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Abstract

The recent explosive growth of voice over IP (VoIP) solutions calls for accurate modelling of VoIP 
traffic.  This  paper  presents  measurements  of  ON  and  OFF  periods  of  VoIP  activity  from  a 
significantly large database of VoIP call recordings consisting of native speakers speaking in some 
of  the  world’s  most  widely  spoken  languages.   The  impact  of  the  languages  and  the  varying 
dynamics of caller interaction on the ON and OFF period statistics are assessed. It is observed that 
speaker  interactions  dominate  over  language  dependence  which  makes  monologue  based  data 
unreliable  for  traffic  modelling.  The  authors  derive  a  semi-Markov  model  which  accurately 
reproduces the statistics of composite dialogue measurements.
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1 Introduction

The increasing popularity and commercial success of Voice over IP (VoIP) solutions has led to a 
steady rise in VoIP traffic over the past few years. As major network operators migrate from the 
traditional circuit switched network to the converged IP network, VoIP traffic is poised to grow even 
further, constituting a large portion of global IP traffic [1]. This calls for accurate modelling of the 
statistical properties of VoIP calls  with emphasis on efficient bandwidth management. VoIP calls 
have often and traditionally been modelled using on-off source models where periods of speech 
activity, talk spurts, are represented as ON periods TON, separated by silence lengths represented as 
OFF periods TOFF . The voice packet transmission occurs only for the duration of the ON periods 
and the traffic sources are turned off during the OFF periods of a VoIP call, thus making the correct 
identification of OFF periods in a VoIP traffic stream, crucial for efficient traffic transmission.

Several on-off models for VoIP calls have been proposed in the past [2]. The most prominent of 
these [3-8] assumed an exponential or geometric approximation for the TON and TOFF periods and 
their results were based on old and outdated measurements of talk spurts and silence lengths from 
analogue voice call  recordings of limited duration.  In addition the calls  were based on English 
speakers only. However recent work [9-12] on packetised voice has shown that the TON  and TOFF 

periods are not exponentially distributed but are rather heavy tailed. While heavy tailed distributions 
for the TON and TOFF periods have been proposed [9-12], the short TOFF periods (< 200 ms), which 
have  been shown to be significant  [7],  were ignored.  Consequently  much longer  TOFF and TON 

periods [12] were observed.

In this paper, we present in Section 2 new and accurate measurements of the TON and TOFF periods, 
including the short ones, from a very large multi-lingual database of VoIP calls of sufficiently long 
duration so as to achieve good quality statistical information. We then investigate the impact of the 
language and speaker behaviour on the TON and TOFF periods. Finally we compare our results to 
previous measurements [8] and the prominent two-way voice model [7] which included the short 
silences  of  less  than  200ms.  We  show  that  conventional  Markov  models  cannot  accurately 
reproduce the silence statistics. We then derive a simple semi-Markov model based on lognormal 
transitions and show that this can accurately reproduce the measured statistics.

2 Measurement of TON and TOFF periods

2.1 Voice Call Database

For  the  measurement  of  TON  and  TOFF,  we  considered  a  large  database  of  two-way  voice  call 
recordings retrieved from the ‘Callfriend’ section of TalkBank.org [13]. This database consisted of 
over 100 h of voice call recordings involving both male and female native speakers of a few of the 
world’s most widely spoken languages including Mandarin Chinese, Spanish, Japanese, German, 
French  and English.  Each  of  the  call  samples  typically  lasted  from 30 to  50  min  and have  a 
sampling frequency of 8 kHz and a constant bit rate of 64 kb/s but are otherwise unprocessed (e.g. 
no silence suppression). Apart from linguistic differences, the call samples featured varying degrees 
of random dynamics of conversation and the presence of non-grammatical silences as one would 
observe in a typical telephone conversation. In addition to the large VoIP call database, a selection 
of  multi-lingual  monologue data  for the aforementioned languages  was also considered for  the 
purpose of analysis of short silence lengths, based on the monologue bursts of a speaker in a VoIP 
call, as was done in the work of [7] as well. The monologue data, lasting up to 15 min for each  



language, was retrieved from the Open Speech Repository [14].

2.2 Silence Detection

The measurement process was carried out by extracting the monaural speech signal  S(t) from the 
source  file  and  deriving  the  smooth  acoustic  envelope  of  the  speech  signal  for  silence 
discrimination. Note that for the silence detection analysis we only consider the ‘conversation part’ 
of the VoIP call as suggested in [12]. Fig. 1 shows an example of a speech signal extracted from a 
VoIP call  sample in  the English language.  We see that  the talk spurts  are  separated by silence 
lengths marked by the TON and TOFF periods respectively.

Fig. 1 Example of speech signal S(t) with TON and TOFF periods

We will now describe the method used to identify the TON and TOFF periods in the speech data. In 
measuring the statistics of these periods we use continuous time in the sense that no binning into 
frames is used, this is done later solely for the purpose of comparison with previous studies. The 
speech signal  S(t)  is first filtered using an efficient FFT low pass filter which has the following 
frequency response function:

                                          H ( f )={0,∣ f ∣> f c

1,∣ f ∣< f c

, f c=1 KHz} (1)   

where fc is the cutoff frequency of the low pass filter. As the speech signals associated with the VoIP 
call recordings consisted of very large datasets, we made use of the overlap-add (OLA) method of 
FFT processing, to avoid memory issues.  Since we are only interested in obtaining the envelope of 
the signal and not reconstructing the speech signal, the choice of fc was carefully chosen so that all 
short  silence  lengths  or  TOFF periods  are  tracked  as  accurately  as  possible.  Fig.  2  shows  the 
cumulative distribution of silence lengths and the impact of different choices for the value of fc for 
an arbitrary call sample. We observe that for low values of fc we see fewer short silences whereas 
for higher values of fc we see more short silences as we would expect. For example for a value of fc 

= 100 Hz we observe that the results closely match those in [3] where silences below 200 ms were 
not observed. For a large value of fc = 2 kHz, we see that noise in the data dominates, thus damaging 
the statistics. The shortest silence period that can be detected by an adult is approximately 5 ms 
[15]. Moreover, the choice of standard frame sizes used in the current generation of voice codecs 
varies from 5 ms to 30 ms [16]. Given this, the value of fc was chosen so that we record as many 
TOFF periods as close to 5 ms as possible while limiting the presence of TOFF periods shorter than 1 
ms, assuming those to be noise. A cut-off frequency fc = 1 kHz, as used to generate Fig. 1, proved to 
be the most appropriate choice for our requirements for the low pass filtering process.



Fig. 2 Impact of varying fc on the TOFF periods

After the low pass filtering, the acoustic envelope m(t) is derived by computing the modulus of the 
filtered signal  Sf(t),  which is then subjected to a decision making process to discriminate the talk 
spurts  TON from the silence  lengths  TOFF,  by use of  a  Threshold Crossing  Value (TCV) placed 
comfortably above the estimated noise floor of the speech signal. The noise floor of course varies 
with each VoIP call recording sample, but as a general rule of thumb, the TCV is chosen midway 
between the noise floor and the smallest talk spurt spike that can be detected which stands out from 
the noise floor, which is approximately 1.5-2.0 % of the maximum amplitude range of the speech 
signal S(t). This value is then used in a decision making process whereby the duration for which the 
envelope m(t) lies below the TCV, is marked as a silence length (TOFF period) and the duration for 
which the envelope m(t) lies above the TCV is marked as a talk spurt (TON period). Once the values 
of the TON and TOFF periods are accumulated for the entire speech signal, we finally compute the 
probability density function and cumulative density function for statistical analysis. The impact of 
the choice of the TCV on the statistics of the talk spurts and silence lengths is consistent with 
previous work [3]. For a lower TCV, we record a larger number of short silences and talk spurts, 
whereas for a higher TCV, we record fewer and longer silences and talk spurts. Fig. 3 shows the 
impact  of  the  change  in  TCV on  the  cumulative  statistics  of  the  TOFF periods.  The  TCVs  are 
represented as percentages of the maximum positive amplitudes of the speech signal  S(t). We can 
clearly see in Fig. 3 that over a reasonable range of threshold values, the statistics are consistent.

Fig. 3 Impact of varying TCV on the TOFF periods



3 Impact of language and prosodic factors

We now consider  the  impact  of  the  language and the  behaviour  pattern  of  the  speaker  on the 
statistics of TON and TOFF.

Since the conventional voice traffic models, including the well-known 8-state model [7], are based 
on monologue data, we first study the characteristics of the TOFF periods based on the monologue 
data  from  [14].  Plotting  the  average  statistics  for  the  monologue  samples  of  each  group  of 
languages, it was observed that the incidence of short TOFF periods is unique to each language. An 
example of this observation is shown in Fig. 4 which shows the probability densities for the silences 
for three different languages. Whereas we see no major differences in densities for the long and 
medium silence lengths, we see that Mandarin Chinese has the highest number of short silence 
lengths (< 200 ms), followed by French and then English. This is because the short silence lengths 
in spontaneous monologue speech vary with the size of the prosodic units and speech rate involved 
in the language [17]. Thus we see in our results that Chinese and French, being syllable-timed 
languages,  have  a  larger  number  of  short  silence  lengths  due  to  the  shorter  prosodic  units  as 
compared  to  English,  a  stress-timed  language  which  has  relatively  longer  prosodic  units.  This 
observation is independent of the samples chosen for the language.

Fig. 4 Comparison of monologue silences (TOFF periods) for 
Chinese, French and English Languages

These  differences  in  the  short  silence  lengths  with  every  language  have  been  proved  to  be 
statistically significant [17, 18]. Voice models based on monologue speech should, therefore, take 
the language into consideration as the speech rate varies with every language. We note that the 
dependence of the short silence lengths on the language for the monologue samples is independent 
of the speaker of the same language.

However in our analysis of TOFF periods of dialogue from the large multi-lingual VoIP call database 
[13],  we observe  that  the  statistical  differences  in  languages  are  overshadowed by the  random 
dynamics of the interaction of the speakers.  Fig.  5 shows the cumulative distribution functions 
(CDFs) for the TOFF periods for calls in different languages. We present the TOFF periods in frames of 
5 ms as in [7, 8] to facilitate ease of comparison. We record about 10-30% more short TOFF periods 
(<100 ms) in our measurements when compared to those in [8].



Fig. 5 Cumulative distribution of TOFF periods of VoIP call  
samples for various languages

The results shown in Fig. 5 seem to suggest a significant language dependence of the TON and TOFF 

distributions. However, this is not the case as we will now show.

One initial  observation  that  was  made from the  analysis  of  the  VoIP call  database,  is  that  the 
differences in the cumulative distributions of TOFF periods for call samples of the same language 
were as large as those of call samples of different languages.  This is clearly apparent from the 
results in Fig. 6 which show the cumulative distributions of TOFF periods for eight different call 
samples for the Spanish language. As can be seen, the distributions for the various call samples of  
the Spanish language vary as much as the distributions of the call samples for different languages 
shown in Fig. 5.

Fig. 6 Cumulative distribution of TOFF periods of VoIP call  
samples for the Spanish language

Another  significant  observation  from  the  results  is  that  although  there  are  differences  in 
distributions of silence lengths in the voice call samples for each language, the frequent presence of 
non-grammatical  silence  lengths  in  the  voice  call  samples,  such  as  those  related  to  listening, 
thinking and hesitation, yields a complex anomaly which does not present a viable option to model 
the voice call silences on a linguistic or a speech rate basis alone. This is clearly observed with the 
German and Spanish samples which have a large presence of prolonged semi-intentional silence 
lengths or silences of hesitation, thus yielding higher numbers of medium and long TOFF periods 
when compared to the other language samples.



A similar observation has been made with the cumulative statistics of the TON periods. Fig. 7 shows 
the cumulative statistics for the TON  periods for calls in different languages. The presence of non-
grammatical talk spurts makes it almost impossible to characterize the TON periods on the basis of 
language. The speech rate with which the caller speaks in a particular language is a more dominant 
parameter than the prosodic or temporal structure of the language when it comes to the statistical 
properties of the TON periods. This speech rate changes from one call to another as a direct result of 
the varying nature of emotions and psychological behaviour of the speaker. For example, it can be 
seen that the Spanish call sample has far fewer TON periods due to the presence of several long 
silence periods related to hesitation in relation to their talk activity. In addition it is also important to 
note that the TON period statistics are also affected by the presence of non-speech expressions such 
as coughing, laughing, anger and others. Hence there is an absence of uniformity in the observed 
TON periods for the various call samples including those of the same language, as was observed in 
the case of TOFF periods.

 

Fig. 7 Cumulative distribution of TON periods of VoIP call samples for various languages

Our study of the impact of language and speaker behaviour on the TON and TOFF period statistics has 
revealed  that  while  there  are  distinguishable  differences  observed  with  samples  of  monologue 
speech for each language, the presence of random dynamics of conversation and non-grammatical 
silence lengths and talk spurts in the VoIP call samples yields complex behaviour inconsistent with 
the modelling of TON and TOFF periods on a linguistics or a speech rate basis alone, thus leading us to 
a conclusion: VoIP statistics are unaffected by the languages spoken but rather differ only based on 
the random dynamics of conversation. In other words, the observed VoIP statistics are independent 
of the language spoken. Therefore in order to propose an appropriate model which can represent the 
conversational characteristics and dynamics of all the call samples in the database, it is imperative 
that the model is based on the composite statistics of the TON and TOFF periods of the very large 
database used for our analysis. These long and composite statistical samples for the TON and TOFF 

periods were produced by merging all TON and TOFF periods accumulated individually for all the 
available call samples, and these composite samples are then used for analysis.

4 Logarithmic analysis of the composite samples

Previous work [11, 19] concludes that the human perception of time with respect to talk spurts and 
silences is logarithmic in nature. In line with their observations, we now produce loglinear plots of 
the probability densities of the composite measurement statistics for the TON and TOFF periods. 



4.1 Analysis of TOFF periods

In Fig. 8, the composite measured result for the TOFF periods is shown. We clearly observe that the 
TOFF periods show a tri-modal structure on the logarithmic scale. The results suggest that at least  
67% of silence lengths are less than 100 ms, a characteristic which many models have failed to 
capture. We also observe that a good majority of the silences are close to 10 ms and are related to 
respiratory pauses [17]. To this tri-modal structure we fit a tri-modal Gaussian Mixture model also 
shown in Fig. 8. 

Fig. 8 Tri-modal Gaussian profile for TOFF periods

The  parameters  of  this  Gaussian  mixture  model  were  estimated  by  way  of  the  Expectation 
Maximization  (EM) algorithm [20,  21],  a  procedure  commonly  used  to  estimate  mathematical 
model parameters given that there is limited observed or incomplete data to complete the model. 
This Gaussian mixture model in the Logarithmic domain reflects a tri-modal lognormal mixture 
model in the linear domain for which the probability density equation is given by:

                                      f TOFF
( t )= ∑

i = 1

3

αi
1

t σ i √2π
exp(−( log10( t ) − μ i)

2

2 σ i2 ) (2)

where αi is the normalizing weight, µi is the mean and σi is the standard deviation of each Gaussian 
component representing the density of the TOFF periods. The estimated values of these parameters 
are shown in Table 1.

4.2 Analysis of TON periods

When we repeat the same procedure as above for the TON periods, we observe a bi-modal profile for 
the density of TON periods in the logarithmic domain as shown in Fig. 9. Our results show that we 
have been able to accurately track talk spurts below 100 ms, which [7, 8] were not able to track and 
classify. We see that a significant number of the talk spurts which we have tracked lie in the range 
6-10 ms in contrast to those longer than 100ms.



Fig.  9 Bi-modal Gaussian profile for TON periods

Whereas these spurts may represent elements of background noise, it is assumed, given we have 
TOFF periods in the same range, that these small TON periods we detected are small vowel segments 
as pointed out in [17]. To this bi-modal structure we fit a bi-modal Gaussian mixture model as 
shown in Fig. 9 and again this reflects a bi-modal lognormal model in the linear domain, the density 
of which is represented by:

                                       f TON
( t )= ∑

i = 1

2

β i
1

t ς i √2π
exp(−( log10( t )− λi )

2

2 ςi 2 ) (3)

where βi is the normalizing weight, λi is the mean and ςi is the standard deviation of each Gaussian 
component representing the density of TON periods and the estimated values of these parameters are 
also shown in Table 1.

Duration Parameters Value

i = 1 i = 2 i = 3

TOFF

(States 3,4,5)

α 0.56 0.11 0.33

μ -2.05 -1.29 -1.08

σ 0.29 0.23 0.99

TON

(States 1,2)

β 0.53 0.47 -

λ -4.653 -1.919 -

ς 0.531 1.02 -

TABLE I
ESTIMATED VALUES OF PARAMETERS FOR LOGNORMAL DENSITIES FOR TON AND TOFF PERIODS OF THE COMPOSITE 

LANGUAGE INDEPENDENT CALLS

5 On-off source model

Based  on the  fitted  lognormal  mixture  distributions  to  the  TON and  TOFF  periods  shown in  the 



previous section, a simple five state semi-Markov on-off model can be constructed as shown in  Fig. 
10.  The  three  modes  of  the  tri-modal  lognormal  distribution  of  the  TOFF periods  in  (2)  are 
represented by the states 3, 4 and 5 respectively whereas the two modes of the bi-modal lognormal 
distribution of the TON periods in (3) are represented by the states 1 and 2 respectively. The states 
are connected by transitions between them as we now describe.

 

Fig. 10 On-off semi-Markov source model

The voice model transits between the ON and OFF states alternately as required and this reduces the 
number of potential transitions as compared to a general five state model. We also assume that the 
state transition probabilities are independent of the initial state which allows a unique assignment: 
the probability of visiting a state i is given by the normalizing weights αi and βi for the TON and TOFF 

periods respectively, as shown in brackets in Fig. 10. This approximation is implicit in all previous 
work where correlations between ON and OFF periods are ignored. At any given moment the model 
exists  in  one  of  the  five  states.  The  time  spent  in  each  state  is  determined  by  the  individual 
components of the complete tri-modal and bi-modal distributions (2) and (3) respectively. At the 
end of that time the model makes a transition, either from an OFF state to an ON state or vice versa. 
On leaving, for example, an OFF state the model makes a random choice according to the ON 
normalizing weights (βi) as to which state to visit next so state 1 is chosen 53% of the time and state 
2 is chosen 47% of the time. The parameters associated with the lognormal distribution depend on 
the mode each state represents and are shown in Table 1.  

6 Simulated results and analysis

The proposed semi-Markov on-off model with lognormal transitions was implemented and Fig. 11 
shows the CDFs for our measured and simulated TOFF. We also compare these results to simulated 
results from [7] and measurements by [8]. As before, the CDFs for the TOFF periods are represented 
in frames of 5 ms each. The figure clearly shows that our simulated results from the on-off model 
are  in  excellent  agreement  with our  measured  (composite)  results  for  the  TOFF  periods.  In  our 
results, we record an average of 30% more short silences than the English language based limited 
time measurements of [5] which used a frame by frame decision process for the silence detection.  
The figure also highlights the inaccuracy of the conventional 8-state model in tracking the TOFF 

periods, especially for the smaller TOFF periods.



Fig. 11 Cumulative distributions for TOFF periods – measured values 
against semi–Markov model and results from [7, 8]

Similarly, Fig. 12 shows the CDFs for the measured and simulated results of TON periods and those 
simulated by [7] and measured by [8].

Fig. 12 Cumulative distributions for TON periods – measured values 
against semi – Markov model and results from [4, 5]

Again we observe that the simulated results of our lognormal model clearly fit our measured results. 
In contrast, we see that the results of the 8-state model widely differ with our results as a result of 
the lack of talk spurts shorter than 100 ms [7]. Also in our results we find that around 60% of the  
talk spurts for the multilingual database are below 50 ms in comparison to the 40% observed in [8]. 
Whereas it is also apparent from the figure, that around 25% of the talk spurts are below 10 ms, 
further analysis revealed that if we filter out all talk spurts below 10 ms from our composite sample, 
our measured result would look very similar to that of [8] as shown in Fig. 13. This highlights the 
inefficiency of the detecting methodology used by [8] to track short talk spurts, thus leading to the 
differences observed in our measurements.



Fig. 13 Cumulative Distributions for TOFF periods – comparison of  
measured results of [8] against our measured results with all TOFF < 

10 ms excluded.

7 Conclusions

We have presented accurate measurements of the on and off periods of VoIP activity from a large 
packetised multilingual database of two way call conversations and also from monologue speech 
data. This allowed a significant increase in the statistics compared to previous studies [7, 8]. Our 
study on the impact of linguistic differences on the VoIP call statistics revealed that the random 
dynamic nature of  human interaction overshadows the linguistic  differences,  thus revealing the 
independence of the VoIP call statistics on language. The results presented here show that modelling 
VoIP calls solely based on the language and behaviour of an individual speaker would not lead to 
useful traffic models, thus modelling based on composite samples was performed and good average 
models of speaker and language independent statistics were derived. Further, the analysis of the 
composite samples revealed the heavy tailed and multi-modal lognormal nature of the TON and TOFF 

periods.  

We recorded a massive increase in short silence and talk spurts as compared to previous results.  
This suggests that these short silence periods can be well exploited by a sophisticated voice activity 
detector in terms of silence suppression with a new generation codec such as G.729b, to further 
enhance system capacity by increasing the efficiency of the traffic sources with increased OFF time. 
This is particularly crucial for wireless networks where spectral economy is vital.  Conventional 
Markov  source  models  with  exponential  on-off  periods,  still  widely  used  because  of  ease  of 
implementation,  fail  to  accurately  model  our  measurements.  We  conclude  that  our  proposed 
lognormal on-off source model, which clearly tracks our measured results for TON and TOFF very 
well  and which can  be easily  implemented,  should be  used  instead.  In  common with  previous 
models, we assumed that the ON and OFF periods are uncorrelated. Any such correlations are likely 
to be language specific and since our model is an average over many languages, we believe that the 
approximation of independent  statistics will  be better  in this  case.  Our measured and modelled 
results are of immediate use for further research on VoIP traffic modelling and on the choice and 
implementation of voice codecs supporting silence suppression.
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