
RELAX: Incorporating Uncertainty into the Specification of Self-Adaptive Systems

Jon Whittle∗, Pete Sawyer∗, Nelly Bencomo∗,
Betty H.C. Cheng† and Jean-Michel Bruel‡

∗Computing Department, InfoLab21, Lancaster University, Lancaster LA1 4AW, UK
whittle, sawyer, nelly@comp.lancs.ac.uk

†Department of Computer Science and Engineering, Michigan State University, MI 48824, USA
chengb@cse.msu.edu

‡University of Toulouse, CNRS/IRIT Laboratory, 118 Rte de Narbonne, F-31062 Toulouse Cedex, France
bruel@irit.fr

Abstract

Self-adaptive systems have the capability to autonomously
modify their behaviour at run-time in response to changes in
their environment. Self-adaptation is particularly necessary
for applications that must run continuously, even under
adverse conditions and changing requirements; sample do-
mains include automotive systems, telecommunications, and
environmental monitoring systems. While a few techniques
have been developed to support the monitoring and analysis
of requirements for adaptive systems, limited attention has
been paid to the actual creation and specification of require-
ments of self-adaptive systems. As a result, self-adaptivity
is often constructed in an ad-hoc manner. In this paper,
we argue that a more rigorous treatment of requirements
explicitly relating to self-adaptivity is needed and that, in
particular, requirements languages for self-adaptive systems
should include explicit constructs for specifying and dealing
with the uncertainty inherent in self-adaptive systems. We
present RELAX, a new requirements language for self-
adaptive systems and illustrate it using examples from the
smart home domain.

1. Introduction

As applications continue to grow in size, complex-
ity, and heterogeneity, it becomes increasingly necessary
for computing-based systems to dynamically self-adapt to
changing environmental conditions. We call these systems
dynamically adaptive systems (DASs). Example applications
that require DAS capabilities include automotive systems,
telecommunication systems, environmental monitoring, and
smart home systems. The distributed nature of DASs and
changing environmental factors (including human interac-
tion) make it difficult to anticipate all the explicit states in
which the system will be during its lifetime. As such, a
DAS needs to be able to tolerate a range of environmen-
tal conditions and contexts, but the exact nature of these
contexts remains imperfectly understood. One overarching
challenge in developing DASs, therefore, is how to handle

the inherent uncertainty posed by the respective application
domains. This paper presents RELAX, a new requirements
language for DASs, where explicit constructs are included
to handle uncertainty. We illustrate the use of RELAX on a
number of examples from the adaptive smart home domain.

The need for DASs is typically due to the uncertainty
imposed by changing environmental conditions, such as
sensor failures, noisy networks, malicious threats, and un-
expected (human) input; we use the term environmental
uncertainty to capture this class of uncertainty. IBM, for ex-
ample, originally proposed the area of autonomic computing
[10] to handle environmental uncertainty, thereby enabling
computing-based systems to use high-level application goals
and requirements to guide run-time self-management, in-
cluding self-monitoring, self-healing, and self-configuration.

The proposed RELAX language supports the explicit
expression of environmental uncertainty in requirements. We
have designed the vocabulary of RELAX to enable analysts
to identify requirements that may be relaxed at run time
when the environment changes. For example, it may be
acceptable to temporarily relax a non-critical requirement
in an emergency situation in order to ensure that critical
requirements can still be met. When specifying RELAX-ed
system requirements, the execution environment that affects
system behaviour is explicitly identified, and the components
that enable the system to monitor those environmental con-
ditions are specified. RELAX supports a declarative style
for specifying both sources of uncertainty, rather than by
enumerating all alternative requirements. Doing so enables
adaptation modules to reason about requirement satisfaction
at run time in such a way that critical requirements are never
jeopardized but non-critical requirements may be deferred or
even left unsatisfied.

The paper also outlines a process for translating traditional
requirements into RELAX requirements. This process sup-
ports requirements engineers who must determine points of
flexibility in their requirements. For non-invariant require-
ments, we use RELAX operators to introduce flexibility

into SHALL statements of a system.1 Several dimensions for
uncertainty are supported, including duration and frequency
of system states; possible states of a system; and configu-
rations for a system. While the RELAX specifications are
in the form of structured natural language with Boolean
expressions, the semantics for RELAX have been defined
in terms of temporal fuzzy logic.

We illustrate the use of RELAX with a case study based
on an assisted living scenario obtained from an industrial
collaborator. The remainder of the paper is organized as
follows. Section 2 introduces the RELAX language and
uses a smart office application to illustrate its features.
The grammar and semantics for RELAX are introduced in
Section 3. Section 4 gives a process for creating RELAX
specifications based on traditional requirements stated in
terms of SHALL statements. A detailed description of how
we used RELAX to specify the requirements for an adaptive
assisted living smart home is given in Section 5. Section 6
overviews related work, and we conclude in Section 7.

2. RELAX Overview

This section presents the RELAX language. RELAX
takes the form of a structured natural language, including
operators designed specifically to capture uncertainty. These
operators are introduced in this section and their formal
semantics is given in Section 3. Preliminary ideas on RE-
LAX, including a first suggestion of RELAX operators,
were presented in [24]. This paper refines the operators,
formalizes them, and applies them to a case study provided
by an industrial collaborator.

The focus of RELAX is on structured natural language
requirements. Typically, textual requirements prescribe be-
haviour using a modal verb such as SHALL (or WILL)
that defines actions or functionality that a software system
must always provide. For self-adaptive systems, however,
environmental uncertainty may mean that it is not always
possible to achieve all of these SHALL statements. Therefore,
it may be necessary to make trade-offs between SHALL
statements to relax non-critical statements in favor of other,
more critical ones. The RELAX operators are designed
to enable requirements engineers to explicitly identify re-
quirements that should never change (invariants) as well as
requirements that a system could temporarily relax under
certain conditions. RELAX can also be used to specify
constraints on how these requirements can be relaxed.

2.1. RELAX Vocabulary

Table 1 gives the set of RELAX operators, organized
into modal, temporal, and ordinal operators and uncertainty

1. SHALL statements are commonly used to specify requirements,
indicating a contractual relationship between the customer and the developer
as to what functionality should be included in the system.

factors. Note that RELAX includes standard operators from
temporal logic, such as EVENTUALLY and UNTIL. (We do not
include a NEXT operator in this paper, but the underlying
semantic model supports it.) The contribution of RELAX is
in the operators that support uncertainty – namely, those that
include the phrase “as possible”.

We retain the conventional modal verb SHALL for express-
ing a requirement, but the introduction of RELAX operators
offers more flexibility in how and when that functionality
may be delivered. More specifically, for a requirement
that contributes to the satisfaction of goals that may be
temporarily left unsatisfied, the inclusion of an alternative,
temporal or ordinal RELAX-ation modifier will define the
requirement as RELAX-able.2 For example, one can write
“the system SHALL do something AS EARLY AS POSSIBLE”.

Each of the relaxation operators define constraints on how
a requirement may be relaxed at run time. In addition, it
is important to indicate what uncertainty factors warrant a
relaxation of these requirements, thereby requiring adaptive
behaviour. This information is specified using the MON
(monitor), ENV (environment), REL (relationship), and DEP
(dependency) keywords. The environment properties capture
the “state of the world” – i.e., they are characteristics of
the operating context of the system. Often, however, envi-
ronmental properties cannot be monitored directly because
they are not observable. The MON keyword is used to
identify properties that are directly observable and con-
tribute information towards determining the state of the
environment. RELAX is intended to be used at the software
requirements phase once hardware constraints have already
been defined. In particular, physical sensors (denoted by
MON) are assumed to be known.

The REL keyword is used to specify in what way the
observables (given by MON) can be used to derive in-
formation about the environment (as given by ENV). The
distinction between ENV and MON comes from the field of
control theory wherein parameters to be estimated cannot
necessarily be directly observed. For example, an aircraft
equipped only with direction finding equipment cannot
directly estimate its position. Rather, it can observe its
distance from a set of known waypoints and must compute
its position from these measurements. In our parlance, the
aircraft position is a property of the environment, whereas
the distances from waypoints are monitorables. REL would
be used to define how to compute the position from the
distance measurements. Finally requirements dependencies
are delimited by DEP, as it is important to assess the
impact on dependent requirements after RELAX-ing a given
requirement.

2. Note that we take the liberty to use the RELAX name as a verb to
indicate the insertion of RELAX operators.

RELAX operator Description

Modal Operators
SHALL a requirement must hold

MAY . . . OR a requirement specifies one or more alternatives

Temporal Operators
EVENTUALLY a requirement must hold eventually

UNTIL a requirement must hold until a future position
BEFORE, AFTER a requirement must hold before or after a particular event

IN a requirement must hold during a particular time interval
AS EARLY, LATE AS POSSIBLE a requirement specifies something that should hold as soon as possible or should be delayed as long

as possible
AS CLOSE AS POSSIBLE TO [frequency] a requirement specifies something that happens repeatedly but the frequency may be relaxed

Ordinal Operators
AS CLOSE AS POSSIBLE TO [quantity] a requirement specifies a countable quantity but the exact count may be relaxed

AS MANY, FEW AS POSSIBLE a requirement specifies a countable quantity but the exact count may be relaxed
Uncertainty Factors

ENV defines a set of properties that define the system’s environment
MON defines a set of properties that can be monitored by the system
REL defines the relationship between the ENV and MON properties
DEP identifies the dependencies between the (relaxed and invariant) requirements

Table 1. RELAX Operators

2.2. Illustrative Example

We illustrate RELAX here using a simple example from
the smart office domain:

Alice’s office detects her arrival every morning and ini-
tiates a data synchronization process to ensure that Alice’s
Blackberry, iPhone, and desktop all maintain a consistent
list of business contacts. This synchronization process is
repeated every 30 minutes as long as Alice is in the room.

Given the task of deriving requirements for this smart
office environment, a traditional requirements engineering
process might result in the two SHALL statements below.

S1: The synchronization process SHALL be initiated when Alice
enters the room and at 30 minute intervals thereafter.

S2: The synchronization process SHALL distribute data to all
connected devices in such a way that all devices are using the
same data at all times.

These requirements represent an ideal situation. Given
these requirements, a designer might, for example, imple-
ment the synchronization process as a two-phase commit
protocol that would distribute data to all connected devices,
except in the case of failure, in which case the system would
roll back so that devices use a previous version of the data
consistently. The designers of the smart room, however,
would like to build in self-adaptivity to make the system
more flexible in an uncertain environment. For example,
network outages or device malfunctions could mean that it
may not always be possible to consistently synchronize all
devices. In this case, instead of rolling back (which may
result in Alice missing important data), the system might
be able to find another way of reaching a malfunctioning

device (e.g., by communication via a neighboring PDA or
other networking medium, such as Bluetooth), or might
temporarily tolerate inconsistent databases.

Of course, a requirements engineer could analyze the
existing requirements and derive specific instances where
adaptivity, such as the example given above, might be
desired. In such a case, one could easily reformulate the
requirements. For example, S2 could be modified to the
following statement:

S2-alt: The synchronization process SHALL distribute data to all
connected devices in such a way that all devices are using the
same data at all times. If a device is malfunctioning, synchroniza-
tion SHALL be carried out by communication with a neighboring
device.

The problem with this approach is that the requirements
engineer must enumerate all possible points where adaptivity
might be required. The result, in effect, would be a tree of
alternative requirements, where each path through the tree
defines a possible behaviour of the system. In particular,
this approach would not allow for unanticipated adaptations
because possible behaviours are only those predefined by
the set of enumerations.

Instead, RELAX can be used at development time to
identify specific points of flexibility or uncertainty, but does
not mandate a specific set of alternative requirements. In
this way, potentially unanticipated adaptations are allowed,
as long as they conform to the declaratively specified flex-
ibilities in the requirements. We continue with the smart
office example and show how to use RELAX to incorporate
explicit flexibilities into the requirements S1 and S2. In
essence, each requirement is examined to determine under

which environmental conditions the requirement might not
be satisfiable. For each such environmental condition, the
requirements engineer should then ask: (i) Is it essential for
the requirement to be satisfied? If so, then the requirement
is considered to be an invariant and should not be RELAX-
ed. (ii) Can the requirement be made more flexible in order
to maintain its satisfaction? If (ii), then the requirement is
augmented to use the RELAX vocabulary and to include
aspects to monitor and aspects of the environment.

To illustrate, consider requirement S1. Now imagine that
the requirement cannot be satisfied for some reason –
perhaps communication links are broken, or perhaps the
smart office system is redeployed in a different environment
where devices have different characteristics. In either case,
synchronization may not be possible every 30 minutes. We
RELAX S1 to obtain requirement S1’ as given below.

S1’: The synchronization process SHALL be initiated AS EARLY
AS POSSIBLE AFTER Alice enters the room and AS CLOSE AS
POSSIBLE TO 30 minute intervals thereafter.
ENV: location of Alice; synchronization interval.
MON: motion sensors; network sensors
REL: motion sensors provide location of Alice; network sensors
provide synchronization interval

S1’ includes a characterization of the portion of the
environment relevant to this requirement. For example, S1’
requires that the system knows Alice’s location and so her
location is a key property of the environment. The MON
information then defines how this environmental property
can be monitored – in this case, by using motion sensors.
The decision on this definition is made according to any
design constraints imposed by the customer stakeholder.

Consider the RELAX-ed requirement for S2. S2’, in
fact, supports a high degree of flexibility that goes well
beyond the original requirements. It is up to the requirements
engineer, of course, to decide if such flexibility is really
desired. S2’ makes use of two RELAX keywords – AS
MANY and EVENTUALLY – to specify that temporary business
contact data inconsistencies can be tolerated.

S2’: The synchronization process SHALL distribute data to all
connected devices in such a way that AS MANY devices AS
POSSIBLE are using the same data at all times. EVENTUALLY,
all devices SHALL use the same data.
ENV: number of consistent devices; time taken until consistency
is reached (note that we are factoring in the part controlled by the
system as well as environmental uncertainty).
MON: network sensors; device sensors
REL: network and device sensors provide number of consistent
devices and time

The RELAX-ed requirements declaratively specify be-
havioural and environmental uncertainty: behavioural uncer-
tainty by RELAX operators applied to SHALL statements;

environmental uncertainty by defining ENV, MON, and REL.
By RELAX-ing the SHALL statements in this way, the
requirements are less prescriptive and, in particular, give the
flexibility for the run-time system to trade-off requirements
when unknown situations are encountered.

3. RELAX Syntax and Semantics

The syntax and semantics of RELAX are presented next.

3.1. Syntax

RELAX expressions are defined by the grammar given
below. Parameters of RELAX operators are typed as follows:
p is an atomic proposition, e is an event, t is a time interval,
f is a frequency and q is a quantity. An event is a notable
occurrence that takes place at a particular instant in time.
A time interval is any length of time bounded by two time
instants. A frequency defines a number of occurrences of
an event within a given time interval. If the number of
occurrences is unspecified, then it is assumed to be one.
A quantity is something measurable, that is, it can be
enumerated. In particular, a RELAX expression φ is said
to be quantifiable if and only if there exists a function ∆
such that ∆(φ) is a quantity. A valid RELAX expression is
any conjunction of statements s1; . . . ; sm where each si is
generated by the following grammar.
φ := true | false | p | SHALL φ

| MAY φ1 OR MAY φ2

| EVENTUALLY φ | φ1 UNTIL φ2

| BEFORE e φ | AFTER e φ | IN t φ

| AS CLOSE AS POSSIBLE TO f φ

| AS CLOSE AS POSSIBLE TO q φ

| AS {EARLY, LATE, MANY, FEW} AS POSSIBLE φ

In the last three clauses φ must be quantifiable.
It is straightforward to rewrite RELAX textual re-
quirements in terms of this grammar, and thereby
making RELAX requirements amenable to tool sup-
port [11]. As an example, S2’ from Section 2 would
be represented as: SHALL (AS MANY AS POSSIBLE p′);
EVENTUALLY (SHALL q′), where p′ denotes “distribute
data to all connected devices to ensure they are using the
same data at all times”, q′ denotes “all devices use the
same data”, and p′ is quantifiable with ∆(p′) defined as
the number of connected devices using the same data.

3.2. Semantics

The semantics of RELAX expressions is defined in
terms of fuzzy branching temporal logic (FBTL) [17].
FBTL can describe a branching temporal model with un-
certain temporal and logical information. It is the repre-
sentation of uncertainty in FBTL that makes it suitable

as a formalism for RELAX. For example, the statement
AS EARLY AS POSSIBLE AFTER e φ expresses a require-
ment that φ occurs after the occurrence of event e, but it is
uncertain how much time it takes for φ to occur after event
e has happened. The statement simply expresses a desire
for the time period between the occurrences of e and φ to
be as small as possible. A logic with built-in uncertainty
is therefore necessary to formalize the RELAX semantics.
Note that probabilistic logics are not sufficient. One could
express a probability that φ becomes true within a specified
time threshold after the occurrence of e, but fuzzy logic
additionally enables one to express uncertainty about what
the time threshold is. Note fuzziness and probability are
distinct concepts [17].

A fuzzy set is a set whose elements have degrees of
membership. In classical set theory, a member either belongs
to a set or it does not. Fuzzy set theory permits the gradual
assessment of membership of elements in a set, which is
described using a membership function in the range of real
numbers [0, 1]. In other words, a fuzzy set is a pair (A,m)
where A is a set and m : A→ [0, 1].

A fuzzy number is a fuzzy subset of real numbers
whose membership function is convex and normalized, i.e.,
max(m(a)) = 1. Typically, a fuzzy number is triangular, in
the sense that its membership graph describes a triangle with
a vertex showing membership of 1. For example, Figure 1
shows a fuzzy number two, which captures the fact that the
precise value of the number is uncertain, or, in other words,
that the number represents roughly two. The triangular mem-
bership function states that any value below 1.5 or above
2.5 is definitely not considered to be roughly 2, that 2.0
is absolutely considered to be roughly 2, whereas values in
between 1.5 and 2.5 are roughly 2 with differing degrees of
confidence. The concept of fuzzy number is easily extended
to fuzzy duration. The duration d ∈ R+ is a fuzzy duration
if there is fuzzy uncertainty about the exact length of the
duration. That is, it is associated with a fuzzy number defin-
ing a fuzzy length of time. We can now define FBTL [17].

Definition 1: Fuzzy Branching Temporal Logic (FBTL) has path
formulae and state formulae defined inductively as follows.
The state formulae are defined as:
• if p is a proposition, then p is a state formula;
• if p and q are state formulae, then ¬p and p ∧ q are also

state formulae;
• if p is a path formula, then Ep and Ap are state formulae.

And the path formulae are defined as:
• each state formula is also a path formula;
• if p and q are path formulae, then ¬p and p ∧ q are also

path formulae;
• if p and q are path formulae, then p U q is also a path

formula;
• if p is a path formula, then XRdp is also a path formula,

where R ∈ {≤,≥,=, <,>} and d is a normalized fuzzy
duration on a time domain;

and the state formulae are the well-formed formulae of FBTL.

!"#$!"%$&"%$

&"#$

'(')(*+,-.$

Figure 1. Fuzzy numbers – “roughly 2”.

E and A are the usual “exist” and “all” operators, re-
spectively. U denotes “until” as with standard temporal
logic. X , which takes the truth value of its formula after
a time duration, is unique to FBTL and denotes a delay
operator. The duration d ∈ R+ can be a fuzzy duration or a
crisp (i.e., non-fuzzy) duration. The expression X=d means
“after exactly d”; X<d represents “before d has passed”; and
X>d is “after d has passed”. Therefore, if d is fuzzy, then
the delay operator can be used to express relations with an
uncertain time interval.

The shorthand notations customarily used in branching
temporal logic are also available. In particular, Fp =
true U p and Gp = ¬F¬p, where F means eventually and

G means always. Recall that in branching time logics, E and
A quantify over execution paths, whereas G and F quantify
over states within a given execution path. For example, Gp
is true if p holds on the entire subsequent path, whereas Ap
is true if p holds on all paths starting from the current state.
Highest binding power is given to the temporal operators F
and G followed by X and U . The logical operator ¬ is
next, followed by ∧.

We are now ready to define the semantics of RELAX
expressions in terms of FBTL. Table 2 gives the formal
definitions using FBTL. The second column in the table
gives an informal description of the meaning of each ex-
pression. The third column gives the interpretation as a
FBTL formula. Definitions for those operators including
uncertainty rely on a fuzzy duration or a fuzzy set. These
typically have a maximum at a particular point and then
tail off gradually ad infinitum – i.e., they have a triangular
membership graph that is asymptotic. For example, in the
case of AS EARLY AS POSSIBLE , the membership function
has its maximum at the current time. However, the statement
AS EARLY AS POSSIBLE φ technically allows φ to become
true at any point after the current time. Therefore, the
membership function for the duration is never zero but
approaches zero gradually as time increases.

We briefly explain the semantics in Table 2. The first
four entries are standard. BEFORE and AFTER are defined
in terms of the FBTL delay operator. In the former case, ed

defines a (crisp) duration up until event e next occurs. The
formalization, therefore, expresses that before this duration
has passed (i.e., before e next occurs), φ holds. Similarly,
for AFTER. AS EARLY AS POSSIBLE is defined using a fuzzy
duration whose membership function is maximum at 0 and

RELAX Expression Informal FBTL Formalization
SHALL φ φ is true in any state AGφ

MAY φ1 OR MAY φ2 in any state, either φ1 or φ2 is
true

AG(φ1 ∨ φ2)

EVENTUALLY φ φ will be true in some future
state

AFφ

φ1 U φ2 φ1 will be true until φ2 becomes
true

A(φ1 U φ2)

BEFORE e φ φ is true in any state occurring
prior to event e

AX<ed
φ where ed is the duration up until the next occur-

rence of e
AFTER e φ φ is true in any state occurring

after event e
AX>ed

φ

IN t φ φ is true in any state in the time
interval t

(AFTER tstart φ ∧ BEFORE tend φ) where tstart, tend are
events denoting the start and end of interval t respectively

AS EARLY AS POSSIBLE φ φ becomes true in some state
as close to the current time as
possible

AX≥d
φ where d is a fuzzy duration defined such that its

membership function has its maximum at 0 (i.e., m(0) = 1)
and decreases continuously for values > 0

AS LATE AS POSSIBLE φ φ becomes true in some state as
close to time t =∞ as possible

AX≥d
φ where d is a fuzzy duration defined such that

its membership function has its minimum value at 0 (i.e.,
m(0) = 0) and increases continuously for values > 0

AS CLOSE AS POSSIBLE TO f φ φ is true at periodic intervals
where the period is as close to
f as possible

A(X=dφ∧X=2dφ∧X=3dφ∧. . .) where d is a fuzzy duration
defined such that its membership function has its maximum
value at the period defined by f (i.e., m(d) = m(2d) =
. . . = 1) and decreases continuously for values less than
and greater than d (and 2d, . . .)

AS CLOSE AS POSSIBLE TO q φ there is some function ∆ such
that ∆(φ) is quantifiable and
(∆(φ) − q) is as close to 0 as
possible

AF((∆(φ) − q) ∈ S) where S is a fuzzy set whose
membership function has value 1 at zero (m(0) = 1)
and decreases continuously around zero. ∆(φ) “counts” the
quantifiable that will be compared to q.

AS MANY AS POSSIBLE φ there is some function ∆ such
that ∆(φ) is as close to ∞ as
possible

AF(∆(φ) ∈ S) where S is a fuzzy set whose membership
function has value 0 at zero (m(0) = 0) and increases
continuously around zero

AS FEW AS POSSIBLE φ there is some function ∆ such
that ∆(φ) is quantifiable and is
as close as possible to 0

AF(∆(φ) ∈ S) where S is a fuzzy set whose membership
function has value 1 at zero (m(0) = 1) and decreases
continuously around zero

Table 2. Semantics of RELAX expressions

decreases continuously for values greater than 0. Therefore,
the expression X≥d

φ expresses that φ holds after some
uncertain delay and that the fuzziness of the delay is such
that it is most likely to be zero. This expression captures
the intuition that φ holds as early as possible (i.e., as close
as possible to a zero delay). Similarly, for AS LATE AS
POSSIBLE. The remaining cases use fuzzy durations in the
same manner. For AS CLOSE AS POSSIBLE TO, the duration’s
membership function has maximum value periodically with
a period defined by f . In the last three entries, a fuzzy set
is used instead of a fuzzy duration because the uncertainty
is in the value of a quantity, not in the duration of a
delay. However, the principle is the same: the membership
function defines the “ideal” count and its triangular function
is defined to decrease around the ideal.

4. A Process for Applying RELAX

The RELAX process assumes that a conventional process
of requirements discovery has been applied to yield a set
of SHALL statements. Figure 2 overviews the process for

RELAX-ing requirements; this process also identifies the
invariant requirements. Each step is described.

For each SHALL statement, apply the following steps:
1. Must SHALL statement always be satisfied? For each
SHALL statement, determine whether it must always be sat-
isfied (e.g., safety property), or whether it could be relaxed
under certain circumstances. In the former case, leave the
SHALL statement as is, and denote it as an invariant require-
ment. A non-invariant requirement is potentially RELAX-
able, thus implying that some form of run-time adaptation
may be necessary to make the best use of the available
resources while delivering acceptable behaviour.
2. Identify uncertainty factors. For each potentially
RELAX-able requirement:
• Identify and describe the part of the environment

relevant to this requirement (ENV). The objective is
to ascertain whether uncertainty exists in the ENV,
thus potentially making satisfaction of the requirement
problematic and necessitate its RELAX-ation.

• Identify the observable properties of the environment
that can be monitored (MON).

• We expect the ENV and MON attributes to coincide
(denoted by REL) except in cases when environmental
properties cannot be directly sensed.

• Requirements often make competing demands on re-
sources. Thus requirements have inter-dependencies
(DEP) that must be understood when assessing the
uncertainty surrounding a requirement.

3. Must SHALL statement be RELAX-ed to handle un-
certainty factors? Analyze the uncertainty factors to deter-
mine if sufficient uncertainty exists in the environment that
makes absolute satisfaction of the requirement problematic
or undesirable. If so, then this SHALL statement needs to
proceed to the next step for introducing RELAX operators.
If, however, the analysis reveals no uncertainty in its scope of
the environment, then the requirement is potentially always
satisfiable and therefore identified as an invariant.
4. Introduce RELAX operator(s). Given the sources of
uncertainty, determine whether a requirement should be
relaxed to introduce ordinal, temporal, or modal behaviour
flexibility at run time. Sources for uncertainty include:
contention for resources, adverse environmental conditions,
timing of events, and the duration of conditions.

For each SHALL

 statement DO the

 following

2. Identify

 Uncertainty

 factors

1. Must

SHALL stmt always

 be satisfied?

3. Must

SHALL statement be

 RELAX-ed to handle
Uncertainty factors?

YES
NO

YES

NO

4. Introduce RELAX

 operator(s)

INVARIANT

 requirement

RELAXed

 requirement

Figure 2. RELAX Process
Note that the process describes a way of iteratively and

incrementally building up a model of the environment,
where the starting point is a prose list of requirements.
In contrast, in more recent work [4], we developed a
goal-based approach to identifying requirements of a DAS,
where we create a conceptual domain model that identifies
the specific elements of the environment relevant to the
system under development, thus scoping the uncertainty of
the system. RELAX-ation is considered for each identified
requirement. For both approaches, it is important to note
that each iteration of the RELAX-ation process implicitly
includes a form of regression assessment to ensure that the

dependencies between the requirements are considered.

5. Example Application

To validate RELAX, we conducted a case study provided
by Fraunhofer IESE in the form of an existing concept
document describing a smart home for assisted living1. The
concept document was written previously and independently
of the RELAX research work. Below is an excerpt:

Mary is a widow. She is 65 years old, overweight and has high
blood pressure and cholesterol levels. Mary gets a new intelligent
fridge. It comes with 4 temperature and 2 humidity sensors and
is able to read, store, and communicate RFID information on
food packages. The fridge communicates with the Ambient Assisted
Living (AAL) system in the house and integrates itself. In particular,
it detects the presence of spoiled food and discovers and receives
a diet plan to be monitored based on what food items Mary is
consuming.
An important part of Mary’s diet is to ensure minimum liquid
intake. The intelligent fridge partially contributes to it. To improve
the accuracy, special sensor-enabled cups are used: some have
sensors that beep when fluid intake is necessary and have a level
to monitor the fluid consumed; others additionally have a gyro
detecting spillage. They seamlessly coordinate in order to estimate
the amount of liquid taken: the latter informs the former about
spillages so that it can update the water intake level. However,
Mary sometimes uses the cup to water flowers. Sensors in the
faucets and in the toilet also provide a means to monitor this
measurement.

Advanced smart homes, such as Mary’s AAL, rely on
adaptivity to work properly. For example, the sensor-enabled
cups may fail, but since maintaining a minimum of liquid
intake is a life-critical feature, the AAL should be able to
respond by achieving this requirement in some other way.

To apply RELAX, we first extracted a set of requirements
from the concept document, structured as a list of SHALL
statements. We then applied the process from Section 4
to identify which of these SHALL statements should be
relaxed. It is important to note that the decision of whether
a requirement is invariant or not is an issue for the system
stakeholders, aided by the requirements engineer. We have
reverse-engineered the concept document description to sim-
ulate this decision point, but the analysis of the non-invariant
requirements is accurately portrayed in the case study. Space
permits us to present only a few illustrative requirements.

Requirements on the AAL at several abstraction levels
can be extracted from the concept document. At the highest
level is an implicit goal of keeping Mary healthy. From this
goal, the following requirement can be identified:

R1: The system SHALL monitor Mary’s health and SHALL notify
emergency services in case of emergency.

1. See www.iese.fraunhofer.de/fhg/iese/projects/med projects/aal-
lab/index.jsp

It is then possible to identify a set of user-level requirements
that support R1, where a small subset are given in Figure 3.
These user-level requirements represent the essential
properties of the AAL at a level of abstraction that is
amenable to trade-off analysis. However, the RELAX
process can be applied at different levels of granularity
and might equally be applied at a lower level such as, for
example, requirements specifying the detection of water
spillage using the gyro-enabled cup.

R1.1 : The fridge SHALL detect and communicate with
food packages.

R1.2 : The fridge SHALL monitor and adjust the diet plan.
R1.3 : The system SHALL ensure a minimum of liquid

intake.
R1.4 : The system SHALL minimize energy consumption

during normal operation.
R1.5 : The system SHALL minimize latency during emer-

gency operation.

Figure 3. Subset of requirements that support R1
Once the requirements have been formulated as SHALL

statements, the requirements engineer must work through
the list, classifying the requirements as either invariant or
relaxable. Starting with R1.1, the requirements engineer
must determine whether or not to relax R1.1. To make
this decision, the requirements engineer must ask whether
the system will simply fail to satisfy R1 if complete food
information is not available, or if it is possible for the system
to continue to operate but at a reduced capacity. Less than
full functionality might be necessary to handle an emergency
situation, where it might be preferable to divert resources
from the intelligent fridge to support emergency functions
(e.g., to satisfy R1.5). If R1.1 were made an invariant
statement, then an autonomous system will not have the
flexibility to redirect resources in this way. Therefore, by
relaxing R1.1, we allow for an adaptive system to balance
resources in order to optimize global system parameters.

RELAX-ing 1.1 gives the following requirement R1.1’:

R1.1’: The fridge SHALL detect and communicate information
with AS MANY food packages AS POSSIBLE.
ENV: Food locations & food information.
MON: RFID tags; Cameras; Weight sensors.
REL: RFID tags provide food locations/food information; Cam-
eras provide food locations; Weight sensors provide food informa-
tion (whether eaten or not).
DEP: R1.1’ negatively impacts R1.2’; R1.1’ positively impacts R1.4
and R1.5.

The DEP attribute provides a place to note how the
relaxation of R1.1 will impact other requirements, where
this field may be updated as the requirements are RELAX-
ed. In this case, relaxing R1.1’ will impair the system’s
ability to suggest an appropriate diet plan (R1.2’). However,
it will support the requirement to minimize latency during
emergency operation (R1.5) as well as minimizing energy

consumption during normal operation (R1.4). The other
three attributes for the relaxed R1.1’ are ENV, MON and
REL as explained in Section 2. In the case of R1.1’, the
fridge needs to ascertain information about where food items
are located and the nutritional information of these food
items. To monitor these characteristics, the original con-
cept document explicitly mentioned RFID tag monitoring.
We suppressed mention of this solution technology when
formulating R1.1, to maintain a separation of concerns
between the specification of behaviour and selection of the
solution. However, providing values for the ENV and MON
attributes prompts the requirements engineer to consider
the question of whether the system has the resources to
sense its environment and thus is able to collect the data
needed to make adaptation decisions. Sometimes, as is the
case here, explicitly identifying ENV and MON forces the
requirements engineer to posit solution technologies and pro-
vide a rationale for their choice. Hence, RFID tags on food
packages would provide a partial solution, but it is likely
that not all food items will have RFID tags and partially
eaten food would be difficult to detect. Using cameras and
weight sensors would permit data, albeit imperfect, to be
collected about all food items, even if they were untagged.

R1.1’ therefore states that the system should be able to
tolerate incomplete information about food packages. De-
spite RELAX helping to identify a range of sensor types with
which to monitor the food in the fridge, it may be impossible
to gather complete information, forcing the system to work
with incomplete data. Note that this incompleteness has
important consequences: (1) on other requirements – can
R1.2 still be satisfied given incomplete information? (2) on
design decisions – if we accept the incomplete information
assumption, we need to design algorithms that can satisfice
dietplans rather than simply calculate them.

The uncertainty about the presence (i.e., availability) of
food identified in R1.1 poses problems for the formulation
of diet plans using the food available within Mary’s house.
Consequently, it was also necessary to relax R1.2 (ENV,
MON, REL and DEP attributes suppressed for brevity).

R1.2’: The fridge SHALL suggest a dietplan with total calories
AS CLOSE AS POSSIBLE TO the daily ideal calories. The
fridge SHALL adjust the dietplan in line with Mary’s actual calorie
consumption.

Note that relaxing R1.2 affects satisfaction of R1. The same
is true of R1.3 that was relaxed because the system could
tolerate temporarily relaxing the requirement to monitor
Mary’s liquid intake. However, R1.3 should eventually be
satisfied otherwise Mary’s health will be in jeopardy.

R1.3’: The system SHALL ensure AS CLOSE AS POSSIBLE TO
a minimum of liquid intake. The system SHALL ensure minimum
liquid intake EVENTUALLY.

Of the remaining requirements in our list, R1.4 and

R1.5 were deemed invariant requirements, given that the
minimization requirements already expressed flexibility.
Hence, it was enough simply to reformulate them to use
the RELAX syntax. Thus R1.4 became:

R1.4’: The system SHALL consume AS FEW units of energy AS
POSSIBLE during normal operation.

6. Related Work

Recently, there has been a surge of interest in software
engineering research for self-adaptive systems [3]. For re-
quirements engineering, Berry et al. [1] have defined a
framework of discourse for DAS requirements. Goal-based
modeling has been used for specifying the adaptation choices
that a DAS must make [9], [15], [18], [26] as well as
for the specification of monitoring and switching between
adaptive behaviours [20]. A particular strength of goal-based
modeling is that it supports the modeling of non-functional
trade-offs, which can be used to capture some elements of
environmental uncertainty. This is well illustrated by work
on partial goal satisfaction (e.g., [9], [16]).

A feature common to these works is that they assume
that all adaptation choices are known and enumerated at
design time. Hence, unanticipated adaptations are difficult
to specify and analyze. RELAX avoids this problem by
specifying declaratively the ways in which a requirement
may be RELAX-ed. RELAX does not require all possible
alternative adaptations to be specified during requirements
engineering. This flexibility leaves open the design choice
as to how to achieve adaptation and therefore supports de-
signs based on adaptation rules, planning algorithms, control
theory algorithms, etc. Having said this, RELAX and goal-
based approaches can likely be used in a complementary
fashion. For example, RELAX could be integrated with goal
modeling to relax goals in a non-enumerative way [4].

Irrespective of how a DAS’s requirements are specified,
the requirements must be properly integrated into a run-
time requirement monitoring and adaptation infrastructure.
Run-time monitoring dynamically assesses the conformance
of run-time behaviour to the specified requirements [7],
[8]. At run-time, a monitor runs concurrently with the
system to detect violations of monitored assertions [21]
and informs the choice of run-time adaptation. Using the
ReqMon framework [19], for example, a DAS can send
a warning when the system behaviour has violated the
system requirements. RELAX-ed requirements could be
mapped to monitors specified using monitor specification
languages provided by tools and frameworks like ReqMon.
Our vision is to enable a DAS to dynamically (i.e. during
execution) reason about its own requirements and goals (a
notion termed “requirements reflection” by Finkelstein [5]).
Explicit run-time representations of system requirements
incorporating uncertainty are crucial for this vision. A good

step in this direction is provided by the work of Wang et
al. [22], which monitors goals at run-time and applies AI
diagnostic theories to diagnose failed goals.

Software engineering activities other than requirements
are much better represented when it comes to architecting
DASs. Without fully elaborating on the large body of work,
we refer readers to a roadmap paper [13] which discusses
the state-of-the-art in software architecture for DASs. Work
has also been done in providing assurance for adaptive
systems [2], [12], [14], [27]–[29]. AI techniques for imple-
menting DASs include approaches building on model-based
diagnosis [6] and planning (e.g., [25]).

7. Conclusions

This paper presented a new requirements specification
language called RELAX designed to explicitly address
uncertainty for specifying the behaviour of dynamically
adaptive systems. RELAX has three types of operators to
handle uncertainty: temporal, ordinal, and modal. We focus
on uncertainty due to the (possibly unexpected) changing
conditions of the execution environment that require the sys-
tem to adapt in order to ensure acceptable system behaviour.
We introduced a process for using the RELAX language that
incrementally builds up a view of the execution environment,
while introducing RELAX operators to the non-invariant
requirements.

After applying RELAX to a number of smart home
adaptive applications, we observed several key benefits.
First, RELAX gives us a means to establish the boundaries
of adaptive behaviour. That is, we must explicitly distin-
guish invariant from non-invariant requirements, identify and
monitor the sources of uncertainty, and then describe what
dimensions of the requirements can be relaxed and satis-
fied by adaptive behaviour. The invariants provide a point
of reference for adaptive behaviour. Second, the RELAX
process forced us to consider each non-invariant requirement
in isolation, with the effect of incrementally revealing each
requirements interdependencies and generating what is ef-
fectively trace information in the DEP attribute (cf. [23]).
Third, by separately describing the environment and the
monitoring, we can identify deficiencies in the monitoring
infrastructure. Given that a DAS can only adapt based on
its monitoring information, missing or insufficient sensors
for the environment in question significantly impacts the
effectiveness of the DAS.

Many possible directions for future work are possible.
Additional uncertainty factors may facilitate the RELAX
process. For example, we are using a combination of goal-
based and threat modeling to identify sources of uncertainty
explicitly [4]. We are studying how RELAX specifications
can be used to guide the automatic generation of software
models for adaptive systems, such as the evolutionary com-
putation approach by Goldsby and Cheng [9]. We are also

exploring specification patterns for RELAX to be used in
conjunction with Spider [11], a natural-language interface
for specification patterns and analysis tools to further fa-
cilitate the use of RELAX. Finally, we are collaborating
with a number of research groups to investigate the use of
RELAX on requirements for adaptive systems, where tradi-
tional requirements languages have been used to describe
requirements (e.g., natural language, use cases, and goal
models).

Acknowledgments
The authors would like to thank LIUPPA Universit de Pau et

des Pays de l’Adour for supporting this work in its early stages.
In addition, Cheng is being supported in part by NSF grants
EIA-0000433, CNS-0551622, CCF-0541131, IIP-0700329, CCF-
0750787, Army Research Office, Ford Motor Company, and a
Quality Fund Program grant from Michigan State University

References

[1] D. Berry, B. H. C. Cheng, and J. Zhang. The four levels of re-
quirements engineering for and in dynamic adaptive systems.
In 11th Int. Work. on Requirements Engineering: Foundation
for Software Quality (REFSQ’05), Porto, Portugal, 2005.

[2] J. Bradbury, J. Cordy, J. Dingel, and M. Wermelinger. A clas-
sification of formal specifications for dynamics architectures.
In Proc. of ACM SIGSOFT 2004 12th FSE, 2004.

[3] B. H. C. Cheng, H. Giese, P. Inverardi, J. Magee, and
R. de Lemos. Software engineering for self-adaptive sys-
tems: A research road map, Dagstuhl-seminar on software
engineering for self-adaptive systems. 2008.

[4] B. H. C. Cheng, P. Sawyer, N. Bencomo, and J. Whittle. A
goal-based modeling approach to develop requirements for
adaptive systems with environmental uncertainty. Technical
Report MSU-CSE-09-22, Computer Science and Engineering,
Michigan State University, Lancaster University, UK, East
Lansing, Michigan, May 2009. (submitted for publication).

[5] B. H. C. Cheng, J. Whittle, N. Bencomo, A. Finkelstein,
J. Magee, J. Kramer, S. Park, and S. Dustda. Requirements
engineering section of software engineering for self-adaptive
systems: A research road map. 2008.

[6] J. De Kleer, A. Mackworth, and R. Reiter. Characterizing
diagnoses and systems. Artificial Intelligence, 56(2-3):197 –
222, 1992.

[7] M. Feather, S. Fickas, A. van Lamsweerde, and C. Ponsard.
Reconciling system requirements and runtime behavior. In
Proc. 9th Workshop Software Specification and Design, pages
50–59, Apr 1998.

[8] S. Fickas and M. Feather. Requirements monitoring in
dynamic environments. In 2nd IEEE International Symposium
on Requirements Engineering (RE’95), 1995.

[9] H. Goldsby, P. Sawyer, N. Bencomo, D. Hughes, and B. H. C.
Cheng. Goal-based modeling of dynamically adaptive system
requirements. In 15th Annual IEEE Int. Conf. on the Engi-
neering of Computer Based Systems (ECBS), 2008.

[10] J. O. Kephart and D. M. Chess. The vision of autonomic
computing. Computer, 36(1):41–50, 2003.

[11] S. Konrad and B. H. C. Cheng. Facilitating the construction
of specification pattern-based properties. In Proc. of Interna-
tional Requirements Engineering Conference (RE05), pages
329–338, Paris, France, August 2005.

[12] J. Kramer and J. Magee. Analysing dynamic change in
software architectures: a case study. In Proc. 2th International
Conference on Configurable Distributed Systems, pages 91–
100, Annapolis, MA, 4–6 1998. IEEE.

[13] J. Kramer and J. Magee. Self-managed systems: an archi-
tectural challenge. In Future of Software Engineering, pages
259–268, 2007.

[14] S. S. Kulkarni and K. N. Biyani. Correctness of component-
based adaptation. In Proc. Component Based Software Engi-
neering, pages 48–58, 2004.

[15] A. Lapouchnian, Y. Yu, S. Liaskos, and J. Mylopoulos.
Requirements-driven design of autonomic application soft-
ware. In Proc. of CASCON 2006, 2006.

[16] E. Letier and A. van Lamsweerde. Reasoning about partial
goal satisfaction for requirements and design engineering.
In Proc. 12th ACM SIGSOFT International Symposium on
Foundations of Software Engineering, pages 53–62, 2004.

[17] S. Moon, K. Lee, and D. Lee. Fuzzy branching temporal
logic. Systems, Man, and Cybernetics, Part B, IEEE Trans-
actions on, 34(2):1045–1055, April 2004.

[18] M. Morandini, L. Penserini, and A. Perini. Modelling self-
adaptivity: A goal-oriented approach. In Proc. of 2Second
Conf. on Self-Adaptive and Self-Organizing Systems (SASO
’08), pages 469–470, 2008.

[19] W. Robinson. A requirements monitoring framework for
enterprise systems. Requirements Engineering, 11(1):17 –
41, 2005.

[20] M. Salifu, Y. Yu, and B. Nuseibeh. Specifying monitoring
and switching problems in context. In Proc. Requirements
Engineering Conference (RE), pages 211–220, 2007.

[21] A. van Lamsweerde. Requirements engineering: from craft
to discipline. In Proc. 16th ACM SIGSOFT Int. Symp. on
Foundations of Software Engineering, pages 238–249, 2008.

[22] Y. Wang, S. McIlraith, Y. Yu, and J. Mylopoulos. An auto-
mated approach to monitoring and diagnosing requirements.
In 22nd Automated Software Engineering Conference (ASE
2007), pages 293–302, Atlanta, Georgia, 2007.

[23] K. Welsh and P. Sawyer. When to adapt? identification of
problem domains for adaptive systems. In Requirements En-
gineering Foundations for Software Quality (REFSQ), 2008.

[24] J. Whittle, P. Sawyer, N. Bencomo, and B. H. C. Cheng.
Reassessing languages for requirements engineering of self-
adaptive systems. In RE Workshop SOCCER08. 2008.

[25] B. Williams, M. Ingham, S. Chung, and P. Elliot. Model-
based programming of intelligent embedded systems and
robotic space explorers. In Proc. IEEE: Special Issue on
Modeling and Design of Embedded Software, 91(1):212 –
237, 2003.

[26] Y. Yijun, A. Lapouchnian, S. Liaskos, J. Mylopoulos, and
J. Leite. From Goals to High-Variability Software Design,
volume 4994. Springer Berlin / Heidelberg, 2008.

[27] J. Zhang and B. H. C. Cheng. Model-based development of
dynamically adaptive software. In In Proc. 28th International
Conference on Software Engineering ICSE ’06, pages 371–
380, 2006.

[28] J. Zhang and B. H. C. Cheng. Using temporal logic to specify
adaptive program semantics. Journal of Systems and Software
(JSS), Architecting Dependable Systems, 79(10):1361–1369,
2006.

[29] J. Zhang, H. Goldsby, and B. H. C. Cheng. Modular
verification of dynamically adaptive systems. In Proc. 8th
International Conference on Aspect Oriented Software De-
velopment, pages 161–172, 2009.

