blotting.  According to the results (Fig. 4.4), smaller TG2 
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fragments were observed in day 9 and day 13 cell/ECM lysate when cells were 

differentiated.  Interestingly, the TG2 fragments appeared earlier and in higher amounts 

when inhibitors, both R283 and R294, were added to cell culture.  There were three major 

fragments found between 50 to 75 kDa, which were only detected in differentiated cells 

and a higher molecular weight TG2 fragment (~90 kDa) was detected in all groups on day 9 

and mainly in CM groups on day 13.  It suggested that the possibility of enzyme mediated 

cleavage of TG2 was found in differentiated cells and when cells were treated with 

inhibitors.  There was no direct evidence to demonstrate that these TG2 fragments had 

ATPase activity.  However, accompanying the mineralisation results found in Fig. 4.2 that 

cells treated with transamidase inhibitors had higher mineral deposition, it is highly 

plausible that these TG2 fragments found in whole cell/ECM lysate could account for the 

increase in mineralised area found in inhibitor treated cells. 

To further confirm if these fragments were present in the conditioned medium (Fig. 4.5) 

and cell membrane protein (Fig. 4.6) fractions were collected and analysed using Western 

blotting.  As shown in Fig 3.5, faint but detectable small TG2 fragments were found in all 

DM treated groups from day 5 (Fig.4.5A, indicated by arrow head).  On day 9, TG2 

fragments, but not full length TG2, could be observed in all groups (Fig. 4.5B, indicated by 

arrow head) and ~75kDa TG2 could be detected in conditioned medium on day 13 in all 

groups (Fig. 4.5C, indicated by arrow).  On the other hand, full length TG2 was observed in 

differentiated osteoblast membrane at all time points (Fig.4.6, indicated by arrows) and 

the TG2 fragments could be detected as early as day 5 in inhibitor treated groups (Fig 

4.6A, indicated by arrow head) and in all groups on day 13 (Fig 4.6C, indicated by arrow 

head). 
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Figure 4.4 TG2 expression in whole cell/ECM lysate during mineralisation.  HOBs were cultured with CM (1), 

DM (2), 250 µµµµM R283/DM (3), 500 µµµµM R283/DM (4), 250 µµµµM R294/DM (5) or 500 µµµµM R294/DM (6). Samples 

were collected 5 days (A), 9 days (B) or 13 days (C) post-treatment and Western blot analyses were 

performed.  αααα-tubulin was used as loading control. 
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Figure 4.5 Secreted TG2 in conditioned medium during mineralisation.  HOBs were cultured with CM (1), DM 

(2), 250 µµµµM R283/DM (3), 500 µµµµM R283/DM (4), 250 µµµµM R294/DM (5) or 500 µµµµM R294/DM (6).  Culture 

medium was replaced by serum free culture medium 24 hours before specific collecting time points which 

were 5 days (A), 9 days (B) or 13 days (C) post-treatment and Western blot analyses were performed. The 

arrows indicate full length TG2 and the arrow heads indicate small TG2 fragments. 

 

Figure 4.6 Membrane presented TG2 during mineralisation.  HOBs were treated with CM (1), DM (2), 250 µµµµM 

R283/DM (3), 500 µµµµM R283/DM (4), 250 µµµµM R294/DM (5) or 500 µµµµM R294/DM (6).  Cell membrane protein 

fractions were collected on 5 days (A), 9 days (B) or 13 days (C) post-treatment using biotin labelled method 

and Western blot analyses were performed.  The arrows indicate full length TG2 and the arrow heads 

indicate small TG2 fragments.   
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2.3 Collagenase and gelatinase expression at the later stage of mineralisation 

As suggested by Nakano et al. (2010), MT1-MMP is one of the major enzymes to regulate 

the ATPase activity of TG2.  Therefore, to gain a general view on the collagenase and 

gelatinase profile of HOBs after differentiation, day 10 conditioned medium was subjected 

to collagen and gelatin zymography.  Fig 4.7A showed active collagenase fragments 

(approx. 42kDa) could be found in CM groups and inhibitor groups but not in the DM 

group.  According to the literature, these fragments could represent stable active MMP-1 

fragments cleaved by trypsin (Wilhelm et al., 1984, Grant et al., 1987).  On the other hand, 

the gelatin zymography (Fig 4.7 B) demonstrated the existence of active gelatinase 

fragments, again in CM groups and inhibitor groups but not DM groups.  The major 

gelatinase fragment was approximately 82 kDa with another minor 130 kDa fragment.  It is 

widely known that MMP-9 is secreted as a glycosylated 92 kDa precursor (Wilhelm et al., 

1989) and proteolytic cleavage of the zymogen by MMP-3 yields an active 82 kDa MMP-9 

enzyme (Ogata et al., 1992).  It has also been shown that MMP-9 exists as a monomer, 

homodimer, or as a complex with lipocalin/tissue inhibitor of metalloproteinase-1 (TIMP-1) 

in neutrophils (Kolkenbrock et al., 1996).  All these forms showed different levels of 

enzymatic activity after activation with thrombin (Kolkenbrock et al., 1996).  Here, the 

~82kDa and ~130kDa fragments observed could be active MMP-9 monomer and MMP-9 

(82kDa)/lipocalin (23kDa) /TIMP-1 (23kDa) complex respectively. 

TG2 mediated down regulation of gelatinase, for example MMP-9, has been reported in 

several cell lines after retinoic acid treatment, including monocytes, myoblasts and breast 

cancer cell lines.  This effect could be preserved in the presence of TG2 crosslinking 

inhibitors (Ahn et al., 2008).  Increasing TG2 expression in differentiated cells at later 

stages of mineralisation was previously shown in Chapter II.  Taking the collagenase and 

gelatinase profile and TG2 expression together, here a TG2 mediated change of enzyme 
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profile in differentiated osteoblasts was demonstrated.  However, there were no bands 

corresponding to either MMP-2 or MT1-MMP detected in day 10 conditioned medium 

which could be due to MT1-MMP/MMP-2 complex tending to tether on plasma 

membrane microenvironment (Toth et al., 2003). 

 

Figure 4.7 MMPs secreted by HOBs treated with inhibitors.  Collagen (A) and gelatin (B) zymography of HOBs 

cell culture supernatants following 10 days culture in CM, DM, 250 µµµµM R283/DM, 500 µµµµM R283/DM, 250 µµµµM 

R294/DM or 500 µµµµM R294/DM.  The enzymatic activity was visualised as clear bands on the gel which could 

be observed between 34kDa and 48kDa on collagen gel (A) and approximately 82kDa on gelatine gel (B).  

The digested areas are indicated by arrow heads. 
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2.4 Effect of ATPase inhibitors on mineralisation 

Here the importance of ATPase activity on mineralisation was demonstrated by treating 

HOBs with a general ATPase inhibitor, ATP-γ-s.  As shown in Fig 4.8, the mineralising 

process was significantly inhibited by ATP-γ-s at concentrations of 10 µM and 400 µM.  

Released ALP activity was also monitored during the whole mineralisation process.  In 

order to collect the conditioned medium from each group, the HOBs were maintained in 

inhibitor-containing serum free medium 24 hours before collection.  It was found that 

released ALP in conditioned medium was significantly lower after day 6 in HOBs treated 

with 200 µM and 400µM ATP-γ-s compared to control group.  And this effect was found to 

be concentration dependent from day 8 (Fig.4.9).  These results indicated that ATPase 

played an important role in mineralisation and possibly through both inhibiting ATPase 

and down regulating ALP activity of HOBs.  However, the possibility that ATP-γ-s in the 

conditioned medium was inhibiting ALP activity could not be ruled out.  In fact, Ciancaglini 

et al.(2010) have suggested that that ATP-γ-s showed non-specific effects on several 

targets including P2Y1 receptor. The ATP-γ-s treatment greatly inhibited ALP activity at 

high concentrations. Nevertheless, when used at 10 µM, the maximum inhibiting effect 

was less than 5% comparing to DM treated cells at the later stage of mineralisation.  In this 

case, 10 µM ATP-γ-s still demonstrated great inhibitory effect on mineral deposition which 

suggested that inhibiting ATPase activity was sufficient enough to block the mineralisation 

process.  Overall, this preliminary data showed the ATPase activity of HOBs could be 

essential in mineralisation process, yet, more experiments would be necessary to conform 

this finding is statistically significant.  
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Figure 4.8 Mineralisation of HOBs cultured with ATP-γγγγ-s for 12 days.  HOBs were cultured in differentiation 

medium with different concentration of ATP-γγγγ-s for 12 days.  Mineral deposition in extracellular matrix was 

stained in black using von Kossa staining and the mineralised area was quantified using Image J software.  

The chart represents the mean values ±SEM of mineralised area from one experiment with 3 replicates.  This 

experiment was repeated twice and further experiments would be needed to confirm that the observed 

inhibitory effect of ATP--γγγγ-s was statistically significant.  The scale bars represent 150µµµµm. 
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Figure 4.9 Released ALP activity in conditioned medium collected from HOBs culture with ATP-γγγγ-s during 

mineralisation.  Data represents mean values +/- S.D. from a representative experiment with 3 replicates.  

The experiment was repeated 2 times (n=2) and further experiments would be necessary to confirm the 

finding was statistically significant. 

2.5 Exogenous TG2-induced mineralisation in human osteoblasts cell culture in 

vitro 

Endogenous TG2 activity may not play a dominant role in osteoblast mineralisation, yet, 

the exogenous TG2 enhanced mineralisation of wild type and TG2 expression knockdown 

cells in vitro was demonstrated in the previous chapter and also a published study 

(Nurminskaya et al., 2003).  It suggested that TG2 in the extracellular environment may 

trigger an outside-in signal for cell mineralisation.  Here, the exogenous TG2 dependent 

effect on HOB mineralisation was demonstrated in Figure 4.10.  Cells cultured with 1µg/ml 

of exogenous TG2 were found to be highly mineralised at day 12 when compared with 

differentiation medium treated group.  An approximately 9 and 3 times increase in mineral 

area was observed in 1µg/ml of TG2 and 0.5µg/ml of TG2 treated group, respectively. 
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Figure 4.10 Mineral deposition of HOBs cultured with exogenous active TG2 in different concentrations for 12 days.  HOBs were cultured in differentiation medium with 1, 0.5 or 

0.25µµµµg/ml of gpTG2 (TG 1, TG 0.5 and TG 0.25) for 12 days.  Mineralisation of matrix was visualised using von Kossa staining where the mineral deposition was stained in black.  The 

actual mineralisation area was quantified by using image J and the results were further normalised with the DM groups from each individual experiment.  The average mineralisation 

area of the DM group from 3 experiments is 2.28± 0.37%.  The diagram represents mean values +/- SEM of fold change from 3 individual experiments (n=3).  Statistical analysis was 

carried out using the one way ANOVA (Turkey’s multiple comparison test) and the p-values corresponding to p<0.05 is represented with a 
†.

  Significant differences were observed in 

the negative control (CM) group compared with positive control (DM) group, 1µµµµg/ml TG2 group compared with CM group and 1µµµµg/ml TG2 group compared with positive control 

group (DM), .  The scale bars represent 200 µµµµm. 
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To further understand the exogenous TG2 induced mineralisation, one of the biomarkers, 

osteocalcin (OCN), was monitored after treatment of cells with exogenous TG2.  As shown 

in Figure 4.11, the TG2 group showed no significant difference in OCN secretion when 

compared with the DM group on day 2.  On the other hand, exogenous TG2 significantly 

decreased the level of OCN in conditioned medium at day 6 post treatment when 

compared to the DM group.  OCN is a non-collagenous bone matrix specifically secreted by 

differentiated osteoblasts.  Although there is no evidence to show that OCN is a TG2 

substrate, it has been suggested that OCN could bind to osteopontin (OPN) and 

consequently prevent crosslinking of OPN by TG2 (Kaartinen et al., 1997).  Here, the 

decreasing OCN in conditioned medium could result from more binding of OCN to other 

extracellular matrix proteins, which might be directly or indirectly mediated by crosslinking 

activity of exogenous TG2. 
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Figure 4.11 Released osteocalcin (OCN) in conditioned medium.  The releasing of OCN in the conditioned 

medium of HOBs cultured in complete medium (CM), differentiation medium (DM) or 1µµµµg/ml of TG2 in DM 

(TG2) was quantified using ELISA technique.  .  Samples were collected at 2 days and 6 days after treatment.  

The acquired OCN concentrations from ELISA kit were further normalised with the total protein (mg) 

measured from each sample.  Data represents mean values ± S.D. from one experiment with 2 replicates.  

The ELISA has been done twice, yet, further experiment would be necessary to conform the decrease 

observed was statistically significant. 
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Alternatively, the decrease in OCN secretion could be directly linked to the increase in 

mineralisation of TG2 treated HOBs cells since OCN has been demonstrated as a negative 

regulator of mineralisation, which could be linked to specific inhibition of crystal 

maturation (Ducy et al., 1996, Boskey et al., 1998).  Therefore, it was also possible that 

exogenous TG2 could down regulate OCN expression in osteoblasts thus increasing cell 

mineralisation. 

In order to distinguish whether this TG2-induced mineralisation was transamidase activity 

dependent or independent, inactive TG2 was generated by using crosslinking inhibitor 

R283 or R294.  Addition of R283 treated TG2 (TG2/R283) to HOB cell culture induced a 

significant increase in mineralisation when compared to the DM group. However, the fold 

change in mineral area was not as high as in the TG2 group (Fig. 4.12).  On the other hand, 

a higher, but not significant, difference in mineral deposition was observed in the 

TG2/R294 group when compared to the DM group.  This result implied that the 

transamidase activity of TG2 was involved in TG2 induced mineralisation.  However, the 

influence of conformational changes in TG2 when inhibitor is bound must be taken into 

account.  It is clear that multiple conformations of TG2 exist (Liu et al., 2002, Pinkas et al., 

2007), but very little is known about the biological relevance of each conformation.  

Conformational change could potentially mask binding sites within TG2 thus regulating the 

function of TG2 (reviewed by Park et al., 2010a).  Therefore, it was reasonable to suggest 

that the results obtained here could represent the importance of transamidase activity but 

also the conformation of the protein in exogenous TG2-induced mineralisation. 
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Figure 4.12 Mineralisation of HOBs cultured with inactive TG2 for 12 days.  HOBs were cultured in differentiation 

medium with 1µµµµg/ml of gpTG2 (TG2), R283 pre-treated TG2 (TG2/R283) or R294 pre-treated TG2 (TG2/R294) for 

12 days.  Mineral deposition in extracellular matrix was stained in black using von Kossa staining and the 

mineralised area was quantified using Image J software.  Data represents mean values +/- SEM from one 

experiment with 4 replicates.  This experiment was repeated in twice, yet, further repeats would be needed to 

conform the enhancement observed was statistically significant.  The scale bars represent 150µµµµm. 



Page | 154  
 

2.6 N-Cadherin, ββββ-catenin and LRP5 expression in early differentiation of HOBs 

Since the effect of exogenous TG2 induced mineralisation has been established here and 

in the literature, the possibility that extracellular TG2 serves as an outside-in signal 

through LRP5 receptors was examined.  The expression of related proteins, including LRP5, 

β-catenin, TG2 and N-cadherin, in HOBs during mineralisation was determined using 

Western blotting.  A 2 to 3 fold decrease in β-catenin and LRP5 expression from the 

baseline (CM) was observed as early as 4 hours after differentiation (Fig. 4.13).  The 

expression of both β-catenin and LRP5 were lower in differentiated cells at 4 hours post 

treatment but increased gradually, reaching the highest levels around 48 hours post 

differentiation and declining after this.  On the other hand, the expression of N-cadherin 

transiently increased in differentiated cells at 4 hours and gradually decreased from 24 

hours after differentiation (Fig. 4.14).  Interestingly, N-cadherin expression in HOBs 

showed a reciprocal relationship to the expression of β-catenin, LRP5 and TG2. 

A transient upregulation in N-cadherin expression was consistent with current studies in 

pre-osteoblast or osteosarcoma at early stages of growth factor or anabolic molecular 

treatment (Haÿ et al., 2000, Debiais et al., 2001, Delannoy et al., 2001).  A gradual 

decrease in N-cadherin expression during osteoblast mineralisation was also supported by 

recent findings that the mRNA level of N-cadherin decreased during differentiation in 

chondrocytes (Nurminsky et al., 2011).  Furthermore, the relationship found between N-

cadherin and β-catenin was also suggested in other research (Hay et al., 2009).  There is no 

clear evidence that TG2 may regulate N-cadherin expression or vice versa; however, 

elevation in LRP5/β-catenin signalling was observed on day 2, which suggested that an 

early activation of LRP5/ β-catenin could be important for osteoblast differentiation. 



Page | 155  
 

 

Figure 4.13  (A) Expression of ββββ-catenin and LRP5 in whole cell lysate as demonstrated using Western 

blotting.  Whole cell lysates were collected at time point 4 hours, 1 day, 2 days, 6 days and 12 days post 

differentiation treatment and Western blotting was performed to analysis ββββ-catenin and LRP5 protein 

expression.  αααα-tubulin was used as loading control and normalised data of ββββ-catenin (B) and LRP5 (C) were 

showed in chart. 

 

Figure 4.14 (A) Expression of N-Cadherin and TG2 in whole cell lysate as demonstrated using Western 

blotting.  After treating HOBs with DM for 4 hours, 1 day, 2 days, 6 days and 12 days, whole cell lysates were 

collected and Western blotting was performed to analysis N-cadherin and TG2 protein expressions.  αααα-

tubulin was used as loading control and normalised data are shown in chart (B) and (C). 
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2.7 Binding of TG2 to LRP5 receptor 

A possible relationship between TG2 and the LRP5/ β-catenin pathway was proposed by 

Faverman et al. (2008) and the hypothesis of binding of TG2 to LRP5 receptor was tested.  

As demonstrated by Western blot, the β-catenin pathway related proteins showed a 

transient increase in early cell differentiation.  Therefore, the following experiments 

focused on determining the presence of early LRP5/ β-catenin signalling in differentiated 

osteoblasts.  The colocalisation of TG2 and LRP5 proteins was examined by double 

immunohistochemical staining with TG2 and LRP5 antibodies (Fig. 4.15).  Colocalisation of 

these two proteins was found in all groups 24 hours post treatment which suggested a 

possible interaction between TG2 and LRP5 receptor.  However, this data may not 

represent direct physical contact of TG2 to LRP5.  Therefore immunoprecipitation was 

used to confirm the binding of TG2 to LRP5. 

As shown by Faverman and colleagues study (2008), TG2 could bind to LRP5 receptors and 

trigger the β-catenin pathway in vascular smooth muscle cells (VSMCs).  Here, the 

interaction between exogenous TG2 and LRP5 was demonstrated using Co-IP.  Fig. 4.16 

shows that binding of TG2 to LRP5 receptor could be observed as early as 4 hours post 

differentiation with exogenous TG2 treatment but not in HOBs cultured in CM.  Whilst the 

interactions of these two proteins was observed in all groups 24 hours post treatment, the 

signal decreased at 48 hours with only a weak interaction shown in CM group. 
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Figure 4.15 Localisation of LRP5 and TG2 proteins on cell surface of HOBs.  HOBs were seeded on 4 well microscope slide overnight in complete medium.  Following 24 hours 

incubation in complete medium (CM), differentiation medium (DM) or DM supplemented with 1µµµµg/ml of gpTG2 (TG2/DM), cells were fixed with 3.7% paraformaldehyde without 

permeabilisation.  The sample slides were double stained with anti-LRP5 (red) and anti-TG2 antibodies (green).  Colocalisation of LRP5 and TG2 is indicated with a white arrow.  The 

scale bar represents 10µµµµm. 
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Figure 4.16 Binding of TG2 to LRP5 receptor on human osteoblasts.  HOBs were cultured in complete 

medium (CM), differentiation medium (DM) or 1µµµµg/ml of gpTG2 in DM (TG2) for 4 hours, 24 hours or 48 

hours.  The Co-immunoprecipitaion was performed with anti-LRP5 antibody (H-105) and the binding of 

TG2/LRP5 was confirmed using Western blot analysis with anti-TG2 antibody. 

Although Co-IP using Anti-LRP5 antibody (H-105) and counter detecting TG2 (TG100 

antibody) protein showed that there was direct binding of these two proteins, no LRP5 

signal was detected when immunoprecipitation was performed using Anti-TG2 antibody 

(data not shown).  In this study TG100 antibody, which recognises a.a. 447-538 of TG2, 

failed to precipitate the LRP5/TG2 complex, possibly because the binding site for TG100 

antibody on TG2 is masked when TG2 is bound to LRP5.  In Faverman’s work (2008), Anti-

TG2 antiserum recognized full length gpTG2 (multiple epitope sites) and was used to pull 

down the LRP5/TG2 complex.  Also, In Zemskov’s paper (2007), mouse anti-TG2 mAb 4G3 

which has epitope site 1-165 was used to determine LRP1/TG2 colocalisation in vitro.  It 

was suggested that LRP1 might have a similar binding site to LRP5 (Belkin, 2011).  Even 

though there are no current data demonstrating the precise binding site(s) for TG2 on the 

LRP5 molecule, this result could indicate that a.a. 447-538 of TG2 was involved in binding 

to LRP5 receptor or masked because of conformation. 
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2.8 Activation of ββββ-catenin pathway by exogenous TG2 

In order to examine whether the β-catenin pathway could be activated via exogenous TG2 

binding to LRP5 receptor, HOBs were treated with differentiation medium with or without 

exogenous TG2 and the β-catenin was stained and visualised using immunohistochemical 

staining.  At 4 hours post treatment, cells grown in complete medium and differentiation 

medium showed low and mainly cytoplasmic membrane localised signal.  Interestingly, 

cells treated with gpTG2 showed more intense β-catenin staining which had a mainly 

cytosolic and nuclear localisation (Fig. 4.17).  48 hours after treatment, all groups showed 

β-catenin positive signal which was mainly cytoplasmic membrane located (Fig. 4.18).  

There was no significant colocalisation found between TG2 and β-catenin proteins. In 

contrast, polarisation of these two proteins was found where TG2 mainly distributed away 

from β-catenin protein 



 

Figure 4.17 Translocation of ββββ-catenin after exogenous TG2 treatment for 4 hours.  HOBs were seeded on 4 well microscope slide overnight in complete medium.

incubation in complete medium (CM), differentiation medium (DM) or DM supplement

permeabilised with 5% Triton X-100.  The sample slides were double stained with anti
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catenin after exogenous TG2 treatment for 4 hours.  HOBs were seeded on 4 well microscope slide overnight in complete medium.

incubation in complete medium (CM), differentiation medium (DM) or DM supplemented with 1µµµµg/ml of gpTG2 (TG2/DM), cells were fixed with 3.7% paraformaldehyde and 

.  The sample slides were double stained with anti-ββββ-catenin (red) and anti-TG2 antibodies (green).  The scale bar represents

 
catenin after exogenous TG2 treatment for 4 hours.  HOBs were seeded on 4 well microscope slide overnight in complete medium.  Following 4 hours 

g/ml of gpTG2 (TG2/DM), cells were fixed with 3.7% paraformaldehyde and 

TG2 antibodies (green).  The scale bar represents 10µµµµm. 



 

Figure 4.18 Translocation of ββββ-catenin after exogenous TG2 treatment for 48 hours.  HOBs were seeded on 4 well microscope slide overnight in complete medium

incubation in complete medium (CM), differentiation medium (DM) or DM suppleme

permeabilised with 5% Triton X-100.  The sample slides were double stained with anti
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catenin after exogenous TG2 treatment for 48 hours.  HOBs were seeded on 4 well microscope slide overnight in complete medium

incubation in complete medium (CM), differentiation medium (DM) or DM supplemented with 1µµµµg/ml of gpTG2 (TG2/DM), cells were fixed with 3.7% paraformaldehyde and 

.  The sample slides were double stained with anti-ββββ-catenin (red) and anti-TG2 antibodies (green).  The scale bar represents

 
catenin after exogenous TG2 treatment for 48 hours.  HOBs were seeded on 4 well microscope slide overnight in complete medium.  Following 48 hours 

g/ml of gpTG2 (TG2/DM), cells were fixed with 3.7% paraformaldehyde and 

TG2 antibodies (green).  The scale bar represents 10µµµµm. 
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2.9 Inhibition of the ββββ-catenin pathway abolishes exogenous TG2 induced 

mineralisation  

Since early stimulation of the β-catenin pathway could be one of the mechanisms behind 

TG2-induced mineralisation, here a β-catenin pathway inhibitor, XAV 939, was tested to 

determine the importance of the β-catenin pathway in TG2 induced HOB mineralisation.  

XAV 939 stimulates β-catenin degradation and axin stabilisation, thus antagonising the 

Wnt/β-catenin pathway.  Cells treated with 0.1µM XAV939/DM for 12 days showed no 

significant difference in mineralised area compared to cells cultured in DM (Fig. 4.19). This 

suggested that HOBs could deposit mineral matrix in a Wnt/β-catenin independent 

manner.  However, when treated with exogenous TG2, HOBs treated with β-catenin 

inhibitor showed a reduced mineralised area comparable to cells treated with DM only.  

This indicated that TG2-induced mineralisation was Wnt/β-catenin dependent, and 

blocking β-catenin by forcing protein degradation could abolish this effect.  However, this 

experiment has only be done twice, further experiments would be necessary to validate 

the importance of β-catenin pathway in TG2 induced HOB mineralisation. 
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Figure 4.19 Mineralisation of HOBs cultured with ββββ-catenin pathway inhibitor for 12 days.  HOBs were 

cultured in differentiation medium with or without 1µµµµg/ml of gpTG2 (TG2) plus inhibitor XAV939 for 12 

days.  Mineral deposition in extracellular matrix was determined using von Kossa staining and the 

mineralised area was quantified using Image J software.  The quantified data represent mean values +/- SEM 

from a representative experiment with triplicate setting.  This experiment was repeated two times and 

further experiments would be necessary to verify the inhibitory effect of XAV939 was statistically significant.  

The scale bars represent 150µµµµm. 
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3. Discussion 

The object of this chapter was to investigate the possible role of endogenous and 

exogenous TG2 in human osteoblast differentiation and mineralisation.  It was shown in 

the previous chapter that the expression of endogenous TG2 either did not affect the cell 

mineralisation process or it could be compensated by upregulation of FXIIIa.  In this 

chapter, it was demonstrated that endogenous TG2 activity was not essential for 

osteoblast mineralisation, since blocking TG2 activity could not abolish cell mineralisation.  

Also, TG2/FXIIIa activity inhibitor R283 could not block the mineralisation process, 

suggesting that both TG2 and FXIIIa activity were not needed in this process or that only 

minimum crosslinking activity was required for mineralisation. 

ATPase activity of TG2 

TG2 was suggested to act as an ATPase in the extracellular matrix, especially the cleaved 

TG2 by MT1-MMP, and serve as a source of Pi thus contributing to osteoblast 

mineralisation (Nakano et al., 2007, Nakano et al., 2010).  This study tested the hypothesis 

that ATPase activity of TG2 plays an important role in the mineralising process by 

examining TG2 fragments in whole cell/ECM extracts, collagen and gelatin zymography 

and effect of ATPase inhibitors in mineral matrix deposition.  Here, an increase in TG2 

fragments from day 8 post treatment with differentiation medium and TG2 inhibitors was 

demonstrated.  In this study, major endogenous TG2 fragments in HOBs culture were 

found in whole cells/ECM lysis and the protein sizes were between 60 kDa to 70kDa.  TG2 

inhibitor treated cells showed more TG2 fragments, possibly because inhibitors kept TG2 

in an open conformation which favoured MMP degradation.  The putative cleavage sites of 

MT1-MMP on TG2 were at Pro-375, Agr-458 and His-461 while MMP2 was found directly 

associated with the core enzymatic domain II of TG2 (Belkin et al., 2001, Belkin et al., 
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2004).  As illustrated in Fig. 4.20, R283-bound TG2 is in a semi-open form and R294-bound 

TG2 is in a fully open form.  It is reasonable to assume that R294-bound TG2 is more 

vulnerable to MMP-mediated degradation due to the cleavage site being exposed in the 

open conformation.  In fact, it has been shown that TG2 is more sensitive to enzyme-

mediated degradation when in its calcium bound open form compared to its GTP bound 

closed form (Zhang et al., 1998, Begg et al., 2006).  As future work, the susceptibility of 

TG2 and inhibitor-bound TG2 to MMP digestion could be demonstrated using purified TG2. 

 

Figure 4.20 Predicted conformation of TG2 with or without inhibitors.  The structure of TG2 has been 

revealed by X-ray crystallography.  The active TG2 was suggested to be stable extended form (Pinkas et al., 

2007) and GTP/GDP bound TG2 was observed in a compact form (Liu et al., 2002).  Inhibitor R294 was 

predicted to hold TG2 in open form while R283bound TG2 was in putative semi-open form. 

It is uncertain if these TG2 fragments retained any biological function, yet, the presence of 

these small TG2 fragments accompanied an increase in mineralisation area when treating 

cells with inhibitors.  No evidence suggested that these TG2 fragments could bind to LRP5 

receptor, since the Co-IP showed only full length TG2 interacting with LRP5.  According to 

Nakano et al.(2010), released TG2 in mouse osteoblasts culture medium was cleaved by 

MT1-MMP into ∼69, ∼55, ∼40, ∼30kDa and other minor fragments. Only the ∼55 kDa 

fragment had ATP binding ability as illustrated by its affinity for ATP-agarose.  It has been 
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also suggested that proteolytic cleavage of TG2 by MT1-MMP in vitro resulted in increased 

ATPase activity of TG2.  As reported by Belkin and his colleagues, membrane type I MMP 

(MT-MMP-1, MMP-14) and MMP-2, in tandem, regulate TG2 functionality in cell-surface 

adhesion/signalling by proteolysis of TG2 at certain cleavage sites (Belkin et al., 2001, 

Belkin et al., 2004).  This study suggests that enzyme mediated degradation of TG2 is also 

important in the osteoblast mineralisation process and that the proteolysis of TG2 might 

contribute to mineralisation via its ATPase activity.  In order to clarify if MMP-mediated 

TG2 fragmentation is accountable for the increase in ATPase activity and bone 

mineralisation, MMP inhibitors can be used in the future to verify the hypothesis. 

Collagen and gelatin zymography were performed in this study and the results suggested 

the possible presence of MMP-1 and MMP-9 in day 10 conditioned medium.  Furthermore, 

unexpected down regulation of collagenase and gelatinase was observed in differentiated 

HOBs after 10 days of culture.  Ahn et al. (2008) have demonstrated TG2-induced down 

regulation of MMP-9 in retinoic acid treated cardiac myoblasts and this effect could be 

prevented in the presence of TG2 inhibitors.  This is consistent with the result found in this 

study that collagenase and gelatinase were down regulated after stimulation with ascorbic 

acid and β-GP and addition of TG2 inhibitors could regain the expression of the 

collagenase and gelatinase.  It is hard to judge if the increase in TG2 fragments in the ECM 

could be directly linked to up regulation of collagenase and/or gelatinase expression in 

inhibitor treated osteoblasts.  So far, there has been no study suggesting TG2 as a 

substrate for MMP-1 and MMP-9.  Yet, the TG2 fragments could be found in whole cell/ 

ECM in differentiated cells but neither MMP-1 nor MMP-9 was found in conditioned 

medium of HOBs cultured in DM.  This, again, indicated that proteolysis of TG2 was mainly 

conducted by other MMPs, most likely MT1-MMP and MMP-2.  The question then was in 

which compartment the cleavage of TG2 occurred.  It was reported that activation of 
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MMP-2 was dependent on the trimolecular complex components (MT1-MMP /TIMP-2 

/MMP-2) on the cell membrane (Kazes et al., 2000).  Therefore, the lack of MMP2 in 

conditioned medium could result from binding of MMP-2 protein to cell surface MTI-

MMP1 via TIMP-2.  It is suggested that cleavage of TG2 mainly happens in the cell 

membrane associated microenvironment, for example on the cell surface and in the 

extracellular matrix.  TG2 fragments could be clearly detected on cell membrane in the 

later stage of mineralisation.  Although it remains to be confirmed, these TG2 fragments 

potentially had ATPase activity which could mediate the level of Pi in local 

microenvironment and further contribute to cell mineralisation. 

In order to study if the ATPase activity was important for cell mineralisation, a general 

ATPase inhibitor, ATP-γ-s was used to block the enzymatic activity.  The importance of 

ATPase was demonstrated here that the mineralisation was blocked when 10 µM ATP-γ-s 

was used which only caused a minimum alteration of ALP activity.  According to the 

literature, both ALP and ATPase activity are presented in matrix vesicles (MVs) where 

mineralisation happens.  It has been suggested that 85% to 90% of ATP hydrolysis is 

mediated by ALP, the remained 10% to 15% of ATP hydrolysis was not affected by ALP 

inhibitor on MVs (Majeska and Wuthier, 1975).  The presence of another ATPase other 

than ALP on MVs was also demonstrated in ATP-dependent calcium deposition (Hsu and 

Clarke Anderson, 1995).  Interestingly, TGs activity was found increased in MVs of ALP 

knockout mice which might suggest that TG2 functions as an ATPase in MVs in 

extracellular matrix.  Unfortunately, there was concern that the negative effect observed 

in cells cultured with ATP-γ-s may involve a broad range of ATPase related factors 

including PMCA1, a calcium transport protein on the cell membrane.  Although it is widely 

believed that cell membranes are imperemeable to anions, some researchers suggest cells 

can uptake extracellular ATP (reviewed by Chaudry, 1982).  In this case, uptake of ATP-γ-s 
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into cytoplasm might inhibit the PMCA1 thus inhibit the output of calcium ion to the 

calcified site.  Therefore, in the future, an indirect approach by using specific MMP 

inhibitors to abolish TG2 fragments and reverse inhibitors-induced mineralisation in 

osteoblasts culture would be a more practical way to study biological function of TG2 

fragments. 

LRP5/ Wnt/ β-catenin pathway 

On the other hand, exogenous TG2 induced calcification has been demonstrated in 

vascular smooth muscle cells (Faverman et al., 2008) where TG2 was shown to up regulate 

osteoblastic markers in VSMCs.  Here in this study, a similar effect of exogenous TG2 could 

be found in human osteoblasts where the mineral deposition of HOBs was stimulated by 

extracellular TG2.  It has been suggested that the activity of TG2 was important for TG2 

induced β-catenin activation where genetically or pharmacologically reduced TG2 activity 

fail to activate β-catenin in response to warfarin (Beazley et al., 2012).  This is consistent 

with the finding that the inductive effects of R283 inactivated TG2 and R294 inactivated 

TG2 were lower than wild type TG2.  These evidences indicated that TG2 activity was 

involved in TG2 induced mineralisation. 

Nevertheless, It is worth pointing out that the inhibitors have been reported to change the 

conformation of TG2 (reviewed by Pinkas et al., 2007) and that there is growing evidence 

for TG2 mediated differentiation dependent on TG2 confirmation but not transamidating 

activity were suggested.  Earlier study by (Johnson and Terkeltaub, 2005) proposed that 

transamidating activity was not required for TG2 induced matrix calcification as illustrated 

by the failure of active site point mutant TG2 (C277G, H335A and D358A) to block 

chondrocyte differentiation and calcification.  Moreover, the GTP binding site mutant TG2 

(K173L), which is expected to hold TG2 in the open conformation, failed to induce matrix 
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calcification in chondrocytes.  The importance of the closed conformation of TG2 was 

further emphasised as Mg-GTP treated wild type TG2, which theoretically blocked both 

GTPase and transamidating activity and kept TG2 in the closed conformation, still retained 

the capacity to promote matrix mineralisation.  Therefore, it was assumed that compact 

form of TG2 was an ideal conformation for inducing cell mineralisation.  As shown in Fig. 

4.20, the crosslinking inhibitor R283 could theoretically hold TG2 in a semi-open 

conformation while R294 tended to keep TG2 in the extended conformation (personal 

communication with Dr. R Collighan, 2012).  Accompanied by the mineralisation results 

that TG2/R283 has approximately 60% of the inductive effect compared to wild type TG2 

and no inductive effect was observed by addition of TG2/R294, this finding was in 

agreement with previous study indicating the major role of TG2 conformation in TG2 

induced mineralisation. 

Figure 4.21 Antibodies binding sites in the TG2 enzyme.  TG2 contains 4 domains including ββββ-sandwich, core 

domain, ββββ-barrel 1 and 2.  Mouse anti-TG2 mAb 4G3 has epitope site 1-165 (Zemskov et al., 2007) and 

TG100 antibody binding site occurs at a.a. 447-538.  Anti-TG2 antiserum (Faverman et al., 2008), on the 

other hand, has putatively multiple binding site. 

Closed conformation TG2 might also explain the failure of immunoprecipitation of 

TG2/LRP5 complex using TG100 (anti TG2 antibody).  As mentioned before, the TG100 

antibody was designed to recognise a.a. 447 to 538 of TG2.  As shown in Fig. 4.21, the 

corresponding epitope site of TG100 is situated at the region which undergoes major 

conformational change.  This again supports the hypothesis that the closed conformation 

is required for TG2-induced mineralisation.  It would be interesting to use W241A mutant 

TG2 to study the role of TG2 conformation and activity in TG2-induced calcification.  

W241A mutant lacks crosslinking function without affecting its GTP binding ability, 
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therefore, it would be a good model to look into the biological functions of different TG2 

conformations. 

The importance of conformation in TG2 induced mineralisation could give a clue that a 

certain level of interaction between TG2 and other proteins may take place on the cell 

membrane and/or in the extracellular matrix.  Research has found extracellular TG2 might 

alter the LRP5/ β-catenin pathway, a master regulatory pathway of bone formation, and 

contribute to tissue calcification.  Therefore, the related protein expression in LRP5/β-

catenin pathway was examined in the HOB mineralisation model.  The protein expression 

of β-catenin, LRP5 and N-cadherin in differentiated HOBs revealed a counter pattern 

between N-cadherin and β-catenin/ LRP5/ TG2 expressions.  It is widely believed that N-

cadherin is involved in early cell aggregation by enhancing cell-cell adhesion and 

promoting cell differentiation through activating intracellular signals (Ferrari et al., 2000).  

However, recent data implied that N-cadherin may participate in another mechanism to 

negatively regulate osteoblast differentiation and bone formation (Fig. 4.22).  The 

inhibitory effect of N-cadherin could involve interaction with Wnt signalling in which direct 

binding of β-catenin to cadherin potentially sequestrates β-catenin at the membrane, 

reduces cytosolic β-catenin pool and inhibits Wnt signalling (Conacci-Sorrell et al., 2002, 

Wheelock and Johnson, 2003, Nelson and Nusse, 2004).  Studies also revealed a novel link 

between N-cadherin and LRP5 which is independent of β-catenin binding.  Interaction of 

N-cadherin with the intracellular domain of LRP5/ axin resulted in increased β-catenin 

ubiquitination, decreased β-catenin cytosol levels and subsequent down regulation of 

nuclear translocation in response to Wnt signalling (Hay et al., 2009, Marie, 2009). 

Therefore, the transient increase in N-cadherin of DM treated osteoblasts compared to 

CM treated cells (4 hours post treatment) could promote a rapid increase in cell 
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aggregation which was generally observed in differentiating cells.  Consistent with this 

finding, the down regulation in both β-catenin and LRP5 at 4 hours post treatment could 

indicate the negative effect of N-cadherin mediated inhibition of Wnt/β-catenin signalling 

via LRP5.  Down regulation of N-cadherin during cell mineralisation, on the other hand, 

could promote the maturation process of osteoblasts. 

 
Figure 4.22 Putative mechanism of N-cadherin- mediated osteoblast function (adapted from Marie, 2009).  

(A) N-cadherin interactions between cells promote adhesion and downstream signals. (B) Direct binding of 

β-catenin to N-cadherin results in β-catenin sequestration at the membrane and down regulation in Wnt 

signalling.  (C) The interaction between N-cadherin and the LRP5/6 results in increasing β-catenin 

degradation and inhibition of Wnt/β-catenin signalling.  (UP: unknown protein; Ub: ubiquitin) 

Many studies have indicated that cell/tissue differentiation requires coordinated 

regulation of cadherin mediated cell adhesion and the WNT/β-catenin pathway 

(Westendorf et al., 2004, Nelson and Nusse, 2004, Marie, 2009). Here in this chapter, 

extracellular TG2 was demonstrated as a possible regulator for this process.  Direct binding 

of TG2 to LRP5 has been demonstrated here in osteoblasts and in VSMCs by (Faverman et 

al., 2008).  Interaction was found in DM treated and exogenous TG2 treated cells as early 

as 4 hours post treatment and up to 24 hours post treatment as indicated by Co-IP.  The β-
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catenin activation was also observed in osteoblasts treated with exogenous TG2 for 4 

hours by immunohistochemical staining.  These evidences support an early activation of 

the β-catenin pathway through binding of TG2 to LRP5 receptor, especially in a high 

extracellular TG2 environment.  The activation of the β-catenin pathway downstream of 

TG2/LRP5 binding could be further illustrated where β-catenin inhibitor blocked the TG2 

induced mineralisation but not the cell mineralisation in physiological condition. 

A regulatory effect on extracellular TG2 triggered β-catenin activation was also suggested 

in this study.  According to Western blot, the expression of LRP5 and β-catenin in 

differentiated cells was highest on day 2, however, no significant TG2 and LRP5 interaction 

was shown by co-IP assay.  A possible explanation for this observation was the presence of 

a negative signalling modulator, most likely LRP-1 in this case.  LRP-1 is known as a 

transmembrane modulator of WNT signalling (Zilberberg et al., 2004) and a cell surface 

TG2 expression regulator (Zemskov et al., 2007).  The absence of TG2/LRP5 complex may 

result from LPR1 competing for binding to TG2 on the cell surface and removal of TG2 to 

lysosomes for degradation. 

Although there is only limited understanding about the TG2 triggered β-catenin pathway, 

exposure to high levels of extracellular TG2 may counteract the negative effect of N-

cadherin in β-catenin pathway, thus enhancing osteoblast mineralisation.  In this case, 

activation of TG2/LRP5 pathway alters the balance of cytosol and nucleus β-catenin levels 

thus promoting cells to undergo differentiation and mineralisation process.  Even though 

the exogenous TG2 induced mineralisation was suppressed by the β-catenin pathway 

inhibitor- XAV939, the possibility of non-specific effect of XAV939 could not be ruled out.  

To further confirm that TG2-induced enhancement in mineralised area requires activation 

of the β-catenin pathway, setting up a positive control (e.g. Wnt3a treated cell culture) will 

be necessary in the future work. 
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Overall, the data in this chapter suggest different possibilities of how extracellular TG2 is 

involved in mineralisation process.  Interestingly, extracellular TG2 has been implicated in 

the wound healing process in the past decade by promoting repair, matrix stabilization 

and cell viability in physio-pathological condition (reviewed by Verderio et al., 2005, Telci 

and Griffin, 2006b).  Externalisation of TG2, via an atypical secretion pathway or simply 

from necrotic cells, during cell stress or tissue damage is commonly observed.  Therefore, 

the TG2 induced osteoblast mineralisation and VSMC calcification could represent a 

wound healing process mediated by TG2 under pathological conditions.  Moreover, in 

endochondral ossification, both TG2 and FXIII were detected in chondrocytes at the edge 

of the growth plate and osteoblasts in the perichondrium/periosteum area but were 

negatively expressed in the area far away from the leading edge of the bony collar as 

demonstrated in chicken embryonic models (Nurminskaya and Kaartinen, 2006).  It has 

been also indicated that culturing pre-osteoblasts with hypertrophic chondrocytes could 

increase the expression of several osteoblastic markers in osteoblasts and promote cell 

mineralisation (Nurminskaya et al., 2003).  Taking the accumulating evidences of 

exogenous TG2 to promote differentiation with the localisation pattern of endogenous 

TG2 in the embryonic long bones, it suggests TG2 secreted by chondrocytes and/or 

osteoblasts could act as an initial signal for osteoblast differentiation and mineralisation in 

bone development. 

In conclusion, under physiological conditions, MMPs could act as a switch to convert the 

function of accumulated TG2 in extracellular matrix or on the cell membrane from 

transamidase oriented to ATPase oriented, especially in later stages of differentiation and 

the start of mineralisation.  The ATPase activity of TG2 may not play a dominant role in cell 

mineralisation as it could be compensated by other enzymes such as plasma membrane 

Ca2+ transport ATPase 1 (PMCA1).  However, in endochondral ossification and under 
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pathological condition, a dramatic increase in extracellular TG2 levels may trigger an 

outside-in signal through binding of LRP5 receptor thus activating the β-catenin pathway 

which then stimulates osteoblast differentiation and mineralisation.  This effect was very 

likely crosslinking activity independent but the closed conformation of TG2 was required. 
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1. Introduction 

Collagen based scaffolds are widely used in a broad range of regenerative medicine 

applications.  Even though collagen scaffolds have shown clinical success in a range of soft 

tissue repair applications, relatively poor mechanical properties remains as a limitation for 

their use in hard tissue regeneration.  In fact, only selected researches have showed some 

degree of success in using collagen scaffold for bone regeneration (Caiazza et al., 2000, 

d'Aquino et al., 2009, Keogh et al., 2010) comparing to other synthetic materials.  An ideal 

biomaterial for bone tissue repair should support osteogenic cells to migrate, proliferate 

and differentiate, promote new bone formation, and provides mechanical competence 

during the bone regeneration.  In order to address this goal, current strategy focuses on 

recognising the complex interplay of signals from the extracellular microenvironment to 

mediate osteogenic cell fates such as adhesion and differentiation and fabricating 

functional implants for bone repair. 

Using collagen matrix for orthopaedic regeneration offers distinct advantages since type I 

collagen composes more than 90% of the organic fraction in native bone tissue.  The 

mechanical property problem can be overcome by the addition of a second, stiffer phase 

such as hydroxylapatite (HA) or crosslinked collagen based matrix through glutaraldehyde 

(Weadock et al., 1983), ultraviolet (UV) radiation (Wollensak and Spoerl, 2004), 

dehydrothermal processing (Yannas and Burke, 1980), carbodiimides (Damink et al., 1996) 

and enzymatically crosslinking by microbial transglutaminase (mTG) or TG2 methods (Chau 

et al., 2005, Chen et al., 2005).  All these methods have showed a certain level of success 

in modifying the degradation rate of collagen matrix, giving collagen biomaterials 

advantages in wider medical applications. 
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In the first part of this thesis, TG2 was recognised as a potent pro-osteogenesis factor.  As 

an efficient transamidating agent, TG2 was first reported to play an important role in 

matrix stabilisation and the cell adhesion process.  Later on, it was demonstrated here in 

this thesis and in other studies (Faverman et al., 2008, Beazley et al., 2012) that TG2 in the 

extracellular matrix could trigger the β-catenin pathway via binding to low density 

lipoprotein receptor (LRP) 5 and further contribute to ossification.  It also had potential to 

serve as a source of phosphate via its ATPase activity and this effect was tightly regulated 

by MMPs activity during mineralisation.  Theoretically, crosslinking collagen I gel with TG2 

should not only improve its physical and biological stability but also introduce 

osteoconductive and osteoinductive properties.  The advantage of using TG2 treated 

collagen gel as bone graft was first demonstrated by Chau et al. (2005) who showed that 

TG2 crosslinked collagen matrix enhanced cell attachment, spreading, proliferation and 

expression of differentiation markers in human osteoblasts.  In addition, crosslinked gel 

also showed better resistance against cell-mediated endogenous protease degradation. 

Using collagen-based biomaterial also offers advantages for cornea regeneration since 

type I collagen composes more than 90% of the cornea.  Properties of ideal biomatrix for 

corneal wound healing include biodegradability, biocompatibility, transparency, sufficient 

mechanical competence during the cornea regeneration, short wound healing time, easy 

application, postoperative comfort and cost effectiveness.  Using fibrin glue as an original 

inspiration, here, TG2 crosslinked collagen I gel is proposed as an alternative option for 

ocular surgery.  First of all, endogenous collagen I and TG2 are ubiquitously distributed in 

the cornea tissue and especially TG2 shows a predominant presence in the corneal 

subepithelium and stromal layer (Barathi et al., 2011).  Secondly, TG2 was found to have a 

broader range of substrates than FXIIIa.  Panengad et al. demonstrated abundant TG2 

substrates distributed throughout all layers of cornea tissue and a good co-localisation of 
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TG2 with collagen and fibronectin (Panengad et al., 2011).  Finally, it was reported that the 

adhesive strength and bonding strength of TG2 based adhesive was higher than Tissucol, a 

commercialised fibrin gel (Jurgensen et al., 1997).  The potential of TG2 based glue for 

ocular applications has not yet been fully evaluated.  A recent study by Chau et al. (2012) 

suggested that TG2 treated amniotic membrane (AM) as a novel treatment for ocular 

surface disease due to its enhanced mechanical strength and stiffness without affecting its 

transparency.  However, so far no data have been published regarding the 

biocompatibility of TG2 based matrix in cornea tissue. 

Here in this chapter, a TG2 modified collagen matrix was analysed for its potential as a 

graft material for hard and soft tissues.  Surface composition and topography were two 

factors considered in evaluating the properties of TG2 crosslinked collagen gel.  The 

biological properties of crosslinked gel were also assayed including biocompatibility and 

several cell behaviours.  The cells used in this chapter were human osteoblasts (HOBs), 

human corneal epithelial cells (hCECs) and human corneal fibroblasts (hCFs) in order to 

represent the hard and soft tissue model. 
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2. Results 

2.1 Self-incorporation of TG2 into type I collagen gel 

As reported previously (Shanmugasundaram et al., 2012) ,auto-crosslinking of TG2 into 

collagen matrix occurred during collagen polymerisation. Here the amount of residual TG2 

in crosslinked gel was determined using gel electrophoresis and Western blotting.  A 

modified protocol from Shanmugasundaram’s publication was used in this study.  Briefly, 

following overnight incubation with enzyme, treated and non-treated collagen gels were 

vigorously washed with PBS several times to remove unbound TG2 before boiling with 5X 

reducing Laemmli sample buffer.  Western blotting showed low but detectable TG2 

monomer at 78kDa in TG2 crosslinked collagen gel (Fig. 5.1).  Interestingly, high molecular 

weight bands were found in insoluble fragments which were at the very top of the gel 

(>245kDa).  These high molecular weight bands were assumed to be highly polymerised 

TG2 complex or a crosslinked complex of TG2 and type I collagen.  When TG2 activity was 

inhibited with R283 and R294, the 78kDa TG2 monomer was found to be significantly 

increased; meanwhile, the highly polymerised TG2 complex band was less intense but still 

observed.  Reduction in the high molecular weight band implied that crosslinking activity 

of TG2 enhanced the formation of TG2 polymer or TG2/collagen I complex.  As for the 

faint >245kDa band found in Inhibitor-treated TG2 groups may result from residual 

transamidating activity within the TG2/inhibitor or result from the preparation stage 

where the gpTG2 was pre-activated with calcium and DTT for 5 minutes on ice before 

treatment with inhibitors.  On the other hand, this study also showed that even without its 

enzymatic activity, TG2 was still trapped in the collagen gel and could not be removed by 

washing.  These results suggested that trapped TG2 was not negligible and could serve as a 

source of exogenous TG2 for cells.  Consequently, TG2 could incorporate itself into 

collagen gel via both a crosslinking activity dependent and independent way. 
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Figure 5.1 Tethering of TG2 into type I collagen gel.  Type I collagen gels mixing with active or inhibitors pre-

treated (inactive) TG2 were sampled and the bound TG2 determined by Western blotting as described in 

Materials and Methods.  Lane 1: native collagen gel, lane 2: TG2 crosslinked collagen gel, lane 3: R283- 

inactivated TG2 crosslinked gel and lane 4: R294-inactivated TG2 crosslinked collagen gel. 

2.2 Crosslinking by TG2 alters collagen fibre structure 

Using electron microscopy, the collagen bundles in native collagen and crosslinked 

collagen gels showed similar organisation which was highly compact and roughly arranged 

in isotropic direction (Fig. 5.2).  According to image analysis, the average diameter of 

crosslinked collagen bundles was significantly higher than native collagen fibres which 

were approximately 2.6 µm and 1.1 µm, respectively (Fig. 5.3).  Studies have suggested 

that the diameters of collagen fibres vary depending on the polymerization temperature 

and pH (Christiansen et al., 2000, Raub et al., 2007).  This study demonstrated that, 

besides the factors mentioned above, treating matrix with TG2 might also alter the 

formation of collagen fibres and further affect cell behaviour. 
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Figure 5.2 SEM images of TG2 crosslinked type I collagen gel.  Native collagen gel (left) and TG2 crosslinked gel (right) were then fixed, freeze-dried for 50 hours and sputter coated 

with gold before taking pictures using SEM.  The actual scale bar was stated in each picture. 
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Figure 5.3 Change in diameter of fibres after treatment with TG2.  At least 180 fibres were measured in each 

group from 3 individual experiments using Image J software.  Data represents mean values +/- S.D.  

Statistical analysis was carried out using the one-way ANOVA test and the p-values corresponding to p<0.01 

are represented with a †. 

2.3 TG2 crosslinked collagen gel promoted HOBs differentiation and 

mineralisation 

It was demonstrated here and elsewhere that exogenous TG2 could enhance calcification 

of osteoblasts and other cell lines in vitro.  Evidence has shown that extracellular TG2 may 

trigger an outside-in signal via LRP5 and LRP6, further activate the β-catenin pathway and 

consequently promote cell mineralisation.  Combining the advantage that crosslinked 

collagen could improve osteoblast attachment and proliferation notably (Chau et al., 

2005), here the differentiation and mineralisation characteristics of crosslinked collagen 

gel were evaluated. 

One of the differentiation markers, ALP, was monitored for its released and anchored 

forms during the mineralisation process.  Native collagen gel add-mixed with 1µg/ml of 

recombinant human bone morphogenetic protein 7 (BMP7), a known osteoinductive 

reagent, was used as positive control.  5mg/ml native collagen gel (NC) was used as a 
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control and 10µg/ml TG2 crosslinked collagen gel (TG2) and TG2 crosslinked BMP7 gel 

(TG2+BMP7) were evaluated.  As shown in Fig. 5.4A, there was no significant change in 

released ALP between the groups.  A very similar trend was found in membrane/ECM 

bound ALP expression that no significant change was observed between groups in early 

mineralisation.  A small but not significant increase in anchored ALP activity appeared in 

crosslinked groups (TG2 and TG2+BMP7) on day 10 (Fig.5.4B).  This experiment was only 

done twice, however, further experiments would be needed to conclude this finding. 

 
Figure 5.4 Released (A) and anchored (B) ALP activity evaluated by using pNPP substrate system.  The 

change of absorbance per minutes per centimetre square of culture area was converted into milli-unit of 

enzyme.  The data represent mean values +/- SD from a representative experiment with triplicate setting.  

This experiment was repeated two times and further experiments would be necessary to perform the 

statistic analysis. 
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Mineral deposition was visualised by von Kossa staining 12 days post-treatment to 

evaluate the level of mineralisation of osteoblasts.  A more intense positive staining was 

found in TG2 group comparing to NC group and on day 12 (Fig.5.5).  However, admixing 

BMP7 to collagen gel did not improve cell mineralisation neither did admixing BMP7 to 

crosslinked collagen gel (TG2+BMP7).  According to the supplier, the ED50 of BMP7 used in 

this study was 0.02–0.04 µg/mL (determined by the concentration response induction of 

alkaline phosphatase production by murine ATDC5 cells).  It was possible that the release 

of BMP7 from the collagen or crosslinked collagen gel was restricted and was not enough 

for stimulating osteoblast mineralisation. 

Another concern was that crosslinking activity of TG2 may result in unwanted effects on 

BMP7 activity or vice versa.  In the following experiment, the concentration of BMP7 was 

raised to 2µg/ml and inactive TG2 (TG2+R283) was also used to determine the effect of 

TG2 crosslinking activity.  As shown in Fig 5.6 and Fig 5.7, the mineralised area in the BMP7 

group was increased and was significantly higher than the NC group.  Meanwhile, the TG2 

group demonstrated its osteoinductive characteristic and showed greater mineralised area 

than NC group and BMP7 group.  However, the TG2 + BMP7 group had no synergic effect 

on cell mineralisation and had a lower but not significant effect on cell mineralisation 

when compared to the BMP7 group.  It was also found that neither inactive TG2 

(TG2+R283) showed enhancement on cell mineralisation when compared to the BMP7 

group, nor addition of BMP7 increased the mineralisation effect of the TG2 containing 

biomaterial. 
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Figure 5.5 Relative mineralisation area of HOBs after seeding on native type I collagen gel (NC), native type I 

collagen gel admixed with 1µµµµg/ml of BMP7 (BMP7), 10µµµµg/ml of TG2 crosslinked type I collagen gel (TG2) and 

TG2 crosslinked BMP7 collagen gel (TG2+BMP7) incubated for 12 days.  (A) Mineral deposition was 

visualised by Von Kossa staining in black and (B) the mineralised area was quantified using ImageJ as 

described in materials and methods.  The data represent mean ± SEM value from one representative 

experiment with triplicate setting.  This experiment has been repeated twice where further experiments are 

needed to confirm this finding is statistically significant. 
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Figure 5.6 Mineralisation of HOBs after seeding on native type I collagen gel (NC), native type I collagen gel admixed with 2µµµµg/ml of BMP7 (BMP7), 10µµµµg/ml of TG2 crosslinked type I 

collagen gel (TG2), TG2 crosslinked BMP7 collagen gel (TG2+BMP7), R283 inactivated TG2 in collagen gel  (TG2+R283) and inactive TG2 admixed BMP7 in collagen gel (TG2+R283+BMP7) 

for 12 days.  Mineral deposition was visualised by Von Kossa staining in black as described in Materials and Methods.  The scale bars represent 150µµµµm. 
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Figure 5.7 Quantification of mineralisation area (black dots) in HOBs cultures by analysing images from each 

group.  All results were normalised with the value of the BMP7 group from each experiment and the average 

of the BMP7 group is 3.9±3.23% from 3 experiments.  The data represent mean value ± SEM, where n=3.  

Statistical analysis was carried out using the one-way ANOVA test (Turkey’s multiple comparison test).  The 

P-values corresponding to p<0.05 is represented with a * and p<0.01 is represented with a **. 

2.4 Proliferation of HCECs and HCFs on collagen matrices determined by XTT 

assay  

The proliferation rate of HCECs grown on different concentrations of collagen gel (Fig. 5.8) 

was first determined using commercial XTT kit (Cell Proliferation Kit II, Roche Diagnostics 

Ltd., West Sussex, UK).  The result suggested that XTT reduction was lower when cells 

were grown on collagen gel compared to fibronectin (Fn) coated tissue culture plate 

(TCP/Fn).  There was no significant difference between cells cultured on different 

concentrations of collagen gel as indicated by XTT assay.  Therefore, in the following 

experiments, 5mg/ml collagen gels were used to obtain the highest mechanical strength. 
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Figure 5.8 Proliferation of HCECs on different concentrations of native collagen gel.  Cell proliferation was 

evaluated using the XTT assay over a 3 day period and the results were normalised with the TCP group.  Data 

represents mean values +/- SEM from 3 different experiments.  Statistical analysis was carried out using the 

two-way ANOVA test and no significant difference was found between groups at the same time points 

besides when compared to the TCP group.  The p value corresponding to p<0.0001 is presented with a † 

To further determine the biocompatibility of TG2 crosslinked gel, different concentrations 

of TG2, from 10µg/ml to 250µg/ml, were used and the XTT reduction rates on these gels 

were analysed.  As showed in Fig. 5.9, the XTT reduction of hCECs was once again higher in 

the positive control group (Fn/TCP).  Although there was a significant difference between 

10 µg/ml TG2 treated collagen gel and 250 µg/ml TG2 treated collagen gel at 48 hours, 

none of the TG2 gels showed a comparable proliferative effect to the positive control 

(Fn/TCP).  This suggested that both native collagen gel and TG2-collagen gel might had 

poor cell compatibility with hCECs. 
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Figure 5.9 Proliferation of HCECs on collagen gel treated with different concentration of TG2.  XTT assay was 

performed every 24 hours post seeding, up to 72 hours and the results were normalised with the TCP/FN 

group.  The results represent the mean values ±SEM from 3 individual experiments.  Statistical analysis was 

carried out using the two-way ANOVA test (Turkey’s multiple comparison test) and each group were 

compared to each other at the same time point.  The p-values corresponding to p<0.01 is presented with a 

** and p<0.0001 is presented with a †. 

In order to improve its biocompatibility, several modifications were made to the surface of 

crosslinked gel.  Laminin was chosen as one of the major proteins in the corneal epithelial 

basement membrane (Ljubimov et al., 1995) and it has been shown to promote spreading 

and attachment of corneal epithelial cells in primary culture (Qin et al., 1997).  Fibronectin 

was also used since it is an adhesion molecule which has been demonstrated to improve 

cell adhesion in a wide range of cell types.  Early research using rabbit corneal tissue and 

corneal epithelial cells suggested that fibronectin (Fujikawa et al., 1981, Nishida et al., 

1983) and its fragments (Mooradian et al., 1993) could enhance epithelial cell adhesion, 

attachment and mobility.  After polymerisation of TG2 collagen gel overnight, an extra 

layer of laminin (Lm) or Fn was coated on the surface.  However, a positive effect on 

proliferation was only detected on Lm (Fig. 5.10A) or Fn (Fig. 5.10B) modified TCP.  Again, 
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hCECs cultured on Lm and Fn modified TG2 collagen showed no significant difference on 

XTT reduction when compared at the same time point. 

On the other hand, the XTT reduction rate of was also monitored over a 168 hours period.  

As suggested by XTT assay (Fig. 5.11) the crosslinked gel showed an early increase in 

reduction rate at 24 hours when compared to native collagen gel.  But there was no 

significant difference in XTT reduction rate between TG2 group and NC group at 72 and 

168 hours.  Overall, the XTT assay offered a general view of cell metabolic activity but not 

necessarily the actual cell number or proliferation rate.  The results might be affected by a 

change of metabolic rate when cells are attached to different surfaces.  Furthermore, cells 

which had migrated into the gel might not be detected by XTT assay.  Therefore, other 

factors shall be considered when evaluating XTT results. 

 
Figure 5.10. Cell proliferation of hCECs on Lm or Fn modified TG2-collagen gel.  Cells proliferation when 

cultured on Lm modified (A) or Fn modified (B) crosslinked gel was analysed every 24 hours as described in 

Materials and Methods.  Data were normalised to the average value of the positive control groups and is 

presented as mean values +/- SEM from 3 individual experiments (n=3).  Statistical analysis was carried out 

using the two-way ANOVA test (turkey’s multiple comparison test) and no significant differences were 

found between treated groups at some time points besides when compared to the positive control groups 

which are Lm/TCP and Fn/TCP respectively.  The p value corresponding to p<0.0001 is presented with a † 
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Figure 5.11 Proliferation of hCFs cultured on crosslinked collagen gel.  3,000 hCFs/well were seeded on NC, 

TG2 gel or TCP/Fn surface (positive control).  XTT assay was performed at 24 hours, 72 hours and 168 hours 

post seeding to determine cell proliferation.  The results represent the mean values ±SEM from 3 individual 

experiments (n=3).  Statistical analysis was carried out using the two-way ANOVA test (turkey’s multiple 

comparison test) and each group were compared to each other at the same time point.  The p-values 

corresponding to p<0.05 is presented with a * and p<0.0001 is presented with a †. 

2.5 Cell proliferation and migration of hCFs assayed by multiphoton images 

With the assumption that XTT assay could not truly reflect the actual cell number/ 

proliferation rate, the cell number was determined with another methodology.  The 

multiphoton microscope generated projection images from an 880µm depth z-scanning.  

Using multiphoton scanning could avoid the hCFs, which migrated into the collagen gel, 

being masked from previous XTT assay.  Fig. 5.12 showed there were more hCFs grown on 

TG2 gel (Fig 5.12C) than NC gel after 72 hour culture (Fig. 5.12A).  Further cell counting (Fig 

5.13) suggested that the average cell density on NC was approximately 290 cells/mm2 

while the average cell density on TG2 gel was around 330 cells/mm2.  However, this 

increased was not statistically significant.  Another interesting finding was revealed by the 

projection image from cross-sectional angle which showed more hCFs distributed into the 

TG2 collagen gel (Fig.5.12D) while the hCFs on NC (Fig 5.12B) gel were mainly retained on 



 

the matrix surface.  It suggested that TG2 

collagen fibres and increase

Figure 5.12 hCFs cultured collagen gel images from multiphoton 

NC gel or crosslinked gel for 72 hours.  Samples were fixed with 

nucleuses were stained with DAPI.  

scanning were combined using the LAS AF software.  

on NC gel (A,B) were comparably 

(C,D).  The scale bar on top left of each picture represents 100
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the matrix surface.  It suggested that TG2 collagen gel promoted hCF

collagen fibres and increases cell infiltration into the matrix. 

hCFs cultured collagen gel images from multiphoton microscope.  hCFs were 

gel for 72 hours.  Samples were fixed with 3.7% PFA/PBS (pH 7.4) 

stained with DAPI.  3D projection (A,C) and cross-sectional images (B,D) of each series of 

scanning were combined using the LAS AF software.  The DAPI staining is shown in blue colour.  

comparably fewer in number and surface located than cells grown on TG2 treated gel 

(C,D).  The scale bar on top left of each picture represents 100µµµµm.  

collagen gel promoted hCF migration along its 

 

hCFs were cultured on either 

3.7% PFA/PBS (pH 7.4) and the cell 

sectional images (B,D) of each series of 

The DAPI staining is shown in blue colour.  Cells grown 

and surface located than cells grown on TG2 treated gel 
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Figure 5.13 The average cell density on collagen gel after 72-hour culture.  The initial cell density seeded on 

each matrix was 91 cells/mm
2
.  The average cell density of both groups after 72-hour culture period were 

quantified in ImageJ and analysed by unpaired T test.  The results represent the mean values ±SEM where 

from 3 individual experiments (n=3).  Statistical analysis was carried out using the Mann-Whitney test and 

no significant difference was found between NC and TG2 groups. 

2.6 Invasion of hCFs measured by the scratch assay 

To set up a model which could represent the cornea wound, hCFs were seeded onto type I 

collagen pre-coated tissue culture plate at 100% confluence and the confluent cell 

monolayer was subjected to scratch assay.  The cell layer and the wound area were 

immediately covered by collagen gel or crosslinked collagen gel and the closure of the 

wound underneath the collagen matrix was monitored.  In this model, hCFs would need to 

degrade native collagen or crosslinked collagen gel first before invasion.  As showed in Fig 

5.14, the leading front of the cells met at 18 hours post-scratching in the NC group while 

the cells in the TG2 group had only just begun migrating between 12 to 18 hours post-

scratch.  The average relative wound density (RWD) obtained from each group was 

presented over a 24-hour time frame in Fig. 5.15.  The wound healing process of hCFs 

started as early as 6 hours post-scratch.  But it was not until 12 hours post-scratch that 

hCFs in the crosslinked group started to migrate. 
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Figure 5.14 Wound closure process of hCFs cultured on collagen gel.  The pictures were captured from the real time-lapse movie at 0 hour, 6 hours, 12 hours and 18 hours.  Cells in NC 

group (upper panel) started migrating at 6 hours post wounding while cells in the TG2 group (lower panel) only started migrating after 12 hours post-scratching.  The dashed line 

highlighted the migrating front of the cell. 
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Figure 5.15 Wound closure process of hCFs cultured in collagen gel or crosslinked gel as shown in RWD over time 

diagram.  Results represent the mean values ±SD from a representative experiment with triplicate setting.  The 

experiment was repeated 2 times. 

2.7 Migration of hCFs determined by transwell assay 

In order to examine the migration of hCFs on crosslinked collagen gel, a modified transwell 

assay was performed.  hCFs which were attracted by the 10% FBS/DMEM in the lower 

chamber would first migrate across the collagen or crosslinked collagen gel, then squeeze 

through the membrane pore and finally reach the underside of the filter.  In Fig. 5.16, hCFs 

seeded on TG2 treated gel had higher mobility than cells cultured on NC according to the 

number of migrating cells after 48 hours.  This result is consistent with the previous finding 

on multiphoton images that TG2 modified collagen gel enhanced hCFs migration.  There 

was a concern that the difference in proliferation of hCFs on the NC and TG2 group during 

the 48 hours migration time frame might also influence this result.  Yet, cells were 

cultured in serum free medium which minimised the proliferation of HOBs.  Therefore, the 

cells observed at the lower side on the membrane were more likely to be migrating 

osteoblasts. 



Page | 196  
 

*

  
Figure 5.16 Analyse of transwell migration assay.  The mobility of hCFs was determined by the number of 

migrating cells after a 48-hour time frame.  The cells reached to the underside of the filter were fixed and 

stained with Diff-Quik® Stain Set.  Results represent the mean values ±SEM from 3 individual experiments 

(n=3).  The unpaired t test was used to analyse the data.  The p-value corresponding to p<0.05 when 

compared to the native collagen group (NC) is presented with a *  
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3. Discussion 

Several studies have demonstrated that TG2 treated matrix could increase cell adhesion of 

a variety of cell lines including osteoblasts, fibroblasts, hepatocytes, smooth muscle cells 

and endothelial cells (Verderio et al., 2001, Chau et al., 2005, Khew et al., 2008, 

Forsprecher et al., 2009, Spurlin et al., 2009, Ciardelli et al., 2010).  Currently, most studies 

recognise the importance of matrix alteration resulting from crosslinking in regulating cell 

behaviour through integrin receptors.  However, along with the recent study by 

Shanmugasundaram et al. (2012), the importance of exogenous TG2 in mediating cell 

behaviour was emphasised in this study.  Trapping of TG2 into collagen gel has been 

demonstrated in this study, although it was not entirely unexpected regarding crosslinking 

of TG2 to other substrates including β2-macroglobulin, fibronectin and type XI collagen 

was reported by others (Fesus et al., 1981, Barsigian et al., 1991b, Shanmugasundaram et 

al., 2012).  It has been also demonstrated that TGs was able to bind to collagen (Juprelle-

Soret et al., 1988, Upchurch et al., 1991) and the GTP-, GDP- and ATP-bound TG2 had no 

significant effect on its binding to ECM although there was a 2-3-fold enhancement in 

binding when TG2 was treated with calcium (Upchurch et al., 1991).  Therefore, the 

trapping of TG2 in the collagen matrix was consistent with current studies and it is feasible 

to suggest that the presence of TG2 within the matrix could be considered as a source of 

exogenous TG2. 

As demonstrated in previous chapter that exogenous TG2 could induce osteogenesis via 

binding of LRP5 receptors, there was a possibility that trapped TG2 in the matrix could 

bind to cell surface LRP5 and further contribute to the increased HOB mineralisation 

observed on crosslinked collagen gel.  Although the question of whether the high 

molecular weight TG2 complex still has ability to bind to LRP5 remains unknown.  Also, 

increased mobility of cells cultured on TG2-rich cell surface/ extracellular environment has 
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been demonstrated here and with monocytes (Akimov et al., 2000), breast cancer cells 

(Mangala et al., 2006) and keratinocytes (Edwards et al., 2006).  Several models were 

suggested to explain the possible role of TG2 in cell migration since it was found to 

interact with integrin β1 and β3 on cell membranes and in recycling endosomes (reviewed 

by Belkin, 2011).  Zemskov et al. (2007) proposed that binding of extracellular TG2 to LRP1 

could accelerate the endocytosis process which might also include cell membrane integrin 

internalisation and recycling.  Interestingly, in migrating cells, the localisation of integrin 

complexes to the leading edge was mediated through endocytic trafficking, suggesting a 

complex and dynamic control of cell surface adhesion molecules on the migrating cells.  

Therefore, it was possible that trapped TG2 in the TG2 gel could enhance hCF cell 

migration by hastening endocytosis of major integrins. 

Besides the auto-crosslinking of TG2 into the collagen matrix, a change in matrix surface 

topography was also observed in this study.  It was shown that the average collagen fibre 

size was increased in crosslinked collagen gel (2.7 ± 0.7 µm) compared to native collagen 

gel (0.9 ± 0.3 µm) and increased mineral deposition and ALP activity in the later stage of 

mineralisation were suggested when osteoblasts were cultured on crosslinked collagen 

gels.  The effect of surface topography on cell adhesion, morphology, proliferation and 

differentiation was demonstrated in many studies (reviewed by Martínez et al., 2009).  

Despite the fact that the effect of substrate topography on cell behaviours was varied 

according to differences in cell type, substrate material, feature geometry and parameters 

measured, several studies in agreement with the finding of this study are summarised as 

follows.  On silicon substrates with nanogrooves from 150nm to 1000nm groove pitches, 

the expression of bone differentiation genes, including alkaline phosphatase (ALP), 

osteocalcin (OCN), type I collagen and integrin α1 and β1, were higher when the groove 

width was wider (Lamers et al., 2010).  Also, increased nodule formation and ALP activity 
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were found when increasing the groove depth (ranging from 0 to 30µm) on titanium (Ti)- 

and hydroxylapatite (HA)-coated grooved substrata (Perizzolo et al., 2001).  Therefore, as 

illustrated in Fig. 5.17, greater diameter of crosslinked collagen fibres than non-crosslinked 

collagen fibres may result in deeper grooves between fibres and could be considered as 

one of the factors that affects osteogenesis. 

 

Figure 5.17 Illustration of groove width and depth.  (A) The synthetic grooved substrata (B) larger fibres and 

(C) smaller fibres.  Larger fibres result in wider groove width and deeper groove depth. 

On the other hand, the average collagen fibre diameter in human cornea is 3.2 ± 0.8 µm 

according to immunohistochemical analysis  (Mencucci et al., 2010).  Here, TG2 

crosslinked collagen fibres (2.7 ± 0.7 µm) provided a microenvironment which was very 

similar to the physiological environment of corneal stroma than native collagen gel in 

terms of diameter of collagen fibres.  TG2 crosslinked collagen, therefore, might enhance 

hCFs proliferation and migration by recreating a similar microenvironment to that of the 

corneal stromal layer. 

The mechanism of how TG2 alters the size of collagen fibres still requires investigation.  

However, higher magnification SEM images (100,000X) of collagen hydrogels which were 

fabricated under different temperatures revealed parallel-aligned fibrils within collagen 

fibres and the difference in size of collagen bundles was due to different number of fibrils 

per fibre rather than changes in fibril diameter (Raub et al., 2007).  Thus, it is reasonable to 

assume that instead of altering the formation of triple helix polypeptide chains, TG2 may 
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alter the fibril array by connecting more collagen fibrils to form larger collagen bundles.  

Binding of TG2 to collagen I could happen with or without its crosslinking activity even 

though the collagen binding site of TG2 has not yet been determined.  It was highly 

possible that crosslinking and/or binding of TG2 to collagen gel was associated with the 

alteration of biomaterial topography.  Regardless of these unsolved questions, important 

information was gained that TG2 might mediate the osteogenesis process by changing the 

size of extracellular collagen fibres.  This hypothesis could also suggest the role that TG2 

plays in physiological mineralisation.  Since the expression of extracellular/cell surface TG2 

and crosslinking activity were gradually increased during the mineralising process, these 

ECM/cell surface TG2 might alter the organisation of collagen fibres extracellularly and 

enhance cell mineralisation. 

Another important factor to evaluate was the cell compatibility of crosslinked collagen 

gels.  Although the Cell Proliferation Kit (Roche Diagnostics Ltd., West Sussex, UK) 

suggested a low XTT reduction rate of cells when cultured on collagen based matrix, here, 

a question was raised that whether the XTT assay was a reliable method to evaluate cell 

growth in this collagen gel system.  It was suggested that XTT assay was majorly based on 

the pyridine nucleotide redox status of cells (Gonzalez and Tarloff, 2001).  Therefore, this 

assay would be greatly influenced by the mitochondrial metabolic activity.  Alteration of 

mitochondrial metabolic activity was found with aging (Ji et al., 1990), chemical treatment 

(Hernández-Muñoz et al., 1994), cellular hydration state (Haussinger et al., 1994) and 

proliferating / quiescent stage of cells (DeBerardinis et al., 2008).  It was possible that the 

metabolic activity of cells grown on NC gel, TG2 gel and Lm/Fn coated plate were very 

different.  In this case, cells cultured on Fn coated plate could potentially increase 

metabolism to a higher rate than cells cultured on collagen based matrices.  Therefore, 

when using XTT value of cells cultured on Fn coated plate as a positive control, the 
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difference in cell basic metabolism rate on different surface shall be taken into 

consideration. 

The concern of XTT assay should not be directly linked to actual cell proliferation rate was 

further confirmed in this study.  While the XTT assay showed that there was decrease in 

XTT reduction during the 72-hour culture period, the multiphoton scanned pictures 

suggested that increasing cell number was found on native collagen and TG2 crosslinked 

gel.  For cells migrated to deeper layer of matrix, obtaining and releasing of XTT products 

were restricted by the physical barrier and relied on medium diffusion rate.  In other 

words, the metabolic activity of cells inside the collagen gel might be hidden by the matrix.  

The invasion of hCFs into collagen gel may explain the reason why the XTT value was low 

in the TG2 group. 

hCFs showed increased cell mobility in the TG2 collagen gel system as demonstrated by 

multiphoton scanning and transwell migration assay.  These findings show the potential of 

applying TG2 collagen gel to corneal wound areas, since it could encourage the 

repopulation of corneal fibroblasts into the matrix.  Infiltration of hCFs into collagen gel 

within the wounded area hopefully could accelerate the healing process and attract 

epithelial cells and endothelial cells migration and proliferation via chemoattration. 

The invasion model used in this study suggested that a delayed onset of cell invasion might 

be expected when applying crosslinked collagen gel to corneal wound areas (Fig. 5.18).  

This delayed onset of invasion could result from specific MMPs secretion being required to 

initialise the invasion of hCFs into crosslinked collagen gel.  The hCFs were cultured on 

type I collagen for 24 hours before being subjected to invasion assay.  It is reasonable to 

assume that it takes time for hCFs to express and secrete specific MMPs when they are 

first introduced onto crosslinked collagen gel as it is distinct from the original matrix they 
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were cultured on.  This observation might also suggest that crosslinked collagen gel has 

higher resistance to hCFs mediated degradation.  It was not completely surprising since 

higher resistance to enzymatic digestion was generally observed in crosslinked gel which 

has been demonstrated by Chau et al. (2005) previously.  Interestingly, even though the 

onset of cell invasion was delayed, the average invasion rate of hCFs on crosslinked 

collagen gel after start of invasion was comparable and even higher than hCFs on native 

collagen gel. 

 
Figure 5.18 (A) A putative models for application of TG2 crosslinked gel to corneal wound area.  Quiescent 

human corneal keratocytes (hCKs) are transformed into human corneal fibroblasts (hCFs) once the injury 

occurred.  Ideally, hCFs and human corneal epithelial cells (hCECs) are encouraged to migrate into or over 

the crosslinked collagen gel at the wounded area.  Therefore, the invasion model (B) used in this study tests 

the possible scenario of hCFs invasion in the in vitro model.  Cells are cultured and wound scratching is 

performed on the cell monolayer.  The wound closure happens underneath a layer of the crosslinked 

collagen gel. 

Overall, these results provided a promising point of view in using crosslinked collagen 

matrix for hard and soft tissue regeneration.  Currently there are two BMP bone graft 
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products approved for clinical use including INFUSE® bone graft which contains BMP-2 for 

spinal fusion and for treatment of open tibial shaft fractures and Stryker’s OP-1 which 

contains BMP-7 for treating long bone non-union fractures and lumbar spinal fusion.  

Collagen gel, in these cases, is used as a biodegradable carrier for BMPs instead of having a 

functional role in promoting osteoconduction, osteoinduction and adhesion or providing 

microarchitecture for the subsequent formation of new tissue.  Here, the TG2 treated 

collagen gel demonstrated competitive osteoinductivity at later stages of cell culture when 

compared to BMP-7 containing gel.  However, in order to achieve the same osetoinductive 

effect as BMP-7 containing gel in this study, the prime cost of TG2 crosslinked gel was 20 

times less when constructed in the laboratory.  In fact, the currently approved BMP-7 

product for bone fracture repair, OP-1 Implant, costs $5250 for one unit (3.3mg of BMP7 

addmixed with 1g of bovine bone collagen).  Here, TG2 crosslinked collagen gel 

demonstrated a comparable effect on improving osteoblast mineralisation to current 

treatments for bone fracture and the cost of crosslinked gel was much lower than using 

BMP containing product.  Nevertheless, combined with a previous study conducted by 

Chau et al. (2005), TG2 –treated collagen gel showed great potential to improve cell 

attachment and mineralisation via its crosslinking and non-crosslinking characteristics 

without compromising its resistance to enzymatic degradation.  Therefore, TG2 

crosslinked collagen is a promising biomaterial which meets the current requirements of 

bone grafts in the clinic.  Future work in applying TG2 crosslinked collagen gel to in vivo 

animal models may provide more insight into the mechanism of TG2-collagen induced 

mineralisation. 

This chapter also demonstrated the promising potential of TG2 crosslinked matrix for 

corneal wound healing.  It promotes corneal fibroblast proliferation and cell infiltration 

which could potentially improve the corneal wound healing process.  The major issue 
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remains to be conquered is the relatively poor proliferation of hCECs on crosslinked 

collagen gel.  According to XTT assays, corneal epithelial cells showed low proliferation 

even when cultured on TG2-collagen gel with Lm- or Fn- modified surfaces.  Developing a 

hCFs/hCECs co-culture system in the future may improve the poor epithelial cell 

proliferation on crosslinked collagen gel and advance the use of TG2 crosslinked gels in 

cornea repair and even the possibility of fabricating artificial substitutes. 
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Chapter VI 

General Discussion 
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TG2 has been implicated in bone development and mineralisation for years, yet the 

detailed mechanism still remains unclear due to the complexities of its multifunctional 

characteristics and compensation effects from other TG family members.  In this thesis, 

the relationship between expression of TG2 and osteoblast mineralisation was 

established, where the level of TG2 protein increased steadily during cell mineralisation.  A 

strong relationship between TG2 expression and mineralisation has been well 

demonstrated here and in other literatures (Nurminskaya and Kaartinen, 2006), yet, 

studying of the mechanism behind is still a great challenge. 

There are two main restrictions for the models used for studying biological functions of 

endogenous TG2 and mineralisation.  First, in this thesis, upregulation of FXIIIa was also 

observed in TG2 knockdown osteoblasts where mineralisation was not affected by low 

expression of TG2.  Therefore, even though the expression of TG2 may be coincident with 

bone development which suggested TG2 as one of the major regulators in physiological 

mineralisation, TG2 alone was not essential for bone development and could be 

compensated by other TG members.  It is also feasible that only a minimum level of TG2 

expression and/or crosslinking activity are required for mineral deposition.  The 

compensation effects from other TG members is in agreement with current TG2 

knockdown and knockout systems which explains the lack of gross skeletal abnormalities 

in TG2 knockout mice (De Laurenzi and Melino, 2001, Nanda et al., 2001) and TG2/FXIIIa 

double knockout mice(Williams et al., 2010).  The possible upregulated TG family 

members due to TG2 knockout were demonstrated to be TG1 (De Laurenzi and Melino, 

2001, Deasey et al., 2013), TG3 (Deasey et al., 2013) and FXIII (Tarantino et al., 2009). 

Secondly, the crosslinking inhibitors may act not only through their inhibitory effect on 

transamidating activity but also through conformation change and both effects should be 

considered when evaluating the results.  Culturing osteoblasts with synthetic TG2 
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crosslinking inhibitors, R283 (non-specific) and R294 (TG2-specific), did not block 

mineralisation of HOBs in this thesis.  Although it could be concluded that TG2 activity was 

not necessary for cell mineralisation, again, it was also feasible that only a minimum level 

of TG crosslinking activity was required for this process since there was still a low level of 

crosslinking activity present in the extracellular environment after treating with inhibitors.  

Interestingly, R294 treated groups showed an even higher mineralised area at the end 

point.  The Western blot results also suggested that inhibitor-treated cells showed more 

cleaved TG2 fragments and the fragments appeared coincidently with mineral deposition.  

Here, the increase in TG2 fragments was proposed to be related to the conformational 

change due to the binding of inhibitors which made TG2 more sensitive to enzymatic 

digestion.  Also, the enhancement of mineralisation and increase in TG2 fragments fitted 

the hypothesis that TG2 could contribute to mineralisation by acting as ATPase and this 

function is regulated by enzymatic digestion.  Therefore, these results demonstrated that 

TG2 might contribute to mineralisation through other biological functions and these 

functions were likely to be related to TG2 conformation.  Current study also supports this 

finding that restricting TG2 in certain conformations has been shown to affect different 

functions of TG2, for example, TG2 failed to induce differentiation of chondrocytes in its 

open conformation (Johnson and Terkeltaub, 2005). 

Another subject to be addressed was to distinguish the contribution of crosslinking activity 

from the 2 major TGs in osteoblasts, TG2 and FXIIIa, during mineralisation.  Judging from 

the results gained from ECM and/or cell surface transamidating activity, there was a shift 

from FXIIIa-dominant crosslinking activity to TG2-dominant crosslinking activity during 

mineralisation.  This was compliant with Al-Jallad et al. (2011) studies that an early 

increase in cell surface FXIIIa was observed in differentiation treated pre-osteoblasts.  

They also indicated that this increase in FXIIIa activity on the cell membrane was related to 
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collagen deposition.  However, a TG2 dominant crosslinking activity at later stages of 

differentiation was also observed in this thesis.  Therefore, a new postulation was 

proposed here that an early peak in FXIIIa activity on the differentiated cell surface could 

be important for collagen matrix deposition and, in the later stage of differentiation,TG2 

still played a major role in matrix stabilisation considering TG2 has a broader range of 

substrates than FXIIIa in ECM. 

The exogenous TG2 induced-calcification and downstream activation of β-catenin 

signalling were observed in the HOB model used here.  According to the results, TG2-

mediated activation of LRP5/β-catenin pathway occurred transiently at a very early stage 

of treatment.  Furthermore, according to the preliminary data, R283-inactivated TG2 

(semi-open form) and R294-inactivated TG2 (open form) might still reserve partial ability 

to enhance bone mineralisation.  And it seems that R283-inactivated TG2 could induce 

higher levels of mineralisation than R294-inactivated TG2.  Another important information 

gained from Co-IP assay was that TG100 antibody failed to recognise TG2/LRP5 complex 

on cell surface.  This could be due to the binding site for TG100 antibody on TG2 being 

masked in the TG2/LRP5 complex.  It is known that the epitope site of TG100 on TG2 

undergoes large conformational change when TG2 is in compact form.  All these suggested 

that certain conformation(s), most likely the closed conformation, of TG2 was required for 

the binding of TG2 to LRP5.  It, again, implies the important of TG2 conformation in 

mineralisation. 

Therefore, a putative model of regulatory signalling for osseous cell fates combined with 

findings in this thesis was proposed in Fig 6.1.  In this model, osteoprogenitor cells 

differentiated from mesenchymal origins express LRP5 receptors and immature 

osteoblasts usually undergo apoptosis.  The LRP5 was proposed to promote proliferation 

and/or survival of early osteoblast progenitors but not essential for osteoblast lineage 
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development from mesenchymal stem cells (reviewed by Westendorf et al., 2004).  

Exogenous TG2, either secreted from chondrocytes or from apoptosis of osteoblasts, could 

act through LRP5 receptor and further activate the Wnt/β-catenin pathway thus 

encouraging cell survival and differentiation.  Also, TG2 has been proposed to enhance cell 

adhesion and proliferation in the extracellular environment through both crosslinking 

dependent and independent pathways.  Later in mature osteoblasts, the Wnt signalling 

was down regulated by secreted Wnt inhibitors, such as sFRP and WIF, and the binding of 

Dkk to LRP5 would encourage the endocytosis of cell surface LRP5.  The extracellular TG2, 

during the terminal differentiation and mineralisation, could act as a matrix stabiliser 

through its crosslinking activity or act as a phosphate regulator through its ATPase activity.  

At the very end of the process, osteocytes lose the expression of LRP5 and undergo 

apoptosis.  The extracellular TG2, again, could promote cell adhesion and survival through 

different interactions with integrins and/or syndecans. 

Exogenous TG2 is also recognised as a stress or rescue protein in wound healing and may 

play a role in bone healing.  Cell necrosis always accompanies wounding, therefore, the 

releasing of TG2 from necrotic cells could promote cell survival and accelerate maturation 

of osteoblasts through binding to LRP5 receptor at the very early stage of bone 

regeneration. The extracellular TG2 induced β-catenin activation was involved in 

pathological calcification which has been demonstrated in vascular smooth muscle cells 

and warfarin induced valve calcification models (Faverman et al., 2008, Beazley et al., 

2012).  Overall, extracellular TG2 contributed to physiological and pathological calcification 

processes through both transamidating dependent and independent pathways and the 

function of TG2 may be regulated by endocytosis or enzymatic digestion at different 

stages of mineralisation. 
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Figure 6.1. Putative model for TG2-related regulation of osseous cell fates. 
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The advantages of applying TG2 for medical use were also demonstrated in this thesis.  

Crosslinking collagen gel with TG2 is an effective way to overcome the physical weakness 

of native collagen gel.  A previous study by Chau et al. (2005) has shown that TG2 

crosslinked collagen not only had improved physical characteristics, but also provided a 

more favourable environment for cell growth and differentiation.  The same study also 

suggested that the improved biological characteristics of crosslinked gels were the result 

of alteration of collagen matrix by TG2 transamidating activity.  In this thesis, TG2 

crosslinked gel elicited greater mineral deposition of HOBs than the positive control, BMP7 

contained collagen gel, used in the experiments.  This osteoinductive effect of crosslinked 

collagen gel was suggested to result from alteration of collagen fibre topography and/or 

trapped TG2 in the matrix.  This advanced biomatrix showed a great potential in bone 

repair and could be produced at a reasonable price when compared to current BMP 

products on the market.  However, BMP7 and TG2 did not have a synergic effect in 

osteoinduction.  A possible explanation was that BMP and TG2 mediated mineralisation 

had opposite effects in the process.  It was proposed in this thesis that trapped TG2 acted 

as a resource of exogenous TG2 and could further activate Wnt/β-catenin pathway 

through LRP5.  As reviewed in the literature, interaction between BMP and Wnt pathways 

is particularly complex in bone development and had opposite or cooperative effects 

depending on the developmental stages (Itasaki and Hoppler, 2010).  Therefore, 

combining BMP7 and TG2 was not an ideal method to improve the osteoinductive 

property of biomatrix. 

Results also demonstrated that TG2 crosslinked collagen was highly compatible for hCF 

growth and provided a greater environment for hCF repopulation.  This effect could be 

related to alteration of collagen fibres by TG2 which resulted in a similar size of collagen 

fibres to that observed in human corneal stroma.  This thesis also tested the possible 
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scenario in in vivo corneal wound closure.  It suggested that a delay in invasion onset time 

was expected due to a certain amount of time that was needed for cells to secrete the 

correct MMPs for invasion when first introduced to new matrix.  However, higher mobility 

of cells cultured in TG2 crosslinked group was observed in the transwell assay.  Future 

work will involve adequate modification of the matrix surface for HCECs proliferation and 

migration in order to advance the use of crosslinked collagen gel in corneal wound 

dressing. 

To summarise, the key contribution of this thesis was to refine current hypotheses of TG2 

in osteoblast mineralisation process.  The crosslinking activities of extracellular TG2 in cell 

mineralisation are likely to play a role in matrix maturation and stabilisation in the later 

stage of differentiation.  The extracellular TG2, even after proteolysis, can also contribute 

to Pi synthesis for mineral deposition via its ATPase activity.  The exogenous TG2, on the 

other hand, induces cell differentiation via binding of LRP5 receptor and activating 

downstream β-catenin signalling in HOB.  This effect is β-catenin signalling dependent and 

is likely to be an initial differentiation signal for osteoblasts in physiological bone 

development and the wound healing process.  In the future, it would be interesting to 

examine if TG2 activity and/or conformation are essential for the endogenous TG2-

mediated and exogenous TG2-induced mineralisation.  Using the wild type TG2, mutant 

C277S TG2 and mutant W271A TG2 could be a good model to study the effect of TG2 

conformation and activity during mineralisation. 

The use of TG2 modified matrix also demonstrated a great potential as an advanced 

biomatrix in bone repair.  Combining the finding in previous studies and the results here, 

TG2 crosslinked collagen gel is a mechanically strong biomatrix and its cell compatibility 

and pro-mineralisation effects are well established in in vitro systems.  It is worth studying 

the TG2 crosslinked collagen gel in animal bone fracture models and ultimately in clinical 
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trials.  Further added value of using TG2 crosslinked collagen gel as a corneal wound 

dressing was also demonstrated where the matrix shows great cell compatibility for hCFs 

to proliferate and migrate.  The next challenge to overcome in the future is to improve the 

cell compatibility of TG2 crosslinked gel for hCECs proliferation.  One possible way to 

address this goal is using hCFs/hCECs coculture system, addition of growth factor and 

modifying with type IV collagen. 
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