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Summary 

The merits of various numerical methods for the solution 

of the one and two dimensional heat conduction equation with 

a tadidtien boundary condition have been examined from a 

practical standpoint in order to determine accuracies and 

efficiencies. It is found that the use of five increments 

to approximate the space derivatives gives sufficiently 

accurate results provided the time step is not too large; 

further, the implicit backward difference method of Liebmann 

(27) is found to be the most accurate method. On this basis, 

a new implicit method is proposed for the solution of the 

three-dimensional heat conduction equation with radiation 

boundary conditions. 

The accuracies of the integral and analogue computer 

methods are also investigated.
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SECTION 1 

INTRODUCTION
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The solution of transient heat conduction problems has 

attracted much attention in recent years. The differential 

equation which represents heat conduction in a body has no 

denen solution but is dependent on the nature of the 

initial and boundary conditions. Very often, no analytical 

solution exists, consequently approximate methods have to 

be used. 

It appears that Richardson (33) and Hartree and 

Womersley (22) were the first investigators to exploit finite 

difference techniques for solving partial differential 

equations. Dusinberre (12) was first to present a practical 

method for the solution of heat conduction problems. 

Very often, the use of difference techniques leads to 

quantities of calculation which are far beyond the scope of 

a desk calculating machine. Since the early 1950's the 

advancement in modern digital computer technology has been 

rapid and the solution of quite complex heat conduction 

problems by finite difference techniques has become <eaainies 

The finite difference technique presented by Dusinberre 

is simple to use but has the disadvantage of becoming 

unstable if too coarse a lattice density is used. Attempts 

to remove this drawback lead to the use of implicit methods; 

the first practical approach to implicit methods was that of



  
Crank and Nicolson (7). The Crank-Nicolson method does 

not have the same disadvantage as the Dusinberre method 

but instead it is necessary to solve a system of simultaneous 

equations to calculate the temperature at a particular time. 

It was hoped that the disadvantage of having to solve sets 

of simultaneous equations to calculate a set of temperatures 

would be outweighed by the ability to use a smaller lattice 

density. 

Liebmann (27) presented a further implicit method which 

appeared to require less calculation than the method given 

by Crank and Nicolson. 

The solution of heat conduction problems ig dependent 

on the boundary conditions. For example, one may be 

considering the determination of the temperature-time history 

of a plate which is subject to a step change in temperature 

at one boundary. The application of an imolicit finite 

difference technigue to this case results in a set of linear 

simultaneous equations which are relatively simple to solve. 

Due to the recent interest in space exploration, heat 

transfer by radiation is becoming more important. If the 

plate were now considered with a radiation boundary condition, 

the application of an implicit technique would lead to a 

set of non-linear simultaneous equations which would have 

tO be solved by an iterative metnod thus involving more 

calculation than the forementioned linear case. It may,
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therefore, be more-advantageous to use Dusinberre's 

axpliedé, method Fairall et al (16) used Dusinberre's 

method to calculate the temperature-time history of a plate 

subject to thermal radiation at one face. They present 

their results in graphical form. 

Both the disadvantage of instability in Dusinberre's 

method and the solution of sets of simultaneous equations 

when implicit methods are used appears to have been removed 

by the method of Dufort and Frankel (11) who illustrate a 

stable explicit method; it appears, however, that this 

method has gained little support. 

When the use of finite difference techniques is being 

considered, it is always a problem to decide the fineness 

of the lattice density that is required without the introduc- 

tion of intolerable errors. It still appears that the 

accepted method of determining the necessary lattice density 

is trial and error. Kardas (24), however, demonstrates a 

method for calculating the error when a finite difference 

approximation is used for the case of a plate with convection 

at one face and the other face perfectly insulated. His 

method of error determination is dependent on a knowledge 

of an analytical solution to the problem and is therefore 

not directly applicable to a case where no analytical 

solution exists. 

The methods previously mentioned have been mainly in
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the context of one-dimensional problems. When one is 

considering a problem which cannot be reduced to the one- 

dimensional case, the problem is more involved, consequently 

problems in two and particularly three space dimensions 

are likely to be more time consuming and require large 

amounts of digital computer storage. Douglas (9) presents 

methods of solving heat conduction problems in two space 

dimensions; three of the methods are analogous to the 

Dusinberre, backward difference and Crank-Nicolson methods 

mentioned in connection with one-dimensional heat conduction 

problems. The fourth method, the alternating direction 

implicit method, has no analogue in the one-dimensional case. 

The alternating direction implicit method is shown to be 

unconditionally stable in the two-dimensional case. Allada 

and Quon (1) have found it to be unstable in the three- 

dimensional case if too large a time step is used. 

The solution of heat conduction problems in three space 

variables is considered by Douglas and Rachford (10). 

Once the set of equations is obtained by finite 

differencing of the original differential equation, it is 

necessary to consider the best methods of solving them. In 

the case of the Dusinberre explicit method this presents no 

problem but with the implicit methods it is necessary to 

solve the set of simultaneous equations which are formed. 

In the case of one-dimensional problems this is not difficult
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beeause the set of equations form a tri-diagonal matrix 

which can be solved by simple elimination if the equations 

are linear. When the equations are non-linear an iterative 

technique must be applied. When a two-dimensional system 

is considered, the allied matrix of coefficients is still 

diagonal but has five non-zero terms in each equation; 

this system is more difficult to solve than the tri-diagonal 

system. 

Various methods for solving such a system of equations 

are reviewed by Peaceman and Rachford (31) who make estimates 

of the calculations requirements for each method. Frankel (18) 

reviews iterative methods for solving the Laplace (two 

dimensional steady state heat conduction) equation, which is 

similar to the two-dimensional transient equation. A Pedi 

range of iterative methods for solving sets of simultaneous 

equations is discussed by Varga (40). Liebmann (27) 

discusses relaxation techniques applied to the backward 

difference method. 

The difference methods mentioned require finite 

differencing of both the space and time derivatives; if 

instead, only the space derivative were differenced, one 

would obtain a set of ordinary differential equations which 

are suitable for an analogue computer solution. Zerkle and 

Sunderland (42) present charts of solutions to one- 

dimensional heat conduction problems using an analogue
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computer to simulate a plate which is subject to radiation 

heat transfer. Approximate analytical solutions were used 

to estimate the accuracy of the analogue computer. 

An analogue computer can be an effective method of 

solving heat conduction problems but has the disadvantage 

that large amounts of equipment are required for all but the 

simplest problems. The use of a hybrid computer may have 

possibilities in the solution of more involved heat conduction 

problems where it is possible to time-share items of analogue 

equipment to solve a set of equations; a task which the 

analogue computer does well. The solution of sets of 

equations can be time consuming on a digital computer. 

Schneider (37) presents graphs representing the transient 

temperature distribution in solids, several of which have 

been calculated using the integral method. This method is 

analogous to boundary layer theory and is described by 

Goodman(20). Schneider (38) illustrates the integral method 

applied to a plate with radiation and adiabatic boundary 

conditions. Roberts (36) énpriva the integral method to the 

calculation of temperature distribution in cylinders heated 

by radiation. Reynolds and Dolton (35) present the integral 

method applied to various shaped bodies. Siddall (39) also 

discusses the use of the integral method. Gay (19) compares 

the integral method for a plate subject to radiation and 

adiabatic boundary conditions with that obtained using an
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analogue computer and the Dusinberre and Crank Nicolson 

difference methods. 

The use of a general digital computer program to solve 

transient heat conduction problems does not appear to be 

popular; this is understandable considering the problems 

it would present. A search through the literature revealed 

the existence of one such program which is discussed by 

Campbell and Vollenweider (5). It appeared from the discuss- 

ion that this program could solve quite complex heat 

conduction problems but required a large amount of input 

data. It seemed capable of taking account of any shape, 

and allowance is made for all modes of heat transfer at 

boundaries. The body under consideration is broken down 

into a number of finite cells, input data being required for 

each cell. Wagner (41) discusses a computer program for the 

IBM 650 computer for solving one dimensional transient and 

steady state heat conduction problems. Fox et al (17) 

discuss the use of numerical approximations in heat transfer 

as applied to an IBM 7090 computer. 

From the foregoing, it is apparent that there are 

numerous methods of solving transient heat conduction problems, 

each method having its own advantages and disadvantages. An 

effort is made in this thesis to evaluate the practicability 

of various methods and present criteria for their use.



B. Mathematical Models 

The three-dimensional heat conduction equation of 

Fourier can be written: 

Cpat- 9 (Kn or) + 2 (i at) + 2 (t Ug (1.1) 
de Ox Bx Oy Sdy OZ 303 

which represents the temperature-time history of a 

point in a three-dimensional body. 

Equation (1.1) has no specific solution but requires 

the knowledge of certain initial and boundary conditions to 

define the problem completely. For example, if a plate, 

initially (t=0) at a uniform temperature throughout, 

insulated at one face and radiating to a zero sink temperat- 

ure at the other face (when t>0O) were considered, equation 

(1.1) would reduce to: 

Co Ole; Dan. z) 6242) 
Sh 2 (kn SE 

with the initial and boundary conditions: 

E<0O 1.6%, 0) i=. Ty (233) 

& 20. -—k doe . eT Coe) (1.4) 
Ox 

oT (4,6 = 0 (1.5) 
OR 

If it is further assumed that the properties of the 

plate are independent of temperature, equation (1.2) reduces 

TOs 

or oot (1.6) 
a 

with the same initial and boundary conditions as above.
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Equation (1.6) can be expressed in dimensionless form: 

06 _ 26 (107) 
ot “OX? 

| with the corresponding initial and boundary conditions: 

L<0 @(x,0) = 1 (1.8) 

C0 <96r) . RQ (0,7) (1.9) 
ox 

08 (i,t) = O (1.10) 
ox 

The solution of equation (1.7) with the initial and 

boundary conditions expressed as equations (1.8) to (1.10) 

has attracted most attention in this thesis. 

Making equation (1.6) dimensionless greatly simplifies 

the analysis as the solutions obtained for equation (1.7) can 

be simply applied to a problem for a plate of any thickness 

and any initial temperature provided that temperature is 

uniform throughout the plate.
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C. Methods of solving one-dimensional heat conduction 
equations. 

(i) Explicit 

The first practical approach to transient heat 

conduction problems was that of Dusinberre (12), whose use 

of the explicit method has attracted much attention. 

Dusinberre analysed the problem of transient conduction 

in one dimension through an insulated bar of material by 

making heat balances over finite divisions of the bar. A 

similar case to an insulated bar is the plate which is 

effectively a one-dimensional heat conductor. Fig. 1.1 

illustrates the plate divided into five nodal sections 

(capacities). ; 

Making a heat balance on node 2 (say) over a finite 

period of time (At): 

input - output = accumulation 

kAt Tuy Hay). a AG). At CO, cE M1-21) 

oo Tea teary * Aoy? ‘kAE hes ATia,e) + cas ) (1422) 

Axia C 

which in dimensionless form is: 

Osea 5 cee ‘Sc. (Ou) ie 20,2; . Osx) ) (1.13) 

Equations (1.12) and (1.13) are the basis of the 

Dusinberre explicit method. 

Equation (1.13) can be derived in a more mathematical 

manner using the principle of finite differences. If the
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plate is divided into segments of equal thickness across 

its width as shown in fig. 1.2, by Taylor's theorem:- 

  
  

Br onsies® Sone, taf 00) eee + M°/ 28, (1524) (mst) nz) Fhe 2° $e).24 OX? Lane) 

and: 

* x Ax? 9°8) bees (1.15) 
Pemery = ae - 28), ae Secs 3! \dx3 /mnzy 

adding equations (1.14) and (1.15), then re-arranging: 

(2°8) = Oumar) -2Oum,ty + Orm- -T) 4 0(Ax*) 61516) 

(mz) Ax 

where O(AX*) denotes terms containing AX* and higher. 

A similar analysis in the ® direction leads to: 

30 = Oped e* O. s AT (1.17) 
30) ‘ AC ‘ ac ) 

Equating equations (1.16) and (1.17) when higher orders 

are ignored leads to: 

Origine a Oona) x Ar (Bunsiey a 2Oinc) . Ornate) ) (1.18) 
yt 

which is the same as equation (1.13). 

Thus the temperature in the plate is known only at the 

nodal points in the plate. Knowing the temperatures at 

time Z, the nodal temperatures at TAT can be calculated by 

the use of equation (1.18). 

Equation (1.18) has the drawback of instability when 

AT is too large.
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(ii) Backward difference 
  

To overcome the drawback of instability in the 

Dusinberre explicit method, Liebmann (27) proposed evaluating 

the difference analogue for 0*O/dx* at TtAT rather than 

at ZT. This leads to: 

  

Qcnjz+ary = Bene) = On: +), 0407) “20; mn teat) +t. Oin-i,taar) ( 2 19) 

AT Ax? 

when the higher orders of AX andAT are ignored. Re- 

arranging equation (1.19): 

oe Ocmaizsar) +(1 +2) Bikes sey 7 iA O¢m-1,t+ar) = Bim) (1.20) 

Each equation of type (1.20), for each nodal point, 

contains three unknowns but the whole set form simultaneous 

equations with either N or N + 1 unknowns, depending on the 

type of boundary conditions which are being considered; the 

step change boundary condition requires the solution of N 

and derivative boundary condition of N+ 1 equations. The 

backward difference method is sometimes referred to as the 

“implicit method". knowing the plate temperatures at 

time,Z, those at Z+AZ are evaluated by the solution of the 

simultaneous equations. Thus it is evident that for each 

time level, the price of stability is the solution of 

simultaneous equations.
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(iii) Crank-Nicolson 

Crank and Nicolson (7) suggest the calculation of the 

difference analogue for 0%/dx* be taken at Z+447 Thus, 

averaging the analogues used in the explicit and implicit 

methods leads to: 

0°70 ~ au Benue) “28m .r) + Ont) + Prnazeaty — 20 ¢mc+at)+ m-1,cear) ( ee 21:) 

Equating this difference analogue to that for JO/oT 

leads to the final equation: 

C Onciceiaes -2 (I+ Ss) Ocm,c+ar) + Onatsatsl 

B16 id S005 *Oim- isp] eer 

Equation (1.22) is similar to equation (1.20) except 

that more calculation is required to evaluate the right hand 

side of equation (1.22). It would be expected that the 

Crank-Nicolson formulation should be more accurate than 

either the implicit or explicit methods as the difference 

analogue for 070/dx* is taken at Z7+44T which is the same 

point as that at which the analogue for 06/a€ is taken. 

(iv) Summary equation 

Equations (1.18), (1.19) and (1.20) can be summarised 

by the equation: 

Ocnceot) — Orne) ar K) LOnayry 729 ne) + Pen-i,z>] J Ax” 
AT 

+K [O.nss,ceae)~ 2 Sem,esar) " Bincieiasjs le S (1.23) 

when K = 0, the Dusinberre explicit method is obtained;
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K = 1 corresponds to the implicit method; and K = to 

the Crank-Nicolson method. 

It is not always necessary to use values of K = 0, 4 

or 1 since it may be found that values of K intermediate to 

these values may give accurate results.
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D. Comments on the use of the difference methods 

There has been much discussion in the literature on 

the various merits of the difference methods. 

It is obvious that the advantage of the implicit method 

lies in the ability to use larger time steps in the solution 

of a problem thus possibly saving computer time. 

Dusinberre (13) defends the use of the explicit method 

with the statement that large time steps usually result in 

large truncation errors, hence the solution becomes inaccurate. 

To support his statements he cites the problem of a cylinder, 

initially at 1000°¢ ana having its surface temperature 

suddenly reduced to O°C. The results (shown in table Li 

obtained using the explicit method with N = 4 and M = 0.4 for 

this one dimensional problem are compared withthe analytical 

solution for the centre line temperature. The maximum error 

obtained was only 1.2%. The maximum error is reached 

(at the fifth time step) and gradually decreases thereafter 

until at the thirteenth time step it reaches 0.3%. Dusinberre 

states that his explicit formulation required 3N multiplica- 

tions and N additions for each time step. He compares the 

results obtained using the explicit method with those using 

the implicit method with a time step five times as great and 

finds that the maximum discrepancy is 7.8% at the centre 

line but at the outer surface it is 10.8%. (A discontinuity 

exists at the outer surface). Thus it is concluded that the



TABLE 1.1 

DUSINBERRE'S RESULTS 
  

  

  

  

= EXPLICIT | ANALYTICAL |% ERROR | IMPLICIT % 
At DISCREPANCY 

0 1000 1000 0 

iE 1000 1000 O 

2 1000 1000 0 

3 1000 997 0.3 

4 993 987 0.6 

5 OTT 965 2 899 = 18 

6 944 933 Ded 

x 904 893 12 

8 857 848 0.9 

9 808 801 G1 

10 760 754 0.6 743 - 1.7 

La The 707 0.5 

12 665 662 0.3 

Eo 621 618 0.3 

14 NOT 
REPORTED _ ~ 

15 539 i ~ 586 + 4.7              
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ability to use larger time steps is not a sufficient enough 

reason to recommend the implicit method. 

Dusinberre only cited one problem; that where there 

is a step change in the boundary Abn poratube Wiech is a 

severe condition. An analysis made where the boundary 

temperature is varying much less rapidly may show the implicit 

method to be superior. Liebmann (27) used a graded set of 

time steps, small where the temperatures varied rapidly and 

large where they varied more slowly. 

Anderson et al (2) support the implicit method by citing 

Liebmanns example where he covered the time range in 36 time 

steps with a maximum error of 2%. ‘The same problem using 

the explicit method would have taken 10,000 time steps. They 

also cite an example (3) where to use the explicit method 

would have required the use of an IBM 704 computer for 3 hours 

but using the implicit method, the problem was completed in 

12 minutes. Anderson et al conclude that the implicit is as 

accurate as the explicit method but the ability to use larger 

time steps, where this is vossible due to a small truncation 

error, is advantageous. 

Greenwood (21) supports the use of Liebmann's method 

in preference to that of Crank and Nicolson because of its 

superior stability, although the Crank-Nicolson method has 

the advantage of accuracy. In his analysis, Greenwood 

illustrates the example of a plate with the initial temperature
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distribution: 

T= 100 (' - x) - 15 sim (21x ) 
je i 

and fixed boundary temperatures. 

He compares the results obtained using the Crank- 

Nicolson and implicit methods with an analytical solution. 

The plate is divided into 4 space increments and M = 4 

(a very high value) is used. The results are compared at 

all the nodal points. It is clearly seen (Table 1.2) that 

the implicit method gives accurate results but the Crank- 

Nicolson method is inaccurate. For the first time step 

there is a positive error but at the second the error is 

negative. Greenwood supports the use of high M by stating 

that this may be unavoidable when the thermal diffusivity is 

very temperature denendent. He mentioned a problem where 

the thermal diffusivity varied with temperature between 1 and 

1000. By a quick calculation he demonstrates the oscillatory 

nature of the Crank-Nicolson, as compared with the Liebmann 

method by showing that when M2100 (the instantaneous 

solution is then 0W/dx*+0) the correct result for 0*T/dx* 

is obtained using Liebmanns method whereas when the Crank- 

Nicolson method is used the result -O?T/Ox* is returned thus 

showing the oscillatory nature of the Crank-Nicolson method.



GREENWOOD'S RESULTS. 

TABLE 1.2 

  

    

  

          
  

Li 

e/L 6 0.25 Oy50:, | 0.75 1.0 

time ,f TEMPERATURES 

0 100 | 60 50 40 0 

L*/hee A 100 | 74.9992 50 25.0008 0 

B 100 | 84 50 16 0 

C 100 13+ 333 50 26.667 0 

A Analytical Solution 

bd
 

c Liebmam 

Crank-—Nicolson 
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E. Boundary Conditions 

In this thesis, the main concern is the evaluation of 

temperature-time histories of bodies with non-linear 

boundary conditions. The non-linear case of transient heat 

conduction with a radiation boundary condition has no 

analytical solution unlike the linear cases of step change 

and convection. These cases have been considered in order 

to make comparisons between the numerical and analytical 

solutions. It is to be expected that a numerical solution 

which gives accurate results in the convection and step 

change boundary cases will also give an accurate result in 

the case of a radiation boundary condition; the step change 

is equivalent to R =e with the proviso that the boundary 

temperature is defined exactly in the step change case. 

The three boundary conditions are expressed mathematically 

as follows: 

(a) Step Change 

<0. OfX41 Ounz* | (1.24) 

Z>0 X20 Oye, 7 (1.25) 

(b) Convection 

C20. 0 XO: Og, * | (1.26) 

zc 70 x =0 (22) = BiO..7, (i273 
oX /o,r)
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(c¢) Radiation 

£40; On ele 63" (1.28) 
LC >0 x =0 a6 2: RG (1.29) 

(32) 00 ds 

The adiabatic boundary condition at the other face is 

expressed: 

Z70 x 

(32),.,° : ao
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F. Finite difference approximations at the boundaries. 

In the case of a step change boundary condition, the 

boundary temperature is defined at the surface where heat 

transfer is occuring. However, for the first time step it 

is still necessary to approximate the boundary temperature. 

Examination of equation (1.18) shows that if the temperature 

9 ¢1,a7) is required, the substitution of OQ o,0)=! would 

return a value of O.., at) = | which indicates that no progress 

would be made with the calculation. 

From equations (1.24) and (1.25) Q0,0)2 | and Oe, ar) =O 

therefore a reasonable approximation to substitute into 

equation (1.18) for the first time step would be Ov0,0) = 0-5 

and thereafter Qcoz) = 0. 

The step change boundary condition has been investigated 

by Pearson (32) and Elrod (15). Pearson used the Crank-— 

Nicolson method and considered various approximations to Qo, 0) 

for the first time step. He compares his results with the 

analytical solution to the problem and shows that for the 

first time step the results are inaccurate (even using the 

‘ high value of N = 100) but as Z increases the results become 

more accurate. On this basis it is suggested that if the 

value of Om) is required, AT be divided into a number of 

smaller time steps thus by the time AT is reached the solution 

will be accurate. Pearson also uses the explicit method for . 

solution of the problem. He concludes with a formula for the
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optimum value of Ov, oy- 

Elrod develops a method for a weighted approximation 

to the boundary temperature. His results appear to be very 

accurate, when the explicit method is used, even for the 

first time step. 

When there is convection or radiation at the boundary 

X = 0, the boundary temperature is determined by the deriva- 

tive with respect to X, consequently this temperature varies 

with time and has to be represented by a finite difference 

approximation. 

Examination of the various finite difference equations, 

e.g. (1.18), shows that if Qer) is being considered, a 

numerical value for the fictitious temperature O17) must 

be calculated. 

Using a Taylor series expansion at the boundary X = 0: 

  

Pcrzy® Broz + AX( 28) + AX (38 Sea oe ae ($8): Beles) > 

and: 

Bo) * Oi; * axe), + 4x ax" (28 a Ax" (g8 ae (a8 

From equation (1.31) it is seen that: 

a2) = Qo x) - 2) (255323 
OX ory Ox 

when terms of the first order and higher are ignored. 

However, subtracting equation (1.31) from (1.30) leads to: 

20) i Q, 2) es Oc.) C5 233) 

OX } (0,7) 2AX 

when terms of the second order and higher are ignored.



= OO. 

It is to_be expected, therefore, that the boundary approxima- 

tion given by equation (1.33) would be more accurate than 

that given by equation (1.32) 

The approximation given by equation (1.33) can often be 

used. Taking the example of the convective boundary condition, 

from equations (1.27) and (1.33): 

Bary > O15) a Bi Qo,r) (1.34) 

24x 

‘ < O10) = Our) - 2AX Bi Qo) ids 35) 

Thus a value for Q@ jr, can be substituted into the 

difference equations for the boundary temperature. 

A similar analysis for a finite difference approximation 

about the adiabatic boundary leads to the approximation for 

Oonai,t) 

(3 = Qusene t) 9 enerz> a O (1.36) 

Oren aAx 

Guid © ies Clee) 

Equation (1.36) always returns a correct value for 

(0°@ /ax*) 0 cy when substitution is made, however it is 

readily seen that an approximation using equation (1.32) 

would not be as accurate. 

An interesting case of boundary approximations is in the 

case of two plates of different materials in perfect thermal 

contact at the boundaries X = 1 as shown in fig. 1.3. It 

has been usual practice to represent the continuity of heat 

flux through the plate by a first order approximation
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(similar to that given by equation (1.32)), but this can be 

improved upon: 

Considering the left-hand plate, when say the explicit 

method is used at node 5, an approximation is required for 

the fictitious temperature T,¢) - Since the flow of heat 

from the left hand plate is the same as that into the right 

hand plate: 

y ~~ (2 if en kipoe (1.38) o% /is,t)1s 9/5 e) as 

- 38 
: elas The chs = k, Tuer = Testy Des = Y Sai ZAx, 

2ZAxs 

where the subscripts refer to the left and right plates 

respectively. 

Difference equation (1.12) can be written for the 

interface, whether it is approached from the left side or the 

right side as: 

Ths, e+ae) = Tee k, dE (TM, ois Pa sr) 4 Mee uyis) (1. 38c) 

P, Ce dns 

Ns, ere ore, e) tke de (T%, €)RS Pia N tess x Teast) Rs) (1.384) 
CeAxe 

substitution of Téee for both the left and right side 

using equation (1.38a) leads to: 

Tee tenn = Tos,e) - M, | 2Aagy . Tse) ~ ATuuerss] (1.39) 

Tis, tar) = = ahee tyes Mile 24x. a 2M ey © *Teeras | (1. 39a) 

k, 

Elimination of Te eacy from equations (1.39) and (1. 39a) 

leads to:
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ve meas, [Men iaeres) Ma (Tes “Teer | cL Ae) 

Therefore, g can be calculated from equation (1.40) and 

substitution forg into equation (1.39) leads to an equation 

for the calculation of Tise+rar) - The boundary approximation 

is second order. 

A second method of approximating the interface would be 

to use an equation similar to (1.32) to calculate the heat 

flux. It is to be expected, however, that this would be less 

accurate. Difference equations can be very inaccurate in 

the region of discontinuities. 

The approximate solutions by finite difference methods 

for the cases where there are derivative boundary conditions 

have been considered by Back (4), Elrod (15) and Lynn and 

Meyer (28) 

Elrod appears to have given the most accurate method. 

This method is used in conjunction with the explicit method, 

and uses essentially a weighted mean of the boundary 

temperature and the internal plate temperature. The values 

of the weighting coefficients are dependent on the Biot 

number. 

Back presents a method which is claimed to overcome the 

disadvantage of instability in the Dusinberre method. He 

evaluates the convective boundary temperature as the average 

over time interval At . Results are compared with Hlrod's 

and Dusinberre's which shows Back's method to be inaccurate
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at small values of time but at larger values Back's method 

seems to be superior to Dusinberre's. The results obtained 

using Elrod's method are much superior to those obtained 

using the other methods. 

Lynn and Meyer compare Back's explicit method with 

the Crank-Nicolson method for both surface and internal 

temperatures. They conelude that the Crank-Nicolson method 

produces more accurate results than Back's method. They 

also state that the Crank-Nicolson method was used with 

increasing time steps; for example, in stepping from 34A¢ 

es 64t in one time step resulted in an error of <1% in the 

surface temperature. 

Lynn and Meyer's results are reproduced in tables 1.3 

ands 4G



TABLE 1.3 

RESULTS PRESENTED BY LYNN AND MEYER. 
  

M = 0.5 Bi = 5 N= 10° x% =0 

  

  

  

TIME Q.o,t Qo) E Co,t) Qo, €) E (0,k) 

(EXACT) |( EXPLICIT) I CRANK- of, 
NICOLSON 

0 1.000 1.000 1.000 

4t 0.699 0.714 eee 0.699 On1 

2dt 0.616 0.633 2.8 0.617 Ose 

3dr 0.563 0.569 140 0.563 0 

4At 0.523 0.528 120 0.523 -O.1 

5at 0.493 0.495 0.4 0.492 -0.2 

6 dt 0.467 0.469 0.4 0.466 -0.2              



RESULTS PRESENTED BY LYNN AND MEYER 

TABLE 1.4 

  

  

  

M= 0.5 me ae ss 10... 2 = 0 

TIME Oroe) Oc0,e) Etor) Qo) Evoe) 

(EXACT) |( EXPLICIT) / _ CRANK- = 
. NICOLSON ° 

0 1.000 1.000 1.000 

At 0. 338 0.200 -41 0.172 -49 

2At 0.256 0.280 + 9 0.272 + 6 

3at 0.214 0.192 -10 0.199 8 

ADE 0.188 | 0.189 + 0.5 0.185 - L6 

5dt 0. LTO 0.162 - 5 0.166 -2 

6At 0.157 0.154 - 2 0.154 - 2              
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G. Finite difference approximations in two dimensions 

The same differencing principles which were used in the 

one-dimensional case can be used in two space dimensions. 

The equation to be considered is: 

Ot faire eorr (1.41) 
ab =e fae el 

assuming the case under consideration is a long bar of 

Square cross section, insulated on two adjacent sides, then 

equation (1.36) can be made dimensionless: 

08 _ 08 , 070 (1.42) 
aL, pk are 

The initial and boundary conditions (assuming these to 

be radiation) are expressed: 

T=0 OFX€<1 Ocve! O(%,Y,0)=) (1.43) 

CoO" as ye \ x=0 pe Oa 8S 5%.) (1.44) 

O<x<! Yop) —86 00,7) = RO*lx,0;7)* (1.45) 
oY 

O< Yel wet 86C.y,7) 
ox 

0<X<\ Yel 06 (x, 1,7) 

oY 
The following approximations to equation (1.42) have 

O (1.46) 

O (E47) 

previously been used: 

(i) Explicit 

This method is analogous to equation (1.18):



ao 

g - 6, (mk trary (mk, 0) * Gas ry 26 on, ko) - BO imats kT) 

AT ax* 

- Ben kau ia 28 mu 2 + Btn kets) (748) 

Ay? 
Equation (1.48) is arranged to enable Oum*,reary #0 be 

calculated explicitly from Ocnn,ry ? 

Bem, x,c4a0) = OngrytM (msi,tery* Qcmigkyr) + Oem, key) # Oem seen) 4G incr) (1.49) 

The use of the explicit method in the two-dimensional 

case is theoretically even less desirable than in the one- 

dimensional case because the maximum time step is only half 

that possible in the one dimensional case due to the more 

stringent stability requirement. 

(ii) Backward difference 
  

The backward difference method is the two-dimensional 

analogue of equation (1.20). Evaluating the space derivatives 

of equation (1.41) at time Z*é? instead of at T . 

“™ Quo castes MOeneis,coary Mm, uos,coaty Om, etree * (144M) Oem, 4.00) Gen, t,t) (1.50) 

Each equation of (1.50) contains 5 unknowns, therefore 

the set of simultaneous equations can no longer be solved in 

the simple manner used for the tri-diagonal system of the 

one-dimensional case. If the bar were divided into N space 

inerements and the difference equations (1.49) had linear 

boundary conditions, it would be necessary to invert an 

(N+!) « (N48) matrix at each time step. If the boundary
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conditions are not linear, much more work would be required 

to obtain a solution. The backward difference method does 

have the advantage of unconditional stability, thus it may 

be possible to use large time steps. 

(iii) Central difference 
  

This method is the analogue of the Crank—-Nicolson 

method of the one-dimensional case; the space derivatives 

are evaluated atZ+44T . Taking an average for the evaluation 

of the space derivatives as used in equations (1.49) and 

(1.50) + 

  

en k, tear) On, e509 wi | Qenen st) 2 Pen bet masse) + eon, Wtt;Z) ~28en,kx) + Oem eote) 

  

AT 2 Ax aie 

$ Son tsrrary” Penygcear)t Omer rgcree) > Cinigu sean) 729m 47007) * Snakes rear) (1-51) 
Ax x A yy 2 

rearranging: 

C Ooms, k,T+at a 2 (2+ s) Oem, k,T+4T ) * Bem A, k tart) - Bun, k+1,T+AT) . 9un, k-1,T rar) ) 

2- LO.na,097 2(2-s) Qen,k,t yt On-i,igty? Mm, xa,t)+ Oem, k-i,z) | (1.52) 

Equation (1.52) is implicit as is (1.50). More 

calculation is, however, involved in the solution of the 

simultaneous equations which are obtained. As with the 

Crank-Nicolson method, equation (1.52) should be more accurate 

than either the forward or backward difference methods as both 

the time and space derivatives are evaluated at the same 

point, Z*4AT
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(iv) Alternating direction implicit method 

This method has no analogue in the one-dimensional case. 

It is implicit, unconditionally stable and the chief 

objective is to avoid the solution of simultaneous equations 

with five unknowns. The difference eguations are made 

implicit in one direction and explicit in the other for odd 

time steps then vice-versa for even time steps. 

Making the difference analogue of equation (1.42) 

implicit in the X direction and explicit in the Y direction: 

Oui g sis i Oona, RE Owing Sent eae, + Oun-i , kK, tear) 

AT Ax? 
  

+ Derjarty ~2Ocn kT) + Penk -15T) (15253) 
ay 
  

and for time step T+2aT ;: 

On Ketvagny? On, boar) S Oui naceeecy a Ocenyk, 7440) + a ~1,k,T+az ) 

AT Ax 
  

+ Oconee 20200) ~ 29m 4 2200) +O cn e-t,T+ 200) ( x . 5 4 ) 

AY? 

rearranging equation (1.53): 

  

[ 6 (mnt, k, TAZ) -(2+8) On, x;t+ar) + Oriv nce! 

os fo, \\t)7 (2-8) Ben, 4,0) * Oem k-I,T) ] (1.55) 

similarly with equation (1.54): 

[Qa yke,trzaty” (24S) Om, k,7+a07) + Oem, kei,7 207) 1 

=e sy k,T+4T) (25 ) On,kjteat)* Ocnghe e007) | (1.56)
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Thus there are three unknowns in each equation, 

consequently the set can be solved by the simple elimination 

techniques used for a tri-diagonal matrix. 

Previous work on the solution of two dimensional heat 

conduction problems by various difference equations has been 

done by Douglas (9) and Peaceman and Rachford (31). ‘The 

work of Douglas is mainly of a theoretical nature but that 

of Peaceman and Rachford discusses the practical aspects.
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H. Three dimensional problems 

As extra space dimensions are considered, the problems 

become more complex. If an explicit method were to be used, 

the time steps would have to be very small because of an 

even more stringent stability requirement than that for two 

dimensional problems. When an implicit method is used say 

for the transient temperature distribution in a cube when 

subject to convection boundary conditions and N space 

increments are used, this would require the solution of 

(N + 1)3 simultaneous equations at each time step, each equation 

having 7 unknowns. If N = 5, it would be necessary to solve 

216 simultaneous equations at each time step! 

The alternating direction implicit method is applicable 

in three space dimensions but it can become unstable. The 

method of Allada and Quon (1), (see section L) may be a 

little more satisfactory.



J. Truncation error 

Equations (1.18) and (1.20) are only approximations to 

the partial derivatives since terms involving higher orders 

of AXandAT have been ignored. In order to obtain difference 

approximations which approximate the differential equations 

closely, examination of equations (1.14) and (1.15) show 

‘that if AXis small, generally, a better approximation will 

be obtained. It can also be seen that if the values of the 

higher order partial derivatives are small, a larger value 

of AX is permissible. 

If a problem is considered in which no discontinuities 

exist e.g. the solution of the one-dimensional heat conduction 

equation for a plate with the boundary temperatures fixed and 

the initial temperature distribution a parabola in X, using 

the explicit method and considering the difference represent- 

ations (1.14) and (1.15) leads to: 

  

(23) = Orns) cS 29,0) + Ooneury Be Ax” o*O (1,87) 
OX? In,z) Ax* 1X \AX* /enry 

1 ‘ : ee 2 x 
when terms involving orders higher than AX are ignored. 

A similar analysis in the T direction gives: 

  
oo = On vee ee Ae (29 (1.58) 
(3 tag at 2 52° as | 

Equating equations (1.52) and (1.53) then rearranging:
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On sc sé8y- 2 Qcn;t) +M (Oumar) = 249 mr) cv Oun-1,r) ) 

aon i) ae (1.59) 
(me) 12 Voax* Jones 2 ot* 

Using the identity 0°70 ~ 06 (1.60) 
ote. ace 

it is obvious that equation (1.59) will be most accurate 

(i.e. the terms involving fourth order derivatives cancel 

out) when M= 1/6. This is a special case of the explicit 

method. 

When there is a derivative boundary condition, the 

truncation error is dependent on the approximation at the 

boundary. Subtracting equation (1.31) from (1.30) gives: 

Guzy~ Dent) a) Z ax (28 (1.61) 
LAX OX /(o,r) 6 \dx* Kor) 

It is seen, therefore, that the truncation error is 

dependent on the terms which contain the third and higher 

derivatives whereas in the case of a fixed boundary temperature 

it was the terms containing the fourth and higher derivatives. 

If the values of the higher order derivatives were 

known, it would be quite simple to determine the number of 

space increments it was necessary to use and the required 

time step for a given error. Kardas (24) has worked on this 

basis in considering a plate with convective and adiabatic 

boundery conditions. He assumes the fourth order terms are 

those which control the accuracy of the difference approxima- 

tion and estimates these from the known analytical solution,
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presenting graphs for the truncation error as a function 

of Bi and T for both the convective and insulated boundaries. 

It is noticed, however, that he does not take into account 

the different approximation at the boundary to that in the 

interior of the plate. 

Kardas uses equations (1.57) and (1.58) to evaluate 

the truncation error which is given by:- 

TLé. ee 4x" (ae) - mpes( pe) | (1. «62:) 

=.= bts */d (1.63) po 8B) “ 
at the interior points in the plate but at the boundary, 

equation (1.63) does not hold. From equation (1.14) it is 

seen that at the boundary X = 0: 

  

($3) = 2 i Our» Ess 0,2) ~ x Be eoyer” 4 = (Se +24 ax'(SP ex f ( ee 64) 

rearranging and substituting (00/ax)o) = Biz) leads to: 

9°6 = 2O cry - 2Orcoey ~ LOX Bi Oro y_ Ax (e%8 % = AXY (1.65) 
(28) 30 : ac eis ee OX*4ot) 11 8) 

Therefore the truncation error is: 

  

tox 0%) Ax /0%@) . AX /o°e : (1.66) 
(33)... 12 SS (0,7) a (or) 

Obviously, more error is introduced at the boundary 

than at the interior points in the plate when the heat 

conduction equation is represented by finite difference 

approximations in the usual manner. 

In practical problems, however, it is not usually
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possible to know the values of the higher order derivatives 

and the determination of the lattice density is largely a 

matter of intuition.
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K. Stability 

The problem of stability has been mentioned in earlier 

sections. In this section the problem will be considered in 

greater detail. 

The use of a difference equation, as shown above, will 

introduce errors. Also, the actual rounding operations on 

the computer will produce errors. If the error introduced 

at one time level by a difference formulation becomes greater 

at the next time level by the use of the difference equation, 

the difference equation is unstable because errors will 

accumulate. If errors introduced remain constant or become 

smaller, generally the difference equation is stable. 

Considering equation (1.18) in which there are correspond- 

ing errors Een) in Oce cas 

Cae z Een ocaiea be (O28, 7 Eiee) * M Paeyt Pies ) 

z 2 Ons ¥ Beiney) si (On es + Biia our ( l. 67 ) 

Thus it is seen by examination of equation (1.67) that 

an equation equivalent to (1.18) can be written for the error 

propagation: 

Cnnceterce Ht OM CEemeney7 2 Eimer + Eemarey) (1.68) 

Therefore, the errors at any mesh point are propagated 

forward according to equation (1.68). The difference equation 

‘for the error propagation takes the same form as the difference 

equation for the function whenever the original differential
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equation and its boundary conditions are linear. 

O'Brien et al (30) present the theory of stability 

analysis. Briefly, they explain, by the use of Fourier 

series, that the error can be represented by a function: 

EOE) =e hee (1.69) 
Substituting this function into equation (1.18): 

nee sar, KX et e™ Me™ ¢ Rx eFax eX Tew, ehh KX oo) (1.70) 

Looks MMPS iae (we7z) 
= 2M(cos(KAX)-1) | (2:72) 

E = 1-4Msim* (5 ax/2) C3) 

for stability l¢[ <1 

.. 71€ Li-gm sit (KAX/2)] € | (1.74) 

It can be seen from equation (1.74) that for stability 

iS m
y
 

In
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Fig. 1.4, first presented by Richtmeyer (34), when the 

explicit method is used with M = 0.55 for the problem: 

T=O O€X<¢! Cin oy eX: CLST#) 

Z>O x= | oo 5 
ox (n,T) 

illustrates instability. 

It is readily seen that the approximate solution diverges 

rapidly from the analytical solution as Zincreases. 

Aoplication of the above stability analysis to the Crank- 

Nicolson and backward difference methods shows them to be 

unconditionally stable, i.e. there is no restriction on M.
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fhe method of stability analysis presented by O'Brien 

et al is useful in the case where the boundary conditions 

are fixed but in the case of derivative boundary conditions 

this method breaks down. A second method, the matrix method, 

does hold. 

Consider the use of the explicit method for a plate 

with convective and adiabatic boundary conditions: 

Equation (1.18) can be rearranged: 

Cian =™ Orn snxt + (1-2) Ont ee (1276) 

and the two boundary equations: 

Qcojevary = MOug, + (1- 2M) Occ) +M £Gcic 20 BGs.) (1929) 

when X = 0 

and: 

cake = MO ny-i, 7+ (1-2m) Q uc) i. MO yair) (2 . 78) 

when X = 1, 

If say 5 increments are used, the equations can be 

expressed in matrix form: 

= 

eee [G-am)-2axBiM) 2M 1... 

Rrisestss mM Ca Qu.2) 
ital: M (3M) ™ Ox. (1.79) 

Cee ines M (1-2) M Qs 

Ou ceo) M (te) M |10u.2 

Qe cvary a (1) rer)            



i 5s 

ie inne A Oin cy (1.80) 

For stability, the maximum eigenvalue of A must be less 

than or equal to unity. 

It can be seen from equation (1.79) that the value of Bi 

will have an effect on stability. Whereas O'Brien et al 

conclude that the Crank-Nicolson method is unconditionally 

stable, Keast and Mitchell (25) observe that in some 

circumstances under derivative boundary conditions, the 

Crank-Nicolson method does exibit instability. It appears 

that the instability which arises in the Crank-Nicolson 

method is in the main limited to a persistent error. Keast 

and Mitchell also show that the explicit method which is 

stable for M¢#0.5 when fixed temperature boundary conditions 

are used becomes unstable at lower values of M when there is 

a derivative boundary condition. 

Dusinberre (12) realised that the explicit method was 

likely to be unstable for lower values of M and proposed that 

in the explicit method, negative coefficients of Qn) = 

when calculating One » Should be avoided. For this 

condition to be met, from equation (1.77): 

Mage (1.81) 
L+2AxBi 

The concept of instability can be explained in a simpler 

manner. Considering equation (1.18), assuming there is the 

worst possible error distribution on the mesh points at the
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current time level, i.e. at the three nodal points n-1, 

n, n+ 1, there are errors of —- g. + a. ae respectively. 

Application of equation (1.63) gives: 

En caty = E AOE ee ce? 

a E im, toar) . E'(1-4m) (1.82) 

es Eemceat) is only <]E'| provided M<& 

As has been shown, the explicit method is subject to 

very severe restrictions, that is AT has to be small to avoid 

error growth. Richardson (33) presented a method for the 

solution of the heat conduction equation which at first seemed 

attractive: 

One ae Z Q¢nc-at) = Or naiey = 2% mt) + Ocmeyt) (1.83) 

AAT AX? 

that is, the difference analogue of the time derivative ? S 

  

is calculated using the previous as well as the future time 

step. This method has been shown to be unconditionally 

unstable. It is suggested by O'Brien et al that Richardson 

did not realise the instability of his method as it was used 

only up to a small value of Z . Consequently, the errors had 

insufficient time to accumulate.



te 

L. Stable exnvlicit methods 
  

(i) Dufort and Frankel 

The explicit method has the disadvantage of requiring 

a small time step and the implicit methods requiring the 

solution of simultaneous equations. These drawbacks may be 

overcome by the use of the Dufort and Frankel method. Their 

formulation is: 

Ongeat) 2 On cana) Ons “eye Orie) — Ocac-or) + rz) (1,84) 
2AT nx 

Equation (1.84) is explicit but has the disadvantage of 

being unable to use a progressively increasing time step 

since values of O are required at the previous as well as at 

the current time levels. It is also necessary to use another 

method to calculate the temperatures at the first time step 

before the Dufort and Frankel method can be used. Use of the 

backward difference method for the first time step would 

seem reasonable. 

(ii) Alternating direction explicit 

The Dufort and Frankel method has the disadvantage of 

requiring the temperatures at two time levels to calculate 

those at a third. Allada and Quon (1) present the alternating 

direction explicit method which is claimed tio be stable for 

all values of M. Their presentation is for two and three
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dimensional problems but there is an analogue in the one- 

dimensional case. The basis of the method is to use the 

temperatures at the future time level as soon as they are 

calculated in the direction of increasing n at one time 

level and to work in the direction of decreasing n for the 

next time step. The resulting one-dimensional difference 

equation, assuming the temperatures are evaluated in order 

of increasing n is: 

    

Onscreaint’ = Ben) = Qn, cear)” Om zeacy a Bec + Oemnsse) (1.85 ) 

AT Ax* 

rearranging: 

One a Omer - so cel = Orc ‘ Beis) (1. 86 ) 

(i+M) (i+M) 

The corresponding equation for the error propagation 

is: 

Eccictes = cnx) = ete ( ha cones - Eem,z) * ba) Be ° 87 ) 

(+m) (1+™) 

The stability of equation (1.86) was tested by following 

the propagation of an initial error distribution as shown in 

table 1.5. It is assumed that the error distribution is 

O,.L, ~b, boi =i, 0: at Aimee. Fable: 1.5 shows’ the decay of 

the errors with time. It is interesting to note that the 

application of an alternating direction procedure tends to 

spread the errors over all the nodal points. If the procedure 

had been used in the same direction for each time step, the 

errors would tend to be larger when n=l.



TABLE 1.5 

BRROR PROPAGATION USING A.D.E.P. 

  

NODE ERROR 
  

  

  

ns 
0 1 2 a 4 5 

Cc 0 iL =F 1 <i 0 

C+at @1- 1 ig 0. 3.433 - O.77TTT 1 -— 0.1852) 0 

T +2at 0 | - 0.2638 |-0.8958 ot BT TY 0.45671 0 
T +2AT 0 |- 0.5092|-0.1589 26. 3647 4-0-1042 1-0               

T+ 2ae 

  
Error distribution at T+24T proceeding in the 
same direction (n increasing) as at [tat is: 

0 «5556  -0.2593 « -' 0.0370 - 050371 0
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Equation (1.86) relies on the availability of a fixed 

boundary temperature. Using the alternating direction 

explicit method for a plate with convection and adiabatic 

boundary conditions at the boundary X = O leads to: 

Qvo,c+at) = Qor)_ +ifX (Oe) aes ms Ovor) mE Aer) CT. 88) 

Ci+M) (14M) 

an approximation is reauired for 0,,-, s this-ecan be og - 4 Citar). 9 

obtained from equation (1.35): 

Q..,c+ar) = OG, cae) 7 2AX Bi {0,047 ) (1.89) 

Substitution leads to: 

Coceity = Ory ped (Qxr we) ~2AxB iQ tear) ee +, i) (1.90) 
(itm) (1+) 

which is implicit. 

To overcome this restriction, the formulation used in 

the explicit method could be used at n= 0. This leads to: 

Cro vaatye Gon t M (20.7) 26 tor) ~ 2X BiO co) ) (1.91) 

If equation (1.91) were used when n = 0, proceeding in 

the direction of increasing n, it would be permissible to use 

equation (1.36) at the adiabatic face at T+at . This leads 

tos 

O Own,x) + mea c tes Ok ss-cunct e Oo) * Oris) ) Ci 92) 

(1 +M) (i+™M) 

Proceeding in the direction of decreasing n would require 

N,T+aT) ~ 

the usual explicit formulation to be used at the adiabatic 

face but this time the alternating direction explicit 

formulation can be made when X = O.
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Allada and Quon make numerical experiments with the 

alternating direction implicit and explicit methods for the 

three dimensional problem of a cube with step change and 

adiabatic boundary conditions. They make no mention of the 

approximation used for the boundary temperature at the 

adiabatic face. They conclude that neither of the above 

mentioned methods are particularly accurate but the explicit 

method is very much faster.



  

SA 

M. Solution of the simultaneous equations. 

Once the partial derivatives in the heat conduction 

equation have been replaced by their difference analogues 

it is necessary to solve the resulting equations. The use 

of an implicit differencing technique results in a set of 

simultaneous equations which have to be solved by an 

elimination process. 

In one-dimensional heat conduction problems the co- 

efficients of the equations form a tri-diagonal matrix; 

taking the backward difference method as an example for a 

plate with convection and adiabatic boundary conditions, 

the set of equations can be written in matrix form: 

  

fas AM) +QIMAXBi] -2M ; Pose oe 

-M (142m) -m | Quceary)| |P0 

-M (14am) -M Qa cra0)\= Oo (1.93) 
-M (14am) -M | Q¢3 +02) Q..0 

PL MAR TEM SOc e,:| (Oe 
; -2m (1 +2) 51,00) 45) 

Jt Jet           
when 5 space increments are used. 

Equations (1.93) have to be solved at each time step. 

The solution of equations (1.93) is simple. The method 

as outlined in Modern Computing Methods (29) is as follows.
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Equations (1.93) are analogous to the general set of 

equations: 

            

i es a a | 

QD. oe, \, d 

Ge Baa Oe da, 

On (bye, 4, d, (1.94) 

ee a 4, d, 

3 he be | | 45] ds | 

Using the first equation of (1.94) to eliminate y, 

from the second equation by multiplying the first equation 

by a,/o, and subtracting from the second. 

bs 4,+ S04 = do (1.95) 

on4 4 by | +4 5- d (1.96) 

which leads to: 

bya, ce lo, o Coe = e “Buds | (1.97) 

( b, )s Je ae 
ieee Boy + Gy, = }4 (1.98) 

The final equation of the set is: 

a: 9 
As Os = bs (1.99) 

hence yg is calculated amd back substitution into the 

general equation: 

Gnas © Sc emt) LB a a (1.100) 

_allows the remaining values of y,to be calculated. Values 

of da and fi. are calculated from:



ar 

a Bun 

Om 

bat Oy ea C1301) 

Aas 
hn = hde. (T1083 

Buna 

and Be = ae , ‘ => dd. 

When there is a radiation boundary condition, the first 

equation of (1.94) is non-linear hence an iterative techniaue 

has to be applied. Again, taking the backward difference 

method as an example the equations can be written: 

[U+2m)+2m ax ROC cy ee Qcoreaty ben 

aN (142m) -™ Boxeae | \Puzy 
-M (itz) -M corsa |=] On he) 

-M (142m) -™ Bie) | Oss) 

-M (142m) -™M Qian Cun 

~am (+2) Ocsnrat), | Ocszy           
It is seen that Ow.ctar) is contained in the matrix of 

coefficients for Owment) - Equations (1.103) can be solved 

by making an estimate for Ovo,c+ar) and performing the 

elimination mentioned above then comparing the estimate for 

Dic cunan with the new value obtained. Iteration is 

continued until the differences between two successive 

iterates for Oo,¢+ar) are within a desired convergence limit. 

Another method which appears popular is the Newton- 

Raphson iteration (26). The set of difference equations 

obtained from the backward difference method for a plate with 

radiation and adiabatic boundary conditions may be expanded
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in a Taylor series, truncated after the first partial 

1 aL 

derivatives bout an initial estimate of the temperatures a 

O¢m,t+4t) - This expansion leads to a set of linear simultan- 

ee ; ory Grea) eous equations for AO Cciecy Oa * a. C) 

        

Cram)48max ROR] - 2M nor A 

-™M (izam) -™ ao) FS, 

~™ (142m) -M pom ki, (1.104) 

-M (142M) -M hee “fy 

-M (am)-m TAO] FF, 

| -2™ (t+2m) bog? S| 

where for instances, f, = Qu,.7 + Mors ey 7 (FRM) OM 

+ OE ia 

and fchaa - Qmr) 
1 The above tri-diagonal system may be solved easily using 

imination method and iteration is continued until te
 the e 

max | A@ 

It is apparent that the Newton-Raphson iteration involves 

pari is within the desired convergence limit. 

more calculation than the simple iteration method but it is 

ssible that this method may be faster to converge. 

Matrix iterative methods 
  

The common iterative methods for solution of sets of 

simultaneous equations are: Jacobian, Gauss-Seidel and 

relaxation (accelerated Gauss-Seidel). All the methods 

consist of making initial estimates of the unknowns, then



  

calculating new (better) estimates by solving the rearranged 

equations, The three methods can be, and usually are, 

applied to sets of linear as well as non-linear equations. 

It would, however, be unnecessary to use an iterative method 

to obtain the solution of a set of linear simultaneous 

equations, the coefficients of which form a tri-diagonal 

matrix. 

The simultaneous equations obtained using the backward 

difference method for a plate with radiation and adiabatic 

boundary conditions are written: 

(142M) 0, craryt AMAXRO Gc. ne) ~ 2MOc,c+42y = 65 ¢) (1.105) 

A Q0,c+aC) . Ci+2™) Ouerat) ~ MQ, c+ar) *9.- 5 (16106) 

“LAM Gu, crac) * (42M) (5,T+aT) = %50)(1.107) 
The iterative methods used for the solution of equations 

(1.105) - (1.107) are: 

(i) Jacobian 

Equations (1.105) are rearranged to form the iteration 

  

  

  

algorithm: 

orn +1 lam ) ; 

ee * Orvo,2) + 2M Gre, (1.108 ) 

- (142M) + 2MAX Rees acs 
+) (™) (am) 

(,c+ac) Our) * NG beac) . We acs f 

: (1+Qm™) 

fay oD) 
ee, 3 Oca. + 2M Biss 

(1+am) 

The first equation of (1.108) is the same as that used
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when elimination combined with simple iteration on the 

first equation only is used. If a large set of equations 

were being solved by this method, it can be seen that a 

large amount of computer store would be required since both 

the m* and the (m+ 1)™ iterates must be stored simultan- 

eously. 

(ii) Gauss-Seidel 
  

When this method is used, the new iterates are used as 

soon as they are calculated which means that only one set of 

iterates has to be stored at any one time. It would intuitiv-— 

ely seem better to use the Gauss-Seidel method. 

The iteration algorithms are: 

  

  

  

(en4i) ae 

(o,t+at) O; 4 am Ger ( lee 109 ) 

Ci+2M) + IWAKR OE 3 

OF. Mom) eat Qe (1490) (it +AT) x Gt) * (a,traz) + (o,c+at) « 

: (1+ 2M) 

(era +4) f+) 

a $,t+QT) = Asx) + 2 M ea Kets 

Ci+amM)y 

The first equation of (1.109) is the same as the first 

equation of (1.108) since the (m+ 1)®iterate for 6, ceat) 

1s not available. 

(iii) Relaxation 

This method is similar to the Gauss-Seidel except 

G@n+1) i D bn +!) (+o : Gr ks is re-named Oi is and Cees, * is
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calculated: 

os fm) Aon+) ~_p™ 

Dae s ce - (ORs inks} ) ( Lakh i ) 

Relaxation methods were usually thought of as being 

useful only to hand computations because the choice of & 

is usually intuitive. These methods are, however, becoming 

more popular with automatic computation. 

Depending on the value of @<1 or &>1 relaxation 

methods are usually referred to as under — or over - 

relaxation. When ®= 1, the relaxation method reduces to 

the Gauss-Seidel. 

Matrix iterative methods are usually more popular with 

2 larger number of equations, for example when a two 

dimensional system is under consideration. In this case the 

nunber of equations is (N + 1)°. terative methods are 

generally preferred for the solution of two-dimensional heat 

conduction equations even though they may be linear. 

Peaceman and Rachford (31) consider the use of iterative 

methods for the solution of the two-dimensional transient 

heat conduction equation with linear boundary conditions. 

The solution of the Laplace equation is also considered. 

Reference is made to the work of Frankel (18) on the iterative 

solution of the Laplace equation. Varga (40) discusses and 

explains matrix iterative methods.
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N. Integral method 

The main work in this field appears to be that of 

Goodman (20). Schneider (38) presents the method applied 

to a plate with radiation and adiabatic boundary conditions 

and uniform initial temperature distribution. Fig. 1.5 

shows the basis of the integral method for a plate. The 

temperature distribution through the plate is represented as 

a polynomial in X, the coefficients of which are a function 

of time. The problem is considered in two parts: 

(a) Le baa 

(rt eee, 

The degree of the polynomial is denendent upon the 

number of boundary conditions which are available. ‘Two cases 

are considered: 

(1) Quadratic Profile 

(a). D8 Tae 3 

The temperature throughout the plate is represented by 

a parabola: 

O's G@. + Gea ye (i738) 

where a,; Qs and a, are functions of time 

Integrating equation (1.7) with respect to X: 
Xe Xp 

0edx = vee dX 5) 
oT ax*
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Using the rule for differentiating an integral: 
Ad 

4 {oax -O(%p 7) = ~ dO (0,7) Chs174) 
dt) dt dX 

, at [ [2 dX “0 GAs | 40 (or) (1.115) 
atti dx 

Using the following boundary conditions: 

X=0: 00, _ RO,* = f (say) (1.116) 
ox 

X=Xp_: Olx,,7) = 1 (1.117) 

00 (XT) oO (1.118) 
Ox 

rs
 

differentiating equation (1.112) with respect to X: 

5: Og ee Oe 

Va
, 

x
 

Substitu 

Goh ehe ee REX (1.119) 

er
 

ing the boundary conditions leads to: 

  

or AXp 

~» when X = Os 

O,2 1 - §Xp (1.120) 
~ 

z, Xpew VOSEY o> (1-82) tires 
Ff ROM 

as a]h ie | (1.122) 

Substituting the profile for 6 (given by equation (779) 3 

into equation (1.115), performing the necessary integration 

and substituting Olxp,T) = 1 gives: SC 

L&D] -.



From equation (1.121): 

fe = R. [eCbas yy: 

  

RO" 

= 4 (i-,)~ 

n6.° 

¢ | O- 8.1" cs = Re,* (14124) 

; dt RO,' 

Performing the necessary differentiation to extract 

da/det 

-4[@ (1-6 +8) | Bee RO! (1.225) 
Ai Ces 
4/2 53 ee 1 = Redo (1.126) | = . But 

3 8. 0. Ge : 
ae a - + ee des RAT Qh) 
SEO, Gees 

RP “4/-2 cee |.” 1 1283 
31 84 yer” 66st 

simplifying: 

Eek [Lar-3%>2). | (1.129) 
Rf 30" 1s Fs 4 63 

Using equation (1.121) to substitute for f in equation 

(1.119) leads to 

(1.130) 

s Z can be cal for 0,.,¢ 6, | 

equation (1 

ation (1.130). @x, is obtai 

  
culated from 

9129 }5 Xp from equation (1.121) and the temperature 

ed from



a BR 

(o) Ls Lx» 

The temperature profile is represented by a new 

volynomial: 

@= b, +bX + age 

with the boundary conditions: 

X=0: 005. ROS eof 
aK 

Ae43 08 (1,7) : 9 

ox 

lifferentiating equation (1.131) leads to: 

30 2 Bex 
ox 

Substituting the boundary conditions: 

6 = yi + FX = 1x" 
a 

0 dx . (de ax 
Oe , 

since “ne limits of integration are fixed: 

d Odx ot gt (0,2) 
dz J dX 

Sonboma the integration: 

d |b. + Rey = how 
dt 

from equation we when X = 0: 

b, = > 

3 ded aes sper 
dT 3 

(iE 5h) 

(1.332) 

(1.133) 

(hid 34) 

(4.135) 

(1.136) 

Che 372 

(1.138) 

(31 39)
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performing the necessary differentiation: 

ig ae al Se[ ae 

= ce ee tad, ete) |. (1.140) 
The temperature profile in the slab for G>ly, “16 

given by: 

6-06, + RO,*x - RO* x? (1.141) 
2 

(2) Cubic profile 

(Ailery, 
The temperature profile through the slab is represented 

by a cubic: 

G44. 4 0,060, ao. Xx” (1.142) 

Thus it is necessary to have an extra boundary 

condition. This is: 

ge On 0 (irae) 
3: 

i.e. since 98 (1,T) = 0 always, 
ox 

the boundary condition as given by equation (1.143) is 

    

   

justified. 

Differentiating equation (1.142): 

Ov eia -4 2 Gs Bark” (1.144) 
x 

GOO. 4 bo (1.145) 
eo 

 



te AT 

  

  

when X= 02° JO, © ROS = § (1.146) 
Ox 

X * Xp + SOtkper 2,0: 1.14 e? 98(% (1.147) 

J (X6.0) 0 8 yx P> = (1.148) 

O(x,,T) =) (1.149) 

substituting the boundary conditions 

O21 = fie, ee Ex’ (15150) 
3 bx 

when X= 0, O0#@ 

{0 Geta = 2m 
3 

oars Ge} i? SISO.) (i425) 
R@,* 

Xp 

1 when Xp = 

substituting the profile for into equation (1.115), 

  

- 3 icl eer? | * RO," (1.154) 

6, 

+2 oe dO. 
x 2 * @3 

integrating and simplifying: 

c= 1 (3 .( 10°38 +1) 43 oe 
ele (2 7 = es (1.156) 

(Tg55) -, 
=
 go

 

Y
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Using equation (1.1§1) to substitute for f in 

eguation (1.150). 

Os Bo + 31 a) 6) -() +(x) | (1.157) 

Xp can be calculated from eguation (1.151) and ZT and O 

from equations (1.156) and (1.157) for O@p€GeS|. Oxp is 

obtained from equation (1.152). 

  

  

(byt = oy, 

0 >be #4 b kOe bx? (1.158) 
with the boundary conditions: 

XO: 90. ee « f (1.159) 
ox 

X=: 981,7). = 0 (1.160) 
ax 

0*6 (1,7) = O (1.161) 
ox? 

Differentiating equation (1.158) 

06 | b +2b.x +3b,x* 
Ox . 

a6... <2 bokeh 

3x? x 

substituting the boundary conditions: 

Ob, Sita et +f 2? (1.162) 
| 3 

substituting the profile for 9 into equation (1.136) 

and verforming the integration. 

d [b, 4 ay po Ree (1.163) 
dt{ 4



~ 36 = 

Hy
 

5 Oo 8 quation (1.146) when X = 0, b, = 4. 

”. t [os aes = Ras 
dT 4 

performing the necessary differentiation, then 

integrating: 
6, 

i Ie = + fae (1.164) 
4 

Ox R64, or 

os ee + bn (Bn) « + lx (1.165) =, S 
3R 6, 6,, 6, 

The temperature profile in the vlate is then given by: & J 

@=6,+RO,°x (I-x + x*/3) (1.166)
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2. Analogue-computer solution 

The analogue computer is useful for solving heat 

conduction problems. The general criterion for use of an 

analogue computer is whether a system can be simulated by 

an analogous electrical network. Consider a bar, which is 

insulated around its circumference and at one end, divided 

into equal sections along its length. The bar is at a 

uniform temperature throughout and the temperature at the 

open end is suddenly reduced to zero. This is a one- 

dimensional problem similar to that of a plate with step 

change and adiabatic boundary conditions. I+ is represented 

diagrammatically in fig 1.6 (a). It is assumed that each 

section of the bar is at a uniform temperature throughout. 

Each section behaves as a heat capacitor which interchanges 

heat with the next section due to a temperature difference 

between the two sections. An analogous electrical network 

is shown in fig. 1.6 (b). Initially the capacitors are 

charged to a certain potential and then at t = 0, is 

earthed through a resistance,q. The equation representing 

say the rate of change of potential on C3 is: 

    

Cde.s Heo t,o tee ti - Oe, 4-¢, fsh6T? 
at r © r 

Equation (1.167) is analogous to the heat conduction 

equation which has been partially finite differenced:
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(b) 

1.6 ANALOGOUS ELECTRICAL NETWORK 

 
 

   
 

  
 
 

 
 

FIG   TO THE HEAT CONDUCTION 
EQUATION 

 



  

See 

PCr, dT, = k (T- 27, +T,) (1.168) 
dt Ax? 

where Ce Cp Ax/p 

CRO 1s 

tT: oh As Jk 

Thus by choosing appropriate sealing factors the circuit 

shown in fig. 1.6 (b) can be made to behave in the same 

manner as the heat conductive circuit in fig. 1.6 (a). 

Fig. 1.6 (b) is an impractical circuit as the capacitors 

would discharge due to leakage currents, hence it would be 

necessary to use an electrostatic voltmeter to measure the 

potential. To eliminate this difficulty, high gain amplifiers 

are used and a circuit which behaves in the same manner as the 

capacitor under consideration in fig. 1.6 (b) is shown in 

fig. 1.6 (c). The analogue computer symbol for 1.6 (c) is 

shown in £48.: 1.7. 

When there are derivative boundary conditions, these 

are easily represented using the circuits shown in figs. 

1.8 (a) and (b). In fig. 1.8 (b) where there is a radiation 

boundary condition it is necessary to calculate os that is 

a2 variable has to be squared twice. This is achieved using 

an "X* diode funetion generator", which approximates the 

square of a variable by a series of straight lines. 

The use of the analogue computer for the radiation 

boundary problem has been considered by Zerkle and Sunderland 

who present graphically the temperature-time history of a
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(b) RADIATION 

FIG 1.8 ANALOGUE COMPUTER CIRCUITS 
FOR DERIVATIVE BOUNDARY. 
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plate for various values of R. The analogue computer has 

the advantage of providing a rapid solution. Since the 

value of R is set on a potentiometer it can be readily changed. 

Similarly it is simple to alter the initial condition. The 

main disadvantage of the analogue computer is the requirement 

of large amounts of equipment for all but the simplest 

problems; for example, if the solution of a two-dimensional 

problem is required it would be necessary to use 36 integrat- 

ors whereas 6 may be sufficient in the one-dimensional case. 

If the physical properties of the material were temperature 

dependent a large amount of non-linear equipment would be 

required to simulate the problem. 

The use of a hybrid computer for heat conduction problems 

is becoming more popular. There appears to be two ways: 

firstly use of an implicit finite difference method and use of 

the analogue section of the hybrid to solve the simultaneous 

equations which may be non-linear and, secondly, to partially 

finite difference the heat conduction equation and share a 

block of equipment for each node in turn, as all the nodes, 

except the one at the boundary, are similar. Work on these 

lines has been carried out by Electronic Associates Lid. (14)
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Q. Analytical Solutions 
  

One technique for determining which method is best for 

the solution of a heat conduction problem is to compare the 

results obtained using approximate methods with the analytic- 

al solution for that problem. In practice, however, 

analytical solutions only exist for a small number of cases. 

Comparison of the approximate solutions with the analytical 

solution for the step change and convection boundary 

conditions gives an indication of the errors to be expected 

in the radiation boundary case. 

The analytical solution for a step change boundary 

condition, as given by Jenson and Jeffreys (23) is: 

6 ca -)" Jerfc [(x+2m) /2 VE] +e [Om+2-x)/avz J | (1.169) 

  

n=0 

and for the convection boundary condition by Chapman (6): 
ry At 

O25 7 sin Sm cos (4,, (1-x)) (1.170) 
=f bn + Sim Sn cos dm 

where fu are the roots of: 

Og noe Beis O Cit)
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A. Introduction 

A large amount of effort has been devoted to the 

theoretical study of the various aspects of equation (1.1) 

but few workers attack the numerical solution in a practical 

manner. It is necessary when making a numerical approach to 

solve the heat conduction equation to decide the required 

lattice density and also the amount of computer time it is 

likely will be spent in obtaining this numerical solution. 

The information given in the paper by Campbell and 

Vollenweider (5) does suggest that a practical approach to 

solving heat conduction problems has been made but it appears 

that information about their program is unobtainable. 

Two methods were selected for the problem of one- 

dimensional heat conduction in a plate with step change and 

adiabatic boundary conditions: the Dusinberre explicit and 

the Crank-Nicolson implicit method. When these had been 

investigated for cases where analytical solutions exist, other 

methods were experimented with for the case of a plate with a 

radiation boundary condition. 

The accuracy of the integral and analogue computer 

solutions has also been investigated. 

The numerical computation was done on the University's 

Elliott 803B computer. This computer has floating point 

hardware; 3192 words of core store, each word having 39 bits 

which can hold one floating point number, one integer 
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or two instructions; three film handlers; a card reader; 

a lineprinter and an on-line incremental plotter. 

Photographs of the installation are shown in fig. 2.1. The 

Elliott 603B has 576us fixed point add and 864 us floating 

point add. 

Occasional use was made of the Science Research Council's 

I.C.T. Atlas at Chilton for some of the longer programs. 

The floating point add time on this computer is 1.6 fs 

The analogue computation was performed on an Electronic 

Associates Hybrid-48 parallel hybrid computer. This 

machine is basically an analogue computer with digital logic 

which can be used to control high speed analogue switches 

and other pieces of analogue equipment. A photograph of the 

computer is shown in fig. 2.1.



 



  
FIG 2.
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B. Computation times for the explicit and Crank- 
Nicolson methods. 

Programs were written in Algol to calculate the 

temperature-time history for a plate with uniform initial 

temperature distribution, ana step change and adiabatic 

boundary conditions (given by equations (1.24), (1.25) ana 

(1.30)), and run on the Elliott 803. The results are shown 

in table B.l. 

It is seen that the Crank-Nicolson is slower than the 

explicit method. When 5 increments are used, the explicit 

is about 50% faster than the Crank-Nicolson method when 

M= 0.1. As Mis increased, the speed of the two methods 

becomes closer. When N = 10, the difference in speed is 

more noticeable; for M = 0.1 the explicit is more than twice 

as fast as the Crank-Nicolson method, and when M = 0.5 the | 

explicit is still more than twice as fast as the Crank 

Nicolson method.
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C. Calculation of the analytical solution for a step 
change boundary condition. 

In order to estimate the accuracy of the two approximate 

methods it is necessary to know the analytical solution to 

the problem. The analytical solution used was that given by 

equation 1.169. © (X,Z) was calculated for X = 0.2 to 1.0 

in steps of 0.2 for values of fT from 0.001 to 0.500 in steps 

of 0.001. The results were stored on magnetic film. The 

analytical solutions for the values of X above and selected 

values of T are shown in table B.2. These analytical 

solutions agree with Schneider (37).
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D. The behaviour of the explicit method for a high 
lattice density. 

It has been shown mathematically in many works, such 

as that by Douglas (8), that the explicit solution converges 

to the analytical solution as the lattice density is refined. 

It was decided to test this numerically by obtaining an 

explicit solution and comparing the results with the analytic-— 

al solution. 

The explicit method was used with N = 50 and M = 0.05% 

Some selected results are shown in table B.3. It is seen 

that the explicit solution soon diverges from the analytical 

solution, in fact, the differences are large. This is 

interesting; the results are probably due to the accumula- 

tion of truncation error. Although it has been shown that 

the explicit method is stable, a large number of time steps 

may result in accumulation of the errors.



Ge 

E. Maximum Seoana in the explicit and Crank-—Nicolson 
methods. 

Algol programs were written for the explicit and Crank- 

Nicolson methods for a plate with adiabatic and step change 

boundary conditions. The solutions obtained were compared 

with the analytical solution and the results were printed in 

the form shown by table B.6. 

The tables of results were examined to select the 

maximum errors for each nodal point for values of M from 

O.1 - 0.5 in the case of the explicit and 0.1 -— 1.0 for the 

Crank-Nicolson method. These results are presented in 

tables B.4 and B.5. 

When these errors were selected, it was noticed that 

for X = 0.2, the maximum error occurred at the lower values 

of T , which was to be expected as the temperature of the 

plate is varying more rapidly. When X = 1, it was noticed 

that the maximum errors occurred at higher values of T as 

the temperature at this boundary is not changing very quickly 

at lower values of T. 

It has been noticed from the literature that, in general, 

the results of finite difference approximations to the heat 

conduction equation have been presented in the form of tables 

similar to B.6. However, with the availability of on-line 

incremental plotters, it is now possible to obtain the 

results graphically; the accuracy of the various methods
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can be readily seen by reference to a graph. 

The accuracy of the explicit and Crank-Nicolson methods 

for various values of N and M can be seen from figs. C.4 - 

C.1l. Only a limited number of graphs are presented in order 

to save space. Graphs showing the accuracy of the explicit 

and Crank-Nicolson methods were plotted for N = D ¢ es 6D 

and M = 0.1 to 0.5 in steps of 0.1 for the explicit method 

and 0.1 to 1.0 in steps of 0.1 for the Crank-Nicolson method. 

It can be seen that it is much easier to examine the accuracy 

of the methods from a graph than from a table of figures 

such as those given in B.6. 

Figs. C.4 and C.5 show the accuracy of the explicit 

method for M = 0.1 and 0.5 respectively when N= 5. With 

M= 0.1, none of the nodal points exhibit errors>2%. When 

M= 0.5 (the limit for stability) several points show 

errors > 2% (the convention in the graphs is that if a point 

lies just below the og line, the error is greater than, or 

equal to, 2%). Note that when X = 1, the accuracy is good 

for the first few values of 7, whereas when X = 6:2, the 

first few points are inaccurate. 

When N is increased to 10, the accuracy is increased 

and it appears from figs. C.4 and C.7 that N= 5 and M= O.1 

exhibits similar accuracy characteristics to N = 10 and 

M= 0.5. Reference to table B.1, however, shows that the 

explicit method with N = 5 and M= 0.1 takes 42.8 secs.
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whereas when N = 10 and M = 0.5 it takes 55 secs. 

computation time. 

Fig. C.8 shows the explicit method with N= 15 ana 

M= 0.1. As expected, the accuracy is increased. 

Fig. C.9 shows the results obtained using the Crank- 

Nicolson method with N= 5, M = 0.1 for the same problem. 

It is noticed that this method is less accurate than the 

explicit method with the same lattice density. When M is 

increased to 0.5 (Fig. C.10), it is seen that the error is 

on the whole larger than that obtained using the explicit 

method. Fig C.11 shows the Crank-Nicolson method for M= 1.0. 

The results are inaccurate but the method remains stable. 

The results obtained using the Crank-Nicolson method 

are higher than those obtained for the explicit method. 

Reference to Fig. 2.2 explains this; it is noticed that the 

gradient at time T (that used in the explicit formulation) 

is greater than that used by the Crank-Nicolson at T+ $4t 

consequently, the nodal temperature at t+ at calculated by 

the explicit are lower than those calculated by the Crank- 

Nicolson method. It is to be expected that the backward 

difference would produce results which had a higher positive 

error than the Crank-Nicolson method, thus this method 

would be less accurate. As in the case of the explicit 

method, increasing N makes the Crank-Nicolson more accurate.
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F. Maximum modulus for various boundary aporoximations. 

The natural approximation to use at a boundary where 

convection or radiation is the mode of heat transfer is that 

given by equation (1.33). This was used in an analogue 

computer for the convection boundary problem, Bi = 10 and 

it was noticed that the results were inaccurate. The 

approximation given by equation (1.32) also gave inaccurate 

results. The results were, however, inaccurate in the other 

direction, consequently equations (1.32) and (1.33) were 

averaged to give. 

24) zh [ Bie = Sram = Oe | (2.1) 
(39 (oz) 2 Ax TAX 

This approximation gave accurate results. 

Avoplying Dusinberres stability analysis given by 

equation (1.81) showed that higher values of M could be used 

(i.e. the method remained stable) with the boundary 

approximation given by equation (1.32) than with the anproxima-— 

tion given by equation (1.33). Fig. C.12 presents graphically 

the maximum permissible value of M as a function of Bi/N 

for the explicit method when any of the three boundary 

approximations (equations (1.32), (1.33), (2.1)) are used.
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G. The analytical solution for the convection boundary 
problem. 

It was decided to use a similar approach to estimate 

the accuracy of the explicit and Crank-Nicolson methods when 

there is convection at the boundary X = 0, as was used in 

the case of a step change boundary condition. The analytical 

solutions for Bi = 0.1, 1.0 and 10.0 were calculated for 

values of X from 0 to 1.0 in steps of 0.2 and @ from 0.001 

to 1.000 in steps of 0.001 using equation (1.170). The 
results were stored on magnetic film. Table B.7 shous 

selected results.
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H. Maximum errors for the convective boundary problem 

Programs were written in Algol to compute the temperat- 

ures at various values of Z for a plate with convective and 

adiabatic boundary conditions and uniform initial temperature 

distribution. As with the step change boundary, temperatures 

were only output for the selected values of 72? 0.04, 0.08, 

O bees oa 1.00. When there is convection at X = 0, Over) 

varies withT, consequently values of 96.2, were recorded. 

The form of the results was similar to table B.6. As before, 

tables of numerical data are tedious to examine, therefore 

the results were graphed in a similar manner to those 

obtained for the step change problem. Selected graphs are 

presented as figs: C.13 - €.29. The three boundary approxim- 

ations mentioned above were examined and some of the graphs 

demonstrate the accuracies for the boundary approximations 

other than that given by equation (1.33). The explicit 

method Was tested fer 8 2.5, 10, 15 with M.= 001, 0.2 cat OFS% 

The Crank-Nicolson method was tested for the same values of 

No buy -M. = 0.2.54 «ae e456 

Tables B.8 - B.18 were constructed from the numerical 

results and these give a good indication of the performance 

of the two methods. Only the boundary at X = O is considered 

in these tables in order to save space. 

The results shown in table B.8 compare the accuracies 
—
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of the explicit and Crank-Nicolson methods for Bi = 0.1. 

It is seen that both the methods are accurate and in both 

cases the maximum error occurs at the lower values of T. 

The advantage of the superior stability of the Crank-Nicolson 

method is demonstrated; this method can be used for values 

of M higher then 1.4 as at this value, the maximum error is 

only 0.22%, 

Table B.9 shows the two methods for Bi = 1.0. It is 

noticed that the faster rate of cooling of the surface 

temperature has a detrimental effect on the accuracy. It 

is also seen that the explicit method becomes unstable for 

M= 0.5; this fact is borne out by fig. C.12, since for 

Bi/N = 0.2 it is seen that M€0.35. However, the explicit 

method does remain stable for M¢ 0.4. When M = 0.4, the 

maximum error is only 1.5%. ‘The stability of the Crank- 

Nicolson for M>0.5 is still advantageous. When M = ees 

the maximum error is 2%. For M = 1.2 and 1.4 only one point 

in each case has error> 2%. It appears that for smaller 

values of M, the Crank-Nicolson method is less accurate than 

the explicit method but at higher values of M, the accuracy 

is superior to the explicit method. 

Table B.10 shows the performance of the two methods for 

Bi = 10. ‘The explicit method is unstable for M®0.3. The 

Crank-Nicolson method appears to be good for M>0.4; only 

8% of the points have errors >2%, 
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Table B.11 demonstrates the advantage of increasing N. 

The explicit method is fairly accurate for M<0.3. The 

superior accuracy of the Crank-Nicolson method is shown as 

it is good for M€1.2. Selected graphs for the two methods 

for the boundary condition given by equation (1.32) are 

shown as figs. C.13 - C.23. No figures are presented for 

Bi = 0.1 as accurate results are achieved for most values 

of M (see table B.8). Figs. C.13 and C.14 show the explicit 

method for Bi = 1.0. It is seen that the explicit method 

is accurate for M = 0.1 but inaccurate for M = 0.5 (compare 

figs. C.4 and C.5 for the step change boundary condition). 

Figs. C.15 and C.16 show the effect of increasing N from 

5 to 10 for Bi = 10.0. Note the increase in accuracy for 

all nodal points. Fig. C.17 shows the effect of increasing 

Mwhen N= 10. It is seen that inaccurate results are 

obtained at lower values of T but the accuracy improves as 

increases. Fig C.18 shows the effect of a further increase 

in N. Fig. C.19 proves the Crank-Nicolson method to be 

accurate for Bi = 1.0 and M = 0.2. When M is increased to 

1.4, the Crank-Nicolson method is accurate as shown by 

fig. C.20 at higher values of T but at the lower values the 

solution is oscillatory. Gay (19) and Greenwood (21) have 

observed this behaviour. Fig. C.21 shows the Crank-Nicolson 

method for Bi = 10. Comparison with fig. C.15 shows the 

Crank-Nicolson to be more accurate. It appears as though
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the inherent nature of the Crank-Nicolson method to produce 

higher results than the explicit method has to some extent 

been cancelled out by the error produced by the approximation 

at the boundary. 

It is seen from fig. C.22 that the Crank-Nicolson method 

produces accurate results at higher values of T for Bi = 10.0 

when N= 10 and M= 1.4, The same oscillatory nature is 

realised as in the case of Bi = 1.0. Fig. C.23 shows the 

Crank-Nicolson method with N = 10 and M = 0.2. 

Tables B.13 - B.15 illustrate the explicit and Crank- 

Nicolson methods for the boundary approximation given by 

equation (1.32). It is seen that this approximation is 

unsatisfactory; even with Bi = 0.1 there is a maximum error 

of 1.4% for both the explicit and Crank-Nicolson methods. 

This error is independent of M and it can be seen that it 

occurs at the highest value of © .. For Bi‘= 1.0 and 10.0 

the errors are increased proportionately. _It is interesting 

to note that for Bi = 1.0, 96% of the points exhibit errors 

>2% for the explicit method but for Bi = 10 most of the 

points have errors of ¥2% only when M= 0.1. As M is 

increased, the number of points with errors > 2% decreases. 

The explicit method remains stable for M¢0.4. With the 

Crank-Nicolson method, 96% of the points have errors > 2% for 

all values of M. 

Graphs representing this boundary condition are shown 
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as figs. C.24 and C.25. Fig C.24 demonstrates the error 

increasing as @ increases for Bi = 0.1. When Bi = 10.0, 

the maximum error does not occur at the high values of T . 

The error tends towards a constant value. 

Tables B.16 - B.18 show the results obtained with the 

boundary approximation given by equation (2.1). tee BY = 061: 

the accuracy is better than that obtained by using ecuation 

(1.32). As before, the maximum error is independent of M 

and occurs at the highest value of © for both explicit and 

Crank-Nicolson methods. When Bi = 1.0, 211 the points exhibit 

errors greater than 2% for both methods. When Bi = 10.0, 

this approximation at the boundary appears to be better than 

that given by equation (1.33) when the explicit method is 

used and only slightly better when the Crank-Nicolson method 

is used. Figs. C.26 - C.29 illustrate this boundary 

approximation. Figs. C.26 and C.27 show the approximation to 

be. poor for Bi = G20 end 1.0. When Bi = 10, the explicit 

method is surprisingly accurate (compare with figs. C.25 and 

C.15). This approximation does not have the same beneficial 

effect on the Crank-Nicolson method. 
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J. “An "exact" solution for the radiation boundary problem 

After examination of the results for the step change 

and convective boundary conditions, it was decided that the 

results using the explicit method with N = 15 and M = 0.1 

were accurate for Bi = 10, consequently it was decided to use 

this method to evaluate the temperature-time history of a 

plate with radiation and adiabatic boundary conditions for 

R= 10. The results obtained using this method for the 

convective boundary problem, together with the accuracy of 

each point for the surfaces X = 0 and X = 1 are shown in 

table B.19. Table B.20 shows the solutions obtained for the 

radiation boundary condition. It was decided only to pay 

attention to the case for R = 10.0 because in the convective 

boundary case, the method for Bi = 10 produced less accurate 

reaults than -eftther Bi = 20.) or Bi = 1.0, 

Although the Crank-Nicolson method gave results which 

were slightly more accurate than the explicit, it was decided’ 

to use the explicit method because the solutions could be 

obtained directly without iteration (iteration is necessary 

with the implicit methods because of the non-linearity at 

the radiating boundary). Consequently the accuracy of the 

solution will not depend on the chosen iteration technique.
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K. Behaviour of the implicit methods in the radiation 
boundary vroblem. 

It was decided at this stage to introduce the use of 

the backward difference method. (See equation 1.20). 

In order to use the implicit methods, it was necessary 

to choose an iteration algorithm; this was taken as 

equation (1.103). Algol programs were written for both the 

Crank-Nicolson and backward difference methods to determine 

the required number of iterations to establish a convergence 

of 0.00001. The results for R = 10, N = 5 and M = 0.2 are 

given in table B.21. It is noticed that the backward 

difference requires more iterations than does the Crank- 

Nicolson method. This removes the advantage of less 

calculation to evaluate the right hand side of the backward 

difference formulation than is required for the Crank- 

Nicolson.
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L. Efficiency of the numerical methods 

The explicit method using N = 15, M = 0.1 and R = 10 

is accurate but time consuming. It was decided to compare 

the results of five techniques using N = 5 and various values 

of M with the explicit "exact" solution and +o measure the 

computation times on the Elliott 803 B computer for the 

solution to reach 720.95. The five techniques are: explicit, 

Crank-Nicolson using simple iteration, backward difference 

using simple iteration (see equation (1.103)), Crank- 

Nicolson using Newton-Raphson ee and the backward 

difference method using Newton-Raphson iteration. (See 

equation (1.104). 

The computer programs were written in Elliott 803 

machine code; this was chosen in order to eliminate any 

effect of compiler structure on the computation time. Programs 

for the explicit method and the backward difference method 

using both simple and Newton-Raphson iteration are shown in 

aopendix A. 

The results are shown in table B.22 and graphically in 

figs. C.30 - C.33. 

Fig. C.30 shows the computation time as a function of M. 

It is seen that the Gonseit method is the fastest. For low 

values of M, the backward difference method using Newton- 

Raphson iteration is slowest with the Crank-Nicolson method
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The backward difference method using simple iteration 

exhibits inter oO
 sting behaviour; the computation time 

decreases as M is increased up to a certain value and further 

increase in M slows the method down until when M>0.8 the 

algorithm does not converge. This can be explained: 

Considering the approximation at the boundary X = 0 

= 2M Ou csacy* (1+2M) Q\o,c+ax) + AMAXR 6 e600) - Q%o,x) (2. 2) 

The initial estimate for Qersac) i8 ox) 
Using the method of solution for the tri-diagonal matrix 

Gm4i) 
Ocoee et C4, oe Co Boy) 18> (2.3) 

mm) > 
where Bs = 1+2M + 2MaxXR Ole baat) 

So = Oeak 

  

  

: (m+) 
+9 Ore ven) os Oro aM Ooi crat) Ee 4) 

im) 3 (14am) + AMRAX GO, 

for the first iteration cycle, Qo-) =! 
. &m+1) 

“* “ €0,7+0t) : ee Pucear) BF Qa: sap 4,2 245) (142M) + AM RAX OSD az) : 

For various selected values of O(0,r+a7) using equation 

(2.5) in conjunction with the elimination method given in 

Modern Computing Methods, fig. 2.3 was drawn for (a) M = 0.2 

and (b) M= 1.0. The simple iteration procedure is 

represented on this figure. It is readily seen that for 

‘ M = 0.2, the iteration algorithm converges but for M = 1.0 

it is impossible to achieve convergence. 
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When a smaller value of R is considered (e.g. 1.0) the 

algorithm does converge for M> 0.8. 

The Crank-Nicolson method behaves in a Similar manner 

but for R = 10 it is possible to use values of M€1.2. _ 
Fig. C.31 shows the maximum error in Qe.) as a function 

of M (The peculiar shapes of the curves are unfortunate but 

cannot be avoided because values of Ome» (n = 0 orn = N) 

are output-only when €@:0.04,.0.06-... 1.0). It is seen 

that there is a rapid increase in the error when the explicit 

method is used. The points for M = 0.35 and 0.40 lie out- 

side the range of the graph (i.e. E>10%). As expected, the 

Crank-Nicolson method using the two iterative techniques lie 

on the same curve as do those for the backward difference 

method. It is interesting to note that the backward difference 

method using Newton-Raphson iteration reaches a maximum error 

at M= 1.0 and further increase in M fails to increase this 

error. The backward difference method using Newton-Raphson 

iteration converges for all values of M€2.0. The method was 

not tested for M>2.0. Fig C.31 shows the Crank-Nicolson 

method to become inaccurate at higher values of M. 

Reference to table B.22 shows the backward difference 

method to be most accurate. The Crank-Nicolson method with 

M= 1.0 exhibits a maximum error of 74.3% when simple 

iteration ee, The backward difference method for 

M = 1.0 exhibits a maximum error of only 9. 3%.
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Fig. C.32, which illustrates the maximum errors at the 

insulated boundary, shows the superior soearées of the 

backward difference method. Again, with the explicit method, 

there is a rapid increase in the error as M is increased. 

Fig. C.33 shows the average error at the radiating 

boundary. It is interesting to note that the average error 

for the backward difference method is low.
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M. Iterative methods for solving the simultaneous equations 

The iterative methods of solving sets of simultaneous 

equations are described by equations (1.105) - (1.111). 

Iterative methods of solution are more advantageous in 

two and three-dimensional problems whether linear or non- 

linear. It seemed a logical step to try and improve on the 

-computation time for the backward difference method with a 

radiation boundary condition. Since the problem is non- 

linear, it lends itself to iterative methods. The Jacobian 

and Gauss-Seidel methods of iteration were compared by 

measuring the number of iteration cycles required to establish 

convergence for each method using various values of M and R. 

The results are shown in tables B.23 - B.25. 

Table B.23 shows there is little difference in the 

relative merits of the two methods. In both cases, the 

number of iteration cycles required to establish convergence 

is small. Table B.24 shows the superiority of the Gauss-— 

Seidel method. For M = 0.1, the number of iterations is 

almost the same for both methods. As M is increased, with 

the Jacobian method, the number of iterations progressively 

increases. The behaviour is not so marked with the Gauss- 

Seidel method. Table B.25 shows the results for R = 10. 

The differences between the two methods is amplified here. 

Note that the method has been tried for various values of
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M¢2.0. The Jacobian scheme fails to converge when M>0.8 

(compare the simple iteration in part M). It is seen from 

table B.25 that the required iterations decreases as M is 

increased beyond a certain value when the Gauss~ Seidel 

method is used. 

Table B.26 illustrates the relaxation method; it appears 

that whenw= 0.7, the least number of iteration cycles to 

establish convergence are required. On examining these 

results it was decided to compare the efficiency of the back- 

ware difference method using relaxation with that when Newton- 

Raphson iteration is used. The results are shown in 

figs. C.34 - C. 36. 

Fig. C.34 shows the saving in computing time when the 

relaxation method was used; both methods were iterated to a 

convergence of 0.005. When M = 0.1, the relaxation method 

is much slower than M20.2. It is noticed that as M is 

increased, the computation times become closes together. 

Figs. C.35 and C.36 prove the relaxation method to be 

disappointing and illustrate the danger in relying on the 

difference between two successive iterates being close to 

one another to confirm that the solution has converged. 

Theoretically, when both the relaxation and Newton-Raphson 

methods have reached the desired convergence, they should 

have the same accuracy because both methods are solving the 

a



TABLE 2.1 

PROGRESS OF RELAXATION SOLUTION 
FOR THE BACKWARD DIFFERENCE METHOD. 

  

  

  

  

ITERAT- NODE 
ION 
NO. 0 L 2 3 4 5 

1.0 1.0 1.0 160. 1.0 1.0 
L 0.6000 | 0.8667 | 0.9556 | 0.9852 | 0.9951 | 0.9968 
a 0.6752 | 0.8814 | 0.9570 | 0.9845 | 0.9940 | 0.9961 
3 0.6598 | 0.8734 | 0.9531 | 0.9807 | 0.9924 | 0.9951 
4 0.6613 | 0.8723 | 0.9515 | 0.9810 | 0.9922 | 0.9948                
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same sets of equations; this fact is demonstrated by 

figs. C.31 and C.32. Comparison of figs. C.35 and C.36 show 

that the relaxation solution is less accurate at the 

insulated boundary than at the radiating boundary; usually 

the reverse is true. This can be simply explained. 

Table 2.1 shows the progress of the relaxation solution with 

= 0.7 for the radiation boundary problem for the first 

time step. It is noticed that at the boundary X = 0, the 

iterates oscillate about the converged solution. At the 

boundary X = 1, the iterates approach the converged solution 

without oscillation. This results in a positive error. 

This error will accumulate with errors produced at future 

time steps. 

One further point about the convergence of relaxation 

methods can be noticed from equation (1.111): the difference 

between successive iterates is given by W Peg... ria | 

therefore if a convergence of 0.005 is set, iteration is 

really continued until a convergence of 0.005/a.
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N. Solution of two and three dimensional problems 

The one-dimensional heat conduction equation is applicable 

in only a limited number of cases. A larger number of 

problems can be solved by assuming two-dimensional heat flow. 

The solution of a two-dimensional equation by a difference 

method requires much more computation; therefore in this 

case, the relative efficiencies of the methods are bound to 

be more noticeable. Bearing these facts in mind, it was 

decided to test the efficacy of three different two-dimension-— 

al methods: the explicit, alternating direction implicit 

and alternating direction explicit methods. Allada and Quon 

present some results on the efficiencies of the alternating 

direction implicit and explicit methods for a three- 

dimensional problem; the methods are shown to be inaccurate. 

The two-dimensional problem considered was that of a 

long square bar, initially at a uniform temperature through- 

out with step changes in temperature at its surfaces when 

t = 0. Represented mathematically this is:- 

08 = 079 + oO (2.6) 
oC ax? ax 

assuming the physical properties are isotropic and 

independent of temperature and, Lx = Ly. The initial and 

boundary conditions are: 

C0. 0<:X ea O76 -OfK¥ 0) +1 (2.7)
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T 2 O X+0 ondhememe “Clee V,c) & 0 (2.8) 
Y= | OOte FZ) 6 Ze GS OG), ) (2.9) 

me (58 u: x=) 08 (1,¥,7) 
Ox 

The methods used to obtain a solution are expressed as 

equations (1.48), (1.53), (1.54) and the alternating 

direction explicit method as: 

©, 

  

2 @ + M 9 Q ktrgey 5 tke, oie reat Re ones. + Give pete? (aM) Seal ee ee kT) m+, kT) 

* on tens cvary * emit) | (2.10) 

The analytical solution for X = Y = 0.2 is obtained by 

squaring the values given for X = 0.2 in table 1.2. 

The results are shown in tables B.27 - B.29. 

Table B.27 shows the explicit methods to be more than 

twice as fast as the alternating direction implicit method. 

Table B.28 shows the alternating direction implicit method 

to be slightly less accurate than the explicit method. 

Table B.29 shows the alternating direction explicit method 

to be inaccurate. 

The implicit methods with radiation and 
adiabatic boundary conditions. 

The explicit method can be recommended for two- 

dimensional problems but one may desire to use an implicit 

method for a radiation boundary problem when the temperatures
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are varying slowly. The alternating direction implicit 

method is to be recommended since the matrix of coefficients 

is tri-diagonal. To obtain a solution for the case of a 

long square bar with radiation and adiabatic boundary 

conditions would require the solution of N + 1 simultaneous 

(tri-diagonal) equations N+ 1 times. The method of 

solution is: 

Fig. 2.4.shows the cross-section of the bar divided 

into 5 increments. The difference equations are explicit in 

the k direction and implicit in the n direction for one time 

step then vice-versa for the next. 

The simultaneous equations for any k are: 

-(a+s) Lok zeacy? XO, kt+ac) <d, (2.12) 

a % k,c+ac) (2 +5),, kK weedy Ova, k,t+ac) f : 

Os cr0ey” (+8) Ohi vie) Oh, sua) vid 
3 

q,, kcrat) Class) -QRA KO. el 6, : d« 

where d,, d,, esee5 de are obtained from the explicit 

Sk T+av) 

formulations in the k direction. Cet wsiecs is eliminated 

in turn from each equation (2.12) using the method given in 

Modern Computing methods until one non-linear equation 

involving id cae) is obtained. This is solved iteratively 

(e.g. using the Newton-Raphson method). Back substitution 
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then gives values for the other nodal temperatures. This 

procedure is repeated for all values of k. It is to be 

expected that the solution of a two-dimensional problem by 

this method would take about 6 times longer than the one- 

dimensional case. 

The fully implicit (backward difference) method given 

by equation (1.50) can also be used to obtain a solution to 

the problem. The nodes, normally denoted by the subscripts 

n, k, are numbered as shown in fig. 2.5. ‘The simultaneous 

equations for each of these nodes are expressed in matrix 

form in fig. 2.6. The matrix is diagonal but has 5 non-zero 

elements in each row, therefore, the equations cannot be 

simply solved as in the tri-diagonal case. 

The equations can be expressed: 

AGG cour) © Om) (2.13) 

Ciaciary Oe Oe ey Pine (2.14) 

ll of the equations are non-linear thus an iterative 

technique has to be used to obtain a solution. One possibil- 

ity would be to estimate values of O¢m r+ar) at the non-linear 

nodes, invert the matrix and calculate new values of Oum,r +20) 

using equation (2.14). Iteration could be continued until 

convergence is achieved. The inversion of a 36 x 36 matrix 

is, however, time consuming. To speed the solution, the 

following method is proposed: 
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The equations are rearranged as shown in fig. 2.7 and 

the matrix A is partitioned to form 4 sub-matrices Ais Ags 

A,,» A, + All the non-linear elements appear in A,,. 

The inverse, B, of A is given: 

B.A ot GARE A SS CR AM) (2.15) 

Bia = AP (2.16) 
By ESA enn 

B..5 oF (2.18) 
and S Ane Aan, 4a) 3 (2.39) 

A\, is inverted initially (once A|| has been calculated 

it need not be recalculated for succeeding time steps 

provided M remains constant). The calculation of the terms 

(Ay) Aj)», (Ay, An’) and A,,(4), A,,) is not time consuming 

since A,, and A,, are very sparse. The iteration cycle now 

consists of estimating values of Oi mcae) in A,., calculating S, 

inverting S, calculating B,, and finally a closer approxima- 

tion of Ge as - Note that during the iterating cycle, it 

is only necessary to calculate B,, and B,, in order to obtain 

the new estimates. When convergence has been achieved, 

B,, and B,, can also be calculated, hence O forall (m,t+aT) 

values of n obtained. 

This method was programmed in Algol for the Elliott 803 B 

computer using N = 5, R = 10 (a high value) and M = 0.5. 

Only 3 iterations were required to establish convergence, 
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each iteration taking 1 min 50 secs. The inversion of the 

ll x 11 matrix (S) took only 25 secs. The inversion of 

a 36 x 36 matrix would take 15 min 40 secs., but it is 

recognised that it would be inefficient to use a standard 

inversion routine for the matrix in fig. 2.6. However, the 

effect of partitioning the matrix is beneficial. 10 minutes 

were required to calculate ©... crac) for the first time step. 

The calculation for successive time steps is quicker since 

fewer iteration cycles are required, (see table B.21). It 

is seen that this method is naturally much slower than the 

alternating direction implicit but with the availability of 

faster computers this is of little consequence. On the 

basis of the experience obtained in the one-dimensional case 

it is to be expected that the implicit method would be more 

accurate than the alternating direction implicit method. 

Allada and Quon have shown the alternating direction 

implicit method to be unstable in. three dimensions. However, 

the two-dimensional implicit method can be applied to three- 

dimensional problems by alternating the implicit and explicit 

directions just as the one-dimensional implicit method has 

been applied to two-dimensional problems in the form of the 

alternating direction implicit method. The resulting method 

is stable. 

This alternating direction implicit method was 

programmed in Algol and run on the Elliott 803 computer for
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values of Bi = 1.0 and M=1.0. It was noticed that quick 

convergence was obtained; only 3 iteration cycles being 

necessary. Thus the solution for a three-dimensional 

problem takes only 6 times longer than a corresponding two- 

dimensional case.
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P. Variable Time Steps 

Equation (1.66) shows the possibility of using a 

coarser lattice density when the values of the partial 

derivatives are small; this occurs when the temperature of 

the plate is varying slowly. 

The results presented by Kardas (24) are a good start- 

ing point although they appear to be in error. Table B.30 

shows the results computed for the truncation error, at the 

boundary X = O for a plate with convective and adiabatic 

boundary conditions, using equation (1.66) compared with 

those calculated by Kardas. It is seen that the truncation 

error is much higher other than at the first point. The 

accuracy of the re-calculated results were confirmed by a 

calculation for the problem: 

Ns 5 .Bicw 10 M9 3-0.) te 0.2 cs AT= 0.004 

The truncation error according to Kardas is: - 0.0000096 

. and using equation (1.66), 0.00082 (see table B.30). 

Calculating 9(0,0.204) from equation 1.77 leads to: 

8(0,0.204) = 0.120427 

The analytical solution is: 

6(0,0.204) = 0.121243 

Thus the truncation error is 0.00082 which agrees with 

that calculated from equation (1.66) 

Whilst the method used by Kardas is not directly 

applicable to most problems since analytical solutions do
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not exist, the approach is reasonable. It is feasible to 

estimate the value of the third derivative at the boundary 

X = 0 by a numerical approximation and then estimate a 

suitable numerical value for Aor AT for a specified error 

from equation (1.66). This was tried and whilst success 

was achieved for small values of Bi, as Bi was increased it 

became increasingly difficult to obtain good approximations 

to the third derivative. This line would be suitable for 

further research.
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Q. The integral method 

The integral method, as used by Gay, was used to 

evaluate the temperature-time history of a plate with radia- 

tion and adiabatic boundary conditions for R = 10 and the 

results were compared with the explicit “exact" solution. 

Results for both the quadratic and cubic profiles are shown 

in table =-B.3i. 

It can be seen that both the profiles give sufficiently 

accurate results for the boundary X = 0; the quadratic 

profile is more accurate than the cubic which is a surprising 

result. Goodman has also observed this behaviour. ‘The 

results presented by Gay (19) show the integral method to be 

less accurate than the other methods at the adiabatic face 

of the plate. The difference in accuracy between the 

quadratic and cubic profiles is magnified at this face.
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R. Analogue computer solution 

The analogue computer was used to evaluate the 

temperature-time history of a plate for the three boundary 

conditions described by equations (1.24) - (1.29) and uniform 

initial temperature distribution. The results are shown in 

figs. C.37 and 0.38 for the step change and radiation cases. 

The convection boundary case is not shown since sufficient 

information is conveyed by figs. C.37 and C.38. The analogue 

computer is seen to be more accurate in the case of radiation 

than the step change; this is due to a less harsh boundary 

condition in the former case. 

The analogue computer solution is quick and can be 

adjusted simply for various initial conditions; this is not 

the case with numerical methods. 

Time Sharing 

The analogue computer is a useful tool for solving 

partial differential equations, however, if the thermal 

conductivity and specific heat are temperature dependent, 

a large amount of non-linear equipment is required. 

Examining equation 1.2 for a plate with step change 

and adiabatic eas conditions: 

ae ok u 2 (k or) | ce)
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a difference analogue of equation 1.2 is: 

  
Pom OF, = Kini (Tt - m) ee Rew i Cr, Tey (2.20) ot A x2 

when T and Ax are in dimensionless form, equation 

(2.20) becomes: 

AX*00, - 1) oss (Onei~ On) = benaig (n-ne) (2.21) oF CHP P 
If the variation of the temperature of a steel plate is 

considered, between 500°C and 0°C, the specific heats and 

thermal conductivities as functions of © are shown in 

table 2.2. 

The values of C and k given in table 2.2 must be scaled. 

C is divided by its maximum value (0.157) and K was scaled 

so that max (K/oC) } 1.0. The scaled values are shown in 

table 2.3. The scaling introduces a factor of 3.4154 x 0.157. 

Equation 2.21 now becomes: 

AX*L™ D:41She 0197 0-4 [k}) (on On) (Ke) (2,6. (2,22) 
ot Ce n-t 

if AX = 0.2 (i.e. 5 increments) and L = 1: 

oe oor Te (8... -Ox)-(X) (0, -6..)] (2.23) 
ius OF Ci [Np nek PP 

where Cis in hours. 

In the usual analogue computer method, 3 function 

generators and three multipliers would be required for each 

section. Therefore, if AX = 0.2, as above, 15 function 

generators and 15 multipliers would be required. The Hybrid-48



TABLE 2.2 

THERMAL CONDUCTIVITY AND SPECIFIC 
HEAT AS FUNCTIONS OF 

  

  

0 Cc ot 
cal /qm *¢ ‘em* °C see 

0 Op 112: 0.130 

0.1 , MeL 24 0.122 

0.2 0.118 0.114 

0.3 0.122 0.108 

0.4 0.126 0.104 

0.5 0.131 0.101 

0.6 0.135 0.097 

0.7 0.141 0.094 

0.8 0.146 0.092 

0.9 0.152 0.088 

1. 0.157 0.086         
f= 0.2646 1b/in? 

 



TABLE 2.3 

SCALED VALUES OF C (C') amd k/p (k’p) 
  

  

  

        

a (as ke’ 
lh 

0 0.707 0.707 

Oot 0.726 0.662 

O52 0.752 0.618 

Oe3 OF 77 0.587 

0.4 0.802 0.563 

OFS 0.834 0.550 

0.6 0.860 0.529 

Oe 0.898 OSS12 

0.8 0.930 0.502 

0.9 0.968 0.478 

10 12000 0.467 
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has 3 function generators and 4 multipliers. The use of a 

suitable logic program makes it possible to share 2 

function generators and 2 multipliers amongst all the sections; 

the function generators and multipliers are switched into 

each section in turn by the high speed D/A switches thus the 

derivatives, 00,,/dt are calculated for each section and stored 

on track/store amplifiers. The calculation of the derivat- 

ives is done while the computer is in HOLD. When all the 

derivatives have been calculated, the computer is switched 

to OPERATE for a short time then back to HOLD. The whole 

cycle is repeated until the desired final value of + is 

reached. 

The equations to be solved can be written: 

ee all 8.) (9) (8-6 °)] (ae 

ale + [( thar 8.) “(x £0» 2) (2.240) 
a 

H(s) epee Ook ( ie (2.24c) 
Cy i P /2A% 

L= 2h - 4 [ (4) J, Oe = 9 (K)y (Ou (2.244) 

zl ¥’ (0.-6,)= é kee 4] (2.24e) 
4% 

    

If the integrators for 06. /atwith a time-scale of 1 sec 

are used, 1 hr = 13.405 secs. 

The analogue and logic circuits for the solution of 

equations (2.24) are shown as figs. 2.9 and 2.®. The
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operation is as follows: 

When t< 0, the inverse output from function switch 2 

holds the A timer in IC. The normal output ('0') ensures 

that SR3 and SR4 (cascaded shift registers) cannot shift. 
Track/store amplifier 23 is in the store mode. Flip-flop A 

of SR3 is set manually and the computer is set into OPERATE, 

When t = 0, function switch 2 is closed. This causes 

a 'l* on SH (shift) of SR3 and SR4 and '0' on SET IC of the 

A timer. Sines the clock is set at 100 cps, and the timer 

set at 5 msec IC and 5 msec OP, the timer will be in IC for 

half the clock pulse and OP for the other half. Considering 

the 5 msec in IC while flip-flop A is set: 

D/A switch U23 is conducting which causes 9, to appear 

on the output of amplifier 26 (the amplifier for Om,, ). 

Since there is no switch conducting on the line for Cas 

@ = 0. The average of 0, and 9 is calculated hence ( k/p ) 2 

appears on the output of the VDFG; this is multiplied by 

(@,- @,) and the inverted result appears as input to 

amplifier 23 which is currently in the 'store' mode. After 

5 msecs the timer switches to OP and amplifier 23 tracks the 

incoming voltage for 5 msecs. 

At the next clock pulse, the timer switches to IC, 

flip flop A of SR3 is reset and B is set. Switches U22 and 

L22 are therefore made to conduct which cause 8, and 0, to
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appear as 9,,, and Q@m respectively and ( k’/p ae appears 

as the output of the one function generator and CG; ‘as the 

output of the other. The expression-(k/p)t (@,-9,) is 

the input to amplifier 23 but this is in the 'store! mode, 

therefore the output is unaffected and remains (k‘/p)s (6,-8,), 

These two terms are therefore added (and inverted) by 

amplifier 33 giving: 

er @,-@,) - («)), Ce,-@,) (2.25) 

this is divided by C, to produce 00,/dE (note the 

constant 1/13.405 is absorbed in the time base) which is 

tracked by amplifier 04. After 5 msec in IC, the timer 

switches to OP causing amplifier 04 to store 06,/dt . 

Amplifier 23 will now track-(k/)4(@.-9) after a further 
5 msecs, the timer will switch to IC simultaneously with the 

next clock pulse. Amplifier 23 will store its value and 

06, /dt will be calculated. The whole procedure is repeated 

until 06;/at has been evaluated. 

The next clock pulse sets flip-flop C of SR4 resulting 

on the input of '1* to monostable 0. The inverse output will 

thus be 'O' for a preset time interval; this will cause 

HOLD to be released for this period. When a 'l' appears as 

the inverse output of the monostable, flip-flop A of SR3 is 

set via a differentiator, thus the whole cycle is repeated 

until the desired final value of t is reached. The solution
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to the problem is shown in fig. C.39. 

Accuracy 

Since the problem is non-linear, no analytical solution 

exists hence no direct comparison can be made. It is to be 

expected that the time sharing method is as accurate as the 

usual analogue computer method. However, it is to be 

expected that factors such as integration period and clock 

frequency will affect the accuracy. 

A test on the accuracy of the method was made by over- 

riding the outputs of the VDFG's to give values of 1 and 

setting the time base to 25 secs. The problem then reduced 

to equation (1.168) with step change and adiabatic boundary 

conditions; thus the results were compared with the 

analytical solution to this problem given by equation (1.169). 

The accuracy of the method for X = 0.2 and 1.0 and 

various monostable settings is shown in fig. C.40. 

Monostable time and clock frequency 

In the normal analogue computer method, the value of 

06,,/ak is constantly changing since it is calculated from 

the instantaneous values of 9,.,,9m and Qn, . In the 

time-sharing method, it is calculated from values of 9m.-, 

8,  and9n,., at time t and this value is integrated for a



ee 

short period of time,At i.e. 0n/dtis held constant 

over At. It is to be expected that the smallerdAt is made, 

the more accurate will be the solution. The disadvantage 

of making At small is that a large number of integration 

steps are required, hence if the clock frequency is low it 

will take a long time to obtain a solution. If the clock 

frequency is high, At can be made small but a high clock 

frequency produces inaccurate results. It is necessary to 

use an integrate period which gives accurate results without 

making the computation too lengthy. The accuracy for various 

monostable settings is demonstrated in fig. C.40. The 

solution time as a function of monostable setting is shown 

in table B.32. The highest permissible clock frequency was 

found to be 100 c.p.s; higher frequencies made the solution 

inaccurate.



SECTION 3 

CONCLUSIONS
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Conclusions 

When a one-dimensional heat conduction problem is 

considered it is obvious that the Dusinberre explicit method 

has advantages as far as computation time and accuracy are 

echosreas but since the trend has always been to make faster 

computers, the superior stability of the implicit method 

cannot be ignored. In this work, it has been found that the 

backward aifference method is most accurate. 

When one is considering two-dimensional problems subject 

to radiation boundary conditions, it appears that the 

alternating direction implicit method is efficient. The 

fully implicit method should not be ignored since the method 

of partitioning the matrix of coefficients reduces the 

iteration time. Although it is known that the alternating 

direction implicit method is stable, one must avoid using 

too large a time step since if the temperature of the point 

under consideration is varying rapidly, an explicit 

formulation (used to formulate the right hand side in the 

A.D.I.P.) will result in a large error being introduced with 

the consequence that meaningless results are obtained. The 

fully implicit method does not have this disadvantage 

(see fig. C.31). | | 

The solution of the three-dimensional problems with 

radiation boundary conditions is best accomplished by the
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alternating direction implicit method described in part N 

of section 2. Care must again be taken to avoid a meaning-— 

less explicit formulation of the right-hand side of the 

equations. The method is useful when the temperatures are 

varying slowly. <A fully implicit method cannot be 

recommended due to the intolerable amount of computer storage 

required. 

Only a small amount of attention has been paid to the 

integral and analogue computer solutions. The integral 

method using a quadratic profile gives accurate results for 

the case considered. The cubic profile is not so successful. 

The analogue computer solution is useful and accurate but 

has the disadvantage of requiring large amounts of equipment. 

The use of the parallel hybrid computer removes this dis- 

advantage to an extent thus making the method practicable. 

This work is by no means exhaustive but does give a 

useful guide for the solution of heat conduction problems. 

It would now be worthwhile to make further experiments, 

Similar to those done with the one-dimensional case, with 

the three-dimensional alternating direction implicit method. 

Further, the investigation of this method when the specific 

heat and thermal conductivity are considered as temperature 

dependent would be a useful contribution. 

Considerable emphasis is being put on computer-aided 

design nowadays, therefore a method of presenting all kinds
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of heat conduction problems to a computer in a form both 

suitable to man and machine could be a significant advance.



SECTION 4 

APPENDICES



APPENDIX A 

COMPUTER PROGRAMS



EXPLICIT METHOD FOR A PLATE WITH RADIATION AND 

ADIABATIC BOUNDARY CONDITIONS 
+0, 108 

010301, oh 6410,4 
6410,% 220354 
262, i; 23012, 
204, ys 2611, 
302, 533 000 

$ 0011,}/20055, 
011 ,4:0513,4 

168, 10:2211,4 
hoh; 10: 300,5 
630,5 2630, 3 

10, 630,5 3630, 
"6 10,4: 2536 3 
610,53:610,5 
601 ,5 :601,5 
631, :600,5 

18,2021, ee :2611,4 
2211, 
0011 71/301 5S) 
0011,4/610,5 
0011 ,4/610,5 

20,0011 4/601 9 
631, :000 
0011 74/600,5 
0011, feces 5° 
O11, 

mah 626, - i 4 
401 “103 000 
001 00,5 
0018, i eon? 

24, 400, 11000 

210013 8/610, 
0013 ,4/610,5 
631, 43000 
0013, 1ooe9D 
0013 ey? 

5, 302, f:60 
202 ,4 
y 22,1 sa ee 
743027431 
74203741 

10, 74213742 
7746 2302, 
730,23 24.03 se 
000:00 
7428:7428 

15,7428 23021 ,5 
730, 2:403,2 
000:008 

  

OT > mM/N* 
T2090 

L= 00-0395 

8¢m,0) zs! m=0,01)N 

, 7a Rx 80,29 

9 ¢o,te00) * Go,2) pM (28,.) - ARAX 9, 5;) 

“Nz I 

O¢mreacy - Ons) OM Oc s 24., *) YO) 

me i (it), Nai 

Osa scat = 9.u,r) + m (2 Orisive; A Owe) ) 
T2Trat 
(#=L) 

. . . Ls 

| if c 7b , prank t, Cieecurs POs eises 

J  



20,000 :008 
30h, 4s neo ; 

432611, 
a 73/3021 ° 
0011 ,4/200,5 Oumty * O meen) me 0,01) N 

“Seen 30513, Sy 
27511 sell 

023,11: 
ee ua if T< 0-45 | collate g 

400312 :000 ey for mex te line s 

is! . 

008 ,3/7429 , 
oie 
008 3/74 

0083/43 
008 53/744 
00873 /4 428 

8 HN | pee leno oe PROGRAM 
008,3/7428 
008 416 
0083 aKr8 
SIN 

0013 54/3021 ,5 ] 
739,22403,2 

  
4 

eS 000 
000:000 
700:4526 ,12 
00: 452712 
025 ,12:700 

W526 12% 400513 

: read, Compl L. Gue Se Dio 6 

i 2ah037 o£ grcl | aes Oneal obpuls Wo 
00030 roulls 
7429: 7430 
743027430 
{ca blero rise 

400,8: 506 

 



BACKWARD DIFFERENCE METHOD USING SIMPLE ITERATLON 
0510 301 ,4:6410,4 

165 

6, iI 

6410, 43203, °y 6T=™M/N~ 
262 vhs 3012, T 20 
204 ar 2611, L £ 0.0345 
302, "3: 000 
0011 Hee ' Bon FS) = 1.0 m2 O-(i\ oN 
eg? vs 205134 , Wan ses 
xol 10:2211,4 
O4,10:300, 

pat 13301, i On ca, 2 OQ...) 
01,4:602 

208, seas 2 caleviates (i+2m ) 

0011 ise. 
0011 34/2063 
0011 7i/208h;3 ? ae < Gas. See equakro m U-44) 

011,4:0513 % 
son 2214 i Saedy (Sede) 
Ole, 10:400, iN 

3017,4: pestis 
eaulgs 2631, 3 

- 630,4:634,,3 amr. 9% 2 
an 43601 ,4 
601, 43602 3 ao 
20h2, :2611, 4 Be = tam) + am. 0.4% Oro crus: 
eei3, 2843 4 nal 
050,3: 11 : 
4410511 301, ye imal 
636 ,3 3205, ¥ 
4012 ,11:301,4 
633,3: 7205, x 
3011 ,4:0513,4 
ho142 11:4016,11 
301, 436 63633 
206 4s 4a 511 
30, ri 33, 333 

oate a Jeikt 5 Al Bann 
0011 Wester 
400, 123000 

» CtAmMalse Com 

if N2NnN, Az-am else Asem 

238° 242633 ,3 
4000 

0011 14/202, 5 Pu € b= C:A/hag 
0011 3430105 95 
0011, 4/6362,5 
633,300 
0011 ,4/6084.,5 ‘ 

0011 4 /206372 §, 20, = AS nor f/x. 

 



  

3011,4:0513,4 
- 4211,12:2211,4 . 10, W671: 000 ifm FN, Nenel , tepeal loop jon Gyu 

0013 ,4/3063,5 
0013 4/6442 ,5 is; > \ 
0013,4/2021, ee A : Ste eqyuation (1.100 3013 94s aghs a t) Bn Y G. ) 

1S, 301 
217,123 o%3,12 Mel 603. €lse Ceol 

301, 4: aoe ‘3 
20554: 420,12 
301 ,4:633,3 

ao, 205, ae 6333. # : owt) 
Biotec . [Sasi = CO n. J LA 

,13 0011,4/3021,5 See 2a tion (1.49) 
635,426 633,3 
0011,4/6 062 » 
0011 34/641 35 
0011 at e032 

$y i 301%, $050435 
eg i33 91333011, 4 
050,33 2011, i 
401512 :3017 »4 
ee aes 13 

011 3353 
” eto nkatsiae Le. 2 atte is Serva sence limit 

O21; 520 } (o,t+ac) CO,cege 
Hoo, a ace ‘fF mob within aes ate o™ met) Ake 

hy 202, tx further iteration 33 performed. (0, Trae) a (o,teer) 

1S, eo vs 2159,14 
Tie9: 7430 
743127420 
741 37421 LC 
P73 746 if Z>Lk ; c. o& ; eee ate output 

n= n-'! 

’ 
2°, 302, Xs :000 (e,trar) (nN,trac 

73052 3403 ,2 De 
000: 003 

as, 400,14:000 
* 

7428:7428 
74287428 
se 

0,2:403,2 
Se :008 P 
0013 4/3021,5 

0,23403 ,2 402008 ~” 
304436013 ,3 
204 yt: 72611, 4 belt 0.0% 

0011, 4/3024,5— Te ae 

 



BACKWARD DIFFERENCE METHOD USING NEWTON- BSAPNSOR ren 
+0, 108 

0,10 301, 4:6410,% i 
6410,4:203,4 Oa iN 
262 »4:3012, = 
204342611, #. ht O-0345 
302 ,3 000 

S, 0011 »4/200,5 
0011, rh/2cei, Onc) =! Bass 2) n20,0),N 
011,4:0513, : et ; 

Seats :2211,4 
404, is 301, i 

, 017) 602 ,3 
2019, 4 3208" 4 caleviates (i+ am) - 

12, 400,11:000 
* 

: +0,11& i 
gil 3021,5: 321,5 

6321,5:631, - 
630,43 :6311,3 
6410, 436019,4 
202-53 33021 ,5 = +2") 4 8M. ROX. ec) > -  §ee equation (1.104) 

Ss) 6321 aD) #8321, (o,t9at) 

ese 336 

e a i: 3200 ,6 2m. R.Ax. eee 
3019, 4: 6321 5 

10) 600,6:200,6 (4amygrr"  , Ree gui * 
301, "hs 16322 5 (0,t¢ee) (o,ceas) . 

ci 633" se 9 Oates PN OC OE = BOM 
? 

( Gs) 

1208 90 . a . = [Ueampo) tAMR.Ox.602" = Cain G0 IS, 100, ee 2000 

40; 12& 
0, 12 2611, 432211,4 

3019,4: 000 
0011 z8/6321,5 
201,6:301,4 
0017 14/6320,5 

5 633, 33 601, ° d= 
202 ,6:301, 

-m @™) te ae (ey 

001147632245 FL Ae (mer Teac) cee) Gon st*OT) = 6 eet On 

0011,4/610,5 
10, 633, 3000 

0011 4/2084 ,5 
ia, 400 5133 000 

+0138 
0413 3011,430518,4 

 



  

462 ,13:2211,4 
401 ,12:3019,4 J 
0013 ,4/6321,5 
203 ,6:301,4 

$5, 0018,4/6321,5 
636 33603 ,6 BM Qo viey t0xaA 6°. 
0013, 4/610,5 ee eer 
63333000 

(N-i Teet) mn) 
0013 4/2084 5 dw -[(-ama +(1+2m) Oo ) - Mose) J < 

10, 400,14:000 
* 

+0, 14& 
6 2611,4:2211,4 \ mat. 
301 setae 
23,14:405,1 ; a | 2-2. «alec C2-M 

301 52636, 3 Ca 
205 4 s446 514 if nme N ? a2 2-2.m tlee asm 

Sy 301 ,4:633,3 . 
205 423011 ,4 
0513 ,4:468,14 
4410,14:301,4 
636 ,3:206,4 

10, 4012,143:301,4 
633 ,3 3206 ,4 

'25 400,15 000 

O5 

+0,15& 

0,15 306,4:000 
0011, 4/6441 5 a7 Acc; 
0011 ,4/20105 ,5 
635 ,42633,3 
608,4:000 Bc b= c1e/6.., 

5S 0011,4/2042,5 | ™ 
0011 ,4/30105 5 
0011 ,4/6362 ,5 
633, 3:000 
0011 4/6084 ,5 dueda- a/ B+ Smo nme 1,01), 

lo, 0011,4/2063, 
B01} 9830513, 

. 4613,15:2211,4 
13) 401,143400, 16 

* 

? 

he : 

0,'6 0013,4/3063,5 D 0013, Met2,9 = oy 

0013 ,4/20126 5 ae™ 

3013,4:2011 ,4 eo un //?s 

3011 ,4:050,3 
S$, 426,16:408,16 '} 

 



451751937429 
74303 (431 
(4¢U8 (41 
(42137427 
7462302 44 
{3V32 3403 ,2 : 
807005 ae if TPL 

(4203 (420 
(42027425 
3021 55 s00U 
13,2 2403 2 
000 : 008 

0013 54/3021 55 
130,52 2403 ,2 
OUU 3 UU0 

304 5430013 ,3 hsb +0.04 
204 ,4240U,2U 
* 

pul T . ee a (m4) 

9, @,t+at) ) (W,T rat) 

+0,20& oy 
0420302 54301753 it T >o-4¢ 68 mm | 

: “410,113 (429 5 4 ea 
743037427] 
(4133 (41 
[42937430 

5» 74303000 Sais : ie 

W00 53/7429 
006 53/7430 
U0 4 3/ (431 
005 43/745 

10) 0003/7414 
000 53/ (44 Soop ee mies ao 000, 3/ (426 prints END oF PROGRAM 

WO 3/ (415 
005 ,3/ (40 

1S) QUO y3/ (425 
VUS 53/7410 
UU0 43/7410 
005 53/ (415 
UU0 43/ (4/ 

40, 008, 3/7410 

000 3/ (41 
O00 537 (413 

23, 400,21 30u0U 

+U,21& 
7002452 521 
(002453 ,21 
401,213 /0U im perl onl Gina ead rk it oh evel of 
452 921 3000 
730,14U2 51 Tesulks tape 
(3V 2 3403 ,2 

* 0003000 

(4¢93 (430 

 



301,44: #6363 
205, 4: 449,16 
301 42633 43 
20, ” 43000 

10, 0011, 373012645 
” 635, 3353 
ae 54/6062. 5 
0011 Gln e 
0011 °4/20125 95 

15,3011 ,4:050,3 
1618, 163 23011, 4 
050,3:2011 4 

18,404,168 400517 

O,'7 +0,17& 
2611, 43000 
0011 430126 ,5 
0011 4/6021 5 
0011 74/2021 45 
3011,4:0513,4 
466 7: 2211,4 
401,17: 30126,5 . 
207,43 2611,4 
2211,4: 330744 

> 4110, 1 10,1 
633,3: BO, 6 : 
00114 /30126 ,5 
4113, ye i317 
633,3:014 

1S) 4516,17: ihe 
0011 ,4/30126,5 

17, 207 ,4:400,18 
1% 

+s) 

(mn, Treaty 

10 

finds 

+0, 10& 
Oo 183011, 430513,4 

462, 18: 32211, ; 
442, 173307, 
1187 15.844 18 
633 532619 ,4 ibhraléns 

Sy 416,18:400,11 
302 5436034 
202 4226114 
0011 4/3021 ,5 
0011,4/200,5 

10, 3011 ,420513,4 
"4612, 18:2211,4 

dy 108; 10: 400, 19 

6 cnr) 

40, 8 
O, !9 302 ,43014,4 

  

ibmat, 

om 
Caycrur) 

  

Cz -a“e 

aise C2-MmM 

ea (bc -¢ 1g (nm, t+ ac) Y/ fa, 

Cy) 
(m,teat 

a>) 

(m,ttat) 

Seregeect. lent max |d6™' 
(n oat 5 

if COMVETGENC® i's mot sahisbced, pecborn amet. 

Gres) 
Cm;trat) n= oO, C'), N



43, 

29, 

as, 

22 

0,11 

10, 

‘Ss, 

- 0013 ,4/20231 5 Be ee Lb 

=BACKWARD METHOD FOR A PLATE WITH RADIATION AND ADIABATIC BOUNDARY 
CONDITIONS USING RELAXATION 
301,4:6410,4 
6410, 4: :203,4 47 = M/N* 
262 yas 33012, c =0 
204, 432611, Ee AON. Chcombrols value of T for which results 302,33 000 pris 
0011 ,4/200,5 : 
Jott ks0913,8 Big 0 Be 0,0), KN 
68,10:2211 

hoy? 10:301, ;; 
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0011, 4/300,5 
0011 eee ge” = 4 
30114 20513, (Attar) = 
tole 2211,4 

(m,t) 

ee 1033021 5 3 
632 26321 Btocras 

eo ¥ ee 
31,4 34 53 

6019, 4: :200 36 AMR. om »tsan) + (i4am) 

3022 ,5 631, "y 
6 1433 600 s 5 OH), Orony + 2M.OK™) 

(1,t¢at ) 640,6:20231 55 30 "ee ee 
261%, 432211, Cisam) am Ra, Sco,e00r) 
0011 34/3022; SS) 
0011 54 /60230,5 
631,4:000 
001] 14/600,5 
641943 :400, 11 

o (ms) 

(~ Nieges = (8 aie trac) * a.” ees) A = Gon 1c) 

Gs am) 

or Na t ot 0011, sp/ace9t 5 F 7 
Fane 43051 i 
63,11:2211, 

4024 10: ae 
0013; y/30230,5 
631426343 
0013, 4/600,5 
6419,4:000 

Bu, »Teat) (=i, teas) (wt) 2611,4:000 
0011 ,4/30231 5 Cit am) 
0011 7476121 5 
6320, 4000 Gai one 

a Geer) o™ 
0 0; - 

te feces en, cons) ss OG esas +H [ Geiss Ose | 

011 0513 20. Gy N* 
’ Mer 11 2211 4 Feet #0, (1; 
4010,11:000 
30231 5 :6121,5 

(mer) 
= tm) 

(@ , Tra) 0 (o,teav) 

 



4720,11:4420,11 ian be 
ae; 633 ,3:207,4 : \ Or cans = Be 2611,4:2211,4 

Seabee 
0011 ,4/6121,5 

1124425511 mes om) 
bee 635,320 ee caleviates ex lOrrcenes Bocce! 

617; 24128511 for aro 1) 
301 ,6:207,4 ; 
3011,4:0513 ,4 

we, Nebo tat cones 7 0 ‘ as ) pia : be 307 43619, Merten ae 6... Conversence limit - 
138,11:2611,4 - 

soinaeeet [Omg + BE fer mao c0,N. ? ? (A, Teaty én, teat) 
: Ca] ° t iPera ion cl 

= oy otk Tromsjers Fo 15,10 to petfo another itera h cycle 

4033,11:4415,10 
302 4603 , 4 T= Trax 

we, 202 ,4:614,4 Tmk 
4511 sta Theg 
743037431 
74202741 
7421: 7427 

us, [46 +4400, 12 

if T>L then £, 0%" and goes ©,12 302 ,4:000 (fear) 

cee fe er 
7428:7428 
[e823 

s 0,2:403,2 
; Roe e : 

0013 ,4/30231,5 
730,2:403,2 

OL eee oe 10, 304,4: % : 
: Jou aery? 

0011 ,4/30231,5 
0011 ,4/200,5 
oo ae 

+5) soi 1esa6ee if le 0-95 then caleudalion is performed fer neat: 

617,324510,10 time shep 
[reas Tie 
1427 37413 

20, Sys aha9 END. 
7430:7430 

2a, 400,13 000 

(mer) 
6 = 
(Aye Fo*. (m,trat) for n20, 0) A 

Block 13 meraley prints “END OF PROGRAM” 

 



011,420513,% ees 614,14:2211,4 
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00,15 000 
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008 3/7431 
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0083/7428 prints “END oF PRogRam” 
008 ,3/7415 
008 3/746 
008 , 3/7428 
008 3/7416 
008 ,3/7418 
008 3/7415 
008 3/747 
0083/7418 
005, 3/741 
008 3/7413 
400, 16000 

700:452,16 
00:453,16 
01,163700 

orisices —f COmevIAb en tine io rend from paper lape 730,2 2403 ,2 Sener tied veer 000 : 006 
7429 37430 
743037430 
{3051839 
00,8:000 

400,8:000( 

 



APPENDIX B 

NUMERICAL RESULTS



TABLE B.1 

COMPUTATION TIMES TO OBTAIN TEMPERATURE-TIME HISTORY 

OF A PLATE WITH STEP CHANGE AND ADIABATIC BOUNDARY 

CONDITIONS. PROGRAMS WRITTEN IN ALGOL. 

  

  

  

Computation Time (Sees) forZz.l 

as ’ Explicit | Crank Nicolson 

42.8 65.0 

33.0 43.5 

27.8 32.5 

26.8 31.0 

25.2 : 29.0 

188.8 417.0 

106.5 229.0 

1942 148.0 

61.48 136.0 

3530 116.0"             
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TABLE B. 3 

INACCURACY OF THE EXPLICIT METHOD USING A HIGH 
LATTICE DENSITY FOR A PLATE WITH STEP CHANGE 

AND ADIABATIC BOUNDARY CONDITIONS. 

N= 50 M= 0.05 

  

  

“Go 1 Betec) “| BCO,27 4 

0.02 0.690579 bee 
0.04 = 0.549004 Doay. 

0.06 0.468656 7240          



TABLE B.4 

MAXIMUM ERRORS USING THE EXPLICIT METHOD FOR 
PLATE WITH STEP CHANGE AND ADIABATIC BOUNDARY CONDITIONS 
  

N= 5 

  

m |®(0.2,7) | 8(0.4,7) [®(0.6,7) |8(0.8,r) | B1.0,7) 
  

O.1 0.54 ied 0.55 0.37 0.41 
0.2 0.21 0.42 0.23 0.3 0.2 
0.3 0.49 2.5 uf 0.76 0.83 
0.4 19 3.8 2.2 1.4 LoS 
0.5 9.9 4.8 345 2.2 205                 

 



TABLE B.5 

MAXIMUM ERRORS USING THE CRANK-NICOLSON 
METHOD FOR A PLATE WITH STEP CHANGE AND 

ADIABATIC BOUNDARY CONDITIONS. 

  

  

  

Mm |8(0.2,z) |8(0.4,7) |8(0.6,c) | £(0.8,7) | &a..0,0) 

O21 in 1.9 1 0.75 
0.2 O37 £25 0.78 0.6 
0.3 4 142 0.61 0.48 
0.4 53 esc] ee jos: 
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0.6 “|S 2 1.6 1.6 

Ohh me a 129 1.9 
0.8] 14 3.5 a7 a 
0.9 14 7. 204 O23 
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ERRORS OF SOLUTION FOR A PLATE 

  

  

  
  

  
      

  

TABLE 3.8 
WITH ADIABATIC AND CONVECTION 
BOUNDARY CONDITIONS | 

NeS ; Bi #0-] ; X #0. 

(28 /2x),2,(0,5 sp) (2.x 
i i 

EXPLICIT CRANK - NICOLSON 
M ~~ -s 

E ? P E 7 Pe 

Oe rere perwsaners bveareansgeond es a acme, 

0,2 0.08 0-04, Oo O18 0.04 O 

0.4 0:0% 0:048 9 Q:ta- 0.048 | 0 
065 0.26 0.04% } — BETS ee 

EO, UNSTABLE |: Oem 0-Ou8 0 
0.8 " 0.10 0.064 6 

1.0 u O.\: 0.020 o 

eS nu O.1S 0.0432 © 
1h ‘1 0-22 0.056 0       
 



TABLE B.Y ERRORS OF SOLUTION FOR A PLATE 

WITH ADIABATIC AND CONVECTION 

BOUNDARY CONDITIONS 

NsS 3; Biesto ;xX=0 

(26 18X coc) =(O.x; = 6.42) /24X 
  

  

  

          

EXPLICIT et CRANK - NICOLSON 
M 

E i} eh ee Bae | ee 
0.2 0.62 0.04 0 _ — — | 
0.2 0.3) 0-92 0 1.0 0.04 0.44 
0.3 0.43 0.%G 0 - — —s 

| Ou is 0.049 © 0.72 0.048 o | 
0.5 | 20.0 0.96 96 — — — | 

166 UNSTABLE 0.5q 0.048 o 
0.8 h 0-68 0.064 © 
1.0 “ a0 0.0490 x) 

; 22 | 3 aa oN vs : 
4-0 0.056 $6.41 of deh : |      



  

  

  

            

TABLE 3.10 ERRORS OF SOLUTION FOR A PLATE 
WITH ADIABATIC AND CONVECTION 
BOUNDARY CONDITIONS 

‘N25 3 Bi =10.0; X =.0 

(86/2x) 42) - ( Ge.) ~ Gy.rey) [/2ax 

EXPLICIT : CRANK - NICOLSON 
M ; 4 

By ? P E ? Pid 

0.2 6.4 0.04 16.7 woe ae 

0.3 90 0.048 GG-0 —_ _- seal 

0.4 UNSTABLE, 4-9 0.048 o. 077 
O55 ity — —s oe a 

1 0.6 - 1g 0.048 3.0 

5.8 “ Ly 0-064 20.0 | 
TE6 a Go O- OO 36. 3° 

Go 0.048 S74 es 12 u | 
i " a9 0.056 | 77-8 

be Sete {        



TABLE B.tl ERRORS OF SOLUTION FOR A PLATE 
WITH ADIABATIC AND CONVECTION 
BOUNDARY CONDITIONS 

N10 3; Bi sl0.0; X=0- 
(26 13%) rox, = (Gee, e O12) /aax 
  

  

  

                    
  

ee 
EXPLICIT : CRANK - NICOLSON 

M i 

E > Soe el > > 
OL 1S 0.039 0 — — — 

0.2 a4 { 0.040 Aid 6-8 0.0L oO 

0.3 2.8 4-0. 038 At mate ass ee 
0.4 Cy 0. 04 25 0-87 0.04 ° 

| 0.5 UNSTABLE : — — Sa 
0.6 | " 0-9G 0-042 ° 

0.8 I i u 1S 0.04 o 

0 sete . et SO hwo 
; . | Leeeae 5-4 0-042 4.0 

la i Fgh | Oona | 8.3 

 



TABLE B.Id ERRORS OF SOLUTION FOR A PLATE 
WITH ADIABATIC AND CONVECTION 
BOUNDARY CONDITIONS 

NelS ; Bi =10.0; X =0 

  

(0°/dx)co,¢) ” (Gace) - Op.1,25) [2A 

  

  

          
  

t 

EXPLICIT 3 i. CRANK - NICOLSON 
M . 

tft a = o7 
9.1 0:76 0.034 0 nae a malas 

OF 1.8 \ 0.034 O 0.4.6 0.0349 Oo 

043 1-2 0.04 0 — — — 

0.4 LS 0-038 = 0 0.48 0.039 } 

0.5 UN STAGLE — — — 
r. 0.6 4 0.32 0.04 © 

0.8 u 0: Sh 0,039 oO 

70 " 0.46 Si0ie aee 
}22 " 0.228 0.80 | ° 

fia.d u O70 Oth 8       

 



TABLE 3.!/3 ERRORS OF SOLUTION FOR A PLATE 
WITH ADIABATIC AND CONVECTION 
BOUNDARY CONDITIONS 

Ns S553 Be we Of Xe O 

(08/dx),o<) = (O02; = O12) T/A 

  

  

  

              

EXPLICIT CRANK - NICOLSON 

- E > oh pels > 

O.1 ie 0.42 o a oipaaes oe 
0.2 ie 0-8 O 1d, 0.02 O 

0.3 Neg 0.994 ° — — — 
O.4 1G o-.G3 ° ek, 0-43 O 

0.5 1d. 0-96 © —_ ele ella 

1.0.6 24 UNSTABLE! Id, 0-94, ° 
0.8 " 1G 0-43 0 

1.0 " Ie lp 0-49 o 

| 1.2 \ Le 0-46 ° 

isk h Oo Lhe a 0:95 
  

 



ERRORS OF 
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TABLE Bolg SOLUTION FOR A PLATE 
WITH ADIABATIC AND CONVECTION 
BOUNDARY CONDITIONS 

N=S 3; Bielo0;xX=0 

(00 /dX),, «) = (80.2) ae Ov-1,c)) [4x 
j 

EXPLICIT : CRANK - NICOLSON 
M : i j 

E Pe Coes E ? oo 
O.1 7.5 0-92 95:8 — won pas. 

0.2 7-4 0.42 | 100 7.6 0-04 100 

0.3 7.9 0.96 100 eee ae 

0.4 74 0-96 | 100 7-3 0-9¢ 100 

0.5 Ts 0-96 | too —_ me — | 
C60 UNSTABLE! 1.8 0.4% ipo. < | 

Oo | ae | 7.8 0-46 ogee I 

1.2 i 7.3 0.92 LOO. 4 

hated iu pS 0-5 yoo 2 |     
 



TABLE 3.5 ERRORS OF SOLUTION FOR A PLATE 
WITH ADIABATIC AND CONVECTION 
BOUNDARY CONDITIONS 

N=S 3; Bi sl0:0; X #0 

(98 19%)po.0) = (Ocoyey ~ Oie) /4¥ 
  

  

  

  

  

    
      

EXPLICIT ; | . CRANK - NICOLSON 
M e : 

By ee e. a > 

0.1 IS 0.04 95.2 oes pie mes 
0.2 | 0-04 25-0 ao) 0-04, 95-3 
0.3 Ss 0.048 12-0 tine ies 

| Ob 1S 0-048 12-0 1G | b:c4as G6 
ed re UNSTABLE — — —- 
0.6.42: 4 “312 0-048 100 | 
0.8 " eS 0-064 100 

1.0 5 aes 
i a an j | el 

|       A
E
A
 e

r 
gee

 
ne
 o
e 
e
n
g
n
e
e
n
e
n
n
 eg
 8

 

  

 



  

  

    

  

TABLE B./6 ERRORS OF SOLUTION FOR A PLATE 
WITH ADIABATIC AND CONVECTION 

BOUNDARY CONDITIONS 

N=S 3; Bie0;;X=0 
i : 

(LY are ta [ (&o,6) = Q12)) 1X © (8u,2)7 Gc-1,c)) /2.4x] 

EXPLICIT CRANK - NICOLSOM 
M a 

E 2 ys E z P 

0.2 0.72 0-92 ° 0-72 0.942, Co 

0.3 0.73 0-96 o — — eee 

0.4 0.73 0-96 o 0.74. 0-6 ° 
0.5 0:73 0-46 ° Pee hain co 
0.6 UN STABLE 0-74 0-96 oO 

0.8 " O- 74 ome 2 
1.0 : 0-74 0 +96 . 
1.2 pe 0-74 0.46 & 

Leh : O+ 74. 0-952 °° 

              
 



TABLE B. 47 ERRORS OF SOLUTION FOR A PLATE 

WITH ADIABATIC AND CONVECTION 

BOUNDARY CONDITIONS 

. Now Ss BE a1-0 4 Xam O 

(08/dx )c0,7) = + [ Cei6<, = O¢-1,2)) AX + Cre x Pa) 
  

  

  

            

EXPLICIT : CRANK + NICOLSON 
M = : i 

Es |e Polen F ? P 

O.1 4.4 0.04 100 —_ — eas 
0.2 4.0 0-0 1900 LB 0.04, 100 

0.3 3.6 ©-0u8 100 ts pe Sone 

0.4 oS 0°96 100 QS 0:048 10-0 

0.5 3-8 i. O81 ASO aa a wae 

P3056 UNSTABLE: 4-4 0.042 100 

0.8 aN ‘ at 0-064 100 
1.0 " &-O 0-08 100 

Lege eae 3-4 0-096 | 100 | 
yh a ; 4.9 O-itR | S$B9 i       

 



TABLE B.'18 ERRORS OF SOLUTION FOR A PLATE 
WITH ADIABATIC AND CONVECTION 
BOUNDARY CONDITIONS 

Bs So By =10-O; Y¥=0 ; 

eS j (90/dx )o2, = i. F (0,¢) ued O-4,25 )/AX + CH a Op-1,2) /28X 

t 
  

  

    

              

; 

EXPLICIT , CRANK — NICOLSON 
M . 

5 4 > eT = > 

; O«i a7 0-04, 4h? oo — 

0.2 0-73 0.04 ° . 6. 0-04 3-33 

0.3 AR 0-084 4 a — 
0.4 —— ~ — SS) 1 * 0.068 3:0 
GAS eed Ss a circles mad ce ee 

1 0.6 UNSTABLE 6-7 0-042 Ao 

oe] : 20 0-064 | 12-0 
1.0 He 74 O- 04 2-0 

} ' ‘ ; 

Lobe fe Go 0.048 22.7 { 
i i 
$a.4 4 23a. 240 0-056 A&G   
 



TABLE B.19 r z 

ACCURACY OF THE EXPLICIT METHOD FOR A PLATE 
  

WITH CONVECTION AND ADIABATIC BOUNDARY CONDITIONS. 

Bi=10 N=15 M=0.1 

  

  

  

C Oe tak (or) * Bins Eew,z) ns 

0.039 O26 °°] 260,76: | 1. 0 
0.079 Oel9? "| — 0447 6.99 |. 210.03 
0.119 0.16 a Bek 0.95 - 0.05 
0.159 0.14 K O229 0.89 ='0506 
0.199 o712 = 0.24 0.83 = 10.07 
0.239 GiLi 36.02 0.77 =~ Q.0T 
0.279 Onte t= el | 0.711 0.07 
0.319 | 0.09 = 022 0.66 OCCT 
05359" sb Gee |. = 0226.1. 6.61: | + 0.07 
0.399 0.08 4: 6,20 0.56 ~ 0.07 
0.439 0.07 = 26 0.51 20. OT 
0.479 0.07 On00 0.47 = 0.07 
0.519 0.06 8520 0.44 402.67 
0.559 0.06 = 9.20 6.40 1. = 0,07 
0.599 0.05 2¢G526 ©. 37 se, O7 
0.639 0.05 = 8,20 0.34 = 0.06 
0.679 0.04 “0.20 0. 32 #-0..06 
0.719 0.04 0.26 |..20:29 - 0.06 

0.759 0.04 28220 G.27 - 0.06 
0.799 0.03 0220 0.25 - 0.06 
0.839 4 0.09 = B20 0783, 4). 0, 06 
0.879 0.03 & @220 0.21 - 0.06 
0.919 0.03 0,20 O19 2 0.06            



TABLE B.20 

EXPLICIT "EXACT" SOLUTION FOR A PLATE WITH 
RADIATION AND ADIABATIC BOUNDARY CONDITIONS. 
  

R= 16 N= 15 M = O.1 

  

  

      

t Pas, 0, NT) C Q0,x ) 8 tv,t) 

0.04 | 0.603987 | 0.999767 10.56 | 0.442446 | 0.663728 
0.08 | 0.565035 | 0.991932 |] 0.60] 0.436005 | 0.644138 
0512 0.64 | 0.429774 | 0.625742 
0.16 | 0.527033 | 0.940559 |] 0.68] 0.4237742 | 0.608451 
0.20 | 0.514723 | 0.907749 |] 0.72 | 0.417903 | 0.592180 
0.24 | 0.504293 | 0.874642 [10.76] 0.412250 | 0.576855 
0.28 | 0.494979 | 0.842524 |10.80] 0.406774 | 0.562405 
0.32 | 0.486378 | 0.811951 |] 0.84] 0.401470 | 0.548766 
0.36 | 0.478274 | 0.783114 10.88 | 0.396331 | 0.535879 
0.40 | 0.470549 | 0.756036 |] 0.92] 0.391352 | 0.523690 
0.44 | 0.463137 | 0.730656 |] 0.96 | 0.386525 | 0.512150 
0.48 | 0.455997 | 0.706882 |]1.00] 0.3818461] 0.501213 
0.52 | 0.449106 | 0.684608         
  

 



TABLE B.21 

ITERATION CYCLES REQUIRED TO ESTABLISH 

CONVERGENCE FOR A PLATE WITH RADIATION 

AND ADIABATIC BOUNDARY CONDITIONS 

=5 R=10 M= 0.2 Convergence = 0.00001 

  

  

  

  

sae Iteration Cycles 

Step Crank-Nicolson Backward Difference 

i 9 27 

2 6 15 

3 6 12 

4 6 10 

5 6 9 

6 6 8 

vi 6 8 

8 5 7        
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TABLE B.23 

ITERATION CYCLES REQUIRED TO ESTABLISH CONVERGENCE 
FOR A PLATE WITH RADIATION AND ADIABATIC BOUNDARY CONDITIONS 

Hn 5 Re 651 CONVERGENCE = 0.00001 

  

  

  

ITERATION CYCLES FOR 
FIRST TIME STEP 

. JACOBIAN | GAUSS-SEIDEL 

0.1 4 3 
0.2 4 3 
0.3 6 4 
0.4 6 5 
0.5 8 5 
0.6 8 6 
0.7 10 6 
0.8 10 7           

 



  

TABLE B.24 

1.0 CONVERGENCE = 0.00001 

  

ITERATION CYCLES FOR 
FIRST TIME STEP 
  

JACOBIAN GAUSS-SEIDEL 

  

    
6 
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LO 
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15 

at 

x3 
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ON
 

CG
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OY
. 

G
Y
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TABLE B.25 

  

  

  

  

N=5 R=10 CONVERGE = 0.00001 

ITERATION CYCLES FOR 
“ FIRST TIME STEP 

JACOBLAN GAUSS-SEIDEL 

0.1 17 15 
0.2 29 23 
0.3 45 27 
0.4 67 30 
0.5 101 32 
0.6 154 32 
0.7 258 32 
0.8 548 32 
1.0 |NO CONVERGENCE 30 
t,2 " 29 
2.0 " 24        



TABLE B.26 

ITERATION CYCLES REQUIRED TO ESTABLISH CONVERGENCE 
FOR A PLATE WITH RADIATION AND ADIABATIC BOUNDARY 

CONDITIONS USING RELAXATION 

  

  

a5 R = 10 M= 0.1 

w ITERATIONS 

O.1 50 

0.2 26 

0.3 aT 

0.4 12 

0.5 8 

0.6 6 

0.7 & 

0.8 7 

0.9 Ls 

1.0 £9        



TABLE B.27 

COMPUTATION TIMES FOR TWO DIMENSIONAL METHODS 

peo. B= 0.1 

  

  

COMPUTATION 
METHOD TIME (SECS) 

EXPLICIT 240 
AsD.E.P: 560 

A.D.E.P. 250       
 



TABLE B.28 

ACCURACIES OF TWO DIMENSIONAL METHODS 

R305 Bw Ort 2 = 0.2 (Y= 042 

  

  

    

L ERROR % 

EXPLICIT | ADIP ADEP 

0.04 — 1.04 >| + -2.95.| + 4.82 
0.08 OAs | 2,42 5.09 
0.12 10. 36 1.66 4.43 
0.16 — 0.45 1.06 3.97 
0.20 ~.0.60 0.61 3.85 
0.24 > 0:71 0. 37 4.09 
0.28 - 0.80 0.31 4.59 
6:32 =.0.87 0.30 5.27 
0. 36 o. 92 0. 38 6.06 
0.40 20.98 0.50 6.90 
0.44 - 1.00 0.63 7.80 

O48 1 2.04 0.79 8.72 
  
         



TABLE B.29 

ACCURACY OF THE ALTERNATING DIRECTION EXPLICIT METHOD 

  

  

Z ERROR % 

0.04 * 15.39 

0.08 14.70 
0.12 13.41 
0.16 164303 
0.20 17.09 
0.24 19.43 
0.28 21.90 ; 
0.32 25.19 
0. 36 28.84 
0.40 32.70 

0.44 36.90 

0.48 Bi.13        



TABLE B. 30 

RE-EVALUATION OF TRUNCATION ERRORS 

  

  

  

  

x =0 

L TRUNCATION _ ERROR. 107 * 
KARDAS RE-EVALUATS 

0 - 57723.417 |- 74456.287 
O.02. eee L9e7d26 4+ 247.57 
0.04 | - 4.566 66.631 
0.06 | - 1.862 40.013 
0.08 | - 0.969 27.432 
Ce On577 20. 326 
0.2.4[- 0.097 8.255 
0.3 | - 0.033 5.531 
0.4 | - 0.019 4, 322 
0.5 |- 0.015 3.494 
0.6 | - 0.012 2.844 
0.7 | - 0.009 2.318 
038 4] - 0.008 1.89 
0.9 |- 0. 006 1.541 
a - 0.005 1.256        
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TABLE B.32 

COMPUTATION TIMES FOR VARIOUS MONOSTABLE SETTINGS 

  

| MONOSTABLE COMPUTATION 

m secs. TIME (Secs) 
  

LO 265 

100 58 

400 39   500 25 
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