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The dynamics of non-equilibrium Ising model with parallel updates is investigated using a gen-
eralized mean field approximation that incorporates multiple two-site correlations at any two time
steps, which can be obtained recursively. The proposed method shows significant improvement in
predicting local system properties compared to other mean field approximation techniques, partic-
ularly in systems with symmetric interactions. Results are also evaluated against those obtained
from Monte Carlo simulations. The method is also employed to obtain parameter values for the
kinetic inverse Ising modeling problem, where couplings and local fields values of a fully connected
spin system are inferred from data.
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I. INTRODUCTION

Statistical physics of infinite-range Ising models has been extensively studied during the last four decades [1–3].
Various methods such as the replica and cavity methods have been devised to study the macroscopic properties of
Ising systems with long range random interactions at equilibrium. Other mean field approximations that have been
successfully used to study the infinite-range Ising model are naive mean field and the TAP approximation [2, 4], both
are also applicable to broad range of problems [5, 6].

While equilibrium properties of Ising systems are well-understood, analysing their dynamics is still challenging
and is not completely solved. The root of the problem is the multi-time statistical dependencies between time
steps manifested in the corresponding correlation and response functions. Early attempts to analyze the dynamics
of spherical spin models via mean field methods were based on the Langvin equations [3, 7] while a path integral
analysis of the Glauber dynamics in spin glass systems was developed in [8, 9]. More recently, motivated by the need
to infer parameter values in the kinetic inverse Ising modeling problem, several naive mean field approximations has
been proposed for studying the dynamics of Ising system [10–12].

The Ising spin dynamics is usually described by a Markovian process whereby at every time step each spin σi is
updated according to a probability that depends on effective field hi =

∑
j Jjiσj . For the infinite range model, the

interaction couplings Jij are random variables sampled from a Gaussian distribution and the strength of couplings
decreases with the system size. In symmetric networks i.e., where Jij = Jji, the stationary state of system under
Glauber dynamics can be described by Gibbs measure, a property that does not hold for asymmetric networks. In
both cases, an exact transient analytical solution is unfeasible, and the evolution of dynamical quantities of interest
such as magnetizations and correlations can be obtained only by time consuming numerical simulations.

It is therefore essential to develop accurate approximation methods for better understanding the dynamics of spin
systems as well as for applications that require probabilistic inference of microscopic variables. One approach is to
start from fully asymmetric networks which exhibit small correlations among spins at different times. This allows one
to use central limit theorem and apply the Gaussian approximation for probability distributions of effective fields.
Based on this property, an exact formalism was introduced for the dynamics of fully asymmetric networks in [10].

A central macroscopic quantity in studying the dynamics of spin glasses is the spin correlation function that
describes the correlation between microscopic states at two time steps. In the present work we extend the mean
field approximation introduced in [10] by incorporating information from the time dependent correlations. We still
consider the effective fields to follow a Gaussian distribution but modify the standard deviation of the effective fields
by considering the non-zero covariance between spins at two different time steps. We show how this modification
improves the results, particularly for symmetric networks. Moreover, we provide an analytical recursive equation for
calculating the covariance among spins at different time steps, a property which has been absent from other mean
field methods.

To demonstrate the applicability of our approach as an inference tool for dynamical data we apply it for studying the
network reconstruction problem. The latter is an inverse problem in which one assumes to have access to dynamical
data from which time-dependent quantities such as magnetization and correlations could be calculated. The challenge
is to infer model variable values that best describe the sample data; the model used in the current case is the Ising
model, hence microscopic interaction and external field values should be inferred.

In the original equilibrium inverse Ising problem, the assumption is that the data is drawn from a Boltzmann-Gibbs
distribution with an energy function that includes symmetric pairwise interactions [5, 13]. In the non-equilibrium
variant of the problem [10, 12, 14] dynamical mean field methods are used to infer the best interaction values that
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describe the data where samples are time-dependent. This problem has been actively studied in recent years, in
particular in the context of neural network inference and protein-protein interactions [15, 16].

The paper is organized as follows. In Sec. II we briefly describe the model, introduce the macroscopic observables
and the dynamic update rules. In Sec. III we use a Gaussian approximation which is exact for the fully asymmetric
networks in the infinite-range model, but incorporate covariance values between spins at different time steps; we also
derive a method for recursively calculating covariance values for spins at all times. In Sec. IV we introduce the kinetic
inverse Ising problem and the corresponding application of our method as an inference tool. Section V focuses on
the numerical results obtained for the two problems: (1) the forward calculation of macroscopic properties; and (2)
inferring model values for the inverse Ising problem. We compare our results to other mean field approximation for
both cases as well as against direct numerical simulation observed in Monte Carlo simulations. Section(VI) introduces
concluding remarks and offers future research directions.

II. MODEL

We consider an Ising spin system comprising N binary variables ~σ = {σ1, .., σN} which are connected through
random couplings Jij . The interactions can be asymmetric (Jij 6= Jji) or symmetric (Jij = Jji). Following [3, 7] we
introduce a parameter k which measures the degree of symmetry in the couplings

Jij = J s
ij + kJas

ij , (1)

where J s and Jas are symmetric and antisymmetric matrices, respectively. The off-diagonal elements of Jij ∀i, j are
random Gaussian variables with zero means and variance[

(J s
ij − J0/N)2

]
J

=
[
(Jas
ij )2

]
=

1

N2

1

1 + k2
. (2)

We define the self connectivity to be zero (Jii = 0). The parameter k = 0 corresponds to fully symmetric networks
whereas k = 1 represents fully asymmetric networks. The interactions among spins determine the dynamics of system;
in the parallel update scheme, all spins are updated simultaneously

σi(t+ 1) =

{
+1 with probability 1

1+e−2β(hi(t+1)+θi(t+1))

−1 with probability 1
1+e2β(hi(t+1)+θi(t+1)) ,

(3)

where hi(t) is the effective local field acting on spin i at time step t

hi(t) =
∑
j∈∂i

Jji σj(t− 1) + θi(t) , (4)

and the parameter β, analogous to inverse temperature, is a measure of the overall strength of the interactions. The
notation ∂i stands for the set of spins neighboring target spin i with Jji 6= 0. In this paper we only study the fully
connected networks; however, this notation is use for consistency. This particular choice of sequential update [Eq. (3)]
is known as Glauber dynamics.

In this paper we focus only on synchronous updates and aim to derive local system properties such as magnetizations
and correlations directly from the Glauber dynamics. The joint probability distribution over all the spin histories
p(~σ(0), . . . , ~σ(t)) has the following simple Markovian form

p(~σ(0) . . . , ~σ(t)) =

t∏
s=1

W [~σ(s) |~h(s)] p(~σ(0)) , (5)

where W is the transition matrix, whose elements are defined by Eq. (3). The evolution of a a single spin is (trivially)
defined by summing over the histories of all spins except that of spin i,

pi(σi(0), . . . , σi(t)) =
∑

~σ\i(0),...,~σ\i(t)

p(~σ(0), . . . , ~σ(t)) , (6)

and similarly for pairwise joint probability of the histories of two spins one omits the corresponding trajectories of σi
and σj at all times

pij(σi(0), . . . σi(t), σj(0), . . . , σj(t
′)) =

∑
~σ\i,j(0),...,~σ\i,j(t)

p(~σ(0), . . . , ~σ(t)) . (7)
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It can be verified that marginal distribution of spin trajectories [Eq. (6)] can be expressed in terms of the joint
probability distribution of neighboring spins

pi(σi(0), ..., σi(t)) = pi(σi(0))
∑

~σ∂i(0)...~σ∂i(t−1)

p(i)(~σ∂i(0), . . . , ~σ∂i(t) / σi(0), ..., σi(t))

t∏
s=1

exp
(
βσi(s)(

∑
j∈∂i Jjiσj(s− 1) + θi(s))

)
2 cosh

(
β(
∑
j∈∂i Jjiσj(s− 1) + θi(s))

) . (8)

The intuition comes from the concept of cavity in statistical mechanics of disordered systems. The last term on the
right hand side is the conditional probability of observing the trajectory {σi(0), . . . , σi(t)} when the configuration
of neighboring spins is given. The second term, representing the joint probability distribution of neighboring spins,
must be evaluated on the cavity graph. Therefore, we denote it by p(i)(~σ∂i(0), . . . , ~σ∂i(t) / σi(0), ..., σi(t)). The first
term in Eq. (8) represents the initial conditions for the process. The site magnetization at time t can be derived from
Eq. (8)

mi(t) = pi(σi(0))
∑

σi(0→t)

σi(t)
∑

~σ∂i(0→t−1)

p(i)(~σ∂i(0→ t) / σi(0→ t))

t∏
s=1

exp
(
βσi(s)(

∑
j∈∂i Jjiσj(s− 1) + θi(s))

)
2 cosh

(
β(
∑
j∈∂i Jjiσj(s− 1) + θi(s))

) , (9)

where we use (s → t) to indicate the time path through {s, s + 1, ..., t}. Clearly, computing marginal distribution
[Eq. (6)] and consequently the magnetization [Eq. (9)] is intractable. It requires a summation of order O(2T‖ci‖)
where ci is the number of neighboring spins for target site i. We will show that even in the infinite-range spin glass
systems, this prohibitive complexity remains.

III. INFINITE-RANGE MODEL

Here, we focus on infinite-range spin glass systems, where the number of neighbors per spin is large ci ∝ O(N), and
in turn interaction couplings scale inversely to the system size; such that in the thermodynamic limit (N →∞) spins
become weakly correlated. In the old statistical mechanics literature this was the basic idea behind naive mean field
theory for the Sherrington-Kirkpatrick (SK) model. In order to implement similar assumption in non-equilibrium
system, we introduce the probability of observing trajectories (time path) for the effective fields [Eq. (4)]

pi(hi(1→ t)) =
∑

~σ∂i(0→t−1)

p(~σ∂i(0→ t− 1))

t∏
s=1

δ(hi(s)−
∑
j∈∂i

Jjiσj(s− 1)) . (10)

Note that introducing this probability will not facilitate our calculations even in the infinite-range model. In fact,
computing pi(hi(1→ t)) is as difficult as computing the joint probability distribution of neighboring spins in Eq. (9).
This is due to the fact that dynamics of neighboring spins are correlated through the target spin i. In other words,
the target spin i affects its neighboring spins and consequently they become correlated.

However, for fully asymmetric networks one can assume that the effective field hi(t) admits a Gaussian distribu-
tion, due to the small correlation between different sites at successive steps [10]. Consequently, the time single-spin
magnetization is given by

mi(t) =

∫
Dx tanh

β
√∆i(t) x+

∑
j∈∂i

Jjimj(t− 1) + θi(t)

 , (11)

where Dx = dx√
2π
e−x

2/2 is the Gaussian probability density and ∆i(t) =
∑
j∈i J

2
ji(1−m2

j (t− 1)). Note that Eq. (11)

is derived under the assumption of vanishing non-diagonal elements of the covariance matrix (Cij = 0 i 6= j). Under
this assumption the time dependent magnetization admits a Morkovian equation where at each time only information
from the previous time step is required.
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The results are exact in the thermodynamic limit (N → ∞) for any set of couplings and external fields, as it
relies only on the central limit theorem. Equation 11 should be compared with the naive mean field approximations
introduced in [17]

mi(t) = tanh

β
∑
j∈∂i

Jjimj(t− 1) + θi(t)

 . (12)

The naive mean field equation can be derived from Eq. (11) by an expansion in interaction strength. In [18] it was
shown that such expansion, in the first order, will give rise to Eq. (12) and in second order will produce a TAP-like
equation [12, 18]. Here, we will improve on the analysis of the dynamics by taking into account temporal correlations.
The idea is to assume a Gaussian distribution for the effective fields but consider a non-zero covariance matrix. The
approach is similar to the one introduced by Amari and Maginu [19], where they studied non-equilibrium dynamics
of autocorrelation associative memory. Assuming the Gaussian distribution for the effective field, one can write a
general description for the time dependent magnetization

mi(t) =

∫
Dx tanh

β
√Vi(t) x+

∑
j∈∂i

Jjimj(t− 1) + θi(t)

 , (13)

where Vi(t) = 〈h2i (t)〉 − 〈hi(t)〉2 is the autocovariance of the effective field at site i. In order to perform this integral
we first need to compute Vi. From the definition of hi we can substitute the effective field by its explicit expression
in terms of spin values at an earlier time step

Vi(t) =
∑
j∈∂i

JjiJki 〈σj(t− 1)σk(t− 1)−mj(t− 1)mk(t− 1)〉 . (14)

If connectivities are exactly evenly distributed or if we assume non-diagonal elements of the covariance matrix to
be zero, the above equations reduces to Eq. (11). However, these conditions are not satisfied in general and the
non-diagonal elements must be taken into account. In what follows we calculate Vi(t) in terms of earlier correlation
functions taking into account correlations between spins and effective fields at earlier times. We will show how using
more correlations improves our predictions. By definition, for Vi,j(t, s+ 1) we have

Vi,k(t, s+ 1) = 〈hi(t)hk(s+ 1)〉 − 〈hi(t)〉 〈hk(s+ 1)〉

=
∑
j 6=k

Jjk (〈σj(s)hi(t)〉 −mj(s)〈hi(t)〉 ) . (15)

The key idea here is to substitute 〈hj(s)σk(t − 1)〉 by early time correlations. Without loss of generality we assume
that s ≤ t and

〈hi(t)σj(s)〉 =
∑

σj(0→s)

∫
dhi(t)

s∏
s′=1

dhj(s
′)σj(s)hi(t) p(σj(0→ s), hj(1→ s), hi(t)) , (16)

where the summation is taken over all possible configurations of σj at all time steps from 0 to s. The two random
variable hi(t) and σj(s) are correlated through hj(1 → s) in time and the joint probability distribution is denoted
by p(σj(0 → s), hj(1 → s), hi(t)). Now we use Bayes theorem to express the joint probability distribution in a more
appropriate form

〈hi(t)σj(s)〉 =
∑

σj(0→s)

∫
dhi(t)

s∏
s′=1

dhj(s
′)σj(s)hi(t) p(σj(0→ s)|hj(1→ s)) p(h

(j)
i , h

(j)
j ) . (17)

Here h
(j)
i stands for the cavity effective field acting on spin i when the time path for spin j is fixed. Since the cavity

effective fields hi and hj are random variables their joint probability distribution is represented by a multivariate
Gaussian

p(h
(j)
i , h

(j)
j ) =

1√
2πViVj(1− x)

exp

(
− (h

(j)
i − 〈h

(j)
i 〉)2

2Vi (1− x)
−

(h
(j)
j − 〈h

(j)
j 〉)2

2Vj (1− x)
+ Vij

(hi − 〈h(j)i 〉)(h
(j)
j − 〈h

(j)
j 〉)

VjVi (1− x)

)
, (18)
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where x = V 2
ij/(ViVj) and is small but non-zero in the thermodynamic limit. In deriving equation (18) we assume

that the cavity covariance function is equal to the normal covariance function i.e. V
(j)
ij = Vij . This turns out to be

correct in the thermodynamic limit N → ∞ for the SK model since the couplings are drawn independently and at
random. The conditional probability p(σj(0→ s)|hj(1→ s)) follows the Glauber dynamics rule defined in Eq. (3).

In order to perform the integral we introduce the explicit expression of the field hi(t) = h
(j)
i (t) + Jjiσj(t− 1). We

then have

〈hi(t)σj(s)〉 =
1√

2πViVj(1− x)

∫
dhi(t)

s∏
s′=1

dhj(s
′)
(
h
(j)
i (t) + Jjiσj(t− 1)

)
σj(s)

s∏
s′=1

eβσj(s
′)(hj(s′)+θj(s′))

2 cosh(β (hj(s′) + θj(s′)))
p(h

(j)
i (t), h

(j)
j (s)) . (19)

By performing integration by part in Eq. (19) we get

〈hi(t)σj(s)〉 = Vij(t, s) Gj(s) +mj(s) 〈h(j)i 〉(t) + Jji〈σj(t− 1)σj(s)〉 , (20)

where Gi(s) is the generalized response function

Gi(s) =

∫
Dx

1− tanh2

β(
√
Vj(s) x+

∑
k∈∂j

Jkjmk(s− 1) + θj(s))

 . (21)

Equation (20) is a remarkable result for dynamics of SK model as it relates the correlations between a single spin
with the effective fields of its neighbors to the earlier time correlations. Substituting Eq. (20) into Eq. (19) we get

Vi,j(t, s) =
∑
k 6=i

Jki (Gk(t− 1)Vik(t− 1, s) + JikCk(t− 1, s− 1)) , (22)

or in matrix notation

V (t, s) = JTG(t− 1)V (t− 1, s) + JTC(t− 1, s− 1)J . (23)

where the matrix C on the right hand side of (22) and (23) is the auto-covariance function Cik(t, s) =
δik (〈σk(t)σk(s)〉 −mk(t)mk(s)). A particular use of Eq. (23) is to find an estimate for the auto-covariance func-
tion Vi(t) as it is required for evaluating the magnetizations. We therefore express it in terms of covariance function
values at different times as

Vi(t) =
∑

j 6=i,k 6=i

JkiJji, Gj(t− 1)Gk(t− 1)Vjk(t− 1, t− 1) +
∑
k

J2
ki(1−m2

k(t− 1)) . (24)

Higher order of covariance function can be computed using Eq. (20)

V (t, t+ n) = V (t, t)
n−1∏
s=1

[ G(t+ n− s) J ] +

n−1∑
s=1

JT C(t+ n− s, t− 1) J

s−1∏
s′=1

[ G(t+ n− s) J ] , (25)

where for the special case of n = 1 we have

V (t, t+ 1) = V (t, t)G(t)J + JTC(t− 1, t) J . (26)

Note that V is the covariance function for effective fields and is related to the spin covariance V = JTCJ where C is
the full covariance matrix. Assuming that J−1 exists we have

C(t− 1, t) = C(t− 1, t− 1)JG(t− 1) + C(t− 1, t) , (27)

where C(t− 1, t) is the the autocorrelation (Cij = 0 for i 6= j). This equation provides us with an approximation for
the non diagonal elements of covariance function between pairs of spins in SK model at different times.

Cij(t− 1, t) =
∑
k

Cik(t− 1, t− 1)JkjGj(t− 1) for i 6= j , (28)
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Diagonal terms of covariance function must be computed through mean field equations. Since the effective fields are
randomly distributed (drawn from a Gaussian distribution) the covariance function follows the bivariate Gaussian
distribution

Ci(t− 1, t) =
1√

det(2πVi)

∫
dhi(t)

∫
dhi(t− 1) tanh(βhi(t) + βθi) tanh(βhi(t− 1) + βθi) (29)

exp

(
− (hi(t)− 〈hi〉(t))2

2Vi(t) (1− x)
− (hi(t− 1)− 〈hi(t− 1)〉)2

2Vi(t− 1) (1− x)
+ Vi(t, t− 1)

(hi(t)− 〈hi(t)〉)(hi(t− 1)− 〈hi(t− 1)〉)
Vi(t)Vi(t− 1) (1− x)

)
.

We like to point out a major difference between equations (27) and (30) for the covariance matrix and the one used in
the mean field approximation of fully asymmetric networks [10]. For the fully asymmetric mean field approximation,
the covariance matrix of spins at two successive time is fully determined by equation (27). However, here the auto-
covariance elements must be calculated separately according to equation (30).

The Gaussian assumption for the probability distribution of effective fields is correct only in fully asymmetric
networks but it can be used as an approximation in networks with symmetric or partially symmetric connectivities.
We can improve the approximation by taking into account the non diagonal elements of covariance function within
the Gaussian approximation for the effective fields. This approximation is similar to [19] and [20] introduced in the
context of statistical neuroscience.

IV. KINETIC INVERSE ISING PROBLEM

Our proposed mean field approximation can be used to solve the non-equilibrium inference problems in densely
connected networks. To examine the efficacy of the method we apply it to a network reconstruction inference task
- the kinetic inverse Ising problem. The task is to infer coupling interactions Jij and external fields hi of an Ising
model given time dependent magnetizations mi(t) and covariances Cij(t, s) observed from data. In the setup used we
sample the magnetizations and correlations of a system evolving according to the Glauber dynamics [21].

In the current example, we focus on inferring coupling interactions from C(t, t − 1) and m(t). However, the
framework used enables one to refine the inferred values by considering a broader range of covariance matrices of
various time differences. We start from Eq. (27); the connectivity matrix appears explicitly on the right hand side
and implicitly in the vectorG. Following [10] we obtain the connectivity matrix by inverting equation (27). Introducing
B(t) = JG(t− 1) we have

B(t− 1) = C−1(t− 1, t− 1) [(1− δ)]C(t, t− 1) , (30)

where [(1− δ)]C(t, t − 1) contains only non-diagonal terms of the covariance matrix C(t, t − 1). The right hand
side is entirely given by data, while the left hand side depends directly on the couplings. In order to compute the
connectivities we use an iterative procedure proposed in [10]. We express V (t) in terms of known quantities; by
definition, Vi(t) is the covariance matrix of the effective fields whereas C stands for covariance matrix of the spins.
These two matrices are clearly related as V (t) = JT C(t− 1) J . Multiplying the connectivity matrix J by an identity
matrix GG−1 from both sides simplifies the equation since JG is given by empirical data [see Eq. (30)]. The final
expression for the covariance matrix V is

V (t) = G−1(t)
[
GJT C(t− 1) JG

]
G−1(t) . (31)

The diagonal elements of V (t) appear from computing magnetizations and correlations on the right hand side. At
each time step we use the following three set of mean field equations

mi(t) =

∫
Dx tanh

β(
√
Vi(t) x+

∑
j∈∂i

Jjimj(t− 1) + θi(t)


Gi(t) =

∫
Dx

1− tanh2

β
√Vi(t) x+

∑
j∈∂i

Jjimj(t− 1) + θi(t)


Vi(t) =

Di
G2
i (t)

,

where Di =
∑
j,k Bij(t)Cjk(t − 1)Bki(t) is calculated directly from the data as mentioned before. We start from

an initial value for ∆i(t) ≡
√
Vi(t). Given mi(t), from the empirical data, we solve the first equation to find
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∑
j∈∂i Jjimj(t − 1) + θi(t). We then substitute

∑
j∈∂i Jjimj(t − 1) + θi(t) into the second equation to compute

Gi(t). The third equation updates ∆i(t). Once the iterative process has converged we use Gi(t) and Vi(t) to extract
connectivities and external fields values from Eq. (30).

Note that the only difference between our generalized mean field theory and the one proposed in [10] is the third
equation. In our method we use Eq. (30) to compute the data, whereas for the mean field method of fully asym-
metric networks [10] Vi(t) follows a simpler equation Vi(t) =

∑
j∈i J

2
ji(1 − m2

j (t − 1)). For the naive mean field

approximation [12] the reconstructed connectivities are given by

J = A C(t, t− 1) C−1(t− 1, t− 1) , (32)

where A =
∑
j∈i J

2
ji(1−m2

j (t− 1)).

V. RESULTS

We investigate the performance of generalized mean field approximation both for calculating macroscopic quantities
(forward problem) and inferring coupling values from data (inverse problem). For the former, given connectivities
and external fields we compute time-dependent magnetization, auto-covariance and covariance matrix for fully con-
nected asymmetric networks evolving via parallel updates. We compare our results to the mean field approximation
introduced for the fully asymmetric networks [10] and the naive mean field approximation [17]. We evaluate results
obtained by the different methods against numerical simulations based on the Glauber dynamics defined in Sec. II.

For the kinetic inverse Ising problem we sample a network instance at random, and generate correlations and
magnetizations by heavily sampled Glauber dynamics. We then infer the connectivities values based on the different
mean field methods described above.

A. Forward problem

In this case network connectivities are known and time dependent magnetizations are computed according to
equations (11),(12) and (13) for the mean field, naive mean field and generalized mean field methods, respectively.
To compute the time dependent covariance matrix we use Eq. (27) in the generalized mean field method. Note that
Eq. (27) provides results only for non diagonal terms. The auto-covariance functions can be estimated by Eq. (30).
Note also that we can not compute the covariance function by the naive mean field method and mean field method
for the fully asymmetric networks. Higher order of covariance functions can be also computed by Eq. (25).

We examine the performance of different methods by computing the mean squared error defined as

δ(t) =
1

N

N∑
i=1

(mGD
i (t)−mestimate

i (t))2 ,

∆(t) =
1

N(N − 1)

N∑
i,j

(CGD
ij (t, t− 1)− CGMF

ij (t, t− 1))2 , (33)

where δ(t) is the mean squared error of time-dependent magnetizations obtained by the different methods and ∆(t) the
corresponding mean squared error for the covariance matrices obtained. Here mGD

i and CGD
ij stand for magnetization

and covariance obtained by numerical simulations of systems evolving via Glauber dynamics, respectively. Note that
for ∆(t) only generalized mean field approximation is considered as covariance matrices cannot be calculated by the
other two methods. Fig. 1 shows results for mean squared errors δ and ∆ averaged over T time steps (here T = 10).

Left panel compares averaged mean squared errors for magnetization δ̄ = 1/T
∑T
t=1 δ(t) computed by the different

methods for fully symmetric networks. Clearly, generalized mean field approximation performs better for the various
β values. The mean field approximation [Eq. (11)] estimates correctly the magnetizations for small β values but the
error grows for lower temperatures. The right panel presents mean squared error results for the averaged covariance

function at two successive times ∆̄ = 1/T
∑T
t=1 ∆(t) computed by the generalized mean field approximation for both

fully asymmetric and fully symmetric networks. For small β values, the covariance matrices predicted by our method
are similar to those obtained by numerical simulations. As β increases it fails in predicting time dependent covariance
for fully symmetric networks.

Figure 2 shows the performance of the generalized mean field method in calculating the auto-covariance function
Ci(t, t− L) for various values of L in fully symmetric networks. Due to the parallel nature of dynamics, even values
of L give rise to higher auto-covariance values and consequently higher errors.
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FIG. 1: Left panel: Squared deviation of spin averages δ̄ evaluated by different methods for a fully symmetric network (k = 0).
The results are averaged over 10 time steps. Right panel: Squared deviation of covariance function computed by generalized
mean field (GMF) method. Results are shown for both symmetric and asymmetric networks. In all simulations, N = 100,
T = 10 and the sample size for the numerical simulations is 106. Results are averaged over 10 network instances, both mean
values and standard deviations are shown (color online).

The left panel in Fig.2 shows the mean squared error results of the calculated auto-covariance function. As β increase
the prediction becomes less accurate. The right hand side panel shows the point-wise auto-covariance function for
different L values. Since spins are correlated in a parallel manner, the auto-covariance between two successive time
steps is small. However for even L values we observe non-zero auto-covariance values. The results are compared to the
numerical simulations (red points). We observe that the generalized mean field method almost always over estimates
the auto-covariance function values. To highlight a qualitative comparison between different methods we show a
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FIG. 2: Left panel: Squared deviation of spins auto-covariance as a function of β. Results are obtained by the generalized
mean field method for symmetric networks and are averaged over 10 network samples and 10 time steps. Error bars are smaller
than the symbols size. System size is 100 and external fields are set to zero. Right panel: Point-wise auto-covariance function
Ci(t, t − L) for different values of L in one single network sample of symmetric networks. The system size is N = 100 and
β = 0.7. Calculated values are shown in red while values from numerical simulations are shown in blue (color online).

scatter plots for the local magnetizations obtained by the different methods versus those obtained from numerical
simulations in Fig. 3. The results are for different values of β = {0.5, 0.7, 0.9, 1.1}. For small β values all methods
predict the local magnetizations accurately. As we increase the value of β, naive mean field starts failing in its
prediction. In all cases, generalized mean field theory outperforms the other two methods.
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FIG. 3: Scatter plot of local magnetizations for fully symmetric networks(N = 100) obtained by various methods, plotted
against values obtained from simulation (x-axis). Green points represent results obtained by the generalized mean field method,
blue points by naive mean field and red points by the mean field method (marked as MF2, color online). Results are for
β = 0.5, 0.7, 0.9, 1.1 respectively.

B. Inverse problem

We now examine the performance of the different methods for the inverse Ising inference problem. We start with a
fully connected spin glass systems with zero external fields and randomly sampled interaction values from Gaussian
distribution of zero mean and unit variance; and then generate time dependent magnetization and covariance functions
by applying Glauber dynamics. We examine both cases of symmetric and asymmetric couplings. The connectivities
can be inferred by using Eqs. (32) and (32). Similar to the previous section we define mean squared error measure
for the estimated error in the inferred connectivities

I =
1

N(N − 1)

∑
ij

(
Jij − J rec

ij

)2
(34)

where J rec
ij are the estimated (reconstructed) connectivities inferred by the corresponding mean field method and Jij

are the original couplings.
The results, presented in Fig.4, show that the generalized mean field approximation outperforms the other two

methods for different β values in symmetric networks. The results are averaged 10 time steps and over 10 networks
samples. Indeed, it provides accurate results (compared to other methods) even for considerably high β values. To
observe the comparison in a more qualitative manner, we show the scatter plot of reconstructed connectivities versus
the true connectivities in Fig. 5. The generalized mean field method infers perfectly the connectivity couplings for
fully symmetric network even at high temperature, especially compared to mean field and naive mean field results.

VI. CONCLUSION

In this paper, we studied the dynamics of spin glass systems and devised an inference method for the inverse Ising
model. We focused on the Sherrington-Kirkpatrick model and generalized the mean field approximation, originally
developed for the fully asymmetric networks, by taking into account information from the earlier time steps.

A key feature of fully asymmetric networks is to have negligible correlations between non-identical spins at dif-
ferent time steps. In our proposed method, the correlation between microscopic states at two time steps have been
incorporated into the dynamics. The modification to the mean field approximation shows a great improvement in
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FIG. 5: Scatter plot of reconstructed connectivities in fully symmetric networks with N = 100 and β = 0.7. Green points
represent reconstructed connectivities obtained by the generalized mean field method, blue points by mean field method of fully
asymmetric networks and red points by the naive mean field method (color online).

predicting local properties of the system in both forward and inverseproblems; the former aims at predicting macro-
scopic properties dynamically, while the latter aims at inferring microscopic values from data in specific instances.
Another advantage of our proposed method is that it enables one to compute time dependent correlations at different
time steps, a quantity that cannot be studied by other mean field approximations. The performance of our method
is evaluated by extensive numerical simulations.

Our numerical experiments show that for the fully asymmetric networks the improvement due to the generalization,
over the mean field approximation, is modest as the correlation among the spins at different time steps is small.
However, for symmetric networks our method shows significant improvement over other methods and an excellent
agreement with data obtained numerically using Glauber dynamics, even at high temperature regime.

This technique can be used to include correlations at any depth, time differences, in a systematic approach to
improve the prediction of dynamically evolving macroscopic quantities and inference of microscopic model parameters
from data; this is expected as correlations at different times do carry valuable information for both tasks. Extending
the calculation to devise improved approximations for symmetric densely connected spin systems is underway as well
as the generalization of the method for sparse systems. Both research directions are highly promising and would
impact on both theoretical research an practical applications.
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