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 Abstract 

Gene expression is frequently regulated by multiple transcription factors (TFs). Thermostatistical 

methods allow for a quantitative description of interactions between TFs, RNA polymerase, and 

DNA, and their impact on the transcription rates. We illustrate three different scales of the 

thermostatistical approach: the microscale of TF molecules, the mesoscale of promoter energy 

levels, and the macroscale of transcriptionally active and inactive cells in a cell population. We 

demonstrate versatility of combinatorial transcriptional activation by exemplifying logic functions, 

such as AND and OR gates. We discuss a metric for cell-to-cell transcriptional activation variability 

known as Fermi entropy. Suitability of thermostatistical modeling is illustrated by describing the 

experimental data on transcriptional induction of NF B and the c-Fos protein.  

 

 

 



 

2 

 

 1. Introduction 

 Biology has witnessed a dramatic revolution in both technology and scientific thinking. While a 

few decades ago, students chose biology because they did not like mathematics, current biology is 

increasingly becoming a quantitative science. Now we know that cells perceive and process 

information using networks of signaling proteins and genes. The intricate spatiotemporal dynamics 

of these networks specify cell-fate decisions, and mathematical modeling has a key role in 

understanding cellular responses to signals [1]. Previously, signaling pathways were viewed as linear 

information pipelines that relate extracellular cues to specific genes. For instance, growth factor 

stimulation pivotal for cell division and survival was thought to activate the linear mitogen-activated 

protein kinase (MAPK) pathway where the terminal extracellular signal-related kinase (ERK) led to 

the induction of the immediate early gene c-Fos. However, now we know that pathways emanating 

from multiple cell-surface receptors crosstalk with each other. Consequently, signals propagate via 

highly interconnected protein networks; each of effector kinases phosphorylates numerous 

transcription factors (TFs), and multiple factors are integrated on a promoter of each of a multitude 

of stimulated or repressed genes.   

 In an organism, cells are exposed to myriad of external cues that activate a variety of cell-surface 

receptors. How do cells process multiple signals and exhibit signal-dependent phenotypic changes? 

One possibility is that graded, analogue signalling by receptors and kinases are converted into 

discrete, digital outputs of target genes such as all-or-none responses that can be described using 1 or 

0 values [2-4]. Here we show that under the proper conditions, logic functions, such as OR and AND 

gates, can arise from combinatorial transcriptional regulation. Thus, the transcriptional machinery 

can deconvolute complex analog signals by kinases into digital gene responses. To describe 

simultaneous regulation of gene expression by several TFs we will use a thermostatistical approach 

[5-16]. We also address other cases of transcriptional responses, such as multiplicative, independent 

regulation by TFs.  

 We will discuss a mathematical model for combinatorial transcriptional activation which is based 

on a fundamental thermostatistical concept: the microstate Boltzmann probability that is defined on 

the level of TF molecules (Sections 2 and 3). We will show how this microstate description can be 

coarse-grained to yield a mesoscale perspective for promoter states and a macroscale perspective of 

active and inactive cells. In Section 4, we will show that a thermostatistical viewpoint allows us to 

approximate many integrative promoter layouts using elementary logic operations such as AND and 
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OR. A thermostatistics-based metric for cell-to-cell variability will be introduced in Section 5. 

Subsequently, we will demonstrate how to relate gene expression data obtained from cellular dose 

response experiments to mathematical, thermostatistical models (Section 6). 

 

 2. Micro-, meso- and macrolevels of the thermostatistical modeling of the combinatorial 

regulation of transcriptional activity 

 In this section, we outline the ingredients of a thermostatistical model of combinatorial 

transcriptional activation. Thermostatistical models involve three levels: the single cell microscopic 

level, the single cell mesoscopic level and the macroscopic level on the scale of cell population, see 

Fig 1.  

 

<Insert Figure 1 about here> 

 

 On the single-cell microscopic level, we consider TFs and RNA polymerase II (RNAP) that may 

or may not be bound at the DNA promoter specific for a particular gene. There is a large number of 

possible microstate configurations of the promoter. A microstate configuration indicates if a 

particular set of TF molecules is bound at certain promoter sites and if RNAP is or is not bound at 

the promoter. For example, let us consider the c-fos promoter with binding sites for the TFs pCREB, 

which is an activated form of CREB, and pELK1, which is an activated form of ELK1 [17,18]. Let 

us assume that there are 10000 molecules of pCREB, 5000 molecules of pELK1 and 1000 RNAP 

molecules in the nucleus, which are available for binding at the promoter. Let us label these 

molecules with numbers 1 to 10000, 1 to 5000, and 1 to 1000, respectively. An example of a 

microstate configuration can be that the pCREB molecule with label 3400 and the pELK1 molecule 

with label 200 are bound, while none of the RNAP molecules is bound at the promoter. Another 

example of a microstate configuration is the pCREB molecule #3333 is bound, the RNAP molecule 

#400 is bound, and none of the pELK1 molecules is bound. Each microstate configuration has a 

specific free energy relative to the free energy of the plain promoter, defined as the microstate in 

which TFs and RNAP are not bound. Since thermostatistical approaches are based on free energy 

changes rather than absolute levels, it is convenient to put the free energy level of the plain promoter 

equal to zero. The relative free energy of a microstate configuration is then given by the sum of the 

following terms: (i) the binding energy ERNAP of RNAP if RNAP is bound, (ii) the binding energy Ek 
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of bound TF k , (iii) the energy shift ERk of RNAP induced by binding both RNAP and TF k, (iv) the 

interaction energy Ekm between two TFs k and m, and (v) the interaction energy ERkm between 

RNAP and two TFs k and m bound at the promoter. Mathematically speaking, the microstate 

configuration energy is given by 

RkmkmRkkRNAP EEEEEmicroE )(         (1). 

For example, for the aforementioned configuration with pCREB molecule #3333 bound, RNAP 

molecule #400 bound, and all pELK1 molecules unbound we have 

CREBRCREBRNAP EEERNAPpCREBE ,)400#,3333#(     (2). 

 The probability to find in a single cell a particular microstate configuration is determined by the 

Boltzmann distribution of the free energies of microstates, as follows 

RT
microE

Z
microp )(exp1)(

1         (3) 

where Z1 is a normalization constant such that the probabilities of all microstate configurations 

p(micro) add up to unity. R is the Boltzmann gas constant, T is temperature. The exponential term 

exp(-E/(RT)) occurring in Eq. (3) is called the Boltzmann factor [19-21]. 

 Let us turn next to the mesoscale of thermostatistical modeling of transcriptional activity. 

Clearly, there are many microstate configurations with exactly the same energy, E(micro). 

Consequently, each of these configurations has the same probability to occur in a cell. For example, 

the configuration in which pCREB # 3333 and RNAP # 400 is bound has the same energy and 

probability as the configuration in which pCREB # 1000 and RNAP # 100 is bound.  In general, as 

far as the biological functioning of a promoter is concerned it is irrelevant which particular TF 

molecule is bound at the promoter. Rather it is important, whether TFs sites are occupied or not, and 

whether a RNAP molecule is bound at the promoter or not. In line with this remark, we group all 

microstates with equal free energy into separate classes. In thermostatistics, these classes are referred 

to as energy levels. Consequently, from a course grained point of view, we ask the question what is 

the probability to find a DNA promoter in a particular energy level that can be realized by a 

multitude of microstate configurations. Let g(E) denote the number of microstate configurations with 

the same energy level E [19-21]. The factor g is called the degeneracy factor. For example, let us 

consider the c-fos promoter with TF binding sites for pCREB and pELK1 in the hypothetical case 

when only 3 pCREB molecules and 2 pELK1 molecules are available in the nucleus for binding at 
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the promoter. The energy level defined by microstate configurations where pCREB1 and pELK1 

molecules are bound but no RNAP is bound is given by E(pCREB,pELK1)=ECREB+EELK1. There are 

6 microstate configurations with this energy level: 11, 21, 31, 21, 22, 32 (where the first number is 

the label of the pCREB molecule, the second the label of the pELK1 molecule). Using Eq. (3), the 

probability p(meso) of having the energy level E(meso) on the mesoscale can be calculated as,  

RT
mesoE

Z
Egmesop )(exp)()(
1         (4). 

 The degeneracy factor g acts as weight of the exponential factor [19-21]. The more microstate 

configurations exist for a given energy level, the higher is the probability that the DNA promoter is 

at that energy level. Let us make Eq. (4) more explicit. Let mk denote a binary variable with index k 

that only assumes the value 0 and 1. If the TF k is bound at a promoter binding site, mk=1, otherwise 

mk=0. Likewise, we introduce the variable mR such that mR=1 if RNAP is bound and mR=0 

otherwise. The energy level of a promoter can then be described by means of the variables mR and 

mk with k=1,�…,M (where M is the number of different TFs). Let nR and nk denote the numbers of 

RNAP molecules and TFs of type k in the nucleus available for binding at the promoter. Then, the 

multiplicity or degeneracy of a promoter energy level is given by 

MR m
M

mm
RMR nnnmmmg )()()(),...,,( 111       (5). 

 It is more convenient to use RNAP and TF concentrations, [RNAP] and [TFk], respectively, 

rather than molecule numbers. Let denote the respective concentrations. Then Eq. (5) becomes 

MR m
M

mm
MR TFTFRNAPmmmg ][][][),...,,( 111      (6). 

Note that the proportionality factor in Eq. (6) depends on the units in which the concentrations are 

measured. Interestingly, Eq. (6) also holds in the more general case for promoters that may exhibit 

more than one binding site for a particular type of a TF. In this case, the parameters mk may assume 

integer values larger than 1. In this context, however, Eq. (6) holds only when the molecule numbers 

nk are large. If only relatively few RNAP and TF molecules are available for binding at the 

promoter, the degeneracy must be computed in a slightly different way [5]. Taking Eqs. (4) and (6) 

together, the probability that a promoter exhibits a particular mesoscale state defined by the 

parameters mR, m1, �…, mM is given by 

 

         (7) RT
mmmE

Z
TFTFRNAPmmmp MR

m
M

mm
MR

MR ),...,,(exp][][][),...,,( 11
1

1



 

6 

 

 

where Z is a normalization constant that also accounts for the measurement units in which 

concentrations are measured.  

 On the level of a cell population there are two situations of interests. Given a particular 

concentration pattern of TFs specifying a particular gene, there will be some cells expressing that 

gene and other cells not expressing that gene. Thus, we distinguish two cell states, active or inactive, 

and refer to these two states as macrostates. Thermostatistical approaches to determine 

transcriptional activity are based on the assumption that a cell with a promoter at which RNAP is 

bound is engaged in transcriptional initiation [5-11]. The higher the probability is that cells have an 

active promoter (i.e., exhibiting a RNAP molecule bound at the promoter), the higher is the 

transcriptional activity of the cell population. The probability (P) of cells with active promoters is 

given by the sum of all probabilities p(mR,m1,�…,mM) of mesostates in which RNAP is bound at the 

promoter (mR=1) 

Mmm
MR mmmpP

,...,
1

1

),...,,1(         (8). 

 The transcriptional activity r is assumed to be proportional to the probability P [5-11] 

Pr            (9)  

Depending on the context in which the thermostatistical model is used, the parameter >0 is refers to 

the rate with which messenger RNA is produced or the rate of protein production.  

 

 3. Transcriptional activity regulated by two activators 

 We next illustrate the thermostatistical modeling approach for a promoter with two activators. 

The micro-, meso-, and macrostates of the thermostatistical model for a population of cells whose 

gene expression levels are regulated by two activators are summarized in Table 1. 

 

<Insert Table 1 about here> 

 

 For a system with two TFs, the corresponding energy terms are E1, E2, ERNAP, ER1, ER2, E12, and 

ER12 (see Section 2). Using these energy terms, the probability P of transcriptional active cells can be 

computed from Eqs. (1) and (7).  In order to obtain a concise description, it is useful to introduce 

normalized variables and parameters determined by the energy contributions. First, the exponential 
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terms exp(-Ek/(RT)) for k=1,2 always occur together with the concentrations [TFk], as [TFk] exp(-

Ek/(RT)). Therefore, we introduce the normalized variables, 

RT
E

TFq k
kk exp][ , k=1,2        (10). 

Likewise, we define the variable,  

RT
E

RNAPq RNAP
R exp][         (11). 

The variables q1, q2, and qR describe TF and RNAP concentrations, normalized by the corresponding 

dissociation constants presented in terms of the free energy changes. Second, we introduce the 

parameters Rk=exp(-ERk/(RT)), 12=exp(-E12/(RT)), R12=exp(-ER12/(RT)). It is convenient to 

define the probabilities of mesostates, in which RNAP is bound to (Pon) or unbound of (Poff) the 

promoter. These probabilities are the sum of mesoscale probabilities given by Eq. (7). By 

eliminating the unknown normalization constant Z, we obtain an expression for the probability P of 

having active transcription of the gene of interest in a cell within a population,  

Pr

ZqqqqP
ZqqqqqP

PP
P

P

off

RRon

onoff

on

/)1(
/1

211221

211212212211      (12). 

From Eq. (12) it follows that in the absence of TFs the basal binding probability P0 of RNAP and the 

basal transcriptional activity are given by:  

R
R

R
R

q
qr

q
qP

1
,

1 00         (13). 

 The function binding probability P0 as a function of RNAP concentration qR can be determined 

experimentally and fits well with the theoretical function P0(qR) shown above [22]. Having obtained 

the basal activity r0, we defined the fold change A in transcriptional activity by 

0r
rA            (14). 
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 4. Fundamental special cases of TF regulation and logic gates 

 Regulation of transcriptional activity by multiple TFs may operate like logic functions [2,23-30]. 

We demonstrate this for the OR and AND functions and in addition will address another 

fundamental case of transcriptional regulation: multiplicative, independent regulation. 

 

 4.1. The OR Gate 

The Boolean table (truth table) of the OR gate is shown below (Table 2).  

 

<Insert Table 2 about here> 

 

The entry �“0�” means that TF concentrations are negligibly low. An entry �“SAT�” means that the 

normalized concentration qk of TF k is at the saturation level that is achieved when qk is much larger 

than unity. The characteristic properties of an OR gate are described in columns 3 and 4. The entry 

�“SAT�” refers to the maximal possible transcriptional activity of the promoter under consideration. 

Note that this saturation value is the same for the three cases (i) TF1=0 and TF2=SAT, (ii) TF1=SAT 

and TF2=0, and (iii) TF1=SAT and TF2=SAT listed in Table 2. A mechanistic explanation of an OR 

TF gate is sketched in Table 3. An OR gate implies that the two binding sites for TFs 1 and 2 overlap 

or are in close proximity such that when one binding site is occupied, the other binding site cannot 

be occupied [24]. That is, both TFs compete for the promoter 

 

<Insert Table 3 about here> 

 

 Using Eq. (12), the probability of cells in the active state can be computed as a function of the 

activator concentrations and the concentration of RNAP. For an OR gate, we assume that the 

maximal activation of transcription by TF1 or TF2 is similar, which requires the parameters 1= 2. It 

is useful to consider the summed concentration of both TFs as a new variable, 21 qqS . The 

transcriptional activity r is given by, 

21,
)1(1

)1(
SqS

Sqr
R

R
     (15). 

From Eq. (15) it follows that the saturation value of the transcriptional rate r and the variable A that 

specifies a fold change are: 
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R
R

sat q
q

r
1   

R
R

sat q
qA

1
)1(

     (16). 

It is crucial for our understanding of the OR gate that these saturation levels hold for S>>1 

irrespective of how a large value of S is achieved. Consequently, the saturation values (16) hold if (i) 

q2>>1 and q1=0, (ii) q1=0, q2>>1, and (iii) q1>>1 and q2>>1, which corresponds to the cases 

described in the three bottom rows of the Boolean OR table (Table 2). The OR gate exhibits a 

characteristic regulation function given by  

s
sA

sA sat
1

1
)(           (17). 

where s is a scaled sum of the normalized TF doses. 

)(
1

1
21 qq

q
qS

A
s

R
R

sat        (18). 

 The fold change A as a function of s is shown in Figs. 2A, 2B. A(s) is a monotonic function of s 

and in particular has a sigmoid shape when plotted in a lin-log plot. As such the OR gate is defined 

on the two-dimensional plane spanned by the normalized doses q1 and q2 of the two transcriptional 

factors. That is, in terms of the independent variables q1 and q2, Eq. (17) reads 

)(
1

11

)(
1

11
),(

21

21

21
qq

q
q

qq
q

qA
qqA

R
R

R
R

sat

      (19). 

The function is shown in Figs. 2C and 2D. Panel 2D shows this function in a lin-log plot. Consistent 

with our analytical consideration, we see that the levels of transcriptional activity are the same for (i) 

q1=0 and q2=SAT, (ii) q1=SAT and q2=0, and (iii) q1=SAT and q2=SAT 

 

<Insert Figure 2 about here> 
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 4.2. The AND Gate 

 The Boolean table for the AND function is shown in Table 4. Only if both TFs are at their 

saturation levels, then the promoter exhibits maximal transcriptional activity. In contrast, if the 

concentration of one of the TFs is negligibly low, then the gene expression is only at the basal level.  

 

<Insert Table 4 about here> 

 

 The simplest AND gate mechanism occurs if the promoter binds the two TFs only as a pair. For 

instance, there might be a glue-like (attractive) interaction between two TFs (as described above in 

terms of the energy shift Ekm) such that the binding energy for the pair of transcription factors is 

much lower than the binding energies of the individual molecules [5,23,31] In addition or 

independent of the aforementioned TF-TF interactions, in the other AND gate mechanism both TFs 

may bind individually to the promoter, but a greater facilitation of RNAP binding occurs only when 

both TFs are bound at the promoter. This might occur due to cooperative TF interactions or 

synergistic interactions with the DNA [27,29]. These two variations of AND gates have for example 

been addressed, for example, in the context of the interaction between nuclear factor Y and E2 

(transcriptional) factors (see Figure 7 in [32]). In any case, effectively we need to distinguish only 

between (i) cells with unoccupied TF binding sites and (ii) cells where both TFs are bound to the 

promoter. These two possibilities can be combined with the two possibilities to have RNAP bound 

or not bound at the promoter. As a result, we obtain a total of four mesostates with two mesostates 

describing cells in the active macrostate and two mesostates reflecting cells in the non-active 

macrostate. The layout of an AND gate is given in Table 5. 

 

<Insert Table 5 about here> 

  

 The thermostatistical model can be cast into mathematical expression by exploiting Table 5 and 

Eq. (12). In order to uncover the underlying nature of the AND gate, it is useful to introduce the 

auxiliary variable, which is the product of the normalized TF doses.  

21 qqM           (20). 

In terms of the product variable M, the transcriptional activity r is given by 
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)1(1
)1(

MwqM
Mwqr

R
R

 w= 1· 2· 12· R12.       (21). 

The saturation values of the transcriptional rate r and the variable A that specifies a fold change are 

given by 

R
R

sat qw
qw

r
1    R

R
sat qw

qwA
1

)1(
    (22) 

 Clearly, this saturation value can only be achieved when M 0. More precisely, when one of the 

concentrations equals 0, then the product M vanishes and the promoter shows gene expression at a 

basal level. In contrast, when both activators exhibit their saturation values, then M and 

consequently, the transcriptional activity (as measured by r and A) is maximal. In short, the 

conditions of the Boolean AND table (see Table 4) are satisfied.  Transcriptional activity regulated 

by an AND gate exhibits a characteristic regulation function defined by,  

m
mA

mA sat
1

1
)(           (23) 

with the scaled product of TF doses,  

)(
1

1
21 qq

q
qwM

A
wm

R
R

sat        (24) 

The function A(m) is shown in Figs. 3A and 3B. It is equivalent to the function A(s) for an OR gate 

Eq. (17) when the scaled sum of the normalized TF doses s is replaced by the scaled product of TF 

doses m. The AND function in the q1-q2 space follows from Eqs. (23) and (24) and reads 

)(1
)(1

),(
21

21
21 qqm

qqmA
qqA sat

        (25) 

Fig. 3 illustrates an AND gate.  In particular, the log-lin plot reveals that the basal level of activity is 

observed when at least one of the two TFs is at very low dose.  

 

<Insert Figure 3 about here> 
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 4.3. Multiplicative, independent regulation of transcriptional activity 

 Regulation of transcriptional activity by more than one activator frequently results in synergy 

effects (see e.g., [33-35]). Two distinct mechanisms have been proposed [36]. First, multiple 

activators may induce transcription by means that are impossible for a single activator (e.g., an 

assembly of activation complex and DNA looping). Second, the sigmoidal dependency of 

transcriptional activity on TF concentrations (see Figs. 2B-D, 3B-D) may lead to synergy effects 

even when the activators independently promote RNAP binding to the promoter region. In this 

context, the model of multiplicative, independent regulation by two activators provides a quantitative 

approach to study synergy effect without interactions within TFs. The model is described in Table 6. 

Each TF induces its own saturation level of transcriptional activity (  and ). When both TFs are at 

saturation levels, transcriptional activity is at a third saturation level  that does not necessarily 

correspond to any of the two other saturation levels  and .  

 However, at low RNAP concentrations gene expression is low as well. This is due to the fact that 

according Eq. (12) the transcriptional activity is proportional to the RNAP concentration. For this 

scenario, the model defined by Eq. (12) under the assumption of independent activation predicts that 

the transcriptional activity of combined stimulation (when both activators are at saturation) is the 

product of the activities induced by the individual activations (last column in Table 6). 

 

<Insert Table 6 about here> 

 

 The thermostatistical model for independent regulation by two TFs follows immediately from the 

general two-activator-model defined by Eq. (12) when we assume the interaction energies between 

TF (E12) and between two TFs and RNAP (ER12) to be zero. This implies that 12=1 and R12=1. In 

this case, Eq. (12) can be equivalently expressed as,  

2

22
2

1
11

1

21
21

1
1

1
1
1

q
qf

q
qf

ffq
ffqr

R
R

          (26). 

From Eq. (26) it follows that the saturation levels listed in Table 6 are given by 
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21

21

1
1

2
2

1

1

1

R
R

R
R

R
R

q
q

q
q

q
q

         (27). 

From these relationships the fold change saturation levels can be computed. In particular, for low 

RNAP concentrations we obtain approximately 

211

121

221

),(

)0,(

),0(

2 SATTFSATTFA

TFSATTFA

SATTFTFA

sat

sat

sat

       (28). 

That is, the fold change induced by a combined stimulation with both TFs is the product of the fold 

changes induced by the corresponding individual stimulations [5,6]. 

 

 5. Thermostatistics-based metric of cell-to-cell variability 

While the primary objective of thermostatistical modeling is to provide insights into the functional 

relationships between the impacts of various TFs, the approach allows us to address a variety of 

related regulatory properties. First of all, since the model is nonlinear, sensitivity analysis can 

provide information about which of the model parameters are of particular importance for a given 

promoter [12,13]. Second, since the modeling approach links systems biology with statistical 

mechanics it invites us to take advantage of the statistical mechanics approach in a broader sense. 

For example, cell-to-cell variability can be addressed by taking a quantitative, model-based 

perspective. According to Eq. (12), the function P describes the probability of cells in the cell 

populations to have an active transcription at a given promoter. Consequently, the probability of 

having inactive cells is 1-P. In general, there will be both active and inactive cells in a population. 

When studying the expression of a certain protein, the expression level of the protein will be 

relatively low in the inactive cells and relatively high in the active cells. The population will exhibit 

a large degree of heterogeneity or cell-to-cell variability.  A crude measure for cell-to-cell variability 

is the entropy S defined on the macrostate probabilities P and 1-P of the active and inactive states, 

respectively. We have  

)1ln()1(ln PPPPS
        (29) 
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which is also known in physics as Fermi entropy [37,38]. The cell-to-cell variability as measured by 

S exhibits a maximum at P=1/2 and is minimal at P=0 and P=1, see Fig. 4A. For the logic functions 

OR and AND, this implies that if the �‘OFF�’ and �‘ON�” states (i.e., the four corners in the two-

dimensional spaces spanned by the normalized concentrations q1 and q2) correspond to the RNAP 

binding probabilities that are relatively low and high, respectively, then the variability will be lowest 

in these states. This scenario is illustrated for the OR gate in Fig. 4B-C. We conclude that a 

thermodynamic metric (macrostate entropy S) can be linked to a biologically relevant quantity 

(transcriptional activity). Other thermodynamics metrics defined on other scales (not necessarily the 

macroscale) may provide similar useful information. 

 

<Insert Figure 4 about here> 

 

 6. Modeling the dose responses.  

 NF B induction. In this section we illustrate the suitability and accuracy of the thermostatistical 

model to describe experimental dose response data on NF B induction. For the purpose of clarity, 

we focus on the impact of a single TF only. From Eq. (12) it follows that the transcriptional activity r 

of a TF at a normalized dose qT is given by 

TRR
TR

TRT
TR

qqq
qq

qqq
qqr

11
1

11
1

    (30). 

Frequently, the TF dose is measured in relative units such that we put qT= 1·x, where x is the dose 

and 1>0 a conversion factor. In addition, the TF dose x might be the dependent variable in the 

experiment design, while the independent variable corresponds to a stimulus Y with dose y. 

Assuming that the signal transduction network can be linearized at zero doses [39,40], we obtain a 

linear steady-state relationship between x and y like x= 2·y with 2>0 such that Eq. (30) becomes 

yqq
yqr

RR
R

11
1

        (31) 

with = 1· 2. Finally, transcriptional activity may be measured in relative units (e.g., see Eq. 14). 

Below we will use the data on the transcriptional activity r normalized with respect to the activity 

measured at a reference dose y=y(ref), as follows 

))((
)()(

refyr
yrya           (32) 



 

15 

 

Note that the function a(y) reflecting the relative transcriptional activity is independent of the model 

parameter  and depends only on the three parameters qR, , and . 

 We fitted dose response data from a recent study [35]. HEK293 cells were transfected with a 

vector encoding the Gaussia luciferase under the control of NF B (pGluc-NRE) and stimulated with 

NF B-inducing cytokines TNF  or IL-1  (0.1 to 5 ng/ml). Gaussia luciferase differs from firefly or 

renilla luciferases in that it is secreted into the culture media, thus allowing temporal measurement of 

transcriptional activity from the same population of cells. The experimental data (sample means and 

standard deviations) are shown in Fig. 5 (dots and error bars). Using nonlinear regression analysis, 

the data were fitted to Eqs. (31) and (32). The dependences a(y) of transcriptional activities on the 

stimuli (y) for the best-fit parameters are depicted in Fig. 5, as lin-lin and semi-logarithmic plots for 

TNF  (A, B) and IL-1  (D,E) stimuli. We conclude that a thermostatistical model can describe both 

data sets reasonably well with somewhat better fidelity for IL-1  than for TNF .  

  

<Insert Figure 5 about here> 

 

 An AND gate description of c-Fos protein expression. Here we illustrate the thermostatistical 

modeling of an AND gate for the c-fos promoter and its two activator TFs, pCREB and pELK1. We 

use the time course data for pCREB, pELK1 and the c-Fos protein obtained for MCF-7 cells 

stimulated with 10 nM heregulin (HRG) for 2 hours [2]. We normalized the product of the 

concentrations pCREB and pELK1 by its maximum value (z = m/m(max), see Eqs. 23 and 24), as 

shown in Fig. 6A. Then Eq. (23) becomes,  

zm
zmAzA sat

(max)1
(max)1)(          (33).  

c-FOS protein expression was modeled as a two-step process involving the activity of messenger 

RNA. The two-step model reads,  
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       (34).  

For the sake of simplicity, mRNA concentrations are measured in units of the basal promoter activity 

(r0), implying that the transcriptional activity A can be used as the production rate of the first 

reaction step, Eq. (34). The parameters k1 and k2 are taken from the literature. Half-lifes for c-fos 

mRNA and the c-Fos protein were reported to be in the order of a few minutes [41,42] and in the 

range of 30 to 45 min, respectively [3]. We used k1=0.12/min (half-life of 6min) and k2=0.015/min 

(half-life of 46min). There are three unknown parameters in Eqs. (32) and (33), Asat, the rate 

constant  and the normalization parameter m(max). The characteristic promoter function A that is 

calculated for the best-fit parameters is shown in Fig. 6B. The dots indicate the position of the 

experimental data points. The solid line in panel 6C shows the normalized c-FOS expression time 

course predicted by the model, using the experimental data shown in 6A as input. 

   

<Insert Figure 6 about here> 

 

 

 7. Discussion 

 Gene expression in general depends on a variety of extracellular signals. These signals are 

transmitted by means of intracellular signaling molecules to targets, such as TFs. Intracellular 

signaling operates via multiple pathways. In order to respond appropriately to several extracellular 

cues, the cell must integrate the extracellular information. In addition to the integration on the level 

of the intracellular signaling molecules (interaction between pathways), the information can be 

integrated on the promoter level The thermostatistical model for combinatorial transcriptional 
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activation described in the previous sections is a useful tool to study how the cell can integrate 

information from various pathways and extracellular sources on the level of the transcriptional 

machinery. In particular, the thermostatistical approach provides a framework to address 

quantitatively information integration on the transcriptional level in form of logic functions such as 

AND and OR functions.  

 While reviewing the thermostatistical approach to transcriptional regulation in Section 2, we 

distinguished between three different scales: the micro-, meso-, and macro-scales. The promoter 

states on the microscale reflect physical states. In contrast, on the meso- and macro-scales we are 

dealing with mathematical representations of certain sets of microscale states. Consequently, 

microscale states may be regarded as the physical �‘backbone�’ of the thermostatistical approach. The 

mesoscale is of particular interest, since the regulation of transcriptional activity by the transcription 

factor abundance happens on this scale. More precisely, while the probability of microscale states is 

independent of transcription factor concentrations (see Eq. 3), the probability of mesoscale states in 

fact depends on transcription factor concentrations (see Eqs. 4-6). Finally, on the level of cell 

populations there are two macroscale probabilities: the probabilities of observing transcriptionally 

active or inactive cells in a population. These macroscale probabilities connect theory with 

experiment because experimental results in cell biology are frequently obtained by studying cell 

population rather than single cells.    

 In Section 5 we introduced the entropy measures S(P) to quantify cell-to-cell variability for the 

cell populations. In order to derive S(P) from the transcriptional activity r measured at different time 

points or concentrations, we need a fit to the predicted graph r that provides us with values of the 

basal activity r0 and the saturation activity r(sat) and we need to know the proportionality factor  

occurring in Eq. (9). Then, we will be able to identify the relationship between S(P)/Smax and r/r(sat) 

because P can be calculated from r like 

)sat(
(max)

r
PrP            (35) 

From Figure 4A it follows that there are three possible cases. If P0= ·r0 , P(max) = ·r(sat) <1/2 

holds, then the thermostatistical approach predicts that the transcriptional machinery exhibits a 

monotonically increasing relationship between stochasticity and determinism; if P0 <1/2 < P(max) 

holds, then a non-monotonic relationship is predicted; finally for P0, P(max) >1/2 a monotonically 

decreasing relationship is predicted. While an in-depth discussion of the implementation of this 
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theoretical framework is beyond the scope of the present manuscript, future work may be dedicated 

to demonstrate in more detail the application of Eqs. (29) and (35) to experimental data. 
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Table 1. Schematic description of the thermostatistical model for transcriptional activity induced by 

two activators 

RNAP 

mR 

TF1 

m1 

TF2 

m2 

Number of microstates Mesostate  

label  

Macrostates 

0 0 0 1 1 Inactive 

0 0 1 ~ [TF2] 2 Inactive 

0 1 0 ~ [TF1] 3 Inactive 

0 1 1 ~ [TF1]·[TF2] 4 Inactive 

1 0 0 ~[RNAP] 5 Active 

1 0 1 ~[RNAP]·[TF2] 6 Active 

1 1 0 ~[RNAP]·[TF1] 7 Active 

1 1 1 ~[RNAP]·[TF1]·[TF2] 8 Active 

 

 

Table 2. Truth table of the OR gate realized by a promoter with two activators TF1 and TF2 

TF1 TF2 Transcriptional

activity  r 

Fold change

A 

0 0 Basal level 1 

0 SAT SAT ASAT 

SAT 0 SAT ASAT 

SAT SAT SAT ASAT 
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Table 3. Schematic description of the thermostatistical model of the OR gate 

RNAP TF1 TF2 Number of microstates Mesostate 

label 

Macrostates 

0 0 0 1 1 Inactive 

0 0 1 ~ [TF2] 2 Inactive 

0 1 0 ~ [TF1] 3 Inactive 

1 0 0 ~ [RNAP] 4 Active 

1 0 1 ~ [RNAP]·[TF2] 5 Active 

1 1 0 ~ [RNAP]·[TF1] 6 Active 

 

 

Table 4. Truth table of the AND gate of a promoter with two activators TF1 and TF2 

TF1 TF2 Transcriptional

activity  r 

Fold change

A 

0 0 Basal level 1 

0 SAT Basal level 1 

SAT 0 Basal level 1 

SAT SAT SAT ASAT 

 

 

Table 5. Schematic description of the thermostatistical model of the AND gate 

RNAP TF1 TF2 Number of microstates Mesostate 

label 

Macrostates 

0 0 0 1 1 Inactive 

0 1 1 ~[TF1]·[TF2] 2 Inactive 

1 0 0 ~[RNAP] 3 Active 

1 1 1 ~[RNAP]·[TF1]·[TF2] 4 Active 
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Table 6. Input-output relationship of a promoter exhibiting multiplicative, independent regulation by 

means of two activators TF1 and TF2 

TF1 TF2 Transcriptional

activity r 

A A 

for low RNAP concentrations

0 0 Basal level 1 1 

0 SAT SAT level  ASAT level ASAT level  

SAT 0 SAT level  ASAT level ASAT level  

SAT SAT SAT level  ASAT level ASAT level ·  
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Figure captions 

Fig. 1: Different scales involved in the themostatistical modeling of transcriptional activity 

 

Fig. 2. The regulation of transcriptional activity for an OR gate. A,B: The transcriptional activity 

(fold changes) as function of the scaled sum of the normalized TF doses. The function A(s) was 

computed from Eq. (17) for Asat=10. A: lin-lin plot. B: semi-logarithmic plot.  C,D: Transcriptional 

activity A as a function of the normalized activator doses q1 and q2. The function A(q1,q2) was 

computed from Eqs. (18) and (19) for Asat=10 and =1.5. C: lin-lin plot. D semi-logarithmic plot. 

 

Fig. 3. The cooperative regulation of transcriptional activity for an AND gate. A,B: The 

function A(m) is shown for Asat=10 as defined by Eq. (23). A: lin-lin plot. B: semi-logarithmic plot.  

C,D: The function A(q1,q2) is shown for Asat=10 and w=4 as  was defined by Eq. (24) and (25). C: 

lin-lin plot. D: semi-logarithmic plot.  

 

Fig. 4. Cell-to-cell variability as quantified by the entropy S defined on the macrostate 

probabilities of active and inactive cells. A: functional relationship between S and P as computed 

from Eq. (34). B: the OR gate binding probability P computed from Eqs. (9) and (15). C: Cell-to-cell 

variability S for OR gate shown in panel B computed by substituting the function values P of panel 

B into the function S shown in panel A. B-C: Parameters: qR=0.01, =2000. 

 

Fig. 5: Transcriptional dose responses of HEK293 cells to stimulation with TNF  (panels 

A&B) and IL-1  (panels C&D) [35]. The normalized transcription activity a(y) calculated by the 

model defined by Eqs. (31) and (32) is shown for the best-fit estimates: qR 0, qR·  =1.1 , and  =1.7 

(TNF ) and  qR=0.0072 , qR·  =1.7 , and  =0.63. A&C: lin-lin plots. B&D: semi-logarithmic plots.  

 

Fig. 6. An AND gate description of c-Fos protein expression induced by two activator TFs, 

pCREB and pELK-1. A: The model input: the mathematical product of the concentrations pCREB 

and pELK1 normalized by its maximal value. B: The thermostatistical characteristic function A 

calculated for the best-fit estimates, Asat=25, m(max)=2.0 and =0.08/min. C: The time course of c-

FOS expression predicted by the model.  
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