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Thesis summary 

 
 

The studies in this project have investigated the ongoing neuronal network oscillatory 

activity found in the sensorimotor cortex using two modalities; magnetoencephalography 

(MEG) and in vitro slice recordings. The results have established that ongoing 

sensorimotor oscillations span the mu and beta frequency region both in vitro and in MEG 

recordings, with distinct frequency profiles for each recorded laminae in vitro, while MI and 

SI show less difference in humans. In addition, these studies show that connections 

between MI and SI modulate the ongoing neuronal network activity in these areas.  

 

The stimulation studies indicate that specific frequencies of stimulation affect the ongoing 

activity in the sensorimotor cortex. The continuous theta burst stimulation (cTBS) study 

demonstrates that cTBS predominantly enhances the power of the local ongoing activity. 

The stimulation studies in this project show limited comparison between modalities, which 

is informative of the role of connectivity in these effects. However, independently these 

studies provide novel information on the mechanisms on sensorimotor oscillatory 

interaction.  

 

The pharmacological studies reveal that GABAergic modulation with zolpidem changes 

the neuronal oscillatory network activity in both healthy and pathological MI. Zolpidem 

enhances the power of ongoing oscillatory activity in both sensorimotor laminae and in 

healthy subjects. In contrast, zolpidem attenuates the “abnormal” beta oscillatory activity 

in the affected hemisphere in Parkinsonian patients, while restoring the hemispheric beta 

power ratio and frequency variability and thereby improving motor symptomatology.   

 

Finally we show that independent signals from MI laminae can be integrated in silico to 

resemble the aggregate MEG MI oscillatory signals. This highlights the usefulness of 

combining these two methods when elucidating neuronal network oscillations in the 

sensorimotor cortex and any interventions.  

 
 
 
Keywords: Networks, Parkinson’s, zolpidem, stimulation, variability 
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1.1. The mammalian brain 

1.1.1. Structure of the cerebral cortex 

The evolution of the mammalian brain can be traced back 200 million years. The cerebral 

cortex is the area which shows the most dramatic development through evolution (Deacon 

1990; Rowe et al., 2011). The brain exerts its centralised control on the rest of the 

physiological system in an individual and is ultimately responsible for function and, in 

humans at least, the existence of the mind (Kanwisher 2010). The average male human 

brain is reported to contain 86 billion neurons, and the average size of a neuronal cell, the 

neuron, is assumed to be 0.03-0.05 mm (Azevedo et al., 2009), with an average 

connectivity of 7000 synapses per neuronal cell (Drachman, 2005). These small neurons 

connect together and create large networks and areas, usually with specific functions, for 

example the sub-areas of the cerebral cortex. The mammalian cortex comprises the outer 

layer of the brain and is responsible for a myriad of functions; cognition, movement, 

sensation, perception and vision are a few examples. It covers the cerebrum and 

cerebellum, but here we focus on the cerebral cortex only. The cerebral cortex is a 

structure that typically has six layers or ‘laminae’ (I-VI). Efferent cortico-cortical 

connections arise primarily from layers II/III, whereas the subcortical connectivity mainly is 

found in layer V/VI (Mountcastle, 1997). The work of Mountcastle was based on studies in 

the primary somatosensory cortex (SI). In the primary motor cortex (MI) layer IV is almost 

non-existent, perhaps due to this layer receiving primarily sensory input, and as motor 

cortex controls movement it is likely that its prominent role is that of an output station. 

Motor cortex also has a thinner layer III (Donoghue & Wise 1982; Shipp, 2005). The 

laminar organization is maintained, with the above exception, in different cortical areas 

and also to some extent between species. Canonical neocortical hierarchy indicates the 

primary input from other cortical areas to arrive to layers I, IV and V. Thalamic input 

arrives in layer IV (Shipp, 2007). Layer I is believed to integrate information from other 

cortical and subcortical areas, especially since this layer also is the main target for 

feedback connections (Chu et al., 2003; Douglas & Martin 2004; 2007b; Shipp, 2007; 

Thomson & Lamy 2007). Layer II/III cells extend axons laterally and also extend axons 

horizontally into layer V. Pyramidal cells with somata in layer III extend straight to layer V 

(Douglas & Martin 2004; 2007a). Layer IV, of which the motor cortex has none, receives 

sensory input from the thalamus, and to some extent also from layer VI. Projections from 

layer IV mainly end in layer III. Layer V receives cortico-cortical inputs, and the pyramidal 

cells with somata in layer V commonly project to subcortical structures, but some cortico-

cortical connectivity has also been found, primarily to the superficial layers. Layer V 

pyramidal cells are interconnected to some extent, but most layer V pyramidal cells 
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connect outside of this layer, likewise for layer VI (Douglas & Martin 2004; Thomson & 

Lamy 2007). Layer V of motor cortex, for example, contains the large Betz cells which are 

responsible for motor output from the cortex (Rivara et al., 2003). Layer VI pyramidal cells 

are primarily responsible for the cortico-thalamic connections, but also show some cortico-

cortical reciprocal connectivity in between deeper layers of sensory and motor cortices 

(Douglas & Martin 2004; 2007a; Thomson & Lamy 2007).   

 

1.1.2. Neuronal microcircuits 

Connections between layers or functional areas are called microcircuits, or pathways. 

Microcircuits in the brain here refer to synaptic connections between different types of 

neuronal cells, predominantly pyramidal cells and local interneurons. Cortico-cortical 

connections can be found in all layers to different extents and involve primarily pyramidal 

cells. Pyramidal cells are particularly suitable for connectivity over areas further apart due 

to their canonical anatomy with one long axon and smaller dendrites. Interneuronal 

connectivity is usually short-range and local since their axonal length is often much 

shorter (Markram et al., 2004; Shipp, 2005; Thomson & Lamy 2007). Different 

connections and interactions between neurons in the same cortical region have been 

found to be consistent and in many cases the intrinsic connectivity in smaller areas of a 

region outnumbers the connections over the larger areas (Capaday et al., 2009). The 

canonical microcircuit connecting layer IV upwards with II/III, and then down to layer V, is 

called the ascending or feedforward pathway, and its main purpose has been theorized to 

be processing rather than relaying (Shipp, 2007). The descending or feedback pathway 

starts with input from layers II/III to V, or VI. Pyramidal cells in these deeper layers then 

project up to layer I resulting in the characteristic feedback loop suggested for neocortical 

microcircuitry (Shipp, 2007). In the cortical circuit loop suggested by Gilbert & Wiesel in 

1989, there was also a small loop in overall pathway from layer VI back to layer IV. An 

overview of the layer connectivity can be seen figure 1.1 further down. 

In a recent study of layers in rodent somatosensory cortex, Adesnik & Scanzani (2010) 

found layer II/III pyramidal cells to project both vertically and horizontally, but the overall 

effect (feedforward or feedback) was intricately determined on the ratio of inhibitory and 

excitatory signals. The ratio of inhibitory to excitatory cell distribution in the cortex is 

approximately 1:5 to 1:9 depending on area and laminae, and although there is less 

inhibitory neurons in relation to the pyramidal cells the first group has proven to be far 

more diverse in its characteristic properties (Somogyi & Klausberger 2005; Shipp, 2007; 

Thomson & Lamy 2007; Meyer et al., 2011). Adesnik & Scanzani (2010) concluded that 
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layer II/III pyramidal cells were efficient in driving pyramidal cells in layer V by horizontal 

connections: feedforward excitation, and at the same time suppress the neighbouring 

pyramidal cells within the same layer: lateral suppression. The inhibition of the next-door 

pyramidal cells results in subsequent non-activation of those horizontally linked pyramidal 

cells in layer V. These results also add to the underlying concept of networks as dynamic 

entities with spatial constraints in the form of possible cellular connections, rather than 

simply static constructs solely determined by anatomical connectivity.  

 

1.1.3. The sensorimotor cortex  

The primary motor and somatosensory areas take up the cortical region anterior and 

posterior to central sulcus, referred to as the sensorimotor cortex (SMC). The research on 

the cardinal somatotopic arrangements of the primary sensorimotor cortex dates back to 

the 19th century and is a well-established phenomenon (Hluštík et al, 2001; Scheiber, 

2001). The motor cortex plays a critical role in the ability to perform movement and in 

order to do this, information is required from the surroundings. The primary motor cortex 

exercises control over muscles in a functionally integrated manner, which requires 

sensory feedback (Devanne et al., 2002; Capaday et al., 2004; d’Avella et al., 2006; Ting 

& McKay 2007). The finer the movement, the greater is the demand for information from 

the exterior environment to carefully calibrate the movement (Neuper & Pfurtscheller 

2001; Tsujimoto et al., 2009). The interactions between sensory and motor areas, and 

their laminae, are thus of great importance in executing and maintaining motor function. 

 

Figure 1. 1. Generalized overview of interlaminar connectivity in the sensory neocortex. The purple 
arrow represents thalamic sensory input. Red and green arrows are the canonical feed forward and 
feedback pathways described in Shipp (2007). Blue and teal arrows show a summarised view of 
Gilbert & Wiesel’s cortical circuitry (1989), blue arrows are connections within one area, and teal 
represent connections found between areas. Pink, lime green, yellow and brown arrows are 
additional to Gilbert & Wiesel’s circuit (by Lund, 1979, Martin & Whitteridge 1984, Hirsch et al., 

1998, Zhang & Deschenes 1997, Katz 1987, respectively). The diagram is summarised from above 
authors, as well as Douglas & Martin (2004). 
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Countless studies have proven that there are structural connections, functional 

interactions and dynamic connectivity (see review by Neuper & Pfurtscheller 2001), 

although specific details, especially in humans, are lacking. Figure 1.2 below provides an 

example of the vast complexity in the structural connectivity in sensorimotor areas.  

There is a multifaceted system of interconnectivity between the areas of the sensorimotor 

cortex. Dependent on species, the connectivity has distinct features, although there is a 

basic mammalian connectivity plan, which has further evolved in simians (Krubitzer & 

 
Figure 1. 2. Connectivity between areas of the sensorimotor cortex. The different colours represent 
different research references. Different authors use different connotations for certain areas, these 
have been summarised at the top of the figure. Adapted from Jones & Powell 1970; Vogt & Pandya 
1978; Jones & Wise 1979; Ghosh et al. 1987; Krubizer & Kaas 1990; Felleman & van Essen 1991; 
Stepniewska et al.1993; Geyer et al. 2000; Lewis & van Essen 2000; Huffman & Krubitzer 2001; Qi 
et al. 2002; Disbrow et al. 2003. 
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Kaas 1990). In between different subclasses of apes and monkeys there are additional 

connectivity distinctions; evolutionary development has depended on what sensorimotor 

functions were required to survive in the concurrent surrounding (Kaas, 2007; 2008). In 

some cortical areas, processing of information has changed during evolution (Pons et al., 

1992). The size of functionally defined cortical fields has been suggested to change with 

the genotype of the mammal (Larsen & Krubitzer 2008). The brain of primates has during 

evolution increased its amount of neurons, from apes to humans, requiring an altered 

architecture. Organisation between the non-human mammals, primates and humans 

include modifications in cortical areas with increased number, or altered types, of 

functional groups in some areas (Herculano-Houzel et al., 2008; Kaas 2008).  

The most prominent local circuits found in the primary somatosensory cortex have been 

mapped as connections between layer II/III to layer V and from layer IV to III (Hooks et al., 

2011). In contrast to the primary somatosensory cortex, the motor cortex lacks layer IV, 

hence the question of how the connectivity is organised in this area is well-posed. The 

feedforward and feedback pathways observed in sensory cortical areas lose their validity 

in a cortical area which lacks the major thalamic input layer, e.g. layer IV. In addition, layer 

III is also thinner. Due to this, the ascending/feedforward pathway, which consists of layer 

IV projecting to layer III and then down to layer V is absent in the agranular, e.g. motor, 

cortex and thalamic input is instead directed mainly to layer III (Donoghue & Wise 1982; 

Shipp, 2005). The circuitry in the agranular cortex, e.g. primary motor cortex, has been 

summarised as a descending synaptic circuit from layer II/III to layer V and a weak 

ascending circuit from layer V to layer II/III (Weiler et al., 2008; Shepherd, 2009; Anderson 

et al., 2010; Hooks et al., 2011). In a recent study, Anderson et al. (2010) also concluded 

that there are parallel pathways for the layer II/III to V projections, depending on the 

projection target after layer V. In addition to the altered interlaminar route, there appear to 

be differences in the hierarchical processing in the motor cortex compared to the sensory 

processing, as suggested by Shipp (2005). Additionally, in the motor cortical region the 

association areas, premotor and supplementary areas, are more involved in the 

integrating and modulating of information compared to sensory areas (Shipp, 2005).  

 

1.1.4. Neuronal activity  

A typical neuron has a resting membrane potential of -60 to -70 mV. There is a constant 

flow of ions and molecules over the neuronal membrane, which at cellular rest results in 

the resting membrane potential. Changes to the flow of ions can either depolarise (the 

intracellular compartment becomes more positive), or hyperpolarise (the intracellular 
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compartment becomes more negative) the neuron. Ion transport over the membrane can 

be specific and actively facilitated by transport proteins, or it can be passive along the 

electrochemical gradient. The active or passive flows of ions over the neuronal membrane 

are also considered currents; contributions to hyperpolarisation are considered as 

inhibitory postsynaptic potentials/currents (IPSP/IPSC) and contributions to depolarisation 

are considered excitatory postsynaptic potentials/currents (EPSP/EPSC). If the overall 

depolarisation of the neuron, resulting from the summed ion currents, reaches the action 

potential threshold the neuron fires an action potential. The time it takes for the membrane 

potential to return to its resting potential from hyper- or depolarisation, e.g. the absolute 

and relative refractory periods, and any further IPSPs and/or ESPSs, dictate how often a 

neuron can fire. When an action potential is fired, vesicles with chemical signalling 

messengers are released at the axonal synaptic terminals of the neuron.  

 

1.1.5. Neurotransmitters 

The signalling molecules disperse throughout the 20-40 nM gap between cells, e.g. the 

synaptic cleft, and bind to specific receptors either on the postsynaptic or, in some cases, 

on the pre-synaptic cell. Ramon y Cajal, Lorente de No and Otto Loewi established early 

in the 19th century the important existence of neuronal circuits, synaptic transmission and 

signalling agents. Today, there are over one hundred different substances that are 

considered signalling agents, e.g. neurotransmitters such as glutamate, gamma-amino-

butyric acid (GABA), serotonin (5-HT, 5-hydroxytryptamine), norepinephrine, acetylcholine 

and dopamine. These all bind to distinct receptors with several subtypes. 

Neurotransmitters are responsible for synaptic signalling in the nervous system and bind 

to receptors on the postsynaptic and presynaptic cell. The cellular response depends on 

the effect of the receptor activation, so the use of the terminology excitatory and inhibitory 

neurotransmitters is only relevant to the two most common substances: glutamate and 

GABA, respectively. Other transmitters, for example the first neurotransmitter to be 

identified – acetylcholine, can exert both these mechanisms (Picciotto et al., 2012). Here 

we consider glutamate as an example of how neurotransmitters can work and what 

excitation is. Glutamate is the most abundant excitatory neurotransmitter and upon 

binding to its receptor causes depolarisation/excitation of the target neuronal cell. The 

excitation is achieved by two different mechanisms initiated when glutamate binds to its 

receptor, and which of these mechanisms is dependent on the type of receptor. Binding 

can lead to opening of a cation channel in the transmembrane compartment of the 

receptor allowing for influx of sodium and calcium ions. This mechanism is typical for 

ionotropic glutamate receptors which are responsible for fast synaptic transmission. 
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Alternatively, glutamate binding can initiate a slow postsynaptic intracellular signalling 

cascade, as with the metabotropic glutamate receptors. The binding here indirectly leads 

to depolarisation of the postsynaptic cell through opening of cellular membrane channels. 

There are three groups of ionotropic glutamate receptors: N-methyl-D-aspartate (NMDA), 

α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and the kainate receptors. 

There are eight sub-types of the metabotrophic glutamate receptor, GluR1-R8. Ionotropic 

and metabotropic receptors co-exist predominantly in synaptic cleft, although kainate 

receptors also found outside the synapse on the presynaptic cell (Meldrum 2000; 

Niswender & Conn 2010; Granger et al., 2011; Jackson & Nicoll 2011). Glutamate is 

released by pyramidal cells, e.g. excitatory pyramidal cells. Pyramidal cells generally 

display the classical neuron structure with one long axon propagating the output through 

the synaptic terminals while many small dendrites receive input. Pyramidal cells are 

known for their capacity to connect to more distant areas than within a cortical area or 

local microcircuits (Brown & Hestrin 2009), for example the large Betz cells discussed 

earlier (Rivara et al., 2003). 

 

1.1.6. GABA and GABA-receptors 

Although two types of inhibitory substances exist in the nervous system, glycine and 

GABA, here we will pay particular attention to the GABAergic transmission since this is 

the primary modulation target in our pharmacological intervention. GABA is considered 

the primary inhibitory neurotransmitter since it hyperpolarises/inhibits the activity of the 

target cell. Similarly to the example above with glutamate, the effect, e.g. 

hyperpolarisation/inhibition, is achieved by different mechanisms depending on which type 

of GABA-receptor GABA binds to (Johnston 1996). There are ionotropic GABAA, or 

metabotropic GABAB, -receptors. Additionally, the ligand-gated GABAC-receptors, or 

GABA-Rho receptors are found in the visual system and were for a while considered 

being a sub-type of the GABAA-receptors since they are also ionotropic (Sedelnikova et 

al., 2005). Here we predominantly consider GABAA-receptors, which are pentameric 

proteins of pronounced structural heterogeneity and comprise a transmembrane chloride 

channel. This channel allows for increased influx of chloride ions when GABA binds to the 

receptor (Johnston 1996; Sieghart & Sperk 2002; Möhler 2007). GABAA-receptor subunits 

are classified into 7 sub-families; α, β, γ, θ, δ, ε and ρ. The most predominant receptor in 

the human brain has an arrangement of two α1, two β2, and one γ2. GABA binds in the 

interface of the α1- and β2-subunits, which results in two GABA molecules bound per 

receptor.  Deficits in the structure of GABAA-receptors have been linked to a variety of 
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neurological conditions; anxiety, epilepsy, schizophrenia and insomnia, to name a few 

(Wong & Snead 2001; Möhler 2006).  

Inhibition is mediated predominantly through synaptic transmission. IPSP kinetics 

depends on the composition of subunits in the GABAA-receptor (Farrant & Nusser 205; 

Wang & Buzsaki 2012). Neurons releasing GABA are often smaller and connect more 

locally compared to pyramidal cells, and often interconnect groups of pyramidal cells. 

These neurons are thus termed GABAergic or inhibitory interneurons. An abundance of 

different GABAergic interneurons with varying electrophysiological characteristics have 

been found and there has been several strong attempts to classify interneurons based on 

varying inherent molecular, anatomical and physiological features of the individual 

interneurons. To date, the Petilla terminology project offers the most comprehensive 

overview of the different categories and features of interneurons (Markram et al., 2004; 

Somogyi & Klausberger 2005; Ascoli et al., 2008).  

Intrinsic inhibitory and excitatory circuits in the sensorimotor cortex are predominantly 

based on GABA and glutamate synaptic transmission between neuronal cells (Keller 

1993; Markram et al., 2004; Somogyi & Klausberger 2005). The type of inhibitory cell and 

synapse determines effects of inhibition (Gupta et al., 2000). Fast-spiking (FS) inhibitory 

neurons, late-spiking and regular spiking non-pyramidal cells are all found in the rodent 

frontal cortex, e.g. in the motor areas (Kawaguchi 1993; 1995; Kawaguchi & Kubota 

1997). Three main groups of neurons are involved in the synchronous activity in rodent 

somatosensory cortex (Chagnac-Amitai and Connors 1989). Intrinsically bursting 

pyramidal cells were found in layers IV or V, FS inhibitory neurons were found in all 

layers, and regular spiking (RS) pyramidal cells were found in layers II to VI. The IB and 

FS cells were found to be consistently excited with each synchronous event, whereas the 

RS cells were inhibited. RS cells and IB cells are found in abundance in layer V of the 

sensorimotor cortex in rats (Franceschetti et al., 1995; Guatteo et al., 1996). In particular 

FS interneurons are important for the synchronous activity in the cortex (Hausenstaub et 

al., 2005; Cardin et al., 2009; Tiesinga & Sejnowski 2009; Wang 2010; Buzsaki & Wang 

2012), which will be discussed further in the next section. 

 

1.1.7. GABAergic modulation of neuronal activity 

The neuronal output ultimately depends on the balance of excitation and inhibition (Wang 

2010; Zhu et al., 2011; Wang & Buzsaki 2012). The modulation of neural activity and 

essentially physiological functionality, by administration of barbiturates and 

benzodiazepines, described and used as anxiolytics, hypnotics, anticonvulsants and 



24 

 

myorelaxants has been well-documented and reviewed (Tan et al., 2011; Rudolph & 

Knophlach 2012), see figure 1.3a-c below. These substances act on the pentameric 

GABAA-receptors and enhance the inhibitory effects of GABA binding to its receptor. 

Binding of benzodiazepines requires one of the subunit α1-3,5. Benzodiazepines bind in the 

‘classic’ benzodiazepine pocket, located between the α1 and γ2-subunits, and increase the 

frequency of chloride channel opening (Johnston 1996; Priker et al. 2002; Mohler 2007). 

A 

 

B 

 

C 

 

Figure 1. 3a-c. GABAA-receptors have a pentameric arrangement with a chloride channel in the 
center  (a, left). Different substances have different binding sites (b, middle). Benzodiazepines bind 
specifically between the γ2 and α1 subunit (c, right). A: modified from Belelli & Lambert (2005), B: 
McKernan & Whiting (1996), C: Martin & Dunn (2002). 

Non-benzodiazepines are substances with similar effects to benzodiazepines but 

significantly different molecular structures; see figure 1.4a-b, below. In particular one of 

these substances is of interest here; the imidazopyridine zolpidem, prescribed for 

insomnia for decades (Nicholson & Pascoe 1989).  

A 

 

B 

 

Figure 1. 4a-b. Benzodiazepines, such as diazepam (a, left), and non-benzodiazepines, such as 
zolpidem (b, right), both bind to the benzodiazepine pocket but have very different structures. 
Structures modified from PubChem Compound, National Center for Biotechnology Information 
(2012). 
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Zolpidem is a GABAA-receptor benzodiazepine site agonist, also known under the 

registered trademark names Ambien, Stilnox and Lorex. Modelling studies have recently 

confirmed previous research that zolpidem indeed binds to the benzodiazepine binding 

site in GABAA-receptor (Sancar et al., 2007; Richter et al., 2012). Zolpidem is less efficient 

as a myorelaxant and anticonvulsive, as well as at maintaining sleep performance, and 

more efficient at simply initiating sleep (Depoortere et al., 1986; Rosenberg 2006). 

However, more than a decade of research on zolpidem has also suggested its beneficial 

effects in comatose, stroke and Parkinson’s disease patients; which are suggested to be 

due to the effects on the GABAergic transmission in the brain (Daniele et al., 1997; Clauss 

et al., 2001; Hall et al., 2010). As with other GABAergic drugs there is a risk of abuse (Hsu 

& Chiu 2012). Further details on the action of zolpidem and its relevance in PD are 

discussed in chapters 5 and 8. 
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1.2. Neuronal network activity  

1.2.1. Historical perspective on neuronal activity 

The first recordings of brain rhythms in humans are often ascribed to Hans Berger in 1924 

and were published in the article Über das Elektrenkephalogramm des Menschen, in 

1929. However, previous to this, recordings of oscillations had been done in dogs by 

Pravdich-Neminsky, in 1912 and Berger himself based his theories and experiments on 

the work done by Richard Caton in the 1870’s. Caton’s work described changes in the 

baseline currents, measured over the human scalp, relating to sleep and phenomena that 

could not be attributed to respiratory and cardiac functions. The findings by Caton and 

Berger were not initially well received by the neuroscience community. Not until Berger’s 

findings of alpha and beta oscillations measured over the scalp, and their attenuation with 

eye opening and limb movements, had been replicated by the famous electrophysiologist 

Lord Adrian at Cambridge in 1934 were they recognized as important (Swartz & Goldberg 

1998; Millet, 2002; Haas, 2003).  

 

1.2.2. Neuronal network oscillations 

The flow of ions over the neuronal membrane results in changes to the membrane 

potential, e.g. depolarisation or hyperpolarisation. An oscillation is the periodic variation in 

amplitude around a central value. Neuronal network oscillations are the summed activity 

of many thousands of neurons. When neurons fire simultaneously (i.e. within a short time 

window), these cells are said to be firing in synchrony. The summed activity of these 

neuronal ensembles produces a large enough exchange of current for it to be measured 

using a range of electrophysiological methods (see chapter 2 for methods of 

measurement used in this project). Whether the neuronal network activity is measured 

using in vitro electrode recordings or non-invasive human measurements, the observation 

is a periodic fluctuation in amplitude reflecting current exchange over time; the neuronal 

network oscillation or ‘brain rhythm’. See figure 1.5 for examples of brain rhythms. 

The requirement for the activity of individual components of the population to be summed 

into the average ongoing oscillation is that the events take place within the time window of 

synchrony (Buzaki & Draguhn 2004; Schnitzler & Gross 2005). The time window of 

synchrony is defined as the time in which two inputs can be added or subtracted before 

one or both inputs have decayed, which is also dependent on the participating neurons 

distance from each other. Any event taking place outside of this time window does not 

contribute to the synchronised activity, since it simply does not interact with the already 

occurring response. Instead it detracts from the overall synchrony by reducing the signal-
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to-noise ratio (Buzsáki, 2006). Higher frequency oscillations (>30 Hz) are believed to have 

a smaller participating neuronal pool, compared to slower oscillations (<30 Hz), since the 

time window of synchrony is greater for slower oscillations and more neurons, at larger 

distances, can theoretically participate. Further distances between reciprocal connections 

also create a time lag which contributes to slower oscillations (Kopell et al., 2000; Buzsaki 

& Draguhn 2004; Schnitzler & Gross 2005).  

 

Figure 1. 5. Brain rhythms are amplitude oscillations in the underlying neuronal populations. This 
figure shows how oscillations at different frequencies appear as fluctuations in amplitude in the 
recorded signals. The oscillations are often classified according to their frequency, seen to the left. 
Frequency classes are discussed further in section 1.2.5. Figure is courtesy of Dr SD Hall. 

 

1.2.3. Mechanisms of neuronal synchrony 

Due to the fact that brain rhythms are the integrated activity of many thousands of 

neurons, there are a number of possible bases for their emergence. There can be a 

common input from a local or remotely located cell, or it can be the neuronal population 

itself that generates the synchronous activity (Whittington et al., 2000; Wang 2010).  

In computer models neuronal network oscillatory activity depends on the dynamic nature 

of the IPSPs and EPSPs, in the participating neurons, and their connectivity (Whittington 

et al., 2000; Buzsáki, 2006; Wang, 2010). However, perisomatic IPSPs were early on 

shown to be more efficient at synchronisation than dendritic EPSPs (Lytton & Sejnowski 

1991). This realisation, that the inhibitory activity was better at synchronisation of local 

neuronal network oscillations, resulted in the originating idea of GABAergically mediated 

synchronisation and the role of inhibitory interneurons in neuronal network oscillations, 

such as beta and gamma (Buzsaki & Wang 2012). The original computer models based 

the rhythmogenesis on inhibitory interneuronal networks (interneuron-based gamma, 

ING), featuring inter-connected inhibitory interneurons only. These paced each other by 
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generating synchronous IPSPs and temporally aligned the spike probability in the 

connected interneurons to when the GABAA-receptor mediated hyperpolarisation had 

decayed, allowing the interneuron to fire again.  

The field of in vitro electrophysiology has also contributed greatly to our understanding of 

some of the physiological mechanisms by which familiar oscillations such as beta (15-

30Hz) and gamma (30-100Hz) arise. The frequency of the gamma oscillations generated 

from the ING model depends on IPSP kinetics and excitation of the interneurons, as 

shown by both modelling, and in vitro experiments in neocortex and hippocampus where 

the excitatory drive was abolished (Whittington et al., 1995, Wang & Buzsaki 1996). In 

vitro experiments also showed that interneurons and their networks entrain pyramidal cells 

and pace neuronal network oscillations (Cobb et al., 1995), and pharmacological blocking 

of the GABAA-receptor abolished oscillations (Whittington et al., 1995).  

While ING is a neat model which highlights the simplicity of creating such a complex 

phenomenon as neuronal network oscillations, it is less relevant in a physiological setting 

where pyramidal cells are certain to exert effects on the interneurons present, e.g. 

feedback. Subsequently, when taking pyramidal cells into account the pyramidal-

interneuron based gamma (PING) model arose (Whittington et al., 2000; Tiesinga & 

Sejnowski 2009; Wang & Buszaki 2012). The central difference is which cell class 

effectively excites the interneurons, the interneurons pacing each other, or pyramidal cells 

exciting interneurons which then pace the network activity (Whittington et al., 2000). 

Recently the PING mechanism of oscillatory neuronal network activity was confirmed in 

the cat visual cortex. Additionally, the PING mechanism model derived from these 

experiments was extended with computer modelling to encompass the intrinsic membrane 

resonance, e.g. the natural frequency preference of the interneurons, in the participating 

interneurons.  The resulting model was termed resonance induced gamma (RING) (Moca 

et al., 2012).  

Whether ING, PING or RING is the most relevant mechanism, the core components are 

interneurons, and in the latter two, also pyramidal cells. Interneurons always pace the 

network in one fashion or the other (Cobb et al., 1995, Whittington et al., 2000; Wang & 

Buszaki 2012). In particular, FS interneurons play a role in the rhythmogenesis in 

neocortex and show strong phase coherence with the ongoing gamma oscillation (Bacci 

et al. 2003, Hasenstaub et al., 2005), see figure 1.6.  

Increasing GABAergic drive with, for example, the application of benzodiazepines, infers 

increased interneuron mediated recruitment to the oscillation, with an increase in the time 
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that the channel remains open. The effect is a well-characterised reduction in frequency of 

the net oscillation (Whittington et al. 1995, Johnston, 1996; Traub et al. 1996a). 

 

Figure 1. 6. Fast-spiking interneurons and regular spiking pyramidal cells fire at different points of 
the gamma oscillatory cycle. Adapted from Hasenstaub et al. (2005). 

 

Inhibitory modulation, and subsequently oscillatory frequency, is to a great extent 

dependent on IPSC kinetics; the GABAergic decay and chloride currents (Traub et al., 

1996; Uhlhaas et al., 2009). However, electrical gap junctions are also of importance. 

Apart from providing tonic currents, these have, in combination with synaptic interactions 

in dendrites, been found to pace action potential generation in the somata (Fukuda & 

Kosaka 2000; Szabadics et al., 2001; Mann & Paulsen 2007). The combination of 

electrical gap junctions and proximal GABAergic synaptic interactions will rapidly 

synchronise the network in the gamma frequency range (30-70 Hz) in the rat 

somatosensory cortex, whereas alone neither of these could create synchrony between 

pre- and postsynaptic activity (Tamás et al. 2000). Gap junctions promote synchrony, 

primarily by decreasing the difference in membrane potential between connected neurons. 

Simulations and pharmacological in vitro studies, where gap-junctions were blocked, 

abolished oscillations; supporting the theory of collaboration between electrical and 

synaptic signalling (Tamas et al., 2000; Kopell & Ermentrout 2004; Roopun et al., 2006; 

Yamawaki et al., 2008).  

 

1.2.4. Measuring population activity on different scales 

Regardless of the method used to record brain rhythms, whether it is an invasive animal 

or non-invasive human approach, the recorded activity is the sum product of the 

synchronous current exchange of tens of thousands of neurons. Measurement of direct 

electrical activity with small in vitro glass electrode as is done in this thesis, the local field 
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potential (LFP) results from the current variation in the immediate electrode surroundings, 

estimated at approximately 500-3000 µm around the electrode tip (Mitzdorf, 1987; 

Logothetis, 2003). LFPs are thus considered an average of the somato-dendritic input 

signals: inhibitory and excitatory postsynaptic potentials. As a result they indirectly take 

action potentials into account (Logothetis, 2003; Buzsaki & Draguhn 2004; Schnitzler & 

Gross 2005).  

Measurement of neuronal interaction in living subjects is more complex. This increased 

complexity is due to the recorded signals from additional areas present both in the source 

surrounding and in the preparation itself, e.g. compare an isolated sagittal in vitro brain 

slice preparation to the sensorimotor cortex in an intact brain. The additional areas and 

networks present in and around the source have independent activity patterns. In 

combination with more connections that are not present in an in vitro preparation, these 

factors contribute to the increased complexity in recorded source signals from non-

invasive neuroimaging methods, see figure 1.7 below. Observing neuronal activity on a 

larger scale, such as in neuroimaging, the summed activity of many neurons in a 

population, as well as between populations, can be visualized as the oscillatory electrical 

currents in electroencephalography (EEG), and their corresponding magnetic fields in 

magnetoencephalography (MEG) (Hämäläinen et al., 1993; Gray, 1994; Buzsaki & 

Draguhn 2004).  

 

Figure 1. 7. Scaling up through the source sizes of recordings. Going from left to right, the 
individual neurons can be seen in isolation, in the cortical laminae and finally in the intact brain. 
This gives an indication about the complexity in a whole brain as measured with non-invasive 
techniques such as MEG and EEG. Figure is courtesy of Dr SD Hall. 

 

By using non-invasive methods like EEG/MEG, or more invasive methods like 

electrocorticography (EcoG), the neuronal oscillations in a complex setting can be 

characterised. The estimated source size of activity seen in neuroimaging recordings 

depend on the technique used. Functional MRI (fMRI) has a spatial resolution >1-5mm3 at 

best, but poor temporal resolution (Olman & Yacoub 2011). EEG recordings have better 

temporal resolution, but poorer spatial resolution due to the conduction of current through 

distorting biological tissues. These techniques are therefore often combined in recent 
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studies (Mantini et al., 2010). Likewise, MEG recordings depend on the signal-to-noise 

ratio, but also the orientation of cells (see Methods for details). The spatial resolution is 

suggested to be >2 mm of cortical tissue (Hillebrand & Barnes 2003; 2005; 2011; 

Papadelis et al., 2009). A more precise mathematical assessment of the minimum number 

of neurons that can be picked up by a MEG signal was proposed by Murakami & Okada 

(2006) to be 10000-50000; this is also discussed in the methods chapter.  

 

1.2.5. Classification of brain rhythms 

Historically, oscillatory activity is classified into different frequency ranges, based on 

findings from the classic EEG literature (Berger 1929; Adrian & Yamagiwa 1935; Gastaut 

& Bert 1954). An example of the frequency ranges was seen in figure 1.5, but can also be 

seen in table 1.1. In reality, EEG was not initially aimed at distinguishing frequencies. 

Rhythmicity and periodicity were difficult to determine from paper traces, although even 

Berger attempted this (figure 1.8).  

 

Figure 1. 8. The top trace shows a recording of Berger’s original findings of alpha activity over the 
scalp. The bottom trace shows an artificial 10 Hz pace added externally. Modified from Berger’s 
paper in 1929. 

 

Rather, the focus was often on the shape of the trace, as exemplified by the mu rhythm 

reported by Gastaut & Bert in 1954, which was named after the Greek letter with the 

similar shape. The traditional frequency bins developed in different and often clinical, 

laboratory settings. There was a focus on determining normality in behaviour, and 

characterisation was initially based on the appearance, while the approximate frequency 

band and the location that was currently investigated in the particular research laboratory 

were noted as additions. For example, the mu rhythm was originally characterised as 

indicative of restlessness and general dysfunction (Gastaut & Bert 1954). Different 

researchers have used different classifications, thus we consider ‘frequency bins’ 

approximate and loosely associated with different functions, see table 1.1.  

Sorting oscillations into approximate frequency bins, and their designations, is accepted 

practise in neuroscience. Some researchers put both beta and gamma oscillations in the 

same group (Pfurtscheller & Lopes da Silva 1999; Steriade, 2006), while other emphasise 
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strong distinctions between different small frequency bands and argue that there are clear 

differences between the rhythms. Reduced computer models of network oscillations show 

that beta oscillations rapidly can transform into gamma frequency oscillations after further 

membrane depolarisation and additional recruitment of pyramidal cells to an ongoing 

interneuron network oscillation (Kopell et al., 2000). While the contributions to network 

oscillations in computer models are clear, the exact neuronal composition and 

participation in any biological preparation is less clear. This makes it difficult to extrapolate 

computer models to neuronal network oscillations in more physiological and complex 

situation, for example in neuroimaging settings.  

Table1. 1. Different frequency classes of oscillations       

1-4 Hz Delta  Associated with slow wave sleep. 
4-8 Hz Theta  Drowsiness. Prominent over hippocampal structures during 

orienting, conditioning and memory encoding/ retrieving.   
8-12 Hz Alpha 

 
Mu (~10 Hz) 
 
 
 
 
Tau (~10 Hz) 

Relaxed state. Most prominent over occipital lobe when 
eyes are closed.  
Found over somatosensory cortex, related to and 
attenuates with actual and imagined movement, as well as 
somatosensory stimulation in normal subjects. Also linked 
to attention and cognitive functions within the sensorimotor 
system.  
Found in the auditory system, responsive to auditory stimuli.  

12-35 Hz Beta Found over motor cortex and basal ganglia, related to and 
attenuates with actual and imagined movement, as well as 
somatosensory stimulation in normal subjects. Also linked 
to attention and sensorimotor processing. 

35-100 Hz Gamma Suggested to play a role in attention and higher cognitive 
processes.  

(Adapted from Ward, 2003; Steriade, 2006b; Ritter et al., 2008). 

 

1.2.6. Functional significance and relevance of neuronal oscillations 

Different frequencies are, as mentioned, traditionally classified into different bins. As the 

development of EEG recording techniques progressed and researchers were reporting 

oscillations of particular frequencies, certain frequency bands became associated with 

specific functions. Table 1.1 presented an overview of common functions associated with 

particular frequency bands. The idea of functional significance of oscillations dates back to 

Berger’s experiments in 1929, where the ongoing alpha activity recorded over the subjects 

scalp was attenuated by the subject (in this case Berger’s own son) opening his eyes. For 

this reason the alpha oscillations gained the alternative name Berger’s rhythm. Later 

research established that alpha activity (8-12 Hz) was particularly evident over the 

occipital areas of the scalp, overlying the visual cortex when the subject’s eyes were 

closed. Additionally, alpha oscillations also appear to have further functions since they are 

enhanced during internal processing such as calculation and visual imagery (Palva & 
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Palva 2007). Berger also reported on ongoing beta (13-30 Hz) oscillations and since then 

this rhythm has been primarily associated with motor performance and movement 

(Neuper & Pfurtscheller 2001). Another rhythm that can be found over the sensorimotor 

cortex is the ongoing mu rhythm (~10 Hz), which is functionally linked to action and 

perception (Hari, 2006). Gamma activity (30-100 Hz) is currently also linked to both motor 

and visual function and stimulus presentation (Gray & McCormick 1996; Tallon-Baudry & 

Bertrand 1999; Muthukumaswaramy 2010). A century of research highlights the 

importance of oscillations for cognitive function and the need for further understanding of 

neuronal network activity in the cortex (Başar et al., 2001). 

An attractive rationale for the existence of oscillations, as opposed to a binary system, is 

the capacity for energy conservation and information encoding (Buzsáki, 2006). The 

relevance of oscillations to information encoding is particularly well illustrated by the 

binding hypothesis; rhythms such as beta and gamma in visual areas serve to temporally 

align the neuronal substrates responsible for the relevant input/output and subsequent 

information processing and integration (Crick & Koch 1990, Gray & Singer 1995; Tallon-

Baudry & Bertrand 1999; Ward 2003; Womelsdorf et al., 2006; Fries 2009). 

 

1.2.7. Sensorimotor network activity  

The focus of this thesis is the neuronal network activity that arises in the SMC. In the 

SMC, as reflected in the original work by Berger in 1929 and Gastaut & Bert in 1954, the 

prominent feature of electrophysiological recordings from the sensorimotor areas in the 

human brain are beta (15-30Hz), and mu (~10Hz) rhythms. The established peak of the 

mu rhythm in human studies is peculiarly shaped, featuring a double peak; albeit not 

harmonics (Tiihonen et al., 1989; Hari 2006). The mu rhythm is reported to be found over 

the somatosensory cortex, while the beta rhythm is observed over the motor cortex. The 

somatotopic organisation of the sensorimotor cortex, and the homunculus, were 

established by Penfield and colleagues in the 1930’s and 40’s, and oscillations are also 

observed to have a somatotopic arrangement (Salmelin & Hari 1994; Salmelin et al., 

1995; Pfurtscheller & Lopes da Silva 1999; Salenius & Hari 2003). 
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1.2.8. Functional relevance of sensorimotor mu and beta oscillations 

Ongoing beta and mu oscillations decrease and increase in amplitude during different 

phases of motor and somatosensory events. The amplitude decrease is termed event-

related desynchronisation (ERD), while the amplitude increase is called event-related 

synchronisation (ERS) (Pfurtscheller & Aranibar 1977; Pfurtscheller & Lopes da Silva 

1999, Neuper & Pfurtsceller 2001; Neuper et al., 2009). Synchronisation of oscillatory 

activity in an area is suggested by some researchers to represent deactivation of that 

area, e.g. increased inhibition, not needed for the task. In contrast, desynchronisation 

represents activation, e.g. increased excitation, of an area relevant to the task 

(Pfurtscheller & Lopes da Silva 1999; Pfurtscheller & Neuper 2001).  

 

1.2.8.1. Event-related desynchronisation – before the event 

The attenuation of the mu and beta rhythms with movement first reported by Berger, in 

1929, are now referred to as mu and beta ERD (Pfurtscheller & Aranibar 1977; 

Pfurtscheller & Lopes da Silva 1999, Neuper et al., 2009), or movement related beta 

desynchronisation (MRBD) (Defebvre et al., 1996; Hall et al., 2011). Beta ERD is, 

however, also seen prior to somatosensory stimulation; attenuation of the ongoing beta 

oscillations in the sensorimotor cortex during stimulation was reported already in Jasper & 

Andrew’s experiments in the 1930’s, and confirmed by Pfurtscheller in 1981.The beta 

ERD prior to voluntary movement has been reported to start in the contralateral 

hemisphere up to 2 seconds before movement onset (Stancák & Pfurtscheller 1995; 1996; 

Alegre et al,. 2004). The mu ERD starts approximately 1 second later. The beta ERD 

spreads to a bilateral pattern just prior to and during execution of the movement itself, 

although the contralateral beta ERD remains stronger (Stancák & Pfurtscheller 1995). In 

early experiments by Jasper & Penfield (1949), the ERD was sustained during successive 

voluntary movements, but short-lasting around a single self-paced movement execution. 

The beta ERD prior to voluntary movement is argued to modulate change in muscle tone 

and general activation of motor cortex (Stancák & Pfurtscheller 1995; 1996), and the later 

part of the beta ERD is proposed to relate to afferent inputs (Alegre et al., 2002). Beta 

ERD is suggested to be an effect of input and activation in contralateral sensorimotor 

areas. Different activation patterns in the beta and mu frequency ranges for 

cued/externally paced and internally/self-paced movements were found by Gerloff et al. 

(1998). Essentially, small, but distinct, differences in activation pattern and functional 

coupling between beta and mu ERD indicate that these rhythms contain different aspects 
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of information processing relevant for optimising and preparing the motor task, potentially 

within the same sensorimotor network (Pfurtscheller 1992; Gerloff et al. 1998).  

1.2.8.2. Event-related synchronisation – after the event 

The beta ERS after movement/stimulation offset generally reaches higher power than 

before the initial baseline period, and is therefore called post-movement/post-stimulation 

beta-rebound (PMBR). The mu rhythm shows event-related synchronisation, but does not 

display rebound activity (Pfurtscheller 1992; Stancák & Pfurtscheller 1995; Neuper et al., 

2006). Subjects imagining or watching a movement display both beta ERS (and ERD) 

(Pfurtscheller & Neuper 1997; Schnitzler et al. 1997). The PMBR occurs within 0.5s of 

movement offset and the motor cortex shows reduced excitability during this time period 

(Chen et al., 1998; Tokimura et al., 2000). The beta rebound usually occurs while the mu 

rhythm is still in its ERD state (Salmelin et al., 1995; Neuper & Pfurtscheller 2001). There 

are also reports of a significantly greater beta ERS for hand movements, compared to 

finger movements. This is suggested to be due to the size difference in the neuronal 

population responsible for the movement, more neurons are responsible for the 

movement of two fingers than for one finger (Pfurtscheller et al., 1998).  

 

1.2.9. Cognitive relevance of sensorimotor mu and beta oscillations 

The similarity in beta oscillatory activity patterns and underlying effects on the 

sensorimotor cortex with movement and stimulation has been substantially verified in the 

last decade, and research has indeed shown that effects of stimulation and movements 

involve parts of the same sensorimotor network; exemplified by the suppression of 

rebound activity from actual and imagined movement (Schnitzler et al. 1997; Neuper et al. 

2006).  

The beta rebound activity is believed to reflect the “task-complete” state and represents 

the inactivated or “idling” state of the motor cortex (Pfurtscheller 1992; Chen et al., 1998; 

Alegre et al., 2004). However, some researchers argue that this is not the complete 

picture; the beta rebound activity also reflects the somatosensory feedback after a 

movement. The hypothesis of rebound activity as an indicator of feedback is based on 

experiments where stimulation-induced rebound activity in the motor cortex is reduced by 

actual or imagined movement (Schnitzler et al. 1997; Neuper et al. 2006). Additionally, 

movements performed under ischaemic nerve block have been shown to result in a lack 

of PMBR (Cassim et al. 2001), although another similar study reported that there was no 

difference in the rebound activity (Schnitzler et al. 1997). The feedback theory has also 
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been supported by studies showing a reduction in PMBR after forced termination of 

movement (Alegre et al., 2008) and earlier occurrence of PMBR in no-go movement trials 

(Leocani et al., 2001). These results suggest that the rebound activity in MI is a feedback 

mechanism; potentially encompassing other areas than simply the somatosensory 

cortices. Closely related to the feedback theory is the hypothesis of beta ERS as a 

resetting mechanism of involved [sensorimotor] networks (Pfurtscheller et al. 2005; 

Pfurtscheller & Solis-Escalante 2009), where the short-lasting synchronisation prepares 

and retunes the networks to the default, input-accepting, state.  

 

1.2.10. Rhythmogenesis in sensorimotor cortex 

1.2.10.1. Beta rhythm 

A substantial body of in vitro and in vivo animal research over the last decades has aimed 

to reveal information about the mechanisms underlying rhythmogenesis in the 

sensorimotor cortex (Whittington et al., 1995; Murthy & Fetz 1996; Buhl et al., 1998; 

Cunningham et al., 2004; Roopun et al., 2006; Yamawaki et al., 2008). Consistent with 

computational models (Traub et al., 2000), additional studies have shown that beta 

oscillations in rodent MI in vitro show dependency upon GABAA-receptor activation 

(Yamawaki et al., 2008). These observations are in agreement with human MEG studies, 

in which the motor cortex beta rhythm is augmented following the introduction of 

GABAergic modulators such as benzodiazepines (Jensen et al., 2005; Hall et al., 2010). 

Recordings from discrete laminae of rodent MI in vitro reveal beta oscillations in layers 

II/III and V; layer V appears to drive the superficial layers (Yamawaki et al., 2008). 

Yamawaki and colleagues showed that FS cell firing at beta frequency is strongly 

coherent with the LFP activity with a constant phase relationship, see figure 1.9a-f.  
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Figure 1. 9a-f. Relationship between beta frequency LFP oscillations and action potentials and 

IPSPs of FS cells. Example traces of simultaneously recorded beta field activity (top) and APs 

(bottom), is seen in A. In B the averaged power spectrum from two recordings of field activity 

(black) and APs (red) can be seen. Coherence analysis of field and APs from each recording is 

shown in C. Example traces of simultaneously recorded beta field activity (top) and reversed IPSPs 

(bottom, cell held at -90mV), is seen in D. In E the power spectrum of field and IPSPs received by 

FS cells is seen. Coherence analysis of field activity and IPSPs received by FS cell is shown in F. 

Grey shadow indicates beta band of 15-35 Hz. Modified from Yamawaki (2008: PhD thesis). 

 

1.2.10.2. Mu rhythm 

Apart from the beta rhythm, other sensorimotor oscillations are less well characterised in 

the in vitro literature. The mu rhythm, e.g. 8-12 Hz, is typically not a feature of the power 

spectrum seen for MI in vitro. It is unclear whether this scarcity is the result of 

methodological limitations, whereby the absence of extensive cortico-cortical or other 

connections precludes their observation. Mu rhythms seen in human EEG/MEG studies 

appear to be particularly influenced by cognitive and attention factors (Zhang & Ding 

2010; Anderson & Ding 2011; van Ede et al., 2011), and simulation studies have indicated 
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that oscillations in the 8-12 Hz range can be produced and modulated by feed forward and 

backwards connections (Jones et al., 2009). The mu rhythm will be discussed in further 

detail in chapter 3. 

 

1.2.10.3. Gamma rhythm 

In contrast to the abundance of research literature supporting the existence of 

sensorimotor mu and beta oscillations, spontaneous activity in the gamma frequency 

region is not regularly reported in human EEG/MEG studies. However, increasing 

GABAergic drive with benzodiazipines does elicit an increase in power in the gamma 

frequency range, limited to SI in MEG (Hall et al., 2010). This finding is consistent with 

recordings from sensory areas in vitro, in which gamma oscillations are GABAergically 

mediated (Roopun et al., 2006; 2010).  

 

1.2.11. Spontaneous oscillations and resting state networks 

There is a great deal of current interest in attempting to characterise and understand the 

intrinsic activity of the human brain between functional states. Comparable to the 

observation that global oscillatory changes occur across the brain during the various 

phases of sleep and waking, the idea that the brain possesses an intrinsic ‘resting’ or 

‘default’ state is one that carries favour at the time of writing. These networks comprise a 

series of interconnected loci across the brain that exhibit a baseline communication state, 

from which functional commands can be initiated. This network, initially termed the default 

mode network (DMN), has been extensively studied with functional magnetic resonance 

imaging (Raichle, 2001). The underlying concept of a task-negative state as a criterion for 

the DMN has come under questioning since there are many cognitive processes which do 

not necessarily result in a task being performed, but still requires activation of particular 

areas of the brain. One relevant sensorimotor example is the difference between imagined 

and actual movements; they both change the network activity, but only one of these is 

actually a task-positive state (Deco et al. 2011). Enter the idea of resting-state networks 

(RSN). The activity during resting is used as a description of network dynamics, rather 

than tasks-negative states. Functional connectivity in a resting-state network involving the 

motor system was described by Biswel et al. (1995), and other research has since 

described several resting states networks using fMRI (Damoiseaux et al. 2006, Deco et al. 

2011). In an attempt to find the electrophysiological basis for RSNs, Mantini et al. (2007) 

combined EEG with fMRI. They identified 6 RSNs, one of which was similar to the 

previously proposed principal DMN; responsible for internal processing. Interestingly, one 

of the RSNs identified was related to sensorimotor activities and comprised the precentral, 
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postcentral and medial frontal gyri, primary sensory and motor cortices as well as the 

supplementary motor area. See figure 1.10 below, for the somato-motor RSN that was 

suggested by Mantini et al.. 

 

Figure 1. 10. Mantini et al. (2007) identified a somato-motor resting state network which they 
correlated to alpha, e.g. mu, and beta activity in the sensorimotor cortex. Adapted from Mantini et 

al. (2007). Y-axis is correlation. 

This somato-motor RSN was associated with beta rhythms and to some extent alpha and 

gamma; although Mantini et al. (2007) do point out that it would be an oversimplification to 

assume that the complex dynamic networks interacting in the areas covered in the RSNs 

would display one or two rhythms only. 

Network theory from other areas of science has generated several models of how the 

information flows in the sensorimotor areas. Brovelli et al. (2004) demonstrated, using a 

Granger causality model, that during motor behaviour the synchronized beta oscillations 

bind several sensorimotor areas into one single large-scale network. This network is a 

functioning sensorimotor loop with a unidirectional pattern in the activity of the different 

subareas of the sensorimotor cortex. The results indicated that the information from the 

periphery gives rise to an activity pattern starting in the somatosensory and inferior 

posterior parietal cortex, and subsequently ending in the motor cortex. Detailed results 

from directional modelling, or the precise nature of RSNs, intrinsic activity or dynamics, 

are less than straight-forward. Although the complexity of neural networks and their 

dynamics prevent exact definitions and mapping of cognitive processes, there is still the 

actuality of what is known about resting-state and intrinsic network activity and dynamics 

in healthy subjects; these indeed appear disturbed in many of the neurological disorders 

and conditions that affect humans and other mammals. One of these is Parkinson’s 

disease (PD). The synchronisation patterns in the beta frequency band are altered in PD, 

which is coupled to the severity of clinical symptoms. This implies that neural synchrony is 

a physiological mechanism for coordination of brain areas required for particular functions 

(Uhlhaas & Singer 2006; Hammond et al., 2007Uhlhaas et al., 2009).  
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1.3. Parkinson’s disease 

1.3.1. The shaking palsy 

An Essay on the Shaking Palsy was written nearly two hundred years ago, in 1817, by the 

English physician James Parkinson, and contained the first description of two of the 

clinical symptoms today associated with the disease: resting tremor and akinesia (or palsy 

in historical terminology). Today the symptoms of PD also include bradykinesia and 

rigidity, as well as atypical posture and gait (Rivlin-Etzion et al., 2006). PD has a 

prevalence of 1%, rising higher after age 65, thus age is the most important risk factor for 

PD. As the elderly population grows, so will the number of PD patients, creating a demand 

for better understanding and treatments of PD (Davie, 2008).  

 

1.3.2. The role of the cerebral cortex in PD 

In PD the symptomatic motor problems can be associated with changes in the oscillatory 

activity in the brain. Cortical and subcortical areas have been found to display abnormally 

synchronized beta frequency outputs in PD patients (Brown, 2007; Kühn et al., 2009, 

Vardy et al., 2011). To date the cortical activity alterations in PD patients and the central 

role of cortex in functional connectivity, are implicit, but poorly understood. The effect of 

the altered activity in the basal ganglia affects the cortical processing and characteristic 

brain-state activity and one study suggested that the afferents to STN from motor cortex, 

in the hyperdirect pathway, played an important, but unknown, role in the pathological 

beta activity that can be seen in PD (Gradinaru et al., 2009).  

The dynamics of the beta frequency activity in the motor cortex, in PD patients, has been 

found to differ to those in healthy subjects (Labyt et al., 2005; Brown, 2007), again 

suggesting an undetermined role of the cerebral cortex in generating and/or maintaining 

the abnormal rhythm. The post-movement synchronisation of beta frequency activity, in 

the motor cortex is decreased in PD subjects (Degardin et al., 2009). This has been 

suggested to indicate that somatosensory processing and somaesthetics are changed in 

PD (Tamburin et al., 2003), since beta ERS is believed to reflect not only the motor offset 

command, but also inhibition from the somatosensory areas (Cassim et al., 2001; 

Pfurtscheller et al., 2005). Sailer et al. (2003) further concluded that the sensorimotor 

integration is altered in PD patients. Cortical excitability has been found to be changed in 

PD (Ridding et al., 1995; Lefaucheur, 2005) and MacKinnon et al. (2005) also suggested 

that there is a change in facilitation and inhibition in the intracortical pathways in PD 

patients. 
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1.3.3. Network activity and connectivity in PD 

The notion of PD induced altered cortical excitability and activity fits well with the 

suggestions of transformed network activity and layout, followed by changes in synchrony 

found in PD as well as other neuropathies (Uhlhaas & Singer 2006; Brown, 2007; 

Hammond et al., 2007). In particular, the findings of increased cortico-cortical functional 

connectivity in early-stage PD patients, as well as a slowing of oscillatory activity as a 

marker of non-demented PD patients, with changes in theta, alpha, beta and gamma 

bands, are interesting when considering sensorimotor integration (Stoffers et al., 2007; 

2008). The cortico-cortical coherence in the upper and lower beta band was found to 

correlate with the severity of the Parkinsonian symptoms by Silberstein et al. (2005), as 

well as a subsequent reduction in correlation and clinical status when levodopa or STN-

stimulation was administrated. Bidirectional communication between the cortex and the 

basal ganglia was found during movement in PD patients (Lalo et al., 2008) and these 

findings, taken together, indicates that there several levels of bidirectional network activity 

to take into account when considering the altered cortical network activity and responses 

in PD.  

Since reaction time depends on the processing and interaction of information from the 

periphery with the motor system, this has been a focus of studies in PD patients. Evarts et 

al. (1981) found only minor deficit in reaction time in patients, and later investigations are 

equally ambiguous. Results from response tasks where PD patients show decreased 

response inhibition and response initiation, have often been interpreted as failure of the 

basal ganglia to correctly modulate the cortical output to movement (Cooper et al., 1994; 

Gauggel et al., 2004). Bradykinesia, i.e. slowing of movement, could potentially confuse 

the results of reaction time and response experiments, and is a more severe problem for 

patients than simply the possible slowing of reactions (Hammond et al., 2007). However, 

reaction time is still an interesting point of investigation in PD patients; this would yield 

information about the sensorimotor processing mechanisms in PD compared to healthy 

subjects.  

Resting state, e.g. ongoing, oscillations in primary motor cortex in the alpha, beta and 

gamma frequency range, have been found to be decreased frequency-wise in PD patients 

(Bosboom et al., 2006; Moazami et al., 2008), with a further reduction in PD patients with 

dementia (Bosboom et al., 2006). This reduction in frequency during rest was shown by 

Vardy et al. (2011) to correspond to disease severity, measured by UPDRS scores, and 

specifically pertaining to the cognitive sub-scores.  
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1.4. General aims of this thesis 

In this thesis the aim was to explore the comparable nature of SMC oscillations recorded 

in vitro and with MEG. Integration and comparisons of these approaches were performed 

and interpreted in context of generation of oscillations in the SMC. The scale of the 

observed neuronal network activities were also studied, as well as the relevance and 

dependence of connectivity within and between sensorimotor areas. Additionally, the 

effects on sensorimotor oscillations from pharmacological modulation in healthy and PD 

subjects were determined. Finally the effects on ongoing sensorimotor oscillations from 

stimulation interventions with frequency specific stimulation protocols were assessed.  

 



43 

 

Chapter 2. Material & methods 
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2.1. Neuroimaging  

2.1.1 Magnetoencephalography 

MEG is a non-invasive method, which allows for measuring brain activity through the 

magnetic fields created when current flows through neurons in the cortex. Magnetic fields 

can be mathematically described according to Maxwell’s equations, and are perpendicular 

to the electrical current flow.  

 

2.1.1.1. MEG technology 

MEG was first introduced by David Cohen in 1968 and is based on the detection of the 

magnetic activity in the femtoTesla range (fT, 10-15 Tesla), the typical MEG signal is 50-

500fT. This is made possible by an array of superconducting quantum interference 

devices (SQUIDs). Superconducting devices contain metals with no conduction resistance 

and need to be cryogenically maintained to function optimally, usually in a vacuum 

container with liquid helium (Dewar). SQUID sensors are connected to flux transformers; 

consisting of a pickup coil and connections to the SQUID. The pickup-coil is positioned 

closest to the participant’s scalp and converts the magnetic fields generated by the cortex 

into current. In order to reduce the external (non-biological) noise, and thus distinguish the 

weak biomagnetic signals from other magnetic signals and electric devices in the 

surround, the MEG participant is placed in a closed and magnetically shielded room 

(Zimmerman, 1970, Hämäläinen et al., 1993). The basic (dc)SQUID sensor consists of 

superconducting rings, allowing electrical current to pass without resistance, and 

Josephson junctions, singling out the electrons through the tunnelling effect as they pass 

through the junctions. The pickup coils in the flux transformers work as magnetometers; 

efficient at spatial filtering. Magnetic noise signals from the surrounding will be further 

reduced than signals close to the flux transformer itself, due to the inherent decay 

constant of the dipolar magnetic signal (Hämäläinen et al., 1993; Vrba & Robinson 2001; 

2002). Aston University’s CTF MEG system employed third order gradiometers and had 

275 channels. Flux transformer function relies on electromagnetic induction and 

magnetometers; the magnetic fields emanating from the brain induce a current in the 

electrical superconducting wire in the magnetometer/gradiometer. The simplest is the 

magnetometer. In a third order gradiometer the wire is looped several times; these loops 

have distinct distances from each other, allowing the decay in the magnetic field, and 

subsequent induced electrical current, to be calculated in relation to these distances (Vrba 

& Robinson 2001). See figure 2.1a-c.  
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Figure 2. 1a-c. The dewar with arrangement is shown in a (top left). A schematic of a 
magnetometer and third-order gradiometer is shown in b (top right). The layout of the dcSQUID 
sensor is seen in c (bottom). Pictures from Vrba & Robinson 2001; 2002. 

2.1.1.2. Neuronal basis of the MEG signal 

The main contributors to the magnetic fields are the dendritic postsynaptic currents due to 

their dipolar shape, as opposed to the quadrupolar-shaped axonal current. The difference 

between these fields is the different decay times; the field around the axonal current falls 

of more rapidly compared to the dendritic field dipole. This characteristic of magnetic 

fields, in combination with the overwhelmingly larger amount of dendrites compared to 

axons indicates the postsynaptic currents as contributors to the magnetic fields measured 

with MEG (Hämäläinen et al., 1993). Additionally, due to the decay of the magnetic field, 

MEG is also not suitable for deep structures (Hämäläinen et al., 1993), but essentially 

MEG is able to detect most cortical signals, apart from <2 mm of the gyri crest (Hillebrand 

& Barnes 2002).  

Since the dendritic currents are the major contributors to magnetic fields, the distribution 

of cortical cell dendrites is relevant for the biomagnetic activity. Cells with a symmetrical 

dendrite organisation, such as stellate cells in layer IV, will contribute less to the overall 

magnetic field because the fields cancel out overall. In an asymmetrically organised cell, 

for example the pyramidal cells mainly found in layer V and II/III, the magnetic fields 

generated around the somato-dendritic currents will not cancel out and can therefore be 

picked up by the SQUIDs (Murakami & Okada 2006).  
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Several studies have investigated the underlying source size of, and orientation, in the 

MEG signal using a variety of methods, often combined with mathematical models. 

Recording magnetic field activity from a hippocampal excised tissue, Murakami et al. 

(2002) showed that the sensitivity of a dcSQUID is capable of detecting population activity 

from an area as small as 100-400 µm. However, recording of this activity was not only 

done in optimal conditions with stimulation-induced activity, but also in a small piece of 

tissue. In essence, the MEG equipment used in whole head MEG is capable of detecting 

magnetic tangential field activity from 10000-50000 synchronised pyramidal cells in layer 

II/III and layer V (Vrba & Robinson 2001; Murakami & Okada 2006).  

 

2.1.1.3. Source localisation of the MEG signal 

For each magnetic field there is an underlying current dipole. Empirical data, from 

measuring the change in magnetic fields, need to be attributed to their electrical origin. 

This is an example of an inverse and ill-posed problem, where the empirical data exists, 

but the underlying actual source is one of an infinite number of possibilities (Hauk, 2004; 

Barnes et al., 2006). Since the changes in oscillatory frequency and power between two 

time points, or states, were the focus of this project, this allowed circumvention of the 

inverse problem by using a non-linear beamformer method called synthetic aperture 

magnetometry (SAM). This method is based on defining constraints for the output (e.g. 

time windows and frequency bands) and then weighting all output from the 275 sensors to 

give a picture of the activity in the predefined MRI space, which is divided into 5 mm3 

cubic voxels, see figure 2.2.  

Figure 2. 2. SAM uses a spatially weighted summation of the outputs of the SQUID sensor array 
to focus on one target voxel and minimise the received power from other regions. Picture from 
Vrba & Robinson 2002. 

 

Two SAM time windows are defined: the pre-functional (or passive) and the functional (or 

active). The computed difference in oscillatory power in a predefined frequency band, 
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between the specified time periods, are given as t-scores over the voxels; effectively a 3-

dimensional map of oscillatory power change. Usually 10-30 events results in a good 

signal-to-noise ratio and SAM produces a t-statistic for each voxel (van Veen, 1997; Vrba 

& Robinson 2002; Hillebrand & Barnes 2003). This ‘standard’ SAM approach foregoes 

temporal resolution, in exchange for a fairly low number of trials needed. However, some 

functional effects occur over a very short period of time and can be hard to detect with this 

SAM approach. Event-related SAM (ERSAM) is a related approach, where the focus is on 

the time- and phase-locked responses to an event, rather than the induced oscillatory 

changes. This method requires more trials but allows for higher temporal resolution. Here, 

in the human MEG recordings, we used these two SAM-based approaches to localise MI 

and SI. The PMBR was used as the active period for localisation of MI, by using the 

standard SAM beamformer technique. ERSAM and somatosensory evoked potentials 

were used to localise SI (Cheyne et al. 2006; Jurkiewicz et al., 2006), see section 2.1.1.5. 

and chapter 3 (methods), for further details. 

The source location of the underlying cellular currents, giving rise to the magnetic fields is 

pinpointed in several steps. The MRI of the subject’s brain (see section 2.1.2 for details on 

MRI methodology), is linked by spatial reference points on the subject’s head before the 

actual experiment. The spatial reference points are recorded by a Polhemus Isotrak 

digitisation system (Kaiser Aerospace Inc. U.S.A), these points also assist in tracking any 

movement in relation to the SQUIDs during the experiment. The polhemus digitisation 

process consists of first attaching electrodes to the nasion and to the left and right 

preauriculars, the position of these are monitored continuously during the experiment. 

This is followed by digitisation of the position of these electrodes and scalp surface. The 

digitised scalp surface coordinates are co-registered with the scalp surface of the MRI 

image, i.e. the two images are digitally fitted to each other (Adjamian et al., 2004). The t-

scores from the SAM analysis will then correspond in spatial localisation to anatomical 

sites determined from the subject’s co-registered MRI (Hillebrand & Barnes 2003). 

 

2.1.1.4. Virtual electrodes 

The location of interest, detected by the SAM beamformer analysis and anatomically 

identified in the subject-specific MRI, can be used to position a virtual electrode (VE). A 

VE is a spatially precise implementation of the SAM algorithm which allows for recreating 

of the neuronal activity underlying the signal in the precise voxels of interest (Hillebrand & 

Barnes 2003; Hillebrand et al., 2005). The approximate source size for detection of 

neuronal activity with a SAM-based VE is >2mm, and mainly depends on the signal-to-
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noise ratio and orientation (Hillebrand & Barnes 2002,; 2003; Hillebrand et al., 2005).  See 

section 2.4 for details of offline analyses applied to MEG data in this project.  

 

2.1.1.5. SAM and VE analysis of sensorimotor cortex 

In this project VEs were put in MI, identified using the PMBR (Jurkiewicz et al., 2006), see 

figure 2.3a-b. The change in oscillatory power in the beta frequency band approximately 

0.5 to 1.5s after a voluntary or cued movement, compared to a passive pre-movement 

period 2 to 1s before the cue or movement onset was used as the parameters for the 

SAM beamformer method described above. VEs were also reconstructed in SI. This area 

was identified using ERSAM (Cheyne et al., 2006), by averaging >90 0.5s trials with a 

single pulse electrical median nerve stimulation. The stimulation elicited evoked 

potentials, which when they were averaged, could be distinguished in the bundled central 

channels. The time point for the largest deflection was used to set the constraint for 

evoked response SAM analysis. Once individual coordinates of MI and SI had been 

acquired, these were used to focus the output data from MI and SI into VE-channels. The 

data from the VE were then exported to Matlab (The Mathworks, USA).  

 

 
 
Figure 2. 3a-b. The contralateral MI was localised using the post-movement increase in beta 
power, e.g. PMBR, seen in A (left). The SAM pseudo-T value is superimposed on the subjects 
MRI, seen in B (right).  

 

2.1.2. Magnetic resonance imaging  

Magnetic resonance imaging (MRI) is based on the principle of exciting hydrogen protons 

in the body; subsequently measuring their relaxation properties. The Siemens Magnetom 
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Trio MRI scanner at Aston University has an external magnetic field of 3 tesla (3T) 

(Siemens, Erlangen). The subjects who participated in the MEG experiments all 

underwent MRI at Aston University to allow for co-registration of the neuronal network 

activity onto their MRI. An MPRAGE structural MRI image was acquired for each 

participant using an 8-channel head coil. Scans of 1mm resolution, were collected as a 

256 x 256 x 256 matrix, TR = 8.3 ms, TR = 3.9 ms, TI = 960 ms, shot interval = 3 s, FA = 

8°, and mSENSE factor = 3. Images were an averaged image integration of two 

repetitions, with a full scan time of approximately 17 minutes. 

 

2.1.3. Transcranial magnetic stimulation 

2.1.3.1. Brain stimulation 

Transcranial magnetic stimulation (TMS) is a brain stimulation method which exerts its 

effect by electromagnetic induction, i.e. the induction of electrical current by addition of a 

changing magnetic field. This is achieved by passing an electrical current through a 

copper coil (inside the TMS coil) which creates a focused magnetic field perpendicular to 

the electrical current in the coil. The magnetic field from the coil can be aimed at a specific 

scalp location, overlying the desired cortical location, to induce a local electrical current.  

 

2.1.3.2. Effects of TMS 

Although the exact cell-specific details of transcranial stimulation still remain unknown, the 

more general effects on cortical cells are clear; TMS pulses depolarise neurons and if this 

depolarisation reaches the firing threshold of the membrane potential it results in the firing 

of action potentials (Siebner et al., 2010). TMS is a minimally invasive and spatially 

distinctive neuroimaging method; it is possible to evoke a motor potential in distinct 

muscles (Ilmonemi et al., 1997; Hallett, 2000; O’Shea & Walsh 2007). The magnetic field 

and spatial spread of a TMS pulse diminishes over a short space, further contributing to 

spatial accuracy. The diffusion of the magnetic field is dependent on the coil type and 

orientation, as well as the stimulus intensity (Siebner et al., 2010, Fleming et al., 2012).  

 

2.1.3.3. TMS purposes 

TMS has become both a clinical and widely used research tool to study cortical 

excitability, connectivity, as well as virtual lesioning. Inducing an electrical current at a 

specified location with a single pulse TMS generates an action potential. This can be used 
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to determine cortical motor and corticomuscular excitability by measuring the motor 

evoked potential after application of TMS over MI (Chen et al., 1998).  

Apart from single pulse TMS; there is a variety of different TMS protocols. There are 

different forms of distributing the TMS pulses with varying effects (notably reviewed by 

Hoogendam et al., 2010; Funke & Benali 2011). The repetition of pulses, e.g. repetitive 

TMS (rTMS), has different effects on function depending on the pattern of repetition. High 

frequency rTMS (>1 or 5 Hz) increases cortex excitability and low frequency rTMS (<1 Hz) 

decreases it (Pascual-Leone et al., 1994; Chen et al., 1997; Muellbacher et al., 2000) and  

the effect duration is variable and according to some researchers depends on the duration 

of the stimulation (Hoogendam et al., 2010). Repetitive TMS of suitable frequency, pattern 

and intensity can be used to create a ‘virtual lesion’ in the underlying neuronal substrate, 

with obvious benefits in studying dysfunction, but in healthy subjects (Pascual-Leone et 

al., 1999; 2000). Continuous theta burst stimulation (cTBS) is a form of repetitive TMS 

shown to have a long-lasting effect on motor cortical excitability of <45 min (Huang et al., 

2005). Additionally, several groups have combined TMS with other recording techniques, 

such as MEG and EEG (Thut & Miniussi 2009). Parkinson’s disease has been 

investigated with TMS over the last decade and high-frequency rTMS has been shown to 

have a beneficial effect on some of the symptoms in PD, for example bradykinesia 

(Siebner et al., 2000; Elahi et al., 2008).  

 

2.1.3.4. TMS in this project 

In this project we used single pulse TMS and cTBS, applied with a 70 mm figure-of-eight 

stimulating coil, which was placed over the motor area. The hand motor area was 

localised by locating the vertex on the scalp, and then marking 4 cm lateral and 1 cm 

anterior to the vertex. For the rTMS protocols a Magstim Super Rapid was chosen, and for 

the single TMS pulse the Magstim 200 was used (both from The Magstim Company Ltd, 

UK). The motor evoked potentials elicited by the TMS pulses were recorded by placing an 

electromyelographic (EMG) electrode over the first dorsal intraosseous muscle. This 

electrode was connected to a 2-channel EMG kit (Delsys, US) and a computer with the 

software Signal (CED Ltd, UK), which displayed the shape and size of the MEP online.  

 

2.1.4. Electrical median nerve/digit stimulation 

Several decades of research has validated the findings of evoked potentials in the 

somatosensory cortex areas as a response to peripheral stimulation of, for example, the 
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digits and/or the median nerve and detected with EEG or MEG (Hari et al., 1983; 

Kawamura et al., 1996; Vanni et al., 1996; Wikstrom et al., 1999; Huttonen & Lauronen 

2012; Lim et al., 2012). The median nerve innervates the palmar side of the hand; the 

thumb and index finger. Stimulation above muscle activation threshold of the median 

nerve causes the thumb to twitch, while stimulation under activation can still result in 

sensation depending on stimulation intensity, but does not result in a twitch. This 

distinction allows for probing of the relationship between MI and SI, since muscle 

activation will evoke activity in MI (evoked potential), while under active threshold 

somatosensory stimulation should not evoke a potential in MI (Hari et al., 1983; 1994; Hari 

& Kaukoranta 1985).  

In this project electrical median nerve stimulation (MNS) or digit stimulation was 

performed by delivering electrical pulses from a constant current stimulator (Digitimer Ltd). 

For MNS, two electrodes were placed on the right wrist of each participant over the 

median nerve. The intensity was set to 50-70% of the thumb twitch reflex. If the subject 

found a test train stimulation of 60 Hz painful, the lower intensity was used. No participant 

reported the single or train stimulation as painful. The pulse width was 200 µs at all 

frequencies. The same principle was used for digit stimulation, but here the intensity was 

set at 1.5x sensation threshold. The stimulator was externally controlled by Presentation 

software (Neurobehavioral systems, UK). 
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2.2. In vitro techniques 

2.2.1. In vitro preparation and recording procedures 

By placing small glass electrodes, with a resistance of 1-3 MΩ, in a cortical brain slice, the 

aggregate extracellular neuronal activity in the area approximately 500-3000 µm around 

the tip can be measured as local field potentials (Mitzdorf, 1987, Juergens et al., 1999, 

Logothetis et al., 2001).  

 

2.2.1.1. Preparation of brain slices  

The in vitro experiments in this project used two different protocols for the preparation of 

sagittal sensorimotor cortex slices from rats. It is not in the scope of this thesis to discuss 

the intricate details that arise from differences in the two protocols. Instead, when 

interpreting the results from the in vitro experiments performed in this project, the a priori 

assumption has been made that the resulting oscillatory activity in the sensorimotor cortex 

is comparable in power and frequency characteristics, between the before and after 

conditions. The primary difference between the protocols is the improvement in slice 

viability, due to fine-tuning of concentrations and adding extra neuroprotectants, as 

established by Prokic et al. (under review). A summary of the two protocols can be found 

in table 2.1. The rats used in the in vitro experiments were treated in accordance with the 

Animal Scientific Procedures Act 1984 (Home Office, UK). Male Wistar rats were 

anaesthetised with isoflurane until the heart had stopped for protocol 1; these rats were 

then decapitated and the brains were quickly excised and put in ice-cold preparatory 

artificial cerebrospinal fluid (aCSF) saturated with 95% O2 and 5% CO2. In protocol 2 the 

rats were transcardially perfused with the preparatory aCSF instead of decapitation, 

before extraction of the brains. The brains were dissected and sagittal sensorimotor 

cortical slices, 450 µm thick, were cut with a microslicer at 4 °C, regardless of the initial 

extraction procedure. The slices were stored in an interface chamber (Scientific System 

Design Inc, Canada) with standard aCSF, also specific for the protocol type, for >60 

minutes in room temperature before being transferred to the recording chamber (Scientific 

System Design Inc, Canada). The recording chamber was perfused with oxygenated 

standard aCSF at a flow rate of 1.3 mL/min, and maintained a temperature of 33-34°C. 

After 10 minutes in the recording chamber, KA and CCh were added to the aCSF to 

induce oscillatory activity. The oscillatory activity was stabile after 45-60 minutes at which 

point interventions were initiated.  
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Table 2. 1. The two in vitro preparation protocol 

 Protocol 1 Protocol 2 

Method of 
termination 

Anaesthetic overdose and 
decapitation 

Anaesthetic overdose and 
transcardial perfusion 

 

Preparatory aCSF 
(mM) 

206 sucrose 
126 NaCl 

2 KCl 
1.6 MgSO4 
26 NaHCO3 

1.25 NaH2PO4 
10 glucose 

2 CaCl2 
0.045 indomethacin 

0.4 uric acid 

171 sucrose 
2.5 KCl 

10 MgCl2 
25 NaHCO3 

1.25 NaH2PO4 
10 glucose 

2 NAC 
1 taurine 

20 pyruvate 
0.5 CaCl2 

1 ascorbic acid 
0.045 indomethacin 

0.4 uric acid 
0.2 aminoguanidine 

 

Standard aCSF  
(mM) 

126 NaCl 
2 KCl 

1.6 MgSO4 
26 NaHCO3 

1.25 NaH2PO4 
10 glucose 

2 CaCl2 

126 NaCl 
3 KCl 

1 MgCl2 
26 NaHCO3 

1.25 NaH2PO4 
10 glucose 

2 CaCl2 
0.2 ascorbic acid 

 

Oscillatory agent 50 µM CCh 
400 nM KA 

5-10 µM CCh 
20-50 nM KA 

 

 

2.2.1.2. Recording from brain slices  

The excised brain tissue is held in specific conditions to prolong its viability, and as far as 

possible, resemble physiological conditions, both in the storage chamber and the 

recording chamber. The main difference between these chambers is the temperature, e.g. 

the slices are stored at room temperature but while recording the slices are in a heated 

environment in the recording chamber. The recording chamber is connected to 

polystyrene and silicone tubes and receives a continuous flow of artificial cerebrospinal 

fluid (aCSF), see figure 2.4a-b. The temperature in the recording chamber is controlled by 

a thermostat. Pharmacological substances are then applied to the aCSF, or locally to the 

tissue; these methods are used to study the pharmacological effects on the tissue. Here 

we applied all drugs used to the aCSF. The electrodes used for the LFP recordings in vitro 

were chlorided silver wire inserted into a borosilicate glass electrode filled with standard 

aCSF; resistance 1-3 MΩ. Using a stereotaxic anatomical rat atlas (Paxino & Watson, 

1997) and a dissecting microscope, the glass electrodes were inserted in deep and 

superficial layers of the primary motor cortex, as well as the middle layers of the 
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somatosensory cortex (figure 2.5). The LFP signals were filtered to 1-500 Hz and 

amplified 1000x, with an applied notch filter at 50 Hz (EXT 10-2F, npi electronic GmbH, 

Germany), then converted and digitized at 10kHz by an analog to digital converter (CED 

1401, CED Ltd, UK). Observation and saving of the signal was done with Spike2 v6.08 

(CED Ltd, UK). The signal was then downsampled to 1kHz and exported to MatLab 

(Mathworks, Inc.) for further analysis.  

 

 
 

Figure 2. 4a-b. Drawn schematic of the recording chamber, seen in a (left), used in the in vitro 
experiments. Summarised schematic over the in vitro recording equipment can be seen in b 
(right). The temperature in the chamber is maintained at 32-33°C through submerged heating 
rods inside the chamber, which are connected to the external thermostat. Artificial cerebrospinal 
fluid flows from a cylinder outside of the Faraday cage, into the recording chamber and is 
heated. The continuous heated aCSF flow is delivered through submerged silicon tubing. The 
slice is placed in the interface of the aCSF on top of a lens tissue piece; the area is then covered 
with a small plastic lid. The aCSF flows over the interface and keeps the slice and surrounding 
at optimal humidity before draining out through two wells at the front of the chamber. Oxygen is 
delivered from a gas tank (not shown) and maintains the humidity in the recording chamber.  

 

 

 

Figure 2. 5. Schematic of sagittal slices used in the in vitro recordings. The dashed lines indicate 
where cuts were placed to excise the sensorimotor cortex. The thin line indicates the border 
between sensory and motor cortex, which varies horizontally depending on lateral location. 

A B 
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2.2.1.3. Oscillations in brain slices 

Several studies have investigated the pharmacological conditions required to induce 

cortical oscillatory activity, as well as modulate it, in specific in vitro preparations. Kainate 

(KA), is an agonist at the non-NMDA, non-AMPA, glutamate receptors named after this 

agonist (see review by Contractor et al., 2003). Carbachol (CCh) is a cholinergic agonist 

that binds to the muscarinic acethylcholine receptors and results in glutamate release 

from both GABAergic interneurons and pyramidal cells. Acetylcholine is well-researched 

as one of the main neurotransmitters and has been shown to modulate cortical network 

activity (Lucas-Meunier et al., 2003). KA and CCh have been used in different in vitro 

preparations of motor (Yamawaki et al. 2008) and somatosensory cortex (Buhl et al., 

1998), sensory and auditory cortex (Cunningham et al., 2004; Rooopun et al., 2006; 

2008), hippocampus (Fishahn et al., 1998) and entorhinal cortex (Cunningham et al., 

2003), to elicit oscillatory activity in the conventionally defined beta and gamma ranges. In 

essence, kainate and carbachol have been found to both be necessary to induce 

oscillations in the sensorimotor cortex in vitro (Buhl et al., 1998; Yamawaki et al., 2008, 

Prokic et al., 2012).  

 

2.2.2 Electrical stimulation in vitro 

Using electrical stimulation in vitro has previously shown to affect ongoing activity in the 

slice (Yamawaki et al. 2008). Here, electrical stimulation to slices was performed by using 

a custom-made bipolar wire electrode, in surface contact with the slice at the desired area 

of interest. Using a similar protocol to Yamawaki et al. (2008), the intensity of the constant 

current stimulator was set at 1.5mA with a pulse width of 100 µs (Digitimer, Ltd). 

Stimulation was delivered in trains with specific frequencies. The stimulator was externally 

controlled by Spike2 (CED Ltd, UK).  

The concern of overall temporal effect of applying several stimulation events in a slice was 

addressed on two levels. Firstly, by investigating at the changes to ongoing beta 

oscillations from the first to the last stimulation event, where no trends or changes could 

be attributable to specific frequencies, increased time or number of stimulations. 

Secondly, by using time periods of 30s before and after when analysing the effects on the 

ongoing oscillations, this concern was further abolished.  
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2.3. Multimodal approach  

2.3.1. Advantages and limitations to techniques used in this project  

The primary advantage with neuroimaging methods is their non-invasive nature. 

Recording magnetic fields in the scalp surroundings, as is done in MEG, is a passive 

process, although there is a small risk of contact with cryogenics. MEG results generally 

display excellent temporal resolution and combined with SAM analysis, good spatial 

resolution. However, this requires an MRI, which does present the participant with risks as 

strong magnetic fields are used, in addition to exposure to loud noise and cryogenics. 

There is also a chance of developing claustrophobia as the MRI scanner itself presents a 

small and constricted compartment. The final neuroimaging method used here is TMS. 

There have been reports of induced seizures using this technique, but in most cases 

these were found to be the result of ignoring safety guidelines and TMS threshold 

recommendations. The loud clicking noise from the coil, minor discomfort during 

stimulation and cognitive changes, as well as headaches have been suggested as 

adverse effects, but have yet to be scientifically evaluated and validated. The recent years 

have seen the emergence of global safety and practise guidelines based on published 

data, emphasising that TMS is a minimally invasive technique (Rossi et al., 2009).  

Essentially, the invasive nature of the in vitro animal studies makes it unsuitable for 

human research, but this is also what makes it advantageous. These methods provide us 

with fundamental understanding of the cellular and biological mechanisms that underlie 

function and activity in the brain. These techniques assist in elucidating the effects of 

exogenous and endogenous substances, and in the long run contribute to a more 

complete picture of the human brain. One difficulty when recording LFPs is noise 

elimination. Noise, in the in vitro electrophysiology setup, comes in different forms. 

Vibration noise is environmental, for example ground vibration or acoustics. A vibration 

isolation table is therefore used while recording. Electrical noise is also external, and is 

reduced by shielding the recording equipment, e.g. chamber with slice and electrodes, 

with a Faraday cage connected to a common ground. Additionally, the electrical noise at 

50 and 60 Hz can be reduced by using hardware and/or software notch filters in the 

amplifiers and recording programs, or noise elimination devices.   
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2.3.2. Rationale for using a parallel approach 

Further to the limitations and advantages discussed above there are three main 

arguments to why a parallel approach of in vitro and MEG recordings was appropriate in 

this project. Firstly, there is the concern of scale. With neuroimaging techniques it is not 

possible to record from specific laminae using MEG, which is easily achieved from in vitro 

recordings in cortical slices. Secondly, there are constraints in human MEG recordings 

with regards to invasive intervention protocols; we cannot administer some 

pharmaceutical substances or stimulation protocols as this would be unethical and 

harmful for the participant. In contrast, the final point concerns the functions and 

connectivity of neuronal networks. While a spatially focused recording of oscillations is 

possible and freedom of intervention application is vast in vitro; this is still a reduced 

model since the neuronal networks recorded from are neither connected to the rest of the 

brain, nor able to display functionally relevant and related activity. In order to address 

these limitations we have used both approaches when trying to disentangle beta 

oscillations in the sensorimotor cortex. The differences in experimental approaches also 

encompassed the analysis, making it difficult to optimally compare the results from these 

methods used in parallel. This led us to develop a different analysis approach.  
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2.4. Analysis 

2.4.1. Characterisation of sensorimotor beta oscillations 

2.4.1.1. Methodological differences in oscillations 

Beta oscillations studied in an in vitro preparation typically appear different to those 

studied in neuroimaging. In in vitro experiments, beta oscillations in MI typically have a 

narrow peak at approximately 27 Hz with an obvious amplitude difference from the 

baseline (Yamawaki et al., 2008). In MEG experiments, beta oscillations recorded over 

the motor cortex are typically broad in frequency (15-30Hz) and sometimes appear co-

existent with mu (~10 Hz) (Hall et al., 2011).  

 

Figure 2. 6. Schematic showing the shape of the oscillatory peak and its relation to the underlying 
variation in frequency. There are obvious visual differences between oscillatory peaks seen in MEG 
and in vitro experiments.  

 

The difference in appearance between the oscillatory signals recorded in the two 

modalities (figure 2.6), as well as conventional analysis between MEG and in vitro 

research, point to the need for different analysis approaches. This is especially important 

since the continuous a priori assumption is made that the elicited oscillations seen in the 

in vitro experiments are physiologically and functionally comparable to those observed in 

neuroimaging studies, and that they will respond in a similar way to any intervention as 

would the intact brain in a living subject. Conversely, with MEG the assumption is that 

oscillations observed in humans are a direct reflection of the underlying neuronal 

networks. As previously discussed, the limitations imposed by reduced connectivity in the 

in vitro preparation and limitation to macroscopic measurement in MEG, leaves a gap in 

our understanding of the extent to which these approaches are comparable. In order to 

approach these questions, it is important that analytical processes are comparable 

between methods. 
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2.4.1.2. Limitations of typical analysis approaches 

Analysis is often based on pre-defined frequency bands from the EEG literature, such as 

the beta band (15-30Hz). In vitro experiments typically make comparisons of power and 

frequency at the peak of the oscillation within that range. In comparison, MEG and EEG 

experiments typically make comparisons based upon the peak frequency within that range 

and the power within the entire band. This poses obvious difficulties in comparing 

between the two approaches, which need to be addressed. Furthermore, oscillatory 

frequency varies over time within and between measurements. Consequently, 

measurements from the peak of an averaged PSD computation may be misrepresentative 

in terms of frequency, see figure 2.7 below. 

 

Figure 2. 7. A few samples with high amplitude information can skew an averaged PSD, as seen in 
this schematic. The average of all samples is a broad and bimodal peak.  

 

Additionally, measurement of a fixed frequency band does not take into account either a 

mean frequency shift or change in the distribution of an oscillatory peak, or change 

between conditions. For example following pharmacological manipulation (Hall et al., 

2010), power in the frequency band may be misrepresentative of the actual change, see 

figure 2.8 below.   

 
Figure 2. 8. Oscillatory power is often measured within a pre-defined band, as illustrated in 
this schematic, for example the 15-30 Hz ‘beta band’. The beta peak in the pre-intervention 
condition is well within the ‘beta band’. However, when looking at the power within the ‘beta 
band’ after intervention, there is a decrease. Calculating the average power within this band 
in an average PSD plot leads to misinterpretations of results and principally reveals nothing 
about the oscillation. 
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In both in vitro and MEG recordings, the signal arises from different neuronal populations, 

for example in MEG different laminae (layers II/III and IV) contribute to the signal 

(Murakami & Okada 2006). The composition of an oscillatory signal will inevitably 

contribute to the variability seen in frequency and power, which highlights the importance 

of understanding the variation and distribution of the signals. 

 

2.4.2. Comparative analysis of neuronal network oscillations 

With the differences between beta oscillations seen in the different modalities, this project 

required the development of analysis software capable of disentangling information about 

the underlying neuronal networks generating the oscillations. The analysis also required 

ability to compare the similarities in responses to the manipulations presented to beta 

oscillations in the sensorimotor cortex recorded from different conditions. The analysis 

approaches presented here were therefore developed with these key points, and 

concerns from above, in mind.  

The recorded signals from MEG and in vitro experiments were analysed with custom-

made MatLab scripts. The initial step was to process 30s Morelet-Wavelet spectrograms, 

1-100 Hz. Morelet-wavelet spectrograms display the change in frequency and power over 

time. The time is found on the x-axis and the frequency on the y-axis. The power is 

displayed as colour changes, usually on the RGB colour spectrum, e.g. red colours 

indicate high power and blue less power. Morelet-wavelet spectrograms and associated 

PSDs were calculated for each sample (for a recording period of 30s the number of 

samples in an epoch will be related to the sampling rate; in vitro: 1000kHz, e.g. 30000 

samples; MEG: 600 Hz, e.g. 36000 samples) in each time-period for each subject or 

recording, using a sliding window approach. For specific details of the outputs from the 

custom-made MatLab scripts, see section 2.4.2.6.  

 

2.4.2.1. Oscillatory frequency analysis 

Measurements of oscillatory frequency usually assume that the frequency is constant 

throughout the measurement period. As a consequence, the frequency measurement is 

dependent upon the frequency variability and power at each frequency over the 

measurement window. To circumvent this, frequency is here determined from a sliding 

window PSD measurement from each sample in the time period and, independent of 

power, the mean frequency is derived from this.  An example of the differences in peak 

frequency result between approaches can be seen in figure 2.9 below. 
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Figure 2. 9. The averaged PSD plot of the spontaneous oscillatory activity from MI and SI. The 
peak values for the beta range in this plot are 24.5 Hz for MI and 22 Hz for SI. The mean peak 
frequency using the sliding window approach were 22.2 Hz for MI, illustrated by the blue 
vertical line, and 18 Hz for SI, illustrated by the light green vertical line.  

 

2.4.2.2. Oscillatory power 

Similar to the observation of frequency, power at the peak is dependent upon the 

variability of the frequency over time and the power at each peak frequency. Here, 

oscillatory power is analysed by taking a measurement of power at the peak frequency at 

each sample throughout the time period of interest. This provides a measurement of 

power at the frequency peak, these individual measurements of power at the peak 

frequencies are averaged to provide the mean peak power for the whole epoch. The 

current analysis approach will provide a more accurate representation of the oscillatory 

power during the epoch. In the example provided in the figure 2.9, above, the beta peak 

power in MI was 3.9 nAm and 2.6 nAm in SI. Using the different analysis approach we 

developed for this project, the mean peak power was 4.44±1.53 nAm in MI, and 3.06±1.09 

nAm in SI. 

 

2.4.2.3. Frequency distribution 

As discussed above, the measurement of power in a pre-defined frequency band is 

dependent upon changes in frequency and also the morphology of the frequency peak. As 

a result, these approaches are insensitive to frequency variability, condition-dependent 

shifts and changes in frequency distribution. The distribution of the oscillatory peak, which 

is indicative of frequency composition and distribution networks involved in the measured 

neuronal oscillation, is addressed by using the objective measure of full-width half-

maximum measurement (FWHM), see figure 2.10 below.   
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FWHM output provides an objective measure of variability and network distribution 

through its peak sharpness and frequency width. The FWHM width is combined with the 

mean frequency peak to provide a shape measurement of the oscillatory peak for each 

individual recording. The peak shape indicates the presence of underlying oscillatory 

signals, see figure 2.11 below.  If one network is responsible for an oscillation, e.g. driven 

by a single oscillator it should have an even distribution around the mean frequency. If this 

is not the case it suggests that additional oscillators are contributing to the activity.  

 

Figure 2. 11. Ai-Cii. Schematic pictures showing the oscillatory PSDs and FWHM. In Ai and Aii (left 
top and bottom), the individual PSD profiles can be seen, these are averaged as seen in Bi and Bii 
(middle top and bottom). The existence and characteristics of more than one network oscillator and 
its frequency can be determined by looking at the shape of the peak in conjunction with the mean 
frequency of the peak. The average PSD on the bottom row (Bii) is broader and most likely 
contains frequency contributions from more than one oscillation frequency. The FWHM plots, seen 
in Ci and Cii (right top and bottom), show the individual frequency ranges and the mean frequency 
peak, which in Cii indeed shows contribution from more than one oscillation.   
 

 
Figure 2. 10. Schematics showing full-width at half-maximum amplitude (FWHM). Difficulties in 
determining the frequency width of an oscillatory peak in a PSD, due to baseline fluctuations, are 
circumvented by using the FWHM measure. Right peak has wider FWHM. 
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For each recording one FWHM value is produced, see figure 2.12a-b for examples of this. 

These can then be averaged over the group to provide the mean FWHM, giving a 

representation of the frequency range of the network responsible for the ongoing 

oscillations in the area/condition of interest, see figure 2.12c below for an example of this. 

 
 

 
Figure 2. 12a-c. FWHM measurements in individual recordings from motor cortex superficial and 
deeper layers (MI LIII and LV) is seen in a and b, respectively in left and right top. FWHM values 
are averaged across the recording groups to provide the mean FWHM for the group in the 
area/condition of interest, shown in c (bottom).  

 

2.4.2.4. Frequency variability and stationarity 

As discussed previously, the mean frequency, amplitude and distribution are subject to 

the variability of the oscillation over time. In order to further disentangle the composition of 

the oscillatory signals the peak frequency distribution was quantified. This provides an 

understanding of how the peak frequency varies over the measurement epoch. We used a 

histogram approach, whereby the peak frequency is computed for each sample in the 

measurement epoch and assigned to the appropriate frequency bin (1Hz bin widths were 

used). The frequency distribution is thus presented as a power-independent 

representation frequency and indicates the contribution of frequency variability or 

Stationarity to the oscillatory profile and mean peak frequency. See figure 2.13a for an 

c 
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example of the power-independent frequency distribution histogram. Additionally, the 

power in each frequency bin can be computed to provide a normalised power/sample 

distribution for each frequency. This provides a method of determining the proportional 

contribution of each frequency to the PSD, see figure 2.13b below for an example of the 

frequency distribution when power per sample is taken into account. This is useful to 

indicate changes in power for a specific peak frequency. 

 
Figure 2. 13a-b. The peak frequency distribution in MI can be plotted independent of amplitude to 
provide information about the non-stationarity in peak frequency, seen in a (left). The power per 
sampled peak frequency can also be taken into account to establish if there are any changes in 
power for a specific peak frequency, seen in b (right). The black arrows indicate where most of the 
peak frequency measurements from all samples were found, e.g. the frequency distribution 
peaks.  

 

2.4.2.5. Oscillatory power and state change 

Oscillatory measurements, whether made from E/MEG or in vitro recordings, show a large 

degree of non-uniformity in the power of the signal. For example, measurements of the 

beta band in motor cortex shows periodic bursts of power, particularly in Parkinson’s 

disease patients. However, although these phenomena have the capacity to impact 

strongly upon the observed changes in power, there is rarely any consideration made for 

the power composition or intrinsic variability. When determining the impact of a change in 

conditions it is important to understand the nature of that change. Here, to disentangle 

this, an objective measurement of the power in the signal was used by sorting the power 

data from each sample in terms of amplitude. This distribution was then ranked in order of 

amplitude, converted to a zero-mean signal and cumulative summation applied. The effect 

of this is an objective sorting of power into low and high power states defined as above or 

below a minimum change point, e.g. the point of difference between the states. Samples 

were then determined as high or low power and the contribution of this determined before 

and after intervention. This addresses the question of the contribution of so called 

‘oscillatory bursting’, see figure 2.14 below for an example. The mean power in the 

upstate, e.g. the state above the change point, and the downstate, e.g. below the change 
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point, can be calculated to provide a quantitative determination of the variability of power. 

These can then be averaged over the group and compared between conditions and 

areas. Changes in power states after an intervention indicate a change in the pattern of 

activity.  

 
Figure 2. 14. Oscillatory power state analysis of MI oscillations in one participant. The oscillatory 
power peaks in the beta band (15-35 Hz) are plotted over time per recording. The top box 
illustrates the peak power values, while the bottom box illustrates which samples were above the 
change point.  

 

2.4.2.6. MatLab scripts  

Custom-made MatLab scripts were designed to extract these oscillatory frequency and 

power characteristics. These scripts used the data from the sliding window Morelet-

Wavelet spectrograms/PSDs and provided the following specific outputs: mean peak 

frequency ± standard deviation, mean power at the frequency peak ± standard deviation, 

mean full width half-maximum ± standard deviation, mean % of samples at peak 

frequency ± standard deviation, mean % samples at peak frequency ±5Hz ± standard 

deviation, mean % samples at peak frequency ±10Hz ± standard deviation, % up-and 

downstate, mean power in up- and downstate. There custom-made MatLab scripts which 

tested the results with t-tests and the statistical outputs were t-statistics and p-values. We 

tested between ‘before’ and ‘after’ time periods in the same participants and slices, and 

between oscillatory signals within the same participants or slices. Furthermore, the 

integration of in vitro signals for a designated location into an in silico aggregation was 

done by averaging the Morelet-wavelet spectrograms into one dataset. These integrated 

datasets were then analysed in the same way as the in vitro and MEG data.  
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Chapter 3. Spontaneous oscillations in the sensorimotor 

cortex 
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3.1. Introduction  

3.1.1. Background 

The presence of beta frequency (15-30Hz) and mu frequency (~10Hz) oscillations in the 

sensorimotor cortex has been the subject of both research and debate over several 

decades. Although the full relevance of these rhythms still eludes researchers, they are 

nonetheless an integral part of the activity in the sensorimotor cortex. In the absence of 

movement or somatosensory stimulation, the sensorimotor cortex display ongoing and 

regular beta oscillatory activity. A number of animal in vivo and human neuroimaging 

studies have reported on beta oscillations in primary motor cortex (MI) (Pfurtscheller, 

1981; Murthy & Fetz 1992; Sanes & Donoghue 1993; Salmelin & Hari 1994; Murthy & 

Fetz 1996; Baker et al. 1997; 1999). In addition, mu oscillations are reported in human 

neuroimaging studies and are believed to be generated the primary somatosensory cortex 

(SI) (Salmelin & Hari 1994; Salmenlin et al., 1995). The mu and beta rhythms have been 

established to not be harmonics of each other (Tiihonen et al., 1989), and are individually 

modulated (Nagamine et al., 1996). Both rhythms display patterns related to function. The 

mu rhythm has in animal in vivo experiments been reported as the sensorimotor rhythm 

(SMR, 10-14 Hz) (Kaplan 1979; Rougeul et al. 1979), and was recently confirmed to 

spatially correspond to the functional mu rhythm, in addition to similar features such as the 

classic wicket shape of the oscillation itself (Marini et al. 2008; Tort et al., 2010; 

Sobolewski et al., 2011). Both beta and mu rhythms attenuate prior to onset of motor 

events and resynchronises after the offset with different spatiotemporal characteristics, as 

evidenced by several neuroimaging studies the last decades (Pfurtscheller, 1981; 

Salmelin & Hari 1994; Jensen et al., 2005; Gaetz & Cheyne 2006; Jurkiewicz et al., 2006, 

Neuper et al., 2006; Avanzini et al., 2012).  

Although MEG and EEG have provided the spatiotemporal identification for the functional 

modulation of beta oscillations in humans, these methods are macroscopic and reveal 

little about the underlying mechanism of spontaneous rhythmogenesis or intrinsic 

characteristics of the beta rhythm itself. Conversely, in vitro brain slice protocols have 

been used for decades to study underlying neuronal mechanisms of observed brain 

activity (Yamamoto & McIlwain 1966; Andersen et al., 1972). The synchronised activity in 

and around cells has been correlated to their intrinsic distinct electrophysiological 

properties (Chagnac-Amitai & Connors 1989; Fransceschetti et al.; 1995, Flint & Connors 

1996), which is further supported by observations of co-existing rhythms in sub-areas 

(Flint & Connors 1996; Roopun et al., 2006). There is a large collection of research 

describing the potential mechanisms for rhythmogenesis and oscillations, in different 
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areas of the rodent brain; in hippocampus (Whittington et al.; 1995; Traub et al., 1996), 

entorhinal cortex (Cunningham et al., 2003), somatosensory cortex (Buhl et al., 1998), 

secondary somatosensory and auditory cortex (Cunningham et al., 2004; Roopun et al., 

2006), primary motor cortex (Yamawaki et al., 2008). Buhl et al. (1998) reported on the 

existence of gamma oscillations in the somatosensory cortex, although it is unclear if this 

was the primary or secondary areas. Research in MI reports that beta oscillations 

originate in layer V of the primary motor cortex in slice preparations (Yamawaki et al., 

2008). There is a lack of current research reporting on the existence and characteristics of 

beta or mu oscillations in other specific layers of the primary sensorimotor cortex in rats. 

The MEG signal has an optimally resolved source size of approximately 5mm3, or 10000-

50000 synchronised pyramidal cells, primarily located in layer II/III and V of the cortical 

area of interest (Vrba & Robinson 2001; Hillebrand & Barnes 2002; Murakami & Okada 

2006). This area of recording is considerably larger than that of in vitro glass 

microelectrode LFP recordings, which comprise an average measurement from 

approximately 500-3000 µm around the electrode tip (Mitzdorf, 1987, Juergens et al., 

1999, Logothetis et al., 2001). These differences in source size consequently infer that the 

MEG signal is a spatial aggregate that is more complex with regards to neuronal network 

composition. There is currently a lack of research aimed at establishing the differences 

and similarities between these oscillatory signals, although many MEG and in vitro 

research reports draw on conclusions used in one modality to rationalise and interpret 

their own experiments and results in the other modality. If these recording methods are 

going to be used in comparison and inferences are to be made between them, it is 

essential that comparative features of the oscillatory signals are elucidated. 

The current conventional analysis approaches in M/EEG and in vitro literature differ to 

some extent from each other. The limitations in the conventional approaches were 

discussed in detail in the methods chapter and limitations concern the variability of 

frequency and power. Understanding the variability in oscillatory signals is particularly 

important when looking at spontaneous ongoing oscillations and using these as baselines 

for any intervention or functional modulation.  Variability in frequency and power is 

indicative of the underlying neuronal network activity and communication. Recently the 

beta band stationarity was found to correlate to rigidity and bradykinesia in PD patients 

(Little et al., 2012), indicating that the importance of variability in analysis of oscillatory 

signals has yet to be fully realised.  
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3.1.2. Aims and research objectives 

Previously mentioned studies have recorded MI and SI oscillations in vitro and with MEG, 

but it is unclear to what extent the neuronal network activity of MI and SI is comparable. 

Here, we aim to address the questions:  

What are the oscillatory profiles of MI and SI recordings in vitro and MEG? 

o Which oscillations arise from each area? 

o How do these oscillations compare in power between areas? 

o How do these oscillations compare in frequency between areas? 

 

Previous studies have characterised oscillatory activity using band or peak analysis 

approaches, but it is unclear whether these time averaged measurements are true 

representations of the network signals from which they arise. Here we aim to address the 

questions: 

What are the similarities and differences in oscillation between laminae in vitro? 

o What oscillations occur in each layer of MI? 

o How do oscillations vary in distribution between layers? 

o What is the variance in frequency and power between layers? 

 

Previous studies suggest that in vitro LFP and MEG signals are comparable, but there is a 

scarcity of empirical data supporting this. It is unclear to what extent the oscillatory signals 

can be compared between modalities. Here, we use a signal integration approach to 

address the questions:  

To what extent are integrated oscillatory signals from MI in vitro comparable with MI 

oscillatory signal from MEG? 

o Does integration of layer III and V better reflect MEG MI signals? 
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3.2. Methods 

3.2.1. In vitro 

Brain slices were prepared using a similar protocol to Yamawaki et al. (2008), as 

described in chapter 2. All animal experiments were performed in accordance with the 

Aston University ethical review board regulations, as well as the Animals Scientific 

Procedures Act 1986; European Communities Directive (86/609/EEC). Brains from p18-

p22 (50-60g) male Wistar rats were extracted and prepared according to in vitro protocol 

2. 450 µm thick sagittal sensorimotor slices were stored in a tissue interface chamber at 

room temperature for >1h. The slices were then transferred to a recording chamber with a 

temperature of 33-34°C and a continuous flow rate of 2 ml/min aCSF with added KA and 

CCh; concentrations and preparations according to protocol 2. Recordings of LFPs from 

superficial layers (II/III) and deeper layers (V) of MI and middle layer (IV) of SI (figure 2.6) 

were made. The electrodes were placed in relevant layers, identified by using a dissecting 

microscope and the Rat Brain Atlas (Paxinos & Watson 1986) as reference. LFP 

recording started after the KA- and CCh-induced oscillatory activity had stabilised, >1h in 

the recording chamber with KA and CCh in the aCSF flow, and lasted for >3h.  

Recording of in vitro data was performed with Spike2 v.6.02 (CED Ltd.) Online analysis 

was performed with fast-Fourier transform (FFT) with the size of 16384, applying a 

Hamming window and a finite resolution of 0.61104. This was only done to identify 

oscillatory activity in laminae of interest and to distinguish and select representative LFP 

recordings. After recording, the data was down-sampled at 1kHz and exported in 

spreadsheet format (.txt) to MatLab (The Mathworks, Inc.) for offline analysis. From these 

converted datasets, 30s Morelet-wavelet spectrograms were processed before applying 

the custom-made analysis described previously (see Chapter 2, but also briefly in 3.2.3). 

The number of recordings from the different in vitro locations was: superficial layers of 

primary motor cortex (MI LIII), n=24; deeper layers of primary motor cortex (MI LV), n=36; 

middle layers of primary somatosensory cortex (SI LIV), n=37.  

Integration of in vitro recordings from superficial and deeper layers of MI was done 

through MatLab: n=20. To summarise, the two corresponding signals from the two 

locations (MI LIII and LV) in each slice were used to create an averaged epoch of data. 

This was then analysed in the same manner as other in vitro recordings, described below. 
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3.2.2. MEG 

Magnetic field activity from 13 healthy participants (7 M), mean age 29-46 years, was 

recorded while the subjects were sitting at rest in the 275-channel MEG scanner (CTF, 

Canada). The study was performed in accordance with the Declaration of Helsinki, and 

approved by the Ethics Committee of the School of Life and Health Sciences at Aston 

University. Written informed consent was obtained from all participants. The participants 

received visual instructions from a computer screen, in addition to audio instructions from 

the experiementer.  

Primary motor cortex was localised with a SAM beamformer approach based on the 

PMBR seen after voluntary finger movements (Jurkiewicz et al., 2006). The PMBR was 

identified by an increase in the 15-30 Hz frequency band 0.5 to 1.5 seconds following 

movement offset compared to and -2.0 to -1.0 seconds before movement. EMG 

electrodes were placed on the FDI muscle to determine the onset and offset of finger 

movements. Primary somatosensory cortex was localised in 8 participants with ERSAM 

(Cheyne et al., 2006), using the stimulation events in a 2 Hz electrical stimulation train 

delivered through two electrodes (Digitimer Ltd.) to the median nerve at 50% of the 

thumb-twitch threshold. We focused the ERSAM on gamma (30-100Hz) activity around 

the evoked potential latency. Trials containing artefacts were discarded and the data was 

filtered to 1-200 Hz, with additional notch filters at 50 and 60 Hz. Virtual electrode data 

from MI and SI loci, during 30 second rest periods, were processed in MatLab (The 

Mathworks, Inc.) as Morelet-wavelet spectrograms. These data were then analysed using 

the same process as used for in vitro analysis.  

 

3.2.3. Analysis approach 

The mean peak frequency and peak power was determined for each sample with a sliding 

window approach, in which the frequency of the oscillatory peak and the power of that 

peak was determined for each sample in each 30s epoch. The frequency distribution of 

the oscillations was determined using FWHM. The frequency variability was computed 

using the amplitude-independent peak frequency distribution, where the peak frequency of 

each sample was sorted into frequency bins of 1 Hz. Variability in oscillatory power was 

determined using an amplitude sorting measurement to determine the time and amplitude 

changes of oscillatory up and down states. We used student’s T-tests to statistically test 

for differences. Further details regarding this analysis approach can be found in chapter 2. 
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3.3. Results 

3.3.1. Oscillatory neuronal network activity in MI and SI  

3.3.1.1. Oscillatory peak frequency and power in MI and SI in MEG recordings  

The group-averaged Morelet-wavelet spectrograms from the different locations show 

distinct oscillations in mu and beta bands, in both MI (n=13) and SI (n=8). The amplitude 

and persistence of the beta frequency appeared greatest in MI (figure 3.1a-b.). 

 

Figure 3. 1a-b. Group-averaged Morelet-wavelet spectrograms of MI (n=13) and SI (n=8) showing 
variation over time in the oscillatory activity recorded with MEG. The oscillatory beta frequency 
activity appears less dominant in SI (b, right), than in MI (a, left). 

Group average PSDs from MI and SI showed little distinction in oscillatory profiles, with 

regard to frequency and peak shapes, between the two areas (figure 3.2)  

 

Figure 3. 2. Group- and time-averaged PSD from primary motor and somatosensory cortex (MI 
and SI) in MEG experiments. The blue and green lines indicate MI (n=13 and SI (n=8), 
respectively. There was a significant difference in peak power, but not frequency, see figure 
3.3a-b. 
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The mean peak frequency in MI was 22.23±6.07 Hz and mean peak amplitude 4.44±1.53 

nAm. The mean peak frequency in SI was 18.79±5.33 Hz and mean peak amplitude 

3.06±1.09 nAm. The difference in power between MI and SI was significant, t[7]=4.0114, 

p=0.0051. The difference in frequency was non-significant t[7]=2.1689, p=0.0667 (figure 

3.3a-b). 

  

Figure 3. 3a-b. Mean peak frequency, seen in a (left), and power, seen in b (right), in MI (n=13) 
and SI (n=8) in MEG recordings from humans. The difference in mean peak power was 
significant, p<0.05, marked with *. Error bars represent SEMs. 

 

3.3.1.2. Oscillatory frequency and power in MI and SI in vitro  

Group- and time-averaged PSDs from the three different recordings locations showed 

distinct oscillatory profiles (figure 3.4), with regards to frequency and peak shape. Broad 

ongoing activity in mu and beta frequency ranges was seen in superficial layers of MI (MI 

LIII, n=24) throughout the time period. Constant and narrow beta oscillations were seen in 

deeper layers of MI (MI LV, n=36), whereas middle layers of SI (SI LIV, n=37) showed 

broad oscillatory activity with stronger power in the beta range (figure 3.5a-c).  

 

Figure 3. 4. Group- and time-averaged PSDs from the three different locations in vitro. The 
blue and green lines indicate deeper and superficial layers of MI (MI LV, n=36 and MI LIII, 
n=24), respectively. The red line indicates the recordings from the middle layers of SI (SI LIV, 
n=37). Each location has a distinct oscillatory profile.  
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Figure 3. 5a-c. Group-averaged Morelet-wavelet spectrograms of the ongoing activity in different 
layers of the primary sensorimotor cortex in vitro show variation in power and frequency over 
time. In MI LIII (n=24), sporadic activity throughout the time period can be seen to span over a 
broader frequency range (a, top left). MI LV (n=36), show a frequency-wise narrow beta 
oscillatory activity (b, top right). In SI LIV (n=37) more power in the beta range is seen, but also 
mu (c, bottom). 
 

The mean peak frequency in MI LV was 30.18±3.22 Hz, and mean peak amplitude was 

20.75±27.92 x10-11V2. In MI LIII the mean peak frequency was 18.89±6.07 Hz and mean 

peak amplitude 13.38±18.17 x10-11V2. The mean peak frequency in SI LIV was 

12.38±6.76 Hz, and mean peak amplitude was 14.61±14.37 x10-11V2 (figure 3.6a-b). The 

differences in amplitude were non-significant; between MI LIII and MI LV: t[23]=-1.5993, 

p=0.1234; between MI LIII and SI LIV: t[23]=-0.4001, p=0.6928; between MI LV and SI LIV: 

t[23]=-1.4035, p=0.1738. The difference in mean peak frequency between MI LIII and MI LV 

was highly significant, t[23]=-5.4872, p<0.001; between SI LIV and MI LV significant, t[23]=-

3.1961, p=0.004; and between MI LIII and SI LIV significant, t[23]=-3.2607, p=0.0034. 
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Figure 3. 6a-b. The mean peak frequency, seen in a (left), and power, seen in b (right), in MI LIII 
(n=24), MI LV (n=36) and SI LIV (n=37) in vitro. The mean peak frequency differed significantly 
between all locations, p<0.05, marked with *. There were no significant power differences. SEMs 
are indicated as errorbars. 

 

3.3.2. Oscillatory distribution and variability in sensorimotor cortex 

3.3.2.1. Oscillatory distribution in MI and SI in MEG 

The mean FWHM in MI was 24.58±11.22 Hz. The mean FWHM in SI was 25.64±10.68 Hz 

(figure 3.7). There were no statistical differences between mean FWHM in MI and SI, t[7]=-

0.257, p=0.8046. 

 

Figure 3. 7. Mean FWHM in MI (n=13) and SI (n=8) in humans. There are no significant difference 
in frequency between the locations. Error bars represent SEMs. 

 

3.3.2.2. Frequency Distribution in MI and SI in vitro 

The mean FWHM in MI LIII recordings was 13.13±5.72 Hz. In MI LV the mean FWHM 

was 12.13±4.09 Hz. In SI LIV the mean FWHM 16.14±6.6 Hz (figure 3.8). The difference 

between the mean FWHM in MI LV and SI LIV was highly significant, t[23]=4.5018, p= 

0.00016116. Statistical comparison between other locations showed no significant 

differences; between MI LIII and SI LIV: t[23]=-1.653, p=0.1119; between MI LIII and MI LV: 

t[23]=-1.781, p=0.0881. 
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Figure 3. 8. Mean FWHM in MI LIII (n=24), MI LV (n=36) and SI LIV (n=37) from in vitro 
recordings. The difference in mean FWHM between MI LV and SI LIV was highly significant, 
p<0.001, marked with *. Error bars represent SEMs. 

 

3.3.2.3. Frequency Variability in MI and SI in MEG 

In MI two peaks in the frequency variability were found at 10 and 25 Hz. The power-

normalised distribution showed peaks at 10 and 21 Hz, with 6.1 and 7.5 nAm in power 

(figure 3.9a-b). The percentage of samples found at the beta peak frequency was 

6.86±4.12%, at peak frequency ±5Hz: 45.60±15.19% and at peak frequency ±10Hz: 

55.32±17.71%.  

The frequency distribution in SI contained two peaks at 11 and 22 Hz. The normalised 

power per sample distribution showed peaks at 10 and 18 Hz, with 5.1 and 5.7 nAm in 

amplitude respectively (figure 3.10a-b and 3.11). The percentage of samples found at the 

beta peak frequency was 6.41±2.55%, at peak frequency ±5Hz: 40.66±8.27% and at peak 

frequency ±10Hz: 49.71±8.52%. There was no statistically significant difference between 

the frequency distribution in MI and SI, t[7]=0.0071, p=0.9945.  

 

Figure 3. 9a-b. Group-average peak frequency distribution and its related power distribution in 
MI (n=13) in humans. The frequency distribution, seen in a (left) shows the highest count of 
samples with frequency peaks were found at 10 and 25 Hz, indicated by black arrows. The 
normalised power to sample distribution, seen in b (right), shows two peaks: one at 10 Hz with 
less power than the one at 21 Hz, also indicated by black arrows.  
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Figure 3. 10a-b. Group-average peak frequency distribution and its related power distribution in 
SI (n=8) in humans. The frequency distribution, seen in a (left), shows frequency peaks at 11 
and 22 Hz (black arrows). The normalised power-to-sample distribution, seen in b (right), shows 
two peaks at 10 and 18 Hz (black arrows).  

 

 

Figure 3. 11. Mean peak frequency distribution in MI (n=13) and SI (n=8) from MEG 
recordings. There were no significant differences between MI and SI. Error bars represent 
SEMs. 

3.3.2.4. Frequency Variability in MI and SI in vitro 

In MI LIII, most peak frequency samples were <10Hz, with two additional peaks at 24 and 

30 Hz. In the power-normalised distribution show two flat and broad peaks at 12 and 23 

Hz, 23.5 and 23.1 x10-11 V2, respectively (figure 3.12a-b). The percentage of samples 

found at the beta peak frequency in MI LIII was 7.39±6.77 %, at peak frequency ±5Hz: 

45.98±23.66 % and at peak frequency ±10Hz: 59.25±24.19 %.  

The frequency distribution in MI LV displayed two peaks at 23 and 30 Hz. The normalised 

power per sample distribution showed a broad peak at 29 Hz, 28.8 x10-11 V2 (figure 

3.13.a-b). The percentage of samples found at the beta peak frequency in MI LV was 

13.33±8.50 %, at peak frequency ±5Hz: 61.98±19.04 % and at peak frequency ±10Hz: 

67.80±17.68 %.  
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The frequency distribution in SI LIV showed two frequency peaks at 9 and 23 Hz. The 

highest peak was found at 22 Hz in the power normalised distribution, 24.8x10-11 V2 

(figure 3.14a-b). The percentage of samples found at the beta peak frequency was 

10.02±8.50 %, at peak frequency ±5Hz: 54.71±18.85 % and at peak frequency ±10Hz: 

65.70±16.15 %. There was no significant difference in variability between MI LIII and SI 

LIV, t[23]=-1.0693, p=0.269; The difference in variability was significant between MI LIII and 

MI LV, t[23]=-3.446, p=0.0022; and between SI LIV and MI LV, t[23]=-2.3381, p=0.0284 

(figure 3.15). 

 

Figure 3. 12a-b. Group-average peak frequency distribution, a (left), and its related power 
distribution, b (right), in MI LIII (n=24) in vitro. The frequency distribution shows an abundance of 
frequency peaks <10 Hz, with accumulation of peak frequencies at 24 and 30 Hz, indicated by 
black arrows. The normalised power to sample distribution shows a flat distribution with 
distinguishable peaks at 12 and 24 Hz, indicated by black arrows. 

 

 

Figure 3. 13a-b. Group-average peak frequency distribution and its related power distribution in 
MI LV (n=36) in vitro. The frequency distribution, seen in a (left), shows frequency peaks at 23 
and30 Hz, indicated by arrows. The normalised power to sample distribution, seen in b (right), 
showed a peak at 29 Hz, indicated with arrow. 
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Figure 3. 14a-b. Group-average peak frequency distribution and its related power distribution in 
SI LIV (n=37) in vitro. The frequency distribution, seen in a (left), shows frequency peaks around 
9 and 23 Hz, indicated with arrows. The normalised power to sample distribution, seen in b 
(right), showed a peak at 22Hz, indicated with arrow.  

 

 

Figure 3. 15. Mean beta peak distribution in MI LIII (n=24), MI LV (n=36) and SI LIV (n=37). 
There were significant differences in variance between MI LV and MI LIII, and MI LV and SI 
LIV, p<0.05, marked with *. 

 

3.3.2.5. Oscillatory Power State analysis in MI and SI in MEG 

In MI, the percentage of samples found in the upstate was 43.28 %, with a mean upstate 

power of 3.66 nAm and a mean downstate power was 2.67 nAm (figure 3.16). In SI, the 

percentage of samples found in the upstate was 42.39 %., with a mean upstate power of 

2.64 nAm and a mean downstate power was 1.92 nAm (figure 3.17). Figure 3.18a-b 

presents an overview of the oscillatory state analysis results. The difference in percentage 

of samples found in the upstate between MI and SI was non-significant, t[7]=0.4525, 

p=0.6646. The difference in oscillatory state power between MI and SI was highly 

significant for the upstate difference, t[7]=5.7314, p<0.001, and significant for the 

downstate difference, t[7]=5.0179, p=0.0015.  
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Figure 3. 16. Example of oscillatory power analysis of signal recorded from MI in one human 
participant. Sporadic increases in power with varying length and power can be seen in the top 
plot. The thin line represents the change point between states.The bottom box indicates where 
the samples have surpassed the change point. 

 

 

Figure 3. 17. Example of oscillatory power analysis of signal recorded from SI in one human 
participant. Sporadic increases in power with varying length and power can be seen in the 
top plot.  

 

  

Figure 3. 18a-b. Group-averages of percentages of samples found in the oscillatory up- (grey) 
and downstate (orange), seen in a (left), and their mean power, seen in b (right). Oscillatory 
activity show no significant differences in states between MI (n=13) and SI (n=8). The mean 
power in the up- and downstates differ significantly between MI and SI, p<0.05, marked with *. 
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3.3.2.6. Oscillatory Power State analysis in MI and SI in vitro 

In MI LIII, the percentage of samples found in the upstate was 39.69 %, the mean upstate 

power was 10.09 x10-11V2, and the mean downstate power was 3.85 x10-11V2 (figure 

3.19). In MI LV, percentage of samples found in the upstate was 37.89 %, the mean 

upstate power was 8.79 x10-11V2 and the mean downstate power was 2.59 x10-11V2 (figure 

3.20). In SI LIV, percentage of samples found in the upstate was 38.84 %, the mean 

upstate power was 9.21 x10-11V2 and the mean downstate power was 3.22 x10-11V2 (figure 

3.21). The percentage upstate difference between MI LIII and MI LV was significant, 

t[23]=2.6357, p=0.0148, but not between MI LIII and SI LIV: t[23]=0.7852, p=0.4403 or MI LV 

and SI LIV: t[23]=2.0291, p=0.0542 .There was no significant difference between power in 

the upstates in MI LIII and MI LV: t[23]=0.4315, p=0.6701, or MI LIII and SI LIV: 

t[23]=0.0334, p=0.9736, or MI LV and SI LIV: t[23]=0.378, p=0.7089. There was no 

significant difference between power in the downstates in MI LIII and MI LV: t[23]=0.3189, 

p=0.2002, or MI LIII and SI LIV: t[23]=0.4041, p=0.6899, or MI LV and SI LIV: t[23]=0.8341, 

p=0.4128 (figure 3.22a-b). 

 
Figure 3. 19. Example of oscillatory power activity in the beta frequency band in one recording 
from MI LIII in vitro, which shows a sporadic pattern, as seen in the top plot. The thin line 

indicate the change point power value and the bottom box the samples in either state.  

 
Figure 3. 20. Example of oscillatory power activity in the beta frequency band in one recording 
from MI LV in vitro, which shows a sporadic pattern, as seen in the top plot. 
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Figure 3. 21. Example of oscillatory power activity in the beta frequency band in one recording 
from SI LIV in vitro, which also shows a sporadic pattern. 
 

  

Figure 3. 22a-b. Group-averages of percentages of samples found in the oscillatory states and 
their mean power in vitro (MI LIII: n=24, MI LV: n=36, SI LIV: n=37). Percentage of samples in 
the upstate (grey) was significant between MI LIII and MI LV, p<0.05, seen in a (left), and 
marked with *. There were no differences of power in the up- and downstates, seen in b (right). 
Downstate is indicated by the colour orange. 

 

3.3.3. Integration of oscillatory signals from MI in vitro versus MI in MEG 

recordings  

Overall, oscillatory activity with similar frequency range appears in superficial and deeper 

layers of MI in vitro as in MEG MI recordings. However, as can be seen above, there are 

some differences. The frequency distribution, e.g. the mean FWHM, is narrower for MI in 

vitro recordings when compared to MI MEG recordings, the frequencies and variability 

also vary slightly. We theorised that these differences are due to the differences in spatial 

nature of the signals; MEG is an aggregate signal from layers II/III and V, while the in vitro 

signal is spatially precise to the laminae. Hence, we hypothesised that the combined 

signals from MI laminae would be a better representative of MEG than individual laminae 

signals. 
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3.3.3.1. Oscillatory power and frequency analysis 

The integrated oscillatory signals from MI LV (n=20) and MI LIII (n=20) from the same 

slices: MIint (n=20), were investigated with the previously described analysis approach. 

The oscillatory profiles in MI LIII and MI LV differed in appearance, as can be seen in the 

group- and time averaged oscillatory PSD profiles in figure 3.23. Integrating the 

recordings from these layers resulted in an oscillatory profile that showed more 

resemblance with the MEG MI oscillatory signal than the signal from the individual layers 

alone. 

 

Figure 3. 23. Group-average PSD showing the oscillation profiles from the individual locations 
MI LV (n=20) and MI LIII (n=20) in vitro in blue and green, MIint (=20) in red, and MI (n=13) from 
MEG recordings in black.  

 

The mean peak frequency in MIint (n=20) recordings was 25.93±7.4 Hz. There was no 

significant difference in mean peak frequency between MIint and MEG MI recordings: t[12]=-

1.2316, p=0.2417, or between MI LIII and MEG MI: t[12]=1.496, p=0.1605 (figure 3.24). 

The mean peak frequency in MI LV was significantly higher than in MEG MI recordings, 

t[12]=-4.9751, p=0.00032249, while MI LV was not significantly different in peak frequency 

to MIint: t[19]=2.01, p=0.0588.  
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Figure 3. 24. Mean peak frequency in the individual MI (MI LIII: n=20, MI LV: n=20) and 
integrated MI (n=20), as well as MEG MI (n=13), recordings. There was a highly significant 
difference between MI LV and MI MEG recordings, p<0.001, marked with *. Error bars are 
SEMs.  

 

3.3.3.2. Frequency distribution 

The mean FWHM for MIint recordings was 14.60±7.89 Hz (figure 3.25). There was no 

significant difference between MIint and MEG MI recordings: t[12]=1.3681, p=0.1964. MI LV 

showed a significant difference to MEG MI: t[12]=4.4216, p=0.00083319; as did MI LV 

compared to MIint recordings t[19]=-2.8326, p=0.0106.  

 

Figure 3. 25. Mean FWHM shows a narrow FWHM in MI LV (n=20), compared to MI from MEG 
(n=13) recordings. There were no significant differences between MEG MI recordings and MI int 
(n=20). There were significant differences between MEG MI and MI LV, and between MI LV and 
MIint, p<0.05, marked with *. Errorbars are SEMs. 

 

3.3.3.3. Frequency variability 

The sample count at the frequency distribution peak in MIint was 13.4±10.98 %. There 

were no significant differences between MIint, and MEG MI recordings: t[12]=-0.9136, 

p=0.3789, or between MI LIII and MEG MI recordings: t[12]=1.2772, p=0.2257 (figure 3.26-

27). There no significant difference in frequency variability between MI LV and MIint: 

t[12]=1.6986, p=0.1057. There was a significant difference between MI LV and MEG MI; 

t[12]=-3.6257, p=0.0035.  
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Figure 3. 26a-d. Mean peak frequency variability distribution in MEG MI (a), MI LV (b), MI int (c) 
and MI LIII (d), recordings. The left column show that in both MEG MI and MIint recordings there 
are beta and mu oscillations, while the individual laminae recordings in the right column show 
beta in MI LV and mu and beta in MI LIII. The black arrows indicate the frequency distribution 
peaks: in a these are found at 5, 10 and 25 Hz, in b at 24 and 30 Hz, in c at 6, 24, 30 Hz, and in 
d at 8, 23 and 30 Hz. MI LIII: n=20, MI LV: n=20, MEG MI: n=13, MIint: n=20. 

 
 

 
Figure 3. 27. Mean peak frequency variability distribution in MI LIII (n=20), MI LV (n=20), MIint 
(n=20) and MEG MI (n=13) recordings. The mean % of samples at the peak frequency is 
significantly different between MI LV and MEG MI, p<0.05, marked with *. Errorbars are SEMs.  
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3.4. Discussion 

3.4.1. Summary  

This study has investigated the oscillatory signals from sensorimotor areas recorded with 

MEG and in vitro, and differences between them. We found distinct oscillatory profiles in 

different areas in vitro and MEG, confirmed by significant differences between the mean 

peak power in MI and SI in MEG recordings and significant differences in mean peak 

frequency between all areas recorded. The in vitro experiments also revealed oscillatory 

mu in a sensorimotor sagittal brain slice, which has not been widely reported before. 

There were clear differences in network distribution and variability of oscillatory frequency 

and power. There was a significant difference in the mean FWHM between SI LIV and MI 

LV. The peak frequency distribution differed significantly between MI LIII and MI LV, as 

well as SI LIV and MI LV. There was a significant difference in the percentage of samples 

found in the upstate between MI LIII and MI LV. Finally, we have showed that integrating 

signals from MI LIII and MI LV provides an oscillatory signal that profile that resembles the 

MEG signal more than MI LV alone. 

 

3.4.2. Spatial localisation of generators of sensorimotor cortex oscillations 

Animal in vivo and neuroimaging literature describe the presence of beta and mu 

oscillations to great extents (Jasper & Penfield 1949; Gastaut & Bert 1954; Rougeul et al. 

1979; Pfurtscheller 1981; Bouyer et al. 1987; Murthy & Fetz 1992; Sanes & Donoghue 

1993; Salmelin & Hari 1994; Salmelin et al. 1995; Murthy & Fetz 1996; Pfurtscheller et al., 

1997; Crone et al., 1998; Baker et al. 1999; McFarland et al., 2000; Marini et al. 2008; Tort 

et al., 2010; Sobolewski et al., 2011). Induced oscillatory activity in different cortical and 

sub-cortical areas in vitro has been described by several research groups (Llinas et al., 

1991; Whittington et al.; 1995; Traub et al., 1996; Buhl et al., 1998; Cunningham et al., 

2003; 2004; Roopun et al., 2006; Yamawaki et al., 2008). The beta and mu oscillations 

are also reported as network activity in the mammalian primary sensorimotor cortex in 

vitro; mu and beta/gamma oscillations have been induced in middle laminae of the rodent 

somatosensory cortex (Flint & Connors 1996; Buhl et al., 1998). Beta oscillations have 

been reported in the deeper layers of MI, which can also be seen in the superficial layers 

(Yamawaki et al., 2008). However, overall there are few reports specifically detailing 

oscillatory beta and mu activity in the individual layers of primary somatosensory and 

motor cortex in vitro.  
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The in vitro experiments in this project revealed oscillatory mu activity in MI LIII and SI 

LIV, resulting in distinct oscillatory profiles from that of MI LV. Previously, it has been 

proposed that the mu rhythm is indicative of long-range neuronal communication, for 

example thalamocortical communication and the functional changes in the mu rhythm are 

reflective of thalamocortical activity and modulation (Lopes da Silva et al., 1980; 

Suffczynski et al., 2001). However, there are researchers who argue that there are 

multiple generators of the alpha rhythm with distinct origins (Jones et al., 2009; Kopell et 

al., 2010; Tort et al., 2010). Furthermore, different frequencies of brain oscillations have 

been proposed to reflect distinctions in network sizes and range of communication 

between neuronal assemblies. Lower frequencies encompass larger areas, alternatively 

longer distances. The higher frequencies would synchronise local assemblies and 

integrate information and processing (Kopell et al., 2000, Steriade 2001; Varela et al., 

2001; Csicsvari et al., 2003; Sirota et al., 2003). As the sensorimotor slice is isolated from 

other areas, our finding of mu in vitro supports the concept of multiple generators of mu. 

Our results do not support the mu rhythm as only a thalamocortical feature.  

The finding of co-existing and simultaneous mu and beta oscillations in the MI LIII and SI 

LIV support the notion that laminae and sub-areas are distinct in their electrophysiological 

make-up and that neuronal network activity and ongoing oscillations reflect these 

distinctions (Chagnac-Amitai & Connors 1989; Franschetti et al.; 1995, Flint & Connors 

1996; Cunningham et al., 2004; Roopun et al., 2006; Rosanova et al., 2009). These 

differences in neuronal network activity were evidenced by significant differences in mean 

peak frequencies between all areas recorded.  

In addition, the findings of mu in these in vitro experiments queries the simplified view that 

the mu rhythm is purely a consequence of long-range communication alone, and brings 

question to the functional and cognitive relevance of the mu rhythm. The relevance of mu 

oscillations has been reviewed heavily during the last decades with respect to mirror 

neurons (Cochin et al., 1998; Francuz & Zapala 2011), attention and cognition (Moore et 

al., 2008; van Dijk et al., 2008; Jones et al., 2010; Anderson & Ding 2011; van Ede et al., 

2011; Freyer et al., 2012) and sensory and motor responses (Salmelin et al., 1995; 

Pfurtscheller et al., 1997; Neuper et al. 2001a; also see Pineda, 2005, for a review on the 

mu rhythm). The brain slice preparation does not allow for cognitive or functional probing, 

but the finding of mu in this preparation indicates that the mu rhythm does exist in isolated 

neuronal networks, similarly to beta and gamma rhythms, and is not a direct consequence 

of cognition or function. 
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It is interesting that the beta rhythm is found in solitude in layer V of MI, which is 

considered the output station (Rivara et al., 2003). This stands in contrast to the co-

existence of mu and beta oscillations in superficial layers of MI. The superficial laminae 

are believed to be the input laminae from other areas (Douglas & Martin 2004; Thomson & 

Lamy 2007), including SI. Layer IV of SI is reported to contain the barrel cortex in rodents 

and also be the major input station from primarily thalamus (Douglas & Martin 2004; Shipp 

2007; Thomson & Lamy 2007). The findings in this study suggests that it is likely the mu 

neuronal network activity is both a reflection of large-scale communication, as well as a 

feature of oscillatory activity in small-scale networks, e.g. in vitro, primed to sustain this 

activity and receive/transmit information relevant for the long-range communication. The 

co-existence with beta in MI LIII and SI LIV further supports this as beta, in particular 

higher frequencies, is considered a local rhythm.  

The MEG experiments showed a significant difference in mean peak power between MI 

and SI in the MEG recordings, but not in mean peak frequency. Early research reports 

implicitly suggested exclusivity in the distinction between mu oscillations representing the 

somatosensory rhythm, and beta as the motor rhythm (Salmelin & Hari 1994; Salmelin et 

al., 1995); a view that is also upheld in recent research of mu and beta ERD and ERS 

(McFarland et al., 2000; Gaetz & Cheyne 2006; Jurkiewicz et al., 2006; Koelewijn et al., 

2008; van Ede et al., 2011). However, there are also recent reports that suggest that beta 

and mu oscillations co-exist in the sensorimotor network and that these rhythms are not 

exclusive to either area (Kopell et al., 2000; Pinto et al., 2003; Szurhaj et al., 2003; 

Brovelli et al., 2004; Gaetz & Cheyne 2006; Jones et al., 2009). If there was a distinction 

in spatial localisation of mu and beta oscillations, a significant difference in the mean peak 

frequency and oscillatory profiles of the ongoing activity from these two areas would be 

expected. The empirical findings from the MEG experiments performed in this chapter 

instead support the view that ongoing beta and mu oscillations co-exist simultaneously in 

both MI and SI. These rhythms are inter-dependent in the sensorimotor network to varying 

degrees in any individual and contribute to differences in event-related changes to the 

ongoing beta and mu oscillations surrounding movement and stimulation (Szurhaj et al., 

2003, Jones et al., 2009). The in vitro findings of mu oscillations in MI LIII further confirm 

simultaneous co-existence of mu and beta in MI and SI. 
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3.4.3. The characteristics of neuronal network oscillations in sensorimotor cortex 

Beta and mu oscillations are implicit network phenomena in the sensorimotor cortex. The 

relationship of task performance and pre-stimulus, e.g. ongoing, sensorimotor oscillatory 

network activity is currently a popular research topic (Linkenkaer-Hansen et al., 2004; 

Koelewijn et al., 2008; Haegens et al., 2011; van Ede et al., 2011). These networks are 

supposedly altered in neurological pathologies such as PD (Uhlhaas & Singer 2006), 

giving rise to different and abnormal functional features (Hall et al., under review) and 

dynamics (Sailer et al., 2003). Research of sensorimotor beta and mu oscillations are 

predominantly aimed at the functional changes seen in these rhythms surrounding motor 

and somatosensory sensory events (Jasper & Penfield 1949; Gastaut & Bert 1954; 

Pfurtscheller 1981; Salmelin & Hari 1994; Salmelin et al. 1995; Pfurtscheller et al., 1997; 

Crone et al., 1998; McFarland et al., 2000; Cheyne et al., 2003; Jensen et al., 2005; 

Jurkiewicz et al., 2006; Koelewijn et al., 2008; Zhang et al., 2008; Gaetz et al., 2010; van 

Ede et al., 2010; 2011). There is little detailed research on the characteristics of the 

spontaneous ongoing mu and beta oscillations in the human sensorimotor cortex during 

rest. This is somewhat surprising since insight into the features of the ongoing oscillations 

during rest would be valuable when using this activity as a baseline for comparisons with 

functional changes, interventions and pathological states, e.g. PD. The MEG experiments 

in this study therefore aimed to provide further details on the characteristics of the beta 

oscillatory activity found in the sensorimotor cortex in humans.  

In addition, conventional approaches to peak measurements display average 

representations of the oscillatory neuronal network activity. Group- and/or time-averages 

lack distribution and variability information regarding the oscillatory activity, hence very 

little about the intrinsic distribution and variability of oscillatory frequency and power in the 

sensorimotor cortex is known. We investigated the variability and distribution of the 

ongoing beta and mu activity we found in the different sensorimotor areas discussed 

above. The mean FWHM show the average width of the frequency distribution of the 

oscillatory activity in an area. By using the amplitude-independent distribution histogram 

we investigated the distribution and variability of the peak frequency; depicting how the 

peak frequencies from all of the samples in the epoch are distributed over the frequency 

range. In addition, we assessed the mean percentage of samples in found in the upstate 

in the beta band and their mean power. This indicates differences in activity patterns, 

commonly referred to as “oscillatory bursting”. 

The lack of significant differences in mean FWHM and peak distribution of the oscillatory 

frequencies further supports the similarities of the broad ongoing mu and beta activity at 

rest in MI and SI. Individual variability and ratio in peak power of beta and mu oscillations 
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in the sensorimotor cortex contributes to the significant difference between the peak 

power in MI and SI, also emphasised by the significant difference in the mean power of 

oscillatory states. The presence of dissimilar neuronal network activity in the different 

sensorimotor laminae underlying the recorded oscillatory activity was demonstrated by the 

significant difference in the mean FWHM between SI LIV and MI LV. In addition, the 

frequency distribution differed significantly between MI LIII and MI LV, as well as SI LIV 

and MI LV, but not MI LIII and SI LIV. The lack of non-significant differences between SI 

LIV and MI LIII are not surprising as both displayed co-existence of mu and beta rhythms 

to varying degrees. There was no significant difference in mean peak power or mean state 

power in vitro; however there was a significant difference in the percentage of samples 

found in the upstate between MI LIII and MI LV. This indicates a difference in the 

oscillatory activity pattern between these two areas; this can also be seen to some extent 

in the averaged Morelet-Wavelet spectrogram as well and could be one possible source of 

frequency variability. We are only aware of a few studies that have begun to report 

frequency variability as important. Little et al. (2012) found that the beta band stationarity 

correlated to rigidity-bradykinesia in PD patients. Although this study did not use the same 

approach to assessing frequency variability, they too highlight the emerging importance of 

understanding frequency non-stationarity. The lack of previously reported results of 

variability in beta and mu oscillations in the sensorimotor areas is most likely due to 

differences in recording technology and analysis approaches.  

 

3.4.4. Comparing oscillatory signals from MI in vitro and MI in MEG recordings  

Investigation into the differences and similarities of oscillatory signals recorded from the 

human sensorimotor cortex with MEG, and the oscillatory signals recorded from the 

sensorimotor cortex in a rodent in vitro preparation is essential as researchers continue to 

make inferences and interpretations between these two recording modalities (Fingelkurtz 

et al., 2004; Gaetz et al., 2010; Hall et al., 2010; 2011). In silico approaches are often 

used as a comparative approach when investigating and interpreting the results from 

recording oscillatory activity in the sensorimotor cortex (Destexhe, 2000; Kopell et al., 

2000; Brovelli et al., 2004; Jensen et al., 2005; Jones et al., 2009). These modelling 

approaches conventionally compare the neuronal network composition and resulting 

output, rather than a direct comparison of empirical data. We investigated the differences 

and similarities of the empirical sensorimotor MEG and LFP oscillatory signals during rest, 

with a particular aim towards mu and beta oscillations. Due to substantial inherent 

differences in the modalities, some features of the oscillatory signals, e.g. amplitude, 

cannot reliably be compared between techniques. Thus we have focused on frequency. 
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The source size of oscillations recorded in vitro is 500-3000 µm around the electrode tip 

(Mitzdorf, 1987, Juergens et al., 1999, Logothetis et al., 2001). The source size in MEG is 

substantially larger with a source size of >5mm3, or >10000-50000 cells, in layer II/III and 

V of the sensorimotor cortex (Vrba & Robinson 2001; Hillebrand & Barnes 2002; 

Murakami & Okada 2006). The MEG signal is therefore considered an aggregate signal 

with an inherently larger underlying substrate; the number of neuronal networks in the 

MEG signal is greater than in the LFP recordings. The prediction from this difference is a 

greater mean FWHMs in MEG recordings. This was confirmed in comparing the MEG and 

in vitro results in this chapter. Differences in the source size and number of contributing 

networks are also visible in the appearance of the frequency variability between the two 

modalities.  

Previous in silico approaches have been used to investigate the network composition in 

relation to the oscillatory input/output (Whittington et al., 1995; Traub et al., 1996a; Wang 

& Buszaki 1996; Wang, 1999; Destexhe 2000; Kopell et al., 2000; Brovelli et al., 2004; 

Jensen et al., 2005; Jones et al., 2009; Moran & Bar-Gad 2010; Yang & Guo 2011). 

However, using empirical data to create a large-scale representation of the resulting 

output from local areas is arguably a more realistic recreation of a complex signal than a 

large network model.  

The large-scale integrated motor cortex oscillatory signal presents with more similarity to 

an aggregate signal like MEG than the oscillatory signals from individual laminae in the 

motor cortex. The individual laminae display distinct and significantly different oscillatory 

profiles; the oscillatory activity in MI LV displays a sharp peak in the higher beta frequency 

range and the oscillatory activity in MI LIII spans over a broad frequency range 

encompassing both mu and beta regions. The oscillatory signal from MI in MEG displays 

two peaks in mu and higher beta frequency regions. Integrating the signals from MI LIII 

and MI LV did indeed create an oscillatory profile that further resembled the complex MEG 

MI profile seen in these neuroimaging experiments. However, there were also some 

obvious differences in the profiles, primarily in the lower beta and mu frequency regions. 

Hypothesising that this was partly due to the difference in proximity of MI LIII and MI LV to 

the SQUIDS in the MEG, weighting of the integrated signal was performed. The signals 

from the superficial and deeper lamiae were weighted in different ratios. This procedure 

created oscillatory profiles that further resembled the aggregate MEG signal, see figure 

3.28 below.  
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There are still differences between the weighted integrated MI oscillatory profile and the 

MEG MI profile. These differences could be due to inherent physiological distinctions in 

the areas and species recorded, or further unknown effects of the recording methods, or 

an effect of large-scale communications. More research in the individual methodologies is 

needed to establish the cause of the remaining differences. In addition, further 

examination of the comparisons between MEG and in vitro is warranted for the same 

reasons. One route would be beneficially aimed at investigation into what degree the in 

vitro recordings could be further amalgamated in silico to represent an aggregate signals 

like the one seen in MEG recordings.  

 

Figure 3. 28. Different weighting of the contribution from different laminae in vitro when 
integrating the oscillatory signals in the motor cortex creates oscillatory profiles that resemble 
the MEG MI profile.  M3= MI LIII, M5= MI LV. 
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3.5. Conclusion 

We conclude that the spontaneous ongoing oscillatory network activity in MI and SI show 

significant differences in mean peak amplitude between MI and SI, but there were no 

significant differences in mean peak frequency. Furthermore, we revealed oscillatory 

network activity in the mu frequency range in MI LIII and SI LIV in vitro, co-existing with 

the ongoing beta activity. This has implications for the debate of functional relevance and 

origins of the mu rhythm. Finally, we conclude that integrated signals from MI in vitro 

results in oscillatory activity resembling the ongoing oscillatory network activity in human 

MI. These findings contribute strong arguments to why using both methods in 

combination, when studying and elucidating the role of beta oscillations in the 

sensorimotor cortex, was optimal. As much as differences are obstacles to comparison, 

they also point to the importance of the very same distinctions. 
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Chapter 4. The influence of cortical connectivity on 

sensorimotor beta oscillations 
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4.1. Introduction 

4.1.1. Background  

Beta and mu oscillations are well-reported phenomena in the sensorimotor cortices. In the 

previous chapter we showed that the spatial distinction between ongoing beta oscillations 

in MI and ongoing mu oscillations in SI (Salmelin & Hari 1994; Salenius et al., 1995; Gaetz 

& Cheyne 2006; Cheyne 2012) is not clear cut in MEG recordings in humans. In addition, 

we confirmed that beta oscillations exist in vitro in deeper layers of motor cortex 

(Yamawaki et al., 2008), and we also revealed that beta and mu oscillations co-exist in 

superficial layers, as well as the middle layers of SI. However, it is unclear to what extent 

the beta and mu oscillations we see in sensorimotor areas depend on intrinsic 

connections between these areas.  

A wealth of research literature during the last half century has found that cortical areas 

and laminae are heavily interconnected (Jones & Powell 1970; Vogt & Pandya 1978; 

Zarzecki et al., 1978; Krubizer & Kaas 1990; Jones & Wise 1997; Lewis & van Essen 

2000; Disbrow et al. 2003; Shipp 2005; Douglas & Martin 2004; 2007a; 2007b; Shipp 

2007; Thomson & Lamy 2007; Weiler et al., 2008). Figure 1.2 in chapter 1 illustrated the 

complex connectivity between regions in the sensorimotor areas. Modelling approaches 

have been used to assign direction and also suggest complex connectivity as a feature of 

the oscillatory activity in the sensorimotor cortex (Brovelli et al., 2004; Tsujimoto et al., 

2009). This intricacy of sensorimotor connections is also evident in the oscillatory 

dynamics surrounding motor and somatosensory processing, which are believed to be 

dependent on sensorimotor connectivity (Cassim et al., 2001; Alegre et al., 2002). The 

functional relevance of the beta and mu rhythms in the sensorimotor cortex is a topic of 

debate. Functional modulation of the beta rhythm is widely reported as event-related 

changes, suggested to involve both primary motor and somatosensory areas 

(Pfurtscheller, 1981; Salmelin & Hari 1994; Jensen et al., 2005; Gaetz & Cheyne 2006; 

Jurkiewicz et al., 2006, Neuper et al., 2006; Avanzini et al., 2012). Recently sensorimotor 

beta oscillations have also been suggested to reflect more cognitive functions such as 

somatosensory decision-making (Haegens et al., 2011a). The functional dynamics of the 

beta rhythm is not solely dependent on the connectivity to somatosensory areas. There is 

also an important influence of association areas, evidenced by differences in beta ERD 

patterns and cortico-spinal excitability between internally and externally paced 

movements. Internally, e.g. self-paced, movements display an earlier increase in cortico-

spinal excitability, and an earlier beta ERD, although these two are necessarily not linked 

(Chen et al., 1998; Gerloff et al., 1998). Earlier electrophysiological recordings in monkeys 
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have reported that the two different types of movement cue correlate to activation of the 

supplementary motor area for the self-paced movement, and the premotor area for the 

externally paced (Wessel et al., 1997; Jenkins et al., 2000; Haslinger 2001). Functional 

brain imaging studies in humans have confirmed this localisation to some degree, but also 

argue that there are more complex interactions and motor programs in humans 

(Cunnington et al., 2002). Functional modulation of the mu rhythm has been linked to 

attention and cognitive functions (Moore et al., 2008; van Dijk et al., 2008; Anderson & 

Ding 2011; Haegens et al., 2011b; 2011c; van Ede et al., 2011; Freyer et al., 2012), 

sensory and motor responses (Salmelin et al., 1995; Pfurtscheller et al., 1997; Neuper et 

al. 2001; Pineda, 2005) and modulation of thalamocortical activity (Lopes da Silva et al., 

1980; Suffczynski et al., 2001).  

Apart from the examples mentioned above regarding functional relevance for each 

rhythm, the independency of these rhythms is conventionally discussed with regards to 

distinct experimental modulation of one, but not the other, rhythm in varying degrees. One 

example of this is the differences in ERD and ERS of beta and mu oscillations during a 

movement task.  Both the beta and mu oscillatory activity desynchronise prior to 

movement onset approximately at the same time. However, the beta activity 

resynchronises more rapidly, usually with a temporary increase in power before returning 

to baseline power e.g. PMBR. This is not the mu activity pattern, which instead 

desynchronises approximately 1 second later than the beta ERD and also returns to 

baseline over a longer time period, without any rebound activity (Stancák & Pfurtscheller 

1995; 1996; Pfurtscheller & Lopes da Silva 1999; Alegre et al,. 2004).   

The beta and mu oscillations and their functional dynamics exemplify the existence of a 

sensorimotor network and its intrinsic functional changes. Furthermore, there is a 

multitude of neuroimaging studies and reviews discussing resting state network activity 

and functional connectivity in sensorimotor areas (Biswel et al., 1995; Damoiseaux et al., 

2006; Mantini et al., 2007; Deco et al., 2011), and with regards to changes in pathological 

states, e.g. PD (Uhlhaas & Singer 2006; Hammond et al., 2007, Stam, 2010). One recent 

study applying a novel analysis approach on MEG data determined a strong source of 

beta power in the region corresponding to the sensorimotor resting-state network 

(Hillebrand et al., 2012), corresponding to the idea of natural frequencies where beta 

oscillations are linked to motor cortex and mu oscillation are found over the parietal cortex 

(Rosanova et al., 2009). One recent review suggested that sensorimotor beta oscillations 

are reflective of large-scale interactions between sensorimotor areas and other regions, 

as well as the periphery (Kilavik et al., 2012). However, to date there are no clear 
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suggestions of the extent to which MI and SI areas affect the ongoing oscillatory activity in 

their neighbouring areas. 

Mechanistically, we know from in vitro experiments that beta oscillations can be observed 

in deeper layers of MI (Yamawaki et al., 2008), and in sensory areas (Buhl et al., 1998; 

Cunningham et al., 2004; Roopun et al., 2006). Previous experiments have also shown 

that rhythms can co-exist in laminae of areas (Flint & Connors 1996; Roopun et al., 2006). 

However, it is unclear to what degree the connectivity between sensorimotor areas affects 

the ongoing oscillations; if and to what degree mu and beta oscillations co-exist in 

isolation.  

 

4.1.2. Aims and research objectives 

Previous research has investigated beta and mu oscillations in MI and SI, but it is unclear 

to what extent these rhythms exist in solitude from other areas. Furthermore, it is unclear 

what effect the connections within MI have on the oscillations it exhibits. Here we aim to 

determine whether the oscillations that exist in the intact MI LV are dependent on laminar 

connections. We address the following questions:  

o Which oscillations arise from MI LIII and LV in microslices, e.g. physically isolated 

MI?  

o How do oscillations MI LIII and LV compare in frequency and power between intact 

sensorimotor slices and microslices of MI? 

o How do the oscillations in MI LIII and LV compare in variability and distribution 

between intact sensorimotor slices and microslices of MI? 

 

Furthermore, and perhaps more importantly with regards to macroscopic observations 

such as MEG, it is unclear to what extent connectivity between MI and SI influences 

oscillations in these areas. We address the following questions: 

o What effect does severing the connection between MI and SI have on frequency 

and power in these areas? 

o What effect does severing the connection between MI and SI have on frequency 

distribution and variability in these areas? 
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4.2. Methods 

In vitro preparation of sagittal brain slices was performed according to protocol 1 and 2, 

described in chapter 2. Microslices were excised during microtome slicing by identifying 

MI from the Rat Brain Atlas (Paxinos & Watson 1986) and physically removing all areas 

except MI from the slice. See figure 2.6 in the Methods chapter for a schematic image of a 

sagittal sensorimotor slice and where incisions were placed. The microslices were stored 

in the same manner as intact slices, described in chapter 3. Here we focused on 

microslices of MI and recorded from LV: n=14, and LIII: n=5.  

In the incision, e.g. cutting, experiments an incision was placed at the approximate border 

between SI and MI, identified with the Rat Brain Atlas (Paxinos & Watson 1986), using a 

custom-made device. This held a ceramic blade attached to a plastic rod, which was very 

gently lowered by a manual manipulator fastened on a magnetic stand, through the slice 

over a period of approximately 1 minute, to avoid disturbing the ongoing recording or 

positions of the inserted electrodes. LFPs were recorded continuously from MI LIII (n=1), 

MI LV (n=12) and SI LIV (n=5) in these intact slices. 30 second epochs before and after 

incision were used in the offline analysis to determine peak frequency and power, 

frequency distribution and variability as well as state information. 

In vitro data were analysed as described in chapters 2 and 3. Briefly, LFP recordings from 

all laminae of interest were exported to MatLab (MathWorks, Inc.). Morelet-wavelet 

spectrograms were derived for each sample in all 30 second epochs, and these were 

used in further analysis of mean peak frequency and power, FWHM, frequency and power 

distribution and variability. Student’s t-test was used to test for statistical difference 

between two conditions: before and after incision, or intact vs. microslices. 
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4.3. Results 

4.3.1. Sensorimotor neuronal network activity and MI-SI connectivity 

We have shown so far that there are differences in the ongoing oscillatory activity in MI 

and SI of intact slices. Next, we determined whether these differences seen in the ongoing 

oscillatory activity in MI and SI depended on the direct connectivity between MI and SI. 

We did this by placing an incision between the MI and SI border while recording LFPs 

from MI LIII (n=1), MI LV (n=12) and SI LIV (n=5) (figure 4.1-4.3).  

 

Figure 4. 1. Group-average Morelet-wavelet spectrograms showing effects on oscillatory 
activity in MI LIII (n=1), seen in a and b (top row), and MI LV (n=12), seen in c and d (bottom 
row) from severing connections between MI and SI in vitro.  

 

 
Figure 4. 2. Group-average Morelet-wavelet spectrograms showing effects on oscillatory 
activity in SI LIV (n=5) before (a, left) and after (b, right) incision between MI and SI in vitro. 
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Figure 4. 3 Group- and time-average PSD showing oscillatory profiles of ongoing activity in MI 
LV (n=12, blue) and SI LIV (n=5, red) before and after severing connections between MI and SI 
in vitro. MI LIII is not shown due to low n number (n=1) and large power difference in the 
recordings. There is little change in profiles after incision. 

 

4.3.1.1. Frequency and power  

The mean peak frequency in MI LIII was 15.50±0 Hz before incision, compared to 11.00±0 

Hz after. The mean peak power was 7.24±0 x10-11 V2 before, compared to 19.33±0 x10-11 

V2 after. In MI LV the mean peak frequency before was 26.08±6.12 Hz, compared to 

25.04±5.81 Hz, after incision. The mean peak power was 7.68±6.50 x10-11 V2, compared 

to 8.89±8.92 x10-11 V2 after incision. The mean peak frequency in SI LIV before incision 

was 24.70±5.13 Hz, compared to 22.00±7.50 Hz after. The mean peak power was 

6.46±4.37 x10-11 V2, compared to 6.53±6.31 x10-11 V2 (figure 4.4-5). Significance between 

before and after was tested with Student’s t-test. There were no significant differences. 

For MI LV and peak frequency: t[11]=0.8576, p=0.4094; for peak power: t[11]=-1.1984, 

p=0.2559. For SI LIV and peak frequency: t[4]=0.8089, p=0.4639; for peak power: t[4]=-

0.1418, p=0.8941 

 

Figure 4. 4. Mean peak frequency in MI LIII (n=1, green), MI LV (n=12, blue) and SI LIV (n=5, 
red) before and after incision between MI and SI in vitro. There were no significant differences. 
Errorbars are SEM.  
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Figure 4. 5. Mean peak power in MI LIII (n=1, green), MI LV (n=12, blue) and SI LIV (n=5, 
red) before and after incision between MI and SI in vitro. There were no significant 
differences. SEMs are displayed as error bars.  

 

4.3.1.2 Sensorimotor frequency distribution and variability and MI-SI 

connectivity  

There were no significant differences in the distribution of network activity in the different 

locations after incision, as measured by mean FWHM. The mean FWHM in MI LIII before 

incision was 40.5±0 Hz, compared to 14.50±0 Hz after. In MI LV the mean FWHM before 

incision was 21.54±9.43 Hz, compared to 20.33±9.71 Hz after. SI LIV the mean FWHM 

before incision was 18.40±7.73 Hz, compared to 19.4±7.03 (figure 4.6). There were no 

significant changes; MI LV: t[11]=0.8595, p=0.4053; and SI LIV: t[4]=-0.9428, p=0.3992. 

 

Figure 4. 6. Mean FWHM and frequency distribution in MI LIII (n=1, green), MI LV (n=12, blue) 
and SI LIV (n=5, red), before and after incision between MI and SI in vitro. There were no 

significant differeces. SEMs are indicated as error-bars. 

We found that the peak frequency variability significantly decreased: 8.84±9.27 to 

7.67±8.94 %, t[4]=6.1841, p=0.0035, in SI LIV after incision. The mean percentage of 

samples at the peak frequency in MI LIII was 1.31±0 before incision, compared to 5.24±0 

% after. In MI LV the mean percentage was 5.84±4.85 before incision, compared to 

5.75±9.71 % after (figure 4.7-8); this was non-significant: t[11]=0.1545, p=0.88. 
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Figure 4. 7. Mean frequency peak distribution in MI LIII :(n=1, green), MI LV (n=12, blue) and SI 
LIV (n=5, red), before and after incision between MI and SI in vitro. The mean % of samples 
found at the peak frequency in SI LIV decreased significantly after incision, p<0.05, marked with 
*. SEMs are indicated as error-bars.  

 

 

 

 
Figure 4. 8a-d. Group-average peak frequency distribution in SI LIV (n=5), seen in a and b (top 
row) and normalised power frequency distribution, seen in c and d (bottom row), before and after 
incision (left vs. right column) between MI and SI in vitro. Physically separating MI and SI in vitro 
in a sensorimotor slice significantly decreased the variability in SI LIV, p<0.05. 
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4.3.1.3. Sensorimotor power state and MI-SI connectivity  

The oscillatory power states and associated mean power showed no significant 

differences after severing connections between MI and SI. In MI LIII the percentage of 

samples found in the upstate was 38.26 % before and 40.59 % after incision. The mean 

power in the upstate was 8.93 x10-11 V2 before and 20.03 x10-11 V2 after incision. The 

mean power in the downstate was 3.72 x10-11 V2 before and 9.62 x10-11 V2 after incision.  

In MI LV the percentage of samples found in the upstate was 38.62 % and 38.15 % after. 

The mean power in the upstate was 4.00 x10-11 V2 before and 4.95 x10-11 V2 after incision. 

The mean power in the downstate was 1.37 x10-11 V2 before and 1.63 x10-11 V2 after 

incision. There were no significant difference in upstate percentage: t[11]=0.6842, p=0.508; 

in upstate power: t[11]=-1.0789, p=0.3037; or in downstate power: t[11]=-1.2383, p=0.2414.  

In SI LIV the percentage of samples found in the upstate was 38.59 % and 37.16 % after. 

The mean power in the upstate was 3.96 x10-11 V2 before and 3.29 x10-11 V2 after incision. 

The mean power in the downstate was 1.46 x10-11 V2 before and 1.17 x10-11 V2 after 

incision (figure 4.9-10). There were no significant difference in upstate percentage: 

t[4]=1.0455, p=0.2548; in upstate power: t[4]=1.0397, p=0.3572; or in downstate power: 

t[4]=1.0213, p=0.3648. 

 

  

Figure 4. 9a-b. Group-averages of the percentages of samples found in the oscillatory upstate in 
MI LIII (n=1, green), MI LV (n=12, blue) and SI LIV (n=5, red) before and after severing 
connections between MI and SI in vitro, can be seen in a (left). Figure b shows group-averages 
of the mean power of the samples found the oscillatory up- and downstate in MI LIII (n=1, 
greens), MI LV (n=12, blues) and SI LIV (n=5, reds) before (Pre) and after (Post) severing 
connections between MI and SI in vitro. There were no significant differencesThere were no 
significant differences. 
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4.3.2. The role of inter-laminar connectivity in MI oscillations  

We wanted to determine the extent to which the connections within MI, e.g. intra-laminar 

connections, affect the ongoing oscillations in MI LV. We did this by comparing ongoing 

oscillatory activity in MI LV (n=36) from intact sensorimotor slices and microslices (n=14) 

(figure 4.11-12). MI LIII was not compared due to low n-numbers. 

 

Figure 4. 10a-d. Group-average Morelet-wavelet spectrograms of recordings from MI LIII (a&b, 
top) and MI LV (c&d, bottom) in intact slices (left) and microslices (right). Observe the difference 
in power between the intact preparation and microslices. MI LIII from intact slices: n=24, MI LIII 
from microslices: n=5, MI LV from intact slices: n=36, MI LV from microslices: n=14. 

 

 

Figure 4. 11. Group- and time averaged PSD plots of oscillatory activity recorded from MI LIII 
and LV in intact slices and microslices. MI LIII in intact slices: n=24 (red), MI LIII in microslices 
(purple): n=5, MI LV in intact slices (green): n=36, MI LV in microslices: n=14 (blue).  
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4.3.2.1. MI frequency and power and laminar connectivity 

In MI LIII in microslices mean peak frequency was 17.77±7.6 Hz, and mean peak 

amplitude was 21.11±21.90 x10-11 V2. In intact slices mean peak frequency was 

18.89±6.07 Hz and mean peak amplitude 13.38±18.17 x10-11V2. In MI LV in microslices 

mean peak frequency was 26.46±3.70 Hz. Mean peak amplitude was 23.87±23.53 x10-11 

V2. In intact slices frequency was 30.18±3.22 Hz, and mean peak amplitude was 

20.75±27.92 x10-11V2. We were primarily interested in differences in the activity in MI LV 

between the two conditions: Student’s t-test was used to test for significance. There was 

no significant difference in mean peak power between recordings from MI LV in 

microslices and intact slices: t[13]= 1.8611, p=0.0855, but the difference in mean peak 

frequency between MI LV in the microslices and in the intact slices was significant, t[13]= -

3.2529, p=0.0063 (figure 4.13-14). 

 

Figure 4. 12. Mean peak frequency in the two locations in the two different slice preparations. 
The difference in mean peak frequency in MI LV in intact slices (n=36) compared to microslices 
(n=14) was significant (blue), p<0.05, marked with *. MI LIII from intact slices: n=24, MI LIII from 
microslices: n=5 (green). Error bars represent SEMs.  

 

 

Figure 4. 13. Mean peak power in the in vitro intact and microslice preparation. There were no 
significant differences in MI LV between intact and microslices. MI LIII from intact slices: n=24, 
MI LIII from microslices: n=5, MI LV from intact slices: n=36, MI LV from microslices: n=14. Error 
bars represent SEMs. 

 



106 

 

4.3.2.2. MI frequency distribution and variability and laminar connectivity 

The mean FWHM in MI LIII in microslices was 21.40±12.1 Hz. The mean FWHM in MI LIII 

intact slices was 13.13±5.72 Hz. The mean FWHM in MI LV in microslices was 

13.43±5.71 Hz. In MI LV the mean FWHM in the intact slices was 12.13±4.09 Hz. There 

was no significant difference between MI LV oscillatory activity in the micro and intact 

slices (figure 4.15): t[13]= 0.4922, p=0.626. 

 

Figure 4. 14. Mean FWHM in the in vitro intact and microslice preparations. There were no 
significant differences in the mean FWHM in MI LV between micro (n=14) and intact slices 
(n=36) (blue). MI LIII from intact slices: n=24, MI LIII from microslices: n=5. Error bars represent 
SEMs. 

The sample count at the peak frequency in MI LIII in microslices was 5.19±4.97 %. The 

percentage of samples found at the beta peak frequency in MI LIII in intact slices was 

7.39±6.77 %. The sample count at the peak in MI LV in microslices was 10.42±5.72 %. 

The percentage of samples found at the beta peak frequency in MI LV in intact slices was 

13.33±8.50 %. There was no significant difference in frequency variability in MI LV 

between intact and microslices: t[13]= -0.6403, p=0.5331 (figure 4.16). 

 

Figure 4. 15. Mean peak frequency variability in MI LIII and MI LV in the in vitro intact and 
microslice preparations. There were no significant differences in mean peak frequency variability 
in MI LV between micro (n=14) and intact slices (n=36). MI LIII from intact slices: n=24, MI LIII 
from microslices: n=5. Error bars represent SEMs. 
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4.3.2.3. MI oscillatory power state and laminar connectivity 

To determine if there were any particular characteristics of the pattern of oscillatory 

activity with regards to power in microslices, we investigated the oscillatory state and state 

mean power in MI LIII and MI LV. We also made statistically comparisions for MI LV 

between micro and intact slices.  

In MI LIII in microslices the mean percentage of samples found in the upstate was 38.58 

%. The mean upstate power for MI LIII in microslices was 17.67 x10-11 V2, compared to 

the mean downstate power which was 7.16 x10-11 V2. In MI LIII in intact slices, the 

percentage of samples found in the upstate was 39.69 %, the mean upstate power was 

10.09 x10-11V2, and the mean downstate power was 3.85 x10-11V2.  

In MI LV in microslices the mean percentage of samples found in the upstate was 38.95 

%. The mean upstate power for MI LV was 9.48 x10-11 V2, compared to the mean 

downstate power which was 3.19 x10-11 V2. In MI LV in intact slices, the percentage of 

samples found in the upstate was 37.89 %, the mean upstate power was 8.79 x10-11V2 

and the mean downstate power was 2.59 x10-11V2. 

There was no significant differences in percentage of samples in the oscillatory upstate in 

MI LV: t[13]=0.9728, p=0.3484 (figure 4.17). There was a significant difference in the MI LV 

oscillatory mean power in the upstate between the two types of slices, t[13]=-2.7846, 

p=0.0155. The difference in the oscillatory mean power in the downstate was also 

significant, t[13]=-2.9817, p=0.0106 (figure 4.18). 

  

Figure 4. 16a-b. Figure a shows group-averages of the percentage of samples in the oscillatory 
upstate in MI LIII (green) and MI LV (blue) in the in vitro intact and microslice preparations. There 
were no significant differences between MI LV in the two preparations. Figure b shows group-
averages of the mean power in the oscillatory up- and downstates in intact and microslice MI LIII 
and MI LV recordings. There were significant differences in mean state power in MI LV between 
intact and microslices, p<0.05, marked with *. MI LIII from intact slices: n=24, MI LIII from 
microslices: n=5, MI LV from intact slices: n=36, MI LV from microslices: n=14. 
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4.4. Discussion 

4.4.1. Summary 

The effect of connectivity between MI and SI, as well as the effects of the intra-laminar MI 

connections, on the ongoing oscillations observed in the sensorimotor cortex in vitro were 

investigated in these experiments. There is an effect on the oscillatory activity in MI and SI 

of MI-SI connectivity. The incision experiments resulted in a significant decrease in peak 

frequency distribution in SI LIV after incision. The oscillatory activity observed in 

microslices was compared to intact slices to determine the intra-laminar relevance on MI 

oscillations. There were significant differences between MI LV in microslices and intact 

slices in mean peak frequency and oscillatory mean power in the up- and downstate. 

 

4.4.2. Severing connections between MI and SI decreases the frequency 

variability in SI 

Most sensorimotor research reports do not consider the effects of connectivity between 

areas as a factor of contribution on oscillatory characteristics. The effect of connectivity 

have, however, been considered in studies aiming to characterise anatomical and 

functional connectivity. Recently research reports have integrated the functional 

connectivity measurements with oscillatory measurements (Stam 2010; Hillebrand et al., 

2012; Stam & Straaten 2012). Oscillatory activity in ‘microslices’ in the sensorimotor have 

been reported previously (Roopun et al., 2006; Yamawaki et al., 2008). However, we are 

not aware of any reports that have performed a physical separation between MI from SI, 

with the aim of characterising the effects on oscillatory activity in the same areas. The 

incision experiments showed a significant decrease in peak frequency variance in SI LIV 

after the incision, while no significant changes were seen in MI LV. Regardless of specific 

oscillatory frequency within the beta band in MI LV this rhythm appears isolated in our 

slice experiments. A horizontal incision, separating along middle layers within an MI 

microslice showed no effect on MI LV beta oscillations, but abolished beta oscillatory 

activity in MI LIII (Yamawaki et al., 2008). In agreement with this, we confirm that the beta 

rhythm in MI LV is generated by local networks within the deeper layers of MI. 

Furthermore, we suggest that this rhythm have little dependency on generators, 

modulators and networks in areas and laminae further away.  

Interestingly, physically separating a microslice along middle layers of secondary sensory 

areas did not abolish beta oscillations in deeper layers either (Roopun et al., 2006), 



109 

 

suggesting local attributes of this rhythm in secondary sensory areas as well. We did not 

perform a horizontal incision, nor did we use secondary somatosensory areas. However, 

our results do not completely agree with oscillatory activity in somatosensory areas being 

local phenomena. Although oscillatory activity in SI LIV in our experiments was not 

abolished by a vertical incision between MI and SI, we found a significant decrease in the 

frequency variability. This suggests some aspects of connectivity between MI and SI, 

indicating that activity in SI LIV is not simply a local phenomenon. A multitude of recent 

research and reviews have highlighted the information integration and processing 

relevance of beta and mu oscillations, which in light of these findings become particularly 

interesting (Brovelli et al., 2004; Bardouille et al., 2010; Haegens et al., 2011; van Ede et 

al., 2011; Cheyne 2012; Kilavik et al., 2012) as integration and information processing 

requires connectivity.  

In the analysis that was undertaken for this chapter we were only able to extract the data 

from one slice for MI LIII. However, subsequent stringent filtering and additional analysis 

allowed us to increase the n-number of MI LIII to 4 and perform preliminary tests of the 

effects on peak power before and after incision (figure 4.19a-c). This revealed that the 

mean power in the mu frequency band in MI LIII significantly increased after severing the 

connections between MI and SI (156%, t=6.84, p=0.006). The small increase in the mean 

beta power in LV was non-significant (10%, t=1.19, p=0.26). These results confirm 

connectivity between superficial layers of MI and SI (Shipp 2005; Hook et al., 2011). This 

result also contradicts the idea of SI as the sole generator of the sensorimotor mu rhythm, 

further emphasising the novel finding of mu in MI LIII in this project.  

 

Figure 4. 17a-c. The effects of severing MI-SI connectivity on oscillatory activity in MI LIII, a (left), 
MI LV, b (middle). The bar graph in c, right, shows the comparison between power before and 
after cut in the different frequency bands of beta and mu. The increase in mean power in the mu 
frequency range in MI LIII was significant, p<0.05. 
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4.4.3. Oscillations in MI are different between micro and intact slices 

Although there are suggestions of differences in network activity from changing variables 

such as slice orientation (Trudel & Bourque 2003), there are no studies focusing directly 

on the connectivity between MI and SI and therefore it is unclear if there is a difference in 

sensorimotor oscillatory network activity with regards to MI-SI connectivity. This complex 

connectivity is reportedly both direct and indirect between MI and SI (Zarzecki et al., 1978; 

Krubizer & Kaas 1990; Lewis & van Essen 2000; Shipp 2005; 2007; Douglas & Martin 

2004; 2007a; 2007b; Thomson & Lamy 2007; Weiler et al., 2008). In this chapter we 

determined the oscillatory profiles in MI LIII and MI LV in microslices and compared these 

to intact slices. We observed oscillations in the higher beta frequency region, in 

agreement with Yamawaki et al. (2008), who also used microslices. The higher beta 

frequency oscillations in MI LV have also been observed in intact slices (Prokic et al., 

under review), and in chapter 3. Additionally, one of our primary findings from chapter 3, 

mu and beta range oscillatory activity, was observed in MI LIII in microslices as well. This 

is in agreement with the prior research evidence pointing to the co-existence of different 

rhythms in superficial and deeper layers of somatosensory areas (Flint & Connors 1996; 

Roopun et al., 2006), although there are no specific reports on mu or beta co-existing in 

MI in vitro. This was discussed in detail in chapter 3. 

We assessed the effects of intra-laminar connectivity on the ongoing oscillatory activity in 

MI by comparing the network activity in MI LIII and LV in intact slices to microslices. 

Although there were no observable differences in the oscillatory profiles for MI LV, the 

oscillatory activity in MI LV in microslices showed a significantly lower mean peak 

frequency compared to intact slices, as well as a significantly higher mean power in the 

oscillatory power states. Several studies over the last decades have suggested that 

cortical areas have specific intrinsic resonant frequencies (Chagnac-Amitai & Connors 

1982; Flint & Connors 1996; Paus et al., 2001; Rosanova et al., 2009; Zaehle et al., 2010; 

Thut et al., 2011b). The mean peak frequency differences can reflect changed preference 

for resonance, e.g. differences in network arrangement resulted in alteration of 

electrophysiological characteristics and constraints, and therefore changed the mean 

peak frequency of the ongoing oscillations, without significantly changing the distribution 

of the frequency or mean peak power of the ongoing activity. The neuronal networks 

responsible for the MI LV oscillations in both intact slices and microslices appear highly 

localised and less dependent on generators outside of the physical slice size. This theory 

of local network activity in MI LV in a slice preparation, with little effective connective 

modulation from other laterally located areas, is further strengthened by the lack of 

significant effects after incision.  
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4.5. Conclusions 

We conclude that there are effects on the ongoing sensorimotor oscillations of MI-SI 

connectivity. There is a significant difference in mean peak frequency between the 

ongoing beta oscillations in MI LV in an isolated microslice compared to those in an intact 

slice. It is unclear to what degree the differences are due to limitation of the laminar 

connections. The neuronal network activity in MI LV in both types of slice preparations is 

localised and show little dependency on generators/modulators outside the direct 

proximity of the recording sphere. In contrast, the neuronal network activity, specifically 

the peak frequency distribution of the ongoing oscillations, in SI LIV shows dependence 

on connectivity to MI at evidenced by the incision experiments. Additionally the mu 

rhythm, but not the beta rhythm in MI LIII appears modulated by the SI connectivity. This 

study has aimed at determining aspects of the complex connectivity between MI and SI 

relevant to the continuous sensorimotor oscillations. We have discussed consequences of 

severing this connectivity, with regards to the ongoing neuronal network activity in MI and 

SI laminae. 
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Chapter 5. Pharmacological modulation of ongoing 

oscillations in the sensorimotor cortex  

 



113 

 

5.1 Introduction 

We have so far discussed characteristics of spontaneous oscillatory activity in the 

sensorimotor cortex in vitro and in MEG, and respective effects of intra-cortical and 

cortico-cortical connectivity. We have also shown in previous chapters that ongoing 

oscillatory activity in vitro and in MEG are comparable. In this chapter, we draw upon our 

understanding of the role of GABAergic interneuron systems, as discussed in chapter 1, 

and focus on the effects of pharmacological intervention with the GABAergic modulator 

zolpidem on the established neuronal network characteristic described in chapters 3 and 

4. 

 

5.1.1. Background 

Beta oscillations in the sensorimotor cortex are GABA-dependent and representative of 

neuronal network activity. GABAergic modulators, such as benzodiazepines, were initially 

used to describe the beta oscillatory power increase seen after drug administration as the 

“beta buzz” (Domino et al. 1989; Glaze, 1990). This increase in beta oscillatory power in 

motor cortex after diazepam administration has been further investigated in the last 

decade (Baker & Baker 2003; Jensen et al., 2005; Hall et al., 2011). The role of GABA in 

the sensorimotor cortex has also been approached using magnetic resonance 

spectroscopy to detect levels of GABA. The link between beta oscillations and GABA 

concentration in the motor cortex was investigated by Gaetz et al. (2011), who showed a 

linear relation between GABA-concentration and power in the PMBR, in addition to age-

dependent differences in GABA-levels.  

The imidazopyridine zolpidem, a GABAA-R modulator with unique specificity at the α1 

subunit, is a sedative hypnotic (Nicholson & Pascoe 1989). Recent observations have 

garnered increasing interest in this drug as therapeutic benefits have been demonstrated 

in disorders such as persistent vegetative state (Clauss et al., 2000), stroke (Hall et al., 

2010; Nyakale et al., 2010) and Parkinson’s disease (Daniele et al., 1997; Hall et al., in 

review). The improvement in symptom severity after administration of sub-sedative doses 

of zolpidem has been suggested to be due to the decrease in of abnormal oscillatory 

activity. This is particularly evidenced by the reduction of abnormal beta oscillatory activity 

in a stroke patient with sensorimotor lesions (Hall et al., 2010). Although there is research 

portraying the effects of benzodiazepines on sensorimotor beta oscillatory activity in 

healthy subjects, there are, to date, few studies exploring the detailed effects of zolpidem 

administration on sensorimotor beta oscillations and their characteristics in healthy 

subjects.  
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In vitro, the application of 30 and 100 nM zolpidem increases the power, as well as 

decreased the frequency, of the KA- and CCh-induced beta oscillations found in MI LV 

(Yamawaki et al., 2008; Prokic et al., 2012). The effects of zolpidem administration on 

oscillatory characteristics in other laminae of the sensorimotor cortex have not yet been 

reported. The finding of zolpidem-increased beta power in MI appear paradoxical with the 

research showing that zolpidem in sub-sedative doses decrease the pathological 

sensorimotor oscillatory activity seen in stroke patients (Hall et al., 2010). Recent in vitro 

research shows that the desynchronising effects of zolpidem are dose-dependent and 

occur only at 10 nM zolpidem. The mechanism for this decrease in the power appears to 

be related to α1 subunit mediated tonic changes in interneuron drive (Prokic et al., 2012).  

The underlying cellular mechanisms of modulating beta oscillations are predominantly 

studied in animal models, supported by work from computer modelling, due to the invasive 

nature of the research itself. Zolpidem binds to the benzodiazepine binding site, located at 

the interface of the α- and γ-subunits, on the GABAA-receptors, as confirmed by recent 

modelling (Sancar et al., 2007; Richter et al., 2012). Both sub-unit types are essential for 

modulation, but in particular the α1 subunit appears important (Rudolph et al., 1999; 

Crestani et al., 2000). Modulation with the benzodiazepine diazepam increase in beta 

power arises primarily from increased IPSCs on interneurons, rather than from IPSCs on 

pyramidal cells (Baker & Baker 2003; Jensen et al., 2005). In the studies by Baker & 

Baker (2003) and Jensen et al. (2005), modelling provided insights into the 

rhythmogenesis of sensorimotor beta oscillations, confirming earlier modelling and in vitro 

results in the hippocampus; interneurons are responsible for synchronising the activity of 

pyramidal cells into local cell population oscillations and as such, GABA receptors and 

phasic synaptic activity are of particular importance for the oscillations (Cobb et al., 1995; 

Whittington et al., 1995; Traub et al., 1996a; 1996b; Fisahn et al., 1998; see Somogyi & 

Klausberger 2005 for a review of interneurons and GABA).   

In neurological pathologies, like PD, functional connectivity and network activity is altered. 

Subsequently synchronisation is perturbed with differences in oscillatory activity (Uhlhaas 

& Singer 2006; Hammond et al., 2007; Stoffers et al., 2008; Bosboom et al., 2009; Wu et 

al., 2009; Stam, 2010). Here, to understand the extent to which GABAA-R α1 modulation 

is comparable between in vitro and MEG experiments, we compared the effects of 

zolpidem in these two approaches in parallel.  

 



115 

 

5.1.2. Aims and research objectives 

Previous studies have investigated the effects of GABAergic modulation on oscillatory 

dynamics in the sensorimotor cortex, with a focus on either in vitro or human approaches. 

Here we aim to describe the effects of GABAA-receptor α-1 modulation on oscillatory 

characteristics in the sensorimotor cortex using parallel in vitro and MEG experiments. We 

address the following questions:  

o How do the changes in mean peak power and frequency in MI after zolpidem 

administration compare between MEG and in vitro? 

o How do the changes in distribution and variability of frequency and power in MI 

after zolpidem administration compare between MEG and in vitro? 

 

Previous studies have looked at GABA modulation in MI or SI, but a comparison of the 

effects on oscillatory characteristics in these areas has not been done. Here we aim to 

compare the differences in MI and SI in oscillatory responses to GABAergic modulation. 

We address the questions: 

o How do the changes in mean peak frequency and power in MI compare to the 

changes seen in SI? 

o How do the changes in distribution and variability of frequency and power in MI 

compare to the changes seen in SI?  
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5.2 Methods 

5.2.1 MEG 

8 participants took part in this experiment (2F), age 29-45 years. The same protocol was 

run before and 50 min after administration of a sub-sedative oral dose of zolpidem 

(0.05mg/Kg). Subjects were seated in an upright position in the 275-channel MEG 

scanner (CTF, Canada). The study was performed in accordance with the Declaration of 

Helsinki, and approved by the Ethics Committee of the School of Life and Health Sciences 

at Aston University. Written informed consent was obtained from all participants. The 

participants received visual instructions from a monitor positioned outside the shielded 

room, which was visible through a small window, and informing the subjects about when 

to perform self-paced finger movements and when they should remain seated and rest. 

The self-paced finger movements were performed with an interval of approximately 5 

seconds and for 2-3 minutes. The visual instruction and stimulation events were delivered 

through the software Presentation (Neurobehavioural Systems Inc., US). Primary motor 

cortex was localised with a SAM beamformer approach based on the PMBR seen after 

voluntary finger movements (Jurkiewicz et al., 2006). The PMBR was identified by an 

increase in the 15-30 Hz frequency band 0.5 to 1.5 seconds following movement offset 

compared to and -2.0 to -1.0 seconds before movement. EMG electrodes were placed on 

the FDI muscle to determine the onset and offset of finger movements. Trials containing 

artefacts were discarded and the data was filtered to 1-200 Hz, with additional notch filters 

at 50 and 60 Hz. Virtual electrode data from MI loci, during 30 second rest periods, were 

processed in MatLab (The Mathworks, Inc.) as Morelet-wavelet spectrograms. These data 

were then analysed using the same process as used for in vitro analysis, described below.  

 

5.2.2 In vitro 

This study used protocol 1 for preparation of sensorimotor brain slices, similar to the study 

of spontaneous oscillations in chapters 3 and 4, also described in chapter 2. Briefly, brain 

slices were prepared from p18-p22 (50-60g) male Wistar rats. 450 µm thick sagittal slices 

were stored in a tissue interface chamber in room temperature for 1h. The slices were 

transferred to a recording chamber, temperature 33°C and continuous flow rate of 2 

ml/min aCSF with added KA and CCh (protocol 1). LFP recordings from MI and SI 

laminae were made; in intact slices: MI LIII: n=10, MI LV: n=17. In microslices: MI LIII: 

n=2, MI LV: n=9, SI LIV: n=5. The correct areas were identified by using a dissecting 

microscope and the Rat Brain Atlas (Paxinos & Watson 1986) as reference. Zolpidem 

(100 nM) was applied through aCSF perfusion of the bath, during continuous recording 
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after >45 minutes in the interface recording chamber. Online analysis during recording 

was done with Spike2. After recording was finished the data was exported to MatLab and 

periods of 30s immediately before and <60 minutes after zolpidem application, were used 

to create Morelet-wavelet spectrograms, which were used for further analysed by the 

custom-made MatLab scripts described below. 

 

5.2.3. Analysis approach 

The mean peak frequency and peak power was determined for each sample in the 30s 

epoch (30000 samples for in vitro and 36000 samples for MEG data) with a sliding 

window approach applied to the Morelet-wavelet spectrograms. The frequency distribution 

of the oscillations was determined using FWHM. The frequency variability was computed 

using the amplitude-independent peak frequency distribution, where the peak frequency of 

each sample was sorted into frequency bins of 1 Hz. Variability in oscillatory power was 

determined using an amplitude sorting measurement to determine the time and amplitude 

changes of oscillatory up and down states. We used student’s T-tests to statistically test 

for differences between before and after zolpidem conditions. Further details regarding 

this analysis approach can be found in chapter 2. 
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5.3 Results 

5.3.1. GABAA-R α1 subunit modulation and MI oscillatory activity 

We found an overall increase in ongoing activity in the broad beta and mu range after 

zolpidem administration, which is summarised in overviews in figure 5.1-4 below. There 

were no specific effects of zolpidem relating to any particular frequency range in the 

ongoing oscillatory activity in MI in MEG or in vitro.  

 
Figure 5. 1a-b. Group-average Morelet-wavelet spectrograms showing human MI (n=8) oscillatory 
activity before, a (left), and after, b (right) zolpidem administration. 

 

 
Figure 5. 2. Group- and time-averaged PDS of the ongoing oscillatory activity in MI in humans 
(n=8) before (green) and after (blue) zolpidem administration. The power increases after 
zolpidem administration, also shown in figure 5.6a.  
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Figure 5. 3a-b. Group-average Morelet-wavelet spectrograms showing oscillatory activity in MI 
LIII (n=10) and MI LV (n=17) before, a (left), and after, b (right) zolpidem administration, in vitro. 

 

 
Figure 5. 4. Group- and time-averaged PSD showing oscillatory activity in MI LIII (n=10, purple 
and green) and MI LV (n=17, red and blue) in vitro before and after zolpidem application. The 

power increases, as seen in figure 5.6b. 
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5.3.1.1. Frequency and power 

In MEG, the mean peak frequency in MI was 20.50±6.07 Hz prior to zolpidem 

administration; and 22.56±6.23 Hz after zolpidem administration (figure 5.5a). This 

increase in mean peak frequency was not significant: t[7]=-0.7584, p=0.473. 

In vitro, the mean peak frequency in MI LIII before zolpidem application was 21.30±11.87 

compared to 15.2±6.21 Hz after, this decrease was non-significant: t[9]=1.5018, p=0.1674. 

In MI LV the mean peak frequency decreased significantly from 23.97±8.85 to 19.79±5.98 

Hz: t[16]=2.3475, p=0.0321 (figure 5.5b). 

  

Figure 5. 5a-b. Mean peak frequency in MI (n=8) in MEG recordings, a (left), and in vitro, b 
(right) before and after zolpidem administration (Pre and Post, respectively). The mean peak 
frequency in MI LV (n=17, blue) decreased significantly following zolpidem application, 
p<0.05, marked with *. MI LIII (n=10, green) showed no significant difference. Error bars are 
SEMs. 

In the MEG recordings, zolpidem significantly increased the mean peak power in ongoing 

beta oscillatory activity recorded from MI; 2.48±1.30 nAm compared to 3.66±1.25 nAm, 

t[7]=-3.4975, p=0.01 (figure 5.6a).  

In vitro in MI LIII the mean peak power increased significantly from 14.64±13.17, to 

33.44±33.82 x10-11 V2, t[9]=-2.7837, p=0.0213. In MI LV the mean peak power increased 

significantly from 12.06±18.34 to 19.16±28.67 x10-11 V2, t[16]=-2.3248, p=0.0336 (figure 

5.6b). 

  

Figure 5. 6a-b. Mean peak power in MI (n=8) in MEG recordings seen in a (left), and in vitro MI, 
seen in b, (right), before and after zolpidem administration (Pre and Post, respectively). The 
increase in power after zolpidem administration was significant in all locations, p<0.05, marked 
with *. MI LIII: n=10 (green); MI LIV: n=17 (blue). The error bars represent SEMs. 
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5.3.1.2. Frequency distribution and variability  

There were no significant changes to the mean FWHM in MEG or in vitro. In MI from the 

MEG recordings the mean FWHM was 14.69±6.68 Hz before, and 18.94±7.18 Hz after 

zolpidem administration (figure 5.7a), t[7]=-2.2517, p=0.059. In vitro, the mean FWHM in 

MI LIII was 14.20±10.89 Hz before, and 10.90±5.16 Hz after zolpidem administration, 

t[9]=1.2031, p=0.9657. The mean FWHM in MI LV was 16.59±9.98 Hz before, and 

14.56±8.50 Hz after zolpidem administration (figure 5.7b), t[16]=0.2596, p=0.3486.  

There were no significant changes to the frequency variability in the MEG and in vitro 

experiments. In MI from the MEG recordings the mean percentage of samples found at 

the peak frequency was 9.31±4.94 % before and 5.81±1.61 % after zolpidem 

administration (figure 5.8a), t[7]=1.7532, p=0.123.  

In vitro, in MI LIII the percentage of samples at the peak frequency was 9.20±9.35 % 

before and 10.90±5.16 % after zolpidem administration, t[9]=1.2861, p=0.2305. In MI LV 

the percentage of samples at the peak frequency was 16.59±9.98 % before and 

14.56±8.50 % after zolpidem administration (figure 5.8b), t[16]=0.8454, p=0.4103  

  

Figure 5. 8a-b. Mean percentage of samples at the peak frequencies did not change 
significantly after zolpidem administration in human MI (n=8) (a, left) or MI in vitro (b, right), MI 
LIII: n=10 (green); MI LV: n=17 (blue). SEMs are indicated with errorbars. 

  

Figure 5. 7a-b. Mean FWHM before and after zolpidem administration showed no significant 
changes, in human MI (n=8), a (left), or MI in vitro, b (right), MI LIII: n=10 (green); MI LV: n=17 

(blue). SEMs are represented as error bars. 
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5.3.1.3. Oscillatory power state 

In MEG, the percentage of samples found in the oscillatory upstate was 35.91 % before 

and 33.98 % after zolpidem administration (figure 5.9), this was non-significant: 

t[7]=1.2848, p=0.2398. The mean power in the upstate increased significantly from 1.3 to 

3.41 nAM, t[7]=-2.7545, p=0.0283. Similarly, the mean power in the downstate increased 

significantly from 0.439 to 0.882 nAm, t[7]=-2.4407, p=0.0447.  

 

Figure 5. 9. Group-averages of oscillatory up- and downstate mean power in human MI (n=8), 
before and after zolpidem administration. The mean power in both the upstate (grey) and the 
downstate (orange) increased significantly, p<0.05, respectively. Dark blue represents mean 
power in the oscillatory upstate, light blue represents mean power in the oscillatory 
downstates. 

In MI LIII the percentage of samples found in the oscillatory upstate was 38.81 % before 

and 39.87 % after zolpidem administration. This was not significant, t[9]=-1.4776, 

p=0.1736. The mean upstate power in MI LIII was 10.07 x10-11 V2 before and 19.69 x10-11 

V2 after zolpidem application. This was not significant, t[9]=-2.131, p=0.0619. The mean 

downstate power in MI LIII was 3.78 x10-11 V2 before and 7.21 x10-11 V2 after zolpidem 

application. This was not significant, t[9]=-2.0501, p=0.0706. 

In MI LV the percentage of samples found in the oscillatory upstate was 38.66 % before 

and 38.46 % after zolpidem application. This was not significant, t[9]=0.1726, p=0.8651. 

The mean upstate power in MI LV was 4.23 x10-11 V2 before and 9.83 x10-11 V2 after 

zolpidem application. This was not significant, t[9]=-1.6782, p=0.1127.The mean downstate 

power in MI LV was 9.83 x10-11 V2 before and 3.029 x10-11 V2 after zolpidem application 

(figure 5.10). This was not significant, t[9]=-2.054, p=0.0567. 
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Figure 5. 10. Group-averages of oscillatory up- and downstate mean power in MI LIII (n=10, 
greens) and MI LV (n=17, blues) in vitro before and after zolpidem application in vitro. There 

were no significant changes. 
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5.3.2. Differential effects of zolpidem in MI and SI 

In an attempt to compare the specific effects of GABAA-R modulation of oscillatory activity 

in MI to SI we undertook LFP recordings in microslices of MI and SI. Figure 5.11 shows an 

overview. 

 
Figure 5. 11. Group- and time-averaged PSD of the oscillatory activity in different laminae in 
microslices of MI and SI before and after zolpidem application. MI LIII: n=2 (greens), MI LV: 
n=9 (blues), SI LIV: n=5 (reds).  

 

5.3.2.1. Frequency and power 

Mean peak frequency in MI LIII before zolpidem application was 14.5±4.24 Hz, and after 

19.25±8.84 Hz. This was not significant, t[1]=-1.4615, p=0.382. Mean peak frequency in MI 

LV before zolpidem application was 25.17±3.90 Hz, and after 23.78±3.25 Hz. This was 

not significant, t[8]=1.2829, p=0.2354. Mean peak frequency in SI LIV before zolpidem 

application was 28±20.12 Hz, and after 16.25±8.84 Hz (figure 5.12). This was not 

significant, t[4]=1.8106, p=0.1445.  

 

Figure 5. 12. Mean peak frequency before (Pre) and after (Post) zolpidem application in MI 
LIII (n=2, green), MI LV (n=9, blue) and SI LIV (n=5, red) in the microslice in vitro preparation. 
SEMs are represented as error bars. There were no significant changes. 
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Mean peak amplitude in MI LIII before was 22.77±27.44 x10-11 V2, and after 33.42±39.02 

x10-11 V2. This was not significant, t[1]=-1.2009, p=0.4172.Mean peak amplitude in MI LV 

before was 22.34±28.98 x10-11 V2, and after 100.035±121.694 x10-11 V2. This was not 

significant, t[8]=-2.0101, p=0.0793. In SI LIV the mean peak amplitude was 41.73±77.40 

x10-11 V2 before and 68.42±118.88 x10-11 V2 after zolpidem application (figure 5.13). This 

was not significant, t[4]=-1.3888, p=0.2372.  

 

Figure 5. 13. Mean peak power before and after zolpidem application in the microslice in vitro 
preparation. MI LIII: n=2 (green), MI LV: n=9 (blue), SI LIV: n=5 (red). SEMs are represented 
by error bars. There were no significant changes.  

 

5.3.2.2. Frequency distribution and variability 

In MI LIII the mean FWHM was 19.50±7.78 Hz before and 16.25±6.72 Hz after zolpidem 

application. This was not significant, t[1]=4.3333, p=0.1444. In MI LV the mean FWHM was 

13.78±5.67 Hz before and 10.56±4.49 Hz after. This was not significant, t[8]=1.6138, 

p=0.1452. In SI LIV the mean FWHM was 28.20±13.88 Hz before and 13.9±5.86 Hz after 

zolpidem application (figure 5.14). This was not significant, t[4]=2.7349, p=0.0522. 

 

Figure 5. 14. Mean FWHM before and after zolpidem application in MI LIII (n=2, green), MI LV 
(n=9, blue) and SI LIV (n=5, red) in the in vitro microslice preparation. SEMs are plotted as error 
bars. There were no significant changes. 
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The peak frequency distribution in MI LV significantly increased after zolpidem application 

from 8.85±4.25 to 16.92±10.04 %, t[8]=-2.4757, p=0.0384, see figure 5.15, and 5.16a-d. In 

MI LIII the percentage of samples found at the peak frequency was 3.69±0.8469 % before 

and 3.59±1.4079 % after. In SI LIV the percentage was 2.58±2.43 before and 7.60±5.72 

after zolpidem application. There were no significant effects on frequency distribution in MI 

LIII and SI LIV, t[1]=0.0662, p=0.9579 and t[4]=-1.7334, p=0.1581, respectively. 

 

Figure 5. 15. Mean peak frequency distribution before and after zolpidem application in 
microslices in vitro. The mean % of samples at the peak frequency significantly increased in MI 
LV (n=9, blue), p<0.05, marked with *. MI LIII (n=2, green), SI LIV (n=5, red). SEMs are plotted 
as error bars. 
 

  
Figure 5. 16a-d. Group-averaged peak frequency, and normalised power to sample, distributions 
before, (a & c, left) and after (b & d, right) zolpidem application in MI LV (n=9) in microslices in 
vitro. There is a strong increase in number of samples at the peak frequency, as indicated by the 
black arrows. The change in variance in MI LV was statistically significant, p<0.05. 
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5.3.2.3. Oscillatory power state 

We found significant increases in the mean upstate power in MI LV from 8.69 to 20.34 

x10-11 V2, t[8]=-3.4147, p=0.0092, and in the mean downstate power also increased 

significantly from 2.99 to 7.09, x10-11 V2, t[8]=-3.2523, p=0.0117. The upstate percentage in 

MI LV before zolpidem application was 39.36 % and after 38.87 %. This was not 

significant, t[8]=0.8854, p=0.4018. In MI LIII the percentage found in the upstate was 40.07 

% before and 41.23 % after. The mean upstate power was 29.10 x10-11 V2 before and 

45.98 x10-11 V2. The mean downstate power was 12.39x10-11 V2 before and 21.51x10-11 

V2. These changes were not significant: t[1]=-1.3211, p=0.4125; t[1]=-1.164, p=0.4519; t[1]=-

1.1997, p=0.4424, respectively. In SI LIV the percentage found in the upstate was 38.82 

% before and 38.61 % after. The mean upstate power was 52.35 x10-11 V2 before and 

81.61 x10-11 V2. The mean downstate power was 23.81x10-11 V2 before and 30.24x10-11 V2 

(figure 5.17). These changes were not significant: t[4]=0.1201, p=0.9102; t[4]=-1.991, 

p=0.2967; t[4]=-1.1951, p=0.2981, respectively. 

 

Figure 5. 17. Group-averages of oscillatory state mean power in MI LIII (n=2, greens), MI LV 
(n=9, blues) and SI LIV (n=5, reds) in the in vitro microslice preparation before (Pre) and after 
(Post) zolpidem application The increases in up- and downstates mean power in MI LV are 
significant, p<0.01 and p<0.05, respectively, marked with *. (Power is displayed as x10

-11
 V

2
). 
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5.4 Discussion 

5.4.1. Summary 

We have studied the effects on oscillatory activity in human MI of sub-sedative doses of 

zolpidem, which significantly increased the mean peak power in MI. Application of 

zolpidem in vitro significantly increased the mean peak power of ongoing beta oscillations 

in all recorded MI laminae in intact slices. Additionally the frequency in MI LV decreased 

significantly. Differentiating effects of zolpidem on ongoing activity between MI and SI in 

microslices showed that, while there were no significant effects on mean peak frequency 

or power, the peak frequency distribution in MI LV was significantly increased. Moreover, 

the power in the oscillatory states in MI LV increased significantly.  

 

5.4.2. GABAergic modulation of MI activity in vitro compared to MEG 

In vitro and in silico studies generally report a decrease in peak frequency in the motor 

cortex after increasing the GABAergic drive and synchronisation, with the characteristic 

oscillatory power increase (Jensen et al., 2005; Yamawaki et al., 2008; Prokic et al., 

2012). In neuroimaging reports, effects on oscillatory frequency from benzodiazepine, and 

alike, substances, have been reported with more inconsistency (Baker & Baker 2003; 

Jensen et al., 2005). This is most likely due to differences in the undertaken analysis 

approaches. We found a significant decrease in the mean peak frequency of the ongoing 

oscillatory activity in MI LV, but not in any other areas of recording, nor in the human MI. 

We speculate that this is due to the narrow natural frequency preference that appear 

characteristic of MI LV oscillatory activity, which this and other studies have reported on 

(Yamawaki et al., 2008; Prokic et al., under review). Previous research in this project has 

suggested that the oscillatory activity seen in MI LIII and SI LIV, as well as human MI, 

arise from more than one oscillator in the underlying neuronal substrate, as determined by 

the use of distribution and variability analysis. In contrast, the oscillatory network activity 

distribution in MI LV is centred round the mean peak frequency, instead suggesting that 

this activity arise from one oscillator. The effects on oscillatory peak frequency from 

GABAergic modulation on a neuronal network would be less clear if there was modulation 

of several oscillators of varying frequencies as these amalgamate into one averaged 

population signal. In MI LV the ongoing oscillatory peak is sharp with a symmetrical and 

unimodal distribution, thus any GABAergic modulation of the ongoing peak frequency is 

likely to be seen as a clear shift in peak frequency. Furthermore, the previous chapters 

have emphasised the difference between MEG and LFP oscillatory signals with regards to 

number of neuronal networks and source size and frequency. The theories discussed 
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above, with regards to participating neuronal networks and oscillatory frequencies in the 

different laminae can be anecdotally scaled up to suit the aggregate MEG signal. We have 

been unable to locate any other research along these lines, so supporting or refuting 

these theories is currently difficult. More research on this, as well as the underlying 

mechanisms of the ongoing activity beta and mu seen in MI LIII and SI LIV, is required to 

elucidate and substantiate these claims.  

In the MEG recordings of oscillatory activity in MI, administration of sub-sedative doses of 

zolpidem in healthy subjects significantly increased the overall mean beta peak power and 

oscillatory state power of the recorded oscillatory activity. This is in agreement with 

previous studies of the effects of benzodiazepine administration in healthy subjects, 

showing an increase of mean beta power (Domino et al. 1989; Glaze, 1990; Baker & 

Baker 2003; Jensen et al., 2005; Hall et al., 2009; 2010; 2011). The link with increased 

GABAergic modulation and increased mean beta power in MI recorded with MEG was 

reported by Gaetz et al. (2011). Our findings also agree with previous in vitro reports on 

the increase of beta power after zolpidem and benzodiazepine administration in MI LV 

(Yamawaki et al., 2008, Prokic et al., under review). In addition, we found that zolpidem 

significantly increased the mean peak power of the ongoing activity in MI LIII previously 

not reported. However, there was a non-significant increase in oscillatory state power in in 

vitro; where the non-significance was suspected to be due to low n-numbers. The 

modulation of the oscillatory mean peak power by zolpidem application suggests similar 

mechanisms to the oscillatory activity previously reported in MI LV, although the exact 

mechanisms cannot be determined from these recordings as this would require further 

pharmacological manipulation in vitro. Oscillatory activity has been found to depend on 

GABAergic interneurons, predominantly FS interneurons (Cobb et al., 1995, Hasenstaub 

et al., 2005). Effects of benzodiazepines and substances acting on the benzodiazepine 

site in the GABAA-receptor increase the chloride channel opening time and frequency 

respectively. These substances affected the features of beta oscillation through increasing 

the IPSCs in interneurons (Jensen et al., 2005), and in effect by modulating phasic 

GABAA-R specific inhibition (Yamawaki et al., 2008). It is likely that the GABAergic 

modulator zolpidem would modulate the overall beta oscillatory activity in all areas we 

have recorded from. We speculate that it is down to the neuronal network or natural 

resonance frequency to determine the level of reinforcement and thereby the oscillatory 

peak power, as the mu amplitude is not significantly changed by zolpidem (data not 

shown). Previous experiments in this project, discussed in chapter 4, have suggested that 

oscillatory power is higher in more local networks, although we have not been able to find 

any other research to substantiate this. 
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Administration of sub-sedative doses zolpidem to patients with stroke with a sensorimotor 

lesion reduces the power of the abnormal pathological beta oscillations (Hall et al., 2010). 

In addition, the ‘beta-buzz’ in healthy subjects is well-established in the EEG literature as 

an increase in oscillatory beta power following administration with GABAergic drugs, such 

as benzodiazepines. In vitro experiments have found that the oscillatory beta power in 

layer V of MI increases after zolpidem application (100nM). Recent research has argued 

that the effects of zolpidem are dose-dependent and that a lower dose (10 nM) decreases 

the oscillatory power; this dose was suggested to be more similar to the sub-sedative 

dose administered to human participants and patients (Prokic et al., 2012). However, the 

results from this chapter indicate that the oscillatory beta power significantly increases in 

healthy subjects after administration of sub-sedative doses of zolpidem, similar to 

application of 30 and 100 nM zolpidem in the in vitro preparations.  

 

5.4.3. GABAergic modulation of MI activity compared to SI activity in vitro 

We wanted to determine the specific effects of GABAergic modulation with zolpidem on 

the oscillatory activity in MI compared to SI in microslices. Although the trends seen in the 

intact slices were replicated in the microslices, with regards to mean peak frequency and 

power, we found no significant decrease in mean peak frequency. The effects of 

GABAergic modulation on the neuronal network activity in MI LV appear different in 

physically separated MI and SI, compared to intact slices. This was illustrated by the 

significant increase in peak frequency variability seen after zolpidem administration in MI 

LV in microslices. This was not seen to the same degree in MI LV in the intact slices. It is 

difficult to determine whether these differences in effects from GABAergic modulation are 

down to the intrinsic neuronal network differences between intact and microslices, 

protocol differences, or simply a combination of factors. We hypothesise that connectivity 

between MI and SI is an important factor. Further experiments and analysis is required to 

disentangle this. In addition, the concept of measuring frequency variability is very recent 

(Little et al., 2012; Hall et al., under review) and has yet to become fully acknowledged 

and used.  

We found no significant increase of oscillatory mean peak power in either location. This is 

surprising as the experiments by Yamawaki et al. (2008) were performed on microslices. 

Our statistically negative results could be due to low experimental number and 

subsequent low statistical power. Alternatively, as data from previous in vitro studies was 

band-pass filtered and the peak frequency and power were manually assessed in the 

before and after conditions in FFT-derived PSD plots; and we used a Morelet-wavelet 
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sliding window approach with less averaging, the discrepancies in results could be down 

to differences in analysis approaches. In addition, the increase in mean power in the 

power states was significant in MI LV in microslices, but not in the intact slices. The full 

relevance of findings in mean power of oscillatory states is yet to be determined as further 

investigation of these results is required to understand and relate to the oscillatory 

patterns seen in neuronal network activity.  
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5.5. Conclusion 

We conclude that the combination of pharmacological manipulation in vitro and in MEG 

has contributed to insight into both the underlying neuronal substrates of oscillatory 

activity in the sensorimotor cortex. We have shown that MI beta oscillations in healthy 

humans increase in power after administration of sub-sedative doses of the GABAA-R α1-

subunit agonist zolpidem. We have also shown zolpidem application (100nM) increases 

the beta power of ongoing oscillatory activity in all sensorimotor locations recorded in 

vitro. Furthermore, our results supports the theory of differences in the neuronal networks, 

as well as the effect of GABA-modulation of the sensorimotor “beta network” and neuronal 

synchronisation, between healthy subjects and PD patients.  
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Chapter 6. Effects of frequency specific somatosensory 

stimulation on ongoing oscillations in the sensorimotor 

cortex  
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6.1. Introduction 

6.1.1. Background 

Beta, mu and gamma oscillations are central phenomena in the sensorimotor cortex and 

well-documented; as described in previous chapters (Salmelin & Hari 1994; Salmelin et 

al., 1995; Pfurtscheller & Lopes da Silva 1999; Salenius & Hari 2003, Gaetz & Cheyne 

2006; Cheyne 2008; Muthukumaraswamy, 2010; Cheyne 2012). Connectivity studies, 

both anatomical and functional, have revealed complex connectivity between MI and SI 

(Brovelli et al., 2004; Douglas & Martin 2004; Thomson & Lamy 2007; Witham et al., 2010; 

Hooks et al., 2011), supported in particular by the functionally dependent oscillatory 

dynamics surrounding movement and stimulation (Pfurtscheller 1981; Salmelin & Hari 

1994; Salmelin et al., 1995; Stancak & Pfurtscheller 1995; Jurkiewicz et al., 2006; Gaetz & 

Cheyne 2006; Neuper et al., 2006). The post-movement, or post-stimulation, beta 

rebound activity seen over MI is believed to reflect somatosensory re-afference and the 

“resetting” of motor cortex after a sensorimotor event (Salenius et al., 1997b, Schnitzler et 

al., 1997; Chen et al., 1999; Pfurtscheller et al. 2005; Pfurtscheller & Solis-Escalante 

2009). However, as was discussed in previous chapters, most sensorimotor research 

focuses on the oscillatory dynamics surrounding functional changes. There is therefore, 

less available research on the ongoing beta and mu oscillatory activity in MI and SI and it 

is unclear to what extent the ongoing oscillatory activity in SI influences the ongoing 

oscillatory activity in MI.   

The augmented beta activity seen in the beta rebound has also been suggested to 

temporarily prevent any new movement, underlying some of the symptoms in PD patients 

(Brown 2006; 2007; Degardin et al., 2009; Eusebio & Brown 2009; Pogosyan et al., 2009). 

Applying external stimulation at 20 Hz over the motor cortex and entraining ongoing motor 

cortical oscillations with non-invasive transcranial alternating current stimulation impairs 

motor function in healthy subjects and was proposed to play an inhibitory role in no-go 

trials (Pogosyan et al., 2009; Feurra et al., 2011a; Joundi et al., 2012). Driving the motor 

cortex at gamma frequency facilitated performance (Joundi et al., 2012) and applying 

stimulation at alpha, gamma and to some degree beta, frequency stimulation over SI 

resulted in tactile sensations (Feurra et al., 2011b). Suggestions of different functional 

roles of different oscillation frequencies are far from novel and, in movement disorders, 

beta frequency oscillations appear to play a central role in the manifestation of abnormal 

motor outputs (Brown 2006; 2007; Eusebio & Brown 2009; Pogosyan et al., 2009); 

applying of stimulation of different frequencies has had both beneficial and detrimental 

effects in movement disorders such as PD (Cantello et al., 2002; Moro et al., 2002; 
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Benabid 2003; Drout et al., 2004; Lefaucheur et al., 2005; Helmich et al., 2006; Kuncel et 

al., 2006; Priori et al., 2006; Eusebio et al., 2008; Filipović et al., 2011; Yamawaki et al., 

2012). Similarly, different frequencies are known to affect motor excitability in distinct 

ways; application of transcranial stimulation with high frequencies over the motor cortex 

e.g. >5 Hz, increase motor cortex excitability and facilitates motor output, whereas low 

frequency stimulation is reported to depress motor cortex excitability (Pascual-Leone et 

al., 1994; Chen et al., 1999; Muellbacher et al., 2000; Gangitano et al., 2002; Romero et 

al., 2002; Fitzgerald et al., 2006; Jung et al., 2008; Feurra et al., 2011a).  

Different areas are believed to oscillate at specific natural frequencies due to their distinct 

electrophysiological setup (Chagnac-Amitai & Connors 1982; Flint & Connors 1996; 

Rosanova at al., 2009, Zaehle et al., 2010); evidenced by single pulse experiments. 

Applying an external rhythm is more likely to drive the underlying neural substrate if the 

applied rhythm is close to the natural frequency (Fries 2005; Schnitzler & Gross 2005; 

Rosanova et al., 2009; Thut et al., 2011a). Conventionally, oscillatory activity in the mu 

frequency range is representative of SI and beta frequency oscillations are believed to 

originate from MI (Salmelin & Hari 1994; Salmelin et al., 1995; Pfurtscheller & Lopes da 

Silva 1999; Salenius & Hari 2003, Gaetz & Cheyne 2006; Cheyne 2012). The natural 

resonance frequencies are enhanced temporarily when applying for example single pulse 

TMS. Single pulse TMS applied to the motor cortex increased the 15-30 Hz synchronised 

activity in motor cortex (Paus et al., 2001; Fugetta et al., 2005; van der Warf & Paus 2006; 

Thut & Miniussi 2011). Distinct frequency bands, with anecdotal inter-individual frequency 

specificity and variability within the distinct band, are suggested to be relevant for 

particular functions (Neuper & Pfurtscheller 2001a; 2001b: Steriade, 2006; Mantini et al., 

2007; Thut et al., 2011b; Thut & Miniussi 2011; Cheyne 2012). Few studies in humans 

look at long-lasting effects on the ongoing oscillatory activity, e.g. lasting after stimulation 

offset, of stimulating at different frequencies, although one recent study noted that rTMS 

at 20 Hz resulted in an increase in alpha power, e.g. 10Hz, over the motor cortex lasting 

for 5 minutes after stimulation offset (Veniero et al., 2011).  

Mechanisms underlying any long-term changes are largely unknown. One recent report by 

Zhaele et al. (2010) used transcranial alternating current stimulation and a network model 

to show that spike-timing dependent plasticity plays an important role, even after 

stimulation has ended. The resonant frequencies of the stimulated neural circuits 

determined the modulation of the constituent synapses in the circuit; the closer to the 

inherent resonance frequency the stimulation was, the more the synapses were 

strengthened. While studies in humans with transcranial stimulation have focused on the 

driven and entrainment effects on oscillatory activity during the stimulation itself, in vitro 
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studies have predominantly focused on the effects after stimulation offset. This is due to 

the large artefacts that surround the in vitro experimental stimulation. Yamawaki et al. 

(2008) applied electrical stimulation of the superficial layers of MI at 4, 20 and 125 Hz and 

reported a frequency dependent effect after the stimulation offset. Specifically, beta 

oscillatory activity in MI was reinforced following gamma and theta stimulation 

frequencies, while 20 Hz stimulation promoted gamma and theta frequencies. These 

findings are supported by the observations of Yazdan-Shahmorad et al. (2011), who found 

that specific frequencies of stimulation over MI in vivo have different effects on the 

neuronal spike activity in the individual laminae of MI.  

While strong connectivity exists between SI and MI and somatosensory inputs are known 

to incur changes in MI, it is unclear to what extent specific frequency plays a role in this 

connectivity. Here, we address this question directly, using parallel experiments in MEG 

and in vitro to determine the effects of frequency specific somatosensory stimulation on 

the activity of MI. We explore: (1) the effects of somatosensory stimulation across the 

frequency range on MI oscillations, between MEG and in vitro experiments and (2) the 

effects of SI and MI stimulation on SI and MI activity in vitro to determine the relevance of 

cortico-cortical connectivity.  

 

6.1.2. Aims and research objectives 

Previous studies have described strong physiological and functional coupling between MI 

and SI, and imply the involvement of beta, mu and gamma oscillations. However, it is 

unclear to what extent specific oscillatory inputs from one area are important in influencing 

the activity of the other. Furthermore, in movement disorders, beta oscillations appear to 

play a central role in the manifestation of abnormal motor outputs. However, it is not clear 

to what extent SI oscillations influence those in MI. We aim to better understand these 

relationships by addressing the following questions: 

o How does somatosensory stimulation affect the spontaneous oscillations in human 

MI and SI? 

o How does SI stimulation effect the spontaneous oscillations of MI and SI in the in 

vitro recordings? 

o To what extent is the specific frequency of stimulation important in eliciting effects 

in MEG and in vitro? 
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6.2. Methods  

6.2.1. MEG 

15 subjects (8F), age range 24-45 years, were seated upright in the MEG scanner for a 

period of 10 mins. The study was performed in accordance with the Declaration of 

Helsinki, and approved by the Ethics Committee of the School of Life and Health Sciences 

at Aston University. Written informed consent was obtained from all participants. The 

participants received visual instructions from a computer screen, in addition to audio 

instructions from the experiementer. Participants performed voluntary and self-paced 

finger movements every 5 seconds with left index finger for 1-2 minutes. Primary motor 

cortex was localised with a SAM beamformer approach based on the PMBR seen after 

voluntary finger movements (Jurkiewicz et al., 2006). The PMBR was identified by an 

increase in the 15-30 Hz frequency band 0.5 to 1.5 seconds following movement offset 

compared to and -2.0 to -1.0 seconds before movement. EMG electrodes were placed on 

the FDI muscle to determine the onset and offset of finger movements. Primary 

somatosensory cortex was localised in participants using the ERSAM approach (Cheyne 

et al., 2006), using the stimulation events in a 2 Hz electrical stimulation train delivered 

through two electrodes (Digitimer Ltd.) to the median nerve at 50% of the thumb-twitch 

threshold. We focused the ERSAM on gamma (30-100Hz) activity around the evoked 

potential latency. Participants received somatosensory stimulation at different frequencies 

via galvanic stimulation of the median nerve, at 50% of the intensity required to elicit a 

thumb-twitch. Stimuli were generated with a clinical current stimulator (Model DS7a, 

Digitimer, Ltd, UK) and delivered through two electrodes, placed over the dorsal part of 

the median nerve. There were 10 stimulation events per frequency, 2s each, interspersed 

with 4-6 seconds of rest. 12 different frequencies were randomly delivered (5, 10, 15, 20, 

26, 31, 36, 42, 47, 53, 59, 67 Hz), with a pulse width of 200 µs (figure 6.1). The stimulation 

was externally controlled by the Presentation software (Neurobehavioural systems, UK). 

Throughout the recording, participants were instructed to sit at rest and were allowed to 

watch a movie of their choice, displayed on screen outside the shielded room, in order to 

maintain attention throughout the lengthy recording session. This was intended to reduce 

the potential effects on ongoing oscillations of individuals focusing to different degrees on 

the stimulation. None of the participants reported the stimulation as painful. Trials 

containing artefacts were discarded and the data was filtered to 1-200 Hz, with additional 

notch filters at 50 and 60 Hz.  
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Figure 6. 1 Schematic of the stimulation protocol used in the frequency stimulation experiments in 
humans. The stimulation events, shown in black/grey blocks, were 2s in length, and interspersed 
with 4-6s. Different frequencies were randomised throughout the recording. There were ten 
stimulation events of each of the 12 frequencies in each subject. 

Data were screened for artefacts and head movement errors. 7 participants were 

excluded from further offline analysis; two were removed due to artefacts during data 

acquisition, two were removed due to exceeding movement limitation in the scanner, two 

were removed as there was no high quality MRI to proceed with an acceptable SAM 

localisation, and one participant was on sick leave. Data from virtual electrodes in MI and 

SI were reconstructed before and after stimulation and analysed using Matlab 

(Mathworks). Specifically, the oscillatory activity 2 seconds prior to stimulation was 

compared with activity 2 seconds post-stimulation for each stimulation frequency. The 

effects of each stimulation frequency were analysed for changes in oscillatory power and 

frequency, for frequency distribution and variability and power state change, using the 

custom analysis software described in chapter 2. Statistical differences in each of these 

attributes before and after stimulation were determined by Student’s t-test. 

 

6.2.2. In vitro  

Intact sensorimotor slices were prepared using protocol 2, described in chapter 2. All 

animal experiments were performed in accordance with the Aston University ethical 

review board regulations, as well as the Animals Scientific Procedures Act 1986; 

European Communities Directive (86/609/EEC). Brains from p18-p22 (50-60g) male 

Wistar rats were extracted. 450 µm thick sagittal sensorimotor slices were stored in a 

tissue interface chamber at room temperature for >1h. The slices were then transferred to 

a recording chamber with a temperature of 33-34°C and a continuous flow rate of 2 ml/min 

aCSF with added KA and CCh; concentrations and preparations according to protocol 2. 

Recordings of LFPs from superficial layers (II/III) and deeper layers (V) of MI and middle 

layer (IV) of SI (figure 2.6) were made. The electrodes were placed in relevant layers, 

identified by using a dissecting microscope and the Rat Brain Atlas (Paxinos & Watson 

1986) as reference. LFP recording started after the KA- and CCh-induced oscillatory 

activity had stabilised, >1h in the recording chamber with KA and CCh in the aCSF flow, 

and lasted for >3h.  
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Electrical stimulation was delivered through a wire electrode inserted into SI LIV and 

generated with a current stimulator (Model DS3, Digitimer, Ltd, UK). Each stimulation 

event was 2s, interspersed with 60s of rest (figure 6.2). 12 different frequencies were used 

(5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60 Hz).  

 

Figure 6. 2 Schematic of the stimulation protocol used in the frequency stimulation experiments in 
vitro. The stimulation events, shown in black/grey blocks, were 2s in length, and interspersed with 
60s. Different frequencies were randomised throughout the recording.  

The intensity of the constant current stimulator was set at 1.5mA with a pulse width of 100 

µs. The stimulation protocol was programmed and controlled through Spike2 (CED, Ltd), 

which was also used for recording the LFPs and online FFT analysis. Total and used 

number of recordings, in 10 slices, per frequency can be seen in table 6.1. Recorded data 

was exported to MatLab and 30s time periods, pre and post of each stimulation event 

were exported as separate trials to MatLab in spreadsheet format. From these trials 

Morelet-Wavelet spectrograms were derived and used for the offline analysis with the 

previous described analysis approach, for details see chapter 2.  

Table 6. 1 Number of recordings in the in vitro experiments at different stimulation frequencies 

Stimulation 

Frequency 

(Hz) 

Total no.  

(x3) 

 Number of recordings: 

MI LIII MI LV SI LIV 

5 24 15 23 24 

10 39 26 36 42 

15 44 33 41 45 

20 42 31 37 43 

25 26 15 26 26 

30 18 14 17 20 

35 24 16 23 25 

40 20 14 17 21 

45 18 14 18 20 

50 26 21 26 25 

55 41 22 39 43 

60 21 17 19 23 

Total 343 238 322 357 

The effects of each stimulation frequency were analysed for changes in oscillatory power 

and frequency, for frequency distribution and variability and power state change.  
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6.2.3. Analysis approach 

The mean peak frequency and peak power was determined for each sample in the epoch 

(30s = 30000 samples for in vitro and 2s = 1200 samples for MEG data) with a sliding 

window approach applied to the Morelet-wavelet spectrograms. The frequency distribution 

of the oscillations was determined using FWHM. The frequency variability was computed 

using the amplitude-independent peak frequency distribution, where the peak frequency of 

each sample was sorted into frequency bins of 1 Hz. Variability in oscillatory power was 

determined using an amplitude sorting measurement to determine the time and amplitude 

changes of oscillatory up and down states. We used student’s T-tests to statistically test 

for differences between before and after stimulation for each stimulation frequency and 

location, these were not compared in between each other. Further details regarding this 

analysis approach can be found in chapter 2. 
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6.3. Results 

6.3.1. Somatosensory stimulation and oscillatory power  

6.3.1.1. MEG 

The mean peak power in SI decreased significantly after 10 Hz stimulation; t[7]=2.4862, 

p=0.0418 (figure 6.3). See table 6.2-3 for non-significant changes.  

 

Figure 6. 3. Group-averages of significant and non-significant absolute differences in mean peak 
power after stimulation with different frequencies in MI (n=8, blue) and SI (n=8, red). The 
decrease in power in SI was significant after 10 Hz stimulation, p<0.05, indicated with *. 

Table 6. 2. Mean peak power before and after stimulation with different frequencies 

Mean peak power before and after stimulation ± SD (nAm) 

  Pre Post 

Stim. F 

(Hz) 

MI SI MI SI 

5 18.22±9.12 9.63±3.48 18.89±11.29 8.93±4.21 

10 22.58±15.98 13.10±6.98 18.59±12.75 8.41±4.20 

15 19.82±12.58 11.75±6.56 19.80±13.68 9.97±5.62 

20 20.93±14.85 9.22±5.15 22.18±15.90 9.69±5.89 

26 24.98±20.14 10.17±7.04 21.53±13.94 8.59±4.12 

31 20.21±13.07 10.02±6.05 20.54±13.02 8.49±3.72 

36 23.90±17.03 10.59±6.32 20.19±15.48 8.18±3.98 

42 18.27±12.10 10.04±5.03 22.88±16.71 8.82±4.23 

47 20.00±14.5 10.62±5.78 19.28±13.94 8.24±3.67 

53 22.64±15.67 10.73±5.57 21.74±15.48 8.12±4.48 

59 19.46±12.36 19.43±32.35 24.55±16.59 21.67±36.48 

67 19.39±13.31 8.94±3.53 22.76±16.92 8.96±4.33 

Grey highlight indicates statistical significance, p<0.05. 
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Table 6. 3. T-statistics: mean peak power in humans 

T-statistics: Mean peak power     

Stim F.  MI SI Stim F.   MI SI 

5 T -0.3216 0.6402 36 T 0.8317 1.4687 

 
p 0.7571 0.5424 

 
p 0.433 0.1854 

10 T 1.6726 2.4862 42 T -2.2363 0.8015 

 
p 0.1383 0.0418 (*) 

 
p 0.0604 0.4492 

15 T 0.0131 0.803 47 T 0.2979 1.3551 

 
p 0.9899 0.4484 

 
p 0.7744 0.2175 

20 T -0.6865 -1.0247 53 T 0.3433 2.5374 

 
p 0.5145 0.3396 

 
p 0.7415 0.0388 

26 T 0.7027 1.3685 59 T -1.962 -1.3716 

 
p 0.505 0.2134 

 
p 0.0906 0.2125 

31 T -0.1376 1.4483 67 T -0.9412 -0.0287 

 
p 0.8944 0.1908 

 
p 0.3779 0.9779 

Significance, p<0.05, is marked with *. 

 

6.3.1.2. In vitro 

Mean peak power increased significantly in MI LIII after 5, 40 and 55 Hz stimulation, t[14]=-

0.1168, p=0.0312; t[13]=-2.4368, p=0.0299 and t[21]=-2.6579, p=0.0147, respectively (figure 

6.4). See table 6.4-5 for non-significant changes. 

 

Figure 6. 4. Group-averages of significant and non-significant absolute mean peak power 
difference after stimulation with different frequencies. MI LIII (green) showed significant increases 
in oscillatory peak power at 5 (n=15), 40 (n=14) and 55 (n=22) Hz, p<0.05, marked with *. MI LV 
is marked with blue and SI LIV is marked with red. 
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Table 6. 4. Mean peak power before and after stimulation in vitro 

Mean peak power before and after stimulation ± SD 

Stim.   Pre     Post   

(Hz) MI LIII MI LV SI LIV MI LIII MI LV SI LIV 

5 11.58±11.04 56.14±59.09 50.72±46.94 12.24±11.70 57.70±64.86 52.45±49.61 

10 11.02±12.30 46.21±72.44 45.18±40.77 11.16±12.43 49.11±74.37 46.23±41.37 

15 9.13±9.10 46.41±63.45 42.18±41.15 9.24±9.34 46.33±63.20 42.82±41.84 

20 10.00±10.42 39.84±51.89 44.37±4.72 10.57±11.47 41.37±55.86 44.09±40.53 

25 12.24±11.68 51.74±57.31 50.63±48.04 12.67±14.04 53.78±61.64 50.47±48.21 

30 8.16±10.85 29.83±5.56 37.91±47.75 8.87±12.14 30.75±51.86 36.06±38.04 

35 12.93±10.35 58.32±65.87 51.15±48.18 13.10±10.41 57.23±66.93 51.77±50.11 

40 7.67±11.15 31.37±60.18 32.87±24.51 8.34±11.90 32.29±59.93 32.77±25.06 

45 8.38±12.27 46.46±84.02 31.90±24.72 8.47±12.20 46.14±84.31 32.77±26.84 

50 10.45±9.76 51.45±57.26 44.51±44.83 10.53±10.41 53.05±60.09 46.29±45.59 

55 12.95±11.71 44.24±64.02 44.60±41.30 13.71±11.93 46.10±66.01 45.20±41.57 

60 8.96±11.46 37.59±76.33 31.58±23.73 8.09±110.62 35.68±67.17 32.31±24.59 

Grey highlight indicates statistical significance, p<0.05. 

 

Table 6. 5. T-statistics: mean peak power in vitro 

T-statistics: Mean peak power  

Stim F. MI LIII MI LV SI LIV Stim F. MI LIII MI LV SI LIV 

5 T  -2.3937 -0.8716 -2.2187 35 T  -0.4049 0.5972 -0.5357 

  p  0.0312 (*) 0.3929 0.0424 (*)   p  0.6913 0.5565 0.6006 

10 T  -0.5215 -1.0629 -0.2008 40 T  -2.4368 -0.1705 -0.6537 

  p  0.6066 0.2951 0.8432   p  0.0299 (*) 0.8668 0.5226 

15 T  -0.4781 0.1353 0.1292 45 T  -0.5988 0.4607 0.2221 

  p  0.6358 0.893 0.8982   p  0.5596 0.6508 0.8277 

20 T  -1.8046 -1.4911 -1.8046 50 T  -0.3385 -1.9502 -0.5114 

  p  0.0812 0.1446 0.0812   p  0.7385 0.0625 0.6153 

25 T  -0.5639 -1.6315 -0.5443 55 T  -2.6579 -1.9604 -1.886 

  p  0.5817 0.1153 0.5933   p  0.0147 (*) 0.0573 0.0747 

30 T  -1.748 -1.4404 -1.748 60 T  1.4906 0.8227 1.4906 

  p  0.104 0.169 0.104   p  0.1555 0.4214 0.1555 

Abbreviations: T=t-statistic, p=p-value. Significance p<0.05, is marked with *. 
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6.3.2. Somatosensory stimulation and oscillatory frequency  

6.3.2.1. MEG 

The increase in mean peak frequency in SI after 36 and 53 Hz stimulation were 

significant: t[7]=-2.673, p=0.0319, and t[7]=-2.4346, p=0.0451, respectively (figure 6.5). See 

talbe 6.6-7 for non-significant changes. 

 

Figure 6. 5. Group-averages of significant and non-significant absolute differences in mean 
peak frequency in MI (blue) and SI (red) after stimulation with different frequencies. In SI (n=8), 
the increases in mean peak frequency at 36 and 53 Hz were significant, p<0.05, marked with *.  
 

Table 6. 6. Mean peak frequency before and after stimulation with different frequencies 

Mean peak frequency before and after stimulation ± SD (Hz) 

 Pre Post 

Stim. F 

(Hz) 

MI SI MI SI 

5 19.50±7.19 17.31±6.94 23.31±5.90 19.19±6.84 

10 19.38±6.66 16.69±6.14 23.50±6.11 17.50±7.25 

15 19.19±6.89 14.88±5.20 23.25±5.78 20.63±6.47 

20 21.50±6.80 19.69±6.60 22.63±5.3 17.13±6.69 

26 23.44±6.10 19.31±7.24 22.50±5.39 16.31±5.68 

31 23.19±5.58 19.00±6.89 24.81±3.39 18.88±7.41 

36 18.38±7.31 15.63±7.63 23.01±7.50 22.75±5.55 

42 25.81±3.60 19.19±7.26 25.00±4.31 22.5±5.95 

47 21.75±6.90 18.94±6.78 22.50±6.05 20.44±6.83 

53 23.88±6.53 15.69±6.39 25.02±4.33 22.00±7.72 

59 20.75±7.98 22.19±11.39 24.38±3.97 24.25±12.49 

67 24.00±5.74 19.00±6.69 24.38±6.36 18.88±7.26 

Grey highlight indicates statistical significance, p<0.05. 
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Table 6. 7. T-statistics: mean peak frequency in humans 

T-statistics: Mean peak frequency 

Stim F. MI SI Stim F. MI SI 

5 T -1.3938 -1.2658 36 T -1.2482 -2.673 

  p 0.206 0.2461   p 0.2521 0.0319 (*) 

10 T -1.4949 -0.2555 42 T 0.974 -1.1989 

  p 0.1786 0.8057   p 0.3625 0.2696 

15 T -1.6494 -2.2476 47 T -0.2798 -0.5875 

  p 0.1431 0.0594   p 0.7878 0.5753 

20 T -0.7445 1.1266 53 T -0.7657 -2.4346 

  p 0.4808 0.297   p 0.4689 0.0451 (*) 

26 T 0.3272 0.9294 59 T -1.1414 -0.8038 

  p 0.7531 0.3836   p 0.2913 0.448 

31 T -0.9442 0.0408 67 T -0.1697 0.1876 

  p 0.3765 0.9686   p 0.87 0.8565 

Abbreviations: T=t-statistic, p=p-value. Significance p<0.05, is marked with *. 

 

6.3.2.2 In vitro 

20 Hz stimulation significantly decreased the ongoing oscillatory mean peak frequency in 

MI LIII, t[30]=2.6382, p=0.0131 (figure 6.6). See table 6.8-9 for non-significant changes. 

 

Figure 6. 6. Group-averages of significant and non-significant absolute differences in mean peak 
frequency after stimulation. The decrease after 20 Hz stimulation in MI LIII (n=31, green) was 
significant, p<0.05. MI LV is indicated by blue, SI LIV by red. 
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Table 6. 8. Mean peak frequency before and after stimulation at different frequencies in vitro 

Mean peak frequency before and after stimulation ± SD 

Stim.   Pre     Post   

(Hz) MI LIII MI LV SI LIV MI LIII MI LV SI LIV 

5 20.17±9.59 29.89±2.50 27.23±2.85 20.23±9.71 29.59±2.63 26.50±3.54 

10 20.46±9.25 29.86±3.36 26.67±3.36 20.12±9.13 29.89±3.50 26.77±3.44 

15 17.59±8.97 30.51±2.05 26.25±3.99 19.36±8.95 30.40±2.06 26.22±3.68 

20 20.76±9.16 29.69±4.28 25.79±4.60 17.53±8.62 30.09±3.89 26.40±3.67 

25 19.13±9.67 29.27±4.47 26.11±4.43 19.77±9.32 29.15±4.57 26.58±4.42 

30 19.61±9.75 30.97±1.48 25.78±3.80 18.36±9.38 30.82±1.67 25.45±3.54 

35 18.19±9.90 29.87±2.15 26.38±4.68 19.03±10.14 30.02±2.20 26.46±4.59 

40 18.29±9.24 29.91±5.02 25.36±3.20 21.32±8.13 29.76±4.69 24.93±4.97 

45 19.57±9.77 30.67±1.53 25.38±3.37 20.00±9.77 30.69±1.51 24.75±3.82 

50 18.24±9.12 29.31±4.56 26.58±4.63 20.02±9.10 29.13±4.65 26.74±3.74 

55 21.89±9.06 30.58±1.93 25.29±5.07 20.86±8.93 30.08±3.75 25.48±4.76 

60 16.00±8.33 31.18±1.24 25.63±3.96 17.18±8.39 30.92±1.47 25.72±3.59 

Grey highlight indicates statistical significance, p<0.05. 

Table 6. 9. T-statistics: mean peak frequency in vitro 

T-statistics: Mean peak frequency 
 

  

Stim F. MI LIII MI LV SI LIV Stim F. MI LIII MI LV SI LIV 

5 T  -0.1168 1.7186 -0.4336 35 T  -0.4269 -0.8372 -0.4262 

  p  0.9087 0.0997 0.6708   p  0.6755 0.4115 0.6765 

10 T  0.3993 -0.2507 0.2109 40 T  -1.3616 0.0973 -1.4042 

  p  0.693 0.8035 0.8355   p  0.1965 0.9237 0.1794 

15 T  -1.8764 1.2445 -1.2882 45 T  -0.1927 -0.2514 0.5496 

  p  0.0697 0.2206 0.2086   p  0.8502 0.8045 0.5919 

20 T  2.6382 -1.0349 2.6382 50 T  -1.5179 1.1218 -1.3549 

  p  0.0131 (*) 0.3076 0.0131   p  0.1447 0.2726 0.1922 

25 T  -0.837 1.3636 -0.5047 55 T  0.6769 1.0447 0.6185 

  p  0.4166 0.1848 0.6203   p  0.5059 0.3028 0.5436 

30 T  1.6051 1.5713 1.6051 60 T  -0.6479 2.0412 -0.6479 

  p  0.1325 0.1357 0.1325   p  0.5263 0.0562 0.5263 

Abbreviations: T=t-statistic, p=p-value. Significance p<0.05, is marked with *. 
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6.3.3. Somatosensory stimulation and frequency distribution  

6.3.3.1. MEG  

There were no significant effects on mean FWHM in MI or SI after MSN of any frequency 

in humans (figure 6.7, table 6.10-11).  

 

Figure 6. 7 Group-averages of non-significant absolute differences in mean FWHM between 
before and after stimulation with different frequencies. MI is indicated by blue, SI by red. 

 

Table 6. 10. Mean FWHM before and after stimulation with different frequencies in humans 

 Mean FWHM before and after stimulation ± SD (Hz) 

 Pre Post 

Stim. F 
(Hz) 

MI SI MI SI 

5 19.13±8.98 14.25±4.54 20.38±11.22 19.44±10.50 

10 18.50±9.12 14.06±11.79 16.81±8.88 17.69±7.77 

15 16.25±5.02 15.19±11.02 17.94±9.59 16.81±6.11 

20 19.38±9.94 19.50±11.09 20.88±10.80 18.88±11.11 

26 19.00±11.48 19.13±8.64 15.88±6.43 17.06±9.04 

31 19.56±9.53 18.81±8.79 14.25±3.83 18.13±6.82 

36 15.50±8.78 19.81±10.85 17.13±5.73 18.81±7.96 

42 24.56±11.03 21.75±13.61 16.37±7.77 21.94±8.54 

47 19.63±9.72 15.94±7.49 17.94±10.46 19.44±10.18 

53 18.00±8.75 18.44±7.78 19.00±9.40 22.44±11.69 

59 20.25±9.70 20.69±7.50 14.06±4.66 16.75±7.16 

67 21.06±9.11 20.50±8.43 18.31±9.75 19.63±10.47 
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Table 6. 11. T-statistics: mean FWHM in humans 

T-statistics: Full-width half maximum   

Stim F. MI SI Stim F. MI SI 

5 T -0.3637 -1.2628 36 T -0.5359 0.3019 

 
p 0.7268 0.2471 

 
p 0.6086 0.7715 

10 T 0.4193 -0.9219 42 T 2.4577 -0.0413 

 
p 0.6876 0.3873 

 
p 0.0436 0.9682 

15 T -0.6222 -0.4102 47 T 0.5437 -0.9651 

 
p 0.5536 0.6939 

 
p 0.6035 0.3666 

20 T -0.4596 0.5018 53 T -0.6325 -1.274 

 
p 0.6597 0.6312 

 
p 0.5472 0.2433 

26 T 0.8597 1.1032 59 T 1.9202 1.0012 

 
p 0.4184 0.3064 

 
p 0.0963 0.3501 

31 T 2.1819 0.1512 67 T 1.2478 0.2052 

 
p 0.0655 0.8841 

 
p 0.2522 0.8433 

Abbreviations: T=t-statistic, p=p-value. 
 

6.3.3.2. In vitro 

There were no significant effects on mean FWHM after somatosensory stimulation in vitro 

in any laminae at any frequency (figure 6.8, table 6.12-13).  

 

Figure 6. 8. Group-averages of non-significant absolute differences in FWHM between before 
and after stimulation in vitro. MI LIII is indicated by green, MI LV by blue and SI LIV by red. 
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Table 6. 12. Mean FWHM before and after stimulation with different frequencies in vitro 

Mean FWHM before and after stimulation ± SD (Hz) 

Stim. F Pre Post 

(Hz) MI LIII MI LV SI LIV MI LIII MI LV SI LIV 

5 15.70±6.58 13.61±5.35 18.90±5.14 14.87±7.50 14.11±5.66 18.83±4.58 

10 16.06±7.14 15.03±5.62 18.21±4.94 16.58±6.05 14.75±5.62 18.29±4.93 

15 14.50±7.03 14.00±5.17 19.10±5.27 15.17±7.32 14.06±4.92 18.88±4.96 

20 15.42±6.86 14.07±4.73 18.67±5.31 16.02±5.97 14.05±5.02 18.99±5.25 

25 15.67±7.51 13.65±4.57 18.88±4.73 17.73±7.69 13.90±5.09 18.85±4.76 

30 15.71±8.27 14.26±4.69 19.50±4.22 16.82±6.22 14.38±5.08 19.38±4.31 

35 15.34±6.32 12.91±4.10 18.32±4.86 16.41±6.85 13.98±5.64 18.24±5.08 

40 19.21±9.51 15.35±5.29 19.24±4.74 15.75±7.92 15.21±5.55 18.74±5.10 

45 14.79±8.83 13.81±4.63 18.95±4.16 16.89±8.23 14.19±4.62 19.78±4.19 

50 14.67±7.12 14.12±5.13 19.24±4.75 16.10±5.61 13.56±4.61 19.28±4.53 

55 17.75±6.81 13.60±5.26 18.80±5.04 18.11±6.60 13.76±5.16 19.02±5.06 

60 16.24±7.50 14.58±5.57 19.70±4.99 16.97±6.83 15.29±6.25 19.04±5.10 

 

Table 6. 13. T-statistics: mean FWHM in vitro 

T-statistics: Full-width half-maximum 

Stim F. MI LIII MI LV SI LIV Stim F. MI LIII MI LV SI LIV 

5 T  1.3309 -0.7424 0.1596 35 T  -1.147 -1.8934 0.1582 

  p  0.2045 0.4657 0.8746   p  0.2693 0.0715 0.8756 

10 T  -0.51 0.647 -0.1609 40 T  1.4071 0.1239 0.5693 

  p  0.6145 0.5218 0.8729   p  0.1829 0.9029 0.5755 

15 T  -0.6254 -0.1264 0.5954 45 T  -1.0439 -0.9191 -1.8615 

  p  0.5361 0.9 0.5546   p  0.3156 0.3709 0.0782 

20 T  -0.7302 0.0329 -0.8985 50 T  -1.3923 1.2684 -0.0811 

  p  0.4709 0.9739 0.3741   p  0.1791 0.2163 0.936 

25 T  -1.5897 -0.3994 0.11 55 T  -0.4439 -0.3571 -0.4647 

  p  0.1342 0.693 0.9133   p  0.6617 0.723 0.6445 

30 T  -0.7661 -0.3527 0.2028 60 T  -0.4299 -1.5363 1.2367 

  p  0.4573 0.7289 0.8415   p  0.673 0.1419 0.2292 

Abbreviations: T=t-statistic, p=p-value. 
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6.3.4. Somatosensory stimulation and frequency variability 

6.3.4.1. MEG 

In MEG stimulation at 36 Hz significantly decreased the frequency variability in both MI 

and SI; t[7]=2.4534, p=0.0439; t[7]=2.4823, p=0.0421, respectively (figure 6.9).  

 

Figure 6. 9. Group-averages of significant and non-significant absolute differences in the mean 
percentage of samples at the peak frequency stimulation with different frequencies. After 36 Hz 
stimulation in MI (n=8, blue) and SI (n=8, red), the decrease in peak frequency distribution was 
significant, p<0.05, marked with *.  

 
Table 6. 14. Peak frequency distribution before and after stimulation with different frequencies 

Frequency distribution before and after stimulation: % samples at peak 

F ± SD  Pre Post 

Stim. F 

(Hz) 

MI SI MI SI 

5 7.40±4.75 7.84±4.74 6.15±6.76 5.68±4.32 

10 6.12±3.49 7.24±4.20 4.86±2.22 5.77±2.90 

15 5.73±2.52 9.03±7.82 4.91±2.08 5.89±3.70 

20 5.42±3.20 6.23±3.92 5.21±2.77 7.63±3.95 

26 5.49±4.87 6.23±5.84 4.99±2.64 3.97±1.43 

31 4.79±2.52 4.84±2.17 4.52±2.83 5.49±2.30 

36 6.58±6.58 8.20±5.16 4.68±1.25 4.48±2.92 

42 3.88±1.32 7.41±5.82 5.24±2.80 4.25±1.63 

47 6.22±4.45 6.77±3.28 4.59±1.96 5.78±5.12 

53 4.96±2.60 7.89±5.07 4.09±2.86 5.36±5.00 

59 6.24±5.95 6.19±4.33 5.27±2.67 5.12±4.05 

67 4.99±2.84 5.74±3.12 5.00±2.56 6.17±3.98 

Grey highlight indicates statistical significance, p<0.05. 
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Table 6. 15. T-statistics: peak frequency distribution in humans 

T-statistics: Frequency variability   

Stim F. MI SI Stim F. MI SI 

5 T 0.5762 1.4093 36 T 2.4534 2.4823 

  p 0.5826 0.2016   p 0.0439 (*) 0.0421 (*) 

10 T 1.4279 0.9097 42 T -1.2377 1.5576 

  p 0.1964 0.3932   p 0.2557 0.1633 

15 T 0.6001 1.1314 47 T 1.0885 0.5506 

  p 0.5674 0.2951   p 0.3124 0.599 

20 T 0.182 -1.6543 53 T 1.166 1.4136 

  p 0.8608 0.142   p 0.2818 0.2004 

26 T 0.3324 1.253 59 T 0.5543 0.7347 

  p 0.7493 0.2504   p 0.5966 0.4864 

31 T 0.2311 -0.8402 67 T -0.012 -0.3459 

  p 0.8239 0.4286   p 0.9908 0.7396 

Abbreviations: T=t-statistic, p=p-value. Significance p<0.05, is marked with *. 

 

6.3.4.2. In vitro 

The frequency variability in MI LIII increased significantly after 20 Hz stimulation: t[30]=-

3.22309, p=0.003. There was a significant increase after 55 Hz stimulation as well: t[21]=-

2.1863, p=0.0403 (figure 6.10). See table 6.16-17 for non-significant changes.  

 

Figure 6. 10. Group-averages of significant and non-significant absolute differences in mean 
percentage of samples found at the peak frequency. The increases in mean % samples found at 
peak frequencies in MI LIII (green) after 20 (n=31) and 55 (n=22) Hz stimulation were significant, 
p<0.05, marked with *. MI LV is indicated by blue and SI LIV by red. 
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Table 6. 16. Frequency distribution before and after stimulation with different frequencies in vitro 

Frequency distribution before and after stimulation: % samples at peak F ± SD 

Stim. F Pre Post 

(Hz) MI LIII MI LV SI LIV MI LIII MI LV SI LIV 

5 5.10±3.17 9.34±4.02 6.35±2.36 5.60±3.34 9.60±4.60 6.64±2.50 

10 5.40±4.48 8.22±4.30 6.68±2.33 5.20±4.19 8.54±4.27 6.67±2.23 

15 4.93±3.40 8.69±3.64 6.14±2.39 4.87±3.82 8.69±3.82 6.21±2.52 

20 4.58±3.60 8.84±8.83 6.65±2.29 5.31±3.53 8.75±3.69 6.28±2.62 

25 5.43±3.43 9.14±3.40 6.30±2.45 5.51±3.54 9.06±4.21 6.69±2.22 

30 4.83±4.30 8.12±3.59 5.61±1.78 4.83±4.11 8.19±3.12 6.12±2.42 

35 6.20±3.53 9.84±4.28 6.70±2.21 5.60±3.62 9.66±3.94 6.51±1.87 

40 4.28±3.86 7.82±3.51 5.64±1.98 4.07±4.44 8.03±3.58 5.80±2.05 

45 4.67±4.49 8.37±3.76 5.70±1.99 4.35±4.21 7.72±3.22 5.69±1.88 

50 5.15±3.25 9.19±3.57 6.59±2.06 4.80±3.04 9.39±4.00 6.52±2.31 

55 5.38±4.34 8.80±4.21 5.87±2.12 5.99±4.28 9.29±4.14 5.98±1.90 

60 5.30±3.56 8.45±3.40 5.89±2.09 4.46±3.42 8.24±3.91 5.95±1.75 

Grey highlight indicates statistical significance, p<0.05. 

 

Table 6. 17. T-statistics: frequency distribution in vitro 

T-statistics: Frequency variability 

Stim 
F. 

MI LIII MI LV SI LIV Stim 
F. 

MI LIII MI LV SI LIV 

5 T  -1.3428 -0.8033 -1.0035 35 T  1.2771 0.5125 0.5533 

  p  0.2007 0.4304 0.3261   p  0.221 0.6134 0.5852 

10 T  0.536 -1.2213 0.0085 40 T  0.4921 -0.4748 -0.5203 

  p  0.5967 0.2301 0.9932   p  0.6308 0.6414 0.6085 

15 T  0.161 0.0199 -0.3392 45 T  0.5871 1.4291 0.061 

  p  0.8731 0.9842 0.7361   p  0.5672 0.1711 0.952 

20 T  -3.2302 0.3597 1.2928 50 T  1.0899 -0.5956 0.3202 

  p  0.003 (**) 0.7212 0.2032   p  0.2887 0.5568 0.7516 

25 T  -0.1639 0.2278 -1.1512 55 T  -2.1863 -1.5401 -0.5543 

  p  0.8721 0.8217 0.2605   p  0.0403 (*) 0.1318 0.5823 

30 T  0.0065 -0.2251 -1.0359 60 T  1.9554 0.5356 -0.8202 

  p  0.9949 0.8247 0.3133   p  0.0682 0.5988 0.4209 

Abbreviations: T=t-statistic, p=p-value. Significance p<0.05 is marked with *, p<0.01 with **.  
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6.3.5. Somatosensory stimulation and oscillatory power state 

6.3.5.1. MEG 

In the MEG recordings, in MI the decrease in the upstate percentage after 15 Hz 

stimulation was significant, t[7]=2.9982, p=0.02 (figure 6.11).  

In the MEG recordings, in SI the mean oscillatory power in the upstate in SI significantly 

decreased following 10 Hz stimulation, t[7]=3.2937, p=0.0132. The mean oscillatory power 

in the downstates significantly decreased in SI, after 10 Hz stimulation, t[7]=2.7426, 

p=0.0288. The increase in the upstate percentage after 47 Hz stimulation was significant, 

t[7]=-31376, p=0.0164 (figure 6.11-13).  

 

Figure 6. 11. Group-averages of significant and non-significant absolute differences in 
oscillatory upstate between before and after stimulation at different frequencies. In MI (n=8, 
blue) the decrease in the upstate percentage after 15 Hz stimulation was significant, p<0.05. In 
SI (n=8, red) the increase in the upstate percentage after 47 Hz stimulation was significant, 
p<0.05, marked with *. 
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Figure 6. 12. Group-averages of significant and non-significant absolute differences in the 
oscillatory upstate power between before and after stimulation. The mean oscillatory power in 
the upstate in SI (n=8, red) significantly decreased following 10 Hz stimulation, p<0.05, marked 
with *. MI is indicated by blue.  
 

 

Figure 6. 13. Group-averages of significant and non-significant absolute differences in 
oscillatory downstate power between before and after stimulation. The mean oscillatory power 
in the downstate significantly decreased in SI (n=8, red), after 10 Hz stimulation, p<0.05, 
marked with *. MI is indicated by blue. 
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Table 6. 18. Oscillatory state and power before and after stimulation in humans 

    % samples at peak F ± SD 

    Pre Post 

 Stim. F 
(Hz) 

 MI SI MI SI 

5 UP% 36.21 36.53 35.30 35.73 

 Mean UP power 161.71 83.38 147.42 83.32 

 Mean DN power 46.79 24.84 41.81 24.29 

10 UP% 35.64 34.82 35.62 35.00 

 Mean UP power 170.84 92.34 144.64 68.52 

 Mean DN power 51.91 27.51 42.14 21.55 

15 UP% 37.46 38.15 34.60 34.83 

 Mean UP power 147.47 69.27 146.97 102.00 

 Mean DN power 45.51 22.52 43.68 24.62 

20 UP% 36.80 35.109 35.25 35.16 

 Mean UP power 160.36 88.20 185.10 93.50 

 Mean DN power 45.62 25.55 45.78 24.12 

26 UP% 35.32 37.15 35.44 35.05 

 Mean UP power 229.18 83.07 182.11 79.39 

 Mean DN power 56.76 24.67 44.44 24.36 

31 UP% 34.31 37.726 32.65 37.38 

 Mean UP power 193.96 93.66 180.66 70.70 

 Mean DN power 48.15 25.81 45.94 21.35 

36 UP% 35.87 36.22 34.46 35.26 

 Mean UP power 156.26 78.68 148.30 88.93 

 Mean DN power 48.21 25.99 43.17 22.94 

42 UP% 36.02 37.73 35.86 35.63 

 Mean UP power 167.80 76.32 166.78 94.80 

 Mean DN power 47.92 23.30 44.92 23.95 

47 UP% 34.78 34.92 37.04 38.77 

 Mean UP power 160.01 90.80 127.04 74.77 

 Mean DN power 42.33 24.33 38.15 22.53 

53 UP% 35.10 38.37 35.59 36.84 

 Mean UP power 180.39 72.93 174.83 73.64 

 Mean DN power 51.72 24.30 48.96 23.38 

59 UP% 36.85 35.37 34.509 35.28 

 Mean UP power 111.87 324.28 118.78 319.68 

 Mean DN power 39.18 72.10 36.99 66.78 

67 UP% 34.86 36.56 36.73 35.99 

 Mean UP power 156.69 83.51 161.05 83.59 

 Mean DN power 46.15 23.28 45.47 24.73 

Grey highlight indicates statistical significance, p<0.05. 
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Table 6. 19. T-statistics: oscillatory upstate in humans 

T-statistics: Upstate percentage in humans  

Stim F. MI SI Stim F. MI SI 

5 T 0.3478 0.6075 36 T 1.2111 0.7259 

 
p 0.7382 0.5627 

 
p 0.2652 0.4915 

10 T 0.0096 -0.103 42 T 0.0712 1.0583 

 
p 0.9926 0.9208 

 
p 0.9452 0.3251 

15 T 2.9982 1.6693 47 T -1.0053 -3.1376 

 
p 0.02 (*) 0.139 

 
p 0.3482 0.0164 (*) 

20 T 0.9098 -0.0405 53 T -0.3134 0.796 

 
p 0.3932 0.9688 

 
p 0.7631 0.4522 

26 T -0.0748 1.4247 59 T 0.9684 0.0631 

 
p 0.9424 0.1973 

 
p 0.3651 0.9515 

31 T 0.8593 0.1981 67 T -0.9804 0.5049 

 
p 0.4186 0.8486 

 
p 0.3596 0.6291 

Abbreviations: T=t-statistic, p=p-value. Significance p<0.05 is marked with *. 

 

Table 6. 20. T-statistics: oscillatory state mean power in humans 

T-statistics: Up- and downstate power in humans 

Stim F. MI SI Stim F. MI SI 

5 U T  0.5437 0.0033 36 U T  0.4459 -0.7149 

    p  0.6035 0.9975     p  0.6691 0.4978 

  D T 1.2912 0.147   D T 1.358 0.7749 

    p 0.2376 0.8873     p 0.2166 0.4637 

10 U T 1.3012 3.2937 42 U T 0.0546 -1.3068 

    p 0.2344 0.0132 (*)     p 0.958 0.2326 

  D T 1.8276 2.7426   D T 0.875 -0.3795 

    p 0.1103 0.0288 (*)     p 0.4106 0.7156 

15 U T 0.0382 -1.1972 47 U T 1.1011 0.7237 

    p 0.9706 0.2702     p 0.3073 0.4927 

  D T 0.4805 -0.7414   D T 1.0793 0.564 

    p 0.6455 0.4826     p 0.3162 0.5903 

20 U T -1.0683 -0.2688 53 U T 0.2946 -0.0563 

    p 0.3208 0.7958     p 0.7768 0.9567 

  D T -0.0394 2.2073   D T 0.7374 0.3424 

    p 0.9697 0.063     p 0.4849 0.7421 

26 U T 2.245 0.5585 59 U T -1.9983 0.8981 

    p 0.0596 0.5939     p 0.0858 0.399 

  D T 1.7603 0.1322   D T 0.5723 0.6778 

    p 0.1217 0.8986     p 0.6653 0.5196 

31 U T 1.0955 1.0785 67 U T -0.1424 -0.0112 

    p 0.3095 0.3166     p 0.8908 0.9914 

  D T 1.0585 0.8393   D T 0.1381 -0.3984 

    p 0.325 0.429     p 0.8941 0.7022 

Abbreviations: U=upstate mean power, D=downstate mean power, T=t-statistic, p=p-value. 
Significance p<0.05 is marked with *. 



157 

 

6.3.5.2. In vitro 

In vitro, in MI LIII the decrease in the upstate percentage after 40 Hz stimulation was 

significant, t[13]=2.627, p=0.0209;  After 45 Hz stimulation the mean oscillatory power in 

the upstate in MI LIII increased significantly, t[13]=-2.5356, p=0.0249 (figure 6.14-16).In 

vitro, in MI LV the decrease in the upstate percentage after 40 Hz stimulation was 

significant t[16]=2.3748, p=0.0304. In MI LV the mean upstate power increased significantly 

after 50 Hz stimulation, t[25]=-2.6135, p=0.015 (figure 6.14-16). Non-significant changes 

are summarised in table 6.21-23. 

In vitro, in SI LIV the percentage in the upstate decreased significantly t[19]=2.261, 

p=0.0357 following 45 Hz stimulation. The mean oscillatory power in the upstate 

significantly increased following 10 Hz stimulation, t[41]=-2.2309, p=0.0312. The mean 

oscillatory power in the downstates significantly decreased after 25 Hz stimulation, 

t[25]=2.3233, p=0.0286. The upstate percentage decreased significantly after 45 Hz 

stimulation, t[19]=2.2611, p=0.0357. Additionally, after 45 Hz stimulation the mean 

oscillatory power in the upstate increased significantly: t[19]=-2.6189, p=0.0169. The mean 

oscillatory power in the downstates also increased significantly after 45 Hz stimulation, 

t[19]=-2.558, p=0.0192 (figure 6.14-16). 

 

Figure 6. 14. Group-averages of significant and non-significant absolute differences in oscillatory 
upstate after stimulation with different frequencies. In MI LIII (n=14, green) and MI LV (n=17, 
blue) the decrease in the upstate percentage after 40 Hz stimulation was significant, p<0.05. In 
SI LIV (n=20, red) the decrease in the upstate percentage after 45 Hz stimulation was 

significant, p<0.05. Significant differences are marked with *. 
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Figure 6. 15. Group-averages of significant and non-significant absolute differences in mean 
oscillatory upstate power after stimulation with different frequencies. In SI LIV (n=42, red) there 
was a significant increase following 10 Hz stimulation, p<0.05. After 45 Hz stimulation there 
was a significant increase in in MI LIII (n=14, green) and SI LIV (n=20), p<0.05. In MI LV (blue) 
the mean upstate power increased significantly after 50 Hz stimulation (n=26), p=0.05. 
Significant differences are marked with *.  
 
 

 

Figure 6. 16. Group-averages of significant and non-significant absolute differences in mean 
oscillatory downstate power after stimulation with different frequencies. Significant decrease is 
in SI LIV (red) after 25 Hz stimulation (n=26)  and significant increase in SI LIV after 45 Hz 
(n=20) stimulation, p<0.05. Significant differences are marked with *. MI LIII is indicated by 
green and MI LV by blue. 



159 

 

Table 6. 21. Oscillatory states and power before and after stimulation in vitro 

 Oscillatory states and power: percentage (%) and power (10
-11

 V
2
) change 

Stim. F   Pre Post 

(Hz)   MI LIII MI LV SI LIV MI LIII MI LV SI LIV 

5 UP% 39.91 36.69 37.01 38.63 37.87 37.33 

 Mean UP power 11.44 25.43 40.73 11.42 25.07 40.48 

 mean DN power 4.23 7.61 12.35 4.09 7.78 12.65 

10 UP% 39.01 37.16 37.25 38.19 37.04 36.97 

 Mean UP power 9.01 22.10 35.24 9.25 24.10 37.15 

 mean DN power 3.23 6.74 10.96 3.24 7.46 11.27 

15 UP% 37.92 37.28 37.67 38.66 37.26 37.41 

 Mean UP power 9.18 22.44 33.92 9.03 22.82 33.57 

 mean DN power 3.17 6.79 10.65 3.17 6.79 10.70 

20 UP% 37.41 37.51 37.38 38.42 37.49 37.11 

 Mean UP power 9.84 19.74 35.51 9.77 19.85 35.56 

 mean DN power 3.40 6.13 11.19 3.43 6.21 11.29 

25 UP% 37.98 37.86 37.03 37.46 37.41 37.53 

 Mean UP power 11.92 24.70 42.67 11.79 24.94 39.51 

 mean DN power 4.17 7.55 13.12 4.09 7.73 12.12 

30 UP% 39.31 38.25 38.20 38.80 36.89 36.65 

 Mean UP power 7.00 16.57 33.46 7.30 17.12 30.99 

 mean DN power 2.54 4.97 10.81 2.61 5.16 10.00 

35 UP% 36.82 37.82 36.89 38.46 37.39 37.00 

 Mean UP power 20.10 25.08 39.06 12.49 26.66 39.46 

 mean DN power 4.55 7.81 11.95 4.49 8.11 12.09 

40 UP% 39.89 38.58 37.02 37.41 36.91 37.22 

 Mean UP power 6.30 16.95 29.71 7.13 17.83 28.49 

 mean DN power 2.28 5.50 9.43 2.49 5.81 9.62 

45 UP% 38.61 37.55 38.37 37.80 37.74 36.89 

 Mean UP power 6.05 21.50 26.89 6.90 21.38 29.35 

 mean DN power 2.21 6.36 8.85 2.41 6.66 9.41 

50 UP% 38.18 37.64 36.61 38.38 36.57 37.23 

 Mean UP power 10.72 23.93 35.17 11.10 25.85 36.48 

 mean DN power 3.90 7.40 10.68 4.00 7.82 11.12 

55 UP% 38.78 37.24 37.49 37.97 37.14 37.66 

 Mean UP power 11.02 21.32 37.36 11.29 20.37 38.55 

 mean DN power 3.86 6.47 11.84 3.96 6.34 12.50 

60 UP% 38.19 37.68 37.11 38.15 37.58 37.46 

 Mean UP power 7.75 19.00 27.71 7.45 20.06 28.19 

 mean DN power 2.64 6.01 8.79 2.73 6.20 9.08 

Grey highlights indicate statistical significance p<0.05 
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Table 6. 22. T-statistics: oscillatory upstate percentage in vitro 

T-statistics: Upstate percentage in vitro 

Stim F. MI LIII MI LV SI LIV Stim F. MI LIII MI LV SI LIV 

5 T  1.5956 -1.7729 -0.4679 35 T -0.7779 0.6695 -0.0999 

 
p  0.1329 0.0901 0.6443 

 
p 0.4487 0.5101 0.9213 

10 T 1.0082 0.2796 0.5089 40 T 2.627 2.3748 -0.3548 

 
p 0.323 0.7814 0.6136 

 
p 0.0209(*) 0.0304(*) 0.7265 

15 T -0.6931 0.0387 0.5663 45 T 0.9209 -0.3595 2.2611 

 
p 0.4932 0.9693 0.5741 

 
p 0.3739 0.7236 0.0357(*) 

20 T -1.2319 0.0428 0.3842 50 T -0.2658 2.0459 -0.8402 

 
p 0.2276 0.9661 0.7027 

 
p 0.7931 0.0514 0.4091 

25 T 0.4929 0.793 -0.6711 55 T 1.0232 0.1818 -0.3597 

 
p 0.6297 0.4353 0.5083 

 
p 0.3178 0.8567 0.7208 

30 T 0.4418 1.5851 1.8024 60 T 0.0376 0.1314 -0.3895 

 
p 0.6659 0.1325 0.0874 

 
p 0.9705 0.8969 0.7007 

Abbreviations: T=t-statistic, p=p-value. Significance p<0.05 is marked with *.  

 

Table 6. 23. T-statistics: oscillatory upstate percentage in vitro 

T-statistics: Oscillatory state mean power 

Stim F MI LIII MI LV SI LIV Stim F MI LIII MI LV SI LIV 

5 U  T  0.0441 0.5489 0.1616 35 U T 0.942 -1.3188 -0.2844 

    p  0.9655 0.5886 0.873     p 0.3611 0.2008 0.7785 

  D  T 0.978 -1.4651 -0.9571   D T 0.3195 -1.2784 -0.4666 

    p 0.3447 0.157 0.3485     p 0.7538 0.2144 0.645 

10 U T -0.7891 -1.1606 -2.2309 40 U T -1.5147 -0.3141 0.5936 

    p 0.4375 0.2537 0.0312(*)     p 0.1538 0.7575 0.5594 

  D T -0.2142 -1.2949 -1.2606   D T 1.7486 -0.4835 -0.4333 

    p 0.8321 0.2038 0.2146     p 0.1039 0.6353 0.6694 

15 U T 0.3015 -0.5091 0.3147 45 U T -2.5356 0.3026 -2.6189 

    p 0.765 0.6135 0.7545     p 0.0249(*) 0.7659 0.0169(*) 

  D T -0.0496 0.0283 -0.2808   D T -1.5769 -1.2631 -2.558 

    p 0.9607 0.9775 0.7801     p 0.1388 0.2236 0.0192(*) 

20 U T 0.2638 -0.2694 -0.0445 50 U T -0.873 -2.6135 -1.2514 

    p 0.7937 0.7891 0.9647     p 0.393 0.015(*) 0.2229 

  D T -0.3694 -0.6141 -0.3806   D T -1.0719 -1.652 -1.9463 

    p 0.7144 0.543 0.7054     p 0.2965 0.111 0.0634 

25 U T 0.1766 -0.2501 1.8967 55 U T -0.6358 0.996 -1.0928 

    p 0.8624 0.8045 0.0695     p 0.5318 0.3255 0.2807 

  D T 0.4127 -0.7599 2.3233   D T -0.9848 0.7044 -1.3437 

    p 0.6861 0.4544 0.0286(*)     p 0.336 0.4855 0.1863 

30 U T -1.1744 -1.5272 0.4908 60 U T 0.3654 -1.1344 -0.284 

    p 0.2613 0.1462 0.6292     p 0.7196 0.2715 0.779 

  D T -0.9194 -1.921 0.6072   D T -0.648 -1.3559 -0.8495 

    p 0.3746 0.0727 0.5509     p 0.5262 0.1919 0.4048 

Abbreviations: U=upstate mean power, D= downstate mean power, T=t-statistic, p=p-value. 
Significance p<0.05 is marked with *.  

 



161 

 

6.3.6. Summary of results 

There are several differences in the effects of different frequencies in stimulation and 

between modalities. Here we summarise the significant effects on frequency, power, 

variability and state.  

 

6.3.6.1. Power 

In MEG recordings, 10 Hz stimulation significantly decreases the mean peak power of the 

beta activity in SI. In the in vitro recordings in MI LIII 5, 40 and 55 Hz stimulation 

significantly increases the mean peak power of beta activity.  

 

6.3.6.2. Frequency 

In MEG recordings 36 and 53 Hz stimulation significantly increases the mean beta peak 

frequency in SI. In the in vitro recordings 20 Hz stimulation significantly decreases the 

mean beta peak frequency in MI LIII. 

 

6.3.6.3. Frequency variability 

In MEG recordings 36 Hz stimulation significantly decreases the variability in MI and SI. In 

vitro recordings 20 and 55 Hz stimulation significantly increases the variability in MI LIII. 

 

6.3.6.4. Power state 

In MEG recordings 15 Hz stimulation significantly decreases the percentage of samples 

found in the upstate in MI. In SI 47 Hz stimulation significantly increases the upstate 

percentage. The up- and downstate mean power in SI significantly decreases after 10 Hz 

stimulation. In the in vitro recordings 40 and 45 Hz stimulation significantly decreases the 

upstate percentage in MI LIII, LV and SI LIV. The upstate mean power is significantly 

increased after 45 Hz stimulation in MI LIII, after 50 Hz in MI LV and after 10 and 45 Hz 

stimulation in SI LIV. The mean downstate power is significantly decreased in SI LIV after 

25 Hz and increased after 45 Hz stimulation.  
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6.4. Discussion 

6.4.1. Somatosensory stimulation affects SI activity in humans and MI LIII in 

vitro 

Early studies using MNS detected sensory evoked fields in SI using MEG (Forss et al., 

1994a; 1994b), and MNS is reported to functionally activate both MI and SI in fMRI 

(Speigel et al., 2000). The functionally related effects on oscillatory activity in MI and SI, 

e.g. ERD and ERS/PMBR, after single pulse MNS and tactile stimulation are well-

established (Salmelin & Hari 1994; Salenius et al. 1997; Schnitzler et al. 1997; Chen et 

al., 1999; Nikouline et al., 2000; Cheyne et al., 2003). While we found both beta ERD and 

ERS after MSN of all frequencies (data not shown), in agreement with the cited beta 

ERD/ERS studies, we focused on the long-lasting effects on ongoing sensorimotor 

oscillations from somatosensory stimulation of varying frequencies. In our experiments, 

MNS resulted in significant long-lasting effects, e.g. significant effects after stimulation 

offset. These are predominantly found on the mean peak frequency and power of the 

ongoing oscillatory activity in SI, but not in MI.  

In contrast, the significant changes in mean peak frequency and power after electrical 

stimulation in SI LIV in vitro were seen only in MI LIII. A previous study applying 

stimulation in MI LIII, noted frequency specific long-lasting effects both in MI LIII and MI 

LV, although the effect in MI LV was delayed (Yamawaki et al., 2008). Application of TMS 

over MI is also suggested to exert its main effect on the superficial layers (Rothwell 1991; 

Fugetta et al., 2005; Di Lazzaro et al., 2012). The lack of significant changes in MI LV 

after stimulation in SI LIV suggests there is little possibility of lasting effects from driving 

oscillations between MI LIII and MI LV with input in SI LIV. As MI LV is considered an 

output station, containing cortico-spinal cell soma (Rivara et al., 2003), this also suggests 

that there is little ability for indirect driving of motor output from SI LIV.  

 

6.4.2. Distinct effects of specific stimulation frequencies  

Our experiments show that regardless of similarities in results between MEG and in vitro, 

beta and mu stimulation frequencies are preferential in eliciting effects in MI and SI. 

Applying an external rhythm is more likely to drive the underlying neural substrate if the 

applied rhythm is close to the natural frequency (Fries 2005; Schnitzler & Gross 2005; 

Rosanova et al., 2009; Thut et al., 2011a). rTMS over the occipital or parietal cortex at 

alpha frequency entrains the local alpha activity with subsequent power increase during 

stimulation (Thut et al., 2011a), but also <3 min after (Zahele et al., 2010). 20 Hz rTMS 
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over MI resulted in a long-lasting (<5 min) significant increase in alpha power (Veniero et 

al., 2011). In contrast, our experiments found that applying somatosensory stimulation at 

10 Hz significantly decreased the peak power of the ongoing activity in SI after the 

stimulation; addition of a peripheral 10 Hz rhythm desynchronises the ongoing oscillatory 

activity in SI. Other frequencies are less effective at this in SI, or not at all in MI. The 

significant decrease in mean peak power in SI after 10 Hz also encompassed significant 

decreases in both the oscillatory up- and downstate.  

Application of beta rhythms over MI is reported to increase the beta power of the ongoing 

MI activity and have effects on functional tasks (Paus et al., 2001; Fugetta et al., 2005; 

van der Warf & Paus 2006; Pogosyan et al., 2009; Feurra et al., 2011; Thut & Miniussi 

2011; Joundi et al., 2012). We found no significant effects on oscillatory peak power in MI 

after any of the stimulation frequencies. This difference in results could be due to the 

difference in analysis approach or too few recordings; although we speculate that it is due 

to the stimulation method. Importantly we noted significant changes of the oscillatory 

power state distribution in MI after 15 Hz stimulation; the pattern of oscillatory activity 

changes.  

Previous in vitro reports have investigated the long-lasting effects on peak power of the 

oscillatory activity in MI LIII and MI LV. Effects after MI LIII stimulation was studied 

specifically after 4, 20 and 125 Hz. Activity in MI was reinforced at the gamma and theta 

stimulation frequencies, and 20 Hz stimulation also promoted gamma and theta frequency 

activity (Yamawaki et al., 2008). We found significant increases of the mean peak power 

of the ongoing oscillatory activity in MI LIII after 5, 40 and 55 Hz stimulation, suggesting 

increased synchronisation after these frequencies. We did not find any significant effects 

of different frequency stimulations on the mean peak power in MI LV, or from the beta 

frequency range of stimulation. This could be due to the difference in slice preparation, 

stimulation location and/or application; we used 1-site bipolar stimulation in SI LIV in intact 

slices compared to 2-site bipolar stimulation in MI LIII in microslices. The analysis 

approaches are also different, it is plausible that our results would support cited if band-

pass filtering was employed, or focus on specific frequencies. However, our focus has 

been on determining specific effects of different stimulation frequencies on the ongoing 

oscillatory activity in sensorimotor areas.  

Effects on the peak frequency have generally not been considered in detail previously. In 

addition, as we determine the mean peak frequency of MI and SI differently in this study 

compared to most published reports, the extrapolation of our reported effects on ongoing 

frequencies onto other studies become difficult. Nevertheless, we found that MNS at 36 



164 

 

and 53 Hz significantly increased the frequency of ongoing oscillatory activity in SI. These 

effects suggest that the neuronal network, or oscillator(s), responsible for the oscillatory 

activity in SI are more easily perturbed by these frequencies. In vitro, there was also a 

significant effect on the mean peak frequency, but in MI LIII; a significant decrease after 

20 Hz stimulation. The significant effects on oscillatory frequency were further reinforced 

by the significant decrease in frequency variability after 36 Hz stimulation in both MI and 

SI in the MEG recordings. In addition, the frequency distribution was significantly 

increased after 20 and 55 Hz stimulation in MI LIII in vitro.  

Most studies in humans do not look at long-lasting effects on the ongoing sensorimotor 

oscillatory activity apart from cited functional changes. Given the role of MI as a motor 

centre, with less importance in somatosensory processing, it is possible that effects in MI 

are particularly transient and would not be seen after stimulation offset. Indeed, 

preliminary results investigating peak power changes in the ongoing activity in MI at the 

frequencies of stimulation indicate that there are frequency specific effects to be found in 

MI, see figure 6.17 below.  

 

Figure 6. 17. Group-average Morelet-wavelet combination spectrogram summarising the 
oscillatory activity at the stimulation frequency in MI during MNS of different frequencies. 

 

We have not yet investigated long-term effects on the specific frequency bands of 

stimulation due to time restrictions. It is possible that there are long-lasting effects after 

certain frequencies of stimulation. Further analysis of these experiments would determine 

that.  
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6.4.3. Comparisons between in vitro and MEG 

An important point to make when comparing these modalities is that the amplitude of 

stimulation is not necessarily comparable between MEG and in vitro, which could be one 

reason for differences in results. As the connectivity between MI and SI is vast and 

complex, we speculate that the lack of long-lasting effects on oscillatory power and 

frequency in MI from MNS is due to the processing of the somatosensory information prior 

to reaching SI. This could also be an underlying reason for differences in results between 

MEG and in vitro recordings. There are several input routes from the median nerve to the 

cortex that do not pass MI. In addition, peripheral somatosensory stimulation passes 

through thalamus before arriving in the somatosensory areas. The thalamocortical axons 

terminate mainly in layer IV, but also in the deep part of layer III of SI (Herkenham 1980; 

Shipp 2007). Reciprocal connections like these are lost in the in vitro preparation; their 

importance in maintaining oscillations is unknown. Here, in vitro stimulation was delivered 

straight into middle layers of SI, with nowhere else to go but in the local sensorimotor 

network in the sensorimotor slice. A comparison between TMS applied stimulation and our 

in vitro protocol would further the comparison since TMS pulses are believed to affect the 

superficial layers of motor cortex (Rothwell 1991; Fugetta et al., 2005; Di Lazzaro et al., 

2012).  
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6.5. Conclusion 

There appears to be limited ability of the cortex in any modality to sustain activity of an 

imposed frequency for longer periods of time, e.g. after stimulation offset. There are 

effects on the ongoing oscillations after stimulation of different frequencies, but only a few 

examples of continued activity such as rearrangement, or reinforcements of ongoing 

rhythms with increased synchronisation. Previous neuroimaging literature has focused on 

the effects during stimulation, with reported entrainment. Here, there are observed 

significant differences after stimulation at different frequencies in both modalities, but they 

are not consistent between recording methods. This indicates that the differences in 

complexity of the studied neuronal networks, protocol, and underlying source size make it 

difficult to disentangle details. There is evidence in these studies suggesting that that the 

beta or mu range rhythms in the sensorimotor neuronal networks are more prone to long-

lasting effects of somatosensory stimulation, but the details of these effects are unclear.  
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Chapter 7. Effects of theta burst stimulation on ongoing 

oscillations in the sensorimotor cortex 
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7.1. Introduction 

7.1.1. Background 

In the previous chapters we showed that connectivity is important for the oscillatory 

activity in the sensorimotor cortex. We showed that applying stimulation in distant areas 

affects oscillatory activity even far away. Here we will consider another stimulation 

protocol, reported to affect the sensorimotor cortex excitability in a well-established 

fashion, although the detailed effects on the ongoing oscillatory neuronal network activity 

is less reported.  

TMS has been around for a few decades and has showed great potential in fundamental 

neuroscientific research and neurological therapeutic settings (Wassermann & Ziemann 

2012). Applying TMS over MI is believed to primarily excite pyramidal neurons in the 

superficial layers and thereby indirectly activate layer V pyramidal cells and local 

interneurons (figure 7.1.) (Di Lazzaro et al., 2012).  

 

Figure 7. 1. TMS over MI is suggested to result in a descending volley effectively starting at the 
pyramidal cells in layer II and III (P2 and P3). Figure modified from Di Lazzaro et al. (2012). 

 

7.1.1.1. Continuous theta burst stimulation  

Theta burst stimulation (TBS) is a repetitive TMS protocol. Repetitive TMS protocols have 

different effects on function depending on the pattern of repetition. The effect duration is 

variable and according to some researchers depends on the duration of the stimulation 

(Hoogendam et al., 2010). In TBS the TMS pulses are delivered at theta frequency (figure 

7.2). Here we use continuous theta burst stimulation (cTBS) which is an effective protocol 

with stimulation for 40s and long-lasting effect on motor cortical excitability of <45 min 

(Huang et al., 2005). TMS-applied cTBS has been shown to depress motor cortex 

excitability and impair motor function in healthy subjects, while a different, intermittent, 

pattern of theta burst stimulation is reported to increase the excitability of MI (Huang et al., 
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2005; Lazzaro et al. 2005; 2008; Suppa et al., 2008). The concentration of GABA in MI 

has been found to be increased after cTBS; indicating that that the motor cortex is more 

inhibited during this time and that cTBS indeed can modulate motor cortex activity (Stagg 

et al., 2009). Association between MI beta oscillations and motor excitability have been 

suggested by Mäki & Ilmoniemi (2010), although the exact nature of this association is 

less clear.  

 
Figure 7. 2. cTBS protocol. Three pulses of 50 Hz interspersed with 200 ms from the first burst to 
the next one, e.g. 5 Hz over all. The stimulation lasts for 40s, corresponding to 600 pulses. The 
oscillatory activity at different time points after cTBS was characterised offline.  

The idea of altering cortical activity and excitability using stimulation is far from new, it was 

described by Penfield already in 1950’s (Sanes & Donoghue 2000). Mechanisms 

underlying the effects seen after different burst stimulation patterns have been intensively 

studied in vitro and in vivo for several decades (Diamond et al., 1988, Kirkwood et al., 

1993).  

 

7.1.1.2. TBS in vitro 

TBS was initially applied in hippocampal studies to study long-term potentiation (LTP) and 

long-term depression (LTD) (Larson & Lynch 1988; Capocchi et al., 1992; Ngyen & 

Kandel 1997; reviewed by Malenka & Bear 2004). Studies investigating LTP and LTD in 

motor cortex followed quickly as plasticity is extremely relevant to the dynamic nature of 

the cortex particularly MI (Hess et al.. 1994; Castro-Alamancas et al., 1995; Hess & 

Donoghue 1996; 1999). Motor cortex flexibility and plasticity is a century old topic of 

research, described initially by Brown and Sherrington in 1912 (Sanes & Donoghue 2000), 

and the LTP phenomenon saw the printed light in 1973 by Lømo and Bliss (Lømo, 2003). 

Equally, suggested mechanisms underlying plasticity in motor cortex, e.g. NMDA-

dependency, are well-established in vitro (Hess et al., 1994; Ziemann et al., 1998; Stefan 

et al., 2000, Huang et al., 2007a).  
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7.1.1.3. Mechanisms of TBS 

The underlying physiological mechanisms of TBS are believed to be the result of the 

same neuroplastic effects elicited by LTP/PTD paradigms (Hoogendam et al. 2010; Funke 

& Benali 2011). Different TBS patterns have different effects on the motor excitability; 

some more obvious than others. Small modifications of the cTBS pattern described by 

Huang et al. (2005), resulted in longer depression of the excitability and subsequently 

suggested differences in plasticity (Goldsworthy et al., 2012); other studies have found 

that the excitability and plasticity of MI can be reversed quickly and is dependent on the 

prior state of activity in MI (Gentner et al., 2007).  

While cTBS has been shown to elicit profound effects on both cortico-spinal excitability 

and motor performance (Huang et al., 2005), the effects of this stimulation on neuronal 

network activity is unclear. A recent study in humans reported that cTBS enhanced 

synchronisation in the lower beta band (13-19.5 Hz), e.g. power in this band increased 

after cTBS (Noh et al., 2012), while another found no effect on alpha or beta power in MI 

(McAllister et al., 2011). Both these studies used EEG and implemented a limited spatial 

approach with only a few electrodes at relevant areas. Furthermore, there is no research 

on the effects of applying cTBS patterns on oscillations at the laminar level of the 

sensorimotor cortex. 

 

7.1.2. Aims and research objectives 

Stimulation of MI using cTBS is shown to elicit transient motor impairment in human 

lasting up to an hour. The effects of this stimulation on neuronal network activity are 

unknown. Disorders affecting motor function, such as Parkinson’s disease have an 

accompanying increase in beta power. It is unclear whether these same effects can be 

observed as a result of the cTBS model of transient motor impairment. Furthermore, given 

the potentially broad effects of TMS, it is unclear to what extent the specific cortical 

laminae are responsible for the changes in neuronal network activity following cTBS. Here 

we aim to clarify these attribute by addressing the following questions:  

o What are the effects of cTBS stimulations on spontaneous MI oscillations in 

humans? 

o What are the effects of cTBS stimulation on spontaneous oscillations in the various 

laminae of MI in vitro? 
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7.2 Methods 

7.2.1. Neuroimaging experiments 

These experiments were done in collaboration with Dr Craig McAllister at the Brain 

stimulation laboratory at Aston Brain Centre. Sixteen right handed healthy volunteers (19–

44 years, 9F) with normal or corrected to normal vision participated in the study. The 

study was performed in accordance with the Declaration of Helsinki, and approved by the 

Ethics Committee of the School of Life and Health Sciences at Aston University. Written 

informed consent was obtained from all participants. The electromyographic (EMG) 

activity of the first dorsal interosseous (FDI) muscle in the right hand was recorded using 

bipolar, single differential surface EMG electrodes (DE-2.1, Delsys Inc, Boston, MA), and 

measured as a motor evoked potential (MEP). The surface electrodes comprised two 10 

mm x 1 mm silver bar strips, spaced 10 mm apart,  with a 20 Hz to 450 kHz bandwidth, 92 

dB common mode rejection ratio, and >1015 Ω input impedance. The electrodes were 

placed over the muscle and a reference ground electrode was placed over the ulnar 

process of the right wrist. The EMG signal was digitized with a sampling rate of 2 kHz 

using a Micro 1401 analogue-digital converter and analysed using Signal version 4 

(Cambridge Electronic Design, Cambridge, UK). Single pulse TMS was performed using a 

Magstim 2002 stimulator and continuous theta burst stimulation (cTBS) was performed 

using a Magstim Super Rapid stimulator (Magstim Co. Ltd, Whitland, UK), both performed 

using a 70 mm diameter figure-of-eight coil, held tangentially to the scalp with the coil 

handle pointing backwards approximately 45º laterally. The optimal position for evoking a 

response in the FDI muscle was marked on the scalp and the coil position was then fixed 

using a mechanical arm (Manfrotto & Co., Cassola, Italy). Active motor threshold (AMT) 

was defined as the minimum stimulator output necessary to evoke an MEP of at least 200 

µV in five out of 10 consecutive trials from the FDI muscle as participants used visual 

feedback to maintain a force level corresponding to approximately 5% maximum voluntary 

contraction. Participants were instructed to open their eyes and to relax their hand and 

finger muscles during all other TMS procedures.  

The effects of cTBS on ongoing oscillatory activity in the human motor cortex were 

investigated using MEG before and after cTBS sessions. The participants were instructed 

via visual cues to make right or left finger abductions. These were later on used to 

establish PMBR and localise MI through the VE SAM approach described in chapter 2, 3, 

5 and 6. 
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Figure 7. 3. Schematic showing the position of the coil over MI with a summarized view of the 
cTBS protocol. The EMG electrode was placed over the first dorsal interosseos muscle and the 
motor evoked potentials were recorded here after single pulse TMS over MI.  

The peak amplitude of spontaneous oscillatory power within the beta band (15-35Hz) was 

calculated for three 60s rest periods from three MEG recording blocks, pre-TBS, post-

TBS1 (10-25 minutes after cTBS) and post-TBS2 (30-45 minutes after cTBS), for both left 

and right MI. Repeated measures (RM) ANOVA was used to test for significant changes in 

beta power. The cTBS protocol consisted of 3 pulses of 50 Hz, interspersed with 200 ms, 

and continued for 40s (figure 7.3). The pulses were applied at 80% of the active motor 

threshold and over the left motor hot spot. The measurements from the ipsilateral 

hemispheres and finger (e.g. left) served as controls for the MEG experiments.  

 

7.2.2. In vitro  

In an attempt to specifically seek out which area in the sensorimotor cortex would be most 

affected by cTBS treatment, as well as how neighbouring areas respond to this, we 

employed a protocol similar to the neuroimaging cTBS experiment. Intact sensorimotor 

slices were prepared using protocol 2, described in chapter 2. All animal experiments 

were performed in accordance with the Aston University ethical review board regulations, 

as well as the Animals Scientific Procedures Act 1986; European Communities Directive 

(86/609/EEC). Brains from p18-p22 (50-60g) male Wistar rats were extracted. 450 µm 

thick sagittal sensorimotor slices were stored in a tissue interface chamber at room 

temperature for >1h. The slices were then transferred to a recording chamber with a 

temperature of 33-34°C and a continuous flow rate of 2 ml/min aCSF with added KA and 

CCh; concentrations and preparations according to protocol 2. Recordings of LFPs from 

superficial layers (II/III) and deeper layers (V) of MI and middle layer (IV) of SI (figure 2.6) 

were made. The electrodes were placed in relevant layers, identified by using a dissecting 

microscope and the Rat Brain Atlas (Paxinos & Watson 1986) as reference. LFP 

recording started after the KA- and CCh-induced oscillatory activity had stabilised, >1h in 

the recording chamber with KA and CCh in the aCSF flow, and lasted for >3h.  



173 

 

We used electrical stimulation instead of TMS, but the cTBS still lasted for 40s. The cTBS 

pattern was applied to MI LIII (cTBSMI LIII), MI LV (cTBSMI LV) and SI LIV (cTBSSI LIV). Once 

the LFP recordings had been pre-processed and converted to MatLab format, datasets 

with artefacts were discarded. This left the following numbers for analysis, for cTBSMI LIII, 

MI LIII: n=7; MI LV: n=10; SI LIV=10. For cTBSMI LV, MI LIII: n=8; MI LV: n=10; SI LIV: 9. 

For cTBSSI LIV, MI LIII: n=8; MI LV: n=10; SI LIV=9. Analysis of these recordings was 

centred around five different time points. 30 s immediately before stimulation was defined 

as the baseline (Pre). The oscillatory activity (during 30 s) in the different areas was 

compared to this baseline immediately, 10, 20 and 30 minutes after cTBS; post 0 min, 

post 10 min, post 20 min and post 30 min, respectively. Morelet-wavelet average 

spectrograms of recordings from specific locations were calculated and used for further 

analysis.  

The intensity of the constant current stimulator was set at 1.5mA with a pulse width of 100 

µs. The stimulation protocol was programmed and controlled through Spike2 (CED, Ltd), 

which was also used for recording the LFPs and online FFT analysis. Recorded data was 

exported to MatLab and 30s time periods, pre and post of each stimulation event were 

exported as separate trials to MatLab in spreadsheet format. From these trials Morelet-

Wavelet spectrograms were derived and used for the offline analysis with the previous 

described analysis approach, for details see chapter 2.  

The data from the in vitro experiments underwent the analysis approach we developed for 

this project (which was not the case at the time of writing for the MEG data). The mean 

peak frequency and peak power was determined for each sample in the 30s epoch 

(30000 samples) with a sliding window approach applied to the Morelet-wavlet 

spectrograms. The frequency distribution of the oscillations was determined using FWHM. 

The frequency variability was computed using the amplitude-independent peak frequency 

distribution, where the peak frequency of each sample was sorted into frequency bins of 1 

Hz. Variability in oscillatory power was determined using an amplitude sorting 

measurement to determine the time and amplitude changes of oscillatory up and down 

states. We used student’s T-tests to statistically test for differences between before and 

after stimulation. The pre time period was individually compared to each one of the 4 post-

conditions, but not in between each other as this would require a different statistical 

approach. Further details regarding analysis can be found in chapter 2. 
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7.3 Results  

7.3.1. cTBS in humans 

7.3.1.1. Functional effects of cTBS 

In the TMS-based cTBS study we applied cTBS over MI. 8 participants demonstrated a 

significant decrease in MEP amplitudes, e.g. <90% mean reduction from baseline 

recorded from the FDI muscle in the 5-45 minutes following cTBS application; the 

responders. The other 8 participants did not show an increase or indeed any response; 

the non-responders. There was no significant difference in the baseline MEP amplitude 

between the two groups of participants. RM ANOVA revealed significant interaction of 

group x block on MEP amplitude: F(2,28)=16.8, p<0.001. Compared to baseline, MEP 

amplitudes of the responder participants were reduced by 243 µV at post-TBS1, p=0.03; 

and by 263 µV at post-TBS2, p=0.01,. In contrast, MEP amplitudes of the non-responder 

participants showed a non-significant increase at post-TBS1 and a significant increase of 

308 µV, p=0.003, at post-TBS2 (figure 7.4). 

 
Figure 7. 4. Functional effects of cTBS. In responders (n=8) the MEP significantly decreased at 
post-TBS1 and post-TBS2, p<0.05 and <0.01 respectively. Non-responders (n=8) showed a 
significant increase only at post-TBS2, p<0.05.  

 

7.3.1.2. cTBS effects on ongoing beta power in MI 

The RM ANOVA confirmed a significant interaction of hemisphere x group F(1,14)=6.32, 

p=0.025. The interaction effect was due to the responder participants having a significant 

increase in left MI beta-band power from pre-TBS to post-TBS recordings, p=0.012. No 

such effect was detected in the right MI of responder participants or either MI of non-

responder participants. The non-responding group of participants showed no significant 

effect on the ongoing beta power (figure 7.5). 
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Figure 7. 5a-c. The averaged time-frequency spectrograms from the stimulated MI in one 
participant show the increase in spontaneous beta power at two different time points after cTBS, 
seen in A (top row). In B (bottom right and middle), the time-averaged PSD plots further illustrate 
the increase in spontaneous overall oscillatory power seen in the stimulated left MI (right), 
compared to the non-stimulated right MI (middle) from one participant. The effects on 
spontaneous beta power (15-30 Hz) is summarized in C, (bottom left), showing the significant 
increase beta power in left MI of responders (n=8), indicated by *, p<0.05. SEMs are indicated by 
error bars.  

 

7.3.2. Effects of cTBS on oscillatory power and frequency in vitro 

Next, we wanted to localise the source of the increased beta activity seen in MI after cTBS 

so we used a similar protocol in vitro. We stimulated MI LIII and LV, as well as SI LIV, with 

the cTBS protocol and recorded oscillatory activity up to 30 minutes after cTBS. Applying 

cTBS to the different areas of interest in the sensorimotor cortex in vitro indicated that the 

effects of cTBS are predominantly local with some differences in effects between areas of 

stimulation.  Figure 7.6-8 show overviews of these experiements. In an effort to quantify 

any changes to the variables we were measuring we used Student’s t-test to distinguish 

between two time-points: before and one of the post-stimulation time points.  
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Figure 7. 6a-c. Group- and time-averaged PSDs showing the oscillatory profiles at different time 
points after cTBSMI LIII, recorded in in MI LIII (n=7), seen in a (top left); MI LV (n=10), seen in b 
(top right); and SI LIV (n=10), seen in c (bottom). The PSD from the time period before cTBSMI LIII 
(Pre) is illustrated with a black line, .the time period immediately after cTBSMI LIII (Post 0 min) is 
illustrated by red, 10 minutes after cTBSMI LIII (Post 10 min) by blue, 20 minutes after cTBSMI LIII 
(Post 20 min) by green and 30 minutes after cTBSMI LIII (Post 30 min) by purple.  
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Figure 7. 7a-c. Group- and time-averaged PSDs showing the oscillatory profiles before and at 
different time points after cTBSMI LV, recorded in MI LIII (n=8), in a (top left), MI LV (n=10), seen 
in b (top right), and SI LIV (n=9), seen in c (bottom). The PSD from the time period before 
cTBSMI LV (Pre) is illustrated with a black line, the time period immediately after cTBSMI LV (Post 0 
min) is illustrated by red, 10 minutes after cTBSMI LV (Post 10 min) by blue, 20 minutes after 
cTBSMI LV (Post 20 min) by green and 30 minutes after cTBSMI LV.  
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Figure 7. 8a-c. Group- and time-averaged PSDs showing the oscillatory profiles before and at 
different time points after cTBSSI LIV, recorded in MI LIII (n=8), seen in a (top left), MI LV (n=10), 
seen in b (top right), and SI LIV (n=9), seen in c (bottom). The PSD from the time period before 
cTBSSI LIV (Pre) is illustrated with a black line, the time period immediately after cTBSSI LIV (Post 0 
min) is illustrated by red, 10 minutes after cTBSSI LIV (Post 10 min) by blue, 20 minutes after 
cTBSSI LIV (Post 20 min) by green and 30 minutes after cTBSSI LIV. 

 

7.3.2.1. Frequency and power 

cTBSMI LIII did not result in significant time-dependent changes in any laminae on mean 

peak frequency. cTBSMI LV significantly decreased the peak frequency in MI LV after 30 

minutes, from 31.00±7.59 to 30.20±6.97 Hz, t[9]=2.3881, p=0.0407, but not in MI LIII or SI 

LIV. cTBSSI LIV significantly decreased the mean peak frequency after 30 minutes in SI 

LIV: from 25.61±7.83 Hz to 21.22±8.91 Hz, t[8]=2.397, p=0.0434, but not in the other 

laminae. 

cTBSMI LIII, cTBSMI LV and cTBSSI LIV did not result in significant time-dependent changes in 

any laminae on mean peak power. 

The detailed results on mean peak frequency and power from cTBS in different laminae 

are listed in table 7.1-3 and figure 7.9-10 presents overviews. 
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Figure 7. 9a-c. Mean peak frequency before and after cTBS in different laminae. The peak 
frequency decreased significantly in MI LV 30 minutes after cTBSMI LV, p<0.05. The peak 
frequency decrease in SI LIV 30 minutes after cTBS was also significant, p<0.05. SEMs are 
plotted as error bars. cTBSMI LIII: MI LIII n=6, MI LV n=9. SI LIV n=9. cTBSMI LV: MI LIII n=7, MI 
LV n=9, SI LIV n=8. cTBSSI LIV: MI LIII n=7, MI LV n=9, SI LIV n=8. MI LIII values are shown in 
green, MI LV in blue and SI LIV in red. 
 

 

Figure 7. 10a-c. Mean peak power before and after cTBS in different laminae. There were no 
significant effects. SEMs are plotted as error bars. cTBS in MI LIII: MI LIII n=6, MI LV n=9. SI 
LIV n=9. cTBSMI LIII: MI LIII n=6, MI LV n=9. SI LIV n=9. cTBSMI LV: MI LIII n=7, MI LV n=9, SI 
LIV n=8. cTBSSI LIV: MI LIII n=7, MI LV n=9, SI LIV n=8. MI LIII values are shown in green, MI 
LV in blue and SI LIV in red. 
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Table 7. 1. Mean oscillatory peak frequency and power before and after cTBS in MI LIII.  

MI LIII Pre Post 0 Post 10 Post 20 Post 30 

mean F ±SD (Hz)  17.29±9.2 11.14±0.9 14.14±6.8 14.86±6.5 12.43±3.5 

mean A ±SD (10
-11

 V
2
) 5.43±3.9 6.17±3.6 6.78±5.6 7.68±6.9 8.56±7.0 

MI LV Pre Post 0 Post 10 Post 20 Post 30  

mean F ±SD (Hz) 30.65±2.2 30.85±2.2 30.05±3.1 29.50±3.5 28.2±5.2 

mean A ±SD (10
-11

 V
2
) 11.25±12.5 10.97±12.3 11.36±11.2 11.89±10.9 11.71±10.2 

SI LIV Pre Post 0 Post 10 Post 20 Post 30 

mean F ±SD (Hz) 22.15±7.5 21.75±7.4 24.85±11.2 21.95±6.9 21.90±7.0 

mean A ±SD (10
-11

 V
2
) 9.54±10.2 9.52±9.4 9.19±8.8 10.53±8.5 10.37±7.7 

 
 
 
Table 7. 2. T-statistics: mean peak frequency and power in vitro after cTBS in MI LIII.  

cTBS: MI LIII Post 0 min Post 10 min 

 
MI LIII MI LV SI LIV MI LIII MI LV SI LIV 

  d.f. 6 9 9 6 9 9 

Peak F t-statistic 1.796 -1.8091 0.4356 1.3479 1.4275 -1.327 

  p-value 0.1226 0.1039 0.6734 0.2264 0.1872 0.2172 

Peak A t-statistic -2.0946 1.2461 0.0622 -1.8478 -0.1303 0.6238 

  p-value 0.0811 0.2442 0.9518 0.1141 0.8992 0.5483 

    Post 20 min Post 30 min 

    MISL MIDL SIML MISL MIDL SIML 

  d.f. 6 9 9 6 9 9 

Peak F t-statistic 1.2842 2.1594 0.647 1.5353 2.1892 0.3946 

  p-value 0.2464 0.0591 0.5338 0.1756 0.0563 0.7023 

Peak A t-statistic -1.6818 -0.5247 -0.8089 -2.0089 -0.2311 -0.455 

  p-value 0.1436 0.6125 0.4394 0.0913 0.8224 0.6599 

 
 
 

Table 7. 3. Mean oscillatory peak frequency and peak power after cTBS in MI LV. 

MI LIII Pre Post 0 Post 10 Post 20 Post 30 

mean F ±SD  (Hz) 14.06±8.8 14.88±8.6 16.13±8.3 15.31±8.2 14.75±8.4 

mean A ±SD  (10
-11

V
2
) 17.67±13.8 18.47±19.0 14.56±9.4 15.05±11.1 15.90±11.9 

MI LV Pre Post 0 Post 10 Post 20 Post 30 

mean F ±SD  (Hz) 31.00±7.5 31.10±7.1 30.55±7.4 31.70±3.5 30.20±6.9 

mean A ±SD  (10
-11

V
2
) 24.76±43.8 25.75±43.4 31.67±57.0 35.77±64.5 37.58±62.7 

SI LIV Pre Post 0 Post 10 Post 20 Post 30 

mean F ±SD  (Hz) 21.33±9.6 20.50±8.7 19.83±8.8 21.17±9.0 20.78±7.9 

mean A ±SD  (10
-11

V
2
) 18.23±35.6 15.82±26.8 17.10±33.0 20.36±38.5 21.08±39.2 

Grey highlights indicates statistical significance, p<0.05. 
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Table 7. 4. T-statistics: mean peak frequency and power after cTBS in MI LV. 

    Post 0 min Post 10 min 

cTBS: MI LV MI LIII MI LV SI LIV MI LIII MI LV SI LIV 

  d.f. 7 9 8 7 9 8 

Peak F t-statistic -0.7918 -0.4523 0.527 -1.8551 2.0769 0.7963 

  p-value 0.4545 0.6618 0.6125 0.106 0.0676 0.4489 

Peak A t-statistic -0.3977 -2.1523 0.7884 1.6638 -1.615 0.973 

  p-value 0.7027 0.0598 0.4532 0.1401 0.1408 0.359 

    Post 20 min Post 30 min 

    MI LIII MI LV SI LIV MI LIII MI LV SI LIV 

  d.f. 7 9 8 7 9 8 

Peak F t-statistic -1.452 -0.5047 0.417 -0.5883 2.3881 0.3114 

  p-value 0.1898 0.6259 0.6876 0.5748 0.0407 (*) 0.7635 

Peak A t-statistic 1.7808 -1.662 -1.2645 1.2761 -2.0752 -1.2579 

  p-value 0.1182 0.1309 0.2416 0.2426 0.0678 0.2439 

Statistical significance p<0.05 is marked with *. 
 

Table 7. 5. Mean peak frequency and power before and after cTBS in SI LIV. 

MI LIII Pre Post 0 Post 10 Post 20 Post 30 

mean F ±SD (Hz) 16.25±6.3 16.88±7.8 16.81±7.7 15.63±7.9 16.88±5.5 

mean A±SD (10
-11

 V
2
) 5.69±2.5 5.67±2.5 6.93±3.8 7.31±5.3 5.37±3.6 

MI LV Pre Post 0 Post 10 Post 20 Post 30 

mean F ±SD (Hz) 31.20±2.5 29.30±5.5 29.55±4.7 30.15±2.2 28.15±6.7 

mean A±SD (10
-11

 V
2
) 32.18±76.0 37.70±89.5 49.53±110.9 52.46±112.2 60.69±119.2 

SI LIV Pre Post 0 Post 10 Post 20 Post 30 

mean F ±SD (Hz) 25.61±7.8 23.67±8.9 24.78±7.4 23.94±6.8 21.22±8.9 

mean A±SD (10
-11

 V
2
) 20.94±19.7 24.44±24.3 29.11±30.9 31.91±39.1 32.84±45.5 

Grey highlights indicates statistical significance, p<0.05. 

 

Table 7. 6. Mean peak frequency and power before and after cTBS in SI LIV. 

    Post 0 min Post 10 min 

cTBS: SI LIV MI LIII MI LV SI LIV MI LIII MI LV SI LIV 

  d.f. 7 9 8 7 9 8 

Peak F t-statistic -0.3716 1.0586 1.108 -0.4133 1.065 2.1822 

  p-value 0.7211 0.3173 0.3 0.6917 0.3146 0.0607 

Peak A t-statistic 0.0378 -1.2742 -2.0487 -1.8329 -1.5159 -2.1521 

  p-value 0.9709 0.2345 0.0747 0.1095 0.1638 0.0636 

    Post 20 min Post 30 min 

    MI LIII MI LV SI LIV MI LIII MI LV SI LIV 

  d.f. 7 9 8 7 9 8 

Peak F t-statistic 0.4144 2.2429 1.3245 -0.7407 1.3614 2.397 

  p-value 0.691 0.0516 0.2219 0.483 0.2065 0.0434 (*) 

Peak A t-statistic -1.0155 -1.6926 -1.626 0.2714 -1.8632 -1.2674 

  p-value 0.3437 0.1248 0.1426 0.7939 0.0953 0.2407 

Statistical significance p<0.05 is marked with *. 
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7.3.2.2. Frequency distribution and variability 

There were no significant changes over time in the mean FWHM or peak frequency 

distribution in MI LIII, MI LV or SI LIV after cTBS in any of the three locations.  

Additionally, there were no significant effects over time of cTBS in any laminae on the 

frequency variability. The detailed results on mean FWHM and frequency variability from 

cTBS in different laminae are listed in table 7.4-6 and figure 7.11-12 presents overviews. 

 

Figure 7. 11a-c. Mean FWHM after cTBS in all laminae. No significant effects were seen. SEMs 
are represented by error bars. cTBSMI LIII: MI LIII n=6, MI LV n=9. SI LIV n=9. cTBSMI LV: MI LIII 
n=7, MI LV n=9, SI LIV n=8. cTBSSI LIV: MI LIII n=7, MI LV n=9, SI LIV n=8. MI LIII values are 
shown in green, MI LV in blue and SI LIV in red. 

 

Table 7. 7. Mean FWHM and frequency distribution before and after cTBS in MI LIII. 

MI LIII Pre Post 0 Post 10 Post 20 Post 30 

mean FWHM ±SD (Hz)  18.57±10.3 13.29±9.9 16.00±9.0 17.57±8.4 13.57±8.5 

Mean % at peak±SD 4.55±2.6 4.75±2.6 5.55±3.1 4.45±2.8 5.11±2.3 

MI LV Pre Post 0 Post 10 Post 20 Post 30 

mean FWHM (Hz)  14.20±4.6 14.55±4.0 16.50±6.1 16.80±6.7 15.15±4.5 

Mean % at peak±SD  9.63±4.1 9.49±3.7 10.31±4.0 10.04±4.8 8.75±2.8 

SI LIV Pre Post 0 Post 10 Post 20 Post 30 

mean FWHM (Hz)  16.60±5.5 17.35±6.0 17.80±5.8 17.25±6.1 18.05±6.1 

Mean % at peak±SD  7.60±8.4 7.91±6.2 8.33±6.4 7.73±6.6 7.09±5.4 
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Figure 7. 12a-c. Mean frequency variability after cTBS in all laminae. No significant effects were 
seen. SEMs are represented by error bars. cTBSMI LIII: MI LIII n=6, MI LV n=9. SI LIV n=9. 
cTBSMI LV: MI LIII n=7, MI LV n=9, SI LIV n=8. cTBSSI LIV: MI LIII n=7, MI LV n=9, SI LIV n=8. MI 
LIII values are shown in green, MI LV in blue and SI LIV in red. 

 

 
Table 7. 8. T-statistics: mean FWHM and frequency distribution after cTBS in MI LIII 

    Post 0 min Post 10 min 

cTBS: MI LIII MI LIII MI LV SI LIV MI LIII MI LV SI LIV 

  d.f. 6 9 9 6 9 9 

FWHM t-statistic 1.655 -0.2461 -0.7601 1.7034 -1.4307 -1.206 

  p-value 0.149 0.8111 0.4666 0.1394 0.1863 0.2585 

FV t-statistic -0.4642 0.1569 -0.3141 -1.4955 -0.7475 -0.6479 

  p-value 0.6589 0.8788 0.7606 0.1854 0.4739 0.5332 

    Post 20 min Post 30 min 

    MI LIII MI LV SI LIV MI LIII MI LV SI LIV 

  d.f. 6 9 9 6 9 9 

FWHM t-statistic 0.7385 -1.5169 -0.7143 1.329 -0.8958 -1.6593 

  p-value 0.4881 0.1636 0.4931 0.2322 0.3937 0.1314 

FV t-statistic 0.1134 -0.3241 -0.1652 -0.6917 0.8423 0.4196 

  p-value 0.9134 0.7533 0.8724 0.515 0.4215 0.6846 
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Table 7. 9.  Mean FWHM and peak frequency distribution after cTBS in MI LV. 

MI LIII Pre Post 0 Post 10 Post 20 Post 20 

mean FWHM ±SD (Hz) 11.50±2.4 11.50±4.7 12.13±3.6 12.13±3.6 11.44±3.5 

mean % at peak ±SD 6.24±1.6 6.40±2.7 6.13±2.8 6.06±3.6 7.50±3.6 

MI LV Pre Post 0 Post 10 Post 20 Post 20 

mean FWHM ±SD (Hz)  11.70±3.3 12.15±4.4 12.05±4.3 11.35±3.8 11.05±4.2 

mean % at peak ±SD  12.48±3.1 13.28±3.7 14.45±4.4 14.32±6.3 14.67±5.2 

SI LIV Pre Post 0 Post 10 Post 20 Post 20 

mean FWHM ±SD (Hz)  16.67±6.2 15.28±4.8 17.78±4.4 15.67±4.6 14.94±6.4 

mean % at peak ±SD  7.00±3.4 5.96±3.3 6.90±3.3 7.50±3.5 7.44±4.3 

 
 

 

Table 7. 10. T-statistics: mean FWHM and peak frequency distribution after cTBS in MI LV. 

    Post 0 min Post 10 min 

cTBS: MI LV MI LIII MI LV SI LIV MI LIII MI LV SI LIV 

  d.f. 7 9 8 7 9 8 

FWHM t-statistic 0.001 -0.7406 0.9306 -0.9674 -0.7612 -0.6132 

  p-value 0.999 0.4778 0.3793 0.3656 0.466 0.5568 

FV t-statistic -0.1966 -0.728 1.5624 0.1122 -1.7155 0.1135 

  p-value 0.8497 0.4851 0.1568 0.9138 0.1204 0.9124 

    Post 20 min Post 30 min 

    MI LIII MI LV SI LIV MI LIII MI LV SI LIV 

  d.f. 7 9 8 7 9 8 

FWHM t-statistic -0.7977 1.1053 0.3963 0.0598 1.8571 0.5027 

  p-value 0.4512 0.2977 0.7023 0.954 0.0963 0.6287 

FV t-statistic 0.1492 -1.226 -0.5123 -1.0524 -1.7693 -0.4463 

  p-value 0.8856 0.2513 0.6223 0.3276 0.1106 0.6672 

 

 

 
Table 7. 11. Mean FWHM and peak frequency distribution before and after cTBS in SI LIV. 

MI LIII Pre Post 0 Post 10 Post 20 Post 30 

mean FWHM ±SD (Hz)  17.56±7.0 18.38±6.4 15.13±5.4 18.94±7.9 21.31±9.0 

Mean % at peak ±SD 6.21±4.7 5.28±3.5 6.04±4.4 5.42±3.4 4.69±2.9 

MI LV Pre Post 0 Post 10 Post 20 Post 30 

mean FWHM ±SD (Hz)  15.75±7.8 16.00±8.8 15.00±7.2 14.30±7.0 14.05±6.8 

Mean % at peak ±SD 7.70±6.8 8.39±7.0 7.13±6.6 9.52±6.4 8.36±6.0 

SI LIV Pre Post 0 Post 10 Post 20 Post 30 

mean FWHM ±SD (Hz)  16.17±7.6 15.56±6.1 14.44±4.8 16.22±7.3 15.17±4.6 

Mean % at peak ±SD 7.85±3.8 8.87±5.0 8.99±6.5 8.83±6.6 8.65±8.0 
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Table 7. 12. T-statistics: mean FWHM and peak frequency distribution after cTBS in SI LIV. 

    Post 0 min Post 10 min 

cTBS: SI LIV MI LIII MI LV SI LIV MI LIII MI LV SI LIV 

  d.f. 7 9 8 7 9 8 

FWHM t-statistic -0.4539 -0.1297 0.5645 1.7414 0.4596 0.8819 

  p-value 0.6637 0.8996 0.5879 0.1252 0.6567 0.4035 

FV t-statistic 0.9504 -0.5909 -1.5188 0.221 1.1705 -1.056 

  p-value 0.3736 0.5691 0.1673 0.8314 0.2719 0.3218 

    Post 20 min Post 30 min 

    MI LIII MI LV SI LIV MI LIII MI LV SI LIV 

  d.f. 7 9 8 7 9 8 

FWHM t-statistic -0.6721 0.6461 -0.0495 -1.6846 0.712 0.4259 

  p-value 0.5231 0.5343 0.9617 0.1359 0.4945 0.6814 

FV t-statistic 0.5203 -0.9364 -0.6698 1.7471 -0.4289 -0.4123 

  p-value 0.6189 0.3735 0.5218 0.1241 0.6781 0.6909 

 

7.3.2.3. Power state 

After cTBS in MI LIII, the mean power in the upstate in MI LIII increased significantly from 

6.65 x10-11 V2 to 10.62 x10-11 V2, 30 minutes after cTBS, t[6]=-3.0322, p=0.023. In addition, 

in SI LIV the mean downstate power increased significantly from 2.13 to 2.69 x10-11 V2, 

t[9]=-2.4134, p=0.039. There were no significant effects on oscillatory state or state power 

in MI LV after cTBS in SI LIV. 

After cTBS in MI LV, there were no significant effects in any laminae. 

After cTBS in SI LIV the mean upstate power in SI LIV showed a significant increase at 10 

minutes after, t[8]=-2.3778, p=0.0447. The mean downstate power significantly increased 

at 20 and 30 minutes post cTBS, t[8]=-3.455, p=0.0086, and t[8]=-2.3731, p=0.045, 

respectively. There were no significant changes in MI LIII and MI LV after cTBSSI LIV. The 

detailed results on oscillatory state and state power from cTBS in different laminae are 

listed in table 7.7-9 and figure 7.12-15 presents overviews. 
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Figure 7. 13. Mean oscillatory state power before and after cTBSMI LIII, recorded in MI LV (blues), 
MI LIII (greens) and SI LIV(reds). The difference in the mean up- and downstate power, in MI LIII 
and SI LIV respectively, after 30 minutes was significant, p<0.05, illustrating the gradual increase 
in power. The values shown are in amplitude (x10

-11
 V

2
). cTBSMI LIII: MI LIII n=6, MI LV n=9. SI LIV 

n=9. cTBSMI LV: MI LIII n=7, MI LV n=9, SI LIV n=8. cTBSSI LIV: MI LIII n=7, MI LV n=9, SI LIV n=8. 
 

Table 7. 13. Oscillatory state and power before and after cTBS application in MI LIII.  

MI LIII Pre Post 0 min Post 10 min Post 20 min Post 30 min 

% Upstate 40.05 34.63 41.36 39.70 36.29 

Mean upstate power 6.65 10.32 6.62 9.05 10.62 

Mean downstate power 2.41 2.65 2.71 3.46 3.85 

MI LV Pre Post 0 min Post 10 min Post 20 min Post 30 min 

% Upstate 34.58 36.31 37.32 38.41 36.94 

Mean upstate power 7.09 6.91 7.46 7.78 8.40 

Mean downstate power 1.87 1.87 2.23 2.42 2.63 

SI LIV Pre Post 0 min Post 10 min Post 20 min Post 30 min 

% Upstate 36.94 38.74 38.63 40.14 39.17 

Mean upstate power 6.26 7.05 6.86 6.79 7.72 

Mean downstate power 2.13 2.39 2.38 2.46 2.69 

Grey highlights indicate statistical significance, p<0.05 
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Table 7. 14. T-statistics: oscillatory state and power after cTBS in MI LIII 

    Post 0 min Post 10 min 

cTBS: MI LIII MI LIII MI LV SI LIV MI LIII MI LV SI LIV 

  d.f. 6 9 9 6 9 9 

UP % t-statistic 1.1526 -0.5314 -0.7019 -0.9905 -0.9791 -0.8181 

  p-value 0.2929 0.608 0.5005 0.3602 0.3531 0.4344 

UP pow t-statistic -1.0282 0.1438 -0.6778 0.0498 -0.2961 -0.6277 

  p-value 0.3435 0.8889 0.5149 0.9619 0.7739 0.5458 

DN pow t-statistic -1.4284 -0.0064 -1.8495 -1.1723 -1.4861 -1.6584 

  p-value 0.2031 0.995 0.0974 0.2855 0.1714 0.1316 

    Post 20 min Post 30 min 

    MI LIII MI LV SI LIV MI LIII MI LV SI LIV 

  d.f. 6 9 9 6 9 9 

UP % t-statistic 0.3249 -1.4288 -1.8289 1.2052 -1.6357 -1.5654 

  p-value 0.7563 0.1868 0.1007 0.2735 0.1363 0.1519 

UP pow t-statistic -2.1935 -0.5729 -0.6389 -3.0322 -1.1881 -1.4923 

  p-value 0.0707 0.5807 0.5388 0.023 (*) 0.2652 0.1698 

DN pow t-statistic -1.7604 -1.9078 -2.0934 -2.1291 -2.01 -2.4134 

  p-value 0.1288 0.0888 0.0658 0.0773 0.0753 0.039 (*) 

Statistical significance p<0.05 is marked with *. 

 

 

Figure 7. 14. Mean oscillatory state power after cTBSMI LV. There were no significant differences in 
the oscillatory state power after cTBS. cTBSMI LIII: MI LIII n=6, MI LV n=9. SI LIV n=9. cTBSMI LV: MI 
LIII n=7, MI LV n=9, SI LIV n=8. cTBSSI LIV: MI LIII n=7, MI LV n=9, SI LIV n=8. MI LIII is illustrated 
by green colours, MI LV by blue colours and SI LIV by red colours. 
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Table 7. 15. Oscillatory state and power before and after cTBS in MI LV 

MI LIII Pre Post 0 min Post 10 min Post 20 min Post 30 min 

% Upstate 38.79 37.31 37.93 33.81 39.42 

Mean upstate power 19.71 22.64 18.27 19.95 16.50 

Mean downstate power 7.58 8.32 6.86 6.46 6.87 

MI LV Pre Post 0 min Post 10 min Post 20 min Post 30 min 

% Upstate 37.06 36.81 36.77 38.32 37.15 

Mean upstate power 12.16 16.07 14.80 15.09 17.72 

Mean downstate power 3.60 4.25 4.40 4.77 5.57 

SI LIV Pre Post 0 min Post 10 min Post 20 min Post 30 min 

% Upstate 39.18 35.83 39.57 36.60 38.73 

Mean upstate power 11.96 19.27 13.64 15.41 15.01 

Mean downstate power 4.26 4.85 4.67 5.18 5.85 

 
Table 7. 16. T-statistics: oscillatory state and power after cTBS in MI LV 

    Post 0 min Post 10 min 

cTBS: MI LV MI LIII MI LV SI LIV MI LIII MI LV SI LIV 

  d.f. 7 9 8 7 9 8 

UP % t-statistic 0.6294 0.2372 1.0262 0.2783 0.3107 -0.2319 

  p-value 0.5491 0.8178 0.3348 0.7888 0.7631 0.8224 

UP pow t-statistic -0.5659 -0.9692 -1.1183 0.4066 -1.1548 -0.6586 

  p-value 0.5891 0.3578 0.2959 0.6965 0.2779 0.5287 

DN pow t-statistic -0.8175 -0.9436 -1.1289 1.2561 -1.248 -0.7279 

  p-value 0.4406 0.37 0.2917 0.2494 0.2435 0.4875 

    Post 20 min Post 30 min 

    MI LIII MI LV SI LIV MI LIII MI LV SI LIV 

  d.f. 7 9 8 7 9 8 

UP % t-statistic 1.5408 -0.9261 2.1868 -0.272 -0.0702 0.3306 

  p-value 0.1673 0.3786 0.0602 0.7935 0.9456 0.7495 

UP pow t-statistic -0.0841 -2.0212 -0.9128 1.383 -1.8191 -0.8674 

  p-value 0.9354 0.074 0.388 0.2092 0.1023 0.411 

DN pow t-statistic 1.3708 -1.9078 -0.9132 1.058 -1.7579 -1.0615 

  p-value 0.2128 0.0888 0.3878 0.3252 0.1126 0.3195 

 

Table 7. 17. Oscillatory state and power before and after cTBS in SI LIV 

MI LIII Pre Post 0 min Post 10 min Post 20 min Post 30 min 

% Upstate 39.21 40.82 40.06 40.14 40.33 

Mean upstate power 5.71 5.96 6.86 7.42 6.36 

Mean downstate power 2.27 2.46 2.76 3.07 2.46 

MI LV Pre Post 0 min Post 10 min Post 20 min Post 30 min 

% Upstate 36.19 37.07 37.18 36.15 36.84 

Mean upstate power 9.56 11.13 15.79 17.90 19.18 

Mean downstate power 2.89 3.57 5.43 5.26 5.78 

SI LIV Pre Post 0 min Post 10 min Post 20 min Post 30 min 

% Upstate 36.82 36.99 36.01 38.97 36.79 

Mean upstate power 14.56 16.35 19.09 15.60 17.26 

Mean downstate power 4.43 4.73 6.07 5.74 5.91 
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Figure 7. 15. Mean oscillatory state power before and after cTBSSI LIV. The increase in mean 
upstate power in SI LIV at 10 minutes after cTBSSI LIV was significant, p<0.05. In addition, the 
increases in mean downstate power at 20 and 30 minutes in SI LIV were also significant, p<0.05. 
cTBSMI LIII: MI LIII n=6, MI LV n=9. SI LIV n=9. cTBSMI LV: MI LIII n=7, MI LV n=9, SI LIV n=8. 
cTBSSI LIV: MI LIII n=7, MI LV n=9, SI LIV n=8. MI LIII is shown in green colours, MI LV in blue and 
SI LIV in blue. 

 
Table 7. 18. T-statistics: oscillatory state and power after cTBS in SI LIV 

    Post 0 min Post 10 min 

cTBS: SI LIV MI LIII MI LV SI LIV MI LIII MI LV SI LIV 

  d.f. 7 9 8 7 9 8 

UP % t-statistic -1.2706 -0.8769 -0.2016 -0.4842 -1.0961 0.3652 

  p-value 0.2445 0.4033 0.8452 0.643 0.3015 0.7244 

UP pow t-statistic -0.6373 -1.2975 -1.4434 -2.323 -1.4048 -2.3778 

  p-value 0.5442 0.2267 0.1869 0.0532 0.1936 0.0447 (*) 

DN pow t-statistic -0.9688 -1.2678 -1.1884 -1.69 -1.3348 -1.7062 

  p-value 0.3649 0.2367 0.2688 0.1349 0.2147 0.1264 

    Post 20 min Post 30 min 

    MI LIII MI LV SI LIV MI LIII MI LV SI LIV 

  d.f. 7 9 8 7 9 8 

UP % t-statistic -0.8969 0.0377 -1.5812 -0.7675 -0.6144 0.0196 

  p-value 0.3996 0.9708 0.1525 0.4679 0.5542 0.9849 

UP pow t-statistic -1.1988 -1.7845 -0.4863 -0.3931 -1.8902 -0.8206 

  p-value 0.2696 0.108 0.6398 0.7059 0.0913 0.4357 

DN pow t-statistic -1.1406 -1.8063 -3.4557 -0.3119 -2.0857 -2.3731 

  p-value 0.2916 0.1043 0.0086 (**) 0.7642 0.0666 0.045 (*) 

Significance p<0.05 is marked with *. 
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7.4 Discussion 

7.4.1. Summary of findings 

Applying cTBS over the left MI significantly increased the power of the ongoing beta 

activity in the stimulated hemisphere, and in responders, only. The responders also 

showed a significant decrease in the MEP amplitude. The in vitro experiments showed 

that the peak frequency in the stimulated laminae significantly decreased after cTBS, and 

while there was no significant effect on peak power, there were significant changes to the 

power states.  

 

7.4.2. cTBS increases beta power in the stimulated hemisphere in humans 

cTBS application over MI increased the power of the ongoing beta oscillations in the 

stimulated hemisphere in 50% of the participants; the responders. Previous reports have 

suggested that the differential response depends on the individual genetic differences in 

the polymorphism of brain-derived neurotrophic factor (BDNF). Cortico-spinal excitability is 

reported to reduce after cTBS in participants with Val66Val polymorphism, but not in 

individuals with the Val66Met polymorphism. The prevalence of Val66Val is approximately 

65% in a population (Cheeran et al., 2008). BDNF is reported to depress the postsynaptic 

GABAA responses (Tanaka et al., 1997; Frerking et al., 1998). GABAA transmission is 

essential for the oscillatory beta activity found in MI (Yamawaki et al., 2008). In addition, 

BDNF has also recently been reported to exert effects NMDA-mediated transmission and 

plasticity, and in the subject with the polymorphism the plasticity is altered (Pattwell et al., 

2012). Our results support the theory that genetic differences underlie the differences 

seen in cTBS effects, as the reduction in cortico-spinal excitability and increase in ongoing 

beta power was absent in the participants without a response to cTBS. There are different 

effects of cTBS on the cell biological level, which could explain differences over time, as 

well as anatomical differences.  

Previous reports on the effects on beta oscillations in MI after cTBS have shown dissimilar 

results. Activity in the lower beta frequency range (13-19.5 Hz) in MI was enhanced by 

cTBS, reported by Noh et al. (2012) but there were no significant enhancement in the 

higher beta band (20-30 Hz). In the study by McAllister et al., (2011) there were no effects 

on beta power. Our results are only supportive of these findings to a small extent and 

there are several essential differences between our methods and analysis compared to 

those reported in these studies. Firstly, these two studies used a more limited spatial EEG 

approach, while we used MEG with good spatial accuracy. Second, the analysis of power 
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in the beta band was in Noh et al.’s article focused on dividing up the beta frequency 

range into two bands, while in our study we used one beta frequency range. It is possible 

that the increase in beta power Noh et al. reported is comparable to our results. Lastly, 

both of these groups used only 2s of oscillatory activity, which was subsequently 

averaged over several trials, and analysed with FFT-algorithms. Our analysis was based 

on 60s of resting data and analysed with a Morelet-wavelet algorithm. We chose a longer 

period of time for our analysis of ongoing activity and a Morelet-wavelet approach since 

previous experience and results have indicated that the FFT algorithm is more insensitive 

and the oscillatory signals contain stark variability in both oscillatory power and frequency 

(discussed in chapter 2 and 3).  

Mäki & Ilmoniemi (2010) reported an association between MI excitability and beta 

oscillations measured with EEG, but also emphasised that the two features arise from 

different mechanisms, which essentially results in a weak correlation. With regards to 

differences in analysis approach, this group used 1s time windows, which were averaged, 

and three band-filters (12-15, 15-18, 15-30 Hz) for their beta oscillations were applied. 

Similarly, Zarkowski et al. (2006) also showed a statistically significant association 

between MI excitability and alpha and gamma activity. This group used 2s analysis and an 

undefined method of frequency spectrum analysis in MatLab. In addition the studies by 

Stagg et al. (2009) and Gaetz et al. (2011), the discussed results above and our own, 

provides evidence that the GABAergic system indeed is linked to the level of excitability in 

MI, as well as the beta power. However, the specific correlations between the features of 

human MI beta oscillations and MI excitability are still unclear and require further work.  

 

7.4.3. cTBS in vitro 

The significant effects of cTBS in vitro were predominantly local to the stimulated laminae. 

To date there are no studies reporting the effects of cTBS on ongoing oscillatory activity in 

the sensorimotor laminae in vitro; literature on the effects of cTBS on oscillations in vitro is 

sparse. In the in vivo study by Benali et al., (2011) TBS was applied over the frontal cortex 

of rats. This group reported a significant increase in gamma power, in addition to a non-

significant increase in beta power, after intermittent TBS, but not cTBS. However, the lack 

of spatial specificity when applying TMS-based cTBS onto the scalp of a rat is 

confounding; there is no procedure to establish that the findings were related to 

stimulation of one area in particular. Regardless, the reported effects of intermittent TBS 

were those, which if compared to the human studies, would have been expected for the 

cTBS, e.g. an increase in the beta/gamma power of ongoing oscillatory activity. There 

were no significant effects of cTBS on the oscillatory power in the study by Benali et al.. In 
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our study, there were no significant effects of cTBS on peak power in any area in vitro. 

However, there were significant effects on the mean power in the oscillatory states. This 

indicates that the effect of cTBS on power depends on the intrinsic power variability. This 

change in activity pattern and subsequent increase in variability suggests that the 

changes from cTBS cannot be reliably assessed with a defined band-approach or peak 

approach. These analysis methods were used in the EEG studies previously discussed, 

which reported an increase in sensorimotor beta power after cTBS (Noh et al., 2012), or 

no change (McAllister et al., 2011).  

The local effects seen in vitro were time-dependent, e.g. they predominantly increased or 

decreased gradually over 30 minutes after cTBS. In most cases, however, they did not 

reach significance until 30 minutes after cTBS. Particularly interesting is the non-

significant observation that oscillatory activity in some areas was only reinforced in one 

part of their frequency range. For example, cTBS applied in MI LIII appeared to only 

increase the power in the lower beta and mu ranges in MI LV, while the ongoing beta 

activity appeared unaffected.  In MI LIII after cTBSMI LIII the broad ongoing activity 

increased in power. This could also be supportive of the idea that the local activity is 

reinforced and could be seen reflected in other connected areas. The model by Di 

Lazzaro et al. (2012) suggests that the effects of TMS cTBS are localised to the pyramidal 

cells in layer II and III, and then indirectly activates the pyramidal cells in layer V and local 

interneurons. As the beta power in MI LV after cTBS in MI LIII is not increased, it 

questions if the model is telling the complete story, or parts of it. cTBS is suggested to 

affect GABAA-transmission (Tanaka et al., 1997; Frerking et al., 1998; Stagg et al., 2009); 

this would affect the ongoing beta oscillations in MI LV which depend on this type of 

transmission (Yamawaki et al., 2008). However, cTBS is also reported to have effects on 

NMDA-transmission and plasticity (Pattwell et al., 2012) and Pell et al. (2011) has 

emphasised that effects of cTBS may well incorporate other neurotransmitter systems.  

None of the studies reviewed have focused on changes in frequency after cTBS. We 

speculate that this is predominantly due to the differences in analysis approach. 

Oscillatory frequency features is particularly interesting here since it can be considered 

representative of the underlying network size and behaviour. We were not able to 

determine the frequency changes in the MEG recordings due to software differences. 

However, in vitro cTBSMI LV significantly decreased the ongoing mean peak frequency and 

cTBSSI LIV resulted in a significant decrease in oscillatory mean peak frequency in SI LIV. 

The absence of this effect in MI LIII after cTBSMI LIII could be due to the wider preference 

of natural resonance frequencies in MI LIII, and/or low experimental numbers.  
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The exception from the finding of local effects of cTBS, was the significantly increase in 

mean downstate power in SI LIV after cTBSMI LIII; a similar increase was not seen after 

cTBSMI LV or cTBSSI LIV. This implies effective connectivity between MI LIII and SI LIV. It is 

unclear if the effects seen at a more distant network, in relation to cTBS location, are 

direct results of the cTBS itself, or delayed and indirect results from changes of activity in 

one location. In addition, the modulation of the power of the oscillatory activity in MI LIII 

after cTBSSI LIV, although non-significant and temporary, further indicates a complex 

connectivity between these areas.  

 

7.4.4. Effects of cTBS on oscillatory power in both MEG and in vitro 

Neuroimaging studies using TMS-based cTBS have reported a decrease in the excitability 

of MI and the responsiveness of excitatory neurons (Di Lazzaro et al., 2005), as well as an 

increase in GABA concentration in MI (Stagg et al., 2009). Although beta power increased 

in the stimulated hemisphere in the MEG experiments, there was no significant increase in 

peak power in these in vitro experiments. However, the in vitro experiments showed 

significant increases in mean upstate power in MI LIII and SI LIV. A change in bursting 

patterns could increase the variance which renders the peak power change less obvious. 

The primary suggested effects of cTBS are on the pyramidal cells in layer II/III, which then 

indirectly excite the pyramidal cells in layer V and local interneurons (Di Lazzaro et al., 

2012). Thus, the effects of cTBS applied in MI LIII in vitro should be similar to the effects 

seen after TMS-cTBS. This holds true in our experiments to some degree. The effects are 

seen on the mean power in the oscillatory state rather than on the peak power. The 

relevance of this difference is unclear since the available network is smaller and the 

ongoing oscillations are induced by continuous application of drugs in vitro.   
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7.5. Conclusion 

We have showed that there is a beta power increase in the stimulated hemisphere in 

humans. We then went on to characterise the mechanisms of this increase in vitro and 

showed that the mean peak frequency of the local networks to which cTBS was applied 

decreased. Although there were no significant differences in mean peak power in vitro, the 

oscillatory state power was significantly increased in both MI LIII and SI LIV after cTBS in 

MI LIII, and in SI LIV after cTBS in SI LIV. These results indicate that cTBS particularly 

affect the patterns of oscillatory activity in vitro, indirectly through excitability and inhibition 

level in the local sensorimotor neuronal networks. From this we conclude that cTBS 

applied in the sensorimotor cortex affects the local oscillatory power and frequency, in 

vitro and in MEG. The effects of cTBS depend on modulation of neurotransmitter systems 

including GABAA-transmission. In this study, we have confirmed that results from these 

two modalities are comparable with regards to oscillatory power and we have started to 

elucidate which mechanisms underlie effects on sensorimotor oscillations.  



195 

 

 

Chapter 8. Sensorimotor beta oscillations in Parkinson’s 

disease and their GABAergic modulation 
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8.1 Background 

8.1.1. Introduction  

In previous chapters we discussed the features of spontaneous oscillatory activity in the 

sensorimotor cortex both in healthy humans and in vitro preparations. Additionally, we 

have revealed effects on the sensorimotor beta oscillatory activity from GABAergic and 

frequency stimulation modulation. Here we consider beta oscillations in MI in human 

subjects with Parkinson’s disease. In addition, we investigate the effects of GABAergic 

modulation with zolpidem on these oscillations and the PD motor symptomatology.  

Cortical oscillations and motor cortex excitability have been found to be altered in PD 

patients (Ridding et al., 1995; Lefaucheur, 2005; Pollock et al., 2012) as well as facilitation 

and inhibition in the intracortical pathways (MacKinnon et al. 2005). The oscillatory beta 

dynamics surrounding movement and stimulation in the sensorimotor cortex also appear 

different in PD patients compared to healthy subjects (Labyt et al., 2005; Brown, 2007); 

suggesting an undetermined role of the cerebral cortex in generating and/or maintaining 

the abnormal rhythm. The PMBR frequency amplitude in the motor cortex has been found 

to be decreased in PD subjects, compared to control subjects (Degardin et al., 2009). This 

implies changed somatosensory processing and somaesthetics in PD (Tamburin et al., 

2003), since beta ERS is believed to reflect the motor offset command, as well as re-

afference from the somatosensory areas (Cassim et al., 2001; Pfurtscheller et al., 2005). 

Overall, the motor excitability after sensory input is conclusively altered in PD patients, 

compared to control subjects (Sailer et al., 2003; 2007). To date the cortical activity 

alterations in PD patients and the central role of cortex in functional connectivity are 

implicit, but poorly understood.  

The abnormal appearance of beta oscillations in the motor system in PD subjects is 

accompanied by motor deficits. Cortico-cortical coherence in the upper and lower beta 

band correlate with the severity of the Parkinsonian symptoms (Silberstein et al. 2005). 

Some of the symptoms of PD can initially be reduced with dopaminergic drugs such as L-

Dopa (Cotzias et al., 1969; Eskow-Jaunarajs et al., 2011) or deep-brain stimulation to the 

basal ganglia (Brown et al., 2001; Benabid 2003; Silberstein et al., 2005; Brown 2007; 

Bronstein et al., 2011). Symptom relief provided by these methods is supportive of the 

importance of basal ganglia in the motor system as, at least partly, responsible for 

modulation of the abnormal beta oscillations. The importance of dopaminergic neurons in 

the basal ganglia is further supported by animal models, such as the 6-hydroxy-dopamine 

(6-OHDA) and 1-methyl-4-phenyl-1,2,3,6 tetrahydropyridine (MPTP) models. Studies 
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using animal models of PD often report that the beta oscillatory activity in the motor 

system is abnormal in the power domain (Sharott et al., 2005; Mallet et al., 2008a; 200b). 

However, this is not reported to the same extent in human PD subjects. Here the reported 

effects concern the frequency domain with a reported slowing of cortical oscillatory activity 

and altered functional connectivity.  

Previous research have shown that GABAergic substances affects the beta oscillatory 

activity and dynamics in healthy and stroke patients (Baker & Baker 2003; Jensen et al., 

2005; Hall et al., 2009; 2010; 2011) and beta oscillations have been found to also be 

modulated by dopaminergic substances (Litvak et al, 2010; Jenkinson & Brown 2011). 

However, the altered motor patterns and diminished inhibition with increasing MPTP 

levels (Leblois et al., 2007) is not just evidence that dopaminergic connections are 

essential and their destruction underlies PD, it also indicates the importance of the 

GABAergic inhibitory system in PD and relevant motor symptoms. Another important 

substance in PD with regards to the GABAergic system is BDNF, which is synthesised 

and used in the nigrostriatal system. Decreased production of this substance leads to loss 

of the dopaminergic cells typically seen in PD (Porritt et al., 2005), while up-regulation of 

BDNF is also suggested as a potential mechanism for the long-lasting symptomatic 

improvement seen in PD after deep-brain stimulation of STN (Spieles-Engemann et al., 

2011). As was briefly discussed in the chapter on TBS, BDNF has been reported to 

modulate GABAA-R mediated transmission (Tanaka et al., 1997).  

The significance of the GABAergic system in modulating abnormal beta oscillations and 

movements has been shown in case studies involving administration of zolpidem to stroke 

patients with lesions over their sensorimotor cortex and subsequent impaired movement 

(Clauss et al. 2000; Hall et al. 2010). Zolpidem is also known to improve symptom severity 

in PD (Daniele et al., 1997). Modulating either or both of the dopaminergic and GABAergic 

systems, would indistinctly and inevitably affect the other and in the wider perspective all 

other activity in the brain, including oscillations in the cortex. The disease state and 

medication status are important when considering the effects of zolpidem administration 

on beta oscillatory activity (Silberstein et al., 2005; Stoffers et al. 2007; Pollok et al., 

2012). In normal subjects, oscillatory beta activity in the contralateral hemisphere is 

suppressed during movement. The findings by Pollok et al. indicated increased and equal 

beta activation in both hemispheres during motor activity in PD patients, in contrast to 

medicated patients where the opposite was seen. Here we have studied unilateral and 

early state PD-patients who are not on medication.  
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8.1.2. Aims and research objectives 

The information on the effects sensorimotor beta oscillations in PD patients are limited by 

the investigation of medicated, later stage patients. This was addressed here by studying 

sensorimotor oscillations in non-medicated, unilaterally impaired early-stage PD patients. 

The GABAergic modulator zolpidem has been found to decrease severity of sensorimotor 

symptoms in PD patients (Daniele et al., 1997). There is limited research available on the 

effects of zolpidem administration on the abnormal cortical beta oscillations seen in PD 

patients. However, recent studies in stroke, suggests that zolpidem acts as a 

desynchronising agent, which reduces the power of pathologically elevated beta 

oscillations. Here, sub-sedative doses were administered to PD patients and sensorimotor 

beta oscillations, before and after administration, were studied with MEG. We aimed to 

understand the effects of PD in our specific PD population before and after zolpidem. We 

address the following questions: 

o What are the oscillatory differences between affected compared to unaffected MI 

hemispheres in PD? 

o What are the effects of zolpidem on neuronal network activity in PD? 

o What is the relationship between neuronal network changes and functional 

improvement following zolpidem in PD? 
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8.2 Methods 

This study was done in collaboration with the neurlogist consultant Dr Adrian C Williams at 

Queen Elizabeth Hospital in Birmingham. The participants were diagnosed by and 

recruited through Dr Williams, and he also performed the Unified Parkinson’s Disease 

Rating Scale (UPDRS) assessments. UPDRS measures the longitudinal symptomatic 

course of PD through self-evaluation, interview and clinical observation. It consists of 

several sections where different aspects of the symptoms: mentation, behaviour and 

mood, daily life activities and motor skills, are scored independently. We used the motor 

assessment in this study. Nine subjects (3F), age range 56-68 years, were seated in an 

upright position in the 275-channel MEG scanner (CTF, Canada). The study was 

performed in accordance with the Declaration of Helsinki, and approved by the Ethics 

Committee of the School of Life and Health Sciences at Aston University. Written informed 

consent was obtained from all participants. The same pharmaco-MEG protocol used for 

healthy subjects, see chapter 5, was used for uni-lateral PD participants without prior 

medication history. They received visual instructions from a monitor positioned outside the 

shielded room, which was visible through a small window. This informed the subjects 

about when to perform self-paced finger movements, when they would receive electrical 

stimulation to their index finger (Digitimer Ltd, UK) and when they should remain seated 

and rest. The visual instruction and stimulation events were delivered through the 

software Presentation (Neurobehavioural Systems Inc., US).  

Immediately prior to the first MEG experiment the patients were evaluated using the 

UPDRS. After the first MEG experiment the patients were given a sub-sedative dose of 

zolpidem (0.05 mg/kg) orally. The UPDRS evaluation of their symptoms was then 

repeated 50 minutes after the ZPD administration, immediately before the second MEG 

assessment. Both the contralateral (to symptoms) and the ipsilateral hemisphere were 

investigated and compared to controls. MI was localized by SAM using the PMBR, as 

described in chapter 2 and 3. Recorded trials with too much head movement and/or 

artefacts were discarded. One participant was discarded due to this. The recorded data 

was analysed in the time-frequency domain by calculating group average Morelet-Wavelet 

spectrograms for periods of interest: rest, surrounding movement and stimulation events. 

These were then further analysed by custom-made MatLab scripts (Mathworks Inc., US). 

As previously discussed, temporal averaging prohibits investigation of frequency 

variability; therefore the frequency variability was investigated on 30s of resting data by 

using a slide PSD window approach, as described in the analysis section in the chapter 2.  
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8.3 Results 

8.3.1. Spontaneous sensorimotor oscillatory beta activity in PD patients 

In PD patients the hemisphere contralateral to symptoms exhibited beta oscillations with 

higher peak amplitude compared to the ipsilateral hemisphere; 9.2±4.6 nAm, compared to 

3.32±2.12 nAm. The beta frequency observed in the contralateral hemisphere was 

18.2±5.73 Hz, compared to 22.1±5.44 Hz in the ipsilateral. The difference in peak 

frequency was non-significant. Although considerable subject variability in MI beta power 

in the pre-zolpidem condition, the beta power in the contralateral hemispheres was 

consistently and significantly higher than the ipsilateral side before zolpidem 

administration (t[7]=3.28, p=0.014) (figure 8.1a-b).  

 

Figure 8. 1a-b. Group and time average PSD plots showing oscillatory activity in the (to 
symptoms) contralateral, seen in a (left), and ipsilateral, seen in b (right), MI in PD patients. The 
difference in peak power was significant, p<0.05. 

8.3.2. Effects of sub-sedative doses of zolpidem administration on UPDRS in 

PD patients 

The PD patients were assessed with UPDRS. This confirmed their unilateral and 

individual level of symptom severity, mean UPDRS 14.25±5.0. Given the previously 

discussed relationship between cortical beta power and symptom severity in PD, we 

tested this prior to zolpidem administration. There was no correlation between cortical 

beta power and UPDRS symptom severity (r2=0.0005, p=0.58). The administration of 

zolpidem significantly improved overall severity of symptoms, mean UPDRS improved 

with 7.5 score points, p=0.006. Individual categories all improved significantly, with the 

exception of the speech category, see figure 8.2.  



201 

 

 

Figure 8. 2a-b. Significant improvements were seen in the total mean UPDRS score, as well as 
all individual categories, p<0.05, except speech where there was a non-significant effect.  

 

8.3.3. Effects of zolpidem administration on oscillatory sensorimotor beta 

activity 

Administration of zolpidem significantly decreased the oscillatory beta power in the 

contralateral hemisphere with 2.7±2.9 nAm, t[7]=2.62, p=0.034. The frequency after 

zolpidem changed from 18.1 to 21.8Hz, which was non-significant. In the ipsilateral 

hemisphere the beta power increased significantly with 1.7±1.1 nAm, which was 

significant, t[7]=4.26, p=0.004. See figure 8.3a-b for the changes in ongoing oscillatory 

power. The frequency after zolpidem administration in the ipsilateral hemisphere 

increased from 22.1 to 24.2 Hz, which was non-significant.  

 

Figure 8. 3a-b. Administration of sub-sedative doses of zolpidem significantly decreased the 
ongoing beta activity in the contralateral, a (left), and increased in the ipsilateral, b (right), 
hemisphere. 

 

 



202 

 

There was no significant relationship between the UPDRS improvement and decrease in 

beta power in either the contralateral or ipsilateral hemispheres. However, we noted that 

after zolpidem administration the beta power decreased in the contralateral hemisphere 

and beta power increased in the ipsilateral hemisphere. We theorised that the ratio of 

hemispheric beta power was important with regards to the symptom severity. The beta 

power ratio between hemispheres indicated an increase in the mean MI inter-hemispheric 

ratio from 0.59 to 1.1. Pearson correlation calculations revealed a significant correlation 

between the MI inter-hemispheric ratio and UPDRS scores, r2=0.40, p=0.009. In addition, 

there was also significant correlation between some of the UPDRS individual categories 

and prediction of improvement (fig 8.4). Specifically upper limb rigidity: r2=0.60, p=0.024; 

finger tapping: r2=0.58, p=0.027 and rapid alternating hand movement r2=0.55, p=0.034, 

respectively (not corrected for multiple comparisons).  

 

Figure 8. 4. Plot showing the correlation between ratio change and the improvement in 
individual UPDRS categories. The p-values of the three significant (p<0.05) correlations are 
displayed above respective bar: upper limb rigidity, finger tapping and rapid alterating hand 
movement.  

Beta activity in MI before zolpidem administration shows greater stationarity at peaks 

around 10 and 20 Hz. After zolpidem administration, the frequency distribution has shifted 

to lower and higher frequencies. Computation of t-statistics for each frequency bin 

indicated a significant reduction in the stationarity of the samples at peak frequency 

between 15 and 21 Hz. In addition, there were significant increases in peak frequency 

samples in 30 and 42 Hz (figure 8.5a-b). There was a significant correlation between the 

change in peak frequency distribution in the low-beta frequency range, e.g. 15 to 21 Hz, 

and overall UPDRS improvement, r2=0.75, p=0.0053. Furthermore there was also a 

significant correlation between the change in peak frequency distribution in the high 

beta/low gamma frequency range, e.g. 30 to 42 Hz, and UPDRS improvement, r2=0.66, 

p=0.014. 
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Figure 8. 5a-b. The peak frequency variability is significantly changed in the contralateral 
hemisphere after zolpidem administration, as shown in the 1 Hz binned frequency distribution 
histogram seen in A. The peak frequency distribution before zolpidem administration is 
illustrated by the blue outline, and post-zolpidem is illustrated by the green outline. In particular 
activity seen in the low beta and high beta/low gamma frequency range as affected by zolpidem 
administration, seen in the t-distribution plot in B. The red lines indicate the threshold for 
statistical significance at p<0.05. 
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8.4 Discussion  

8.4.1. Summary 

We found that administration of sub-sedative doses of zolpidem significantly improves the 

symptomatic severity in unilateral early-stage PD patients. Zolpidem administration 

significantly decreased the power of the ongoing beta oscillations in the contralateral MI, 

while significantly increasing the beta power in the ipsilateral MI. The improvement in 

overall UPDRS score was significantly correlated to the increase in hemispheric ratio of 

beta power, rather than the beta power in the individual hemispheres. Furthermore, we 

found that PD patients have a less dynamic peak frequency distribution with preference 

for lower beta frequencies. This peak distribution is significantly changed after zolpidem 

administration in the low beta and low gamma frequency ranges. The change in the 

frequency distribution at these ranges was significantly correlated with UPDRS 

improvement.  

 

8.4.2. The “pathological” beta oscillations observed in PD patients 

Although the beta oscillations in the motor network is a topic widely debated within PD 

research, the “pathological” versions of beta oscillations have been primarily located to the 

sub-cortical parts of the motor network (Brown 2001; 2007; Crowell et al., 2012; Stein & 

Bar-Gad 2012). The term, “pathological” oscillations, is ambiguous as it is unclear which 

features of these oscillations are correlated to the PD symptoms. In terms of effects on 

power, previously cited articles report augmented beta power in the sub-cortical motor 

network, in combination with increased coherence (Sharott et al., 2005). Additionally, 

applying transcranial beta stimulation, e.g. 20 Hz, has been coupled to impaired 

movement ability (Pogosyan et al., 2009; Joundi et al., 2012). Recently, early-stage PD 

subjects have been reported to display increased beta synchronisation in the contralateral 

MI (Pollok et al., 2012). In our PD patients the ongoing beta oscillatory activity in the 

contralateral MI showed significantly stronger beta power compared to the ipsilateral MI, 

supportive of previous findings by Pollok et al. (2012). However, we found no correlation 

between contralateral, or ipsilateral, MI beta power to symptom severity. Therefore, we 

argue that the differences in contralateral MI beta power seen in unilateral and early stage 

PD patients is not enough to explain the PD motor symptomatology.   

Previous reports have reported that PD patients show a lower peak frequency of the 

ongoing activity in MI, e.g. the peak power was found at lower beta frequencies (Bosboom 

et al., 2006; Moazami et al., 2008), with links to disease severity and UPDRS symptom 
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severity (Vardy et al., 2011). We found no significant differences in the peak frequency 

between contralateral and ipsilateral MI in our non-medicated, unilateral and early-stage 

PD patients. However, the patients in the study by Vardy et al. had the average disease 

duration of 5 years and were on medication at the time of the experiment. We speculate 

that those factors contribute to the difference seen between our results.  

Although there were no significant differences in frequency between opposite 

hemispheres, we did find that the peak frequency distribution in the contralateral 

hemisphere appeared shifted towards lower frequencies and displayed less dynamicity. 

The ongoing activity in the contralateral MI showed preference to remain at lower beta 

frequencies. A similar observation of beta frequency peak variability was correlated to 

clinical state by Little et al. (2012). Our results suggest that our measure of peak 

frequency distribution is representative of the underlying neuronal network responsible for 

the observed oscillations. In addition, our results indicate that reduced dynamicity and 

preference of low frequency activity are features of, and related to, PD motor symptoms 

as determined by UPDRS.  

 

8.4.3. GABAergic modulation of beta oscillations in PD patients with 

zolpidem 

The GABAergic modulator zolpidem has previously shown to reduce abnormal 

sensorimotor beta oscillations in stroke patients (Hall et al., 2010), and benzodiazepines 

are known to increase beta power in healthy subjects (Domino et al. 1989; Baker & Baker 

2003; Jensen et al., 2005; Hall et al., 2009; 2011). We showed in chapter 5 that the non-

benzodiazepine imidazopyridine zolpidem also increased MI beta power in healthy 

subjects. In this study we have showed that, similar to patients with a sensorimotor stroke 

lesion (Hall et al., 2010), administration of a subsedative dose of zolpidem significantly 

decreased the power of the “pathological” beta oscillations in the contralateral MI. In 

contrast, zolpidem significantly increased the power of the beta oscillations in the 

ipsilateral MI.  

Initially, our working hypothesis was a speculated correlation between contralateral beta 

power in MI and symptom severity, since this has been implicitly discussed in previously 

cited research. However, we found no significant relationship between these. There is 

substantial abnormal sensorimotor processing and event-related beta oscillatory activity in 

PD patients, compared to healthy subjects (Sailer et al., 2003; Tamburin et al., 2003; 

Degardin et al., 2009). We observed strong inter-subject variability in beta power, 
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especially between the two hemispheres and therefore we speculated that movement 

symptomatology was correlated to beta power ratio between the hemispheres, since the 

atypical sensorimotor processing is related to the sensorimotor beta power. We found that 

zolpidem increased the hemispheric beta power ratio, and that this increase showed a 

strong linear relationship to improvement of UPDRS motor scores. Additionally, we also 

found that the differences in contralateral MI beta peak frequency variability were 

significantly changed in the low beta and gamma frequency ranges after zolpidem 

administration. These changes also showed strong correlation to the UPDRS 

improvement.  

In vitro studies have elucidated some of the mechanisms underlying the effects of 

zolpidem on beta oscillatory activity. Zolpidem affects the GABAA transmission, and thus 

play an important role in the generation and sustenance of beta oscillations in motor 

cortex, e.g. MI LV (Yamawaki et al., 2008; Prokic et al., under review). We showed in 

chapter 5 that the beta peak power of sensorimotor, e.g. MI LV, MI LIII and SI LIV, 

oscillatory activity is increased by zolpidem application.  Furthermore, there is in vitro 

evidence suggesting a dose-dependent response of zolpidem, with regards to tonic and 

phasic GABAergic transmission in MI (Prokic et al., under review). This complicates the 

suggested mechanisms underlying the effects of zolpidem on MI beta oscillations in PD 

subjects. The mechanisms of zolpidem on GABAergic transmission in PD subjects are 

further obscured by the suggested genetic and biological differences in relation to PD 

pathophysiology (Olanow & Tatton 1999, Davie 2008; Zuccato & Cattaneo 2009). An 

example of this is the down-regulated BDNF expression in the dopaminergic nigrostriatal 

system in PD (Porritt et al., 2005), and correlation of serum-levels of BDNF with PD motor 

impairment (Zuccato & Cattaneo 2009; Scalzo et al., 2010). BDNF modulates the GABAA 

mediated transmission (Tanaka et al., 1997); as BDNF levels are reportedly perturbed in 

PD this would also contribute to differences in the effects of zolpidem on GABAergic 

transmission, and inevitably on beta oscillations in MI.  

 

8.4.4. Symptomatic improvement through GABAergic modulation with 

zolpidem 

Previous studies over the last decades have found that the GABAergic modulation 

provided by the hypnotic zolpidem improves symptoms, measured with UPDRS, in PD 

patients (Daniele et al., 1997). Our results supported this established finding. We wanted 

to investigate the link between the previously reported elevated beta power in the 

contralateral motor network and symptoms (Brown 2001; 2007; Crowell et al., 2012; 



207 

 

Pollok et al., 2012; Stein & Bar-Gad 2012). We tested the relationship of the beta power in 

the contralateral MI to UPDRS score and found no significant correlation. We therefore 

concluded that beta power in the contralateral, or ipsilateral, MI is not representative as a 

biological marker of PD.  

During the course of analysis we observed that zolpidem had opposite effects on the MI 

beta power in either hemisphere. The beta power in the contralateral hemisphere 

decreased after zolpidem administration, while the ipsilateral MI beta power increased in 

power. This led us to consider the ratio of beta power between the contralateral and 

ipsilateral MI as a potential cause of symptoms in PD. The ratio of beta power between 

the hemispheres showed a strong linear relationship with UPDRS score; in particular 

finger tapping and the movement sub-set of the UPDRS in our patients. This is particularly 

interesting when the reported differences in sensorimotor processing and motor cortex 

excitability (Ridding et al., 1995; Sailer et al., 2003; Lefaucheur, 2005) in PD patients are 

taken into account. PD patients have altered sensorimotor network connectivity and 

processing (Tamburin et al., 2003), with differences predominantly seen in event-related 

changes surrounding movement and stimulation (Labyt et al., 2005; Brown, 2007; 

Degardin et al., 2009). The beta ERD is bilateral just prior to movement (Pfurtscheller & 

Lopes da Silva 1999), and an imbalance in the ratio of beta power between MI in the 

opposite hemispheres would potentially confound this pattern. However, while the 

difference in beta power ratio between the opposite MI in the two hemispheres is a neat 

explanation of these results, our study only includes early-stage patients which present 

with unilateral symptoms. Later-stage patients often present with symptoms on both sides, 

which cannot be explained by the change in hemispheric ratio of beta power. The 

sensorimotor system and associated processing in these patients have most likely 

developed further plasticity and network modification and it is therefore not possible to 

extrapolate these results onto those patients.  

The concept of PD-induced altered cortical excitability and activity fits well with the 

suggestions of transformed network activity and layout, followed by changes in synchrony 

found in PD as well as other neuropathies (Uhlhaas & Singer 2006; Brown 2007; 

Hammond et al., 2007). The findings from this study confirm the idea of abnormal ongoing 

beta activity in the sensorimotor beta network, which subsequently result in beta 

oscillatory functional discrepancies in PD, compared to controls. Alterations to this 

network would most likely depend on how far the disease has progressed and medication 

status. This agrees with the hypothesis that diseases arise when there is a disturbance in 

the synchronised activity of areas (Hammond et al. 2007; Crowell et al. 2012). In PD there 

is wide-spread imbalance in sensorimotor network and its oscillatory features (Uhlhaas & 



208 

 

Singer 2006; Brown 2007; Hammond et al., 2007; Lalo et al., 2008; Stam 2010; 

Timmermann & Fink 2011). In this study we have revealed some of the characteristic 

oscillatory features in MI of PD patients, their correlation to motor symptomatology, and 

how this can be modulated by the GABAergic modulator zolpidem. Essentially, this will 

contribute to better diagnosis and treatment of PD patients.  
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8.5. Conclusion 

Our results supports the idea of impaired sensorimotor processing in early-stage unilateral 

PD patients, represented by the differences in hemispheric MI ratio in beta power and 

changes in the peak frequency distribution. We conclude that GABAergic modulation with 

zolpidem temporarily readdresses this balance. This is based on the significant correlation 

between symptomatic UPDRS improvement and the return of the hemispheric ratio to 

approximately 1. In addition, we also base this on the significant linear relationship 

between UPDRS improvement and the changes in peak frequency variability seen after 

zolpidem administration. These findings could be used for further studies of relevant 

biological markers of early stage, unilateral, PD. 
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Chapter 9. General discussion and future perspectives 
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9.1. Introduction 

This project aimed to investigate oscillatory activity in the sensorimotor cortex using two 

different recording methods. Our results are interpreted in a translational manner, in which 

we explore the extent to which non-invasive data from living humans are comparable with 

invasive in vitro data from brain slices. In this chapter we will discuss the main research 

highlights from the individual studies with a view to the translational perspective that has 

imbued our presented work. 

 

9.2. Methodological considerations 

MEG and LFP recordings are not novel technologies. Both are straight-forward methods, 

well-established and reliable from a replication point of view. However, one of the primary 

difficulties in assessing the comparability between in vitro and MEG oscillations was 

coming to terms with the differences in conventional analysis approaches. There are 

several limitations to conventional approaches; mostly based on the attenuation of 

variability with averaging and the use of pre-set frequency bands.  Variability in the 

oscillatory signal is important since it features not just between individuals and/or 

recordings, but also within the recordings over time. We observed early on that there 

appeared to be more variability in frequency in the MEG signals, which showed up as 

frequency-wise broad activity in PSD graphs. In contrast, the in vitro oscillations appeared 

as a reliable and persistent sharp peak in the PSDs. Additionally, in Morelet-wavelet 

spectrograms we saw differences in the frequency and power over time, between 

recordings and areas, more so in MEG recordings. Although few studies have approached 

the concept of variability in oscillatory activity, we wanted to compare results from 

interventions using these two modalities, therefore it was pertinent that we characterised 

the underlying cause for the distinction of appearances.  

In approaching this research question additional insight into the neuronal substrates and 

networks which underlie the oscillatory signals recorded in vitro and in MEG would also be 

gained. We designed MatLab scripts that would help us characterise the variability and 

distribution in oscillatory frequency and power, as well as reliable peak information, which 

was not skewed from acceptable, but extreme, values. The chapter on Parkinson’s 

disease emphasised the importance of frequency variability. Likewise, as was shown in 

the incision experiments, in chapter 4, disrupting sensorimotor connectivity affect the 

frequency variability. These results provide evidence for the frequency variability as a 

further indicator of the neuronal network activity. In terms of developing and expanding 

this analysis approach there is an abundance of possibilities and options.  
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9.3. The rhythm en arceau and the sensorimotor cortex  

The first task in this project was to investigate the spontaneous and ongoing oscillatory 

activity found in the sensorimotor cortex of humans and in rats. We expected to, and 

indeed did, find mu and beta oscillations in the human MEG recordings. However, we 

were surprised to see that there was no significant difference in the mean peak frequency 

between these areas, although the amplitude differed significantly. Our measure of 

network distribution, mean FWHM, also indicated that there were no significant 

differences between MI and SI. Most previous research investigating human sensorimotor 

oscillations have focused on changes in the oscillatory activity after task performance or 

stimulus application (Pfurtscheller & Lopes Da Silva 1999; Neuper & Pfurtscheller 2001; 

Cheyne, 2012). Spontaneous ongoing oscillations and their features are relatively 

uncharacterised. In addition, analysis approaches which focus on changes in a pre-

determined oscillatory frequency range, specific for an area, would not necessarily pick up 

on similarities between areas. Given the strong inter-individual differences in cortical 

anatomical layout, it is plausible that the localisation of spontaneous beta and mu 

oscillations in MI and SI is highly individual to both the recording and the subject. This is 

an important topic of investigation and should be pursued further along with additional 

characterisation of the ongoing oscillatory activity in the sensorimotor cortex in humans.  

Studying ongoing oscillatory activity in MI in vitro confirmed previous findings of beta 

oscillations in the deeper and superficial layers (Yamawaki et al., 2008). However, we also 

found mu co-existing with the beta activity in the superficial layers of MI, as well as in 

middle layers of SI. Mu oscillations have previously been reported in vitro to some extent 

from other sensory areas, although specific locations are less lucid. However, we have not 

found any previous reports on mu oscillatory activity originating in superficial layers of MI.  

Investigating the network and peak frequency distribution in the different sensorimotor 

laminae in vitro highlighted significant differences between areas. Peak frequency 

distribution was significantly different between all recorded laminae and the mean FWHM 

was significantly smaller in MI LV, compared to SI LIV. The difference in mean FWHM 

between MI LV and MI LIII did not show significance, which is intriguing since previous 

research has shown that oscillatory beta activity in MI LIII depends on MI LV (Yamawaki 

et al., 2008). These findings indicate that there are sub-areas of the neuronal networks in 

MI and SI which display slightly different frequencies. MI LIII, MI LV and SI LIV could be 

considered to be one large sensorimotor network as shown in connectivity functional 

studies and causality modelling (Brovelli et al., 2004), but we theorize that there also 

exists smaller sub-networks within areas. We will discuss the relevance of connectivity in 
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neuronal network activity further in the next section below (9.4). The finding of mu 

oscillatory activity in sagittal sensorimotor slices is thus in some respects novel. This 

finding provides an opportunity to study underlying mechanisms and effects of 

interventions on the mu rhythm in greater detail, as well as its relation to other frequency 

bands in the sensorimotor cortex.  

Sensorimotor mu oscillations and changes to these have been linked cognition, attention, 

mirror neurons and many other higher order functions (Cochin et al., 1998; Pineda, 2005; 

Moore et al., 2008; van Dijk et al., 2008; Jones et al., 2010; Anderson & Ding 2011; 

Francuz & Zapala 2011; van Ede et al., 2011; Freyer et al., 2012). The lack of findings of 

sensorimotor mu oscillations in vitro have in some respects indirectly and anecdotally 

contributed to the idea of mu as a higher order rhythm. We do not dispute the assignment 

of mu oscillatory activity to any of the above. However, we have shown that mu can exist 

in isolation from higher order functioning, e.g. in vitro. Additionally, the finding of mu 

oscillations in vitro indicated that the sensorimotor oscillatory activity in LFP recordings in 

vitro was more similar to the oscillatory activity seen in sensorimotor MEG recordings than 

we had first believed. Given that MEG is recorded from outside the scalp, while in vitro 

recordings are performed closer to the oscillating neuronal substrate in the slice, we 

decided to integrate the recordings from MI LIII and MI LV to see how far this would 

resemble the MEG MI oscillatory signal. We found that integration provided a frequency-

wise broader PSD and spectrogram representation of the ongoing activity, similar to the 

MEG MI. Furthermore, since the MEG sensors are further away from the deeper layer 

than the superficial layers of MI, weighting provided an additional factor in our integration 

process. This created an aggregate oscillatory signal with a PSD further resembling the 

MEG recordings, but based on the less complex in vitro signals.  The integration was 

done at the last stages of this project and we believe that this would be particularly useful 

in the future for comparative studies between interventions in vitro and in MEG and thus 

provide the empirical evidence for the validation of comparison. 

 

 

9.4. Connectivity and networks; consequences on oscillatory 

activity 

We established that the differences in the oscillatory signals seen in MEG and in vitro 

were due to contributing number networks and their inherent frequency variability. We 

went on to determine how the connectivity of oscillatory neuronal networks affected the 
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recorded activity. Necessarily this was done in vitro, as this method allows for invasive 

probing of network activity. We compared oscillatory activity in different laminae between 

intact slices where the connectivity between MI and SI was untouched, to microslices, 

where MI and SI were physically separated prior to recording. There were significant 

differences in the mean peak frequencies in MI LV and SI LIV. In addition we found that 

placing an incision between MI and SI while recording significantly decreased the peak 

frequency variability in SI LIV. We concluded that while the two areas display activity 

which is generated locally, the activity in both areas is also affected by the other. This is 

particularly obvious in the case of SI LIV where the oscillatory profile changes dramatically 

and the peak frequency variability is affected by the acute incision. We showed that both 

mu and beta rhythms can exist in physically isolated MI and SI, but most importantly, 

these experiments established the importance of connectivity in the features of ongoing 

oscillatory network activity in the sensorimotor cortex. Appropriate future directions for 

these findings would be to probe the ongoing oscillatory activity with pharmacological 

modulation to see if responses are similar or different in the connected areas, compared 

to isolated areas. Our focus has been on the ongoing oscillatory activity rather than 

evoked potentials, as well as effects from frequency tuning; we did not find any significant 

or consistent effects on the ongoing oscillatory activity from preliminary single pulse 

experiments. Nevertheless, single pulse stimulation experiments would offer an 

understanding about the direct connectivity between the laminae in MI and SI areas in the 

in vitro preparation.  

Additionally, although research employing physical separation of cortical laminae has 

already been performed (Flint & Connors 1996; Roopun et al., 2006; Yamawaki et al., 

2008), the pharmacological blocking and physical separation of areas and laminae 

specifically in the sensorimotor cortex, including association areas, would provide further 

relevance of connectivity on ongoing sensorimotor oscillatory activity. It would also be of 

interest to adapt in silico methods with causality approaches to determine if the 

directionality in different sizes of physical networks, e.g. microslices, intact slices, intact 

sensorimotor areas/brain, is similar or if directionality changes with decreasing network 

size. 
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9.5. Modulating sensorimotor oscillations with stimulation and 

drugs 

9.5.1. GABAergic modulation with zolpidem 

Once we had established the profiles of ongoing oscillations in the two modalities we 

wanted to determine if interventions of these oscillations would be comparable as well. As 

GABAergic modulation is one of the main research interests, and there is much expertise, 

in our group we chose to start with a GABAergic modulation, specifically the hypnotic 

imizadozepyridine zolpidem.  

Zolpidem is a GABAA-R α-1 agonist and thus modulates GABAergic transmission. Prior 

research has established that the beta oscillations in MI LV are GABAA-dependent and MI 

oscillations in the beta range increase in power after addition of zolpidem, although there 

is also concentration-dependency (Yamawaki et al., 2008; Prokic et al., under review). In 

vitro, we used 100 nM, previously reported to increase beta oscillations. As it is difficult to 

calculate an equivalent dose for humans, although attempts have been made, and 

because we wanted to study effects on awake subjects with no other medication, we gave 

our participants sub-sedative doses of zolpidem. We found that zolpidem significantly 

increases the power of ongoing oscillations in all locations in vitro as well as in MI and SI 

in humans. In particular, the power in the beta frequency range increased, while the mu 

was less affected (data not shown). The frequency decreased in MI in vitro, significant in 

MI LV, in agreement with Yamawaki et al. (2008). However, Yamawaki et al. used 

microslices, and we wanted to determine if there were any differences in effects that could 

be due to the connectivity between MI and SI. Hence, we repeated the zolpidem 

experiments in both intact and microslices and found similar trends, but less significance. 

The primary difference was the significant increase in peak frequency variability in MI LV 

after zolpidem administration. It would be interesting to see if differences between 

microslices and intact slices are observed for other types of pharmacological modulation; 

this provides insight into underlying neuronal network arrangement and cellular 

composition.  

We concluded that MEG and in vitro responses to zolpidem administration are 

comparable with respect to oscillatory power; in both modalities the beta power increases 

after zolpidem administration. This provided us with a framework to discuss and relate to 

the research we were performing with PD patients. In PD patients the oscillatory beta 

peak power was enhanced in the affected hemisphere, and zolpidem reduced this 

increase. The correlation between beta power and symptom severity was not the 

significant finding. Instead we found that the hemispheric beta power ratio correlated to 
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symptom severity. This ratio neared 1.0 after zolpidem administration and significantly 

correlated with the improvement in symptoms. The in vitro work performed on 

sensorimotor slices from healthy rodents assisted in understanding the effects of zolpidem 

on the beta oscillations, although there are several questions remaining. As an ideal 

example, the oscillatory activity in MI, as well as application of zolpidem, should be 

replicated on slices from 6-OHDA lesioned rodents to see the full aspect of comparability. 

If MI beta oscillations were found to be abnormal in 6-OHDA rodents, then this opens a 

wide avenue of possibilities to understanding how the cortex mitigates and maintains the 

pathological oscillatory activity.  In vivo work with awake and freely moving rats would 

provide additional pieces to both the puzzle about comparability between modalities, but 

also in understanding the differences in cortical beta oscillations in PD subjects.  

 

9.5.2. Stimulation 

The other type of intervention we decided to apply in this project was different types of 

electromagnetic stimulation. In humans we had results from two types of stimulation; 

cTBS applied with TMS and different frequencies of electrical stimulation applied through 

MNS. We compared the results to two stimulation protocols in vitro; cTBS applied through 

electrical stimulation in different sensorimotor laminae, and electrical stimulation in SI LIV, 

respectively. In addition, most previous research has focused on changes to specific 

oscillatory frequency bands during stimulation, but we were interested in the long-lasting 

effects seen after stimulation offset.  

Applying different frequencies of stimulation significantly affected the oscillatory activity in 

MI in vitro, but SI in human subjects. We speculated that this was due to peripheral vs. 

central application of somatosensory stimulation, but this is beyond the scope of testing 

for these experiments. Nonetheless, we found one particular beta frequency to have a 

significant effect on the frequency distribution and oscillatory peak frequency values in the 

sensorimotor cortex. In humans this beta frequency was 36 Hz, and in vitro it was 20 Hz. 

The reason for the distinction is unclear, but we suggest differences in connectivity and 

network arrangements as likely explanations. Connectivity has previously in this thesis 

been shown to influence peak frequency distribution and differences in network 

arrangements display different frequencies of resonance. Interestingly we found that 10 

Hz MNS in humans decreased the ongoing oscillatory peak power in SI, contrary to rTMS 

reports (Veniero et al., 2011). This difference of effects most likely depends on the form of 

stimulation application. The frequency stimulation experiments showed less similarity 

between modalities in results. However, we have only briefly touched on the effects on 
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ongoing oscillations during the stimulation period itself. There is more information in this 

regarding the information processing in the sensorimotor cortex for different frequencies 

input. This is the next step of this part of the project and we are currently developing 

scripts with an independent component analysis approach to further to assist us in this.  

The TMS cTBS experiments showed an increase in the beta power in the stimulated MI in 

human responding subjects, but not in the other hemisphere or at all in non-responding 

subjects. Our in vitro experiments provided evidence that the beta power increase is local 

to the stimulated area, with the majority of effects on power were seen as increase of the 

oscillatory mean state power rather than mean peak power. This indicates a change in the 

oscillatory pattern, with increased power variability, which in turn could contribute to less 

significance in a mean peak power measure. Whilst cTBS applied to MI LV and SI LIV 

decreased the ongoing mean peak frequency of oscillatory activity in these same areas, 

this did not occur in MI LIII. This is particularly interesting as the suggested direct effects 

of TMS-cTBS are on the pyramidal cells in the superficial layers of MI, which indirectly 

affects the other laminae and cell populations. This brings into question which parts of the 

beta network in MI cTBS affects. MI LIII has been shown in previous studies in this thesis 

to have a wide frequency and network distribution, which could potentially accommodate 

forced frequency changes further without significant changes in the intrinsic ongoing 

frequencies. Nonetheless, we did not see any significant increases in mean peak power in 

MI LV from stimulating in any laminae. If the effects of TMS-cTBS and cTBS in our in vitro 

studies were completely in agreement, then we should have seen an increase in MI LV 

beta power after cTBS MI LIII. We speculate that this is due to difference in effects of the 

stimulation protocols and locations; cTBS might very well have further unknown effects.  
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9.6. Relevance to neurological pathologies 

The underlying cause of PD is the disruption to the dopaminergic transmission in the 

basal ganglia. This disruption affects the neuronal network activities in areas affiliated with 

the basal ganglia; other parts of the sensorimotor system. Disturbed neuronal network 

activity in PD is well-established, although details are unclear. We showed that the ratio of 

beta power between contra- and ipsilateral hemispheres was correlated to the UPDRS 

score; this was improved by administration of zolpidem. The implications from these 

findings are that the networks responsible for the altered activity in PD, and the imbalance 

in hemispheric beta power, are restored to a certain degree with increased GABAergic 

activity. Since we lack control studies it is difficult to speculate on exactly which features in 

PD are the most relevant to motor symptomatology. However, based on our findings and 

previously cited work by Little et al., we suggest that frequency variability is particularly 

important. Peak frequency distribution is an indication of the network activity and was 

found altered in PD at low beta and gamma frequencies. This changed with the 

GABAergic modulation and motor symptomatic improvement.  These results provide 

further evidence for the perturbed network structures and abnormal processing seen in 

PD patients. Questions remain. Is the abnormal processing an effect of the changed 

excitatory state of the cortex, or an imbalance of excitation and inhibition, due to changed 

activity in the basal ganglia and dopaminergic transmission? Do the alterations in activity 

in the basal ganglia infer the breakdown of small-world cortical network structure and 

features as suggested by Uhlhaas and Singer (2006), all by itself or as a domino effect? 

Are the patterns of beta rhythms seen in PD the cause of symptoms or the effect of PD? 

These questions remain unanswered. 
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9.7. Concluding remarks 

This thesis has confirmed that sensorimotor oscillations span the mu and beta frequency 

region both in vitro and in MEG recordings, with distinct profiles for each recorded laminae 

in vitro, but no significant difference in frequency in humans. We have revealed that there 

is a mu rhythm co-existing with beta oscillations in MI LIII and established that less 

complex signals with oscillatory activity from MI laminae can be integrated in silico to 

resemble aggregate MEG MI oscillatory signals. This highlights the usefulness of 

combining these two methods when elucidating neuronal network oscillations in the 

sensorimotor cortex and manipulations thereof. Furthermore, the connectivity between MI 

and SI modulates the ongoing network activity in these areas, as evidenced by 

connectivity and stimulation studies. Although the stimulation studies in this project 

showed limited comparative results, we have presented novel information to the effects of 

using these paradigms in each modality. Additionally, we have shown that 

pharmacological modulation with zolpidem changes the neuronal network activity in both 

healthy and pathological MI, and we can conclude that zolpidem enhances the power of 

ongoing oscillatory activity in both MI and SI laminae. Finally, our analysis approach has 

made it possible to reliably compare results between MEG and in vitro.  

In conclusion, this translational neuroscience project has contributed to the understanding 

of the characteristics of ongoing sensorimotor oscillations and evidenced the effects of 

two common forms of interventions in two recording modalities analysed with the same 

approach.  
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