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The human accommodation system has been extensively examined for over a century, with a particular
focus on trying to understand the mechanisms that lead to the loss of accommodative ability with age
(Presbyopia). The accommodative process, along with the potential causes of presbyopia, are disputed;
hindering efforts to develop methods of restoring accommodation in the presbyopic eye. One method that
can be used to provide insight into this complex area is Finite Element Analysis (FEA).

The effectiveness of FEA in modelling the accommodative process has been illustrated by a number of
accommodative FEA models developed to date. However, there have been limitations to these previous
models; principally due to the variation in data on the geometry of the accommodative components, com-
bined with sparse measurements of their material properties. Despite advances in available data, continued
oversimplification has occurred in the modelling of the crystalline lens structure and the zonular fibres that
surround the lens.

A new accommodation model was proposed by the author that aims to eliminate these limitations. A novel
representation of the zonular structure was developed, combined with updated lens and capsule modelling
methods. The model has been designed to be adaptable so that a range of different age accommodation
systems can be modelled, allowing the age related changes that occur to be simulated.

The new modelling methods were validated by comparing the changes induced within the model to avail-
able in vivo data, leading to the definition of three different age models. These were used in an extended
sensitivity study on age related changes, where individual parameters were altered to investigate their ef-
fect on the accommodative process. The material properties were found to have the largest impact on the
decline in accommodative ability, in particular compared to changes in ciliary body movement or zonular
structure. Novel data on the importance of the capsule stiffness and thickness was also established.

The new model detailed within this thesis provides further insight into the accommodation mechanism, as
well as a foundation for future, more detailed investigations into accommodation, presbyopia and accom-
modative restoration techniques.
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Chapter 1

Background: Accommodation and Presbyopia

1.1 General introduction

The eye is a complex organ formed of many components, all combining to allow humans to see clearly

across a range of distances. This ability to clearly focus on objects at various distances is due to the

crystalline lens being able to change its shape and therefore its power, a process called accommodation.

It is most evident in young eyes, with the ability to accommodate being lost with age, a condition known

as presbyopia. A brief overview of the general ocular structures will be given, before looking in detail at

accommodation and presbyopia.

Cornea Iris

Sclera Vitreous humor

Aqueous humor

Crystalline lens

Zonular fibres

RetinaOptic Nerve

Ciliary body

Choroid

Figure 1.1: The components of the human eyeball, illustrating both the structure and vision system.
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1.2 Accommodation

Figure 1.1 illustrates a simplified schematic of the human eye, illustrating the key components of the

eyeball structure and vision system. To enable a clear image to be seen, light rays entering the eye first

pass through the cornea, a transparent structure with a higher refractive index than air, causing an initial

refraction of the light. The rays then pass though the anterior chamber, filled with the aqueous humor,

before passing through the iris, which acts as an aperture controlling the amount of light that enters the

eye by contracting and dilating on reflex. The light then passes through the crystalline lens, which controls

the focusing, to be discussed further in Section 1.2.3. The lens is held in place by the zonular fibres which

cross the circumlental space: the area between the lens and ciliary body. Finally, the light passes through

the vitreous humor before hitting the retina, a complex structure formed of photoreceptor cells, called rods

and cones. These cells convert light into the neural signals that pass through the optic nerve to the brain.

The cone cells are used in well-lit conditions, while the rods are more sensitive in low light conditions.

1.2 Accommodation

The eye has two principal refractive components, the cornea, which provides approximately two thirds of

the overall refractive power of the eye, and the crystalline lens, which provides the optical changes needed

for accommodation, allowing constant clear focus on objects at a range of distances. Despite extensive

study, there is still no universally agreed explanation on how the accommodative system functions. A

summary of both the historical understanding and current understanding of accommodation will now be

given, before a more detailed look at the accommodative components.

1.2.1 Historical understanding of accommodation

The first demonstration of an active accommodation process was by Scheiner (1619) (cited by Daxecker,

1992), using a double pin hole experiment, where a near and distant object were observed at the same time

through these pin holes. The object focused on would appear single, while the other object appeared to

double. Descartes (1637) (cited by Atchison, 1995) hypothesised that the lens could change its curvature,

which allowed the lens to change its focus. He believed this was due to the fibers which held the lens in

place. These speculations were furthered by the work of Young (1801), who found that accommodation

still occurred after the influence of the cornea was removed, concluding that the lens was responsible for

the change in power of the eye (cited by Atchison & Charman, 2010).
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1.2 Accommodation

Cramer (1853) provided experimental evidence of the lens being responsible using Purkinjie images,

where he observed the increase of anterior lens curvature during accommodation. He attributed this lens

change to the actions of the ciliary muscle and iris, where the ciliary muscle would contract and act on

the vitreous humor, while the iris would contract and act directly on the lens (cited by Strenk et al., 2005).

The contribution of the iris was later invalidated by the work of von Grafe (1861), who showed an aniridic

patient had accommodative ability (cited by Atchison, 1995).

Helmholtz (1855, 1924) also used Purkinjie images and came up with his own theory; he stated that the

change in shape of the lens was due to the ciliary muscle contracting, causing a reduction in the tension

in the zonules. This allowed the lens to increase in curvature by increasing its thickness and reducing its

diameter (Strenk et al., 2005).

Tscherning (1895) later challenged the theory proposed by Helmholtz by suggesting that the contraction

of the ciliary muscle, instead, causes the zonules to increase in tension; proposing a curvature change

without a change in thickness of the lens. Due to evidence of lens thickening during accommodation,

Tscherning (1909) updated his theory although he still believed the change in power was due to increasing

zonular tension with ciliary muscle contraction (cited by Strenk et al., 2005).

1.2.2 Current understanding of accommodation

The classical explanation of von Helmholtz (1855) is widely accepted, however, there are still other theo-

ries currently supported. A more detailed summary of these will be given here, with the evidence explored

further in Chapter 3 and Chapter 4.

Helmholtz Theory

The original theory of von Helmholtz (1855) attributed some of the anterior curvature changes of the lens

to the iris, however, this was later discounted by Fincham (1937) due to observations of accommodative

ability in patients with aniridia (cited by Atchison, 1995). Gullstrand (1924) expanded the theory to

include the actions of the choroid in aiding the contraction of the ciliary muscle (cited by Strenk et al.,

2005 and Charman, 2008). With these amendments the current Helmholtz theory (illustrated in Figure 1.2)

is as follows; to accommodate for near objects, the ciliary muscle contracts, causing it to move closer to

the lens. The zonular fibres are then relaxed, which allows the lens to form its natural, more powerful

shape. The shape change is facilitated by the capsule: an elastic body surrounding the lens, which also

resists the pull of the zonules. To accommodate for far objects, the ciliary muscle relaxes placing tension
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1.2 Accommodation

Relaxed Accommodated

Ciliary muscle contracts
Zonules relax
Lens has increased power

Ciliary muscle relaxes
Zonules tighten

Lens has reduced power

Figure 1.2: Illustration of the changes in the accommodative structures during accommodation as according to
the Helmholtz theory. The left side shows the eye in the relaxed state with the right side showing it in its
accommodated state. The arrows indicate movement.

on the zonular fibres. This pulls on the capsule which forces the lens into a flatter, less powerful shape.

Chapter 3 will discuss the many in vivo measurements that support the overall changes in the lens and

ciliary muscle during the accommodation process discussed here.

Schachar Theory

Relaxed Accommodated

Ciliary muscle contracts
Equatorial zonule tightens
Anterior and posterior zonules relax
Lens has increased power

Ciliary muscle relaxes
All zonules in tension

Lens has reduced power

Figure 1.3: Illustration of the changes in the accommodative structures with accommodation as according to the
Schachar theory. The left side shows the eye in the relaxed state with the right side showing it in its accommodated
state. The arrows indicate movement, highlighting the differences to the Helmholtz thoery shown in Figure 1.2.
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1.2 Accommodation

The Helmholtz theory has been challenged by the emergence of the theory of Schachar (illustrated in

Figure 1.3), who discounts the Helmholtz theory and proposes a theory similar to Tscherning. He pro-

posed that the increase in power of the lens is caused by the lens forming a spindle shape, where the

central portion of the lens is thicker, with the peripheral parts flattened. When the lens is in its low power,

un-accommodated state, all the zonules are in tension, similar to the Helmholtz theory. However, when

the ciliary muscle contracts the equatorial zonules increase in tension, while the anterior and posterior

zonules relax, which is contrary to Helmholtz (Schachar, 1992).

Coleman Theory

Another theory is that of Coleman (Coleman, 1986; Coleman & Fish, 2001), who proposed the hydraulic

suspension theory (also called the catenary theory). According to Coleman, the zonules, vitreous and lens

create a diaphragm between the anterior chamber and the vitreous. With contraction of the ciliary muscle,

a pressure gradient is created between the anterior aqueous chamber and the vitreous, forming a catenary.

The contraction of the ciliary body alters the shape of the catenary by altering the fixed ends (Figure 1.7).

Evidence against this theory can be found in the work of Fisher (1983), where patients without a vitreous

were able to demonstrate accommodation.

Other Theories

In addition to the three theories discussed, others have been suggested. Wilson (1993) proposed that when

the ciliary body is in the relaxed state the zonules simply suspend the lens, and with the contraction of the

ciliary body the zonules cause a compressive force on the lens, causing it to change its shape. Santos-Neto

& Alves (2011) hypothesised that the cause of accommodation was related to the change in pressure of

the vitreous, brought about by the movement of the ciliary body. With a change in pressure, the posterior

pole of the lens moves increasing the power of the lens. Chapter 3 explores the evidence for posterior pole

movement in more detail.

1.2.3 Accommodative Apparatus

The key components of accommodation are the crystalline lens (comprising of its internal structure and

capsule), the zonules and the ciliary muscle. A summary of the development, geometry, material properties

and the changes that occur with age and accommodation will be given here, before a detailed analysis of

each component is discussed in Chapter 3 and Chapter 4.
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1.2 Accommodation

1.2.3.1 Crystalline Lens

The crystalline lens provides the power change in the eye through its ability to change in shape. The lens is

positioned along the optical axis of the eye (see Figure 1.1) and is approximately 9 mm in diameter and 4

mm thick (in an adult), although these values will change with age and accommodation. The lens is made

up of a number of layers due to the gradual addition of cells throughout life, illustrated in Figure 1.4.

Capsule

Cortex

Adult nucleus

Juvenile nucleus

Fetal nucleus

Embryonic nucleus

Epithelium

Anterior Posterior

Figure 1.4: Left: The structure of the crystalline lens, illustrating the different regions of the lens, representing the
gradual addition of cells throughout life, as defined by Taylor et al. (1996). Right: Illustration of the suture sites
on the anterior and posterior surfaces of the lens, showing the increasing complexity of the fibre end connections
with age (Kuszak et al., 2004).

Development

The lens is first seen at 22 days gestation, and from then onwards, constantly grows. The initial lens is seen

as a hollow spherical structure (the lens vesicle) made of a single layer of ectodermal cells. These cells

differentiate, with the anterior cells becoming epithelial cells, differentiating into a single layer forming

the initial anterior capsule. The posterior cells begin to elongate and fill this hollow structure (Stafford,

2001), becoming the primary lens fibres, filled with crystallins a protein essential for cell transparency.

The primary lens fibres meet with the anterior epithelial cells, creating the embryonic nucleus. The initial

lens is therefore formed of epithelial cells anteriorly (in a cube shape) and longer primary lens fibres

posteriorly (Augusteyn, 2008).

From this time all additional fibres that grow (known as the secondary fibres) are not destroyed, although

they lose most of their metabolic activity. These fibres originate in the anterior epithelial cells and undergo

mitosis at the lens equator, where they subsequently differentiate and elongate. These new fibres layer on
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1.2 Accommodation

top of the older cells, causing the existing fibres to move towards the centre of the lens. The fibres are

compressed, losing water and increasing in protein concentration (Augusteyn, 2008).

The fibres form a u shape, rather than running in their entirety from the posterior to anterior surfaces,

where the ends of the fibres meet in sutures. These suture sites appear on both sides of the lens, although

as the lens ages, more suture sites appear. With age, the complexity increases, beginning with a simple 3

branch Y shape and moving onto 12 branch star structures (Kuszak et al., 2004). These different suture

regions are visible in a slit lamp due to the different light scattering ability of each region (Augusteyn,

2008).

Internal Structure

The layered internal structure can be seen in Figure 1.4, although commonly, the internal lens is split into

two distinct sections: the nucleus and the cortex. Separating the lens into these two sections is primarily

linked to the oldest fibres being compacted in the centre of the lens (the nucleus) and the rest of the lens

fibres that are added on top of this (the cortex). Using this simple sectioning has been shown to be an

oversimplification in vivo (Dubbelman et al., 2003) and in vitro (Taylor et al., 1996; Lim et al., 2009).

Taylor et al. (1996) showed using electron microscopy on lens sections that there are a number of distinct

fibre groupings within the lens, where there are observable differences in cell size and shape. These

different regions can be seen with Schiempflug photography, as demonstrated by Dubbelman et al. (2003),

utilising densitometry on the captured images. It was established that there were three distinct cortical

regions surrounding the nucleus of the lens.

The variations seen in the lens due to the different cell sizes are also seen in the variation in refractive

index (Glasser & Campbell, 1999; Jones et al., 2005; Borja et al., 2008), protein density (Fagerholm

et al., 1981; Pierścionek & Chan, 1989) and material properties (Heys et al., 2004; Weeber et al., 2007),

illustrating the complexity of the crystalline lens structure.

The refractive index contributes to the power of the lens, and is known to vary, although the exact nature

of this variation is not fully known, with different results being seen in vitro (Glasser & Campbell, 1999;

Borja et al., 2008) and in vivo (Jones et al., 2005).

Material Properties

The surface curvature and refractive index of the crystalline lens, combined with the differences in refrac-

tive index between the aqueous, lens and vitreous, all contribute to the power of the lens. However, the
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1.2 Accommodation

power change that the lens undergoes is due to the ability to change its surface curvatures’, a result of

its ability to be moulded by the accommodative apparatus, which is due to its material properties. The

material properties of a structure dictate how it reacts to applied forces and will control whether it will

return to its original shape once a force is applied and released or whether it will break under the forces.

A number of studies have been performed to establish the material properties of the lens (see Chapter 4).

As a basic overview, the lens can be seen as an almost incompressible solid that has broadly elastic

behaviour, i.e. the lens can be pulled into a thinner more elliptical shape as a result of zonular action, but

is able to return to its original shape when the zonules slacken. The material properties vary across the

lens structure, with a young lens having a stiffer cortex than nucleus (e.g. Weeber et al., 2007), although

this does change with age (e.g. Heys et al., 2004).

Changes with Age and Accommodation

As has been established, the lens grows continuously through life, resulting in a number of changes oc-

curring to the geometric and material properties of the lens. During the accommodation process, the

geometric properties of the lens also alter. Chapter 3 will explore the changes that occur with age and

accommodation in detail, however, a brief overview will be given here.

The thickness of the lens increases with age, which has been observed in vivo (e.g. Koretz et al., 2004;

Sheppard et al., 2011) and in vitro (e.g. Rosen et al., 2006). Measurements made in vitro are often assumed

to represent the lens in its most powerful shape, due to there being no external forces acting on the lens,

similar to when the lens is in its accommodated form in vivo, where there are few external forces present.

During accommodation, an increase in thickness is also seen (e.g. Hermans et al., 2009; Sheppard et al.,

2011), although the amount reduces with age.

The diameter of the lens in its relaxed state remains relatively stable throughout life, with most authors

finding small changes with age (e.g. Strenk et al., 1999; Kasthurirangan et al., 2011). In vitro, most

authors found an increase with age (e.g. Jones et al., 2005; Rosen et al., 2006). During accommodation,

the diameter has been seen to decrease (e.g. Hermans et al., 2009; Kasthurirangan et al., 2011), but as

with thickness, the amount reduces with age (Sheppard et al., 2011).

The curvature of the anterior and posterior surfaces also vary with age. In vivo, the anterior curvatures have

been measured as decreasing (Koretz et al., 2004; Atchison et al., 2008), whilst the posterior curvatures

have shown no significant change (Koretz et al., 2004; Atchison et al., 2008). With accommodation, both

the anterior and posterior curvatures have been measured as decreasing (Hermans et al., 2009; Sheppard
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1.2 Accommodation

et al., 2011). In vitro, the anterior curvature has been measured as increasing with age (Rosen et al., 2006)

whilst the posterior curvature had no significant change (Jones et al., 2005; Rosen et al., 2006), with the

difference between the in vivo and in vitro measurements due to the different shape the lens takes in vitro

(see Chapter 3).

The volume change during accommodation is disputed, with in vivo evidence suggesting that there is both

no change (Hermans et al., 2009), as well as an increase (Sheppard et al., 2011), potentially as a result

of fluid flow into the lens (Candia et al., 2010). The volume in vitro has been shown to increase with age

(Koretz et al., 2001; Rosen et al., 2006), matched by measured increases of weight with age (Rosen et al.,

2006).

In terms of material properties, the overall stiffness of the lens has been seen to increase with age, with

the stiffness profile also changing from having a stiffer cortex at a young age, to having a stiffer nucleus

in old age (Fisher, 1971; Heys et al., 2004; Weeber et al., 2007).

The internal refractive index of the lens changes, with less variance in the refractive index across layers

in the lens seen with age (de Castro et al., 2011), resulting in the lens becoming more homogenous. In

an older lens, any refractive index change is restricted to the cortex, while the nucleus remains constant.

This results in aberrations in the lens, particularly spherical aberrations, which affect the focusing of the

eye (Charman, 2008).

An interesting aspect of the refractive index changes is to do with the lens paradox, where the geomet-

ric changes that occur with age, in particular changes to surface curvatures, would suggest that the lens

increases in power with age and becomes increasingly myopic (Dubbelman & Van der Heijde, 2001).

However, the opposite is the case, most likely due to the changes in refractive index that occur, counter-

acting the geometric changes that take place (Moffat et al., 2002b).

1.2.3.2 Capsule

The capsule encases the lens and provides the link between the crystalline lens and the zonular fibres.

There is debate on the exact function of the capsule during accommodation as well as its role in presbyopia,

which will be discussed later. First, the development of the capsule must be discussed.

Development

The capsule develops with the lens, surrounding the developing lens forming from a basement membrane.

The capsule separates the lens from the surrounding structures in the eye, only allowing water and proteins
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1.2 Accommodation

that allow the development of the lens to pass through. The capsule grows in layers, with successive layers

of lamellae formed from molecules deposited by the epithelial cells of the lens on the inner surface of the

capsule, resulting in a thickening of the capsule, which continues through life (Danysh & Duncan, 2009).

Geometry

The capsule conforms to the basic lens shape discussed previously. However, its thickness around the lens

varies. The classical description of this variation is from Fincham (1925) as shown in Figure 1.5, however,

there are disagreements on the amount of thickness change that actually occurs, which will be discussed

in Chapter 3.

Figure 1.5: Reproduction of the capsule thickness variation as illustrated by Fincham (1925), with the black area
representing the capsule area. The thickness of the capsule has been exaggerated to illustrate the thickness
variation.

In summary, the capsule is thickest in its anterior section, with the thickest portion being midway between

the anterior pole and the equator. The thickness reduces at the equator, before continuing to decrease

posteriorly (Farnsworth & Shyne, 1979; Barraquer et al., 2006). There is debate over whether the thicker

sections correspond to the locations of the zonule attachments or not (Barraquer et al., 2006).

Material Properties

The capsule is significantly stiffer than the lens, although the anterior and posterior sections have different

properties (Krag & Andreassen, 2003a). The capsule has also been shown to exhibit non-linear behaviour,

although for strains that are likely to occur in vivo the capsule can be assumed to have a more linear

response.
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Role

The original theory of Helmholtz did not differentiate between the lens and capsule, instead treating them

as a single body. Fincham (1937) challenged this view, believing that the natural de-capsulated lens is in its

un-accommodated form, stating that the capsule moulded the lens into its accommodated form principally

due to the variation in thickness in the capsule. Others disputed this, with suggestions that the variation

in thickness is not as key (Fisher, 1969). Support for the capsule moulding the lens can be seen in vitro,

where without the capsule, the lens forms a flatter shape (Fincham, 1937; Glasser & Campbell, 1999).

An alternate theory for the capsular role during accommodation is that the capsule acts as a force dis-

tributer, taking the tractions from the zonules applied by the ciliary muscle and transferring them to the

lens (Koretz & Handelman, 1982). The capsule ensures that a uniform force is applied to the lens, with

greater changes anteriorly corresponding to greater anterior capsule thickness. The changes in lens shape

when the zonules slacken are therefore due to the lens itself, and the complex arrangement of the internal

fibres (Krag & Andreassen, 2003a).

Changes with age and accommodation

As with the lens, the capsule changes throughout life, with the anterior capsule increasing in thickness,

whilst the equatorial and posterior sections show limited changes (Barraquer et al., 2006).

In terms of the material properties, there are conflicting data. Fisher (1969) found that the elastic mod-

ulus decreases with age, although this was likely at deformations unlikely to be found in vivo. Krag &

Andreassen (2003a) found that in the range of forces found in vivo, the stiffness of the capsule increases

with age.

1.2.3.3 Zonules

The zonules surround the lens, interlacing with the capsule and ciliary body in a complex arrangement.

Each zonular bundle is formed of individual fibres, with the bundles approximately 10 mm in diameter

(Streeten, 1977). There has been extensive research on the zonules, although due to the difficulty in

imaging them in vivo (a result of the obstruction of the iris combined with the small size), there is no

complete agreement on the arrangement and function.
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Development

The development of the zonules is still not fully understood. They can be first seen in the third fetal

month, and the adult zonular arrangement can be seen towards the end of the fetal period. The zonules are

believed to be synthesised from the epithelium of the ciliary body, but it is not known whether the zonules

grow or undergo constant renewal throughout life (Streeten, 2003).

Arrangement

The arrangement of the zonules has been studied extensively, although there has not been agreement on the

exact architecture, leading to a range of different proposals on how the zonules connect the lens and ciliary

body. One of the prominent theories is that of Rohen (1979), who proposed that there are two main groups

of zonules involved in accommodation. The first group consists of the anterior zonules (which run from

the ciliary body to the lens) and the posterior zonules, which run from the pars plana (the posterior region

of the ciliary body) to the anterior portion of the ciliary body. The lens is pulled into its un-accommodated

state by the posterior zonules pulling on the anterior zonules, which force the lens into its flattened state.

For accommodation the ciliary muscle contracts, moving the ciliary body anteriorly and inwards, bringing

the second group of zonules (the tension zonules) into play. These zonules attach to the posterior and

anterior zonules and take up the pull of the posterior zonules, allowing the anterior zonules to relax which

allows the lens to form its most powerful shape, as shown in Figure 1.6.

Relaxed Accommodated

Anterior zonules

Posterior zonule
Region of the tension 

zonules

Figure 1.6: Zonule arrangement according to Rohen (1979), illustrating the difference between anterior and poste-
rior zonule groups and highlighting the region of the tension zonules.

Coleman (1986) proposed an alternate arrangement to support the “suspension theory” of accommodation,

where the anterior zonules form a “sling” that holds the lens, with support coming from the vitreous

(Figure 1.7). The zonules originate near the ora seratta (a region posterior of the ciliary body) and pass
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through the ciliary processes. For an un-accommodated lens, the “sling” holds the lens in its flattened

state. During accommodation, the ciliary muscle moving inwards causes the central curvature of the sling

to increase, causing the lens to form its more powerful shape. With the change in zonular arrangement,

the vitreous, attached to the lens by Weigers ligament, helps to mould the lens into its shape.

Relaxed Accommodated

Inwards movement of ciliary body causes the “sling” 
formed by the zonules to steepen in curvature

Figure 1.7: Zonule arrangement according to Coleman (1986), the lens is displayed inverted to illustrate the “sling”
arrangement, illustrating the changes as a result of ciliary muscle contraction.

Ludwig et al. (1999) investigated the zonular arrangement using high resolution ultrasound biomicroscopy

(UBM). Three different sections were taken of the eye, allowing the full spread of the zonules to be

imaged, which led to Ludwig proposing that the zonules originate from three areas on the ciliary body

(O1 – O3) and insert in three main and one minor band on the lens (I1 –I4), as shown in Figure 1.8. The

insertion band on the equator was seen as the weakest, with many more fibres seen on the other insertion

bands. Fibres were seen to run from O3 to O2 before running to different insertion bands. It was not

clear whether the zonules from O3 inserted at O2, or whether they were anchored, as hypothesized by

Rohen (1979). Additional fibres were seen to run from O3 directly to the lens. There were fibres seen in

3 patients that ran from O1 to I1. Predominantly, the zonules inserting at I2 come from O2. At a number

of areas, highlighted as K1-K3, the zonules were seen to cross, but it was not known whether the zonules

just crossed, or whether they changed direction.

The zonules were seen to run in straight courses, indicating that the zonules were taut, in the measured state

of far accommodation. Not much detail was given on what was seen at near accommodation, however,

what was seen indicated that the zonules were relaxed, becoming shorter and bowing.
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O1

O3

O2

I3

I1
I2

K1

K3 K2 I4

O Indicates origin of zonule 
bundles

K Indicates possible crossing 
points of zonule bundles

I Indicates insertion points of 
zonule bundles into the lens

Figure 1.8: Zonule arrangement according to Ludwig et al. (1999), illustrating the complex paths of the different
zonule bundles, with the origin, insertion and possible crossing points highlighted. The overall strucutre is similar
to that of Rohen (1979) shown in Figure 1.6.

As discussed in Section 1.2.2, Schachar (1992) proposed an alternative accommodation theory which

necessitates an alternate arrangement and action for the zonules. For this theory, the equatorial zonule

increases in tension during accommodation due to the movement of the ciliary body, contrary to the

Helmholtz theory. The equatorial zonules would, therefore, be under the lowest tension when the lens is

in its lowest power form, but increase in tension to increase the lens power. Figure 1.9 illustrates how this

arrangement looks, where the anterior and posterior zonules act purely as stabilisers, being tense during

distance vision and relaxed for accommodated vision.

Relaxed Accommodated

Increase in equatorial zonule tension

Figure 1.9: Zonule arrangement according to Schachar (1992), highlighting the alternative view of the movement
of the equatorial zonule with ciliary muscle contraction.

Bernal et al. (2006) showed that the posterior zonules do not predominantly attach to the posterior cap-

sule, but attach to the Weigers ligament via the anterior hyaloid membrane (Figure 1.10). The hyaloid
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membrane is a thin membrane of collagen separating the vitreous from the rest of the eye, with the an-

terior portion separating the vitreous and lens (Bergua & Küchle, 2002). Wiegers ligament (also known

as Egger’s line) is an area where the hyaloid membrane and the posterior capsule adhere to each other,

forming a band around the lens, posterior of the equator, but not extending to the posterior pole (Bergua

& Küchle, 2002).

Bernal et al. (2006) suggested that the zonules attaching to the hyaloid membrane could affect accommo-

dation, as unlike the anterior zonules which run a straight course from ciliary body to the lens, the poste-

rior zonules attach to the lens via the membrane which could cause traction to be reduced. Nankivil et al.

(2009) supported this work, showing that the posterior zonules linked with the hyaloid membrane play a

role in accommodation, as even without anterior zonules, the remaining posterior zonules can still cause

accommodation to occur. The overall structure according to these authors can be seen in Figure 1.10.

Relaxed

Wiegers ligament

Hyaloid membrane

Anterior zonules link with 
hyaloid membrane

Figure 1.10: Zonular arrangement according to the studies of Bernal et al. (2006) and Nankivil et al. (2009), illus-
trating the addition of the anterior zonules interlacing the hyaloid membrane.

A recent computer animation was developed by Goldberg (2011) to visualise the zonular movement based

on a combination of previous studies (including Rohen, 1979 and Bernal et al., 2006). The majority of

the detail originated from Lütjen-Drecoll et al. (2010) who used scanning electron microscopy (SEM)

and ultrasound biomicroscopy to image the zonular groups, and strong evidence was found for a vitreous

zonule primarily attached to the posterior capsule and the ora serrata (the posterior portion of the ciliary

body, see Figure 1.11). There was also evidence of additional smaller attachments along the length of

the vitreous zonule that may allow for finer control of the system and reduce the amount of stress at the

primary attachments. These smaller attachments would also serve to stabilise and smooth the system

movement. The complete arrangement proposed by Goldberg (2011) is illustrated in Figure 1.11.
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Relaxed Accommodated

Vitreous zonule, attaching to the 
posterior capsule and ora seratta

Figure 1.11: Zonular arrangement from the computer model of Goldberg (2011), primarily based on the imaging of
Lütjen-Drecoll et al. (2010), highlighting the more detailed representation of the vitreous zonule and its connec-
tions anteriorly and posteriorly.

Few studies have analysed the insertion of the zonules into the capsule. Hiraoka et al. (2010) studied the

insertion in monkey eyes and found that the zonules pass through the outer layer of the lens and adhere to

the epithelium, actually travelling towards the poles of the lens past the initial insertion point.

Material Properties

There have been few studies into the material properties of the zonules, with each study conducted finding

markedly different results for the elastic modulus of the zonular fibres, which have been found to vary

between 300 mN/mm2 (Fisher, 1986; Michael et al., 2012) and 1500 mN/mm2(Van Alphen & Graebel,

1991), with the variation most likely due to the different mechanical testing methods (see Chapter 4).

Changes with age

The attachment positions on the capsule of the zonules have been shown to change with age. Farnsworth

& Shyne (1979) demonstrated that the anterior zonules move further away from the equator with age.

Sakabe et al. (1998) demonstrated this, but also found that the zonular free area of the lens decreases

with age, indicating a spreading of the zonular attachments. Ludwig et al. (1999) found no age variation

in the zonular arrangement, other than an increase in axial distance between the anterior and posterior

attachment locations, consistent with the age related increase in lens size. In terms of material properties,

the elasticity has been observed to remain stable with age, indicating the zonules retain their ability to

extend and contract through life (Michael et al., 2012).
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1.2.3.4 Ciliary body

The ciliary body surrounds the lens and is formed of two principal sections: the pars plicata anteriorly

and the pars plana posteriorly. The pars plicata contains the ciliary processes, folds in the ciliary body,

containing the ciliary valleys. The ciliary processes are vascular structures and as was discussed in the

previous section, a number of zonular fibres run through the ciliary processes. The pars plana runs up

to the ora seratta and separates the ciliary body from the retina. The most important aspect of the ciliary

body is that it contains the ciliary muscle, which is predominantly situated in the pars plicata region, but

does extend into the pars plana (Figure 1.12).

Ciliary muscle

The contraction and relaxation of the ciliary muscle causes the changes in the ciliary body which, in turn,

allows the zonules to control the lens. The ciliary muscle is classed as a smooth muscle (Pardue & Sivak,

2000) formed of three fibre orientations; longitudinal, radial and circular fibres. The longitudinal fibres

run alongside the scleral surface, the radial run inbetween the longitudinal and circular fibres and the

circular fibres run around the entire eyeball (Figure 1.12).

Ciliary processes

Radial fibres

Circular fibres

Longitudinal fibres

Ciliary muscle 
outline

Figure 1.12: The basic shape of the ciliary body, showing the difference between the ciliary process and ciliary
muscle and an illustration of the three ciliary muscle fibre types and orientations.

During accommodation it has been shown that the ciliary muscle moves anteriorly and inwards (Sheppard

& Davies, 2010), which is due to the muscle contracting and causing the muscle fibres to reorganise.

Some of the longitudinal fibres become orientated radially or circularly (Pardue & Sivak, 2000) causing

the muscle to shorten in the longitudinal direction and thicken anteriorly. The muscle acts in a similar
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manner to a sphincter, with a centripetal movement as it contracts.

Changes with age and accommodation

In the relaxed state, the thickness of the ciliary muscle has been observed to increase with age (Strenk

et al., 2010; Sheppard & Davies, 2011), whilst the diameter was seen to decrease (Strenk et al., 2010),

reducing the circumlental space (Kasthurirangan et al., 2011).

During accommodation, the ciliary muscle has been shown in increase in thickness (Strenk et al., 2010;

Sheppard & Davies, 2011), and this thickness increase is stable with age (Strenk et al., 2010; Sheppard

& Davies, 2011). In terms of movement, the centripetal shift has been shown to exist throughout life (

Strenk et al., 1999; Stachs et al., 2002) whilst measurements of the circumlental space have shown that it

does not change with accommodation (Kasthurirangan et al., 2011), meaning the ciliary body movement

matches the lens equator movement.

1.3 Presbyopia

Presbyopia is the name given to the decline in accommodative amplitude of the eye with age. There is

currently no standard definition of presbyopia but it is commonly assumed that a person is presbyopic

when their inability to focus on near objects is detrimental to their everyday nearwork activities, typically

when a person can achieve accommodation of 3 Dioptres or below (Weale, 2000). Figure 1.13 illustrates

the decline in accommodative ability with age, and it can be seen that the decline occurs from infancy,

although patients only become symptomatic from the age of 45 to 50.

40



1.3 Presbyopia

Age (Years)

0 10 20 30 40 50 60 70

A
cc

om
m

od
at

iv
e 

A
m

pl
it

ud
e 

(D
) 

0

2

4

6

8

10

12

14

16

Donders (1864)
Duane (1912)
Turner (1958) 

Figure 1.13: Decline in the mean accommodative amplitude with age. Adapted from Figure 2 from Pierścionek &
Weale (1995) and Figure 1.5 from Sheppard (2010).

Presbyopia is clearly linked with the ageing of the eye which, as discussed in Section 1.2.3, causes many

changes to occur to the accommodative components. How these changes actually contribute to the onset

of presbyopia is still under debate. The theories of presbyopia development that have been suggested can

be broken down into two main categories; those that attribute presbyopia development to changes within

the lens; and those that attribute it to changes in components other than the lens. A summary of the main

theories of presbyopia development will be discussed here, along with any sources of support, but as with

the accommodative theories discussed in Section 1.2.2, further discussion will be carried out in Chapters

3 and 4.

1.3.1 Lenticular causes

There are a number of lenticular factors that change with age such as the geometry, refractive index and

material properties (discussed in Section 1.2.3.1 and in Chapters 3 and 4). A number of these changes

41



1.3 Presbyopia

have been hypothesised to be the cause of presbyopia.

Material property changes

Although there is debate on the nature of the stiffness changes within the lens (e.g. Fisher, 1971; Weeber

et al., 2007), there is an overall trend seen that the lens stiffens with age. It has been proposed that as the

stiffness of the lens increases, the lens may be unable to change its shape in response to the pull of the

zonules, limiting the power change of the lens. This has been demonstrated in vitro through lens stretching

experiments (Glasser & Campbell, 1998; Manns et al., 2007).

One theory that fits the above assumption is the Hess-Gullstrand theory (so termed due to the original

proposals by Hess (1901) and Gullstrand (1924), cited by Atchison, 1995), which proposes that the ciliary

muscle remains able to exert force on the lens throughout life, and that the amount of contraction that

is needed to change the power of the lens does not change. Therefore, the reduction in accommodative

amplitude is due to the stiffening of the lens, in that, with age the movement of the ciliary muscle is

increasingly unused.

There is also evidence that conflicts with the Hess-Gullstrand theory; Fisher (1977) measured a reduction

in the ciliary body force, and Glasser and Cambell (1998, 1999) found that older lenses required more

force to deform than younger lenses. Both of these factors lend support to an alternate theory; the Duane-

Fincham theory (from the studies of Duane 1925 and Fincham 1937, as cited by Atchison, 1995), which

assumes that the ciliary muscle contraction is always at a maximum once the required focus is reached.

As a result of lens stiffening, the capsule requires more force to be able to change the lens shape which

requires the contraction, and inwards movement, of the ciliary muscle to continually increase throughout

life.

Geometric changes

Even without changes to the material properties of the lens, there are a number of geometrical changes

that it undergoes. Koretz & Handelman (1986) proposed the geometric theory, hypothesising that changes

in lens geometry cause the apparent movement of the zonules, which would result in the forces applied

by the zonules becoming more tangential, reducing the amount of force they are able to apply to the lens,

causing the lens to be less affected by ciliary muscle movement. It is unlikely that the zonules actually

migrate, the movement is potentially a result of both new fibres being generated in the capsule and pushing

the zonules further around the lens and the thickening of the lens.
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A more recent theory is the modified geometric theory from Strenk et al. (2005), where the loss of accom-

modative ability is due to the combination of lens size increase and the anterior and inwards movement

of the ciliary muscle. These two factors combine to cause a reduction in the circumlental space, thereby

reducing the zonular tension available for pulling on the lens. There is evidence for and against this theory

from in vivo measurements, which will be discussed in Chapter 3.

Schachar (2006) proposed another theory of presbyopia development in line with his theory of accommo-

dation (Section 1.2.2); the growth of the lens equator causes a loss in the force appplied by the zonules,

reducing the accommodative ability of the lens. The evidence for and against this theory will be discussed

further in Chapter 3.

The capsule also undergoes changes, in both its thickness variation around the lens (Barraquer et al.,

2006) and its material properties (Krag & Andreassen, 2003a), both of which will be discussed further

in Chapters 3 and 4. It is not known to what extent these capsular changes contribute to the age related

decline in accommodation, but the changes cannot be ignored (Krag & Andreassen, 2003a).

Changes to the protein concentration

The protein concentration within the lens changes with age, which leads to a final lenticular theory, pro-

posed by Truscott (2009). It was hypothesised that the increase in stiffness within the central portion of the

lens is a result of the loss of a-crystallin within the lens, which by 40 years of age has been dramatically

reduced. Truscott also proposed that presbyopia could be advanced in hotter climates due to the quicker

loss of a-crystallin.

1.3.2 Extralenticular causes

Extralenticular theories attribute the loss of accommodation to changes in the surrounding parts of the

lens; the ciliary body and the zonules. Duane (1925) (cited by Atchison, 1995) proposed that the ciliary

muscle weakens with age, limiting the zonular force that can be applied. However, it has not been shown

that the ciliary muscle does weaken (Fisher, 1977; Manns et al., 2007), and FEA studies have shown that

the force required to replicate accommodation does not change with age (e.g. Hermans et al., 2008).

An alternate theory is that presbyopia is caused by a loss in the ability to relax accommodation, instead of

losing accommodative ability (Bito & Miranda, 1989). This is due to the ciliary muscle losing its ability

to maintain the tension required to hold the lens in its un-accommodated state, meaning that it cannot

produce the shape changes needed for accommodation.
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1.3.3 Methods of presbyopia correction

Even with the debate over the cause of presbyopia, there has been extensive research into methods of

correcting the loss of accommodation with age. Simple static correction can be given for near distances,

which can be achieved in a number of ways. The most common is the use of glasses or contact lenses,

using either single or bifocal lenses. Corneal surgery can be performed as well, but as with glasses and

contact lenses, corneal surgery only provides simple correction (Glasser, 2008), meaning that the dynamic

range of accommodation is not restored. An increasingly popular option is the use of an intraocular lens

(IOL), implanted into the capsule after the removal of the lens, however, these also only allow for similar

correction to contact lenses (Sheppard et al., 2010). Research using adaptive optics and a vision simulator

has also demonstrated the benefits of reducing spherical abberations in the eye as a method of improving

vision (Piers et al., 2007).

To attempt to restore dynamic accommodation, a number of surgical methods have been hypothesised.

The first is the use of accommodating intraocular lenses (AIOLs) to implant into the capsular bag. The

second is to refill the capsular bag with a synthetic material to replicate the lens, with the final method

being the use of femtosecond laser surgery to alter the lens structure.

1.3.3.1 Accommodation intraocular lenses

The first type of AIOL is the single optic, where accommodation is simulated by a shift in the position of

the IOL as a result of ciliary muscle contraction. A variety of designs have been developed; the Crystalens,

utilising the change in vitreous pressure to push forwards the IOL, after contraction of the ciliary muscle

(Cumming et al., 2006), based on the Coleman theory of accommodation (see Section 1.2.2). The Ter-

aflex, 1CU and Biocomfold AIOL’s are based on forward movements induced by changes in the capsular

bag shape, with differing methods of inducing the movement (Legeais et al., 1999; Findl et al., 2003;

Sheppard et al., 2010). Theoretical accommodative abilities of approximately 1D could be achieveable

with this method (Glasser, 2006), however, clinical studies have shown very varied results in implanted

IOL’s (Sheppard et al., 2010).

An alternative to the single optic is the dual optic AIOL, using two different power optics which are

separated within the capsular bag, with aqueous fluid filling the space between the optics. Different

versions utilise two optics in different ways. The Synchrony AIOL contains a positive and negative optic,

joined with a spring like mechanism. With the ciliary muscle relaxed, the capsule causes the spring to
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be compressed, but with ciliary muscle relaxation, the capsular strain reduces, causing the spring to push

the anterior optic forwards, increasing the power (McLeod et al., 2007). A similar design is the Sarfarazi,

which uses three haptics to join two optics and again use forward movement of the anterior optic to change

power in response to capsular changes (McDonald et al., 2003). An alternative design is the Turtle AIOL,

which uses two optics that rotate to change its power. The two lenses reside in a frame and in response

to the ciliary muscle action, rotate, changing the combined power of the optics (Hermans et al., 2008).

Although there has been very little clinical work in testing these dual optic designs, theoretical modelling

has shown that dual optic designs have the potential for 2 - 2.5D of accommodative ability (Glasser, 2008).

There are other proposed AIOL concepts being researched. One method is to use magnets, a method

developed by (Preußner et al., 2001). A single optic is inserted into the capsule, along with two magnets.

Two further magnets are then attached to exterior muscles, which are of opposite polarity. With the change

in ciliary muscle contraction, the exterior magnets push the capsular magnets forward, changing the power.

The Nulens AIOL concept utilises changes in curvature for the power change. A haptic system is secured

to the ciliary muscle comprised of an anterior plate that has a chamber fixed to it containing a silicone gel.

A piston positioned posterior to the chamber is moved by the emptied capsular bag. The piston pushes the

gel through the anterior plate causing a bulge and subsequent power increase. The process works on the

reverse of accommodation, in that the relaxation of the ciliary muscle causes an increase in power and the

contraction causes a decrease in power (Ben-Nun & Alió, 2005). Trials in monkey eyes have suggested

that this AIOL could produce theoretical accommodative abilities of 40D, but there was no data on human

eyes (Glasser, 2008).

The FluidVision AIOL uses a combination of hollow haptics and a single optical element. In response

to ciliary body contraction and increased capsular pressure, the haptics have an increased force applied

to them, causing the fluid within the AIOL to move into the optic, increasing its curvature and its power

(Sheppard et al., 2010).

1.3.3.2 Lens refilling

As an alternative to IOLs, lens refilling involves inserting a material within the capsule to try to replicate

the natural lens as much as possible, rather than using a prefabricated optic as in an IOL (Nishi et al.,

2009). As with IOLs, the refilled lens is hoped to replicate the movement of a young lens in response to

ciliary muscle movement.
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Lens filling has two principal stages after the original lens has been removed. The first is the insertion of

the material for refilling, followed by a method to seal the capsule to prevent the material from leaking.

The material used needs to be suitable for injection, i.e. fluid, but then also be able to approximate the

original lens’s material properties once in situ. In addition, the material needs to be optically suitable

(Koopmans et al., 2006).

A range of methods of both injection and subsequent sealing have been developed, from simple injection of

a material (e.g. Hettlich, 1996) through to endocapsular balloons (Nishi, 1989), sealing plugs (Koopmans

et al., 2006) and combinations of synthetic materials and IOLs (Nishi et al., 2008). To date, lens refilling

has only been demonstrated on animal eyes, with the principal issues holding back development of the

technique, being, the change in behaviour of the capsule after lens removal and the subsequent insertion

of a replacement material (Nishi et al., 2009). However, lens refilling has the potential to restore greater

amounts of accommodative ability, compared to AIOLs, providing the issues with aftercare are resolved

(Menapace et al., 2007).

1.3.3.3 Femtosecond laser lentotomy

A method that is becoming increasingly popular in vision correction is the use of laser surgery. Instead of

replacing the lens with an optic or fluid, the lens is altered in vivo, using laser lentotomy. The first proposal

was by Myers & Krueger (1998), who hypothesised that creating small incisions within the crystalline lens

using nano second laser pulses would increase the flexibility of the lens. However, the initial experiments

showed that the flexibility was increased, but there were substantial side effects, such as light scattering

and gas bubbles (Schumacher et al., 2009).

Later experiments found that femtosecond laser pulses negated the side effects found previously, in rabbit

(Krueger et al., 2005), porcine (Ripken et al., 2008) and in vitro human lenses (Schumacher et al., 2009);

indicating that there is potential for laser surgery to restore accommodation in older lenses (59% increase

in thickness in spinning studies, Schumacher et al. (2009)). There are still issues that need resolving, such

as potential rainbow glare (Ackermann et al., 2013) and whether such surgical treatments would lead to

cataract development (Schumacher et al., 2009). The potential benefits of laser lentotomy, such as the

ability to avoid alteration of the capsule or cornea as part of the surgical treatment, will ensure that the

process will be studied extensively.
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1.3.3.4 Scleral expansion

A final method of accommodation restoration that has been proposed is to expand the sclera, hypothesised

to restore zonular tension (Schachar, 1992). This proposal is based on the accommodative theory of

Schachar (Section 1.2.2), which suggests presbyopia arises through the growth of the lens equator causing

a slackening of the zonules. This method goes against the widely held theory of accommodation, and has

been shown to offer little or no improvement when used (Glasser, 2008).

1.3.3.5 Summary

For the accommodative ability to be restored through the use of IOLs, lens refilling or laser lentotomy, the

accommodative components that are not treated are required to function in an appropriate manner through

the movement of the ciliary muscle and capsule. Therefore, a good understanding is required of how

these accommodative components behave, both before and after any surgical treatment. Finite element

modelling allows for different geometric, material and force descriptions to be combined into a single

model, giving the potential to simulate all aspects of accommodation and accommodation restoration,

which will be explored further in the next chapter.

1.4 Aims and Objectives

One avenue of research that has been used to gain a better understanding of accommodation is Finite

Element Analysis (FEA), which will be explored further in Chapter 2. The overall aim of this thesis is to

utilise FEA to investigate accommodation and presbyopia in more detail, by exploring the following two

questions:

1. What are the principle factors that cause the crystalline lens to change its shape and therefore its

power?

2. How do age changes in the material and geometric properties of the components in the accommo-

dation system contribute to presbyopia?

These questions will be answered through the development of a new, adaptable, finite element model of

the accommodation system, which is able to simulate the accommodative process in a range of different

ages, as well as remove or limit the deficiencies in previous methods. To be able to explore the questions

fully, a number of objectives will need to be met:
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1. Development of a modelling method that can produce an age related model of the accommodative

structures, improving on limitations in existing methods

2. Selection of appropriate material parameters for each accommodative component

3. Evaluation of the proposed methods to ensure that the model replicates the accommodative process

4. Completion of a detailed analysis of how altering key age related parameters affects the changes

undergone during the accommodative process

1.4.1 Thesis structure

The current chapter has given the reader a broad overview of the process of accommodation and the

development of presbyopia, highlighting key age related changes that are undergone in the accommodative

components. Various proposals for methods of accommodation restoration were discussed, highlighting

the need for a better understanding on both accommodation and presbyopia. The overall aims of the thesis

were then presented, with the key objectives that need to be met; which will be addressed by the following

chapters:

Chapter 2: An introduction to FEA is given, before a thorough analysis of existing accommodation FEA

models is conducted in terms of four key areas; Geometry, material properties, procedures and results.

The key limitations of these models are highlighted, finishing with a summary of the main improvements

that will be required

Chapter 3: To develop an improved geometric model (Objective 1), the available geometric data of the

relevant accommodative components required analysis. The modelling methodologies for the requied

components are then developed, detailing the improved and novel methods used in the proposed accom-

modation model.

Chapter 4: An overview of the relevant material constitutive models is given, before an analysis of

the available material data of the modelled accommodative components is conducted. The appropriate

material data selections are then detailed to meet Objective 2.

Chapter 5: Following the selection of appropriate geometry and material data for the proposed accom-

modation model, the overall experimental procedures that would be followed to answer the principal ques-

tions are defined. The FEA theories followed and how the geometric and material specifications could be

combined along with the specific procedures that would be followed in the next chapter are discussed.
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1.4 Aims and Objectives

Chapter 6: A series of preliminary studies were conducted to ensure the methodologies proposed hitherto

were suitable, before final models were analysed to meet Objective 3. With the methodology validated,

the final studies into how age related changes affected presbyopia (Objective 4) were conducted.

Chapter 7: The results of the studies conducted in Chapter 6 were compared to the overall aims and

objectives, with any limitations discussed. The thesis is concluded by detailing the future directions of the

research.
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Chapter 2

Background: Finite element models of accommodation

2.1 Introduction to Finite Element Analysis

Finite element analysis is a tool commonly used in engineering to analyse how a structure behaves when

subjected to various loadings, such as internal pressure or forces. The basic principal is that a structure

(or domain) is broken down into a number of finite regions, called elements, which can be used to solve

equations on a smaller scale as part of a larger equation for a complete domain. By breaking a domain

down into smaller elements, the complex partial differential equations governing the overall structures

response to external loadings can be approximated by smaller algebraic equations. The FEA method is an

approximation method, but due to being able to approximate complex geometric structures and non-linear

material behaviour, it is becoming increasingly popular in investigating biomechanical problems, such as

accommodation. The principals of FEA relevant to the current work will be explored further in Chapters

3 - 5.

2.1.1 FEA of the accommodation system

A number of finite element analysis models of the accommodation system have been developed, typically

simulating aspects of accommodation that cannot be measured in vivo or in vitro. This has led to many

of these models representing hypothetical situations, which combined with the paucity of measured data

on the accommodative system has led to a number of assumptions being made. Therefore, examination of

the data that has been used to develop these models is needed, to establish the key areas of modelling as

well as any current limitations that can be improved on.

FEA models can be examined in terms of four key areas: the geometry, the mechanical properties, the

procedure and the results. In the current chapter the literature refers to the studies listed in Table 2.1,
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2.1 Introduction to Finite Element Analysis

which also summarises the individual aims and key findings as a reference. Although not an exhaustive

list, the studies in Table 2.1 have been selected for analysis as they represent a mixture of the origins of

the finite element method applied to accommodation (e.g. Schachar & Bax, 2001b and Burd et al., 2002),

novel modelling practices (e.g. Martin et al., 2005 and Ljubimova et al., 2008) as well as more recent

studies illustrating the current methodologies (e.g. Wilde, 2011 and Lanchares et al., 2012).
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2.1 Introduction to Finite Element Analysis
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2.2 Geometry

2.2 Geometry

Each component of an FEA model requires its geometry to be defined and for modelling accommodation,

the typical components are the lens, capsule, zonules and ciliary body (e.g. Burd et al., 2002 and Lan-

chares et al., 2012). The key feature of an FEA model is that it needs to be a realistic representation of the

structure. When modelling organic materials, which are typically complex structures without continuous

contours, the geometry does need to be simplified which leads to approximations being made. For exam-

ple, the components of the accommodation system are typically modelled as being rotationally symmetric,

i.e. a 2-dimensional profile that is revolved around a central axis. Table 2.2 breaks down the methods used

to model the key components in previous FEA models.

Table 2.2: Modelling methods of the key components in the FEA models in the literature. Key to methods: P:
Polynomials, CS: Conic Sections, CF: Cosine function, H: Homogenous, NC: Nucleus-Cortex, SG: Stiffness
gradient, F: Fincham (1925) thickness variation, BU: Burd et al. (2002) thickness variation, BA: Barraquer et al.
(2006) thickness variation, 3Z: 3 Zonules, 1Z: Single zonule, 5Z: 5 zonules. There are a number of variations of
each method (denoted by a *) used by different authors however, the basic methodology is the same. ** indicates
the method was not explicitly stated, although a lens was modelled.

Method of modelling

Study Lens Model Internal
Structure Capsule Zonule

Schachar & Bax (2001b) P* H F 3Z
Burd et al. (2002) P NC BU 3Z

Breitenfeld et al. (2005) P NC BU 3Z
Liu et al. (2005) P NC BU 3Z

Martin et al. (2005) P NC BU 3Z
Hermans et al. (2006) CS NC BU -

Liu et al. (2006) P NC BU 3Z*
Abolmaali et al. (2007) CF NC* F 3Z,1Z
Belaidi & Pierscionek

(2007)
P* H,NC* - 5Z

Weeber & van der Heijde
(2007)

CS* SG BU 3Z*

Hermans et al. (2008) CS NC* BU -
Ljubimova et al. (2008) P NC BU 3Z*

Weeber & van der Heijde
(2008)

CS* SG BU 3Z*

Van de Sompel et al.
(2010)

P NC BU 3Z

Riehemann et al. (2011) -** NC BU 3Z
Wilde (2011) CS NC,SG BA 3Z

Lanchares et al. (2012) CS* NC* BU -
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2.2 Geometry

2.2.1 Crystalline lens shape

As discussed in Chapter 1 the crystalline lens is one of the most important parts of the accommodation

system, allowing the eye to keep a constant focus through the changes in shape it can achieve. There

are two factors that need to be considered with the lens models, the source of the data used to define

the mathematical representation and the accuracy of the mathematical method itself. The sources and

mathematical methods will be discussed further in Chapter 3.

2.2.1.1 Source data

The majority of studies have used the lens measurements of Brown (1973), obtained using Scheimpflug

photography of three lenses (11, 29 and 45 YO), from which a large number of lens parameters were

aquired in the accommodated and un-accommodated state. Using the same method, Koretz et al. (1989)

measured changes in lens parameters in a wider range of subjects to provide more details on the changes

observed by Brown (1973). However, both Brown (1973) and Koretz et al. (1989) did not correct for

distortions caused by the imaging method; which occur due to the optical structures in front of the sections

being imaged as well as those within the instrument being used. The anterior surface will be affected by

the corneal refraction, whilst the posterior surface will be affected by the refraction of the lens itself

(Dubbelman et al., 2001). As a result a new set of data were detailed by Dubbelman & Van der Heijde

(2001), Dubbelman et al. (2001), Dubbelman et al. (2003) and Dubbelman et al. (2005). In these studies

a larger number of subjects were used across a range of ages with measurements made across a number of

accommodative stimuli, with all measurements corrected for the optical distortions mentioned previously.

In all of these Scheimpflug studies, only the central surfaces of the lens can be imaged due to restrictions

caused by the pupil, requiring assumptions to be made to complete the lens shape.

To avoid using partial images of the lens, alternative sources have been used. One of these was Pierścionek

(1993), where the shape data was obtained from photographs of two lenses in a lens stretching device. This

has the obvious disadvantage of giving data on the lens in vitro, although it can be assumed that an in vitro

lens can be similar to an in vivo lens at full accommodation (Rosen et al., 2006). It is likely that external

forces are present (such as from the vitreous and iris), however, it is assumed that these are negligible

compared to the capsule and zonule forces. An alternative to in vitro whole lens imaging is the use of

Magnetic Resonance Imaging (MRI) which can provide data for the whole lens in vivo, although typically

at a lower resolution, with Strenk et al. (1999) being a commonly used data source.
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2.2 Geometry

2.2.1.2 Mathematical fit

Although there have been a number of different studies used to provide the geometric data, there have

been only three types of mathematical fit used (Methods A – C, Table 2.2 and Figure 2.1).

Figure 2.1: Comparison of the rate of curvature change in the modelling methods of Burd et al. (2002) (A), Hermans
et al. (2006) (B) and Chien et al. (2003) (C). The change in length of the lines (in red) illustrates the curvature
change, giving an indication of the smoothness of each method, with C being the smoothest. Each lens represents
an eye of 29 - 30 YO.

Polynomials

Polynomials provide a simple mathematical fit for curved surfaces, which means it can be complicated to

fit them to a shape like the crystalline lens. As such, they have typically been fitted to the central optical

surfaces and a different method used to complete the lens shape. The most prolific version of this was

developed by Burd et al. (2002), where fifth order polynomials were fitted to the thickness and curvature

data from Brown (1973) to describe the anterior and posterior surfaces of the lens. As the data do not

give a complete lens profile, a circular cap was used to close the profile between the anterior and posterior

surfaces. The point representing the equator, which the circular arc passed through, was taken from MRI

images (Strenk et al., 1999). Other authors using this method are limited to replicating the same age lenses

as Burd due to not being able to adapt the method.

Schachar & Bax (2001a) also used the data of Brown (1973), but no details were given on how the lens

profile was completed apart from that four 14th order polynomials were used to describe the lens outline.

An alternative method was used by Belaidi & Pierscionek (2007), using data from Pierścionek (1993)

to fit second order polynomials, producing a rotationally-symmetric 3-dimensional model instead of the

typical 2-dimensional model.

The main problem with the polynomial method is the general need to have additional mathematical de-
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2.2 Geometry

scriptions to produce a complete lens profile. This results in a discontinuous outline (shown in Figure 2.1)

which is not ideal for an accurate FEA model. Polynomial methods are also limited in adaptability as the

defining parameters are not measurable.

Conic sections

Using updated scheimpflug photography data (Dubbelman & Van der Heijde, 2001, Dubbelman et al.,

2001, Dubbelman et al., 2003 and Dubbelman et al., 2005), Hermans et al. (2006) developed their own

mathematical description of the lens utilising conic sections (a curve resulting from the intersection of

a plane and a cone). Two conic sections were used to describe the central surfaces, using the curvature

values measured at particular points on the lens as well as the lens thickness. To complete the profile

two additional conics were used to describe the outer anterior and posterior surfaces, which had the same

derivatives where they joined the first two conics. The complete lens profile could be created from mea-

sured lens parameters. Weeber & van der Heijde (2007) used this method to model the central surfaces,

but used a circular fillet to complete the profile using averages of the data of Dubbelman et al. (2005) and

the equatorial point from Strenk et al. (1999).

As with the method of Burd et al. (2002) additional data are needed to complete the lens outlines, due to

the lack of a complete data set from the Scheimpflug photographs. The increase in the number of curves

required will also add to the discontinuities in the model, although a smoother outline is achieved with

this method than with polynomials (Figure 2.1). The main advantage of this method is in its adaptability,

as it is defined using measurable lens parameters allowing a range of ages to be produced simply.

Cosine functions

Chien et al. (2003) undertook a study investigating a number of different methods of fitting a curve to

the lens data of Fincham (1937). The eventual method that was chosen was a cosine function, which

was validated by fitting it to five MRI images of the lens (from Strenk et al., 1999, Lizak et al., 2000 and

Krueger, 2002). The method splits the lens model into two curves which meet at its equator. Subsequently,

Abolmaali et al. (2007) used the results of the five MRI fits in their FEA model.

Using this method gives a smoother lens outline than with a polynomial method (Figure 2.1) due to there

being only two curves, however, the method is limited in adaptability due to not relating the constants

to measureable values of the lens. Therefore, as with the Burd et al. (2002) model, only the same lens

outlines can be produced as defined by Chien et al. (2003).
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2.2.2 Internal Structure

As described in Chapter 1 the lens is not a single homogenous body but is actually formed of a number

of internal layers that are developed throughout life. This variation within the lens is an important as-

pect of computer models as it will dictate how the material properties are distributed throughout the lens

(Chapter 4).

2.2.2.1 Homogenous models

The most basic representation of the internal structure is to model the lens as being a homogenous body.

Schachar & Bax (2001a) used this method, although this was amongst the first FEA accommodation mod-

els and therefore had a number of simplifications. In later models, this method is utilised as a comparison

to more complex models (Abolmaali et al., 2007; Belaidi & Pierscionek, 2007; Wilde, 2011).

2.2.2.2 Nucleus/Cortex

A B

Figure 2.2: Comparison between nucleus modelling methods, A represents the method used by Burd et al. (2002),
B represents the method used by Abolmaali et al. (2007).

Using method E the lens is assumed to be made of two distinct regions, the nucleus and the cortex, and

was the most common method used in the literature. Using these two regions was an assumption made

by Fisher (1971) when analysing the material properties of the lens, discussed further in Chapter 4, which

appears to be the origin of the use of this method in FEA models.

The methods of splitting the lens into the nucleus and cortex have varied. The most basic is the use of

two arcs which meet at a point, as used by Burd et al. (2002) (Figure 2.2), where the points defining the

nucleus shape were taken from Brown (1973). A more complex description was developed by Hermans
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et al. (2008), based on enhanced scheimpflug photography (Hermans et al., 2007), where four curves were

used to enclose the nucleus. Lanchares et al. (2012) developed a different four curve model, which could

be seen as a hybrid of the Burd et al. (2002) and Hermans et al. (2008) methods as it causes the nucleus to

come together at a point, but the more complex four curves allowed for better positioning of the nucleus

equator. As with the lens outline, the method adopted by Burd et al. (2002) has subsequently been widely

used. The main disadvantage with this method is the representation of the nucleus as having a sharp point

at its widest point, which does not match what is seen in vivo (Hermans et al., 2007).

An alternative to having a separate mathematical description of the nucleus shape is to represent it as a

percentage reduction of the outer lens shape (Figure 2.2). Two methods have been used, a percentage

reduction based on in vivo thickness data (Abolmaali et al., 2007) and a percentage reduction based on

volume (Belaidi & Pierscionek, 2007). Both methods result in a nucleus shape that is the same as the lens

outline, which as shown by Hermans et al. (2007) may not be the case. Simply shrinking the outer lens

shape down will also not allow for alteration to the proportions of the nucleus, which can be achieved

through the mathematical modelling option.

2.2.2.3 Stiffness gradient

In an attempt to accurately model the internal structure Weeber & van der Heijde (2007) segmented the

lens into 10 shells, each 10% smaller than the previous, based on stiffness measurements made in a pre-

vious study (Weeber et al., 2007). Wilde (2011) later adopted a similar method, although the stiffness

distribution was taken from their own stiffness measurements and how the lens was segmented was not

clear. Segmenting the lens allows for a much more complex and realistic representation of the distribution

of material properties within the lens, allowing more complex changes that occur with age to be modelled.

2.2.3 Capsule thickness variation

The variation in capsule thickness was discussed in Section 1.2.3.2, with the classical description illus-

trated in Figure 1.5. Representing this variation is important in analysing how the lens changes shape,

which can be seen in the literature as the thickness variation has been implemented by the majority of

authors, with the differential between them being the source of data used.

The predominant source of the capsule variation has been the thickness measurements of Fisher & Pet-

tet (1972) (Method BU in Table 2.2), which was adapted by Burd et al. (2002) who fitted fifth order
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polynomials to the data to combine a capsule thickness variation with the lens outline method discussed

previously. The data set from Fisher & Pettet (1972) only had data for certain ages, therefore Burd et al.

(2002) interpolated the data to obtain values for the missing ages. As with the lens outline this method

cannot be adjusted and can only be used on the models developed by Burd et al. (2002). Weeber & van der

Heijde (2007) and Hermans et al. (2006) also adapted the data, using it to develop a thickness variation

that would be included directly in the element formulation, although details were not given on how the

data was adopted.

Another source of data is that of Fincham (1925) (Method F in Table 2.2), first used by Schachar &

Bax (2001a) but no details were given on how. This source was also fitted by Chien et al. (2003) when

developing his mathematical lens description, which was subsequently used by Abolmaali et al. (2007).

The final data source (denoted method BA in Table 2.2) is a more recent study by Barraquer et al. (2006)

used by Wilde (2011). This provided data similar to method BU and was adapted to fit the method of

modelling the lens.

2.2.4 Zonule Arrangement

Due to the complications in imaging the zonules and the resultant uncertainty on the arrangement of the

zonules (e.g. Rohen, 1979 and Nankivil et al., 2009, as discussed in Chapter 1), there is little variation in

the modelling of the zonules in the models discussed hitherto.

There have been two methods of applying zonular force to the lens; modelling the fibres and applying

forces directly to the capsule. If the fibres are modelled the attachment points on the capsule and ciliary

body need to be defined, whereas for applying force directly to the capsule only the capsule attachment

positions are needed. The different zonular models are illustrated in Figure 2.3.

2.2.4.1 Modelling the zonules

Of the authors that have selected to model the zonules (see Table 2.2), the predominant method has been

to use three zonular groups; split into an anterior, equatorial and posterior set. The typical arrangement,

first modelled by Burd et al. (2002) (denoted the 3Z method in Table 2.2 and A in Figure 2.3), has an

attachment for each set on the capsule and then has them all attach to a single point replicating the ciliary

body. Burd et al. (2002) used the data of Farnsworth & Shyne (1979) to position the anterior zonules

relative to the equator. An assumption was made that the posterior zonules attach to the lens at the same
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A B C

D E F

Figure 2.3: Zonular arrangements used in the literature. A - Burd et al. (2002) B - Weeber & van der Heijde (2007)
C - Ljubimova et al. (2008) D - Liu et al. (2006) E - Belaidi & Pierscionek (2007) F - Abolmaali et al. (2007).

distance from the equator as the anterior zonules, with the equatorial zonules attaching at the widest point

on the lens. The ciliary body position was taken from the MRI measurements of Strenk et al. (1999). The

3Z method has been utilised by the majority of studies, even though it is a simplistic representation of the

complex zonular arrangement.

There have been some attempts to improve on the 3Z method. Liu et al. (2006) used the same data for the

capsule attachments but represented the zonules as attaching to the ciliary body in three separate locations.

It was not clear how these locations were chosen but it appears that the three ciliary body attachments were

aligned vertically (D in Figure 2.3). The purpose was to replicate Schachar’s theory of accommodation

by moving the anterior and posterior zonules in opposition to the equatorial zonule. Weeber & van der

Heijde (2007) represented the equatorial zonule as connecting to the posterior zonule, to provide an axial

pull, an effort to represent the tensor zonules from Rohen (1979) (B in Figure 2.3).

Ljubimova et al. (2008) developed a more complicated model using three zonular groups (C in Figure 2.3).

The anterior and equatorial capsule attachments were specified as with Burd et al. (2002), however, the

posterior attachment was positioned using data from Gorban & Dgiliashvili (1993), which resulted in a

posterior attachment closer to the equator. The ciliary body attachments were also developed further; the

equatorial zonule attached horizontally to the ciliary body as with Burd however, the anterior and posterior

zonules were modelled as attaching to the ora serrata, although the whole length of them was not modelled.
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This resulted in a more posteriorly sloped attachment to the anterior zonule, whilst the posterior zonule

was modelled as having to pass over the vitreous before sloping posteriorly. The use of this arrangement

gave a more horizontal application of force by the posterior zonule.

Another method (denoted the 1Z method in Table 2.2 and F in Figure 2.3) used in modelling the zonules

was to only model a single equatorial zonule (Abolmaali et al., 2007) to replicate the accommodative

theory of Schachar. The zonule ran from the equatorial point of the capsule to a single point representing

the ciliary body movement, an oversimplified version of the zonular arrangement.

2.2.4.2 Force application

The alternative to modelling the zonules is to apply tractions or forces directly to the lens, reducing the

complexity of the model. Both the attachment locations and the direction of force application are still

required.

Hermans et al. (2006) was the first model in the literature to adopt this method. The locations of the force

were defined by Streeten (1977), where the zonular attachments were positioned further apart than the data

used in other studies. To be able to apply a force, an area to apply it over needed to be defined. Ludwig

(2001) provided the data for the width of the anterior and posterior zonules and the equatorial width was

assumed to be the same as the posterior width. The directions of application were not specified. This

method was later adopted by Hermans et al. (2008) and Lanchares et al. (2012).

Belaidi & Pierscionek (2007) (Denoted the 5Z method in Table 2.2 and E in Figure 2.3) used an alternative

model, using five zonules to distribute force (rather than a displacement) to the lens, all loaded at a single

point representing the ciliary body. This was chosen as previous studies had shown using 3 zonules

resulted in discontinuities at the zonular attachments when the lens models were deformed (Burd et al.,

2002; Martin et al., 2005). How the zonules were spaced was not specified.

2.2.5 Other Components

Although the Helmholtz theory attributes the lens changes to the ciliary muscle, zonules and lens, other

theories hypothesise that the vitreous has a role (e.g. Coleman & Fish, 2001). Martin et al. (2005) and Liu

et al. (2006) created a simple model replicating these ideas by representing the vitreous as a pressure on

the posterior lenticular surface.
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Ljubimova et al. (2008) modelled a representation of the vitreous itself, assuming that the vitreous acted

as a support for the lens during accommodation and resisted posterior zonule force. The vitreous model

was used to develop the posterior zonule arrangement as well as applying a force to the posterior lens

surface.

2.2.6 Summary of geometric methods

The lack of a complete description of the components of the accommodative structure has led to a number

of different methods being used to model it. Although there are modelling methods used to replicate

the lens and capsule that appear to be suitable, careful consideration will be needed to ensure that the

appropriate changes with age are accounted for. The two areas that improvement is needed in are the

internal structure modelling and the zonular arrangement.

The internal structure is key as it dictates the distribution of material properties through the lens, which

has been shown to vary in a more complicated way than a simple nucleus-cortex split (e.g. Weeber et al.

2007). There was evidence for the majority of thickness change occurring in the central part of the lens

(Dubbelman et al., 2003), therefore if the nucleus-cortex method is adopted, the oversimplification of the

shape could have negative effects on the results. Adopting a stiffness gradient method could be a solution

for this but further work is needed on how to implement this effectively.

Even with the increase in data on the arrangement of the zonules (see Section 1.2.3.3), the same methods

of representation have persisted in the literature, in particular the 3 zonule method, which can lead to

discontinuities or areas of high stress in deformed models (e.g. Breitenfeld et al., 2005; Hermans et al.,

2008; Weeber & van der Heijde, 2008). To fully understand how the lens behaves in accommodation, a

more detailed representation is needed to establish whether controlling the zonules in separate groups will

give a more realistic response.

2.3 Material Properties

Each component that is represented in an FEA model requires its material properties to be defined, as these

dictate how a body will deform under external loading conditions. Different assumptions have been made

in the literature on how the materials in the accommodative system can be defined, which has resulted in

a number of different sources being used for the material data (see Table 2.3). A comprehensive overview
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of material properties and the sources covered in this review will be given in Chapter 4, however, a basic

understanding of the main types of material properties that can be defined is needed here.

For modelling the accommodative components, it has generally been assumed that the components are lin-

ear elastic, isotropic materials. Elastic materials will deform under a load but return to their original shape.

If a material is isotropic, the material properties are the same in all directions, whereas for anisotropic ma-

terials the properties vary with position and direction of loading. Depending on the assumptions made as

to how the material behaves, different material properties are required to define the material behaviour.

To define an isotropic elastic material for an FEA study, the only properties needed are the elastic modulus

and Poisson’s ratio. Poisson’s ratio defines how a material reacts to compression; it is the ratio of the con-

traction of a material to the extension in the direction of the load. Anisotropic materials require additional

properties to be defined to dictate how the properties vary throughout the component. A smaller set of

studies have represented the components as having hyper-elasticity, which requires the shear modulus and

bulk modulus to be defined.

In the models analysed, the differences in the models have been mainly due to the source of the material

properties, with different sources using different testing techniques to define the material properties of

different components.

2.3.1 Crystalline Lens

As discussed in Section 2.2.2 three methods have been adopted to represent the internal structure of the

lens; as being homogenous, having a nucleus and cortex and as having a stiffness gradient. These geo-

metric representations dictate how the material properties are distributed through the lens and are often

adopted due to the data source used.

The first major study into the material properties of the lens was by Fisher (1971) (Source A in Table 2.3)

who conducted spinning lens tests to establish the Young’s modulus of the nucleus and cortex. Spinning

individual lenses resulted in changes in the axial thickness and equatorial diameter; these changes were

used to infer the Young’s modulus of the nucleus and cortex. The study gave age related results, showing

that the nucleus had a lower Young’s modulus than the cortex in a young lens, but with an older lens this

reduced. These properties were adopted by a range of authors as the basis of their accommodation models

(see Table 2.3). The study of Fisher (1971) has since been shown to have a number of inaccuracies due

to oversimplification (Burd et al., 2006), leading to an improved version (Burd et al., 2011) which will be
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Table 2.3: Summary of the different sources of material properties used in the literature. Key to letters: A Fisher
(1971), B Subbaram et al. (2002), C Weeber et al. (2007), D Heys et al. (2004), E Van Alphen & Graebel (1991),
F Wilde et al. (2012), G Fisher (1969), H Krag & Andreassen (2003a), I Fisher (1986). A hyphen indicates that
there was no data available or the component was not modelled.

Study Source of Material Properties
Lens Capsule Zonules

Schachar & Bax (2001b) - G,H -
Burd et al. (2002) A G I,E

Breitenfeld et al. (2005) A G I,E
Liu et al. (2005) A G -

Martin et al. (2005) A G I,E
Hermans et al. (2006) A G -

Liu et al. (2006) A G -
Abolmaali et al. (2007) B,D G,H E

Belaidi & Pierscionek (2007) A G -
Weeber & van der Heijde (2007) A,C G E

Hermans et al. (2008) A,C,D G -
Ljubimova et al. (2008) A,D G E

Weeber & van der Heijde (2008) C G E
Van de Sompel et al. (2010) A,B,D,E G -

Riehemann et al. (2011) C - -
Wilde (2011) F G,H I,E

Lanchares et al. (2012) A G -

discussed in Chapter 4.

Subbaram et al. (2002) (Source B in Table 2.3) also measured the material properties of the nucleus and

cortex, although in this case Brillouin light scattering was used to establish the Bulk modulus. The Bulk

modulus cannot be used alone in modelling the mechanics of a material, therefore, where this was used,

another source was needed to give the shear modulus, which could be combined with the bulk modulus

to define the elastic modulus. In the studies that used the Bulk modulus data of Subbaram et al. (2002),

the shear modulus values given by Heys et al. (2004) were used to calculate the elastic modulus of the

nucleus and cortex.

As an alternative to assuming that the lens can be separated into a nucleus and cortex, some studies

measured the stiffness across the lens. The first of these studies was Heys et al. (2004) (Source D in

Table 2.3) where a controlled force indentation test was used to measure the Shear modulus of sectioned

lenses. Measurements were taken of the shear modulus across the lens sections with the results indicating

that the nucleus was less stiff than the cortex in a young lens, but by 40 YO this reverses (see Figure 2.4).

A similar test was run by Weeber et al. (2007) (Source C in Table 2.3) where an indenter was inserted

into lens sections and then oscillated to obtain a dynamic response. This test produced a shear modulus
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Figure 2.4: Comparison between Heys et al. (2004) and Weeber et al. (2007) stiffness variation for a 30YO lens.

value at different locations across the lens, showing a similar trend to the results of Heys et al. (2004) (see

Figure 2.4).

A more recent study was conducted by Wilde et al. (2012) (Source F in Table 2.3), using an updated and

improved lens spinning test on de-capsulated lenses. Inverse FEA modelling was used to establish the

values of shear modulus that caused the FEA lens to deform as much as the lenses in the test rig. Different

stiffness distributions were tested, but the overall trend followed that of Heys et al. (2004) and Weeber

et al. (2007).

As discussed, the method the author employs to define the material behaviour dictates the material prop-

erties that can be used. Each of these sources give the data in terms of the shear modulus, which can

only be inputted as a value under certain assumptions in an FEA model. Typically, the lens regions were

modelled as being linear elastic, isotropic materials, which requires the input of the elastic modulus and

Poisson’s ratio. To obtain the elastic modulus from the shear modulus values, authors have assumed that

the materials are homogenous and isotropic. This means that the following relationships apply between
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the elastic constants:

E = 2G(1+ν) = 3K(1−2ν) (2.1)

Where E is the elastic modulus, G is the shear modulus, K is bulk modulus and n is the Poisson’s ratio.

Typically, the Poisson’s ratio has been defined as nearly 0.5 (e.g. Burd et al. (2002) used 0.49 whilst

Abolmaali et al. (2007) used 0.49999999), which is due to the assumed incompressibility of the lens.

However, some authors (Wilde, 2011; Lanchares et al., 2012) have assumed that the components are

hyper-elastic (See Chapter 4), meaning that the shear modulus values can be inputted. For these materials,

the bulk modulus is also required, rather than the Poisson’s ratio. Wilde (2011) defined the bulk modulus as

being 1000 times greater than the shear modulus to ensure incompressibility was accounted for. Lanchares

et al. (2012) used the data of Fisher (1971) but did not specify how the bulk modulus was calculated.

2.3.2 Capsule

In the FEA models analysed, two studies have been used for the capsule material properties (see Table 2.3),

both of which tested capsules in vitro separated from the lens. The earliest was by Fisher (1969) (denoted

source G in Table 2.3) where a section of the anterior capsule was tested by inflating it with a fluid pres-

sure. This allowed the relationship between pressure and volume to be recorded which allowed the calcu-

lation of the Young’s modulus of the capsule. Additional tests were carried out to establish the Poisson’s

ratio.

More recently, Krag et al. (1997) and Krag & Andreassen (2003b) (Denoted source H in Table 2.3) carried

out tests on rings of capsular samples. The samples were stretched by two supports at a constant speed

until rupture, allowing load vs strain graphs to be plotted which were used to calculate the elastic stiffness.

The results showed that the capsule behaved in a non-linear fashion.

As with the lens most studies represented the capsule as a linear elastic isotropic material using the material

properties from the sources given, combined with a Poisson’s ratio of 0.47 as defined by Fisher (1969).

However, Wilde (2011) used a constitutive model derived by Burd (2009) to model the material properties

of the capsule, although the Young’s modulus was the base property used. The Young’s modulus was

adapted from the studies of Fisher (1969) and Krag & Andreassen (2003a), but to be able to use both

sources an in plane Poisson’s ratio was found.
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Lanchares et al. (2012) represented the capsule with an anisotropic hyper-elastic constitutive model, sim-

ilar to the one used for the lens substance, but with additional properties to define the behaviour of the

capsule in the preferential direction of deformation. Again, the study of Krag & Andreassen (2003a) was

used to provide the data, but the method of adapting the data was not given.

2.3.3 Zonules

In the FEA models analysed, two studies have been directly referenced for the zonule elastic modulus:

Fisher (1986) (denoted source I in Table 2.3) and Van Alphen & Graebel (1991) (denoted source E in

Table 2.3). Both papers provide data on the elastic modulus of the zonular fibres, Fisher reported a value

of 0.35 N/mm2, whilst Van Alphen reported a value of 1.5 N/mm2, although different methods were used

to establish these values (see Chapter 4).

However, some authors have not used the data, instead due to the zonular modelling method used, they

have derived a stiffness value suitable for their own studies. Burd et al. (2002) developed a model where

each zonule bundle (anterior, equatorial and posterior) was represented by a thin sheet of material with

zero circumferential stiffness. The thickness of these sheets was set in a ratio, then a preliminary FEA

model was run where the stiffness of the sheets was varied until the equatorial displacement of the lens

model matched the displacement measured by Strenk et al. (1999); these stiffness values were then used

in the subsequent models. The process was later adapted by Breitenfeld et al. (2005) and Wilde (2011).

Liu et al. (2005) proposed an alternate version where the zonules could be modelled as springs, with each

zonular group assigned a separate spring stiffness, based on data from Fisher (1977) and Rao & Wang

(2002).

2.3.4 Summary of material properties

The lack of data on the material properties of the components of the accommodation system has led to a

number of simplifications and assumptions in early FEA models. However, more recent studies have been

able to utilise more comprehensive data, in particular on the stiffness gradients within the lens, which will

need to be an essential feature of any future models. Future models will ideally incorporate the non-linear

behaviour of both the lens and capsule, and if possible, investigate whether incorporating anisotropy is

possible.

A decision will need to be made on how the zonules are represented, as there is a paucity of data on both
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structure and material propertes. Similar to the steps taken hitherto, methods of adapting existing material

data to new zonular representations may need to be investigated.

2.4 FEA Procedure

After defining the geometry and material properties the next stage is to define the boundary conditions and

load steps that will be used to simulate accommodation. The boundary conditions include the restraints

that will hold the lens in place as well as the loads that will be applied. Due to variations in aims and mod-

elling methods used in previous studies, a number of models were created which are defined in Table 2.4

(Page 70).

2.4.1 Models analysed

The models created in each study depend on the aims of the study as well as the accommodative theory

being followed (Table 2.1). Here, the models will be discussed in terms of age and starting shape. The

standard method of deciding the starting shape was to model the lens in its most stress free state, which

will be different depending on the accommodative theory followed. If the Helmholtz theory was followed,

the lens was assumed to be stress free in its accommodated form. If the Schachar theory was followed,

the lens was assumed to be in its lowest stress state in its relaxed, un-accommodated form (Chapter 1).

Some studies investigated the causes of presbyopia, which required modelling lenses of different ages,

typically a young (≈ 20 YO), middle aged (≈ 45 YO) and old lens (≈ 60 YO). The geometric method

chosen needed to be able to accurately model the lens at these ages which has been the case in the majority

of studies, although some studies were limited to set ages (e.g. those based on Burd et al., 2002) limiting

their range. Abolmaali et al. (2007) produced an idealised lens to represent a young lens using the Chien

et al. (2003) mathematical description, based on assumed geometrical data for a young lens. The resulting

lens is shown in Figure 2.5 and it appears to be an inaccurate model of the lens, in particular compared to

the other lens models used in the same study which were of the form illustrated in Figure 2.1.

Some authors have analysed more than just the deformations in different ages. Breitenfeld et al. (2005)

analysed the differences between a normal lens and a lens altered to represent changes that could be

made with laser treatment (see Section 1.3.3.3), an approach later followed by Wilde (2011). Both studies
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2.4 FEA Procedure

8.6 mm

Figure 2.5: The idealised lens profile used by Abolmaali et al. (2007) (Black outline), the profile shape can be seen
to be an inaccurate representation of the lens where compared to an MRI image of the relaxed lens (Adapted from
Figure 1 of Strenk et al., 1999), principally due to the sharp point at the equator.

created areas within the lens with altered material properties to represent the changes that would occur

after laser surgery.

A different approach is to analyse what effects various lens parameters have on the deformations that

occur. Abolmaali et al. (2007) carried out a sensitivity study, varying a number of lens parameters se-

quentially whilst the remaining parameters remained at a baseline value, to see what effects they would

have on overall lens deformation. Van de Sompel et al. (2010) and Wilde (2011) performed a similar

analysis, although restricted to adjusting the material properties. Martin et al. (2005) and Liu et al. (2006)

introduced vitreous pressure in some models to study the effects on deformations, whilst Liu et al. (2005)

and Hermans et al. (2006) tested different zonular arrangements.

2.4.1.1 Boundary conditions

The boundary conditions of an FEA model describe the loads (forces or displacements applied to the

components) and restraints (restrictions to the degrees of freedom of the components). Hitherto, there

have been two methods of applying loads to the accommodation models; displacements to the ciliary

body or forces applied to the lens capsule.

For those models that apply a displacement, the only load required is on the representation of the ciliary

body. The displacement value used typically comes from the data of Strenk et al. (1999). For those models

using force application directly on the capsule, the amount of force required to deform the lens is usually

defined within the study. Hermans et al. (2006) purpose was to estimate the amount of force required to

deform the lens with an iterative process, varying the force until the deformations matched expectations.
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2.4 FEA Procedure

Belaidi & Pierscionek (2007) and Lanchares et al. (2012) ran initial models to establish the force required,

before those force values were used in further models to meet the aims of the study.

In those studies where the vitreous was included, a further load was required to simulate the pressure,

with differing methods of application used, from a single value (e.g. Liu et al., 2006) to a varying pressure

along the posterior surface (e.g. Martin et al., 2005).

The constraints of a model are required to ensure that there is no excess movement of the system. In an

axi-symmetric model, the central axis cannot move radially, but can still move vertically. It was not clear

in all studies how each model was constrained, but where specifications were given, it appears a typical

restraint was to restrict ciliary body movement to only radial movement (e.g. Lanchares et al., 2012). It

was specified in a number of studies that axial movement of the lens was restricted, but not detailed how

it was achieved (e.g. Liu et al., 2005 and Hermans et al., 2006).

2.4.2 Verification of results

Being able to produce a model that deforms suitably visually is not enough, the changes that occur need

to be analysed so that meaningful results can be obtained. One method of doing this is to compare key

parameters of the model to measured parameters from studies in vivo. The methods hitherto have either

based the verification on comparing to power changes within the lens or to changes in lens parameters,

such as the thickness or curvature change.

The most common method has been in comparing to measured power changes of the eye, using the thick

lens formula to calculate the power change in the FEA model (Equation 2.2).

OpticalPower =
(n1−na)

ra
+

(n1−na)

rp
− t(n1−na)

2

rarpn1
(2.2)

where n1 is the refractive index of the lens, na is the refractive index of the aqueous and vitreous, ra

is the radius of curvature of anterior surface, rp is the radius of curvature of posterior surface and t is

the axial thickness of the lens. The lens thickness and curvature values can be easily extracted from the

FEA models, allowing the power before and after deformation to be calculated. Using the thick lens

formula simplifies the optical calculation by attributing a single refractive index to the lens. As discussed

in Chapter 1 there is actually a gradient refractive index within the lens. To factor this in some authors
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2.5 Results

have instead used ray tracing to calculate the power change. Ray tracing involves computing the path of

individual light rays through an optical system. It can take into account a gradient refractive index as well

as more complex shapes, rather than two surface curvatures. The first use in an accommodation model was

by Breitenfeld et al. (2005) who used a linear Gaussian beam ray trace, although the refractive index used

was not specified. Van de Sompel et al. (2010) performed ray tracing using a parabolic representation of

the gradient refractive index layers. Riehemann et al. (2011) used a commercial ray tracing package and

used the deformed FEA lens profiles representing stages of dis-accommodation as part of a model eye. An

equivalent refractive index was incorporated, which used a different refractive index value for each state

of dis-accommodation across the whole lens, rather than separating it into refractive index layers.

The alternative method for verifying results is to compare individual parameters to measured values, for

example, Burd et al. (2002) simply compared the equatorial displacement of the lens to the expected

value as defined by Strenk et al. (1999) in establishing a suitable zonular deformation value. However, a

more comprehensive method was established by Hermans et al. (2006), where a cost function was used

to compare multiple values at a time. A number of parameters were selected for comparison and each of

these parameters from the deformed model was given a squared error, these errors were added up into the

cost function, then the inputted forces that resulted in the lowest cost function were deemed to be the most

accurate force estimation.

2.5 Results

The results of the studies are related to the individual aims, as shown in Table 2.1 (Page 52). These results

can be analysed in terms of the accommodative theory supported, the magnitude of the zonular forces,

what the causes of presbyopia are attributed to and what potential changes can be made to the lens to treat

or prevent presbyopia. A few studies were simply used to establish whether a proposed model would be

suitable for modelling the accommodation system (e.g. Burd et al., 2002; Ljubimova et al., 2008). In each

case, it was declared a suitable method, although there was a general agreement that there was a lack of

data on many aspects of the accommodative system

2.5.1 Accommodation

Broadly the various studies results fall into two categories, those that support the Helmholtz theory of

accommodation, and those that support the Schachar theory. For the former studies, the results show that
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2.5 Results

after instigating the zonular traction the lens will decrease in power due to thickness decreasing and the

anterior and posterior curvature changing (e.g. Burd et al., 2002; Hermans et al., 2006; Wilde, 2011). In

the latter studies the results showed that increased zonular displacement resulted in a power increase (e.g.

Liu et al., 2005; Abolmaali et al., 2007). When analysing these results, the starting lens shape needs to be

considered due to the differences between accommodative theories.

Liu et al. (2005) used the same geometric model as Burd et al. (2002), but found that displacement of

the ciliary body point resulted in an increase in power, rather than a decrease. The results show the

thickness of the lens decreases as with Burd et al. (2002), however, the anterior curvature increases and

the posterior decreases compared to an anterior and posterior decrease with Burd et al. (2002). The two

studies measured the curvature across different radii, with Burd et al. (2002) measuring the curvature up

to 0.8 mm from the axis and Liu up to 0.6 mm, which could have an effect on results. Liu et al. (2006)

used the same model again, but this time found that there was a decrease in power when using the same set

up as Burd et al. (2002). However, when using three ciliary body attachments for the zonules, the results

supported Schachar’s theory with the model showing an increase in thickness and power, albeit a small

increase. The curvature changes of this model match the results of Burd et al. (2002) but show a decrease

in curvature of both surfaces.

It is interesting to note where deformations as a result of zonular traction deviate from the typical results.

Abolmaali et al. (2007) modelled a number of lens arrangements finding that all set ups had an increase

in optical power with zonular displacement, regardless of whether the lens model was set up to represent

Helmholtz or Schachar. However, when looking at the thickness changes only when the model was set

up with a single equatorial zonule did the thickness increase, for all other arrangements the thickness

decreased, which usually indicates a decrease in power (e.g. Burd et al., 2002). The changes in curvature

were not given for these models so a definite answer cannot be given. Curvature changes and thickness

changes were given for the idealised lens model that was used, which supported the theory of Schachar,

however as shown in Figure 2.5 this is an unrealistic representation of the lens, so results using this need

to be treated with caution.

Belaidi & Pierscionek (2007) found support for both theories; the difference in which theory was sup-

ported was down to the age of the lens (which affected the starting shape), the amount of zonular force

applied and the stiffness distribution. For young lenses the results typically supported Schachar, other than

a young homogenous lens with a high force which showed support for Helmholtz. Older lenses in any

configuration showed support for Helmholtz.
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2.5 Results

Martin et al. (2005) compared the Helmholtz and Coleman theories by utilising pressure application on

the lens to simulate the vitreous. The results showed that the Coleman theory would not produce the

required power changes, however, it was not clear exactly how the models with pressure were simulated.

It appears from the supporting figures that the model with the pressure applied started in the deformed

shape, which would mean that any further deformations would not be able to produce high enough power

changes. Therefore, the results need careful consideration.

2.5.2 Zonular forces

A number of studies have investigated the amount of zonular force needed to achieve the required shape

and power changes during accommodation. With a force established, comparisons could be made to in

vitro studies that have been carried out (e.g. Fisher, 1977; Manns et al., 2007; Michael et al., 2012).

Fisher (1977) proposed that the force applied by the zonule was close to 0.01 N with very little change

with age, which was similar to Michael et al. (2012). Manns et al. (2007) found that the force ranged

from 0.008 N/D in a young eye to 0.02 N/D in an old eye. In those studies that measured the force applied

by the zonules, the force was found to be higher with Burd et al. (2002) calculating the force to be the

highest (0.08 N - 0.1 N), Hermans et al. (2008) the lowest (0.03 N to 0.06 N) and Hermans et al. (2006)

and Lanchares et al. (2012) inbetween.

2.5.3 Presbyopia

A number of studies have investigated what changes with age in the accommodative components con-

tribute to the development of presbyopia, typically through multiple age models but also by varying a few

key parameters. Abolmaali et al. (2007) used the latter method, varying key parameters above and below

a baseline value to see the effect on power change. From this analysis the development of presbyopia was

given as the decline in the maximum amount of force that could be applied by the zonules. However, the

results of the study also showed that an increase in lens stiffness would also cause the required decrease

in optical power with age; this was not supported as a potential cause of presbyopia by the authors due

to a lack of data showing suitable stiffness changes in a young eye to account for a 10 D decrease in

accommodative ability by 40 years of age (see Figure 1.13).

Weeber & van der Heijde (2007) proposed that the change in stiffness gradient was the cause of accom-

modative decline compared to previous accommodative amplitude studies (such as those illustrated in
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2.5 Results

Figure 1.13), although a constant shape lens outline was used (equivalent to a 40 YO lens) combined with

a consistent zonule arrangement, with only the stiffness and zonule displacement altered, so these factors

need to be considered. An additional model was run analysing the effect of increased lens stiffness (60

YO) when the zonule displacement was increased to cause the equatorial displacement to match that of a

young lens (20 YO). It was found that the surface curvatures did not change, which was attributed to the

material in the cortex sliding over the stiff nucleus. This was explored further in a later study (Weeber &

van der Heijde, 2008), where it was found that the strain in the nucleus was high in young lenses, but low

in old lenses. This was due to the deformations only occurring in the equatorial region of the cortex in

older lenses, not affecting the surface curvatures and therefore power.

Hermans et al. (2008) found that the force that can be applied to the lens was consistent with age, or may

even increase slightly with age. This indicates that the cause for the accommodative decline is lenticular

as the amount of force remains consistent, but the amplitude still reduces.

Van de Sompel et al. (2010) investigated the importance of the mechanical properties and geometry of

the lens in accommodation. It was found that modifying the geometry of an older (45 YO) lens led to an

increase in power change during accommodation; the altered model used the 29 YO lens shape with the

45 YO material properties. When the material properties were modified, using the 45 YO lens shape with

29 YO material properties, there was little improvement in power change indicating that the geometry of

the lens was key in the development of presbyopia. It was not specified if the capsule properties were

altered, but the indications were that the capsule was not altered.

Lanchares et al. (2012) investigated the stiffness values that were required so that a 40 and 50 YO lens

would match the required lens deformations when a constant zonular force was applied. It was found that

the required stiffness increased with age, supporting the theory that stiffness increase in the lens is the

cause for presbyopia.

As part of the study into lens deformation Wilde (2011) simulated two models with mixed properties, one

with a 29 YO shape but 45 YO mechanical properties and the other with the opposite. It was found that

the decline in power change could be attributed to the change in stiffness parameters alone. However, the

capsule thickness was the same in both age models, which could have had an impact on the deformations

induced.
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2.6 Areas for Improvement

2.5.3.1 Presbyopia treatments

One area of FEA modelling which is of interest in future models is the replication of surgical techniques

to try to improve the accommodative ability of the eye (see Section 1.3.3). In the literature, there have

been only a couple of models that have investigated any of these techniques.

The first was by Breitenfeld et al. (2005) who modelled a simple representation of a lens with femtosecond

laser microcuts. The model with these cuts offered a slight improvement over a normal lens model. A

more in depth analysis was carried out by Wilde (2011), where three different cutting patterns were tested.

A model using radial cuts was seen to give the most benefit, but again the improvement was slight over a

normal lens.

2.6 Areas for Improvement

From analysing the current state of FEA modelling of the accommodative system there are a number of

areas for development:

In terms of geometric and material modelling the latest data needs to be utilised, as there has been an

over reliance on data that has been shown to be inaccurate (e.g. Fisher, 1971 material properties, Burd

et al., 2002 lens model) in previous studies. Any models developed need to be adaptable so that multiple

scenarios can be examined, which will require the modelling methods to be able to replicate different

ages of lens as well as accommodated and relaxed versions of the components modelled. The material

properties need to reflect the complexity of the components, utilising more complex constitutive equations

than simple linear elastic isotropic representations. In addition, methods of representing the more complex

stiffness distribution within the lens combined with replication of the age related changes will be required.

Finally, attempts need to be made to improve on the current zonular modelling methods to allow for a more

accurate representation of the changes that occur with accommodation. Incorporating these improvements

will allow for a thorough investigation of accommodation and presbyopia development to be conducted,

in particular, how the relationship between the accommodative components changes with age.
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Chapter 3

Geometry

3.1 Introduction

When modelling a structure using FEA, each component of the structure requires a defined geometry. To

establish what data there are available to produce the geometric descriptions of the accommodative system

components the existing data sources need to be analysed (Section 3.2), before the proposed modelling

methods for the lens (Section 3.3), capsule (Section 3.4) and zonules (Section 3.5) will be detailed.

For clarity accommodation refers to the crystalline lens changing from its relaxed (low power, distance vi-

sion), or un-accommodated, state to its accommodated (high power, near vision) state. Dis-accommodation

is the reverse.

3.2 Measured Data

A wide range of measurements have been established for the different components using a range of dif-

ferent methods. Before analysing the different measurements of the individual components, the different

imaging methods will be summarised. The measurements will be split into in vivo and in vitro measure-

ments and where possible, relaxed and accommodated states; with any appropriate age related changes

detailed.

3.2.1 Imaging Methods

Table 3.1 (Page 80) gives an overview of the principal methods of measurement along with what each can

measure and any common errors that can occur.
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3.2 Measured Data

A number of these methods have been used to measure geometric parameters in the accommodated state

(see Tables 3.2 to 3.7). If the accommodative ability of patients was not recorded and it was only assumed

that patients were able to accommodate to the targets used, measurement inaccuracies could occur due

to over or underestimations of the accommodative ability, which needs to be considered when looking at

accommodative changes.

3.2.2 Crystalline lens measurements

The crystalline lens is the key component of the accommodation system due to the shape changes it can

undergo. The key features of the lens that need to be modelled are the thickness, diameter and surface

curvatures, all of which need to be adapted for accommodated and relaxed in vivo lens models. The

internal lenticular structure also needs to be modelled so that the material properties can be distributed

accurately.

3.2.2.1 Thickness

Table 3.2 (Page 81) gives an overview of the main measurements of the lens thickness, covering some of

the historic data used in FEA studies, such as Brown (1973), as well as more recent data (Sheppard et al.,

2011).

It is clear that there is an increase in thickness in the relaxed state of approximately 0.02 mm per year. With

accommodation, an increase is seen of approximately 0.05 mm per dioptre of accommodation, although

this increase does appear to reduce with age by approximately 0.5 mm per year (Dubbelman et al., 2005).

For measurements made in vitro the lens is free of any external forces which could represent the lens in its

accommodated state, if the Helmholtz theory is followed (Dubbelman et al., 2005). The data does suggest

this, with measurements in vitro showing a larger thickness than in vivo measurements, and an increase in

thickness with age. The influence of the capsule may cause the lens to form a more spherical shape than

what can be formed in vivo, which will be discussed in Section 3.2.2.2.

Internal thickness changes

Further detail can be found when analysing the thickness changes internally rather than as an overall

change. As discussed in Section 1.2.3.1 the lens is formed of a number of layers which are a result of the

layering of fibres through life. Dubbelman et al. (2003) measured the thickness of the internal layers using
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3.2 Measured Data

densitometry on Scheimpflug photography, using the Oxford method of distinguishing the layers (Sparrow

et al., 1986). It was found that the cortex region increases with age seven times more than the nucleus

region, with the anterior part of the cortex increasing in thickness 1.5 times more than the posterior region.

However, parts of the cortex region did not show any changes at all, with all the changes in thickness with

age coming in the C2 region (illustrated in Chapter 5).

In vitro Glasser & Campbell (1999) measured the increase in thickness in the anterior and posterior por-

tions of the lens, finding that the anterior portion increases slightly with age. The posterior thickness

was more stable and the ratio between anterior and posterior thickness remained stable at approximately

0.7. Rosen et al. (2006) found a similar ratio between the anterior and posterior axial thicknesses (0.7),

which remained constant with age; however, the posterior thickness also appeared to increase in thickness

quicker than the anterior. Glasser & Campbell (1999) showed that the capsule had an impact on measure-

ment, as when the capsule was removed both the anterior and posterior portions of the lens showed larger

increases with age.

With accommodation, the thickness increase of the lens was primarily attributed to changes in the nucleus

region. Although there was evidence that there may be a slight decrease in cortical thickness, typically,

there appeared to be no change (Dubbelman et al., 2003).

The differences between anterior and posterior portions of the lens can be seen in surface curvature and

volume changes, as will be discussed in Section 3.2.2.3 and Section 3.2.2.5.

3.2.2.2 Diameter

In vivo the diameter of the lens (Table 3.3, page 84) has been shown to remain stable (Jones et al., 2007;

Richdale et al., 2013), decrease (Strenk et al., 1999) and increase (Kasthurirangan et al., 2011) in the

relaxed state with age. The variation in these measurements could be indicative of measurement problems,

such as MRI resolution. The way the lens fibres are laid down, where the fibres move from the anterior

of the lens and differentiate at the equator (Section 1.2.3.2), would suggest that the lens diameter would

increase with age.

In vitro studies were consistent in showing an increase in diameter with age, which would appear to match

what is expected. The issue with in vitro measurement, as discussed in section Section 3.2.2.2, is that

the lens is free of any external force. As a result of this, the capsule may cause the lens to form an

artificially spherical shape, which it could not form in vivo. The measurements in vitro do appear to show
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3.2 Measured Data

consistently lower diameter values than measurements from MRI of accommodated lens diameters, which

would support this theory. Further support for this theory would be that the lens changes dimensions if the

capsule is removed; Fisher (1971) found very little change in dimensions when the capsule was removed

from lenses, whereas Glasser et al. (2001) showed that with the capsule removed from in vitro lenses there

was an increase in diameter, although this increase reduced with age. Careful consideration of diameter

measurements is therefore needed.

In vivo measurements of accommodated lens diameters were more consistent with the majority of studies

showing that the lens decreased in diameter with accommodative demand (e.g. Richdale et al. (2013)), al-

though the study of Schachar et al. (1996) found the opposite, but accommodation was pharmacologically

induced which could produce errors.

3.2.2.3 Surface curvature

The surface curvatures contribute to the power changes that occur in the eye and vary between anterior

and posterior surfaces (Table 3.4 and Table 3.5, pages 85 and 86). From in vivo measurements, there was

general agreement that the curvature decreases with age, becoming more spherical. With accommodation,

the anterior curvature also decreases.

For the posterior surface there was more debate. With age, it has been shown that the posterior curvature

decreases (Dubbelman & Van der Heijde, 2001), increases (Koretz et al., 2004; Kasthurirangan et al.,

2011) and has no change (Atchison et al., 2008; Richdale et al., 2013). With accommodation, there has

been more agreement that the posterior surface curvature decreases and becomes more spherical.

In vitro studies show the surfaces appear to be much more curved, which can be attributed to the lens

being outside the influence of the zonules, as discussed previously (Section 3.2.2.2).

3.2.2.4 Anterior Chamber Depth

The anterior chamber depth (ACD) (distance between the cornea and crystalline lens) provides a key

indicator on whether there is any anterior or posterior movement of the lens with age or accommodation.

Table 3.6 (Page 88) gives an overview of the measurements made and it shows that with age there was

agreement that the ACD decreases.

However, there was disagreement on the movement of the posterior pole with both age and accommoda-

tion. The change in ACD describes the movement of the anterior surface but combined with data on the
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3.2 Measured Data

change in axial length or lens thickness, the movement of the posterior surface can be measured. With age,

there was support for the posterior pole moving backwards with age (Tsorbatzoglou et al., 2007; Atchison

et al., 2008; Kasthurirangan et al., 2011), but Richdale et al. (2013) showed evidence that the posterior

pole was stable through life.

With accommodation, there was agreement that the ACD decreases in depth, but again, there were dif-

fering views on the movement of the posterior pole. Drexler et al. (1997) measured the anterior and

posterior pole positions during accommodation and found that the posterior pole moves backwards with

accommodation whilst the anterior pole moves forwards, with the anterior change being three times that

of the posterior; also supported by Dubbelman et al. (2005). Ostrin et al. (2006) found that 73% of sub-

jects showed posterior pole movement, and that anterior pole movement accounted for 75% of the change

in lens thickness. Kasthurirangan et al. (2011) found that the posterior pole showed no movement with

accommodation, although suggested that MRI resolution and the supine position of subjects may cause

measurement errors. Finally, Du et al. (2012) found evidence for there being movement of the posterior

pole, with the increase in lens thickness being larger than the decrease in ACD.

3.2.2.5 Other measurements

The measurements detailed so far are the typical measurements required to build a geometric representa-

tion of the lens. However, there have been additional measurements made of the volume, surface area and

cross sectional area that could be beneficial for ensuring developed lens models are accurate (Table 3.7,

page 90).

There has been general agreement that the volume of the lens increases with age and that the change

in volume is not evenly distributed through the lens. Measurements indicate that the volume change is

limited to the cortex (Koretz et al., 2001) and that the majority of the volume change is limited to the

anterior portion of the lens (Strenk et al., 2004), which matches with the thickness changes discussed in

Section 3.2.2.1.

Where there was disagreement was in the changes that occur with accommodation. Strenk et al. (2004)

measured a volume increase with accommodation, which was also supported by Sheppard et al. (2011),

whereas Hermans et al. (2009) measured no volume change with accommodation, although only 5 sub-

jects were measured. In terms of surface area, there was agreement that the surface area decreased with

accommodation, but the difference in opinion on the volume change led to disagreement on the compress-

ibility of the lens.
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3.2 Measured Data

In measurements made in vitro, the same age trends were seen as in vivo, but additional measurements of

surface area by Urs et al. (2009b) indicate that there is an increase in capsule tension corresponding to an

increase in surface area with age.

3.2.3 Capsule

The exact role that the capsule plays in accommodation is equivocal (Section 1.2.3.2), therefore it is

essential to replicate it along with any variation in thickness around the capsule profile.

The capsule follows the lens outline, therefore measurements that have been made have concentrated on

the changes in thickness. Table 3.8 gives an overview of studies that have provided data on the changes

in the capsule thickness. Figure 1.5 showed an example of the thickness variation from Fincham (1925),

illustrating the change in thickness around the capsule, although this is believed to be a combination of

the data from Fincham (1925) and Salzmann (1912) (Barraquer et al., 2006). More recent studies have

measured the thickness at different points and across ages. Figure 3.1 shows the variation in thickness

between the measurements of Fisher & Pettet (1972) and Barraquer et al. (2006).

There has been a general agreement that the anterior capsule thickness is greater than the posterior, which

was established with the early measurements of Salzmann (1912) and Fincham (1937). Subsequent studies

that measured just parts of the capsule also supported these findings. Krag & Andreassen (2003a) observed

the thickness of capsule sections approximately 1.6 mm from the anterior and posterior poles, finding

that the anterior capsule thickened with age before 70 years old where it then stabilised or declined.

The posterior thickness remained stable with age. Ziebarth et al. (2005) measured the thickness at the

anterior and posterior poles, finding that the anterior was thicker than the posterior, using two measurement

methods (Table 3.8).

Where there has been uncertainty is in where the thickness varies in the anterior and posterior sections,

and how this changes with age. The study of Fisher & Pettet (1972) showed the anterior capsule increasing

with age, both at the pole and at the zonular insertion point, whilst the equatorial and posterior sections

were more stable. The posterior capsule thinned from 1 mm from the equator to the pole, with the posterior

pole thickness remaining stable through life. The thickest portion of the capsule was initially at the equator,

but by the onset of presbyopia the anterior zonular insertion was thickest.

The most recent study by Barraquer et al. (2006) provided thickness values at multiple regions around

the lens and in line with previous studies, found that the anterior capsule was thicker than the posterior
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3.2 Measured Data

Capsule Position
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Figure 3.1: Comparison of capsule thickness variations. 0 represents the anterior pole, 100 the equator and 200 the
posterior pole. The solid lines indicate the measurements of Barraquer et al. (2006) (20, 50 & 0 YO) and the
dotted lines indicate the measurements of Fisher & Pettet (1972) (22, 37 & 77 YO).

with the anterior section growing with age whilst the posterior section was more stable. In terms of

the thickness variation around the capsule, there were some differences to previous studies; first, the

maximum thickness in the anterior section was always in the mid periphery, apart from in older lenses

where it was at the anterior pole. Second, there was a thinning found in the anterior section just before

the equator, appearing to correspond to the anterior zonular insertion. Third, a posterior “mound” was not

found consistently and where seen was of a modest size. Finally, the anterior pole was found to thicken

throughout life, whilst the mid anterior capsule thickened with age but then stabilised. These results

would indicate that the anterior portion of the capsule increases in influence throughout life, compared to

the more stable peripheral thickness, potentially aiding in changing the lens shape in older eyes.

3.2.4 Zonules

Although there have been a number of studies that have analysed the zonular arrangement (e.g. Nankivil

et al., 2009 and Lütjen-Drecoll et al., 2010), there have been fewer studies that provide any measurements

of aspects of the zonular arrangements. In previous FEA models the zonules are typically modelled in

three groups (see Section 2.2.4) running from the lens to a single point representing the ciliary body. The
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3.2 Measured Data

data shows that this is a simplification of how the zonules are actually arranged (see Section 1.2.3.3). To

ensure that the existing measurements to be discussed are clear, a consistent description of the different

zonular groups is needed. Figure 3.2 shows a simple representation of the different zonular groups and

the naming convention that will be followed.

For the zonular structure to be modelled accurately the ciliary body also needs to be considered, therefore,

the known measurements of the ciliary body will also be discussed in the current section.

AAZ

AEZ

APZ

ACB

PCB

Figure 3.2: Illustration of zonule groupings and nomenclature. AAZ = Anterior zonule attachment, anterior group.
AEZ = Equatorial zonule attachment, anterior group, APZ = Posterior zonule attachment, anterior group, ACB =
Anterior ciliary body, PCB = Posterior ciliary body.

3.2.4.1 Lens attachment points

The measured changes in anterior insertion (AAZ zonule insertions) are detailed in Table 3.9 and illus-

trated in Figure 3.3, showing the similarity in trends.

Table 3.9: Measurements of the attachments of the zonular bundles to the crystalline lens.

Study Anterior Position (mm
from equator)

Results

Farnsworth & Shyne
(1979)

(0.0124×Age)+0.0311 Distance between zonular
insertion and equator increases

with age
Sakabe et al. (1998) (0.0079×Age)+

(0.202×Diameter)−
(0.041×Axial length)+

0.0114

Anterior zonular insertion
increases in distance from
equator, zonular free zone

decreases with age
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Figure 3.3: Comparison between the AAZ lens attachment movements with age, the lens diameter value needed to
define the Sakabe et al. (1998) position was taken from Strenk et al. (1999) and the axial length from Atchison
et al. (2008).

The posterior zonular attachments have not been measured in as much detail due to the difficulties in

imaging them. Most FEA studies have modelled the posterior attachments as being the same distance

from the equator as the anterior attachments (e.g. Burd et al., 2002). Ljubimova et al. (2008) quoted a

figure of 0.22 mm from the equator, based on data from Gorban & Dgiliashvili (1993), but the method of

finding this value was unable to be verified.

94



3.2 Measured Data

Burd

Sakabe

Abolmaali

Ljubimova

Figure 3.4: Illustration of the AAZ, AEZ and APZ zonular attachment locations on the lens, showing the positons
of Burd et al. (2002), Sakabe et al. (1998), Abolmaali et al. (2007) and Ljubimova et al. (2008). The shaded
bands represent the size of the zonular attachment zones according to Streeten (1977).

Figure 3.4 illustrates the typical locations of the various attachment positions used in previous FEA studies

(based on the studies of Burd et al., 2002; Ljubimova et al., 2008; Lanchares et al., 2012) on a representa-

tive 33 YO lens. The bands shown represent the size of the attachment areas according to Streeten (1977).

The anterior insertion area is about 0.3 - 0.4 mm wide, whilst the equatorial and posterior areas are 0.4

- 0.5 mm. Sakabe et al. (1998) stated that the zonular free area decreases with age, indicating that the

zonules cover a larger area with increased age; however, no data was given for this change.

3.2.4.2 Ciliary body measurements

A few studies have attempted to measure the ciliary body (and the ciliary muscle) to aid in the understand-

ing of how it changes with age and accommodation. Tables 3.10 (Page 96) to 3.12 give an overview of the

different measurements that have been made.

Table 3.11: Changes in key ciliary body measurements with age.

Study Key Findings
Pardue & Sivak (2000) CM Length decreases with age, CM Width increases with age

Strenk et al. (2010) CM thickness increases with age (0.49 mm – 0.68 mm)
Sheppard & Davies (2011) CM thickness increases with age

Kasthurirangan et al. (2011) Distance from lens to CB decreases with age (Mean 0.43 mm)
Richdale et al. (2013) no change in thickness with age
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3.2 Measured Data

Table 3.12: Changes in key ciliary muscle measurements with accommodation.

Study Key Findings
Strenk et al. (2010) CM Thickness change with accommodation is constant

throughout life (0.085 mm)
Sheppard & Davies (2010) CM length decreases with accommodation, CM25 increased,

CM50 and CM75 remained constant
Sheppard & Davies (2011) CM25 increases with accommodation, constant increase with

age nasally, reduced change temporally CM25 increases by 7.1
mm per D of accommodation

Kasthurirangan et al. (2011) Distance from lens to CB does not change with accommodation
Richdale et al. (2013) Increase anteriorly, decrease posteriorly

From Table 3.10 it can be seen that there are differences in the reported thicknesses, which can be at-

tributed to three main factors. First, the different methods of imaging used, second, the differing ways

in which the ciliary muscle has been distinguished from the ciliary body and finally, the different mea-

surement positions. For example, the thickness measurements of Ernst (2010) are a lot higher than for

Sheppard & Davies (2010); Ernst (2010) appears to have measured the overall ciliary body shape, whilst

Sheppard & Davies (2010) measured just the ciliary muscle. The difference between these values could

be attributed to the multi-layered aspect of the ciliary body, as discussed in Section 1.2.3.4.

In terms of measurement positions Bailey et al. (2008) measured the ciliary muscle thickness at 1, 2 and 3

mm from the scleral spur, compared to Sheppard & Davies (2011) who measured at 25, 50 and 75% along

the ciliary muscle length. The two methods would produce different values, but the latter method would

be consistent across different ciliary muscle lengths.

In terms of average measurements there was a general agreement that the ciliary muscle was thickest

anteriorly (around 1 – 2 mm from the scleral spur) and that there was a progressive thinning posteriorly.

Most studies found that the anterior thickness increased with age, however Richdale et al. (2013) found

no change in thickness.

During accommodation all studies found that there was an increase in anterior thickness, but there was

disagreement on posterior changes with Sheppard & Davies (2010) finding no change and Richdale et al.

(2013) finding a decrease. The changes during accommodation did not appear to change significantly with

age.

The measurements so far have concentrated on the ciliary muscle; there are additional measurements that

have measured the ciliary body as a whole, using UBM or MRI, shown in Table 3.13. Combining these

two sets of data should be able to give a good estimation of the ciliary body shape, as well as the changes
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that it undergoes during accommodation (Section 3.5.3).

Table 3.13: Summary of in vivo studies that have measured the movement of the ciliary body with age and accom-
modation. CM = Ciliary muscle.

Study Num of
Subjects

Age
(Years)

Method Key findings

Strenk et al. (1999) 25 22 - 83 MRI CM contraction remains constant
throughout life, CM diameter in

un-accommodated state decreases with
age

Stachs et al. (2002) 12 - UBM CM centre of gravity shifts in a range
of 0.04 - 0.26 mm towards the lens

equator, with a small decrease with age
Strenk et al. (2006) 48 22 - 91 MRI CM remains active throughout life
Sheppard & Davies

(2010)
50 19 - 34 OCT CM has an anterior and centripetal

shift with accommodation
Kasthurirangan

et al. (2011)
30 19 - 70 MRI Circumlental space does not change

with accommodation, decreases with
age

Richdale et al.
(2013)

26 30 - 50 OCT CM has a mean diameter of 11.84 mm,
no change with age, decrease with

accommodation (-0.105 mm)

The work of Strenk et al. (1999) has been widely used for defining the movement of the ciliary body for

FEA studies (Section 2.4), finding that the ciliary body diameter decreases with accommodation. The

measurements also show that this decrease was constant with age, although the diameter in the relaxed

state decreased with age. Strenk et al. (2000) showed further evidence of this, measuring the circumlental

space and finding a decrease with age. The later study (Strenk et al., 2006) backed up these measurements,

although in all cases where the diameter was actually measured on the MRI images was not clear.

Stachs et al. (2002) measured the overall movement of the centre of gravity of the ciliary body finding an

inwards movement, although it was less than that measured by Strenk et al. (1999). The measured changes

also showed a small decrease with age, although the changes were pharmacologically induced which

could cause potential inaccuracies. Sheppard & Davies (2010) showed support of this, hypothesising that

measured thickness changes indicate that there was an anterior and inwards shift of the muscle mass, but

a definition of this movement was not given.

Kasthurirangan et al. (2011) measured the distance between the lens and ciliary body finding that the

distance between the two remained constant with accommodation, but decreased with age, supporting the

other measurements by indicating an anterior thickening of the ciliary body in both cases.
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3.2.4.3 Zonule thickness

Although descriptions of the overall zonular arrangement have been given by a range of authors, descrip-

tions of the zonular fibres themselves have been scarcer. Bornfeld et al. (1974) investigated the zonules

using scanning electron microscopy (SEM) on a young and an old lens, finding that zonule fibres are made

of fibrils of 1 to 2 mm in diameter which form bundles from 10 to 20 mm in diameter. The smaller fibrils

were also seen to traverse the distance between the larger fibres. Streeten (1977) also used SEM to inves-

tigate the zonules (utilising 30 human lenses), finding that the anterior and posterior zonules insert into

the capsule in bundles 25 to 60 mm in diameter, whilst the equatorial bundles are 10 to 15 mm in diameter.

The individual fibrils making up the bundles were measured as being 35 to 55 nm in diameter.

More recently, there have been a number of abstracts that have detailed thickness values. Reed et al.

(2003) states that the mean thickness of the zonules was 6.8 mm, whilst Lamar et al. (2004) found that the

zonule thickness varied from 6 to 35 mm midway between the lens and ciliary body, although the specifics

could not be obtained. Lamar et al. (2005) used SEM and found that the thickness of the anterior zonules

was approximately 3 times the posterior zonules and 10 times the equatorial zonules.

With the lack of data on thickness values, previous FEA models have instead estimated the zonular thick-

ness by manually adjusting the stiffness values of the zonules until the deformations of the lens match

a measured value (e.g. Burd et al., 2002). To represent the fact that there are differences between the

thickness of the zonular groups the stiffness values have been applied in a ratio, with Burd et al. (2002)

using 6:1:3 for the anterior, equatorial and posterior zonules respectively based on the work of Farnsworth

& Shyne (1979). Liu et al. (2005) set the anterior and posterior zonules to be three times the stiffness of

the equatorial zonules, based on data from Rao & Wang (2002).

Weeber & van der Heijde (2008) used data cited from Kaczurowski (1964), where the diameter of the

anterior zonules was 50 mm and the equatorial and posterior zonule diameter was 40 mm. The number

of fibres in each group was different from previous studies with the split being 100:50:135, giving the

posterior group the most fibres.

3.2.5 Summary

3.2.5.1 Accommodation and presbyopia theories

In Chapter 1, the various proposed theories of accommodation and presbyopia were discussed. The evi-

dence for and against these theories in terms of geometric changes can now be summarised.
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3.3 Crystalline lens model

The majority of measured geometric changes in the lens and ciliary body support the Helmholtz theory, in

that the lens increases in thickness and curvature and reduces in diameter in response to an inwards ciliary

body movement.

Schachar’s theory relies on the equator of the lens increasing with accommodation, which was only seen

in a single in vivo study. It was also seen in vitro, but the errors that could arise from these have been

discussed previously. Additionally, the overall shape of the lens in the Schachar theory (Section 1.2.2)

does not match up with the more spherical lens shapes that are observed in vivo, as shown in Section 3.3.

The theories of Coleman and Santos (Section 1.3) rely on the movement of the posterior pole during

accommodation, which from Section 3.2.2.4 is not agreed on with evidence for both posterior and anterior

movements of the pole.

In terms of presbyopia development it is difficult to deduce wether one theory is more valid that another,

as the geometric changes all illustrate the changes with age that occur. To aid in establishing the causes of

presbyopia, the modelling that will be carried out in Chapter 6 will be of more use.

The geometry of the accommodation system has been well studied with the majority of parameters needed

for modelling being well measured and agreed on (e.g. len thickness and anterior curvature). However,

there are a number of areas where there is disagreement in the literature, in particular on the posterior lens

curvature and movement and the lens diameter, which will need to be considered when analysing future

models. The lack of data on the zonules and ciliary body also impacts on developing a model suitable for

FEA.

3.3 Crystalline lens model

In Chapter 2 an overview of the different models of the accommodative system used in FEA models was

given. In addition to those models, there have been other methods developed to describe the components

of the accommodation system. It is beyond the scope of this project to develop a new crystalline lens

modelling method, therefore a choice of a suitable method from the literature is needed. The selected

method needs to be able to be defined by measureable parameters as well as model a range of ages in both

accommodated and relaxed states.
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3.3.1 Exisiting models

Three principal methods of modelling the lens were detailed in Section 2.2.1 based on a small selection

of source data. Table 3.14 gives a summary of these methods as well as other methods that have been

proposed in the literature to model the complete lens. Smith et al. (2009) and Giovanzana & Talu (2012)

conducted reviews of various methods of modelling the lens, both reporting on the difficulty in specifying

a model suitable for representing the lens. Therefore, any models that are proposed need to be compared

at different ages to ensure that they are suitable.

Table 3.14: Summary of crystalline lens modelling methods used in the literature. Whether a method is suitable is
determined by 1. Ability to replicate the method 2. Ability to model based on measureable parameters.

Study Source Data Modelling Method Suitable Curves to
describe lens

Kasprzak (2000) Geometric constraints Conic Sections N 2
Burd et al. (2002) Scheimpflug 5th order

Polynomials,
Circular end cap

N 3

Chien et al. (2003) MRI Cosine Function N 2
Smith (2003) Geometric constraints Figuring Conic Y 2

Kasprzak & Robert
Iskander (2006)

Geometric constraints Hyperbolic Cosine Y 1

Weeber 2006 Geometric constraints Conic Section,
Circular Cap

N 3

Hermans et al.
(2006)

Geometric constraints Conic Sections N 4

Hermans et al.
(2009)

Geometric constraints Conic Sections Y 4

Smith et al. (2009) MRI Generalised Conic N 2
Urs et al. (2009a) Shadow

Photogrammetry
2 Polynomial

methods
N 1,2

Urs et al. (2010) Shadow
Photogrammetry

10th order fourier
series

N 1

Giovanzana & Talu
(2012)

Geometric constraints Cosine function Y 2

Kim et al. (2011) OCT Fourier cosine N 1

Each modelling method uses different parameters to define the lens equations. Where possible the terms

will be standardised to those defined in Figure 3.5 with definitions in Table 3.13.
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TAC

TPC

TNTL

LR (0.5 x LD)

RA , qA

RP , qP

x

y

Figure 3.5: Standard nomenclature for describing lens parameters, with definitions given in Table 3.15.

Table 3.15: Lens parameter labels and units, as illustrated in Figure 3.5.

Lens Parameter Label Units
Axial Lens Thickness TL mm
Equatorial Diameter LD mm
Equatorial Radius LR mm

Age A years
Anterior radius of curvature RA mm
Posterior radius of curvature RP mm

Anterior aspherity qA -
Posterior aspherity qP -
Nucleus thickness TN mm

Cortex thickness anterior TAC mm
Cortex thickness posterior TPC mm

In Section 2.2.1.2 exisiting modelling methods were detailed with the limitations highlighted. A compar-

ison between potential methods for the current model is now required to ensure that an appropriate model

is selected. Table 3.14 shows that only a few methods are suitable, in that they are defined by measur-

able parameters and able to model both accommodated and relaxed lenses. The two most recent of these

models were selected (Hermans et al., 2009; Giovanzana & Talu, 2012) to be compared.
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3.3 Crystalline lens model

Hermans model

The model first proposed in Hermans et al. (2006) was later adjusted (Hermans et al., 2009), giving

equations 3.1 and 3.2 for the central portion of the lens.

x =

√
2(y− y0ant)

cant
x≤ 2mm and y≥ 0mm (3.1)

x =

√
2(y− y0pos)

cpos
x≤ 2mm and y≤ 0mm (3.2)

Where y0ant and y0pos are the crossing points of the anterior and posterior surfaces with the lens axis and

cant and cpos are equivalent to 1/radius of curvature. Equation 3.3 defines the periphery of the lens with

the c and k values for the anterior and posterior portions being defined by equations 3.4 to 3.7.

x = LR−
cy2

1+
√

(1− kc2y2)
(3.3)

cant−eq =
LR− x1

y1[cant(LR− x1)x1 + y1]
(3.4)

kant−eq =
y1[2cant(LR− x1)x1 + y1]

(LRq− x1)2 (3.5)

cpost−eq =
LR− x2

y2[cpost(LR− x2)x2 + y2]
(3.6)

kpost−eq =
y2[2cpost(LR− x2)x2 + y2]

(LRq− x2)2 (3.7)

Giovanzana model

Giovanzana et al. (2011) developed their method from the work of Chien et al. (2003) adapting the curve

generating method to be defined by geometric constraints. The lens can be modelled with two curves, one
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3.3 Crystalline lens model

for the anterior surface and one for the posterior. The anterior curve is defined using equations 3.8 - 3.13.

za(u) = (b0a +b1a(π−u)2 +b2a(π−u)4)cosθ (3.8)

ya(u) = aa sinθ (3.9)

aa = LR (3.10)

b0a = TAC (3.11)

b1a =
1
2

(
t− L2

R

Ra

)
(3.12)

b2a =
5
24

TAC−
1

12
L2

R

RA
− 1+qa

8
L2

R

R3
A

(3.13)

An alternate form of b2a was proposed in Giovanzana et al. (2011) removing the need for qa to be defined,

shown in Equation 3.14.

b2a =−
1

π2

(
TAC−

L2
R

RA

)
(3.14)

104
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The posterior surface was defined using equations 3.15 - 3.20.

zp(u) = (b0p +b1pu2 +b2pu4)cosθ (3.15)

yp(u) = ap sinθ (3.16)

ap = LR (3.17)

b0p = TPC (3.18)

b1p =
1
2

(
TPC +

L2
R

RP

)
(3.19)

b2p = b2a +2
π2 +8

π4 (TAC−TPC)−2
L2

R

π2

(
1

RA
+

1
RP

)
(3.20)

Both of these models would appear to be suitable however, a comparison between them was needed.

3.3.2 Model comparison

To decide which model would be used for the models proposed in Chapter 6, three age lenses (20, 40 and

60 years old) would be made using the two methods each in accommodated and relaxed forms. These

would then be compared in terms of anterior and posterior curvature across a 3 mm aperture, to avoide

using the curvature at the poles.

3.3.2.1 Data used to create models

The different sources of data for the lens parameters have been discussed (Section 3.2.2). From this, the

data in Table 3.16 was selected as these definitions allowed age related relaxed and accommodated models

to be defined.
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3.3 Crystalline lens model

Table 3.16: Data used to create models, taken from Section 3.2. A = Age, AccAbility = the accommodative ability
at Age A, taken from the data of Duane (1922).

Parameter Relaxed Accommodated
LR ((−0.0047A)+9.3609)/2 (((−0.0047A)+9.3609)/2)−

(0.067×acc ability)
TL 0.0238A+2.9276 0.0144A+3.5955

Anterior Hal f Lens
Posterior Hal f Lens 0.7 0.7

RA 12.9–0.057A RA +((0.009A–0.6)×acc ability)
RP −6.2+0.012A RP +((0.25–0.003A)×acc ability)
qA −5.4+0.03A (−5.4+0.03A)− (0.5×acc ability)
qP −5+0.07A −5+0.07A

Figure 3.6 shows an example of the accommodated and relaxed forms of a 20YO lens using both the

Hermans and Giovanzana methods.

Figure 3.6: Example of the accommodated and relaxed form of a 20 YO lens defined using the Hermans (Red) and
Giovanzana (Blue) methods. An accommodative change of 11D was assumed, as according to Duane (1922).

The Giovanzana model was defined using Equation 3.14 as utilising Equation 3.13 resulted in an unreal-

istic outline in the accommodated state in a young lens.
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3.3.2.2 How do the models compare?

Once each model of the lens was created, the anterior and posterior curvatures were calculated using

MatLab. Circles were fitted to the anterior and posterior surfaces across a 1.5 mm portion (representing a

3 mm apeture) using the method proposed by Taubin (1991), with the process repeated for both relaxed

and accommodated models to calculate the change in curvature.
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Figure 3.7: Change with age of the decrease in curvature between the relaxed and accommodated states of the
Hermans and Giovanzana models.
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Figure 3.8: The volume and surface area changes with age of the Hermans and Giovanzana models in the relaxed
state.

Figure 3.7 shows the change in the radius of curvature in each method, with both methods producing

similar results. Figure 3.8 shows the volume and surface area for relaxed models, which compares well

with measured data (see Table 3.7). The main difference between the methods is in the shape at the

periphery of the lens (Figure 3.6), with the Giovanzana method producing a more pointed profile than the

Hermans method. Figure 3.9 shows the curvature changes around the lens profile, where it can be seen

that the Giovanzana method produces a slightly smoother profile than the Hermans method.
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Giovanzana

Hermans

Figure 3.9: Comparison between the curvature changes around the profile of a 20 YO accommodated lens modelled
with the Giovanzana and Hermans methods, with the length of the red lines illustrating the amount of curvature
at that point.

Both methods are comparable in terms of curvature change, volume, smoothness and adaptability however,

when the profiles are compared to whole lens images seen in vivo with MRI (e.g. Koretz et al., 2004;

Strenk et al., 2005), a more rounded profile would be appropriate in representing the lens therefore, the

Hermans method is selected.

3.3.3 Internal structure

To ensure that the material properties of the lens can be modelled suitably (Chapter 2, Chapter 4), a

method of defining the different internal regions of the lens was needed. To avoid the issue of a sharp

point being created (Section 2.2.2), the percentage reduction method utlised by Abolmaali et al. (2007)

was adopted, using the data of Dubbelman et al. (2003) (Table 3.17).
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3.3 Crystalline lens model

Table 3.17: Data used to define internal structure, from Dubbelman et al. (2003). Z = Zone, with the lens split into
8 zones along the axial length.

Parameter Definition
Z1 0.28
Z2 0.23+0.012A
Z3 0.34
Z4 0.73+0.0016A
Z5 0.74+0.0011A
Z6 0.31
Z7 0.18+0.0076A
Z8 0.17

Lens thickness Z1+Z2...+Z8
Nucleus Z3+Z4+Z5+Z6

Ant Cortex Z1+Z2
Pos Cortex Z7 + Z8

Dubbelman et al. (2003) provided data on the changes in thickness of the internal layers with accommo-

dation, which can be adapted to model the internal changes with accommodation if required (Table 3.18).

Table 3.18: Change in internal thickness with accommodation, taken from Dubbelman et al. (2003).

Age (Years) Ant Cortex Nucleus Pos Cortex Acc. Amplitude (D)Change in mm
19 0.005 0.035 0 8.29
25 0.008 0.043 0.001 7.15
31 0.005 0.038 -0.001 6.01
37 0 0.04 -0.001 4.87
43 0.001 0.043 0.001 3.73
49 -0.008 0.036 -0.012 2.59

The values defined in Tables 3.17 and 3.18 were used to establish the scaling factor required to reduce

the outer lens shape down. However, a centre point around which to scale was required as the 0,0 point

of the lens was not a suitable scaling point due to being too far towards the anterior part of the lens. The

scaling point was defined by utlising the internal thickness data of Dubbelman et al. (2003) to provide a

translation value for moving from the 0,0 point of the lens outline (Equation 3.21).

Scale Translation = (TAC +NucMiddle)−TAnterior (3.21)
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3.4 Proposed capsule model

Where

NucMiddle = TN/2 (3.22)

TAnterior =
Anterior Hal f Lens
Posterior Hal f Lens

×TL (3.23)

3.3.4 Summary

A range of different lens modelling methods have been detailed to date, both within FEA models of

accommodation and for other purposes. To ensure that the proposed method for the current study was

suitable (see Section 2.6) it needed to be able model a range of different age lenses both in accommodated

and relaxed states, through the use of measureable parameters. In addition, the final lens shape produced

needed to replicate the overall lens shape as seen in vivo well, and be adaptable to represent the internal

structure variation. The proposed method detailed in the current sections met all these criteria.

3.4 Proposed capsule model

From the sources of thickness data discussed previously, the study of Barraquer et al. (2006) was selected

for the modelling process due to the age related parameters defined. To define how the thickness at key

points around the capsule varied with age Barraquer et al. (2006) used Equation 3.24, with the parameters

needed given in Table 3.19.

CapsuleT hicknessPoint = m2×Age2 +m1×Age+n (3.24)

Table 3.19: Capsule thickness parameters from Barraquer et al. (2006) for defining Equation 3.24.

Position on Capsule Equation 3.24 parameters
n m1 m2

Anterior pole (p0) 7.53 0.093 0
Anterior maximum (p45) 0.219 0.515 -0.004
Anterior minimum (p80) 8.535 -0.025 0

Equator (p100) 7.352 0 0
Posterior maximum (p120) 8.649 -0.046 0

Posterior pole (p200) 3.581 -0.009 0

A method of modelling an area which represents the capsule was created. Using the lens outline that
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3.5 Proposed zonule model

was detailed previously (Section 3.3), the thickness values defined using Equation 3.24 can be used to

offset the lens outline to create an area within the outer lens shape. The first test of this showed that

only using the six points defined in Table 3.19 resulted in an irregular line. Therefore, additional points

around the capsule were required to ensure a smooth offset curve. To define these additional points the

thickness values were plotted against relative position, as in Figure 3.1, and additional thickness values

were interpolated from a fitted spline curve. To produce the capsule curve the normal-to line was found

at each capsule thickness coordinate on the outer lens curve then, the thickness for this position could be

found along the normal line to give a new coordinate, which could then be used to generate the curve

(Figure 3.10).

p45

p80

Lens outline

New capsule curve

x, y

xn, yn

Figure 3.10: Illustration of the method used to define the capsule thickness variation. The anterior portion of a 40
YO lens is shown, with the capsule thickness increased by a factor of 10 for clarity. Detail is shown of the p45
thickness location, illustrating the perpendicular line used to generate a new set of x and y co-ordinates.

Using this method a unique capsule thickness can be defined for each age of lens modelled, ensuring

consistency in the modelling methods. The method also allowed for custom thickness variation profiles to

be defined, allowing for investigations into the capsule thickness to be conducted in future models.

3.5 Proposed zonule model

The weaknesses of existing zonular models have been discussed (Section 2.2.6) as well as the differ-

ing views on how the zonules may be arranged (Section 1.2.3.3). Using the existing data discussed in

Section 3.2, a more comprehensive zonular model was developed.
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3.5 Proposed zonule model

3.5.1 Zonular Arrangement

To be able to model the zonular arrangement a better understanding of the arrangement of the zonules

between the lens and ciliary body was needed, which would enable a hypothesis on the ciliary body

attachments to be made, of which there was a lack of measured in vivo or in vitro data. The different

arrangements in the literature have been discussed in Section 1.2.3.3 therefore, the key features that are

most agreed will be detailed here before a general schematic of how the zonules can be arranged will be

given.

In terms of lens attachments there was evidence for four attachment locations: anteriorly (AAZ, see

Figure 3.2) (Sakabe et al., 1998), at the equator (AEZ) (Ludwig et al., 1999) and two posterior attach-

ments (APZ1 and APZ2). The APZ1 attachment is located approximately the same distance from the

equator as the AAZ attachment (Ludwig et al., 1999), with the APZ2 attachment occurring at Weigers

ligament closer to the centre of the lens (Nankivil et al., 2009; Lütjen-Drecoll et al., 2010).

Each of these anterior attachment regions have a corresponding attachment location on the ciliary body,

with the AAZ, AEZ and APZ1 attachments running from the lens to the anterior ciliary body (ACB),

whilst the APZ2 attachment appears to run to the posterior ciliary body (PCB) (Lütjen-Drecoll et al.,

2010), with a secondary attachment to the ACB. The most likely arrangement of the zonules, developed

for the current study, is shown in Figure 3.11.

AAZ

AEZ

APZ1

APZ2

Figure 3.11: Proposed zonule arrangement based on analysis of the literature, showing the accommodated (Blue)
and relaxed (Red) states. The schematic shows the four zonular bundles and the connections to both lens and
ciliary body.

Compared to the existing methods of representing the zonular arrangement in FEA models (Section 2.2.4),

the novel proposed arrangement allowed for a number of improvements. First, four zonular bundles were
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3.5 Proposed zonule model

proposed, adding the APZ2 zonule bundle to the established AAZ, AEZ and APZ1 bundles commonly

used as a reflection of the in vivo data available. By adding the APZ2 zonule bundle, replicating the

pull of the vitreous zonule, it was hypothesised that the movement of the lens will be controlled en-

suring that the only loads and restraints needed on the model are the zonular displacements, improving

on previous methods where artificial restraints were added to restrict anterior/posterior movement (see

Section 2.4.1.1).

Second, each zonular bundle had a separate point representing the attachment to the ciliary body, rather

than the typical single point. This allowed for the ciliary body points to be arranged in a manner that

depicts the difference in movement between zonular bundles, as a result of both the anterior/posterior and

radial movements of the ciliary body during accommodation (see Section 3.2.4.2). Previous models have

been limited in either using a single displacement point or, if multiple points are used fixing them in a

vertical, flat pattern (see Section 2.2.4). Overall, the proposed method ensured that the zonules were more

representative of the in vivo structure than methods used in previous FEA models.

3.5.2 Attachment Points on Capsule

For the proposed model, attachment locations were needed for the AAZ, AEZ, APZ1 and APZ2 attach-

ments. There was known data for the AAZ location (Sakabe et al., 1998), and it was proposed that the AEZ

was positioned on the widest point of the lens. However, a method of defining the posterior attachments

was needed.

3.5.2.1 APZ attachment locations

Typically the APZ1 attachment has been positioned at the same distance from the equator as the AAZ (e.g.

Burd et al., 2002), an assumption followed here due to there being no direct measurements to dissuade

this idea.

For the APZ2 attachment, assumed to adhere to Weiger’s ligament (e.g. Nankivil et al., 2009), a method

of defining its position for multiple ages was needed. Weiger’s ligament stems from the interface of the

capsule and vitreous, meaning an assumption was made that it comes off tangentially from the capsule,

based on the fact that the vitreous and capsule are in contact. Bergua & Küchle (2002) illustrated the

zone of wieger as covering a band of the posterior lens surface, extending from close to the first posterior

attachment to a short distance from the posterior pole, as illustrated in Figure 3.12.
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3.5 Proposed zonule model

Vitreous

Wiegers zone

Figure 3.12: Illustration of the zone of Wieger, adapted from Bergua & Küchle (2002).

As an initial definition the location of APZ2 was defined as being halfway between the APZ1 attachment

and the posterior lens pole. The AAZ equation was from Sakabe et al. (1998):

AAZ,APZ1 = (0.0079×A)+(0.202×LD)− (0.041×Axial Length)+0.0114 (3.25)

APZ2 =
LR−APZ1

2
(3.26)

These definitions have been developed based on cadaver lenses, which could be assumed to represent the

accommodated lens (see Section 3.2.2). It was assumed that these equations hold true for accommodated

and relaxed lens states.

To define the axial length of the eye, Equation 3.27 was used, taken from Atchison et al. (2008):

Axial Length = 22.984+0.0113A (3.27)

3.5.3 Attachment points on the ciliary body

As discussed previously, a model of the ciliary body was needed so that the zonular arrangement could be

modelled effectively. A summary of the data that can be used to create the model will be given, before the

actual model is detailed.
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3.5 Proposed zonule model

3.5.3.1 Ciliary body shape

As far as the author is aware, there has been one study that has used a model of the ciliary body in an FEA

model (Stachs et al., 2006). An approximation of the ciliary body was created based on UBM imaging,

although there was only a representation of one age and the zonules modelled did not replicate the more

complicated arrangement that is proposed here. Therefore, a more comprehensive model was required.

The first step in creating the model was to define the basic shape of the ciliary body. A number of studies

have imaged the ciliary body, with the most comprehensive images coming from Pardue & Sivak (2000)

whose in vitro images give an idea of the whole shape, and Sheppard & Davies (2010) where the shape

in vivo can be seen. The MRI images of Strenk et al. (1999) also provide a rough idea of the basic shape.

From these, the basic shape of the ciliary body has the form shown in Figure 3.13.

Anterior

Posterior

Figure 3.13: The basic shape of the ciliary body, based on images from Pardue & Sivak (2000),Strenk et al. (1999)
and Sheppard & Davies (2010).

With the basic outline defined the measured thickness values can be applied, taken from the data discussed

in Section 3.2.4.2. There were some differences in the measured thickness values, which was attributed

to the different measurement methods (Section 3.2.4.2). Stachs et al. (2002) demonstrated how the cil-

iary processes can have an impact on the thickness of the ciliary body therefore, it was assumed that the

measurements of Sheppard & Davies (2010) correspond to the underlying ciliary muscle, and the mea-

surements of Ernst (2010) correspond to the total ciliary body including processes. Using this assumption

to guide the creation of the model, any manipulation of the ciliary muscle values would alter the ciliary

body shape.

3.5.3.2 Ciliary body position

Strenk et al. (2010) measured the distance between the ciliary muscle apex and the corneal apex, finding

116



3.5 Proposed zonule model

that the distance decreased with age, which can be used to position the ciliary body vertically. The hori-

zontal position can be defined through either the ciliary body ring diameter or the circumlental space, both

of which have been measured (Kasthurirangan et al., 2011; Richdale et al., 2013). Measurements of the

ciliary body ring diameter were not clear on where the measurements were made, therefore, the reduction

of circumlental space was adapted. Kasthurirangan et al. (2011) stated a decrease of 0.43 mm between 20

and 60 years old (assumed to be a linear decrease), although this can be verified in the inital modelling

phase (Chapter 6).

Finally, how the ciliary body is orientated needs to be defined. A composite of two MRI images from

Strenk et al. (1999), showing an accommodated and unaccommodated ciliary body and lens, was made to

consider how they are related which would allow the ciliary body to be angled correctly, establishing the

dimensions required (see Figure 3.14).

3.5.3.3 Changes with accommodation

The base measurements (Table 3.10) would allow a model to be generated however, the individual mea-

surements would need to be altered to show the changes that occur with accommodation. The two basic

changes that occur are the thickening of the ciliary muscle and the movement of the ciliary body closer

to the lens. Both thickness and movement have been measured, but the two sets of measurements do not

combine together well.

In terms of thickness changes there are measured changes anteriorly, with no change reported for the

posterior ciliary muscle. Based on the measurements of Sheppard & Davies (2010), the anterior thickness

increases by 7.1 µm per dioptre of accommodation (0.071 mm for 10 D of accommodation), assuming a

linear change.

When it comes to the movement of the ciliary body, the two main sources have been Strenk et al. (2006)

and Stachs et al. (2002). Strenk’s measurement of the diameter change in the ciliary body showed a large

change (a mean value of 0.64 mm), but the measurement position is not clear. Stachs et al. (2002) reported

a centre of gravity shift that was smaller (approximately 0.2 mm). Stachs also showed differences between

movement with and without the ciliary processes.

Kasthurirangan et al. (2011) measured the circumlental space finding that it did not change with accom-

modation, with the ciliary body movement matching the change in lens diameter, which is approximately

0.05 mm per dioptre.
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3.5 Proposed zonule model

The increase in ciliary muscle thickness does not match with the assumed inwards movement however,

one explanation of this is in the shape of the anterior portion of the ciliary body. MRI studies have not

been detailed enough to give a really clear image of the ciliary muscle, which is why OCT images have

been used. With these images the anterior portion of the ciliary body is not clear due to obstruction by

the iris, hence most measurement of thickness come from 2 mm away from the scleral spur. In a study on

Rhesus monkeys, Croft et al. (2009) showed a large movement in the anterior portion of the ciliary body,

whilst the more posterior portions showed little change. If this same mechanism occurs in humans, which

was assumed to be the case, the two sets of measurements could be combined into one model. Some

evidence for this can be seen in the in vitro study of Pardue & Sivak (2000) where a clear bulge in the

anterior portion can be seen. The measured muscle changes could also indicate a shift in muscle mass

anteriorly, indicating an anterior bulge, unseen in OCT imaging. Sheppard & Davies (2010) hypothesised

that the measured ciliary muscle changes in their study (increase in anterior thickness and decrease in

length) indicate an anterior and inwards shift of the ciliary muscle that would support this idea.

3.5.3.4 Changes with age

The changes with age have been more widely agreed on (Section 3.2.4.2), therefore the thickness changes

of Sheppard & Davies (2010) were used for the anterior change whilst posterior thicknesses remained

constant. The distance between lens and ciliary body changes with age as according to Kasthurirangan

et al. (2011). The contraction with accommodation was linked to the age related decline in lens diameter

change with accommodation.

All the measured data combined allowed a CB model showing changes with age and accommodation to

be created, which enabled the CB attachments to be modelling in a more complex manner than in previous

FEA studies.

3.5.4 Constructing the model

The basic outline was given in Figure 3.13 and this can be supplemented with the data summarised previ-

ously. Table 3.20 summarises all the parameters needed to define the ciliary body model, along with their

definitions.

Figure 3.14 shows the MRI composite used to combine the basic outline with a representation of the lens

in SolidWorks, allowing the orientation of the ciliary body to be defined by angles between the equatorial
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3.5 Proposed zonule model

line and the CMT lines.

Equatorial line

CMT lines

Figure 3.14: Illustration of the method used to orientate the ciliary body model, using the equatorial line and CMT
(Ciliary muscle thickness) lines. The MRI image was adapted from Figure 1 of Strenk et al. (1999).

With the orientation defined the values defining the distance from the lens equator, the vertical distance

from the cornea and the thickness changes with accommodation (as they are relative to the lens) were

applied (Figure 3.15). Once this was established, all the parameters could be varied for age and accom-

modation to create a ciliary body model for use in generating the zonular arrangement.
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ACD + 
Corneal 
thickness

Corneal apex to Ciliary body

Lens 
Radius

CB Length

Ciliary body movement with 
accommodation

Circumlental space

CM25
CM50

CM75

Anterior 
lens 
thickness

Figure 3.15: Proposed ciliary body model with defining parameters shown.

3.5.5 Final zonule arrangement

With a ciliary body model defined, the final zonule arrangement proposed previously could be fully

defined. The first stage of this was to model the lens attachment locations, using the equations from

Section 3.5.2. The next stage was to define the direction of travel. At this stage two methods were

proposed, which would be tested in Chapter 6 to establish which method was appropriate as to date no

measurements of the angle of attachments had been made. The first method was based on the AAZ, APZ1

and APZ2 zonules attaching to the lens tangentially, an assumption based on the fact that when the lens

is in its accommodated form the zonules are positioned in their most expanded state, pulling on the lens.

The second method was based on the zonules attaching in a more horizontal position, therefore, an angle

of 4 degrees was defined between the tangent line and zonule line.

For the APZ2 zonule the zonule does not run straight from the lens to the ciliary body instead, in vivo the

zonule has been shown to pass over the vitreous and attach to the posterior ciliary body, pinned by a zonule

running from the anterior ciliary body (Section 1.2.3.3). For modelling in FEA only the section running

from the lens to the “pinning” zonule was needed. As an initial method the pinning zonule was positioned
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3.5 Proposed zonule model

by a line running tangential from the lens to the ciliary body. The pinning zonule was then formed from

a line running perpendicular from the ciliary body at that point (Figure 3.16). The length was defined by

eye initially, allowing the APZ2 zonule to be defined. Further refinement will be carried out in Chapter 6.

With the direction defined, the ciliary body attachment locations need to be defined. The AEZ was attached

to the lens equator at an angle, which was visually chosen to represent a ciliary body attachment between

the AAZ and APZ1 attachments.

The zonule arrangement was needed to estimate the displacement values of the zonules. To define these

values, the accommodated and relaxed zonules were modelled. To define the ciliary body attachment

points for the relaxed zonules, the angle of attachment was visually adjusted, depending on the assumed

thickness change the lens would undergo. For example, in a young lens with a large thickness change the

relaxed zonules were assumed to be almost horizontal, whereas in an old lens there would not be much

change from the accommodated state.

To define the zonule coordinates and displacement values, the accommodated lens was shifted vertically

so that the differences in anterior thickness between accommodated and relaxed lenses was three times

that of the posterior thickness difference (Section 3.2.2.1). The zonules were then positioned, allowing

the displacement values to be defined.

Accommodated lens shifted 
anteriorly, ensuring the anterior 
difference is three times the 
posterior

Figure 3.16: Final zonular arrangement where the blue outlines represent the accommodated model and the red
lines represent the relaxed model. The anterior shift of the accommodated lens is highlighted.
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3.5 Proposed zonule model

3.5.6 Zonule thickness

The final aspect of modelling the zonules was the thickness of the zonular bundles and the connection

between the zonules and the lens. As discussed previously, the zonules are made of bundles of zonular

fibrils, which interlace with the capsule and lens epithelium. The thickness of the zonular fibres has

been measured to be between 6 and 60 µm, made up of smaller fibrils that have been measured as being

between 10 nm and 1 µm (Section 3.2.4.3). These fibres are bundled into groups which vary in number

(and therefore thickness) between the different zonular groups (AAZ, AEZ, APZ). The bundles insert into

the capsule, although the size of the insertion area varies between the different insertion regions. With the

ambiguity over what the thickness of the different regions should be, different models will be simulated

in ANSYS to ensure appropriate values are selected, which will be covered in Chapter 6.

3.5.7 Summary

The combination of a novel zonule arrangement model and ciliary body model allows for a more complete

description of the zonular displacement to be defined, ensuring that induced deformations are likely to

be more representative of the changes seen in vivo. The methods also allowed for multiple ages to be

modelled, ensuring consistency with the proposed lens and capsule models. Finally, the methods could

be adapted to explore the importance of the attachment angles and ciliary body position and movement,

ensuring that the complete accommodative geometric model is capable of exploring accommodation and

presbyopia in detail.
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Chapter 4

Material Properties

4.1 Introduction

Chapter 2 gave a brief introduction to the material properties that have been used in previous FEA models.

The current chapter will explore the various sources of data that have been used in more detail before

highlighting the initial properties to be used in the proposed accommodation model. An overview of how

a materials behaviour can be defined will be given in addition to a summary of the main constitutive

models relevant to the current study.

4.2 Defining Material Behaviour

Material properties are used to quantify how a material reacts under different loading conditions. For the

purposes of the current investigation the properties related to the elasticity of a material are relevant.

An elastic material will deform under external loads, but once those loads are removed the material will

return to its original state, due to the internal forces in opposition to the external loads. There are a number

of different elastic moduli which can be used to define an elastic material and three moduli are commonly

used: the elastic modulus (E), sometimes referred to as the Young’s modulus, the shear modulus (G) and

the bulk modulus (K). These three constants can be related using Equation 4.1, where n is the Poisson’s

ratio. For isotropic, linearly elastic behaviour, two independent moduli are required.

E = 2G(1+ν) = 3K(1−2ν) (4.1)

For materials that are assumed to be incompressible, such as the crystalline lens, the Poisson’s ratio

approaches 0.5 (Section 2.3.1).
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4.2 Defining Material Behaviour

Deformations with linear isotropic materials are simple to define as stress is related to strain by a constant,

the stiffness of the material. However, the materials relevant to this study are typically more complex, as

they usually exhibit non-linear behaviour with evidence for there being anisotropic properties as well. In

addition, linear materials are often assumed to have small strains which are not seen in the accommodative

components. Therefore, the constitutive model relevant to accommodation will need to represent non-

linear effects and large strain, with the potential for anisotropy.

4.2.1 FEA Representation

To be able to describe how a material will behave in an FEA simulation, constitutive equations are used to

relate stress to strain, using material properties (or parameters). Section 2.3 covered the models that have

been used previously, with the most basic model being the linear elastic constitutive model where stress

(sv) is related to strain (e) by:

{σ}= [D]{ε} (4.2)

Where D represents a stiffness matrix (for an axisymmetric model):



σr

σz

σθ

τrz


=

E
(1+ν)(1−2ν)



1−ν ν ν 0

ν 1−ν ν 0

ν ν 1−ν 0

0 0 0 1−2ν

2





εr

εz

εθ

γrz


(4.3)

The ideal approach for the accommodative components would be to use a fully anisotropic model, how-

ever, as will be shown in the current Chapter, there was insufficient data to fully determine the required

parameters.

A more appropriate method is to use hyper-elasticity, which is a method of modelling materials that have a

non-linear stress strain relationship, but are elastic, isotropic and incompressible. The neo-Hookean hyper-

elastic constitutive model is represented by two material parameters, m and k, which are equivalent to G

and K at small strains. Adopting this constitutive model for accommodative components will therefore

allow measured material parameters discussed in this Chapter to be utilised. The strain energy function is
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given in Equation 4.4, with the relationship between d and k given in Equation 4.5.

W =
µ

2
(Ī1−3)+

1
d
(J−1)2 (4.4)

d =
2
k

(4.5)

4.2.2 Units

ANSYS is a dimensionless system; therefore, all inputs need to be consistent. The methods used for

generating the geometry of the proposed models have utilised mm for definitions therefore, all material

properties also need to be in terms of mm. In the literature, a range of units have be used to describe mate-

rial parameters therefore, in the comparison sections in the current chapter the units will be standardised.

In the final model, all units will be converted to be based on mm.

4.3 Measured Data

Compared to the measurements that have been made of the geometric parameters of the accommodative

components, there was a paucity of data on the material properties. Table 4.1 gives an overview of the

principal studies relevant to the current study, with an overview of the methods and subjects used.

To be able to develop an FEA model of the accommodation system that can investigate presbyopia, an un-

derstanding of how the material properties change with age is needed therefore, those studies that provide

age related data are of particular interest.

4.3.1 Crystalline lens material properties

The studies into the material properties of the crystalline lens will be discussed in terms of the material

testing method utilised, detailing the primary findings and their relevance to the current study, before an

overall comparison between the findings is given.

4.3.1.1 Lens Spinning

The lens spinning test was pioneered by Fisher (1971) as an alternative to compression tests on lenses, due

to the lens fibres being less disrupted by spinning. The principal was that the lens was spun about its axis

126



4.3 Measured Data

Ta
bl

e
4.

1:
Su

m
m

ar
y

of
st

ud
ie

s
m

ea
su

ri
ng

th
e

m
at

er
ia

l
pr

op
er

tie
s

of
th

e
ac

co
m

m
od

at
iv

e
co

m
po

ne
nt

s.
A

ll
st

ud
ie

s
ar

e
in

vi
tr

o,
un

le
ss

st
at

ed
ot

he
rw

is
e.

*i
nd

ic
at

es
di

ab
et

ic
sa

m
pl

es
**

in
di

ca
te

s
ca

ta
ra

ct
sa

m
pl

es
.

St
ud

y
C

om
po

ne
nt

Te
st

ed
N

um
be

r
of

Sa
m

pl
es

A
ge

R
an

ge
(Y

ea
rs

)
M

et
ho

d
Lens

Fi
sh

er
(1

97
1)

L
en

s
40

0.
4

-6
7

Sp
in

ni
ng

B
ee

rs
&

V
an

D
er

H
ei

jd
e

(1
99

4)
L

en
s

(i
n-

vi
vo

)
24

15
-4

4
V

el
oc

ity
of

So
un

d

G
la

ss
er

&
C

am
pb

el
l(

19
99

)
L

en
s

19
5

-9
6

C
om

pr
es

si
on

L
en

s
(D

e-
ca

ps
ul

at
ed

)
Su

bb
ar

am
et

al
.(

20
02

)
L

en
s

19
30

-6
4

B
ri

llo
ui

n
lig

ht
sc

at
te

ri
ng

H
ey

s
et

al
.(

20
04

)
Se

ct
io

ne
d

L
en

s
18

14
-7

6
In

de
nt

at
io

n
W

ee
be

re
ta

l.
(2

00
5)

Se
ct

io
ne

d
L

en
s

39
18

-9
0

C
om

pr
es

si
on

H
ol

lm
an

et
al

.(
20

07
)

L
en

s
3

40
B

ub
bl

e
ba

se
d

ac
ou

st
ic

fo
rc

e
9

63
-7

0
W

ee
be

re
ta

l.
(2

00
7)

Se
ct

io
ne

d
L

en
s

10
19

-7
8

In
de

nt
at

io
n

B
ai

le
y

et
al

.(
20

10
)

L
en

s
29

30
-7

0
B

ri
llo

ui
n

lig
ht

sc
at

te
ri

ng
R

ei
ße

ta
l.

(2
01

1)
L

en
s

1
70

B
ri

llo
ui

n
lig

ht
sc

at
te

ri
ng

Sh
ar

m
a

et
al

.(
20

11
)

L
en

s
44

17
-2

4
C

om
pr

es
si

on

Sc
ha

ch
ar

et
al

.(
20

11
)

L
en

s
16

18
-3

6
Sh

ea
rD

is
pl

ac
em

en
t

N
uc

le
us

52
W

ild
e

et
al

.(
20

12
)

L
en

s
(D

e-
ca

ps
ul

at
ed

)
11

7
12

-8
7

Sp
in

ni
ng

C
ha

ie
ta

l.
(2

01
2)

L
en

s
N

uc
lu

es
22

34
-6

3
Sp

in
ni

ng

Capsule

Fi
sh

er
(1

96
9)

C
ap

su
le

-
-

B
ia

xi
al

In
fla

tio
n

K
ra

g
et

al
.(

19
97

)
C

ap
su

le
(A

nt
er

io
r)

67
0.

7
-9

8
U

ni
ax

ia
lL

oa
di

ng
K

ra
g

&
A

nd
re

as
se

n
(2

00
3b

)
C

ap
su

le
(P

os
te

ri
or

)
25

1
-9

4
U

ni
ax

ia
lL

oa
di

ng
D

an
ie

ls
en

20
04

C
ap

su
le

(A
nt

er
io

r)
15

58
-9

6
In

fla
tio

n

Pe
dr

ig
ie

ta
l.

(2
00

7)
C

ap
su

le
6

29
-8

1
B

ia
xi

al
In

fla
tio

n
6

44
-7

7*
B

ia
xi

al
In

fla
tio

n
Z

ie
ba

rt
h

et
al

.(
20

11
)

C
ap

su
le

(A
nt

er
io

r)
18

33
-7

9
A

FM
C

ho
ie

ta
l.

(2
01

2)
C

ap
su

le
(A

nt
er

io
r)

8
59

-8
5*

*
A

FM

Other

Fi
sh

er
(1

98
6)

Z
on

ul
e

-
15

-4
5

St
re

tc
hi

ng
A

ss
ia

et
al

.(
19

91
)

C
ap

su
le

an
d

Z
on

ul
e

40
52

-8
5

M
an

ua
lS

tr
et

ch
V

an
A

lp
he

n
&

G
ra

eb
el

(1
99

1)
L

,C
,Z

,C
M

,C
ho

ro
id

13
0

-8
0

U
ni

ax
ia

lL
oa

di
ng

M
an

ns
et

al
.(

20
07

)
L

,C
,Z

,C
B

,S
cl

er
a

20
1

-7
8

St
re

tc
hi

ng
M

ic
ha

el
et

al
.(

20
12

)
Z

on
ul

e
16

47
–

97
St

re
tc

hi
ng

127



4.3 Measured Data

at a set speed, which would cause the lens to decrease in thickness while increasing in diameter. These

changes can be related to the spinning force, which can be seen to approximate the forces experienced

in accommodation. The deformations were captured through photography so that the estimations of the

Young’s modulus across the lens could be made. The material properties obtained using this method can

also be utilised in the constitutive models proposed in Section 4.2.

Fisher calculated the Young’s modulus in the polar and equatorial regions of the lens, based on the changes

in thickness and diameter respectively. The calculations were carried out assuming that the lens could be

approximated by an infinite number of homogenous disks spinning about their axis, each with a Poisson’s

ratio of 0.5. The nucleus was approximated as a spherical structure within the cortex and the interface

between the nucleus and cortex was assumed to only be partly attached, and the capsule was assumed to

have little or no effect on the lens. Fisher’s results showed that the nucleus stiffness remained stable until

about 35 years old, where it then began to increase. The cortex increased with stiffness until the age of 40

to 50 years old, where it began to decrease. The cortex was consistently stiffer than the nucleus, until the

age of 70 where both nucleus and cortex had the same stiffness.

A detailed analysis of Fisher’s test was carried out by Burd et al. (2006) which showed that there were

a number of modelling errors made by Fisher. The main issues were with the spinning disks model,

which led to wrong estimations of the ratio of the Young’s modulus for the nucleus and the cortex, and

the ignoring of the capsules effects in the analysis. This led to a new spinning test being proposed (Burd

et al., 2011), which would eliminate the erroneous assumptions made by Fisher. The model was used by

Wilde (2011) to establish a new set of stiffness values for the lens.

The new test had two main improvements over Fisher’s experiment. Firstly, the imaging systems were

able to synchronise image capture so consistent images could be obtained, as well as reducing image

blur. Secondly, the spinning tests were conducted on de-capsulated lenses, reducing the complexity of

obtained stiffness values. To obtain the stiffness values an FEA model was used, replicating the spinning

test, where the initial outlines of the lens samples were input from photographs then stiffness values were

varied until the deformed outlines matched the imaged deformation. This was done with three different

descriptions of the stiffness distribution within the lens: a homogenous model, a nucleus-cortex model

and an exponential model. The results showed that the stiffness of the lens increases with age. The

homogenous profile showed a very slow increase up until approximately 25 YO, before a linear increase

up to 60 YO. The nucleus-cortex and exponential profiles both showed the stiffness in the nucleus region

was initially lower than the cortex, until around 45 YO when this reversed. The exponential model showed
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a much higher central stiffness in the older lenses than either of the other models.

A further experiment was carried out by Chai et al. (2012), using the same procedures as Wilde et al.

(2012), but only on lens nuclei. The results followed the same trends as the nucleus-cortex models used

by Wilde et al. (2012) with the results showing an exponential increase in stiffness of the nucleus with

age, although no younger lenses were tested.

4.3.1.2 Lens indentation

A different approach to spinning whole lenses has been to use indentation tests on lens sections. Conduct-

ing these tests allows for detailed information on the material properties of the lens structure, although it

does cause localised disruption of the lens substance. The method does allow for the stiffness in different

regions of the lens to be tested across a range of ages, providing suitable material parameters to be used in

the proposed constitutive models.

Heys et al. (2004) used indentation tests on cores taken from lens samples to establish the shear modulus

across the lens. The results showed an increase in stiffness in both the lens centre and periphery with age,

although the increase at the centre was higher (450 times compared to 20 times). The stiffness profile

in a young lens indicated that the shear modulus at the centre of the lens was slightly higher than at the

periphery, which reversed in the old lens with the periphery being much higher than the centre. There

are a number of issues with the testing by Heys et al. (2004) which could have an impact on results.

First, the equations used assume the lens is an incompressible, isotropic elastic material; second, the lens

samples were frozen; third, the displacement of the indenter was described as being approximately 0.75

mm, a substantial indentation in a half of a lens (approximately 2 mm) which would appear to cause

strains that would cause rupture within the lens (Wilde et al., 2012); and finally, the most peripheral of

measurements were carried out at a distance of 3.5 mm, which is a lot less than the actual lens periphery

(which approaches 4 – 4.5 mm, see Section 3.2.2.2).

A later test on non frozen lenses was carried out (Heys et al., 2007) reporting stiffness values for the

nucleus region of the lens only. The results indicated that non frozen lenses were stiffer than frozen ones,

but that a similar age related increase in stiffness was observable as in Heys et al. (2004). Measurements

were also carried out on lenses that had been heated, finding that the shear modulus increased with heating.

Another indentation study was carried out by Weeber et al. (2007), where whole lenses were halved along

the equator before indentation. It was found that the centre of the oldest lens was a 1000 times stiffer than
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the youngest, whilst the periphery was 100 times stiffer. In the younger lens, the centre was softer than

the periphery but this reversed with age. As with Heys et al. (2004), the lenses were frozen prior to the

tests being carried out which, as discussed can impact on results. In addition, the correction factor used to

correct for the disturbance caused by the indenter was not certain to cause appropriate adjustments to the

measured properties.

4.3.1.3 Lens compression and shearing

The simplest methods of measuring a materials stiffness are to use a stretching or compression test, relating

the force used to deform the sample to the displacements caused. In relation to the crystalline lens,

compression tests have principally been used to look at the viscosity of the whole lens and have not

provided data suitable for use in the proposed constitutive models however, the results can be used to

support findings from other tests. Both Glasser & Campbell (1999) and Sharma et al. (2011) conducted

compression tests on whole lenses across a range of ages, finding that the amount of resistance that the

lens gave to compression increased with age. Sharma showed that de-capsulated lenses had less of an

increase in resistance with age than en-capsulated lenses.

Weeber et al. (2005) performed alternate compression tests using dynamic mechanical analysis (DMA)

on lens sections across a range of ages. The study found that the viscosity of the lens increases with age;

however, the whole lens was assumed to be isotropic and homogenous as well as the samples used being

frozen. In an effort to compare with the results of Fisher (1971), the Young’s modulus was calculated to

be 2 kPa for a 40 YO lens which was similar to the results of Fisher.

Schachar et al. (2011) conducted a shearing deformation test on both lens nucleus and cortex samples.

The results showed that the mean elastic shear modulus was lower than the mean viscous shear modulus,

indicating that lenses under 40 YO can be described as being over damped. The results seemed to show no

difference between the material from nucleus and cortex samples. A small increase in shear modulus was

seen with age, although the authors believed that this was not enough to account for the accommodation

decrease seen across the same age, hypothesising that the accommodative decrease is due to an increase

in equatorial diameter (see Section 1.2.2 for Schachar’s theory of accommodation).
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4.3.1.4 Acoustic methods

Hollman et al. (2007) obtained Young’s modulus data from whole lens samples using a femtosecond laser

to create micro bubbles at various radial distances within the lenses. A two element ultrasound transducer

was then used to apply an acoustic radiation force to the bubbles, with the resultant displacements mea-

sured by the second element. The results indicated that the Young’s modulus of a middle aged lens was

consistent across its width, whilst in an old lens the Young’s modulus declines from the lens centre to

the periphery. The results for human lenses had a large amount of variation, not seen in tests on porcine

lenses, but the reasons for this were not known.

4.3.1.5 Brillouin Light Scattering

A final method of obtaining material properties of the crystalline lens is Brillouin light scattering (BLS),

which uses the interaction between light and acoustic modes within a medium to obtain its material prop-

erties, used in establishing values of the bulk modulus in the crystalline lens, relevant for the proposed

constitutive models of the lens. Bailey et al. (2010) used this method and found that the bulk modulus of

the nucleus was greater than the cortex, but neither was age dependant; the measurements were carried out

along the central axis of the lens. The method relies on the refractive index being defined, in this case two

distinct values for the nucleus and cortex, which if not defined accurately could have an impact on results.

A single in vitro lens study by Reißet al. (2011) found similar results with the bulk modulus higher in

the nucleus than the cortex, with similar results found by Scarcelli & Yun (2012) in the first in vivo use,

although there was no distinction between nucleus and cortex. BLS was also used by Subbaram et al.

(2002) where the average bulk modulus of the nuclues was higher than the cortex, although the methods

were not examinable.

4.3.1.6 Comparison of results

Each method of mechanical testing obtains the material properties of the lens in different positions and

orientations. For example, indentation tests measured properties axially approximately halfway through

the lens, whereas the spinning tests calculated material properties in the anterior and equatorial positions of

the lens as shown in Figure 4.1. The differing measurement positions will have an impact on the measured

properties if, as expected, the lens exhibits anisotropic material behaviour.

In addition, the material property values calculated are dependent on the constitutive models assumed in
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Direction of indentation

Measurement positions

Displacement directions of 
lens during spinning test

Figure 4.1: Illustration of the measurement positions within the lens in indentation studies (Left) and the locations
and displacement directions used in measurement in spinning lens studies (Right).

the individual tests (e.g. an isotropic elastic material as used by Heys et al., 2004), which will also impact

on results if no anisotropy is assumed. Therefore, the comparisons made are to investigate the relative

changes with age and measurement position within the lens. For consistency, the results from each study

were standardised to shear modulus values in Pa, with any conversion calculated using Equation 4.1 and

assuming a Poisson’s ratio of 0.49. For those studies that provide data on positions within the lens, the

data was based on relative position with the lens diameter defined as according to Rosen et al. (2006) (see

Table 3.3).

The comparison between studies will be completed in stages. First, those studies that analysed the vari-

ation in properties across the lens (e.g. Weeber et al., 2007 and Wilde et al., 2012) will be compared.

Second, those that provide data on properties in the nucleus and cortex (e.g. shear modulus data Fisher,

1971 and bulk modulus data Bailey et al., 2010) will be compared.

Stiffness Gradient

Figure 4.2 shows a comparison between the stiffness gradient results of Weeber et al. (2007) and Wilde

et al. (2012). Heys et al. (2004) also gave some representative results for a middle aged and old lens in

terms of Young’s modulus and radial position. The stiffness profiles of Weeber et al. (2007) were taken

from their Figure 7, manually fitted by the author to be replicated in Figure 4.2 (see Section 4.4.1 for

further detail on the manual fitting).

There are some general aspects which all studies agree on; first, that the shear modulus increases with age;

second, that the variation of the shear modulus alters with age; and finally, in an older lens, the inner part
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Figure 4.2: Comparison of the variation in shear modulus with radial position.

of the lens has a higher shear modulus than the outer portion.

Where these studies varied was in how the shear modulus varies with position. Heys et al. (2004) showed

limited variation in the younger lens, where the shear modulus was consistent with position. Weeber

et al. (2007) showed a much more varied stiffness profile, whereas Wilde et al. (2012) showed an increase

across the lens. With the increase in age however, Weeber et al. (2007) showed a smoother change across

the lens with a reversal of the difference in shear modulus. The fits used by Weeber et al. (2007) were to

illustrate general trends with the data showing a large amount of variation, indicating that the curves in

Figure 4.2 may not be representative of the exact stiffness profile.

As discussed, the results of Wilde et al. (2012) seemed to show a particularly high shear modulus for the

centre of an old lens, whilst also showing no change from a younger lens at the periphery. As a result of

the higher shear modulus values in the centre, Wilde proposed that for an older lens the material properties

should only be represented by nucleus and cortex regions. Another aspect of interest is the shear modulus

values of the 50 and 60 YO lens at the very edge of the lens, where they are a lot lower than in younger

lenses, indicating a reduction in stiffness with age, which will need consideration when modelling.
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Nucleus-Cortex

Figure 4.3 shows a comparison between those studies where the shear modulus was measured for the

nucleus and cortex. The age related changes in the nucleus and cortex as defined by Wilde (2011) using

their model D are also shown.
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Figure 4.3: Comparison of studies that measured nucleus and cortex properties.

Overall, there appeared to be agreement that the nucleus stiffens with age, although the rate of stiffness

increase varies. It would appear there is a general agreement between studies that the cortex has an initial

stiffness increase before it begins to stabilise or decline, again with different rates of stiffness increase.

Finally, the nucleus appears to initially have a lower stiffness than the cortex, but this reverses with age.

The differing rates of stiffness increase are likely due to the difference in measurement methods and

assumptions made on constitutive models, as discussed previously.

The main disagreement between studies is in the age at which the nucleus becomes stiffer than the cortex;

the results of Fisher (1971) indicated that it was not until 70 YO whilst Heys et al. (2004) showed that

the nucleus becomes stiffer than the cortex around 35 YO, Wilde et al. (2012) (model D) showed it was

approximately 44 YO with Hollman et al. (2007) having all measurements illustrate the nucleus is stiffer
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than the cortex.

To compare to the stiffness gradient results, the relationship of Heys et al. (2004) matches that of Weeber

et al. (2007) and Wilde et al. (2012) (model E), where in younger eyes, the nucleus is less stiff than the

cortex, but with age, this reverses.

Bulk Modulus

In addition to those studies that measured the shear modulus of the nucleus and cortex, the work of Bailey

et al. (2010) and Subbaram et al. (2002) established bulk moduli values for the same regions, both finding

that the bulk modulus was higher in the nucleus than the cortex, although no age related changes were

seen.

As a comparison, the shear modulus measured in other studies could be used to calculate the bulk modulus,

assuming the material is isotropic, using Equation 4.1. The nature of this relationship dictates that the

accuracy of the Poisson’s ratio is important, i.e. the closer to 0.5 the ratio approaches, the larger the

difference between shear and bulk moduli. To ensure a consistent comparison, a Poisson’s ratio of 0.49999

was chosen for all conversions. Table 4.2 gives a comparison between the direct measurements of bulk

modulus to two methods of calculating the bulk modulus from measured shear moduli.

Table 4.2: Comparison of Bulk modulus values from the literature. N = Nucleus, C = Cortex.

Bulk Modulus (Pa)
Study Lens Area 20 YO 40 YO 60 YO

Bailey et al. (2010)
N 2.790E+09 2.790E+09 2.790E+09
C 2.360E+09 2.360E+09 2.360E+09

Subbaram et al. (2002)
N 3.790E+09 3.790E+09 3.790E+09
C 2.800E+09 2.800E+09 2.800E+09

Wilde (2011)
N 2.694E+04 4.239E+05 5.129E+04
C 3.146E+05 1.062E+06 7.543E+05

Wilde (2011)
N 1.347E+06 2.120E+07 2.564E+09
C 1.573E+07 5.310E+07 3.771E+07

It can be seen from Table 4.2 that studies that measured the bulk modulus directly found higher bulk

moduli values than when the bulk modulus was calculated from measured shear modulus values. As a

result, the specification of the bulk modulus will require careful consideration.

4.3.2 Capsule

Compared to the lens, there were fewer studies that have been used as a source in defining the capsule

material properties in FEA models (Section 2.3.2), however, the capsule’s material properties have been
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studied extensively.

4.3.2.1 Inflation

Fisher (1969) clamped 4 mm diameter anterior capsule sections to allow them to be deformed under fluid

pressure. The elastic modulus could be calculated from the relationship between applied pressure and

volume; assuming first that the capsule behaves in a linear elastic manner, second, the strains applied in

each axis would be equal, and finally, the capsule thickness would remain constant. The results showed

that the Young’s modulus decreased with age in an almost linear fashion.

Danielsen (2004) used a similar method to Fisher (1969), also assuming that the capsule was isotropic

and had a constant thickness. Stress and stiffness were calculated at a strain value of 0.1 and the values

found were higher than in Fishers test, although the values calculated for maximum stress at rupture were

comparable.

Pedrigi et al. (2007) performed another inflation test, but using a different method. In this case, the lens

was removed whole from the eye. A number of micro spheres were then placed on the anterior portion of

the eye, which would be used to record displacement using a video camera. The displacement was caused

by fluid pressure, with the fluid injected at the joint of the capsule and cortex. The displacement of the

micro spheres was measured and combined with an FEA model to establish hyper-elastic material proper-

ties, with the regional variation around the capsule taken into account. It was established that the capsule

exhibited non-linear and anisotropic behaviour, and it was found that the stiffness in the circumferential

direction increased over the meridonal direction, the closer to the equator the measurements were made.

4.3.2.2 Stretching

Assia et al. (1991) performed stretching tests on capsule samples using a modified vernier calliper to

stretch the samples to rupture point. The mean stretching capability was 62%, with all samples showing

the ability to be stretched. There was no statistically significant relation to age found, but capsules younger

than 70 YO did have a lower elasticity than those above 70 YO. The test was conducted in a simplistic

manner with measurements appearing to be made by hand, which could compromise the result, although

as no material parameters were defined.

Krag et al. (1997) performed stretching tests on anterior capsule sections, and later, on posterior capsule

sections (Krag & Andreassen, 2003b). The anterior sections were obtained from the central, zonular free,

136



4.3 Measured Data

anterior region and a ring of the capsule was excised using a laser. The posterior sections were obtained

in a similar fashion. The capsular rings were placed over two pins, which were able to move along an axis

to deform the samples. A constant stretching force was applied to these pins, with constant measurement

of the force applied and the resultant deformations. The Krag tests allowed the calculation of load-strain

graphs, showing the mechanical response of the capsule. These allowed the calculation of the elastic

modulus of the capsule, at a strain value of 10% which is comparable to the strains encountered in vivo,

where it was found that the elastic modulus increased with age. There was little difference between

the anterior and posterior capsule samples, although the posterior samples had a slightly lower elastic

modulus.

4.3.2.3 Atomic force microscopy

Atomic force microscopy (AFM) can be used to examine the elasticity of a material using nano inden-

tation. A cantilevered beam is used for the indentation, forced into the sample with the corresponding

deflection measured. This force indentation relationship allows the calculation of the Young’s modulus of

the sample.

Ziebarth et al. (2011) used capsule sections taken from the anterior lens (a 5 mm diameter section was

removed) and the measurements were carried out in the centre of the sample. The epithelial cells that lie

between the capsule and lens were removed before measurements were taken. The results showed that the

Young’s modulus of the capsule increased with age.

Choi et al. (2012) used anterior capsule quarter sections, measuring material properties on both the anterior

and posterior sides of the capsule sections, although the measurement positions were not detailed. A force-

distance curve was produced, allowing the stiffness of the capsule sections to be calculated. The elastic

modulus was then calculated from the stiffness and tip diameter. The results for the anterior side were

found to be consistently higher than the posterior, although there appeared to be discrepancies between

the text and table results.

4.3.2.4 Other capsule tests

In a number of other tests, the influence of the capsule was measured, although no material properties

defined. In the spinning lens test of Fisher (1971) it was indicated that the presence of the capsule resulted

in a decrease of 20% on axial thickness change, although there were no detailed results on this.
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Ziebarth et al. (2008) measured the impact of the capsule using an in vitro accommodation stretcher, where

the lens, capsule, zonules, ciliary body and sclera were stretched together, both with and without the lens

contents. The whole system was stretched by 4 mm, an amount selected as giving appropriate diameter

change in the lens. It was found that there was no change in force needed to deform an empty capsule

with age, whereas with the lens intact, the force increased with age. Comparing the load in the two cases

showed that in young eyes, the force applied by the ciliary muscle is almost completely transferred to the

lens. In older lenses, this dropped to 20%, indicating that the capsule is able to transfer force into old age,

but the lens itself loses the ability to change.

Burd et al. (2011) and Wilde et al. (2012) compared spinning lens measurements between en-capsulated

and de-capsulated lenses finding that the capsule has a restrictive effect; reducing the slope of the load-

stretch graph by approximately 30%. The results also indicated that the capsule often enhanced the axial

thickness changes in older lenses, whilst the diameter change was restricted in almost all cases.

In the compression tests of Sharma et al. (2011), comparisons were made between en-capsulated and de-

capsulated studies and it was found that en-capsulated lenses stiffened faster with age than de-capsulated

lenses as well as had a higher induced load to achieve 10% deformation.

4.3.2.5 Comparison of results

Figure 4.4 shows a comparison between those studies that measured the elastic modulus of the capsule,

where it can be seen that there is a large variation in the measured data. The data from Krag & Andreassen

(2003a) was extracted and fit with a linear trend line as a comparison between the anterior and posterior

measurements, although there was considerable scatter on the results.

The methods of measurement could be the cause of variation between studies, for example, between the

inflation and stretching tests of Fisher (1969) and Krag & Andreassen (2003a). In particular, the lower

results for Ziebarth et al. (2011) and Choi et al. (2012) could be an indication of the compressive nature

of AFM, with Pedrigi et al. (2007) demonstrating the anisotropic nature of the capsule, the properties in

compression could be very different to those measuring using inflation or stretching.

Pedrigi et al. (2007) measured the anisotropy of the capsule, making comparisons to other studies difficult,

but a comparison carried out within their own study did compare to the 10% strain results of Krag &

Andreassen (2003a). To enable the comparison, Pedrigi took results from the mid-capsule region, a similar

location to the measurement positions of Krag & Andreassen (2003a), as well as converting the results
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Figure 4.4: Comparison of the studies of the capsule material properties. Fisher (1969), Krag & Andreassen
(2003a), Ziebarth et al. (2007) and Choi et al. (2012).

to show the stress measured as force per original area to match the data of Krag & Andreassen (2003a).

The overall comparison showed a similar elastic modulus, albeit slightly higher. This was backed up by

a comparison by Burd (2009) where the work of Pedrigi et al. (2007) and Fisher (1969) were compared,

finding that the results of both are consistent with each other.

In those studies that have measured the influence of the capsule using other methods, it appears that the

presence of the capsule has an obvious effect on the changes that the lens undergoes. From spinning

studies, the capsule has a restrictive effect on the changes in thickness and diameter, which can also

be seen in compression studies, where higher loads were required to induce similar deformations. The

capsule was also seen to retain its ability to transmit force into old age. These observations point towards

the capsule having an effect throughout life, which may not necessarily be affected by potential changes

in elastic modulus.
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4.3.3 Zonules

Compared to the lens and capsule, there has been a paucity of testing on the material properties of the

zonules. As a result, a number of FEA models developed different methods of estimating the material

properties. An overview of the measured properties will be given, before analysing the methods used in

FEA models.

4.3.3.1 In vitro measurements

Fisher (1977) conducted two tests where the zonular properties were estimated. The first was a stretching

study, where the ciliary body, zonules and lens were all extracted from the eye before being radially

stretched to simulate accommodation. The changes that occurred in shape were photographed and then

measured. The second was part of the spinning lens test discussed earlier (Section 4.3.1.1).

The spinning test was conducted to find the spinning speed that gave the same thickness change as was

achieved in the stretching test, allowing the load that was applied in the stretching test to be estimated un-

der the assumption that the loads to induce similar thickness changes are comparable. It was then reported

by Fisher (1986) that the Young’s modulus of the zonules required to cause the previous measured changes

remained constant with age at approximately 350 kPa. It is unlikely that the forces in the stretching test

and spinning test are comparable, which would make this value suspect.

Stretching tests were also conducted by Assia et al. (1991), who showed that the zonules had a high

capability for stretch before rupture, with a decrease in the maximum stretch with age.

Van Alphen & Graebel (1991) performed uniaxial stretching tests on the anterior eye, testing a number of

accommodative components. The ciliary body, zonules and lens were tested by stretching them as a unit

with the applied load and resultant deformations recorded, with the relationship between the applied load

and the extension of the zonules used to calculate the Young’s modulus of the zonules. There was a large

variation in the values reported, but for a 52 YO eye the Young’s modulus was 1500 mN/mm2.

A recent paper by Michael et al. (2012) used another lens stretching experiment to estimate material

properties of the zonules in presbyopes. The accommodative structure was intact for the experiment, with

the sclera attached to the stretching device. The applied force and measured strain and elongation were

recorded, allowing the spring constant and elastic modulus of the zonules to be calculated. The Young’s

modulus was shown to be slightly age related, with a younger lens (47 – 60 YO) having a Young’s modulus
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of 340 mN/mm2 and an older lens (83 – 97 YO) 270 mN/mm2, with the spring constants being 80.3 and

53.2 mN/mm respectively.

4.3.3.2 FEA model estimations

Burd carried out manual adjustments of zonular thickness on an initial FEA model until the deformations

of the lens equator matched the measurements of Strenk et al. (1999). The zonules were assumed to vary

in thickness between anterior, equatorial and posterior groups in a ratio of 6:1:3 and the stiffness values

established were 0.066:0.011:0.033 N/mm2, with no age related changes.

Liu et al. (2005) modelled the zonules as being springs using the same three sets of zonules as Burd et al.

(2002), and the spring stiffness was set to 0.6:0.2:0.6 N/mm.

Wilde (2011) adapted the Burd et al. (2002) method for an updated material constitutive model, establish-

ing a shear modulus value of 763.1 kPa spread across an altering cross sectional area.

4.3.3.3 Comparison of results

To be able to perform a comparison, the spring constant and Young’s modulus was calculated for each

study. From the measurements of Michael et al. (2012), it was assumed that the cross sectional area could

be set to 0.43 mm2 with an initial zonule length of 1.82 mm. Assuming that a 10% strain results in a 0.182

mm elongation and that the zonules are isotropic and elastic, the force and stress could be calculated for

each study; which would then allow the spring constant and Young’s modulus to be calculated from the

force-elongation and stress-strain graphs respectively.

Table 4.3 summarises the results and it can be seen that there is a considerable spread, although a number

of studies have specified the elasic modulus to be close to 300 mN/mm2.

Table 4.3: Comparison of the calculated spring constant and elastic modulus values from both in vitro and FEA
models.

Study Spring Constant (mN/mm) Elastic Modulus (mN/mm2)
Fisher (1986) 82.7 340

Van Alphen & Graebel (1991) 354 1500
Burd et al. (2002) 66 279
Liu et al. (2005) 600 2539

Wilde (2011) 537 2274
Michael et al. (2012) 80.3 340
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4.3.4 Summary

The crystalline lens has been well studied and it has been shown that it increases in stiffness with age.

There is enough data to be able to produce a basic representation of how the stiffness varies with both

position and age, however, there are a few key aspects of the material properties of the lens that have not

been measured. The key information missing is on any anisotropy within the lens, despite the different load

conditions used in the different material testing methods (e.g. spinning lens compared to lens indentation,

see Section 4.3.1.6), there is not sufficient data to be able to give a suitable approximation of the potential

anisotropy present.

For the capsule, there was evidence for its non-linear and anisotropic nature, although not enough data to

be able to fully replicate this for multiple ages. Although the data on the elastic modulus varies, there is

enough data for an initial representation in the proposed FEA model.

Finally, for the zonules, it was clear that they are linearly elastic and able to stretch a large amount,

but it will be difficult to capture this due to the complexities of establishing the amount of zonules in the

individual bundles that attach to the capsule. However, the data can be used to aid in a initial approximation

of the zonular behaviour.

4.3.4.1 Evidence for accommodation and presbyopia theories

In terms of accommodation theories, there is little in the analysis of material properties of the lens to aid

in defining which theories are most appropriate. However, the studies on the zonules have not shown any

indication that the zonules would be able to compress the lens, as hypothesised by Wilson (1993).

From the theories of the presbyopia discussed in Section 1.3, there was sufficient evidence to support those

theories that suggest lens stiffening may be cause of presbyopia and the data suggests that the zonules are

able to transmit force throughout life, which would support the theories that suggest the ciliary muscle

continues to have an effect throughout life. Further work is needed to understand how the variation of key

material properties may affect the accommodation process.

4.4 Data used for Model

The material parameters that are required for modelling the accommodative system were established in

Section 4.2. The measured data discussed in Section 4.3 was used to provide initial estimations of the val-
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ues to use in representing the accommodative components. For each component, the essential properties

to capture will be discussed before the selected data is detailed.

4.4.1 Crystalline lens

The essential features to capture of the lens are that it increases with stiffness with age and that the stiffness

profile varies across the lens. So that the hyper-elastic constitutive model can be used, the shear and bulk

moduli across the lens are needed.

Weeber et al. (2007) and Wilde et al. (2012) both provided data that appear to match well; therefore,

methods of adapting both of these data sets will be established. In Chapter 6, the data of Wilde was

used initially, and if necessary, the data of Weeber could be utilised to establish if there is a significant

difference between them.

For the shear moduli values, Weebers data had to be extracted from their Figure 7, fitting curves to the

individual ages using MatLab. The measurements were all taken up to 4 mm from the sample centre,

meaning that the peripheral values are extrapolated. 5th order polynomials (Equation 4.6) were fitted to

each age, up to 4.5 mm from the lens centre, with the parameters defined in Table 4.4.

f (A) = p1A4 + p2A3 + p3A2 + p4A+ p5 (4.6)

Table 4.4: Parameters to define the shear modulus as according to Weeber.

Age (Years)
Parameter 20 30 40 50 60

p1 0.001016 -0.00038 0.000193 -0.00073 -0.00077
p2 -0.1648 -0.08248 -0.04223 -0.00817 0.001624
p3 0.8348 0.4163 0.1828 0.01425 -0.04314
p4 -0.7447 -0.2261 -0.04799 -0.00741 -0.0968
p5 -1.619 -1.396 -0.5407 0.5561 1.583

The data of Wilde et al. (2012) was obtained directly from Equation 4.7.

µ = µ
1−ζ̂

0 µ
ζ̂

1 (4.7)

where m0 is the central shear modulus and m1 is the peripheral shear modulus, ζ̂ represents the relative

distance from the center, equivalent to z/z0 , where z is the length of a point on a line running from the
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centre to the edge and z0 is the total length of that line. The values of shear moduli were age related with

Equation 4.8 used to define the shear modulus, using the parameters in Table 4.5.

log10 µx =

{
b1 (A−A0)+ c

b1 (A−A0)+ c

A≤ A0

A > A0

(4.8)

Table 4.5: Parameters to define the shear modulus values for Equation 4.8 as according to Wilde (2011).

Centre Exterior
A0 35.594 43.166
b1 0.04154 0.0191
b2 0.15222 -0.03796
c 1.8357 3.1772

From Section 4.3.1.6, it was clear that the bulk modulus of the lens, either as a whole or split into sections,

is a lot higher than the shear modulus. As an initial estimate, it was assumed that the bulk modulus was

equivalent to 1000 times the shear modulus, following Wilde (2011).

4.4.2 Capsule

The capsule has been shown to be non-linear and anisotropic, however, there was not enough data to fully

model this. Utilising the neo-Hookean model requires the specification of the shear and bulk moduli. As

shown in Section 4.3.2, there was more variation in capsule material properties than with the properties

of the lens, however, the initial properties were taken from the work of Krag & Andreassen (2003a), who

defined the age related function for anterior elastic modulus shown in Equation 4.9. The function applied

to capsules 35 YO or younger as there was no significant change found above that age.

CapsuleEM = 0.03× (Age−35)+1.45 For A≤ 35 (4.9)

To be able to use the hyper-elastic constitutive model, the elastic modulus was converted to shear modulus

using Equation 4.1, and the bulk modulus was set to be 1000 times the shear modulus, as with the lens.

4.4.3 Zonules

The zonules have been measured as being linear elastic and therefore, a linear elastic constitutive model

was chosen to represent them. There has been considerable variation in the material properties established;
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however, it appears that there is little variation with age.

The final representation of the zonules was not established at this stage, instead, an initial set of material

properties was needed. The data of Michael et al. (2012) was used initially, with the elastic modulus set

to be 340 N/mm2 . The Poisson’s ratio was set to 0.4999.

To enable the zonules to be modelled completely, the thickness of each bundle required definition, to

ensure that the force passed from the displacement of the zonule to the lens was suitable. The thickness

that was utilised will be discussed in Chapters 5 and 6, utilising both the elastic modulus proposed here

and the thickness data explored in Section 3.2.4.3.

4.4.4 Summary

Compared to the geometric parameters used, the material properties were all measured in vitro, and it

was unknown exactly how the in vitro data compares to the in vivo behaviour. Therefore, the material

parameters were an approximation, and for the purposes of the current model provided a baseline dataset

to use. The lens and capsule data chosen were successfully integrated into previous FEA models, which

supported the selections made. Incorporating the stiffness variation across the lens also ensured that the

proposed material parameters complemented the proposed geometric modelling method, combining to

produce an overall improved FEA model.
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Chapter 5

Procedure

5.1 Introduction

With the material properties and geometry selected, the procedures that will be followed in Chapter 6

needed to be established. The basic theory of finite element analysis relevant to the current study will

be discussed, before a breakdown of the additional features of an FEA model, other than the geometry

and material properties, will be given. The actual modelling methods that will be followed can then be

discussed. The commercial FEA program ANSYS (Research Mechanical version 14.0) was utilised for

all the studies conducted in Chapter 6, therefore the theory and methodologies discussed in the current

Chapter are based on available methods in this program.

5.2 Finite element theory

Modelling accommodation is more complex than basic static structural analysis in a number of ways. First,

non-linear geometry changes are present in the form of large strain. Secondly, as covered in Chapter 4,

there are non-linear material properties present, in the form of hyper-elasticity. Finally, the models that

will be used will be represented as being axisymmetric.

5.2.1 Geometric non linearity

Simple static, elastic analysis assumes that there is infinitesimal strain within the model, however, in

modelling the accommodation proces, there is expected to be a finite strain present (e.g. the lens thickness

reduces by 10% in a 30 YO eye, as measured by Koretz et al., 1997) and at some locations strains will be

higher than 10%. When strains of such magnitude are present, the change in geometry that occurs during
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deformation cannot be ignored and the study becomes a large (or finite) strain analysis, where the stiffness

is a function of the displacement.

ANSYS uses an updated Lagrangian method to simulate static non-linear geometric studies, where it is

assumed that all variables (e.g. stress, strain, displacement, material parameters) are solved and known at

a step time, t. The displacements applied to the model then become the primary unknowns and linearized

simultaneous equations are then solved to provide a solution at a step time t + ∆ t. Element formulations

based on the principal of virtual work are used to derive the simulatenous equations (Chapter 3, ANSYS,

2010b).

5.2.2 Material non linearity

The strain energy function used for representing the hyper-elastic models used for the lens and capsule

(Equations 4.4 and 4.5) is a scalar function of the right Cauchy-Green deformation tensor, whose derivative

determines the Piola-Kirchhoff stress tensor (Chapter 4, ANSYS, 2010b).

5.2.3 Axisymmetry

The overall shape and loading conditions present in the accommodative system can be approximated as

being axisymmetric, allowing the lens to be described by cylindrical co-ordinates (R; j; Z), where the Z

axis is aligned with the symmetry axis in the lens. It was therefore assumed that the stress and strain, due

to the loading and geometry, did not vary with j reducing the modelling to two dimensions as well as

simplifying the computational demand.

5.3 ANSYS Modelling Procedures

The geometric models (Chapter 3) and material properties (Chapter 4) have been defined, along with the

basic assumptions used in defining the FEA model. The next stage was to define how those methods would

be adapted into an ANSYS model with a number of different experiments proposed in Chapter 6. These

are split into initial testing, to ensure new modelling methods are suitable, and the full accommodation

model, to investigate the overall aims of the thesis. Although there are individual differences in modelling

methods related to the geometry and material properties, further discussed in Chapter 6, there will also be

common elements across the studies which will be detailed in the current chapter. Each study conducted

would be a static study, with the large deformation option selected.
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5.3.1 Element Choice

The choice of element for modelling each component of the accommodative system is controlled by the

modelling procedures used. In the current model, the choices of hyper-elasticity, axisymmetry and large

deformations mean that only specific elements can be selected. Table 5.1 summarises the elements used

for the three components of the model, with the lens and capsule elements being defined as quadrilateral

and being formulated using the pure displacement formulation.

Specification of zonule elements is complicated by the limited in vivo data on the behaviour of the zonules

during accommodation. It was known that the zonules connect to the lens in bundles (see Chapter 1),

however, for a 2D axisymmetric study, this cannot be replicated. A suitable alternative was to represent

the zonules as thin “sheets”, one for each zonular group. For the purposes of the current model, the zonule

elements needed to be able to represent the changing thickness, and therefore stiffness, in the appropriate

number of zonular bundles; in addition to transmitting the loads from the displacement of the zonule end

point to the lens. Shell elements were proposed to represent the zonules, as they allowed for all of the

requirements to be met. To ensure that the elements were suitable, the transmission of forces will be

confirmed in Chapter 6 when the zonules are first modelled, as well as ensuring that there is little or no

bending within the elements.

Table 5.1: Elements used for representing the different components of the accommodation model.

Component Element Name Type
Lens, Capsule PLANE183 8 node structural solid

Zonules SHELL208 2 node axisymmetric shell

To enable the zonule to be represented by shell elements the thickness needs to be defined. In the current

model this was achieved by using shell section controls, one for each zonule bundle, defining a constant

thickness along the zonule length.

5.3.2 Geometric Definition

The first step in defining a model was to build the geometric representation. For each age lens model

used in Chapter 6, the relaxed and accommodated lens outlines were generated with MatLab using the

Hermans method defined in Section 3.3. The outlines were imported to SolidWorks, where they were

combined with the corresponding ciliary body model defined using the data in Table 3.20. Both were

then utilised to model the zonular structure, using the steps outlined in Chapter 3. The co-ordinates of the
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accommodated zonule endpoints were then extracted and used to input the zonules into ANSYS. The lens

outlines were used to generate the internal curves (see Section 3.3.3) and all curves were then imported

directly into ANSYS after being defined in MatLab.

The capsule was defined as a separate area within the lens. The method defined in Section 3.4 was used

to generate the keypoints of the capsule curve, which were then imported to ANSYS so that the capsule

curve could be generated, allowing the area to be defined.

5.3.2.1 Internal structure models

As part of the modelling in Chapter 6, different internal structure models will be tested. The basic method

of scaling down the outer lens shape and positioning the scaled areas was given in Section 3.3.3. Further

detail will be given here on the different internal structure models that will be used in Chapter 6, as well

as how the data from Section 3.3.3 will be utilised.

H NC SA SB

Nucleus

Cortex

C1

C2

C3

Nucleus

Figure 5.1: Internal Structure representations. H = Homogenous, NC = Nuclues-Cortex, SA = Stiffness gradient A,
SB = Stiffness Gradient B.

Figure 5.1 illustrates the four internal structure models. The first internal structure model (Designated

with the H prefix) was a homogenous lens, with no internal variation. The second (NC) was based on the

nucleus-cortex models used in the literature (e.g. Burd et al., 2002, see Section 2.2.2). The scaling factor

was calculated by comparing the thickness of the nucleus to the overall thickness of the lens using the data

from Table 3.17. The scaled nucleus was positioned using the anterior cortical thickness to locate the top

vertex of the nucleus. The centre point calculated from the nucleus here was used as the centre point for

scaling in the next two models.

The SA model was based on the different internal areas observed in vivo by Dubbelman et al. (2003),

which are similar to the internal areas observed by Taylor et al. (1996) in vitro (see Section 1.2.3.1). Four

areas were used to define the internal structure, grouped by Dubbelman et al. (2003) into the C1, C2,
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C3 and nucleus areas (see Figure 5.1). To allow these areas to be modeled, the changes with age and

accommodation are required, defined by Dubbelman based on 8 zones (Table 3.17). How these zones

related to the internal areas detailed in Figure 5.1 is detailed in Table 5.2, with the total thickness of the

zones used to calculate the scaling factor.

Table 5.2: Lens areas and equivalent zones from the densitometry analysis of Dubbelman et al. (2003), see
Section 3.2.2.1.

Lens area Equivalent zones
C1 Zone 1 + Zone 8
C2 Zone 2 + Zone 7
C3 Zone 3 + Zone 6

Nucleus Zone 4 + Zone 5

The final SB model was based on the method used by Weeber & van der Heijde (2007), where 10 shells

were used, each 10% smaller than the last. The central scaling point was defined as for the NC model.

5.3.3 Material Property definition

The properties defined in Chapter 4 were assigned to the appropriate areas, ensuring the units were ad-

justed to ensure consistency (see Section 4.2.2). The zonules and capsule required only the properties

described in Chapter 4 to be assigned to the appropriate area of the model, however, for the lens, the

definition of the material properties was dependent on the internal structure model used.

To define the material properties for each section of the different internal structure models, the data from

Wilde et al. (2012) was used, as defined in Chapter 4. The shear modulus was calculated at 10 relative

positions within the lens structure, measured radially from the centre (0.05 – 0.95), and these values were

then adapted for the different internal models. For the H model, an average was taken of all shear modulus

values. The NC model was split, with the nucleus values taken from 0.05 to 0.65 measurements and the

cortical values taken from the 0.75 to 0.95 regions. The same process was used for the SA model, with

the regions for each section defined by the measurements of Dubbelman et al. (2003). The SB model used

the 10 values.
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5.3.4 Mesh Generation

With the material properties and geometry defined, the mesh could be generated. The lens and capsule

areas were meshed as being bonded together, with the free element mapping method utilised and size

controls were used. A constant element size was assigned to the lens areas, with a smaller element size

required when the capsule area was used to prevent element shape warnings to do with the aspect ratio

of the elements. The zonules were meshed with single elements. An example of the mesh generated is

shown in Figure 5.2.

Figure 5.2: Illustration of the mesh generated for a 20 YO lens model using the free element mapping method, the
colours illustrate the different material property regions that are meshed individually.

The number of elements used in meshing can have an effect on the results of an FEA model, therefore,

what element size is suitable for the models used in Chapter 6 needed to be established. For an accurate

analysis, an element size is defined as being suitable when further reduction causes no change in the

results. However, due to the variance present in the definitions of the geometry and material properties in

the current models, absolute accuracy is not needed; therefore, the element size chosen needs to simply

demonstrate that it is of a suitable size. This will be achieved using a mesh convergence study, repeated

when different modelling methods are introduced (e.g. addition of the capsule to the model). The mesh

will be reduced iteratively until the results converge to within 2% of the previous value and then an

appropriate element size from all of the ones simulated will be selected.
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5.3 ANSYS Modelling Procedures

5.3.5 Loads and Restraints

The final part in building the model is to define what loading forces will be applied and how the model is

constrained. There are two analysis procedures that will be conducted in Chapter 6, the spinning test and

the displacement test.

5.3.5.1 Spinning studies

One method of investigating the material properties of the lens is to spin the lens about its central axis,

a method discussed in Chapter 4. The purpose is to induce deformations that are similar to those seen

in vivo with accommodation, a reduction in thickness and an increase in diameter. Although the forces

present with spinning are unlike those found with accommodation they will enable investigations into

material property distributions to be conducted.

When using the spinning set up, the crystalline lens will be simulated as being spun freely in space. A

rotational velocity of 1000 rpm will be applied to the lens, a speed chosen in the original studies of Fisher

(1971) and Wilde et al. (2012), as this induces deformations similar to those found in vivo. The speed is

defined as a global rotational velocity within ANSYS, with a value of 104.72 radians/s.

To ensure that equilibrium is reached, the lens will need to be constrained on the vertical axis, which will

be achieved by applying a zero displacement constraint on the bottom vertex of the lens model. To enable

a rotational velocity to be applied, each material property used needs to have a density defined, which was

set to be 1058.98 kg/m3 (Bellows, 1944) following the similar study of Wilde (2011).

5.3.5.2 Displacement studies

To be able to replicate the accommodation process using available data the most appropriate method is to

displace a representation of the zonular fibres, commonly used in existing FEA accommodation models

(see Chapter 2). The reason for approaching the problem this way is due to the uncertainty of the forces

involved in changing the lens shape. Using a representation of the zonules and displacing the ends by

a set distance, which can be approximated from in vivo data, allows a more accurate simulation to be

conducted.

The loads will be applied to the end of each zonular bundle representation, in the form of x and y displace-

ment values. These would be calculated from the zonule model generated in SolidWorks (Section 5.3.2).
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5.4 Results Extraction

The displacement applied to the end of the zonules will apply a force to the connection to the capsule, in

turn applying forces to the lens itself, inducing the appropriate lens deformations. The use of the proposed

zonule structure should ensure that no further restraints are required.

Zonule attachment

The zonules are modeled with different elements to the lens and capsule and require a method of attach-

ing them to the lens body. Although there is evidence for the zonules passing through the capsule and

interlacing with the lens cortex (Hiraoka et al., 2010), there is currently not enough data to be able to

replicate this. Therefore, it was decided to attach the zonules by combining the degrees of freedom (x, y

and rotation) of the zonule and capsule nodes, as shown in Figure 5.3.

Zonule

Outer capsule nodes

Inner capsule nodes

Figure 5.3: Illustration of the zonule node (Blue circle) connection to the capsule nodes (red circles) for the equa-
torial zonule, with detail on where the nodes (which form the individual elements, denoted by Black dots) are
located on the model.

5.4 Results Extraction

To establish whether the deformations of the different models are actually representative of the changes

that occur in vivo, a method of comparing key parameters from the models to measured values is required.

The most appropriate method in the case of the models proposed in the current study is to extract the

displacements in terms of the nodal x and y coordinates, in both the original and deformed state. Different
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5.4 Results Extraction

aspects of the deformations can be obtained by extracting only those nodes relevant, for example, to enable

calculation of the thickness, diameter and surface curvature changes, only those nodes on the outer lens

edge are needed. The x and y coordinates can also be used to generate a 3D representation of the lens in

both original and deformed conditions to enable surface area and volume calculations. The thickness and

diameter changes were extracted from the displacements of the anterior, posterior and equatorial poles,

taking into account the original positions. The nodal points were analysed in MatLab to give the final

changes.

To measure the change in surface curvature, the radius of curvature was calculated before and after defor-

mation for the anterior and posterior surfaces. Circles were fitted to each surface using MatLab, utilizing

a circle fitting function based on the work of Taubin (1991). Starting from the anterior and posterior poles,

nodal points up to 1.5 mm from the poles were extracted from the outer lens shape, an aperture similar to

those utilised in a number of FEA models for curvature estimations (e.g. Burd et al., 2002 and Lanchares

et al., 2012), and fitted with planar circles, giving the radius of curvature.

5.4.1 Detailed Results

The measurements detailed so far will enable the performance of models to be well understood, however,

to aid in establishing a complete picture of how the model is behaving, additional comparisons can be

made to in vivo measurements of the movement of the lens; as well as the more complex measures of the

thickness change that the lens undergoes during accommodation (Section 3.2.2).

The movement of the lens can be defined by the posterior pole displacement, extracted as the y displace-

ment of the bottom node; and the equatorial movement, extracted as the y displacement of the node at

the equator. The internal thickness changes can be split into the changes within the nucleus region, and

in terms of the distribution of thickness change between the anterior and posterior poles. To obtain the

nucleus change, an appropriate boundary line will need to be chosen, which will then allow the displace-

ments of the anterior and posterior nodes aligned on the central axis to be extracted. For example, in the

SB model, the boundary of area 7 would correspond to the nucleus region, as defined by Dubbelman et al.

(2003) (see Figure 5.4). To obtain the distribution of thickness change between the anterior and posterior

surfaces, the displacements of the anterior and posterior poles of the lens will be extracted and compared

to the overall thickness change.

In addition to these geometric parameters, the stress and strain values distributed through the lens can be

extracted using the post processing tools within ANSYS.
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Posterior pole displacement

Anterior pole displacement

Nucleus boundary

Anterior nucleus displacement

Posterior nucleus displacement

Equatorial displacement

Central lens point

Anterior curvature region

Posterior curvature region

Figure 5.4: Illustration of where the displacement values for calculating thickness and movement changes are taken
from.

The principal methods of verification used in the current study are related to the geometric changes, due

to the comparison that can be made to measured in vivo data. However, it would be ideal when modelling

the accommodation process to calculate the changes in power of the lens. Section 2.4.2 covered some of

the methods used to estimate the power of the lens after simulation using FEA, with the most accurate

method being to use ray tracing. To be able to obtain suitable results using this method, the appropriate

refractive index values throughout the lens are required, across all the ages of lens that are analysed. It is

beyond the scope of this study to develop a ray tracing system that incorporated the deformed lens shape

combined with a suitable gradient refractive index. However, the optical power of the lens is a convenient

method of discussing the geometric changes that the lens undergoes, as well as being a useful method of

comparison between models. Therefore, the simpler, thick lens formula used by the majority of studies

(Section 2.4.2) will be utilised where required, using Equation 5.1.

OpticalPower =
n1−n2

ra
+

n1−na

rp
− t (n1−na)

2

rarpn1
(5.1)

where n1 is the refractive index of the lens (1.42), na is the refractive index of the aqueous and vitreous

(1.336), ra is the radius of curvature of anterior surface, rp is the radius of curvature of posterior surface and

t is the axial thickness of the lens, with the same refractive index values as in previous studies (Schachar

et al., 1993; Burd et al., 1999). Using the thick lens formula provides an oversimplification of the power

changes that occur, principally due to the use of a single refractive index value for the lens, therefore

155



5.4 Results Extraction

calculation of the lens power will principally be used as a method of comparison between different models,

rather than to predict the optical ability of lens models.

5.4.2 Expected changes in geometry

Chapter 3 looked in detail at the various sources of data on the changes that the accommodative com-

ponents undergo with both age and accommodation, principally to establish data to use in modelling the

accommodative system. The data can also be used to ensure that the changes that the model will undergo

match previous in vivo measurements.

For each of the key comparison values that will be extracted from the deformed models, there is a wide

variation in the in vivo measurements. To assist a comparison to the measured data a range of data was

plotted (Figure 5.5), representing the variation present (the sources are detailed in Table 5.3). The models

will be representing the transition from the accommodated to relaxed state, therefore, the changes are

opposite to those measured in vivo (typically measured transitioning from relaxed to accommodated) and

will be altered to represent the appropriate change (e.g. Thickness will decrease rather than increase).

Table 5.3: Sources of data used in plotting the graphs in Figure 5.5. A indicates age in years. All measurements
indicated the change per diopter of accommodative response, with the amount of accommodative response per
year, used in defining the graphs in Figure 5.5, taken from the study of Duane (1922). Each graph in Figure 5.5
is formed of a maximum and minimum range of values, hence the use of two definitions in the table.

Thickness (mm) Diameter (mm) Anterior radius
of Curvature

(mm/D)

Posterior radius
of Curvature

(mm/D)
Definition 1 −0.0058(±0.0007)−

0.00048(±0.00025)∗
A

0.067±0.03 0.59(±0.0073)−
0.0092(±0.00026)∗

A

0.13(±0.06)

Source Dubbelman et al.
(2005)

Jones et al. (2007) Koretz et al.
(2002)

Dubbelman et al.
(2005)

Definition 2 −0.05±0.024 0.037±0.004 0.64±0.1 0.16±0.1
Source Jones et al. (2007) Hermans et al.

(2009)
Hermans et al.

(2009)
Hermans et al.

(2009)

The first tests conducted in Chapter 6 will be using the spinning lens method (Section 5.3.5.1), therefore,

to be able to measure the performance of the lens models in this case, a comparison to the data of Wilde

(2011) was conducted, extracting the appropriate values from their Figure 8.5 and appendices, detailed in

Chapter 6.
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Chapter 6

Modelling

6.1 Introduction

Using the methods established in Chapters 3, 4 and 5, a new finite element model of the accommodation

system has been proposed to investigate the development of presbyopia; in addition to overcoming the

weaknesses of previous models, as discussed in Chapter 2.

Due to the new modelling methods (e.g. the zonule model, Section 3.5), a series of initial tests were

conducted to establish the suitability of the new methods and suggest any alterations that may need to

be made. The updated modelling procedures were then used to produce three different age models of

accommodation that were compared to both measured in vivo data, and previous FEA models. Once the

suitability of the FE model was verified, the modelling procedures were then used in the main investigation

of the thesis into presbyopia development. A final few models were then run to compare alternate theories

of accommodation.

6.2 Initial model development

The initial model development was conducted in stages, each stage designed to evaluate a particular aspect

of the model, beginning with the method of modelling the internal structure of the lens. The capsule was

then introduced, before testing of the novel zonular arrangement. Final adjustments were then made to the

overall modelling procedure.
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6.2 Initial model development

6.2.1 Internal Structure

As shown in Chapter 2 the nucleus-cortex method of modelling the internal structure is the most prevalent,

despite the emergence of data on the variations that occur within the lens; in terms of geometry (e.g.

Dubbelman et al., 2003) and material properties (e.g. Weeber et al., 2007).

As part of a new spinning lens test Wilde et al. (2012) investigated the material property distribution within

the lens using three internal structure models to infer stiffness parameters for the lens: an homogenous (H),

nucleus/cortex (D) and exponential model (E). The results indicated that older lenses were best represented

by the D model, whilst a younger lens was best represented by the E model, which shows the variability

of different internal structure models. Although the spinning test produces changes that are unlike in

vivo accommodation, it demonstrates the need to ensure that appropriate models are selected for FEA

modelling.

To aid in ensuring an appropriate method is selected, four internal structure models were compared using a

simulated spinning lens test. Three of the models used were similar to those used by Burd et al. (2011) and

Wilde et al. (2012), with a new method proposed based on in vivo and in vitro data (see Figure 5.1). The

capsule was not modelled and modelling results were compared to de-capsulated lens tests (Wilde et al.,

2012), as the current study is concerned only with comparing the difference between internal structure

models.

6.2.1.1 Model set up

The modelling methods established in Chapters 3 and 5 were followed, defining four internal structure

models (H, NC, SA and SB, see Section 5.3.2.1) for three ages, 20, 40 and 50 YO. The material properties

were distributed as described in Section 5.3.3 and the procedure outlined in Section 5.3.5.1 was followed.

A mesh convergence study was conducted on the SB model, finding that the optimum global element edge

length to utilise was 0.08 mm. The mesh initally had a global element edge length of 0.18 mm, and was

reduced in steps of 0.02 mm. Convergence of lens thickness and curvature to within 1% of the previous

edge was achieved using a 0.02 mm edge length (Figure 6.1).
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Figure 6.1: Mesh convergance of the thickness and anterior radius of curvature of the SB model. h = element edge
length.

6.2.1.2 Results

The changes in shape undergone by the lens are illustrated in Figure 6.2. The measured thickness changes

in each internal structure model are shown in Figure 6.3 for the rotational speed of 1000 rpm. There is a

large difference between the changes in a young and old lens, which is to be expected due to the stiffer

material properties in the older lenses. Also a larger amount of variation in the internal structure models

is evident in the younger lens. However, the differences between structure models in the older lens are

of more interest, because these ages are where the onset of presbyopia occurs, therefore Figure 6.4 and

Figure 6.5 show the changes in thickness, curvature and power for the 40 and 50 YO lenses only. The

changes in diameter were very similar for the NC, SA and SB models, with the H model deviating from

these values.
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Original

Deformed

Figure 6.2: The deformation undergone by the lens after being spun at 1000 rpm, with the dotted line representing
the lens before spinning and the solid line the lens after, showing the changes in thickness and curvatures.
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Figure 6.3: The decrease in axial thickness with age of each internal structure model for lenses spun at 1000 rpm.
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Figure 6.4: Comparison of the decrease in axial thickness for the different internal structure models at 40 and 50
YO for lenses spun at 1000 rpm.
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model at 40 and 50 YO for lenses spun at 1000 rpm.

There was a small variation between the thickness changes in the older lens models, but the key changes
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were within the curvatures, as they have more of an impact on lens power. Aside from the H model, the

SA model has the most variation between ages, although the SB model is similar.

To analyse the differences between FEA models more thoroughly, a comparison to the study of Wilde

(2011) was made. In Wilde’s study, a range of lenses were spun at the same speeds used in the current

study. There are differences in the lens shapes due to the spinning structure, but the overall thickness

changes are comparable. For young lenses, comparable to the 20 YO lens modelled, the thickness reduc-

tion was in the range 0.4 to 0.6 mm. The SA model falls outside this range while the other three models

are in agreement. For lenses close to 40 YO, the thickness change was in the range 0.1 to 0.2 mm and

for the 50 YO lens, the change was 0 to 0.1 mm. All models agree with these results for 40 YO and 50

YO lenses. In terms of diameter changes, all models had lower changes than the results of Wilde, which

could be attributed to the support structure used in the experiment, however, an age related decrease was

observed, as with Wilde.

In all models and ages, the H model deviates from the other models significantly, which can be expected

due to modelling the lens as a single homogenous structure. In the other three models, the results are more

consistent. In terms of curvature changes, both the SA and SB model have increased changes compared to

the NC model, indicating that alteration of the internal structure will have an increased impact on surface

curvatures, a significant aspect of power change.

As the distribution of load that occurs in vivo is considerably different from that used here and in the spin-

ning lens experiments, further work is needed to understand which model is more suitable when subjected

to in vivo conditions with forces applied through the zonules, which will be conducted in Section 6.2.5.

6.2.2 Initial Capsule Test

For the proposed model, the capsule thickness variation was modelled using an area within the lens outline

(Section 5.3.2). To ensure that it could be implemented in the proposed model, a comparison to measured

data was carried out by adding the capsule to the models tested in the Section 6.2.1. The measured

data to compare against came from the study by Wilde (2011) (see Section 4.3.1.1), where additional

spinning tests were carried out on en-capsulated lenses, so a comparison between them and de-capsulated

lenses could be made in terms of thickness and diameter change. The presence of the support structure in

the tests by Wilde (2011) would mean a direct comparison to those results is not possible; however, the

general trends could be compared. Wilde (2011) found that in younger lenses, the capsule had a consistent
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restrictive effect, reducing the thickness and diameter changes. In older lenses (over 40 YO) the capsule

often enhanced the axial compression, although a consistent restriction of diameter changes was seen.

6.2.2.1 Model set up

Only the models for a 20 and 40 YO lens from the previous section were adapted, due to the low changes

in thickness and diameter in the 50 YO lens. The SB stiffness distribution was used for the lens material

properties. The capsular area was added, using the method outlined in Section 3.4, with the material prop-

erties defined as in Section 4.4.2. The procedure for a spinning lens study as outlined in Section 5.3.5.1

was followed. Two additional models were run for the 20 YO lens using alternate material properties

(from Fisher, 1969; Ziebarth et al., 2011) to see how they affected the results.

A new mesh convergence study was required due to the addition of the capsular area. The majority of the

lens structure was the same as the previous models, therefore, it was decided to only vary the element size

in the new capsular area. The optimum element edge length was 0.035 mm for the capsule. The initial

element edge length was 0.04 mm, reducing in steps of 0.005 mm. Convergence of lens thickness and

diameter to within 1% of the previous step using a 0.015 mm edge length was achieved.

6.2.2.2 Results

A comparison between the thickness and diameter changes of the en-capsulated and de-capsulated lens

models with the results of Wilde (2011) can be seen in Table 6.1, with a representation of the difference in

lens deformation given in Figure 6.6. The percentage changes in thickness were used for the comparison

between models due to the differences in the geometric description of the lens.

Table 6.1: Comparison between the changes in en-capsulated (C) and de-capsulated lens (DC) models in the current
test and from Wilde (2011). The changes are given in terms of percentage change in thickness due to the difference
in the geometric description of the lens.

Study Age
(Years)

State Thickness
change (%)

Difference (%) Diameter
change (%)

Difference (%)

Wilde (2011)

20
C

6.54 - 2.41 -
Current 4.35 0.21

Wilde (2011)
DC

15.36 8.82 5.89 3.48
Current 14.49 10.14 1.79 1.58

Wilde (2011)

40
C

2.62 - 0.58 -
Current 1.75 0.17

Wilde (2011)
DC

2.58 -0.04 1.06 0.4
Current 3.49 1.74 0.46 0.29
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Original

De-Capsulated

En-Capsulated

Figure 6.6: Comparison between the deformations undergone by an en-capsulated (Solid Grey) and de-capsulated
(Solid Black) lens after being spun at 1000 rpm, with the dotted line representing the lens before spinning.

The changes between en-capsulated and de-capsulated lenses were similar for the young lens in terms of

both thickness and diameter, but only for diameter in the old lens. The disparity could be a consequence of

the support structure in the test of Wilde or the material properties used, therefore, an analysis was carried

out using the material properties from the studies of Ziebarth et al. (2011) (lower shear modulus than

Krag & Andreassen, 2003a) and Fisher (1969) (higher shear modulus than Krag & Andreassen, 2003a),

as shown in Section 4.3.2. Using the data of Ziebarth et al. (2011) led to greater deformation whilst using

the data of Fisher (1969) led to less deformation, in comparison to the changes of Wilde (2011), with no

significant change in the trends observed in Figure 6.6.

6.2.2.3 Conclusion

The testing conducted on the capsule indicated that the modelling methods selected were suitable for

the current modelling purposes. The addition of the capsular area, including the variation in thickness

present, to the lens structure resulted in restrictions to both the thickness and diameter changes that were

similar to those seen in vitro. A complete match for the changes measured in vitro was not found, which

was most probably due to the anisotropy present in the capsule, although it could also have been a result

of the disparity between the two geometric set ups. However, due to the lack of available data on the
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anisotropic properties, the selected properties of Krag & Andreassen (2003a) would appear to be a suitable

compromise for the proposed accommodation model. The spinning test is not fully representative of the

conditions in vivo, therefore, further testing of the capsule combined with zonular structure was required

(see Section 6.2.3).

6.2.3 Zonule testing

Having tested the initial models of the internal structure and capsule the proposed zonule model from

Chapter 3 also needed to be tested to ensure that it performed as expected. The zonule model should

undergo appropriate deformation and cause the required movement in the lens, based on available in vivo

studies (see Section 3.2.2).

As covered in Chapter 2, the majority of existing models used a single point of displacement to cause the

deformations within the lens, whereas the proposed model has four displacement points. The effect of the

addition of the APZ2 zonule (See Section 3.5), which has not been included in any previous studies, also

needed clarification. The first test was to compare the traditional zonule representation with the proposed

model from Section 3.5, before further adjustments could be made.

6.2.3.1 Zonule methods comparison

To enable a comparison between the proposed model from Section 3.5 to the traditional model, three ver-

sions of a 40 YO lens were modelled (using the same geometry and material properties as in Section 6.2.2).

Each model had the same attachment points on the lens itself, as defined in Section 3.5.2, but the zonule

arrangement varied. Figure 6.7 illustrates the three models, ZA being the traditional model (similar to the

methods of Burd et al., 2002), ZB and ZC being the model proposed in Section 3.5, with the ZB model

having the PZ2 zonule removed to match the models that used three zonules.
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ZA ZB ZC

Figure 6.7: The three zonule models simulated in section 6.1.3.1. ZA = zonule model of Burd et al. (2002), ZB =
The proposed zonule model without the PZ2 zonule, ZC = The complete proposed zonule model.

The displacement of the ciliary body point in the ZA model was constrained to have zero y movement

and an axial movement as according to Kasthurirangan et al. (2011), where the circumlental space does

not change with accommodation, therefore the zonular displacement is linked to the change in equatorial

diameter.

Zonule Displacement = LR acc−LR rel (6.1)

The second and third zonules models (ZB and ZC) are based on the zonule modelling method defined

in Section 3.5, where both relaxed and accommodated zonules are modelled and the displacements are

defined by the change between them. The movement of the ciliary body is defined using the same dis-

placement value as in ZA. The procedure is as outlined in Section 5.3.5.2, with the individual displacement

values of the zonular bundles given in Table A.1.
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Figure 6.8: Deformations of the three zonule models from Section 6.2.3.1, showing the initial and deformed shapes
for the individual displacement values given in Table A.1. ZA = Blue, ZB = Red, ZC = Green.

The deformations in the three models were similar (Figure 6.8), although the geometric changes in the

ZA model were lowest (Table A.4). The key result from this comparison is the movement of the posterior

surface. In Chapter 3 it was discussed how there was disagreement on whether the posterior pole moves

forwards during accommodation or remains stationary, with accommodation being the change from far to

near viewing. In the current models, the lens moves from near to far, which would require the posterior

pole to move forwards, or remain stationary. The only model which satisfies this requirement is the

ZC model. Utilising four zonule bundles would therefore appear to be the most appropriate method of

simulating accommodation.

6.2.3.2 Test of base zonule model

To ensure that appropriate changes are induced, the proposed zonule model was tested at different ages.

The same three ages will be used as in Section 6.2.1 and Section 6.2.2 with the same geometric and

material properties as in Section 6.2.1, using the SB internal structure model. The zonules are modelled

as described in Section 3.5 and for the ZC model in Section 6.2.3.1, resulting in three different sets of

displacements for the three ages (see Table A.1). The section thickness remains constant with age, and
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the thickness was distributed as 0.036:0.006:0.012:0.012 mm between the four zonule bundles, similar to

previous FEA models (e.g. Burd et al., 2002). The procedure from Section 5.3.5.2 was followed.

The deformed lens shapes, representing the relaxed state of the lens, are shown in Figure 6.9. Overall

the shape changes seen appear to be suitable from visual inspection, with the change in shape reducing

with age and there being little posterior movement of the lens. From the measured changes (detailed

in Table A.4) the 20 YO model had too much thickness (by 0.41 mm) and curvature change (by 4 mm

anteriorly, 0.2 mm posteriorly), the 40 YO model had too much thickness change (by 0.1 mm) and anterior

curvature change (by 0.5 mm), whilst the 50 YO model had too little change in the posterior curvature (by

0.03 mm).

Figure 6.9: Comparison between the deformations in the three age models used in Section 6.2.3.2, with the 20 YO
lens on the left, the 40 YO lens in the centre and the 50 YO lens on the right.

The proposed zonular model is inducing deformations that are approaching the actual changes that are

expected, but there are still adjustments that are needed before the method can be considered a match for

the objectives outlined in Chapter 2.

6.2.3.3 Defining the thickness and movement

Both the thickness of the zonular bundles as well as the displacements of the ciliary body lack data (see

Section 3.2.4.2 and Section 3.2.4.3) therefore, the impact of varying both needs investigation so that the

boundaries for these values can be defined.

It was assumed for the current test that the material properties of the lens, capsule and zonules were

correct therefore, the discrepancy between the deformations measured and the expected changes arise

from differences in the zonular thickness or displacement. Two simple tests were carried out; the first to

establish which level of zonular displacement, with a constant section thickness, caused deformations that

were close to expected. The second to see which section thickness variation caused suitable geometric

changes.
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Displacement test

It was outlined in Section 3.5.3 that there were differing views on the displacement of the ciliary body,

with all the initial displacements modelled so far using the data of Kasthurirangan et al. (2011) (Method

B, Equation 6.1 in the current test). Strenk et al. (1999) also measured the ciliary body movement, with

the results showing the age related trend in Equation 6.2 (Method A in the current test), utilised in a

number of existing FEA models (Chapter 2). Figure 6.10 illustrates the differences between proposals for

the movement of the ciliary muscle, where it can be seen that there is a range of potential displacement

values.

Zonule Displacement = 0.5129−0.00525∗A (6.2)
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Figure 6.10: Illustration of the change in ciliary body displacement using method A based on a ciliary body displac-
ment defined using Equation 6.2 and method B based on a ciliary body displacement defined using Equation 6.1.

By altering the geometric model to adopt alternate ciliary body displacements, new zonular displacements

could be defined using the method detailed in Section 3.5.5.

The baseline geometry and material properties of the lens and capsule were taken from the models in

Section 6.2.3.2, with only the zonular representation changing. A constant section thickness of 0.012 mm

for the zonule bundles was used, combined with two variations on the displacements for each age lens.
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For the 20 YO model, the results (Table 6.2) indicated that both displacement values did not produce

suitable changes, but that Method A produced changes closer to what was expected. For the 40 YO

model, both methods were very similar as a result of the similarity in displacement values (Figure 6.10),

however method A induced a more appropriate thickness change. For the 50 YO models the displacement

was closer to that of method A, with method B producing changes that were slightly too low. The overall

axial movement of the lens was not suitable for all models, most likely due to the distribution of thickness

between the zonules.

Table 6.2: The results of the displacement varitation from Section 6.2.3.3. A *Indicates a change that was too high,
a ** indicates a change that was too low, compared to measured in vivo data (Section 5.4.2).

Model TLchange (mm) LR change (mm) RA change (mm) RP change (mm)

20_A 0.60* 0.38 3.72** 1.76
20_B 0.78* 0.53 6.20 2.11*
40_A 0.27 0.24 1.73 0.79
40_B 0.30* 0.27 2.09 0.78
50_A 0.10 0.21 0.51 0.18**
50_B 0.08 0.13 0.46 0.17**

Thickness test

The three age models from the previous section would then have the thickness distribution of the zonular

groups adjusted, with three versions of the thickness distribution used as shown in Table 6.3. The distri-

bution of thickness between the zonular bundles was taken from previous geometric studies, discussed in

Section 3.2.4.3. The displacement of the ciliary body was defined using method A for all three ages.

Table 6.3: Zonule thickness values used in thickness test, showing the difference in thickness distribution used.

Thickness (mm)
Zonule group Distribution 1 Distribution 2 Distribution 3

Anterior 0.036 0.025 0.012
Equator 0.006 0.012 0.006

Posterior 1 0.012 0.025 0.02
Posterior 2 0.012 0.012 0.012

Distribution 1 gave the best geometric changes overall (See Table A.4), although the thickness changes

were still too high (by ≈ 0.1 mm) in the 20 and 40 YO models and the posterior curvature changes in the

50 YO model were too low (by 0.05 mm). The results therefore indicate that the anterior zonule thickness

should be highest, followed by the posterior and then the equator. The PZ2 thickness is still an unknown

at this stage, however, it is likely to be between the posterior and equatorial zonule bundle thickness.
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6.2.3.4 Final zonule alterations

The testing conducted in Section 6.2.3.2 to Section 6.2.3.3 established that the zonule modelling method

proposed in Chapter 3 induces deformations in the crystalline lens that are approaching the expected

changes. The ciliary body displacement as defined using Equation 6.2 would appear to be suitable; how-

ever, the exact distribution of thickness between the zonule bundles required further investigation. Before

the thickness distribution was explored, some additional assumptions in the current modelling methodol-

ogy required testing.

It was stated in Chapter 3 that there were two potential methods of the positioning of the zonules in the

accommodated state, the first by making them tangential to the lens surface and the second by attaching

them at an angle to the tangential line. Two versions of the 40 YO model were modelled, to establish

whether there was a difference between the two methods. Both models were deformed using the same dis-

placement values for the zonule bundles, based on a ciliary body displacement defined using Equation 6.2.

A B

Figure 6.11: Comparison between the deformations in the 40 YO lens with two different zonule attachment meth-
ods based on a ciliary body displacement defined using Equation 6.2. A = Angled attachments, B= Tangential
attachments.

Figure 6.11 shows the deformed outlines, showing how similar the two methods were, however, there was

a slight improvement in the deformed shape using the angled attachments. This was principally due to

a reduction in the amount of bunching that occurs at the zonule attachment points. Therefore, using an

angled attachement was adopted for future models.

Part of the novel zonular modelling method proposed in (Section 3.5) was the use of four zonular bundles,

with the proposed PZ2 zonule bundle used to represent the vitreous zonule. During the modelling con-

ducted so far, it was found that the ciliary body attachment of the PZ2 zonule had an excessive migration

along the ciliary body with age. In the current modelling methodology, the “pinning” zonule is positioned
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using a line running tangent from the PZ2 lens attachment point (see Figure 3.11) and it was this that was

causing the large axial migration.

The PZ2 zonule was assumed to run across the top of the vitreous. The shape of the vitreous was not

known; however, it was assumed to form a shape similar to that shown in Figure 6.12 for the anterior

portion of the vitreous. The pinning zonule was therefore altered to run from the ciliary body, close to the

CT1 line, to the top of the vitreous, defined as being halfway between the PZ2 lens attachment and the

bottom ciliary body point. Here, it would meet the PZ2 zonule running tangentially from the lens. With

this alteration, the axial movement of the pinning zonule with age was reduced.

Pinning zonule

Vitreous

Figure 6.12: Illustration of the new modelling method for the PZ2 zonule in the 40 YO accommodated lens model.
The black line indicates the vitreous with the dashed line indicating the altered pinning zonule.

The thickness of each zonule bundle and how the thickness varies across the bundles, was still uncertain.

To aid in establishing an appropriate distribution, adjustments were made to the thickness values whilst

also measuring the force applied by the ciliary body. It was assumed that the force applied by the ciliary

muscle did not diminish significantly with age (e.g. Hermans et al., 2008), but that the amount of ciliary

body displacement reduces. Therefore, to maintain the same force, the zonular stiffness must increase,

either from changes in the elastic modulus (shown to remain stable, or even reduce (Michael et al., 2012))

or from the thickness, which has been less well studied (see Section 3.2.2.1). In previous FEA models (see

Section 2.5.2), the force has been found to be between 0.03 N and 0.1N but not to change significantly

with age.

Within ANSYS it is possible to extract the reaction forces on the four zonules (see Chapter 4) which was
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done for the models used in Section 6.2.3.3, where the displacement reduced with age but the section

thickness remained constant. The applied force in those three models (Table 6.4) showed a significant

reduction with age; supporting the hypothesis that to retain the ciliary body force, the section thickness

must increase with age. To test this hypothesis, as well as investigate the thickness distribution further, a

number of new models were defined.

Table 6.4: Reaction forces calculated from the models used in Section 6.2.3.3, illustrating the reduction of force
with age.

Model Total Fx (N)
20_A 0.0737
40_A 0.0620
50_A 0.0488

Model set up

Three baseline models would be modelled (20, 40 and 50 YO), using the geometry and material prop-

erties of the lens and capsule from Section 6.2.3.3, with the ciliary body displacement defined using

Equation 6.2. A new zonule arrangement for each age was modelled, based on the updated assumptions

discussed previously.

A first iteration of the 20 YO lens would use a constant section thickness across the four zonule bundles

(0.006 mm). Two subsequent interations would double the thickness of the four zonule bundles. The

resulting force and deformations from the three runs would then be used to establish a suitable zonule

thickness distribution, based on the findings from Section 6.2.3.3.

When the 20 YO model performed satisfactorily, the section thicknesses were then applied to the 40 YO

model and altered until the model matched the expected changes. The process was repeated using the final

40 YO thickness distribution applied to the 50 YO lens.

Results

The results of the initial 20 YO run are detailed in Table 6.5 and it was found that both the 0.012 and 0.024

mm thicknesses produced deformations close to expected changes, however, using a constant section

thickness induced too much anterior movement.

By varying the section thickness between the four zonular groups, the overall movement was able to

be controlled. Using 0.012 mm as a minimum thickness, the four zonular thicknesses were varied until

the changes and lens movement were suitable. Repeating the process outlined previously, the thickness
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Table 6.5: Results of the three iterations of zonular thickness in the 20 YO model.

Age
(Years) Iteration Zonule bundle

thickness (mm)
Net force (N) Geometric changes

20
1 0.006 0.04 Too low
2 0.012 0.069 Thickness too high, Ra too low
3 0.024 0.11 Thickness too high, Ra too low

distributions were also established for the 40 and 50 YO models. The final thickness distributions varied

with age (see Table A.2) and resulted in a ciliary body force that was constant with age. In terms of the

geometric changes the results were not ideal, but provided a closer match across all ages than previous

models (Table A.4), compared to measured in vivo data.

Conclusion of zonule testing

The final zonule arrangement established for the three ages did not provide a perfect match for the expected

changes, principally due to high thickness changes; however, important data on how variation of the zonule

bundle thickness affects the models was gained and it was decided to not continue alteration of those

specific models. The current methodology for modelling the accommodative system requires alteration to

the zonular thickness distribution before a final arrangement can be detailed, and using the information

from the current section will aid in producing a suitable final definition in future models (Section 6.3.2).

6.2.4 Probabilistic Analysis

Due to the higher thickness changes that were occurring in the models tested so far, the influence of the

material properties on the thickness change was investigated using probabilistic analysis (Chapter 3, AN-

SYS, 2010a). Within ANSYS, probabilistic analysis is a tool that takes a range of individual parameters

(termed random inputs) input to a model and uses a statistical variation of these parameters to iteratively

run updated versions of a model. How those random inputs are statistically relevant to a key change in the

models (a random output) is then determined.

To run a probabilistic study, an existing model has to be re-made in such as way that ANSYS can re-

peatedly run the model without any further input. Each random input is defined as a single value with an

appropriate statistical variation. The model is then run repeatedly using a slightly different input for each

parameter in each iteration.

Two studies were carried out, both using the 40 YO model from Section 6.2.3.4 as the input model,

adapted with the necessary changes needed for it to be run automatically.
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6.2.4.1 Comparison of lens and capsule material properties

The first study used the lens and capsule material properties as the random inputs, using the properties for

a 40 YO lens as defined in Chapter 4 as the baseline values. A Gaussian distribution was used to describe

the variance in the data. The random output was the total thickness change of the lens.

Results

After running for 150 iterations, the results showed that the capsule shear modulus was the most significant

parameter from the test (Figure 6.13), with layers 9, 4, 10 and 8 of the lens showing some significance.

The results show that increasing the shear modulus of the capsule, layer 4 or layer 8 would result in

an increase in thickness change, while increasing the shear modulus in layers 9 or 10 would reduce the

thickness change.

Figure 6.13: Results of probabilistic analysis 1, showing that the capsule and layers 9, 4, 10 and 8 are significant
parameters in regards to the total thickness change.

6.2.4.2 Comparison of the capsule and zonule material properties

From Section 6.2.4.1, the influence of the capsule shear modulus was more significant to the thickness

change than any alteration of the shear modulus of the internal layers. However, it has been established

in Section 6.2.3 that the zonules also have an impact on the lens thickness change. A second analysis was

conducted with the capsule and zonule material properties as the random inputs to investigate which has

more influence, with the total thickness change and posterior pole movement as outputs.
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The zonule elastic modulus was used as an input with a Gaussian distribution, meaning that the thickness

distribution of the zonules would remain constant but the overall stiffness would be altered. The capsule

material data was input as in Section 6.2.4.1.

Figure 6.14: The results of probabilistic analysis 2, showing that the zonule elastic modulus was most significant
for both outputs.

After running for 150 iterations, the results (Figure 6.14) showed that the zonule elastic modulus was

marginally more significant for both outputs, although for the posterior movement an increase in the

zonules elastic modulus would increase movement, whilst for the thickness change an increase in zonule

elastic modulus would decrease the thickness change. The opposite was true for altering the capsule shear

modulus in both cases.
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The studies in Section 6.2.4.1 and Section 6.2.4.2 indicate that the capsule and zonules are key features

of the model, and that alterations to either will have an impact on the models behaviour. Assuming that

the alterations to the zonule elastic modulus alter the stiffness of the zonules, it is proposed that increasing

the thickness of the zonules would have the same impact, similar to the findings in Section 6.2.3.4.

6.2.5 Internal structure test with zonules

The final part of the initial testing was to select the internal structure distribution to use in future models.

Section 6.2.1 investigated the internal structure variation with a spinning test and it was shown that there

was little difference between internal structure models. The loading conditions used in the study were

not representative of the in vivo accommodation system, therefore, further comparison between internal

structure models was needed using the zonular arrangement tested so far.

Using the best models from Section 6.2.3.4, which represent the SB model, combined with the SA and

NC models used previously (Section 6.2.1) will allow deformations induced by zonular displacement to

be compared between the different internal structure representations. The H model was not used, due to

oversimplifying the internal structure. The procedure was the same as in the zonular tests detailed so far,

with the material properties taken from Section 6.2.1.

In terms of thickness change, all three internal structure models were very closely matched across all ages

(Figure 6.15 and Figure 6.16). The curvature changes had more variation (Figure 6.17), with the results

for the 20 YO lens (not shown) showing a similar trend to the 40 YO lens, but with higher values.
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Figure 6.15: Thickness change in all internal structure models (with zonules) across all three ages.
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Figure 6.16: Thickness change of the 40 and 50 YO lens models with different internal structure models combined
with the zonule structure.
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Figure 6.17: The curvatures changes of the 40 and 50 YO models with different internal structure models combined
with the zonule structure.

The NC model can be discounted from future modelling methods, principally due to the low curvature

changes in the 40 YO model, combined with a curvature decrease in the 50 YO model.

The SA and SB models again produced similar results, although the thickness change in the 40 YO SB

model does have an increase over the NC and SA models, not seen in the 50 YO model. For the purposes of

the current study, either the SA or SB model would appear to be suitable, however, due to the material data

available, the SB model would be simpler to implement, therefore, it was selected for future modelling.

6.2.6 Summary of the model development

The principal purpose of the initial model development was to establish that the proposed modelling

methods detailed in Chapters 3 to 5 resulted in an accommodation model that produced suitable changes

in the crystalline lens at different ages. The secondary purpose was to elucidate any alterations that may

be required to maximise the accuracy of the modelling methods, in addition to providing data on the key

modelling parameters.

From the various tests conducted, it was shown that the proposed methods do produce suitable changes

(i.e. they were a close match to measured in vivo data), but certain conditions would be needed in future
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models:

1. The SB stiffness model should be used to represent the internal structure

2. The PZ2 zonule should be modelled according the definitions in Section 6.2.3.4

3. The zonule bundle thickness needs to increase with age, with the distributions between the bundles

varying to ensure suitable movement of the lens.

4. The zonules should attach to the lens at an angle to reduce localised deformations.

6.3 Accommodation modelling

Using the information from Section 6.2, the proposed adaptations to the methods outlined in Chapters 3

– 5 were made, before three new accommodation models were defined. These three models were used,

once they were shown to give suitable accommodative changes, to investigate how different age related

changes impact on the accommodative process. The models in the current section will have additional

results extracted to allow further comparison to data from the literature, as detailed in Section 5.4.1.

6.3.1 Models from baseline data

Three new age models were developed from the baseline data given in Chapter 3. The ages selected were

29 YO, 45 YO and 60 YO chosen so that comparisons to previous studies could be made, with the majority

of previous work using similar ages (Section 2.4.1). The ages also represent different stages in the decline

of accommodative ability with age (see Section 1.3).

The baseline models geometry was generated using the methods from Chapter 3, with the alterations to the

zonular structure proposed in Section 6.2.3.4 made (e.g. PZ2 attachment redefined, zonules attach at an

angle from the lens body). The ciliary body displacement was taken from the displacement values given by

Equation 6.2. The section thickness variation was initially based on the values defined in Section 6.2.3.4.

Figure 6.18 illustrates the geometric representation used to establish the zonular positions and displace-

ment for the three age models, with the displacement values for the three models detailed in Table A.1.

The procedure from Section 5.3.5.2 was followed.
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Figure 6.18: The zonular arrangements used in the 29, 45 and 60 YO models from Section 6.3.1.

6.3.1.1 Results of baseline models

Figure 6.19: Results of the first run of the baseline 29, 45 and 60 YO models based on the ciliary body displacement
defined using Equation 6.2.

In addition to the results that have been analysed so far, extra results were extracted from the deformed

lenses in the current study (as detailed in Section 5.4.1). For the principal geometric changes, the initial

run was favourable for the three models (Figure 6.19, Table A.5). There were discrepancies in the total

force applied to the lenses and in the movement of the posterior pole, in particular in the 45 and 60 YO

models. The 29 YO model appeared to be the most suitable, matching the expected changes in diameter

and surface curvatures, only not matching the expected thickness change. The curvature change in the 60

YO model showed a decrease instead of an increase which would need to be altered. The 45 YO and 60

YO models both had problems with the overall movement, with the 45 YO lens having too much anterior

pole movement and the 60 YO lens having a backwards movement of the posterior pole. The current

internal thickness changes also appeared to diverge from the literature, in particular for the 60 YO lens,

where it only accounted for 6% of the total change, compared to the expected majority (Section 3.2.2.1).

To remedy the current shortcoming, the findings from Section 6.2 were used to inform the alterations that

are required. For the 29 YO lens, a reduction in force combined with a reduction in thickness change and

more posterior movement would be preferred. For the 45 YO lens, a reduction in anterior pole movement

and an increase in force was required. The 60 YO lens required the anterior curvature change to increase,

combined with an increase in the force and anterior pole movement.
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6.3.2 Model variations

Alterations to the models were carried out in stages; initially, only the zonule bundle thickness was altered,

through alteration of the individual bundles or the thickness distribution of the bundles. If this failed to

improve the model, the displacement values would be altered. A summary of the changes that were needed

to be made will be given for each model, although these were established after iterative adjustments.

For the 29 YO model, the first changes were to the thickness of the zonules, as in Section 6.2.4 it was

shown that decreasing the zonule stiffness (here via the thickness) potentially reduces the thickness change

in the lens. A thickness reduction of 0.01 mm in each zonule bundle was found to provide suitable changes.

For the 45 YO model, the section thickness was increased for all zonules, again to adjust the stiffness,

with the displacements of the anterior and equatorial zonules reduced in the y direction (Table A.1).

For the 60 YO model, the two alteration methods failed to improve the anterior curvature changes, there-

fore, alternative methods were required. The probabilistic modelling in Section 6.2 showed how the lens

material and capsule material were significant factors in the changes in thickness. It was hypothesised that

the reduction in anterior curvature was a result of the high central stiffness of the lens material, an aspect

of the data of Wilde et al. (2012) discussed in Section 4.3.1.6. Due to this high central stiffness (evident

by the 5% decrease in nucleus thickness in the initial model), the outer lens layers of the lens were being

deformed in a way that resulted in an anterior curvature decrease. The material properties of Weeber et al.

(2007) give a lower central stiffness, while maintaining a similar stiffness profile (see Figure 4.2, page

124), therefore, these properties were adopted to establish whether they would make a difference and it

was found that this led to an anterior curvature increase. Subsequently, the thickness of the anterior and

posterior zonular bundles was increased to provide suitable force application.

The final geometric changes achieved with the adjusted models are given in Table 6.6 with the deformed

lens profiles illustrated in Figure 6.20. These adjusted models will be used to analyse theories of both

accommodation (Section 6.3.3) and presbyopia (Section 6.4). A full breakdown of the material and geo-

metric properties of each of the three models is given in Section A.3.
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Table 6.6: The geometric and force changes during disaccommodation in the altered models of the 29, 45 and 60
YO models. Compared to the expected changes (Section 5.4.2) a * indicates a change that is too high and a **
indicates a change that is too low.

Parameter 29 YO 45 YO 60 YO
Thickness change (mm) 0.518* 0.244 0.065
Diameter change (mm) 0.342 0.263 0.090

Anterior radius of curvature
change (mm)

3.613 1.073 0.050**

Posterior radius of curvature
change (mm)

1.215 0.441 0.150

Total force (N) 0.089 0.086 0.083
Anterior pole movement (mm) -0.346 (67%) -0.186 (76%) -0.057 (87%)
Posterior pole movement (mm) 0.172 0.058 0.008

Central movement (mm) -0.0819 -0.0562 -0.0198
Equatorial axial movement

(mm)
-0.0892 -0.0566 -0.0290

Nucleus thickness change (mm) 0.226 (44%) 0.0891 (37%) 0.0095 (15%)
Ratio of anterior to posterior

thickness change
1.04 1.14 1.37

Volume change (mm3) -0.07 -0.41 -0.05
Surface area Change (mm2) 9.98 6.86 2.84
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Figure 6.20: Deformations in the 29, 45 and 60 YO altered models (Section 6.3.2) based on a ciliary body displace-
ment defined using Equation 6.2.
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6.3.3 Analysis of accommodation

Before the main investigation into which parameters are key in the decline of accommodation (Section 6.4),

a comparison of the current model to previous models and to measured in vivo data is needed.

6.3.3.1 Comparison to measured data

Chapter 3 gave a comprehensive overview of existing in vivo measurements of the accommodative system,

which can now be used to evaluate the FEA models. To illustrate how the models compare to the literature,

the graphs plotted in Section 5.4 showing the variation in data were used (Figure 6.21). The results of the

current models were plotted on the graphs, along with the changes measured in previous FEA models,

which will be discussed in Section 6.3.3.2.

All of the changes in the three ages fitted within the wider variation of the measured in vivo data, repli-

cating the trends with age well. The thickness changes appeared to be higher than the mean values, a

potential result of the material properites used, which will be discussed further in Section 6.3.3.2.

In addition to the four key measurements, additional data can be compared. The movement of the anterior

and posterior poles matches what has been measured in the literature (Section 3.2.2.4) in that the anterior

pole movement accounts for more of the thickness change than the posterior (67% - 87%). The overall

movement of the posterior pole is a disputed aspect of accommodation (Section 3.2.2.4), however, it

would appear that the posterior pole either remains constant, or moves backwards with accommodation.

The current models show that the posterior pole moves forwards in all models.

A recent study by Croft et al. (2013) measured the movements of the lens equator, ciliary muscle and vit-

reous zonule during accommodation in 19 human subjects aged 19 – 65. The results supported the overall

findings of the current study, in addition to providing insight into the modelling methods used. The lens

equator was seen to move both anteriorly and inwards during accommodation, with both amounts reducing

with age, matching the measurements of the equatorial change of the lens seen in the current models. The

ciliary muscle thickness was also shown to increase with accommodation and was significantly linked

to an increase in lens thickness. The attachment of the posterior zonule to the sclera was imaged and

shown to move forwards with accommodation, with a link to the respective forwards movement of the

lens equator, also seen in the current models.

The amount of force that can be applied by the ciliary muscle has been hypothesised to remain stable with

age; which is supported by the current model, in addition to the testing conducted in Section 6.2. Previous
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6.3 Accommodation modelling

measurements in vitro have shown similar force values (Manns et al., 2007; Ziebarth et al., 2008) to those

measured in the current models.

The volume and surface area changes are disputed (Section 3.2.2.5), but the current model supports the

measurements that show a volume increase combined with a surface area decrease with accommodation

(e.g. Sheppard et al., 2011).

There are some parameters that appear to have a deviation from measured data. The overall thickness

changes appear to be consistently high at all ages, although they are within the wide variation measured

(Figure 6.21). The internal thickness changes also deviate from measured data in two ways; firstly, in that

the amount of thickness change within the nucleus reduces with age and secondly, that the contribution of

the nucleus to the overall thickness change has a maximum of 44% in the 29 YO model. Dubbelman et al.

(2003) showed that the nucleus is responsible for the majority of the thickness change, and that this does

not change with age Section 3.2.2.1. Further analysis of the distribution of changes between the anterior

and posterior portions of the lens shows that the change in thickness of the anterior half of the lens was

consistently higher than the posterior half, and the contribution of the anterior half increased with age.

Two potential explanations for the discrepancy in internal thickness changes are the material properties

used and the zonular arrangement. In Section 6.2.4 it was shown that the most significant contributors

to the overall thickness change are the capsule and outer layers of the lens, indicating that the nucleus

has less of an impact than the cortex. How the material properties change with age also would support

this as the nucleus material properties stiffen, which would reduce its ability to decrease in thickness. In

terms of the zonular arrangement, it is possible that the way the zonules are structured has an impact on the

compressive forces distributed through the lens and that they are causing an excessive amount of thickness

change. In addition, there is some obvious localised deformations at the zonular attachment locations on

the 60 YO lens, with lesser deformations at the equatorial attachments in the 29 and 45 YO lenses, which

could also be attributed to the zonular configuration.

6.3.3.2 Comparison to previous FEA models

A range of different ages and simulation methods have been utilised in previous FEA models (Chapter 2)

however, there are a number of studies that have analysed similar age models to the current study, allowing

a comparison to those studies to be made.
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6.3 Accommodation modelling

Changes in shape

The principal changes to compare are the changes in thickness, anterior curvature and posterior curvature.

How much of the thickness change occurs in the nucleus is also a common measured parameter. The full

set of results can be seen in Table A.6, but a comparison of the thickness, curvature and diameter changes

to measured in vivo data can be seen in Figure 6.21.

Overall the current model compares well, showing similar changes in all regards with a better match to

the curvature changes than previous models, although no changes in 60 YO lenses were reported in the

literature. The thickness changes are higher than some previous models, but this could be a result of the

differences in the representation of the material properties, with only the model of Wilde (2011) using a

similar stiffness representation and obtaining higher thickness changes.

The contribution of the nucleus thickness change to the overall thickness change varies between previous

FEA models, from 52% (Hermans et al., 2006) to 80% (Wilde et al., 2012) in a 29 YO lens, with the

current 29 YO model having a change of 43%. For the 45 YO lens no other studies reported values,

although Wilde (2011) inferred that both the 29 and 45 YO model did not match with the expected changes

of Dubbelman et al. (2003). Weeber & van der Heijde (2008) gave the change in thickness of the nucleus

as 0.07 mm/D for their 20 YO model, which is equivalent to approximately 0.03 mm/D in the current

model (29 YO), although the power calculations may have an impact on the estimation (see Chapter 5).

These findings show that the current model is not anomalous in terms of the internal thickness change,

which would indicate further investigation into the apparent discrepancy between in vivo measurement

and modelling is required.

Hermans et al. (2008) measured the change in surface area, finding that the 29 YO model had an increase

of 6 mm2 and the 45 YO model an increase of 5 mm2, which compares to 9.98 mm2 and 6.86 mm2 in the

current model.

In terms of the localised deformations, those models that have modelled the zonular structure also demon-

strated similar localised deformations across different ages where deformed lens models were shown, for

example, Figure 5 of Burd et al. (2002), Figure 2 of Weeber & van der Heijde (2008) and Figures 9.7 and

9.8 of Wilde (2011).

Lens movement

In all three age lenses modelled in the current section, the posterior pole had an anterior movement. In

images of the deformed 29 YO lens from Burd et al. (2002), the anterior pole appeared to move twice as

189



6.3 Accommodation modelling

much as the posterior. In the study of Hermans et al. (2006), the posterior and anterior pole movements

appeared similar in magnitude, with no axial movement of the lens. The images from Wilde (2011)

appear to show similar movements of both the 29 and 45 YO lens, with slightly too little posterior pole

movement in the 45 YO model compared to in vivo measurements. Finally, the study of Lanchares et al.

(2012) showed that the posterior pole appeared to have more movement than the anterior pole in the 30

YO model, although the lens was fixed and constrained from moving axially. Therefore, it would appear

that the current model is the only model that is capable to recreating the known in vivo movement of the

lens across multiple ages.

Ciliary body force

Figure 6.22 shows that the current model matches well with previous calculations of the amount of force

transmitted to the lens by the ciliary muscle. The studies of Hermans et al. (2006) and Lanchares et al.

(2012) inputted force values to an FEA model until the deformations matched what was expected, whilst

the current study, Burd et al. (2002) and Wilde (2011) calculated the force based on the displacement of

the zonules. As discussed in Section 6.3.3.1, these results compare well to in vitro experimental results.
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models from this study were 30 YO and 40 YO.

Stress and Strain

The use of FEA allows for the internal stress and strain of deformed models to be visualised. The study

of Hermans et al. (2006) showed that the von Mises stress (equivalent stress of all the normal and shear

stresses) within the lens ranged from a maximum at the equator of 1.5e-03 N/mm2 to a minimum in the

central nucleus of 3.5e-05 N/mm2. The majority of the higher stress was in the equatorial plane around

the periphery of the lens.

In the Weeber & van der Heijde (2008) study, the strain distributions in both the x and y directions were

plotted for 20, 40 and 60 YO lenses. In the x direction, the majority of strain was at the equatorial zonule

attachment, however, the distribution through the lens changed with age. In the young lens, there was
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more strain in the nucleus region, but this had disappeared in the old lens. In the y direction, a similar

trend was seen, where in the young lens the strain varied along the y axis, with high values at both poles

and centrally. The middle aged lens had lower central values but similar values at the poles. In the old

lens, the strain was highest at the poles, with very little strain in the centre.

Lanchares et al. (2012) plotted the stress and strain for the capsule alone, as well as the stress distribution

through the lens for a 30 YO lens. The stress within the lens was at a maximum at the equatorial zonule

position (5.5e-04 N/mm2), with the maximum tensile stress along the optical axis of 1.9e-05 N/mm2and a

compressive stress of -2.5e-04 N/mm2 in the nucleus region. The capsular stresses were higher, with the

maximum stress in the posterior pole region of 1.6e-01 N/mm2(thinnest region), decreasing towards the

lens equator with a stress of 8.2e-02 N/mm2 (thickest region).

The stress distribution in the three lens bodies from the current study are shown in Figure 6.23, for both

the first principal stress (A) and von Mises (B). Compared to Hermans et al. (2006), the stresses are

lower for the 29 YO model, however, the distribution is similar with higher stresses at the periphery with

low stress in the nucleus region. The first principal stresses in the 29 YO lens are a magnitude higher

than for Lanchares et al. (2012), although the distribution follows a similar pattern in the current model.

The differences in values in both comparisons are most likely due to the differences in material property

distribution and force loading used, particularly due to both other models loading the lens with forces

directly rather than using the displacement method. Figure 6.23 also shows the x (C) and y (D) axis strain

distributions, to compare to the results of Weeber & van der Heijde (2008). The 29 and 45 YO models in

the current study show a similar trend to the 20 and 40 YO models in Weeber’s study.

The capsule stress had similar values to Lanchares et al. (2012), with a high stress at the posterior pole,

which also decrease towards the equator (E, Figure 6.23). A second area of high stress was found close to

the AZ attachment, not seen in Lanchares et al., 2012, but a similar stress at the anterior pole was seen. The

strain distributions were similar, both in terms of values and variation around the capsule (F, Figure 6.23),

indicating that the capsule representation in both models was similar, with the principal differences found

in the distribution and values of the lens material properties.
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6.3 Accommodation modelling

Figure 6.23: A: 1st Principal stress distribution in the 29 YO model B: Von Mises stress distribution in the 29 YO
model. C: X axis strain in the 60 YO model D: y axis strain in the 60 YO model E: 1st Principal stress distribution
in the 29 YO capsule F: 1st Principal strain distribution in the 29 YO Capsule. All models are shown utilising
the symmetry expansion option in ANSYS, available due to the axisymmetric options used in the current models.
All Stress values are in Pa.

6.3.4 Summary of accommodaion modelling

Overall the current model captures the majority of expected geometric changes that occur in the crystalline

lens with accommodation and compares well with previous attempts at using FEA to model the accom-
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modative system. The discrepancies present can be explained by the variation that is present in the data

utilised to model the various components as well as the assumptions that have been made on aspects that

have not be sufficiently measured hitherto, such as the material properties, as noted by Weeber & van der

Heijde (2008); Wilde (2011) and Lanchares et al. (2012).

It is proposed that the model is suitable to be used in a further study that will investigate how the alteration

of key aspects of the model will affect its accommodative ability to try to elucidate potential causes of

Presbyopia.

6.4 Presbyopia modelling

Using the final three models from Section 6.3.2, individual parameters will now be altered to investigate

the changes they cause to the accommodative ability on the model. So far, the optical capabilities of the

lens models have not been measured, due to the limitations discussed in Section 5.4. However, to enable a

method of comparison between the three baseline models from Section 6.3.2 and the deformations induced

by the altered models in the current section, the power will be calculated, using the thick lens formula

(Equation 5.1).

6.4.1 Variations to parameters of the baseline models

6.4.1.1 Material Property Variation

The first study will investigate altering the material properties, whilst keeping the geometry constant.

First, only the lens properties will be altered, keeping the capsule and zonules constant. For example,

the 29 YO model will have its lens material replaced with those of a 45 YO lens and then a 60 YO lens

(Models 29_45M and 29_60M respectively). A second test will only alter the capsule properties (Models

29_45CM and 45_29CM), before alteration of both in a final test (Models 29_60LCM and 60_29LCM).

The purpose of altering the material properties is to establish how important they are in the development

of presbyopia, as well as see if alteration of the properties in the old eye can increase the accommoda-

tive ability, information important in aiding development of accommodative restoration techniques (see

Section 1.3.3). By only altering the capsule properties, insight into the role of the capsule with age can

be gained, while alteration of both lens and capsule allows for a comparison to only altering the lens

properties.
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6.4.1.2 Displacement Variation

The second study will alter the displacements applied to the lens, with the lens geometry and material

properties remaining constant. For example, a 29 YO lens can be combined with the ciliary body of a

60 YO lens to give the appropriate displacements for a 60 YO eye (29_60D). The zonules are remodelled

for the new lens and ciliary body combination, however, the zonular thickness of the baseline model is

retained. Additional models were run where the thickness of the zonules was adjusted to match the ciliary

body model used, e.g. 29_60D+60ZA.

The purpose of altering the displacement of the ciliary body is to investigate the presbyopia theories that

attribute the decline in accommodative ability to the changes in the ciliary body. For example, the Hess-

Gullstrand theory (Section 1.3) is based on the force of the ciliary muscle remaining constant, with the

only changes with age being in the lens, replicated in the current study by modelling an older lens with a

younger ciliary body model.

6.4.1.3 Variation in lens attachments

It has been proposed by Koretz & Handelman (1986) that the zonular attachments move with age be-

coming more tangential (Section 1.3), a potential cause of accommodative decline. As part of the current

modelling method, the zonules do move further away from the equator but to test the hypothesis of Ko-

retz & Handelman (1986), the 29 YO model was adopted to give the 60 YO zonule positions (29_60ZA)

which are further away from the equator. The ciliary body model of the 29 YO was retained, giving only a

change in zonule attachment position. The result of this alteration was that the zonule attachments on the

ciliary body spread further apart, giving a more horizontal application of displacement. A 60 YO model

was also adapted to have the 29 YO zonule positions (60_29ZA) which are a lot closer to the equator, to

see what impact that has. Again the ciliary body model of the 60 YO was retained. From this alteration,

the zonule attachments moved closer together on the ciliary body resulting in a more vertical application

of displacement.

6.4.1.4 Stiffness profile variation

It was discussed in the previous section how the thickness changes in the current models deviate from

the literature. It was therefore decided to investigate how alteration of the stiffness profile in an old lens

would affect the changes the lens undergoes. Using the 60 YO lens model, the crystalline lens material
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properties would be reversed, meaning the inner nucleus values are now assigned to the outer cortex. Two

variations, using the 29 YO material properties (60_29SV) and the 60YO material properties (60_60SV)

were made.

6.4.2 Results of parameteric variations

The focus of the current study is on how changes to parameters of the baseline models affect the ability of

the model to change shape and hence, power. Therefore, the results given in Table 6.7 (Page 197) show

how the power changes in the altered models compare to the power change of the baseline model, with a

full summary of the measured changes in Table A.7. The effect of variations to each of baseline models

will be discussed before looking at how the current investigation compares to similar ones conducted

in previous FEA models. How the results support the various theories of accommodation can then be

explored.

6.4.2.1 29 YO

Alterations to the 29 YO model highlight which age related changes cause the largest decrease in accom-

modative ability (optical power change), highlighting the main drivers of presbyopia. Alteration of the

material properties to match a 45 YO or 60 YO lens caused a decline, with the 60 YO material properties

causing the largest change. Altering the zonular displacement caused less of a decrease in accommoda-

tive ability than changing the material properties, either with or without a corresponding alteration to the

zonule thickness. When the zonule thickness was increased, and hence the force increased, the optical

power decreased due to the change in force application; principally through a reduction in posterior cur-

vature change. An increase in the distance between the zonule attachments and the equator also caused a

reduction in accommodative ability.

Alteration of the capsule properties had some interesting results. When the capsule properties alone were

aged, there was a slight decrease in accommodative ability (45CM). However, when both the internal lens

and capsule material properties were increased to match a 60 YO lens (60LCM) the decrease in optical

power was reduced, compared to alteration of the lens properties alone (60M). This showed that a young

capsule cannot provide as good a force distribution as an old capsule; opposite to the findings of the 45CM

model.
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6.4 Presbyopia modelling

6.4.2.2 45 YO

For the 45 YO model altering the materials to match the 60 YO model caused a decrease in accommodative

decline, as did using the 60 YO zonular arrangement, supporting the findings from alterations to the 29

YO lens. The accommodative ability of the 45 YO lens was improved when using the 29 YO material

properties or zonular arrangement, although the latter had a small effect. When the zonule thickness was

adjusted to match that of a 29 YO lens, the accommodative ability decreased reflecting a decrease in

applied force.

Using the 29 YO capsule material properties resulted in a reduction in the accommodative ability, sup-

porting the findings from the 29 YO model that the capsule is not as well suited at force distribution in a

younger lens.

6.4.2.3 60 YO

For the 60 YO model, altering the zonule displacements to represent either a 29 YO or 45 YO lens resulted

in a decrease in the accommodative ability, either with or without alterations to the zonule thickness,

despite an increase in applied force over the baseline model. This appeared to be a result of changes in the

amount of anterior curvature decrease.

Moving the zonule attachments closer to the lens equator also caused a reduction in accommodative ability,

principally due to the zonules causing less curvature change and higher changes in equatorial diameter.

Using the 29 YO material properties, but with the stiffness profile reversed, also resulted in a decrease in

power due to it causing the anterior curvature to decrease; resulting in an increase in power with ciliary

body movement.

Using the 29 and 45 YO material properties resulted in improvements to the accommodative ability, sup-

porting the previous models. Reversing the material property distribution also increased the accommoda-

tive ability, indicating that a decrease in central stiffness may increase accommodative ability. Altering

the lens and capsule properties to those of a 29 YO lens resulted in a smaller increase in accommodative

ability, again suggesting that a young capsule cannot distribute forces.

6.4.3 Further variation

Two further adjustments to the baseline model were conducted, so that particular results found so far could

be investigated further.
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6.4 Presbyopia modelling

6.4.3.1 Further Material property variation

The results so far have indicated that the material properties have a larger effect on the accommodative

ability than the displacement, therefore, three additional models were run where both the displacement and

material properties were aged, while the lens shape remained constant: 29_60D+LCM, 29_45D+LCM and

60_29D+LCM.

The results of these further variations showed that using the young lens shape with a 45 YO displacement

and material properties produced a higher decrease in accommodative ability than altering either alone.

Using the 60 YO properties produced changes in between the alterations of the properties individually.

With the old lens shape, using both the young material and displacement resulted in a larger increase

in accommodative ability than altering either property alone. These results indicate the best method of

restoring accommodative ability is to combine material changes with an increase in zonular displacement.

In terms of ageing combining the material and displacement values appears to have less of an effect

with increasing age, compared to alteration of the material properties alone, indicating that the material

properties are the most significant.

6.4.3.2 Further capsule variation

The results of the capsule variations showed the importance of the capsule on the accommodative changes;

therefore, a further investigation was carried out looking at how the thickness change with age impacts on

the model.

Two further models were generated: 29_60CT+CM (Capsule Thickness and Capsule Material properites)

and 60_29CT+CM. The results supported the previous hypothesis, with the model where the older capsule

thickness and properties were used increasing the accommodative ability of the young lens shape, not seen

with any previous adjustment. Using the young capsule thickness variation and material properties reduced

the accommodative ability of the old lens by 0.45 D.

6.4.4 Comparison to previous FEA models

The studies conducted in the current section can be compared to previous FEA models which have con-

ducted similar variations to baseline models.

Weeber & van der Heijde (2007) deformed their 60 YO model (modelled using a 40 YO lens shape with

60 YO material properties) by increasing the zonular displacement until the equatorial diameter change
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matched that of a 20 YO lens. Even with the extra deformation at the equator, the anterior and posterior

curvatures did not change, which was stated to be due to the cortex material sliding over the stiff nucleus.

The 60_29D model comes closest to replicating the setup of Weeber, and the results showed that the

anterior curvature decreased rather than increased (as typically seen with zonular movement), indicating

a similar movement of the cortex material.

Van de Sompel et al. (2010) used similar lens alterations, combining a 29 YO lens shape with 45 YO

material properties (referred to here as case 1), as well a 45 YO lens shape with 29 YO material properties

(referred to here as case 2). It was found that reshaping the lens (case 1) was better than altering the

material properties (case 2) in terms of accommodative ability. The results of the current study actually

show the opposite, with the 29_45M (the same alterations as case 1) giving a lower power change com-

pared to the 45_29M (the same alteration as case 2) model, which was supported by the changes seen in

the 45_60M and 60_45M models, although Van de Sompel et al. (2010) only modelled a 29 and 45 YO

lens. Wilde (2011) also produced altered models representing the same combinations as Van de Sompel

et al. (2010), but finding the opposite results. The altered models closely matched the changes of the

baseline models (e.g. 29_45M was close to the 45 YO model), indicating that the lens material is the most

important factor in the accommodative decline. The results of the current study show the same trends.

Lanchares et al. (2012) used the zonular forces that were found to cause appropriate deformations in a 30

YO lens to input into a 40 and 50 YO lens and varied the material properties until the deformations in the

new models were suitable. Appropriate deformations were induced with an increase in the stiffness of the

nucleus and cortex, with the nucleus having a higher rate of change. In the current set up, the material

properties are taken from in vitro measurements, but similar trends in stiffness increase were seen in the

three age models in the current studies, which also matched expected changes supporting the findings of

Lanchares.

6.4.5 Support for presbyopia theories

In Section 1.3 a number of theories on the development of presbyopia were discussed, which can now be

analysed in terms of the changes seen in the current modelling. The Duane-Fincham theory is based on

the ciliary muscle always reaching a maximum amount of contraction when accommodating, indicating

that the reduced changes with age are due to the lens which is supported by the models demonstrating the

material properties are a driving factor in accommodative decline (e.g. 29_45M and 29_60M), which will

be further discussed later in this section.
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The theory of Koretz & Handelman (1986) hypothesised that migration of the zonular attachments on the

lens causes a reduction in the force applied by the ciliary body, reducing the ability of the ciliary body to

alter the lens. The 29_60ZA model replicates this, showing that the inwards movement of the zonules did

reduce the accommodative ability, although not by much. However, movement of the zonules closer to the

equator in the 60_29ZA also produced an accommodative reduction. Therefore, this hypothesis cannot be

refuted or supported from the current model, as the results appear to depend on the material properties of

the lens model.

The modified geometric theory of Strenk et al. (2005) proposed that the reduction in accommodative abil-

ity is due to the reduction in circumlental space and a subsequent reduction in available zonular tension.

The baseline models incorporate a reducing circumlental space in the modelling method, resulting in a

smaller movement of the zonular fibres. In the initial models carried out in Section 6.2.3.2 the amount of

force applied to the lens reduced due to the reduction in ciliary body movement, which would support the

theory, however, the changes induced were not a match for what was expected. Therefore, the zonular ten-

sion was modelled to increase with age to induce appropriate changes in the lens with dis-accommodation.

The 60_29D model should support this theory, in that it causes an increase in circumlental space, but the

model predicts a power decrease going against the theory.

The models that adjusted the ciliary body displacement and zonule thickness are of interest. The results

showed that reducing the ciliary body displacement in a young lens, regardless of whether the zonule

thickness was increased or not, resulted in a decrease in applied force and accommodative ability (29_60D,

29_45D, 29_60D+ZT). In a middle age lens increasing the displacement resulted in an increase in force

and an increase in accommodative ability, but if the force reduced, the accommodative ability reduced

(45_29D, 45_29D+ZT). In an old lens, increasing the ciliary body displacement did not increase the

accommodative ability, regardless of whether the force was increased (60_29D, 60_29D+ZT). In the old

lens models, despite an increase in force, the accommodative ability still decreased due to the zonular

attachments on an older lens.

Overall, the altered models run in Section 6.4 suggest that the material properties are the largest contribu-

tor to accommodative decline. When using a young lens shape, increasing the stiffness to match an older

lens (e.g. 29_60M) caused a drop in the accommodative ability, while using an old lens shape with young

lens material properties (e.g. 60_29M) caused an increase in accommodative ability. With both variations,

the changes were the largest seen in any alteration. These results support the view that it is the stiffness of

the lens that causes the decline in accommodative ability with age, as the increase in stiffness reduces the
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effectiveness of the ciliary body and zonular structure.

The capsule has an important role, both in accommodation and its age related decline. From the initial

alterations made to the baseline models, it was apparent that increasing the stiffness of the capsule as well

as the stiffness of the lens reduced the amount of accommodative decline (29_60LCM). Also, alteration

of the capsule stiffness in an old lens (e.g. 45_29CM) causes a reduction in the accommodative ability,

indicating that the capsule stiffness increase with age is needed to cause a lens shape change. This was

taken further in Section 6.4.3.2 by altering the thickness of the capsule as well as the stiffness, finding

that increasing the age of the capsule in a young lens model (29_60CT+CM) provided an improvement

in accommodation, not seen with any other alteration. Using a younger capsule on an older lens causes a

reduction in the accommodative ability, supporting the idea that the capsule needs to change to be able to

continue altering the lens shape. The reason for this, discussed in Section 1.2.3.2, is that the capsule acts

as a force distributer and that with age it becomes more efficient at transferring the forces from the ciliary

body, due to the stiffening of the lens.

6.4.5.1 Presbyopia correction

Section 1.3.3 discussed the various proposals for the restoration of accommodative ability, broadly di-

vided into methods that replace the lens (IOLs and lens refilling) and methods that alter the existing lens

substance (fs-laser treatment). The current modelling methods have been conducted assuming the lens is

present, which is not the case with an IOL, therefore, the discussion will concentrate on lens refilling and

fs-laser treatments, which both have a lens “body” present.

The results of the current study suggest that if the stiffness of the lens can be reduced, the accommodative

ability of an old eye can be improved, provided the capsule retains its stiffness and thickness. Both lens

refilling and fs-laser surgery aim to achieve this, using different methods.

Lens refilling uses a synthetic material of similar properties to the lens to replace the lens within the cap-

sule. In principal, this could result in an overall lower stiffness; however, the procedure requires alterations

to the capsule due to the need to inject a material into the capsular bag (Section 1.3.3), which is likely

to alter the properties of the capsule. The current methods show that if the capsule stiffness is reduced

the accommodative improvements are lessened (e.g. 60_29LCM compared to 60_29M), therefore, careful

consideration of the capsular behaviour is needed.

Fs-laser surgery is based on the idea of cuts made internal to the lens increasing its flexibility. Although
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not replicated by the current methods, it is proposed that any cuts made internally cause the stiffness to

reduce, which has been shown to increase the accommodative ability. However, fs-laser surgery requires a

focused area of the lens to be altered, which was not replicated in the material property alteration models

(e.g. 60_29M) where the whole lens stiffness was altered. However, the 60_60SV model replicated a

situation where the stiffness profile was altered, showing that having a lower stiffness nucleus resulted in

an accommodative improvement which is more applicable in the case of fs treatment, with the 60_60SV

model indicating an accommodative increase could be found.

The current modelling methods are not suitable in their current form to replicate surgical methods, how-

ever, they do lay the groundwork for future alterations to be made. The principal issue is in replicating the

optical performance of the models before and after surgical treatments, as this will determine the effec-

tiveness of either treatment method in the long term, in addtition to accurately capturing the changes that

occur as a result of the surgical method.

6.4.6 Presbyopia modelling summary

The current modelling method allows for in depth analysis of how individual parameters of the model

affect the accommodative changes that occur. The results show that the material properties are the key

parameter in the decline in accommodative ability, but that the capsule has a vital role. The results suggest

that the most likely method of improving the accommodative ability in an ageing eye is to reduce the

stiffness of the lens material, provided that the capsule stiffness is not altered; although increasing the

stiffness of the capsule could be beneficial.

6.5 Alternative Accommodation models

Chapter 1 focused on the accommodative theory of Helmholtz, due to it being widely accepted as the

most appropriate theory. Other theories have been proposed (Section 1.2.2), therefore, an additional in-

vestigation was conducted to try to replicate these and compare the results to the existing models from

Section 6.3.

The two theories that will be modelled are those of Coleman and Schachar (Section 1.2.2). Previous

FEA models have conducted similar tests (see Section 2.4.1), therefore, the majority of the inputs and

alterations will be based on those models. In both cases, the 29 YO model from Section 6.3 will be
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the base model. Comparisons to the measured data using the methods outlined in Section 5.4 will be

conducted.

6.5.1 Model set up

Pressure location Relaxed lens outline

Figure 6.24: Illustration of the alterations to the baseline 29 YO lens to replicate the theories of Coleman (Left
model) and Schachar (Right model).

To represent the theory of Coleman, a pressure on the posterior surface is required in addition to the

zonular structure. Two models will be defined; the first will apply a pressure between the posterior pole

and the APZ2 zonule lens attachment point (C_A, see Figure 6.24). The second model will apply the

pressure between the posterior pole and APZ1 attachment point, with the APZ2 zonule being removed

(C_B). Both cases are similar to models developed by Martin et al. (2005) to investigate the same theory.

The initial pressure value will be taken from the study of Martin et al. (2005), using 225 Pa, applied as a

constant across the posterior surface.

To represent the Schachar theory, alterations to the baseline model are needed. The theory is based on

ciliary muscle contraction causing the equatorial zonule to apply traction on the lens, with the anterior and

posterior zonule slackening. Therefore, the initial lens shape will need to be represented by the relaxed

lens, as the accommodated lens shape is induced through traction from the relaxed state. In addition

only the equatorial zonule will be modelled, as neither anterior nor posterior zonules function in the

accommodative process. Two variations of this setup will be tested, the first using a flat equatorial zonule,

S_A (replicating models in Schachar & Bax, 2001b and Abolmaali et al., 2007) and the second using

the equatorial zonule position from the baseline model, S_B (see Figure 6.24). The initial displacement

applied to the flat zonule will be 0.2 mm (as in Abolmaali et al., 2007) with the angled zonule having the

same displacement as the baseline model. The thickness of the zonule will be set to 0.012 mm. A final

model (S_C) was defined, using the material properties for the lens as in Abolmaali et al. (2007), with the

rest of the model the same as S_B.
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6.5.2 Results

Both versions of the Coleman model had similar results, with the diameter change being the only value that

matched the expected changes. The anterior curvature had too little change, with the posterior curvature

having too much change (see Figure 6.25). The lens had an overall anterior movement. The changes in

the C_B were lower than the C_A model, but showed the same overall trends.

For the Schachar models, both the S_A and S_B models showed a decrease in thickness combined with

increases in diameter and surface curvatures (see Figure 6.25), resulting in a decrease in optical power.

Both models had an anterior movement of the lens body. The S_B model had slightly higher changes in

all aspects compared to the S_A model. The S_C model showed that there was a thickness increase and a

decrease in anterior curvature, not seen in the S_A and S_B model.

Figure 6.25: The deformations induced in the C_A and S_B models.

6.5.3 Analysis

The models run representing the Schachar and Coleman theories both did not match the required changes

that are seen in the accommodative system (Section 3.2). The S_A and S_B models did not match with

either the measured changes or those proposed by the Schachar theory, which is based on the lens forming

a spindle shape with zonular contraction, with a steep central curvature section and lower curvature in the

periphery of the lens. The S_C model did show a thickness increase, as in Schachar & Bax (2001b) and

Abolmaali et al. (2007), but the spindle shape was not seen. The material properties of the S_C model

also did not match any of the stiffness distributions measured in vitro (Section 4.3.1.6).

The Coleman models showed similar shape changes to the baseline models, however, there was too much

anterior movement in the lens combined with increase posterior curvature changes due to the presence of
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the posterior pressure. Models by Martin et al. (2005) showed similar results, that the set up following

Coleman does not results in changes that match in vivo measurements.

Overall, neither of the altered models shows changes induced with accommodation that match what has

been measured in vivo, indicating that the methods used in Section 6.3 and Section 6.4 following the

Helmholtz theory are most appropriate for replicating accommodation.
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Chapter 7

Conclusion

7.1 Introduction

In this chapter a summary of the whole thesis will be given, detailing to what extent the principal questions

were answered and how the objectives defined in Section 1.4 were achieved. Suggestions for improve-

ments and details of the future directions of research presented in this thesis are also included.

7.2 Comparisons to aims and objectives

The overall aim of this thesis was to investigate two fundamental questions:

1. What causes the crystalline lens to change shape?

2. What are the main contributing factors in the development of Presbyopia?

Both of these questions have been explored using a new finite element analysis model of the accommoda-

tion system, with both affirmations of existing ideas and new insights given. A number of objectives had

to be completed in order to answer the principal aims.

7.2.1 Objective 1 - Development of a geometric model

To enable an improved model of the accommodation system to be developed, an understanding of the

methods used to develop and run previous models was needed, which was achieved through the review

of existing FEA models in Chapter 2. The majority of existing FEA models share a number of method-

ologies, either in terms of the crystalline lens model, zonular structure or material properties used. As

a consequence, any limitations in one method were typically carried through to subsequent models that
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adopted it. The key areas where existing models had limitations were in the internal structure of the

lens (and therefore, the material property distribution, discussed in Section 7.2.2) and the zonular fibre

arrangement.

In Chapter 3 a novel zonule model was proposed by incorporating a range of in vivo and in vitro data on the

zonular structure and ciliary body. Four zonular bundles were modelled combined with a representation

of the ciliary body, which could be altered to represent the accommodated and relaxed state, allowing

estimations of the zonular displacements to be obtained (Section 3.5). In addition to the studies used to

develop the model, recent data (Croft et al., 2013) have supported the inclusion of the PZ2 bundle, with

in vivo measurement highlighting the link between the vitreous zonules (which is represented by the PZ2

zonule) and the lens as an important aspect of accommodation.

To allow for the proposed model to fulfill its potential, a lens modelling method was selected that allowed

for both accommodated and relaxed lens models to be generated for any age. Compared to previous

methods used to model the lens, the selected method allowed for a range of ages to be modelled in both

accommodated and relaxed states, through alteration of key parameters which could be measured in vivo.

The method also produced appropriate lens shapes across all ages (Section 3.3.2). A new method of

adapting measured capsule thickness data was proposed, defining a capsular area within the lens outline

(Section 3.4). The final geometric consideration was the internal structure of the lens, which dictates how

the material parameters are distributed through the lens. In vivo data were used to define a method of

scaling the outer lens layer down to represent different internal layers, which will be discussed further in

Section 7.2.2.

7.2.2 Objective 2 - Selection of appropriate material properties

Even with recent advancements in available material data for the lens, the majority of FEA models have

persisted in using the data of Fisher (1971), leading to the use of a simplified nucleus cortex repre-

sentation (Section 2.2.2). Fisher’s data has since been shown to be based on inaccurate methodologies

(Section 4.3.1.1), which, combined with recent data on the stiffness profile that exists in the lens, led to

the adoption of an age related stiffness profile for the crystalline lens material properties (Section 4.4.1).

To complement the use of recent material data, a hyper-elastic constitutive model was utilised to represent

the lens, allowing the more complex behaviour of these components to be captured (Section 4.2).

The capsule modelling methods from previous studies have been consistent, leading to the use of a similar

methodology. Although the capsule has known anisotropic properties, there was insufficient data available
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to incorporate this accurately. Therefore, an isotropic hyper-elastic constitutive model, combined with

suitable stiffness data (Section 4.4.2), was utilised to replicate the known constitutive behaviour of the

capsule as precisely as possible.

The zonular material properties have been less well studied, leading to a variety of estimations used in

previous FEA models. In the current study, the zonules were represented by a linear elastic model and

modelled so that thickness values could be applied to individual bundles to control the stiffness. This

allowed for customisation of the zonules in the modelling method, to ensure appropriate values could be

selected for each age model (Section 4.4.3; Section 6.2.3.3).

In terms of the FEA methods used to simulate the accommodative process, a 2D axisymmetric large

deformation static study was conducted, allowing for the large strain that is present in the accommodative

process to be incorporated. Due to the proposed zonular arrangement, the only loads and restraints needed

on the accommodative model are applied to the zonular bundles. Previous FEA models have had to include

artificial restraints on the lens due to the zonular methods used, preventing movement of the lens. In the

current method, the lens deformed purely from movement of the zonules, replicating in vivo conditions in

a more suitable manner.

7.2.3 Objective 3 - Evaluation of proposed methods

The evaluation of the proposed models was conducted in two stages: the first stage (Section 6.2) was used

to ensure the proposed modelling methods were appropriate, with alterations suggested where needed.

The second stage (Section 6.3) was to evaluate the final modelling procedure against measured in vivo

data.

7.2.3.1 Stage 1 - Development of the proposed model

In the first stage, a number of novel studies were conducted. Different internal structure models were

analysed to ensure that an appropriate method would be used. The first analysis was conducted using

an approximation of the spinning lens tests of Fisher (1971) and Wilde et al. (2012), comparing the

deformations induced in four internal structure models (without the capsule present) to each other and

to measured in vitro data (Section 6.2.1). It was found that the internal structure models that used a

stiffness profile (SA and SB) were most suitable, which was further verified in a final test with the zonules

integrated, conducted after the zonular structure was finalised (Section 6.2.5). The final result was that the
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SB stiffness gradient was selected for all future modelling, with evidence that the nucleus-cortex model

may over simplify modelling procedures.

To ensure the capsule modelling methodology was appropriate, the capsular area was first included on

two different age lens models used in the spinning lens test (Section 6.2.2). In vitro testing had shown

the capsule would restrict the changes in the spinning lens compared to de-capsulated lenses. The models

showed that this did occur with the proposed capsule method, although there was not a complete match

across all ages. The failure to match all ages may be due to limitations in the material data used. Further

integration with the zonular model demonstrated that the capsule model provided suitable behaviour for

the purposes of the current model.

Testing of the novel zonular arrangement first confirmed that it replicated the movement of the lens bet-

ter than previous FEA models (Section 6.2.3.1). The testing then focused on establishing how the dis-

placement and stiffness should be defined. Suitable ciliary body displacement values and zonule bundle

thicknesses were found by utilising force calculations and comparisons to in vivo data (Section 6.2.3.3).

Some minor alterations were then detailed to ensure the methodology represented the most appropriate

zonular modelling procedure (Section 6.2.3.4), principally involving the adjustment of the zonule bundle

thicknesses, ensuring that any thickness changes were within measured values (see Section 3.2.4.3)

A novel investigation into how statistical variation of the material properties affected the thickness change

of the lens was conducted, using the probabilistic modelling methods in ANSYS (Section 6.2.4). Two

studies were conducted, the first showed how the capsule stiffness had a larger significance than the in-

ternal layers of the lens (Section 6.2.4.1). The second study showed that the zonule and capsule stiffness

were almost equal in significance with regards to thickness change and posterior pole movement, but had

opposite effects on the thickness change if they were to be increased (Section 6.2.4.2).

7.2.3.2 Stage 2 - Accommodation modelling

After completion of the studies in Section 6.2, the methodologies were updated and a final three models

were developed to replicate a 29, 45 and 60 YO lens. These were simulated to ensure that the models

matched a detailed comparison to the expected changes that occur during accommodation, as well as to

compare to previous FEA models to ensure that the proposed methods offer improvements. An initial

study was conducted (Section 6.3.1), with some final alterations to the zonular arrangement completed,

after which the performance of the models could be evaluated (Section 6.3.3.1 and Section 6.3.3.2).
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Compared to measured in vivo data, the model performed well, matching the general trends with both

age and accommodation of the posterior pole movement, curvature change, diameter change and ciliary

body force. The parameters that deviated from the literature were the thickness change, with the overall

thickness change being slightly high and the thickness distribution not matching in vivo measurements,

with the thickness changes distributed between the nucleus and cortex regions rather than concentrated

within the nucleus. Previous FEA models have also shown the internal thickness changes to be distributed

through the lens, indicating that the issue could be a result of the material modelling methods used.

In comparison to previous FEA models, the current model compares well. Overall, the geometric changes

had a better fit to measured data, but also had the best replication of the movement of the lens during

the accommodation process. Differences were seen in the stress distributions, but this was a result of

the differing material and loading conditions used. Overall, the modelling conducted in Section 6.2 and

Section 6.3 demonstrated that the proposed modelling methodologies provide a suitable representation of

the accommodation system.

7.2.4 Objective 4 - Parametric analysis

To meet the requirements of objective 4, and to explore the principal questions, a range of models were

generated, each with an alteration to one of the three baseline models taken from Section 6.3. For example,

the material properties of a 60 YO lens were used in the 29 YO baseline model, to examine how that change

impacted on the accommodative ability of the model. Using alterations to one aspect of a model at a time

allowed for direct comparisons to be made on how each alteration affected the deformations induced.

The parameter that had the highest impact on the accommodative ability was the material properties of the

lens, where increasing the age in a young lens caused an accommodative decline and decreasing the age

in an old lens caused an accommodative increase. Previous FEA models have shown similar findings and

the results support various hypotheses from the literature on the root causes of presbyopia (Section 6.4.4).

Adjustments to the material properties were the only changes that improved the accommodative ability of

the baseline old lens, with the results also showing that changing the shape of an old lens is unlikely to

have any benefits.

Novel investigations into capsular alterations were conducted, looking for the first time at how alteration

of the capsule thickness and stiffness impacts on accommodation, finding that using an older capsule on a

young lens actually causes an increase in accommodative ability, indicating that increasing the thickness

and stiffness in an old capsule may have beneficial effects. The models also demonstrated that the younger
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capsule is ineffective at distributing the forces induced by the zonules, indicating that the changes the

capsule goes through with age are needed for accommodation to continue to be induced.

In terms of the current understandings of presbyopia development, a definitive answer could not be given

on the exact cause, however, evidence was found both for and against a number of current theories. The

overall indications are that presbyopia does have a lenticular origin, with only alterations to the lenticular

parameters causing significant reductions in power in a younger lens. For ciliary body and zonule alter-

ations, the results were not so clear. Decreasing the ciliary body displacement in a young lens, either with

or without changing the zonule bundle thickness, caused a decrease in power change, mirroring a decrease

in force application. Increasing the displacement in an old lens decreased the accommodative ability, de-

spite increases in force applied. A possible explanation is that with a stiffer, larger lens, the zonules are

less effective, so despite increased forces, reduced changes are seen, supporting a lenticular explanation

of presbyopia. However, it would suggest that if the ciliary body force was to reduce with age, it could

contribute to the accommodative decline.

An analysis of potential presbyopia treatments was not conducted due to the lack of data on the changes

in both geometry and material behaviour that would occur as a result of any treatment. However, the

indications are that if the stiffness of the lens was reduced, either as whole (e.g. 60_29M) or alteration of

the stiffness profile (60_60SV), improvements to the accommodative ability could be gained, supporting

the principals of lens refilling and femtosecond laser surgery. The indications are also that if the stiffness

of the capsule could be altered, potential accommodative improvements could be gained.

A final few models were developed to try to simulate the accommodative theories of Coleman and Schachar,

using basic alterations to the baseline model to replicate the different changes during accommodation. The

results indicate that neither theory gives results that match expectations, supporting the Helmholtz theory.

7.3 Answers to principal questions of the thesis

The first principal question from Section 1.4 was in relation to the principal factors that cause the crys-

talline lens to change its shape. It is evident from the modelling conducted that the shape change that

occurs is dependant on a combination of the crystalline lens material properties and the displacement of

the zonular bundles. The material properties of the lens are the most significant aspect of the changes

during accommodation. However, the importance of the zonular and capsular stiffness in the actions of

the zonular displacement cannot be ignored.
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The second principal question is of more interest and was in relation to how the change in material and

geometric parameters with age contribute to the development of presbyopia. The indications are that the

decline in accommodative ability has a lenticular origin and is a combination of a number of factors.

From the modelling conducted, the material parameters of the lens are key, being the largest contributer

to accommodative decline in a baseline young lens, but also demonstrating that alteration in an old eye

could restore accommodative ability. The influence of the capsule was also demonstrated, showing how

the increasing thickness of the capsule aids in delaying the accommodative decline. The contributions of

the ciliary body and zonular arrangement to accommodative decline were not so clear, but the results still

indicated a lenticular origin of presbyopia.

7.4 Suggestions for improvements and future directions

Although a good fit was found to the majority of in vivo measurements that the current models were com-

pared to, there were a number of aspects that did not match what was expected. In addition, there was

ambiguity in the studies looking at the root causes of presbyopia, which will require further investigation.

The accommodation model developed in this thesis is based on a range of existing measurements of both

material and geometric properties of the accommodative structures. Therefore, the aspects of the current

model that do match with expectations could be explained by limitations in the available data, in particular

in the material behaviour. A lack of in vivo measurements of the ciliary body and zonules, combined with

the material property limitations led to assumptions being made on key modelling methodologies, as well

as adoption of constitutive models that do not provide a complete description of the behaviour of the vari-

ous components. Additional limitations are present in the FEA modelling methods, such as the simplified

connection between the layers of the lens (currently modelled as bonded), the use of axisymmetry rather

than a complete 3D model and the exclusion of other structures that may be relevant to accommodation.

Therefore, future research should be split into two distinct areas:

1. Fundamental data;

2. FEA methods.

7.4.1 Fundamental data

The fundamental data used to define the current model could be improved in a number of ways. First,

further data on the material properties of the accommodative structures is needed to develop the accom-
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modation models. One method that could be used to obtain this data is through in vitro lens measurements,

such as using mechanical stretchers to stretch the accommodative components, enabling analysis of the

changes in the crystalline lens, zonules and ciliary body. Using a method such as this would enable the

age related changes to be explored in more detail, in particular focusing on the material change in the post

presbyopic eye, as future work will need to focus on methods of restoring accommodation in an ageing

eye. One particular area of interest is in the apparent difference between the in vivo thickness change

distribution and measured material property distribution, which can be explored though a combination of

in vitro and in vivo imaging and material testing methods.

A second method of obtaining material data is through estimation of material properties using individu-

alised FEA models. Due to the advances in in vivo imaging techniques (such as 3D MRI and AS-OCT),

a more complete picture of subjects accommodative structures can be obtained. By using an individual

subject’s geometric data measured in vivo in both accommodated and relaxed states, personalised FEA

models can be constructed. Deformations could then be induced in the FEA model based on the in vivo

ciliary body measurements and the material parameters of the model altered until the deformed profile

matches the measured changes. By repeating the process on a number of ages, the material properties

can be compared between models and an estimation of appropriate values can be made, including inves-

tigations into potential anisotropic behaviour. The author has developed a method of analysing in vivo

measurements of the ciliary body that would benefit this research direction (see Appendix B).

Continued advances in in vivo imaging can also be used to improve on the available population data of

accommodative components geometry, in particular on the changes that occur during accommodation (e.g.

3d-OCT Gambra et al. (2013)). The use of MRI will potentially allow the majority of relevant changes

to be captured using a single methodology, rather than combining a range of methodologies to obtain

geometric data as utilised in the current study. Development of imaging methodologies that allow 3D

data capture will also aid in building fully representative models, taking into account nasal and temporal

asymmetry. New imaging techniques have the potential to improve on the known data on the refractive

index distribution, aiding in optical modelling, discussed in the next section.

7.4.2 FEA Modelling methods

In terms of the FEA modelling method, using either future enhanced properties, or through refinement

using existing data, a number of aspects can be improved. First of all, the basic FEA methods can be

improved, by further investigation into element choices for the accommodative components and the con-
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stitutive models used. These changes can be enhanced through further analysis of the deviations from the

literature in the current model; such as the reasons for why the internal thickness changes do not match

those measured (Section 6.3.3.1). Further refinement of the ciliary body model and zonular arrangement

is needed, in particular in light of recent in vivo data in the literature. Another aspect that can be analysed

is the use of a 3D compared to a 2D model, in particular in relation to how the zonular fibres would be

modelled in 3D. The connections between the lens layers also need to be investigated, analysing whether

friction between lens layers affects the accommodative behaviour. On top of the internal layers, whether

the lens epithelium or suture sites have an effect on the accommodation mechanism can be investigated.

The localised deformations at the zonular attachments in the current model would also need further work,

ideally removing them entirely.

With improved data on the anterior eye, the influence of other accommodative components could be

explored, such as the vitreous or iris. In addition, the evidence from the current model supports the

idea that the capsule is a key aspect of accommodation, so further strengthening of the capsule modelling

is needed, in particular in relation to its impact on potential accommodation restoration methods, where

the capsule is altered due to surgical methods.

Finally, the change of the optical performance with accommodation needs more detailed analysis. The cur-

rent methodology uses a very basic method of predicting the optical power, but this does not incorporate

the gradient refractive index present within the lens. Therefore, more advanced methods of measuring op-

tical performance need to be considered, such as ray tracing using internal region outlines of the deformed

lens combined with a gradient refractive index.

7.5 Future applications

With more detailed FEA models of the accommodative components and accommodative system, a range

of applications can be explored. First, a better understanding of accommodation and presbyopia can be

gained, building on the work conducted in the current thesis. Secondly, investigations into accommodation

restoration techniques can be conducted. Alterations to a baseline model can be made to replicate the

changes that could be made through techniques such as lens refilling and fs-laser surgery.

One exciting avenue that would be beneficial to explore, if the potential benefits of accommodative restora-

tion surgery are fully realised, is the use of personalised FEA models as part of the treatment process. By

utilising available in vivo imaging techniques, all of the relevant geometric data can be gathered for a sub-
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ject, allowing a personalised model to be generated. The individual material properties of that subject can

then be established through the FEA model, and through adapting the FEA model, the most appropriate

surgical techniques can be theoretically tested, before any actual surgical methods are utilised.
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Appendix A

Supporting data for Chapter 6

A.1 Zonule bundle data

Table A.1: Zonule displacements used in Chapter 6, divided into sections and models. All displacements in mm.

AAZ AEZ APZ1 APZ2
Section Model x y x y x y x y

6.2.3.1
ZA - - 0.37 0 - - - -
ZB 0.4 -0.12 0.4 -0.12 0.41 -0.17 - -
ZC 0.4 -0.12 0.4 -0.12 0.41 -0.17 0.2 0.12

6.2.3.2
ZT1_20 0.79 -0.26 0.74 -0.2 0.61 -0.19 0.34 -0.14
ZT1_40 0.4 -0.12 0.4 -0.12 0.41 -0.17 0.2 0.12
ZT1_50 0.15 -0.12 0.19 -0.07 0.13 0 0.07 0.05

6.2.3.3

20_A 0.47 -0.26 0.51 -0.23 0.54 -0.24 0.35 -0.14
20_B 0.79 -0.26 0.74 -0.2 0.61 -0.19 0.34 -0.14
40_A 0.33 -0.1 0.34 -0.12 0.42 -0.19 0.26 -0.04
40_B 0.4 -0.12 0.4 -0.12 0.41 -0.17 0.2 0.12
50_A 0.29 -0.23 0.26 -0.06 0.1 0.06 0.14 0.08
50_B 0.15 -0.12 0.19 -0.07 0.13 0 0.07 0.05

6.2.3.4

40_Ang
0.39 -0.1 0.43 -0.14 0.31 -0.07 0.31 0

40_Tan
20 0.44 -0.14 0.46 -0.17 0.44 -0.16 0.4 -0.07
40 0.37 -0.1 0.42 -0.1 0.21 -0.06 0.17 0.06
50 0.25 -0.16 0.32 -0.08 0.2 -0.01 0.14 -0.01

6.2.5
20_NC/SA/SB 0.48 -0.2 0.46 -0.17 0.44 -0.16 0.34 -0.07
40_NC/SA/SB 0.37 -0.1 0.42 -0.1 0.21 -0.06 0.17 0.06
50_NC/SA/SB 0.25 -0.16 0.32 -0.08 0.2 -0.01 0.14 -0.01

6.3
29 0.41 -0.1 0.46 -0.19 0.39 -0.13 0.25 0.02
45 0.27 -0.17 0.3 -0.15 0.16 -0.05 0.22 0.02
60 0.18 -0.12 0.2 -0.04 0.09 -0.04 0.11 0.06
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A.2 Results data

Table A.2: Zonule bundle thickness values used in Chapter 6. All values in mm.

Section Model Age (Years) AAZ AEZ APZ1 APZ2

6.2.3.4
20 0.03 0.012 0.018 0.012
40 0.03 0.024 0.022 0.018
50 0.035 0.024 0.03 0.025

6.3.1
29 0.03 0.012 0.018 0.012
45 0.03 0.024 0.022 0.018
60 0.035 0.025 0.03 0.025

6.3.2
29 0.029 0.011 0.017 0.011
45 0.032 0.025 0.026 0.019
60 0.045 0.025 0.045 0.035

A.2 Results data

Detailed results of all models run in Chapter 6, split into the different procedure methods used

Table A.3: Results of models using the spinning lens setup. Compared to the expected changes (Section 5.4.2) a *
indicates a change that is too high and a ** indicates a change that is too low.

Section Model TLchange (mm) LR change (mm) RA change (mm) RP change (mm)

Section 6.2.1

20_H 0.489 0.188 3.600 1.185
20_NC 0.561 0.152 6.302 2.106
20_SA 0.623 0.149 8.494 2.984
20_SB 0.563 0.139 7.627 2.182
40_H 0.126 0.046 0.967 0.340

40_NC 0.126 0.039 1.153 0.398
40_SA 0.132 0.039 1.257 0.448
40_SB 0.129 0.039 1.219 0.417
50_H 0.026 0.009 0.188 0.071

50_NC 0.034 0.019 0.096 0.055
50_SA 0.035 0.019 0.077 0.045
50_SB 0.036 0.020 0.105 0.060

Section 6.2.2
20_SBC 0.169 0.017 0.002 0.000
40_SBC 0.073 0.015 0.001 0.000
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A.2 Results data

Table A.4: Results of models run in Section 6.2 using the zonule displacement procedure. Compared to the expected
changes (Section 5.4.2) a * indicates a change that is too high and a ** indicates a change that is too low.

Section Model TLchange (mm) LR change (mm) RA change (mm) RP change (mm)

6.2.3.1
ZA 0.29 0.20 2.69 0.70**
ZB 0.37* 0.26 4.35* 0.80
ZC 0.40* 0.27 4.01* 0.80

6.2.3.2
ZT1_20 0.96* 0.58 12.30* 2.24*
ZT1_40 0.40* 0.27 4.01* 0.80
ZT1_50 0.08 0.14 0.47 0.17**

6.2.3.3

20_A 0.60* 0.38 3.72** 1.76
20_B 0.78* 0.53 6.20 2.11*
40_A 0.27 0.24 1.73 0.79
40_B 0.30* 0.27 2.09 0.78
50_A 0.10 0.21 0.51 0.18**
50_B 0.08 0.13 0.46 0.17**

20_A_1 0.73* 0.37 6.90 1.67
20_A_2 0.72* 0.42 5.16 1.96
20_A_3 0.60* 0.33** 3.37** 1.94
40_A_1 0.34* 0.22 2.96 0.77
40_A_2 0.35* 0.26 2.42 0.90*
40_A_3 0.27 0.20 1.55 0.83
50_A_1 0.14 0.21 0.65 0.18**
50_A_2 0.13 0.23 0.60 0.19**
50_A_3 0.09 0.17 0.48 0.19**

6.2.3.4

40_Ang 0.40* 0.26 4.41* 0.80
40_Tan 0.38* 0.26 3.48 0.62**

20 0.65* 0.38 4.73 1.83
40 0.40* 0.36 3.12 0.78
50 0.16 0.29* 0.62 0.15**

6.2.5

20_NC 0.67* 0.39 3.86** 1.72
20_SA 0.69* 0.39 4.13** 1.86
20_SB 0.69* 0.39 4.12** 1.81
40_NC 0.34* 0.28 3.03 0.47**
40_SA 0.35* 0.29 3.28 0.47**
40_SB 0.40* 0.36 3.12 0.78
50_NC 0.16 0.29* -0.12** 0.11**
50_SA 0.16 0.29* 0.04** 0.08**
50_SB 0.16 0.29* 0.18** 0.15**
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A.2 Results data

Table A.5: Results of studies in Section 6.3. Compared to the expected changes (Section 5.4.2) a * indicates a
change that is too high and a ** indicates a change that is too low.

Parameter 29 YO 45 YO 60 YO
TLchange (mm) 0.528* 0.241 0.051
LRchange (mm) 0.351 0.261 0.198
RAchange (mm) 3.624 0.981 -0.155**
RPchange (mm) 1.220 0.436 0.098
Total force (N) 0.092 0.082 0.057
Anterior pole

movement (mm)
-0.346 (67%) -0.233 (97%) -0.133 (2.6%)

Posterior pole
movement (mm)

0.182 0.0255 -0.085

Central movement
(mm)

-0.076 -0.106 -0.089

TNchange (mm) 0.229 (43%) 0.088 (36%) 0.003 (5%)

Table A.6: Comparison of the changes in geometry in the current model in comparison to models from previous
FEA models, from Section 6.3.3.2.

Age
(Years)

Study TL change
(mm)

RA change
(mm)

RP change
(mm)

TN change
(mm)

LR change
(mm)

29

Current 0.52 3.61 1.21 0.226 0.3420
Burd et al.

(2002)
- 6.26 0.81 - -

Hermans et al.
(2006)

0.38 4.56 0.87 0.2 (52%) 0.27

Hermans et al.
(2008)

0.4 4.06 0.66 0.21

Wilde (2011) 0.61 5.4 2.19 80% 0.29
Lanchares et al.

(2012)
0.39 3.49 0.87 0.234

(60%)
0.32

45

Current 0.24 1.07 0.44 0.09 0.2620
Hermans et al.

(2008)
0.23 1.98 0.44 0.06 0.14

Wilde (2011) 0.31 1.8 0.73 0.23
Lanchares et al.

(2012)
2.48 0.88
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A.2 Results data

Table A.7: Results of the presbyopia models run in Section 6.4

Section Baseline
model

Model TLchange
(mm)

LR change
(mm)

RA change (mm) RP change (mm)

6.4.1

29

45M 0.31 0.29 1.39 0.56
45CM 0.49 0.33 3.38 1.18
45D 0.38 0.23 2.39 0.76

45D+ZT 0.40 0.28 2.40 0.57
60M 0.09 0.22 0.00 0.17

60LCM 0.09 0.22 0.01 0.17
60D 0.29 0.17 2.05 0.65

60D+ZT 0.38 0.20 1.92 0.39
60ZA 0.49 0.33 2.94 0.86

45

29M 0.39 0.28 2.84 0.77
29CM 0.25 0.27 1.08 0.45
29D 0.33 0.34 1.49 0.52

29D+ZT 0.29 0.28 1.44 0.48
60M 0.08 0.23 -0.11 0.16
60D 0.18 0.21 0.70 0.32

60D+ZT 0.20 0.21 0.72 0.27

60

29M 0.33 0.12 2.90 0.16
29LCM 0.34 0.12 2.96 0.13

29D 0.11 0.26 -0.04 0.13
29D+ZT 0.08 0.20 0.00 0.13

29SV 0.29 0.11 1.58 -0.45
29ZA 0.07 0.09 0.04 0.14
45M 0.20 0.11 1.00 0.24
45D 0.09 0.21 -0.04 0.16

45D+ZT 0.08 0.21 -0.02 0.14
60SV 0.07 0.04 0.64 0.35

6.4.3
29

60D+LCM 0.05 0.12 0.08 0.15
45D+LCM 0.21 0.19 0.95 0.36
60CT+CM 0.52 0.29 5.06 1.03

60
29D+LCM 0.49 0.33 3.96 0.35
29CT+CM 0.05 0.08 0.02 0.16
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A.3 Further details of the accommodation models in Section 6.3.2

A.3 Further details of the accommodation models in Section 6.3.2

Table A.8: Material property data for the models used in Section 6.3.2.

29 45 60
Component m (N/mm2) d m (N/mm2) d m (N/mm2) d

Lens Region

0.05 4.26E-05 46.95 1.82E-03 1.10 0.036 0.055
0.15 5.8E-05 34.48 1.75E-03 1.14 0.032 0.063
0.25 7.9E-05 25.32 1.69E-03 1.18 0.026 0.076
0.35 1.08E-04 18.52 1.63E-03 1.23 0.021 0.095
0.45 1.47E-04 13.61 1.57E-03 1.27 0.016 0.124
0.55 2E-04 10 1.51E-03 1.32 0.012 0.171
0.65 2.73E-04 7.33 1.46E-03 1.37 0.008 0.247
0.75 3.72E-04 5.38 1.41E-03 1.42 0.005 0.385
0.85 5.07E-04 3.94 1.35E-03 1.48 0.003 0.645
0.95 6.91E-04 2.89 1.31E-03 1.54 0.002 1.177

Capsule 0.432 4.63E-03 0.493 4.06E-03 0.493 4.06E-03

Table A.9: Geometric data for the lens outline and internal structure used in Section 6.3.2.

Parameter (in mm
unless otherwise

indicated)

29 YO 45 YO 60 YO

LR 4.01 4.33 4.46
TL 4.01 4.24 4.46
RA 8.18 9.64 9.41
RP -4.38 -5.25 -5.40
qA -9.05 -5.84 -4.20
qP -2.9700 -1.85 -0.8

AccAbility (D) 9.05 3.58 1.20
Z1 0.28 0.28 0.28
Z2 0.58 0.77 0.95
Z3 0.34 0.34 0.34
Z4 0.78 0.80 0.83
Z5 0.77 0.79 0.81
Z6 0.31 0.31 0.31
Z7 0.40 0.52 0.64
Z8 0.17 0.17 0.17

Nucleus thickness 2.20 2.24 2.28
Anterior Cortex thickness 0.86 1.05 1.23
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A.3 Further details of the accommodation models in Section 6.3.2

Table A.10: The capsule thickness values used in Section 6.3.2.

Parameter (all in mm) 29 YO 45 YO 60 YO
p0 0.0102 0.0117 0.0131
p45 0.0118 0.0153 0.0167
p80 0.0078 0.0074 0.0070
p100 0.0074 0.0074 0.0074
p120 0.0073 0.0066 0.0059
p200 0.0033 0.0032 0.0030

Table A.11: Geometric data for definition of the zonules and ciliary body used in Section 6.3.2. R = Relaxed, A =
Accommodated.

Parameter (all
in mm)

29 YO 45 YO 60 YO
R A R A R A

Axial Length
(AL)

23.31 23.49 23.66

LD 9.22 8.01 9.15 8.67 9.08 8.92
AAZ, APZ1 1.15 1.25 1.35

APZ2 1.14 1.10 1.05
CMT1 1.13 1.20 1.19 1.21 1.24 1.25
CMT2 0.83
CMT3 0.5

Ciliary muscle
length

4.63 4.04 4.63 4.40 4.63 4.55

ACD 3.73 3.20 3.38 3.14 3.06 2.94
Corneal

thickness
0.54 0.53 0.52

Anterior shift 0.05 0.05 0.05
Corneal apex to

ciliary body
4.44 4.46 4.30 4.34 4.17 4.22

Ciliary muscle
movement

0.36 0.28 0.20
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Appendix B

Ciliary body image analysis tool

B.1 Introduction

The Aston Longitudinal Assessment of Presbyopia (ALAP) study was run to try to quantify the changes
in structure and optics during incipient presbyopia. A key part of the study was investigation into why
some individuals become increasingly myopic during this period. The study was to be conducted over a
2.5 year period, collecting data from 58 emmetropic and myopic subjects aged 33 – 45 years, with data
collected every 6 months.

One of the subsets of data collected was on the measurement of the ciliary muscle, in both relaxed and
accommodated states, using the Visante OCT system. Although the Visante allows for measurement of the
ciliary body, it was not designed for this purpose, therefore, measurements were taken by manually fitting
callipers to subject images. It was decided that a more robust method was required for analysing these
images. In particular, a study by Kao et al. (2011) had developed a semi-automated oct measurement tool
to extract thickness measurements. However, the methods used appeared to measure the overall ciliary
body thickness rather than the ciliary muscle, in addition to approximating the anterior thickness of the
ciliary body. The thickness measurements used also were consistent in being measured 1, 2 and 3 mm
from the scleral spur, not taking into account the changing length of the ciliary body with age (Sheppard
& Davies, 2010).

It was therefore decided to develop a method of fitting curves to the ciliary muscle itself, in addition to
measuring at 25, 50 and 75% of the ciliary muscle length.

B.2 Method

The first stage in the process was the adjustment of the original DICOM images that were extracted from
the Visante. The raw images measured 1024 by 512 pixels and were in the RGB format (Figure B.1). The
images had to be rotated by 90 degrees, before being resized to reflect the actual aspect ratio of the ciliary
muscle, which was 512 by 1280 pixels (assuming a conversion of 128 pixels per mm) following Kao et al.
(2011). A conversion to grey-scale was completed to reduce the complexity of the image. The resultant
adjusted images had their histogram automatically adjusted to remove any excess noise in the image, as
shown in Figure B.1.

To begin the curve fitting process, a number of points need to be defined by the user. The first was the
location of the scleral spur (SS), followed by an approximation of the ending point of the ciliary muscle.
Additional points highlighting the top and bottom of the ciliary muscle were also selected visually, at the
midpoint between the SS and right hand boundary. These points were then used to form a mask, formed
from two polynomials, so that only the relevant ciliary muscle region is used in the curve fitting process,
removing the data from the rest of the image Figure B.1.
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B.2 Method

1 mm

Figure B.1: Comparison between the original DICOM image (Left), its rotation and histrogram adjustment (Top
right) and the final region of interest (Bottom right).

With the relevant region extracted, the curve fitting process could be started. A block of 10 vertical lines,
every 0.5 mm between the scleral spur and the ciliary muscle end point, were defined that passed through
the ciliary muscle region. These lines were then split into two smaller lines, covering the top and bottom
part of the ciliary muscle, and the pixel intensity values along the lines were then extracted. The intensity
change along the line can then be established to find the boundary of the ciliary muscle, which is where
there was a change in intensity. To define the boundary point, a second order fourier series was fitted to the
intensity profile and then differentiated. The peaks of the curve could then be established for each of the
10 lines in the block, defining the crossing points. These points can then be used to define a polynomial
curve for both the top and bottom edge of the ciliary muscle, as shown in Figure B.2.
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B.2 Method

A

B1 mm

Figure B.2: Illustration of the points used to define the top and bottom of the ciliary muscle (A) and the resulted
fitted curves (B).

To establish the actual measurement of the ciliary muscle thickness and length, the images needed to be
dewarped to reflect the impact of the refractive index of the sclera and ciliary body, achieved through
adjustment of the fitted curves. A curve was fitted to the sclera by converting the image to black and
white and using the boundary edge detection algorithms in MatLab. The distance between the sclera and
ciliary muscle top fit could then be adjusted to reflect the refractive index. The same process was repeated
between the top and bottom ciliary muscle fits, allowing the final measurements to then be taken. The
majority were straightforward, simply finding the distance between top and bottom curves, assuming a
normal to relation between the measurement line and the top edge. However, the ciliary muscle length
required a method of definition. It was decided that the ciliary muscle length could be established as the
point where the top and bottom ciliary muscle fits began to separate.
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B.3 Results

Figure B.3: Illustration of the final measurements. The two red curves represent the original fitted muscle, with the
green and yellow curves representing the dewarped curve fits. The blue curve shows the top fit of the sclera, used
for the dewarping of the ciliary muscle curves. The rest of the lines represent the measurement locations.

Additional code was written to account for the images where contact lenses were present (Figure B.4).
The effect of refractive index due to a contact lens was assumed to be negligible; therefore, the contact
lens was removed from the image before the measurements were taken.

B.3 Results

The tool was trial run on a range of images, with some images having artefacts to ensure that the program
was robust enough to measure in all cases. Images with contact lenses were also tested. In those images
that were clear with no artefacts or contact lenses, the analysis time was less than 1 minute.

With more complex images, such as those shown in Figure B.4, some addition code was written to allow
the bottom ciliary muscle edge to be manually defined, as typically this was the edge that did not fit where
artefacts were present. In those images where a contact lens was present, or the ciliary muscle edge was
manually defined, the analysis time increased, but remained under 2 minutes.
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B.3 Results

A

B1 mm

Figure B.4: Two examples of poor images, illustrating the presence of contact lenses and artefacts present.

A complete validation of the measurements was not conducted at the time of writing, but a set of images
had been measured manually on the Visante, and it was proposed that the same images would be measured
using the tool to compare the two sets of results.

241


