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Thesis Summary 

Cationic liposomes have been extensively explored for their efficacy in delivering 
nucleic acids, by offering the ability to protect plasmid DNA against degradation, 
promote gene expression and, in the case of DNA vaccines, induce both humoural and 
cellular immune responses. DNA vaccines may also offer advantages in terms of safety, 
but they are less effective and need an adjuvant to enhance their immunogenicity. 
Therefore, cationic liposomes can be utilised as delivery systems and/or adjuvants for 
DNA vaccines to stimulate stronger immune responses. 

To explore the role of liposomal systems within plasmid DNA delivery, parameters such 
as the effect of lipid composition, method of liposome preparation and presence of 
electrolytes in the formulation were investigated in characterisation studies, in vitro 
transfection studies and in vivo biodistribution and immunisation studies. Liposomes 
composed of 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine  (DOPE) in combination 
with 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) or 1,2-stearoyl-3-
trimethylammonium-propane (DSTAP) were prepared by the lipid hydration method 
and hydrated in aqueous media with or without presence of electrolytes. Whilst the in 
vitro transfection efficiency of all liposomes resulted to be higher than Lipofectin, 
DSTAP-based liposomes showed significantly higher transfection efficiency than 
DOTAP-based formulations. Furthermore, upon intramuscular injection of liposomal 
DNA vaccines, DSTAP-based liposomes showed a significantly stronger depot effect at 
the injection site. This could explain the result of heterologous immunisation studies, 
which revealed DSTAP-based liposomal vaccines induce stronger immune responses 
compared to DOTAP-based formulations. Previous studies have shown that having 
more liposomally associated antigen at the injection site would lead to more drainage of 
them into the local lymph nodes. Consequently, this would lead to more antigens being 
presented to antigen presenting cells, which are circulating in lymph nodes, and this 
would initiate a stronger immune response. Finally, in a comparative study, liposomes 
composed of dimethyldioctadecylammonium bromide (DDA) in combination with 
DOPE or immunostimulatory molecule of trehalose 6,6-dibehenate (TDB) were 
prepared and investigated in vitro and in vivo. Results showed that although DDA:TDB 
is not able to transfect the cells efficiently in vitro, this formulation induces stronger 
immunity compared to DDA:DOPE due to the immunostimulatory effects of TDB.  

This study demonstrated, while the presence of electrolytes did not improve immune 
responses, small unilamellar vesicle (SUV) liposomes induced stronger humoural 
immune responses compared to dehydration rehydration vesicle (DRV) liposomes. 
Moreover, lipid composition was shown to play a key role in in vitro and in vivo 
behaviour of the formulations, as saturated cationic lipids provided stronger immune 
responses compared to unsaturated lipids. Finally, heterologous prime/boost 
immunisation promoted significantly stronger immune responses compared to 
homologous vaccination of DNA vaccines, however, a single immunisation of subunit 
vaccine provoked comparable levels of immune response to the heterologous regimen, 
suggesting more immune efficiency for subunit vaccines compared to DNA vaccines.  

Keywords: lipoplex, gene delivery, transfection, depot effect, heterologous regimen 
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1.1.Vaccines 

The World Health Organisation have noted that the two public health interventions that 

have the greatest impact on the World’s health are clean water and vaccines (Andre et 

al., 2008). The aim of a vaccine is to exploit the natural defence mechanisms of a body’s 

immune system to promote long term immunological protection against establishment 

of an infection. Vaccines can be prepared in a range of formats, including live attenuated 

forms of a virus (e.g. rubella or measles vaccine) or live attenuated bacteria (e.g. BCG 

vaccine). Alternatively, inactivated preparations of the virus or bacteria can be used (e.g. 

influenza vaccine). A third class of vaccines includes those prepared from extracts of 

pathogens or detoxified exotoxins (e.g. Tenanus toxoid vaccine). 

1.1.1. Historic evolution of vaccines 

The impact of vaccination is most clearly demonstrated in the eradication of Smallpox, 

thanks to the development of a vaccine based on the early work of Edward Jenner 

(Jenner, 1798). The earliest evidence of smallpox has been found on the mummified 

body of Pharaoh Ramses V of Egypt, who died over 3000 years ago (Hopkins, 1980; Li 

et al., 2007). Medical writings from ancient India (1500 B.C.) and China (1122 B.C.) (Li 

et al., 2007) show the presence of smallpox in that region. Rhazes, a Persian physician, 

was the first to publish a written account attempting to distinguish the measles from 

smallpox in “fi al-Judari wa al-Hasbah” (“A Treatise on the Smallpox and Measles”) in 

9th century A.D. (Cohen, 2008; Otri et al., 2008; Rhazes, 910). Smallpox was described 

as an acute infectious disease with a mortality rate of at least 30 % (Stewart and Devlin, 

2006). Recovery was seen to be accompanied with long-life immunity against the 

disease (Li et al., 2007).  It has been reported that a procedure called inoculation (also 

known as variolation) was possibly first performed by Asians to prevent smallpox. This 

technique involved nasal administration of dried powders of smallpox scabs or 
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scratching the recovered materials from smallpox lesions into the skin of a non-infected 

patient (Hilleman, 2000; Maurer et al., 2003). This method decreased the rate of 

smallpox infection, but still was a threat, as the virus could become active despite being 

in these dried formats and cause smallpox infection (Stewart and Devlin, 2006).  

Inoculation was introduced to UK in 1721, and its successful treatment led to an 

extensive acceptance across the Europe and USA (Riedel, 2005; Stewart and Devlin, 

2006). This method was introduced to Edward Jenner who was born in Gloucestershire, 

England in 1749, as he was inoculated in his childhood (Stewart and Devlin, 2006). As 

a practitioner, he used the same method for his patients. He was also aware of the fact 

that milkmaids who caught cowpox from their cows were protected against smallpox. 

Therefore, in 1796, he inoculated his gardener’s son James Phipps with cowpox from a 

local milkmaid and afterwards exposed James to smallpox. Successfully, James showed 

immunity against smallpox (Hilleman, 2000; Jenner, 1798; Riedel, 2005) and this was 

start of vaccinology and immunology. The term vaccine was derived from use of the 

term “cowpox” (Latin “variolæ vaccinæ”, adapted from the Latin “vaccïne-us, from 

“vacca” cow). 

It took 80 years for another vaccine to be discovered. In 1885 Louis Pasteur introduced 

rabies vaccine, which was the first live attenuated vaccine (Nicolle, 1961; Pearce, 2002). 

Moreover, the nineteenth century had other fundamental events regarding immunology, 

such as proving of the germ theory of disease, commencing of the sciences of 

microbiology and immunology, discovery of large numbers of bacteria due to the great 

work of Koch and his colleagues, and by the end of the century viruses were discovered 

as a new class of microbes (Artenstein, 2009; Hilleman, 1998, 1999, 2000; Plotkin, 

2005). The understanding and knowledge of such systems continued to the 20th century, 
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with the discovery of more vaccines such as toxoid, cholera, typhoid, tuberculosis, 

plague, yellow fever, influenza, polio and many more bacterial and viral vaccines 

(Hilleman, 2000; Norrby, 2007). Besides discovery of the vaccines, understanding of the 

role of antibodies in immune responses, concepts of humoural and cellular immune 

systems and different vaccinations have increased (Hilleman, 2000; Plotkin, 2005).  

However, despite huge improvements in vaccinology in the last century, there remains 

the urgent need for new vaccines to be developed for both existing uncontrolled diseases 

(e.g. HIV, TB and malaria) and new diseases like tumour associated diseases. To 

achieve this goal, large amounts of research is in progress across the globe and World 

Health Organisation (WHO) have encouraged governments to invest more in vaccine 

technology (Taylor et al., 2009). 

1.1.2. Overview of immunological concepts 

The immune system is responsible for protecting the host from pathogens, including 

external microbes and viruses or autoimmune syndrome and mutation. To do so, the 

immune system, which is composed of biological structures and processes, should be 

activated at the right time and respond effectively (Schijns, 2000). To achieve this, the 

immune system is divided into innate and adaptive (acquired) systems, although there 

are many crossover reactions between the two systems. 

1.1.2.1. Innate immune system 

The innate immune system is described as the first line of immune defence against the 

pathogen. The response of the innate immune system is non-specific and rapid, and its 

duration of action is short, therefore the host will not be protected (immunised) against 

future infection with the same pathogen (Medzhitov, 2007; Storni et al., 2005). In 
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addition, failure of this system can lead to the development of autoimmune diseases 

(Rifkin et al., 2005). This response includes mechanisms such as fever, mucosal 

secretions, chemical mediators and phagocytic cells. The innate immune system senses 

the pathogen through receptors called pattern recognition receptors (PRRs). The targets 

of PRRs are named pathogen-associated molecular patterns (PAMPs) (Hashimoto et al., 

1988), particularly when there are bacterial or fungal PAMPS. For viral pathogens 

instead, the main target of PRRs are viral nucleic acids, because all viral components 

are developed within host cells. In the presence of pathogens, the macrophages and 

dendritic cells (DCs) are responsible for eliminate of the intruders by phagocytosis. This 

is followed by antigen presentation, which triggers the adaptive immune system. The 

pathogen or antigen uptake has three main pathways: initially, antigen presenting cells 

(APCs) submerge the microorganisms, then phagocytes recognise the pathogen surface 

for the PRRs and finally phagocytic cells take up the soluble substances by 

macropinocytosis (Sallusto et al., 1995).  

There are different classes of PRRs and the best characterised class is called Toll-like 

receptors (TLRs). They are known to evoke inflammatory and antimicrobial responses 

(Medzhitov, 2007) and their stimulation results the production of important mediators 

of innate immunity such as IL-6, IL-12, IL-18 and IFN-α and IFN-γ. It is also reported 

that TLRs signal through two main intracellular pathways, including MyD88-dependant 

(TLRs 2,4,5 and 9) and MyD88-independent (TLRs 3 and 4). It is shown that signalling 

via both pathways has a synergistic impact on their ability to produce pro-inflammatory 

cytokines in mice (Kawai et al., 1999; Milicic et al., 2012). Based on their cellular 

localisation, TLRs can be divided into plasma membrane (TLRs 1, 2, 4, 5 and 6) and 

intracellular counterparts (TLRs 3, 7, 8 and 9) (Milicic et al., 2012; O'Hagan and De 

Gregorio, 2009).  
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1.1.2.2. Adaptive immune system 

In contrast to the innate immune system, the adaptive (acquired) immune system is 

specific with long-term effect, however, it does not respond quickly. This system is 

mediated by two types of antigen receptors, called T-cell and B-cell receptors. Two types 

of lymphocytes that express antigen receptors are conventional and innate-like 

lymphocytes. Conventional lymphocytes include conventional T cells and B cells. 

Innate like lymphocytes on the other hand consist of B1 cells, marginal zone B cells, 

natural-killer T cells and subsets of γδ T cells. Being taken up by APCs, antigens are 

delivered to the lymph nodes or spleen, so they will be recognised by conventional 

lymphocytes, which circulate through the lymph nodes (Bendelac et al., 2001; 

Medzhitov, 2007). 

Conventional T cells have two types: T-helper (Th) cells and cytotoxic T cells. The 

former cells are marked by the co-receptor CD4+ on the cell surface and the latter ones 

express CD8+. In fact, recognition of the antigen in association with major 

histocompatibility complex (MHC) II molecules can lead to activation of CD4+ T cells 

and differentiation to Th1 and Th2 (Pierre et al., 1997; Seder and Hill, 2000). CD8+ 

cells, in contrast are activated by MHC I molecules. A group of TLRs, which is located 

in intracellular counterparts (TLRs 3, 7, 8 and 9) can enhance antigen presentation rate 

by DCs and through the MHC I pathway. This process results in the increase of CD8+ T 

cell responses (Edwards et al., 2002; Schubert et al., 2000; Seder and Hill, 2000). 

Conventional B cells can recognise any antigen by binding to the epitopes (a specific 

three-dimensional molecular determinant). However, the innate-like B cells (B1 cells) 

emerge in peripheral cavities and produce IgM antibodies against bacterial pathogens. 

More differentiation of B cells to naïve B cells leads to expression of IgD. Naïve B cells 
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circulate in lymph nodes, spleen and mucosa-associated lymphoid tissues (MALT) to 

encounter possible antigens (Bendelac et al., 2001; Medzhitov, 2007; Storni et al., 2005). 

When a microbial antigen such as lipids, glycolipids and formylpeptides are presented 

by non-classical MHC molecules, innate-like T cells are responsible for their recognition 

and this would be enough to signal the presence of infection (Janeway et al., 1988). 

1.1.2.3. Innate control of adaptive immune responses  

It was discussed that some PRRs such as TLRs are responsible for the induction of 

adaptive immune responses by specialised signals for conventional lymphocytes. 

Therefore, an association between the antigens recognised by lymphocytes and the 

PAMPs recognised by TLRs is the basic principle of innate control of adaptive 

immunity (Janeway, 1989).  

This process for T cells is initiated by DCs recognising the pathogen. The DCs then take 

up the pathogen by phagocytosis and antigenic peptides of pathogens are presented by 

MHC I or II molecules at the DC cell surface (Blander and Medzhitov, 2006). DCs also 

become activated by TLRs, so they produce cytokines and express cell-surface signals. 

DCs migrate to lymph nodes and present the antigen and cytokines to the T cells, which 

leads to the activation of T cells and differentiation of them to Th1 and Th2 by 

interference of CD4+ (Banchereau and Steinman, 1998; Seder and Hill, 2000). For B 

cells, co-engagement of B cell receptor and a TLR can establish a direct association 

between the antigen and a PAMP (Medzhitov, 2007).  

T cells can differentiate into different subsets, including Th1, Th2 and Th17 cells 

(Reinhardt et al., 2006). Th1 cells produce IFN-γ and also induce B cells to produce 

antibodies of the IgG2 subclass (Medzhitov, 2007; Seder and Hill, 2000). Th1 cells 
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represent a class of immune responses called cell mediated or cellular immune 

responses. Th2 responses can produce IL-4, IL-5 and IL-13. IL-4 is also involved in 

production of antibodies of the IgE subclass from B cells (Nelms et al., 1999; Stetson et 

al., 2004). Th2 cells represent humoural immune responses. Th17 cells produce IL-17, 

which induces haematopoietic cell types and is involved in protection against bacteria 

and fungi (LeibundGut-Landmann et al., 2007; Weaver et al., 2007). Differentiation of 

T cells is mostly due to the production of cytokines by antigen presenting cells in 

response to the TLR activation, so the whole process is controlled and initiated by the 

innate immune system. It has been reported that TLR activity induces IL-12 production; 

this causes differentiation of Th1 cells from Th cells. In addition, IL-6 can induce a 

TLR, as part of a differentiation process of Th cells to Th17. A similar route is 

predictable for Th2 cell generation (Medzhitov, 2007; Seder and Hill, 2000; Stetson et 

al., 2004). Since MHC class II molecules are responsible for CD4+ T cells activity, CD8+ 

T cells are induced by MHC class I molecules. CD8+ T cells are responsible for 

production of cytokines such as IFN-γ and tumour necrosis factor (TNF-α) (Seder and 

Hill, 2000). Interestingly, it has been shown that innate immunity induces the activity of 

adaptive immunity and the latter has impact on performance of the former (Banchereau 

and Steinman, 1998; Medzhitov, 2007). TLRs from the innate immune system activate 

the adaptive immunity and induce production of T cells, thus T cells produce 

appropriate cytokine which activates a particular route of the innate immune system. 

For example, Th1 and Th2 cells activate macrophages and eosinophils, respectively 

(Reinhardt et al., 2006). 

1.1.2.4. Immunisation  

The main purpose of vaccination is to protect the patient from the recurrence of the 

infection in future exposures of the host cells and the pathogens. This has been called 
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immunisation and is provided through immunological memory, which is the specific 

consequence of the adaptive immune system. Immunological memory is the ability of 

the immune system to respond more effectively to pathogens that have been exposed 

before, and using memory B cells and T cells, it induces a strong response against the 

pathogen (Storni et al., 2005). When the immune system successfully removes the 

antigens from the system, it enters the phase of memory development (Zinkernagel, 

2002). 

Differentiation of naïve B lymphocytes into the memory B lymphocytes is triggered by 

CD4+ Th cells through CD40 ligation. This process starts at the final phase of primary 

immune response and takes place in germinal centres, where the naïve B cells 

experience clonal expansion, somatic hypermutation, affinity maturation and possibly 

isotype switch during the adaptive immune response. B cells that survive and did not 

differentiate to plasma cells, change to memory B cells (Arpin et al., 1997; Gray et al., 

1994a; Gray et al., 1994b).  

The mechanism of generation of memory T cells has not been completely understood, 

although, it has been described that upon exposure of the antigen to naïve T cells in 

lymph node and spleen, T cells become activated and divided. T cell expansion 

proceeds over the course of a week and leads to a remarkable increase in the number of 

antigen reactive T cells and, after reaching to the optimum level, this falls back to a level 

which is notably higher than initial levels (100 to 1000 fold higher). T cells are now 

called memory T cells and have two subsets: central memory T cells and effector 

memory T cells (Sallusto et al., 1999). Central memory T cells express CCR7 for 

recirculation through secondary lymphoid tissues such as splenic T zone, lymph nodes 

and peyer’s patch (Moser, 2003). These central memory T cells are long-lived in the 
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absence of antigen and are able to face systemic pathogenic infections. In contrast, 

effector memory T cells are dependant of antigen presentation and they are short-lived 

(Opferman et al., 1999). This process is stimulated by production of cytokines and 

interaction of accessory molecules on the APC (Garside et al., 1998; McCullough and 

Summerfield, 2005; Sallusto et al., 1999).  

In summary, upon encounter of antigen to the host cell, the innate immune system 

reacts to the antigen and triggers the adaptive immune system. This activates different 

signalling cascades leading to activation of effector T cells and finally removal of the 

antigens. In the last phase of defensive reactions against antigen, memory B and T cells 

will be generated and circulate in the lymphatic system to protect the body from 

secondary infection. At this stage, the body is immunised from the infection by 

microorganism and this type of immunity is called active immunity. Vaccination 

technology can provide this immunity using killed or attenuated live microorganisms, or 

its subunits thereof, to trigger the immune system and provide long time immunity. A 

key consideration on all this is that upon secondary and subsequent responses of 

immune system, responses are only mediated by memory cells and not by naïve cells, so 

the ability of the vaccine to promote memory responses should be at the centre of 

attention in designing a vaccine. 

1.1.3. Types of vaccines 

As mentioned traditional vaccines are categorised into three main groups: live 

attenuated vaccines, inactivated vaccines and subunit vaccines. However, there are 

more types of vaccines such as peptide vaccines and DNA vaccines.  
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Attenuated vaccines are produced via the induction of physical or chemical changes to 

the microorganism so that its pathogenic effect weakens and, as a result, will be safe for 

the vaccine recipient (Perrie, 2006). These microorganisms are able to infect target cells 

but the infection is mild and the replication of the microorganisms is limited. These 

vaccine are able to stimulate both humoural and cell mediated immune responses; 

however, because of the risk of reversion to a more pathogenic state, this type of 

vaccines cannot be considered for use in immunosuppressed patients (Chambers et al., 

2004; Perrie, 2006). Some important vaccines of this group are polio, Bacillus Calmette-

Guerin (BCG), measles, mumps, rubella combination vaccine (MMR) and influenza 

virus vaccine (Arvin and Greenberg, 2006; Harper et al., 2003; Nichol et al., 1999; 

Wareing and Tannock, 2001).  

Inactivated or killed vaccines contain microorganisms, which have been inactivated by 

heat or chemicals and are unable to replicate or produce toxins, so while these vaccines 

are not infectious they can retain their immunogenicity (Perrie, 2006). The main 

advantage of this group of vaccines is their safety. However, these vaccines are less 

effective than live attenuated vaccines and they fail to produce cellular immune 

responses (Black et al., 2010; Mackett and Williamson, 1995). Examples of vaccines 

from this group are cholera, hepatitis A and polio vaccines (Fiore et al., 2006; Perrie, 

2006). 

Subunit vaccines consist of small parts of the organism such as cellular extracts, parts of 

cells, a surface antigens that are highly purified and reproducible (Perrie, 2006). They 

induce strong immune responses and are not able to revert to the infectious format. 

Important developed vaccines of this group are influenza and Hepatitis B virus vaccines 

(Mischler and Metcalfe, 2002; Perrie et al., 2008). DNA recombinant technology 
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facilitated the production of subunit vaccines. For instance, hepatitis B vaccine is now 

manufactured using biotechnology as it cloned in yeast; however, in the past it used to 

be purified from the blood of hepatitis B carrier patients (Edlich et al., 2003; Perrie, 

2006). Although subunit vaccines have less adverse effects compared to live attenuated 

and inactivated vaccines, they are less immunogenic and require adjuvants to promote 

the immune response to the antigen. In addition, since the duration of immune response 

initiated by subunit vaccines is short, several boosts are needed to achieve the protection 

(Bramwell and Perrie, 2005b; Perrie, 2006; Perrie et al., 2008).  

There are some microorganisms that produce toxins to cause the disease. Inactivated 

forms of toxins are called toxoids, which can also be used in vaccines. The most 

common toxoids are tetanus and diphtheria vaccines. Whilst used as a vaccine in their 

own right, toxoids can also be used to increase immunogenicity of the other vaccines; 

for example Haemophilus influenza type b (Hib) vaccine contains polysaccharide unit 

from the bacterium conjugated to diphtheria or tetanus toxoid (Perrie, 2006). 

1.1.4. Challenges in using traditional vaccines 

Since their invention, vaccines have been among the most attractive and successful ways 

of prevention of infectious disease and cancers. They have eradicated many pathogens 

all over the world such as smallpox, tetanus, diphtheria and measles (Gregoriadis, 1998; 

Perrie et al., 2007). However, there are still some untreated viruses such as human 

immune deficiency virus (HIV), herpes simplex virus (HSV), and influenza virus or 

recurred diseases such as tuberculosis (TB), which traditional vaccines have yet to 

eradicate. (Andersen, 2007; Fairman et al., 2009; Hong et al., 2010; Tirabassi et al., 

2011; Toda et al., 1997). Furthermore, there is a large amount of research currently in 

progress on discovering vaccines to have a therapeutic or prophylactic effect on cancers 
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or autoimmune diseases, which need a new generation of vaccines. So far, only two 

prophylactic cancer vaccines have been approved by FDA which are hepapitis B (HB) 

vaccine and Gardsil™	  that	  prevent	   the	   infection	  with	  HBV	  and	  human	  papillomavirus	  

(HPV)	  respectively	  (Giarelli,	  2007).	  These	  viruses	  are	  believed	  to	  be	  the	  leading	  causes	  

of	   liver	   cancer	  and	  cervical	   cancer	   respectively	   (Hamdy	  et	   al.,	   2011).	  Cancer vaccine-

based immunotherapy is shown as a novel therapeutic strategy for cancer treatment. A 

recent study (Wang et al., 2012a) demonstrated that use of TLR 3 agonists as an 

adjuvant in combination with cationic liposomes such as DOTAP could enhance 

vaccine-induced tumour-specific cytotoxic T lymphocyte (CTL) response and IFN-γ 

production. Particulate vaccine delivery systems have been shown to be effective for 

therapeutic cancer vaccination, as they are capable of stimulating CD8+ T cell 

immunity, which enhances the activation of cytotoxic lymphocytes that can kill cancer 

cells (Foged et al., 2012).  

Concerns about safety of vaccines and their adverse effects give some challenges for 

traditional vaccines. This becomes a more problematic issue in a developed 

environment where disease incidence is much less than a developing or undeveloped 

society. For instance, concerns over the safety of the MMR vaccine has led to a 10% 

reduction in vaccine uptake across the UK and 20% just in London (Fitzpatrick, 2004; 

Perrie, 2006). Whilst uptake is now improving, as the HSCIC’s NHS Immunisation 

Statistics England, 2011-12 has reported, MMR vaccine uptake is still below the 

required 95% as it has reached to 91.2% in 2011-12 (HSCIC, 2012). Most of the licensed 

vaccines, whether live attenuated or inactivated, have shown rare but serious adverse 

effects. These adverse responses include headache, nausea, encephalitis, neurological 

reactions and even death (Bramwell and Perrie, 2005a; Huang et al., 2004). Based on 

this, and as a part of Immunisation Safety Priority Project (ISPP) launched in 1999 by 
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WHO (Duclos and Hofmann, 2001), the main focus of vaccine research is in the 

development of a new generation of vaccines using highly purified proteins or synthetic 

peptides. However, to have a highly potent and immunogenic vaccine, these antigens 

should be delivered along with adjuvants (Chen et al., 2002; Kenney and Edelman, 

2003; Moser et al., 2003). 

Given the fact that licenced adjuvants such as Alum and squalene-oil-water emulsion 

(MF59) are not suitable for the new generation of vaccines as they only generate 

humoural immune responses (Holten-Andersen et al., 2004), suggests there remains a 

need to develop new adjuvant systems or delivery vehicles which are focused on subunit 

and DNA vaccines (Gregoriadis, 1998; Henriksen-Lacey et al., 2011c; Perrie et al., 

2007; Perrie et al., 2008).  

1.1.5. DNA vaccines 

The concept of DNA vaccination is based on the fundamental experiment by Wolff et 

al; (1990), which showed that intramuscular inoculation of plasmid DNA (pDNA) 

resulted in expression of its encoded protein. They showed upon direct injection of 

antigen-encoding plasmid DNA and its uptake by cells, the DNA can enter into the 

nucleus and transfect the cell. The expressed antigens trigger the immune system of the 

host, similar to the way that foreign antigens do, so DNA injection can induce 

protective humoural and cell mediated immunity (Gregoriadis, 1998; Tang et al., 1992; 

Ulmer et al., 1993).  

DNA vaccines have several advantages over conventional immunisation. ‘Naked’ DNA 

vaccines are inexpensive and easy to produce, due to one step cloning of target coding 

sequence into plasmid vectors; they are also more temperature stable than live vaccines 
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(Chen and Huang, 2005; Gregoriadis et al., 2002; Li et al., 2012). In addition, 

expression of the antigens inside the live cell gives the advantage of presenting the 

antigens in the same condition as in a viral infection, but without being infectious; so 

antigenic structure includes all the important post-translational modifications that are 

the same as the native protein. Furthermore, DNA vaccines are able to stimulate Th1 

and Th2 CD4+ and CD8+ T cells as well as B cells and induce both humoural and 

cellular immune responses, and were reported to achieve this without use of 

conventional adjuvants (Li et al., 2012; Liu, 2011; Wahren, 1996). Indeed, several 

studies in 1990s showed the promising immunogenic characteristics of naked DNA 

tested on a variety of different animal models of infectious disease, including rabies 

(Lodmell et al., 1998), influenza virus (Ulmer et al., 1993), malaria, (Becker et al., 1998; 

Sedegah et al., 1994), HIV (Donnelly et al., 1997), tuberculosis (Tascon et al., 1996) and 

herpes simplex virus (Manickan et al., 1995).   

Following the encouraging results of DNA vaccines, these formulations have been 

tested in several human clinical trials (Levine, 2010; Liu, 2011; Liu and Ulmer, 2005). 

Overall results showed an acceptable safety but disappointingly low immune response 

for the DNA only vaccines. However, this technology had a successful profile in animal 

vaccination, with four licenced DNA vaccines (Liu, 2011). The latest was Oncept™	  

(Merial,	   Lyon,	   France)	   approved in 2010, which was an immunotherapeutic DNA 

vaccine as a therapy for malignant melanoma in dogs (Li et al., 2012; Liu, 2011). 

Despite poor human clinical trial results, considering the successful development of 

DNA vaccines for veterinary use and advantages of this type of vaccine over traditional 

vaccines has led to the development of new strategies for vaccination, such as 
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prime/boost vaccination and enhancing the delivery method of plasmid DNA using 

different kinds of vectors such as viral, bacterial and liposomal systems. 

1.1.6. Delivery of nucleic acids 

Although it has been shown that direct injection of naked DNA allows transgene 

expression in muscle (Vassaux et al., 2006), in most cases naked DNA molecules are 

not able to enter cells efficiently due to their large size, negative charge and the nuclease 

mediated degradation in systemic blood stream (Al-Dosari and Gao, 2009). Therefore, a 

delivery vehicle (vector) is needed to carry the gene into the target cell to save the gene 

from the above dangers. There are two classic categories for gene vectors: biological and 

non-biological systems. As shown in Table 1.1, biological systems or viral vectors are 

viruses or bacteria, which mediate gene transfer (El-Aneed, 2004; Vassaux et al., 2006). 

Non-viral delivery systems include physical and chemical methods (Al-Dosari and Gao, 

2009; Mae et al., 2009) (Table 1.1). 

Viral vectors provide a high efficiency, although, there remains concerns about inducing 

toxicity and immunogenic reactions. In fact, there has been a fatality reported by 

adenoviral vector gene therapy (Marshall, 1999). Therefore, non-viral vectors are under 

more attention to reach the ideal vector (Whitehead et al., 2009), which should have 

stability, high efficiency, minimal toxicity, and unrestricted size limitation for nucleotide 

acid and easy preparation with up -scaling capacity and low cost (Lul and Haung, 

2003). 

Particulate delivery systems are categorised among non-viral gene delivery systems and 

are limited to those delivery systems that use non-living components for the purpose of 

carrier systems (Bramwell and Perrie, 2005a). Particulate delivery systems have been 
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used for delivery of protein and peptide and DNA and mainly for vaccination purposes. 

Several particulate delivery systems have been introduced for DNA delivery, such as 

gold nanoparticles (Fynan et al., 1993), polymers such as poly(lactide-co-glycolide) 

PLGA (Jones et al., 1997) and chitosan (Mumper et al., 1995) and liposomes (Allison 

and Gregoriadis, 1974).  

Table 1.1. Different gene transfer systems (Al-Dosari and Gao, 2009; El-Aneed, 2004; Galanis et al., 2001; 
Mae et al., 2009; Vassaux et al., 2006). 

Biological Gene Transfer 
Systems 

 
Bacterial Vectors Salmonella, E.Coli, Shigella, Yersinia, 

Listeria. 

Viral Vectors 

Retrovirus, Adenovirus, Adeno-
associated Virus, Herpes simplex Virus, 
Epstein-Barr Virus, Poxivirus, 
Newcastle Disease Virus, 

Non-biological Gene 
Transfer Systems 

Physical Methods 
Needle/Jet Injection, Hydrodynamic 
Gene Transfer, Gene Gun, 
Electroporation, Sonoporation. 

Chemical Methods 
Cationic Lipids, Cationic Peptides, 
Cationic Polymers, Cell Penetrating 
Peptides, Inorganic Nanoparticles 

   
 

Liposomes were first identified as being effective immunological adjuvants for 

diphtheria toxoid (DT) by Alison and Gregoriadis (1974) and, since then, liposomes 

have attracted extensive attention as adjuvant systems for DNA and subunit protein 

vaccines (Gregoriadis, 1998). Adjuvants are substances which are able to enhance a 

specific immune response and increase humoural and cell mediated immunity to the 

antigen compared to the free antigen (O'Hagan et al., 2001). Opposite to other 

adjuvants, liposomes are found to be safer with no local or systemic toxicity. Liposomes 

also do not produce allergic reactions or any other side effects (Gregoriadis et al., 1999).  
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1.2. Liposomes  

Liposomes were first described by Bangham et al., 1965 while studying cell membranes. 

They are vesicular structures consisting of hydrated bilayers, which form when lipids 

(generally phospholipids) are dispersed in water (Bangham et al., 1965). In 1970s 

Gregoriadis (1974) proposed a new drug delivery system using liposomes. Subsequently, 

Felgner et al. (1987) demonstrated the use of cationic liposomes to promote gene 

expression in vitro. Since these early studies, numerous investigations have been 

performed in this area, with, for example, Karmali and Chaudhuri (2007) showing 

DNA mediates high levels of transgene expression in vivo after incorporation into 

cationic liposomal systems. A key component of these systems is the cationic lipid and 

several studies have been performed on the effect of cationic lipids on nucleic acid 

delivery, and many achievements have been obtained, such as inn the use of DNA 

vaccines (Perrie et al., 2002), improving in vivo lung transfection efficacy (Majeti et al., 

2004), hepatocyte-selective gene transfection by using galactosylated cationic liposomes 

(Fumoto et al., 2004), and development of folate-conjugated cationic lipid-based 

transfection complexes which cause in vivo transgene expression in mice tumours 

(Hofland et al., 2002). 

1.2.1. Liposome morphology 

Lipids are amphiphilic and have a polar head and a non-polar fatty acid chain. They 

form a closed structure in aqueous media, called liposomes. The polar heads, when 

exposed to the water, form a single layer of lipid, with the non-polar parts form, in the 

second layer of the bilayer structure shielded have the water, that will form liposomes. 

Because of their structure, liposomes can carry both hydrophilic and lipophilic drug 

molecules. Hydrophilic drugs can be localised in the aqueous phase and lipophilic and 

amphiphilic drugs can be included in the lipid bilayers (Muller-Goymann, 2004).  
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Liposomes can be classified by their structural properties. The main types are listed and 

their characteristics are outlined in the Table 1.2 followed by a schematic representation 

in Figure 1.1. 

Table 1.2: Size and number of lipid bilayers of different categories of liposomes. (Rongen et al., 1997) 

 

        Figure 1.1: Schematic representations of five types of liposomes.  

 

1.2.2. Liposome preparation methods 

There are many different methods for the preparation of liposomes, depending on the 

type of vesicle formation (Kirby and Gregoriadis, 1984; Lasch et al., 2003; Rongen et 

al., 1997). 
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1.2.2.1. Hydration method 

In this method, a mixture of lipids are dissolved in an organic solvent such as methanol 

or chloroform. The solvent is then removed by rotary evaporation at reduced pressure. 

The dried film of lipids, which has been deposited onto the wall of a round-bottom flask, 

is hydrated and shaken to give a milky suspension of equilibrated MLV (Kirby and 

Gregoriadis, 1984; Lasch et al., 2003) (Figure1.2). 

 
Figure1.2: Schematic representation of hydration method of liposome preparation 

 

1.2.2.2. Ultrasonication method 

In the ultrasonication method, the aqueous lipid dispersion, which has been prepared 

with hydration method, will be sonicated. Sonication can be performed by bath 

sonication or probe sonication. The resulting liposomes will be SUV. It should be 

considered that in the case of probe sonication, the vial of the sample must be put in ice 

or a water bath to avoid localised overheating (Lasch et al., 2003). However, in the case 

of low Tc lipids, liposome suspensions are more effectively reduced in size when they are 

sonicated at temperatures above Tc. 
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1.2.2.3. Dehydration- rehydration method 

This method begins with SUV mixed with the drug to be entrapped, after which they are 

freeze-dried. Then, the vesicles are rehydrated under controlled conditions and larger 

vesicles are formed, which are DRV and it gives a high encapsulation efficiency of the 

drug (Kirby and Gregoriadis, 1984) (Figure 1.3). 

 

Figure 1.3: Schematic representation of the dehydration-rehydration method. In brief, MLV prepared 
according to the lipid hydration method outlined above was sonicated to produce SUV. These SUV were 
mixed with the antigen, frozen at -70 °C	  and	   freeze-‐dried	  overnight.	  Controlled	   rehydration	  of	   the	  dried	  
powder	  led	  to	  the	  formation	  of	  antigen	  containing	  DRV	  vesicles. 
 

1.2.2.4. Reverse-phase evaporation method 

The procedure starts by adding the drug to the mixture of dissolved lipid in an organic 

solvent. Then an emulsion will be gained by vortexing. Rotary evaporating and 

removing the organic solvent results in formation of a gel and by shaking of the gel or 

continuing the rotary evaporator the gel will change to a dispersion of large liposomes 

which are reverse-phase evaporation vesicles. These liposomes may be LUV or MLV in 

morphologies, depending on the water and organic phase ratio (Lasch et al., 2003; 

Rongen et al., 1997). 
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1.2.2.5. Ether evaporation method 

Ether vaporisation or solvent injection method is another method of liposome 

preparation. In this method, after dissolving lipids in organic solvent, the resulting 

mixture is injected slowly into an aqueous phase. By this method, large unilamellar 

vesicles will be produced with a high entrapment efficiency (Rongen et al., 1997). 

1.2.2.6. Freeze-thaw extrusion method 

This method is based on repeated cycles of quick freezing of liposome dispersion in 

liquid nitrogen and thawing in warm water. The liposome dispersion is first formed by 

the film method. The final vesicles are MVV or LUV with a high entrapment ratio 

(Rongen et al., 1997).  

1.2.2.7. Detergent removal method 

One of the most important methods for detergent depletion is detergent dialyses 

method. In this method, an aqueous solution of drug is added to the mixture of lipids in 

an organic solvent. After forming the film and removal of the organic solvent, a 

detergent is added to solubilise the lipids and this will form a lipid-detergent micelle. 

Subsequent removal of the detergent by dialyses will cause formation of liposomes 

(Rongen et al., 1997). There are other methods of detergent removal instead of dialyses 

such as dilution, gel filtration and adsorption (Lasch et al., 2003). 

1.2.3. Cationic liposomal systems 

Cationic lipids were first introduced for gene therapy by Flegner and his colleagues in 

1987, they used N-(1-[2,3-dioleyloxy]propyl)-N,N,N-trimethylammonium chloride 

(DOTMA) to deliver DNA and RNA into animals and human cell lines (Felgner et al., 

1987). 
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1.2.3.1. Cationic lipid structure 

Cationic lipids are amphiphilic molecules, which are positively charged and have a 

cationic polar head group (e.g. an amine) and a hydrophobic domain (generally alkyl 

chains or cholesterol). A linker connects the polar head group to the non-polar tail. 

There are several cationic lipids that have been used in gene delivery, such as DOTAP, 

DC-Cholesterol, and DSTAP (Lonez et al., 2008). Each of the three domains of a 

cationic lipid plays a role in the quality of gene delivery by affecting the cellular toxicity, 

transfection efficiency and stability of the lipoplex.  

1.2.3.2. DNA liposome complex- lipoplex 

A lipoplex is a complex of a cationic liposome and a polynucleotide like DNA. The 

positive charge of the amine head group of the cationic lipid and negative charge of 

phosphate in nucleic acid cause an interaction between them, thus forming the lipoplex 

(Figure 1.4). At this stage, the cationic lipid wrapped around the nucleic acid and the 

lipoplex will be in its highest stable condition, as all potential interaction sites are 

blocked and the tendency of adjacent complexes to further undergo extensive lipid 

mixing has largely ceased (Wasungu and Hoekstra, 2006). The size of the lipoplex is 

thought to be in a range of 80-400 nm; however, this varies and can depend upon 

cationic lipid/DNA ratio, type of lipids used and method of preparation. 

1.2.3.3. Mechanism of delivery to the cells and transfection 

The aim of liposomal mediated gene transfer is to have the DNA or other 

polynucleotides inside the cell where it should be translated to a protein or peptide. 
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Figure 1.4: Schematic representation of lipoplex formation. 

 

The lipoplex surface has a positive charge and these charges will make an electrostatic 

interaction with negative charges of cell surfaces. This is the first step of the transfection 

process after making the lipoplex. Due to their cationic nature, incubation of lipoplexes 

with cultured cells promotes internalisation of the lipoplexes through the vesicular 

pathway and then the DNA can be released in the cytoplasm. Some fractions of released 

DNA will be trafficked to the cell nucleus, followed by transcription and translation of it 

to the protein (Figure 1.5). Internalisation pathways of lipoplexes are mainly three 

endocytotic routes: 1) clathrin-mediated endocytosis, 2) caveolae-mediated endocytosis, 

3) macropinocytosis. Of these, the most common pathway for lipoplexes is clathrin-

mediated endocytosis, as caveolae is mostly for polyplexes and macropinocytosis is still 

a potential entry, which is poorly characterised (Uyechi-O'Brien and Szoka, 2003; 

Wasungu and Hoekstra, 2006). A crucial point in transfection is DNA escape from the 

endosome, because as much as it stays there, the chance of plasmid degradation 

increases. The ability of lipoplexes to move into hexagonal phase is helpful here. In 
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contrast, adenovirus, which is a well-known vector for gene delivery, solves this 

problem by lysis of the endosomal membrane structure. Lipoplexes do not have such an 

enzyme, but some interactions occur between the inverted hexagonal layer of the 

lipoplex and the endosomal layer of the cell membrane. In fact, there will be a 

competition between the DNA and the negatively charged endosomal membrane lipids 

to interact with the cationic lipids of lipoplexes, thus the DNA will release to the cytosol 

(Xu and Szoka, 1996). DNA entrance to the nucleus relates to the size of DNA and also 

the time of transfection. Some studies show if transfection occurs in S or G2 expression 

will be 30-500 fold more than G1 (Lul and Haung, 2003; McNeil and Perrie, 2006). 

 

Figure 1.5: Proposed mechanisms of cationic lipoplex condensation and uptake. In brief, cationic 
liposomes are attracted by electrostatic interactions to the negative charges of DNA forming a lipoplex. 
Lipoplex binding to the cell surface followed by internalisation and then release of DNA from the lipoplex. 
DNA enters the nucleus and in the nucleus, RNA will be transcribed. 

1.2.3.4. Effect of helper lipid on transfection 

The theory of using helper or co-lipid comes from the origin research of Flegner et al, in 

1987. They demonstrated that the transfection activity of DOTMA when formulated 

with dioleoylphosphatidylethanolamine (DOPE) is more than when it is formulated 

with dioleoylphosphatidylcholine (DOPC). The reason is the effect of DOPE to 

promote the transition from lamellar phase to an inverted hexagonal phase (Uyechi-
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O'Brien and Szoka, 2003). The ability to achieve this is related to the structural 

attributes of the lipids used in lipoplexes. Cationic lipids are amphiphilic molecules and 

geometry of amphihile is an important property, which is related to the lipid application 

as a vector. When cationic lipids suspend in an aqueous phase, they can make different 

structural phases, such as micellar, lamellar and inverted hexagonal phases (Figure 1.6). 

 

 
 

Figure 1.6: Schematic representation of the phase structure of cationic lipids as a function of packing 
parameter (Adapted from Wasungu & Hoekstra, 2006). 
 

A factor known as the critical packing parameter (P) can determine which structure a 

particular cationic lipid will make. A critical packing parameter P= v/alc is defined as 

the ratio of the hydrocarbon volume (v) and the product of effective head-group area (a) 

and the critical length of the lipid tail (lc). In fact, (P) describes the ratio of the area 

occupied by the hydrophobic region versus that of the hydrophilic region. Therefore, 

when P>1 the area occupied by the hydrophobic chain is larger than that of hydrophilic 

head groups and the lipid will adopt the inverted hexagonal (HII) phase (Figure 1.6). 

This structural phase is a bilayer destabilising structure and it is essential for liposomal 

gene delivery to the cytosol (Israelachvili and Mitchell, 1975).  
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Figure 1.7: Cartoons of cationic lipids and helper lipids shown as a micelle, single composition and mixed 
composition liposomes, and in an inverted hexagonal phase. Proposed lipid mixing model of fusion of 
cationic liposome with a target, i.e., endosomal, membrane (Uyechi-O'Brien and Szoka, 2003). 

Helper lipids such as DOPE and cholesterol also promote conversion of the lamellar 

lipoplex phase into a non-lamellar structure. They are fusogenic and have strong 

destabilising effect towards bilayer lipids. These properties are the cause of transfection 

efficiency improvement by helper lipids, Figure 1.7 (Ciani et al., 2004). However, whilst 

this helper effect of DOPE has been shown to be effective in vitro, in vivo studies shows 

cholesterol is better than DOPE due to enhanced stability and transfection (Lul and 

Haung, 2003; McNeil and Perrie, 2006). 
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1.2.3.5. Transition temperature 

The phase transition temperature is described as required temperature to change the 

lipid physical state from gel phase to the liquid phase. In the gel phase, the hydrocarbon 

chains are fully extended and closely packed. However, in the liquid phase the 

hydrocarbon chains are randomly oriented and fluid. Hydrocarbon length, unsaturation, 

charge and head-group species are main factors that affect the phase transition 

temperature (Cevc, 1991; Tristram-Nagle and Nagle, 2004).  

Van der Waals forces are the most important bonds between the hydrocarbon chains 

and they are responsible for the in ordered state of hydrocarbon chains. As the 

hydrocarbon length is increased, van der Waals interactions become stronger, requiring 

more energy to disorder the ordered packing and, consequently, the phase transition 

temperature increases (Cevc, 1991). To form stable liposomes, the formulation should 

be prepared above the transition temperature (Tc) of the lipid.  

1.2.4. Langmuir monolayer studies 

A common idiom, ‘pouring oil on troubled water’, is a figurative way of suggesting that 

attempts are made to calm a contentious or problematic situation. This relates to the fact 

that a thin layer of oil can calm choppy water, a technique referred to as wave damping, 

where sailors poured oil onto the sea to prevent waves being formed. This method was 

first described by Aristotle and Plinius (Fulford, 1968). To achieve this effect, very little 

oil is required; it need only be a surface coating of 1 molecule thick, that is to say a 

monolayer. Marangoni effects are the basis of this wave damping effect produced by oil. 

The Marangoni effect is a phenomenon whereby movement of a liquid occurs due to 

local differences in the surface tension of the liquid (Kuroda et al., 2000). Sudden local 

increases in surface area lead to enhanced surface tension, resulting in a surface tension 
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gradient which, in turn, promotes contraction of that area and thus, further surface area 

growth is prohibited. 

Basically, the Marangoni flow opposes the flow associated with the wave action. 

Benjamin Franklin, having seen this phenomenon of wave calming behind ships on 

which the cooks used sea water to rinse the fat off dishes, undertook to scientifically 

investigate this further (Lyklema, 2000). On a lake near Clapham Common in London, 

Franklin noted that one teaspoon of oil was enough to calm several hundred square 

meters of the lake’s surface, with the wind having a much reduced effect on treated areas 

of the water surface compared to the untreated parts (Franklin et al., 1774). Later, John 

Shields carried out large-scale wave-damping experiments in Scotland and lodged a 

patent based on this in 1879 (Lyklema, 2000). Lord Rayleigh also followed this research 

area, and he noted that water surface tension could be lowered by contamination and oil 

films. Although he had no method of exactly measuring the thickness of the films, he 

estimated them to be monomolecular, with a thickness of 1–2 nm, and noted that by 

using such films, information on the size of molecules was obtainable (long before the 

existence of molecules was generally accepted) (Lyklema, 2000; Rayleigh, 1890, 1899). 

However, the first surface pressure versus area measurements (as they are now referred 

to) were reported by Agnes Pockels (Pockels, 1891) a German Scientist, who made a 

basic surface balance in her kitchen. Using this system, she was able to determine 

surface contamination as a function of the surface area for different oils, and further 

observed that by compressing monolayers below a certain area, the surface tension falls 

rapidly. Pockels methods were further developed by Irvine Langmuir with his film 

balance system, a method that still bears his name. 
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One of the advantages the Langmuir trough offered was that a direct measurement of 

the film pressure could be derived from the deflection of a movable float, separating the 

film from clean water. Using this trough, Langmuir studied monolayer lipids more 

systematically and confirmed that the films are monomolecular. He also showed that 

the molecules in these monolayers are orientated on the aqueous surface, with the 

hydrophilic portion of the surfactants in contact with the liquid, whilst the hydrophobic 

region of the surfactants is pointing up towards the air (Langmuir, 1917; Langmuir, 

1920).  

1.2.4.1. Information gained from monolayer studies 

From Figure 1.8, various phases of the monolayer are shown: as the concentration of 

the molecules at the surface is increased (i.e. the distance between the barriers is 

contracted) the monolayer changes from a very dilute ‘gaseous’ monolayer (G), where 

the molecules are far apart and there is low interfacial pressure, to a ‘liquid’ state. Often 

there are two liquid states: a ‘liquid expanded’ (LE) and a ‘liquid condensed’ (LC) 

monolayer, which are determined by the proximity and orientation of the surfactants 

(Figure 1.8B). Only a small reduction in the area is required to move the monolayer 

from the LC to the ‘solid’ (S) state. In this state, all the amphiphilic molecules are 

closely packed and the hydrophobic tails are aligned in parallel, with the area per 

molecule corresponding with the S-phase which is equal to the closed-packed molecular 

cross-sectional area (Lyklema, 2000). Further compression of the monolayer results in 

the monolayer collapsing (molecules breaking out of the monolayer, by forming 

micelles, or multilayers in the case of phospholipids, for example) which leads to a sharp 

break in the isotherm (Figure 1.8B).  
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Figure. 1.8: (A) Schematic example of isotherm, Π-A exhibiting a variety of phases which can occur. G: 
gaseous, LE: liquid expanded, LC: liquid condensed, and S: solid. Curves like this are typical for lipid 
monolayers. (B) Schematic representation of lipid packaging at the monolayer interface. Figure modified 
from (Lyklema, 2000). 
 

As is shown in Figure 1.8A, the transition between these phases is not always distinct 

and often more than one phase may be present. There is also a question as to the 

orientation of the surfactant tails in the gaseous phase: are they orientated flat on the 

interface (as in Figure 1.8Bi), or are their tails out into the nonaqueous phase (Figure 

1.8Bii and iii). It is thought that situation (ii) maybe entropically more favourable 

(Lyklema, 2000), but the overall molecular shape of the molecules in question would 

need to be considered and often option (iii) is used schematically to represent the 

general concept.  
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1.2.4.2. The use of monolayer studies in liposome research–example applications  

As extensively reported, liposomes are bilayer vesicles, first described by (Bangham et 

al., 1965) whilst studying cell membranes. They are vesicular structures consisting of 

hydrated bilayers, which form when phospholipids are dispersed in water (Bangham et 

al., 1965). Whilst there are very many reported variations on the theme (e.g. niosomes, 

virosomes, bilosomes, etc.), all have the same basic bilayer construction. Since their first 

description as a possible drug delivery system (Gregoriadis and Ryman, 1971), these 

constructs have been extensively investigated and there are now several liposome-based 

products clinically used. Given their structure, it is not surprising that monolayer studies 

of phospholipids and other surfactants are undertaken and the findings extrapolated to 

liposomal bilayers. Indeed, such studies can be highly informative, giving insights into 

areas such as bilayer lipid packaging configuration (Ali et al., 2010; Dynarowicz-Latka 

and Hac-Wydro, 2004), drug–lipid interactions (Ali et al., 2010) and liposome stability 

(Christensen et al., 2008; Demel et al., 1998; Lambruschini et al., 2000). However, since 

they are effectively half a membrane, monolayer studies are less suited to study certain 

aspects, such as trans-membrane processes, and consideration to this overall difference 

in morphology should always be borne in mind. 

1.3. Liposomal vaccines  

As mentioned earlier, liposomes are being used as vaccine adjuvants due to their 

immunogenic properties and their capability to induce both cellular and humoural 

immunity (Gregoriadis et al., 1999). It has been reported that the immunogenicity of 

liposomes originates from the presentation of the liposomes to antigen presenting cells 

(APCs) such as macrophages and dendritic cells (DCs) (Killion and Fidler, 1998; Rao 

and Alving, 2000). In addition, association of liposomes and antigen leads antigen to 

gain access to both MHC class I and II pathways in APCs (Rao and Alving, 2000; Zhou 
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and Huang, 1994a), therefore liposomal antigens can stimulate humoural and cellular 

immune systems. 

1.3.1. Role of cationic liposomes in enhancement of immunity 

In contrast to neutral or anionic liposomes, cationic liposomes can interact effectively 

with negatively charged molecules such as DNA, siRNA, proteins and peptides based 

on electrostatic interactions between the liposome cationic charge and anionic charge of 

the molecules (Bramwell and Perrie, 2005a; Felgner et al., 1987; Gregoriadis, 1998; 

Henriksen-Lacey et al., 2010c; Malone et al., 1989; McNeil and Perrie, 2006; Perrie et 

al., 2001; Perrie et al., 2008). 

It has been shown that adjuvant activity of cationic liposomes has resulted from the 

enhanced protection of the antigen, the ability to form a depot at the site of injection 

and efficient uptake by cells (Gregoriadis, 1994; Henriksen-Lacey et al., 2010b). 

Furthermore, the positive surface charge of the cationic lipids enhances the uptake of 

the liposome and entrapped antigen uptake by APCs and their presentation to the 

responder cells (Gregoriadis et al., 2002; Korsholm et al., 2007). In addition, cationic 

liposomes with the help of fusogenic lipids, such as DOPE and cholesterol, can 

destabilise the endosomes allowing the delivery of antigens into the cytoplasm of the 

APCs and promoting CD8+ CTL responses (Burger and Verkleij, 1990; McNeil and 

Perrie, 2006; Zhou and Huang, 1994a). It is also been reported that cationic liposomes 

have an impact on activation of cell signalling pathways through activation of MAP 

kinases, leading to the expression of co-stimulatory molecules (CD80 and CD86) and 

chemokines in dendritic cells (Iwaoka et al., 2006; Ouali et al., 2007; Tanaka et al., 

2008; Yan et al., 2007). Therefore, cationic liposomes have been investigated 
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extensively as an adjuvant for subunit antigens (Davidsen et al., 2005; Vangala et al., 

2006) or DNA vaccines (McNeil and Perrie, 2006). 

1.3.2. Subunit liposomal vaccines 

Subunit vaccines include highly purified peptides or protein antigens and are being 

investigated extensively due to their safety, reproducibility and low manufacturing cost 

compared with the conventional live attenuated or killed vaccines (Wilson-Welder et 

al., 2009). It has been shown that liposomes are able to protect small peptide/protein 

antigens from enzymatic breakdown by host cells (Gregoriadis, 1994; Gregoriadis et al., 

1999) and co-delivery of the subunit antigen and liposomes enhances the immunity 

(Christensen et al., 2012). It is shown that cationic lipids such as DDA or DC-Chol can 

be used as adjuvants for subunit protein vaccines (Andersen, 1994). For instance, DC-

Chol has been shown to be able to overcome the non-responsiveness to hepatitis B 

vaccine (Brunel et al., 1999) and induce high levels of antibody and cell factors. Cationic 

lipids have also been extensively investigated as adjuvant for tuberculosis-unit vaccines 

(Holten-Andersen et al., 2004), with a combination of DDA and monophosphoryl lipid 

A promoting elevated immune responses (Brandt et al., 2000; Holten-Andersen et al., 

2004). 

In addition, incorporation of trehalose 6,6’-dibehenate (TDB), which is a synthetic 

analogue of trehalose 6,6’-dimycolate (TDM) an immunostimulatory component of the 

mycobacteria cell wall (Olds et al., 1980; Pimm et al., 1979), with DDA, has shown an 

effective adjuvant activity, which enhances high level of immunity, compared to the 

DDA liposome formulation alone (Davidsen et al., 2005). To evaluate the potential of 

DDA:TDB formulations and fulfil the requirements for the clinical studies, several 

studies were performed on this formulation to investigate the impacts of vesicle size 
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(Henriksen-Lacey et al., 2011b), surface charge (Henriksen-Lacey et al., 2010c), depot 

formation (Henriksen-Lacey et al., 2010b), and pegylation of DDA:TDB (Kaur et al., 

2012a, b) on its immune response. Furthermore, DDA immunogenicity was compared 

with other cationic liposomes such as DOTAP and DC-Chol (Henriksen-Lacey et al., 

2011a). Also monolayer properties (Christensen et al., 2008) and morphological 

characteristics (Davidsen et al., 2005; Vangala et al., 2006) of DDA:TDB were studied. 

Recently, phase I clinical studies on this system in combination with Ag85B-ESAT-6 

antigen called CAF01, have been completed (ClinicalTrials.gov, 2012). The 

effectiveness of DDA:TDB is not only due to the immunogenic effects of DDA (Gall, 

1966) but is also owed to the effect of immunostimulant TDB. The mechanism of action 

of TDB is not fully understood, yet, can be related to the fact that TDB is a synthetic 

analogue of TDM that is part of Mycobacterium tuberculosis cell wall and has antigenic 

effect, therefore can activate the innate immune system. Given the high immunogenicity 

as TB vaccine, DDA:TDB was studied as an adjuvant for other antigens such as 

HBsAg, an antigen related to hepatitis B (Vangala et al., 2007) and the study showed 

high immune responses, suggesting further evaluation should be performed on its 

clinical potential. Moreover, CAF01 has been studyied in other disease models such as 

malaria, chlamydia and influenza (Agger et al., 2008; Christensen et al., 2010; Vangala 

et al., 2006). Multi parameter flow cytometry has determined the stage of memory and 

effector T cell differentiation based on the expression of selected cytokine combinations 

(Seder et al., 2008). Upon immunisation with DDA:TDB incorporated with Ag85B-

ESAT-6, central memory (IFN-γ+ TNF-α+ IL-2+ and TNF-α+ IL-2+) and effector 

memory (IFN-γ- TNF-α+) cells, which are essential for the development of long term 

immunity,  became activated (Christensen et al., 2010; Kamath et al., 2009). The 

liposomal system induced high level of IFN-γ	   and	   IgG2	   production	   (Davidsen	   et	   al.,	  

2005;	  Henriksen-‐Lacey	  et	  al.,	  2010b;	  Henriksen-‐Lacey	  et	  al.,	  2010c),	  showing	  the	  effect	  
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of	  CAF01	  on	  enhancement	  of	  the	  Th-‐1	  immune	  response.	  Although	  DDA	  does	  not	  act	  via	  

TLRs,	   TDB	   activates	   NF-‐κB	   through	   syk-‐CARD9/Bcl10/Malt-‐1	   intracellular	   pathway.	  

This	  results	  in	  up-‐regulation	  of	  co-‐stimulatory	  molecules,	  including	  CD40	  and	  CD86	  on	  

DCs	  (Kamath	  et	  al.,	  2009;	  Schoenen	  et	  al.,	  2010;	  Werninghaus	  et	  al.,	  2009).	  It	  is	  known	  

that	  incorporation	  of	  other	  immunostimulatory	  molecules	  or	  adjuvants	  can	  change	  the	  

mechanism	   of	   action	   of	   liposomal	   subunit	   vaccines	   (Henriksen-‐Lacey	   et	   al.,	   2011c;	  

Nordly	  et	  al.,	  2011).	  	  

In	  summary,	   there	  are	  MHC	  I	  and	  MHC	  II	  molecules	  which	  are	  on	  the	  surface	  of	  APCs	  

and	   injected	   antigen	   can	   interact	   with	   them	   to	   induce	   immunity	   (Figure	   1.9).	   Upon	  

interaction	   of	   the	   antigen,	   the	   MHC	   molecules	   will	   be	   transported	   via	   cytosol	   to	   be	  

expressed	  on	   the	   surface	  of	  APC,	   thereafter	   the	  complex	  of	  MHC-‐antigen	  will	   interact	  

with	   T	   cell	   receptors	   (Madigan	   et	   al.,	   2000).	   It	   is	   believed	   that	   the	   type	   of	   MHC	  

molecules	   involved	   is	   related	   to	   the	   source	   of	   protein	   antigen.	   In	   the	   case	   of	   subunit	  

protein	  antigens,	  these	  antigens	  cannot	  be	  presented	  by	  MHC	  I	  molecules	  because	  they	  

cannot	  reach	  to	  the	  cytosol	  of	  the	  target	  cell.	  Therefore,	  MHC	  II	  molecules	  present	  the	  

subunit	  antigens	  to	  the	  Th1	  pathway	  by	  CD4+	  T	  cells,	  leading	  to	  induction	  of	  humoural	  

immune	   responses	   (Spack	   and	   Sorgi,	   2001).	   This	   explains	  why	   free	   subunit	   antigens	  

are	  not	  able	  to	  induce	  CTL	  immune	  response,	  which	  is	  activated	  by	  MHC	  class	  I	  antigen	  

presentation.	   Hence,	   liposomal	   systems	   can	   induce	   the	   MHC	   I	   antigen	   presentation,	  

resulting	  in	  release	  of	  Th1	  cytokines,	  which	  induces	  a	  strong	  cellular	  immune	  response	  

for	  the	  subunit	  protein	  vaccines	  (Rao	  and	  Alving,	  2000;	  Spack	  and	  Sorgi,	  2001).	  

1.3.3. DNA liposomal vaccines 

Cationic liposomes, which are able to protect the plasmid DNA (Gregoriadis et al., 

1996), have been shown to be able to enhance the uptake of DNA vaccines by the APCs 
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(Gregoriadis, 1990; Gregoriadis et al., 1997). Two types of DNA liposomal vaccines 

that have shown more interest are DRV and SUV vesicles. For DRV systems, DNA is 

entrapped within the aqueous compartments between bilayers (Perrie et al., 2001), 

whereas SUV form lipoplexes.  

	  

Figure 1.9: Presentation of the essential steps of different concepts of adjuvant activity. (a) Facilitation of 
antigen transport, uptake and presentation by antigen-capturing and processing cells in the lymph node 
draining the vaccine injection site. (b) Repeated or prolonged release of antigen to lymphoid tissues (depot 
effect). (c) Signalling of release of PRRs activates innate immune cells to release cytokines necessary for 
upregulation of costimulatory molecules. (d) Danger signals from stressed or damaged tissues alert the 
antigen-presenting cells to upregulate costimulatory molecules. (e) Signalling by recombinant cytokines or 
costimulatory molecules mimics classical adjuvant activity. Adapted from (Schijns, 2000) 

It has been reported (Gregoriadis, 1990) that local injection of liposomal DNA vaccines 

leads to APCs infiltrating the injection site or the lymph nodes and uptake of the 

plasmid DNA. Consecutive studies have been performed using plasmid DNA of 

(pRc/CMV HBS) which encodes the S region of the hepatitis B surface antigen (HBsAg) 

(Gregoriadis et al., 1997; Perrie et al., 2001). Results showed a remarkably higher 
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antibody response when the animal (BALB/C mice) immunised with liposomal DNA 

vaccines (e.g., DOTAP or DC-Chol) rather than naked DNA. Cytokine production 

levels for IFN-γ and IL-4 showed the same trend and using dehydration rehydration 

method to prepare the liposomes led to an increase in the immune responses for DRV 

liposomes compared to MLV liposomal vaccines. These results revealed the capability 

of liposomal DNA vaccines to enhance both humoural and cellular immune responses 

(Gregoriadis et al., 1997). These studies are in agreement with the notion that liposomes 

facilitate the uptake of liposomal DNA vaccines by APCs in the lymphoid tissues. In 

addition, expression of transgene-encoded protein (green fluorescent protein (GFP)) was 

also reported by these studies. Oral administration of liposomal DNA vaccines studied 

by Perrie et al (Perrie et al., 2002) shows that DSPC DRV liposomes containing DNA 

induce immune responses via the oral route. Another study showed DOTAP-based 

formulations produce longer-lived immunity compared to DC-Chol (Perrie et al., 2003). 

DNA lipoplexes (SUV liposomes/DNA complexes) may use different strategies, such as 

the use of surface ligand for cell targeting. Some studies used mannosylated cholesterol 

derivative to target macrophage mannose receptors and showed higher in vitro 

transfection and in vivo gene expression compared to DC-Chol (Kawakami et al., 2000). 

Using RGD peptides (Anwer et al., 2004) and use of biodegradable PLA (Bramwell et 

al., 2002) in combination with lipoplexes are other approaches of DNA delivery using 

SUV liposomes, which caused enhanced production of Th1 and Th2 responses. 

Different mechanisms (Figure 1.10) have been proposed to explain the immunogenicity 

of DNA vaccines; it was reported earlier that DNA-encoded antigens are presented by 

somatic cells through their MHC class I pathway to CD8+ T cells (Figure 1.10a) (Davis 

et al., 1993). However, other studies show that myocytes are not efficient enough to 

produce such high immune responses via MHC class I pathways (Gregoriadis, 1998; 

Spier, 1996). These studies have proposed that the CTL responses induced by DNA 
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vaccines result from the transfer of antigenic material between the muscle cells and 

professional APC (Figure 1.10c) and also the plasmid is taken up directly by DCs at the 

local lymph nodes, which present the antigen to the CD8+ T cells (Figure 1.10b). 

 
Figure 1.10: Mechanism of antigen presentation for activation of T lymphocytes (CTL) following plasmid 
DNA immunisation. a) DNA encoded antigens are presented by myocytes through their MHC class I 
pathway to CD8+ T cells. b) DNA vaccination led to direct transfection of APCs. c) Cross-priming results 
from transfected myocytes being phagocytosed by APCs, which then present the antigen to T cells. Adopted 
from (Liu, 2003). 

The effect of liposomes on this mechanism is to offer protection of the plasmid DNA 

from degradation so more DNA can transfect the cell and, as a result, higher CTL 

responses will be induced (Gregoriadis, 1998; Liu, 2003). Furthermore, cationic 

liposomes can induce innate immune response upon the immunisation and initiate the 

humoural immunity. Finally, applying fusogenic lipids in the structure of cationic 

liposomes would destabilise the cell membrane and enhance the delivery of the plasmid 

DNA into the cell and eventually to the nucleus (McNeil and Perrie, 2006). 
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1.3.4. Prime/boost DNA vaccine strategies 

Prime/boost immunisation regimen has been defined as a vaccination strategy, which 

includes prime immunisation of plasmid DNA followed by the immunisation with the 

same antigen, which was encoded by the prime plasmid DNA. An early study 

(Schneider et al., 1998), has shown that DNA prime immunisation followed by a single 

protein boost of the same modified vaccina virus Ankara (MVA) antigen induced high 

levels of CD8+ T cells, and as a result, induced complete protection in challenges. Later 

studies (Carstens et al., 2011; Deshmukh et al., 2007; O'Hagan et al., 2004; Tirabassi et 

al., 2011; Vaine et al., 2010; Wang et al., 2008; Wierzbicki et al., 2002; Yang et al., 

2008) have also shown the resulting immune response to the heterologous vaccination 

can be significantly higher than  homologous plasmid DNA or protein vaccines (eg., 

DNA/DNA or protein/protein). This was also tried in human studies, which have 

shown high immune responses of prime-boost vaccination compared to homologous 

DNA vaccine regimens (Lu et al., 2008). Recent studies have also investigated 

heterologous regimens for influenza and HIV vaccines (Churchyard et al., 2011; De 

Rosa et al., 2011; Koblin et al., 2011; Ledgerwood et al., 2011), which are showing 

promising immune responses and are currently undergoing human clinical trials. 

The immunologic mechanisms behind the effectiveness of heterologous prime/boost 

strategies are not well understood, but it can be related to the lower antigen expression 

of DNA prime immunisation compared to protein vaccines, and this may preferentially 

prime T-helper cell responses, with the humoural response subsequently being boosted 

by the high dose protein boost (De Mare et al., 2008; Li et al., 2012). In fact, following 

the prime immunisation, the rate and efficacy of antigen recognition and immune 

response are increased, therefore with booster immunisation, these provided high 

affinity lymphocytes to be further developed in size and in the ability of epitope 
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recognition. This leads to an increase in the efficiency of the immune system 

(McCullough and Summerfield, 2005). 

1.4 Aims and objectives  

As described, liposomes have shown great potential as adjuvants and delivery systems 

for subunit antigen and plasmid DNA vaccines, through enhancing the immunogenicity 

of these molecules as well as effective and efficient delivery of them. It was also 

mentioned that different aspects such as cationic lipid composition, choice of helper 

lipid, vesicle size and surface charge of the liposome and method of liposome 

preparation impact on in vitro transfection, in vivo delivery and immunogenicity of the 

vaccines. Therefore, the aim of this thesis was to evaluate how differences in 

physicochemical characteristic properties of the liposome formulations correlate with 

their in vitro transfection efficiency, in vivo biodistribution and immunological function. 

To achieve this aim following objectives have been considered: 

Ø To investigate a range of cationic liposome-DNA formulations with different 

lipid/DNA +/- charge ratios and study the physicochemical characteristics of 

them. 

Ø To investigate the role of lipid structure on molecular packaging of the lipids. 

Ø To study the effect of the presence of electrolytes and lipid composition on 

physicochemical properties and in vitro transfection of the DNA liposomal 

formulations.  

Ø To evaluate the biodistribution of liposomes and their associated plasmid DNA 

with the aim to correlate these to their physicochemical properties and 

immunological function. 
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Ø To perform prime/boost immunisation experiments with selected cationic 

liposomal vaccines to evaluate the effect of cationic lipid composition, 

electrolytes and type of the liposomes on immunogenicity of the liposomal 

vaccines. 
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2.1. Materials 

 

Material Supplier 

1,2-dioleoyl-3-trimethylammonium-propane 

(DOTAP) 

Avanti Polar Lipids, Alabaster, AL, USA 

1,2-dioleoyl-sn-glycero-3-phospho-(1'-rac-

glycerol) (DOPG) 

Avanti Polar Lipids, Alabaster, AL, USA 

1,2-dioleoyl-sn-glycero-3-

phsphoethanolamine (DOPE) 

Avanti Polar Lipids, Alabaster, AL, USA 

1,2-distearoyl-sn-glycero-3-phospho-(1'-rac-

glycerol) (DSPG) 

Avanti Polar Lipids, Alabaster, AL, USA 

1,2-distearoyl-sn-glycero-3-

phosphoethanolamine (DSPE) 

Avanti Polar Lipids, Alabaster, AL, USA 

1,2-stearoyl-3-trimethylammonium-propane 

(DSTAP) 

Avanti Polar Lipids, Alabaster, AL, USA 

125I (NaI in NaOH solution) Perkin Elmer, Waltham, MA, USA 

2,2’-azino-bis(3-ethylbenzthiazoline-6-

sulfonic acid) 

Sigma-Aldrich, Poole, Dorset, UK 

32P-dATP Perkin Elmer, Waltham, MA, USA 

3H-Cholesterol Perkin Elmer, Waltham, MA, USA 

African green monkey kidney cells (COS-7) European collection of cell cultures 

(ECACC) (Salisbury, UK). 

Agarose Sigma-Aldrich, Poole, Dorset, UK 

Alhydrogel-2 % InvivoGen San Diego, CA, USA 

BALB/C mice Charles River, Margrate, UK 

Bicinchoninic acid (BCA) protein assay kit Sigma-Aldrich, Poole, Dorset, UK 

Boric acid Biomedicals, Inc. Ohio, USA 

Bromophenol blue Sigma-Aldrich, Poole, Dorset, UK 
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C57BL/5Jico Charles River, Margrate, UK 

CellTiter 96® AQueous One Solution Cell 

Proliferation Assay 

Promega, Madison, WI, USA 

Chloroform Fisher Scientific, Leicestershire, UK 

Citric acid Sigma-Aldrich, Poole, Dorset, UK 

Concanavalin A Sigma-Aldrich, Poole, Dorset, UK 

Delbecco’s Modified Eagles Medium 

(DMEM) 

Biosera, Leicestershire, UK 

Deoxyribonuclease I Sigma-Aldrich, Poole, Dorset, UK 

Dimethyldioctadecylammoniumbromide 

(DDA) 

Avanti Polar Lipids, Alabaster, AL, USA 

Distilled Water; DNase/RNase Free Gibco, Invitrogen, Paisley, UK 

DNA ladder (2-10 kb) Promega, Madison, WI, USA 

Ethanol Fisher Scientific, Leicestershire, UK 

Ethidium bromide Sigma-Aldrich, Poole, Dorset, UK 

Ethylenediaminetetraacetic acid (EDTA) Sigma-Aldrich, Poole, Dorset, UK 

Foetal bovine serum (FBS) Biosera, Leicestershire, UK 

Illustra ProbeQuant G-50 Micro Column GE Healthcare, Amersham, UK: 

Goat anti-mouse IgG, IgG1, IgG2b AbD Serotec, Oxford, UK 

gWizTM Luciferase Genovac GmbH, Germany 

Heparin Sigma-Aldrich, Poole, Dorset, UK 

4-(2-Hydroxyethyl)piperazine-1-

ethanesulfonic acid (HEPES) buffer solution 

Sigma-Aldrich, Poole, Dorset, UK 

Hydrogen Peroxide Sigma-Aldrich, Poole, Dorset, UK 

Iodogen pre-coated iodination tubes Pierce Biotechnology, Rockford, IL, 

USA 

L-glutamine/Penicillin-Streptomycin Biosera, Leicestershire, UK 
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LipofectinTM reagent Invitrogen Life Technologies, UK 

Loading buffer Promega, Madison, WI, USA 

luciferase assay system Promega, Madison, WI, USA 

Magnesium chloride Sigma-Aldrich, Poole, Dorset, UK 

Marvel milk Premier Int. Foods Ltd, Lincs, UK 

Methanol Fisher Scientific, Leicestershire, UK 

Mouse DuoSet capture ELISA IL-1ß, IL-2, 

IL-5, IL-6, IL-10, IFN-γ 

R & D Systems, Abingdon, UK 

Nick Translation kit GE Healthcare, Amersham, UK: 

Phosphate buffer saline tablets (PBS) Sigma-Aldrich, Poole, Dorset, UK 

PicoGreen
 reagent Invitrogen Life Technologies, UK 

Plasmid DNA (pRc/CMV HBS) Aldevron, Fargo, USA 

Pontamine blue (Chicago Sky Blue 6B) Sigma-Aldrich, Poole, Dorset, UK 

Potassium chloride Sigma-Aldrich, Poole, Dorset, UK 

Potassium phosphate Sigma-Aldrich, Poole, Dorset, UK 

Protease inhibitor cocktail  Sigma-Aldrich, Poole, Dorset, UK 

Reagent diluent R & D Systems, Abingdon, UK 

RPMI 1640 Biosera, Leicestershire, UK 

Sephadex™ G-75 Sigma-Aldrich, Poole, Dorset, UK 

Serum free and antibiotic free medium  

(Opti-MEM) 

Gibco, Invitrogen, Paisley, UK 

Sodium bicarbonate Sigma-Aldrich, Poole, Dorset, UK 

Sodium carbonate Sigma-Aldrich, Poole, Dorset, UK 

Sodium chloride Sigma-Aldrich, Poole, Dorset, UK 

Sodium dodecyl sulphate Sigma-Aldrich, Poole, Dorset, UK 

Sodium hydroxide Sigma-Aldrich, Poole, Dorset, UK 
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Sodium phosphate dibasic Sigma-Aldrich, Poole, Dorset, UK 

SolvableTM Perkin Elmer, Waltham, MA, USA 

Stop solution R & D Systems, Abingdon, UK 

Sucrose Sigma-Aldrich, Poole, Dorset, UK 

Substrate solution R & D Systems, Abingdon, UK 

Synthetic hepatitis B surface antigen 

(HbsAg) (ayw subtype) 

Aldevron, Fargo, USA 

Trehalose 6,6′-dibehenate (TDB) Avanti Polar Lipids, Alabaster, AL, USA 

Triton X – 100 Sigma-Aldrich, Poole, Dorset, UK 

Trizma-Base Sigma-Aldrich, Poole, Dorset, UK 

Trypan blue Sigma-Aldrich, Poole, Dorset, UK 

Trypsin/EDTA Gibco-Invitrogen, Carlsbad, CA, USA 

Tween-20 Sigma-Aldrich, Poole, Dorset, UK 

Ultima Gold Scintillation Fluid Perkin Elmer, Waltham, MA, USA 

 

2.2. Monolayer studies 

To investigate the surface pressure of monolayer lipids, Langmuir-Blodgett technique 

has been used. It is an automated controlled film balance apparatus (Figure 2.1) (KSV 

Langmuir Mini-trough, KSV Instruments Ltd., Helsinki, Finland) equipped with a 

platinum Wilhemy plate and placed on a vibration-free table. This instrument was used 

to collect the surface pressure-area isotherms. The size of the trough was 24225.0 mm2 

enclosing a total volume of about 220 mL; the subphase was filtered deionised water or 

PBS solution. The compounds were prepared at fixed total concentration of 1 mg/mL 

of lipid in chloroform. 20 µL of each solution was spread onto the air/water interface 

with a Hamilton micro-syringe, precise to ± 0.2 µL (Figure 2.2). The monolayer was left 
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for about 15 minutes to allow chloroform to evaporate. Then a constant compression 

with a rate of 10 mm/minute was performed on the molecules until the required surface 

pressure was attained. The temperature of the subphase was kept constant at 20 °C ± 1 

°C by use of an external water bath circulation system.  

 

 

Figure 2.1: Representation of Langmuir mini trough, kindly supplied by KSV.Ltd and modified.  
Different parts of the instrument: 1) Balance 2) Trough filled with clean subphase e.g. water 3) Movable 
barriers 4) Wilhelmy Plate (Reproduced with permission from (Moghaddam et al., 2011)). 
 

The following compounds were tested in this study in both deionised water and PBS 

subphases: DOPE, DOTAP, DSTAP, DSPE, DOPE:DOTAP, DOPE:DSTAP, 

DSPE:DOTAP, DSPE:DSTAP. DDA, DDA:TDB and DOPE:DDA were also studied 

in deionised water. Each experiment was compressed once and performed at least three 

times. To analyse the data KSV software (KSV Instruments Ltd., Helsinki, Finland) was 

used. 
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Figure 2.2: Spontaneous spreading of a liquid of surfactant molecules (adapted from (Lyklema, 2000)) 

 

2.3. Liposome preparation by lipid hydration method 

2.3.1. Production of multilamellar vesicles (MLV) 

All cationic liposomes were prepared by the lipid hydration method based on the work 

of Bangham (Bangham et al., 1965). To prepare the liposomes, the required amount of 

each lipid were taken and dissolved in an appropriate volume of stock solution of 

chloroform:methanol (9:1 v:v ratio) in a round bottom flask (RBF). The organic solvent 

was then evaporated and a thin film coated in RBF by using rotary evaporator. After 

flushing of the RBF with N2 to ensure complete remove of solvent, 1 mL of hydration 

phase (either distilled water, PBS or Tris buffer) was added to the RBF followed by 2 

minutes vortex and the contents kept 10 °C above transitional temperature (Tc) for 30 

minutes to form multilamellar vesicles (MLV) e.g. the Tc for DOPE, and DOTAP is 

below room temperature but it is 47 °C for DDA, 62.9 °C for DSTAP and 75 °C for 

DSPE (Davidsen et al., 2005; Regelin et al., 2000). 
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2.3.2. Production of small unilamellar vesicles (SUV) 

To produce small unilamellar vesicles (SUV), MLV were sonicated (Figure 2.3A) for 

approximately 2 minutes with a probe sonicator (Soniprep 150) with the power of 5 

amplitude microns using a probe tip with a diameter of approximately 4 mm. Since 

sonication tips tend to release titanium particles into the lipid suspension this was 

removed by centrifugation prior to use. Details of each liposome formulation are shown 

in Table 2.1.  

                 Table 2.1: Studied liposome formulations 

Liposome formulation Lipid ratio (µmol) Hydration medium 

DOPE:DOTAP (8:8) dH2O/Sucrose 

DOPE:DOTAP (8:8) PBS 

DOPE:DSTAP (8:8) dH2O/Sucrose 

DOPE:DSTAP (8:8) PBS 

DSPE:DOTAP (8:8) dH2O 

DSPE:DOTAP (8:8) PBS 

DDA:DOPE (8:8) dH2O/Sucrose 

DDA:TDB (8:1) Tris buffer 

 

For biodistribution and immunisation studies, to keep the isotonicity of the formulation 

in vivo, 10 % solution of sucrose was used as hydration media instead of dH2O in 

formulations. Also for DDA:TDB 10 % trehalose was added to the Tris buffer to have 

an isotonic buffer. 
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2.3.3. Production of dehydration-rehydration vesicles (DRV) 

To produce dehydration-rehydration vesicles (DRV) (Kirby and Gregoriadis, 1984), the 

empty SUV suspension was kept at -70 °C for one hour and then placed in freeze dryer 

over night with a shelf temperature of -20 °C. Controlled rehydration procedure was 

performed after complete freeze drying. Minimal amount of dH2O added to the lipid 

cake (100 µL per 16 µmoles lipid) and then vortexed for a short time (less than one 

minute), this stage repeated until the dry lipid was redispersed. The rehydrated 

formulation was kept at >Tc for 30 minutes to allow vesicle formation. When the 

suspension was diluted for further experiments, it was left to stand for 30 minutes before 

any experiment was carried out (Figure 2.3B). 

 

Figure 2.3: Liposomal preparations: A) Small unilamellar vesicles complexed with DNA (SUV-DNA), 
B)Preformed empty dehydration-rehydration vesicles complexed with DNA, (DRV-DNA). (insert 
illustrates flattened liposomal membrane in their dried state after freeze drying). 
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2.3.4. DNA lipoplex preparation 

Cationic liposome-DNA complexes were prepared by incubating either empty SUV or 

DRV (Figure 2.3) with the required amount of gWiz Luciferase or plasmid DNA 

(pRc/CMV HBS) for 30 minutes. Lipid films were hydrated in either dH2O, 10 % 

sucrose, PBS or for DDA:TDB in Tris buffer (10mM, pH 7.4).  

2.3.5. Protein-liposome complex preparation 

To produce protein-liposome complexes, empty SUV or DRV were incubated with the 

appropriate amount of protein for one hour at room temperature (RT).  

2.4. Determination of vesicle size 

The z-average diameter of lipoplexes was determined by dynamic light scattering using 

the photon correlation spectroscopy (PCS) technique measured on a Malvern Zetasizer 

Nano-ZS (Malvern Instruments Ltd., UK). Using the cuvettes supplied by Malvern, 20 

to 50 μL of the sample was diluted by the hydration phase up to 1.5 mL and the vesicle 

size was measured at 25 °C.	  

2.5. Measuring Zeta potential 

The zeta potential of the complexes was measured on Malvern Zetasizer Nano-ZS 

(Malvern Instruments Ltd., UK) at 25 °C in distilled water, PBS or Tris buffer as 

appropriate. To measure the zeta potential 100 µL of liposome suspension was diluted 

in 2 mL of its aqueous phase whether dH2O or 0.001 M PBS.  
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2.6. Evaluating antigen association  

The level of associated plasmid DNA within lipoplexes, as well as absorbed protein, 

associated the liposomes was determined based on following protocols:

2.6.1. Plasmid DNA association  

To measure the association of the DNA with liposomes, 25 µL	   of	   the	   liposome	  was	  

removed	   and	   diluted	   to	   1	   mL	   with	   PBS.	   The	   diluted	   samples	   were	   centrifuged by 

OptimaTM Max-xp Ultra Centrifuge, (Beckman Coulter, USA) for one hour with the 

speed of 125,000 x g at 4 °C. Following to the centrifugation, the supernatant were 

collected and the pellets were resuspended in 1 mL PBS and the centrifuge repeated. 

Supernatants, which contain unassociated pDNA, were incubated with similar volume 

of fluorescent dye of PicoGreen® for 5 minutes at RT in a black 96 well plate (the plate 

was covered by foil to avoid photodegradation). The absorbance was read by 

SpectroMax Gemini EM (Molecular Device) plate reader with the excitation maximum 

at 495 nm and an emission peak at 525 nm. So the amount of free pDNA (washed 

pDNA) was quantified. To measure the liposome-associated pDNA, the liposome 

‘pellet’ was resuspended in PBS and exposed to 10	  µL of 10 % Triton X-100 with final 

concentration of 0.1 %. The mixture was shaken vigorously prior to addition of 

Picogreen® and then the absorbent was read to quantify the associated pDNA. 

Incorporation values of DNA with liposomes were calculated by following equation 

(including any dilution):  

Fluorescence of washed sample       x 100 % 
                                     Fluorescence of unwashed sample 
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2.6.2. Protein adsorption 

2.6.2.1. Radiolabelling of the proteins 

In order to determine the entrapment of protein in each liposomal vaccine formulation, 

radiolabelling was applied using 125I. The protein antigen HBsAg, was radiolabelled 

using the Iodo-gen® pre-coated iodination tubes. The protein antigen was diluted to 50 

µL PBS buffer (0.01 M, Ph 7.4) and added to the pre-coated iodination tube following by 

addition of 125I equal to 3.7 MBq. The mixture was left for 45 to 60 minutes with 

swirling every 15 minutes to ensure complete exposure of protein and 125I to the 

iodination tube. The labelled antigen was separated from unlabelled antigen by applying 

the mixture of protein and 125I onto a 5 mL Sephadex G-75 gel column.  

To prepare the gel column, 2 g of the Sephadex G-75 was rehydrated in 30 mL of 

distilled water and stored in the fridge over the night. Then the swollen gel was packed 

to give a final gel volume of 5 mL. The gel was washed by 10 mL PBS to ensure PBS 

hydrated the whole gel column.  

Radioactivity of the samples was measured using a Cobra™ CPM Auto-Gamma® 

counter (Packard Instruments Company inc., IL, USA).  

2.6.2.2. Detection of the liposome-associated protein. 

To determine the presence of protein, bicinchoninic acid (BCA) assay was used; 25 µL 

of each sample was transferred to the wells of 96 well plate. 200 mL of BCA reagent 

(ratio of 50:1 for reagent A to B) was added to each well. Then the plate was incubated 

for half an hour in 37° C. This was followed by reading the absorbance at 562 nm by 

microplate reader (BioRad, model 680). The radioactivity and absorbance readings for 
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each 0.25 mL aliquot were plotted to confirm the presence of radiolabelled protein 

antigen.  

2.6.2.3. Quantification of liposome-adsorbed protein 

The aliquots containing the radiolabelled antigen were collected and the required 

amount was added to the liposome suspension. The mixture was left at RT for one 

hour. The radioactivity of each liposome formulation was measured using a Cobra™ 

CPM Auto-Gamma® counter (Packard Instruments Company inc., IL, USA). To 

separate the entrapped and unentrapped antigen, the liposome suspension was diluted 

by PBS to 3.9 mL and centrifuged for one hour at 4° C at 125,000 x g using a TL-100 

rotor on an OptimaTM Max-xp Ultra Centrifuge; Beckman Coulter, USA. The Pellet and 

supernatant were separated and after redispersing of the pellet in 1 mL of PBS, the 

radioactivity of them was measured on the gamma counter. The amount of entrapped 

antigen was calculated by dividing the radioactivity of the pellet by the radioactivity of 

the unwashed sample multiplied by 100 %: 

Radioactivity of washed sample            x 100 % 
                                      Radioactivity of unwashed sample 
 

2.7. Agarose gel electrophoresis 

Gel electrophoresis was used to determine the retention of plasmid DNA in the 

lipoplexes under various conditions. Agarose gel was prepared by dissolving the desired 

amount of Agarose powder in 1x Tris borate EDTA (TBE) buffer solution to reach to 1 

% concentration (w/v). 10 µL ethidium bromide (1 mg/mL) was also added to the 

solution and followed by heating the mixture in the microwave for 5 minutes. A clear 

and transparent solution was obtained and left to cool down to (50 to 60) °C and then 
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was poured in the tray. When the gel hardened the comb was taken off the gel, and the 

tray, which is filled with the gel, was placed in the chamber filled with pre-chilled 1x 

TBE buffer. Samples of DNA ladder, free DNA and liposome incorporated DNA 

suspensions were mixed with gel loading buffer (bromophenol blue, 0.05 % w/v; 

sodium dodecyl sulphate, 0.05 % w/v; EDTA, 0.1 M at pH 8) and subjected to agarose 

gel electrophoresis for 1 hour at 80 V. DNA visualisation of the gels was carried out by 

using UV SynGene Bio Imaging (SynGene,Cambridge, UK). 

2.8. Protection of DNA from degradation 

A vial of Deoxyribonuclease I (DNase I) reconstituted with 1 mL of cold sodium 

chloride (NaCl) (0.15 M) to prepare a standard solution of DNase I with a 

concentration of 2000 Kunitz units/mL. From this, aliquots of 60 µL were pipetted into 

vials and frozen at -20 °C for future use. 100 µL of naked DNA (10 µg) was taken and 

150 µL of magnesium chloride (MgCl2) (5 mM) was added to it. Samples were then 

incubated in the presence (i.e. positive test) or absence (i.e. negative test) of 100 units of 

DNase I (50 µL from the stock solution), at 37 °C for 10 minutes.  This protocol was 

repeated for the DNA lipoplex formulations. Adding 100 µL of EDTA (0.1 M; pH 8.0) 

after 10 minutes stopped the reaction. 8 µL from each sample was removed and 2.5 % 

w/v SDS was added (1:1 v/v), in order to rupture liposomes to release their contents. 

The samples (i.e. positive and negative tests, free and entrapped DNA and with and 

without SDS) were then subjected to a 0.8 % agarose gel for 1 hour at 80 V.    

2.9. DNA release studies 

DNA association within liposome formulations was determined as detailed in section 

2.6.1. Liposome preparations were then diluted to 15 mL with PBS and incubated in a 
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37 °C water bath with shaking. At various time points (0, 2, 4, 24, 48, 96, 192 hours), 

DNA association and release from liposome formulations was determined by removing 

1 mL sample from liposome suspension, which was subsequently replaced with 1 mL 

PBS, in order to maintain sink conditions. From this 1 mL sample the amount of DNA 

released was determined as detailed in section 2.6.1. 

2.10. In vitro studies 

2.10.1. Cell culture protocols 

2.10.1.1. Reviving the frozen COS-7 cell line 

To revive the frozen cell line, the ampoule was removed carefully from liquid nitrogen 

tank and kept in 37 °C water bath for 2 minutes, until cells defrosted. Under sterile 

conditions, the cell solution was removed from the ampoule and slowly pipetted into a 

75 cm2 cell culture flask containing 20 mL of Dulbecco's Modified Eagle Medium 

(DMEM) supplemented with 10 % foetal bovine serum (FBS) and 1 % 

penicillin/streptomyocin/L-Glutamine (PSG), in order to dilute out the toxic effects of 

Dimethyl Sulfoxide (DMSO). Cells were incubated at 37 °C and 5 % CO2 under sterile 

conditions. 

2.10.1.2. Subculture of COS-7 cells 

In order to passage the cell lines, the previous media (DMEM) was removed and 5 mL 

of trypsin/EDTA added to the flask ensuring that all cells are covered. The cells were 

incubated at 37 °C and 5 % CO2 for 5 minutes. Cells were examined under an inverted 

microscope to ensure all cells have detached from the flask. 5 mL of fresh DMEM 

supplemented with 10 % FBS and 1 % PSG was added to the cell suspension to dilute 

the trypsin/EDTA solution, the cell suspension was then added to a 50 mL centrifuge 
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tube and subsequently centrifuged (Mistril 3000i) at 200 x g for 10 minutes at 15 °C. 

After centrifugation, within sterile conditions, the supernatant was carefully removed 

and the pellet resuspended in 10 mL DMEM/FBS/PSG. 1 mL of cell suspension is 

added to a 75 cm2 containing 19 mL DMEM and incubated at 37 °C and 5 % CO2 under 

sterile conditions. 

2.10.1.3. Cell quantification 

As explained in section 2.10.1.2 adherent COS-7 cells were brought into solution. Then 

200 µL of this cell suspension was removed and added to a microcentrifuge tube 

followed by addition of 200 µL of Trypan Blue. Using a haemocytometer, cell viability 

and cell counts were determined. To each side of the cover slip of the haemocytometer, 

10 µL of the Trypan Blue cell suspension was added and observed by inverted 

microscope. The bright cells (i.e. viable cells) were counted and from this the cells 

concentration was calculated (including dilutions), whereas the cells stained blue 

indicate non-viable cells. The following equation was used to calculate the cell number: 

No of cells/mL = number of cells per square x dilution factor x 104
 

v no. cells per square is the average of 10 squares in the hemocytometer  
v Dilution factor is 2 if equal volumes of resuspended cells and tryphan blue are used  
v 104  is the multiplication factor related to the volume of the hemocytometer grid 

 

2.10.1.4. Cryopreservation 

Adherent cells were brought into suspension and quantified as explained in sections 

2.10.1.2 and 2.10.1.3. Cells were then centrifuged at 200 x g for 10 minutes at 15 °C and 

the pellet resuspended in FBS containing 10 % DMSO with a cell concentration of 4 x 

106 cells/mL. 1 mL aliquots of cell suspension were pipetted into cryopreservation 
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ampoules, and frozen at -70 °C overnight. The ampoules were then placed and stored in 

a liquid nitrogen storage container. 

2.10.2. Transfection studies 

2.10.2.1.  Cell preparation and plating for in vitro transfection  

Adherent COS-7 cells were brought into suspension and quantified as detailed in section 

2.10.1.2 and 2.10.1.3. The cell suspension was then centrifuged at 200 x g for 10 

minutes at 15°C and the pellet resuspended to a cell concentration of 1 x 105 cells/mL 

with supplemented DMEM. COS-7 cells were plated 24 hours prior to transfection, at a 

cell concentration of 1 x 105 cells/mL in 1 mL of medium in a 12-well plate and 

incubated overnight at 37 °C and 5 % CO2 under sterile conditions for 24 hours. 

2.10.2.2. DNA lipoplex preparation for in vitro transfection 

To perform in vitro studies, lipoplexes was prepared by diluting 17.5 µL of SUV solution 

(16 µmoles) to 0.35 mL with Opti-MEM, and then incubated for 40 minutes at room 

temperature. After incubation, 0.35 mL of Opti-MEM containing 3.5 µg plasmid DNA 

was added, mixed with liposome solution and incubated again for a further 15 minutes 

at room temperature. The resultant lipoplex mixture was then diluted to a final volume 

of 3.5 mL with Opti-MEM. The lipid/DNA charge ratio for in vitro study was +1.7/1.  

Prior to transfection, cells, which were incubated for 24 hours, were washed with 1 mL 

of Opti-MEM before lipoplexes were added to the cells. 1 mL of the lipoplex solution 

(0.0078 µmole total lipid content containing 1 µg plasmid DNA) was added to each 

well, each in triplicate. In addition, Lipofectin reagent and free DNA were added as 

positive and negative controls respectively. After 5 hours incubation at 37 °C in 5 % 
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CO2, the Opti-MEM medium was replaced with growth medium (DMEM) containing 

10 % FBS and the cells were incubated for 48 hours in the same condition. 

2.10.2.3. Luciferase assay 

Transfection efficiency of each formulation was determined using luciferase assay 

system. Luciferase was used as a reporter to assess the transcriptional activity in cells 

that are transfected with the DNA by producing light emission so the luciferase activity 

of the cell can be determined by detecting the produced light using a illuminometer. 

Therefore to determine the transfection efficiency of lipoplexes, transfected cells were 

exposed to 80 µL/well of lysis buffer and detached using cell scrapper. Detached cells 

spanned down at 12,000 x g for 15 seconds at room temperature and 10 µL of the 

supernatant was removed and pipetted onto a 96-well plate. To quantify the luciferase 

activity prior to addition of luciferase reagent, the plate was read using illuminometer 

(Spectra Max Gemini XPS, Molecular Probes) with 30 reads/well. Then luciferase 

assay reagent was added to the cells (100 µL/well) and the plate was read again. 

Measuring the amount of detected light for each sample, the transfection efficiency was 

reported as the percentage of the produced activity of each formulation to the 

Lipofectin™. 

2.10.3. Cytotoxicity study 

Cell preparation and plating procedure for cytotoxicity study is same as transfection as 

described in section 2.10.2.1 and 2.10.2.2 except that 100 µL of cells were pipetted into 

96 well plates before incubation for 24 hours. After 5 hours incubation, the medium was 

replaced by 100 µL of supplemented DMEM and incubated for 24 hours, then 20 µL of 
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3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H 

tetrazolium (MTS) reagent, (CellTiter 96® AQueous One Solution Cell Proliferation 

Assay, Promega) was added to each well. This protocol is based on the fact that cells 

bioreduce the MTS reagent into a red formazan product. Plates were incubated for 4 

hours at 37 °C, in a 5 % humid CO2 condition. After that the quantity of produced 

formazan was measured on microplate reader (Thermo Scientific Molecular Spectrum 

plate reader) at A490. The absorbance reading is directly proportional to the number of 

living cells in the medium. In this study cell viability is calculated by comparing the 

results to the positive control (i.e., cells and medium) and expressed as a percentage.

2.11. Biodistribution studies in mice 

The biodistribution of several radiolabelled lipoplex formulation was studied in female 

6-8 week old (18 – 21) g, BALB/c mice (Charles River, Margrate,UK). Groups of 4 

mice were used to study biodistribution of naked DNA and seven liposomal 

formulations (Table 2.2) for each time point and three time points were selected for 

termination of the mice which were 1, 4 and 8 days after the injection. So 3 

experimental groups (12 mice) were used to study each formulation and in total 96 mice 

were used in this study. Mice were housed under conventional conditions (22 °C, 55 % 

humidity, 12 h day/night cycle) in their experimental groups and were given a standard 

diet ad-lib. 

All experimentation undertaken strictly adhered to the 1986 Scientific Procedures Act 

(UK). All protocols have been subject to ethical review and were carried out in a 

designated establishment.  
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                               Table.2.2: Lipoplex specifications of present study 

 

2.11.1. Pontamine blue injection 

Three days before injection of the formulations, 200 µL of sterile filtered (0.2 µm) 

Pontamine blue (0.5 % w/v in PBS) was injected subcutaneously (s.c.) into the neck 

scruff of the mice as a marker for lymph nodes and monocytes (Tilney, 1971b).  

2.11.2. Preparation of radiolabelled vaccines and their injection 

Three days after injection of Pontamine blue, mice were injected a single intramuscular 

(i.m.) injection into the right quadriceps muscle with 50 µL of the plasmid:liposomes 

complex (lipoplex). To be able to investigate the biodistribution of the lipoplexes and 

detect lipid and pDNA in vivo, formulations radiolabelled with dual radiolabelling 

technique (Figure 2.4). Liposomes were radiolabelled by incorporation of [3H]-

Cholesterol to the liposomal bilayer. [3H]-Cholesterol was added to the lipid mixture 

prior to solvent evaporation and the liposomes were prepared by lipid-film hydration 

method detailed in section 2.3. The amount of [3H]-Cholesterol added was based on the 

radioactivity of (3H) and the concentration of cholesterol in the liposomes so that the 

physicochemical properties of the liposomes were not changed. The radioactivity of 
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[3H]-Cholesterol was 37 MBq/mL, which was ideal for this study with a high 

radioactivity and low cholesterol interference in liposomal characteristic parameters. So 

to gain a 150 kBq/dose radioactivity, a weight ratio of 1:10000 [3H]-Cholesterol:lipid 

was used. Plasmid DNA was labelled by the incorporation of [α-32P]-dATP by nick 

translation procedure (Kelly et al., 1970; Rigby et al., 1977). Therefore a Nick 

Translation Kit N5500 (GE Healthcare, Amersham, UK) was used, according to the 

instructions of the supplier and 2 µg of pDNA was labelled with 66 pmole of  [α-32P]-

dATP. After the DNA and [α-32P]-dATP reaction, the free label was removed using 

Illustra Probe Quant G-50 Micro Columns (GE Healthcare, Amersham, UK). The 

appropriate amount of labelled and unlabelled pDNA were mixed to achieve a 150 

KBq/dose activity and the mixture then added to the radiolabelled liposomes to prepare 

the dual radiolabelled lipoplexes (Figure 2.4). The injected dose volume was 50 µL	  

containing 150 kBq of [32P] and 150 kBq of [3H]. There was also 50 µg of gWiz 

luciferase plasmid DNA in each dose and the lipid/DNA ratio was +4/1. All mice were 

injected intramuscularly to the right quadriceps muscles. 

2.11.3. Processing of the tissues 

At time points of one day, four days and eight days post injection (p.i.), mice were 

terminated by cervical dislocation and various tissues collected. The collected tissues 

include site of injection (SOI), popliteal lymph node (PLN), liver, kidney, spleen and 

lung. Each tissue was weighted and transferred to scintillation vial and 1.5 mL of 

Solvable™ was added to each vial and incubated for 24 hours at 50 °C to digest the 

tissues completely. To avoid the colour quenching effect on counting of radioactivity of 

the samples, 200 µL of oxygen peroxide was added to each sample and kept at room 

temperature for 8 to 10 hours. 10 mL of Ultima Gold™ scintillation fluid was added to 

the fully bleached samples and made ready to be counted for their radioactivity. 
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2.11.4. Quantification of the proportion of vaccine components in 
tissues 

The activity of [32P] and [3H] of the samples were counted on a Packard Tri-Carb liquid 

scintillation counter (LSC), GMI Inc. using separate standard detection protocols for 

[32P] and [3H]. The data are expressed as percentage of the injected dose per tissue 

(%ID). Also for investigating doses at the PLN, the data was expressed as percentage of 

the injected dose per milligram of the PLN. To calculate the dose percentage for each 

formulation, triplicate samples of the original dose were processed the same as tissue 

processing and were counted at each time point.  

It has been reported (Carstens et al., 2011; Zamecnik et al., 1982) that 32P energy 

spectrum overlap with the 3H spectrum; therefore to determine the radioactive count of 

each radionuclide a standard curve was plotted. In a range of 20 cpms to 150 kBq, 

triplicate samples of 32P were prepared and counted on scintillation counter by both 32P 

and 3H protocols. A plot of the 32P values (x-axis) was made against the cpm values 

derived from 3H (y-axis) and the line of best fit and equation derived for samples below 

50,000 cpm and those above 50,000 cpm. These two equations were used to calculate 

out the effect of 32P on the 3H values.  

2.12. Immunisation studies in mice 

2.12.1. Immunisation plan and vaccine formulations  

Female C57BL/5Jico mice (18-20 g) purchased from Charles River, UK, were placed in 

groups of 5, with a total of 16 groups. Vaccination was performed in a heterologous 

DNA prime-protein boost regimen. This was composed of two immunisations with 50 

µg/dose pRc/CMV HBS plasmid DNA (Free pDNA for controls or various pDNA-

liposome complexes) and a third injection with 3 µg/dose HBsAg (ayw subtype) 
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dissolved in PBS, Alhydrogel 2 % or incorporated with liposomes of various 

formulations. For all of the groups, intramuscular (i.m) injection was applied to the 

quadriceps muscle of the right leg of the animal and the volume of each dose was 50 µL. 

Each group of 5 mice (excluding the naïve group) have received this vaccination 

regimen at 2 week intervals.  

Several control groups were designed as follows: a group of five mice that received one 

single free protein injection on day 28 (Boost control, --P), second group received the 

prime control which composed of two injections of free pDNA on days 1 and 14 (DD-) 

and third group received the prime-boost control that includes two free pDNA injections 

on days 1 and 14 followed by injection of free protein on day 28 (DDP). Same schedule 

was applied for DOPE:DSTAP liposomes which formed in sucrose or PBS. To compare 

the effect of aluminium salts on immunisation one group of 5 mice specified for 

receiving of a single injection of HBsAg in alhydrogel 2 %.  

Other liposomal vaccine formulations were injected under prime-boost (DDP) regimen. 

One day before each injection, one week after third injection and three weeks after third 

injection, (days 0, 13, 27, 36 and 49) blood samples were collected from the tail vein.  

Three weeks after the last immunisation mice were terminated and spleen and the site of 

injection (SOI) were collected to analyse the immune response. 
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Figure 2.4: Schematic diagram of dual radiolabelling method to prepare radiolabelled lipoplexes and the biodistribution schedule plan. 
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2.12.2. Antibody analysis 

To perform the antibody enzyme-linked immunosorbent assay (ELISA), blood samples 

were taken by making a small cut in the tail vein and collecting 50 µL of blood sample 

within a capillary tube, which was coated with 1 % heparin. Heparin was dissolved in 

PBS. The collected bloods were transferred to microcentrifuge tube containing 450 µL 

PBS to give a 1/10 dilution. Blood dilutions were centrifuged (Micro Centaur) at 13,000 

g for 5 minutes. The supernatant was collected and stored at -20 °C. If the volume ratio 

of haematocrit is assumed 50 %, consequently the stored serum in each microcentrifuge 

tube was 20 times diluted in PBS.  

As it is shown in Figure 2.5, ELISA plates (flat bottom, high binding) were coated with 

60 µL of 2 µg/mL HBsAg in 0.05 M sodium carbonate (0.318 g Na2CO3 and 0.58 g 

Na2HCO3 in 250 mL ddH2O, pH 9.6) and left overnight at 4 °C. Plates were washed 

three times with PBST buffer to remove any unbound antigen. PBST buffer were made 

by dissolving 40 g NaCl, 1 g KCl, 1 g KH2PO4 and 7.2 g Na2HPO4(2H2O) in 5 litres 

distilled water and with 0.4 mL Tween 20. To remove any non-specific binding antigen, 

the plates were coated with 100 µL of 4 % (w/v) Marvel (dried skimmed milk powder) 

and incubated for 1 hour at 37 °C. Then plates were washed again three times with 

PBST buffer. 190 µL of PBS was added to each well of first row (Row A) of the 96 well 

ELISA plate and 100 µL PBS was added to the rest of the wells in rows B to H. 10 µL of 

the serum sample was taken and added to the specific wells of row A and mixed well. 

Each sample was investigated in duplicate. Then 50 µL of the mixtures in row A were 

taken and added to row B and this procedure repeated to row H to make the serial 

dilution of the serum for each column of the plate. 50 µL was removed from row A and 

H so that the total volume of the serially diluted serum in all the wells was 100 µL. 
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Figure 2.5: Schematic diagram of mouse antibody enzyme-linked immunosorbent assay (ELISA).  
Elisa plates were coated with HBsAg prior to numerous wash stages with PBST and blocking with Malvern 
milk 4 % (w/v). Washing prior to adding serum samples, antibody conjugates and enzyme substrate took 
placed with incubation at 37 °C	  and	  5	  %	  CO2.	  The	  absorbance	  was	  measured	  using	  plate	  reader	  at	  405	  nm.  
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Samples incubated for one hour at 37 °C followed by 5 times wash with PBST. 50 µL of 

diluted isotype specific immunoglobulin (IgG, IgG1 and IgG2b diluted in PBS as 1:500 

for IgG and 1:4000 for IgG1 and IgG2b) were added to the appropriate plates. Then 

they were incubated for one hour at 37 °C followed by five PBST washes. 50 µL 

colouring agent (substrate) added per well. The substrate was made by dissolving of 6 x 

10 mg tablets of 2,2’-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid in 100 mL of citrate 

buffer (2.3 g citric acid, 4.89 g Na2HPO4 in 250 mL ddH2O) incorporating 10 µL of 

hydrogen peroxide (Figure 2.5). 

The plates were incubated for 20 minutes at 37 °C and the absorbance was measured at 

405 nm using a microplate reader (Bio-Rad, model 680). Previous known positive sera 

and naïve mouse sera were employed as positive and negative controls, respectively, on 

each ELISA plate. The results were expressed as the log10 value of the reciprocal of the 

end point dilution, which gave an optical density (O.D) of 0.2 or above. 

2.12.3. Splenocyte proliferation study 

Mice were terminated on day 49 and their spleens were removed and placed into 5 mL 

ice-cold sterile PBS. Under sterile conditions, each spleen was gently mashed on a fine 

wire mesh to give a suspension of spleen cells and added to 10 mL RPMI 1640 

supplemented with 10 % FBS and 1 % PSG. The cell suspension was left for 5 minutes 

to allow to the cell debris to settle, and then the supernatant was transferred to the sterile 

15 mL falcon tubes and centrifuged at 1200 rpm for 10 minutes, at 15 °C. After 

centrifugation the supernatant was carefully removed and the pellet was resuspended to 

10 mL with fresh supplemented RPMI, after which this cell suspension was again 

centrifuged at 1200 rpm for 10 minutes, at 15 °C. The supernatant was carefully 

removed and the pellet was resuspended to 5 mL with fresh RPMI. The cells were 
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counted as described in section 2.10.1.3 and the cell number was adjusted to 1 x 

107cells/mL.  

100 µL of serially diluted HBsAg (0.05, 0.5 and 5 µg/mL) in RPMI, was added to the 

sterile 96 well plate. The negative control wells contained medium only, and positive 

control was 5 µg/mL dilution of concanavalin A (Con A) in RPMI. 100 µL of 

splenocytes (1 x 107cells/mL) were added to the wells and the plates were incubated for 

72 hours in a sterile incubator with 37 °C and 5 % CO2 and 95 % humidity. After 

incubation, 40 µL of 18.5 kBq [3H]-thymidine within sterile supplemented RMPI was 

added to each well of a 96-well plate and incubated for further 24 hours under the same 

conditions. Cells were harvested onto a quartz filter mats using a cell harvester 

(Titertek). For harvesting well contents were aspirated onto the quartz filter mat and 

kept to dry.  The discs representing each well were punched from the filter mats into 15 

mL plastic scintillation vial followed by addition of 5 mL Ultima Gold™ scintillation 

fluid. The radioactivity of each sample was counted on a Packard Tri-Carb liquid 

scintillation counter (LSC), GMI Inc. by 3H scintillation counting protocol. 

2.12.4. Cytokine analysis from in vitro restimulated splenocytes 

Restimulated splenocytes with HBsAg or Con A and cells were prepared as outlined in 

section 2.12.3. Dilutions of 5 µg/mL HBsAg in RPMI were made and 100 µL was 

added per well of a sterile 96 well plate. Negative and positive controls were again 

medium only and 5 µg/mL Con A respectively. To have enough supernatant, 12 wells 

of each plate were used for each condition. 100 µL of splenocytes (1 x 107cells/mL) 

were added to the wells and the plates were incubated for 48 hours at a sterile incubator 

with 37 °C and 5 % CO2 and 95 % humidity. The supernatants were then removed and 

added to the microcentrifuge tubes and frozen at -70 °C until use.
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 Cytokine levels of IL-2, IL-5, IL-6, IL-10 and IFN-γ in the cell culture supernatants 

were quantified using the DuoSet® capture ELISA. The protocol was taken from the 

manufacturer catalogue (R&D Systems, Abingdon, UK). The ELISA plates were coated 

with 100 µL capture antibody (1 µg/mL for IL-2 and IL-5, 2 µg/mL for IL-6 and IL-10, 

4 µg/mL for IFN-γ, all in PBS) and incubated at room temperature overnight. Plates 

were then washed three times with PBST buffer and blocked by 300 µL block buffer. 

Block buffer for IL-2 and IFN-γ was 1 % BSA in PBS with 0.05 % NaN3 and for IL-5, 

IL-6 and IL-10 was their reagent diluent which was 1 % BSA (in PBS, pH 7.2-7.4). 

Plates were then incubated for 1 hour at room temperature, followed by three washes 

with PBST buffer. 100 µL of samples added to each well. At this stage standards were 

also diluted in reagent diluent and pipetted into the plate. For IL-2 and IFN-γ reagent 

diluent was, 0.1 % BSA, 0.05 % Tween 20 in Tris-buffer Saline (20 mM Trizma base, 

150 mM NaCl) pH 7.2-7.4. After incubation, plates were washed three times with PBST 

buffer. The cytokine standards were 2-fold serial dilutions of the supplied cytokine 

diluted in 0.2 µm sterile filtered reagent diluent. Each standard was diluted 6 times and 

included a 0 pg/mL control. The samples were added without any dilution. After 

incubation 100 µL detection antibody for the corresponding cytokine was added to each 

well and the plates were covered by new microplate slip and incubated for 2 hours at 

room temperature. Plates were once again washed three times with PBST buffer. 100 µL 

of working dilution of Streptavidin-HRP (horseradish peroxidase) was added per well, 

after which the plates were incubated at room temperature for 20 minutes, and be 

avoided from the direct light. Plates were washed three times with PBST buffer and 100 

µL of substrate solution was added per well. Substrate solution was a 1:1 mixture of 

colour reagent A (H2O2) and colour reagent B (tetramethylbenzidine (TMB) agent (1 mg 

tablets), with 1 tablet dissolved in 1 mL DMSO and 9 mL of phosphate citrate buffer 

(0.05 M, pH 5)). Plates were then incubated at room temperature for 20 minutes while 
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was avoided from the direct light. Then by adding 50 µL of stop solution (2N H2SO4) 

the reaction stopped and the blue light indicating the reaction changes to golden yellow. 

The optical density of each well was measured immediately using a microplate reader 

(Bio-Rad, model 680) set to 450 nm. 

2.12.5. Cytokine analysis from in vitro restimulated cells from the 
site of injection 

The production of IL-1β at the site of injection (SOI) was investigated by the method 

described by Sharp et al. (2009). Muscle from the SOI was excised 3 weeks after the 

final injection and flushed freeze by liquid Nitrogen and kept frozen at -70 °C. On the 

day of experiment, leg was defrosted and the quadriceps muscle was removed and 

separated from the bone. After weighing the muscle using a manual homogenisation 

tube (Figure 2.6), each leg’s muscle homogenised on ice in 2.5 mL of homogenisation 

buffer (500 mM NaCl/50 mM Hepes, pH 7.4, containing 0.1 % Triton X-100, Sigma 

protease inhibition mixture and 0.02 % NaN3).  

 

 

 

 

                                       Figure 2.6: Teflon homogenisation tube to homogenise the leg muscle. 
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Samples were sonicated and centrifuged (6000 x g, 20 minutes, 4 °C) prior to detection 

of IL-1β in supernatants. After centrifugation, three layers were separated from up to 

down of the 15 mL Falcon tube which were fat layer, supernatant or cells and at the 

bottom of the tube there was debris and hair. The supernatant was removed carefully 

from the tube and pooled into the microcentrifuge tubes and kept in -20 °C until use. 

The same method, which used for splenocytes in section 2.12.4 was used to figure out 

the production level of IL-1β at the site of injection. Results were shown as pg of IL-1β 

per milligram of each muscle. 

2.13. Statistics 

Means and standard deviation were calculated for all experiments. The one-way 

analysis of variance (ANOVA) was performed on all data to determine statistical 

significance. The statistical significance determined to 0.05 confidence intervals 

(P<0.05). To compare the difference of significance of different conditions, Tukey’s post 

hoc test was performed. 

 

 

 

 

 



 

 

96 

 

 

 

 

 

Chapter 3: 

The Effect of Alkyl Chain and 
Electrolytes on Characteristics of 
Transfection Agent Lipoplexes 

 

 

 

 

Papers relating to this chapter: 

Moghaddam, B., McNeil, S.E., Zheng, Q., Mohammed, A.R., Perrie, Y., 2011. 
Exploring the Correlation Between Lipid Packaging in Lipoplexes and Their 
Transfection Efficacy. Pharmaceutics, 3, 848-864. 



Chapter 3: The Effect of Alkyl Chain and Electrolytes on Characteristics of Transfection Agent Lipoplexes 

 

97 

3.1. Introduction 

Cationic liposomes have been widely investigated as a non-viral delivery system for 

gene delivery (Bedi et al., 2011; Gjetting et al., 2011; Gregoriadis et al., 2002; Perrie et 

al., 2003; Wang et al., 2012b; Zabner, 1997) and the electrostatic interaction between 

positive charge of cationic liposomes and negative charge of DNA make a complex of 

cationic liposome-DNA generally referred to as lipoplexes (McNeil et al., 2010). 

To develop lipoplexes with high transfection and low toxicity, several parameters should 

be taken into account such as: size, lipid/DNA charge ratio, net positive charge of the 

lipoplex, chemical structure of cationic lipid and helper lipid, and finally the structure of 

the complex itself (Congiu et al., 2004). However, given the dynamic nature of these 

structures, many factors, in addition to those already listed, can contribute to the 

resultant physico-chemical attributes of the lipoplexes, including the rate of mixing of 

the various components, the temperatures used and even the presence of electrolytes in 

the buffers used (Congiu et al., 2004; McNeil and Perrie, 2006, 2007). Indeed, research 

has shown that the presence of electrolyte within the aqueous media can influence both 

the physicochemical properties and the in vivo efficacy of lipoplexes, with the authors 

demonstrating that the addition of low concentrations of sodium chloride to cationic 

liposomes during complex formation lead to an improved vaccine adjuvant action (Yan 

and Huang, 2009).  

Thus, the aim of the work in this chapter was to investigate the molecular interactions of 

lipids and the resultant lipoplexes properties and to attempt to correlate these with the 

transfection attributes of the system in a controlled in vitro environment. Therefore, lipid 

monolayers were studied by Langmuir-Blodgett trough, as such monolayers can be 

considered as building blocks for bilayer vesicles, consequently, studying these 
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monolayers in an aqueous media (dH2O or PBS) at air/water interface, in combination 

with the lipid attributes, may give insights into bilayer lipid packaging configuration and 

liposomes stability which could influence transfection (Ali et al., 2010; Christensen et 

al., 2008). Cationic liposomes were prepared in dH2O or the commonly used phosphate 

buffered saline (PBS) and the liposome physicochemical characteristics considered, such 

that the effect of electrolytes could be considered, and correlated with the Langmuir 

studies. Of the cationic liposome systems tested, the combination of the fusogenic lipid 

DOPE (Figure 3.1) with the cationic lipid DOTAP, is a frequently used composition 

due to its high in vitro transfection efficiency and optimal immune response (Ciani et al., 

2007; Guo and Lee, 2000; Li et al., 2010; Liu, 2003; McNeil et al., 2010; Perrie et al., 

2001).  

 

Figure 3.1: Molecular structure of used anionic lipids (DOPG and DSPG), fusogenic lipids (DOPE and 
DSPE) and cationic lipids (DOTAP and DSTAP). 
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Therefore, this formulation was chosen for further investigation. To consider the effect 

of lipid acyl chains on their molecular packaging and lipoplex characteristics, DOPE 

and DOTAP were also systematically compared with their disteroyl equivalents (DSPE 

and DSTAP). To investigate if the finding from these studies were cationic lipid specific, 

or if it was achievable by anionic lipids, two anionic lipids (DOPG and DSPG) were 

also studied (Figure 3.1).  

3.2 Liposome preparation: Initial studies 

3.2.1. The effect of buffer concentration on zeta potential 

Prior to performance of characterisation studies on liposomes, the effect of different PBS 

concentrations on zeta potential was measured. First, multilamellar vesicles (MLV) of a 

model cationic liposome formulation (DOPE:DC-Chol) was prepared with PBS as the 

hydration phase. Then a serial dilution of PBS at concentrations of [0.0001, 0.001, 0.01, 

1, 10 mM] was prepared (Figure 3.2).  

For measuring the zeta potential, 100 µL of the liposome suspension was diluted in 3 

mL of the above concentrations. Liposomes diluted in dH2O were also tested. Results 

show an initial increase in zeta potential (≈ 55 mV) by using PBS even at very low 

concentrations (0.01 mM) comparing to distilled water (≈ 30 mV), however, as the PBS 

concentration increases the zeta potential decreases to ≈ 40 mV (Figure 3.2). 

Electrolytes are known to influence the electrical double layer which surrounds charged 

particles and interfaces (Florence and Attwood, 2006); this also leads to changes in the 

zeta potential. It is reported that increasing electrolyte concentration can condense the 

electrical double layer and thus reduce the zeta potential on a charged surface and this 

may explain the reduction in zeta potential at higher PBS concentrations (Florence and 
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Attwood, 2006). However, it was also shown there is no significant difference in the 

zeta potential of liposomes suspended in PBS at 1 mM and 10 mM (P>0.05) suggesting 

that 1 mM PBS can be used for characterisation studies (Perrie and Gregoriadis, 2000).  

 

Figure 3.2: The effect of electrolyte concentration on the zeta potential of cationic liposomes. Results 
represent mean ± SD from 3 independent batches.  

3.2.2. Optimisation of sonication time in SUV preparation 

Whilst it is common to reduce the size of MLV via probe sonication, it has previously 

been reported that prolonged probe sonication can cause an increase in size due to lipid 

damage and particle aggregation; high temperatures produced by sonication were 

reported to be responsible for this (Ferdous et al., 1998). In addition, titanium particles 

from the probe can influence the formulation integrity. To reduce these disadvantages of 

probe sonication, a study was performed to select the shortest and the most efficient 
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time of sonication for the production of SUV. After measuring the size and zeta 

potential of MLV liposomes of DOPE:DOTAP, DOPE:DSTAP, DSPE:DOTAP 

hydrated in distilled water or PBS, the suspension was sonicated for 15 s and size and 

zeta potential were measured at this point. Then, the sonication and measuring of the 

size and zeta potential has continued every 15 s for 2 minutes.  

Results in Figure 3.3A show the mean particle size of MLV for DOPE:DOTAP (8:8 

µmol) hydrated in dH2O was ≈ 540 nm and the size decreases immediately after first 

sonication to ≈ 113 nm. By continued sonication, the size reduced to ≈ 99 nm after 60 s 

sonication, with no further decrease in size or PI (Figure 3.3). Therefore, in further 

experiments with this formulation and concentration, 60 s sonication will be performed 

to make SUV. Measuring the zeta potential of these vesicles during this process also 

demonstrated that their cationic nature remained unaffected by sonication (≈ 39-42 mV; 

Figure 3.3B), as would be expected unless lipid damage occurred.  

Results in Figure 3.3A also demonstrated that sonication of MLV liposomes formed in 

PBS were ≈ 810 nm in size and decreased to ≈ 170 nm after 15 s, with further 

sonication reducing the size of the vesicles slightly (≈ 150 nm) and producing the lowest 

PI, suggesting 60 s sonication as an appropriate time to produce SUV (Figure 3.3A). As 

with the vesicles dispersed in distilled water, the zeta potential of the vesicles remained 

positive and constant (≈42-51mV; Figure 3.3B). Comparing between the formulations 

prepared in the presence/absence of electrolytes show that, whilst MLV prepared in 

PBS were larger in size than those in dH2O, appropraite sonication could produce SUV 

in the same size range in either aqueous media (Figure 3.3A). 
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Figure 3.3: Effect of sonication time on liposomes characteristics. A,C and E show vesicle size and 
polydispersity index for DOPE:DOTAP, DOPE:DSTAP and DSPE:DOTAP respectively.  B, D and F 
demonstrate the zeta potential values for DOPE:DOTAP, DOPE:DSTAP and DSPE:DOTAP respectively. 
All formulations hydrated in both distilled water or PBS and with the molar ratio of (8:8 µmol).	  Results 
represent mean ± SD, from 3 independent batches. 
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When considering the choice of cationic lipid, replacing the unsaturated DOTAP with 

its saturated counterpart DSTAP, shows the mean vesicle size of MLV for 

DOPE:DSTAP hydrated in distilled water was approximately 800 nm, and after 

sonication decreases to ≈ 120 nm after brief sonication, and after 60 s a minimum 

vesicle size of ≈ 97 nm was produced (Figure 3.3C).  

Changing the hydration media to PBS increased the MLV size to ≈ 2 µm, although SUV 

with the size of around 130 nm could be produced with sonication (Figure 3.3C), which 

is comparable to previous studies looking at these formulations hydrated in NaCl (0.85 

% W/V) where the vesicle size is about 120 nm (Filion and Phillips, 1997), and is 

slightly smaller than other research reporting DOPE:DSTAP vesicle sizes of ≈ 160 nm 

(Regelin et al., 2000). Therefore, whilst the DSTAP MLV were significantly larger in 

size (P<0.05) than DOTAP MLV, comparably sized SUV could be produced with either 

cationic lipid. Zeta potential measurements for the DOPE:DOTAP formulation (Figure 

3.3D) show zeta potential for the liposomes which are hydrated in distilled water are in 

a constant range of ≈ 39 to 43 mV, and ≈ 42 to 49 mV for liposomes hydrated in PBS 

(Figure 3.3D). Comparing DOPE:DSTAP to DOPE:DOTAP liposomes shows there is 

no significant difference in zeta potential of these formulations in both rehydration 

phases suggesting that changing in acyl chain of lipid and length of the lipid chain has 

no significant effect on surface charge of the liposomes (P>0.05), as would be expected. 

To consider the role of the fusogenic lipid, DOPE was also replaced with a high 

transition temperature lipid DSPE. The effect of changing chain length and saturation of 

helper lipid in cationic liposomes and in the hydration media of PBS or distilled water 

was investigated. Results (Figure 3.3E) show the DSPE:DOTAP MLV size when 

hydrated in dH2O was ≈ 900 nm and the lowest vesicle size for the liposomes achieved 
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after sonication was ≈ 128 nm with the zeta potential remaining constant (≈ 48 to 54 

mV; Figure 3.3F). 

Comparing DSPE:DOTAP to DOPE:DOTAP shows that neither the vesicle size nor 

the zeta potential were  significantly different, suggesting that saturation of helper lipid 

has no significant effect. Interestingly, DSPE:DOTAP vesicles could not be formulated 

in PBS as the lipid film would not hydrate with PBS. This might be due to the effect of 

salt on critical packaging parameter (CPP) of the lipid. As the DSPE is a saturated form 

of DOPE, it has a longer chain and this can also affect the CPP and consequently 

influence forming of inverted hexagonal phase (HII) of the liposomes leading to 

destabilising the bilayer and aggregation of the lipids in PBS (Regelin et al., 2000; 

Wasungu and Hoekstra, 2006) 

3.2.3. Formulation of DRV and the influence of electrolytes 

This work investigated the effect of salt on characterisation properties of different 

liposomes prepared in the DRV process. For this purpose, DRV liposomes of 

DOPE:DOTAP, DOPE:DSTAP and DSPE:DOTAP were prepared in both aqueous 

phases of distilled water and PBS and their size and zeta potential measured. 

Figure 3.4A show the vesicle size of DOPE:DOTAP formed in dH2O or PBS and in 

different forms of MLV, SUV and DRV. Results show presence of salt in the 

formulation did not effect the vesicle size of the DRV DOPE:DOTAP, as it is ≈ 570 nm 

in both hydration media (Figure 3.4A). The same trend has been shown for 

DOPE:DSTAP, as the vesicle size of DRV remains ≈ 750 nm for the liposome in each 

hydration media. This suggests that presence of salt does not influence on the size of 

DRV liposomes.  
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Figure 3.4: Comparison between MLV,SUV and DRV characteristics of  DOPE:DOTAP(A,B), 
DOPE:DSTAP (C,D) and DSPE:DOTAP (E,F)  in PBS and dH2O: (A,C,E) Particle size vs Polydispersity 
Index, (B,D,F) Zeta potential. Results represent mean ± SD, from 3 independent batches. 
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Results also reveal there is no significant change in the surface charge of liposomes due 

to change of the hydration media (Figure 3.4B and D). The zeta potential for DRV 

DOPE:DOTAP in both hydration media was ≈ 35 mV (Figure 3.4B) while it is 40 and 

35 mV for DRV of DOPE:DSTAP formed in distilled water and PBS respectively 

(Figure 3.4D).  

Investigating the effect of replacing DOTAP by DSTAP revealed that size and zeta 

potential of liposomes, when hydrated in dH2O, has not changed significantly (Figure 

3.4A & C). The same study was performed in the liposomes hydrated in PBS and as 

results in Figure 3.4A & B and Figure 3.4C & D show, there is no significant change in 

size or zeta potential of liposomes. 

Comparison of size and zeta potential of DSPE:DOTAP and DOPE:DOTAP liposomes 

when prepared in distilled water demonstrated there is no significant change in vesicle 

size of MLV and  SUV, although in DRV vesicle size significantly (P<0.05) increased 

from ≈525 nm in DOPE:DOTAP to ≈925 nm in DSPE:DOTAP. Zeta potential has 

decreased for all types of DSPE:DOTAP but it is not significant (Figure 3.4B and F). 

The most notable change, which was observered in all of the studied formulations, was 

the increasing effect of freeze-drying and rehydration on vesicle size of the liposomes. 

This is mostly due to aggregation of the vesicles after rehydration of freeze-dried 

liposomes. The stability of liposomes depends on hydrogen bonds between water 

molecules and polar head groups of the liposomes. The drying phase of  the freeze-

drying process can affect these hydrogen bonds and may lead to vesicle fusion, 

aggregation, and loss of integrity of the liposomes. These all may lead to increasing 

vesicle size (Crowe et al., 1986), although freeze-drying of the liposome can improve 
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stability of the formulation (Darwis and Kellaway, 2001) and it has been shown to be 

more efficient in vivo for DNA delivery than SUV (Gregoriadis et al., 2002; Perrie et al., 

2001). 

3.3. Molecular packaging of lipids: the role of lipid 
structure and electrolytes 

The Langmuir-Blodgett trough was used to investigate single and mixed lipid 

monolayers for their interactions within the monolayer in the aqueous sub-phase of 

either dH2O or PBS, to consider how molecular packaging translates into liposomal 

systems. Pressure-area (π-A) isotherms for cationic liposome components are shown in 

Figure 3.5. The extrapolated (to zero pressure) area per molecule and collapse pressure 

for the individual lipids, in either a water or PBS subphase, and also for 1:1 lipid 

mixtures for all studied lipids are shown in Table 3.1. For the latter, the ideal 

extrapolated area per molecule was calculated based on taking the average area for the 

lipid combination, such that the calculated area could be compared to the actual area 

per molecule of the mixture. Deviations between the experimentally observed and the 

calculated ideal area may be considered as the measure of interactions between the 

mixed components, since the experimentally observed area depends on the 

intermolecular forces between the lipids in the mixed monolayer. Negative deviations 

(where the experimental area is less than the ideal calculated area per molecule) indicate 

attractive interactions occurring between the lipids, whilst positive deviations indicate 

repulsive interactions.  

Considering the single component monolayers formed on dH2O, the extrapolated area 

per molecule for each of the 4 lipids was in the order of 

DOTAP>DOPE>DSTAP>DSPE (Table 3.1), with the cationic lipids (DOTAP and 
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DSTAP) having a larger area per molecule than their comparable zwitterionic 

counterparts (DOPE and DSPE respectively; Table 3.1). The cationic lipids also formed 

liquid-expanded monolayers (Figure 3.5A) with lower collapse pressures than their PE 

counterparts (Table 3.1). Comparison between the saturated and unsaturated lipids, 

show that the saturated lipids are able to pack together closer in a solid monolayer than 

their unsaturated counterparts (Figure 3.5A) with DOTAP having approximately twice 

the measured molecular area compared to DSTAP (104 vs 53 A2/molecule; Table 3.1). 

Due to their closer packaging arrangement, the saturated lipids also display a higher 

collapse pressure and a more rigid monolayer than their unsaturated counterparts (Table 

3.1 and Figure 3.5A). Formation of these monolayers on PBS rather than dH2O made 

no notable difference in the measured area per molecule, however this did result in an 

increased collapse pressure in the case of the cationic lipid monolayers, particularly in 

the case of DOTAP, which increased from 29.5 to 42.1 mN/m (Table 3.1 and Figure 

3.5B). This resulted in their being no significant difference in collapse pressures between 

the cationic and zwitterionic lipid monolayers when formed in PBS (Table 3.1). 

When prepared as mixed monolayers at a 1:1 molar ratio (as is commonly adopted in 

lipoplexes) the extrapolated area per molecule for the combinations was in the order of 

DOPE:DOTAP>DOPE:DSTAP ≈ DSPE:DOTAP>DSPE:DSTAP, with the 

combination of two unsaturated lipids giving the highest mean molecular area, whilst 

the fully saturated mixture (DSPE:DSTAP) had a smaller mean molecular area of 46 A2 

per molecule (Table 3.1), and formed a solid monolayer similar to the individual 

components (Figure 3.5). Of the 4 mixed monolayers, the DSPE:DSTAP monolayer 

also had the highest collapse pressure (52.9±1.3 mN/m; Table 3.1). When the dH2O 

subphase was replaced with PBS, there was a notable increase in the extrapolated area 

per molecule for DSPE:DOTAP, suggesting the presence of buffer salts was inhibiting 
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the packaging of the monolayer, yet the collapse pressures were not influenced by the 

change in subphase (Table 3.1). 

Considering the deviation from ideality (Table 3.1), which can be used to monitor 

molecular interactions between the molecules in the mixed monolayers, for those lipid 

monolayer containing either both saturated (DSPE:DSTAP) or both unsaturated 

(DOPE:DOTAP) lipids the deviation is minimal, irrespective of the choice of subphase 

(Table 3.1), suggesting there was no condensing effect occurring in either type of 

monolayer. In contrast, for the monolayers combining a saturated and an unsaturated 

lipid (DOPE:DSTAP or DSPE:DOTAP) there are large positive deviations from the 

calculated mean area, suggesting the lipids in these mixed monolayers packed in a more 

expanded arrangement than was predicted, particularly when the systems were in PBS 

as the deviation was > 30 % for both DOPE:DSTAP and DSPE:DOTAP (Table 3.1). 

However, these differences do not translate into changes in collapse pressures, with both 

mixed monolayers having the same collapse pressures in dH2O as they did in PBS 

(Table 3.1). 

Saturated long chain lipids often display strong attractive intermolecular interactions 

and this is supported by the small molecular area and high collapse pressure of the 

saturated monolayer and this might suggest that the DSPE:DSTAP combination could 

give a strong low permeability liposome system, as has previously been shown with 

water soluble drugs entrapped within vesicles (Hac-Wydro and Wydro, 2007; Hac-

Wydro et al., 2004; Hac-Wydro et al., 2007). However, in the case of unsaturated lipids, 

these lipids are more bulky (as shown by their larger molecular area; Table 3.1) with a 

less densely packed arrangement, that can cause a more permeable liposome bilayer 
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with higher release profile of entrapped drug compared to saturated monolayers (Ali et 

al., 2010) 

 
Figure 3.5: Compression isotherm studies of the single and mixture of lipid monolayers of DOPE:DOTAP, 
DSPE:DOTAP, DOPE:DSTAP and DSPE:DSTAP in deionised water (A and C) or PBS (B and D) at 20 
°C. Results are expressed as the means of three experiments. SD has not shown for clarity. 

From these results, it would suggest that the use of a fully saturated system promotes the 

higher packing density of lipids with high collapse pressure and which may promote a 

more rigid liposome system. In contrast, liposomes formed in PBS from lipid mixtures 

containing unsaturated lipid(s) in the mixture (either the helper lipid or the cationic 

lipid) could result in liposomes with less rigid bilayers (Table 3.1 and Figure 3.5). 

However, given lipoplexes require both stability on storage and fusogenic properties, the 

consideration of how such monolayer attributes translate into liposome formulation and 

transfection attributes was considered. In addition, this study was performed on 
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monolayers of the single and mixed lipids of DOPG and DSPG on dH2O as a subphase. 

As with the cationic lipids, the molecular area of the saturated single lipid of DSPG is 

almost half of the molecular area for the unsaturated DOPG (44.9 Vs 80.1 

A2/Molecule; Table 3.1).  Interestingly, the trend for collapse pressure of the anionic 

lipid monolayers follows the cationic lipids as saturated lipid of DSPG shows higher 

collapse pressure (52.8 mN/m) than unsaturated DOPG with the collapse pressure of 39 

mN/m (Figure 3.6B and Table 3.1).   

Table 3.1: The experimental extrapolated area and area compressibility of mixed and single monolayers  
at the air/aq media interface at 20 °C in dH2O or PBS as sub-phase. Results denote mean ± SD, n=3. 

 
Lipid 

Extrapolated Area 
(A2/Molecule) 

Ideal Extrapolated 
Area (A2/Molecule) 

Deviation from 
Ideality (%) 

Collapse Pressure 
(mN/m) 

dH2O PBS dH2O PBS dH2O PBS dH2O PBS 

DOPE 71.9±6.0 70.6±7.7 - - - - 42.3±0.4 42.2±2.6 

DOTAP 104.3±12.9 93.4±10.1 - - - - 29.5±1.5 42.1±0.9 

DOPG 80.1±2.2 - - - - - 39.0±0.4 - 

DSPE 47.6±0.5 45.7±2.3 - - - - 55.7±0.5 53.5±1.0 

DSTAP 53.2±2.5 53.0±2.1 - - - - 50.3±3.1 55.9±0.8 

DSPG 44.9±1.6 - - - - - 52.8±1.4 - 

DOPE:DOTAP 89.7±6.5 81.3±5.3 88.1 82.0 +1.8 -0.9 38.4±1.5 42.7±0.9 

DOPE:DSTAP 81.6±0.6 87.4±1.6 62.6 61.8 +30.5 +41.4 38.8±2.3 36.1±2.4 

DSPE:DOTAP 80.6±1.5 91.7±1.4 75.9 69.5 +6.1 +31.9 37.7±0.3 34.5±0.7 

DSPE:DSTAP 46.4±0.7 48.6±0.2 50.4 49.3 -7.9 -1.5 52.9±1.3 54.4±1.2 

DOPE:DOPG 92.8±1.8 - 76.0 - +18.1 - 45±0.14 - 

DSPE:DSPG 54.6±1.2 - 46.3 - +15.2 - 54.1±0.1 - 

As it is shown in Figure 3.6C, the collapse pressure of the mixture of unsaturated lipids 

(DOPE:DOPG) are significantly lower (P<0.05) than saturated DSPE:DSPG and, as 

the cationic lipids, the molecular area of the mixture of unsaturated lipids 

(DOPE:DOPG) is nearly double the area for saturated lipid monolayers (92.8 

A2/Molecule Vs 54.6 A2/Molecule; Table 3.1).   

These results also show that irrespective of the charge of the lipid (anionic vs cationic), 

saturated lipids have a condensed structure with highly attractive intermolecular 
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interactions causing their small molecular area and high collapse pressure compared to 

the unsaturated lipids. However, in contrary to the mixture of fusogenic and cationic 

lipids, there is high positive deviation for DOPE:DOPG and DSPE:DSPG (+18 and 

+15 respectively), showing that in the case of anionic lipid, the helper lipid has more 

effect in changing the molecular packaging of the monolayers compared to the cationic 

lipids, making the monolayers more expanded rather than condensed. This may explain 

why it is possible to form vesicles from the DSPE:DSPG combination (Table 3.2) but 

not from DSPE:DSTAP (Section 3.2.2). 

 

Figure 3.6: Compression isotherm studies of the (A) single neutral lipids of DOPE and DSPE, (B) single 
anionic lipids of DOPG and DSPG, and (C) mixture of lipid monolayers of DOPE:DOPG, DSPE:DSPG 
at 20 °C. Results are expressed as the means of three experiments. SD has not shown for clarity. 
 

Table 3.2: Characteristic properties of the anionic liposomes of DOPE:DOPG and DSPE:DSPG both 
hydrated in distilled water and with the lipid ratio of (8:8 µmol). 

Formulations Vesicle size (nm) Polydispersity Index Zeta potential (mV) 

DOPE:DOPG 80.9 ± 5.5 0.243 ± 0.007 -57.0 ± 2.55 

DSPE:DSPG 88.8 ± 17.3 0.283 ± 0.034 -39.3 ± 14.9 
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3.4. The effect of alkyl chain and electrolytes on the 
characteristics of lipoplexes  

To investigate the lipid properties on the lipoplex attributes, SUV liposomes prepared 

from DOPE:DOTAP, DOPE:DSTAP, DSPE:DOTAP and DSPE:DSTAP (all 

equimolar) and DRV liposomes of DOPE:DOTAP and DOPE:DSTAP (both 

equimolar) were formulated in distilled water or PBS and mixed with plasmid DNA 

(gWizTM Luciferase) at a range of concentrations (2.5, 25, 50, 100, 200 and 1600 µg) for 

SUV liposomes and (2.5, 50, 200 and 1600 µg) for DRV liposomes.  

As previously noted, of the four combinations, it was not possible to formulate 

liposomes from the combination of DSPE:DSTAP, suggesting that whilst this 

combination can form a closely packaged solid monolayer, this could not be translated 

into a liposomal bilayer. Similarly DSPE:DOTAP liposomes could only be formed in 

dH2O and not in PBS. As mentioned, saturated lipids often display strong attractive 

intermolecular forces, which can make hydration and dispersion in water difficult 

(Regelin et al., 2000; Wasungu and Hoekstra, 2006), hence the difficulty in formulating 

liposomes form DSPE:DSTAP. The introduction of double bonds into the lipid tail (i.e. 

replacement of DSPE with DOPE or DSTAP with DOTAP) results in a less compact 

system, which is easier to disperse in water (Wasungu and Hoekstra, 2006). The 

inability of DSPE:DOTAP to form vesicles in PBS may be due to the effect of salt on 

critical packaging parameter (CPP) of the lipid which is dependent on length of 

hydrocarbon chain, volume of hydrophobic part and the surface area per molecule 

(Israelachvili and Mitchell, 1975; Israelachvili et al., 1977). Dispersion of lipid 

molecules in the water can lead to different structures such as micelles, inverted 

micelles, hexagonal, lamellar or cubic phase as well as liquid crystalline with CPP being 

a useful predictor of the structures formed. The desired CPP shape for lipids to form 
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liposomes is a truncated cone shape (a CPP of between ½ and 1); however, studies show 

that liposomes can form from lipids which individually do not have the truncated cone 

shape, but when combined are able to appropriately pack (Israelachvili and Mitchell, 

1975; Israelachvili et al., 1977). In the case of DSPE:DOTAP, in water the molecular 

shape of DOTAP (with its large tail area and cationic head-group) may be able to 

compensate for the smaller DSPE molecular volume, however in the presence of buffer 

this can reduce the electrostatic nature of the DOTAP headgroup (Wasungu and 

Hoekstra, 2006), therefore changing the ‘shape’ of the molecule, which means it is not 

able to compensate for DSPE, thus prohibiting the formation of liposomes.  

3.4.1. Characterisation studies of lipoplexes 

In all formulations, vesicle size increased with increasing DNA concentration (Figure 

3.7 and 3.8) suggesting aggregation of the system due to what has previously been 

attributed to a bridging effect (Ciani et al., 2004) and/or a re-organisation of the system 

(Elouahabi and Ruysschaert, 2005; Huebner et al., 1999; Tarahovsky et al., 2004; 

Weisman et al., 2004), which is highly dependent on the +/- charge ratio (Zuhorn et al., 

2007) to larger sized constructs. 

With the SUV DOPE:DOTAP formulation, the presence of the buffer salts in PBS 

made no significant difference in vesicle size, except for the highest DNA concentration 

tested; lipoplexes were around 300 nm if formulated in water compared to ~1800 nm 

when prepared in PBS (Figure 3.7A). In the case of the SUV DOPE:DSTAP lipoplexes, 

the presence of PBS was shown to significantly (p < 0.05) increase the size of the 

lipoplexes at all DNA concentrations and of the 4 SUV formulations, DOPE:DSTAP in 

PBS gave the largest lipoplexes (Figure 3.8B). Previous studies have also shown the size 

of the liposomes can increase to double the size in the presence of PBS, as the phosphate 
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group of the PBS can act as a glue and increase the vesicle size by bridging the cationic 

polar heads of the lipid (Ciani et al., 2007). Another study reveals cationic liposomes 

have a higher tendency to aggregate when there is salt in the formulation, due to the 

reduced electrostatic interactions between systems and consequently more aggregation 

and larger vesicles formed (Wasan et al., 1999). The difference in size between the 

formulations may be again due to the molecular packaging of the lipids, as more rigid 

assemblies, such as those formed from saturated cationic lipids, have been shown to 

preclude efficient re-organisation of this system, causing aggregation of large particles to 

form with lower transfection efficacy presumably due to reduced internalisation 

(Wasungu and Hoekstra, 2006). The same trend of results has been seen for DRV 

lipoplexes, where presence of salt in formulations caused a significant increase in the 

vesicle size of the lipoplexes at the highest DNA concentrations for both 

DOPE:DOTAP and DOPE:DSTAP (Figure 3.8A & B). Zeta potential studies of the 

systems were used to estimate the level of interaction between negative charges of DNA 

and positive charges of cationic lipid (Ma et al., 2007). As this electrostatic interaction is 

one of the basic components of DNA complexation, and the net charge of lipoplexes is 

important for overcoming cell barriers (Uyechi-O'Brien and Szoka, 2003; Wasungu and 

Hoekstra, 2006), zeta potential studies were performed to determine the surface charge 

of the lipoplexes.  

Results illustrate that increasing the amount of DNA over the range used had little effect 

on the cationic nature of the lipoplexes when formulated in dH2O, presumably due to 

the high cationic/anionic charge ratio (Figure 3.7 and 3.8). However, in PBS, the 

neutralising effect of the buffer electrolytes on the zeta potential can be seen, particularly 

for SUV DOPE:DSTAP, where the zeta potential reduces from ≈ 60 mV in distilled 

water formulations to ≈ 30 mV and less in PBS formulations (Figure 3.7E). For DRV 
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lipoplexes, zeta potential did not change significantly under the PBS effect or by having 

extra DNA in the formulation (Figure 3.8C & D).  

The electrostatic interaction between positive charges of the cationic liposomes and 

negative charges of phosphate groups of DNA are reported as the main interaction in 

formation of lipoplexes (Ciani et al., 2007; Ciani et al., 2004). Some other researchers 

have added that packing properties of the lipids used in the formulation of lipoplexes 

may also play a role in condensation of the nucleic acid (Akao et al., 1996; Bennett et 

al., 1998). However, as it has been shown in Figure 3.7 and previously by Ciani et al. 

(2004) that the zeta potential of the lipoplexes are close to the zeta potential value of the 

pure liposomes at lower DNA concentrations, it can be concluded that half of cationic 

molecules of the liposomes are involved in the electrostatic interaction. These molecules 

are external lipids, which are located on the surface of the liposomes, and when the 

liposomes have been wrapped by DNA, the internal cationic lipids remain intact (Ciani 

et al., 2004). The effect of the buffer electrolytes in reducing the cationic charge of the 

lipoplexes can be due to the additional effect of phosphate polyanion in PBS, which 

reduces the positive charge of cationic lipids and in some cases results in their 

precipitation (Li and Hui, 1997), however a reduction in surface charge may be 

beneficial to allow appropriate DNA dissociation from the lipoplex after cellular uptake 

to allow the DNA to reach to the nucleus (Zhdanov et al., 2002). 

All five of the liposome formulations gave high DNA complexation across the DNA 

concentration range tested (Figure 3.7G-I and 3.8E & F) with % DNA association being 

> 95 % in all cases, showing all systems were able to electrostatically interact with the 

DNA as would be expected. However, the effect this complexation had on the formed 

lipoplexes was dependent on the lipid combination and the choice of aqueous buffer 

(Figure 3.7 and 3.8). 
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Figure 3.7: A,B and C demonstrate vesicle size and polydispersity index, D, E and F represent zeta potential and G, H and I show DNA association within SUV lipoplexes of 
DOPE:DOTAP, DOPE:DSTAP and DSPE:DOTAP hydrated in either dH2O or PBS respectively. Results denote mean ± SD, from 3 independent batches. 



Chapter 3: The Effect of Alkyl Chain and Electrolytes on Characteristics of Transfection Agent Lipoplexes 

 

118 

 
Figure 3.8: Characterisation studies of DRV lipoplexes of DOPE:DOTAP and DOPE:DSTAP in dH2O or 
PBS.A,C and E demonstrate vesicle size and Polydispersity index, zeta potential and DNA association 
within DRV of DOPE:DOTAP lipoplexes respectively.  Graphs B, D and F show the same information for 
DRV DOPE:DSTAP. Results denote mean ± SD, from 3 independent batches. 
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3.5. Conclusions  

Whilst effectively considering only half a bilayer in a flat rather than curved structure, 

Langmuir-Blodgett monolayer studies on lipid mixtures have shown to offer a variety of 

applications to support our continued appreciation of (nano)mechanical properties of 

liposomes and further underpin our understanding of liposomal drug delivery systems. 

Investigating the effect of lipid structure on liposome characteristics revealed that using 

two saturated lipids, such as DSPE and DSTAP, failed to form a liposome due to their 

highly compact molecular packaging. Monolayer studies on single lipids as well as 

mixture of lipids showed that saturated lipids have closer packaging arrangements than 

their unsaturated counterparts; whilst the use of lipids that form condensed monolayers 

may be beneficial in formulating low permeability bilayers, lipid combinations that form 

highly compact monolayers are not a suitable choice for the formulation of liposomes. 

Molecular packaging of the lipids also effects the size as the liposomes composed of 

saturated cationic lipids, which are more rigid, have been shown to cause aggregation of 

large particles and increase the vesicle size of the formulation. 

Studying the effect of the hydration buffer on liposomal characteristics demonstrated 

that presence of salt in the hydration buffer might increase the vesicle size of the 

lipoplex, especially for SUV lipoplexes and in their higher DNA concentrations. This 

can be due to the reduced electrostatic interactions between systems. Also, the 

phosphate group of the PBS increases the vesicle size as it initiates the bridging of the 

cationic polar heads of the lipid. Moreover, presence of salt in the formulation, 

prevented DSPE:DOTAP to form a liposome as salt can reduce the electrostatic nature 

of DOTAP headgroup and change the critical packaging parameter of the lipid, which 

prohibits the formation of liposomes.  
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4.1. Introduction 

Although it has been known for some time that direct injection of ‘naked’ DNA allows 

transgene expression in muscle (Vassaux et al., 2006), in most of the cases ‘naked’ DNA 

molecules are not able to enter cells efficiently due to their large size, negative charge 

and nuclease mediated degradation in vivo (Al-Dosari and Gao, 2009). Whilst this route 

of DNA delivery has been explored as a potential for DNA vaccination, the immune 

responses generated are low, as only a fraction of DNA is taken up by cells (McNeil et 

al., 2010). Therefore, a delivery vehicle (vector) must be used to carry the gene into the 

target cell to increase the gene transfection, and consequently increase immune 

responses to the DNA-encoded antigen. To achieve this, there are a range of possible 

vectors available, and within the non-viral systems, cationic liposomes have been 

heavily explored as a delivery vehicle due to their ability to protect DNA, and promote 

higher cell transfection (Gregoriadis, 1990).  

It is clear there are many factors which contribute to the efficacy of such systems 

(McNeil et al., 2010); to develop liposome-DNA complexes with high transfection and 

low toxicity, several parameters should be taken into account such as: size, lipid/DNA 

ratio, the net positive charge of the lipoplexes, the chemical structure of cationic lipid 

and helper lipid, and finally the structure of the complex itself (Congiu et al., 2004; 

McNeil et al., 2010). However, given the dynamic nature of these structures, many 

factors, in addition to those already listed, can contribute to the resultant 

physicochemical attributes of the lipoplexes including the rate of mixing of the various 

components, the temperatures used and even the presence of electrolytes in the buffers 

used (Congiu et al., 2004; McNeil and Perrie, 2007). Whilst many of these factors have 

now been investigated in detail, the influence of electrolytes has received little attention, 

despite reports of its influence on cationic-DNA formulations efficacy both in vitro and 
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in vivo (Zhou and Huang, 1994b). Therefore, the aim of this chapter was to investigate 

the role of electrolytes in the in vitro activity of a commonly employed cationic liposome 

transfection agent (DOPE:DOTAP). To achieve this, the impact of the presence of 

electrolytes, in addition to the choice of cationic lipid and the type of liposome 

construct, on the liposomal-DNA formulation characteristics and their transfection 

efficiency were investigated.  

4.2. Formulations investigated. 

To investigate the characterisation and transfection efficiency of different lipoplexes, 

SUV and DRV lipoplexes containing 16 µmole	  lipid	  and	  1.6 mg DNA were prepared, as 

previously outlined and discussed in Chapter 3. However, for reference, the data is 

summarised again in in	  Table	  4.1,	  with	  specific	  reference	  to	  the	  DNA/lipid	  ratio	  used	  in	  

the	  forthcoming	  studies.	  

Table 4.1: Characterisation study results including vesicle size, Polydispersity index, zeta potential, and 
loading efficiencies of SUV and DRV lipoplexes. Results denote mean±SD	   and	   n	   =	   3 for three 
independently prepared batches.	   
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As noted in Chapter 3, the formulation of the liposomal-DNA constructs in PBS, rather 

than distilled water, resulted in larger constructs that are less cationic, presumably due 

to the condensing of the electrical double layer around the vesicles, resulting from the 

increased concentration of electrolytes present. However, this did not impact on the 

DNA loading of the vesicles, as would be expected; electrolytes do not impact on the 

surface potential of the vesicles, so would not necessarily hinder the binding of DNA to 

the cationic lipid head-groups, unless the degree of ionisation of the lipids was 

influenced, which would not occur in the pH range these formulations are in. 

4.3. Considering the spatial location of DNA within 
various liposomal constructs. 

Given that SUV are commonly considered to adsorb DNA to their surface, whilst DRV 

formulations have been reported to incorporate DNA within the vesicles (Gregoriadis et 

al., 2000; Perrie et al., 2001; Perrie and Gregoriadis, 2000), the spatial localisation of 

DNA within the cationic SUV and DRV lipoplexes was initially investigated by 

subjecting the formulations to gel electrophoresis in the presence of sodium dodecyl 

sulphate (SDS) at 0.05 % concentration, below the critical micelle concentration of the 

surfactant. It was expected that the anionic SDS would be able to interact with the outer 

monolayer of the lipoplexes, electrostatically compete with DNA bound to the cationic 

surface charge and displace it from the surface of the vesicles, releasing the DNA into 

the medium (Perrie and Gregoriadis, 2000). The effect of electrolytes on the packaging 

of these liposomal DNA systems was also considered by preparing the formulations in 

either distilled water or phosphate buffered saline (PBS).  

However, initial optimisation studies showed that having 0.05 % SDS in loading buffer 

was not enough to displace the DNA at the DNA/lipid ratios used (data not shown), 
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therefore 1.2% SDS was used for the main gel electrophoresis studies. Figure 4.1A 

shows that, on gel electrophoresis of SUV (1-5) and DRV (6-9) lipoplexes in the absence 

of anionic molecules, DNA remains within the well of the gel, bound to the cationic 

liposomes. In contrast, following electrophoresis in the presence of SDS, displaced 

DNA is seen to migrate towards the cathode (Figure 4.1B).  Figure 4.1B also shows that 

more DNA was displaced from SUV lipoplexes rather than DRV preparations. 

Considering the lipid composition of the formulations, amongst the SUV lipoplexes, 

formulations that have DOTAP as their cationic lipid (Figure 4.1B Lanes 1-3) show 

more DNA loss compared to those containing DSTAP. However, comparison between 

liposomes of the same lipid composition, but hydrated in PBS instead of dH2O, showed 

no notable difference in DNA retention in either 4.1A or B. 

 
Figure 4.1: A) Gel electrophoresis of SUV lipoplexes of 1)DOPE:DOTAP+dH2O, 2)DOPE:DOTAP+PBS, 
3)DSPE:DOTAP+dH2O, 4)DOPE:DSTAP+dH2O, 5)DOPE:DSTAP+PBS, and DRV lipoplexes of 
6)DOPE:DOAP+dH2O, 7)DOPE:DOTAP+PBS, 8)DOPE:DSTAP+dH2O and 9)DOPE:DSTAP+PBS. 
Lane (L) represents the DNA ladder and (C) shows the ‘naked’ DNA. B) As in A, but in the presence of 1.2 
% SDS. 

Having more displaced DNA for SUV liposomes, compared to DRV liposomes, in the 

presence of the anionic molecules of SDS suggests that most of the associated DNA 

with SUV lipoplexes are absorbed on the surface of the liposomes. However, for DRV 

lipoplexes, more DNA may be incorporated within closed bilayers and probably bound 

to the inner cationic charges of the liposomes, such that it is not accessible for 
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displacement by SDS. These observations are similar to those previously shown with 

SUV and DRV lipoplexes formed by DOTAP and DC-Cholesterol (Perrie et al., 2004; 

Perrie and Gregoriadis, 2000). 

However, spatial location of the DNA was not the only controlling factor in these DNA 

retention studies; SUV formulations composed of DOPE:DSTAP lipoplexes (Figure 

4.1B lanes 4,5) show reduced DNA displacement compared to DOPE:DOTAP and 

DSPE:DOTAP formulations (Figure 4.1B lanes 1-3). Previously, Perrie et al. showed 

PC:DOPE:DOTAP lipoplexes have more DNA displacement than PC:DOPE:DC-

Cholesterol lipoplexes in the presence of anionic molecules of SDS (Perrie et al., 2004). 

This could be due to the fact that DOPE causes some disability to the formulations, as it 

promotes membrane fusion to change the packing parameter of the liposomes (Farhood 

et al., 1995; Wrobel and Collins, 1995). Therefore, the bilayer system made from the 

combination of DOPE and DOTAP may be less resistant to the destabilisation 

compared to the lipoplexes containing DSTAP  (Figure 4.1B) or DC-Cholesterol (Perrie 

et al., 2004).  

Given that the two hydration media tested showed no notable effect on DNA 

displacement, this suggests that this parameter may not affect DNA release or 

transfection efficacy for formulations under investigation. Based on this information, it 

can be predicted DRV formulations may be better placed to deliver higher DNA loads 

to cells compared to their SUV counterparts and that DOPE:DSTAP (with both 

hydration media) formulations may be preferable compared to the lower transition 

temperature DOTAP formulations. This will be discussed more in section 4.5.  
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4.4. DNA protection from extracellular enzymes 

As mentioned earlier, injection of ‘naked’ DNA would not cause high cell transfection 

due to DNA degradation by nucleases such as deoxyribonuclease I (DNase I), so 

delivery systems such as cationic liposomes are required to protect DNA from 

hydrolysis and degradation (Gregoriadis et al., 2002; Gregoriadis et al., 1996; Patil et 

al., 2005). Previously, Gregoriadis et al. (1996) have shown liposomes can protect DNA 

from degradation by entrapping the plasmid DNA within the liposomes and, as a result, 

degrading enzymes such as DNase I do not have access to the DNA, so the plasmid 

DNA would be protected from the enzymes and can perform its therapeutic duty 

(Gregoriadis et al., 2000; Gregoriadis et al., 1997; Gregoriadis et al., 1996).  

To investigate the ability of studied SUV and DRV liposomes to protect the plasmid 

DNA from degradation by digestive enzymes, as explained in section 2.8, plasmid DNA 

was incubated with DNase I as either ‘naked’ (Figure 4.2A-D Lane C) or entrapped 

within cationic liposomes (Figure 4.2A-D lane 1-9) followed by agarose gel 

electrophoresis to test DNA integrity of the preparations. Figure 4.2 shows ‘naked’ 

DNA, which was not exposed to the DNase I (Figure 4.2 A and B, lane ‘C’) and the 

digested ‘naked’ DNA (Figure 4.2 C and D, lane ‘C’). The band of migrated anionic 

DNA towards the cathode is demonstrated for undigested ‘naked’ DNA in absence 

(Figure 4.2A, lane C) and presence of SDS (Figure 4.2B, lane C). However, when 

‘naked’ DNA exposed to the DNase I, there is no visible band on the agarose gel 

(Figure 4.2C and D lane C) showing the ‘naked’ DNA was digested by DNase I.  

For all the liposomes formulations tested, in the absence of SDS (Figure 4.2A lane 1-9 

and Figure 4.2C, lane 1-9), DNA migration is not seen as plasmid DNA remains 

associated with the liposomes and is retained within the wells of the gel. In the presence 
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of the competitive anionic molecules of SDS, the liposomes can be disrupted and the 

plasmid DNA released (Figure 4.2B, lane 1-9). With the liposomes that were exposed to 

DNase I (Figure 4.2D, lane 1-9), plasmid DNA can still be seen, demonstrating that 

both the SUV and DRV liposomes were able to protect the DNA from degradation (in 

contrast to the ‘naked’ DNA, which is rapidly digested). This is in line with previous 

studies of different groups (Fenske et al., 2002; Gregoriadis et al., 1996; Wong et al., 

2001).   

 

Figure 4.2: Gel electrophoresis of free and liposome entrapped plasmid DNA before and after exposure to 
digestive enzyme, DNase I. A) Gel electrophoresis of 1) SUV DOPE:DOTAP+dH2O, 2) SUV 
DOPE:DOTAP+PBS, 3) SUV DSPE:DOTAP+dH2O, 4) SUV DOPE:DSTAP+dH2O, 5) SUV 
DOPE:DSTAP+PBS, 6) DRV DOPE:DOAP+dH2O, 7) DRV DOPE:DOTAP+PBS, 8) DRV 
DOPE:DSTAP+dH2O and 9) DRV DOPE:DSTAP+PBS before exposure to DNase I with no SDS, B) 
same as A but in the presence of 2.5% SDS (rather than 1.2 % as in Figure 4.1), C) same as A but after 
exposure to DNase I with no SDS, D) Same as C but in the presence of 2.5% SDS. Lane (L) represents the 
DNA ladder and lane (C) represents ‘naked’ DNA. 

As it is shown by Figure 4.2D, this protection role is similar for SUV (lane 1-5) and 

DRV (lane 6-9) liposomes. In addition, differences in physicochemical characteristics of 

the lipoplexes such as size, charge, hydration media and the transition temperature of 

the cationic lipids, are not seen to have an impact on DNA protection from DNase I 
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digestion. This is a result of the electrostatic interactions of the cationic headgroups of 

the liposomes interacting with the anionic plasmid DNA, resulting in its condensation 

(Gregoriadis et al., 2002). This in turn blocks the ability of DNase I to interact with the 

plasmid and digest it, therefore, in terms of protection, there is no notable difference 

between surface adsorbed and entrapped formulations. 

4.5. In vitro DNA release 

The release of DNA from different cationic liposomes was investigated in PBS, pH 7.4, 

37 °C over an 8 day period (192 hours). Figure 4.3 shows the release profile for SUV 

(Figure 4.3A) and DRV (Figure 4.3B) formulations. Results show an initial burst release 

of 30% (of total entrapped DNA) after 4 hours for SUV lipoplexes of DOPE:DOTAP 

and DOPE:DSTAP in both hydration media. After 48 hours, the amount of released 

DNA reached to ≈55% for DOTAP SUV lipoplexes, and ≈65% for DSTAP SUV 

lipoplexes. Beyond this point, DNA release from the lipoplexes appeared to plateau out, 

with no further significant increase in release. In terms of total release over the time 

period, DOPE:DSTAP gave an overall higher release than DOPE:DOTAP, and those 

formulated in dH2O tended to have lower release rates	  (Figure	  4.3A).	  In contrast, with 

SUV lipoplexes, which had a burst release as soon as 4 hours, the DRV formulations 

showed a more sustained release profile: Figure 4.3B shows the DNA release for all 

DRV formulations after 24 hours was ≈20% (of total entrapped DNA) and their burst 

release occurred after 48 hours, with ≈55% of DNA for DRV DOPE:DOTAP lipoplexes 

(in both hydration media) and DRV DOPE:DSTAP formed in dH2O being released. 

Again, comparing between the formulations there was no notable differences in the 

choice of lipid composition used to prepare the liposomes, however the trend was 

similar to that of SUV (i.e. DSTAP>DOTAP and PBS>dH2O), in terms of total release 

(Figure 4.3B). 	  
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Figure 4.3: DNA release of A) SUV lipoplexes of DOPE:DOTAP, DOPE:DSTAP both hydrated in dH2O or PBS and DSPE:DOTAP in dH2O and B) DRV lipoplexes of 
DOPE:DOTAP and DOPE:DSTAP in dH2O or PBS, pH 7.4; at 37 °C at time points of 2, 4, 24, 48, 96 and 192 hours. Results represent percentage release initially loaded DNA 
expressed as mean±SD,	  n=3 for three independently prepared batches. 
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The difference in release profiles between the SUV and DRV could be due to the fact 

that DNA will be entrapped within the bilayers for DRV formulations, however, for 

SUV lipoplexes, DNA molecules are likely to be adsorbed on the surface of the 

liposomes and easier to be detached from the liposomes, therefore the DNA release 

occurs sooner for SUV lipoplexes. In terms of the differences between the lipid 

composition, whilst it might be expected that the higher transition temperature DSTAP 

formulations would have lower release rates (Gregoriadis, 1990), monolayer studies 

(Section 3.3) showed that having saturated lipids in the formulation makes the bilayer 

structure more rigid, which may actually reduce liposome-DNA interactions, resulting 

in higher release rates (Zuhorn et al., 2002) as seen in Figure 4.3.  

4.6. In vitro transfection efficiency 

To investigate the transfection efficiency of different lipoplexes, SUV and DRV 

lipoplexes containing 16 µmole lipid and 1.6 mg DNA were prepared as outlined in 

Table 4.1. Performing luciferase assay transfection efficiency of each formulation on 

COS-7 cell line was compared to the transfection produced by the marketed transfection 

reagent Lipofectin™.  

Figure 4.4A shows the transfection efficiency of each formulation compared to the 

‘naked’ DNA and Lipofectin™ with SUV lipoplexes of DOPE:DSTAP in PBS showing 

the highest transfection levels. Transfection efficiency of SUV lipoplexes formulated in 

water were in the order of DOPE:DSTAP > DOPE:DOTAP ≈ DSPE:DOTAP and 

DOPE:DSTAP > DOPE:DOTAP when formulated in PBS. Among DRV liposomes, 

DSTAP based formulations in each hydration media have higher transfection efficiency 

than DOTAP lipoplexes of similar hydration media (Figure 4.4A). All of the lipoplexes 

have given higher transfection efficiency than Lipofectin™. Cell viability of all 
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lipoplexes was performed using MTS assay and the cells were exposed to the lipoplexes 

for 24 hours. Results show the cell viability for all lipoplexes was high and at the 

concentrations tested there was no significant difference between the formulations 

(Figure 4.4B). 

Among SUV liposomes, DOPE:DSTAP formulated in distilled water produces 

transfection levels 25 times higher than Lipofectin™ and 21  times higher than 

DOPE:DOTAP+dH2O. When DOPE:DSTAP was hydrated in PBS rather than 

distilled water, transfection efficiency was reduced but was still 15 times higher than 

Lipofectin™ and 6 times higher than DOPE:DOTAP+PBS (Figure 4.4A).  

Considering DRV lipoplexes, DOPE:DSTAP formulated in dH2O produced 7 fold 

higher transfection than DOPE:DOTAP formed in dH2O. The same trend has been 

shown for DRV lipoplexes formulated in PBS (Figure 4.4A). These results demonstrate 

that DSTAP lipoplexes no matter if formulated as a SUV or DRV, and in distilled water 

or PBS, have higher transfection efficiency than the other formulations tested.  

Comparing the transfection efficacy of SUV lipoplexes to DRV formulations show there 

is not an obvious trend for all of the formulations. Transfection levels of 

DOPE:DOTAP+dH2O as a SUV lipoplex is significantly lower (P<0.05) and almost 

half of its DRV formulation. However, when DOPE:DOTAP formed in PBS, there is 

no significant difference in their transfection efficiencies (Figure 4.4A). In contrast, for 

DSTAP formulations and in both hydration media, SUV lipoplex show more 

transfection than DRV (Figure 4.4A). In general, decreasing the hydrocarbon chain 

length has been reported to increase transfection efficiency (McNeil et al., 2010; Writer 

et al., 2006). However, given both lipids have the same carbon chain length, this case 
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cannot be a reason for the variation in transfection efficiency between DOTAP and 

DSTAP liposomes. 

Equally, the size, charge and cationic lipid/DNA ratio have all been attributed to play a 

role in controlling transfection (Aljaberi et al., 2007; Caracciolo et al., 2007). However, 

in the case of DSTAP and DOTAP SUV, neither the size nor the charge of the system 

seem to correlate to its higher transfection efficacy, given it is neither notably different in 

size (e.g., DOPE:DOTAP and DOPE:DSTAP in dH2O are similar in size (Table 4.1) 

but have large differences in transfection efficacy), nor cationic nature than the other 

formulations. Similarly, both systems contain the fusogenic lipid DOPE that may 

enhance intracellular delivery of DNA (Farhood et al., 1995; Israelachvili and Mitchell, 

1975; Israelachvili et al., 1977). The theory of using helper lipid comes from the original 

research of Felgner et al., (1987). The authors demonstrated that the transfection activity 

of DOTMA when formulated with DOPE is more than when is formulated with DOPC 

and it has been proposed the ability of DOPE to promote the transition from lamellar 

phase to an inverted hexagonal phase (Uyechi-O'Brien and Szoka, 2003) thereby 

promoting the conversion of the lamellar lipoplex phase into a non-lamellar structure 

due to the inverted cone-shaped structure of DOPE (Aljaberi et al., 2007; Caracciolo et 

al., 2007; McNeil and Perrie, 2007; McNeil et al., 2010). After endosomal uptake of the 

lipoplexes, the presence of DOPE in the formulation is suggested to aid disruption of 

endosomal membrane, allowing the release of the DNA from the endosome and the 

lipoplex, leaving it free to enter the nucleus (Ciani et al., 2004; McNeil et al., 2010). 

However, in this study, lipoplexes formulated with DOPE:DOTAP and DSPE:DOTAP 

showed no significant difference in transfection levels, suggesting that DSPE may be 

equally suitable as a helper lipid for unsaturated cationic lipids but not useful when 

combined with saturated lipids. 
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Figure 4.4. A) Comparison of transfection efficiency of five SUV lipoplexes and four DRV lipoplexes on 
COS-7 cell line by applying luciferase assay. Positive control is Lipofectin™ and negative control is ‘naked’ 
DNA. B)Comparison of cell viability of five SUV lipoplexes and four DRV lipoplexes on COS-7 cell line 
and by applying MTS assay. Results denote mean±SD and n = 3 for three independently prepared batches. 
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It has been reported that saturated cationic lipids make rigid and packed bilayers 

(Maurer et al., 2001; Ulrich, 2002), and hence show lower transfection efficiency than 

their unsaturated analogues (Kudsiova et al., 2011; Wasungu and Hoekstra, 2006). 

However, in this current study, saturated DSTAP has been shown to produce higher 

transfection efficiency compared to unsaturated DOTAP. Equally, in another study 

considering cellular uptake of lipoplexes by macrophage cells, DOPE:DSTAP uptake 

was shown to be higher than DOPE:DOTAP (Filion and Phillips, 1997). As discussed 

earlier, all the characteristic properties studied for DOTAP and DSTAP based 

lipoplexes for this study were shown to be similar. In terms of their thermodynamic 

nature, a previous study (Lobo et al., 2002) has shown that although DSTAP bilayers 

are rigid and closely packed, addition of DNA to the bilayers, increases their fluidity 

while decreasing their stability. This may mean that, whilst DSTAP formulations would 

form more rigid structures, the addition of plasmid DNA may fluidise these bilayers, 

again mitigating this attribute. Adding the fusogenic effect of DOPE to the system also 

makes the bilayers more fluidic, allowing the bilayers to be instable enough to be able to 

produce a comparable in vitro transfection. Indeed, Regelin et al., (Regelin et al., 2000) 

have shown DOPE:DSTAP lipoplexes are highly unstable compared to 

DOPE:DOTAP. This suggests that, although DSTAP monolayer studies (Section 3.3, 

Chapter 3) show a high rigidity as a result of their high transition temperature (Lobo et 

al., 2002; Regelin et al., 2000), addition of DNA could make the lipoplex structure 

flexible enough to promote high transfection efficiency.  

Correlation between monolayer studies and transfection efficiencies of cationic 

liposomes has been reported earlier (Savva et al., 2005). Moreover, monolayer studies in 

this lab revealed that the mixture of DOPE:DSTAP in either of subphases (PBS or 

dH2O) produced a significantly (P<0.001) higher positive deviation compared to 
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DOPE:DOTAP monolayers (Section 3.3, Chapter 3). It has been reported that positive 

deviation is related to the less attractive interactions between film-forming molecules 

(Hac-Wydro and Wydro, 2007; Hac-Wydro et al., 2007), which offers instability to the 

bilayers and enhances their in vitro transfection efficiency. This might explain the higher 

transfection efficiency of DSTAP-based lipoplexes as shown in Figure 4.4 and also 

previous research which has shown that lipoplexes formulated with the saturated 

cationic lipid DPTAP in lipoplex formulation created stronger transfection compared to 

unsaturated DOTAP (McNeil et al., 2010).  

In this current study, considering the effect of presence of salt in the lipoplex 

formulations did not show an obvious trend for all of the formulations. Previous studies 

have shown that the impact on transfection of electrolytes present in lipoplex 

suspensions, is an outcome of the liposomes size, which is influenced by electrolytes, as 

formation of DNA lipoplex under physiological salt concentration formed large (1 µm) 

vesicles and liposomes with these large salt-induced aggregates, induced 10-100 fold 

higher in vitro transfection efficiency (Ogris et al., 1998). It has also been shown that 

increases in vesicle size can enhance transfection efficiency of liposomes (Eastman et al., 

1997; McNeil et al., 2010).  The correlation of particle size versus transfection in this 

study have been considered and are shown in Figure 4.5, which demonstrated a very 

low R2 equal to 0.015 showing a very poor correlation between vesicle size and 

transfection efficiency of the formulations. 

Among the DOTAP-based SUV formulations, presence of salt in the liposomes 

hydration media caused an increase in transfection efficiencies of SUV DOPE:DOTAP 

(Figure 4.4). This is line with the above findings as PBS significantly increased the 

vesicle size of SUV DOPE:DOTAP  (Table 4.1).  In contrast, for DRV DOPE:DOTAP, 
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the presence of salt did not have impact on vesicle size and, as a result, the transfection 

efficiency of both formulations are similar (Figure 4.4A). This trend is not detectable for 

DSTAP formulations, as presence of salt caused increase in vesicle size of the liposomes 

(Table 4.1) but this not only did not increase the transfection of the liposomes but also 

significantly decreased their transfection efficiency (Figure 4.4A). This shows the vesicle 

size is not the only decisive parameter and biological or biophysical properties such as 

mechanism of action for the lipoplexes on their endosmal release may have a role in 

their transfection efficiencies.  

 

 

Figure 4.5: Correlation between vesicle size and luciferase activity percentage of tested formulations. 
Results denote mean±SD and n = 3 for three independently prepared batches. 
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4.7. Conclusion 

Previously in chapter 3, the monolayer studies revealed saturated lipids such as DSTAP 

would make a condensed monolayer and using this type of lipid may lead to having a 

bilayer with low permeability. The effect of molecular arrangements on the 

physicochemical properties of the liposomes was also considered. In theory, it would be 

expected that monolayer studies along with characterisation studies could help to show 

correlation with transfection efficacy of the liposomes. However, in terms of transfection 

efficacy, neither considering the molecular packaging of the lipids with DNA-liposome 

constructs, nor their basic physicochemical attributes (size, cationic nature, DNA 

release profiles), have been shown to correlate with transfection efficacy with several 

general assumptions being shown to be misleading in our studies. Similarly, the role of 

electrolytes in lipoplex formulations is shown to be dependent on the formulation, with 

PBS diminishing the transfection of DSTAP systems yet enhancing DOTAP based 

lipoplexes. Therefore, there remains no clear physicochemical screening that can be 

adopted to predict in vitro efficacy. Combining this with the lack of in vitro and in vivo 

efficacy that plagues non-viral delivery systems suggests that for the continued 

development of non-viral transfection agents, new tools are needed to rationalise these 

differences. 

Therefore, whilst there is not clear link between characterisation and in vitro 

performance, formulations to progress as potential DNA delivery systems in vivo had to 

be selected. Thus, based on in vitro studies, the formulations which were shown to be 

more effective were selected. SUV DOPE:DOTAP and SUV DOPE:DSTAP in both 

hydration media were chosen, along with the most efficient DRV, which was 

DOPE:DSTAP+dH2O, to investigate their potential as delivery systems for DNA 

vaccines.
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5.1. Introduction 

Vaccination remains one of the most effective ways of supporting the health of a 

population, with several effective vaccines playing a key role in global healthcare. 

Indeed the WHO vaccination campaign against Smallpox, initiated in 1967 (Fenner, 

1993) ensured the complete eradication of this disease. However, there remains a 

pressing need for the development of vaccines for new diseases e.g. tumour associated 

diseases, and older-poorly controlled diseases e.g. HIV, TB and malaria.  

In terms of options for vaccines, live vaccines generally offer the strongest protection; 

however, they tend to have higher adverse events associated with them. In contrast, sub-

unit vaccines tend to have a good safety profile, but are generally only weakly 

immunogenic. DNA vaccines are also being investigated as a potential option: DNA 

vaccines can be designed to encode bacterial, viral or tumour antigens and may offer 

several advantages, as they are easy to produce, potentially more stable than subunit 

vaccines (e.g. heat stability), easy to manipulate and can mimic viral infections, yet 

there is no risk of reversion to pathogenicity (Gregoriadis, 1998; Henke, 2002). Like 

protein subunit vaccines, DNA vaccines are considered to be both safe and cost effective 

(Henriksen-Lacey et al., 2011c), however, both subunit and DNA vaccines suffer from 

poor immunogenicity, rapid clearance from the body and degradation by the host 

immune system (Perrie et al., 2001; Singh and O'Hagan, 2002). Hence, there is an 

urgent need for safe, cost effective and efficient vaccine adjuvants and delivery systems 

to overcome these issues (Gregoriadis et al., 1999; Watson et al., 2012).  

Cationic liposomes have been extensively studied as potential vaccine adjuvants to 

increase the immune response and their role as antigen delivery systems in vaccines is 

well recognised (Henriksen-Lacey et al., 2011c; Kaur et al., 2012a; Watson et al., 2012). 
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Comparing to other vaccine adjuvants, liposomal adjuvant systems have several 

advantages: they are safe, relatively easy to produce and show low reactogenicity 

(Herzog et al., 2009; Watson et al., 2012). In addition, any type of antigen such as 

proteins, peptides, nucleic acids, carbohydrates and small molecule haptens can be 

incorporated in to the liposomes due to their versatility. For example, cationic 

liposomes can electrostatically interact with anionic proteins and nucleic acid allowing 

these antigens to be absorbed onto the surface of cationic liposomes and be carried to 

the antigen presenting cells (APCs) (Kaur et al., 2012a; Watson et al., 2012). In contrast, 

although microspheres have also been described as potential adjuvants for antigens 

producing both humoural (O'Hagan et al., 1991) and cellular immunity (Audran et al., 

2003), they have failed to initiate immune responses at comparative levels to the 

liposomes due to the difference in their characteristic parameters (Kirby et al., 2008). 

Given the ability of cationic lipids/liposomes to protect plasmid DNA against 

degradation and promote gene expression, it is not surprising that these systems have 

been applied for the delivery of DNA vaccines, with cationic liposome systems having 

been shown to effectively induce humoural and cellular immune responses against 

antigen-encoding plasmid DNA (Jiao et al., 2003; Lay et al., 2009; Morrey et al., 2011; 

Perrie et al., 2001). In general, these studies have considered the choice of the 

lipid/liposome construct in a bid to enhance immune responses. However, a study by 

Yan and Huang (2009) also investigated the effect of salt on the physicochemical and 

immunogenicity of the protein based vaccines formulated in cationic lipids. This study 

reported that presence of small amounts of salt (30 mM) within cationic liposome 

formulations could enhance immune performance of the vaccine. This was attributed to 

the interference of salt with the electrostatic interactions between the cationic lipid and 

the antigen, which facilitates the antigen release from the carrier and at the same time 
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activates the antigen presenting cells. Therefore, within this chapter, the aim of the work 

was to consider the application of the liposomal formulations developed within Chapter 

3 as possible DNA vaccine delivery systems. From the in vitro studies carried out in 

chapter 4, a select few liposome formulations were chosen for further investigation as 

possible vaccine delivery systems. Since there was no significant difference in 

transfection efficiencies of SUV and DRV liposomes, the in vivo study will focus on the 

SUV lipoplexes prepared from DOPE:DOTAP and DOPE:DSTAP lipoplexes in both 

hydration media. However, the best DRV liposome in terms of in vitro transfection 

efficiency (Chapter 4) was also selected (DRV DOPE:DSTAP with no electrolyte in its 

hydration media). 

When developing vaccines, immunisation strategies have commonly been based on 

homologous regimens, which involves giving the same vaccines multiple times. 

However, some studies (Carstens et al., 2011; Yang et al., 2008) suggest that prime-

boost strategies, which use a combination of DNA-encoded antigen as a primer 

immunisation and subunit vaccines of the same antigen as a booster, can enhance 

humoural and cellular immune responses. Indeed, studies investigating different 

sequences of prime and boost injections have shown that two prime immunisations of 

plasmid DNA, following by one boost injection of protein (DDP), is more effective than 

a DNA (D), protein (P), protein combination or homologous injections of DD or P only 

(Deshmukh et al., 2007; Yang et al., 2008). Therefore, based on these finding, within 

this current study the DDP regimen has been adopted. 
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5.2. Physicochemical characteristics of DNA lipoplexes 
and protein-liposome complexes. 

5.2.1. Radio-labelling of protein antigen 

As explained in details in section 2.6.2, for entrapment studies, HBsAg was 

radiolabelled with the radioisotope Iodine-125 (125I). The labelled protein was separated 

from the free, unincorporated 125I via Sephadex G-75 gel chromatography. 0.25 mL 

aliquots were collected and the radioactivity of 125I and the absorbance (A280) for protein 

content within each aliquot was determined. As shown in Figure 5.1A, both high levels 

of 125I and protein content are found in samples 11 and 12, with protein content in these 

samples being confirmed by the BCA assay (Figure 5.1B).  From Figure 5.1A it can also 

be seen that the second peak in radioactivity does not have associated protein content, 

and is typical of free iodine (Figure 5.1A). 

5.2.2. Liposomal delivery systems for DNA or sub-unit antigens 

Given that previous studies have shown the presence of electrolytes within the aqueous 

media of cationic liposome suspensions can impact the vesicle characteristics (Section 

3.4, Chapter 3), the impact of electrolytes on liposomal-protein antigen system was also 

briefly investigated, as these formulations would be used as the ‘booster’ for the in vivo 

vaccine studies. Therefore, initially the two cationic lipid formulations containing the 

fusogenic lipid DOPE, combined with either DOTAP or DSTAP, were formulated in 

either a high electrolyte buffer (PBS) or non-electrolyte (sucrose 10%) aqueous media 

(Table 5.1).  



Chapter 5: In Vivo Studies on DNA Vaccine Formulations                                                              D 

 

143 

 

Figure 5.1: A) Determination of radioactivity for iodine labelled HBsAg samples eluted through Sephadex 
column, as well as their absorbance at 560 nm. B) Confirmatory BCA assay results for protein labelled 
samples. A colour change from green to purple indicated the presence of protein for samples 11 and 12. 
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Results in Table 5.1 show that both formulations, when complexed with plasmid DNA 

showed a significant increase (p<0.05) in vesicle size and significant reduction (p<0.05) 

in zeta potential, when formulated in the presence of electrolytes as previously reported 

in Chapter 4 and summarised in Table 5.1. However, this effect was not specific to 

lipoplexes, with liposomal-subunit complexes also demonstrating a similar outcome 

(Table 5.1). This is to be expected as the drop in zeta potential for the cationic systems is 

attributed to the condensing of the electrical double-layer. The increase in vesicles size 

measured may be attributed to the phosphate groups within PBS bridging the cationic 

polar heads of the lipid, thereby promoting aggregation (Ciani et al., 2007; Wasan et al., 

1999). Therefore, these physicochemical changes would apply to the cationic lipids 

irrespective of what anionic antigen was adsorbed (DNA or protein) (Table 5.1).  

Table 5.1: Characteristics of cationic liposomes. Size and zeta potential measured by Malvern Zetasizer 
Nano-ZS. Results represent mean±SD of triplicate independent experiments. 
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5.3. Investigating the depot-formation of cationic 
liposome-based DNA vaccines 

To investigate how the electrolyte-induced changes in physicochemical characteristics 

translated to in vivo performance, the ability of these lipoplexes to carry and deliver 

DNA-encoded antigen after intramuscular injection was investigated. It has been 

previously reported that cationic liposomes can induce a depot effect at the site of 

injection (Henriksen-Lacey et al., 2010c), causing a prolonged deposition of the antigen 

and adjuvant at the site of injection, and this may be responsible for the enhanced 

immune responses promoted by some cationic formulations. Since cationic liposomes 

are retained for a longer period at the site of injection, the adsorbed antigen (DNA or 

protein) will also have longer retention time leading to an increase exposure of the 

antigen presenting cells (APC) to antigen at the site of injection. This is shown to be 

beneficial for induction of Th1 immune responses, since this increases the production of 

IFN-γ (Christensen et al., 2012; Henriksen-Lacey et al., 2010c). Therefore, the 

biodistribution of both lipid compositions and their associated DNA, formulated in the 

presence and absence of electrolytes was investigated after intramuscular injection.  

5.3.1. Monocyte influx to the site of injection 

Given the ability of pontamine blue to be taken up by macrophages in vivo (Tilney, 

1971a) it can be applied to identify the lymph nodes and give an indication to the ability 

of liposomes to induce innate immune cell influx to the injection site (Henriksen-Lacey 

et al., 2010b). However, given that it is also known that inflammation can occur at the 

site of injection, due to the tissue damage caused by injection and the inflammatory 

mediators potentially promoted by cationic lipids (Filion and Phillips, 1997), 

visualisation of monocyte influx can be tracked by pre-injecting mice with pontamine 

blue. Therefore, to determine the level of infiltrated immune cells to the site of injection, 
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pontamine blue dye was injected subcutaneously 3 days prior to the start of the 

biodistribution study.  

Figure 5.2A shows the monocyte influx to the site of injection on day 8 p.i for SUV 

formulations and ‘naked’ DNA. Prior to the intramuscular injection of these 

formulations, and at early time-points, no staining was noted at the site of injection 

(data not shown). However, as time progressed an increase level of blue staining was 

noted at the injection site for mice injected with the liposomal DNA formulations, with 

high levels shown at day 8 (Figure 5.2A; samples 1 to 4), yet this was not the case with 

mice injected with the DNA alone where no staining was noted over the period of the 

study (Figure 5.2A; leg 5). Whilst not quantitative, these results suggest that cationic 

liposomes are able to enhance recruitment of circulating monocyte to the injection site 

whilst DNA alone does not. 

5.3.2. Determination of vaccine components at the injection site. 

The concentration of the liposomal carrier, and the DNA antigen was measured at site 

of injection (SOI), the local draining lymph node (PLN), liver, kidney, spleen and lung 

were investigated at day 1, 4 and 8, post injection (p.i.); of these sites, only the site of 

injection and the PLN had detectable levels of liposomes and/or DNA and therefore 

only this data is presented (Figure 5.2).  

From these results, it can be seen that plasmid DNA injected without a liposomal carrier 

was quickly cleared, with only 10% of DNA detected at the site of injection 24 h after 

administration. This reduced significantly (p < 0.05) to 3% on day 4 and to less than 1% 

on day 8 p.i (Figure 5.2B). In contrast, DNA associated with any of the tested liposome 

formulations gave enhanced retention at the injection site, with approximately 40 to 
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60% of the liposome-associated DNA remaining at the injection site after 24 h (Figure 

5.2B). Whilst the choice of cationic lipid (DOTAP vs DSTAP) made no significant 

impact on retention rates after 24 h, the higher transition DSTAP based lipoplexes 

promoted significantly (p<0.05) higher DNA retention at the injection site over the 

longer periods (Figure 5.2B) with DNA retention on day 8 p.i for DOPE:DSTAP 

formed in sucrose being double compared with DOPE:DOTAP hydrated in same 

medium. The same trend was shown for the formulations made in PBS with DNA 

retention for the DSTAP based lipoplex being 30%, compared with less than 3 % for 

DOPE:DOTAP formed in PBS (Figure 5.2B; day 8). This was mirrored by movement 

of the liposomes, with no significant differences being noted at day 1 and 4, however by 

day 8 the DOPE:DSTAP formulations tended to show higher levels at the injection site 

after 8 days compared to the DOTAP formulations (Figure 5.2C). 

Interestingly, despite the presence of electrolytes making a significant impact on the 

vesicle characteristics prior to injection, this did not translate to measurable differences 

in either DNA or liposome movement from the injection site (Figure 5.2B & C); for 

DOPE:DOTAP formulated in either sucrose or PBS there was no significant difference 

in DNA (Figure 5.2B) or liposome retention (Figure 5.2C) at the site of injection despite 

the vesicles being twice the size when formulated in PBS (Table 5.1). This was also 

reflected with the DOPE:DSTAP formulations, with the difference in vesicle size and 

zeta potential having no impact on clearance rates (Figure 5.2B,C). However, it is 

important to consider that whilst differences in vesicle size are noted prior to injection, it 

is likely that on injection vesicle aggregation will occur due to the presence of interstitial 

proteins, which would negate any difference in vesicle sizes prior to injection. This can 

be supported by recent work by Kaur et al (Kaur et al., 2012b), which demonstrated that  
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Figure 5.2: A) Pontamine blue staining on day 8 p.i of the injection site (quadriceps muscle) after i.m. 
injection with pDNA lipoplexes of 1)DOPE:DOTAP+Sucrose, 2)DOPE:DOTAP+PBS, 
3)DOPE:DSTAP+Sucrose, 4)DOPE:DSTAP+PBS and 5)free DNA. B-C) pDNA and liposome detection 
at the site of injection and D-E) draining lymph nodes (PLN) following i.m. injection. pDNA and liposome 
quantification were determined at days 1,4 and 8 p.i. using radiolabel counting methods. Data represents 
mean ± SD of 4 mice and is presented % dose at the SOI (B,C) or the % dose per mg PLN harvested (D,E). 
Significance measured by one-way ANOVA and Tukey’s post test, it is shown by *p<0.05, and ***P<0.001.  
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pegylation of cationic vesicles, which was able to block aggregation of vesicles, 

promoted enhance drainage from the injection site. 

Tracking the distribution of vaccine to the draining PLN (Figure 5.2D and E) indicates 

that the amount of detectable DNA and lipid in all of the formulations at the PLN 

increased over the time. DNA and lipid retention at PLN did not show any significant 

difference between different formulations and therefore was not influenced by size nor 

liposome composition. However, all four liposome formulations gave significantly 

(p<0.05) high DNA delivery to the PLN compared to ‘naked’ plasmid DNA.  

To investigate the effect of different vesicle types, SUV and DRV of DOPE:DSTAP 

were also compared. Figure 5.3A shows the comparison between the two different 

liposome preparations of the DSTAP formulation (DRV vs SUV), with no difference on 

monocyte infiltration between these two liposome preparations being notable. 

Considering the distribution of the liposomal formulation and the plasmid DNA, there 

was no significant difference between DNA retention of SUV 8 days after 

immunisation, with approximately 30% of DNA dose retention at the injection site 

compared with ~20% for the DRV formulation (Figure 5.3B).  In terms of liposome 

retention at the injection site, the choice of liposome preparation made no significant 

difference (Figure 5.3C).  

Measuring the DNA and lipid content at the draining PLN shows the amount of 

drained DNA and lipid increased over the time, however generally there was no notable 

difference between the SUV and DRV formulation (Figure 5.3D and E). 
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Figure 5.3: A) Pontamine blue staining at day 8 p.i of the injection site (quadriceps muscle) after i.m. 
injection with pDNA lipoplexes of 1) SUV DOPE:DSTAP+Sucrose, 2) DRV DOPE:DSTAP+Sucrose and 
3)free DNA. B-C) pDNA and liposome detection at the site of injection and D-E) draining lymph nodes 
(PLN) following i.m. injection. pDNA and liposome quantification were determined at days 1,4 and 8 p.i. 
using radiolabel counting methods. Data represents mean ± SD of 4 mice and is presented % dose at the 
SOI (B,C) or the % dose per mg PLN harvested (D,E).  Significance measured by one-way ANOVA and 
Tukey’s post test, it is shown by *p<0.05, **p<0.01, and ***P<0.001. 
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These results (Figure 5.2 and 5.3) suggest that the key feature in the clearance rate of 

these vesicles, and their loaded DNA, from the site of injection may be the transition 

temperature of the cationic lipid used rather than vesicle size and antigen location; 

DSTAP, with its higher transition temperature, presents as a more rigid bilayer vesicle 

(Lobo et al., 2002; Regelin et al., 2000) compared to DOTAP formulations, whose more 

fluid bilayers allows more lipid clearance from the injection site (Christensen et al., 

2012; Henriksen-Lacey et al., 2011a). 

Monolayer studies showed that, compared to DOTAP, the cationic lipid of DSTAP has 

a more rigid structure due to its saturated alkyl chain and higher Tc; however, 

incorporation of DOPE to the DSTAP reduced the rigidity of the DSTAP and both 

DOPE:DOTAP and DOPE:DSTAP monolayers had similar monolayer properties 

(Section 3.3, Chapter 3). From another perspective, differential scanning calorimetry 

(DSC) studies (Regelin et al., 2000) reported a higher transition temperature for DSTAP 

and showed that although incorporation of helper lipid DOPE within DSTAP in an 

equimolar ratio decreased the  transition temperature, it was still high enough to make 

rigid bilayers.  

Considering the cationic liposomes as adjuvant systems, they are able to form a depot 

effect at the injection site, and are then taken up by the infiltrating antigen presenting 

cells (APCs) and move slowly to the lymph nodes and consequently promote more 

antibody production (Henriksen-Lacey et al., 2010b; Richards et al., 2004). Recent 

studies have suggested that the more rigid the liposome formulations are, the more 

depot they form at the site of injection (Christensen et al., 2012; Henriksen-Lacey et al., 

2011a), which is in line with results of this study. Henriksen-Lacey et al, compared the 

depot formation of DDA, DC-Chol and DOTAP-based liposomes and reported that 
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more rigid DDA and DC-Chol-based liposomes showed significantly higher antigen 

localisation at the site of injection compared to fluidic DOTAP-based liposomes 

(Henriksen-Lacey et al., 2011a). Furthermore, it has been reported that upon i.v, s.c or 

i.m injection of liposomal vaccines, formulations with rigid bilayers show more 

localisation (for s.c and i.m) and improved circulation (i.v) and ultimately show stronger 

immune responses (Frezard, 1999; Storm and Crommelin, 1998; Yasuda et al., 1977). 

5.4. Investigating the immunogenicity of cationic 
liposomes 

To consider the potential of these various liposome systems as vaccine delivery systems, 

formulations including SUV liposomes of DOPE:DOTAP and DOPE:DSTAP 

formulated in either sucrose or PBS were investigated and the effect of presence of 

electrolytes, as well as the impact of the transition temperature of the cationic lipid on 

immunogenicity of the formulations were studied. Separately, the ability of DRV 

formulations of DOPE:DSTAP to immunise the mice were compared with SUV 

liposomes of DOPE:DSTAP. Based on a study performed by Yang et al. (2008), the 

chosen immunisation strategy for this study was a heterologous prime-prime-boost, 

which included two i.m immunisations of liposomal-pDNA (DD), followed by one i.m 

immunisation of liposomal-subunit antigen (P) injected at two week intervals (combined 

to DDP; Figure 5.4).  

The immunogenicity of heterologous DDP immunisation was compared to the 

homologous vaccination regimens of DNA only (DD-) and sub-unit protein only (--P) 

using DOPE:DSTAP liposomes, to allow the measurement of the impact of the two 

plasmid DNA immunisations and the additional impact of the boost with protein. Table 

5.2 shows the immunisation plan for this study. With regards to the heterologous 
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immunisation regimen, several sequences for the injection of the prime and booster have 

been proposed. Most of reviewed studies show 3 injections including 2 DNA and 1 

protein injection (DDP) (Carstens et al., 2011; Yang et al., 2008). However, the 

sequences of DP (Wang et al., 2008), DDDP (Wierzbicki et al., 2002) and DDDPP 

(Vaine et al., 2010) have also been reported. Some studies have investigated different 

sequences of prime and boost injections and showed that DDP is more effective 

compared to DPP or homologous injections of DD or P only (Deshmukh et al., 2007; 

Yang et al., 2008). Also, it has been reported that no synergy has been seen upon 

injection in the sequence of PDD (Yang et al., 2008). 

 

 

Figure 5.4: Schematic diagram of immunisation plan for the prime-boost heterologous vaccination study.  
Two prime liposome-pDNA complex i.m injections followed by a liposome-protein complex i.m injection 
on a two week intervals. One day before each injection and one week and three weeks after last injection 
tail bleed was performed on groups of 5 female C57BL/6Jico mice. Mice were terminated on day 49 post 
first injection and the spleen and site of injection was dissected and processed for immunological studies. 
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Table.5.2: Immunisation plan for DNA vaccine study. 

 

5.4.1. Exploring the effect of vaccine formulation on antibody 
responses against HBsAg in a heterologous immunisation schedule 

Considering first the responses from groups that received the heterologous 

immunisation schedule (1st and 2nd immunisation with DNA, third with sub-unit 

protein; groups 1,4,7 and 8) using SUV as delivery systems the ability of 

DOPE:DOTAP and DOPE:DSTAP liposomes to induce IgG (total), IgG1 and IgG2 

antibody isotypes was studied using ELISAs. As explained in section 2.12.2 and shown 

in Figure 5.4 blood was collected on days 0, 13, 28, 36 and 49 and mice were injected 

with vaccines on days 1, 14 and 29.  
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5.4.1.1. Investigating the effect of electrolyte and transition temperature on antibody 
responses 

Investigating the total IgG levels produced by cationic liposomes (Figure 5.5A) shows 

only liposomes formulated from DOPE:DOTAP (Group 1; Figure 5.5A) and 

DOPE:DSTAP (Group 3; Figure 5.5A) suspended in sucrose, were able to induce the 

antibody production on day 36, and additionally were able to induce significantly 

(p<0.01) higher levels of IgG relative to free DDP (Group 10; Figure 5.5A) on day 49. 

However, DOPE:DOTAP (Group 2; Figure 5.5A) and DOPE:DSTAP (Group 6; 

Figure 5.5A) formed in PBS, showed levels of IgG equal to free DDP (Group 10; Figure 

5.5A), ‘naked’ HBsAg subunit antigen (Group 11; Figure 5.5A), and alum-HBsAg 

(Group 13; Figure 5.5A) on day 49. Indeed, free DNA (Group 12; Figure 5.5A) showed 

backgrounds levels of IgG similar to the naïve group (Group 14; Figure 5.5A) and 

remarkably lower than other immunisation groups (Figure 5.5A).  

Comparing between the two cationic lipids, replacing DOTAP (Group 1 and 2; Figure 

5.5A) with DSTAP (Group 3 and 6; Figure 5.5A) in the liposome formulations showed 

no significant change in total IgG levels by day 49. However, the impact of the presence 

of electrolyte in the formulation, antigen-specific IgG production was significantly 

(P<0.05) lower for DOPE:DOTAP and DOPE:DSTAP when formed in PBS (Group 2 

and 6 respectively; Figure 5.5A) compared to sucrose (Group 1 and 3 respectively; 

Figure 5.5A). This trend was also seen in Th2 responses of mice that were immunised 

with formulations prepared in PBS rather than sucrose; however, in contrast, Th1 

responses were significantly higher (P<0.05) in mice immunised with DOPE:DSTAP 

formulated in PBS (Group 6) compared with all other liposome systems (Figure 5.5B). 

This adds to the previous knowledge that liposomes containing DOTAP promote lower 

Th1 responses compared to other cationic lipids (Henriksen-Lacey et al., 2011a).  
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As controls, a series of options were considered: free DDP (Group 10), free sub-unit 

protein (group 11), free DNA (Group 12) and a sub-unit protein formulated with Alum 

(Group 13). Despite the free DDP and sub-unit group formulations promoting total IgG 

and IgG1 levels similar to liposomal formulations, alum and free DNA could not induce 

any detectable level of IgG2b at this stage (Figure 5.5B). Alum is one of the oldest 

vaccine adjuvants, despite its inability to produce cellular responses (Davidsen et al., 

2005). This explains the failure of the alhydrogel to induce detectable levels of IgG2b. In 

addition, this shows the ability of the cationic liposomes to induce high levels of both 

humoural and cellular immune responses (Figure 5.5B).  

Results show that, compared to free DDP group, which is composed of two free DNA 

and one free subunit antigen injections, liposomal vaccines can induce significantly 

higher (P<0.05) levels of IgG and IgG1 (Figure 5.5). However, the free DDP group, is 

the only non-liposomal group showing detectable levels of IgG2b (Figure 5.5B). This 

might be the effect of prime-boost immunisation, which will be discussed later in section 

5.4.1.3. HBsAg is known to be a moderately strong immunogen, as it contains both T 

and B cell epitopes (Schirmbeck et al., 1994a; Schirmbeck et al., 1994b); however, its 

injection as a free subunit antigen does not induce high antibody response (Group 12, 

Figure 5.5). Previous studies also demonstrated that giving free HBsAg as a booster after 

prime injections of plasmid DNA increases the IgG production significantly; however, 

upon encapsulation of HBsAg protein within liposomes, further (3 times higher, 

P<0.01) enhancement was observed (Yang et al., 2008). This demonstrates the adjuvant 

effect of cationic liposomes, which is in line with the findings of this current study.  

The influence of cationic lipid content within the liposome formulation on antibody 

production, may be explained by the impact of liposomal depot effect at the site of 
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injection, and hence draining of the plasmid DNA into the PLN, on antibody 

production. It has been reported that upon entrance of the antigens to the lymph node, 

antigen presenting cells (APCs), such as dendritic cells (DCs), will present the antigen to 

the MHC class II molecules which activate CD4+ T cells and induce antibody 

production (Bramwell and Perrie, 2005a; McCullough and Summerfield, 2005; 

Medzhitov, 2007). Biodistribution results (Figure 5.2, Section 5.3.2) showed that, 

although DSTAP-based formulations show more localisation at the injection site, DNA 

drainage rate is similar for both kinds of DOTAP and DSTAP liposomes. This was 

followed by similar IgG and IgG1 production levels for all formulations, emphasising 

the effect of DNA drainage to the PLN on humoural immune response and antibody 

production. In contrast, lower IgG2b levels produced by DOTAP formulations reflects 

the difference in intracellular pathways, which leads to induction of either Th1 or Th2 

responses. Given that IgG2b production is related to Th1 responses implies that 

DOTAP based formulations show less Th1 responses when they are compared to 

DSTAP liposomes.  

Having a more rigid structure due to the higher transition temperature, DSTAP 

liposomes have been shown to produce more depot effect at the site of injection. Their 

rigid structure may have caused slower localisation of DNA to the local draining lymph 

nodes and this gives more opportunity to APCs to be in contact with the plasmid DNA 

and activate the pathways, which leads to enhanced Th1 activation. This is in line with 

the findings of a previous study (Henriksen-Lacey et al., 2011a), which compared the 

effect of different cationic lipids on immunogenicity of the liposomes and demonstrated 

that cationic lipids of DDA and DC-chol, which have a more rigid structure, produce 

higher Th1 response compared to DOTAP with fluidic bilayer structure. The difference 
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in structures of the DOTAP and DSTAP has previously been discussed in details in 

chapter 3 (Section 3.3). 

 

 

Figure 5.5: HBsAg specific antibody titres. A) Total IgG for all of the tested formulations in heterologous 
immunisation regimen, serum taken from day 36 and 49, B) IgG1(light blue bars) and IgG2b(dark blue bars) 
for all of the tested formulations in heterologous immunisation regimen, serum taken from day 49. Results 
show the mean ± SD reciprocal endpoint dilution (log10) of 5 mice. Significance measured by one-way 
ANOVA and Tukey’s post test, it is shown by *p<0.05, **p<0.01 and ***P<0.001.  
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5.4.1.2. Comparing the ability of SUV and DRV liposomal vaccines to induce 
antibody responses 

Figure 5.6 compares the antibody production in mice immunised with the heterologous 

strategy using SUV and DRV liposomes of DOPE:DSTAP, so to consider if entrapping 

the antigen with the system could further boost the immune responses.  

Results demonstrate SUV liposomes induce significantly (P<0.05) higher IgG (Figure 

5.6A) and IgG1 responses (Figure 5.6B) than DRV, while IgG2b levels are similar for 

both SUV and DRV formulations (Figure 5.6B). Given the similar depot effect for both 

formulations, higher humoural response of SUV formulations could be due to the 

smaller vesicle size compared to DRV. Characterisation studies (Table 5.1) showed 

DRV formulations own significantly larger vesicles than SUV liposomes. Moreover, in 

vitro transfection studies demonstrate significantly higher cell transfection for SUV 

DOPE:DSTAP+dH2O compared to DRV of the same formulation (Section 3.4, Chapter 

3). These data imply that having smaller size, SUV formulations have more chance than 

DRV to be uptaken by APCs and hence they induce stronger humoural immunity. In 

agreement to this, another study (Carstens et al., 2011) showed that although larger 

vesicles produce stronger depot effect at the injection site, the induced immune response 

of smaller cationic liposomes was significantly stronger and suggested that liposomal 

DNA vaccines do not benefit from strong depot effect and other factors such as vesicle 

size have a role in immune performance of the vaccine. 

These results are in line with the results of a recent study (Milicic et al., 2012) which has 

compared the immune response of MLV, SUV and DRV of DDA:TDB liposomes and 

showed total IgG production of SUV formulation was higher than MLV and DRV 

formulations.  
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Figure 5.6: HBsAg specific antibody titres A) Total IgG for SUV and DRV of DOPE:DSTAP+Sucrose, 
serum taken from day 36 and 49, B) IgG1(light blue bars) and IgG2b(dark blue bars) for SUV and DRV of 
DOPE:DSTAP+Sucrose, serum taken from day 49. Results show the mean ± SD reciprocal endpoint 
dilution (log10) of 5 mice. Significance measured by one-way ANOVA and Tukey’s post test, it is shown by 
**p<0.01 and ***P<0.001. 

5.4.1.3. Considering the immunisation regimen on antibody production levels 
induced by DOPE:DSTAP liposomes 

Given DSTAP based formulations elicit high antibody levels for all three studied 

antibodies (Figure 5.5), SUV liposomes of DOPE:DSTAP were studied to show the 

effect of immunisation regimen on their ability to induce antibody (Figure 5.7); 
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therefore, two homologous and one heterologous vaccination strategies were tested 

using DOPE:DSTAP hydrated in sucrose or PBS.  

Results show no detectable levels of HBsAg-specific antibodies found in the serum when 

mice received two immunisations of liposomal-DNA vaccines (Group 4 and 7; Prime-

Prime (DD-); Figure 5.7), whilst mice that received a single liposomal-sub-unit antigen 

dose (Group 5 and 8; Boost (--P); Figure 5.7) gave measurable responses on day 49 for 

all antibodies tested.  

The heterologous strategy (prime-prime-boost; DDP), promoted high antibody 

responses from both formulations (Group 3 and 6; Figure 5.7) and comparing to the --P 

regimen demonstrated significantly (P<0.05) higher levels of total IgG and IgG1 for 

DOPE:DSTAP when formulated in sucrose (Figure 5.7). In contrast, for IgG2b there 

was no significant change between DDP and --P immunisation strategies (Figure 5.7B). 

Comparing the single immunisation of liposomally formulated sub-unit antigen, the 

formulation in PBS versus sucrose made no significant difference. These results suggest 

that the two liposomal DNA prime immunisations were unable to elicit antigen-specific 

humoural antibody responses, and that the addition of a protein booster immunisation 

was required. Furthermore, the DDP strategy was not significantly better than a single 

liposomal-protein immunisation in terms of Th1 responses (Figure 5.7B).  

Given the low immunogenicity of DNA vaccines (Li et al., 2012), several studies have 

shown that  DNA vaccines have the ability to prime the immune system for responses to 

other vaccines which are known as boost (Lu, 2009; Park et al., 2003; Richmond et al., 

1998; Robinson et al., 1999). 
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Figure 5.7: HBsAg specific antibody titres. A) Total IgG to compare heterologous and homologous 
immunisation of DOPE:DSTAP formed in sucrose or PBS, serum taken from day 36 and 49, B) IgG1(light 
blue bars) and IgG2b(dark blue bars) to compare heterologous and homologous immunisation of 
DOPE:DSTAP formed in sucrose or PBS, serum taken from day 49 Results show the mean ± SD reciprocal 
endpoint dilution (log10) of 5 mice. Significance measured by one-way ANOVA and Tukey’s post test, it is 
shown by **P<0.01 ***P<0.001 

It is also shown that when the contents of prime and boost immunisations are different, 

which is called heterologous immunisation, the immune response is remarkably higher 

than using the same vaccine different times (homologous immunisation) (Lu, 2009; 

Mazumder et al., 2011). Although the mechanism of this technology is still unknown 

(Li et al., 2012; Liu, 2011), it is believed that as DNA vaccines only encode and present 
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the antigen of interest, this makes it easier for initial immune responses to only focus on 

the key antigen during the prime immunisation (De Mare et al., 2008). Furthermore, the 

lower antigen expression by DNA vaccines compared to protein subunit vaccines, may 

prime T helper cell responses and subsequently humoural response will be boosted by 

the protein boost immunisation, so the antibody production level in prime boost 

regimen will be higher than when it is seen with DNA alone (Otten et al., 2005; 

Stambas et al., 2005). Particularly, Yang et al. (2008) showed that immunisation of 

C57BL/6 mice with heterologous prime/boost immunisation of HBsAg as either free 

antigen or liposomal vaccines induced the antibody production. These findings are in 

line with the results of this study and explain why (DDP) antibody responses for all 

antigens are significantly higher than (DD-) immunisation (Figure 5.7). 

5.4.2. Investigating the ability of cationic liposomal vaccines to 
promote cytokine production in response to heterologous 
immunisations with HBsAg 

In order to further examine the role of different cationic liposomal vaccines on both cell 

mediated and humoural immune responses following immunisation, supernatants from 

HBsAg restimulated splenocyte cultures were removed and cytokine levels (IL-2, IL-5, 

IL-6, IL-10 and IFN-γ) determined using ELISA.  

Furthermore, tissue from the SOI was excised, digested and analysed for the presence of 

the pro-inflammatory cytokine IL-1ß. Production of IL-1ß has been related to uptake of 

particulate adjuvants by dendritic cells (Henriksen-Lacey et al., 2011b; Sharp et al., 

2009) and will therefore be useful to see how vesicular vaccine adjuvants promote 

antigen uptake at the SOI. 
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5.4.2.1. Studying the effect of bilayer composition of liposomal vaccines on their 
cytokine production efficiency 

Figures 5.8 and 5.9 show the cytokine production level for all studied formulations in 

the presence of media alone (negative control) and 5µg/mL	  Con A (positive control), 

respectively. Media results show the background levels of cytokine production were low 

(Figure 5.8) and Con A results show Con A simulated splenocytes produced relatively 

high levels of cytokines measured, confirming the viability of the model (Figure 5.9).  

Figure 5.8A shows the production of IL-2 from splenocytes in the absence of a 

stimulant, which is in a range between 20 to 60 pg/mL for all the immunisation groups. 

Upon re-stimulation of splenocytes with HBsAg there were significant increases in IL-2 

production for all the groups except naïve and free antigens and alum groups that 

showed the baseline levels (Figure 5.10A). Between the liposome injected groups, there 

was no notable trend; for DOTAP based liposomes (Group 1 and 2), liposomes formed 

in sucrose (Group 1; Figure 5.10A) show a significantly (P<0.05) higher IL-2 

production (with 700 pg/mL) compared to the DOPE:DOTAP formulated in PBS (with 

350 pg/mL) (Group 2; Figure 5.10A). In contrast, for DSTAP based liposomes (Group 

3 and 6), the vaccine formulations formed in PBS (Group 6; Figure 5.10A) show 

significantly (P<0.05) higher cytokine production with approximately 900 pg/mL 

compared to 550 pg/mL IL-2 produced under the effect of DOPE:DSTAP hydrated in 

sucrose (Group 3; Figure 5.10A).  In addition, replacing DOTAP with DSTAP does not 

result in a significant difference in cytokine responses for the liposomes made in sucrose. 

However, DOPE:DSTAP+PBS (Group 6; Figure 5.10A) produced significantly higher 

levels of IL-2 compared to its DOTAP analogue (Group 2; Figure 5.10A). 
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Figure 5.8: Cytokine production showing IL-2 (A), IL-5 (B), IL-6 (C), IL-10 (D), IFN-γ (E) from 
unrestimulated splenocytes derived from immunised mice or naïve group. Cytokines were measured from 
splenocyte or muscle supernatants using sandwich ELISAs. 
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Figure 5.9: Cytokine production showing IL-2 (A), IL-5 (B), IL-6 (C), IL-10 (D), IFN-γ (E) from 
restimulated splenocytes with 5µg/mL Con A derived from immunised mice or naïve group. Cytokines 
were measured from splenocyte or muscle supernatants using sandwich ELISAs. 
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IL-2 is known as a growth and expansion factor for T helper cells and influences the 

production of T-cell derived cytokines. Its major function is to promote proliferation of 

both CD4+ and CD8+ T-cells and promotes production of NK-derived cytokines such as 

TNF-α and IFN-γ (Gaffen and Liu, 2004). It is known as a Th1 mediating cytokine and 

plays a role in cellular immune response (Christensen et al., 2012; Henriksen-Lacey et 

al., 2011a). Considering IL-2 as a Th1 indicator cytokine, the low IL-2 production of 

alum proves the poor ability of this adjuvant, which only induces Th2 responses, to 

present HBsAg to the T cells.  

Figure 5.8B shows IL-5 production from splenocytes in the absence of a stimulant; these 

results show background levels in a range between 10 to 60 pg/mL. In the presence of 

HBsAg the IL-5 production level increased significantly (P<0.05) for the liposomes 

formed in sucrose (Group 1 and 3; Figure 5.10B); however, the presence of electrolytes 

in the liposomes caused a lower IL-5 production for DOTAP and DSTAP liposomes 

(Group 2 and 6; Figure 5.10B). Cytokine levels for alhydrogel (Group 13; Figure 5.10B) 

increased significantly (P<0.05) from 10 pg/mL (Figure 5.8B) to 60 pg/mL when it is 

restimulated with HBsAg (Figure 5.10B). Con A stimulation induced higher IL-5 

production from splenocytes derived from all liposome injected groups and alum group 

in a range between 200 to 250 pg/mL (Figure 5.9B). IL-5 is known as a Th2 indicator 

(Christensen et al., 2009; Kaur et al., 2012b), which promotes B cell proliferation and 

explains the reason alum has higher cytokine production than DOTAP and DSTAP 

liposomes formed in PBS (Group 3 and 6; Figure 5.10B). IL-5 production levels suggest, 

regardless of the transition temperature of the cationic lipids, liposomes when 

formulated in PBS show lower antibody production as Th2 cells induce humoural 

immune responses, which are responsible for antibody production.  
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Figure 5.10: IL-2, IL-5, IL-6, IL-10 and IFN-γ cytokine production from splenocytes (A–E) and IL-1β 
production from excised leg muscle from the SOI (F) derived from mice immunised with DOPE:DOTAP 
or DOPE:DSTAP pDNA-lipoplex or subunit protein liposome formed in sucrose or PBS and in 
heterologous prime boost strategy. Splenocytes and muscle from the SOI were obtained 3 weeks post the 
final immunisation. Splenocytes were restimulated for 48 h in the presence of HBsAg (5 µg/ml). Leg muscle 
was excised, digested and homogenised. Cytokines were measured from splenocyte or muscle supernatants 
using sandwich ELISAs. Significance measured by one-way ANOVA and Tukey’s post test, it is shown by 
*p<0.05, **p<0.01 and ***P<0.001. 
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 IL-6 is another cytokine which represents Th2 responses, however this cytokine also 

promotes differentiation of Th17 cells with production of IL-17 (Dienz and Rincon, 

2009). This cytokine has been reported to detect both cellular and humoural responses 

(Diehl and Rincon, 2002; Henriksen-Lacey et al., 2011b). Non-stimulated splenocyte 

IL-6 production was between 20-80 pg/mL with no significant difference between 

immunisation groups (Figure 5.8C). These background levels remained for free DNA 

and Naïve group when restimulated with HBsAg; however, alum and free antigen 

groups showed significant increase when restimulated with HBsAg (Figure 5.10C). 

Considering the liposome injected groups, whilst no trend was noted between the 

liposomal groups, all groups responded to HBsAg restimulation, producing levels of IL-

6 approximately 4 to 6 fold (P<0.05) higher than free DDP and alum group (Group 10 

and 13 respectvely; Figure 5.10C). Results show no significant difference between IL-6 

production levels of liposomal groups when restimulated by HBsAg (Figure 5.10C) or 

Con A (Figure 5.9C).  

Figure 5.8D demonstrates IL-10 production from splenocytes from unstimulated 

immunisation groups, which is in a range of 30 to 70 pg/mL showing no trend or 

significant difference between vaccination groups. Restimulation of the immunisation 

groups with HBsAg led to a significantly higher IL-10 production level for alum group 

(Group 13; Figure 5.10D) compared to any liposomally dosed group. Amongst the 

liposomally immunised groups, a similar trend to IL-5 production was seen, since the 

liposomes formed in sucrose (Group 1 and 3; Figure 5.1D) show higher IL-10 

production levels than those mice which received the liposomes with electrolyte in their 

hydration media (Group 2 and 6; Figure 5.10D).  The use of Con A as a positive control 

resulted in IL-10 production of 1000 to 1400 pg/mL for all the injected groups except 

from naïve groups with 400 pg/mL IL-10 production (Figure 5.9A). IL-10 is known to 
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be a Th2 indicator (Henriksen-Lacey et al., 2011b) same as IL-5 and this explains high 

IL-10 production of alum as it tends to induce humoural immune response.  

The next cytokine investigated was IFN-γ, which is critical for innate and acquired 

immune systems. IFN-γ is produced by natural killer (NK) cells and CD4 Th1 cells and 

is indicative of cell mediated immune response (Henriksen-Lacey et al., 2011b; 

Trinchieri, 1997). Figure 5.8E displays IFN-γ production from unstimulated splenocytes 

derived from all immunised groups, which is between 20 to 40 pg/mL. Exposure of 

HBsAg to naïve, free DNA and alum groups also showed background levels of IFN-γ, 

while free HBsAg group as well as all liposomal groups show high IFN-γ production 

levels (Figure 5.10E). It should be noted that all liposomal groups produce significantly 

(P<0.05) higher IFN-γ than free DDP (Group 10; Figure 5.10E). Similar to IL-2 

production, IFN-γ levels of DOTAP liposomes when formed in sucrose (Group 1; 

Figure 5.10E) are significantly (P<0.05) higher than the group which formed in PBS 

(Group 2; Figure 5.10E); in contrast, presence of electrolyte in the formulation does not 

influence produced IFN-γ levels in response to DSTAP based liposomes (Group 3 and 

6; Figure 5.10E) and both of the DSTAP formulations show high IFN-γ production near 

to 2000 pg/mL. Con A restimulation produced higher levels of IFN-γ in a range 5000 to 

7000 pg/mL (Figure 5.9E). 

The last studied cytokine was IL-1ß. It is a potent proinflammatory cytokine whose 

production is related to the uptake of particulate adjuvants by dendritic cells (DCs) 

(Henriksen-Lacey et al., 2011b; Sharp et al., 2009); hence, as liposomal vaccines 

promote antigen uptake at the SOI, it would be of interest to investigate the production 

levels of IL-1ß at the injection site. Figure 5.10F shows that not only the liposome 

formulations (Group 1, 2, 3 and 6), but also DDP (Group 10), free subunit antigen 
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(Group 11), free plasmid DNA (Group 12) and alum (Group 13), are able to activate 

dendritic cells to induce the innate immune response; however, the level which is shown 

by liposomal groups is significantly (P<0.05) higher than non-liposomal injected groups 

(Groups 10-13; Figure 5.10F). Results also display that there is no significant difference 

between the liposomal formulations, as they all of them produce high levels of IL-1ß in 

a range between 4000 to 5000 pg/mg of the injection site (Figure 5.10F). 

Considering Th1 cell mediated immune responses, DOPE:DOTAP+Sucrose and 

DOPE:DSTAP+PBS induce the highest cytokine (IL-2 and IFN-γ) levels (Figure 5.10A 

and E). Investigating the effect of electrolytes in the formulation, this does not give any 

convincing conclusion; DOPE:DOTAP incorporating PBS caused significant (P<0.01) 

decrease in the cytokine production level for both IL-2 and IFN-γ. Even though for 

DOPE:DSTAP, the presence of electrolyte in the formulation has led to an increase in 

cytokine production (Figure 5.10A and E). Furthermore, replacing the cationic lipid 

DOTAP with DSTAP caused no notable difference in Th1 response when sucrose was 

used for hydration of the lipid film. In contrast, DOPE:DOTAP+PBS liposomes 

showed significantly (P<0.001) lower IL-2 and IFN-γ production comparing to 

DOPE:DSTAP+PBS (Figure 5.10A and E), showing that DSTAP formulations induce 

high cell mediated immune response without being limited by nature of hydration 

media.  

Alhydrogel formulation is an aluminium salt and is known to be predominate activator 

of Th2 biased immunity (Davidsen et al., 2005). This is clearly shown in the results as 

the level of alhydrogel in IL-5 and IL-10 is comparable with tested liposomes and 

particularly the IL-10 level of alhydrogel significantly higher (P<0.001) than any of the 

four liposomes in this study (Figure 5.10D). However, the level of produced IL-2 and 
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IFN-γ by alum is similar to the naïve group results (Figure 5.10A and E), showing that 

alum is not able to produce cell mediated immune responses.  

Considering humoural immune responses, it is shown that liposomes formulated in 

sucrose give the highest Th2 response, as both DOPE:DOTAP (Group 1; Figure 5.10B 

and D) and DOPE:DSTAP (Group 3; Figure 5.10B and D) formed in sucrose give 100 

pg/mL and 110 pg/mL for IL-5 and IL-10, respectively (Figure 5.10B and D). It is also 

shown that IL-5 and IL-10 production level for DOPE:DOTAP+PBS (Group 2; Figure 

5.10B and D) are significantly (P<0.05) lower than the same formulation hydrated in 

sucrose (Group 1; Figure 5.10B and D). The same trend has been seen for 

DOPE:DSTAP, however, the difference is not significant (Group 3 and 6; Figure 5.10B 

and D).  

From these results, it appears that both DOTAP and DSTAP liposomal vaccines are 

able to induce comparable levels of Th1 and Th2 responses; however, DSTAP 

formulations showed more stability in inducing immune response in both hydration 

media and for all studied cytokines. Previously in section 5.4.1.1., the impact of these 

formulations on antibody production was described and it was concluded that both 

DOTAP and DSTAP formulations show similar IgG and IgG1 production levels due to 

their similar levels of DNA drainage to the local draining lymph nodes at the site of 

injection. The results also showed higher IgG2 production for DSTAP-based vaccines, 

which was as a result of higher transition temperature of DSTAP. With regards to the 

Th1 and Th2 antibody responses, both formulations show similar levels of Th2 

responses and DSTAP liposomes show higher Th1 responses.  Considering the results 

from cytokine study, the results show the same trend as DSTAP-based liposomes with 

higher cellular immune responses compared to DOTAP formulations, while both 
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formulations show similar innate (based on IL-1ß results) and humoural immune 

responses. This shows the higher transition temperature and more rigidity of 

DOPE:DSTAP structure, which caused higher in vitro transfection efficiency for this 

formulation compared to DOTAP liposomes (Section 4.6, Chapter 4 of this thesis), is 

the key factor in higher Th1 immune response. 

Previous studies (Henriksen-Lacey et al., 2011a) have also compared the 

immunogenicity of different cationic lipids and demonstrated that lipids with higher 

transition temperature like DDA and DC-Chol show higher cellular immune response 

than DOTAP, which has a Tc below room temperature, and its bilayer structure is 

fluidic. They suggest that the higher transition temperature caused more antigen 

retention at the site of injection resulting in stronger antigen recall and consequently 

higher IFN-γ production level, which indicates DDA and Dc-chol liposomes, induce 

higher cell mediated responses. In addition, a recent study (Christensen et al., 2012) 

compared saturated DDA to its unsaturated analogue DODA, and results showed more 

antigen retention at the injection site for DDA resulted in higher expression of co-

stimulatory molecules CD40 and CD86 and this led to higher cellular immune response 

for DDA-based liposomes.  

These results are in agreement with the findings of this current study, suggesting a 

similar mechanism caused higher IL-2 and IFN-γ production for saturated DSTAP 

liposomes compared to unsaturated and fluidic DOTAP formulations. Finally, this 

study suggests that bilayer composition has a major role in induced immune response by 

liposomal vaccines. 
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5.4.2.2. Exploring the effect of vesicle morphology on cytokine production levels of 
cationic liposomal vaccines in a heterologous immunisation schedule 

The impact of the liposomal vaccine type (DRV vs SUV) on cytokine production was 

investigated using DOPE:DSTAP. Results (Figure 5.11) show no significant difference 

in producing Th1 response, with both SUV and DRV inducing similar cytokine 

production for IL-2 (Figure 5.11A) and IFN-γ (Figure 5.11E). IL-6 production also 

followed the same trend, although, it is shown that IL-5 and IL-10 production levels of 

SUV formulations are higher than their DRV analogue (Figure 5.11B and D). This 

shows SUV liposomes may be better at inducing humoural immune responses 

compared to DRV liposomal vaccines.  

In vitro transfection results (Section 4.6, Chapter 4) showed significantly (P<0.05) higher 

transfection efficiency for SUV DSTAP based liposomes compared to DRV 

formulations when they formed in the absence of electrolytes. However, biodistribution 

investigations revealed no notable differences between the two types of liposomes 

(Section 5.3.2; Figure 5.3), yet antibody production was reduced when DRV liposomes 

were used (Section 5.4.1.2; Figure 5.6). This could also explain the significantly 

(P<0.05) lower IL-5 levels for DRV liposomes; IL-5 is characteristic of humoural 

responses. A recent study of Milicic et al (Milicic et al., 2012) demonstrated that SUV 

liposomal vaccines of DDA:TDB induced higher IgG levels than DRV formulations. 

This study also demonstrates that SUV liposomes induce stronger CD4+ and CD8+ T 

cell responses as well as antibody production compared to DRV. More activation of 

CD4+ T cells by MHC II class molecules may have caused higher humoural response 

for SUV liposomes, which is in line with the results of this current study and according 

to Carstens et al., it might be due to the smaller vesicle size of the SUV liposomes than 

DRV formulations and consequently higher APC uptake of SUV (Carstens et al., 2011). 
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Figure 5.11: IL-2, -5, -6, -10 and IFN-γ cytokine production from splenocytes (A–E) and IL-1β production 
from excised leg muscle from the SOI (F) derived from mice immunised with SUV DOPE:DSTAP or DRV 
DOPE:DSTAP pDNA-lipoplex or subunit protein liposome formed in sucrose and in heterologous prime 
boost strategy. Splenocytes and muscle from the SOI were obtained 3 weeks post the final immunisation. 
Splenocytes were restimulated for 48 h in the presence of HBsAg (5 µg/mL). Leg muscle was excised, 
digested and homogenised. Cytokines were measured from splenocyte or muscle supernatants using 
sandwich ELISAs. Significance measured by one-way ANOVA and Tukey’s post test, it is shown by 
**p<0.01.  
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5.4.2.3. Studying the impact of heterologous vaccination strategy on cytokine 
production of DOPE:DSTAP liposomal vaccines 

Although both DOTAP and DSTAP based liposomes showed the ability of producing 

high levels of cytokine and inducing both humoural and cell mediated immune 

responses, SUV DOPE:DSTAP promoted higher responses in both hydration media for 

all of the cytokines. Hence DOPE:DSTAP were investigated to compare the cytokine 

responses for prime-boost vaccination (DDP) compared to the homologous 

immunisations of two DNA primes (DD-) or protein boost only (--P) (Figure 5.12).  

As it is shown in figure 5.12, DDP immunisation caused a significantly (P<0.001) 

higher cytokine response in splenocytes compared to prime only immunisation (DD-). 

However, it was slightly different when the heterologous immunisation was compared 

to the homologous boost only (--P) immunisation. In many formulations there was not a 

significant difference between cytokine production levels in response to these 

immunisation strategies. This was not limited to one hydration media and was seen 

with both sucrose and PBS formed liposomes. For IL-2 and IL-6 cytokines the prime-

boost immunisations responses to the DOPE:DSTAP+sucrose are higher than their 

boost immunisation responses, but the difference is not significant (Figure 5.12A and C, 

orange bars). Similar results have been seen in IL-5, IL-6 and IL-10 for 

DOPE:DSTAP+PBS (Figure 5.12B,C and D, dark blue bars). However, IFN-γ 

responses to both DOPE:DSTAP liposomes that are formulated in sucrose or PBS show 

the prime boost immunisation induces significantly higher (P<0.05) cytokine production 

than boost only immunisation (Figure 5.12E). Overall, considering the Th1 and Th2 

responses, the results show both cellular and humoural responses were enhanced by the 

effect of heterologous immunisation. 
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Tissue excised from the injection site of mice immunised with three different 

immunisation strategies show no significant difference between the vaccination 

regimens in both hydration media (Figure 5.12F), as all of the responses were near to 

(5000 ng/mg tissue) suggesting that any kind of liposomal immunisation has the ability 

to stimulate pro-inflammatory responses. 

 

Figure 5.12: IL-2, IL-5, IL-6, IL-10 and IFN-γ cytokine production from splenocytes (A–E) and IL-1β 
production from excised leg muscle from the SOI (F) derived from mice immunised with SUV 
DOPE:DSTAP pDNA-lipoplex or subunit protein liposome formed in sucrose (orange bars) or PBS (dark 
blue bars). Immunisation strategies varied between heterologous prime-boost, homologous pDNA prime 
and homologous protein boost. Splenocytes and muscle from the SOI were obtained 3 weeks post the final 
immunisation. Splenocytes were restimulated for 48 h in the presence of HBsAg (5 µg/mL). Leg muscle 
was excised, digested and homogenised. Cytokines were measured from splenocyte or muscle supernatants 
using sandwich ELISAs. Significance measured by one-way ANOVA and Tukey’s post test, it is shown by 
*p<0.05, **p<0.01 and ***P<0.001. 
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Taken together, this data (Figure 5.12) suggests that the subunit protein vaccination (--P) 

provides immunisation responses similar to the produced levels by prime-boost 

vaccination composed of two DNA vaccines and one subunit protein vaccine (DDP). 

A similar study by Yang et al (Yang et al., 2008), showed prime-boost immunisation 

induces higher humoural immune responses and also increases the CD8+ T cell activity. 

This caused an increased IFN-γ production suggesting that heterologous immunisation 

can induce stronger cell mediated immune responses. Their results show the synergic 

effect of prime-boost immunisation has caused a significantly higher Th1 and Th2 

responses compared to homologous immunisations; however, in this current study, 

heterologous immunisation of DOPE:DSTAP vaccines did not produce significantly 

higher response than single i.m injection of DOPE:DSTAP-subunit.  Comparing these 

two studies shows the only major difference is in the route of the administration of 

protein boost immunisation. Yang et al. (2008) study included 2 i.m injection of DNA-

liposomes and a single i.n. injection of boost HBsAg; however in this study all the 

injections were applied as an i.m injection. This indicates the higher synergic effect of 

heterologous immunisation could be as a result of mucosal immune response, which 

was activated by the i.n. injection.  

5.4.3. Splenocyte proliferation 

In addition to the cytokine study, liposomal vaccines were investigated for their ability 

to initiate antigen specific spleen cell proliferation (Figure 5.13-5.16). Splenocytes were 

restimulated with 0.05, 0.5 and 5 µg/mL HBsAg antigen, in addition to the positive 

control stimuli Con A (5 µg/mL). Figure 5.13 shows the proliferative ability of 

splenocytes of all immunised groups in response to Con A; all the groups showed 
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response to Con A as the 3H-thymidine uptake was shown to be between 30000 to 40000 

CPM (Figure 5.13).  

 

 

Figure 5.13: Splenocyte proliferation of each immunisation group and naïve group in response to 
stimulation with 5 µg/mL Con A. Splenocytes were derived on day 49 of the study and restimulated ex vivo 
with Con A as a positive control. After a further 24 hrs cells were harvested and the proportion of 3H-
thymidine incorporated in the cells measured using standard scintillation counting. 

Studying the splenocytes, when exposed to HBsAg antigen, shows that increasing the 

amount of HBsAg concentration increased the splenocyte proliferation in all of the 

immunised groups tested with the exception of groups 10, 11, 12 and 14 (Figure 5.14).  
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Figure 5.14: Splenocyte proliferation of DOPE:DOTAP and DOPE:DSTAP both hydrated in sucrose or 
PBS and injected under heterologous regimen, Alum, free antigen, free pDNA and naïve group. 
Splenocytes were derived on day 49 of the study and restimulated ex vivo with range of 0 to 5 µg/mL HBsAg 
.After a further 24 hrs cells were harvested and the proportion of 3H-thymidine incorporated in the cells 
measured using standard scintillation counting.  Significance measured by one-way ANOVA and Tukey’s 
post test, it is shown by **p<0.01. 

Comparing to the naïve group, all other groups show a significantly (P<0.05) higher 

proliferation for all concentrations of HBsAg. Considering the effect of presence of 

electrolytes in the formulation, results show both liposomes where formulated with PBS 

showed lower proliferation compared to the liposomes hydrated in sucrose (Groups 2 vs 

1 and 4 vs 3 respectively; Figure 5.14). It is also shown in antigen concentrations below 

5 µg/mL there is no significant difference in proliferation of mice immunised with 

DOTAP or DSTAP liposomes and the only notable change is in 5 µg/mL concentration 

of HBsAg, where mice immunised with DOPE:DSTAP+sucrose (Group 3) show a 

significantly (P<0.05) higher splenocyte proliferation than any other formulation 

(Figure 5.14). In the mice immunised with alum (Group 13; Figure 5.14), proliferation 
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was shown to be similar to mice receiving the liposome formulations and higher than 

free antigens, with only the group which received DOPE:DSTAP/sucrose (Group 3; 

Figure 5.14) giving significantly ( p<0.05) higher responses. 

Figure 5.15 shows the comparison between SUV and DRV liposomes of DOPE:DSTAP 

in splenocyte proliferation and it demonstrates that SUV liposomes show significantly 

(P<0.05) higher cell proliferation than DRV liposomes in all of HBsAg concentrations 

(Figure 5.15).  

 

 
Figure 5.15: Comparing splenocyte proliferation of SUV DOPE:DSTAP and DRV DOPE:DSTAP both 
formed in sucrose. Splenocytes were derived on day 49 of the study and restimulated ex vivo with range of 0 
to 5 µg/mL HBsAg .After a further 24 hrs cells were harvested and the proportion of 3H-thymidine 
incorporated in the cells measured using standard scintillation counting.  Significance measured by one-way 
ANOVA and Tukey’s post test, it is shown by **p<0.01. 

 



Chapter 5: In Vivo Studies on DNA Vaccine Formulations                                                              D 

 

182 

Comparing the impact of different immunisation strategies on splenocyte proliferation 

shows the heterologous prime-boost immunisation of DOPE:DSTAP+sucrose has the 

highest proliferation level, which is significantly higher (P<0.001) than homologous 

immunisations at the 5 µg/mL concentration of HBsAg (Figure 5.16). However, there is 

no significant difference between heterologous and homologous immunisations of 

DOPE:DSTAP+PBS.  

 

Figure 5.16: Comparing splenocyte proliferation of heterologous prime boost immunisation to homologous 
pDNA prime and protein boost for DOPE:DSTAP+Sucrose and DOPE:DSTAP+PBS. Splenocytes were 
derived on day 49 of the study and restimulated ex vivo with range of 0 to 5 µg/mL HBsAg .After a further 
24 hrs cells were harvested and the proportion of 3H-thymidine incorporated in the cells measured using 
standard scintillation counting.  Significance measured by one-way ANOVA and Tukey’s post test, it is 
shown by ***p<0.001. 
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Taken together, these results show that, apart from DSTAP formulations when made in 

sucrose, other liposomal vaccines show a similar splenocyte proliferation rate regardless 

of their cationic lipid, hydration media or immunisation strategy. 

5.5. Conclusion 

The studies in this chapter aimed to investigate the ability of liposomal formulations as 

possible DNA vaccine delivery systems and to consider the impact of their 

physicochemical properties on their immunogenicity. Furthermore, induced immune 

responses resulting from a heterologous immunisation schedule were compared to two 

different homologous vaccinations. 

In general, all liposomal formulations tested showed significantly higher cellular and 

humoural immune response compared to the all free antigens and naïve group, as 

expected (Gregoriadis, 1990; Gregoriadis et al., 1997; Henriksen-Lacey et al., 2011c; 

Morrey et al., 2011; Perrie et al., 2001; Yang et al., 2008). Although Alum, an old and 

well-known adjuvant for subunit protein vaccines, showed comparable humoural 

responses to the liposomal systems, it failed to produce cell mediated responses, as 

expected (Brunel et al., 1999; Davidsen et al., 2005; Rosenkrands et al., 2005).  

Overall, in terms of immune responses promoted by the tested liposomal formulations, 

DOPE:DSTAP, when formed in sucrose and injected under heterologous prime-boost 

(DDP) immunisation regimen, showed the highest response. DOPE:DSTAP hydrated 

in PBS showed similar results, with comparable cellular immune responses but lower 

humoural responses. The higher immune responses of DSTAP-based liposomes can be 

related to the higher transition temperature of cationic lipid of DSTAP, which makes 

the bilayer more rigid, compared to the more fluidic DOTAP-based liposomes. 
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Biodistribution study showed that having a more rigid bilayer caused stronger depot 

effect at the site of injection, therefore promoting a more sustained drainage into the 

local draining lymph nodes where dendritic cells (DCs) interact with the antigen and 

present the antigens to the MHC class II molecules and T cells, which result in 

induction of the humoural and cell mediated immune responses. Several studies have 

shown the same trend, showing the effect of bilayer composition on enhancement of 

immune response (Christensen et al., 2012; Henriksen-Lacey et al., 2011a).  

Investigating the impact of incorporating electrolytes in the formulation showed 

formulations which were hydrated in sucrose induce stronger immune responses 

compared to the formulations made in PBS. Characterisation studies showed the 

presence of salt in the liposome formulation can cause aggregation, which may hinder 

uptake of the liposomal-antigen by DCs infiltrating the site of injection or residing at the 

local lymph nodes, which leads to the reduction in immune response. In agreement to 

this result, Henriksen-Lacey et al. (2011b) compared the effect of vesicle size of the 

liposomes on immune response and for this reason formulated DDA:TDB liposomes in 

PBS to reach to an extra large vesicle size. The study demonstrated a poor immune 

response for the formulation when formed in PBS compared to other formulations and 

suggested that the unexpectedly poor immunogenicity of this formulation may not be 

solely size induced, but could be as a result of presence of salt. However, another study 

(Yan and Huang, 2009) has shown presence of small amount of salt in the formulation 

enhances the development of immune response by the liposomes. Therefore, the ability 

to exploit electrolytes to enhance immunes responses remains unclear.  

Comparing SUV and DRV of DOPE:DSTAP formulated in sucrose showed that, in 

terms of humoural immune responses, SUV formulations induce significantly stronger 
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total IgG and IgG1 responses for SUV compared to DRV. However, results 

demonstrate no significant difference between SUV and DRV formulation in enhancing 

cellular mediated responses, where amongst all the cytokines tested, only IL-5 

production was shown to be significantly higher for SUV, which could be due to the 

smaller vesicle size of SUV. This is in line with the study (Carstens et al., 2011) that 

shows smaller liposomal DNA vaccines with low depot effect induce strong humoural 

immune response, suggesting that liposomal DNA vaccines do not benefit from strong 

depot effect and other characteristic parameters of the formulation can have an 

important role in activation of immune system. It has been established through in vitro 

studies that the optimal size for APC uptake is below 500 nm (Foged et al., 2005). 

Moreover, Singh et al. (2000) have demonstrated an enhanced immunogenicity for 

particulate-based DNA vaccine with the size of 300 nm over 1 µm size particles. 

Furthermore, a recent (Milicic et al., 2012) study compared three different types of 

liposomes in terms of humoural and cellular immune responses; these studies showed 

that SUV liposomes of DDA:TDB complexed with OVA induce higher IgG production 

and consequently stronger humoural immune response compared to MLV and DRV 

types of the formulation. In contrast, it is shown by Kaur et al. (2012a, b) that DRV 

liposomal vaccines of DDA:TDB- Ag85B-ESAT-6 provide stronger immunity 

compared to SUV liposomes. This suggests that the chosen antigen in the formulation 

may also have an impact. 

Finally, to study the impact of different immunisation strategies on immune response, 

heterologous prime-boost and (DDP) immunisation for DOPE:DSTAP, formed in both 

hydration media has compared to two homologous vaccination regimens including 

prime DNA(DD-) and boost (--P) regimens. The results from these studies illustrate 
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that, compared to the homologous DNA-liposome regimen, heterologous immunisation 

can stimulate significantly higher antibody and cytokine production in response to 

HBsAg. Showing a synergistic immune response by the heterologous regimen implies 

that DDP strategy provides higher immune responses than single i.m injection of 

liposomal subunit antigen (--P); however, the difference between two strategies is not 

notably different and potentially a PPP regimen would give higher responses. This 

indicates that, although numerous studies (Carstens et al., 2011; Liu, 2011; Lu, 2009; 

O'Hagan et al., 2004; Otten et al., 2005; Stambas et al., 2005; Yang et al., 2008) show 

promising results for heterologous immunisation, more studies are needed to improve 

this technology to a level that justifies the cost of this type of vaccination. 
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6.1. Introduction 

To date, there are at least eight liposome-based adjuvant formulations which are 

approved or going through clinical trial phases (Watson et al., 2012): for example, there 

are virosomes such as Infexal® V (Herzog et al., 2009) and Epaxal® (Bovier, 2008), 

which are in the market, and  DNA vaccines like Vaxfectin (Sullivan et al., 2010; 

Veselenak et al., 2012) and JVRS-100 (Dong et al., 2012), which are in Phase II clinical 

trials. Among the subunit protein vaccines, there is a liposome formulation, which is 

composed of cationic lipid dimethyl dioctadecyl ammonium (DDA) and the 

immunomodulating glycolipid trehalose dibehenate (TDB). DDA:TDB (known as 

Cationic Adjuvant Formulation 01 or CAF01) has recently completed phase I clinical 

trials in combination with the tuberculosis (TB) vaccine antigen candidate, Ag85B-

ESAT-6 (ClinicalTrials.gov, 2012). This formulation has shown to give strong Th1 

responses (Henriksen-Lacey et al., 2010b; Henriksen-Lacey et al., 2011c) as required for 

TB immunisation and its mechanism of action has been extensively investigated; for 

example, recent studies on DDA:TDB formulations have revealed that immunisation of 

this formulation produces a strong depot effect at the injection site and induces a high 

cellular and humoural immune responses against Ag85B-ESAT-6 (Davidsen et al., 

2005; Henriksen-Lacey et al., 2010b; Holten-Andersen et al., 2004).  

DDA itself has long been recognised to have adjuvant properties (Gall, 1966) and has 

been shown to enhance both cellular and humoural responses for a range of antigens 

(Vangala et al., 2007). DDA is a quaternary ammonium lipid with two saturated 18-

carbon hydrophobic tails (Figure 6.1A). The adjuvant action of DDA based liposomes 

has been described to be related to the ability of DDA to protect and deliver antigen to 

the antigen presenting cells (APCs), and to form the depot effect at the site of injection, 

causing the antigens to retain for a prolonged time period and hence enhance antigen 
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uptake and subsequent presentation of antigen material to T cells (Korsholm et al., 

2007).  

DDA-based liposomes, like other cationic liposomes, are able to convert the antigens 

into a particulate form and thus enhance their immunogenicity. This is due to the 

cationic surface charge of DDA and its ability to electrostatically bind anionic antigens 

(Christensen et al., 2009; Hilgers et al., 1985) and recent studies have confirmed this; by 

replacing the cationic DDA with the neutral lipid 1,2-distearoyl-sn-glycero-3-

phosphocholine (DSPC), the biodistribution behaviour of the vaccine adjuvant was 

changed and dramatically decreased immune responses (Henriksen-Lacey et al., 2010c; 

Kaur et al., 2011). 

 

Figure 6.1: Chemical structure of A) the cationic lipid DDA and B) the immunostimulant TDB. 

TDB (Figure 6.1B), the second component of DDA:TDB liposomal adjuvant, is a 

synthetic analogue of trehalose 6,6’-dimycolate (TDM), which is known as cord factor 

and is an immunostimulatory component in mycobacterial cell wall (Lemaire et al., 

1986; Pimm et al., 1979). The advantage of TDB over TDM is that it is less toxic due to 
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its shorter fatty acid chains, whilst it shows the same immunostimulatory effect as TDM 

(Olds et al., 1980; Pimm et al., 1979).  

As a liposomal adjuvant system, DDA:TDB is able to initiate intracellular activation 

pathways. Amongst the different classes of signals initiating immune responses, it has 

been reported that liposomes may enhance signal 1 by providing effective delivery of 

antigen to secondary lymphoid organs (Perrie et al., 2008; Zinkernagel et al., 1997). 

Given the high depot effect of DDA:TDB at the injection site, and the consequent slow 

draining of the incorporated antigen to the local lymph node (Henriksen-Lacey et al., 

2010b), suggests that DDA:TDB is able to induce immune responses through signal 1 of 

the signalling pathways. It has also been shown that induction of immune responses 

depends upon antigens being available in lymphoid organs, since if an antigen does not 

reach lymphoid organs it is ignored by immune cells (Zinkernagel et al., 1997). Having 

antigen in the T cell region of lymph nodes can stimulate Toll-like receptors (TLRs), 

which activate important mediators of innate and adaptive immunity (Perrie et al., 

2008). TLRs transduce signals via the intracellular MyD88 pathways and enhance 

cellular (Th1) and humoural (Th2) immune responses (Christensen et al., 2009; Milicic 

et al., 2012).  

DDA:TDB was first introduced in 2004 by Holten-Andersen et al. as an efficient 

adjuvant for TB subunit vaccines (Holten-Andersen et al., 2004), initiating high IFN-γ 

response considered to be the key cytokine for induction of a Th1 immune response. 

Since then, DDA:TDB has been extensively studied and optimised with regards to the 

ratio of components, adjuvant dose and stability of the formulation (Davidsen et al., 

2005), resulting in the production of a MLV of DDA:TDB with the weight ratio of 5:1. 

Differential scanning calorimetry (DSC) studies revealed that during incorporation of 
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TDB into DDA vesicles, the acyl chains of the TDB might be incorporated into the 

hydrophobic core of the DDA lipid bilayers, which makes the DDA bilayers more stable 

(Davidsen et al., 2005).  

In a comparative study, the ability of DDA:TDB as a protein subunit vaccine for HBV 

was studied by incorporating Hepatitis B surface antigen (HBsAg) into the liposome 

formulation. Similar to DDA:TDB with H1, the HB vaccine produced high levels of 

Th1 and Th2 responses (Vangala et al., 2007; Vangala et al., 2006). These previous 

studies have been performed using a homologous immunisation regimen. However, 

given previous reports (Carstens et al., 2011; Yang et al., 2008) and the results from 

Chapter 5, which suggest that by applying heterologous prime-boost immunisation, 

using plasmid DNA and protein subunit of the same antigen, enhances both cellular and 

humoural immune responses, the purpose of this current study was to consider the use 

of DDA:TDB in a prime-boost immunisation strategy.  

It has been mentioned earlier that DDA as a cationic lipid can be used as a liposomal 

adjuvant system (Gall, 1966). In addition, there are several cationic lipids such as 

DOTAP and DC-cholesterol, with immunogenic properties which have been used in 

liposomal vaccines (Gregoriadis et al., 2002; Henriksen-Lacey et al., 2011a; McNeil et 

al., 2010; Perrie et al., 2001; Perrie et al., 2002). These studies and those in chapters 3 to 

5, have revealed that, to make an efficient liposomal vaccine, an equimolar ratio of 

helper lipid such as DOPE or cholesterol is needed to be incorporated into the cationic 

lipid. Hence, in this current study, in addition to DDA:TDB, equimolar ratio of 

fusogenic lipid DOPE is added to the DDA to make cationic liposomes of DDA:DOPE.  

Therefore, the aim of this chapter was to evaluate the immunological efficiency of DDA 
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based liposomes as a DNA vaccine and in a heterologous prime boost immunisation 

regimen. To achieve this aim, the overall objectives of the work were to: 

• study the characteristics of DDA:TDB and DDA:DOPE as a DNA lipoplex 

formulation. 

• evaluate the in vitro transfection efficiency of the formulations. 

• investigate the biodistribution of liposomes and their associated DNA and 

attempt to correlate these to their physicochemical properties and 

immunological function. 

• study the immunological efficiencies of the liposomes in a heterologous prime 

boost immunisation study.  

6.2. Molecular packaging of the lipids 

Monolayer studies of DDA:DOPE and DDA:TDB were first investigated to consider 

potential molecular interactions between the two lipids in the mixtures. Previous studies 

have shown that monolayer studies can explain the molecular packaging of the lipids 

and its effect on characteristic properties of the liposomes, as these results could be 

translated into liposomal systems (Section 3.3, Chapter 3).  

Therefore, in this study monolayers of single and mixed lipids were investigated for their 

interactions within the monolayer in the aqueous sub-phase. Pressure-area (π-A) 

isotherms are shown in Figure 6.2. Studying the monolayer of TDB was not possible as 

it is a glycolipid and does not make monolayers on the air/water interface. The collapse 

pressure and extrapolated (to zero pressure) area per molecule for each isotherm are 

shown in Table 6.1. Monolayers of single lipids of DOPE and DDA were studied on 

Langmuir-Blodgett trough individually. Figure 6.2 shows the isotherm of the DOPE 
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monolayer collapses at 42.3 mN/m at a mean molecular area of 43.4 A2. The 

extrapolated area of DOPE monolayer at zero pressure is about 72 A2/Molecule (Table 

6.1). The DDA monolayer seems to have similar molecular packaging arrangements to 

DOPE as its collapse pressure is ≈44 mN/m. The mean molecular area for DDA 

monolayer is slightly smaller than DOPE monolayer (≈ 37 A2), as is its extrapolated 

area per molecule (64 A2/Molecule; Table 6.1).  

 

Figure 6.2: Compression isotherm studies of the single and mixture of lipid monolayers of DDA:DOPE 
and DDA:TDB in deionised water at 20° C. Results are expressed as the means of three experiments. SD 
has not shown for clarity. 

Table 6.1: The experimental extrapolated area and area compressibility of mixed and single monolayers at 
the air/water interface at 20° C. Results denote mean±SD, n=3 for three independently prepared batches. 

Lipid	   Extrapolated	  Area	  
(A2/Molecule)	  

Ideal	  Extrapolated	  
Area	  (A2/Molecule)	  

Deviation	  from	  
Ideality	  (%)	  

Collapse	  Pressure	  
(mN/m)	  

DOPE	   71.9	  ±	  6.0	   -‐	   -‐	   42.3	  ±	  0.4	  

DDA	   63.8	  ±	  4.7	   -‐	   -‐	   43.9	  ±	  0.6	  

DDA:DOPE	   67.4	  ±	  5.1	   67.9	  	   -‐	  0.7	   42.8	  ±	  0.8	  

DDA:TDB	   114.3	  ±	  7.6	   -‐	   -‐	   46.5	  ±	  1.6	  
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Results show that there is no significant difference between the ideal (67.8 A2/Molecule; 

Table 6.1) and experimental areas for the DDA:DOPE mixture (67.4 A2/Molecule; 

Table 6.1). Deviation from the ideality can be used to monitor molecular interactions 

between the molecules in the mixed monolayers such as a condensing effect, as is seen 

with some phospholipids and cholesterol (Ali et al., 2010).  

The mixture of DDA:TDB monolayer (5:1) w/w was also studied to investigate the 

effect of addition of TDB on DDA monolayer characteristics. As it is shown in Figure 

6.2, the DDA monolayer isotherm shows a transition from liquid-expanded to liquid-

condensed phase. This transition has disappeared in DDA:TDB monolayer. The results 

also show that the addition of TDB increases the collapse pressure (Table 6.1), and the 

extrapolated area at zero pressure for DDA:TDB monolayer  compared with the DDA 

monolayer (114 vs 64 A2/Molecule respectively), suggesting the overall area per 

molecule has increased, which maybe indicative of enhanced liposome stability as 

previously reported (Christensen et al., 2008). Increasing the collapse pressure of DDA 

monolayer by incorporation of TDB suggests that the trehalose head group of TDB has 

stronger interactions with water molecules than the DDA quaternary ammonium head 

groups. Therefore, it can be predicted that incorporation of TDB into the membrane of 

DDA liposomes will increase the hydration of the membrane and prevent dehydration 

of the quaternary ammonium head groups. This decreases charge repulsion between the 

DDA molecules in the bilayer, and reduces aggregation of the liposomes so TDB 

stabilises the DDA liposomes (Christensen et al., 2008). 

6.3. Physicochemical characterisations of the liposomes 

Physicochemical characterisations of pDNA lipoplexes of DDA:DOPE and DDA:TDB 

were studied in terms of their vesicle size, surface charge and antigen loading (Figure 
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6.3). Similar to the previously studied DOPE:DOTAP and DOPE:DSTAP formulations 

(Chapter 3), DDA:DOPE and DDA:TDB lipoplexes vesicle size increased with 

increasing DNA concentration (Figure 6.3A). This is due to the aggregation of the 

system, which occurs as a result of bridging effect (Ciani et al., 2004). The vesicle size 

for DDA:DOPE lipoplexes increased from 60 to 600 nm as the DNA concentration 

increased (Figure 6.3A) and these systems were significantly (P<0.05) smaller than 

DDA:TDB lipoplexes equivalents, which increased in vesicle size from 200 to 800 nm 

(Figure 6.3A). The difference in size between DDA:TDB and DDA:DOPE may be 

indicative of differences in molecular packaging of the different lipids particularly given 

that the DDA:TDB were shown to have more rigid monolayers than DDA:DOPE 

(Table 6.1 and Figure 6.2). Similarly Zantl et al., (Zantl et al., 1999) also showed that 

lipoplexes formed from saturated and more rigid bilayers resulted in larger vesicle sizes 

for the lipoplexes. Furthermore, it is known that different structures exist for the cationic 

liposome-DNA complex including lamellar and inverted hexagonal structures (Ulrich, 

2002) and it is believed that complexation of cationic lipids in the presence of a helper 

lipid such as DOPE or cholesterol, with DNA would be changed from lamellar to the 

inverted hexagonal phase, which is preferable for transfection (McNeil and Perrie, 2006) 

and increases in the fluidity of the bilayer would avoid formation of aggregations 

(Ulrich, 2002). 

Results showed that the zeta potential of any of the studied formulations was constant 

for DNA content of 0 to 200	  µg and was between 60 to 70 mV for both liposomes, but it 

reduced significantly (P<0.05) to ≈50 mV for both DDA:DOPE and DDA:TDB 

lipoplexes at the highest DNA concentration of 1600	  µg, showing that lipid/DNA +/- 

ratio affects zeta potential of the lipoplexes (Figure 6.3B). DNA association of 
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Figure 6.3. A) demonstrates vesicle size and polydispersity index, B) represents zeta potential and C) shows 
DNA association within SUV lipoplexes of DDA:DOPE and DDA:TDB. Results denote mean ± SD, for 
three independently prepared batches. 
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lipoplexes were similar to each other around 90% and was independent from vesicle 

size, as would be expected for such cationic systems (Figure 6.3C). 

6.4. The ability of DDA-based lipoplexes to protect DNA 
from degradation. 

To investigate the DNA protection offered by DDA-based SUV lipoplexes, 

DDA:DOPE and DDA:TDB complexed with DNA (2µg) were subjected to gel 

electrophoresis in the presence of SDS  at 1.2 % concentration as described in sections 

2.7 and 4.2. 

Figure 6.4A shows that, on gel electrophoresis of DDA:DOPE (1) and DDA:TDB (2) in 

the absence of anionic molecules of SDS, DNA remains within the well of the gel, 

bound to the cationic liposomes. In contrast, following electrophoresis in the presence of 

SDS, displaced DNA is seen to migrate towards the cathode (Figure 6.4B). Result 

showed that there is no notable difference in DNA retention between both formulations 

in either 6.4A or B. Having most of DNA displaced for both DDA:DOPE and 

DDA:TDB in the presence of SDS suggests that most of the SUV associated DNA is 

adsorbed on the surface of the lipoplexes and that replacing DOPE with TDB had no 

notable effect on DNA displacement. This confirms that it is choice of cationic lipid, 

and not the presence of the helper lipid, which is the key factor for DNA release. This is 

in line with the results shown in chapter 4 with DOTAP vs DSTAP and in previous 

studies (Perrie et al., 2004), where replacing DOTAP with DC-choelsterol changed the 

DNA displacement profiles.  

Also similar to section 4.3, to investigate the ability of DDA-based lipoplexes to protect 

the plasmid DNA from degradation by digestive enzymes, plasmid DNA was incubated 
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with DNase I as either naked (Figure 6.5A-D, lane ‘C’) or loaded with cationic 

liposomes (Figure 6.5A-D, lane 1-2). Figure 6.5 shows naked DNA, which was not 

exposed to the DNase I (Figure 6.5A and B, lane ‘C’), and the digested naked DNA 

(Figure 6.5C and D, lane ‘C’). The band of migrated anionic DNA towards the cathode 

is shown for undigested naked DNA in the absence (Figure 6.5A, lane ‘C’) and presence 

of SDS (Figure 6.5B, lane ’C’). However, when naked DNA exposed to the DNase I, 

there is no visible band on the agarose gel (Figure 6.5C and D, lance ‘C’) showing the 

naked DNA was digested by DNase I.  

 

Figure 6.4: A) Gel electrophoresis of SUV lipoplexes of 1)DDA:DOPE, and 2)DDA:TDB. Lane (L) 
represents the DNA ladder and (C) shows the naked DNA. B) As in A, but in the presence of 1.2 % SDS.  

For both liposome formulations tested in the absence of SDS (Figure 6.5A, lane 1,2 and 

Figure 6.5C, lane 1,2), DNA migration is not seen, as the plasmid DNA remains 

associated with the liposomes and is retained within the wells of the gel. In the presence 

of the competitive anionic molecules of SDS, the liposomes can be disrupted and the 

plasmid DNA released (Figure 6.5B, lane1,2). With the liposomes that were exposed to 
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DNase I (Figure 6.5D, lane 1,2), plasmid DNA can still be seen, demonstrating that 

both DDA:DOPE and DDA:TDB were able to protect the DNA from degradation 

contrary to the naked DNA, which is rapidly digested.  

 

Figure 6.5: Gel electrophoresis of free and liposome entrapped plasmid DNA before and after exposure to 
digestive enzyme, DNase I. A) Gel electrophoresis of 1) SUV DDA:DOPE, 2) SUV DDA:TDB before 
exposure to DNase I with no SDS, B) same as A but in the presence of SDS, C) same as A but after 
exposure to DNase I with no SDS, D) Same as C but in the presence of SDS. Lane (L) represents the DNA 
ladder and lane (C) represents naked DNA. 

6.5. In vitro DNA release 

The release of DNA from DDA:DOPE and DDA:TDB was investigated in PBS, pH 

7.4, 37 °C. As it is shown in Figure 6.6, there is no significant difference in the DNA 
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release rate between the formulations; and similar to the SUV lipoplexes investigated in 

Chapter 4, there is a burst release after 4 hours, which is 20% of total DNA entrapment 

(Figure 6.6).  After 24 hours the DNA release increased to 30%, and to 40% after 48 

hours again with no significant difference between the formulations. From this point, 

the release rate becomes slower, as after 4 days the release rate for both of the lipoplexes 

were 45% and finally the total DNA release for DDA:DOPE and DDA:TDB reached to 

≈ 55% after 8 days (Figure 6.6).  

 

Figure 6.6. DNA release of SUV lipoplexes of DDA:DOPE and DDA:TDB in PBS, pH 7.4 and at 37 °C at 
time points of 2, 4, 24, 48, 96 and 192 hours. Results represent percentage release initially loaded DNA 
expressed as mean±SD, for three independently prepared batches. 

The similarity in release profiles again demonstrates that DDA has the main role in the 

DNA release behaviour, as the electrostatic interactions between anionic DNA and 

cationic DDA is the main interaction involved in complex formation. The presence of 
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DOPE vs TDB makes no impact on the measured characteristics, with the formulations 

having similar zeta potentials (Figure 6.3B), DNA association (Figure 6.3C) and similar 

results for gel electrophoresis studies (Figure 6.4). 

6.6. Studying the in vitro transfection efficiency of DDA-
based lipoplexes 

To investigate the transfection efficacy of the two formulations, the ability of the 

systems to transfect COS-7 cells with plasmid DNA encoding for luciferase was 

measured and compared to the marketed Lipofectin™ which is made of 

DOPE:DOTMA (Felgner et al., 1987) as a control.  In addition, cell viability was 

measured using the MTS assay. 

Cytotoxicity studies show that cell viability was significantly lower (P<0.05) after 

incubation with the DDA:DOPE formulations compared to cells incubated with 

plasmid DNA alone (Figure 6.7A). This is in line with a previous study performed by 

McNeil et al (2010), showing similar results for DDA:DOPE. However, this did not 

translate into transfection efficacy; the DDA:DOPE formulation was able to promote 

transfection, at levels similar to Lipofection, however, DDA:TDB, whilst having less 

impact on cell viability, did not promote transfection (Figure 6.7B).  

Previous studies showed that having cationic charge on the surface of the liposome 

might not be sufficient to initiate high transfection and other parameters might be 

involved on transfection efficacy of the cationic liposomes (McNeil et al., 2010; 

Ramezani et al., 2009). These present results also confirm this, although DDA is a 

cationic lipid, when combined with TDB, the cationic SUV were unable to promote 



Chapter 6: DDA-based DNA Vaccine Formulations: From Characterisation to In Vitro & In Vivo Studies D 

 

202 

transfection, despite no measured difference in commonly studied physico-chemical 

characteristics. 

 

Figure 6.7. A) Relative cell viability of cationic liposomes. B) Comparison of transfection efficiency of 
cationic liposomes. All results denote mean±SD, for three independently prepared batches.  

Clearly, although studies have demonstrated that DDA:TDB is a promising vaccine 

adjuvant for subunit vaccines and can promote cellular uptake (Henriksen-Lacey et al., 

2011b), it is not an ideal transfection reagent with low luciferase activity of 30% (Figure 

6.7B). Comparing DDA:TDB and DOPE:DDA suggests the effect of helper lipid 

DOPE is required to enhance the transfection efficiency of DDA. Felgner et al., in 1987 

demonstrated that transfection activity of DOTMA increases when is formulated with 

DOPE instead of DOPC (Felgner et al., 1987) and it has been proposed that DOPE has 

the ability of promoting the transition from lamellar phase to an inverted hexagonal 

phase, as the inverted cone shaped structure of DOPE promotes the conversion of the 

lamellar lipoplexes phase into a non-lamellar structure. It has also been suggested that 

after endosomal uptake of the lipoplexes, the presence of DOPE in the formulation 

causes destabilisation of endosomal membrane leading to entrance of free DNA to the 

cytosol (Ciani et al., 2004; Farhood et al., 1995; McNeil et al., 2010). This might explain 

higher transfection efficacy of DOPE:DDA comparing to DDA:TDB.  
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6.7. Biodistribution studies: Vaccine localisation after 
intramuscular immunisation.  

Previous studies reveal that DDA-based subunit vaccines are able to form a high depot 

effect at the injection site (Henriksen-Lacey et al., 2010b), which leads to the prolonged 

and sustained presence of the antigen at the local draining lymph nodes. This is shown 

to be effective for initiating the immune responses, as more antigens will be exposed to 

the APCs and as a result TLRs enhance Th1 and Th2 immune responses (Henriksen-

Lacey et al., 2010b). 

Therefore, to investigate the depot formation abilities of DDA-based DNA vaccines, the 

concentration of the liposomal carrier and the DNA was measured at the site of 

injection, the local draining lymph node (PLN), the liver, spleen, kidney and lungs using 

a dual radiolabelling method (Henriksen-Lacey et al., 2010a). Similar to the results of 

chapter 4 for DOTAP and DSTAP DNA vaccines, only injection site and PLN showed 

detectable levels of lipid and DNA (Figure 6.8) and other organs results were negligible 

(and therefore data not shown).  

DNA associated with both the DDA-formulations, gave enhanced retention at the 

injection site, with approximately 40 % to 60% of the liposome-associated DNA 

remaining at the injection site after 24 h for DDA:DOPE and DDA:TDB, with no 

significant difference (Figure 6.8A). Over time the amount of DNA retained at the 

injection site decreased, and after 8 days levels had fallen to approximately half of those 

on day 1. However, the levels of DNA retained at the injection site was still significantly 

(P<0.05) higher than naked DNA (Figure 6.8A). In terms of lipid retention, a similar 

trend is seen for both formulations, with no significant difference between DDA:DOPE 

and DDA:TDB at each of the time points measured (Figure 6.8A). 
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The distribution of vaccine components to the draining PLN is shown in Figure 6.8B. 

Results show that the amount of detectable DNA and lipid for both formulations at the 

PLN increased over the time. The retained DNA at the PLN on day 1 for the lipoplex 

formulations was less than 0.003% and this amount increased to about 0.005% by day 8 

(Figure 6.8B).  

Overall the retention of the vaccine components at the injection site and PLN did not 

show any significant difference between the two DDA-based liposome formulations 

(Figure 6.8). This suggests that the presence of DOPE vs TDB has no impact on the 

biodistribution of the formulations, which could be an outcome of their similar charge 

and antigen retention. Indeed, previous studies considering DDA:TDB formulations 

suggest that the vesicle size of these highly cationic vesicles made no difference to their 

biodistribution and the primary driving factor for clearance rates is the charge of the 

vesicles (Henriksen-Lacey et al., 2011b). Using pontamine blue as a tracker for 

monocyte influx (Carstens et al., 2011; Henriksen-Lacey et al., 2010b; Tilney, 1971a), 

Figure 6.9 shows that the DDA:TDB promoted much higher levels of monocyte 

recruitment compared to the DDA:DOPE formulation. 

Higher monocyte infiltration for DDA:TDB is believed (Henriksen-Lacey et al., 2010b) 

to be due to the role of immunomodulating molecule of TDB in the activation of the 

innate immune system in the influx of circulating monocytes to the site of injection. 

This is in agreement with the previous study (Henriksen-Lacey et al., 2010b) that 

reported TDB when administered in DDA liposomes activates APCs. The present 

results (Figure 6.8 and 6.9) show that DDA based liposomes are efficiently able to 

promote antigen retention at the injection site, as both systems showed similar retention 

of the lipid and the plasmid DNA at the site of injection and lymph node (Figure 6.8).  
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Figure 6.8. pDNA and liposome detection A) at the site of injection and B) draining lymph nodes (PLN) 
following i.m. injection of DDA:DOPE and DDA:TDB liposomes. pDNA and liposome quantification 
were determined at days 1,4 and 8 p.i. using radiolabel counting methods. Data represents mean ± SD of 4 
mice and is presented % dose at the SOI (B,C) or the % dose per mg PLN harvested (D,E). Naked DNA 
included for comparison.  
 

Given the similar antigen and liposome retention at the site of injection and the local 

draining lymph node (Figure 6.8) and the higher monocyte infiltration at the injection 



Chapter 6: DDA-based DNA Vaccine Formulations: From Characterisation to In Vitro & In Vivo Studies D 

 

206 

site for DDA:TDB (Figure 6.9) would suggest the necessity of presentation of the 

antigen along with the liposome to the APCs for higher immune response. Previous 

studies have also reported this finding (Christensen et al., 2012; Kamath et al., 2009). 

 

Figure 6.9: Pontamine blue staining on day 8 p.i. of the injection site after i.m injection with DNA 
lipoplexes of DDA:DOPE, DDA:TDB and naked DNA.  

6.8. Immunisation studies 

To investigate the potential of these DDA-based lipoplexes as DNA vaccine adjuvants, 

both the DDA:DOPE and DDA:TDB formulations were considered in a heterologous 

prime-boost vaccination strategy. Previous research on Hepatitis B vaccines have been 

performed in two different homologous immunisation methods; DNA vaccines were 

designed by using plasmid DNA pRc/CMV HBS which encodes the HBsAg protein 

(Bramwell et al., 2002; Gregoriadis et al., 1997; McNeil et al., 2010; Perrie et al., 2001) 

or subunit vaccines using HBsAg antigen (Brunel et al., 1999; Vangala et al., 2007; 

Vangala et al., 2006). DOTAP and DC-Chol were used extensively in DNA vaccine 

studies and DDA:TDB used in subunit vaccine study against HBV. To investigate the 

effect of prime-boost immunisation and compare the effect of this heterologous 

immunisation regimen with previous homologous strategies, in this current study 

DDA:DOPE and DDA:TDB were formulated as prime DNA lipoplex and boost 

subunit-liposome complex as explained in section 2.2 and injected as mentioned in 2.10. 
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The specification and characterisation results of DDA:DOPE and DDA:TDB plasmid 

DNA and subunit protein complex formulations are shown in details in Table 6.2. 

Table 6.2: Characteristics of cationic liposomes od DDA:DOPE and DDA:TDB. Size and zeta potential 

measured by Malvern Zetasizer Nano-ZS. Results represent mean±SD of triplicate experiments. 

 

6.8.1. Antibody production in response to DDA-based vaccines 

HBsAg specific antibody titres were determined by antibody ELISA. For total IgG 

levels, both DDA:DOPE and DDA:TDB were able to induce significantly higher 

(P<0.001) levels of IgG relative to free antigen and alum on days 36 and 49 of the 

immunisation study, however, there was no significant difference between these 

liposome formulations (Figure 6.10A).  

Figure 6.10B demonstrates the IgG1 and IgG2b responses on day 49; for IgG1 levels, 

again both DDA:DOPE and DDA:TDB have similar responses; however, their 

responses are significantly lower (P<0.05) than the alum group which has the highest 

IgG1 responses compared to the liposomes and free DDP. This shows the alum’s 

potency to provide Th2 responses (Brunel et al., 1999; O'Hagan and Valiante, 2003; 

Rosenkrands et al., 2005; Yang and Hayglass, 1993).  

IgG2b antibody isotype immune responses of groups which received formulations show 

DDA:TDB liposomes induce significantly (P<0.01) higher IgG2b production than 

DOPE:DDA. Interestingly, alum and free subunit antigen did not show any detectable 
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levels of antibody responses for IgG2b; however, the free DDP group (which is the 

prime boost immunisation of the plasmid DNA and the subunit protein) shows 

detectable amounts of IgG2b production (Figure 6.10B) which could be due to the 

heterologous immunisation as discussed in chapter 5.  

As mentioned above, Alum formulations promote a Th2 bias, which shows a high level 

of humoural immune responses and fail to show cellular responses (Brunel et al., 1999; 

Davidsen et al., 2005; Diminsky et al., 1996; O'Hagan and Valiante, 2003; Rosenkrands 

et al., 2005). Conversely, DDA:TDB induces a high level of IgG2b responses (Figure 

6.10B), suggesting the ability to induce cellular immune responses. This is in line with 

previous studies which showed the high levels of Th1 responses induced by DDA:TDB 

formulations for different antigens (Henriksen-Lacey et al., 2010b; Henriksen-Lacey et 

al., 2011a; Vangala et al., 2007).  

Giving similar levels of total IgG and IgG1 production, both DDA:TDB and 

DDA:DOPE show the adjuvant effect of cationic lipids and, in particular, DDA, which 

induces a significantly (P<0.05) higher humoural immune response compared to free 

antigens. This has been reported by several studies (Henriksen-Lacey et al., 2010b; 

Henriksen-Lacey et al., 2010c; Vangala et al., 2007) with the very first one was shown 

by Gall et al (Gall, 1966).  

This present study also shows that DDA:TDB group induces significantly (P<0.05) 

higher Th1 responses compared to DDA:DOPE group, suggesting that 

immunomodulating TDB has a crucial role in stimulation of Th1 responses and high 

immunogenicity of DDA:TDB formulation.  
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Figure 6.10. HBsAg specific antibody titres. A) Total IgG titre of DDA:DOPE and DDA:TDB, serum 
taken from day 36 and 49, B) IgG1(white bars) and IgG2b(black bars) levels for DOPE:DDA, DDA:TDB, 
serum taken from day 49. Results compared to alhydrogel, free DDP, free subunit antigen, free DNA and 
naïve group. Results show the mean ± SD reciprocal endpoint dilution (log10) of 5 mice. Significance 
measured by one-way ANOVA and Tukey’s post test, it is shown by *p<0.05 and ***P<0.001.   
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6.8.2. Investigating the cytokine production level in response to 
heterologous vaccination by DDA-based liposomes 

The ability of DDA:DOPE and DDA:TDB to elicit cell-mediated as well as humoural 

immune responses was evaluated by measuring endogenous cytokine levels (IL-2, IL-5, 

IL-6, IL-10 and IFN-γ) within spleen homogenates to assess the presence of Th1/Th2 

response.  IL-1ß levels were also studied to see how vesicular vaccine adjuvants promote 

antigen uptake at the SOI.  

To determine the cellular immune responses, IL-2 and IFN-γ levels were determined. 

Results (Figure 6.11) show that DDA:TDB produced significantly (P<0.001) higher 

levels of IL-2 and IFN-γ compared to DDA:DOPE. Induced levels of IL-2 for 

DDA:DOPE was 1000 pg/mL compared with 1800 pg/mL for DDA:TDB (Figure 

6.11A). Similarly IFN-γ levels induced by DDA:TDB were almost 2 fold higher than 

DDA:DOPE (4800 Vs 2500 pg/mL) (Figure 6.11E). In both cases, the liposome 

formulations promoted immune responses significantly higher than those of alum or 

free DDP (Figure 6.11A,E).  

Levels of Th2 indicator cytokines (IL-5, IL-6 and IL-10) were also measured to 

investigate the ability of the mentioned liposomes in induction of humoural immune 

responses. As it is demonstrated in Figure 6.11B and D, the induced levels of IL-5 and 

IL-10 for both liposomal vaccines are similar (80 pg/mL for IL-5 and 100 pg/mL for IL-

10) and significantly (P<0.05) higher than free DDP levels (Figure 6.11B and D).  

Since IL-5 and IL-10 are indicators of humoural immune responses, restimulation of 

alum group splenocytes promoted high levels of IL-5 and IL-10 comparable to 

liposomal groups. Data shows induced IL-5 levels for alum group was 60 pg/mL which 
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was not significantly different from IL-5 levels for DDA:DOPE and DDA:TDB (Figure 

6.11B). 

Alum cytokine production levels for IL-10 is even more interesting with 150 pg/mL, 

which was significantly (P<0.001) higher than DDA:DOPE and DDA:TDB cytokine 

production level (Figure 6.11D). For IL-6, DDA:TDB cytokine levels were above 500 

pg/mL which is significantly (P<0.001) higher than DOPE:DDA with 300 pg/mL 

(Figure 6.11C). Both liposomes produced notably (P<0.05) higher IL-6 than alum and 

free DDP, however alum levels were also higher than background levels (Figure 6.11C). 

This shows an intermediate response for IL-6, which has both Th1 and Th2 parameters. 

IL-6 is known to represent Th2 responses, although this cytokine also promotes 

differentiation of Th17 cells with production of IL-17 and has been reported to detect 

both cellular and humoural responses (Diehl and Rincon, 2002; Dienz and Rincon, 

2009; Henriksen-Lacey et al., 2011b). This explains the specific trend of IL-6 cytokine 

levels that have been achieved in this experiment.  

Studying the amount of produced IL-1ß at the SOI shows that not only the liposome 

formulation, but also alum, free DDP, free subunit antigen and free DNA are able to 

activate dendritic cells to induce the innate immune response; however, DDA:TDB 

levels of IL-1ß are significantly (P<0.001) higher than other immunised groups (Figure 

6.11F). This data supports the results provided by pontamine blue staining (Figure 6.9), 

showing higher stimulation of innate immune system for DDA:TDB.  
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Figure 6.11. IL-2, IL-5, IL-6, IL-10 and IFN-γ cytokine production from splenocytes (A–E) and IL-1β 
production from excised leg muscle from the SOI (F) derived from mice immunised with DDA:DOPE or 
DDA:TDB pDNA-lipoplex or subunit protein liposome , compared to free DDP, free subunit antigen, free 
DNA, alhydrogel and naïve group. Splenocytes and muscle from the SOI were obtained 3 weeks post the 
final immunisation. Splenocytes were restimulated for 48 h in the presence of HBsAg (5 µg/mL). Leg 
muscle was excised, digested and homogenised. Cytokines were measured from splenocyte or muscle 
supernatants using sandwich ELISAs. 
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Overall, these results (Figures 6.11) demonstrate similar Th2 immune responses for both 

liposomes however the Th1 responses induced by DDA:TDB are higher than those 

promoted by DDA liposomes. As it has been reported earlier (Davidsen et al., 2005; 

Henriksen-Lacey et al., 2010b; Holten-Andersen et al., 2004; Vangala et al., 2007) the 

presence of TDB in the liposomal structure causes more immunogenicity for 

DDA:TDB. Two key factors have been defined as the main reasons that incorporation 

of TDB to DDA induce higher immune responses by DDA:TDB rather than 

DDA:DOPE;  

1- TDB is synthetic version of the glycolipid which is in the cell wall of the 

tuberculosis bacteria and based on this it provides more immunogenicity to the 

liposome formulations (Olds et al., 1980; Pimm et al., 1979).  

2- TDB stabilise the DDA liposomes by inhibiting the fusion between phospholipid 

vesicles due to the relatively large headgroups of trehalose. This would increase 

the hydration of the liposomal surface and prevent the dehydration of the 

quaternary ammonium headgroups so no aggregation would occur. Moreover, 

due to its large headgroup, trehalose might prevent close contact between 

opposing liposome and consequently prevent the aggregation of the liposomes 

(Crowe et al., 1994; Spargo et al., 1991). 

6.8.3. Splenocyte proliferation ex vivo in response to HBsAg 

Using spleens of immunised mice in an ex vivo splenocyte proliferation assay, the ability 

of DDA:DOPE and DDA:TDB liposomes to deliver the antigen to antigen presenting 

cells (APCs) was explored. Therefore splenocytes were restimulated with 0.05, 0.5 and 5 

µg/mL HBsAg antigen in addition to the positive control stimuli Con A (5 µg/mL). 

Figure 6.12 shows the proliferative ability of splenocytes of all immunised groups in 
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response to Con A. It is shown that all the groups showed response to Con A as the 3H-

thymidine uptake was shown to be between 30000 to 40000 CPM (Figure 6.12).  

 

Figure 6.12: Splenocyte proliferation of each immunisation group and naïve group in response to 
stimulation with 5 µg/mL Con A. Splenocytes were derived on day 49 of the study and restimulated ex vivo 
with Con A as a positive control. After a further 24 hrs cells were harvested and the proportion of 3H-
thymidine incorporated in the cells measured using standard scintillation counting. 

Figure 6.13 demonstrates that increasing the pooled HBsAg concentration increases the 

splenocyte proliferation of the formulations. Upon restimulation, with DDA:TDB 

immunised group showed the highest level of splenocyte proliferation with 4000 CPM 

at 5 µg/mL of HBsAg.  

The level of splenocyte proliferation for DDA:TDB significantly increased (P<0.05) 

from 1500 to nearly 4000 CPM when the HBsAg concentration increased to 0.5 µg/mL 

of HBsAg  (Figure 6.13). Comparing DDA:TDB to DDA:DOPE shows the splenocyte 
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proliferation levels for DDA:TDB is significantly (P<0.05) higher than DDA:DOPE in 

0.5 and 5 µg/mL of HBsAg; however, in lower concentrations of HBsAg, similar results 

were seen for both formulations. This shows the effect of TDB as an 

immunomodulating agent in inducing higher levels of cell proliferation, which is in line 

with a previous study (Vangala et al., 2007) where it is shown that presence of TDB in 

liposome formulation has a crucial role in increasing the cell proliferation and in total 

initiating the cell mediated immunity compared to other cationic liposomes with no 

TDB in their formulation.  

 

Figure 6.13. Spleen cell proliferation in response to stimulation/re-stimulation with HBsAg antigen. Cell 
proliferation was measured by incorporation of 3H into cultured splenocytes. Splenocyte proliferation of 
DOPE:DDA and DDA:TDB injected under heterologous regimen, compared to free DDP, free subunit 
antigen, free pDNA, alhydrogel and naïve group. ** denotes significantly increased proliferation in 
compare to naïve controls (n=5 p<0.01).  
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Alternatively, although DDA:DOPE showed lower cell proliferations compared to 

DDA:TDB, its level of splenocyte proliferation were significantly higher than alum and 

free antigens (Figure 6.13), suggesting the ability of cationic liposomes to improve 

splenocyte proliferation level and delivering the antigen to the APCs. 

6.9. Conclusion 

The aim of this study was to evaluate the immunogenicity of DDA-based liposomes as 

DNA vaccines and in a heterologous prime boost immunisation regimen. 

From the monolayer studies and characterisation measurements, no notable differences 

in physicochemical characteristics of DDA:DOPE and DDA:TDB were observed, 

however their biological activity has been shown to be significantly different. Although 

DDA is a cationic lipid, lipoplexes of DDA:DOPE and DDA:TDB are not competitive 

transfection reagents compared to formulations including DOTAP and DSTAP (Section 

4.6; Chapter 4). Comparing DDA:DOPE and DDA:TDB shows the presence of TDB 

does not have specific impact on characteristic properties of the lipoplexes, however 

absence of DOPE dramatically reduced the in vitro transfection of DDA:TDB. This can 

be due to the effect of DOPE as a helper lipid to change the liposome structure from 

lamellar to HII inverted hexagonal, which is believed to be more beneficial for in vitro 

transfection efficiency of the lipoplexes (Felgner et al., 1987). The concept of using a 

fusogenic lipid such as DOPE is to mimic attributes of viruses when fuse with the cell 

membrane and delivering their genetic material into the cytosol (McNeil and Perrie, 

2006). It has been reported that incorporation of DOPE into the liposome formulations 

enhances the transfection efficiency of the liposomes (Farhood et al., 1995) and this 

could be the reason of low transfection efficiency of DDA:TDB. 



Chapter 6: DDA-based DNA Vaccine Formulations: From Characterisation to In Vitro & In Vivo Studies D 

 

217 

Considering the localisation of the DDA:DOPE and DDA:TDB at the injection site and 

drainage of the liposome contents to the local draining lymph node showed no 

significant difference between the two formulations, however pontamine blue staining 

results demonstrated more monocyte influx for DDA:TDB which is known to be due to 

the incorporation of immunostimulant molecule of TDB within the liposome structure. 

These observations are in correlation to what has been observed previously (Henriksen-

Lacey et al., 2010b), suggesting the co-stimulatory effect of the adjuvant and the antigen 

and their presentation to the APCs at the lymph node is essential for stimulation of a 

high immune response (Christensen et al., 2012; Henriksen-Lacey et al., 2010b; Kamath 

et al., 2009). 

Immunisation studies including exploring antibody and cytokine production of 

DDA:DOPE and DDA:TDB reveal that both formulations show a similar humoural 

immune response; however, DDA:TDB liposomal vaccine shows a significantly higher 

cellular immune response compared to DDA:DOPE. Results show similar total IgG 

and IgG1 levels for both liposomes as well as similar IL-5 and IL-10 cytokine levels as a 

result of intramuscular heterologous prime boost immunisation of these formulations, 

show humoural immune system is triggered similarly by both formulations.  In contrast, 

it has been observed that IgG2b levels produced by DDA:TDB were significantly higher 

than DDA:DOPE. Furthermore, results of cytokine study showed the same trend for 

the IL-2 and IFN-γ production levels, suggesting that DDA:TDB induces higher cell 

mediated immune response rather than DDA:DOPE. The results are in agreement with 

previous studies (Henriksen-Lacey et al., 2010b; Holten-Andersen et al., 2004; Vangala 

et al., 2007).  They suggest higher cellular immune response of DDA:TDB is related to 

the incorporation of TDB into the DDA bilayers, which increases the immunogenicity 

of the liposomes as well as stabilising them. 
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7.1. Monolayer studies: lipid packaging configurations 

Lipid monolayer studies have been shown to be able to increase the understanding of 

bilayer structures, hence it can add knowledge into areas such as the bilayer lipid 

packaging configurations (Dynarowicz-Latka and Hac-Wydro, 2004), drug-lipid 

interactions (Sun et al., 2004) and liposome stability (Crowe et al., 1984).  

The aim of monolayer studies in this project was to study molecular lipid packaging and 

interactions, and correlate the results with the physico-chemical properties of the 

liposomes. Studies demonstrated that saturated lipids have closer packaging 

arrangements compared to their unsaturated analogues and this influences the bilayer 

formation as using two saturated lipids, such as DSPE and DSTAP, failed to form 

liposomes. Characterisation studies also showed liposomes containing saturated and 

rigid lipids had a tendency to aggregate with DNA molecules, which caused larger 

vesicle sizes in comparison to liposomes made of unsaturated lipids. Studying the 

mixture of the unsaturated and bulky DOPE with the saturated and rigid DSTAP in 

monolayers showed that presence of DOPE reduces the rigidity of DSTAP, which can 

be translated to the high release profile and high in vitro transfection of DOPE:DSTAP 

lipoplexes.  

For liposomes to be able to transfect cells efficiently, they need to be more fluidic in 

nature so they can destabilise the lipid membrane of the cells, therefore DOPE as a 

fusogenic lipid has been used extensively to enhance the cell transfection. Monolayer 

studies conducted within this thesis have shown that incorporation of DOPE with 

DSTAP reduced the rigidity of DSTAP to a similar level of the DOPE:DOTAP. 

Considering transfection efficiency of DOPE:DOTAP and DOPE:DSTAP, both 
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formulations have higher transfection efficiency than a marketed transfection reagent 

(Lipofectin). 

In conclusion, the monolayer studies were shown to be effective in giving insight into 

the molecular packaging of the lipids, which is helpful for understanding liposomal 

molecular packaging, and hence the liposomal delivery systems.  

7.2. Investigating the effect of electrolyte on liposomal 
vaccine formulations 

It has been reported that presence of small amounts of salt (30 mM) within cationic 

liposomes could enhance immune responses of the vaccine (Yan and Huang, 2009). 

This was due to the interference of salt with the electrostatic interactions between the 

cationic lipid and the antigen, which enhances the antigen release from the liposomes 

and at the same time activates the antigen presenting cells. Therefore, to investigate the 

effect of presence of NaCl within the liposomes on their physicochemical properties, in 

vitro transfection efficiency and immune performances, DOPE:DOTAP and 

DOPE:DSTAP liposomes were hydrated with PBS or dH2O (Sucrose for in vivo studies).  

Characterisation studies showed that the presence of electrolytes within the liposomes 

could lead to increases in the vesicle size of the formulations due to the reduction in 

electrostatic interactions between systems and the effect of the phosphate group of PBS, 

which initiates bridging of the polar headgroups of the lipids. Although no influence was 

observed on DNA association within the lipoplexes as a result of electrolyte existence in 

the formulations, it decreased the cationic surface charge of the lipoplexes, which was 

attributed to the neutralisation effect of buffer electrolytes on zeta potential. These 

results are in line with the previous studies, which shows presence of salts increases the 
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vesicle size (Ciani et al., 2007; Wasan et al., 1999) and reduces the zeta potential (Li and 

Hui, 1997). 

In vitro transfection studies showed no correlation with characterisation results, as the 

presence of electrolytes did not show a trend on transfection efficiency. This suggests 

that the key feature in transfection efficacy could be the lipid composition rather than 

vesicle size or hydration buffer electrolytes. In contrast, previous studies (Ogris	   et	   al.,	  

1998) showed that the impact of salt on transfection efficiency is basically due to the 

increase in vesicle size of the systems, which is shown to cause higher transfection 

efficiency	  (Eastman	  et	  al.,	  1997;	  McNeil	  et	  al.,	  2010).  

Similar to the transfection efficiency, the presence of salt within the liposomes did not 

make a significant impact on localisation of the liposomes and plasmid DNA at the 

injection site, showing that not all of the characterisation measurements are translatable 

to in vitro and in vivo studies. In contrast, immunisation studies showed that 

formulations hydrated in sucrose induce higher humoural immunity than the 

formulations which incorporated electrolytes within their system, whilst the cellular 

immune system activity remained similar for both kinds of liposomes. This is in 

agreement with a previous study (Henriksen-Lacey et al., 2011b), which shows the 

presence of PBS in the formulations caused aggregation and this led to a poor immunity 

performance by DDA:TDB formulations. It has been described that aggregation of the 

vesicles at the injection site would slow down and reduce the rate of antigen 

presentation at the lymph node and consequently would decrease the immune response.  



Chapter 7: General Discussion                                                                                                                           D 

 

222 

Overall, it has been shown that the main impact of the presence of salt in the liposomal 

formulation is on its characterisation parameters; particularly increases in the vesicle 

size of the liposomes, which eventually causes a reduction in immune responses.  

7.3. Impact of lipid composition on liposomal vaccines 

The importance of cationic charge and antigen (subunit protein or plasmid DNA) 

adsorption to the lipids for a liposomal vaccine has been established, therefore the role 

of cationic lipid structure was investigated as unsaturated cationic lipid of DOTAP was 

compared to the saturated DSTAP in terms of characterisation studies, in vitro and in 

vivo studies.  

While characterisation studies showed no significant difference in vesicle size, zeta 

potential and DNA association of the liposomes when DOTAP replaced by DSTAP, in 

vitro studies demonstrated significantly higher transfection efficiency for DSTAP-based 

lipoplexes. This is in contrast with previous studies, which have reported more rigid 

bilayers (Kudsiova et al., 2011; Wasungu and Hoekstra, 2006) produce lower 

transfection in cells. Higher transfection efficiency of DSTAP-based lipoplexes is 

believed to be due to the fluidic effect of DNA (Lobo et al., 2002) and DOPE on 

bilayers of DSTAP and the instability of this system compared to DOPE:DOTAP 

(Regelin et al., 2000). In addition, it has been described that high positive deviation from 

ideal extrapolated area of the monolayers can lead to increased instability of the bilayer 

system, and hence facilitating the fusion of the liposome and the cell membrane, and 

higher transfection efficiency of the lipoplexes (Hac-Wydro and Wydro, 2007; Hac-

Wydro et al., 2007).  
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In vivo studies showed higher localisation of lipid and DNA at the site of injection for 

DSTAP-based liposomes, which is attributed to the higher transition temperature, and 

rigidity of DSTAP bilayers. This is in line with previous studies which showed fluidic 

bilayers will be cleared faster compared to the rigid bilayers (Christensen et al., 2012; 

Henriksen-Lacey et al., 2011a). A stronger depot effect for DSTAP-based liposomes can 

cause a higher chance for antigen presentation to APCs, which are located in local 

lymph nodes leading to higher activity of CD8+ T cells via MHC II molecules and 

consequently stronger cellular and humoural immune response for DSTAP 

formulations. Recent studies confirm similar results for DDA:TDB liposomal subunit 

vaccine (Christensen et al., 2012; Henriksen-Lacey et al., 2011a).  

7.4. SUV vs DRV: The effect of liposomal preparation 
method on their in vitro and in vivo attributes  

The dehydration-rehydration method has been shown to be effective in entrapment of 

plasmid DNA within liposomes (Kirby and Gregoriadis, 1984), therefore a comparison 

has been made between SUV and DRV liposomes to see the effect of dehydration-

rehydration method on characteristic properties, as well as in vitro transfection efficiency 

and immune performance of the liposomes.  

The physiochemical characteristics of DRV liposomes composed of DOPE:DOTAP 

and DOPE:DSTAP revealed that in contrast to SUV liposomes, vesicle size and zeta 

potential values did not change significantly in the presence of DNA. This suggests that 

the plasmid DNA was entrapped within bilayers of the cationic DRV liposomes, 

presumably bound to the cationic charge of the inner bilayers when produced by the 

dehydration-rehydration procedure. Gel electrophoresis studies supported these results 

as only minimal amounts of DNA was displaced by SDS molecules for DRV liposomes. 
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However, observation of the higher transfection efficiency of SUV liposomes compared 

to DRV formulations shows having entrapped DNA within the liposomes may not be 

advantageous. This could be attributed to the inability of the entrapped DNA escaping 

the vesicles in the time duration of the experimental protocol. In vivo studies showed 

that whilst localisation of both SUV and DRV liposomes at the injections site were 

similar for both formulations, SUV liposomes induce stronger humoural immunity 

however cell mediated immune response levels for both formulations are similar. This 

implies that there was higher APC uptake for SUV liposomal vaccines, which was 

expected due to higher in vitro transfection efficacy of SUV formulations. This could be 

due to the smaller vesicle size of SUV liposomes compared to DRV formulations. In 

agreement to this finding, it has previously been reported that induction of immune 

response by DNA liposomal vaccines is more related to the higher cell transfection and 

smaller vesicles size of the particles with a optimum size of below 500 nm is desirable 

for APC uptake of the particles (Carstens et al., 2011).  

7.5. How effective are heterologous immunisation 
strategies in providing desirable levels of immune 
response? 

Investigating the effect of immunisation regimens on immune performance of the 

liposomal vaccines, a heterologous vaccination schedule including two injections of 

DNA-liposome vaccines followed by a protein subunit-liposome booster was compared 

to the homologous immunisation strategies composed of either two DNA-liposome 

immunisation or a single protein-liposome vaccination. Results of this study showed the 

occurrence of synergistic response as the activation of immune system in response to the 

heterologous immunisation was higher than each of homologous regimens. Compared 

to prime DNA vaccine administration, heterologous vaccination caused a significantly 
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higher antibody and cytokine production levels. However, the results of prime/boost 

immunisation were not significantly higher than a single injection of liposome-protein. 

Therefore considering the cost and number of injections, subunit protein vaccines seem 

to be more attractive option compared to DNA vaccines or the heterologous vaccination 

strategies.  

7.6. DDA-based liposomal vaccines 

Given a high and solid immune activity for DDA:TDB incorporated with subunit 

antigen of TB; Ag85B-ESAT-6 (Henriksen-Lacey et al., 2010b; Holten-Andersen et al., 

2004) and earlier research which showed the cationic liposomes made from DDA have 

adjuvant properties (Gall, 1966) has led to evaluate DDA-based liposomes as a DNA 

vaccine in a prime/boost immunisation regimen. To investigate the impact of 

immunostimulant TDB molecule on immune response and compare it with fusogenic 

lipid DOPE, which enhances the transfection of the liposomes, DDA:TDB and 

DDA:DOPE formulations were compared in this study.  

While characterisation studies showed larger vesicle size for DDA:TDB compared to 

DDA:DOPE (which can be as a result of more rigidity and aggregation of DDA:TDB 

upon its complexation with DNA) zeta potential and DNA entrapment for the 

formulations did not show significant difference. In vitro transfection efficiency of 

DDA:TDB has been shown to be significantly lower than DDA:DOPE and 

Lipofectin™.	   This	   was	   suggested	   to	   be	   due	   to	   the	   effect	   of	   DOPE,	   which	   acts	   as	   a	  

fusogenic	  lipid	  and	  enhances	  the	  destabilisation	  of	  cell	  membrane	  by	  conversion	  of	  the	  

DDA:DOPE	  structure	  to	   inverted	  hexagonal	  HII	  structure,	  which	  has	  been	  shown	  to	  be	  

ideal	   for	   transfection.	   Biodistribution	   studies	   showed	   no	   significant	   difference	   in	   the	  

localisation	  and	  movement	  of	   the	   liposomes	  and	   their	  associated	  plasmid	  DNA	  at	   the	  
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injection	  site;	  however,	  by	  applying	  pontamine	  blue	  staining	  technique,	  results	  showed	  

significantly	  higher	  monocyte	  infiltration	  at	  the	  site	  of	  injection	  upon	  administration	  of	  

DDA:TDB	   compared	   to	   DDA:DOPE.	   This	   was	   attributed	   to	   the	   immunostimulatory	  

effect	  of	  TDB	  molecule,	  which	  activated	  the	  innate	  immune	  response.	  This	  was	  followed	  

by	  the	  immunisation	  studies	  which	  showed	  higher	  cell	  mediated	  immunity	  of	  DDA:TDB	  

in	   comparison	   to	   DDA:DOPE	   while	   both	   formulations	   showed	   similar	   levels	   of	  

humoural	   immune	  activity.	   In	   agreement	   to	  previous	   studies	   (Henriksen-Lacey et al., 

2010b; Holten-Andersen et al., 2004; Vangala et al., 2007), higher cellular immune 

responses of DDA:TDB is related to the immunostimulatory effects of TDB molecule.  

It is believed that DNA vaccines need high cell transfection to be able to enter to the 

nucleus of the cell, encode the antigen and start the immune activity. However, low 

transfection efficiency of DDA:TDB suggests that strong immune activity of this 

formulation is more attributed to the subunit vaccine injection rather than two DNA 

vaccine immunisations of this heterologous vaccination, and DNA prime injections are 

not necessary to induce immune response for this formulation.  

7.7. Final conclusions 

In summary, investigation of a range of cationic liposome formulations as DNA 

vaccines showed that: 

Ø Monolayer studies can be useful in giving more insight about the bilayer 

structure and molecular packaging of the bilayers, which can be translated to the 

characteristic properties of the liposomes. 

Ø It is known that physicochemical characteristic parameters of cationic liposomes 

have an impact on their in vitro and in vivo behaviours and this study showed 
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lipid composition had the most influence on in vitro transfection and in vivo 

biodistribution of the formulations, as well as their immune performances.  

Ø Applying saturated lipids enhances cell transfection and promotes immune 

responses of the liposomal DNA vaccines. 

Ø Liposomal DNA vaccines induce remarkably stronger cellular and humoural 

immune responses compared to the free DNA administration. 

Ø Although heterologous prime/boost immunisation produces higher immunity 

than homologous vaccination, yet more studies need to be performed to improve 

this technology.  

7.8. Future work 

Further studies can be conducted in continuation of this work. Monolayer studies could 

include investigating the effect of presence of DNA in the subphase on monolayer 

properties of the lipids. This might open new windows to our understanding about lipid-

DNA interactions in bilayer systems. Differential scanning calorimetry (DSC) study can 

be performed on tested lipids and their combination to see the effect of DOPE on 

lowering the transition temperature of saturated lipid such as DSTAP. Also impact of 

incorporation of DNA to the bilayer molecular packaging could be investigated using 

DSC. Microscopic imaging could be conducted showing the size, morphology and 

antigen entrapment within liposomes and possible aggregations. Transmission electron 

microscopy (TEM) would be the method of choice due to nano scale size of the vesicles. 

In vitro transfection studies could include comparing different periods of transfection for 

the liposomes, specially to see the difference in optimum transfection time for SUV and 

DRV liposomes.  
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To perform the biodistribution of the formulations and localisation of the lipid at 

different organs, advanced in vivo imaging instruments such as Spectrum CT and 

VECTor/CT can be used to show a real time data about the localisation of the 

formulation at different time points. This will eliminate need of different groups of 

animals for each time point. 

With regards to the immunisation studies, flow cytometry analysis could be performed 

to give more knowledge about the induced immune responses and the stage of T cell 

differentiation based on cytokine production. Moreover, the immunisation studies could 

be carried on with a challenge study and investigate the effect of the liposomal vaccines 

to protect the animal form the pathogens. Finally, the ability of studied cationic 

liposomes in delivery of nucleic acids can be further investigated by using these delivery 

systems to deliver siRNA to down-regulate the genes which control cancer cells.  
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1- PicoGreen® dsDNA quantification assay 

Quant-iT™ PicoGreen® dsDNA reagent is an ultrasensitive fluorescent nucleic acid 

stain which has been used for quantitating double-stranded DNA (dsDNA) in solution. 

It helps researchers to selectively detect as little as 25 pg/mL of dsDNA with a standard 

spectroflurometer and fluorescein excitation and emission wavelengths. The assay is 

linear over their orders of magnitude and has little sequence dependence, allowing you 

to accurately measure DNA from many sources including genomic DNA, viral DNA, 

miniprep DNA, or PCR amplification products. All graphs and figures shown below 

were obtained from www.invitrogen.com. 

Figure.1 Dynamic range and sensitivity of the Quant-iT™ PicoGreen® dsDNA assay 
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Figure.2 Fluorescence enhancement of the PicoGreen® Quantitiation Reagent upon biding dsDNA, 
ssDNA and RNA. 
 

Figure.3 Fluorescence excitation and emission spectra of PicoGreen® dsDNA Quantitation reagent bound 
to DNA (adapted from Singer et al., 1997) 
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2. Calibration curves used for DNA association calculations 

 
Figure. 4 Low range calibration curve for DNA using PicoGreen assay. Results denote mean ± SD, from 3 
independent patches. 
 

 

Figure.5 Low range calibration curve for DNA using PicoGreen assay. Results denote mean ± SD, from 3 
independent patches. 
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3. Calibration curve for calculation the 3H and 32P in biodistribution study. 

 

 

 


