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Abstract

1 Apr 2

«— The range of existence and the properties of two essentiifiigrent chaotic attractors found in a model of
nonlinear convection-driven dynamos in rotating sphégballs are investigated. A hysteretic transition
F —"'between these attractors is established as a function obthgon parameter. The width of the basins
>of attraction is also estimated.
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1. Introduction rotation rates characteristic for various cosmic objetitsad-
. . . dition, given that current geodynamo simulations are un&bl
Chaotic systems by virtue of their apparently “random” fluc- _ _, . g . geody .
) S . . achieve geophysically realistic valuesmfextrapolation of the
tuations, are expected to frequent, with little bias, aihpoin . .
7 dependence is heavily used to compare models and observa-

th_elr phase space over wide parameter ranges. .Thls VIEW M s, Asa partial remedy, bistability has been demorestirfir
——plies that there should not be any abrupt transitions beiwee

S . . . two specific values of in [9]. For these reasons, here we wish
distinguishable chaotic states. Indeed, non-linear ttians : . :
) . to investigate the full extent of the coexistence and hgsisr
1 between attractors are rarely found in turbulent fluids. Con. .
. ) . . in dependence of the rotation parameateA number of other
trary to this expectation, a number of examples of discootirs . . ; . . .
o . . important questions left open i18,[9], including the width of
transitions have been observed recently in chaotic anditurb . : el )
) . . N the basins of attraction of the distinguishable chaotitestand
lent fluid systemsT-4]. Bifurcations between distinguishable - . . .
o™ . . . the possibility of spontaneous transition will also be dised
chaotic states appear to be a little less unusual in magyetoh. . . )
(@\| . o in the present paper, along with results on essential ptieger
. 'drodynamic flows because of the additional degrees of fireedo : o ) -
o . i f dynamo action such as kinetic, magnetic and cross-hglici
<I" offered by the magnetic field. For instance, various types o .
: . . " generation.
dipolar, quadrupolar, hemispherical dynamos, and bitiona
between them are routinely reported in numerical simutetio
—1e.g. b, 6]. In turn, dipolar dynamos are typically found to 2. Formulation and methods
— belong to two distinct regimes — a regime with strong dipolar
" field, and another regime with weaker dipolar component and-1- Model
« significant multipole contributions e.g6,[7]. We employ a minimal model of nonlinear convection-driven
(O ' Far more remarkable is a recent finding that two essendynamo process in rotating spherical shells with the aineto r
tially different chaotic dipolar dynamo solutions may exist attain general applicability of the results to a variety of s
identical values of the basic parameters of a generic modalbjects and to understand fundamental physical mechanisms
of convection-driven dynamos in rotating spherical shidls ~ The model is identical to the one described8hljut for com-
Such bistability @fers the possibility of a hysteretic transition. pleteness we provide a concise formulation below. We censid
While hysteresis was established 8} §s a function of three of a spherical fluid shell of thicknesisotating with a constant an-
the parameters in the problem — the Rayleigh, the ordinady, a gular velocityQ. The existence of a static state is assumed with
the magnetic Prandtl numbers, to be defined below, the depea-temperature distributiohs = To—3d?r?/2 and a gravity field
dence on the last remaining basic parameter, the Coriofis nu in the formg = —dyr, whererd is the length of the position vec-
berr, was not studied there. This, however, leaves an importor with respect to the center of the sphere. This form of temp
tant gap since the variation in this minimal self-consistent ature profile alludes to the possibility that at least a foacof
model of spherical convective dynamos describes tfiergint  the energy available to planetary dynamos is due to radiogen
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heat release. In addition @) we use the tima&?/v, the tem-  2.2. Methods of solution

peraturev®/yad* and the magnetic flux densiyuo)*/?/d as Equations of motion for the scalar fieldsw, are obtained
scales for the dimensionless description of the problenreshe by takingr - V x Vx andr - Vx of equation {b) and equations
denotes the kinematic viscosity of the fluidits thermal difu-  for g and h are obtained by taking - Vx andr - of equa-
sivity, o its density angk its magnetic permeability. In common tion (1d). These equations are solved numerically by a pseudo-
with most other simulations of Earth and planetary dynamogpectral method as described it6] based on expansions of
[10, 11}, we assume the Boussinesq approximation implying a&j| dependent variables in spherical harmonics for the &ngu
constant density except in the gravity term where its tempera- dependences and in Chebychev polynomials for the radial de-
ture dependence is taken into account witls —(do/dT)/o = pendence. A minimum of 41 collocation points in the radial
const. The equations of motion for the velocity veatorthe  girection and spherical harmonics up to the order 96 have bee
heat equation for the deviatiod from the static temperature ysed in all cases reported here which provides adequatereso
distribution, and the equation of induction for the magn#tix  tijon The dynamo solutions are characterized by their magnet

densityB are then given by energy densities,
V.u=0, V.-B=0, (1a) 1 _ 1
(Oi+u-V)u+tkxu=-Vr+0r+V2u+B-VB, (lb) Mp=§(|Vx(thr)|2>, Mt=§(|V§xr|2>,
P(A© + u-VO) = Rr - u + V20, (1c) Mp = %q Vx(Vhxr) P, M= %q Vg xr %,
V2B = Ppn(8:B +Uu-VB - B - Vu), (1d)

) ) ) ) where(-) indicates the average over the fluid shell améfers
where all gradient terms in the equation of motion have beegy, 1o axisymmetric component bf while h is defined b{ﬁ _

comb!ned intoVr. The_ dimensionless parameters inour for-, _f The corresponding kinetic energy densitE§ E., Ep
mulation are the Rayleigh numbErthe Coriolis number, the andE, are defined analogously withandw replacingh andg.
Prandtl numbeP and the magnetic Prandtl numigy, The total magnetic energy densityl = Mp + M+ Mp v
aypd® 20d? v v and similarly for the total kinetic energy densky In addition,
Tk v P= P Prm = 1 @ the magnetic energy densities can be divided into thoseldfie
that are antisymmetric (axial dipole symmetry) and those th
are symmetric (axial quadrupole symmetry) with respech#o t
equatorial plane. The former (latter) are described by Sphle
harmonicsy" with odd (even)+m. Other quantities of interest
U=Vx(Vvxr)+vwxr , (3a) are the helicity density of a vector fiel

B=Vx(Vhxr)+Vgxr . (3b)

R=

where 1 is the magnetic diusivity. Being solenoidal vector
fields,u andB can be represented uniquely in terms of poloidal
and toroidal components,

H,=a-(Vxa),
We assume fixed temperatures at r; = 2/3andr =r, =5/3 e , .
and stress-free rather than no-slip boundary conditionsder ~ (KNown as “kinetic” helicity density whem = u, and "mag-

to approach, at least to some extent, the extremely low salud€lic” helicity density whera = B, respectively 17]), and the
of viscosity believed to be appropriate to planetary cot@ [ cross-helicity density

V=02V =3a,(w/r)=0=0. (4) Hy=u-B,

Two conditions on the poloidal scalarare required at each all of which play important roles in the production of the mag
boundary because the corresponding poloidal equation-is olmetic field by the chaotic convective flow.
tained by taking - V x Vx of (1b) and thus it is of higher order
as discussed below. For the magnetic field we assume elect
cally insulating boundaries at= r; andr = r, such that the
poloidal functionh matches the functioh(e) which describes Typ|Ca| examp|es of solutions to the dynamo prob|em out-
the potential fields outside the fluid shell, lined above are shown in Figute The figure presents the main
_ © _ @y _ . magnetic and kinetic energy density components of two dis-

g=h-h"=a(h-h")=0atr=rr. ©) tinct dynamo cases as functions of time, and illustrate$tivel
The radius ratiori/r, = 0.4 is slightly larger than that ap- chaotic nature of the solutions. Apart from the obvious guan
propriate for the Earth’s liquid core. This is a standard for tative diference, an essential qualitative change in the balance
mulation of the spherical convection-driven dynamo proble of magnetic energy components can be observed. The axisym-
[10, 11, 13] for which an extensive collection of results already metric poloidal componerﬁp is dominant in the case shown
exists b, 6, 14, 15]. The results reported below are not strongly in Figure 1(a,b) while it has a relatively small contribution in
model dependent. In particular, dynamos with stress-freke a the case of Figur&(d,e). This observation is in agreement with
with no-slip velocity boundary conditions as well as witti-di  the claim made in§-8, 18, 19 that, in general, two regimes
ferent modes of energy supply are known to have comparablef dipolar dynamos can be distinguished, namely those with
energy densities and symmetry properties (see fig. 151 Mp < Vp (denoted byM D, "Mean Dipole” in [8] and below)

4 Bistability
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t t Figure 2: (color online) (a) Coexistence and hysteresisipimena shown by

the time-averaged ratibl,/Mp as a function ofr. FD andMD dynamos are
Figure 1: (color online) Coexisting distinct chaotic dyraattractors at iden-  indicated by full red and empty blue circles, respectivéixpected locations
tical parameter values — D (left column (a,b)) and &D dynamo (right  of the transitions fronFD to MD dynamos, and vice versa are indicated by
column (d,e)) both aR = 1.5 x 10°, 7 = 2 x 10%, P = 0.75 andPy, = 1.5. dash-dotted lines with arrows pointing down and up, respsgt (b) Com-
Panels (a,d) show time series of magnetic dipolar energsitilen The rest of  parison of convective properties BD andM D dynamos measureg by the ra-
the panels show kinetic energy densities in the presenceaghetic field (b,e)  tions Nu™ /Nu® (violet dlamonds)Ep /Ep (black circles) Ef° /E}'° (red
and after the magnetic field is removed (c,f). The compongnis shown by squares)ER /El® (green plus signsEi° /E}'® (blue crosses), all as functions
solid black line, whileX, Xp, andX; are shown by red, green and blue lines, of r. Parameter values aRe= 0.75,Pm = 15andR = (5- 3-10°7) R, i.e.
respectively.X stands for eitheM or E. R-10°=76,17,26,3543 5158 62 atr =nx 10*, n=1,...8.

and those wittM, > M, (denoted byrD, "Fluctuating Dipole”  any case has been found. In fact, in cases outside of thenregio
in [8] and below). The dynamos in Figuiga,b) andl(d,e) are  of double attractors it takes typically less than 0.15 mégne
examples of these two types. A convenient measure of the typdiffusion times to switch from the initial conditions used to the
of dynamo is therefore provided by the rakity/Mp, whichwe  appropriate unique attractor.
use extensively below. The results shown in Figurg(a) are an important comple-
Far more remarkable is the fact that the two distinct solument to the findings of, 9] where coexistence and hysteresis
tions shown in Figuréd are obtained at identical parameter val- was established as a function of the remaining non-dimeasio
ues and coexist in this case. In fact, this is far from being aparameter®, P, andR for fixed values ofr = 3x 10%, 4x 10*
isolated example. Indeed, varying the value @fe find an ex-  (see Figures 5 and 10 ][ and [9], respectively).
tended region of coexisting D andFD dynamos as illustrated
Icr;f EI?nuiﬁs(gggvdgeLe (;.h765,r Eli’t;dip/ll\./tlspallig :_\?tiei iSij\ljnglrzn 4. Comparison of bistable attractors: Magnetic features
R. is the critical Rayleigh number for the onset of convection.
The transition between thd D andFD dynamos is discontin-
uous and it is achieved via a hysteresis loop in the followin
sense. When aMD dynamo is used as initial data and the
Coriolis numberr is gradually decreased, solutions remain in
regimeMD until the critical valuerrp~ 12500 is reached at
which point an abrupt jump transition to tk® regime occurs.
Similarly, when aFD dynamo is used as an initial condition
andr is gradually increased the reverse transition occurs at th
critical valueryp~ 39000 as seen in Figuga). The solutions
plotted in Figure2 have been typically continued at least up to 4
magnetic difusion times. No evidence for a transient nature in

3

All solutions included in Flguré have a predominantly dipo-

d{ar character with the rat|M /Mp, quantifying dipolarity the
ield visible outside of the spherlcal shell, in the range8301 ]
for MD dynamos and [@2,0.70] for FD dynamos, respec-
tively. Although, theFD dynamos feature an increased contri-
bution of higher multipoles they are of significant geophgki
relevance, 18, 19]. In this section we wish to discuss some of
e magnetic properties & D to FD dynamos in more detail
than it has been done previously B) p].



Figure 4: (color online) Time-averaged spatial structafesM D dynamo. The
same guantities are plotted as in Fig@reThe parameter values are the same
as in Figurel.

the MD regime show significantly less variation in time and
feature spacial structures that remain nearly static actUiite
little with respect to their time averages. This is due todbm-
inance of the mean components of the poloidal magnetic field
characteristic for th& D regime.

4.2. Spatial structures

Typical time-averaged spatial structures in M® regime
are illustrated in Figurel by the example already discussed
in connection to Figurd(a,b). The dynamo exhibits a nearly
perfect and relatively large-scale dipolar field best seetné
plots of the radial magnetic field and the meridional fiele§n
rsinddyh = const. In particular, two strong zonal magnetic
flux tubes ofB_w are formed inside the tangent cylinder, near
the poles, while two tubes of opposite polarity reside orhbot
sides of the equator. The kinetic and magnetic helicity Hens
ties are generated in narrow plumes primarily at the boundar
of the tangent cylinder, while the cross-helicity densiynfiis
strong azimuthal tubes of alternating polarity filling thegion
Figure 3: (color online) A period of dipolar oscillations @FD dynamo. The outside of the tangent cylinder. In contrast, the spatiaicst
plots in the leftmost column are meridional cuts showingdinf constanB,  tures of FD dynamos, which are exhibited in Figug have
in the left half and of singdyh in the right half. The plots in the middle column  relatively smaller scales and the evidence of higher muikip
Sho‘(‘(’ji'(i)”ne; 2;;02%%’“'3; alt":; fot ()1}13s} ;n*ledg';’;isﬁzstggﬁgg‘;ﬂ COI'(‘iJr:T;;‘icafe contributions are clearly visible. At the minimum of the diar
hme?irclity H, and magnet?c helicityg ate = 0, in the left half, rightxu’pper and oscillation the Zonal magne_tlc _ﬂux tubes near the pplespdlsa
right lower quarters, respectively. The rows corresporetaidistant moments ~ Pear, and the radial magnetic field shows an excursion taward
separated byt = 0.0252. The parameter values are the same as in Figure  the opposite polarity and am = 1 structure. The kinetic and
magnetic helicity densities are again generated near tigetd
cylinder but appear smaller-scale and more fragmented.

4.1. Time dependence

Convection-driven dynamos exhibit chaotic time dependenc
(see e.g. Figurd) except in simple cases close to the criti-
cal value ofR and for rather large values &, such as the g1 Non-magnetic convection
well-known dynamo benchmark cas]. There are, however,
some coherent temporal features that can be distinguidhed.
particular, dynamos in thED regime are typically oscillatory
in that nearly periodic changes in amplitude and field stmast
can be observed. As an illustration, Figl@eshows a period
of one such dipolar oscillation of theD dynamo discussed
in connection to Figurd(d,e). At the beginning of the cycle

g?g? fht:eci::l:])é:/vkl)?u?l dr:w a?}c(;lzz%g; gueennetlraterc(i) n:a;ttzi d(;(jvl;a rameters, the convective state achieved is the well-knaate s
Y, q ypropag of relaxation oscillations15, 21]. This state of convection is

the poles replacing the flux of “old” polarity, as can be best L . S
. = T - “remarkable in itself as it has a coherent nearly periodic be-
seen in the plots oB, in this figure. The process repeatsina,_ ." " : ! . . o
haviour in an otherwise chaotic regime. Evidence of its guas

quasi-periodic fashion. Kinetic helicity density remalasyely eriodicity can be seen both in the time series of Fidied) as
undafected while the magnetic and the cross-helicity densitied : . . o C_d) .
. . B “Well as in the period of relaxation oscillations shown inig
participate in the oscillation. On the other hand, dynanmos i 5

5. Comparison of bistable attractors: Convective features

The coexistence and hysteresis phenomena appear to be en-
tirely magnetic in nature. This is nicely illustrated in Big
1(c,f) where the kinetic energy densities of two non-magneti
solutions are shown, which are started from initial cordisiin
the correspondinyl D andFD dynamos in same figure. Once
the magnetic field is discarded, the flow quickly equilibsatie
the same purely convective state. At these values of the pa-
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MD

FD

Figure 6: (color online) Spatial structures of convectidradiD and aFD

Figure 5: (color online) A period of relaxation oscillatioseen in the equatorial ~ dynamos. The leftmost plots show lines of cons@nin the meridional plane
plane of a non-magnetic solution. The top row shows strewsiid,v = const on the'left, and streamlyne@wv = const. in the equat_onal plane on the right.
and the bottom row shows color maps of the temperature jation ® both The middle plots show lines of constapton the spherical surfage= r; +0.5.

in the equatorial plane. The time step between plotst is 0.0448. The same ~ The rightmost plots show color maps of the temperature geation® in the
case is shown in Figuri(). equatorial plane. The parameter values are the same asuretig

Relaxation oscillations are one of a number of states aeHiev Nearly constant ir, the direction parallel to the axis of ro-
by turbulent convection with increase of the Rayleigh num-tation, in theFD dynamo and strongly dependent pin the
berR. In this state the dierential rotation generated by the MD case. In addition, while the fierential rotation near the
Reynolds stresses of the convection columns becomes so lar§quator is in the prograde direction in the former case, iit is
that it is able to destroy all convective structures by shearthe retrograde direction in the latter one. It is well-knothat
ing them df in the azimuthal direction. In the absence of the main éect of self-sustained magnetic field on convection
convection the dferential rotation must decay since there areis to strongly inhibit diferential rotation, e.g5]. This effect is
no Reynolds stresses to sustain it. As the shearing actiopfrongerin the case & D dynamos which are characterized by
of the differential rotation becomes figiently weak convec- Stronger magnetic fields and explains the observédrénces.
tion columns grow in amplitude again. But as their ReynoldsEVvidence that these filerences are typical throughout thiD
stresses regenerate theffeliential rotation, their amplitude andFD regimes is presented in Figu2¢h) where ratios of var-
quickly peaks and then decays as the shearing action iptsrru 10US kinetic energy components as well as the Nusselt nusnber
the convection flows. It is surprising how nearly periodigal are plotted for a number of coexisting attractors as a fonaif
this process repeats itself even though every convectisngg 7, and it can be seen that their values do néfedisignificantly
differs from the next one in detail. The period of these relaxfrom unity except in the case E}FD/EMD.
ation oscillations is primarily governed by the viscousaleof
the diferential rotation. Since our study is based on the viscou8.3. Mechanism of coexistence

decay time the value of about 0.1 was found for the period over The observations just made are useful in elaborating the

a wide range of the parametd®sr, andP. mechanism of the coexistence phenomenon. Coexistence is
) ) the result of two dierent ways in which the magnetic field
5.2. Magnetic convection damps the dferential rotation to achieve the transport of the

The properties of convection in the presence of magnetisame amount of heat. M D dynamos the dierential rotation
field differ relatively little between dynamos in tk® andMD  generated by Reynolds stresses of the convection columns is
regime. The time dependence of the respective convectivs flo eliminated almost entirely by the strong mean magnetic field
can be compared in panels (b) and (e) of Figuvenere kinetic ~ Because of the strong magnetic field the amplitude of convec-
energy density components are shown. The time dependentien is also reduced in comparison with the maximum value
is chaotic in both cases, and it may be noted that convedion ithat it reaches in the absence of a magnetic field. In the dase o
not in the state of relaxation oscillations characterifiiicthe ~ FD dynamos the dierential rotation is still diminished, but its
corresponding non-magnetic cases. While the averagesvalualignment with coaxial cylindrical surfaces is preservdde
of the fluctuating componenf§p and E; are nearly the same amplitude of convection is now more strongly fluctuatingt bu
for theFD andMD case, the main éierence is the significant is larger on average than in the case of #h® dynamos. In
increase in dferential rotation measured IBt, which in the  this wayFD andM D dynamos manage to carry very nearly the
FD dynamo is about 20 times larger than in & dynamo. same heat transport as is evident from Fig2(t®). This heat
Spatial structures of convection for the two dynamos argisho transport by far exceeds the time average of the heat transpo
in Figure6. The length scales and the level of irregularity of found in the absence of a magnetic field.
the structures is very similar for the two regimes. The main
difference appears in the profiles of the zonal flow, which is
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6.2. Controlled initial conditions

E The vast majority of dynamo solutions published in the {iter
< ature are started from previously equilibrated runs withilsir

] parameter values in order to minimize transient times. & th
region of coexistence a dynamo started from and#ie(M D)
dynamo approacheskD (MD) state. In order to estimate the
width of the basins of attraction of the two coexisting statee
report in Figure8 a number of simulations started from initial
conditions prepared in the form,

102

Mdip

102

X(r, 0, ¢) = ax¥e(r, 0, ¢) + (1 — a)x®(r, 0, ¢), (6)

1074

‘ : ‘ : 1 wherea € [0, 1] is a continuation parametet,represents any
0 0.5 1 2 of the dynamical variables, B and®, and the superscripts in-
dicate equilibrate&D andM D dynamo solutions. Wheiw = 0
Figure 7: (color online) Equilibration of a dynamo starteohfi a small random this is equivalent to initial CC.)I’I.C?I'[IOHS ch_osen in B rgglme,
magnetic field seed. Time series of magnetic dipolar eneegitles with the whena = 1 corresponds to initial conditions chosen in M&
same color scheme as in Figurare shown. The same parameter values as infegime, and variation ok € (0, 1) allows us to follow a con-
Figurel are used. tinuous path between the two attractors. Fig8rghows that
for the test cas® = 0.75,R = 1.5x 10°, ¢ = 2 x 10* and
i P = 1.5 the transition betweelRD andM D regimes occurs at
i a = 0.625+ 0.25.
| | | We wish to comment that while both Figuréand8 show
= 1 some bias towards theD regime, this may be due to our in-
;
I
I
I
I

ability to select a test case situated exactly in the midéita®
coexistence region.

. . . | .
0 0.2 0.4 0.6 0.8 1 7. Concluding remarks

We have considered in this study a minimal self-consistent

model of dynamo action generated by convection in rotating
Figure 8: (color online) Width of the basins of attractionMD andFD states  spherical fluid shells. While the relatively thick sphetisiaells,
fsct‘rom"‘g:abé)fr}ﬁ :ﬁ:‘i\”agg" pasd fi’;g“f’l ‘“Zf;hleof’c’;t'juo"f‘gg”aﬁgszg the relatively large values of the Coriolis parameter, decel-
The cases witly = 0 ande = 1 are the samED (red full circles) and thé/D atively low values of the Rayleigh number employed here are
dynamos (blue empty circles) shown in Figdreespectively. more appropriate to the problem of geo- and planetary mag-
netism, the model is generic and may be used to understand
solar and stellar magnetism. For instance, the periodierfev
sals characteristic fofFD dynamos are reminiscent of the 11-
year Solar cycle. In particular, we have been concerned here
with the possibility of coexistence of two nonlinear attas in
the fully-developed chaotic dynamo regime, and the hystere
transition between them. These phenomena have been noted
previously in B, 9] and discussed there in some detail. The
following is a summary of the important points made here.

6. Basins of attraction

Usually a dynamo equilibrates to a unique state. In contras
for a dynamo inside the region of coexistence, the initiaidio
tions determine whetherl@D or aM D state is approached, as
discussed in connection with Figu2éa). Here we attempt to
estimate the set of initial conditions that leads to eqaliton
to aMD or aFD state.

6.1 Randominitial it (&) We have established the coexistence of two nonlinear at-
- andominitial con |t|0n§ . . _ tractors, denoted bD andFD dynamos in the above,
Figure 7 shows a numerical experiment in which random  over a significantly large interval of values of the Coriolis

magnetic perturbation of small amplitude is applied toyfalé- numberr € (1250Q039000). The transition between them
veloped convection in the regime of relaxation oscillasicend takes the form of a hysteresis loop. These results fill a gap
integration in time is continued for the velocity, temperat left in [8, 9] and demonstrate that coexistence occurs as a
and magnetic fields. After a relatively long transient perad function of all basic parameters in the model.

magnetic field growth, the dynamo approachesiberegime. _ _ _ _ _
In addition, this simulation suggests that the existeneetbfrd ~ (P) We have discussed in detail the contrasting properties char

chaotic attractor along with thED and theM D states is un- acterizing dynamos in thiel D andFD regimes, including
likely. differences in temporal behaviour and spatial structures of



both magnetic field and convection. We include new re-
sults on quantities important in mean-field dynamo theo-
ries of magnetic field generation such as the kinetic, mag-
netic and cross-helicity density profiles in time-averages
as well during oscillations and reversals.

(c) We have investigated the question of the width of the basins
of attraction of the coexisting chaotic states.

The coexistence of two distinct turbulent attractors i® @&s
phenomenon of general interest as it is relatively rare il flu
dynamics and magnetohydrodynamics. Finally, the range of
values of the Coriolis numberwhere we have found coexis-
tence constitutes a rather large subinterval of the rangereily
accessible by numerical simulations. This requires exra c
when numerical results are interpreted.
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