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THESIS SUMMARY  

 
 

Aquatic biomass is seen as one of the major feedstocks to overcome difficulties 
associated with 1st generation biofuels, such as competition with food production, 
change of land use and further environmental issues. Although, this finding is widely 
accepted only little work has been carried out to investigate thermo-chemical conversion 
of algal specimen to produce biofuels, power and heat.  
 
This work aims at contributing fundamental knowledge for thermo-chemical processing 
of aquatic biomass via intermediate pyrolysis. Therefore, it was necessary to install and 
commission an analytical pyrolysis apparatus which facilitates intermediate pyrolysis 
process conditions as well as subsequent separation and detection of pyrolysates (Py-
GC/MS). In addition, a methodology was established to analyse aquatic biomass under 
intermediate conditions by Thermo-Gravimetric Analysis (TGA).  
 
Several microalgae (e.g. Chlamydomonas reinhardtii, Chlorella vulgaris) and 
macroalgae specimen (e.g. Fucus vesiculosus) from main algal divisions and various 
natural habitats (fresh and saline water, temperate and polar climates) were chosen and 
their thermal degradation under intermediate pyrolysis conditions was studied.  
 
In addition, it was of interest to examine the contribution of biochemical constituents of 
algal biomass onto the chemical compounds contained in pyrolysates. Therefore, lipid 
and protein fractions were extracted from microalgae biomass and analysed separately.  
Furthermore, investigations of residual algal materials obtained by extraction of high 
valuable compounds (e.g. lipids, proteins, enzymes) were included to evaluate their 
potential for intermediate pyrolysis processing.  
 
On basis of these thermal degradation studies, possible applications of algal biomass 
and from there derived materials in the Bio-thermal Valorisation of Biomass-process 
(BtVB-process) are presented. It was of interest to evaluate the combination of the 
production of high valuable products and bioenergy generation derived by micro- and 
macro algal biomass.  
 
 
 
Key words: algae, bioenergy, TGA, Py-GC/MS 
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R&D          Research and development 
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TGA           Thermogravimetric analyser 
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Ti            Initial pyrolysis temperature 

TIC          Total ion chromatogram 

TID           Thermionic detector  

Teq           Final pyrolysis temperature  

TRT          Temperature rise time 
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1. INTRODUCTION 

1.1. Background  

 

The demand for an energy supply independently from fossil fuel reserves has gained 

increased attention in the last few years. A major driver for a change to renewable 

resources is the strongly fluctuating and generally increasing price for crude oil. 

Whereas prices of crude oil were in the region of $ 25 per barrel (bbl) in November 

2002, it has increased up to $ 110 bbl-1 till today [1].  

Another pressing reason to utilize carbon neutral fuels to replace fossil fuels is the 

climate change due to anthropogenic green house gas (GHG) emissions. As reported 

by the Intergovernmental Panel on Climate Change (IPCC) global emissions of carbon 

dioxide (CO2) have increased by 80 % between 1970 and 2004 [2]. With the climate 

change associated problems are increasing air and water temperatures (global 

warming), water quality problems and crop losses caused by sudden changes of 

weather (droughts, heavy winds, rains, floods) resulting in increased food prices [2].  

Sources for renewable and sustainable energy to provide independency from fossil 

fuels and mitigate climate change by reducing GHG emissions include sun (e.g. 

photovoltaic solar cells and solar heat collectors), wind (e.g. wind turbines), water (e.g. 

hydropower, tidal energy), geothermal resources and biomass.  

Biomass plays an important role being the only renewable resource of carbon for the 

production of chemicals, materials and fuels. Overall, in 2008 ca. 10 % of the global 

primary energy supply was supplied by biomass. However, ca. 80 % was provided by 

combustion of low-efficiency traditional biomass including wood, straw, and manures 

used for cooking, lighting and heating by the poorer populations in developing 

countries. Only ca. 20 % are supplied by commercial high-efficient technologies, such 

as heat production for district heating systems, power generation via combustion, 

combined heat and power plants (CHP), co-firing of biomass and fossil fuels, first-

generation liquid biofuels from oil crops (biodiesel) and sugar and starch crops 

(ethanol) [3].  

To increase the contribution of biomass derived energy to the global energy market, 

advanced conversion technologies and feedstock production is necessary. At present, 

the majority of feedstocks are terrestrial derived and provide relatively low yields with 

up to two harvests per year. Furthermore, their production is associated with direct 

competition to food production and problematic environmental changes, including land-

use change, extensive water use and endangered biodiversity [4].  
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Aquatic biomass, i.e. algal organisms, has recently gained recurring attention to be a 

promising alternative to terrestrial derived feedstocks. Main advantageous include 

higher photosynthetic activity providing large amounts of biomass, the possibility of 

cultivation on non-arable land and manipulable chemical composition [5].  

A press release of the European Commission from October 2012 [6] emphasizes the 

urgent need for alternative feedstocks by limiting the amount of food crop-based 

biofuels to 5 % to meet the EU’s renewable energy target in the transport sector of 10 

% by 2020. The aim is to reinforce the development of truly sustainable biofuels and 

member states of the EU will provide financial incentives for the production of 2nd 

generation fuels, including feedstocks like algae, straw and wastes [6].  

To establish conversion routes for alternative feedstocks by more efficient 

technologies, intensive Research and Development (R&D) activities are carried out in 

the field of thermo-chemical conversion processes, including gasification and pyrolysis. 

Benefits of the technologies are the capability converting various types of feedstocks, 

typically applying the entire biomass rather than an expensive extract (i.e. lipids for 

biodiesel) and to produce gaseous, liquid and solid fuels at the same time [7].  

At present, the main attention has been paid towards processing lignocellulosic derived 

feedstocks, including straw, crop residues, and short rotation crops [8], [9].  

Although, the potential of aquatic biomass is widely known, only limited studies about 

thermo-chemical conversion are available and a further need in R&D is required to 

evaluate their potentials in generating sustainable bioenergy.  
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1.2. Aquatic versus terrestrial biomass 

 

Various conversion technologies exist, providing biofuels, power and heat from 

renewable resources, such as biomass including combined heat and power plants 

(CHP), biodiesel, bioethanol and biogas. During the 1st generation of renewable energy 

from biomass, typically applied feedstocks included food crops such as rape, sugar 

cane and corn. Alternatives include forestry products (short rotation crops, wood chips 

and pellets) agricultural residues (shells, husks) and specially cultivated energy crops 

(miscanthus, switchgrass) [10], [11].  

All these materials are terrestrially derived and with an increasing generation of 

bioenergy derived by biomass, further increasing conflicts are seen with food supply, 

water use, biodiversity and land use. Consequently, raised interest is drawn towards 

bio-energetic applications of aquatic derived biomaterials. Several advantages over 

terrestrial grown biomass are evident and are presented below [12–19].  

 

• Photosynthetic efficiency 

Algal organisms convert up to 5 % of solar energy into biomass, where as terrestrial 

growing plants convert up to 1.5 %. Due to a simpler cellular structure and their 

aqueous habitat providing sufficient amounts of water, CO2 and other nutrients, they 

are more efficient in capturing CO2, producing larger amount of biomass and exhibiting 

generally a faster growth. Additionally, as long as sufficient light is provided, production 

is not seasonal and biomass can be harvested nearly all-year-round. 

• Land requirements 

Compared to terrestrial energy crops, land based cultivation systems of algal 

organisms do not require fertile land. In addition, no freshwater irrigation is necessary 

as algae are capable to grow in brackish waters. Therefore, the impact on land use 

management, food crop production and overcoming nutrient constraints is reduced. 

Furthermore, cultivation in areas with low economic efficiency as well as in marginal 

areas, such as desserts and coastal regions is possible.  

• Chemical composition and versatility  

Algae organisms present a vast variety of species and due to their simple cell 

structures contain large amounts of easily degraded chemical constituents (i.e. lipids, 

starch) for bio-energy production, than terrestrial plants. This could lead to optimization 

of energy input for conversion processes. Furthermore, algae species occur in almost 
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every clime and particular species from nutrient diminished or colder habitats may offer 

interesting opportunities in terms of applications for bioenergy generation. Moreover, 

advances in genetic manipulation and cultivation techniques offer possibilities to design 

individualised species applicable for certain conversion processes.  

• Nutrient recycling from waste streams 

Production of algal biomass can apply waste water sources (industrial and municipal 

waste water, agricultural run-off) or effluent gas streams while utilizing it as carbon 

and/or nutrient (nitrogen, phosphorous) source. In combination with algae production, 

this provides the additional benefit of wastewater remediation or effluent gas cleaning.  

• Integrated systems  

A number of species are available producing high valuable products, i.e. for 

pharmaceutical and nutritional applications, naturally. This offers the opportunity to 

establish integrated systems, including the valorisation of side-products and further 

processing the residues for bioenergy generation in an economical feasible way. 

Another option may be the removal and processing of contaminated or introduced 

seaweeds, which are difficult to dispose or might harm the ecological balance of the 

environment.  

 

1.3. Intermediate pyrolysis 

 

Pyrolysis is a thermo-chemical degradation reaction, caused by energy provided to the 

feedstock. A temperature increase within the feedstock, causing formation of molecules 

smaller than the starting material through decomposition and elimination and the 

absence of oxygen, define the pyrolysis conditions. Products obtained by pyrolysis are 

vapours, partly condensable to pyrolysis liquids and solid residues called biochar [20], 

[21]. Different types of pyrolysis exists, producing other proportions of the pyrolysis 

products resulting from the operation conditions, including reaction temperature, hot 

vapour residence time and heating rate. An overview of the different pyrolysis types 

and their characteristic process parameters for wood are presented in Table 1-1 [8], 

[22], [23]. Generally, a decreasing process temperature and increasing vapour 

residence time reduces the amount of pyrolysis liquids and promotes the production of 

gas and char.  
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The most traditional type of pyrolysis is slow pyrolysis, producing charcoal from wood 

by low reaction temperatures, long vapour and solid residence times, reaching from 

hours to days. From there, fast pyrolysis of wood and other lignocellulosic materials 

was developed to produce maximum amounts of pyrolysis liquids aiming at replacing 

fossil derived fuels. Characteristically, feedstocks with fine particle sizes are rapidly 

heated up to 500 °C and very short vapour residence times are maintained. 

Consequently, lower amounts of gases and char are obtained by the process. A vast 

amount on literature, including comprehensive descriptions and reviews of the process, 

reactor types and potential applications of the end products exist [8], [24–27].  

A novel type of pyrolysis investigated is intermediate pyrolysis, operating at reaction 

conditions between fast and slow pyrolysis. Reaction temperatures of 350-500 °C, hot 

vapour residence times of 2 to 4 s and feedstock residence times of 0.5 to 25 min are 

applied at moderate heating rates of 1-1000 °C s-1. This affects the composition of the 

liquid phase as well the characteristics of the biochar. The product distribution obtained 

by this process is 40-60 % of pyrolysis liquids, 20-30 % non-condensable vapours and 

20-35 % biochar, depending on the feedstock [28], [29].  

A coaxial double screw-type pyrolysis reactor, called pyroformer is patented at Aston 

University [30], which thermally decomposes biomass at intermediate pyrolysis 

conditions. Intermediate pyrolysis offers much different product qualities as the reaction 

prevents formation of high molecular tars and produces dry chars suitable for 

applications as fertiliser or fuel for combustion. In addition, processing of ash rich 

material is possible, whereas process temperatures lower than ash fusion 

temperatures  are applied [31].  

An advantage of this type of pyrolysis is the possible application of feedstocks with 

larger particle sizes due to sufficient heating given through moderate heating rates and 

longer residence times. Hence, the slower reaction rates of the pyrolysis process leads 

to a gentler decomposition of the molecules and subsequently less tar are formed in 

the vapours. This leads to an easier separation of the vapours from the char. Secondly, 

obtained pyrolysis liquids by condensation of the vapours may contain lower 

concentrations of reactive components, such as alkali metals due to sequestration in 

the biochar. Generally, the pyrolysis oils comprise a low energy aqueous phase and a 

high energy oily phase, with a typical heating value of 18 MJ kg-1 and being less prone 

to polymerisations and aging leading to more stable liquids [28], [30].  
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Table 1-1 Main classes of pyrolysis for wood [8], [22], [23] 

 

Mode Conditions Oil 

[%] 

Gas 

[%] 

Char 

[%] 

Fast - Reaction temperatures ~500 °C 

- Short hot vapour residence time, ~1 s 

- High heating rates, >1000 °C s
-1
 

75 13 12 

Intermediate - Reaction temperatures, ~350-500 °C 

- Intermediate hot vapour residence time, 2 to 4 s 

- Moderate heating rates, 1-1000 °C s
-1
 

50 25 25 

Slow - Reaction temperatures ~200-400 °C 

- Long hot vapour and solid residence time, hours 

  to days  

- Low heating rates, 5-7 °C min
-1
 

30 35 35 
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1.4. BtVB-process 

 

The “Bio-thermal Valorisation of Biomass-process” (BtVB-process) was developed by 

Prof. Andreas Hornung of the European Bioenergy Research Institute (EBRI) and 

patent-registered [23] at Aston University.  

The concept is an integrated process to generate low-cost and sustainable energy by 

processing versatile types of biomass. A main intention is the solely application of so 

called 2nd generation feedstocks, while consequently abdicating materials derived from 

food crops. Particular ash rich feedstocks, such as algal biomass, residues from biogas 

plants, agriculture wastes and sewage sludge are in focus to generate heat, power, 

transportation fuels and alternative fertilizers, as illustrated in Figure 1-1 [23].  

The technological core of the BtVB-process is the pyroformer, described in section 1.2, 

processing 100 kg h-1 biomass, with particle sizes of up to 10 mm in diameter and 10-

20 mm in length.  

Generally, a moisture content of about 20-40 % in the biomass is favourable for 

intermediate pyrolysis. Therefore, the integrated process offers heat derived by the 

pyrolytic process to dry feedstock, which contains higher moisture contents. 

A preferred route enclosed in the BtVB-process is the direct gasification of the pyrolysis 

vapours. Intermediate pyrolysis is particular useful for applications with subsequent 

gasification of the vapours, due to capturing the inorganic parts in the biochar and 

conveying only low ash vapours to the interfaced gasifier to further process synthesis 

gas or electricity and heat.  

An alternative is the condensation of the vapours to pyrolysis liquids, which are a 

renewable resource to produce chemicals, precursors for chemical industry and/or 

transportation fuels.  

The preferred options for biochar are applications as a soil amendment and/or as a 

fertilizer to recycle nutrients from the feedstocks, particular of ash rich feedstocks and 

to sequester carbon simultaneously [23], [28], [29].  

Overall, the BtVB-process aims at being realised on local sites in combination with 

horticulture, agriculture and other bioenergy generating technologies, such as bio gas 

plants. In addition, to the terrestrial derived residual feedstocks, algal biomass plays an 

important role within the BtVB-process. Firstly, algal biomass resources are seen as 

promising feedstocks for sustainable energy generation, due to its higher energy 

efficiency and lower land requirements compared to terrestrially grown biomass [14]. 

Secondly, its non-lignocellulosic cell structure is interesting for thermal-chemical 

processing due to decomposition of the biomass constituents at lower temperatures 

[32]. In addition, pyrolysis liquids from algal materials are characterized by better 
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stability, lower water content, higher heating value, lower densities, and lower 

viscosities than those derived by terrestrial biomass, in particular wood. In addition, 

intermediate pyrolysis liquids of various feedstocks have comparable characteristics to 

biodiesel [9], [33].  

 

Moreover, micro- and macroalgae materials are useful materials for the BtVB-process, 

due to their high contents of inorganic materials. The processing of these ash rich 

feedstock leads to higher amounts of captured nutrients in the biochar which can be 

recycled either into the cultivation of microalgae, while reducing their production costs 

or as valuable fertilizers in agriculture. In general, the application of biochar as fertilizer, 

offer opportunities to retain valuable amounts of phosphorous, one of the main 

nutrients required for plant growth where natural resources are diminishing 

continuously (peak phosphorous) [34].  

Currently, various technologies are under investigation, to generate biofuels such as 

biodiesel and biogas from algal materials. However, due to high production costs of the 

biomass and intensive harvesting methods the production of biofuels from algal are 

economically not feasible, at present. Therefore, biorefinery concepts, combining 

bioenergy generation with the production of value added products for industrial 

applications are seen as opportunities [35–38].  

Two options of intermediate pyrolysis of algal materials are included in the BtVB-

process. The first option processes the entire biomass, such as contaminated and 

abundant seaweeds being difficult to dispose. The second one, processes algal 

derived residues after the extraction of high valuable products, such as lipids, proteins 

and enzymes. The opportunity to retain high valuable products for applications in 

chemical and pharmaceutical industries or human nutrition in combination with 

bioenergy generation would increase the economic feasibility of the BtVB-process 

drastically. For this reason the investigation of intermediate pyrolysis of various algal 

species, their biochemical constituents and the residues after extraction of different 

compounds is of high interest for the ongoing research.  
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Figure 1-1 BtVB-Process [23] 
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1.5. Introduction to Algae 

 

The term algae refer to a large and diverse group of organisms ranging from unicellular 

microorganisms, i.e. Chlorella sp. exhibiting a cell size of 2-12 µm, called microalgae 

up to macroscopic sized organisms, such as Macrocystis sp. (Kelp) exhibiting a thallus 

(leaf-like structures), stems and a foot with up to 60 m in length, called macroalgae 

(seaweeds) [39]. Typically, microalgae species are suspended in water (planktonic), 

where as macroalgae species live attached to the bottom (benthic) in supralittoral- 

(above water level, in spray zone), intertidal- (exposed periodically in accordance to the 

tide) and subtidal zones (constantly submerged). Overall algae are classified into three 

divisions mainly based on their pigmentation into green (Chlorophyta), red 

(Rhodophyta) and brown (Phaeophyta) algae [39]. Organisms from all divisions occur 

in a broad range of habitats, such as fresh-, brackish- and marine waters and subaerial 

biotopes. Furthermore, micro- and macroalgae species are broadly distributed in all 

climate zones, while some are adapted to life in very harsh climate such as Polar 

Regions or in surrounding of hot springs [40].  

 

1.5.1. Biochemistry 

 

For commercial applications and bioenergy processing technologies, the biochemical 

composition of the feedstocks is of importance and the gross chemical composition of 

some micro- and macroalgae organisms is shown in Table 1-2. The values indicate 

that major algal constituents are proteins, lipids and carbohydrates. In contrast, wood 

and other terrestrial plants typically exhibit a cell wall build up to 60-90 % of a 

lignocellulosic complex consisting of cellulose, hemicellulose and lignin and only minor 

amounts of inorganic minerals and extractives (such as proteins, lipids, resins, 

pigments, waxes, starch) are present in the biomass [9], [41]. 

Similar to vascular plants, cell walls of algae are made of fibrils forming the skeleton 

and amorphous components forming the matrix in which fibrils are enclosed. However, 

algae do not exhibit a solidified cell wall structure, caused by the lack of the 

lignocellulosic complex, to maintain the flexibility of their tissues to withstand damage 

by turbulent water movements [42]. For classification of algal organisms the 

polysaccharide composition as well as the apparent pigments are used and Table 1-3 

presents the classification after Bold and Wynne [39].  

Primarily, the cell walls of most micro- and macroalgae species consist of 

polysaccharides, made of sugars and sugar acids, which are also found in land plants 
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including cellulose and hemicellulose. But some also contain sulphated 

polysaccharides in which an acidic sulphate group replaces a hydroxyl group of the 

sugar. In addition, algal organisms contain energy storage polysaccharides, which are 

unique to each division. Chemical structures of some cell wall polysaccharides and 

energy storage compounds are illustrated in Figure 1-2 [43].  
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Table 1-2 Gross chemical composition of micro- and macroalgae 

 

Type Species Proteins 

[%, db] 

Carbohydrates 

[%, db] 

Lipids 

[%, db] 

Ref 

Microalgae Chlamydomonas reinhardtii 48 17 21 [44–

46] 

Chlorella vulgaris 51-58 12-17 14-22 

Porphyridium cruentum 28-39 40-57 9-14 

Macroalgae Ulva lactuca 26-28 59-63 0-1 [47], 

[48] 
Durvillaea antarctica 10-12 57-72 1-4 
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Table 1-3 Biochemical characteristics of main alga divisions [39] 

 

Division Cell wall Storage product Pigments 

Chlorophyta 

(Green algae) 

- Cellulose 

- Hemicelluloses 

(xylans, mannans) 

- Various 

heteropolysaccharides 

(partly sulphated) 

- Hydroxyproline rich 

glycosides 

- Calcified in some 

- Wall absent in some 

- Starch  

(20-30 % amylose/ 

70-80 % amylopectin) 

- Oil in some 

- Chlorophyll a 

and b 

- α-, β-, and γ- 

carotenes  

- Xanthophylls 

Rhodophyta 

(Red algae) 

- Cellulose 

- Galactans 

- Carrageenan 

- Agar 

- Floridean starch  - Chlorophyll a  

- Phycobilins 

- α- and β- 

carotene 

- Xanthophylls 

Phaeophyta 

(Brown algae) 

- Cellulose 

- Alginic acid 

- Fucoidan  

- Sulphated 

polysaccharides 

- Laminarin  

(partly sulphated) 

- Mannitol 

- Chlorophyll a 

and c 

- β- carotene 

- Xanthophylls 
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Figure 1-2 Algal polysaccharides [43] 
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1.5.1.1. Chlorophyta  

 

Green algae are the major group of algae regarding abundance of species, varieties 

and frequency of occurrence. Benthic and planktonic species belong to this division, 

whereof ca. 90 % are freshwater species living in habitats ranging from oligotrophic to 

supersaturated waters [39], [49].  

Generally, green algae contain the pigment chlorophyll a and b and manifold 

organisation types of the plant body exist, including unicellular, colonial and 

filamentous forms. Characteristic cell wall components are heteropolysaccharides 

containing galactose, arabinose, xylose and rhamnose being partly sulphated at the 

positions of some hydroxyl groups of the sugar units [50].  

Comparable to terrestrial plants, Chlorophyta synthesizes xylans, containing chains of 

β-(1→3)-linked xylose units forming a triple helix providing a strong fibrous structure. In 

addition, β-(1→4)-linked mannans build a crystalline skeletal component acting as a 

structural polysaccharide [50]. Some green algae species are cell wall-less, some 

contain silica or proteins. The formation of starch as a energy product within the 

chloroplasts instead of the cytoplasm is unique to this division of algae [49].  

 

1.5.1.2. Rhodophyta  

 

Micro- and macroalgae species are members of this division, mainly living in marine 

seawaters at all latitudes, where as the majority of seaweeds, about 4000 species, 

belong to this division [49]. Characteristic is the presence of accessory photosynthetic 

pigments such as phycobilins, often masking the presence of chlorophyll a. Floridean 

starch, the typical energy storage product of red algal species is located outside the 

chloroplast being a long chain of glucose sugars α-(1→4)-linked glucans, exhibiting a 

similar structure to amylopectin of higher plants. Additionally, reserve products such as 

glycosides, floridosides, mannitol and sorbitol have been found which may account for 

up to 10 % of the tissue dry weight in some thalli [39], [49].  

Cell walls of red macroalgae consist of an inner rigid layer made of randomly arranged 

cellulose forming microfibrils, and an outer amorphous mucilage layer consisting of 

carrageenan and agar, depending on the species. These are high molecular weight 

polysaccharides consisting of repeating sulphated galactose and 3,6-anhydrogalactose 

units accounting up to 70 % of the dry weight of the cell wall [39], [49]. In addition, 

carbohydrate residues such as xylose, glucose and uronic acids next to substituents 
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such as methyl ethers are present [51], [52]. Red microalgae species lack the cellulose 

structure while mainly exhibiting cells wall of sulphated polysaccharides.  

 

1.5.1.3. Phaeophyta  

 

Brown algae species exhibiting the greatest diversity in terms of species and occur 

almost exclusively in marine waters. Widely spread through the northern and southern 

hemisphere brown algae inhabiting rocky shores, sometimes until depths of 270 m in 

clear tropical waters [39]. The characteristic brown coloration evolves from the 

carotenoid fucoxanthin being the main pigment next to chlorophyll a, b and β-carotene 

[39], [49]. Similar, as Rhodophyta, the cell wall structure is composed of an inner 

cellulosic layer and an outer gummy layer matrix.  

Amorphous matrix structures consist of alginic acid, a polymer of carbon acids, 

containing β-(1→4)-linked mannuronic acid, adjacent to blocks of in average 20 units of 

α-(1→4)-linked glucuronic acids. This polymer is localised in cell walls and intercellular 

spaces and accounts for up to 24 % of the dry weight of the algal cell. The proportions 

of the uronic acids vary depending on the species, with mannuronic acid ranging 

between 30-97 % [39].  

Furthermore, “Fucans” (also known as fucoidin, fucoidan and sargassan), sulphated  

polysaccharides containing varying proportions of fucose, galactose, mannose, xylose, 

glucuronic acid and mannuronic acid are contained in Phaeophyta [50], [53], [54]. The 

general function of fucans is the reduction of desiccation effects during exposure of the 

organism. The energy storage compound laminarin (also known as laminaran), mainly 

constituted of β-(1→3)-linked glucans, with a variable degree of β-(1→6)-linkages 

accounts for up to 34 % of the algal cell dry weight [39], [50], [55]. 

 

1.5.2. Large-scale production and applications 

 

Due to the knowledge of valuable products contained in micro- and macroalgae 

species, large-scale cultivation is carried since many decades. Today, particular high 

quality oils consisting of omega-3 and omega-6 fatty acids are gaining market prices of 

>10U$ kg-1 [56] and are used in food supplements.  

Favourite high value compounds contained in algal materials are high quality fatty 

acids/oils. In addition, algal cells also contain valuable pigments such as carotenes, 
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proteins and starch. These compounds are used for a broad spectrum of 

biotechnological applications, such as food and feed production, production of 

chemicals for cosmetics and pharmaceuticals. The following sections present a short 

overview of the current state of micro- and macroalgae cultivation and biotechnological 

applications.  

 

1.5.2.1. Microalgae 

 

Mass culture of the microalgae species Chlorella sp. and Arthrospira sp. to produce 

high valuable products such as health food, or to extract pigments such as β-carotene 

or astaxanthin from Dunaliella salina and Haematococcus pluvalis is carried out for 

more than 40 years [57]. To produce large amounts of biomass, these extremophile1 

organisms are cultivated outdoors in open air ponds, as shown in Figure 1-3. In some 

cases artificial mixing via paddle wheels or rotating mixing arms for oxygen and nutrient 

transfers and well as moving algal cells through the illuminated zone is provided. 

Ponds with shallow water depths of 0.2-0.3 m and sizes of 1- 250 ha, containing up to 

300.000 litres are common. In Australia Dunaliella salina production in open ponds 

containing 900.000 litres is reported. Nowadays, microalgae cultivation is a key 

process providing a direct source of nutrition in marine fish and shellfish aquaculture, 

usually performed on a much smaller scale, applying 20-40 litre containers or plastic 

bags and is carried out indoors in many cases [57–59].  

The type of species to produce a desired product decides the factors which need to be 

taken into account for cultivation. Growth requirements and the biology of the species 

impacts on costs for land, labour, energy, water and nutrients, and hence for the overall 

economical outcome. Generally, outdoor cultivation in open ponds are characterised by 

poor light efficiency and temperature control resulting in low biomass productivity. In 

addition, large water losses due to evaporation are an issue. Furthermore, 

contaminations with other species and/or bacteria are issues, which might harm the 

productivity of the culture [59].  

In recent years, the cultivation in closed systems has gained increased attentions due 

to the opportunity of concerted control of growth conditions, such as illumination, 

temperature, agitation, O2 and CO2 concentration and control of contamination. It is 

considered that the productivity, i.e. a higher biomass production is reached by 

cultivating in closed systems, For this, several types of photo bioreactors, including 

                                                
1
 adapted to extreme habitats (i.e. highly saline), thereby eliminating competitors [57] 
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tubular and flat panel reactors were developed [60], as shown in Figure 1-4. Highly 

controllable growth conditions are of interest to influence the chemical compositions of 

the organisms by manipulating the growth conditions. Studies revealed that some 

organisms grown under suboptimal conditions produce larger amounts of substances 

like pigments, starch and oil. For example, excess of light stimulates the production of 

carotenes in the cell of some organisms. Alternatively, if the supply of nitrogen in the 

growth medium is limited, some algae start to accumulate oil [61].  

However, because of high capital costs, difficult scale up and high energy costs due to 

artificial lighting when photo bioreactors are operated indoors, no commercial 

applications are available at present. Although, commercial microalgae culture to 

produce value added products is a well established industry, mainly based on outdoor 

cultivation. At present, more than 5000 tonnes of dry biomass are produced annually 

[61]. A comprehensive review of commercial production and applications of microalgae 

materials was presented by Spolaore et al. [62] and a summary is presented in Table 

1-4. Furthermore, many research and pilot scale cultivation units are in operation 

worldwide, however only the commercial significant ones are presented.  
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Figure 1-3 Open pond cultivation of microalgae [63] 

 

 

 

 

 

Figure 1-4 Tubular bioreactor for microalgae cultivation  

 

 

Photograph by Katharina Kebelmann at Bangor University, United Kingdom 
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Table 1-4 Commercial microalgae production and applications [57], [62] 

 

Species Annual Production Producer country Application/ product 

Arthrospira sp. 3000 t dry weight China, India, USA, 

Myanmar, Japan 

Human and animal 

nutrition 

Cosmetics 

Phycobiliproteins 

Chlorella sp.  2000 t dry weight Taiwan, Germany, 

Japan 

Human nutrition 

Aquaculture 

Cosmetics 

Dunaliella salina 1200 t dry weight Australia, Israel, USA, 

China 

Human nutrition 

Cosmetics 

β-carotene 

Aphanizomenon 

flos-aquae 

500 t dry weight USA Human nutrition 

Haematococcus 

pluvalis 

300 t dry weight USA, India, Israel Aquaculture 

Astaxanthin 

Crypthecodinium 

cohnii 

240 t DHA oil
2
 USA DHA oil 

Shizochytrium sp.  10 t DHA oil USA DHA oil 

  

                                                
2
 Docosahexaenoic acid, an omega 3- fatty acid 
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1.5.2.2. Macroalgae 

 

Coming from hundreds of years of traditional seaweed cultivation for food and fodder, 

in the 1950s large scale cultivation of seaweed biomass was developed. Overall, 

approximately 15.8 million tonnes of fresh macroalgae biomass were produced in 

2008, from species of about 10 genera, including Laminaria sp., Monostroma sp. and 

Gracilaria sp. Around 90 % of the production takes place in East Asia, including China, 

Korea, Japan and Philippines [64], [65].  

The first step in seaweed cultivation is the seedstock cultivation, i.e. the production of 

juvenile plants. From there, adult plant cultivation starts, followed by harvesting and 

processing the materials into the desired commercial products. Traditionally, different 

ways of cultivation exist, such as land-based cultivation, indoors and outdoors 

conducted in tanks and ponds. Furthermore, shallow sea cultivation in intertidal or 

subtidal zones, either with floating or fixed supporting systems along the coastlines is 

common [66]. Overall, the commercial production of seaweeds for products such as 

human and animal feed, chemicals and pharmaceuticals is successful.  

Main products are hydrocolloids, applied as gelling agents, texturisers, emulsifiers and 

stabilisers in human nutrition, pharmaceutics and cell culture in biology [67]. Production 

values of carrageenan, alginate and agar, as shown in Table 1-5 [68].  

However, the application of a little number of species, limited production and cultivation 

area as well as no applications of genetically improved strains is criticised. 

Furthermore, problems in seedstock cultivation affecting the overall production and 

large scale seaweed cultivation is still under development [66].  
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Table 1-5 Production of major polysaccharides of macroalgae [68] 

 

Product 
(Division) 

Production  
(t y 

-1
) 

Algae harvested  
(t y 

-1
) 

Value  
(Mio US$) 

Species 

Carrageenan 
(Rhodophyta) 

33.000 168.400 240 Euchema sp. 
Kappaphycus sp.  

Alginate 
(Phaeophyta) 

30.000 126.500 213 Laminaria sp. 
Macrocystis sp. 
Lessonia sp. 
Ascophyllum sp. 

Agar 
(Rhodophyta) 

7.630 55.650 137 Gelidium sp. 
Gracilaria sp.  
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1.5.3. Bioenergy applications 

 

Additionally, to the production of high value products, many raw materials contained in 

algae biomass offer promising routes for sustainable and renewable bioenergy 

generation. Although various conversion routes for bioenergy generation are 

investigated and technically feasible, it is widely agreed, that the application of 

microalgae biomass is not economically feasible for alternative fuels, at present. Even 

though, prices for crude oils and from there derived fuels and products are increasing 

steadily, increasing prices of fertilizers, intense and ineffective harvesting technologies 

and low productivity when grown using natural light are still major limitations [69].  

However, it is expected that more efficient and less energy consuming harvesting 

techniques and depletion of fossil resources enhance the commercial viability of 

microalgae biomass for bioenergy applications [70].  

The combination of the production of value-added products and bioenergy generation 

in integrated systems, called biorefineries, is seen as a potential route to increase the 

economical feasibility and a recent review of concepts is presented by Gouveia [71].  

In summary, most of the concepts utilize one or more conversion technologies to 

generate bioenergy and approaches to obtain high valuable co-products such as oils, 

polyunsaturated fatty acids (PUFAs) and pigments [71]. Some of the concepts include 

microalgae farming and consider the capture of CO2 from emissions of the process or 

close by industrial plants [72]. However, most of the concepts utilize conversion 

technologies, which are dedicated to produce a specific product, i.e. biodiesel from 

algal derived lipids, or biogas from polysaccharides.  

In contrast, intermediate pyrolysis, utilized as the main conversion technology of the 

BtVB-process, offers the application of a broader range of feedstocks. This gives 

certain flexibility, for the choice of feedstock, depending on availability. Particular, 

pyrolysing residues after extraction of raw material, such as lipids or proteins, is a 

promising option. In addition, the by-product biochar gained by intermediate pyrolysis 

of biomass, containing valuable inorganic materials, such as nitrogen, potassium and 

phosphorous can be reused as alternative fertilizer to decrease the production costs of 

microalgae cultivation. 

The following two sections along with Figure 1-5 present an overview of currently 

investigated bio-chemical and thermo-chemical conversion routes to generate fuels, 

power and heat.  
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1.5.3.1. Bio-chemical conversion 

 

The most intensively studied route is the production of biodiesel from extracted 

triglycerides of algal biomass via transesterification [73], [74] similar to the process 

normally applied for oleaginous, edible crops such as rapeseed, soybean, sunflower 

and palm. Favourably applied are algal species with high lipid contents, where the 

extracted triglycerides are converted to fatty acid methyl esters (FAMEs) and glycerol 

as a by-product [11]. Most of the background work was carried out at US National 

Renewable Energy Laboratory (NREL) between 1970s to 1990s [74]. In 1996 the main 

conclusion was that it is not economically viable to produce biodiesel from microalgae, 

due to the price being twice as high as the price of a similar quantity of petroleum 

diesel. Today, where the prices of fossil derived diesel have almost doubled, the 

feasibility of this technology is tested in pilot plants and industrial scale plants are still 

under development [14], [19], [69].  

High starch content, polysaccharide based cell walls and the lack of lignin in micro- and 

macroalgal biomass makes them attractive for conversion into bioethanol via 

fermentation [19]. During the 1st generation of bio-fuels food crops such as sugar cane, 

sugar beet and corn were applied. Nowadays residual woody materials are favoured, 

but the lignin needs to be removed before as it is not digested by the microorganisms 

[11], [75]. The process includes hydrolysis of cellulose, hemicellulose and starch to 

monomeric sugars, which are subsequently metabolized into ethanol by yeast (i.e. 

Saccharomyces cerevisiae) [71]. After distillation and dehydration a biofuel is available, 

that can replace parts of fossil fuels.  

An option to recover chemical bound energy from whole cells of algal biomass is 

biogas production via anaerobic digestion. Advantageously, this technology utilises wet 

biomass and the gas, consisting mainly of methane, can be directly combusted to 

produce heat and/or electricity or is upgraded to replace natural gas [19]. Being a well 

developed technology with commercial applications converting sewage sludge, animal 

wastes and industrial effluents, processing of algal biomass is still under development 

[11], [14]. Some macroalgae species have been tested successfully by anaerobic 

digestion whereas some microalgae species contain indigestible cell walls and a pre 

treatment to break them is necessary. The major limitation of anaerobic digestion is the 

usually incomplete conversion of the material and slow process rates compared to 

those of other processes. 

Hydrogen is currently produced by steam reformation of fossil fuels, or large-scale 

electrolysis of water, but the production requires more energy than generated from the 

gained hydrogen [19]. Alternatively, bio-hydrogen can be produced by direct photolysis 
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of photosynthetically active algal organisms, by splitting water into O2 and H2 

enzymatically. Biohydrogen offers opportunities in reducing GHG emissions in the 

transport sector, as it produces only water as exhaust product and no NOx emissions 

when used in a fuel cell [19]. For commercial applications, storage (compressed, 

liquefied or stored in metal hydrides) and transportation are main drawbacks. 

Furthermore, no commercial fuel cells are available and more knowledge of the 

hydrogen production of the algal organisms is necessary [11].  

 

1.5.3.2. Thermo-chemical conversion 

 

Thermo-chemical routes investigated to recover energy stored in algal biomass include 

gasification, hydrothermal processing (thermo-liquefaction/ hydro-thermal upgrading 

(HTU)) and pyrolysis [11], [76]. Gasification and pyrolysis require feedstocks with a 

moisture content at least < 50 % and drying before processing needs to be taken into 

account, where as hydrothermal processing utilize biomass with higher moisture 

contents [77].  

During gasification, biomass releases energy by partial oxidation at high temperatures 

in the range of 800-900 °C. Generated are combustible gases, called synthetic gas, 

with medium calorific values, consisting of carbon monoxide (CO), hydrogen (H2), and 

methane (CH4) which is further processed to i.e. liquid hydrocarbons and methanol [8], 

[11], [78]. Hydrothermal processing, sometimes called catalytic gasification, applies the 

entire biomass with a moisture content of 80-90 %. The process is considered as a low 

temperature gasification reaction (350 °C) taking place at high-pressures (20 MPa). 

The process is essentially steam reforming as there is no oxidizer or reagent other than 

water. The high moisture containing biomass, commonly combined with metal 

catalysts, is converted into gas consisting of CH4 and CO2 [79]. Laboratory scale 

experiments were carried out with algal biomass and a reaction mixture of medium 

heating value syngas, liquids and tar were obtained. However processing difficulties 

have been caused by biomass components and corrosive effects of water in the 

reactors and no commercial applications are available in the short-term [79]. 

 

One of the most promising routes to generate bioenergy from various types of biomass 

is the thermo-chemical conversion via pyrolysis. Advantageously, pyrolysis produces 

gaseous, liquid and solid fuels in short reaction times such as minutes, efficiently [80], 

[81]. For further process details of pyrolysis see previous sections 1.3 and 1.4.  
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Overall, extensive studies have been carried out utilizing a wide variety of biomass 

resources, where as lignocellulosic feedstocks are the most investigated materials [11]. 

Furthermore, vast studies investigating fundamental pyrolytic characteristics of 

lignocellulosic biomass constituents are available.  

Even though, the advantages of the applications of algal biomass over lignocellulosic 

biomass for bioenergy production are evident, only little work has been done on 

processing of micro- and macro algae via pyrolysis. In addition, the pyrolytic 

characteristics of the main chemical constitutes in algal biomass affecting the overall 

performance of the materials are studied rarely.  

Currently, intensive investigations of intermediate pyrolysis applications of algae 

biomass are carried out at Aston University. For further developments of the BtVB-

process, it is of interest to evaluate potential pathways for bioenergy generation from 

algal materials.  
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Figure 1-5 Bioenergy generation from algae 
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1.5.4. Analytical thermo-chemical characterisation 

 

The following sections review reported studies of the thermo-chemical behaviour 

carried out at laboratory scale (analytical technologies), including thermogravimetry 

and by analytical pyrolysis of aquatic biomass. An overview of laboratory equipment 

applied by other researchers is enclosed.  

 

1.5.4.1. Thermogravimetry 

 

A major thermal analysis technique to investigate physical changes of biomass during 

pyrolysis is thermogravimetry analysis (TGA). The obtained data from analytical scale 

experiments provides useful information in terms of degradation temperatures, thermal 

stability, reaction mechanisms and compositional analysis. Generally, the weightloss of 

the material during a controlled heating as a function of temperature or time is 

recorded, expressed in a TGA curve. Additionally, a differential thermogravimetric 

(DTG) curve expresses the rate of weightloss over time or temperature during the 

process. Moreover, kinetic data such as activation energy and constants is obtained via 

TGA; and a few studies present data of algae biomass [82], [83]. However, this is not of 

interest in this research.  

 

Virtually any biomass material which is applied for thermo-chemical conversion 

processes has been tested for thermo-chemical characteristics by TGA. Particular 

terrestrial biomass and its constituents (cellulose, hemicellulose and lignin) are 

investigated intensively [7], [84–89].  

Some TGA studies of aquatic biomass are reported, studying the pyrolytic behaviour 

under various conditions including microalgae (i.e. Chlorella sp., Dunaliella sp., 

Spirulina sp. and Nannochloropsis sp.) and macroalgae species (i.e. Fucus sp., 

Laminaria sp. and Ulva sp.). Usually, sample sizes of 2-10 mg were pyrolysed in He or 

N2 atmosphere while maintaining constant flow rates between 50 and 200 ml min-1. 

Non-isothermal temperature programs with an initial temperature ranging from ambient 

temperature up to 100 °C, heating rates of 5-80 °C min-1 up to final temperatures 

between 500 and 900 °C were applied. An overview of pyrolysis temperatures obtained 

by various biomass materials, (aquatic, terrestrial and chemical constituents) is listed in 

Table 1-6. Overall the studies revealed that the temperature of the main pyrolytic 

activity varies with the applied heating rate [17], [32], [81], [90–97]. Furthermore, 
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aquatic derived feedstocks exhibit lower pyrolysis temperatures than typically derived 

from terrestrial biomass. This is mainly caused by the lack of high cellulose and/or 

lignin contents [32] and supports the potential application of aquatic materials for 

pyrolysis.  

So far, only a few studies made first attempts to pyrolyse chemical constituents from 

algal biomass. Included are main carbohydrates of brown algal biomass (alginic acid, 

mannitol, laminarin and fucoidan ) analysed with a heating rate of 25 °C min-1 [98]. 

Furthermore, early studies investigated the contribution of lipids in Chlorella 

protothecoides and Nannochloropsis sp. during pyrolysis [92], [99].  

To expand information regarding the chemical composition of evolved products during 

pyrolysis of algal biomass, TGA has been coupled to a Fourier transform infrared 

spectroscopy (TGA/FTIR) and to a mass-spectrometer (TGA/MS) via a heated transfer 

line [99]. A large range of functional groups including C-H (i.e. corresponding to 

methylene groups) C=O-bonds (carbonylic compounds, such as aldehydes and acids) 

and C-O-C-bonds (ether compounds) were detected in pyrolysates of Nannochloropsis 

sp. and derived lipids. Overall, the analysis of evolved products by TGA/FTIR revealed 

differences between the materials, but provided only general information about the 

product formation during pyrolysis [99]. The study showed, that this coupled technique 

offers the opportunity to detect evolved gases by on-line analysis; however, the 

identification is limited towards functional groups only and does not provide any further 

details about volatile products. Another study investigated evolved products of 

Nannochloropsis gaditana by TGA coupled to a mass-spectrometer (TGA/MS). By on-

line analysis, the identification of volatile products including H2O, CH4, CO, CO2 and H2 

was possible [100]. Again, this technique has restrictions as only searches for certain 

fragment masses can be performed and no separation of the pyrolysates is provided.  
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Table 1-6 Main pyrolysis temperatures of biomass by TGA 

 

Biomass  

material 

Origin Heating Rate  

[°C min
-1

] 

Main  

pyrolysis [°C] 

Ref 

Chlorella 

protothecoides  

Microalgae  

(Chlorophyta) 

15 330 [90] 

80 340 

Spirulina platensis  15 330 

80 360 

Laminaria japonica Macroalgae  

(Phaeophyta) 

10 250 [101] 

30 266 

Alginic acid Carbohydrate 

(Phaeophyta) 

25 225 [98] 

Mannitol 25 336 

Laminarin 25 342 

Fucoidan 25 202 

Oak Terrestrial 5 350 [102] 

20 370 

Hemicellulose Terrestrial 

Polysaccharide 

10 260 [88] 

Cellulose Terrestrial 

Monosaccharide 

10 355 

Lignin Terrestrial 

Polyphenol 

10 380 
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1.5.4.2. Analytical Pyrolysis 

 

Analytical pyrolysis is a well established laboratory technique to analyse solid and 

liquid samples which are difficult to characterise chemically in intact condition, as they 

may not be volatile, have low solubility in most solvents and may decompose easily 

during heating.  

During analytical pyrolysis, the chemical degradation of the sample under highly 

controlled heat influence in inert atmosphere is enforced. This produces smaller 

molecules by decomposition and elimination reactions which can subsequently be 

detected by i.e. GC or GC/MS. Advantages of no required sample preparation such as 

extraction procedures along with the possibility of applying small sample amounts (µg-

mg) makes this technique essential in fields of polymer chemistry (synthetic and 

natural), soil and environmental chemistry (analysis of fossil materials), microbiology 

(taxonomy of microorganisms), food and wood science as well as clinical and forensic 

science [103–105]. Comprehensive textbooks, literature reviews and studies are 

reporting available technologies, presenting applications, process parameters and 

results [20], [104–108]. The very same technology is applied to analyse the 

transformation of biomass into other forms of organic substances to produce fuel or 

raw chemical materials.  

Analytical pyrolysis techniques to investigate biomass derived feedstocks include a 

micro-pyrolysis unit (Py) coupled to gas-chromatography (Py-GC) or gas-

chromatography/ mass-spectrometry (Py-GC/MS) [109].  

In contrast, to relative similar constructed thermogravimetric analyser, providing inter-

laboratory comparable results, different designed pyrolysis units are available and 

subsequently providing different pyrolysis conditions which complicate inter-laboratory 

comparisons. Generally, pyrolyser are classified by their source of heating which 

provides the thermal energy to pyrolyse the sample and each design has specific 

characteristics as presented in Table 1-7 [107], [108]. Depending on the heating 

element, each pyrolysis unit performs a certain type of pyrolysis (flash, fast, 

intermediate and slow). In all cases, the temperature control of the pyrolysis unit is the 

main concern to produce reproducible results. Main parameters to control the 

temperature environment of a pyrolysis unit are the equilibrium temperature (Teq), i.e. 

the final pyrolysis temperature and the temperature rise time (TRT), expressing the 

time, required to reach Teq.  

In a Curie-point analyser the sample is placed onto a ferromagnetic metal, which is 

heated by an inductive current. The Teq of the wire and of the sample respectively is 

determined by the Curie-point (change from ferro- to para magnetism) of the applied 
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metal or alloy. When the temperature is reached, the heating process implied by the 

electrical current stops immediately. Curie-point metals are available for temperatures 

ranging from ca. 350-1100 °C. The heating of the sample is realized in a short TRT, 

commonly between 10-100 ms. 

As the electric current is induced into the filament by means of a high-frequency coil, it 

is necessary that the coil provides enough power to permit heating of the wire until the 

specific Curie-Point temperature is reached. Therefore, reproducibility depends on the 

accuracy of the alloy, the power of the coil and the placement of the wire in the system. 

Advantages of the Curie-point analyser are simple sample handling, and reproducible 

Teq when using wires of the same manufacturer. However, due to the lack of TRT 

control, Curie-point analysis is a tool for flash pyrolysis applications only. In addition, for 

comparability studies of different Teq, different alloys for each experiment are required 

[107].  

The resistively heated filament pyrolyser provides the energy by a controlled current 

which is passed through the filament. Similar to the Curie-point analyser, very thin films 

of samples are heated from ambient temperature to Teq at a very short TRT. Filaments 

are made of materials with high electrical resistance, such as iron and platinum, but are 

not self-limiting in terms of Teq.  Therefore an exact control of the filament current is 

essential for temperature accuracy and reproducibility [108]. In contrast to the Curie-

point pyrolyser this analyser has the capability to maintain a linear heating rate, 

achieved by a linear increasing voltage. Disadvantages of this analyser are non-

uniformly heating over the length of the filament which causes irreproducible results if 

the sample is not placed in the same point at each measurement [20]. Furthermore, 

both types of filament pyrolyser provide a rapid heating of the sample by applying very 

small filaments. Consequently small sample sizes are used to be compatible to the 

mass of the filament [20], [108].  

Another common type of analytical pyrolysis units is the furnace type reactor, where a 

pyrolysis zone is electrically heated externally by the furnace walls. The control of the 

temperature is done by using thermocouples for maintaining the correct furnace 

temperature. Generally, furnace pyrolyser can be used for isothermal and non-

isothermal experiments. In contrast to filament pyrolyser, furnaces have the capability 

to provide Teq already before the sample is introduced. In this case, the sample is hold 

in a cold zone above the heated pyrolysis zone and is subsequently dropped into it. 

Due to no contact of the sample to the heated wall of the furnace directly, slower TRT 

are achieved than by filament pyrolysers. However, when the sample is dropped into 

the already heated furnace a direct measurement of the TRT is not possible. In 
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contrast to filament analyser, larger sample amount up to milligrams can be applied by 

furnace pyrolyser [20], [107], [108].  

 

In terms of terrestrial and aquatic derived biomass characterisation, Py-GC/MS is the 

most common analysis technique as it provides an efficient separation of the 

pyrolysates and extra sensitivity and specificity toward identification of compounds 

through ion fragmentation. Additionally, Py-GC is applied in some studies mostly being 

equipped with a flame ionization detector (FID). Similar to Py-GC/MS this technique is 

able to separate isomers in complex mixtures and additionally obtains reproducible 

quantitative results of pyrolysis products. However, reference compounds for the 

identification by retention times and calibration are necessary [107].  

For an efficient separation of biomass pyrolysates the most common applied capillary 

columns (30-60 m length, 0.25-1 µm film thickness, iD 0.25-0.32 mm) are presented in 

Table 1-8. Typically applied GC temperature programs cover a broad range of 

temperatures for efficient separation of the complex pyrolysate mixtures. Usually 

helium is applied as a carrier gas and an initial temperature of 20-50 °C is kept for 1-3 

min, heated with 3-10 °C min-1 to a final temperature of 250-320 °C (depending on 

max. column temperature) held for 2 to 40 min [110–112]. Furthermore, in most of the 

studies, electron-impact mass spectrometers were applied, operating with 70 eV 

performing 1-2 scans s-1 in the range of 20-700 atomic mass unit (amu). In most cases 

gained mass-spectra are interpreted by applying mass-spectral libraries. Some studies 

employ reference compounds, which add additional complexity as they need to be 

analysed at the same instrument with very same parameters for reference time and 

mass-spectral comparison.  
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Table 1-7 Analytical pyrolysis units [107], [108] 

 

Pyrolyser Heating Teq [°C] TRT Heating rates Pyrolysis 

mode 

Sample 

amount 

Characteristics Model  

Manufacturer 

Curie-

point 

analyser 

ferromagnetic 

wires 

350-1100 ms None Flash <µg - easy sample handling 

- rapid heating 

- no temperature programs 

- possible catalytic effects 

by metal wires 

GSG Pyromat 

 

GSG-Meß-und 

Analysengeräte 

Vertriebsgesellschaft 

mbH 

Filament 

analyser 

iron or 

platinum 

filament 

1-1400 ms 0.01 °C min
-1

 to 

1000 °C s
-1

 

Flash to 

slow  

<µg - broad temperature range 

- isothermal and 

programmed heating 

- complex temperature 

control 

Pyroprobe 5200 

 

CDS Analytical 

Ltd./USA 

Micro 

furnace 

heated 

furnace wall 

40-800 s-min 1-100 °C min
-1

 Fast to 

slow 

mg - Teq stability of +/-1 °C 

- isothermal and 

programmed heating 

- no measurement of TRT 

Pyrolyser Py-2020iD  

 

Frontier 

Laboratories/Japan 
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Table 1-8 Capillary separation columns for Py-GC/MS 

 

Column name  Stationary phase Polarity Ref 

DB 5  

(BPX5)  

5% Phenyl 

95% Dimethylpolysiloxan 

Low polar [110] 

DB 1701  

(NB 1701, RTX 1701) 

14% Cyanopropyl-phenyl 

86% Dimethylpolysiloxan 

Low- mid polar [32], [98], 

[111], 

[113–117] 

DB 1 

(CP Sil 5) 

100% Dimethylpolysiloxan Non polar [118], 

[119] 
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Analytical pyrolysis of aquatic biomass has been applied in various research fields, 

such as marine biology, microbiology, geochemistry and water research. Mainly flash 

and fast pyrolysis methodologies were applied, utilizing Curie-point analysers and 

filament pyrolyser coupled to GC or GC/MS. Consequently, very short TRT to reach Teq 

were characteristic for these studies [112], [120], [121].  

In general, obtained pyrograms indicated that anhydrosugars, furans and carbonyl 

compounds are carbohydrate (cellulose, hemicellulose) and nitrogen containing 

products (pyrroles, indoles and nitriles) are mostly protein derived [120], [121].  

Early studies by Gelin et al. [118], [119] analysed lipids isolated from the green 

microalga Botryococcus braunii by flash pyrolysis at Teq= 700 °C to reveal their role 

during the formation of kerogenes (crude oil precursors). Pyrolysates consisted mainly 

of homologues series of aliphatic hydrocarbons, several saturated and unsaturated 

aldehydes as well as saturated primary alcohols. Furthermore fatty acids (palmitic acid, 

oleic acid) phthalates and squalene were observed. However, the applied technique 

revealed difficulties, such as evaporation of products prior to pyrolysis, condensation of 

pyrolysis products inside the pyrolyser, not completed pyrolysis and transfer of 

pyrolysates onto the GC column [118].  

Early studies investigated polysaccharide constituents of red algae including agar 

extracted from Gracilaria tikvahiae and carrageenan extracted from Eucheuma 

spinosum by Py-GC and Py-GC/MS at Teq= 750°C. Major polysaccharide derived 

pyrolysis compounds were furans (2-methylfuran, 5-methyl-2-furaldehyde, 5-

(hydroxymethyl)-2-furaldehyde) and anhydrosugars (1,4-anhydro-6-O-methyl-

galactopyranose; 1,6-anhydro-β-D-galactopyranose) [113], [114].  

 

At present, only little studies investigated algal biomass in terms of pyrolysis 

applications where as terrestrial biomass and its constituents have been investigated 

mainly [20], [122], [123]. Some brown macroalgae species and their polysaccharide 

constituents were analysed by flash pyrolysis with Py-GC/MS (CDS Pyroprobe, heating 

rate 20 °C ms-1, Teq= 500 °C) [32], [98], [115–117]. Compared to terrestrial derived 

pyrolysates it was revealed that macroalgae produce increased amounts of furans, 

nitrogen containing compounds, linear chain alcohols and less methoxyphenols. 

Generally, the high proportion of furans instead of phenols is seen as an advantage for 

the quality of bio-fuels, as furans are more easily hydro-deoxygenated [32].  

The influence of inorganic portions on the chemical compounds in pyrolysates 

contained in macroalgae was investigated by hydrochloric acid washing of biomass of 

Laminaria hyperborea and Fucus vesiculosus. Up to 98 % of Na, K, Ca and Mg were 

removed from the biomass. However, Py-GC/MS revealed predominant changes in the 
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polysaccharide composition of the brown algae by pyrolysis product distributions 

(significant amounts of fucoidan, mannitol and laminarin have been removed) instead 

of changes in product formation caused by reducing the metal content [115]. 

 

Particular, Py-GC/MS studies of microalgae species in regard to bio-fuel production are 

rare. Recently, a study was conducted comparing Botryococcus braunii and 

Chlamydomonas reinhardtii at a Teq= 600°C, applying a micro-furnace Double-shot 

pyrolyser Py-2020iD manufactured by Frontier Laboratories Ltd./Japan. Pyrolysis 

products such as fatty acids, their methyl esters, terpenoids, sterols, aromatics and 

alkanes were identified [110]. However, the temperature is too high to be applicable for 

intermediate pyrolysis studies.  

Overall, Table 1-9 presents a summary of TGA and Py-GC/MS conducted studies 

along with applied micro- and macro algal species.  
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Table 1-9 Summary analytical studies of micro- and macroalgae 

 

Type Species TGA 

Heating rates  

[°C min
-1
] 

Temperature range 

[°C] 

Py-GC/MS 

 

Ref 

M
ic

ro
a

lg
a

e
 

Chlorella protothecoides 

Spirulina platensis 

15, 40, 60, 80  

ambient to 800  

- [90], 

[92] 

Dunaliella tertiolecta 5, 10, 20, 40  

ambient to 900 

- [81] 

Chlorella vulgaris 15, 30, 40, 50  

ambient to 800 

- [93] 

Nannochloropsis 

gaditana 

5, 15, 40  

40 to 900 

- [100] 

Botryococcus braunii 

Chlamydomonas 

reinhardtii 

- Frontier Laboratory Single-

shot Pyrolyser  

 

2020, Teq= 600 °C, for 10 s 

[110] 

Botryococcus braunii 

(lipids) 

- Curie-point pyrolyser 

 

Teq= 610 °C and 779 °C, for 

10 s 

[118], 

[119] 

M
a

c
ro

a
lg

a
e

 

Porphyra yezoensis 

Plocamium telfairiae 

Corallina pilulifera 

10, 30, 50 

ambient to 800 

- [94] 

Laminaria digitata  

Laminaria hyperborea  

Fucus vesiculosus 

25  

40 to 900 

CDS 5000, 20 °C ms
-1
,  

Teq= 500 °C 

[32], 

[115], 

[117] 

Enteromorpha prolifera 10, 20, 30, 40, 50 

50-700 

- [17] 

Grateloupia filicina 

Ulva lactua 

Dictyopteris divaricata 

10, 20, 30, 50, 80  

ambient to 700 

- [95] 

Ulva pertusa 10, 30, 50  

ambient to 800 

- [96] 

Laminaria japonica 

Sargassum pallidum 

10, 30, 50 

ambient to 800  

- [101] 
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1.6. Conclusion  

 

Bioenergy generation from aquatic derived feedstocks via intermediate pyrolysis have 

a large potential to substitute fuels, power and heat derived from fossil fuel resources.  

Main advantages over terrestrial derived feedstocks are lesser impacts on food supply 

chains and the environment. In contrast to the lignocellulosic structure of terrestrial 

materials, algal biomass consists of proteins, carbohydrates and lipids, mainly. 

Particular the lack of lignin makes algal biomass an interesting resource for thermo-

chemical processing, whereas a formation of less high molecular compounds and 

lower decomposition temperatures during pyrolysis are expected.  

Two major laboratory techniques are typically applied for thermo-chemical 

characterisation of biomass feedstock, namely TGA and Py-GC/MS. Both analytical 

methods provide useful information regarding thermal decomposition and product 

evolution during pyrolysis processing. Whereas extensive studies about lignocellulosic 

materials and constituents, such as hemicellulose, cellulose and lignin are reported, 

only minor are found about micro- and macroalgae materials. Particular, the analysis of 

algal derived constituents is scarce. Beyond that, the majority of available studies are 

not applicable to intermediate pyrolysis process conditions, as conducted by either 

Curie-point or heated filament analysers (flash or fast pyrolysis).  

 

To evaluate potential applications of algal materials in the BtVB-process a need for 

thermo-chemical characterisation of micro- and macroalgae as well as extracted 

chemical constituents conditions is seen.  

Therefore, a choice of analytical equipment and/or methodologies has to be made, 

providing process conditions differing from reported studies while addressing 

intermediate pyrolysis conditions. Consequently, the author chose to install a Py-

GC/MS unit which is capable of providing intermediate pyrolysis conditions to carry out 

fundamental research of algal biomass and from there derived materials. In addition, it 

is reported, that algal derived pyrolysates contain higher amounts of nitrogen 

containing compounds. Therefore, a secondary application of a nitrogen and 

phosphorous-detecting GC detector for first approaches in the interpretation of algal 

pyrolysis products is seen as useful.  

Furthermore, a choice of algae species, being possibly valuable and applicable within 

the BtVB-process needs to be done.  
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1.7. Algae species for intermediate pyrolysis  

 

This study is one of the first investigating intermediate pyrolysis of aquatic biomass and 

it is intended to study various species, originating from fresh and saline water habitats 

and growing in various climates. Consequently, a broad spectrum of micro- and 

macroalgal material for this study is chosen and presented in Table 1-10.  

The green unicellular microalgal species Chlamydomonas reinhardtii and Chlorella 

vulgaris are chosen, as both species are well studied organisms, including their 

biochemistry, growth cycles and genetics. Particular, it is evident that both species lack 

cellulose and lignin and thereby provide a useful resource to study non-lignocellulosic 

materials [124–128].  

Cell walls of Chlorella vulgaris are mainly composed of hemicellulose with rhamnose 

and galactose being the predominant sugars along with xylose, arabinose and 

mannose. Other components include glucosamine, uronic acids and proteins [127], 

[129]. Furthermore, Chlorella vulgaris is one of the most important microalgae species, 

grown for commercial application (human and animal nutrition), widely used in photo 

bioreactors and investigated for bioenergy applications [130], [131]. Chlamydomonas 

reinhardtii cell walls are composed of a multilayered structure consisting of a 

hydroxyproline-rich glycoprotein framework with galactose, arabinose and mannose 

being the predominant carbohydrate side chains [128], [132], [133]. Furthermore, the 

mutated strain Chlamydomonas reinhardtii CW15+ is included in this study due to its 

absent cell wall based on the incorrect formation of proteins and extracellular cross 

linking resulting in minimal amounts of cell walls being produced [134]. The utilization 

of the cell wall deficient mutant may be useful to assist in elucidation the potential role 

of cell wall constituents in pyrolysates.  

The marine red microalgae Porphorydium purpureum is included in the study, because 

of its biotechnological applications of the Coenzyme Q10, in cosmetics and in 

pharmaceutics as a valuable antioxidant [135], [136]. It is of interest, to study thermo-

chemical characteristics of the entire biomass and of the residual biomass after Q10 

extraction to evaluate possible routes for integrated bioenergy generation and 

production of high valuable products.  

Fucus vesiculosus is a brown macroalgae, inhabited in the North Sea and Baltic Sea 

as well as in the Atlantic ocean of northern Europe. It is included in this study, as it is of 

interest to investigate one of the major seaweed species living along the northern 

Europe coastlines, to evaluate local resources. Fucus vesiculosus is attached with a 

holdfast on the surface and exhibits flattened fronds (large divided leafs, like ferns) and 
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is a well known source for hydrocolloids and has valuable potentials as supplements 

for human nutrition [67], [137].  

 

In addition, rarely studied marine algae species derived from the Polar Regions are 

included in this study. Arctic derived species are Prasiola crispa, Monostroma arcticum, 

Polysiphonia arctica, Devaleraea ramentacea, Odonthalia dentata, Phycodrys rubens 

and Sphacelaria plumosa. Antarctic derived species include Gigartina skottsbergii, 

Plocamium cartilagineum, Myriogramme manginii, Hymencladiopsis crustigena, and 

Kallymenia antarctica.  

All these species are highly adapted to the harsh climates and strong seasonally 

changing environmental factors such as light regime, temperature and nutrient 

availabilities [138]. The strong seasonality of the photoperiod reinforced by ice and 

snow cover during the winter months is characteristic for both Polar Regions and is the 

main factor influencing the growth of benthic macroalgae. Generally, compared to 

temperate and tropical regions the annual solar radiation is 30-50 % lower in Polar 

regions, but endemic polar macroalgal species are adapted to these low radiations, 

with high photosynthetic efficiency and hence a lower light requirement [138]. 

Furthermore, sea water temperatures in the Antarctic and Arctic region are low 

throughout the year and close to 0 °C. In the Antarctic, sea temperatures rise up to 5 

°C and up to 8-10 °C in Arctic during summer. Additionally, in intertidal zones, 

variations in water level and temperature can be very large. During low tide, algae are 

exposed to air and dehydrate for several hours and may even freeze if air temperature 

falls below 0 °C [139–142].  

In this study, the primarily interest is to collect information about the formation of 

chemical constituents and to understand the overall pyrolytic behaviour of this 

exceptional biomass. Due to their habitats in much colder regions than species so far 

applied for pyrolytic studies, it is of interest to possibly identify novel pyrolytic products, 

which may offer new routes for renewable chemicals.  
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Table 1-10 Algae species for intermediate pyrolysis 

 

Type Species Division Habitat/ 

Distribution 

Comment Ref 

M
ic

ro
a

lg
a

e
 

Chlorella vulgaris 

Chlamydomonas 

reinhardtii 

Chlamydomonas 

reinhardtii CW15+ 

Chlorophyta - Fresh and 

brackish 

water  

- Global  

- No cellulose 

and lignin 

- Well studied 

organisms 

- Biotechnological 

applications 

[124–

134] 

Porphorydium purpureum Rhodophyta - Marine 

water 

- Global 

- Biotechnological 

application of 

coenzyme Q10 

[135], 

[136], 

[143] 

M
a

c
ro

a
lg

a
e

 

Fucus vesiculosus Phaeophyta - Marine 

water 

- North Sea, 

Baltic Sea, 

Atlantic 

Ocean 

- pharmaceutical 

and biomedical 

potential 

- source of 

hydrocolloids 

[67], 

[137] 

Prasiola crispa  

Monostroma arcticum 

Chlorophyta - marine 

water 

- Arctic  

- Adapted to 

harsh climates 

- Rarely studied 

- Possible 

sources of new 

chemicals  

[138–

142] 

Polysiphonia arctica 

Devaleraea ramentacea 

Odonthalia dentata 

Phycodrys rubens 

Rhodophyta 

Sphacelaria plumosa Phaeophyta 

Gigartina skottsbergii 

Plocamium cartilagineum 

Myriogramme manginii 

Hymencladiopsis 

crustigena 

and Kallymenia antarctica 

Rhodophyta - marine 

water 

- Antarctic 
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1.8. Aim and objectives of research 

 

This study aims to contribute knowledge regarding thermo-chemical processing of 

aquatic biomass for sustainable bioenergy generation via intermediate pyrolysis. 

Therefore, several micro- and macroalgae species were chosen. It is of interest to 

investigate the formation of products of algal biomass and biochemical constituents 

during intermediate pyrolysis. Therefore, extraction and subsequent analytical pyrolysis 

of lipids and proteins are included in this study, as well as the characterisation of 

residual biomass derived after extractions. In addition, first application of the gas-

chromatographic detectors flame-ionization detector (FID) and nitrogen-phosphorus-

detector (NPD) for interpretation of pyrolysates derived by algal materials are 

investigated. Overall, this aims in generating fundamental knowledge about algal 

pyrolysis, as well as specific acquaintance concerning the aspect of integrated valuable 

product and bioenergy generation in the BtVB-process.  

 

The four objectives of this study are the following: 

• Installation of an analytical pyrolysis system, providing intermediate pyrolysis 

conditions, with subsequent separation and detection of pyrolysates.  

 

• Examine the pyrolytic behaviour of algal derived biochemical constituents under 

intermediate pyrolysis process conditions.  

 

• Study the thermo-chemical behaviour and chemical product formation of micro- 

and macroalgae biomass during intermediate pyrolysis.  

 

• Evaluate possible applications of algal feedstocks in the BtVB-process upon 

basis of obtained analytical results.  
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1.9. Organisation of thesis 

 

The remaining chapter of the thesis are organised as follows: 

 

Chapter 2 describes the technical details of the analytical pyrolysis unit, developed in 

this study. Included are a description of the commission and a discussion of data 

interpretation, detectors and limitations of the instrument.  

 

Chapter 3 encompasses the laboratory methods to cultivate algae organisms, for 

algae biomass characterisation and protein and lipid extraction procedures. 

Furthermore applied TGA and PY-GC/MS methodologies are presented.  

 

Chapter 4 presents the obtained results of feedstock characterisation including gross 

chemical compositions, ultimate analysis, higher heating values and ash contents. In 

addition, FAMES analysis of the total lipids as well as the TGA curves for all materials 

are included.  

 

Chapter 5 presents the PY-GC/MS derived pyrograms measured for all algal biomass 

and biochemical constituents. In addition, pyrograms obtained by dual detector 

analysis for Chlorella vulgaris materials are included.  

 

Chapter 6 discusses the results by feedstock characterisation and the thermo-

chemical behaviour of the algal materials, achieved by TGA and presents a summary 

of the main pyrolysis characteristics obtained by TGA.  

 

Chapter 7 discusses the identified compounds in the pyrograms of algal biomass and 

biomass constituents. In addition a summary of the main pyrolytic compounds for all 

applied samples is included.  

 

Chapter 8 evaluates potential routes of algal materials in the BtVB-process based on 

the conducted analytical studies.  

 

Chapter 9 presents the response to the four objectives of this research and present 

recommendation for continuative and future work.  
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2. Development of analytical pyrolysis system 

 

This chapter addresses the main objective of installing an analytical pyrolysis unit for 

the analysis of various algal samples. The instrumental set-up includes a micro-furnace 

pyrolyser, online analysis of pyrolysates by gas chromatography followed by detection 

with various detectors. Details about the single instrument components as well as a 

description of commissioning and maintenance of the instrument are presented. 

Furthermore, a discussion of possibilities and limitations of this analytical pyrolysis 

instrumentation is included.  

 

2.1. Introduction 

 

To obtain reliable and repeatable information about chemical product formation of 

intermediate pyrolysis from various algal biomass samples the overall experimental 

design of analytical pyrolysis must consider each step of the processes, including 

sample preparation, pyrolysis i.e. formation of degradation compounds, separation, 

detection and interpretation of the results. An essential requirement for any analytical 

equipment is the reproducibility, by means that replicated analysis should produce the 

same product profile within appropriate ranges.  

The set-up of the analytical pyrolysis system is illustrated in Figure 2-1. The instrument 

consists of a micro-furnace pyrolyser (Py) coupled to the front inlet of a Gas 

chromatograph (GC). At the back inlet an auto sampler allows the injection of liquid 

standard samples to support characterisation of the obtained pyrolysates. To multiply 

the information from pyrolysed algal materials and to increase the productivity of the 

method, the gas chromatograph set-up was chosen to be a dual column and dual 

detector configuration. Two identical separation columns were connected to a Mass 

Selective Detector (MSD), a Flame Ionization Detector (FID) or a Nitrogen 

Phosphorous Detector (NPD). The arrangement of the chromatographic system 

allowed either a simultaneous Py-GC/MSD and Py-GC/FID or a simultaneous Py-

GC/MSD and Py-GC/NPD data acquisition. Furthermore, a parallel Py-GC/FID and Py-

GC/NPD data acquisition is applicable.  

The following sections are presenting technical details regarding the instrumental set- 

up, applied for intermediate pyrolysis of various algal specimens and derived materials. 
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Figure 2-1 Analytical pyrolysis set-up 
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2.2. Micro-furnace pyrolyser 

 

Based on review of literature and manufacturer information the decision was drawn 

towards a micro-furnace pyrolyser manufactured by Frontier Laboratories/ Japan type 

Double-shot pyrolyser PY2020iD. The design of the Double-Shot Pyrolyser (Py) is a 

vertical micro-furnace capable to analyse any liquid and solid sample. An illustration of 

the micro-furnace is shown in Figure 2-2. Due to its technical specifications, presented 

in Table 2-1, stable pyrolysis process conditions are maintained and this equipment 

covers a large field of analytical applications like polymer chemistry, environmental, 

food and soil chemistry as well as paper manufacture and wood science [144]. 

The sample amount applied depends on the coupled analytical system and ranges 

from about 0.1 mg up to 6 mg. Overall, it is necessary, to apply homogenous and small 

particle sized samples to ensure even heat distribution within the sample. Stainless 

steel cups with a capacity of 50 µl holding the sample. An inert carrier gas enters the 

micro-furnace at the back to maintain an oxygen free atmosphere within the system.  

The sample holder allows holding the sample in standby position within the carrier gas 

purged chamber maintained at ambient temperature above the pyrolysis zone. In the 

illustration the upper sample position is indicated by the upper green spot. The green 

arrows indicate the cooling air flow to maintain ambient temperatures. Effectively, this 

prevents any unwanted decomposition before the actual thermal decomposition.  

For pyrolysis the sample is inserted inside the quartz tube to the lower sample position, 

indicated by the other marked spot. Pyrolysates are transported by the stable gas flow 

through the stainless steel needle onto the GC column. To prevent major condensation 

of pyrolysates, the interface of the micro-furnace, is either maintained at a set 

temperature up to 400 °C or is stepwise increased with increasing pyrolysis 

temperatures.  

The unit offers the possibility to either insert the sample directly into the preheated 

furnace providing already Teq within the range of 40-800 °C or it can be introduced into 

the furnace at low temperatures followed by programmed heating, applying heating 

rates of 1-100 °C min-1. Overall, the temperature stability of the unit is +/- 1 °C, being 

essential for pyrolytic studies, due to high temperature dependencies of primary bond 

fission reactions of biomass materials.  
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Figure 2-2 Micro-furnace pyrolyser PY2020iD [145] 
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Table 2-1 Specifications double-shot pyrolyser PY2020iD [144] 

 

Parameter  Value 

Temperature Range 40-800 °C, +/- 1 °C 

Over heating 
protection 

820 °C 

Heating Rate  1 - 100 °C min
-1
 

Interface Temperature Maximum 400 °C, +/-1 °C 

Sample weight 0.1 - 6 mg 
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2.3. Gas chromatograph 

 

The micro-furnace is interfaced at the front split-/splitless (SSL) inlet port of a 5890 

Series II Gas chromatograph (Hewlett Packard, Agilent Technologies). At the rear SSL 

inlet port an auto sampler 7673 for liquid samples was installed.  

Two identical capillary separation columns of the type DB 1701 (Agilent Technologies), 

with a length of 60 m, an inner diameter of 0.25 mm and a film thickness of 0.25 µm, 

holding a mid to low polarity, were fitted into the injection port of the GC, which allows a 

wide range of SSL and detector combinations with a high sensitivity. To realise the 

installation of two columns in one injector the holes of the injector nut and gold plated 

seal were enlarged to 1 mm and an injector ferrule with 0.8 mm opening was applied to 

avoid breaking off the column ends and to maintain a tight fit. One of the columns was 

connected to the MSD and the other one either to the FID or to the NPD. As an 

alternative a single column and dual detector set up could have been chosen. In this 

case a post column split, for example using a “Y” connector, would have been installed 

at the end of the column to reach both detectors [146].  

In general, 30 and 60 m DB 1701 columns were applied to separate lignin and 

polysaccharide derived pyrolysis products from wood, to study chemical additives in 

paper via Py-GC/MSD [147–149]. Additionally, the DB 1701 columns were applied for 

chemical characterisation of pyrolysis liquids derived from various biomass feedstocks 

via offline analysis [150–152]. The main difference between utilization of a 30 m 

instead a 60 m capillary column is the duration of the analysis and accuracy in 

compound separation. A shorter column provides a shorter analysis time whereas a 

longer column provides a more accurate separation as a result of the higher plate 

number of the column. Consequently, a 60 m column has been chosen for this study. 

Alternatively, a high temperature GC column might have lead to better separation of 

high molecular compounds, but a comparison of the obtained data of algal pyrolysis 

with other biomass pyrolysis studies would have been difficult. 

 

2.4. Detectors 

 

This study aims at setting up a manifold analytical pyrolysis unit for data analysis and 

interpretation of algal derived intermediate pyrolysis products. Therefore, the gas 

chromatograph is equipped with three different detectors, offering various detection 

modes. The following sections are describing the chosen detectors.  
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2.4.1. Mass Selective Detector (MSD) 

 

By mass-spectrometric detection, molecules of generated pyrolysates are electronically 

ionized inside the MDS and undergo characteristic fragmentations to yield fragment 

ions which are separated based upon mass (m/z). In combination with the 

measurement of the abundance of each fragment ion a mass spectra is obtained, 

where the largest mass commonly represent the molecular ion, revealing the molecular 

weight of the parent compound, unless it is too unstable for detection [107]. Electron 

impact ionization (EI) is the most common mode of MSD operation, where molecules 

are ionized by passing through a high-energy beam with 70 eV generated within the ion 

source. Approaches of applying reduced ionization energies of 10-20 eV to minimise 

fragmentation and to simplify interpretation, due to a mass spectra with a more 

frequent molecular ion were made [107]. However, the main mass spectral libraries 

(NIST, Wiley) providing spectra for identification are based on EI with 70 eV and are 

therefore not applicable for other ionization methods.  

For the analysis of algae derived pyrolysates a 5972 Series Mass Selective Detector 

(EI 70 eV) has been chosen. Generally, a MSD can be operated in scan mode which 

covers a certain range of masses or SIM mode (single ion monitoring), which detects 

only a few specifically selected masses. The specifications of an MSD depend on the 

system, but a sensitivity of a MSD in scan mode accounts for around 10 nanograms 

and 10 picograms in SIM mode in general. In terms of selectivity a MSD is a universal 

detector and its applications vary in a broad range [153]. 

 

2.4.2. Flame Ionization Detector (FID) 

 

The FID is one of the most widely used GC detectors, due to its simplicity in use and its 

large range of organic compounds which can be detected in high sensitivity due to its 

high linear range. The main principle of the detection is ionization of eluted compounds 

reaching from the separation column into a hydrogen and air flame. A collector with 

polarizing voltage attracts the ions coming from the flame and produces a current 

measured in a coupled electronic amplifier, which is proportional to the amount of 

sample compound in the flame. The minimum detectable level, depending on the 

molecular structure of the compound ranges from 10-100 picograms. The FID 

response to all compounds containing C-H bonds, considered as organic compounds. 

Furthermore, the detector does not response or has little response to H2O, CO2, CO, 
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N2, O2, CS2 and inert gases. Applications for the FID range from environmental, 

pharmaceutical, food and flavour analysis. Particular its utilization is common in the 

petroleum industry, i.e. the analysis of gasoline or kerosene due to its high sensitivity to 

hydrocarbons [154].  

 

2.4.3. Nitrogen Phosphorous Detector (NPD) 

 

The technical design and operation method of a NPD, also called thermo ionic detector 

(TID), utilizes a jet to provide a hydrogen/air flow for ionization of the compound and a 

heated rubidium salt coated pearl, to make the NPD selective for nitrogen and 

phosphorous containing organic compounds (GC 5890 and following types, Agilent 

Technologies).  

Compared to an FID, air and hydrogen flows are lower which minimizes the ionization 

of hydrocarbons and increases the ionization of N or P containing compounds. The 

minimum detectable level for nitrogen containing compounds ranges from 0.4 to 10 

picograms and for phosphorous from 0.1 to 1 picograms. Inorganic nitrogen containing 

compounds such as N2 or ammonia (NH3) are not detected. Typical applications for 

NPD are pharmaceutical or environmental analysis [153].  

 

2.5. Commissioning  

 

The correct performance of the instrument parts is accredited by the validation report 

provided by the supplier. This document includes performance tests of temperature 

stability of the GC, description of the general state of the micro-furnace (temperature 

stability, current stability) and presents an air and water check and a tune report of the 

MSD (Appendix B).  

After installation in the laboratory, the performance of the GC was tested by analysing 

certified standard materials and obtained chromatograms are shown in Figure 2-3. For 

performance tests of the capillary columns, of the MSD and FID a liquid diesel standard 

(BAM-K010) accredited by the “German Federal Institute for Materials Research and 

Testing” was injected at the rear injection port. This standard consists of hydrocarbons 

within the range of C10-C40, whereas hydrocarbons larger than C20 were not detected 

with this instrumental set-up. The performance of the NPD was tested by measuring a 

Triazine pesticides analytical standard mix (Supelco) containing ametryn, atrazine, 
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prometon, prometryn, propazine and terbutryn. The applications of those standards 

allow the optimisation of instrument parameters including inlet pressures, column flows 

and temperature programs.  

 

To establish an appropriate GC oven temperature profile to separate pyrolysates of 

algal materials, biomass of Chlorella vulgaris was applied. Optimisation of the GC 

parameters revealed, that programmed GC temperatures i.e. from 50-290 °C at a low 

heating rate (i.e. 3 °C min-1) lead to evenly spaced and clearly eluted peaks. A typical 

pyrogram (Teq= 500 °C) obtained by the MSD of Chlorella vulgaris biomass is also 

shown in Figure 2-3. Due to high temperatures at the end of the program, the 

sensitivity for late peaks is substantially improved. Generally, an increase to high 

temperatures towards the end of the measurements increases the degree of column 

bleed (raise of baseline) and shortens the lifetime of the separation column. However, 

high temperatures at the end of a ramped program prevent column contamination due 

to sufficient elution of high molecular compounds and are a part of the instrument 

maintenance.  

The mass range of the MSD was set to 50-500 amu, to eliminate water and carbon 

dioxide contributions in the pyrograms. To prevent an overload of the analytical system 

and to ensure a satisfying separation of compounds, 0.1 mg of homogenous samples 

and a split ratio of the GC injector of 20:1 are applied in this study.  

Overall, it is of importance, that for the whole study a certain temperature profile and 

stable instrument settings (gas flows, pressures) are maintained due to the direct 

impact onto retention times and peak heights of eluted compounds.  
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Figure 2-3 Chromatograms of standards 
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Figure 2-3 continued 
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2.6. Data Interpretation  

2.6.1. Identification of components 

 

Pyrolysates of biomass materials are complex mixtures with up to typically 200 

components. The assignment of MSD peaks was done by a mass spectral databases 

NIST08 (National Institute of Standards and Technology, 2002). Each compound which 

was identified by the library by means of a certain library match (usually ca. 80-95 %) 

was checked for plausibility.  

Overall, the advantage of mass spectral information of a compound is the 

independency of the GC parameters which were applied for the measurement.  

In contrast, peak assignments in chromatograms obtained by FID and NPD data 

requires retention time data from standard components, which have been analysed 

with exactly the same method as the pyrolysate.  

This study included the construction of parallel MSD/NPD and parallel MSD/FID 

measurements and to exemplarily present data interpretation obtained from these 

pyrograms by retention time, some analytical standards were measured with the 

automatic sampler at the rear inlet port. Chosen standards for the MSD/NPD were the 

nitrogen containing compounds pyridine, pyrrole, 3-phenylpropionitrile, picolinamide 

and indole. Analytical standards applied for the MSD/FID were toluene, ethylbenzene, 

styrene, phenol and 4-methylphenol and retention times are presented in Table 2-2. 

Related to the different outlet pressures of the installed columns and detectors, 

retention time shifts between the detectors are unavoidable. As the MSD operates in 

vacuum atmosphere and FID and NPD under ambient pressure, variations of retention 

times from identical compounds are evident, although two matching separation 

columns were installed. Generally, the retention times obtained by the MSD are slightly 

shorter than those obtained by the FID or NPD. The reason is a suction effect of the 

MSD due to its vacuum atmosphere, which leads to a higher column flow of carrier gas 

and separated substances and therefore to shorter retention times. Overall, a retention 

time shift of ca. 0.3 min along the pyrograms has been investigated for simultaneously 

obtained MSD/FID and MSD/NPD pyrograms.  
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Table 2-2 Retention times of standard compounds for MSD, NPD and FID 

 

Compound MSD  

[min] 

NPD  

[min] 

FID  

[min] 

Pyridine 7.21 7.46 x 

Pyrrole 9.99 10.34 x 

3-Phenylpropionitrile 35.01 35.33 x 

Picolinamide 36.22 36.52 x 

Indole 38.99 39.37 x 

3-Methylindole 42.19 42.55 x 

Toluene 6.72 x 6.80 

Ethylbenzene 9.60 x 9.80 

Styrene 11.60 x 11.79 

Phenol 24.28 x 24.53 

4-Methylphenol 28.44 x 28.70 

  



 

 

2.6.2. Quantification

 

To quantify individual chemical components in a pyrolysis mixture GC is a useful tool. 

In this study peak areas obtained from the integrated chromatogram

quantification. Typically, single components in complex mixtures, such as pyrolysates 

of biomass, are quantified by the straightforward area percent method

equation (1).  

The relative quantity of the component

by dividing its peak area 

method is not taking the response factors of each component into account it is 

accepted as a useful method for inter

particular with a high 

 

To express the variati

(RDS) was calculated for each detector. 

measured peak areas 

MSD and FID and fenitrothion 

The RSD, expressing the variation of each individual area from the average in percent, 

was calculated by following equations. Firstly, the average (

areas was calculated by summing the individual results and dividing

number (n) of individual values, as shown in the equation (2). Secondly, the standard 

derivation (s) was calculated by equation (3). Subsequently, the relative standard 

derivation expressing the variation of the individual results from the

was obtained by equation (4)
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Quantification and deviation 

To quantify individual chemical components in a pyrolysis mixture GC is a useful tool. 

eak areas obtained from the integrated chromatogram

quantification. Typically, single components in complex mixtures, such as pyrolysates 

of biomass, are quantified by the straightforward area percent method

he relative quantity of the component (i) is calculated from the normalized peak area, 

by dividing its peak area (Ai) by the sum of areas of all peaks (⅀

method is not taking the response factors of each component into account it is 

accepted as a useful method for inter-sample comparisons of complex mixtures 

high portion of unknown compounds.  

To express the variation of obtained peak areas, the Relative 

(RDS) was calculated for each detector. For this, from each detector 10 individual 

eak areas of the same sample were obtained. Ethanol was used for the 

fenitrothion (C9H12NO5PS) for the NPD.  

The RSD, expressing the variation of each individual area from the average in percent, 

was calculated by following equations. Firstly, the average ( ) of the obtained peak 

areas was calculated by summing the individual results and dividing

) of individual values, as shown in the equation (2). Secondly, the standard 

derivation (s) was calculated by equation (3). Subsequently, the relative standard 

derivation expressing the variation of the individual results from the

was obtained by equation (4) and presented for each detector in Table 

To quantify individual chemical components in a pyrolysis mixture GC is a useful tool. 

eak areas obtained from the integrated chromatograms are used for 

quantification. Typically, single components in complex mixtures, such as pyrolysates 

of biomass, are quantified by the straightforward area percent method, applying 

the normalized peak area, 

⅀A). Even though, this 

method is not taking the response factors of each component into account it is 

sample comparisons of complex mixtures 

elative Standard Derivation 

For this, from each detector 10 individual 

of the same sample were obtained. Ethanol was used for the 

The RSD, expressing the variation of each individual area from the average in percent, 

) of the obtained peak 

areas was calculated by summing the individual results and dividing this sum by the 

) of individual values, as shown in the equation (2). Secondly, the standard 

derivation (s) was calculated by equation (3). Subsequently, the relative standard 

derivation expressing the variation of the individual results from the average in percent 

Table 2-3. 
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Table 2-3 Relative standard deviations of detectors 

 

Detector Compound RSD [%] 

MSD Ethanol 1.8 

FID Ethanol 1.9 

NPD Fenitrothion 2.6 
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2.7. Maintenance  

 

To eliminate any background effects which might lead to manipulation or irreproducible 

results, the performance of the MSD, FID and NPD was tested once a week and after 

every change of the set-up (i.e. cleaning, detector change, replacement of helium 

bottle) by running the appropriate standard material. 

When no abnormalities, such as retention time shifts out of the expected range, spikes 

or unexpected peaks, tailing or overlapping peaks and/or drastically changed pyrolysis 

products distribution were observed in any of these measurements, the system 

performance was adequate. Furthermore, regular backing of the column (keeping the 

column at high temperatures for 20 min) is applied to eliminate contaminations. In 

addition, the needle and quartz tube of the furnace was cleaned by organic solvents 

regularly. A further procedure includes cleaning of sample holder and crucibles after 

every experiment, by rinsing them with acetone and subsequently cleaned in a high 

temperature furnace at 900 °C for 20 min.  

For the maintenance of the FID and NPD no particular procedures need to be carried 

out. However, to avoid any condensation in the FID the temperature need to reach 

>150 °C before ignition. During the operation of a NPD it is suggested to increase the 

temperature slowly, i.e. 100 °C every 10 min, to prevent a damage of the rubidium 

pearl.  

Overall, by following these steps, including the maintenance schedule listed in Table 2-

4 a reliable analytical pyrolysis unit producing reproducible results is available and no 

operating problems have been encountered.  

  



 

76 
 

Table 2-4 Maintenance schedule analytical pyrolysis system 

 

Instrument 

part 

Activity Period 

MSD Air & water Check 

Control vacuum pressure 

daily 

Standard spectra auto tune weekly 

MSD, NPD, FID Standard materials weekly 

Column Backing (290 °C) on demand 

Pyrolyser  Blank run (empty crucible) 

Chlorella vulgaris 

after every 3
rd
 experiment 

after every 10
th
 experiment 

Cleaning crucibles 

Cleaning needle and quartz tube 

after every experiment 

on demand 
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2.8. Chapter Conclusions 

 

The installation and commission of the Py-GC allocates a powerful tool to analyse 

pyrolysates obtained by intermediate pyrolysis of algal materials. The instrument offers 

stable pyrolysis process conditions given by the micro-furnace pyrolyser, followed by 

online separation of the pyrolysate mixture by GC and subsequent detection with 

various detectors including a MSD, FID and NPD.  

For this study, the MSD is the main detector to identify chemical compounds in algal 

derived pyrolysates by their mass spectral information. Therefore, a mass spectral 

database is applied. However, this database might limit the identification of chemicals 

due to the complex nature of pyrolysis mixtures obtained from biomass.  

Furthermore, the detection of compounds with high molecular weights and being 

unstable at high temperatures is limited by analytical pyrolysis. As well, polar 

saccharides derived by the pyrolysis of lignocellulosic materials or polysaccharides as 

contained in algae biomass, are not detected. Overall, it is expected that up to 70 % of 

the pyrolysates can be detected, although many components can not be identified 

[155].  

Another constraint of this unit is caused by the maximum temperatures of the single 

parts of the analytical device, such as injector, columns and detectors. The possibility 

remains that high molecular compounds are not detected, due to condensations within 

the unit. Subsequently, these condensations can lead to contamination and 

manipulation of following measurements. Furthermore, large sample amounts may lead 

to an overload of the analytical device and cause contamination of the column and 

MSD, which might be carried over into the next analysis. 

A disadvantage of the established method is the long analysis time (ca. 90 min) for 

each sample. However, this is required to ensure proper separation and sufficient time 

for slowly eluting products and complex mixtures, which may contain more than 200 

chemical components. 

 

The dual column set-up and installation of three detectors offers various combinations 

for parallel analysis of the pyrolysates. Furthermore, the automatic sampler at the rear 

inlet port allows the injection of up to 100 liquids samples.  

Both, FID and MSD detect organic compounds and obtained pyrograms exhibit a 

similar appearance. However, chromatograms may differ in peak intensities due to 

different response factors of detectors. Reasons for the additional installation of a FID 

are simpler operation and lower maintenance costs due to the less complex apparatus 

compared to a MSD. Moreover, a FID is less sensitive against contamination and 
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possible operation at temperatures up to 400 °C are advantages for applications in 

pyrolysis research.  

The review of algal pyrolysis revealed that pyrolysates contain higher proportion of 

nitrogen containing compounds [32]. Therefore the NPD was installed in the Py-GC 

unit, which may assist in identifying nitrogen containing compounds. The NPD is able 

to detect phosphorous containing compounds, however, at present none are reported 

in pyrolysates derived from biomass. Consequently, this unit offers further 

investigations towards phosphorous containing chemicals in algal pyrolysates.  

For continuative research work it is suggested to set up retention time libraries 

containing numerous analytical standards for further interpretation of biomass 

pyrolysates. Therefore, an auto sampler carrying up to 100 liquid samples was installed 

at the rear inlet of the GC. The identification of N- and if present P-containing 

chemicals in pyrolysates, may assist in developing alternative fertilizers within the BtVB 

process.  

This study carried out the preliminary work including installation, commission and 

testing of the dual column set up by a set of standard materials. Furthermore, some 

biomass samples will be analysed, however extensive work with the FID and NPD is 

beyond the scope of this study.  
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3. Materials and methods 

 

This chapter presents the algal materials employed for intermediate pyrolysis studies. 

The cultivation method of Chlamydomonas reinhardtii strains is described. 

Furthermore, the methodologies for general characterisation of the biomass and for 

extraction of lipids and proteins are included. For biomass characterisation via TGA 

and detecting chemical products in algal pyrolysates, instrumentation and methodical 

details of thermogravimetric analysis and pyrolysis- gas chromatography are 

presented.  

 

3.1. Microalgae  

3.1.1. Cultivation of Chlamydomonas reinhardtii 

 

Two strains of the green microalgal species Chlamydomonas reinhardtii were cultivated 

for this study. The strains Chlamydomonas reinhardtii wild type CCAP 11/32 and the 

cell wall mutant Chlamydomonas reinhardtii CCAP 11/32 CW15+ were obtained from 

the Culture Collection of Algae and Protozoa, Oban, Scotland/UK (CCAP). Cultivation 

was performed in Tris-Acetate-Phosphate media (TAP) (Appendix C) under axenic 

conditions [156]. For cultivation, Erlenmeyer flasks with a volume of 200 ml were 

incubated and kept in a New Brunswick Scientific orbital shaker with continuous rotary 

agitation at 120 rpm. Growth temperature was kept at 20 °C and cool white fluorescent 

lighting about 15 cm from the culture with an intensity of ca. 50 µmol m-2s-1 with a 12 h 

photoperiod was provided. The growth of the culture was accompanied by a daily cell 

count applying a haemocytometer and the cells were harvested at the late logarithmic 

growth stage, providing a cell density of ca 1-2x106 cells per ml. The biomass was 

separated from the growth media by centrifugation at 3000 g for 15 min, followed by 

washing with distilled water, another centrifugation step and subsequently drying at 70 

°C for 24 h. Overall, the cultivation of the organisms was performed to obtain biomass 

only.  
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3.1.2. Further species 

 

Biomass of Chlorella vulgaris (CCAP 211/11B) was procured as a powder from 

Ingrepro B.V./Netherlands, grown in a PBR in F/2 Medium.  

Dried biomass and a residual biomass obtained after extraction of the Coenzyme Q10 

of the red micro-alga Porphyridium purpureum (strain SAG 1380-1f) were provided by 

Dr.-Ing. Barbara Klein, Institute of Bioprocess Engineering, University of Erlangen-

Nürnberg, Erlangen/Germany. The biomass was cultivated in a 120 litre PBR (type 

Airliftschlaufenreaktor “Medusa”) designed at the Institute of Bioprocess Engineering in 

an artificial seawater medium. After cultivation, an accelerated solvent extraction 

(ASE®) instrumentation manufactured by Dionex [157] was applied to isolate the 

Coenzyme Q10, by extraction with methanol for 1 minute at 100 Bar.  

 

3.2. Macroalgae 

3.2.1. Polar species 

 

Dried biomass of algal species from Polar Regions was provided by Prof. Ulf Karsten, 

Institute of Biological Sciences, Applied Ecology, University of Rostock/Germany. Arctic 

specimens were collected in Kongsfjorden (Spitsbergen, Norway, 78°55.5’N;11°56.0’E) 

including Prasiola crispa, Monostroma arcticum, Polysiphonia arctica, Devaleraea 

ramentacea, Odonthalia dentata, Phycodrys rubens and Sphacelaria plumosa. 

Antarctic specimens were collected in Potter Cove (King George Island, Antarctic 

Peninsula, 62°14’S;58°40’W) and include Gigartina skottsbergii, Plocamium 

cartilagineum, Myriogramme manginii, Hymencladiopsis crustigena and Kallymenia 

antarctica.  

 

3.2.2. Fucus vesiculosus 

 

Dried biomass of the brown macro-algae Fucus vesiculosus and a residue after 

polysaccharide extraction was provided by Dipl.-Chem. Thomas Hahn, Faculty of 

Mechanical and Process Engineering, Technical University of Kaiserslautern, 

Kaiserslautern/Germany. The biomass was collected at the German coast of the North 

Sea and polysaccharides were extracted by the following procedure: After an 

incubation of the biomass in a mixture of formaldehyde, ethanol and water (unknown 
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ratio and duration) the biomass was washed by acetone. Subsequently, the extraction 

was performed while keeping the biomass for 3 hours in a CaCl2 (1 %) solution at 70 

°C.  

3.3. Biomass characterisation 

3.3.1. Sample preparation 

 

Prior to analysis, the algal biomass was ground and sieved to obtain homogenous 

samples with a particle size of 250 µm. Subsequently the biomass was dried at 70 °C 

for 24 h to evaporate residual surface water. Until further use, samples were stored in 

clean and sealed glass containers, placed in a desiccator.  

 

3.3.2. Ultimate analysis 

 

Elemental analysis was performed by an external company (MEDAC Ltd., Surrey/UK) 

to determine the basic elemental composition of algal biomass samples. Therefore, 

carbon, hydrogen and nitrogen (CHN) were analysed using a Carlo Erba Flash 1112 

elemental analyzer with ±0.3 % absolute accuracy. The oxygen content was calculated 

by difference. CHN analysis was performed in duplicates.  

 

3.3.3. Higher heating value 

 

The higher heating value (HHV) of the biomass was calculated using equation (5) 

including C, H and N in mass percentages on dry basis [158].  

 

HHV= 5.22C2 − 319C − 1647H + 38.6C ×H + 133N + 21028    (5) 
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3.3.4. Total lipid extraction and FAMEs analysis 

 

Total lipids were extracted from the biomass in glass tubes by a modified Bligh & Dyer 

method [159], [160]. The biomass was acidified with 0.15 mol acetic acid (1 ml) 

followed by the addition of chloroform/methanol (1:2, 7.5 ml), distilled water (2.25 ml) 

and chloroform (2.25 ml). After phase separation, the lower chloroform layer containing 

the lipids was removed and evaporated to dryness under nitrogen. Samples were 

resuspended in chloroform and stored at -20 °C under N2 until required. FAMEs of total 

lipid extracts were prepared by transmethylation in 2.5 % sulphuric acid in anhydrous 

methanol (2 ml) [161]. To avoid contaminations all glass ware cleaned with chromic 

acid. 

A lipid free residue was obtained, containing polymers, proteins, other extracts and 

ash. This was evaporated to dryness under nitrogen and kept sealed until analysis.  

GC-MS analysis of the FAMEs was employed to determine the fatty acid composition 

of the algae on a DB 23 capillary column (length 30 m, iD 0.25 mm, film thickness 0.25 

µm). The GC injector was operated in split mode (50:1) with an inlet temperature of 250 

°C. The column temperature was kept at 50 °C for 1 min then increased at 25 °C min-1 

to 175 °C, followed by a second ramp with a heating of 4 °C min-1 up to 235 °C held for 

15 min. Assignments of main FAMEs were made by using a NIST08 MS library.  

The weight of total lipid and residue is expressed relative to the known weight of the 

sample. All experiments were performed in triplicates and average results are 

presented.  

 

3.3.5. Total protein extraction 

 

For total protein extraction, algae were homogenised with 1 ml of 10 % trichloroacetic 

acid applying a potter homogenizer. Subsequently the proteinaceous residue was 

separated by centrifugation 4000 g for 10 min. Subsequently 5 washes with 5 ml 

acetone to remove main portions of the chlorophyll were performed [162]. After each 

wash the proteins were recovered by centrifugation. The solvent was evaporated under 

N2 until dryness and the sample stored sealed in a desiccator. The weight of the total 

proteins is expressed relative to the weight of biomass. Total protein extraction was 

performed in triplicates and average results are presented. 
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3.3.6. Thermogravimetric analysis 

 

Intermediate pyrolysis and ash determination was performed on the basis of the ASTM 

Standard E 1131-03 [163] for compositional analysis by TGA.  

For each analysis, approximately 5 mg of sample were placed in a 70 µl alumina 

crucible. To determine the volatile matter under intermediate pyrolysis conditions, the 

sample was initially heated to 105 °C with a linear heating rate of 10 °C min-1 and held 

for 10 min to ensure complete removal of moisture. Subsequently, a linear heating rate 

of 100 °C min-1 was applied to reach the final pyrolysis temperature of 900 °C, followed 

by a dwell time of 10 min, with an overall flow rate of 50 ml min-1 helium.  

 

For ash determination, a slow ashing procedure within oxidative atmosphere was 

performed. The sample was analysed in air atmosphere (50 ml min-1) and a heating 

rate of 5 °C min-1 from 40 °C to 575 °C and a final hold time of 15 min was applied.  

All TGA experiments were replicated in triplicates and average values are presented.  

 

To eliminate background effects of the instrument, for each method a “blank run” 

(empty crucible) was performed and a background curve obtained. This was stored 

with the according method and automatically subtracted from each experiment. To 

avoid contamination through sample residues, the furnace was cleaned by backing, 

(keeping the furnace temperature at 950 °C for 30 min) after every 5th measurement. 

Additionally, used crucibles were immersed in acetone and subsequently cleaned in a 

muffle furnace at 950 °C for 20 min. The temperature accuracy of the instrument 

according to the manufacturer is ±	0.25 °C.  

 

3.4. Analytical pyrolysis 

 

Intermediate pyrolysis studies and online analysis of pyrolysates of algal biomass and 

derived materials were conducted by the developed analytical pyrolysis system, 

presented in chapter 2.  

Sample amounts of 0.1 mg were pyrolysed in a Double-shot pyrolyser PY2020iD 

micro-furnace from Frontier Laboratories/ Japan at 500 °C in helium atmosphere (20 ml 

min-1). Once the pyrolysis zone reached the 500 °C, the sample was inserted by 

releasing the button of the sample holder and the crucible containing the sample was 

inserted by free fall into the quartz tube situated in the hot chamber. These process 
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conditions provide intermediate pyrolysis conditions including a TRT of the sample of 

0.04 min and a retention time of 1.6 min (revealed by kinetic analysis of Chlorella 

vulgaris biomass by Neeranuch Phusunti, EBRI/Aston University, 2011).  

The micro-furnace pyrolyser was interfaced to a split-/splitless (SSL) inlet port of a 

5890 Series II Gas chromatograph (Hewlett Packard, Agilent Technologies). A helium 

flow of 20 ml min-1 swept the pyrolysis vapours onto two DB 1701 capillary separation 

columns (length 60 m, iD 0.25 mm, film thickness 0.25 µm). The interface of the micro-

furnace was maintained isotherm at 350 °C. The split mode of the GC injector was 20:1 

and the inlet temperature 250 °C. The column temperature was kept isothermal at 50 

°C for 1 min, followed by an linearly increase of 3 °C min-1 to the final column 

temperature at 290 °C, which was held for 10 min before the column was cooled down 

rapidly to the initial temperature. Detection of chemical compounds of the pyrolysates 

was performed applying parallel data acquisition by MSD/FID or MSD/NPD.  

In Table 3-1 the instrumentation setting of the GC and in Table 3-2 the configurations 

of the detectors are presented. All measurements were carried out in triplicates and 

mean values are presented.  
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Table 3-1 Gas chromatograph settings 

 

Parameter Column I Column II 

Detector MSD FID NPD 

Carrier gas Helium Helium Helium 

Inlet control mode  Constant pressure Constant pressure Constant pressure 

Inlet pressure [kPa/psi]  250/ 36  60/ 8.7 60/ 8.7 

Injector temperature [°C] 250 250 250 

Split flow  

[ml min
-1
] 

20 20 20 

Split ratio 20:1 20:1 20:1 

Initial column flow 

[ml min
-1
] 

2.8 2.56 2.56 

Average velocity [cm/s] 44.4 38.3 38.3 

Initial temperature [°C] 50 50 50 

Initial time [min] 1 1 1 

Heating rate [°C] 3 3 3 

Final temperature [°C] 290 290 290 

Final Hold time [min] 10 10 10 

Full Program time [min] 91 91 91 
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Table 3-2 Detector settings 

 

Detector Parameter Value 

MSD  Column interface temperature [°C] 280 

Solvent delay [min] 2  

Mass range, scan mode [amu] 50-500 

Scans per second 1.5 

Helium flow [ml min
-1
] 2.8 

Outlet pressure Vacuum 

Ionization energy [eV] 70 

FID  Temperature [°C] 250 

Hydrogen flow [ml min
-1
] 40 

Air flow [ml min
-1
] 350 

Helium (makeup flow) [ml min
-1
] 15 

Outlet pressure Ambient 

NPD  Temperature [°C] 250 

Hydrogen flow [ml min
-1
] 4 

Air flow [ml min
-1
] 100 

Helium (makeup flow) [ml min
-1
] 15 

Outlet pressure Ambient 
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4. Results biomass characterisation 

4.1. Ultimate analysis, ash and calorific values 

 

The obtained CHNO, ash and HHV of all algae species are presented in Table 4-1. 

Both Chlamydomonas reinhardtii strains exhibited carbon contents of ca. 50-52 %, a 

hydrogen content of ca. 7 %, about 11 % of nitrogen and ca. 30 % of oxygen. Chlorella 

vulgaris exhibited lower amounts of carbon accounting for 43.9 %, hydrogen of 6.2 % 

and nitrogen of 6.7 %, and a higher oxygen content of ca. 43 %. The red alga 

Porphyridium purpureum exhibited a significant lower C and N and higher O content, of 

35 %, 1.3 % and 58 %, respectively. The obtained ash values of microalgae species 

range between 13.6-15.9 % and the HHV between 14.9-23 MJ kg-1.  

Of all macroalgae species, the obtained carbon contents vary between 22.3-38.9 %, 

the hydrogen within 3.9-5.8 %, the nitrogen between 1.4-4 % and oxygen within 52.6-

70.5 %. The highest carbon and hydrogen contents as well as the lowest oxygen 

content were measured within the biomass of Prasiola crispa. The lowest nitrogen 

content was obtained by Fucus vesiculosus and the highest by Hymenocladiopsis 

crustigena. Maximum oxygen values obtained in this study derived from biomass of 

Gigartina skottsbergii. Obtained ash values of macroalgae biomass range between 

15.5-44.7 %, where as the lowest was obtained by the species Fucus vesiculosus and 

the highest by Kallymenia antarctica. Higher heating values vary between 13.1-16 MJ 

kg-1within all species, where the highest was obtained by Prasiola crispa and the lowest 

by Myriogramme manginii.  
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Table 4-1 Ultimate analysis, ash content and higher heating values 

 

Type Species 
    C           H            N             O

a
            Ash 

[mass fraction %, a.r.] 

HHV 

[MJ kg
-1
] 

M
ic

ro
a

lg
a

e
 

Chlamydomonas 

reinhardtii wild type 
52.0 7.4 10.7 29.8 14.3 23.0 

Chlamydomonas 

reinhardtii CW15+ 
50.2 7.3 11.1 31.4 15.6 22.0 

Chlorella vulgaris 43.9 6.2 6.7 43.2 15.9 18.0 

Porphyridium 

purpureum 
35.2 5.5 1.3 58.0 13.6 14.9 

M
a

c
ro

a
lg

a
e

 

Prasiola crispa 38.9 5.8 2.7 52.6 37.6 16.0 

Monostroma arcticum 34.4 5.5 1.7 58.4 36.9 14.7 

Devaleraea 

ramentacea 
30.9 4.7 3.4 61.0 34.8 14.5 

Odonthalia dentata 35.3 5.2 3.1 56.4 34.2 15.2 

Phycodrys rubens 32.0 5.4 2.9 59.7 30.0 14.3 

Polysiphonia arctica 34.4 5.0 1.8 58.8 27.6 14.9 

Gigartina skottsbergii  23.7 3.9 1.9 70.5 40.2 13.8 

Hymenocladiopsis 

crustigena 
28.8 4.2 4.0 63.0 44.2 14.5 

Myriogramme manginii 22.3 4.9 3.4 69.4 38.9 13.1 

Kallymenia  antarctica 31.5 4.9 3.5 60.1 44.7 14.5 

Plocamium 

cartilagineum 
30.1 4.4 3.6 61.9 36.2 14.5 

Sphacelaria plumosa 34.0 5.0 2.1 58.9 34.2 14.8 

Fucus vesiculosus 29.8 4.4 1.4 64.4 15.5 14.2 

a
= calculated by difference  a.r.= as received 
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4.2. Total Lipid, total protein and FAMEs determination  

 

The separation of total lipids and total proteins of Chlamydomonas reinhardtii wild type, 

Chlamydomonas reinhardtii CW15+ and Chlorella vulgaris are presented in Table 4-2. 

Both Chlamydomonas reinhardtii strains contained 45.7-47.4 % total proteins and 18.1-

22.4 % total lipids. Chlorella vulgaris contained 54.9 % total proteins and 15.5 % total 

lipids. The residue of the three species after lipid extraction was obtained, which 

contained non-lipid fractions, such as carbohydrate, protein and other extracts, 

accounting for 62.3 % of Chlamydomonas reinhardtii wild type, for 65.6 % of 

Chlamydomonas reinhardtii CW15+ and 71.5 % for biomass of Chlorella vulgaris.  

 

The FAMEs compositions as mean percentage of total fatty acids of the three 

microalgae are listed in Table 4-3. Both Chlamydomonas reinhardtii strains exhibited a 

fatty acid composition with α-linolenic acid (18:3, all-cis-9,12,15-octadecatrienoic acid) 

being the predominant acyl constituent accounting for 64.3-69.4 %. Furthermore, 

palmitic acid (16:0, hexadecanoic acid) was detected with 19.2 % in Chlamydomonas 

reinhardtii wild type and with 14.6 % in Chlamydomonas reinhardtii CW 15+. Other 

FAMEs detected within the range of 6-7 % were oleic acid (18:1, (9Z)-octadec-9-enoic 

acid) and linoleic acid (18:2, all-cis-9,12-octadecadienoic acid). Furthermore, stearic 

acid (18:0, octadecanoic acid) accounted for 2-3 % in both Chlamydomonas reinhardtii 

strains. Overall, a total of saturated FAMEs of 21.2 %, 17.7 %, 31.4 % were identified 

for Chlamydomonas reinhardtii wild type, Chlamydomonas reinhardtii CW15+ and 

Chlorella vulgaris, respectively. Higher amounts of total unsaturated FAMEs of 78.8 %, 

82.4 %, and 68.6 % were indentified, respectively. In terms of PUFAs both 

Chlamydomonas reinhardtii strains contained ca. 71-76 % and Chlorella vulgaris 43.4 

%. 

In total lipids of Chlorella vulgaris various fatty acids were observed including amounts 

of less than 5 % myristic acid (14:0, tetradecanoic acid), palmitoleic acid (16:1, 

hexadec-9-enoic acid) and oleic acid. Major FAMEs are α-linolenic acid accounting for 

33.4 % and palmitic acid with 27.9 %. Furthermore, 10 % of linoleic acid was detected.  
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Table 4-2 Gross chemical components microalgal biomass 

 

a.r. = as received 

  

Species 

Total                  Total            Residue after 

 Protein             Lipid          total lipid extraction 

 

                  [mass fraction %, a.r.] 

Chlamydomonas reinhardtii  

wild type 

47.4 18.1 62.3 

Chlamydomonas reinhardtii 

CW15+ 

45.7 22.4 65.6 

Chlorella vulgaris  54.9 15.5 71.5 
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Table 4-3 FAMEs of microalgae 

 

FAMEs Chlamydomonas  

reinhardtii wild type [%] 

Chlamydomonas 

reinhardtii CW15+ [%] 

Chlorella vulgaris 

[%] 

14:0 - - 1.8 

16:0 19.2 14.6 27.9 

16:1 - - 4.1 

18:0 2.0 3.1 1.7 

18:1 7.2 6.7 21.1 

18:2 7.3 6.3 10.0 

18:3 64.3 69.4 33.4 

Total saturated  21.2 17.7 31.4 

Total  

unsaturated 

78.8 82.4 68.6 

Total PUFAs 71.6 75.7 43.4 
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4.3. Thermogravimetric analysis 

4.3.1. Introduction 

 

Thermal decomposition of biomass depends on its chemical composition, process 

temperatures and heating rates. TGA studies with a heating rate of 100 °C min -1 in the 

range of 100-900 °C were conducted to investigate pyrolysis pattern for microalgae 

biomass and from there derived materials under intermediate pyrolysis conditions. In 

this context, from microalgae biomass extracted total lipids, total proteins and residues 

after lipid or enzyme extractions were included to reveal valuable details about 

microalgal pyrolysis behaviour.  

 

4.3.2. Microalgae  

4.3.2.1. Chlamydomonas reinhardtii and Chlorella vulgaris  

 

TG and DTG curves of total lipids, total protein, residue after lipid extraction and the 

biomass of the three specimens are presented in Figure 4-1.  

Thermogravimetric analysis revealed a release of volatiles in three main decomposition 

stages, (stage I – III) throughout the pyrolytic process of all samples.  

 

The curves of total lipid analysis obtained by Chlamydomonas reinhardtii revealed 

stage I ranging from ca. 170-250 °C releasing 6 % of the total volatiles. In stage II, from 

ca. 250 to 500 °C two main peaks of weight loss were detected at 300 °C and 410 °C, 

releasing 78 % of volatiles. Total lipids of Chlorella vulgaris released 3 % of volatiles in 

stage I and exhibited one main decomposition peak in stage II at 400 °C corresponding 

to the release of 82 % of volatiles. In stage III, within temperatures of 500-900 °C 

further 4 % of volatiles were released and a char residue of 10-14 % was formed from 

all three lipid samples. 

 

The extracted proteins of all three strains released 2 % of their volatiles at stage I. All 

three proteins samples exhibit their maximum weight loss during stage II (200-500 °C) 

peaking at 350-360 °C. Additionally, Chlamydomonas reinhardtii wild type shows a 

shoulder at 320 °C and Chlorella vulgaris at 490 °C. During this decomposition phase 

proteins from both Chlamydomonas reinhardtii strains release 62 % and Chlorella 

vulgaris proteins 52 % volatiles. In stage III, from 500-900 °C both Chlamydomonas 

reinhardtii strains release 5 % volatile matter and a char residue of 30 % is obtained. 



 

95 
 

Chlorella vulgaris released 10 % of volatiles in this stage, forming a slightly higher char 

residue of 37 %.  

 

The data obtained by thermogravimetric analysis of the residue after total lipid 

extraction of all three specimens revealed a weightloss of 1-3 % in stage I (100-230 

°C). Stage II ranged from ca. 230-500 °C and both Chlamydomonas reinhardtii strains 

released 68 % and Chlorella vulgaris 60 %. The maximum degradation temperatures 

were determined being 380 °C for Chlorella vulgaris and 390 °C for Chlamydomonas 

reinhardtii wild type and Chlamydomonas reinhardtii CW15+. In addition, the residues 

of Chlamydomonas reinhardtii wild type revealed a shoulder at 320 °C and Chlorella 

vulgaris at 500 °C. Above 500 °C another 1-3 % of volatiles were released by all 

residues. Obtained char values by both Chlamydomonas reinhardtii strains were ca. 27 

% and Chlorella vulgaris exhibited a char fraction of ca. 37 %.  

 

The thermal degradation of biomass samples of all three specimens revealed similar 

shaped TG and DTG curves. Both Chlamydomonas reinhardtii strains exhibited 

decomposition stage I within 100-270 °C, releasing 6 % of volatiles. The main pyrolytic 

decomposition process for all biomass samples occurred between 270-500 °C with the 

maximum weight loss detected at 350-360 °C. The amount of volatiles released by the 

two Chlamydomonas reinhardtii strains accounts for 60 % and for Chlorella vulgaris 54 

%. Furthermore, the biomass of Chlorella vulgaris exhibited two additional 

decomposition steps at 490 °C and 730 °C. Within the temperatures of 500-900 °C 

both Chlamydomonas reinhardtii strains released 7 % of their volatiles and formed a 

char residue of 26 %, whereas Chlorella vulgaris released 12 % of volatiles forming a 

char residue of 30 %.  
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Figure 4-1 TG/DTG of green microalgae materials 
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Figure 4-1 continued 
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4.3.2.2. Porphyridium purpureum 

 

Investigations of red algae biomass of Porphyridium purpureum and its residue after 

extraction of Coenzyme Q10 were conducted and TG and DTG curves are presented in 

Figure 4-2.  

Three decomposition stages have been observed for the entire biomass, as well as for 

the residue. 2 % of the total volatiles were released from both samples within stage I, 

ranging from 100 to 250 °C. Within stage II the maximum degradation temperature has 

been determined for the biomass at 300 °C and the residue at 320 °C. The main 

degradation and therefore evolution of volatiles stopped with reaching 600 °C and 

further weightloss around 820 °C was observed for both samples. 66-69 % of volatiles 

were released from the biomass and the residue in stag II. At the end of the 

measurements, for both samples, 31-34 % char were obtained.  
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Figure 4-2 TG/DTG of Porphyridium purpureum 

 

 

  



 

100 
 

4.3.3. Macroalgae 

4.3.3.1. Polar species 

 

The obtained TG and DTG curves of the arctic and antarctic algae specimen are 

shown in Figure 4-3 and 4-4. 

Similar shaped curves were obtained from the thermal analysis of all Arctic and 

Antarctic species, exhibiting a three staged thermal decomposition. The first stage 

ranging from 100 to 180 °C corresponds to a weight loss of ca. 2.5 % of volatiles. 

Stage two was observed at a temperature range of 180-650 °C exhibiting a weightloss 

of 40-60 % of the volatiles. The lowest pyrolysis temperatures of 220 °C and 240 °C 

were obtained from the red algal species from the Antarctic, Myriogramme manginii. 

and Gigartina skottsbergii, whereas the red algae Odonthalia dentata and brown algae 

Sphacelaria plumosa form the Arctic exhibit the highest with 310 °C and 320 °C, 

respectively.  

Within stage three ranging from 630 to 900 °C about 2-14 % of volatiles were released 

for all biomass samples. The lowest amount of char residue was produced by O. 

dentata, with 33% and the highest yield of 46 % was obtained by Myriogramme 

manginii. In addition, the thermal degradation of the red algae species Prasiola arctica, 

Phycodrys rubens, Hymenocladiopsis crustigena, Plocamium cartilagineum and 

Kallymenia antarctica was characterised by an additional decomposition peak towards 

the end of stage III occurring at temperatures of 820-850 °C.  
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Figure 4-3 TG/DTG Arctic species 
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Figure 4-3 continued 
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Figure 4-4 TG/DTG Antarctic species 
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4.3.3.2. Fucus vesiculosus 

 

In addition Fucus vesiculosus biomass and its residue after polysaccharide extractions 

were investigated by TGA as shown in Figure 4-5. The main thermal decomposition 

takes place within stage II, ranging from 200-600 °C, with a maximum degradation 

temperature at 300°C for both samples. The release of volatiles obtained by the 

biomass accounted for 63 % and for the residue for 66 %.  

Char values of 45 % and 40 % for the biomass and the residue were obtained, 

respectively. Fucus vesiculosus biomass as well as its residue exhibited an additional 

degradation peak at ca. 800°C.  
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Figure 4-5 TG/DTG Fucus vesiculosus 
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5. Results analytical pyrolysis 

5.1. Introduction 

 

Py-GC equipped with various detectors was used to study pyrolysis products evolving 

from several micro- and macroalgae biomass and from there derived materials under 

intermediate pyrolysis conditions, at Teq= 500 °C. Included are fresh and saline water 

microalgae species, growing from temperate to tropical regions. Furthermore, pyrolysis 

of extracted total lipids, total proteins and residues after lipid extractions from the 

microalgae Chlamydomonas reinhardtii wild type, its cell wall mutant CW15+ and 

Chlorella vulgaris was performed in order to obtain information about the origin of 

pyrolysis products. In addition, the biomass of Porphyridium purpureum and its 

residues after coenzyme Q10 extraction was studied. Macroalgae species from both 

Polar Regions as well as Fucus vesiculosus, endemic to the temperate climate along 

the North Sea coastlines of Europe are also investigated, as well as its residue after 

polysaccharide extraction.  

Preliminary pyrograms obtained by parallel Py-MSD/FID and Py-MSD/NPD analysis 

from Chlorella vulgaris biomass and materials are a first approach of the dual detector 

set-up of the analytical pyrolysis unit.  

At the current status of research the MSD was the main detector for identification of 

peaks in algal material derived pyrolysates, as it reveals valuable information by mass 

spectral data.  

Around 50 identified chemical compounds by retention time data from standard 

compounds and by using a NIST08 MS library are presented in Appendix D. A semi-

quantitative analysis (area % on pyrograms) was performed on pyrolysis products of all 

materials to reveal information about evolution of compounds by all different samples 

and is presented in the following sections.  
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5.2. Microalgae 

5.2.1. Chlamydomonas reinhardtii and Chlorella vulgaris 

5.2.1.1. Biomass 

 

The pyrograms derived from biomass of Chlamydomonas reinhardtii wild type, its cell 

wall mutant CW15+ and Chlorella vulgaris are shown in Figure 5-1. The identified 

chemicals within the pyrolysates with peak number and area percentage obtained from 

the pyrograms are listed in Table 5-1.  

In general, detected chemical compounds obtained by intermediate pyrolysis showed 

relative consistency between the three microalgae strains, although variations in their 

proportions were evident.  

About 56-60 % of the total peak area of the pyrograms obtained by the biomass of both 

Chlamydomonas reinhardtii strains was identified. In terms of detected chemicals 

similar apparent pyrograms from both strains were obtained, and major identified 

components were toluene (ca. 4-5 %), 4-methylphenol (ca. 4 %) and indole (ca. 5 %). 

Phytol and isomers, including trans-phytol accounted for ca. 20-27 % of the total 

pyrogram area. Furthermore, benzoic acid alkyl ester derivatives (ca. 4-5 %) and 

squalene (ca. 4-5 %) was detected.  

Identified compounds, with an area less than 4 % were phenol (ca. 1.4 %), 3-

methylindole (ca. 1.4 %), levoglucosan (1.4-1.9 %), dipeptides (ca. 1.5 %) and 2-

propenoic acid, 3-(4-methoxyphenyl)-, 2-ethylhexyl ester (2-2.4 %). Furthermore, in 

traces (<1-1 %) detected compounds include acetic acid, pyridine, ethylbenzene, 

pyrrole, styrene, furfural, pyrrole, 2- or 3-methyl, 2-furaldehyde, 5-methyl, 3-

phenylpropionitrile, picolinamide, hexadecanamide and benzenedicarboxylic acid, alkyl 

ester derivative.  

 

Major pyrolysis compounds detected in pyrolysates of Chlorella vulgaris biomass were 

phytol (5.8 %), 2-propenoic acid, 3-(4-methoxyphenyl)-, 2-ethylhexyl ester (8 %), 

benzoic acid alkyl ester derivatives (8.5 %). The peak area of squalene accounted for 

25.5 % and was the major pyrolysis product obtained of Chlorella vulgaris biomass.  

Minor compounds, with peak areas less than 4 % were toluene (2.9 %), phenol (1.9 %), 

indole (3.3 %) and hexadecanamide (2.6 %). Compounds detected in Chlorella vulgaris 

pyrolysates only were 1-hexadecene (1.3 %) and octadecanoic acid, octyl ester (5.6 

%). Compared to Chlamydomonas reinhardtii strains no trans-phytol, dipeptides and 

levoglucosan was detected. Amounts detected in traces (<1-1 %) include acetic acid, 
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ethylbenzene, pyrrole, styrene, furfural, 3-phenylpropionnitrile, picolinamide, 3-

methylindole, and benzenedicarboxylic acid, alkyl ester derivative.  
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Figure 5-1 Pyrograms microalgal biomass at 500 °C 

 

 

 
 

 
 

 
 

A= Chlamydomonas reinhardtii wild type 

B= Chlamydomonas reinhardtii CW15+ 

C= Chlorella vulgaris 
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Table 5-1 Peak areas of pyrolysis compounds - microalgal biomass 

                                                                   Area percent [%] 

Peak 

No.  

Chemical 

Compound 

Chlamydomonas 

reinhardtii  

Wild type  

Chlamydomonas 

reinhardtii  

CW15+ 

Chlorella 

vulgaris 

 

1 Acetic Acid <1 <1 <1 

2 Toluene 5.1 4.4 2.9 

3 Pyridine <1 <1 n.d. 

4 Ethylbenzene <1 <1 <1 

5 Pyrrole <1 <1 <1 

6 Styrene <1 <1 <1 

7 Furfural <1 <1 <1 

8 Pyrrole, 2 or 3-methyl <1 <1 n.d. 

9 Isomer of 8 <1 <1 n.d. 

11 2-Furaldehyde, 5-methyl <1 <1 n.d. 

12 Phenol 1.4 1.3 1.9 

15 4-Methylphenol 4.4 4.1 1.1 

18 3-Phenylpropionitrile <1 <1 <1 

20 Picolinamide <1 <1 <1 

22 Indole 4.8 5.0 3.3 

24 3-Methylindole 1.4 1.2 <1 

29 Phytol 12.1 5.7 5.8 

31 Levoglucosan 1.9 1.3 n.d. 

32 Isomer of 29 3.3 2.6 <1 

37 1-Hexadecene n.d. n.d. 1.3 

38 Trans-phytol 8.2 16.3 n.d. 

39 Dipeptide 1.4 1.5 n.d. 

40 Dipeptide 1.4 1.5 n.d. 

42 Benzoic acid, alkyl ester 

derivative 

1.9 2.0 1.8 

43 Hexadecanamide <1 1.2 2.6 

44 2-Propenoic acid, 3-(4-

methoxyphenyl)-,2-ethylhexyl 

ester 

2.0 2.4 8.0 

45 Isomer 42 1.3 1.6 5.0 

47 Isomer 42 1.4 1.5 1.7 

49 Benzenedicarboxylic acid, alkyl 

ester derivative 

<1 1.4 <1 

50 Octadecanoic acid, octyl ester n.d. n.d. 5.6 

51 Squalene 4.3 4.7 25.5 

Total Identified Area % 56.3 59.7 66.5 
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5.2.1.2. Proteins 

 

The pyrograms of extracted total proteins from Chlamydomonas reinhardtii wild type, 

its cell wall mutant CW15+ and Chlorella vulgaris are shown in Figure 5-2 along with 

the identified chemical compounds and their area percentages in Table 5-2. 

Main chemical compounds in pyrolysates of total proteins extracted from 

Chlamydomonas reinhardtii wild type and its cell wall mutant CW15+ were toluene (ca. 

7-9 %), 4-methylphenol (ca. 7-8 %) and indole (ca. 8-9 %).  

Products detected in minor amounts include styrene (<1-1.8 %), phenol (ca. 2 %), 3-

phenylpropionitrile (ca. 1.2 %), 3-methyl-indole (ca. 2 %), phytol and isomers (ca. 4-9 

%) and a dipeptide (ca. 2-3 %). Products, detected with a peak area less than 1 % 

were pyridine, ethylbenzene, pyrrole, pyrrole, 2– or 3- methyl and isomer, 2-

furaldehyde, 5-methyl and picolinamide.  

 

In pyrolysates of total proteins extracted from Chlorella vulgaris main compounds 

indentified were toluene (6.2 %) and indole (6.7 %). Furthermore, compounds detected 

in this pyrolysate only include 1-hexadecene with 7.2 % and hexadecanamide with 1.7 

%. Other compounds detected in minor amounts include styrene (1.5 %), phenol (3 %), 

4-methylphenol (2.8 %), 3-phenylpropionitrile (1.4 %), 3-methylindole (1.8 %) and 

phytol (2.6 %). Compounds detected in traces (<1 %) were pyridine, ethylbenzene, 

pyrrole and the isomer of phytol.  

 

Furthermore minor amounts of 2-propenoic acid, 3-(4-methoxyphenyl)-, 2-ethylhexyl 

ester (1.1-3.3 %) were detected in all three protein derived pyrolysates and 

octadecanoic acid octyl ester (1.7 %) in Chlorella vulgaris only.  

Overall, ca. 40 % of the total peak area could be identified for both Chlamydomonas 

reinhardtii protein derived pyrograms and ca. 35 % of the Chlorella vulgaris pyrogram.  
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Figure 5-2 Pyrograms of microalgae proteins at 500 °C 

 

 

 

 

 

 

 

A= Chlamydomonas reinhardtii wild type 

B= Chlamydomonas reinhardtii CW15+ 

C= Chlorella vulgaris 
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Table 5-2 Peak areas of pyrolysis compounds - microalgal proteins 

 

  

                                                                                        Area percent [%] 

Peak 

No.  

Chemical 

Compound 

Chlamydomonas 

reinhardtii 

Wild type 

Chlamydomonas 

reinhardtii  

CW15+  

Chlorella 

vulgaris  

2 Toluene 9.3 7.4 6.2 

3 Pyridine <1 <1 <1 

4 Ethylbenzene <1 <1 <1 

5 Pyrrole <1 <1 <1 

6 Styrene 1.8 <1 1.5 

8 Pyrrole, 2 or 3-methyl <1 <1 n.d. 

9 Isomer of 8 <1 <1 n.d. 

11 2-Furaldehyde, 5-methyl <1 <1 n.d. 

12 Phenol 2.4 2.0 3.0 

15 4-Methylphenol 7.7 6.9 2.8 

18 3-Phenylpropionitrile 1.3 1.2 1.4 

20 Picolinamide <1 <1 n.d. 

22 Indole 9.1 8.6 6.7 

24 3-Methylindole 2.0 2.0 1.8 

29 Phytol 2.8 3.8 2.6 

32 Isomer of 29 1.3 5.2 <1 

37 1-Hexadecene n.d. n.d. 7.2 

40 Dipeptide 2 2.6 n.d. 

43 Hexadecanamide  <1 1.2 1.7 

Total Indentified Area % 39.7 40.9 34.9 
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5.2.1.3. Lipids 

 

Pyrograms obtained by intermediate pyrolysis of total lipids extracted from 

Chlamydomonas reinhardtii wild type, its cell wall mutant CW15+ and Chlorella vulgaris 

are shown in Figure 5-3. Assignments of peaks and their area percentage are listed in 

Table 5-3.  

Major pyrolysis products obtained by both Chlamydomonas reinhardtii strains are  

benzenedicarboxylic acid alkyl ester derivative accounting for 41-43.5 %. By contrast, 

pyrolysis of Chlorella vulgaris derived lipids yielded lower levels of benzenedicarboxylic 

acid, alkyl ester (ca. 5 %) and benzoic acid, alkyl derivates (ca. 5 %).  

In addition, octadecanoic acid octyl ester (ca. 5 %), hexadencanoic acid methyl ester 

(ca. 3 %) and aliphatic hydrocarbons including heptadecane, 1-nonadecene and 

heneicosane (totalling ca. 11 %) were only detected from Chlorella vulgaris lipids. 

Squalene was detected in all three samples, accounting for ca. 5-9 % in 

Chlamydomonas reinhardtii strains and 13.8 % in Chlorella vulgaris. 

Phytol and its isomer were detected in all three pyrolysates accounting for ca. 6-15 %. 

However, trans-phytol was detected in pyrolysates of Chlamydomonas reinhardtii 

strains only, accounting for 11-12 %.  
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Figure 5-3 Pyrograms of microalgae lipids at 500 °C 

 

 

 

 

 

 

 

A= Chlamydomonas reinhardtii wild type 

B= Chlamydomonas reinhardtii CW15+ 

C= Chlorella vulgaris 
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Table 5-3 Peak areas of pyrolysis compounds - microalgal lipids 

 

 

  

                                                                                          Area percent [%] 

Peak  

No.  

Chemical 

Compound 

Chlamydomonas 

reinhardtii  

Wild type 

Chlamydomonas 

reinhardtii 

CW15+ 

Chlorella 

vulgaris 

 

25 Heptadecane n.d. n.d. 1.9 

29 Phytol 9.0 11.6 2.7 

32 Isomer of 29 1.8 3.5 2.9 

34 Hexadecanoic acid, methyl ester n.d. n.d. 2.8 

38 Trans-phytol 12.3 11.2 n.d. 

42 Benzoic acid, alkyl ester derivative 2.9 2.1 1.8 

44 2-Propenoic acid, 3-(4-

methoxyphenyl)-,2-ethylhexyl ester 

5.3 3.7 3.5 

45 Isomer 42 2.7 1.9 1.3 

46 1-Nonadecene n.d. n.d. 5.5 

47 Isomer 42 2.7 1.7 1.2 

48 Heneicosane n.d. n.d. 3.6 

49 Benzenedicarboxylic acid, alkyl 

ester derivative 

41.2 43.5 5.0 

50 Octadecanoic acid, octyl ester n.d. n.d. 5.0 

51 Squalene 8.5 5.3 13.7 

Total Indentified Area % 86.4 84.5 50.9 
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5.2.1.4. Residues  

 

The obtained pyrograms of residual biomass derived after lipid extraction from the 

microalgae Chlamydomonas reinhardtii wild type, its cell wall mutant CW15+ and 

Chlorella vulgaris are shown in Figure 5-4 along with the assigned peaks and their area 

percentage in Table 5-4.  

Major chemical compounds detected in the pyrolysates of both Chlamydomonas 

reinhardtii strains were toluene (ca. 6 %), 4-methylphenol (ca. 5-6.4 %) and indole (ca. 

7 %). Minor amounts detected include phenol (ca. 1.8 %), 3-methylindole (ca. 1.8 %), 

phytol and isomers (ca. 2-4 %), dipeptides (ca. 5 %) and 2-Propenoic acid, 3-(4-

methoxyphenyl)-,2-ethylhexyl ester (ca. 1-3.6 %). Identified chemical compounds with 

peak areas less that 1 % were acetic acid, pyridine, pyrrole, 3-phenylpropionnitrile, 

picolinamide. Furthermore, levoglucosan was found in the residue of the 

Chlamydomonas reinhardtii wild type derived sample with 3.3 %.  

 

In pyrolysates of Chlorella vulgaris detected compounds include indole (4.2 %), toluene 

(3.5 %), phytol and isomers (4.9 %). Minor amounts of phenol (2.3 %), 4-methyphenol 

(2.6 %) 3-methylindole, 2-propenoic acid, 3-(4-methoxyphenyl)-,2-ethylhexyl ester (2.2 

%) and benzoic acid, alkyl ester derivatives (ca. 1.4 %).  

Overall, about 36-38 % and 23 % of the total peaks areas of both Chlamydomonas 

reinhardtii strains and Chlorella vulgaris were identified, respectively.  
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Figure 5-4 Pyrograms of microalgae residues at 500 °C 

 

 

 

 

 

 

A= Chlamydomonas reinhardtii wild type 

B= Chlamydomonas reinhardtii CW15+ 

C= Chlorella vulgaris 
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Table 5-4 Peak areas of pyrolysis compounds – microalgae residues 

 

  

  

                                                                             Area percent [%] 

Peak  

No.  

Chemical 

Compound 

Chlamydomonas 

reinhardtii  

Wild type 

Chlamydomonas 

reinhardtii 

CW15+ 

Chlorella 

vulgaris 

 

1 Acetic Acid <1 <1 <1 

2 Toluene 5.9 6.2 3.5 

3 Pyridine <1 n.d. n.d. 

5 Pyrrole <1 <1 <1 

12 Phenol 1.7 1.8 2.3 

15 4-Methylphenol 6.4 4.9 2.6 

18 3-Phenylpropionitrile <1 n.d. n.d. 

20 Picolinamide <1 n.d. <1 

22 Indole 6.8 6.5 4.2 

24 3-Methylindole 2.1 2.2 2.1 

29 Phytol 2.1 1.0 3.3 

31 Levoglucosan 3.3 n.d. n.d. 

32 Isomer of 29 n.d. 1.2 1.6 

38 Trans-phytol  1.8 n.d. n.d. 

39 Dipeptide 2.6 3.0 n.d. 

40 Dipeptide 2.5 1.8 n.d. 

42 Benzoic acid, alkyl ester 

derivative 

<1 1.6 n.d. 

43 Hexadecanamide n.d. n.d. <1 

44 2-Propenoic acid, 3-(4-

methoxyphenyl)-,2-ethylhexyl 

ester 

1.1 1.2 2.2 

45 Isomer of 42 n.d. 1.6 <1 

47 Isomer of 42 n.d. 1.4 1.4 

Total Identified Area % 36.5 35.6 23.2 



 

121 
 

5.2.1.5. Dual detector analysis 

 

Pyrograms of Chlorella vulgaris biomass, extracted total proteins, extracted total lipids 

and the residue obtained after lipid extraction was analysed by dual detector analysis, 

obtained pyrograms of Py-GC-MSD/FID and Py-GC-MSD/NPD, shown in Figure 5-5.  

The FID produces a similar pyrogram to the MSD caused by detection of C-H 

containing compounds. The NPD detects only chemicals containing organic bound 

nitrogen and/or phosphorous. As can be seen from the NPD pyrogram, many nitrogen 

containing compounds are apparent in the pyrolysate of Chlorella vulgaris biomass.  

Furthermore, a higher sensitivity of the NPD for nitrogen and/or phosphorous 

compounds, compared to the MSD is evident. Both, the FID and NPD require analytical 

standards to relate to their retention time for further interpretation of the pyrogram.  

The chemical compounds, which have been identified by applying retention times of 

analytical standards for each detector, are presented in Table 5-5 along with their peak 

area. Generally, a retention time shift of around 0.3 min between the MSD and FID as 

well as between the MSD and NPD was observed. This is caused by the different 

pressure regimes within the detectors, as already outlined in the section 2.5. 
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Figure 5-5 Dual detector pyrograms of Chlorella vulgaris at 500 °C 

 

A = MSD/FID B= MSD/NPD 

 

 

 

 

 

Chlorella vulgaris Biomass 
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Figure 5-5 continued 

 

A = MSD/FID B= MSD/NPD 

 

 

 

 

 

Chlorella vulgaris Proteins 
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Figure 5-5 continued 

 

A = MSD/FID B= MSD/NPD 

 

 

 

 

 

Chlorella vulgaris Lipids 
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Figure 5-5 continued 

 

A = MSD/FID B= MSD/NPD 

 

 

 

 

Chlorella vulgaris Residue 
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Table 5-5 Compounds identified by analytical standards 

 

  

                                                                       Area percent [%] 

Detector Peak 

No. 

Compound Chlorella 

vulgaris 

Biomass 

Chlorella 

vulgaris 

Proteins 

Chlorella 

vulgaris 

Lipids 

Chlorella 

vulgaris 

Residue 

F
ID
 

2 Toluene 3.5 7.2 n.d. 4.2 

4 Ethylbenzene 1.2 1.5 n.d. n.d. 

6 Styrene 1.0 1.8 n.d. n.d. 

12 Phenol 2.3 3.5 n.d. 2.7 

15  4-Methylphenol 1.6 3.7 n.d. 3.1 

N
P
D
 

3 Pyridine n.d. 1.3 n.d. n.d. 

5 Pyrrole 1.5 1.6 n.d. 1.1 

18 3-

Phenylpropionitrile 

1.7 2.1 n.d. n.d. 

20 Picolinamide 1.3 n.d. n.d. 1.2 

22 Indole 3.9 7.5 n.d 4.9 

24 3-Methylindole 1.3 2.4 n.d. 2.8 
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5.2.2. Porphyridium purpureum 

 

The biomass and a residue after the extraction of Coenzyme Q10 of the red algae 

Porphyridium purpureum was used in this study and obtained pyrograms are shown in 

Figure 5-6. The identified peaks and their peak area percentage are listed in Table 5-6.  

The most characteristic peak detected in the pyrolysate of the biomass of Porphyridium 

purpureum was levoglucosan accounting for ca. 25 %. Furthermore, benzoic acid, alkyl 

ester derivatives were detected with ca. 15 %, 2-propenoic acid, 3-(4-methoxyphenyl)-

,2-ethylhexyl ester with 9.8 % and squalene with ca. 10.7 %. Chemical compounds 

detected in minor amounts were 5-(hydroxymethyl)-2-furaldehyde (3.0 %), furfural (2.1 

%), triphenylmethyl chloride (2.0 %) and phenol (1.0 %). Furthermore, acetic acid, 

toluene, styrene, 5-methyl-2-furaldehyde and 1,4:3,6-dianhydro-α-D-glucopyranose 

were detected in amounts less than 1 %.  

The obtained pyrogram of the residue after high pressure methanol extraction of the 

Coenzyme Q10 revealed a levoglucosan content of ca. 47 %. Other detected 

compounds were furfural (3.0 %), 5-(hydroxymethyl)-2-furaldehyde (2.3 %), squalene 

(2.2 %). In addition 1-2 % of benzoic acid, alkyl ester derivative, 2-propenoic acid, 3-(4-

methoxyphenyl)-,2-ethylhexyl ester and 1,4:3,6-dianhydro-α-D-glucopyranose were 

detected.  
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Figure 5-6 Pyrograms of Porphyridium purpureum at 500 °C 

 

 

 

 

 

A= Porphyridium purpureum biomass 

B= Porphyridium purpureum residue 
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Table 5-6 Peak areas of pyrolysis compounds - Porphyridium purpureum  

 

 

  

                                                                                                   Area percent [%] 

Peak  

No.  

Chemical 

Compound 

Porphyridium 

purpureum 

Biomass 

 

Porphyridium   

purpureum 

Residue 

1 Acetic Acid <1 n.d. 

2 Toluene <1 n.d. 

6 Styrene <1 n.d. 

7 Furfural 2.1 3.0 

11 5-Methyl-2-furaldehyde <1 <1. 

12 Phenol 1.0 n.d. 

19 1,4:3,6-Dianhydro-α-D-glucopyranose <1 1.6 

21 5-(Hydroxymethyl)-2-furaldehyde  2.3 3.0 

31 Levoglucosan 25.3 46.9 

41 Triphenylmethyl chloride 2.0 n.d. 

42 Benzoic acid, alkyl ester derivative 5.0 1.1 

44 2-Propenoic acid, 3-(4-methoxyphenyl)-,2-

ethylhexyl ester 

9.8 1.4 

45 Isomer 42 5.2 <1 

47 Isomer 42 5.0 1.4 

51 Squalene 10.7 2.2 

Total Identified Area % 69.1 59.9 
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5.3. Macroalgae 

5.3.1. Arctic species 

 

By intermediate pyrolysis generated products of arctic species including Prasiola 

crispa, Monostroma arcticum, Polysiphonia arctica, Devaleraea ramentacea, 

Odonthalia dentata, Phycodrys rubens and Sphacelaria plumosa were analysed.  

Obtained pyrograms are presented in Figure 5-7 and identified compounds listed in 

Table 5-7.  

The pyrograms showed a relative consistency in the types of pyrolysis products 

obtained although unique chemical compounds for some species were evident. The 

major pyrolytic chemical obtained by pyrolysis of arctic algal biomass was levoglucosan 

occurring within the range of 10-62 % within all obtained pyrolysates. Furthermore, 5-

methyl-2-furaldehyde, furfural and 1-hexandence were found in substantial amounts of 

10 % in some of the species.  

Major compounds detected in pyrolysates obtained from Prasiola crispa include 24.2 % 

levoglucosan, 6.8 % D-allose, 4.9 % 5-methyl-2-furaldehyde and 4.6 % phytol. 

Products accounting for 1-3 % were toluene, furfural, 5-(hydroxymethyl)-2-furaldehyde, 

isosorbide, triphenylmethyl chloride, 2-propenoic acid, 3-(4-methoxyphenyl)-,2-

ethylhexyl ester, benzoic acid, alkyl ester derivatives and octadecanoic acid, octyl 

ester.  

Within the pyrolysates of Monostroma arcticum detected compounds were 

levoglucosan accounting for 29.3 %, 1-hexadencene with 9.4 %, 5-methyl-2-

furaldehyde with 9.3 %, triphenylmethyl chloride with 8 %, benzoic acid, alkyl ester 

derivatives with 7.5 % and 2-Propenoic acid, 3-(4-methoxyphenyl)-,2-ethylhexyl ester 

with 5.3 %. Chemical compounds detected within 2-5 % were octadecanoic acid, octyl 

ester, 2 or 3- or 4-chlorobenzophenone, and furfural.  

The major pyrolysis product obtained from Polysiphonia arctica was levoglucosan 

accounting for 61.6 %. Compounds with the amount of ca. 2 % include 5-

(hydroxymethyl)-2-furaldehyde and unidentified anhydrosugar.  

Main intermediate pyrolysis products of Devalaraea ramentacea include 10.6 % of 

furfural and 10.1 % of levoglucosan. Furthermore, toluene, phenol, 4-methylphenol, 

triphenylmethyl chloride, benzoic acid, alkyl ester derivatives, 2-propenoic acid, 3-(4-

methoxyphenyl)-,2-ethylhexyl ester, octadecanoic acid, octyl ester and squalene were 

detected within the range of ca. 2-4 %.  

Pyrolysis of Odonthalia dentata biomass generated 46.2 % levoglucosan, 4.3 % 

squalene, 5 % benzoic acid, alkyl ester derivatives and 3.8 % 2-propenoic acid, 3-(4-

methoxyphenyl)-,2-ethylhexyl ester. In addition, toluene, furfural, 1-(2-Furanyl)-
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ethanone, 5-methyl-2-furaldehyde, phenol, 3-furancarboxylic acid, methyl ester, 4-

methylphenol, 1,4:3,6-dianhydro-α-D-glucopyranose and triphenylmethyl chloride 

accounted for 1-3 %.  

The pyrolysates derived by Phycodrys rubens contained 13.5 % levoglucosan, 6.9 % 

squalene, 4.8 % of 5-methyl-2-furaldehyde and 2-propenoic acid, 3-(4-methoxyphenyl)-

,2-ethylhexyl ester, 4.2 % of furfural and 7.1 % of benzoic acid, alkyl ester derivatives. 

Other detected compounds were toluene (2 %), 4-mthylphenol (2.1 %) and 1,4:3,6-

Dianhydro-α-D-glucopyranose (2.7 %).  

Major pyrolytic chemicals identified by the pyrograms of Sphacelaria plumosa include 

levoglucosan accounting for 48.2 %, dianhydromannitol with 4.6 %, and another 

unidentified anhydrosugar with 3.6 %. In addition, furfural, 5-methyl-2-furaldehyde, 

1,4:3,6-dianhydro-α-D-glucopyranose, and 1-hexadecene were detected within the 

range of ca. 1-2 %. The total identified area varies between all species within 43-78 %.  
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Figure 5-7 Pyrograms of Arctic species at 500 °C 

 

 

 

 

 

 
A= Prasiola crispa B=Monostroma arctica 

C= Polysiphonia arctica D= Devaleraea ramentacea 
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Figure 5-7 continued 

 

 
  

 
 

 

 

E= Odonthalia dentata F= Phycodrys rubens G= Sphacelaria plumosa 
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Table 5-7 Peak areas of pyrolysis compounds - Arctic species 

  

                                                                               Area percent [%] 

Peak  

No.  

Chemical 

Compound 

Prasiola  

crispa 

Monostroma 

arcticum 

Polysiphonia  

arctica 

Devalaraea  

ramentacea 

Odonthalia  

dentata 

Phycodrys  

rubens 

Sphacelaria 

plumosa 

1 Acetic Acid 1.1 n.d. <1 <1 <1 1.0 <1 

2 Toluene 2.7 <1 <1 2.4 2.0 2.0 <1 

3 Pyridine <1 n.d. n.d. <1 <1 1.3 <1 

5 Pyrrole <1 n.d. n.d. <1 n.d. n.d. n.d. 

6 Styrene <1 <1 n.d. 1.1 <1 <1 n.d. 

7 Furfural 2.4 3.6 1.2 10.6 1.6 4.2 1.4 

10 1-(2-Furanyl)-ethanone <1 n.d. <1 <1 1.2 1.3 <1 

11 5-Methyl-2-furaldehyde 4.9 9.3 1.3 <1 1.6 4.8 1.6 

12 Phenol 1.3 <1 <1 3.2 1.7 1.8 1.1 

13 3-Furancarboxylic acid, methyl ester n.d. n.d. n.d. n.d. 1.8 1.6 n.d. 

14 Maltol n.d. n.d. <1 n.d. n.d. 2.4 <1 

15 4-Methylphenol 1.3 n.d. 1.2 2.2 2.9 2.1 1.1 

17 Dianhydromannitol n.d. n.d. n.d. n.d. n.d. n.d. 4.6 

19 1,4:3,6-Dianhydro-α-D-glucopyranose n.d. 1.4 1.4 <1 1.9 2.7 1.7 
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Table 5-7 continued 

 

                                                                              Area percent [%] 

Peak  

No.  

Chemical 

Compound 

Prasiola  

crispa 

Monostroma 

arcticum 

Polysiphonia  

arctica 

Devalaraea  

ramentacea 

Odonthalia  

dentata 

Phycodrys  

rubens 

Sphacelaria 

plumosa 

21 5-(Hydroxymethyl)-2-furaldehyde 2.3 <1 2.6 n.d. <1 <1 <1 

22 Indole <1 n.d. <1 1.3 <1 <1 <1 

23 Isosorbide 2.3 n.d. n.d. n.d. n.d. n.d. n.d. 

28 D-Allose 6.8 n.d. n.d. n.d. n.d. n.d.  n.d. 

29 Phytol 4.6 n.d. n.d. n.d. n.d. n.d.  2.7 

31 Levoglucosan 24.2 29.3 61.6 10.1 46.2 13.5 48.2 

33 2 or 3 or 4-Chlorobenzophenone 1.6 2.6 n.d. n.d. n.d. n.d.  n.d. 

35 Anhydrosugar n.d. n.d. 2.2 n.d. 1.0 n.d. 3.6 

37 1-Hexadecene  n.d. 9.4 n.d. n.d. n.d. n.d. 1.9 

41 Triphenylmethyl chloride 3.3 8.0 n.d. 2.1 1.8 n.d. n.d. 

42 Benzoic acid, alkyl ester derivative 1.2 2.2 n.d. n.d. 1.8 2.6 n.d. 

44 2-Propenoic acid, 3-(4-

methoxyphenyl)-,2-ethylhexyl ester 

2.3 5.3 <1 2.3 3.8 4.8 n.d. 

45 Isomer 42 1.6 2.6 <1 1.1 1.8 2.5 n.d. 

47 Isomer 42 2.3 2.7 1.8 1.3 1.6 2.0 n.d. 

50 Octadecanoic acid, octyl ester 2.7 1.9 <1 3.8 <1 <1 n.d. 

51 Squalene 1.7 n.d. n.d. 2.3 4.3 6.9 n.d. 

Total Identified Area % 70.5 78.3 73.3 43.8 77.0 57.5 67.9 
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5.3.2. Antarctic species 

 

Py-GC/MS was used to study product evolution from the antarctic algal biomass 

including the species Gigartina skottsbergii, Plocamium cartilagineum, Myriogramme 

manginii, Hymencladiopsis crustigena and Kallymenia antarctica from intermediate 

pyrolysis at 500°C. Pyrograms obtained are shown in Figure 5-8 along with the peak 

assignments and peak areas for the identified compounds in Table 5-8.  

Overall, the pyrograms showed significant differences in the types of pyrolysis products 

obtained from all species.  

Main identified chemicals within the pyrolysate of Gigartina skottsbergii were furfural 

accounting for 13.3 %, levoglucosenone with 12.6 % and phenanthrene derivatives 

with 16 %. Furthermore, 4.3 % toluene, 4.7 % 5-methyl-2-furaldehyde and 3.3 % of 3-

furancarboxylic acid, methyl ester and 4-methylphenol were detected.  

Pyrolysates of Plocamium cartilagineum revealed being benzoic acid, alkyl ester 

derivatives (11.6 %), levoglucosenone (7.6 %), 2-propenoic acid, 3-(4-methoxyphenyl)-

,2-ethylhexyl ester (7.4 %), squalene (7.6 %) triphenylmethyl chloride (5 %) the main 

products. In addition, about 4-5 % of toluene, 4-methylphenol, phenanthrene 

derivatives and octadecanoic acid, octyl ester were found.  

Intermediate pyrolysis of biomass of Myriogramme manginii generated main chemicals 

including toluene accounting for 18.6 %, phenol with 10 % styrene with 8.2 % and 

triphenylmethyl chloride with 12.5 %. Other detected compounds were furfural, 5-

methyl-2-furaldehyde 2 or 3 or 4 chlorobenzophenone and 2-propenoic acid, 3-(4-

methoxyphenyl)-,2-ethylhexyl ester accounting for 4-5 %.  

Hymencladiopsis crustigena derived pyrolysates contained 22.5 % levoglucosan, 12.3 

% squalene, 9 % of benzoic acid, alkyl ester derivatives and an unidentified 

anhydrosugar accounting for 4.2 %. Further detected compounds include 1,4:3,6-

dianhydro-α-D-glucopyranose, 3-methylindole, 2-propenoic acid, 3-(4-methoxyphenyl)-

,2-ethylhexyl ester and octadecanoic acid, octyl ester of 2-3 %.  

Main pyrolytic compounds identified within pyrolysates of Kallymenia antarctica were 

levoglucosan accounting for 23.4 %, squalene with 11.4 % and an unidentified 

anhydrosugar with 9.2 %. Furthermore, 1-hexadencene (3.4 %) and 4-methylphenol 

(2.2 %) was detected. 

In general, 62-78 % of the total peaks areas could be indentified from pyrolysates of 

antarctic species.  
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Figure 5-8 Pyrograms of Antarctic species at 500 °C 

 

 

 

 

 

 

A= Gigartina skottsbergii B= Plocamium cartilagineum C= Myriogramme manginii 
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Figure 5-8 continued 

 

 

 

 

D= Hymencladiopsis crustigena E= Kallymenia antarctica 
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Table 5-8 Peak areas of pyrolysis compounds - Antarctic algae 

  

                                                                             Area percent [%] 

Peak  

No.  

Chemical 

Compound 

Gigartina  

skottsbergii 

Plocamium  

cartilagineum 

Myriogramme  

manginii 

Hymencladiopsis  

crustigena 

Kallymenia  

antarctica 

1 Acetic Acid <1 <1 <1 n.d. n.d. 

2 Toluene 4.3 4.9 18.6 1.3 1.8 

3 Pyridine n.d. n.d. n.d. <1 <1 

5 Pyrrole n.d. n.d. 1.3 n.d. n.d. 

6 Styrene 1.3 <1 8.2 <1 n.d. 

7 Furfural 13.3 2.0 4.8 <1 1.4 

10 1-(2-Furanyl)-ethanone 1.1 <1 <1 n.d. n.d. 

11 5-Methyl-2-furaldehyde 4.7 1.9 5.1 <1 1.1 

12 Phenol 2.3 2.6 10.0 1.3 1.5 

13 3-Furancarboxylic acid, methyl ester 3.3 n.d. n.d. <1 1.1 

14 Maltol n.d. n.d. n.d. n.d. <1 

15 4-Methylphenol 3.2 4.3 2.2 2.3 2.2 

16 Levoglucosenone 12.6 7.6 n.d. n.d. n.d. 

19 1,4:3,6-Dianhydro-α-D-glucopyranose n.d. 2.3 n.d. 2.7 1.4 
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Table 5-8 continued 

 

                                                                            Area percent [%] 

Peak  

No.  

Chemical 

Compound 

Gigartina  

skottsbergii 

Plocamium  

cartilagineum 

Myriogramme  

manginii 

Hymencladiopsis  

crustigena 

Kallymenia  

antarctica 

22 Indole n.d. n.d. n.d. 10.7 1.1 

24 3-Methylindole n.d. n.d. n.d. 2.5 <1 

26 Anhydrosugar n.d. n.d. n.d. 4.2 n.d. 

27 Anhydrosugar n.d. n.d. n.d. n.d. 9.2 

30 Phenanthrene derivative 10.0 4.1 n.d. n.d. n.d. 

31 Levoglucosan n.d. n.d. n.d. 22.5 23.4 

33 2 or 3 or 4-Chlorobenzophenone n.d. 1.7 4.0 n.d. n.d. 

36 Phenanthrene derivative 6.0 2.2 n.d. n.d. n.d. 

37 1-Hexadecene  n.d. n.d. n.d. n.d. 3.4 

41 Triphenylmethyl chloride n.d. 5.0 12.5 n.d. n.d. 

42 Benzoic acid, alkyl ester derivative <1 4.3 n.d. 2.8 1.6 

44 2-Propenoic acid, 3-(4-methoxyphenyl)-,2-

ethylhexyl ester 

1.2 7.4 5.2 3.9 n.d. 

45 Isomer 42 n.d. 4.1 1.7 2.8 n.d. 

47 Isomer 42 n.d. 3.2 1.7 3.8 1.7 

50 Octadecanoic acid, octyl ester n.d. 3.9 2.5 3.1 n.d. 

51 Squalene n.d. 7.6 n.d. 12.3 11.4 

Total Identified Area % 63.3 69.1 77.8 76.2 62.3 
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5.3.3. Fucus vesiculosus 

 

The obtained pyrograms of Fucus vesiculosus biomass and a residue after 

polysaccharide extraction are presented in Figure 5-9 and identified peaks are listed in 

Table 5-9.  

Generally, differences in terms of distribution of the detected chemical were observed. 

The pyrolysate of the entire biomass consists mainly of polysaccharide derived 

chemicals such as 5-methyl-2-furaldehyde accounting for 5.5 %, dianhydromannitol 

with 7.4 %, levoglucosan with 4.1 %, isosorbide (1.2 %) and maltol (1.2 %). Further 

detected compounds are acetic acid (2.7 %), furfural (2.5 %), indole (2.7 %), squalene 

(1.5 %), and phytol with 9.2 %.  

Main chemicals indentified within the pyrograms obtained by the residue are 5-methyl-

2-furaldehyde with 15 %, squalene with 8 %, furfural with 6.2 % and benzoic acid alkyl 

ester derivative with 4.4 %. In addition, 2-propenoic acid, 3-(4-methoxyphenyl)-,2-

ethylhexyl ester and squalene were found within the pyrograms of the residue.  
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Figure 5-9 Pyrograms of Fucus vesiculosus at 500 °C 

 

 

 

 

A= Fucus vesiculosus biomass B= Fucus vesiculosus residue 
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Figure 5-9 Peak areas of pyrolysis compounds - Fucus vesiculosus  

 

  

                                                                                    Area percent [%] 

Peak  

No.  

Chemical 

compound 

Fucus vesiculosus 

Biomass 

Fucus vesiculosus 

Residue 

1 Acetic Acid 2.7 n.d. 

2 Toluene 1.4 1.9 

3 Pyridine <1 n.d. 

5 Pyrrole <1 n.d. 

6 Styrene <1 n.d. 

7 Furfural 2.5 6.2 

10 Ethanone, 1-(2-furnaly)- 2.1 n.d. 

11 2-Furaldehyde, 5-methyl 5.5 15.0 

12 Phenol 2.1 1.4 

14 Maltol 1.2 n.d. 

15 4-Methylphenol 2.1 1.7 

17 Dianhydromannitol 7.4 n.d. 

22 Indole 2.7 1.0 

23 Isosorbide 1.2 n.d. 

24 3-Methylindole 1.1 n.d. 

29 Phytol 6.2 1.5. 

31 Levoglucosan 4.1 n.d. 

32 Isomer of 29 3.5 n.d. 

42 Benzoic acid alkyl ester derivative <1 2.2 

44 2-Propenoic acid, 3-(4-methoxyphenyl)-, 

2-ethylhexyl ester 

<1 3.4 

45 Isomer 42 <1 2.2 

51 Squalene 1.5 8.0 

Total Identified Area % 47.3 44.5 
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6. Discussion biomass characterisation 

 

This chapter discusses the main results revealed by biomass characterisation including 

CHNO, HHV, and ash analysis. Furthermore, the outcomes of intermediate pyrolysis 

performed by TGA are reviewed. At the end a summarising conclusion is presented.  

 

6.1. Ultimate analysis, ash and calorific values 

 

The characterisation of the microalgal biomasses revealed no significant differences 

between the both Chlamydomonas reinhardtii strains, regarding their CHNO, Ash and 

HHV values. In contrast, the biomass of Chlorella vulgaris contained lower C, N and 

higher O values than the two Chlamydomonas reinhardtii strains. In addition, the HHV 

of Chlorella vulgaris biomass was lower.  

In general, higher carbon contents indicate higher amounts of lipids in algae biomass, 

due to their hydrocarbon structure, where up to 80 % are constituted of carbon.  

In comparison, proteins contain ca. 53 % and carbohydrates ca. 40 % of carbon and 

higher oxygen contents than lipids [164], [165]. Consequently, higher oxygen contents 

indicate higher protein and/ or carbohydrate contents within the biomass.  

Therefore, the high carbon and low oxygen content of both Chlamydomonas reinhardtii 

strains are related to a higher lipid and a lower carbon and/or protein content. 

Furthermore, the lower carbon content of Chlorella vulgaris biomass indicates a lower 

lipid and a higher protein and/or carbohydrate content.  

Overall, higher carbon and lower oxygen contents lead to higher energy contents [166], 

expressed by the HHV. Therefore, the higher carbon and lower oxygen contents of 

both Chlamydomonas reinhardtii strains results in higher HHV of 22-23 MJ kg-1, 

compared to Chlorella vulgaris biomass revealing a HHV of 18 MJ kg-1.  

The lowest carbon content (35.2 %) and highest oxygen content (58 %) within studied 

microalgal biomass was obtained by the red alga Porphyridium purpureum. In 

coherence, the biomass revealed the lowest HHV of 14.9 MJ kg-1 of analysed 

microalgae species. Consequently, when compared to the green microalgae species, 

lower amounts of lipids and higher amounts of proteins and/or carbohydrates can be 

expected in the biomass of the red algae. 

In contrast to the green microalgae species, the macroalgae species exhibit significant 

lower carbon contents (22-39 %), and higher oxygen (52-70 %) contents. These results 

reveal the lower lipid and higher protein and/or carbohydrate contents, typical for 
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macroalgae species. In average, macroalgae biomass contains around 1-5 % lipids, 5-

20 % proteins and 40-60 % carbohydrates [48], [167], [168]. As a consequence of 

lower lipid contents lower HHV of analysed macroalgae species were obtained in the 

range of 13-16 MJ kg-1.  

 

Within the analysed microalgae species, Chlamydomonas reinhardtii strains exhibited 

the highest nitrogen contents of ca. 11 %. In contrast, Chlorella vulgaris contained 6.7 

% and Porphyridium purpureum 1.3 %. Within plant material nitrogen is a substantial 

element in amino acids, proteins, chlorophyll, enzymes and vitamins [169]. In general, 

due to higher amounts of proteins and pigments in algal biomass it exhibits higher 

nitrogen contents than in woody biomass (typically <1 %) [97]. Therefore, the detected 

amounts of nitrogen within the Chlamydomonas reinhardtii strains can indicate higher 

amounts of proteins and/or chlorophyll than in Chlorella vulgaris. The low levels of 

nitrogen detected in the red microalgae Porphyridium purpureum can indicate lower 

protein contents in the biomass. Amounts of nitrogen detected in macroalgal biomass 

ranged within 1.4-4.0 %. After all, the lower nitrogen content and higher oxygen content 

of red and brown algae biomass, could be related to their different pigmentation, 

including nitrogen-free and oxygen containing pigments such as xanthophylls [39].  

 

Ash values determined from microalgae species range from 13.6-15.9 % whereas 

Porphyridium purpureum exhibits the lowest and Chlorella vulgaris the highest content. 

The highest ash values were determined in the biomass of macroalgae samples. Nine 

out of twelve species exhibited ash contents between 30-40 %. The lowest content of 

15.5 % was obtained by the temperate species Fucus vesiculosus and the highest of 

44.7 % by the antarctic species Kallymenia antarctica. Determined ash values from 

algal species, particular of macroalgae contrasts sharply with the ash content typically 

obtained from terrestrial biomass of ca 1-5 % [170–172]. 

In general, the ash content of algal biomass is related to the species, its geographical 

origin and seasonal and environmental variations. For macroalgae species, contents of 

around 40 % ash are typical. Due to their large organisms and differentiated cells 

building the thallus, major mineral elements are accumulated such as sodium, 

potassium, calcium and magnesium. Furthermore, sulphates are contained in 

macroalgae biomass, ranging typically from 1-5 % [167], [173].  

Overall, high ash contents have an influence on the pyrolytic behaviour of biomass. In 

general, decomposition temperatures of polysaccharides material in the biomass 

lowered by high ash contents in the biomass, due to catalytic effects of the inorganic 

materials [174]. Furthermore, high ash contents, particular alkali metals, such as 
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sodium and potassium, may cause operational problems in large scale thermo-

chemical conversion processes relating to corrosion and slag formation [168], [172]. In 

addition, the high ash contents in macroalgal biomass leads to lower HHV [166].  

 

6.2. Total lipid, protein and FAMEs analysis 

 

The extraction of biomass components revealed proteins being the most abundant of 

the three unicellular algae analysed. Between both Chlamydomonas reinhardtii strains 

no major differences in terms of amounts of total proteins were evident. In contrast, 

biomass of Chlorella vulgaris exhibited a significant higher content of proteins. These 

results are in coherence with obtained data from the elemental analysis, where both 

Chlamydomonas reinhardtii strains showed similar CHNO values and Chlorella vulgaris 

biomass revealed a significant lower carbon and higher oxygen content. Total lipid 

determination revealed that the biomass of Chlamydomonas reinhardtii wild type 

contains 18 %, its cell wall mutant ca. 22 % and Chlorella vulgaris ca. 16 % of total 

lipids.  

Overall, the indication of the gross chemical composition by the values of C, H and O in 

the biomass was confirmed by total lipid and total protein determination, whereas both 

Chlamydomonas reinhardtii strains contain lower protein and higher lipid proportions 

than Chlorella vulgaris.  

Moreover, the obtained total lipid and total protein values are in accordance with 

previously published data [44]. According to literature, alanine, tyrosine, and 

glutamine/glutamic acid are the main amino acids of Chlorella vulgaris [175]. Most 

abundant amino acids within Chlamydomonas reinhardtii are hydroxyproline and 

glutamine/glutamic acid [176].  

 

Within the BtVB-process, it is of interest to evaluate possible extraction of value added 

products, such as lipids before pyrolysing the biomass. Therefore, the identification of 

FAMEs of the three microalgae species was of interest within this study, due to their 

various applications within pharmacy, nutrition and cosmetics [46].  

Both Chlamydomonas reinhardtii strains revealed no significant differences and 

palmitic acid and α-linolenic acid were the two major FAMEs (>10 %) detected. 

Therefore, the results indicate that the genetic defect in cell wall synthesis has not 

perturbed lipid synthesis in this alga. In contrast, Chlorella vulgaris biomass presented 
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a broader spectrum of major FAMES, including palmitic acid, oleic acid, linoleic acid 

and α-linolenic acid.  

Identified PUFAs include linoleic acid an omega-6 fatty acid and α-linolenic acid an 

omega-3 fatty acid. Linolenic acid was detected in both Chlamydomonas reinhardtii 

strains accounting for 6-7 % and in Chlorella vulgaris 10 % were observed. Total lipids 

of Chlamydomonas reinhardtii biomass contained 64-69 % of α-linolenic acid.  

These PUFAs are essential fatty acids, by means, the human body need to ingest as it 

is not able to synthesise them. Main sources of α-linolenic acid are flaxseed, walnuts, 

and soybeans. Grains, meats and seeds are main sources of linoleic acid [177]. Effects 

of omega-3 fatty acids within human bodies include stimulation of hormonal activities 

which affects cardiovascular, immune and the central nervous system beneficially 

[178]. Furthermore, it has been shown, that omega-3 fatty acids reduce the risk for 

cardiac arrhythmias [177]. Oleic acid is a monounsaturated FAME being one of the 

most abundant lipids, mainly found in olive and almond oil [178] accounted for 21.1 % 

in Chlorella vulgaris total lipids. Oleic acid is used in pharmaceutical applications as a 

blood pressure reducing agent [179].  

 

After lipid extraction the residual biomass was retained, accounting for ca. 62-72 % of 

the total biomass of all three species. This residue is of importance for this study, as it 

is applied to reveal the effect of lipid extraction prior intermediate pyrolysis of algal 

biomass. Within this residue the carbohydrate content of Chlamydomonas reinhardtii 

and Chlorella vulgaris accounting for 12-17 % of the dry biomass [44] as well as 

proteins and other extracts is contained.  

 

In general, the proportions of biomass constituents vary dependent on species, 

cultivation conditions (i.e. temperature, illumination, nutrient concentration) and stage 

of cell growth at harvesting [180]. This study applied biomass of all three green 

microalgae species grown under optimum conditions, including temperature, nutrient 

concentration and illumination. Furthermore, each biomass was harvested at the late 

logarithmic growth.  
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6.3. Thermogravimetric analysis 

6.3.1. Microalgae 

6.3.1.1. Chlamydomonas reinhardtii and Chlorella vulgaris 

6.3.1.1.1. Lipids 

 

During TGA analysis, the lipid samples evolved the largest amount of highly volatile 

compounds of 5-7 % within temperatures of 100-200 °C. This weightloss in stage I may 

represent the evolution of intrinsic lipid decomposition compounds, such as aldehydes 

and ketones potentially formed during extraction from the cells through auto oxidation 

and/or enzyme catalysed routes.  

The observed initial pyrolysis temperature (Ti) for lipid materials of Chlamydomonas 

reinhardtii wild type, Chlamydomonas reinhardtii CW 15+ and Chlorella vulgaris was 

200 °C, respectively and is the lowest from all biomass constituents in this study. 

Furthermore, it has been shown, that lipids release the highest volatile matter of ca. 80 

% within stage II (200-550 °C). This is related to the hydrocarbon chains of fatty acid 

components being the major constituents of lipids. 

Deviations of thermal behaviours between the lipid extracts were observed. Different 

shaped TGA curves were obtained from Chlamydomonas reinhardtii and Chlorella 

vulgaris, whereas no significant differences were revealed between Chlamydomonas 

reinhardtii wild type and Chlamydomonas reinhardtii CW15+. For lipid materials from 

both Chlamydomonas reinhardtii stains two major decomposition peaks at 300 °C and 

410 °C were observed. In contrast, Chlorella vulgaris exhibited only one main peak at 

400 °C. These significant differences are consistent with the varying fatty acid 

compositions. Both Chlamydomonas reinhardtii strains contain mainly palmitic acid and 

α-linolenic acid. Total lipids of Chlorella vulgaris contained a broader spectrum of 

FAMEs and higher amounts of oleic acid and linoleic acid.  

The amount of char obtained from all three total lipids ranged between 10-14 %. 

Compared to biomass, total proteins and residues these amounts of char are the 

lowest obtained in this study. This is in coherence with the formation of the largest 

amount of volatiles during stage II, due to an easier fragmentation of hydrocarbon 

chains into volatile components than thermal decomposition of many amino acids 

residues or carbohydrates. Therefore, high lipid contents in algal biomass increase the 

amount of volatile pyrolytic compounds and lower the amount of char.  
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6.3.1.1.2. Proteins 

 

TGA analysis of the three total proteins extracts revealed Ti of 250 °C. This shows that 

proteins starts volatising at ca. 50 °C higher temperatures than lipids under 

intermediate pyrolysis conditions.  

Generally, stage II lasted until 550 °C for all protein materials. Chlamydomonas 

reinhardtii wild type revealed a characteristic shoulder at 320 °C, which indicates a 

presence of proteins not contained in the mutant Chlamydomonas reinhardtii CW15+. 

This is consistent with the observed mutant behaviour. Certainly the motility of 

Chlamydomonas reinhardtii CW15+ appears impaired under microscopic examination 

and suggests that flagella proteins may be decreased in the mutant (G. Griffiths, 

personal observations). Additionally, components decomposed at 490 °C of Chlorella 

vulgaris derived total proteins, which were not observed in Chlamydomonas reinhardtii 

strains. This might be related to the different amino acid composition of the two green 

algae. TGA curves revealed that protein samples formed the largest portions of char 

obtained in this study, accounting for 30 % for both Chlamydomonas reinhardtii strains 

and 37 % for Chlorella vulgaris. Consequently, higher protein contents in algal biomass 

favour the formation of char during intermediate pyrolysis.  

 

6.3.1.1.3. Residues  

 

The analysed residues after total lipid extraction contain the total fraction of proteins 

and carbohydrates of the original biomass mainly. The major pyrolytic activity of these 

materials occurred between 230-550 °C. The residue of Chlorella vulgaris released 60 

% of volatiles during stage II; both Chlamydomonas reinhardtii residues released 68 %. 

Furthermore, Chlorella vulgaris residue formed 37 % of char and Chlamydomonas 

reinhardtii derived residues ca. 27 %.  

Total protein determination in biomass showed that Chlorella vulgaris contained about 

10 % more proteins than both Chlamydomonas reinhardtii strains. Consequently, the 

residue Chlorella vulgaris contains higher protein content than both Chlamydomonas 

reinhardtii strains. Again, the obtained TGA curves indicate that higher protein contents 

in materials lower the formation of volatiles and favour the formation of char.  

The carbohydrate fraction of Chlamydomonas reinhardtii strains residues is mainly 

made of galactose, arabinose and mannose originating from cell walls. The cell walls of 

Chlorella vulgaris mainly composed of hemicellulose. Both carbohydrate fractions do 
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not contain any cellulose and lignin. Furthermore, starch is the main storage 

component of the organisms, is contained in the residues [39]. 

Earlier studies investigated the thermal degradation of arabinose, xylose, mannose, 

hemicellulose and starch at heating rates between 2-20 °C min-1 [88], [181], [182]. 

Under these conditions the main pyrolytic activities for arabinose, xylose and mannose 

were observed within 120-310 °C. Hemicellulose decomposed within 220-260 °C and 

starch between 280-350 °C.  

In contrast, heating rates of 100 °C min-1 were applied in this study to perform 

intermediate pyrolysis. Generally, an increase of heating rates leads to higher 

degradation temperatures of biomass materials. These shifts are caused by the low 

conductivity of heat in biomass. During heating a temperature gradient exist within the 

cross-section of the material. At lower heating rates, more time is given to heat the 

outer surface and the inner core of the biomass. At faster heating rates, shorter time is 

provided to distribute the heat within the biomass for appropriate evolution of the 

volatile matters. This causes incomplete reactions at lower temperatures, followed by 

higher decomposition temperatures of the same material [183].  

 

6.3.1.1.4. Biomass 

 

Results obtained by pyrolysis of biomass samples, revealed the main pyrolytic activity 

(stage II) between of 200 °C and 550 °C for all three specimens. Results obtained by 

the analysis of total proteins, total lipids and biomass residues show, that in stage I, 

between 100-200 °C low amounts of up to 5 % of highly volatile matter are released, 

mainly due to water evaporation and lipid derived compounds. At the beginning of 

stage II, at temperatures of 200 °C the lipid fraction in the biomass of the samples 

starts to volatise. Between 230-250 °C the proteinaceous and carbohydrate fraction 

starts to pyrolyse.  

The maximum degradation temperature for both Chlamydomonas reinhardtii strains 

occurs at 380 °C and of Chlorella vulgaris at 350 °C. The main pyrolytic process lasts 

till ca. 550 °C were the volatilization of biomass finished. Char amounts of 30 % for 

Chlorella vulgaris and ca. 26 % for Chlamydomonas reinhardtii strains were observed. 

The slightly higher char formation of Chlorella vulgaris is expected to be a 

consequence of the higher protein content. In addition, the characteristic peak for 

Chlorella vulgaris biomass at ca. 490 °C was already observed from the protein 

samples and reveals consequently a breakdown of proteinaceous material.  
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Above 550 °C, within stage III of pyrolysis a characteristic peak at 730 °C was 

observed for Chlorella vulgaris biomass. A breakdown of material at this temperature 

was not related to lipid, protein or carbohydrate origin and may be related to 

decomposition of carbonaceous material as already reported for Nannochloropsis sp. 

above 700 °C [99], [184].  

 

6.3.1.2. Porphyridium purpureum  

 

The results obtained by TGA analysis of the red algae Porphyridium purpureum show 

the main pyrolytic activity between 250-550 °C. Obtained maximum decomposition of 

the biomass was 300 °C, whereas a shift to 320 °C was observed for the residue after 

extraction of coenzyme Q10. However, the obtained temperatures are significantly 

lower, about 60 °C, than those obtained for the analysed green algae species. This 

indicates that the biomass constituents vary between the species.  

No major differences in terms of released volatiles from biomass and residue were 

observed. Both samples released ca. 61-65 % volatiles and formed a char portion of 

31-34 %. These amounts of volatiles and char indicate a lower lipid and a higher 

protein and carbohydrate content in the red algae biomass compared to green algae 

biomass. This is in coherence with the elemental analysis, were much lower amounts 

of carbon and higher amounts of oxygen were detected, indicating low lipid and high 

protein and/or carbohydrate contents.  

 

6.3.2. Macroalgae  

 

Thermogravimetric analysis of macroalgae biomass and from there derived materials 

revealed similar shaped TG and DTG curves, than obtained for microalgae biomass 

while exhibiting the three stages of decomposition.  

Initial pyrolysis temperatures obtained for the majority of macroalgal material revealed 

being 200-230 °C. Lower Ti of 150 and 180 °C were obtained by the antarctic species 

Myriogramme manginii and Plocamium cartilagineum, respectively. Generally, 

significantly lower maximum decomposition temperatures of macroalgae biomass than 

for microalgae biomass are evident. Whereas the Tm for macroalgae species varies 

within 220-320 °C, values for microalgae between 350-380 °C were obtained. In 

addition, the high ash contents of the materials may lower the maximum degradation 
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temperature [185]. Overall, macroalgae biomass released significant lower amounts of 

volatiles and consequently formed higher amounts of char than microalgae species. 

The highest amounts of volatiles observed were 58 % of Prasiola crispa. Lowest 

amounts of 41 % were released by Myriogramme manginii. Lower formation of volatiles 

are a consequence of the general lower content of lipid material in macroalgae 

biomass, usually ranging between 1-5 % [48], [167], [168]. Therefore higher contents of 

proteins and carbohydrates are apparent, which increases the amounts of char 

products. In addition, the high ash contents of up to 40 % typically contained in 

macroalgae biomass leads to higher char portions.  

In addition, almost all macroalgae samples included in this study revealed a further 

decomposition at a high temperature range of 780-820 °C. Ross et al [98], studied the 

pyrolysis behaviour of macroalgae polymers and revealed that the thermal 

decomposition of laminarin and fucoidan carried on up to high temperatures above 600 

°C and fucoidan above 700 °C. Furthermore, both carbohydrates were characterised 

by second degradation peaks, for laminarin at above 500 °C and for fucoidan above 

700 °C [98]. Additionally, the high contents of ash might catalyse further decomposition 

of carbonaceous materials at high temperature.  

Overall, the TG and DTG curves of macroalgae materials reveal that during pyrolysis 

several overlapping steps are involved, indicated by shoulders, observed for most of 

the samples.  

The TG and DTG curved of Fucus vesiculosus and its residue after carbohydrate 

extraction revealed no major differences between the samples. However, a decrease of 

the main decomposition temperature from 300 to 280 °C was observed, as well a lower 

formation of char by the residue. This observation may indicate that higher portions of 

carbohydrates may favour the formation of char.  

 

6.4. Chapter Conclusions 

 

The ultimate analysis of all algal biomass reveals preliminary information about the 

gross chemical composition of the samples. In general, higher carbon contents such as 

50 % in Chlamydomonas reinhardtii biomass indicate higher lipid contents. Higher 

oxygen contents such as 40 % in Chlorella vulgaris biomass indicate higher protein 

and/or carbohydrate contents. Overall, higher C and lower O contents lead to higher 

HHV of algal biomass. Furthermore, whereas HHV of microalgae materials range 

between 15- 23 MJ kg-1, values for macroalgae are lower accounting for 13-16 MJ kg-1. 
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Compared to terrestrial biomass, substantially higher amounts of nitrogen were 

detected in biomass samples, being an important element in proteins, pigments, 

enzymes and vitamins. Subsequently, higher amounts of nitrogen containing chemicals 

in pyrolysates of algal materials are typically detected.  

Analysis of FAMEs revealed that both Chlamydomonas reinhardtii strains contained 

substantial amounts the PUFA α-linoleic acid, offering the option for the production of a 

high valuable product within the BtVB-process.  

Furthermore, the gross chemical analysis of the green microalgae strains revealed high 

protein contents up to ca. 55 % in Chlorella vulgaris biomass, being valuable 

ingredients in health food for humans.  

 

Obtained TG and DTG curves at a heating rate of 100 °C min-1 revealed three stages 

of thermal decomposition, namely dehydration (stage I), devolatilization (stage II) and 

char formation (stage III) [90]. Generally, stage I ranges from ca. 100 to 200 °C 

releasing up to 2-5 % of volatiles, mainly contributed to water evaporation (dehydration) 

and release of highly volatile compounds. Observations revealed that the main pyrolytic 

process occurs in stage II, at temperatures of ca. 200-550 °C. Above 550 °C the 

pyrolysis process slows down and stage III starts. During this, only minor releases of 

volatiles of up to 5 % were observed, mainly due to continuous decomposition of the 

solid carbonaceous residue forming a char, containing fixed carbon and ash. 

In general, this study revealed, that algal lipids produce that largest amounts of 

volatiles and the smallest amounts of biochar. Moreover, extracted proteins form lower 

amounts of volatiles and subsequently higher amounts of char.  

The major pyrolytic characteristics obtained by TGA for all microalgae and macroalgae 

materials are presented in Table 6-1 and 6-2, respectively. 
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Table 6-1 Pyrolysis characteristics microalgae materials 

Microalgae species/ material Temperatures Stage (II) [°C] 

 Ti             Tm           Tm2            Te 

Temperature  

shoulder [°C] 

Volatiles 

Stage (II) [%] 

Char residue at 

900 °C [%] 

Chlamydomonas reinhardtii Wild type 

- Biomass 

- Total Lipids  

- Total Proteins 

- Residue 

 

270 

250 

200 

230 

 

350 

300 

350 

380 

 

n.d. 

 410 

n.d. 

n.d. 

 

500 

500 

500 

500 

 

n.d. 

n.d. 

320 

320 

 

60 

78 

62 

68 

 

25 

14 

30 

26 

Chlamydomonas reinhardtii CW 15+ 

- Biomass 

- Total Lipids  

- Total Proteins 

- Residue  

 

270 

250 

200 

230 

 

350 

300 

350 

390 

 

n.d. 

   410 

n.d. 

n.d. 

 

500 

500 

500 

500 

 

n.d. 

n.d. 

n.d. 

n.d. 

 

60 

78 

62 

68 

 

27 

11 

30 

27 

Chlorella vulgaris 

- Biomass 

- Total Lipids  

- Total Proteins 

- Residue  

 

270 

250 

200 

230 

 

360 

400 

350 

400 

 

n.d. 

n.d. 

n.d. 

n.d. 

 

500 

500 

500 

500 

 

490, 730 

n.d. 

490 

490 

 

54 

82 

52 

60 

 

30 

10 

37 

37 

Porphyridium purpureum 

- Biomass 

- Residue  

 

250 

250 

 

300 

320 

 

n.d. 

n.d. 

 

600 

600 

 

820 

820 

 

69 

66 

 

31 

34 

Ti= initial temperature, Tm = maximum temperature, Tm2 = 2
nd

 maximum temperature in stage II, Te = end temperature 
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Table 6-2 Pyrolysis characteristics macroalgae materials 

Macroalgae species/ material Temperatures Stage (II) [°C] 

 Ti             Tm          Tm2            Te 

Temperature  

shoulder [°C] 

Volatiles Stage 

(II) [%] 

Char residue at 

900 °C [%] 

Prasiola crispa 230 300 n.d. 600 430 60 38 

Monostroma arcticum 220 280 n.d. 630 800 57 35 

Devaleraea ramentacea 200 300 n.d. 650 800 50 46 

Odonthalia  dentata 200 310 n.d. 650 820 57 33 

Phycodrys rubens 215 280 n.d. 610 810 52 36 

Polysiphonia arctica 215 300 n.d. 620 810 52 39 

Gigartina skottsbergii  190 240 n.d. 630 450, 800 46 45 

Hymencladiopsis crustigena 230 300 n.d. 630 390, 830 46 40 

Myriogramme manginii 180 220 n.d. 590 300, 360, 450, 

550, 750 

41 46 

Kallymenia antarctica 220 300 n.d. 630 380, 450, 800 53 35 

Plocamium cartilagineum 180 260 n.d. 630 820 47 42 

Sphacelaria plumosa 240 320 n.d. 600 780 52 40 

Fucus vesiculosus 

- Biomass 

- Residue  

 

200 

200 

 

300 

300 

 

n.d. 

n.d. 

 

600 

600 

 

800 

380, 800 

 

63 

66 

 

45 

40 

Ti= initial temperature, Tm = maximum temperature, Tm2 = 2
nd

 maximum temperature in stage II, Te = end temperature
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7. Discussion analytical pyrolysis 

7.1. Microalgae 

7.1.1. Chlamydomonas reinhardtii and Chlorella vulgaris 

7.1.1.1. Lipids 

 

Intermediate pyrolysis of total lipid extracts derived by microalgal biomass revealed 

interesting outcomes towards the production of pyrolysis products. The majority of 

chemical compounds derived from analytical pyrolysis fell into main categories, such as 

carboxylic acids, esters and hydrocarbons. In terms of pyrolytic reactions it is expected, 

that fatty acids contained in the lipid samples generate esters by reacting with a 

hydroxyl group containing compound, such as an alcohol or phenol. Obtained 

pyrograms from total lipids showed to be less complex than those derived from total 

biomass, protein extracts and residues after lipid extraction, while exhibiting only up to 

15 major components.  

The chemical compounds detected in pyrolysates of both Chlamydomonas reinhardtii 

strains were almost identical and significant differences were revealed by comparison 

with pyrolysates of Chlorella vulgaris. These results reflect the close similarity of the 

fatty acid profiles of both Chlamydomonas reinhardtii strains and differences obtained 

by Chlorella vulgaris.  

The major difference in the obtained pyrolysates was benzenedicarboxylic acid alkyl 

ester, accounting for 41-43 % and therefore being the dominant peak (peak 49) in 

pyrolysis products of Chlamydomonas reinhardtii specimens. In contrast, thereof only 5 

% were detected in the pyrolysates of Chlorella vulgaris total lipid derived pyrolysates.  

Three derivatives of benzoic acid alkyl esters (peaks 44, 45 and 47) were detected 

reaching 6-9 % for both Chlamydomonas reinhardtii strains and ca. 4 % in Chlorella 

vulgaris material. In addition, 2-propenoic acid, 3-(4-methoxyphenyl)-, 2-ethylhexyl 

ester was found in all three pyrolysates accounting between ca. 3-5 %.  

Also observed in all total lipid derived pyrograms was squalene (2,6,10,15,19,23-

hexamethyltetracosa-2,6,10,14,18,22-hexane), one of the most common triterpene 

lipids. In this study it was the longest chain lipid product (C30H50) detected in all lipid 

samples accounting for ca. 5-9 % in Chlamydomonas reinhardtii derived lipid 

pyrolysates and ca. 14 % in Chlorella vulgaris lipids.  

Squalene is an important intermediate in the biosynthesis of polycyclic triterpenes and 

cholesterol [186] and cannot be reproduced synthetically while being natural oils its 

only source. Squalene is a major product in shark oil [187] and is found in various plant 

tissues and plant oils [188], [189].  
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Furthermore, the green colonial microalgae Botryococcus braunii race B, investigated 

as a hydrocarbon rich source for biofuel applications produces squalene as a precursor 

for triterpenoid hydrocarbons [190].  

The detection in pyrograms suggests that it could be formed as an artefact during the 

pyrolytic process possibly from other longer chain terpenes, such as carotenoids. This 

is supported by the work of Gelin et al [119], who isolated lipids from the green 

microalga Botryococcus braunii and determined their thermal behaviour via Curie point 

analysis. They report the detection of squalene as an erroneous decomposition product 

resulting from incomplete pyrolysis. Squalene has also been detected in pyrolysis oil of 

Lemnar minor (aquatic biomass, known as duckweed) [191] suggesting the widespread 

occurrence of this product as an unpyrolysed lipid based artefact.  

In the pyrolysates of Chlorella vulgaris lipids, several compounds were detected which 

were not found on Chlamydomonas reinhardtii lipids pyrolysates. It has been shown 

that aliphatic hydrocarbons including heptadecane (1.9 %), 1-nonadecene (5.5 %) and 

heneicosane (3.6 %) were detected in intermediate pyrolysis derived compounds, 

obtained by Chlorella vulgaris materials, only. These may be derived from the myristic 

acid (14:0) and palmitic acid (16:1) which were observed in FAMES of Chlorella 

vulgaris, only. Furthermore, hexadecanoic acid methyl ester (2.8 %) and octadecanoic 

acid, octyl ester (5.0 %) were detected in those pyrolysates only.  

During the total lipid extractions, chlorophyll partitioned from the biomass into the lipid 

phase. Consequently, phytol and isomers (peaks 29 and 32) were found in the 

pyrolysates of total lipids from all three specimens. However, trans-phytol (peak 38) 

was detected in pyrolysates of both Chlamydomonas reinhardtii strains only.  

Overall, it was possible to identify ca 85 % of the total peak area of both 

Chlamydomonas reinhardtii strains and only 50 % of the area of Chlorella vulgaris lipid 

derived pyrogram area.  

 

7.1.1.2. Proteins 

 

In this study, various amino acid derived chemical compounds were detected in the 

pyrolysates of total protein extracts of microalgae. The main reaction pathways of 

thermal degradation of single amino acids are scission of the polymer chain and 

cleavage of the side chain (R-group) and/ or splitting of CO2 or H2O [20]. Similar 

reactions were observed for proteins and peptides leading to chemical compounds 

which can be traced back to single amino acids [105], [192]. 
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Therefore, pyrograms of proteinaceous materials give evidence about amino acids 

contained in the original sample. The included conclusions of the amino acid 

appearances in the total proteins on basis of detected chemicals in pyrograms are 

based on earlier work of Monkhouse et al. [105] and Tsuge et al. [192].  

Overall, similar compounds were observed for all three specimens, and interestingly no 

major differences in their distribution were evident.  

The most abundant chemicals detected in all three pyrolysates were toluene, indoles 

and phenols. Toluene and indole were accounting for ca. 9 % in pyrolysates of 

Chlamydomonas reinhardtii wild type, 7-8 % in its cell wall mutant and for 6-7 % in 

Chlorella vulgaris. The content of toluene, being a typical pyrolysis product of the 

amino acid phenylalanine, and indole, a tryptophan derived compound, revealed 

decreasing contents of both amino acids in algal materials in the following order: 

Chlamydomonas reinhardtii wild type > Chlamydomonas reinhardtii CW15+ > Chlorella 

vulgaris. In addition, minor amounts of styrene (<1-2 %) and traces of ethylbenzene (<1 

%), both phenylalanine derived compounds, were detected in all three pyrolysates. 

Another from tryptophan originated pyrolysis compound was 3-methylindole, 

accounting for ca. 2 % in all three pyrolysates.  

Considerably large amounts of 7-8 % of 4-methylphenol were detected in both 

Chlamydomonas reinhardtii strains and 2.8 % in Chlorella vulgaris total protein 

pyrolysates. In addition, ca. 2-3 % of phenol was observed in all three total protein 

derived pyrolysates. Both identified chemicals indicate the amino acid tyrosine being 

another major amino acid constituent of the algal proteins. Furthermore, pyrrole, 

derived by hydroxyproline and glutamine, was detected in traces (<1 %).  

Overall, the obtained pyrolysates of intermediate pyrolysis of total proteins extracted 

from three green microalgae species indicate a majority of aromatic chemicals, derived 

by amino acids containing ring structures, such as phenylalanine, tyrosine, and 

tryptophan.  

 

The aliphatic hydrocarbon 1-hexadecene was detected in pyrolysates of total proteins 

derived from Chlorella vulgaris only. While accounting for 7.2 % it is one of the major 

chemical compounds in Chlorella vulgaris derived total proteins. It may have its origin 

from acylated proteins or acyl residues of fatty acids bound to the hydrophobic domains 

of the proteins. Another aliphatic nitrogen containing hydrocarbon identified, was 

hexadecanamide, detected in low amounts in all three pyrolysates.  

Further compounds detected in pyrolysates of both Chlamydomonas reinhardtii 

proteins only were a dipeptide (2-3 %) and picolinamide, 2-furaldehyde, 5-methyl, 

pyrrole, 2 or 3-methyl in traces (<1 %). A tentatively assigned dipeptide is considered 
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being a protein derived compounds, due to its peptide structure, possibly deriving from 

a larger peptide molecule and due to its appearance in protein containing samples 

only.  

In addition, a total of nitrogen containing compounds of ca. 16 % for both 

Chlamydomonas reinhardtii strains and ca. 12 % for Chlorella vulgaris were obtained.  

 

7.1.1.3. Residues 

 

This biomass residues derived by extraction of the lipid fraction from microalgae 

biomass is of high interest for intermediate pyrolysis applications. Due to the extraction 

of high valuable products such as lipids, the analysed residues of all three specimens 

contained proteins and carbohydrate portions of the biomass mainly. Therefore, the 

spectrum of pyrolysis products identified by lipids, such as carboxylic acids, esters and 

aliphatic hydrocarbons are not included in the pyrolysates.  

 

The pyrograms obtained by analytical pyrolysis of the residues revealed containing 

protein derived compounds mainly, resulting from proteins being the main fraction of 

the microalgae biomasses. In coherence with the analysis of total proteins, mainly 

toluene, 4-methylphenol, indole and 3-methylindole were detected throughout 

pyrolysates of all three residues. In addition, two dipeptides were detected in the 

residue derived by Chlamydomonas reinhardtii strains only.  

Furthermore, levoglucosan was detected in pyrolysates of Chlamydomonas reinhardtii 

wild type, accounting for 3.3 %, being derived by the starch content of the biomass. 

Overall, about 35 % of the total peak area was identified for both Chlamydomonas 

reinhardtii strains and ca. 23 % of Chlorella vulgaris.  

In comparison to the other obtained pyrograms in this study, the lowest portion of the 

total peak area was identified. This may indicate that the Py-GC/MS unit and mass 

spectral database limits the detection and identification of chemicals derived by 

carbohydrates and proteins.  

 

7.1.1.4. Algal biomass 

 

Obtained pyrograms of biomass from all three green microalgae contained pyrolysis 

compounds originating from contained protein, lipid and carbohydrate fractions mainly.  
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As revealed by analytical pyrolysis of the total protein extracts, protein derived 

chemicals include toluene, 4-methylpehnol, phenol, indole and 3-methylindole, where 

the contents vary slightly between the values obtained for both Chlamydomonas 

reinhardtii strains and Chlorella vulgaris. In general, lower values were observed in 

Chlorella vulgaris derived pyrograms. Furthermore, hexadecanamide, identified being 

protein derived was observed in pyrograms of Chlorella vulgaris biomass (2.6 %), 

mainly. Generally, higher portions of protein derived chemicals were detected in 

pyrolysates of both Chlamydomonas reinhardtii strains biomass (ca. 15 %) than in 

Chlorella vulgaris biomass (ca. 10 %).  

In contrast, the gross chemical analysis revealed higher protein contents in Chlorella 

vulgaris biomass. Therefore, it is suggested, that other proteinaceous derived 

compounds were either not detected or could not be identified.  

Identified compounds derived by the lipid fractions of biomass include carboxylic acids, 

esters as revealed by total lipid extracts pyrolysis. Pyrograms of microalgae biomass 

showed all three specimen containing similar amounts of benzoic acid alkyl ester 

derivatives (4-6 %), benzenedicarboxylic acid, alkyl ester (ca. <1-1 %). In contrast, 2-

propenoic acid, 3-(4-methoxyphenyl)-, 2-ethylhexyl ester was found in higher amounts 

in Chlorella vulgaris pyrograms (8 %) than in Chlamydomonas reinhardtii (ca. 2 %) 

ones. In addition, Chlorella vulgaris exhibited squalene being the major pyrolysis 

chemical compound accounting for 25.5 %, whereas both Chlamydomonas reinhardtii 

strains contained only 4-5 %. Furthermore, as already shown in pyrograms of the total 

lipid extracts, octadecanoic acid octyl ester is a chemical produced by Chlorella 

vulgaris lipid fractions only, accounting for 5.6 % in pyrograms of biomass.  

Overall, the proportion of lipid derived pyrolysis products of Chlorella vulgaris biomass 

(ca. 45 %) is higher than obtained for both Chlamydomonas reinhardtii strains (ca. 20 

%).  

Polysaccharide-derived decomposition products are detected at concentrations of ca. 

1-2 % of levoglucosan in Chlamydomonas reinhardtii biomass, only. Furthermore, 

furfural and 2-furaldehyde, 5-methyl are polysaccharide decomposition products of 

furan ring based structures [181] and these products are detected in traces only.  

Again, phytol ((2E,7R,11R)-3,7,11,15- tetramethyl-2-hexadecen-1-ol and various 

isomeric forms were detected in pyrograms of biomass as already observed in other 

samples. Its wide spread occurrence suggests the tenacious binding of chlorophyll to 

both lipid and proteins fractions by means of hydrophobic interaction.  
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7.1.1.5. Dual detector analysis  

 

An exemplary dual detector analysis by of Py-GC-MSD/FID and Py-GC-MSD/NPD was 

performed of Chlorella vulgaris biomass, extracted total proteins, extracted total lipids 

and the residue obtained after lipid extraction. Overall, due to their specification, the 

FID and MSD obtained pyrograms exhibit a similar appearance. In contrast the NPD 

detects organic bound nitrogen and/or phosphorous containing chemicals  

When pyrograms of the NPD and MSD are compared the NPD exhibited a higher 

sensitivity. Generally, many nitrogen (and/or phosphorous) containing compounds are 

apparent in the pyrolysates of Chlorella vulgaris biomass. A set of analytical standard 

was applied to show the practice of a retention time library for the FID and NPD. The 

obtained pyrograms reveal that these detectors will provide useful information 

regarding the interpretation of biomass pyrolysates. In particular, when higher 

operation temperatures for the detection are applied, it might be possible to detect 

more chemicals in the pyrolysis mixtures.  

 

7.1.2. Porphyridium purpureum  

 

In this study the biomass of the red microalgae Porphyridium purpureum and a residue 

obtained after the extraction of the Coenzyme Q10 were included. These materials are 

of particular interest in terms of studying the effect of extracting high valuable products 

onto the pyrolysate composition.  

Due to the analytical pyrolysis of the biomass constituents of the green algae species, 

conclusion towards the overall biomass composition can be drawn. Consequently, the 

pyrograms of the red algae biomass revealed lower protein contents and higher 

portions of carbohydrates and lipids in the sample.  

The lower protein contents are revealed by minor amounts (<1-1 %) of proteinaceous 

derived chemical compounds, such as toluene, styrene and phenol. In coherence, 

almost no amounts of these compounds were observed in the pyrograms of the 

residual material. This indicates, that the extraction procedure for the Coenzyme Q10 

minimises the already low amounts of pyrolysis products derived from proteins.  

In addition, the lower protein content is indicated by the low nitrogen content detected 

in the biomass (1.3 %). 

Lipid derived products found in pyrolysates of red algae biomass include ca. 15 % of 

benzoic acid alkyl ester derivative (peaks 42, 45 and 47), and ca. 10 % of 2-propenoic 
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acid, 3-(4-methoxyphenyl)-, 2-ethylhexyl ester and squalene. The data obtained by 

analytical pyrolysis of the residue revealed that the methanol extraction applied for the 

separation of Q10 significantly lowered the lipid content of the sample. This is evident 

through the indentified values of only 1-2 % for each of the mentioned lipid derived 

compounds.  

In contrast, data showed that the extraction procedure favours the production of 

levoglucosan, markedly. Whereas already high amounts of 25 % were detected in 

pyrolysates of the biomass, almost as twice as much (47 %) was detected in 

pyrolysates of the residual material. Generally, high levoglucosan levels are derived by 

the carbohydrate structure of red algae biomass, containing various polysaccharides in 

their cell walls (cellulose, carrageenan and agar) as well as containing floridean starch 

as an energy storage product [39], [181]. An increase of levoglucosan to such high 

values in pyrolysates of the residue might be related to a decrease of catalytic active 

materials through the Q10 extraction procedure (demineralisation effect). It was 

reported that mineral impurities in biomass, favour the formation of low molecular 

weight compounds at the cost of levoglucosan formation [16].  

 

7.2. Macroalgae 

7.2.1. Polar species 

 

Pyrograms of arctic and antarctic derived macroalgal species revealed broad 

distributions of pyrolysis products originating from structural and storage 

polysaccharides and from lipids and proteins. On the basis of the prior identification of 

lipids, proteins and carbohydrate derived chemicals from microalgae biomass, results 

obtained by macroalgae biomass are applied to estimate whether a biomass contains 

mainly carbohydrates, lipids or proteins.  

Overall, the pyrolysates of the macroalgae species reveal significant differences in the 

pyrolysate compositions, and therefore in the chemical composition of the biomass.  

Interestingly, the identified chemical compounds in pyrograms of arctic species may 

reveal that these species contain low amounts of proteins in their biomass. For all 

arctic species, a sum of maximum 10 % of all protein derived chemicals was detected. 

In contrast, values up to 40 % were obtained by the antarctic species. The major 

proteinaceous derived compounds found in arctic species were toluene, phenol, and 4-

methylphenol; in traces detected were pyrrole, styrene and indole. In addition, 1-

hexadecene was detected in pyrolysates of Monostroma arcticum, accounting for 9.4 
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%. This was also detected in total proteins of the microalgae Chlorella vulgaris (7.2 %) 

where its origin was suggest being acylated proteins or acyl residues of fatty acids 

bound to the hydrophobic domains of the proteins. Overall, obtained results indicate 

that arctic macroalgae species contain low amounts of proteins dominated by the 

amino acids phenylalanine, tyrosine and tryptophan.  

In contrast, higher values of proteins may be present in macroalgae biomass derived 

from the antarctic region. However, the same protein derived chemicals were detected 

as in pyrolysates from arctic species, indicating similar amino acid constitution. The 

species Myriogramme manginii exhibited the highest value of proteinaceous derived 

chemicals, including 18.6 % toluene, 8.2 % styrene and 10 % phenol.  

 

Lipid derived long chain alkyl ester acids were detected in all macroalgal pyrograms, 

including benzoic acid alkyl ester derivatives, 2-propenoic acid, 3-(4-methoxyphenyl)-

,2-ethylhexyl ester and octadecanoic acid, octyl ester. Many of these esters are likely to 

originate from lipids through chain scission and molecular rearrangement.  

Generally, the triterpene squalene reached the highest values of lipid derived 

compounds, accounting for 7-12 % in the arctic species Phycodrys rubens and the 

antarctic species Plocamium cartilagineum, Kallymenia antarctica and 

Hymencladiopsis crustigena. In this study, relatively high levels of squalene have been 

observed in the microalgae Chlamydomonas reinhardtii and Chlorella vulgaris 

suggesting that it generated as lipid based artefact during pyrolysis [191].  

Highest levels of 5-7 % of 2-propenoic acid, 3-(4-methoxyphenyl)-,2-ethylhexyl ester 

was detected in Plocamium cartilagineum (antarctic) and Monostroma arcticum (arctic). 

All other lipid derived compounds were detected in lower amounts in several 

pyrolysates of macroalgae species. The lowest amounts (ca. 2 %) of lipid derived 

chemicals were detected in the arctic species Sphacelaria plumosa, Polysiphonia 

arctica and antarctic species Gigartina skottsbergii.  

The diterpene phytol, the ester-linked side chain of chlorophylls, was detected in 

pyrolysates of the green algae Prasiola crispa and in pyrolysates of the brown algae 

Sphacelaria plumosa but was not detected in any of the red algal species, due to their 

different pigmentation.  

 

The pyrograms obtained by intermediate pyrolysis of macroalgae species indicate that 

in the majority of analysed species carbohydrates are the main chemical constituents in 

the biomass.  
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Overall, levels of 10-70 % of polysaccharide derived pyrolysis products were detected 

in arctic and antarctic derived materials. In contrast, only ca. 2 % of polysaccharide 

derived chemicals were detected in Chlamydomonas reinhardtii biomass.  

One of the main polysaccharide derived products is levoglucosan originating from 

pyrolysis of cellulose and starch, hexoses (e.g. D-mannose) and sugar alcohols (e.g. 

D-arabinitol) due to de-polymerisation mechanisms [181], [194]. Amounts of 10-62 % of 

the total pyrogram area were detected in all species, excluding the antarctic species 

Gigartina skottsbergii, Plocamium cartilagineum and Myriogramme manginii, which did 

not contain any. The highest levels of 40-60 % were detected in the arctic species 

Odonthalia dentata, Sphacelaria plumosa and Polysiphonia arctica. Amounts of 10-30 

% were detected in all other species.  

These high levels of levoglucosan for macroalgae species are a consequence of their 

polysaccharide cell wall structure and their starch contents in the cell for energy 

storage purposes [39]. Overall, this study revealed, that intermediate pyrolysis of red 

macroalgae species offer a potential route to produce large amounts of levoglucosan. 

Typically, levoglucosan yields of up to 50 % contained in pyrolysis liquids of pure 

cellulose [195] and yields of 18-33 % in pyrolysis oils derived from waste newsprint and 

cotton [196] were reported. At present, almost all available studies about levoglucosan 

production through pyrolysis were carried out under fast pyrolysis conditions and two 

major routes of cellulose degradation are accepted. One route describes the 

fragmentation via ring scission producing lower molecular weight compounds such as 

hydroxyacetaldehyde, 5-hydroxymethyl-furfural and furfural. The other one favours the 

production of the high molecular weight compound levoglucosan due to de-

polymerisation [197]. Generally, levoglucosan production is inhibited by higher process 

temperatures, longer residence times and higher contents of inorganic compounds (i.e. 

alkali metals) in the feedstock, which favours the production of the low molecular 

products vice versa [195], [198], [199]. 

Furthermore, it is documented the fast pyrolysis of raw lignocellulosic biomass 

produces lower yields due to the presence of inorganic compounds in the biomass and 

demineralization and/or pre-treatment such as acid impregnation is required to obtain 

high values [24], [200]. Therefore, the high ash contents in the macroalgae materials 

between 15-44 %, would anticipate the formation of low molecule weight compounds 

such as  hydroxyacetaldehyde via ring scission reactions instead of levoglucosan [197]. 

However, the high values of levoglucosan obtained in pyrolysates revealed, that 

intermediate pyrolysis process conditions may favour the depolymerisation process of 

the cellulose and starch contained in the biomass leading to high levels of 

levoglucosan formation. 
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Interestingly, the pyrolysates of the antarctic species Gigartina skottsbergii free of any 

levoglucosan, still accounts for ca. 30 % polysaccharide derived compounds in its 

pyrolysate. In this case, major chemicals are furfural (13.3 %), levoglucosenone (12.6 

%) and 5-methyl-2-furaldehyde (4.7 %). Both, furfural and levoglucosenone are 

cellulose derived pyrolytic compounds, where levoglucosenone is a dehydration 

product of levoglucosan [194]. Overall, furfural is detected in all pyrolysates accounting 

for 1-10 % and levoglucosan was found in pyrolysate of Plocamium cartilagineum (7.6 

%).The chemical 5-methyl-2-furaldehyde is derived from galactanic, hexosic and 

pentosic structures and was indentified in all other pyrolysates ranging within 1-9 % 

[114], [181], [201].  

Further sugar derived chemicals, detected in lower amounts and widely distributed 

thorough the majority of the analysed species 1-(2-furanyl)-ethanone (1%), 5-

(hydroxymethyl)-2-furaldehyde (1-3 %) and 1,4:3,6-dianhydro-α-D-glucopyranose (<1-3 

%) [181]. In addition, the carbohydrate derived methyl ester of 3-furancarboxylic acid 

was detected in pyrograms of Odonthalia dentata, Phycodrys rubens and Gigartina 

skottsbergii [202].  

Pyrolysis products unique to the green alga Prasiola crispa were isosorbide (2.3 %) 

derived from sugar alcohols [109] and D-allose (6.8 %), previously detected in 

pyrolysates of cellulose [203]. Dianhydromannitol was detected in the brown alga 

Sphacelaria plumosa only, accounting for 4.6 %, consistent with earlier studies of 

brown algae materials [32]. In addition, maltol was detected as the only pyranoic 

compound in the red algal species Phycodrys rubens, accounting for 2.4 %, originated 

from starch [201]. 

Polycyclic aromatic hydrocarbons (PAHs) were identified in two Antarctic species, 

Gigartina skottsbergii and Plocamium cartilagineum, generated from both 

proteinaceous and carbohydrate material [39]. Chlorinated aromatics were also 

detected in a number of species, such as a derivative 2- chlorobenzophenone and 

triphenylmethyl chloride.  
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7.2.2. Fucus vesiculosus 

 

The pyrolysate of the biomass consists mainly of polysaccharide derived chemicals 

such as 5-methyl-2-furaldehyde, maltol, dianhydromannitol, isosorbide and 

levoglucosan.  

The results show, that the portions of the polysaccharide derived chemical have 

decreased within the residue and most of the compounds were not detected anymore. 

This is seen as a consequence of the polysaccharide extraction procedure. Surprisingly 

the content of 5-methyl-2-furaldehyde did increase significantly even thought 

polysaccharides were extracted. Generally, 5-methyl-2-furaldehyde originates from 

cellulose, galactanic, hexosic and pentosic structures and was detected across almost 

all macroalgae samples applied in this study. However, a portion of ca. 15 % was not 

detected so far in any of the samples. Furthermore, with a decrease of polysaccharide 

derived compounds, an increase of lipid derived compounds, such as benzoic acid, 

alkyl ester derivatives and squalene was observed.  

A general comparison between the pyrolysates obtained by macroalgae species form 

Polar Regions and of Fucus vesiculosus do not show any obvious differences. 

Generally, the pyrolysates contain comparable chemicals; however their distribution is 

different for each specimen. Overall, pyrolysates of Fucus vesiculosus in general 

contain low amounts of protein and lipid derived chemicals and higher amounts of 

carbohydrate derived chemicals. 

 

7.3. Chapter conclusions 

 

The obtained results by Py-GC/MSD of several micro- and macroalgae species 

revealed interesting differences regarding chemical product formation during 

intermediate pyrolysis. This study showed that the main chemicals indentified by 

microalgae were derived mainly by lipids and proteins. As lipid derived products 

several benzoic acid, alkyl ester derivatives, 2-propenoic acid, 3-(4-methoxyphenyl)-,2-

ethylhexylester, octadecanoic acid, octyl ester and squalene could be identified. Main 

products derived by proteins were toluene, 4-methylphenol, indole and 3-methylindole. 

In green and brown algal species phytol could be identified as a decomposition product 

of the pigment chlorophyll. This was not detected in any of the red algae species 

regarding their different pigmentation.  
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Results obtained by Porphyridium purpureum revealed levoglucosan being the main 

pyrolytic compound, which is unique for the microalgae species included in this study. 

In contrast, all other microalgae species exhibited lipid and protein derived pyrolytic 

products as their main compounds.  

Pyrograms obtained from macroalgae species revealed that most of the Arctic and 

Antarctic species contained polysaccharide compounds, such as levoglucosan, 5-

methyl-2-furaldehyde, 5-(hydroxymethyl)-2-furaldehyde. Further polysaccharide 

compounds were detected, being apparent in only a few species applied in this study, 

such as D-Allose in Prasiola crispa, Dianhydromannitol in Sphacelaria plumosa. 

Furthermore, minor amounts of isosorbide were detected in the green algae Prasiola 

crispa and the brown algae Fucus vesiculosus. In addition, phenanthrene derivatives 

were detected in only two antarctic macroalgae species, such as Gigartina skottsbergii 

and Plocamium cartilagineum. Minor amounts of chloride containing compounds were 

detected in two arctic species, i.e. Prasiola crispa and Monostroma arctica as well as in 

the antarctic species Plocamium cartilagineum and Myriogramme manginii.  

Generally, some significant differences concerning product evolution during 

intermediate pyrolysis of micro- and macro algae were revealed.  

However, this study showed that pyrolysis of biomass from algal species, originated 

from polar and temperate climatic regions, freshwater and marine water derived, 

collected in their natural habitats, grown in photo bioreactors and/or in the laboratory 

showed relatively comparable pyrograms regarding the chemical products and rather 

revealed differences in their distributions.  

Many of the products identified in the pyrolysates of polar macroalgae are also 

common to those detected in terrestrial biomass. Compounds such as levoglucosan, 

levoglucosenone, acetic acid and 5-(hydroxymethyl)- 2-furaldehyde, toluene, styrene, 

phenol, maltol, furfural and phenanthrene reported here in relatively high abundance 

are mainly derived from cellulose and hemicellulose materials and are also found in 

terrestrial biomass pyrograms [192], [201], [204].  

Overall, up to 80 % of the total peak area of some pyrolysates could be identified. 

However, this study reveals, that the detection of lipid derived products is more 

achievable than those derived from carbohydrates and proteins. As a consequence, no 

conclusions can be drawn from the pyrograms towards the proportion of lipids, proteins 

and carbohydrates in the biomass.  

The dual detector analysis of Chlorella vulgaris biomass and materials revealed that 

this set-up could lead to valuable results towards the identification of chemicals by 

retention times in future studies.  
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Table 7-1 presents the main identified compounds accounting for 4 % or more in the 

analysed microalgae biomass materials. Furthermore, the compounds of pyrolysates of 

total lipids, total proteins and residues after lipid extraction are presented. In addition, 

Table 7-2 presents the obtained results from macroalgae pyrolysates.  
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Table 7-1 Main chemicals of microalgae pyrolysates 

 

Species 
Major pyrolysis compounds  
(>4 % of total peak area) 

Chlamydomonas reinhardtii  
wild type and CW 15+ 

- Biomass 
 
 
 

- Total Proteins 
 

- Total Lipids 
 
 
 
 

- Residue 

 
 
toluene, 4-methylphenol, indole, phytol, trans-
phytol, benzoic acid, alkyl ester derivatives, 
squalene 
 
toluene, 4-methylphenol, indole 
 
phytol, trans-phytol, 2-Propenoic acid, 3-(4-
methoxyphenyl)-,2-ethylhexylester, 
benzenedicarboxylic acid, alkyl ester derivative, 
squalene 
 
toluene, 4-methylphenol, indole 

Chlorella vulgaris 
- Biomass 

 
 
 

- Total Proteins 
 

- Total Lipids 
 
 
 

- Residue 

 
phytol, 2-propenoic acid, 3-(4-methoxyphenyl)-,2-
ethylhexylester, octadecanoic acid, octyl ester, 
squalene 
 
toluene, indole, 1-hexadecene  
 
1-nonadecene, benzenedicarboxylic acid, alkyl 
ester derivative, octadecanoic acid, octyl ester, 
squalene 
 
indole  

Porphyridium purpureum 
- Biomass 

 
 
 

- Residue 

 
levoglucosan, benzoic acid, alkyl ester 
derivatives, 2-Propenoic acid, 3-(4-
methoxyphenyl)-,2-ethylhexylester, squalene 
 
levoglucosan 
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Table 7-2 Main chemicals of macroalgae pyrolysates 

 

Region Species Main chemical compounds 
( >4 % of total peak area) 

A
r
c

ti
c

 

Prasiola crispa 5-methyl-2-furaldehyde, D-Allose, phytol, levoglucosan, 
benzoic acid, alkyl ester derivatives 

Monostroma arcticum 5-methyl-2-furaldehyde, levoglucosan, 1-hexadecene, 
triphenylmethyl chloride, benzoic acid, alkyl ester 
derivatives, 2-propenoic acid, 3-(4-methoxyphenyl)-,2-
ethylhexyl ester  

Polysiphonia arctica levoglucosan 

Devalaraea 
ramentacea 

furfural, levoglucosan 

Odonthalia dentata levoglucosan, benzoic acid, alkyl ester derivatives, 
squalene 

Phycodrys rubens furfural, 5-methyl-2-furaldehyde, levoglucosan, benzoic 
acid, alkyl ester drivatives, 2-propenoic acid, 3-(4-
methoxyphenyl)-,2-ethylhexyl ester, squalene, 

Sphacelaria plumosa dianhydromannitol, levoglucosan 

A
n

ta
r
c

ti
c

 

Gigartina skottsbergii toluene, furfural, 5-methyl-2-furaldehyde, 
levoglucosenone, phenanthrene derivatives 

Plocamium 
cartilagineum 

toluene, 4-methylphenol, levoglucosenone, 
phenanthrene derivatives, trimethylphenyl chloride, 
benzoic acid, alkyl ester derivatives, 2-propenoic acid, 3-
(4-methoxyphenyl)-,2-ethylhexyl ester, squalene 

Myriogramme manginii toluene, styrene, furfural, 5-methyl-2-furaldehyde, 
phenol, 2 or 3 or 4-chlorobenzophenone, triphenylmethyl 
chloride, 2-propenoic acid, 3-(4-methoxyphenyl)-,2-
ethylhexyl ester,  

Hymencladiopsis 
crustigena 

indole, unidentified anhydrosugar, levoglucosan, benzoic 
acid, alkyl ester derivatives, squalene 

Kallymenia antarctica unidentified anhydrosugar, levoglucosan, squalene 

N
o

r
th

 

S
e

a
 

Fucus vesiculosus 
Biomass 

5-methyl-2-furaldehyde, dianhydromannitol, phytol, 
levoglucosan 

Fucus vesiculosus 
Residue 

furfural, 5-methyl-2-furaldehyde, squalene 
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Algae application in the BtVB-
process 
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8. Algae applications in the BtVB-process 

8.1. Introduction 

 

The availability of sustainable and renewable biomass resources plays an important 

role for the energy supply and production of chemicals in future. Due to various 

advantages over terrestrial derived feedstocks, such as higher photosynthetic 

efficiency, less impact on arable land, environment and food chains [13], [14], aquatic 

feedstocks are seen as a compelling route to generate biofuels, power and heat via 

intermediate pyrolysis.  

As already outlined in Chapter 1, commercial applications of microalgae being 

economically feasible are limited to relatively low-volume/high-value markets for 

speciality food or feed ingredients whether as whole cell preparations (e.g. Arthrospira 

sp., Chlorella sp.) or extracts such as β-carotene and astaxanthin, at present [62].  

In case of macroalgae biomass, the situation is comparable. The majority of 

commercial seaweed cultivation, mainly situated in Asia, produces goods for traditional 

markets and human nutrition additives (hydrocolloids). In Europe, seaweed exploitation 

is currently restricted to France and Norway, sustainably harvesting natural stocks by 

mechanised systems, which is a major challenge [205].  

By knowing the current limitations of cheap algal biomass availability, the BtVB-process 

integrates: (1) the cultivation of microalgae biomass, (2) the production of commodity 

materials designed for a range of chemicals products such as pharmaceuticals and 

cosmetics (lipids, proteins, carbohydrates and pigments), (3) bioenergy generation and 

(4) the production of value-added (precursor) chemicals and bio-based materials. In 

addition, the recycling of process heat, CO2 and nutrients is a step forward towards 

increasing efficiency and overall feasibility [23]. 

 

This study investigated fundamental analytical data, including thermo-chemical 

behaviour and product formation during intermediate pyrolysis of several micro- and 

macroalgae specimen. Based on the main results, outlooks towards the application of 

algae feedstocks within the BtVB-process are presented. In general, two major 

objectives are considered for algal biomass utilization within the BtVB-process. One of 

the most promising routes is the extraction of valuable products before biomass 

processing via intermediate pyrolysis. This will lead to an increase of the gross income 

and consequently improve the overall economical feasibility. Subsequently the residual 

materials will be further processed via intermediate pyrolysis followed by gasification to 

generate syngas, power and heat. Alternatively, the pyrolysis vapours are condensed 
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to gain pyrolysis liquids which are applied as transport fuels or as a source for 

chemicals. Another major aspect is the application of the biochar as a fertilizer, 

preferably for microalgae culture, to reduce biomass production costs [28].  

Overall, the below presented approaches are based on analytical pyrolysis studies of 

micro- and macroalgae materials presented in this thesis. However, proof of concepts, 

including lifecycle assessments and economical feasibility studies, are beyond the 

scope of this study.  

 

8.2. Extraction of valuable products prior to pyrolysis 

8.2.1. Lipids from microalgae 

 

One pathway within the BtVB-process considers the prior extraction of high valuable 

lipids from the biomass and subsequently pyrolysing the residual biomass.  

As revealed by this study, Chlamydomonas reinhardtii and Chlorella vulgaris derived 

lipids contain portions of PUFAs accounting up to 75 % and 43 %, respectively, 

including linoleic acid (18:2) and α-linolenic acid (18:3). These omega-3 (18:3) and 

omega-6 (18:2) fatty acids are value added products due to the known health effects 

on the human body including a general stimulation of hormonal activity, affecting the 

cardiovascular, immune and the central nervous system beneficially. Furthermore, it 

has been shown, that omega-3 fatty acids reduce the risk for cardiac arrhythmias [177–

179].  

After solvent extraction of the lipid portion from Chlamydomonas reinhardtii and 

Chlorella vulgaris a residue accounting for ca. 60-70 % of the entire biomass was 

obtained. Intermediate pyrolysis of the residue after lipid extraction revealed 

pyrolysates mainly containing protein derived compounds such as toluene, 4-

methylphenol and indole. In contrast, typical lipid derived chemicals such as 

benzenedicarboxylic acid alkyl ester, squalene and 2-propenoic acid, 3-(4-

methoxyphenyl)-, 2-ethylhexylester were not detected in pyrolysates of the residues.  

As a conclusion, intermediate pyrolysis of a lipid free residual biomass provides a 

pyrolysis liquid containing mainly aromatic hydrocarbons, which might be a source for 

chemicals and /or subsequent gasification to produce syngas.  

 

In addition, obtained results showed that the pyrolysis of lipids produce pyrolysis liquids 

mainly containing hydrocarbons, carboxylic acids, esters and ketones while exhibiting 
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comparable compositions than diesel fuel. Furthermore, possible applications of these 

liquids include the production of lubricants, solvents or lacquers [206].  

Overall, this study revealed that algal biomass containing high portions of lipids, exhibit 

higher HHV, due to higher carbon content in the biomass. Moreover, TGA revealed that 

the hydrocarbon structure of the lipids leads to the formation of high portions of 

volatiles, being advantageous to produce higher amounts of pyrolysis vapours for 

subsequent processing.  

 

8.2.2. Proteins from microalgae 

 

Algal derived proteins are seen as valuable products for many applications including 

pharmacy, cosmetics, human nutrition and animal feed [62]. It is well known that the 

nutritional value of algal derived proteins is comparable with that of conventional food 

proteins such as derived by eggs and soybeans. Furthermore, the pharmacological 

values of algae proteins, including antioxidative and immune-stimulant activities 

potentially preventing health issues and disorders like cancer, cardiovascular diseases 

and diabetes mellitus are of high interest for human nutrition [44]. The fact that proteins 

need to be resolved form the algal cell to be accessible for digestive enzymes from the 

human body, makes the combination of producing proteins prior to pyrolysis  

reasonable.  

Analytical pyrolysis studies revealed that the proteins contained in microalgae biomass 

lead to the formation of aromatic compounds with low molecular weights, typically 

including toluene, indoles and phenols. As a result of protein extraction, the pyrolysates 

of residual biomass lack the main proportions of these aromatic hydrocarbons.  

Furthermore, the study revealed that algal materials with high contents of proteins 

contain higher oxygen contents and consequently exhibit lower HHV. Moreover, TGA 

revealed the proteins cause higher char and consequently lower formation of volatiles 

during processing via intermediate pyrolysis. In contrast, as nitrogen is a main element 

of proteins, biochar obtained by biomass containing proteins may exhibit higher 

nitrogen contents.  
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8.2.3. Coenzyme Q10 from microalgae 

 

Currently, the global market for the Coenzyme Q10 is expected to exceed US $133 Mio 

by 2015, due to its emerging role in pharmacy and cosmetics, including heart health, 

cognitive health and anti-ageing products. In addition, large scale clinical tests are 

carried out to evaluate the potential to delay Parkinson diseases and to treat chronic 

heart failures [207–209]. To increase the economical feasibility of the BtVB-process, 

organisms containing high valuable products are of interest, and due to the high market 

value of Q10 Porphyridium purpureum is considered being one of the most interesting 

biomass investigated in this study.  

Conducted intermediate pyrolysis studies of the pure biomass and a residual biomass 

after Q10 extraction revealed valuable results for applications in the BtVB-process. The 

obtained pyrograms indicated that the solvent extraction had a side effect of 

demineralisation and possibly increased the levoglucosan content in the pyrolysate of 

the residue by almost 100 %, compared to the pure biomass. Overall, levoglucosan is a 

pyrolysis product of interest due to its various applications, further outlined in section 

8.3.2. Moreover, TGA analysis revealed that the extraction of Q10 had no effect on the 

formation of volatiles and chars, however, a slight shift (20 °C) towards higher 

degradation temperatures was observed.  

 

8.2.4. Polysaccharides from macroalgae 

 

Commercial macroalgae production includes the production of ca. 30.000 t hydrocolloid 

polysaccharides per year. Polysaccharides such as carrageenan, alginate and agar 

being applied as thickening agents in human nutrition, pharmaceuticals and cell culture 

in biology and are extracted from red and brown macroalgae species [39], [68].  

This study investigated the pyrolytic characteristics of the brown algae Fucus 

vesiculosus before and after extraction of value added polysaccharides, including 

alginate, laminarin and fucoidan.  

The main outcome was a decrease of polysaccharide derived chemicals in the 

pyrolysates, including levoglucosan, dianhydromannitol and isosorbide. Interestingly, 

an increase from the lipid derived product squalene was evident vice versa.  

On the basis of these results, the application of residual biomass obtained by prior 

extraction of polysaccharides is seen as a promising route within the BtVB-process. On 

the one hand valuable polysaccharide based products can be produced, while still 
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useful pyrolysates are recovered, offering applications in chemistry processes or for 

subsequent gasification.  

 

8.3. Applications of pyrolysis liquids 

 

The pyrolysates obtained from analytical pyrolysis of various algal materials contained 

more than 200 compounds of different molecular sizes, mostly being degradation 

products of the three key biomass building blocks, being proteins, lipids and 

carbohydrates. Major groups of compounds detected in this study include aromatic and 

aliphatic hydrocarbons, anhydrosugars, acids and terpenes.  

Overall, algae derived pyrolysis liquids can find applications as substitutes for fuel oils 

or diesel, applied in boilers, furnaces, engines and turbines used for electricity 

generation [9].  

In addition to process biofuels, the BtVB-process considers a direct coupling of the 

pyroformer outlet to the gasifier. With this, the pyroformer acts an ash filter, while 

capturing the valuable inorganic compounds in the biochar and the low ash containing 

vapours are directly applied to produce synthetic gas, power and heat. Via this pathway 

no pyrolysis liquids, i.e. condensates are produced.  

However, biomass is the only renewable resource of carbon which is available for the 

production of chemicals typically derived by fossil resources.  

As a consequence, investigations of separation techniques to retain chemicals, and 

precursor materials form pyrolysis liquids are a key technologies for biorefinery 

concepts and consequently for R&D.  

Generally, fractional distillation and isolation techniques of selected key chemicals 

derived by pyrolysis liquids are difficult due to their thermal and chemical instability and 

the content of different chemical compounds. Due to the high content of oxygenated 

compounds, the liquids have a polar and hydrophilic nature and are almost immiscible 

with liquid hydrocarbons [9], [210].  

After all, no commercially available methods for fractionation of pyrolysis liquids are 

available, at present. However, due to increasing demands on carbon based chemicals 

and the decrease of fossil resources, investigations towards recovery of chemicals 

from pyrolysis liquids are ongoing.  

Mostly investigated chemicals also found in algal derived pyrolysis liquids are phenol 

(protein derived) and levoglucosan (carbohydrate derived) and their potentials are 
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outlined in the following sections. Furthermore, squalene was identified as a lipid 

derived pyrolysis products and possible applications are presented, too.  

 

8.3.1. Phenol 

 

Nowadays, phenol is a petroleum derived bulk chemical used for various applications, 

such as a precursor for various plastics (polycarbonates, nylon), pesticides, 

insecticides and binding agents in the manufacture of plywood [211]. As determined in 

this study, the phenolic fraction in algal intermediate pyrolysates is mainly made of 

phenol and 4-methylphenol. Whereas no methods about extraction of phenolic 

compounds from algal derived pyrolysis are reported, some are studied to obtain 

phenol from lignocellulosic derived fast pyrolysis liquids. Typically, these liquids contain 

a heavy oil fraction which is made of lignin derived phenolic fractions (mainly 

composed of phenols, cresols, guaiacols, syringols, catechols) which find application 

without as an extender and a partly replacement of phenol-formaldehyde resins in 

plywood industry [9], [155].  

Due to their limited solubility in water, further methods include treatments with different 

solvents, including alkali solutions (sodium hydroxide) and organic polar solvents. In 

addition, procedures applying supercritical CO2 fluid extraction were investigated. 

Overall, although recoveries of up to 50 % of the phenol fraction were reported, no 

industrial application of a proposed process is available at present [155], [210], [212–

215].  

 

8.3.2. Levoglucosan 

 

In contrast to other chemicals produced from fossil resource and found in biomass 

derived pyrolysates, the anhydrosugar levoglucosan is produced by pyrolysis of 

carbohydrates, solely.  

Being the major pyrolytic product of cellulose and starch it was found in intermediate 

pyrolysates of various macroalgal species, accounting for up to 20-60 % of the 

pyrolysates of arctic (Monostroma arcticum, Sphacelaria plumosa, Odonthalia dentata, 

Polysiphonia arctica) and antarctic species (Hymencladiopsis crustigena, Kallymenia 

antarctica). In addition, up to 47 % were found in the residue of the red microalgae 

Porphyridium purpureum after solvent extraction of Coenzyme Q10. Overall this study 
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revealed that most of the red algae species produce large amounts of levoglucosan, 

even higher amounts than typically retained from lignocellulosic biomass.  

 

The product levoglucosan is of interest, as its commercial production is limited and the 

prices go up to US$10.000/kg for purified levoglucosan, at present [216]. Broad ranges 

for its utilization are studied and a high potential for becoming an important renewable 

chemical is seen. Various applications are tested, such its fermentation products, 

cosmetically and pharmaceutical potentials and applications for manufacturing of 

biodegradable polymers [24], [217]. Studies revealed, that naturally occurring 

microorganisms such as bacteria, yeasts and fungi can utilize levoglucosan as a 

carbon substrate via the enzyme levoglucosan kinase and subsequently convert it to 

ethanol and organic acids (lactic acid, citric acid) [218]. For a faster fermentation 

process, the anhydrosugar must be hydrolysed to glucose before, usually applying 

sulphuric acid. Overall, ethanol yields obtained by fermentation of levoglucosan were 

comparable to those from glucose [218], [219]. An interesting study carried out by 

Luyen et al [220] investigated the application of levoglucosan as an cell-growth 

enhancing substance to increase microalgae growth and thus the feasibility of 

microalgae production. It was found that the cell growth of various cultured microalgae 

species was increased by approximately 50 % when levoglucosan was added to the 

culture medium [220]. Another promising route to utilize levoglucosan is the production 

of biodegradable and renewable alkyl glycoside surfactants for soaps and cosmetics. 

These high valuable products are produced by condensation reactions of the sugars 

with vegetable oil derived alcohols or acids [217]. Furthermore, levoglucosan has been 

utilized as a precursor for pharmaceutical important agent such as antibiotics [221], 

[222].  

Technically, due to its polarity and solubility, levoglucosan is contained in the aqueous 

phase of the pyrolysis oils and several methods applying various solvents are patented 

for the extraction and purification of levoglucosan [219], [223–225]. However, a low-

cost recovery and purification procedures is not available, at present [24], [200].  

 

8.3.3. Squalene  

 

Another interesting outcome of this analytical study is the high level of the lipid derived 

artefact squalene which was detected in various algal materials, accounting for 25 % in 

the pyrolysates of Chlorella vulgaris biomass. So far, such high levels are not reported 
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in any other biomass derived pyrolysates. It is possible, that the production of this high 

molecular weight and long chain hydrocarbon (C30H50, MW 410) is a result of the 

moderate heating rates and gentle decomposition of the biomass molecules utilized 

during intermediate pyrolysis [23].  

In cosmetic and pharmacy industry, squalene is an important ingredient due to its 

photo protective characteristics and its potential to decrease cancer. In addition, it is 

applied for the production of fine chemicals, such as lubricants for computer disks and 

magnetic tape [226].  

Squalene cannot be reproduced synthetically and natural oils such as shark and plant 

oils are its only source as it is part of the biosynthesis of triterpenes and cholesterol 

[186–189]. In addition, the green microalgae Botryococcus braunii race B produces 

squalene as a precursor for triterpenoid hydrocarbons and is investigated as a 

hydrocarbon rich source for biofuel applications [190].  

Due to the main delivery of squalene from fish liver oil and the increasing concern 

about marine animal protection, it is of interest to identify alternative sources. Current 

investigations include supercritical CO2 extraction from olive oil deodorization distillate 

(by product of olive oil refining) and amaranth oil [227], [228]. Hardly any sources are 

published about squalene contained in algal derived pyrolysates and from this point it 

seems reasonable to investigate algae biomass and algal pyrolysates as a possible 

new source for the production of squalene.  

 

8.4. Biochar for fertilisers  

 

As outlined in section 1.3, biochar accounting for ca. 25 % of the amount of applied 

feedstock is obtained by intermediate pyrolysis of biomass.  

At present, much attention towards biochar application in environmental management 

is paid, and main objectives include (1) soil improvement, (2) waste management and 

(3) climate change mitigations [229].  

The addition of biochar to the soil is associated with improvement of the overall soil 

productivity. Due to its highly porous structure it possibly increases water retention 

capacity and surface areas of soils. In addition, while containing the inorganic portions 

of the pyrolysed biomass, the addition to soils is associated with an fertilising effect 

[229], [230].  

By pyrolysing waste materials, such as sewage sludge, biogas plant and agricultural 

residues, not only energy is recovered, but volume and weight of the waste material is 
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reduced, dependently on the feedstock, down to the amount of biochar obtained. In 

addition, if pathogens are contained in the waste or residual material, pyrolysis offers a 

route to remove them, due to process temperatures above 350 °C and easier disposal 

is possible [229].  

Pyrolysis of photosynthetic active feedstocks, i.e. plant and algae biomass, and 

subsequent adding of the biochar to soils, reduces the atmospheric CO2 due to carbon 

sequestration soils [229–231].  

 

In addition, within the BtVB-process the approach is included to retain water soluble 

nutrient fractions from the biochar to recycle them into the microalgae culture, to 

reduce their overall production costs. Therefore, an early study of the author 

investigated the water solubility of the main algal required nutrients including N, P and 

K from algal biochar [232]. A biochar, obtained by intermediate pyrolysis of Chlorella 

vulgaris biomass, was subjected to hot water extraction by applying a Soxhlet 

apparatus. It has been found, that after two hours of extraction about 100 % of the 

contained potassium, sulphur and ca. 90 % of the chlorine was obtained. Furthermore, 

about 5 % of the sodium and minor amounts of phosphorous and nitrogen were 

recovered [232]. In addition, it has been revealed that the phosphorous was easier 

released from biochar with smaller particle sizes.  

Based on these results, promising applications for the water soluble potassium fraction 

are seen for microalgae cultures. Furthermore, the nitrogen and phosphorous still 

remained within the biochar after water extraction could be applied a slow releasing 

fertiliser in agriculture. In terms of supposed future phosphorous shortages [34], the 

opportunity to recover this important nutrient via intermediate pyrolysis of biomass will 

gain more attraction.  

 

An unconventional but valuable resource, to valuable produce biochar is macroalgae 

biomass which is harmful for the environment. Overall, rapid growth rates and 

assimilation of nutrients such as nitrogen and phosphorous form the oceans are 

characteristic for macroalgae organisms [167], [233]. The ability of heavy metal 

assimilation is used as bioremediation of waste waters of aquaculture systems and 

offer a robust solution for treating eutrophic (N and P- rich) waters [234].  

In contrary, green or red tides, i.e. excessive growth in eutrophic environments and 

abnormal biomass proliferations of some species (i.e. Ulva sp., Cladophora sp, 

Gracilaria sp.) create serious problems along coastlines and shallow lagoons [17], 

[235–237]. Examples are recurring algae blooms of Ulva prolifera in the Yellow Sea, off 

China, with estimated areas up to 30.000 km2 [236], [237]. Environmentally, the water 
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quality of oceans and lakes is endangered, affecting fish and other organisms due to 

abnormal biomass proliferation. In many cases, large amounts of biomass need to be 

removed causing difficulties especially when the biomass is contaminated, i.e. with 

heavy metals [238], [239]. In those cases, where no applications are available and 

disposal is complicated, pyrolysis of the materials may offer a route to generate 

bioenergy form this problematic feedstock, while reducing the amount of disposable 

materials down to the amounts of biochar after pyrolysis (ca. 25 % of the feedstock). 

In addition, with appropriate separation technologies the valuable nutrients may be 

recovered from the biochar and are available for further applications.  

 

8.5. Chapter conclusions 

 

Due to a large diversity and complexity of aquatic biomass, exploitation of its full 

potential for pyrolytic applications is still required. At present, most of the reported 

studies investigating pyrolytic characteristics of aquatic biomass under fast pyrolysis 

conditions.  

This conducted analytical study presents one of the first activities in applying aquatic 

biomass for intermediate pyrolysis and from there derived possible applications within 

the BtVB-process were presented.  

Potential routes include the extraction of lipids or proteins from microalgae and 

polysaccharides from macroalgae biomass. In particular, the compelling potential of the 

recovery of the high valuable product Coenzyme Q10 prior to intermediate pyrolysis of 

the red algae Porphyridium purpureum offers potential applications for being integrated 

in the BtVB-process.  

In addition, a major outcome of this study showed that pyrolysis of various algal 

specimen, originated from polar and temperate climatic regions, freshwater and marine 

water derived, collected in their natural habitats, grown photo bioreactors and/or in the 

laboratory showed relatively comparable pyrograms regarding the chemical products 

and rather revealed differences in their distributions.  

It has been shown, that red micro- and macroalgae species produce large amounts of 

levoglucosan, mainly derived by their polysaccharide structure, consisting of cellulose, 

galactans, carrageenan, agar and starch.  

Overall it has been shown, that algal materials are a source of highly versatile 

feedstocks offering numerous applications. Therefore, most effective and most 

valuable routes need to be identified for every algal material, individually.  
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Major aspects are the gross chemical composition of an algal biomass, the possibility 

to retain a high valuable product prior pyrolysis and the composition of the pyrolysates 

obtained by the residual biomass.  

In addition, this study revealed that the application of macroalgae biomass is a useful 

route for bioenergy generation and the production of renewable chemical resources. 

Furthermore, large potentials are seen for the development of alternative fertilizers, by 

capturing valuable nutrients from the oceans in the biochar via intermediate pyrolysis.  
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9. Conclusions and recommendations  

9.1. Response to main objectives 

 

Objective 1: 

Installation of an analytical pyrolysis system, providing intermediate pyrolysis 

conditions, with subsequent separation and detection of pyrolysates.  

 

An analytical pyrolysis unit consisting of a micro-furnace pyrolyser, a gas-

chromatograph with a dual column set-up has been installed. For detection and 

identification of pyrolysates, three detectors, a MSD, FID and NPD were installed, 

facilitating dual detector analysis. Overall, a reliable instrument providing intermediate 

pyrolysis process condition has been commissioned, delivering reproducible results for 

any feedstock testing.  

 

Objective 2:  

Examine the pyrolytic behaviour of algal derived biochemical constituents under 

intermediate pyrolysis process conditions.  

 

Total lipids and total proteins were extracted from Chlamydomonas reinhardtii and 

Chlorella vulgaris biomass and subsequently analysed under intermediate pyrolysis 

conditions. Overall, thermo-chemical characteristics were studied and lipid and protein 

derived pyrolysis products were identified.  

 

Objective 3:  

Study the thermo-chemical behaviour and chemical product formation of micro- and 

macroalgae biomass during intermediate pyrolysis.  

 

Via TGA and Py-GC/MS analysis intermediate pyrolysis studies of various micro- and 

macroalgae biomass was studied. Obtained results revealed characteristically 

behaviour of micro- and macroalgae biomass during intermediate pyrolysis. In addition, 

chemical compounds contained in biomass pyrolysates were identified.  

 

Objective 4:  

Evaluate possible applications of algal feedstocks in the BtVB-process upon basis of 

obtained analytical results.  
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On the basis of the gained analytical results various applications for algae feedstocks 

within the BtVB-process have been demonstrated. Included are applications for micro- 

and macroalgae biomass, as well as residual materials obtained by extraction of high 

valuable products prior to pyrolysis.  

 

9.2. Recommendations for future work 

9.2.1. Algae biomass 

 

It is advisable to carry on with a screening of algal biomass to further investigate the 

formation of chemicals formed under intermediate pyrolysis conditions. 

The obtained results by analysing the biomass of Porphyridium purpureum and the 

residue obtained after the extraction of Coenzyme Q10 revealed that the recovery of a 

high valuable product offers interesting possibilities to increase the overall feasibility of 

the BtVB-process.  

It is advisable to find collaboration partners from research and industry, who are 

working on manipulating chemical compositions of biomass and extraction of valuable 

products.  

 

9.2.2. Analytical pyrolysis 

 

This study provided an analytical pyrolysis unit facilitating intermediate pyrolysis 

conditions. For further in-depth identification of chemical compounds in pyrolysates of 

algal biomass and any other feedstock it is suggested to set-up retention time libraries 

for the FID and NPD. For the convenient handling of the standard materials an auto 

sampler carrying up to 100 samples was installed.  

With this, it is suggested to carry out calibrations of recurring pyrolysis products to 

obtain quantification results, taking the response factors of the detectors into account. 

In addition, it is suggested to change to a high temperature separation column to and to 

analyse pyrolysates with GC temperatures up to 400 °C.  

 

This study revealed by TGA that maximum degradation temperatures of algae biomass 

and biochemical constituents are below 500 °C. Therefore, it is suggested to 

investigate chemical product formation at lower pyrolysis temperatures than applied in 
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this study. Moreover, an investigation of staged pyrolysis to produce a certain spectrum 

of chemicals in the pyrolysates would be useful.  

 

9.2.3. Large-scale realisation  

 

It is suggested to carry out large-scale tests applying micro- and macroalgae biomass 

with the 100kg h-1 pyroformer to obtain pyrolysis liquids and biochar for further 

characterisation. It is of importance to record mass and energy balances to evaluate 

the overall efficiency of intermediate pyrolysis. If possible, large scale testing with the 

pyroformer coupled to a gasifier would be useful.  

In addition, lifecycle assessments and economical feasibility studies including various 

feedstocks are necessary to rate the overall prospect of the BtVB-process.  
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Beijerinck (CCAP211/11B ) biochar derived from intermediate pyrolysis on the 

elution of nutrients during Soxhlet extraction, Bioten Conference. Birmingham, 

United Kingdom, 2010 

 

Kebelmann K, Hornung A, Griffiths G, Karsten U. Intermediate pyrolysis and product 

identification by TGA and Py-GC/MS of green microalgae and their extracted 

protein and lipid components, Biomass and Bioenergy (2012).  

 

 

Kebelmann K, Hornung A, Griffiths G, Karsten U. Thermo-chemical behaviour and 

chemical product formation from Polar macroalgal biomass during intermediate 

pyrolysis, Fuel (2012).  

Under revision 

  



 

211 
 

Appendix B – Validation report analytical pyrolysis system 
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Appendix B continued 
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Appendix B continued  
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Appendix B continued  

 

  



 

218 
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Appendix B continued  
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Appendix C – TAP Medium 

 

Make the following stock solutions: 

 

1. TAP salts 

NH4Cl       15.0 g 

MgSO4. 7H2O    4.0 g 

CaCl2. 2H2O     2.0 g 

 
Water to 1 litre. 

 

2. Phosphate solution 

K2HPO4     28.8 g 

KH2PO4     14.4 g 

 

Water to 100 ml.  

 

3. Hunter’s trace elements (see next page) 

 

 

To make the final medium, mix the following: 

2.42 g Tris 

25 ml solution #1 (salts) 

0.375 ml solution #2 (phosphate) 

1.0 ml solution #3 (Hunters trace elements) 

1.0 ml glacial acetic acid 

 

Water to 1 litre. 

 

For solid medium, add 15 g agar per litre.  

 

Autoclave.  
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Appendix C – continued 

 

Hunter Trace Element Solution:  

 

For 1 litre final mix, dissolve each compound in the volume of water indicated. 

The EDTA should be dissolved in boiling water, and the FeSO4 should be prepared 

last to avoid oxidation 

 

Compound      Amount   Water 

EDTA disodium salt    50 g    250 ml 

ZnSO4 7 H2O     22 g    100 ml 

H3BO3       11.4 g    200 ml 

MnCl2 4 H2O      5.06 g    50 ml 

CoCl2 6 H2O      1.61 g    50 ml 

CuSO4 5 H2O     1.57 g    50 ml 

(NH4)6Mo7O24 4 H2O   1.10 g    50 ml 

FeSO4 7 H2O     4.99 g    50 ml 

 

Mix all solutions except EDTA. Bring to boil, then add EDTA solution. The mixture 

should turn green. When everything is dissolved, cool to 70 degrees C. Keeping 

temperature at 70, add 85 ml hot 20 % KOH solution (20 grams / 100 ml final volume). 

Do NOT use NaOH to adjust the pH. 

Bring the final solution to 1 litre total volume. It should be clear green initially. Stopper 

the flask with a cotton plug and let it stand for 1-2 weeks, shaking it once a day. The 

solution should eventually turn purple and leave a rust-brown precipitate, which can be 

removed by filtering through two layers of Whatman#1 filter paper, repeating the 

filtration if necessary until the solution is clear. Store refrigerated or frozen convenient 

aliquots. Some people shorten the time for formation of the precipitate by bubbling the 

solution with filtered air. If no precipitate forms, the solution is still usable. However, you 

might want to check the pH in this case and adjust it to around 7.0 using either KOH or 

HCl as needed. To prepare sulphur-free trace elements for hydrogen generation, the 

sulphate salts can be replaced with equimolar chloride salts (ZnCl2 10.0 g; CuCl2. 2 

H2O 1.00 g; FeCl2 . 4 H2O, 3.60 g). 
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Appendix D – Pyrolysis products by Py-GC/MS at 500 °C 

 
      * by retention time of analytical standard  ** tentatively assigned 

Peak 
No. 

RT 
(min) 

Compound Formula Structure MW NIST 
match 
(%) 

1 5.65 Acetic Acid C2H4O2 

 

60 93 

2 6.68 Toluene* C7H8 

 

92 - 

3 7.17 Pyridine* C5H5N 

 

79 - 

4 9.55 Ethylbenzene* C8H10 

 

106 - 

5 9.88 Pyrrole* C4H5N 

 

67 - 

O

OH

N

NH
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6 11.58 Styrene* C8H8 

 

104 - 

7 12.18 Furfural C5H4O2 

 

96 89 

8 13.35 1H-Pyrrole, 2 or 3-methyl- C5H7N 

 

81 87 

9 13.61 Isomer of 8 - - - 82 

10 15.46 Ethanone, 1-(2-furanyl)- C6H6O2 

 

110 92 

11 18.63 5-Methyl-2-furaldehyde C6H6O2 

 

110 93 

12 24.30 Phenol* C6H6O 

 

94 - 

O

O

NH

O

O

O

O

OH
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13 26.11 3-Furancarboxylic acid, methyl ester C6H6O3 

 

126 90 

14 26.85 Maltol C6H6O3 

 

126 92 

15 28.39 4-Methylphenol* C7H8O 

 

108 - 

16 29.25 Levoglucosenone C6H6O3 

 

126 90 

17 33.62 Dianhydromannitol C6H10O4 

 

146 89 

18 34.97 3-Phenylpropionitrile* C9H9N 

 

131 - 

OO

O

O

OH

O

OH

O

O

O

HO

HO

O

O

N
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19 35.46 1,4:3,6-Dianhydro-α-D-glucopyranose C6H8O4 

 

144 85 

20 36.22 Picolinamide* C6H6N2O 

 

122 - 

21 38.34 5-(Hydroxymethyl)-2-furaldehyde  C6H6O3 

 

126 87 

22 39.02 Indole* C8H7N 

 

117 - 

23 40.23 Isosorbide C6H10O4 

 

 

146 87 

24 42.25 3-Methylindole* C9H9N 

 

131 - 

25 45.15 Heptadecane C17H36  240 85 

26 46.80 Anhydrosugar** - - - 82 

HO

O

O

O

N

NH2

O

OH

O

O

NH

H

O OH

HO O

H

NH
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27 47.47 Anhydrosugar** - - - 83 

28 49.99 D-allose** C6H12O6 

 

180 87 

29 50.99 Phytol C20H40O 
 

296 85 

30 51.93 Phenanthrene derivative** - - - 75 

31 52.70 Levoglucosan C6H10O5 

 

162 84 

32 52.83 Isomer of 29 - - - 85 

33 54.97 2 or 3 or 4-Chlorobenzophenone C13H9ClO 

 

 

216 85 

34 55.96 Hexadecanoic acid, methyl ester C17H34O2  
270 82 

35 58.43 Anhydrosugar** - - - 85 

36 59.61 Phenanthrene derivative** - - - 75 

37 62.08 1-Hexadecene C16H32  224 85 

38 63.15 Trans-phytol C20H40O  
296 75 

39 65.52 Dipeptide** -  - 75 

40 65.61 Dipeptide** -  - 70 

O

OH

OH

HO

HO

OH

HO

HO

HO

O

O

OH

216

O

Cl

O

O

83

HO



 

227 
 

41 65.78 Triphenylmethyl chloride** C19H15Cl 

 

 

278 75 

42 69.10 Benzoic acid alkyl ester derivative - - - 77 

43 69.51 Hexadecanamide** C16H33NO 

 

157 70 

44 71.60 2-Propenoic acid, 3-(4-methoxyphenyl)-, 
2-ethylhexyl ester 

C18H26O3 

 
 

290 90 

45 72.04 Isomer of 42 - - - 85 

46 73.78 1-Nonadecene C19H38  266 80 

47 74.82 Isomer of 42 - - - 80 

48 76.11 Heneicosane C21H44  296 83 

49 77.11 Benzenedicarboxylic acid, alkyl ester 
derivative 

- - - 83 

50 78.06 Octadecanoic acid, octyl ester** C26H52O2  

 

396 75 

51 80.32 Squalene C30H50 
 

410 92 

 

1
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