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This thesis explores the process of developing a principled approach for translating a 
model of mental-health risk expertise into a probabilistic graphical structure. Probabilistic 
graphical structures can be a combination of graph and probability theory that provide 
numerous advantages when it comes to the representation of domains involving 
uncertainty, domains such as the mental health domain. In this thesis the advantages that 
probabilistic graphical structures offer in representing such domains is built on. The 
Galatean Risk Screening Tool (GRiST) is a psychological model for mental health risk 
assessment based on fuzzy sets. In this thesis the knowledge encapsulated in the 
psychological model was used to develop the structure of the probability graph by 
exploiting the semantics of the clinical expertise.  

This thesis describes how a chain graph can be developed from the psychological model 
to provide a probabilistic evaluation of risk that complements the one generated by 
GRiST’s clinical expertise by the decomposing of the GRiST knowledge structure in 
component parts, which were in turned mapped into equivalent probabilistic graphical 
structures such as Bayesian Belief Nets and Markov Random Fields to produce a 
composite chain graph that provides a probabilistic classification of risk expertise to 
complement the expert clinical judgements. 
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Chapter One 

1. Introduction 

 

In this chapter the motivation behind the thesis and the main objective of the research are 

highlighted against the backdrop of past methods and our chosen approach. 

 

1.1 Motivation 

Risk assessment is a fundamental part of life, whether it be a mundane decision about the 

chance of rain or a much more vital one about the risk of a nuclear power station 

malfunctioning. In the mental-health domain, predicting whether someone is going to 

commit suicide or engage in an act of violence is extremely difficult, partly because the 

likelihoods are so low but also because of the lack of statistical data. The Galatean 

mental-health Risk and Social care assessment Tool (GRiST) was developed to address 

these problems by modelling how expert mental-health practitioners make risk 

assessments (GRiST, n.d.). However, its accumulating database of risk data has become 

a resource for more probabilistic approaches such as probability graphs, which are well-

suited for capturing and reasoning with uncertainty where there is prior knowledge 

structuring (Lucas, 2004). In the past, mental health risk assessment was predominantly 

carried out using unstructured clinical approaches but it has since been realised that the 

best results can be obtained by using a combination of both structured clinical judgements 

and actuarial tools, such as one based on a probability graphical model (Department of 

Health, 2007). This thesis explores the development of a probabilistic graphical structure 

from a model of mental health clinical expertise to be used for assessing risk. 

 

1.2 The Risk Assessment Domain 

The need to assess and predict risk is a requirement that cuts across a wide range of 

disciplines, which include finance, public health, engineering, insurance and the 

environment. Because risk is characterised by uncertainty, developing appropriate tools 

for its prediction and assessment often proves difficult. Risk assessments have been and 

are carried out with a wide variety of methods. In the mental health risk assessment 

domain most risk assessment methods can be characterised under one of two categories. 

These are the expertise and the actuarial methods. The expertise method refers to 

structured clinical judgements that are given by the clinicians or experts in the domain 
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based on their past experiences, training and accumulated knowledge acquired over time. 

Whilst using the actuarial method statistical techniques based on established relations are 

used to make predictions (Dawes et al, 1989). In this method the predictions are 

independent of the judgements or bias of the expert carrying out the assessments. 

However, on the other hand the clinical judgement method is dependent on the particular 

expert carrying out the assessment and as such can be seen to be subjective. Actuarial 

judgements have been proven to generally give more accurate results (Dawes et al, 

1989). Reasons for the better precision of actuarial methods include the removal of 

individual bias and subjectivity in the process. Also actuarial methods allow us to derive 

from large amounts of data the relations that exist between the various variables in the 

domain. This is in contrast to the clinical judgement where the predictions tend to be 

based on the knowledge accumulated by the single expert carrying out the assessment. 

 

1.3 Difficulties of Accurate Predictions 

Regardless of whether actuarial or clinical methods are used obtaining accurate 

predictions can be a complex issue. It has been proven that more accurate predictions 

tend to be obtained when actuarial methods are used (Dawes et al, 1989; Grove, 2005; 

Monahan and Steadman, 1994). In the case of clinical judgements the level of 

accumulated knowledge, experience and training that the expert has received directly 

impacts on the accuracy of the predictions. In spite of this fact of greater accuracy being 

obtained generally using actuarial methods, it is not the case that in every situation this 

will always be the best option. For instance, in cases that are uncommon, a clinician who 

has had firsthand experience of working with such a case might give better predictions 

based on this past experience than actuarial methods. This is especially so if the actuarial 

methods model covers 99% of cases (the common cases) but not the uncommon 1%.  

 

To cover such instances (i.e. both uncommon and common cases) the combination of 

both actuarial and clinical techniques will present a holistic, all encompassing technique 

that should produce the best results. The approach used in this research falls into this 

latter category i.e. one that combines the use of both actuarial and clinical methods via the 

use of probabilistic graphical models. Although the GRiST fuzzy model (discussed later in 

Chapter 2) is a model based on structured clinical judgement, it collects comprehensive 

and precisely defined data for all risks that are automatically stored in a database and 

thus available for probabilistic analyses. The approach in this thesis results in the 

connection of both types of risk assessments methods in the linking of the GRiST clinical 

judgements to actuarial analysis via the use of a probabilistic graphical model. 
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1.4 Current Mental Health Risk Assessment Tools 

A variety of tools are currently in use for mental health risk assessments. Whilst some of 

these tools are paper based others are electronic (Department of Health, 2007). The 

various tools cover different areas of the mental health domain (e.g. suicide, harm to 

others, vulnerability and so on). Some of the commonly used tools include Risk 

Assessment Management and Audit Systems (RAMAS, n.d.). RAMAS (Risk Assessment 

Management and Audit Systems) is made up of a set of structured clinical judgement 

tools and these tools relate to various aspects of mental health including self harm, 

vulnerability and harm to others (Department of Health, 2007). More information on 

RAMAS and its underlying scientific background and model can be found in O’Rourke et 

al (2001). Another tool is the Functional Analysis of Care Environments (FACE) which has 

both paper and electronic formats (FACE, n.d.).  FACE is a mental health risk assessment 

tool that integrates clinical and management information (Elzinga and Meredith, 2001) and 

comprises of assessment tools that cover such areas as substance abuse, forensic 

services and mental capacity (Department of Health, 2007). More on FACE and its 

underlying assessment features and methodologies can be seen in Elzinga and Meredith 

(2001).These and some other tools are summarised in (Department of Health, 2007).  

 

1.5 Highlights on the Use of Probabilistic Graphical Models in Decision Support 

Systems based on Expert Knowledge  

Over the years there have been different types of decision support systems (expert 

systems). The initial types of expert systems did not incorporate the modelling of 

uncertainty but were more logic oriented. Examples of this can be seen in the rule based 

system where you have rules of the form, if some assertions holds THEN some assertion 

is true/perform some action (Cowell et al, 1999). Mycin, which was developed for the 

diagnosis and treatment of meningitis and infections of the blood, is an early example of a 

rule based expert system (Shortliffe and Buchanan, 1975). Other types of expert systems 

include those based on classification trees which, like the name suggests, are used to 

predict an object’s membership of a class (Cowell et al, 1999). The various logic based 

decision support systems have their advantages but also have limitations (more on these 

can be seen in Cowell et al, 1999). However, the limitation of interest to us relates to the 

incorporation of uncertainty in these models. It was not until later that attempts were made 

to include uncertainty in these models. For the rule based systems the initial attempts 

consisted of an extension of the systems to include certainty factors. For instance in the 
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1970s Shortliffe and Buchanan implemented the certainty factor model for Mycin 

(Heckerman,1992).  

 

The use of probabilistic graphical models as we know them today became prevalent after 

the pioneering work of Judea Pearl on Bayesian networks and probabilistic graphical 

models in the mid eighties. The initial probabilistic graphical models that tended to be 

used in decision support systems were directed graphs (also known as Bayesian belief 

networks) and an extension of these known as influence diagrams. Another type of 

graphical model which have gained wide use especially in the imaging and machine 

learning domain is the undirected graphical model (also known as Markov random fields). 

The properties and usage of these probabilistic graphical models in decision support 

systems for risk assessments will be discussed in greater depth in Chapter 3. 

 

The ultimate aim of this research is the development of a principled approach for 

translating the mental health risk expertise contained in GRiST into a probabilistic model 

which will serve as an alternative risk assessment method based on probabilistic 

knowledge. GRiST is a psychological model for mental health risk assessments based on 

fuzzy sets (Buckingham, 2002). For the initial stages of the research the focus was on the 

conversion of the GRiST knowledge structure into Bayesian Belief Networks. This was 

primarily because of the suitability of Bayesian Belief Networks and their associated 

methods for capturing and reasoning with uncertainty (Lucas, 2004).  

 

However a major challenge soon ensued, namely the identification of causal relationships 

between the various GRiST nodes and in particular how to retrieve or interpret causal 

information within the GRiST fuzzy model. This was a major issue because in the 

Bayesian belief networks the direction of the edges between nodes needs to be from 

cause to effect. The initial proposed solution was to be based on the assumption that the 

knowledge elicitation task given to the experts resulted in a causal knowledge structure 

but upon careful examination and analysis of the nodes in the model, the conclusion was 

reached that this was not necessarily the case in all situations. So the issue of how to 

extract causal relations from GRiST for modelling in the Bayesian Belief Network still 

remained. This then led to an exploration of two possible solutions: 

 The first option was to consider other methods which do not require causality (e.g. 

models needing no causal relations defined) to model the probabilistic risk 

assessment model. The specific structure investigated here was the Markov 
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Random Field, which is an undirected graph without causal connections. Again 

this will be discussed further in Chapter 3. 

 The second option explored was to stick to the original plan and use Bayesian 

belief networks but come up with a means of extracting the required causal 

relations between the variables in the GRiST knowledge structure. For the 

semantics contained in the GRiST knowledge structure, the identification of causal 

relations for this option will have been important because the model contains 

inherent causal knowledge. This causal knowledge can be seen in a general way 

as the definition of the risk factors that contribute to the occurrence or likelihood of 

occurrence of the top risk (e.g. suicide or harm to other). 

 

However neither option was satisfactory in itself because it is clear that the GRiST 

knowledge structure comprises of a mixture of both causal and non-causal associative 

relations. For this reason, a third option was explored: a graphical structure that will 

provide a means of accurately modelling both the causal and non-casual relations 

inherent within the GRiST knowledge structure. Chain graphs are suitable candidates and 

are considered in the next section. 

 

1.6 The GRiST Approach  

The GRiST approach is via the use of chain graphs. Chain graphs are graphical models 

which allow both directed and undirected graphs with the constraint that they do not have 

semi directed cycles (Lauritzen and Wermuth, 1989). Within a chain graph variables which 

are linked with a directed edge have a causal relationship between them and, in a similar 

fashion to Bayesian belief networks, the direction of the edge is from cause to effect. On 

the other hand an undirected edge between two variables represents an associative 

relationship between the variables, which is how edges are represented in Markov 

random fields. Hence chain graphs are seen to be a generalisation of both Bayesian belief 

networks and Markov random fields and are thus able to model both causal and non-

causal relations within a single model. Once it was ascertained that the GRiST knowledge 

structure could indeed be modelled by a chain graph and that this was the best path to 

follow, the rest of the research then focused on the translation of the GRiST knowledge 

structure into a probabilistic chain graph to be used for mental health risk assessments. 

We discuss both the generic chain graph and the development of the GRiST chain graph 

in detail in subsequent chapters. A method is then also devised to translate the formal 

specification of expert knowledge within the GRiST hierarchical structure into appropriate 

graphs and, eventually, the integrated chain graph. Figure 1.1 depicts the various stages 
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leading to the final GRiST chain graph, from initial elicitation of expertise to final chain 

graphs that can be used to predict risks (the PhD research starts at the third block with the 

analysis of fuzzy GRiST knowledge structure to build component structures). 

 

 

 

Figure 1.1: GRiST chain graph development stages. 

 

1.7 Contributions 

This thesis contributes to the translation of knowledge-based systems using hierarchical 

expertise into probabilistic graphical models. For the translation, a new approach based 

on a set of mapping rules is presented. The mapping from the fuzzy model to a 

probabilistic graphical model is defined and implemented for the GRiST knowledge 

structure. The methods discussed in this thesis could be applicable to other systems 

based on hierarchical expertise, especially ones that contain both causal and non-causal 

relations. The possibility of representing both causal and associative relations in the same 

model helps to model domains more accurately, which has a direct impact on the quality 

of the results of the risk assessments performed using the tool. Forcing domains to fit into 

either a directed or non-directed graph can result in a loss of accuracy between the 

domain being modelled and the final resultant model. The GRiST chain graph circumvents 

this limitation and the research will show how it improves accuracy of the risk predictions. 

 

1.8 Thesis Outline 

In this section the remaining chapters of the research are summarised. In Chapter 2, the 

GRiST knowledge structure is presented in detail, including its representation and its 

uncertainty propagation. This is followed in Chapter 3 by a discussion on the various types 

of probabilistic graphical models used in this research and their use in risk assessments 

and decision support systems.  Chapter 4 explores the relations contained within the 
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GRiST knowledge structure and the semantics and different visualisations of the GRiST 

knowledge structure. In Chapter 5 the mapping rules for translating from the GRiST 

knowledge structure right up to the GRiST chain graph are defined. In Chapter 6, the 

application of the GRiST chain graph to GRiST data: the specific model, its 

implementation, and how the data is processed are discussed, this is followed by the 

testing and evaluation of the developed model in Chapter 7. Discussions and conclusions 

are then presented in the final chapter (Chapter 8). 
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Chapter Two 

2. GRiST Knowledge Structure 
 

In this chapter we discuss the GRiST knowledge structure and its uncertainty 

representation and propagation. The mapping of the GRiST knowledge structure into 

probability graphical models is also introduced.   

 

2.1 GRiST Knowledge Structure Representation  

The Galatean Risk Screening Tool (GRiST) is a decision support system for mental health 

risk assessments that represents knowledge in a hierarchical tree structure for generating 

risk evaluations (Buckingham, 2002). It is a psychological model for mental health risk 

assessment based on fuzzy sets and the knowledge structure encapsulates the semantics 

of the clinical expertise. In this section we explore the various aspects of the GRiST 

knowledge structure.  

 

2.2       GRiST Fuzzy Model  

The GRiST knowledge structure (i.e. the fuzzy model), was directly derived from the 

expertise of mental health domain experts. It is hierarchical in form, which is in line with 

other knowledge representations derived from expertise (Rossiter, 2002). The GRiST 

knowledge structure was specifically developed from encapsulated knowledge from 46 

domain experts and was subsequently validated and refined with the involvement of over 

100 multidisciplinary clinicians (Buckingham et al, 2007; Buckingham et al, 2008).  The 

GRiST tree is an XML (eXtensible Markup Language) structure made up of a set of 

nodes, which can either be concept or datum nodes. XML is a markup language that 

describes the structure of data (in this case the GRiST knowledge structure) and provides 

a flexible and powerful way to describe knowledge structures, more on XML can be seen 

in Dix et al (2001). A datum node is a component value representing a physically 

measurable item of information or cue influencing risk evaluations (e.g. the seriousness of 

intention to commit suicide “seriousness” as shown in Figure 2.1).  
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Figure 2.1: Example of the propagation of membership grades in the GRiST model, 

highlighting the path to levels, p, for the concept node intention.                            

 

Datum nodes equate to the information gathered during an assessment and are the input 

values to the tree (i.e. the leaf nodes). Appendix 2 contains a full version of the GRiST 

questionnaire used to collect the values that map to the datum nodes. Concept nodes are 

the higher-level nodes in the tree consisting of two or more subcomponents that could be 

datum nodes or other concept nodes. They represent composite concepts underlying risk 

such as depression. Next we describe how uncertainty is represented and propagated in 

the model, the definition of its data structures and directly following on from these, the 

component structures that it decomposes into. 

 

Uncertainty in the GRiST fuzzy model is represented using two main measures; relative 

influences and fuzzy-set membership grades:  

 

Relative Influence (RI) represents the influence or weight a node has on its parent 

concept, relative to its siblings. Within the GRiST knowledge structure there is a constraint 

stating that the total sum of RIs across the siblings must equal one.  
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Membership Grade (MG) represents the degree of membership of an object in a node, 

where each node is considered to be a fuzzy set i.e. an MG represents the degree of 

membership of an object in a node of the tree, with each nodes’s MG ultimately 

contributing to the top-level risk membership (e.g. suicide and self-harm). 

In the GRiST knowledge structure, datum or leaf nodes match associated patient cues, 

which generate an MG from an MG distribution that has been defined by clinical experts 

as part of the elicitation process for the decision support system. These MGs feed through 

the concept hierarchy based on the RI values attached to nodes as illustrated by Figure 

2.1 and equation (2.1) (see Buckingham (2002) for further details). 

  ).)()(
1

1 
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p p RIxdatumMGXMG                                     (2.1) 

Equation (2.1) states that that the membership grade of a concept, X, such as ‘intention’ in 

Figure 2.1, is equal to the sum of the MGs of the datum nodes along all paths p to X  

multiplied by all the corresponding RI values along the paths on each level l leading to X. 

 

The following example of how the MG at a concept is calculated uses equation 2.1 and 

Figure 2.1. Applying equation 2.1 to Figure 2.1 above with the total number of paths 

3P and levels :2L  

 

At path P = 1, we get the membership grade of seriousness multiplied by the RIs along 

the path P = 1 (i.e. 0.7) i.e. 0.6 x 0.7.  

 

Likewise when path P = 2, the membership grade of realism multiplied by the RIs along 

path P = 2 (i.e. 0.6 and 0.3) i.e. 0.7 x 0.6 x 0.3.  

 

Similarly for path P = 3, the membership grade of steps taken multiplied by the RIs along 

path P = 3 (i.e. 0.4 and 0.3) i.e. 0.8 x 0.4 x 0.3.  

 

Summing all these together then gives us the membership grade  at the Intention 

concept as 

        .642.03.04.08.03.06.07.07.06.0 Intention
  



24 
 

The general topology of a fuzzy model is made up of three main components, the 

encoder, the processing module and the decoder (Pedrycz and Gomide, 1998). These 

components directly map to the inference process of traditional models. The inference 

process starts with the inputs into the model, and then moves on to the fuzzifier stage, 

which in turn leads to the inference engine and finally the last stage in the process is the 

defuzzifier stage. Below is an illustration of how GRiST inference relates to these stages 

using the example from Figure 2.1 above. 

 

 

Inputs: seriousness = 6, realism = 7, steps taken = 8 

 

Fuzzify Inputs (convert from crisp input which are exact or distinct inputs using 

membership distributions of datum nodes), the membership grade values µ of the 

following are: 8.0)(,7.0)(,6.0)(  stepstakenrealismsseriousnes   

 

Inference Engine: Propagation of membership grades up the tree using equation (2.1) 

to yield  (Intention) = 0.642 

 

Defuzzify: Final membership grade of top risk, in this example  (Intention) = 0.642, 

would with actual top risks (e.g. suicide risk) be mapped to a linguistic variable, such as 

low, medium or high risk. 

 

 

In traditional fuzzy models, some of the operations used in the processing module (i.e. the 

inference engine) are: 

 the min operator to represent AND, this is used because it maintains 

results of the AND truth table and extends to real numbers as well 

 the max operator to represent OR (for same reason as the min operator) 

 the 1-X to represent NOT X  

 

Furthermore, in these modules every rule contributes to the final solution. The same is 

true with the GRiST model where an increase in the membership grade in any node 

results in an increase in the root risk. The above briefly relates GRiST to traditional fuzzy 

models, for more on fuzzy models refer to Pedrycz and Gomide (1998).  
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2.3 The GRiST Fuzzy Uncertainty Representation and Probability Theory 

The parameters needed for risk prediction in the final probabilistic graphical model will be 

learned from data. However, it is still important to explore the bridging of the gap between 

the GRiST fuzzy uncertainty relationship and probability theory. This is because the 

relationship between the membership grades and conditional probabilities in GRiST can 

both aid the parameter learning process and be used in the validation of the final 

probabilistic graphical model. The next section therefore discusses the various issues 

pertaining to bridging the gap.  

 

There are ongoing disputes between different proponents of fuzzy set theory and the 

more traditional probability theory. However, the one element that holds true regardless of 

which side of the fence one sits on is that both theories aim to model uncertainty. This 

PhD research takes the position that based on the particular model and the uncertainty 

representation, one or the other or at times even using a hybrid of both would be the most 

appropriate route to take. Membership grades are not a probabilistic measure. However, 

they have a relationship to probabilities and it is this relationship that will be discussed in 

the remaining part of this section.  

 

2.3.1 GRiST Membership Grades and Probability 

Fuzzy set theory and probability set theory differ both mathematically and semantically. 

The main mathematical difference between the two is that probability theory obeys the law 

of the excluded middle (i.e. an object is either a member of a set or not). Whereas the law 

is not valid for fuzzy sets where expressions of the type Tomatoes are both fruit and not 

fruit are supported. In addition, for probability distributions the sum of the probabilities of a 

variable over all possible values of the variable is 1 (see equation 2.2), however equation 

2.3 is not necessarily the case for membership functions (Dubois and Prade, 1993). 

 

 

.1)(   upUu                                                                                                    
(2.2) 

 

.1)(   uUu 
                                                                                                   

(2.3) 
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The above reaffirms the semantic difference between fuzzy and probability set theory: 

probability theory deals with crisp well defined sets and an element is either fully a 

member of the set or not; in fuzzy set theory, the set is ill defined and elements can have 

degrees of memberships in the set. For example, consider the following statements 

 

There is an 85% chance that patient X is depressed. 

 

The above statement supposes that patient X is either depressed or not, and one has an 

85% chance of knowing whether or not he is. 

 

Patient X’s membership grade within the set of depressed people is 0.85. 

 

The above supposes that patient X’s membership of the set of depressed people is 0.85.  

 

In other words in probability theory there is an 85% chance of the patient being depressed 

or a 15% chance of the patient not being depressed. The point, however is that a patient 

is either depressed or not depressed which is in contrast to the fuzzy theory statement 

which implies that a patient can be partially depressed (in the above example 85% so). 

 

The bridge being explored between the GRiST uncertainty representation, probability 

theory and eventually the probabilistic graphical model starts from the underlying 

conditional probability definitions ingrained in the GRiST semantics. Therefore the areas 

that are explored and utilised in this thesis include the relationships between the 

membership grade distributions of the leaf nodes as given by the experts and their 

possible / potential relationship to likelihoods, probabilities and joint probability 

distributions. The importance of any discoveries in relation to the conditional probabilities 

and joint probabilities, become more apparent when we consider the link between 

conditional independences and a probability graph’s joint probability distributions later on 

in this thesis. 

 

2.4 Considerations in Relating Membership Grades and Probabilities 

In Figure 2.2 a sample membership grade distribution for a datum node is depicted. The 

x-axis shows values that can be entered for the particular datum node whilst the y-axis 

shows associated membership grade values. These mappings were set by the experts 
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positioning required points in the graph, thereby giving the membership distribution for the 

datum node. This was done for each of the datum nodes in the model. In defining the 

values of the MGs the experts were not assigning probabilities. Instead they were 

estimating relative probabilities with values relative to the maximum probability the 

variable can have. As the real probability is not known, the experts assigned a MG of 1 to 

represent the maximum membership or influence that the variable can have. For further 

details on how the experts carried out this task see Buckingham and Adams (2007). 

 

Figure 2.2: Membership grade distribution of datum node. 

 

From an examination of the semantics of MGs in the GRiST model, there are some areas 

in which it is possible to infer the relationship between MGs and probability.  

 

The areas relating to the fuzzy to probability relations that were explored include the fact 

that for most concept nodes, the MG measures the degree to which a person maximises 

the associated risk with respect to the particular concept, without knowing the exact extent 

of its contribution to that risk. The actual contribution to the risk is given by the degree to 

which the MG is filtered out on the way up to the risk node (i.e. given by the RIs along the 

path). The question is: considering the MG of the datum, how can it be translated into a 

probability of the risk, given the concept nodes MGs along the path and the filtering RIs? 

For example given the past attempts concept, the MG in this concept is a measure of how 

close the patient is to a person who would have maximum risk with respect to the concept 

in question. If the )(Datum  = 1 the implication is that ))(|( DatumMaxRiskP  = 1, where 

MaxRisk refers to the Maximum Risk that the particular node can contribute independently 

of any other. 
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However we do not know what the MaxRisk value is but as the RIs given by the clinicians 

measure the relative contributions to risk of the underlying concepts, it is possible to 

approximate to it from them. Considering the relationship between the RIs of sibling 

nodes, we see that on each level in the GRiST model, the contribution from a node to the 

MaxRisk value is equal to the general MaxRisk value on that level multiplied by the RI 

value of the said node. 

 

nn RIMaxRiskRIMaxRiskRIMaxRiskMaxRisk  ...2211 .                 (2.4) 

In relating current findings to previous work done on the bridging of the fuzzy to probability 

gap, the above is similar to results obtained when Bayesian methods are used as a link 

between the fuzzy representation and probability theory. As mentioned by Ross et al 

(2002), Bayesian methods can be used as a link between fuzzy and probability theory. 

Bayes rule states that the probability of a hypothesis h given evidence e is equal to the 

product of the probability of evidence e given the hypothesis h and the prior probability of 

the hypothesis divided by the probability of the evidence e (Pearl, 1997). The rule is 

depicted in symbols in the equation below: 

.
)(

)()|(
)|(

eP

hPheP
ehP   

Using Bayesian methods as a link between the fuzzy representation and probability theory 

involves interpreting the MG as a likelihood function i.e. )(DatumR is the likelihood 

function of Datum for a fixed set R (where R stands for Risk and refers to the highest node 

in the category). The idea is then to obtain a probability based posterior P(Risk|Datum) 

from a probability based prior P(Datum) and the likelihood function (i.e. the MG). The 

above assertion is true because the definition of a MG is subjective and as mentioned 

earlier, it gives the expert’s opinion on the degree of membership in a category, where a 

category refers to the top risks which are the highest level concepts. The full GRiST fuzzy 

knowledge structure consists of four main categories; suicide, harm to others, self harm 

and vulnerability but this research only considers suicide.  In addition to this, likelihood 

functions are not necessarily probabilities and so in this particular case, the likelihood 

function is not taken to be a probability value but rather a positive MG value.   

Attempting to translate the GRiST knowledge structure into a probabilistic equivalent 

requires understanding GRiST’s uncertainty processing in conjunction with the semantics 

of its knowledge structures and any constraints operating on them.  The data structures 

can be further broken down into the following types as defined in the GRiST fuzzy model’s 
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knowledge structure; further information on this structuring and with their corresponding 

constraints can be found in Buckingham and Adams (2007). 

 

1. Non-Generic Concept – These are concept nodes occurring just once in the 

model. 

2. Generic Concept – These are concept nodes that occur in more than one location 

but always with an identical structure. They may be one of two subtypes: 

 Context Independent Generic Concepts, generic concepts (g) which have exactly 

the same uncertainty values (RIs) wherever the concept node occurs; 

 Context Dependent Generic Concepts, which are known as generic distinct (gd) 

nodes because their uncertainty values (RIs) are dependent on the location of the 

nodes in the hierarchical tree.  

3.  The same definitions for components that apply to concept nodes (defined in 

points 1 and 2 above) also apply to datum nodes. 

Figure 2.3 below, summarises the different GRiST concept node types: 

 

Figure 2.3: Summary of GRiST concept node types (gd – generic distinct and g – 

generic). 
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The naming conversions for the two different types of generic components (i.e. generic 

distinct and generic) are the original names in the GRiST fuzzy model. However for 

additional clarity, in this thesis generic components will be referred to from now on as 

fixed generic (FG) components and generic distinct components will retain the same 

name i.e. generic distinct components (GD). 

 

2.5    GRiST Component Structures 

Following on from the semantics of the GRiST fuzzy model’s data structures and its 

uncertainty propagation, a list of constraints has been generated. The general knowledge 

structure was decomposed into three possible component structures (fixed generic 

component structures - FG, generic distinct component structures - GD and the non 

generic component structures). The objective behind decomposing the GRiST knowledge 

structure into a group of smaller component structures is the identification of structures 

that are likely to be useful for creating probabilistic graphical models. To add clarity some 

special terms are defined in relation to the GRiST knowledge structure and its 

decomposition into component structures. Figure 2.4 will be used where necessary to 

illustrate the definitions further. 

 

 A root node of a component structure refers to the highest ancestor node in the 

structure under consideration. For example from Figure 2.4 if the subsection of the 

GRiST knowledge structure is split into various sub graphs (i.e. component 

structures) including the component structure made up of gen-phys-hlth-prb 

(physical health problems), gen-phys-hlth-deg-diag (when life-threatening or 

degenerative illness first diagnosed), gen-phys-hlth-pain (pain), gen-phys-hlth-disa 

(disability), gen-com-imp (communication impairment) and gen-phys-hlth-det 

(deterioration in physical health). Then the root node of this structure is gen-phys-

hlth-prb. Please note that a full listing of the GRiST knowledge structure node 

names and their full labels is given in Appendix 1.  
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Figure 2.4: Subsection of the GRiST knowledge structure, depicting different FG and GD 

component structures (‘g’ and ‘gd’ denote ‘FG’ and ‘GD’ components respectively; whilst 

‘gdat’ and ‘gdd’ are the datum node equivalents). 

 The internal nodes of a component structure are the descendent nodes of the root 

node of the given structure. So for instance in  the example previously consider in 

Figure 2.4, the internal nodes of the component structure are gen-phys-hlth-deg-

diag (when life-threatening or degenerative illness first diagnosed), gen-phys-hlth-

pain (pain), gen-phys-hlth-disa (disability), gen-com-imp (communication 

impairment) and gen-phys-hlth-det (deterioration in physical health). These are all 

the nodes of the structure except the root node gen-phys-hlth-prb (physical health 

problems). 

 The type of a component structure is dependent on the type of its root node (i.e. 

fixed generic, generic distinct or non generic). So for instance in the component 
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structure with root node gen-phys-hlth-prb of Figure 2.4, as the root node is of the 

type gd (i.e. generic distinct) the component structure is of the type generic 

distinct. In a similar vein the component structure with root node gen-meds-therpy 

is of the type fixed generic because its root node is of the type fixed generic.  

To summarise, a GRiST component structure is made up of a root node and internal 

nodes and its type is dependent on the type of the component structure’s root node. 

Another useful definition is that of the top risk, a top risk is different from a root node, 

in that the top risk refers to the highest node for the entire GRiST knowledge structure 

and not just a single component structure. As mentioned in section 2.4 the full GRiST 

fuzzy model comprises of four top risks (suicide, harm to others, self harm and 

vulnerability) but the focus in this research is on suicide. 

 

2.5.1  Fixed Generic Component Structures (FG) 

A GRiST component structure which has a root node of the type fixed generic is known as 

a fixed generic component structure. An example of this can be seen in Figure 2.4 for the 

component structure with root node gen-meds-therpy. For the root node of a FG 

component structure its MG value is the same regardless of its location in the overall 

knowledge structure. This in turn means that the relevant context of the FG component 

structure is its root node. Within (and only within) the root concept the uncertainty values 

of the internal nodes are fixed and always remain the same regardless of location. 

 The MG of the fixed generic component structure type is always the same 

throughout the entire knowledge structure and hence the root concept node is the 

context that its MG relates to. 

 the internal nodes of FG component structure remain fixed in relation to the root 

concept i.e. the context of the internal nodes here is its root concept node. 

This implies that the uncertainty values of the FG component structure are not based on 

the top risk (as this changes across various parts of the GRiST knowledge structure, 

whilst the FG’s MG remains constant) but is in fact based on the root concept node hence 

explaining why the MG value of the FG structure can and does remain fixed even when 

the top risk changes. It should be noted that the change in top risk refers to change in 

values and not change in the top risk’s structure. 
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2.5.2  Generic Distinct Component Structures (GD) 

For GD component structures, the case is a bit more complex and it can be further split 

into two different types: 

 Those whose root concept do not have any generic node ancestors (e.g. gen-ser-

ment-ill – serious mental illness in Figure 2.5); these are the pure GD component 

structures with both varying internal RIs and varying root concept MG. The context 

for these nodes is the top risk of the model in which it occurs. This type of structure 

has been named the generic distinct with no fixed generic ancestor component 

structure (GD). 

 GD component structures with fixed generic node ancestors along their path; the 

context for these structures is determined by the fixed generic ancestor. The 

closest fixed generic ancestor node to the top risk (along the hierarchy) will define 

the behaviour of both the root concept and the internal nodes of the GD structure. 

In relation to the closest fixed generic ancestor node all the nodes of the GD 

structure will have fixed RIs and behave like FG structures. This is very different 

from the behaviour that would have been observed for the same structure had it 

not had a fixed generic ancestor (in this case the internal nodes will have varying 

RIs). An example from Figure 2.5 is gen-feel-emot (i.e.feelings and emotions) 

which is of the type generic distinct but has a fixed generic ancestor in gen-

depression (i.e. depression). This type of structure is also a generic distinct but 

with a fixed generic ancestor (GD with fixed generic ancestor). 

 

2.6  GRiST Component Structures Constraints 

To aid in the conversion to the ultimate GRiST probabilistic model, the GRiST knowledge 

structure was analysed and the constraints that defined the possible subcomponent 

structures that it can be decomposed into were identified. In the next subsection these 

constraints are summarised in text and Figure 2.6.                                                                                      
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Figure 2.5: Subsection of GRiST suicide knowledge structure – depicting depression and 

other structures  (‘g’ and ‘gd’ denote ‘FG’ and ‘GD’ components respectively). 

 

The identification of these constraints is important because from them the conditional 

independencies encapsulated by the GRiST knowledge structure can be discovered. 

Then in the mapping to the probabilistic graphical model, the main objective will be to 

translate the GRiST knowledge structure into a probabilistic graphical model that 

accurately represents the conditional independence relations present in the GRiST 

knowledge structure.  
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2.7   Constraints Related to Structures with Generic Distinct Root Nodes 

The following are the constraints that fall under this category: 

• The RI value of the root node varies. This is the case because the root node’s RI is 

in the context of sibling nodes, where its sibling nodes are other nodes (X1 to Xn) 

that link to the same node Y as the root node in the direction of the top risk. If the 

root nodes location changes so will the sibling nodes. However, if the component 

structure has a fixed generic node ancestor, in this case character traits exhibited 

by the component structure will be determined by the ancestor node. 

• The MG value of the root node varies. 

• The RI values of the internal nodes vary. 

• If a generic distinct node has at least one node of fixed generic type as an 

ancestor then the context (or point of reference) for the generic distinct node is the 

nearest ancestor to the top risk of the type fixed generic. Otherwise, the context for 

the generic distinct node is the top root risk node (e.g. suicide, harm to others and 

so on). 

• In the case where all the internal nodes of a generic distinct root concept are of  

the type fixed generic, if all the MGs and RIs of these internal nodes are always 

fixed it is obvious that the root concept MG value cannot vary and will itself always 

be fixed too, which is incorrect behaviour for a generic distinct root concept. This 

therefore leads to the constraint that a root concept of the type generic distinct 

cannot have all its internal nodes to be of the type fixed generic. To make it 

possible for the variation in the root concept’s MG value in various locations, there 

must be at least one internal node of the type generic distinct. This is seen to be 

true in the GRiST knowledge structure and is a good test of the validity for generic 

distinct node definitions. 

2.8   Constraints Related to Fixed Generic Component Structures  

The constraints that fall under this component structure are as follows: 

• The RI value of the root node varies.  

• The MG value of the root node is fixed. 

• The RI values of the internal nodes are fixed. 
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• Given that the MGs and RIs of all internal nodes are fixed then the point of 

reference (i.e. the context) for the internal nodes is their root node. An alternate 

way of viewing this constraint is that there are no changes in the uncertainty 

values of the fixed generic node between different locations because the context 

remains unchanged (i.e. root node remains fixed). An example from the GRiST 

knowledge structure is depression and its internal nodes (see Figure 2.5). 

• As every node within a root concept of the type fixed generic has a fixed RI and 

MG everywhere the root concept occurs, if one of the internal structures is of the 

type generic distinct, it will also need to have fixed RI and MG values within the 

context of the root concept everywhere it occurs. This is not the default or usual 

behaviour of generic distinct nodes, but is in fact a special case. 

 

Figure 2.6: Uncertainty properties of fixed generic (FG) and generic distinct (GD) 

component structures. 

 

Further discussion on these component types and the analysis that leads to these 

categorisations are given in section 4.7.6 page 97. 

 

 

2.9 The Probabilistic Graphical Models  

Having described the component structures that the GRiST knowledge structure can 

decompose into, the next stage involves the identification of conditionally independent 

relations between various variables in the GRiST knowledge structure. This will enable the 

GRiST knowledge structure to be divided into categories of equivalent graphical structures 

and each one can be translated into an associated probabilistic structure. The task then 

becomes one of constructing a single probability graph out of the smaller probability 

building blocks but an important issue to address is ensuring that conditional 

independence represented in the GRiST knowledge structure is maintained during the 



37 
 

translation process, as indicated in Jiang et al (2005) and Kim (n.d.). However, unlike in 

these instances, the variables in the components that we are aggregating do not overlap 

(i.e. we are not combining the overlapping data from different models). This distinction 

makes it easier for the integrity of the conditional independence relationships to be 

maintained during the conversion process. 

 

There are two main types of graphical models, those based on undirected graphs, which 

are known as Markov Random Fields and model symmetric relationships between their 

variables, and those based on directed graphs known as Bayesian Belief Networks that 

model causal relationships between their variables. A Bayesian Belief Network is a 

directed acyclic graph (DAG) consisting of nodes (that represent random variables in the 

domain being modelled) and directed arcs between the nodes, which represent direct 

dependencies. A Markov random field on the other hand is an undirected graph which, 

unlike Bayesian belief networks, does not encode causal relations. However in the Markov 

random field the probability distribution of each variable is dependent only on its graphical 

neighbours (local Markov property for Markov random field). Examples of these two 

graphical models can be seen in Figure 2.7. 

 

 

Figure 2.7: Simple Bayesian Belief Network (directed graph) and Markov Random Field 

(undirected graph). 

 

The probability models are discussed in more detail in Chapters 3 and 5. The important 

thing to note now is that the probability building block that a GRiST component structure 

maps to is dependent on the conditional independences (and dependencies) represented 

in it and the nature of the relations it encapsulates. For example are the relations causal 

or non causal? In Chapter 4 an in-depth analysis is done of the GRiST knowledge 

structure. This analysis covers aspects such as the component structures it decomposes 

into, and the possible relations between its nodes and their properties. Chapter 4 also 

contains a detailed examination of different visualisations of the GRiST knowledge 

structure, the objective underlying all this being to correctly map each component 
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structure to the probability building block that can most accurately represent it, and this 

culminates in the mapping rules for the conversion from the GRiST knowledge structure 

into appropriate probability building blocks in Chapter 5. 

2.10 Mapping the Component Structures into Probability Building Blocks 

The preceding sections on the GRiST component structures and their ingrained 

constraints lay the foundation for the exploration of the semantics encapsulated in the 

GRiST knowledge structure, this will be discussed in detail in Chapters 4 and 5. From 

these semantics the conditional independence relations represented by the GRiST 

knowledge structure will then be identified and mapped into probability building blocks. 

These building blocks represent different types of probabilistic graphical models which the 

GRiST component structures can be adequately mapped to. From the GRiST knowledge 

structure constraints and the component structures that it can be decomposed into that 

were discussed earlier in this chapter, the potential for the need to have different 

modelling approaches for the mapping to probability graphical models has started to 

surface. In Chapter 4, this is delved into in more detail, including other areas such as the 

inherent semantics in the knowledge structure, the relationships it contains and so on. 

This results in the need to model some aspects of the knowledge structure in a causal 

fashion and some in a non causal way. The two types of probability graphs (i.e. the 

probability building blocks) that make this possible are directed graphs (also known as 

Bayesian belief networks) and undirected graphs (Markov random fields). This will all be 

discussed in more detail in subsequent chapters. 

 

This chapter has introduced the basic knowledge structures representing mental-health 

expertise and their inherent constraints. In Chapter 3 the probability building blocks and 

their properties will be explored, whilst Chapter 4 examines the component structures and 

their constraints in more detail, with a view to defining the semantics more precisely, and 

attempts to produce a formal ontology. The aim is to produce a specification of the 

structural and uncertainty relationships with the GRiST expertise that enables a principled 

transformation of that expertise into an equivalent probabilistic knowledge structure. The 

mapping rules from GRiST into the probability building blocks will then be discussed in 

Chapter 5. This will be followed by the construction of the GRiST chain graph for the 

mental health risk assessments from the probability building blocks. Chapter 6 will cover 

the construction of the chain graphs. This will include the learning of parameters from data 

and its conversion to factor graphs for inference purposes. Finally Chapter 7 will cover the 

testing and evaluation of the constructed chain graph for mental health risk assessments. 
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Finally summarising the overall process of mapping from the GRiST knowledge structure 

to the final GRiST probabilistic graphical model (i.e. chain graph) for mental health risk 

assessments, the steps are: 

 Identification of the different knowledge component structures within the GRiST 

hierarchy (this process has been started in the current chapter). 

 Conversion from the GRiST component structures to probability building blocks 

(Chapters 4 and 5). 

 Construction of the GRiST chain graph from the probability building blocks 

(Chapters 5 and 6). 

  Learning of parameters from the chain graph (Chapters 6 and 7). 

 Conversion to factor graph (Chapters 6 and 7). 

 Application of the factor graph for probability predictions (Chapter 7).  
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Chapter Three 

3. Probabilistic Graphical Models  
 

In this chapter we discuss various probabilistic graphical models and their use in decision 

support systems for risk assessments. 

 

In this chapter, the probabilistic graphical models to be used in the conversion process 

from the GRiST knowledge structure are discussed. The chapter starts with a general 

overview of probabilistic graphical models and then goes on to describe and compare the 

graphical models that are potential building blocks. This is then followed by a discussion 

of the more complex probabilistic graphical models that are produced from the probability 

building blocks. 

Probabilistic graphical models are an amalgamation of probability and graph theory and 

can be used to represent a wide variety of domains. They make it possible to represent 

the knowledge structures of domains in a graphical format whilst at the same time 

maintaining probabilistic properties for the structures represented. There are different 

probabilistic graphical models and each has its own set of constraints and properties. 

However, a common property that they all share is that they represent the joint probability 

distribution of the variables that they encapsulate. Probabilistic graphical models can also 

generally be factorised into local conditional probability distributions (of their variables), 

which in some form make up the joint probability distribution of the graph. The graphs 

generally fall into one of two categories; directed and undirected graphs, there is however 

also a third category which subsumes both the directed and undirected graph and these 

are the sets of graphs that are a combination of both directed and undirected graphs. In 

this thesis, the probabilistic graphical models of interest are the undirected graph Markov 

random field, the directed Bayesian Belief Network, the undirected factor graphs and the 

mixed chain graphs (Figure 3.1). 
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Figure 3.1: The probabilistic graphical structures used in this research (adapted from 

Murphy, 2003). 

3.1 General Graph Definitions 

In a graphical structure variables within the domain to be modelled are represented as 

nodes and dependencies between the nodes are represented as edges. Where there are 

no edges connecting nodes together this represents conditional independencies.  

A graph can be defined formally as: 

),( EVG   where G  represents the graph, V the set of nodes and E the set of edges 

that exist between nodes.  

For the different types of graphical structure there are a set of properties which are known 

as Markov properties, these define the conditional independencies that the structures 

contain. Figure 3.2 depicts a simple graphical structure and will be used to define terms 

commonly used in the domain. 
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Figure 3:2: Simple directed graph. 

 

Below are the definitions necessary for this work: 

 Link – A link refers to connection between two nodes, where a link exists this 

implies that some sort of relationship exists between the nodes (this will be 

explored further in subsequent sections). For example in Figure 3.2 there is a link 

between a and b. 

 Causality – this encapsulates the notion of node a causing node b (see Figure 

3.2). The direction of causality (i.e. cause to effect) is the same as the directed 

edge. That is the node with the arrow head going into it is the effect whilst the 

source node is the cause. In Chapter 4, further details on causality are discussed. 

 Dependence – Any two nodes in a graphical structure are connected to an edge if 

they are dependent in some way on each other. The dependency can be of 

different forms (e.g. causal or symmetric and so on). In Figure 3.2 nodes c, d and 

e are dependent on node b, as is node b on node a. 

 Conditional independence – The absence of an edge between nodes indicates 

that they are conditionally independent of one another. The conditions vary for the 

different types of graphical models. This will be discussed in more detail later in 

the chapter when each type of graphical model is considered. An example of the 

notation to be used is as follows  bac | implies c is conditionally independent of 

a given b. 

 In graphical models, nodes are sometimes described as being observed or 

unobserved. Observed nodes are variables whose values are physically 

measurable whilst unobserved nodes values are not. For instance the frequency of 
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past suicide attempts by a person is physically measurable whereas a person’s 

current risk of suicide is not. 

 Parent Nodes – Some of the terms used in graph theory have been borrowed from 

family trees and this is one of them. The notion of parent nodes is only applicable 

in directed graphs, and a node is parent to another node if it is higher up the 

hierarchy and directly linked to the other node. Examples from Figure 3.2 include a 

to b and b to nodes c, d and e. 

 Siblings – Sibling nodes are nodes that share a common parent, so from Figure 

3.2, nodes c, d and e are sibling nodes. 

 Child Nodes – Children nodes are the reverse of parent nodes, they are directly 

linked to the node higher up the hierarchy. 

 Path – A path refers to a set of connections between any two nodes in the 

structure, where unbroken links do not exist between the nodes i.e. between the 

two nodes there exists a sequence of nodes such that there is a link between the 

all the nodes that fall between the original nodes (for whom the path is being 

defined). For example there is a path between a and d (via b). 

 Ancestors – This is only applicable for directed graphs and refers to all nodes with 

paths to a node x that are higher up in the hierarchy than x. Node a is an ancestor 

to nodes b, c, d and e in Figure 3.2. 

 Descendants – Again this is only applicable for directed graphs and refers to all 

nodes with paths to a node x that are lower down in the hierarchy than x. Nodes b, 

c, d and e are descendants to node a in Figure 3.2, it is the opposite of ancestors. 

 Neighbours – of a node are all the other nodes linked to it via an undirected edge. 

 Boundaries – The boundaries of a node X in a graph are either the neighbours of X 

(undirected graphs) or the parents of X (directed graphs). 

 

The most important question that a graphical model must answer here via its structure is 

what are the conditional independence relations represented in the model i.e. what are the 

Markov properties represented by the graph (Koller and Friedman, 2009). In the 

subsequent sections of this chapter the probabilistic graphical models to be used in the 

research have the conditional independencies that they can represent discussed.  
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3.2 Bayesian Belief Networks 

Bayesian networks, with their associated methods are suited for the development of risk 

assessment models as they are well-suited for capturing and reasoning with uncertainty 

(Lucas, 2004), especially so in various industry sectors where it has, and is increasingly 

proving to be an extremely useful tool for risk assessments. Examples of some specific 

areas in which Bayesian Belief Network models have been used for risk assessments 

include: 

 Breast Cancer Risk Prediction (Ogunyemi et al, 2004; Euhus 2001) 

 Haemodialysis (Rose et al, 2005) 

 Risk Analysis in Investment Appraisal (Savvides, 1994) 

 Software Metrics (Xu et al, 2006) 

 Operational Risk (Alexander, 2003; King, 2001; Verrall et al, 2007) 

 

The term ‘Bayesian Network’ was coined by Judea Pearl to express a formalism that is a 

combination of probability calculus and graph theory (Pearl, 1985). The actual origins of 

Bayesian belief networks however traces back to Bayes theorem, which is discussed later 

in section 3.2.1 on page 45.   

 

Bayesian Belief Networks are directed graphical representation of probabilistic 

relationships, where the graphical representation consists of nodes (representing the 

relevant variables in the model) and edges between the nodes. These edges represent 

informational or causal relationships between the variables. The strength of influence of 

one node on another node within a Bayesian Belief Network is captured by the probability 

distribution of nodes. For example, if within a Bayesian Belief Network model, one node 

depression is linked to another node suicide attempt, the probability distribution of the 

suicide attempt node would be an indicator of the strength of influence that the node 

depression has on it. Bayesian Belief Networks thus allow observations to be made about 

known variables and the inferring of the probabilities of others (Fenton and Neil, 2004).  

 

Risk assessments have traditionally been undertaken in a variety of ways, some of which 

are documented in previous reviews (e.g. Bennett and Jacik, 2005). This section focuses 

solely on the use of Bayesian Belief Network modelling for risk assessments. It begins by 

taking a critical look at Bayesian Belief Networks and their potential for risk assessments, 

with a view to identifying past and current use of Bayesian Belief Networks in risk 

assessments, their manner of usage and advantages and disadvantages encountered in 
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implementation. This is done by starting with a general review of Bayesian Belief 

Networks and considerations of risk assessments; this is followed by a concluding section 

before then continuing with the discussions on the other types of probabilistic graphical 

models to be considered. 

 

3.2.1 Fundamentals of Bayesian Belief Networks  

According to Korb and Nicholson (2003:29) “a Bayesian Belief Network is a graphical 

structure that allows us to represent and reason about an uncertain domain”. In this 

context, an ‘uncertain domain’ is whatever area the risk assessment model is required in 

such as mental health suicide risk.   

In addition, within a Bayesian Belief Network, for discrete domains, each node has a 

conditional probability table (CPT) which quantifies the relationships between the nodes. 

This is done as follows: for each node, all possible combinations of its parents are 

specified and the probabilities of the child taking the value of each of these combinations 

are then specified in a table (the CPT).  

 

Figure 3.3 depicts a diagram illustrating a simple hypothetical Bayesian Belief Network. 

The arcs between the nodes show the causal dependencies between the nodes, and the 

CPT shows strength of influence of the nodes on each other as follows (these values are 

purely for illustrative purposes).  

 

The prior probabilities of Deep sense of worthlessness (W) are given as 0.55 being the 

probability that W will be true and 0.45 the probability that it will be false. Note that these 

two probabilities sum up to make a total of one, this is because the total probability across 

all the possible states that a variable can take is one (i.e. P(S|W) + P(!S|W) = 1, given that 

S can only hold two possible states T or F). The notation ‘!S’ used in the preceding 

sentence means ‘not S’. Focusing on the next node sleeplessness (S), its conditional 

probability table illustrates that the probability of S being true given that its parent node W 

is known to be true is 0.60, likewise given that the W is known to be true the probability of 

S being false is 0.40. The depression D conditional probability table can also be 

interpreted in a similar manner. More will be said later on the relationship between a 

node’s parents and its conditional probability distribution. 
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W = Deep sense of Worthlessness   S = Sleeplessness     D = Depression                                                        

Figure 3.3: Hypothetical graph depicting simple Bayesian network.  

A Bayesian Belief Network represents the joint probability distribution of all the variables in 

it and this joint probability distribution can factorized into a product of the variable’s local 

conditional independent distributions. 

 

For example the joint probability distribution of all the variables in Figure 3.3 can be 

represented as follows: 

).|()|()(),,( WDPWSPWPDSWP    

Bayesian belief networks are based on Bayes rule (Pearl, 1997) 

 .
)(

)()|(
)|(

eP

hPheP
ehP   

This asserts that the probability of some hypothesis h, given evidence e  is equal to the 

likelihood of the evidence given the hypothesis has occurred, )|( heP  , multiplied by the 

probability of the hypothesis prior to any evidence being given, )(hP  normalized by )(eP  

(Korb and Nicholson, 2003). This gives a mathematical rule based on probabilities that 

outline how to change existing beliefs in light of new evidence (Murphy, n.d.), where the 

P(h|e) is the posterior probability of the hypothesis after it has been adjusted with the new 

evidence from its prior probability, P(h), when the evidence was not known. 

 

As noted earlier, a Bayesian Belief Network is a graph consisting of nodes that represent 

variables in the world to be modeled (this for example could be suicide risk and its 
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associated risk factors), and directed arcs between the nodes. These directed arcs 

represent direct dependencies between the variables and are always one-headed arrows 

linking two nodes together. Any two nodes so linked are assumed to have a causal 

dependency between them and in a similar vein, absence of a linking arc between any 

two nodes implies causal independency (Anderson et al, 2002). 

 

The only constraint to specifying the arcs in Bayesian Belief Networks is that directed 

cycles are not allowed i.e. a node cannot be its own ancestor or descendant.  For 

illustrative purposes, if two nodes iA  and kA  have a causal dependency where iA  

causes kA  (i.e. iA  is the parent node of child node kA ), this is represented as follows; 

iA kA . A situation whereby iA  kA  nA .... iA  is not allowed. A Bayesian Belief 

Network can therefore be defined as a Graph G of the following form: 

),( EVG  ;  if Eyx ),(  then .),( Exy    

With only directed edges and no directed cycles (i.e. no directed path from x to x 

)Vx . 

In the next section the representation of conditional dependencies for the Bayesian Belief 

Network is discussed in detail. Their implications for the GRiST structure will be covered 

in Chapter 5. 

 

3.2.2 Bayesian Networks and their Markov Properties 

Bayesian belief networks use a directed acyclic graph to represent a set of random 

variables and their conditional independencies. The independencies represented in a 

Bayesian Belief Network fall under the following two categories: 

1. The directed local Markov property: any variable is conditionally independent of its non 

descendents given its parents (Korb and Nicholson, 2003). This is known as the 

Bayesian Belief Network local dependence. 

2. The second one is the global independence and is represented by concept of d-

separation. The following definitions for d-separation are taken from (Korb and 

Nicholson, 2003: 42):  

 

Definition 1: ‘d-separation  A set of nodes E d-separates two other sets of nodes X 

and Y if every path from a node in X to a node in Y is blocked given E’. 
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Definition 2: ‘Blocked path  A path is blocked, given a set of nodes E, if there is a 

node Z on the path for which at least one of three conditions hold: 

1. Z is in E and Z has at least one arc on the path leading in and one arc out (chain). 

2. Z is in E and Z has both path arcs leading out (common cause) 

3. Neither Z nor any descendent of Z is in E, and both path arcs lead in to Z 

(common effect)’. 

 

The concept of d-separation is illustrated further later in this section. The directed 

global Markov property of a Bayesian Belief Network states that two sets of variables 

A and B are conditionally independent given a third set S, if S separates A and B in 

graph G (separates here denotes that all paths between A and B pass through S) 

(Korb and Nicholson, 2003). 

The joint probability distribution, P(X) of the nodes is a product of the conditional 

probability distributions of the nodes in the Bayesian Network.

   

 

)),(|()(
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where )( ia XP is the parent(s) of iX
 
which are the nodes in the Bayesian Belief Network. 

Bayesian Belief Networks have been successfully used in a wide variety of fields and 

provide a good way of representing the independences in a domain in a graphical 

structure. The connections in Bayesian Belief Networks are all directed arrows, which can 

be interpreted as the direction of cause to effect (i.e. from the influencing node to the 

influenced node). Bayesian Belief Networks are referred to as directed acyclic graphs 

(DAGs) because of the directed edges they contain and their constraint that prohibits 

cycles in the graph. From a general perspective the two types of connections that you can 

have between any two nodes in a Bayesian Belief Network are as follows (please note that 

the following discussion on the connection types, is based on Koller and Friedman (2009: 

69-71) and is an illustration of d-separation from which independency assertions can be 

made for a Bayesian Belief Network). 

 Direct connection – This is the case where the two nodes X and Y are directly 

linked together. See Figure 3.4(a). 

 Indirect connection – In this case the two nodes are not directly linked together but 

are indirectly linked together via a path (i.e. a path exists between them, in such a 

way that you can move between X and Y). See (Koller and Friedman, 2009) for an 
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in-depth discussion of the four types of indirect connections that can exist in a 

Bayesian Belief Network. We briefly outline them below 

- Indirect causal effect, this refers to the case where two nodes are indirectly 

linked via another node. The conditional independence property represented 

here is that X can influence Y via Z, as long as Z is unobserved - see the graph 

on the left of Figure 3.4(b). On the other hand if node Z is observed then X no 

longer influences Y, and the conditional independence statement that X is 

conditionally independent of Y given Z now holds (i.e. |X Y Z ). 

- Indirect evidential effect, this is very similar to the indirect causal effect with the 

difference that the direction of the connection is from Y to X, unlike in the case 

of the causal effect where it is from X to Y - see Figure 3.4(c). However as one 

of the properties of conditional independence is that it is symmetric, the 

conditional independence statement here is equivalent to that of the causal 

effect i.e.  .| ZXY  

- Common cause, in this case both variables X and Y have a common cause (i.e. 

parent). In Figure 3.4(d), this common cause is represented by Z. Here, X can 

influence Y if the common cause Z is unobserved whilst if Z is observed 

|X Y Z holds. This case is depicted in Figure 3.4(d). 

- The final indirect connection type is the common effect, where X can influence 

Y via Z only if Z is observed or one of its descendents is observed. This 

particular case differs from the pattern seen in the other indirect connection 

types. Again it is depicted in Figure 3.4(e). 

-  

 

Figure 3.4: Summary of the possible connection types in a Bayesian Belief Network; 
shaded nodes represent observed nodes i.e. nodes where the value is known. 
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As mentioned earlier when classifying the different independencies that can be 

represented by a Bayesian Belief Network, they can broadly be split into two types, namely 

the local independencies which are represented in the joint distribution factorisation 

equation (see equation 3.1): every node is conditionally independent of its non-descendent 

nodes given its parents; and the global independencies (depicted in Figures 3.4(b) to (e)), 

which are formally outlined within the Bayesian Belief Network concept of d-separation, 

which can be used to compute all the conditional independences in the model. Further 

details on this can be seen in the works of Korb and Nicholson (2003) or (Koller and 

Friedman, 2009), who also provide, a precise and efficient algorithm for determining d-

separation in a graph (pp74-75).  

 

3.2.3 Bayesian belief networks and Risk Assessments 

Risk analysis is characterised by uncertainty and lack of empirical data. As such, it may 

be necessary to use information based on subjective data such as expert opinion within 

the model. The ability of Bayesian belief networks to handle uncertainty and to allow the 

use of subjective data (known as the ‘prior’ within the model)  is one of its distinctive 

advantages for use in risk assessments over other more traditional methods such as fault 

and event tree techniques. The prior probability is an estimate of the hypothesis in the 

absence of empirical evidence or complete empirical evidence, so humans have to give a 

judgement. An example of the use of a prior in the suicide mental health domain is the 

estimating of the probability of a person attempting suicide from experience or through the 

use of limited epidemiological information. Although Bayesian belief networks provide one 

of the proper ways of formalising subjective information, its critics are sceptical of the 

addition of subjective data to the model because it relies heavily on the assumption that 

subjective data included in the model are correct (Ferson, 2005). Mayo (1996) further 

argues that Bayesian belief networks do not provide the connection needed to empirical 

reality that characterises most of the sciences.  

 

This controversy generated by the addition of priors in Bayesian Belief Network models 

cannot simply be brushed over because the selection of priors in a model often matters. 

For a Bayesian Belief Network model designer, issues such as what priors to choose, how 

to choose them and so on can be problematic. Advocates of Bayesian belief networks 

such as Jaynes (2003), argue that no matter the prior chosen, other data within the model 

would dominate the model results but, in practice, this is not always the case (Mayo, 

1996).  
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Sentiments of sceptics of the use of priors in Bayesian Belief Network models are 

summed up in the following quote:  

“If the prior distribution at which I am frankly guessing, has little or no effect on the 
result why bother, and if it has a large effect, then since I do not know what I am 
doing how would I act on the conclusions drawn?” (Ferson, 2005:23)  

 

However, the ability to add prior probabilities as inputs to the models is an extremely 

powerful feature, especially in areas like risk assessment where the bulk of data available 

might not be empirical data but subjective data.  Proponents of Bayesian Belief Networks 

do not dispute the problems that could occur during the selection of priors but, rather, 

combat this by emphasising the importance of using sensitivity analyses when choosing 

priors (see Bernardo and Smith, 1994; Chan and Darwiche, 2004). These help by 

checking the influence of the priors and errors on the posterior. 

 

Another perceived disadvantage often cited in the past regarding Bayesian belief 

networks is that they are computationally difficult; however, as a result of improvements in 

computer capacity, potential use of Bayesian belief networks in practical applications has 

increased (Korb and Nicholson, 2003). Despite the controversies accompanying the use 

of priors in Bayesian Belief Network modelling, it is universally agreed that the graphical 

nature of a Bayesian Belief Network makes it a powerful communication tool as it is 

intuitively understandable for humans.  An example of research that has been done in the 

health domain using Bayesian belief networks for risk assessments can be found in Chun 

et al (2007) where the objective was to develop a 5-year breast cancer risk prediction 

model using Bayesian belief networks and compare obtained results to the Gail model, 

which is an established breast cancer risk model (Spielgelman et al, 1994). The specific 

method used was the Naive Bayes classifier. The preliminary results obtained showed 

that the Bayesian model appears to predict breast cancer risk better than the Gail model. 

Chun et al (2007) identified the novelty and advantages of Bayesian belief networks over 

other traditional risk prediction methods. They highlight the fact that Bayesian models 

represent progress in the area of risk prediction as they make it easier to integrate new 

evidence as and when it occurs. This view is one shared by several others including by 

Jianga and Mahadevan (2007).  
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3.2.4 Conclusion on Bayesian Belief Networks 

The modelling approaches presented in this thesis have been successfully utilised in real 

world applications for risk assessments. However, the fact that the literature on the use of 

Bayesian belief networks for risk assessments is not as extensive as the literature on its 

use in other areas, such as machine learning and pattern recognition, highlights the fact 

that Bayesian belief networks for risk assessments is a growing area with scope for more 

research, innovation, expansion and sharing of ideas. 

 

The advantages offered by the use of Bayesian belief networks for risk assessments by 

far outweigh the disadvantages and limitations that it has. With the progression of time, 

and the more the method is used in real world applications, the more it is being 

established as a valuable and powerful tool for risk analysis. This review also showed that 

some of the limitations of the method, such as concerns regarding the priors can be 

reduced by careful, thorough and systematic modelling. Furthermore, given the increasing 

utilisation of the method and scope for research into its usage in the area of risk 

assessments, there is the likelihood that resolutions to other limitations would surface in 

time.  

 

Finally, regarding the different approaches that have been used for risk assessments 

using Bayesian belief networks, there is a need for a broadening of the methods used. An 

implication of having a wider range of methods is that it provides greater options, and this 

could lead to more appropriate choices geared towards effective models for risk 

assessment in specific areas and instances, as opposed to having generic but less 

effective models.  

 

Having highlighted some of the advantages of using Bayesian Networks to implement a 

risk assessment model it can be seen as a potentially viable option in this thesis. 

However, as mentioned in Chapter 1 because of the particular semantics encoded in the 

GRiST knowledge structure i.e. the occurrence of both causal and non-causal relations 

within the knowledge structure, Bayesian networks or Markov random fields (to be 

discussed in the next section) alone do not provide the full solution. In the next section on 

Markov random fields it will also be seen that they with their lack of representation of 

causal relations fail to provide a full solution. Nevertheless it is important to note that 

although neither by itself provides a full solution, they each provide part of the solution in 

the form of the probability building blocks (this is discussed in further detail in Chapters 4 

and 5). 
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3.3 Markov Random Field 

Markov random fields, like Bayesian belief networks represent the joint probability 

distribution of random variables that they model (Kindermann and Snell, 1980). Also like 

Bayesian belief networks the variables in the domain being modelled are represented by 

the nodes in the Markov random field graphical structure, and the links between them 

represent interactions that exist between the different variables. However, for Markov 

random fields the links between nodes are not directed edges but undirected edges. This 

means that Markov random fields cannot model causal relations (i.e. links between nodes 

going from cause to effect). They are used to model symmetric and associative 

relationships between variables. A Markov random field can be formally defined as a 

Graph G of the form: 

),( EVG  ;  if Eyx ),(  then Exy ),(  

The joint probability of a Markov random field is a product over functions of the maximal 

cliques in the graph, where maximal cliques are sub graphs that are fully connected 

(Buntine, 1994).  

( )

( ) ( )C

C Cliques G

p X f C


  .      (3.2) 

Where C represents cliques, G the Markov random field graphical structure, X the nodes 

in the Markov random field and fc  function over the maximal cliques in the structure. 

An example is depicted in Figure 3.5 which has three maximal cliques (i.e. every node in 

the sub graph is connected). The first maximal clique is the sub graph that consists of 

nodes a, b, e and f, the second maximal cliques nodes b, c, f and g and finally the third 

maximal clique nodes c, d, g and h. The factorisation of the joint probability is: 

1 2 3( , , , , , , , ) ( , , , ) ( , , , ) ( , , , )p a b c d e f g h f a b e f f b c f g f c d g h . 

From the formula for the factorisation of the Markov random field joint probability we see 

that each node is conditionally independent of its non-neighbours given its neighbours. If 

we consider node b from Figure 3.5 for instance, we see that it shares at least one 

function with all its neighbours (a, e, f, c and g) and shares no functions with its non-

neighbours (d and h). 
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Figure 3.5: A simple Markov random field (adapted from Buntine, 1994:163). 

 

Unlike in Bayesian belief networks where the parameters within the graph that give the 

strength of influences between nodes are probabilities, for Markov random fields they are 

not probabilities but are represented by functions between linked nodes known as factors 

(Koller and Friedman, 2009). However, from equation (3.2) that defines the factorisation of 

a Markov random field, it can be seen that the probability of a state is equal to the product 

of the functions of the maximal cliques in the graph. 

 

3.3.1  Markov Random Field and their Markov Properties 

The Markov properties of a Markov random field define the kinds of conditional 

independence that can be modelled by a Markov random field. The following definitions 

taken from Kindermann and Snell (1980) and Koller and Friedman (2009) represent the 

three main categories of Markov properties: 

Pairwise Markov property: Any two non-adjacent variables are conditionally independent 

given all other variables:  

.},{| },{| EvuifXXX vuVvu                                                            (3.3) 

Local Markov property: A variable is conditionally independent of all other variables 

given its neighbours: 

)()(\ | vnevclVv XXX  .                                                                       (3.4) 

where ne(v) is the set of neighbours of v, and cl(v) = {v} ∪ ne(v) is the closed 

neighbourhood of v. 
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Global Markov property: Any two subsets of variables are conditionally independent 

given a separating subset: 

SBA XXX | .                                                                                 (3.5) 

where every path from a node in A to a node in B passes through S. 

 

These definitions of conditional independencies are different from that of the Bayesian 

belief networks where the use of d-separation was used to define the conditional 

independencies of the directed graph. It is generally easier to determine the conditional 

independencies of Markov random fields. 

 

The use of Markov random fields as a part of the solution to the implementation of the 

GRiST chain graph came about as a direct result of the semantics ingrained in the GRiST 

knowledge structure. This was particularly significant because of the correlation between 

part of the GRiST knowledge structure and the Markov random fields properties. In 

Chapter 5 the ways and circumstances under which these correlate and map to the 

different parts of the GRiST component structures are examined. 

 

One of the advantages provided by Markov random fields for the mapping from the non 

causal sections of the GRiST knowledge structure is the fact that it is good for context 

dependent modelling (Bouman, 1995). This implies modelling the non causal parts of the 

GRiST knowledge structure that are generic in nature (i.e. they can occur in more than 

one location) with Markov random fields will be an expedient design choice. This further 

implies that the modelling of the generic nodes occurring in more than one location in the 

model would not be a problem. In Markov random fields nodes are only dependent on 

their direct neighbours and as such the generic nodes would be only dependent on the 

nodes directly linked to them and these would be the same regardless of their location in 

the model, for example Depression would always have the same structure i.e. the same 

direct neighbours regardless of which location it is in. This ability of Markov random fields 

to model local dependencies is a great advantage for the modelling of the GRiST non 

causal relations. 
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3.4  Chain Graphs 

Having reviewed Bayesian belief networks and Markov random fields for the reasons 

mentioned earlier, it can be seen that neither graphical model can fully adequately be 

used to model the GRiST knowledge structure, this assertion is further justified in Chapter 

4 where the GRiST semantics are further explored. Hence the decision to use chain 

graphs. However, it should be noted that as chain graphs combine the mathematical 

properties of both Bayesian networks and Markov random fields, these two graphical 

models individually make up the possible probability building blocks to which the 

component structures of the GRiST knowledge structure can be mapped to (these 

properties will be discussed in-depth in Chapter 5). These probability building blocks are 

then used to implement the final chain graph. 

 

In the literature these kinds of graphs (i.e. hybrid graphs with both directed and undirected 

links between variables) are known as chain graphs. It has also been noted that active 

research is currently being done in various domains using / attempting to use chain 

graphs. This is because they allow complex domains to be modelled using a combination 

of both causal and associative relationships between nodes. Some of the previous work 

that has been done using chain graphs includes: 

 

 the use of graphical chain models for investigating the complex structure of a 

psychological disease (pathological gambling) (Clelia and Biffi, 2004);  

 The determinants of infant mortality (Mohamed et al, 1998);  

 selecting and fitting graphical chain models to longitudinal data (Borgoni et al, 

2004);  

 protein classification (Carroll and Pavlovic, 2006);  

 a new approach to argument by analogy (extrapolation and chain graphs) (Steel, 

2008). 

The above examples illustrate the use of the graphical structure to represent domains 

containing both causal and non causal relations, which is the desired outcome for the 

GRiST structure. In the examples it is also seen how these knowledge structures are used 

to infer probabilistic distributions and other relevant information, for instance, Mohamed et 

al (1998) use chain graphs to identify the causal factors leading to infant mortality.  This 

section continues by discussing chain graphs and their properties. Chain graphs are 

graphical models, which allow both directed and undirected graphs with the constraint that 
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they do not have semi-directed cycles (semi-directed cycles refers to the constraint that all 

arrows within any cycle must point in the same direction) (Drton, 2009).  

 

The conventional way to represent the structure of a chain graph is to partition the nodes 

of the graph into subsets known as blocks, with the explanatory nodes in blocks at the 

right hand and the response nodes on the left and the intermediate nodes in the centre 

(Bouckaert and Studený, 1995). The blocks in the chain graphs, however do not have to 

be explicitly drawn in chain graphs. An example of this adapted from Blauth and Pigeot 

(2000) can be seen in Figure 3.6. 

 

 

 

Figure 3.6: Graphical Chain Model adapted from Blauth and Pigeot (2000). 

 

The directed links (arrows) and undirected links (lines) within a chain graph represent the 

conditional independence and dependence relations between the variables in the graph. 

The Markov properties of a graph formally define the conditional independence relations 

that exist in the graph.  

 

The following adaptation from Edwards (2000) illustrates the factorisation of the joint 

density of chain graphs and the pairwise Markov property. If a chain graph consists of 

subsets 1 2, ,.....,
n

S S S  and the variables across all n subsets (blocks) are labelled

1 2, ,....., iX X X . Then the factorisation of the joint density of the variables is  

).|()....|()(),....,,( 12112121  nni SSSSfSSfSfXXXf                   )6.3(  

In the above block 1S  will contain variables that are pure explanatory variables whereas 

the block nS  will contain pure response variables. Furthermore the absence of a line (i.e. 
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symmetric relation) between any two variables ( 1V  and 2V ) within a particular subset nS  

or the absence of a directed link between two variables 1V  and 2V   of two different 

subsets ( 1nS   and nS ) based on the pairwise Markov property of chain graphs implies 

.....| 2121 nSSSVV                                                                                 )7.3(  

That is two variables are conditionally independent given all prior and concurrent 

variables. 

 

3.4.1  Chain Graphs and their Conditional Independencies 

This section on the conditional independencies of a chain graph is based on the 

discussion by Koller and Friedman (2009). Each chain graph component Ci (which is 

equivalent to a chain graph block structure) is associated with a conditional random field 

that defines the conditional probability of P(Ci|Parents(Ci)). A conditional random field is 

an undirected graph that encodes the conditional distribution P(Y|X), where X  is observed 

and Y is unobserved. 

 

The interpretation of the independencies represented by a chain graph fall into three 

general categories (the following definitions are taken from Koller and Friedman, 2009). 

 Chain graph pairwise independencies 

( ) {( | { , })}:p XI CG X Y NonDescendents X Y 
                          

)8.3(  

X,Y non-adjacent, Y NonDescendentsX} 

Any two non-adjacent variables are conditionally independent given their non 

descendent variables. 

 Chain graph local independencies 

( ) {( | ) : }:l X X XI CG X NonDescendents Boundary Boundary X x  
 

                                                                                                           
)9.3(  

A variable is conditionally independent of all other non descendent variables 

(minus its boundary variables) given its boundary variables. 
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 Chain graph global independencies 

The global independencies are defined using the concept of moral graphs and c-

separation (see Koller and Friedman (2009) for more details). A chain graph is moralised 

by connecting all nodes that are elements of Parents(Ci) and then converting all directed 

edges to undirected edges. A moral graph is used to convert a directed graph into its 

equivalent undirected graph by adding a link between all nodes that have a common child 

but are themselves not linked together. 

 

As mentioned by Edwards (2000) for chain graphs the main modelling challenge is being 

able to find a correct model for each of the subsets. Something that helps simplify to an 

extent the entire modelling process for the chain graph is the fact that in a similar vein to 

directed graphs the manner in which each block is modelled is independent of the 

modelling choices for other blocks and as such the entire chain graph can be modelled in 

a structured manner, dealing with one subsection at a time (Edwards, 2000). This is ideal 

for GRiST where the idea of subsections is ingrained into the structure. For instance, the 

GRiST domain is made up of different locations which are made up of components 

comprising of concept and datum nodes.  

 

 

3.5  Factor Graph 

A factor graph consists of a set of variables, factors and edges connecting the variables to 

factors. In the actual graph, each variable is represented by a round node whilst each 

factor is represented by a square node. The joint probability of the variables in a factor 

graph is a product of all the factors in the factor graph [34, 49] and the factor graph 

functions represent a term in the joint distribution factorisation (Frey, 2003). 

).(),....,,(
1

21 j

j

jn SfXXXfg 


   All possible subsets are considered.  )10.3(   

Where f refers to the factors, Sj  a subset of  (X,,X2,..,Xn) and j represents a set of indexes 

(Kschischang et al, 2001). 

In a factor graph, function nodes are only connected to variables that they depend on 

(Bauke, 2008). For example the factor graph represented in Figure 3.7 can be expressed 

as the product; 

 ).,(),,()()(),,,( zyfyxwfxfwfzyxwfg DcBA                                    )11.3(  
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In both this equation and in Figure 3.7 it can be seen that each of the function nodes is 

only directly joined to the variables it depends on. 

 

Figure 3.7: A factor graph. 

 

The rationale behind our usage of factor graphs is twofold. The first reason was that both 

of the possible probability building blocks (i.e. Bayesian belief networks and Markov 

random fields) that can be obtained from the mapping process can be easily converted 

into factor graphs. This is partly because all three graphical structures (i.e. Bayesian belief 

networks, Markov random fields and factor graphs) inherently model within their structures 

the joint probability distribution of their constituent random variables (Kschischang et al, 

2001). In addition to this factor graphs can also be used to represent the same conditional 

independencies as that of any Bayesian Belief Network, Markov random field or chain 

graph, and this ensures that there is no semantic loss as a result of any conversions to 

factor graphs (Frey, 2003). Our second motivation for converting to factor graphs is that 

the conversion opens up the way for application of the highly effective inference sum-

product message passing algorithm to our probabilistic model to obtain the required 

mental health risk assessments (Kschischang et al, 2001).  

 

3.5.1  The Factor Graph Structure 

The conversion process from Bayesian belief networks, Markov random fields and chain 

graphs to factor graphs is now briefly outlined. For more details on factor graphs see 

Kschischang et al (2001). 
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3.5.1.1 Conversion of Bayesian Belief Network to Factor Graph 

To convert from a Bayesian Belief Network to a factor graph, the following steps need to 

be followed 

 Add a factor graph function between every node and its parents. In this context the 

factor graph function corresponds to the conditional probability of the node given 

its parents (Frey, 2003). 

 For nodes without parents add a factor graph function before the node. In this 

setting the factor graph function represents the marginal distribution of the variable 

corresponding to the node to which it is attached to (Frey, 2003). 

 

Figure 3.8 is an example of the conversion of a Bayesian Belief Network (left side of 

figure) to a factor graph (right side of figure). So in GRiST component structures that on 

applying the mapping rules, map to Bayesian Belief Networks, will in turn be converted to 

factor graphs using this technique.  

 

Figure 3.8: A Bayesian Belief Network and its equivalent factor graph. 

 

From Figure 3.8 we see that for the conversion from a Bayesian Belief Network to a factor 

graph, the factor graph function corresponds directly to the Bayesian Belief Network 

notion of ( | ( ))P X Pa X  i.e. the probability of X given the parents of X. 

 

3.5.1.2  Conversion of Markov random field to Factor Graph 

For the conversion from a Markov random field to a factor graph, unlike in the Bayesian 

Belief Network, the conversion process takes into account whether or not a variable is 

observed. For the conversion from Markov random field to factor graph, functions are 

created for every clique in the Markov random field and these functions are equal to the 

potential function of the maximal cliques of the nodes in the Markov random field (Frey, 

library_enquiries
Sticky Note
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2003). Potential functions for discrete domains can be represented by tables and 

multiplying their cells gives the joint probability of the model (see Jordan (1997) for further 

details). 

The conversion steps are as follows: 

 Every observed variable is replaced by a factor graph function; 

 Every unobserved variable is represented by itself (i.e. it is left untouched); 

 A factor graph function is added between any two unobserved nodes directly 

linked; 

 A factor graph function is added to every single unobserved node. 

Figure 3.9 shows examples of two Markov random fields’ conversions to factor graphs. In 

the figures observed nodes are shown with broken lines. 

 

 

Figure 3.9: Markov random fields and their equivalent factor graphs (observed nodes are 

shown with broken lines). 

 

Further details on the Markov random field to factor graph conversion can be seen in 

Kschischang et al (2001), Yedidia et al (2003) and Gillies (n.d.). 
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3.5.1.3  Conversion of Chain Graph to Factor Graph 

In the conversion of the GRiST chain graph to a factor graph prior to the inference stage 

we combine the rules for conversion for both Bayesian belief networks and Markov 

random fields discussed above to obtain a set of rules that will make possible the required 

conversion. As the Markov random field structures (i.e. the variables with symmetric 

relations between them), are contained within separate distinct blocks within the chain 

graph, the plan is to convert to factor graphs these structures using the Markov random 

field to factor graphs independently of the rest of the chain graph. After these have been 

converted to chain graphs the directed links (i.e. the variables with the Bayesian Belief 

Network structure), would then be converted to factor graphs using the Bayesian Belief 

Network to factor graph conversion rules. All this will then culminate in the conversion of 

the GRiST chain graph to a factor graph. Figure 3.10 illustrates the above process.  

 

 

Figure 3.10: A chain graph and its equivalent factor graph. 

 

Two algorithms that can be used to perform inference on factor graphs are the sum–

product algorithm and the belief propagation algorithm. A highly detailed description of the 

sum-product algorithm is given by Kschischang et al (2001) and Yedidia et al (2003) 

contains a detailed discussion for the belief propagation algorithm on factor graphs. For 

the GRiST factor graph inference the sum-product algorithm was used because it works 

very well with factor graphs and is described in Chapter 6. 

 

3.6 Conclusion 

In this chapter various properties of the probability building blocks that are used in the 

development of the final GRiST probabilistic model have been discussed. These will be 

built on in subsequent chapters. In the next chapter (i.e. Chapter 4) the GRiST 
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visualisations and the various relationship types that exist between the various nodes 

within the GRiST knowledge structure are explored and how these impact on the 

development of the final GRiST probabilistic graphical model is considered. 
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Chapter Four 

4. The GRiST Visualisations and Relationship Types 

 

This chapter discusses and builds on the exploration of the different visualisations of the 

GRiST knowledge representation structure started in Chapter 2. The aim is to ensure that 

the GRiST knowledge structure is decomposed into a correct and fully exhaustive list of 

different components that can be later mapped to probability building blocks. As such 

every section in this chapter is geared towards this main objective of distinguishing the 

types of concepts that help determine the most appropriate probability structure for 

conversion. The specifics of the representations (i.e. fuzzy model/expertise, ontologies 

and the eventual class/objects) are outlined and the relations that exist between the 

GRiST variables are also discussed.  

 

Chapter 2 explored how the GRiST fuzzy model was composed of three constituent 

component structures but this was motivated mainly by how the expert model could be 

more easily managed during its construction and evolution. Closer examination of the 

structures showed that they represent potentially different types of relationships, which 

resonated with the work on ontologies in computer sciences. Hence the decision was 

made to re-explore the GRiST knowledge structure from the ontological perspective to 

determine whether more granular decomposition could usefully inform probabilistic 

relationships. In addition to the ontology angle, the semantics inherent in the GRiST 

knowledge structure are also examined from the classes/objects perspective. 

Identification of the correlations and differences between the various representations (i.e. 

the GRiST fuzzy model, the ontological and the classes/objects representations) and their 

properties is also carried out. This is all done in a bid to identify the structures from the 

GRiST knowledge structure that are most useful for mapping to the probability graphs. 

Figure 4.1 illustrates how the various sections of this chapter relate to each other and to 

the overall objective of the identification of the best GRiST component structures to map 

to the most appropriate probability building blocks. 
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Figure 4.1: Overview of the chapter (GKS denotes GRiST knowledge structure). 

 

4.1  The GRiST Ontology 

In this section the GRiST knowledge structure is examined from the standpoint of an 

ontological representation. A discussion is carried out on the possible implementation and 

representation of a GRiST ontology starting from the very beginnings of the development 

of the GRiST knowledge structure. The original knowledge elicitation process from the 

experts was done through the use of interviews, online tasks and focus groups. These 

were then encoded using mind maps (Buzan, 1991), and over several iterations of the 

Delphi method (Linstone and Turoff, 1975), final mind maps that encapsulated the general 

consensus reached by the experts were produced. These mind maps were in XML file 

format to facilitate computer processing and represented a formal specification of a 

hierarchical tree structure, as depicted in Figure 4.2.  

The entire process resulted in the representation of the risk factors that the experts 

considered most important for various top risks in a hierarchical tree form. The 

hierarchical representation encompasses both the risk factors and the connections 

(depicted via links) between them. 
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Figure 4.2: Illustration of a subsection of the GRiST knowledge structure in a hierarchical 

tree form. 

 

However, the GRiST knowledge structure does not explicitly define the relationship types 

between the various nodes linked together and as our main objective is to map the GRiST 

knowledge structure to an equivalent probabilistic graphical model, a first step to 

achieving this will involve the defining of the exact relationship types between the various 

nodes. The mind maps simply state the hierarchical relationships but not any finer 

distinction such as a precise definition of the relations between nodes, class/object 

membership or causality. 

 

As a starting point to the exploration of the development of a GRiST ontology and the 

relationships present in the structure, the GRiST knowledge structure representation is 

extended into the form of concept maps (Novak and Cañas, 2008). This extension is done 

via the addition of explicitly defined relationship types between all nodes in the GRiST 

knowledge structure that are connected in one way or another. A concept map differs from 

a mind map in that not only does it depict links between connected variables in a domain 

but it also explicitly defines the relationship between variables. For example in a concept 

map depicting a family tree, each pair of connected nodes would have an explicit 

relationship defined between them e.g. mother of, brother of and so on. A concept map is 

a knowledge representation technique that depicts both the variables within a domain and 

the relationships that exists between these variables (Novak and Cañas, 2008). We use 

these concept maps as a starting point to explore a possible GRiST OWL ontology which 

is a web ontology language which aids the description of variables in a domain and the 

relationships that exist between them. The main objective is to aid and help validate our 
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decomposition of the GRiST knowledge structure into component structures. These 

component structures are then mapped to probability building blocks, which will make up 

the final GRiST probabilistic graphical model.  

 

The defining of the relationship types between the nodes is not important for the original 

fuzzy GRiST model. However, it is relevant for the mapping to the probabilistic graphical 

model. The addition of the relationship types for the development of the ontology is 

therefore an extension to the GRiST knowledge structure. Within the GRiST fuzzy model 

the nature of the relationship types are also not defined i.e. whether they are causal or not 

and where they are causal, the direction of causality. For example in Figure 4.7, mental 

health is an established causal risk factor of suicide but is represented in the same way in 

the GRiST knowledge structure as for instance gen-cog-think-mem (thinking processes 

and memory) to gen-impaird-cog (impaired cognitive function) which are not causally 

related. However, in probabilistic graphical models, causality can be taken into account in 

both the structure of the graph and subsequently in the inference algorithms used within 

the model. 

4.2  GRiST Relationship Types and Concept Maps 

In this section the mapping of the GRiST knowledge structure to facilitate the clear 

defining of all possible relationship types between the various GRiST knowledge structure 

nodes is discussed. After this an exploration is done on a possible GRiST ontology. The 

generation of the structural aspects of the required concept maps from the GRiST 

knowledge structure follows on from the existing knowledge structure. This is because to 

develop the concept map, the extension needed is simply the addition of the relevant 

relationship types between the various nodes. Concept maps are hierarchical and model 

the knowledge representation of a domain with the relationship types between nodes 

explicitly defined. The GRiST knowledge structure is like a concept map without the 

relationship types defined, so the initial challenge is the defining of the relationship types 

between the nodes. 

 

4.2.1  Relationship Types from Other Ontologies 

It is often a good starting point when embarking on a journey to consider and learn from 

the experiences of those who have gone ahead of one, and as such we began the 

process of defining the relationship types that exists between the various nodes in the 
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GRiST knowledge structure by examining previous related work that has been done on 

various types of relationships that can exist between nodes in an ontology or concept map 

in the mental health domain and other related domains. Many different relationship types 

have been defined and used in numerous ontologies such as the Open Biomedical 

Ontologies OBO (Smith et al, 2005), other biomedical ontologies (Schulz et al, 2006; 

Rubin et al, 2008), gene ontology (The Gene Ontology, n.d.), and ontology based 

modelling of breast cancer (Abidi, 2007; Hu et al, 2007).  

 

Listed in Table 4.1 are a few examples of relationship types that have been identified from 

general medical and mental health ontologies: 

 

Table 4.1: Some relationship types and their source domains 

 

Relationship Type Source Domains 

has_focus Psychosis Ontology (Kola et al, 2010) 

has_cause Psychosis Ontology  

is_a_type_of Psychosis Ontology  

hasPart Ontology of Mental Disease (Ceusters and 

Smith, 2010) 

part of Ontology of Mental Disease, Biomedical 

Ontologies (Smith et al, 2005) 

has Agent Ontology of Mental Disease, Biomedical 

Ontologies  

hasParticipant Ontology of Mental Disease, Biomedical 

Ontologies  

ParticipantOf Ontology of Mental Disease 

manifestationOf Ontology of Mental Disease  

inheresIn Ontology of Mental Disease  

inheresOf Ontology of Mental Disease  

Bodily Feature Ontology of Mental Disease  

isAbout Ontology of Mental Disease  

realisationOf Ontology of Mental Disease  

specificallyDependsOn Ontology of Mental Disease  

is_a Biomedical Ontologies  

located_in Biomedical Ontologies  

contained_in Biomedical Ontologies  
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adjacent_to Biomedical Ontologies  

transformation_of Biomedical Ontologies  

derives_from Biomedical Ontologies  

preceded_by Biomedical Ontologies  

 

The relationship types between nodes in the various ontologies are defined from the 

nature of the association between the nodes. So, for instance, where the relation between 

two nodes is a class to subclass relation, this is represented by an is-a relation. Smith et 

al (2005) detail ways to avoid errors in the defining of the relations by the use of logic and 

explicit formal definitions. Some examples of the definitions that are given for a few 

relationship types between nodes for the biomedical ontologies taken from Smith et al 

(2005) are: 

 X is_a X1 : Every X is at the same time a X1 

 X part_of X1: Every X at any time, is part of X1 at the same time 

 X preceded_by X1: Every X is such that there is some earlier X1 

 

However, the definitions of a number of these relationship types overlap even though they 

have been given different names in different ontologies. In some domains, to expedite 

collaborations and reduce the likelihood of people trying to re-invent the wheel, work is 

being done on developing standards that will ensure everyone within said domains use 

uniform names and definitions (Schuurman and Leszczynski, 2008). 

 

In addition to the definition of the various relationship types, Smith et al (2005) also 

identified the properties of each type of relationship i.e. whether or not they are transitive, 

symmetric, reflexive or antisymmetric. The importance of this classification of the 

properties of the relationship types in this research becomes more apparent later during 

the exploration of the issue of causality. 

 

The identification of the GRiST relationship types has been carried out in a similar manner 

to that of other ontologies. The relationships between nodes are defined to mimic the 

situation in the actual domain. So, if for example in the mental health domain node X1 is 

known to cause node X2, then in the GRiST concept map, a relationship that reflects this 

causal relationship is used. 

The following main relationships within the GRiST knowledge structure were identified by 

examination of the knowledge domain with a domain expert as part of this research: 
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 is_a 

 gives_details_of 

 precedes 

 contributes_to 

 part_of  

 component_of 

The explicit definitions given to each of these are as follows: 

 X1  gives_details_of  X2 – Every X1 provides more details about X2, thereby adding 

clarity to the semantic definition of X2. X1 is always a part of X2  but does not have a 

causal effect on it. GRiST examples include impaired cognitive function and its 

sibling node learning disabilities which both give more details about the concept 

mental faculties/cognitive capacity (see Figure 4.5).  

 X1  is_a X2  - The definition here is the same as in other similar ontologies such as 

in Smith et al (2005), where every X1 is an X2.  GRiST examples include physical 

indicators of suicide and its internal nodes (i.e. suic-phy-indic, sn-appearance and 

gen-sh-cuts in Figure 5.1). 

 X1  precedes X2 – Again this has the same definition as in other ontologies. X1 must 

always happen before X2. GRiST examples include the suicide past attempt 

concept and the suicide concept.  

 X1  contributes_to X2 – Every X1 contributes directly to both the semantic meaning 

and uncertainty values of X2. GRiST examples include the concept gen-personality 

(see Figure 4.5) and its internal nodes. In some instances it is used where at first 

glance the is-a relationship might be expected. For example for the gen-feelings-

emotion concept, the value of internal nodes anger, jealousy, anxieties and so on, 

make up the final state of the person’s emotions / feelings. Initially this was 

originally modelled using an is-a relationship, the logic being that they are all types 

of emotions. However, in the GRiST knowledge structure these nodes are not 

mutually exclusive and a person can have values for all of them which all taken 

together define the current state of the person’s emotions, hence the change from 

the is-a relationship type to the contributes_to type. This means that in the GRiST 

knowledge structure the state of a person’s emotion is not determined by 

answering the question ‘is the person angry or jealous or anxious and so on?’ but 

rather by answering the question ‘how much anger is the person feeling and in 

addition to this anger, how anxious is the person feeling and likewise for the 
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various emotions?’. It is this difference in the questions that formulates the 

relationship type contributes_to. 

 X1  part_of  X2 – This again is similar to the definition found in some other 

ontologies. For instance from Smith et al (2005), here every X1  at each point in 

time is part of X2. Although this definition is similar to the gives_details_of relation, 

it differs from it in that X1 is always contained in X2 regardless of its location or 

context. This has an impact on the way they are represented in the mapping to the 

probability graphs. 

 X1  component_of X2 – This is similar to the part_of relation but the difference here 

is that instead of every X1 always being part of X2 in this case we have X1  

sometimes being part of X2. This additional relation was specifically required 

because of the way the GRiST knowledge structure is modelled. An example of 

this is the depression concept (see Figure 4.7) which always contains gen-voice-

hal, but gen-voice-hal appears in other concepts as well (which violates the part_of 

relationship constraint). This distinguishing factor becomes significant when it 

comes to mapping to the relevant probability graphs and is discussed in more 

depth later. 

Having defined the relations, it is useful, in a similar manner to Smith et al (2005), to 

identify their properties, which are summarised in Table 4.2.  

 

Table 4.2: The GRiST relations and their properties 

Relation Transitive Symmetric Reflexive Antisymmetric 

gives_details_of No No No No 

is_a Yes No Yes Yes 

Precedes Yes No No No 

contributes_to Yes No No No 

part_of Yes No Yes Yes 

component_of Yes No No No 

 

 

A brief definition of each of the properties is given; this is followed by an in-depth 

discussion on how these relate to causality in subsequent sections. 
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 Transitive: For a relation to be termed as being transitive the following must apply. 

If there are three variables X1, X2 and X3 and the said relation is represented by R. 

If X1 R X2 and X2 R X3 then X1 R X3. 

 Symmetric: Two variables X1 and X2  are said to have a symmetric relation with 

each other if If X1 R X2 directly implies that X2 R X1. An example is the relationship 

of brotherhood between two men, if X1 is brother to X2 then it directly follows that 

X2 is brother to X1. 

 Reflexive: A relation is said to be reflexive, if and only if every element is related to 

itself via the relation. For example the “equals to” relation is reflexive, as every 

element X is equal to itself. 

 Antisymmetric: A relationship is antisymmetric if R(X1,X2) and R(X2,X1) can both 

hold only if X1 = X2. This implies that distinct variables are never both related to 

each other, so if R(X1,X2) and R(X2,X1) holds then X1 and X2  cannot be distinct 

variables but must be equal to each other (i.e. the same variable). 

Using the GRiST relationship definitions and their properties an exploration of the 

relationship between these relationship types and causality is now carried out. Later on in 

Chapter 5 this identification of causal and non causal relations plays a role when it comes 

to the mapping from the GRiST knowledge structure to the probability building blocks. 

 

4.2.2 Causality and Relationship Types 

In probabilistic graphical models there is a difference in how associations between nodes 

that are causal/non causal are represented. This difference in the representations impacts 

directly on the choice of probability graphical models that a component structure maps to 

and the inference algorithms used on the models. This in turn then directly impacts on the 

probability values (risk assessments) that will be obtained from the probabilistic graphical 

model. 

 

To ascertain causation, a set of criteria were listed by Hill (1965) known as Hill’s Criteria, 

which Hill terms viewpoints. These include: 

1) Strength – this criterion relates to the strength observed between the associations 

of the variables in question. The premise being that the greater the strength of 

association the more likely that the relationship is causal. Strength can be 

measured or observed in different ways primarily based on the variables being 
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observed. For the GRiST variables, the measurements could be based on the 

uncertainty values (e.g. correlation values between variables, different forms and 

levels of associations between variables). By correlations here the reference is to 

the measure of dependence between nodes. 

2) Consistency – How consistently is this association observed? Is it a one-off 

observation or seen many times? In GRiST for example where correlation values 

are taken for generic concepts, are the level of correlations seen between a 

particular set of nodes in different locations in the model consistent? 

3) Specificity – The more specific the observed association between the variables, 

the more likely the relationship is to be causal. That is, the greater the association 

(in the sense that the observation is as a result of interaction between the 

variables of interest and not some other external factor) between the variables the 

higher the probability that the relationship is a cause to effect one. For example, if 

this criterion holds between serious depression and suicide (or attempted suicide), 

then the rate of suicide (or attempted suicide) among people who suffer from 

serious depression should be higher than among those who do not. 

4) Temporality – This refers to the order of occurrence of the variables. Does X1 

cause X2  or does X2  cause X1? Hill points out that in observing the cause and 

effect variables, the cause must always necessarily (and logically) precede the 

effect. 

5) Biological Gradient – This refers to the expectation that generally the greater the 

value of the causal element the greater the observed effect. In GRiST where the 

maximal contributing risk factors for each top risk is modelled, it will be expected 

that the greater the uncertainty values of these contributing risk factors, the higher 

the risk assessments values obtained for the top risk. And for causal elements of 

the model, this will be expected to be seen in correlation analysis performed on the 

data. However, for the GRiST knowledge structure the biological gradient is built 

into the semantics of GRiST independently of causality and as such this criteria is 

not particularly useful as a standalone criteria. 

6) Plausibility – Is the cause to effect relation that we suspect plausible? It should be 

noted that Hill comments on how this should not be an absolute requirement for 

causality. Because at each point in time the current notion of what is plausible is 

limited by the knowledge available at that particular time in history. He goes on 

further to give some potent examples from the past to illustrate the point that even 

though some observations might seem new to what is currently accepted as right, 

care should be taken not to dismiss such ideas flippantly. 
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7) Coherence – This refers to the flip side of plausibility, the level of coherence with 

currently accepted knowledge. Again, like plausibility it cannot be seen as an 

absolute requirement, but it is possible that in a rare case (but not generally) it 

might highlight an inconsistency in currently accepted knowledge. Plausibility can 

be seen as a subgroup of coherence. 

8) Experiment – This refers to the use of experiments to validate or uncover 

causality. For GRiST this is seen in the correlation analysis and statistical tests 

carried out on the data obtained during clinical use of the tool. 

9) Analogy – The use of observation and effects from similar circumstances. 

 

In the quest to identify which of the GRiST relations are causal, these identified criteria are 

used as guidelines and check criteria. Next, the possible correlations are explored 

between the relation properties (i.e. transitive, symmetric, reflexive and antisymmetric) 

and the semantics contained in the relationship definitions with causality. This is being 

done in a bid to see whether this exploration can help in the determination of which 

relations in the GRiST knowledge structure are intrinsically causal and which are not.  

 

4.2.3  The Relationship Properties, Causality and Conditional Independence 

As seen earlier, in addition to giving each of the GRiST relations a precise definition, we 

also considered some of the possible properties of these relations (see Table 4.2). In this 

section these properties are explored further. In particular an exploration is carried out to 

make conclusions with regards to causality from the examination of the properties of the 

relations and their inherent semantics. 

 

In Chapter 5, more in-depth exploration of the potential impact of these relationship links 

on their Markov properties will be done. For a probability graphical structure its Markov 

property represents its conditional independence statement. This is important because the 

Markov property of the eventual probabilistic graphical model that the GRiST knowledge 

structure maps to, will determine the conditional independence properties that will be 

represented in the model. Recall that the overall objective is the correct mapping of the 

GRiST knowledge structure to an equivalent probabilistic graphical model. A correct 

mapping will mean that the conditional independence properties contained within the 

GRiST knowledge structure and its ingrained semantics are correctly represented in the 

probabilistic graphical model. Whether this is achieved or not will be determined by the 

Markov properties of the probabilistic graphical model.  
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The relationship between causality and conditional independence is one that has been 

examined by various researchers (Chalak and White, 2010). Probability graphical models 

inherently model conditional independences in different ways and in addition to modelling 

the conditional independences some are able to represent causal relations too. The 

conversion from the GRiST fuzzy model to the GRiST probabilistic graphical model will 

involve translation of the semantics, relations and conditional independences represented 

by the model into appropriate probability graphs (i.e. probability building blocks) that 

model the same conditional independencies. During the mapping of the GRiST 

component structures to these building blocks it is imperative there is no loss in semantic 

meaning as a result of the translation process. An understanding of attributes such as 

causality and conditional independence at both ends of the mapping spectrum will aid in 

ensuring that appropriate mappings are made. Hence the need to fully explore and 

understand the knowledge and semantics encapsulated in the GRiST structure. The final 

GRiST probabilistic graphical model (i.e. the chain graph) to be used for the prediction of 

the risk assessments will then be constructed from the probability building blocks that the 

component structures map to.  

 

The various properties of the GRiST relationship types outlined in Table 4.2, page 72 with 

the exception of the symmetric property are now discussed. The symmetric property is not 

discussed as this property does not hold for any of the GRiST relationship types (see 

Table 4.2). Starting with the transitivity property, from Table 4.2, it can be see that all the 

GRiST relations are transitive except for the gives_details_of relationship type. To 

illustrate the transitive nature of some of the relations we start with the contributes_to 

relation. Using the example of gen-personality (Figure 4.5), it can be seen that if gen-

controlling contributes_to gen-personality and if gen-personality contributes_to suicide 

risk this clearly implies that gen-controlling contributes_to suicide risk. Contrast this with 

the insight-resp example (see Figure 4.6). gen-nd-hlp-diff (need for help with difficulties) 

gives_details_of insight-resp (insight and responsibility). Also insight-resp 

gives_details_of suic_bhvr_const (constraints on suicidal behaviour). However, it would 

be incorrect to conclude from this that gen-nd-hlp-diff (need for help with difficulties) 

gives_details_of suic_bhvr_const (constraints on suicidal behaviour), as the relationship 

type does not have a transitive property and this is also seen to be a semantically sound. 

 

A considerable number of papers have been written on the issue of whether or not 

transitive relations are causal in nature; see Bonnefon et al (2008), Hesslow (1981), and 

Hall (2000) for some examples. Some of these are advocates of the stance that transitivity 

innately denotes causality, see for example Lewis (2000), whilst others have taken a more 
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cautious approach and give several illustrations of counter examples where transitive 

relations are not necessarily causal. Examples of these include Hesslow (1981), Hall 

(2000), Hitchcock (2001) and McDermott (1995). However, there are yet others that take 

the stance that transitivity infers causality in some situations but not in others. Bonnefon et 

al (2008) illustrate causal transitivity with the following example. You want to make some 

tea, so you put the kettle on the fire, the water starts to boil and hence the kettle starts to 

whistle. The issues relating to causal transitivity that were pointed out here are 1) the 

water is boiling because the water has reached boiling point. 2) Would it therefore be 

correct to say that the kettle is whistling because the water has reached boiling point? 

This is seen to be correct and demonstrates X1 R X2 and X2 R X3 then X1 R X3.  A counter 

example that depicts causal intransitivity taken from an earlier draft of Hall (2004) is that of 

a dislodged boulder that rolls down towards a hiker. However, the hiker sees it and ducks. 

The boulder hence misses the hiker and he survives the experience. The hiker ducked 

because of the falling boulder and would not have survived if he had not. If causal 

transitivity held here, we would conclude that the hiker survived because of the falling 

border but this does not make logical or semantic sense.  

 

For the GRiST model, our position is based on a number of additional factors peculiar to 

GRiST. The factors that have to be taken into consideration, for the GRiST knowledge 

structure, are the types of component structures available in GRiST (discussed earlier), 

the constraints exhibited by these nodes, the different visualisations of these nodes (more 

on this will be discussed later in the chapter) and finally the Markov properties of the 

probabilistic graphical models that they potentially map to. However, without taking all the 

factors into consideration and just singly focusing on the transitive property, the GRiST 

viewpoint is that if a relation between variables is transitive then the relationship type may 

be causal. This viewpoint is similar to those which say causality can be both transitive and 

intransitive depending on the context and other factors. For the GRiST knowledge 

structure the rationale behind this stance has to do with the fact that there are instances 

where transitive relationships appear to be causal when considering the semantics 

involved. However, there are also instances where other transitive relations appear to be 

non-causal. When all the relevant factors are taken into consideration an even more 

definitive conclusion can be reached. This definitive conclusion which will be discussed 

further later on can be summarised as follows in the GRiST model, transitive relations 

default to being interpreted as causal relations. However, in some special cases (for 

instance if the transitive relation occurs in the context of a fixed generic component 

structure) other factors take precedence and the causal property is overruled.  
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Next we consider the reflexive and antisymmetric properties. From Table 4.2, we see that 

the GRiST relations that are reflexive are the is-a and the part_of relation.  A physical 

indicator of suicide is-a physical indicator of suicide. The distinction between the 

allocation of the reflexity property to the part_of relation but not to the component_of 

relation is very subtle and as such it will be highlighted here. From the definitions of these 

two relations, it can be seen that the main difference between them is that for the part_of 

relation, every X1 is at each point in time part of X2 whereas for the component_of relation 

just some of X1 are part of X2 at each point in time. For the reflexive property this means 

that with the part_of relation, every element is related to itself but this is not so in the case 

of the component_of relation and hence the difference in their properties. In terms of the 

link with causality, the GRiST relations with the reflexive property are unlikely to be 

causal, as it is unlikely that an element causes itself, and as a direct logical consequence 

of this we would not expect the reflexive is-a relation to be causal. However, it should be 

noted that for the part_of relation we cannot conclusively say that it will always be non-

causal but have to take into consideration the other causality determining factors (this will 

be expanded on during the development of the mapping rules). This relation property is an 

example of one in which Hill’s Temporality criterion also comes into play.  

 

The final relation property to be considered is the antisymmetric property. Considering the 

GRiST relations if X1 is-a X2 and X2 is-a X1, it makes logical sense to conclude that X1  and 

X2  must therefore be the same. In a similar vein, if X1 part_of X2 and X2 part_of X1, if we 

think in terms of subsets of a set, then if X1 and X2 overlap in such a way that their 

elements fully overlap, then they will be equal and the antisymmetric property will hold 

(this means that it can hold but not necessarily always so). If on the other hand we 

consider the component_of relation, this is closer to the notion of a perfect subset where 

the elements of the sets will never fully overlap and hence the antisymmetric property 

does not hold. For the above reason, again like the reflexive property when it comes to 

causality, we need to consider the other relevant factors. However, unlike the reflexive 

property, relations with a potential to be antisymmetric can only be causal if the 

antisymmetric property does not hold in that particular circumstance (e.g. in the case of a 

non-fully overlapping part_of relation mentioned earlier).  

 

In summary from the discussions in this section the following conclusions can be reached: 

 For the two GRiST relationship types that have been identified to be reflexive, 

these do not map to causal relations (i.e. the is_a and part_of relations). It is also 

interesting to note that these are the relationship types that are usually used to 

represent set or class memberships and in keeping with the current conclusions 
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these do not generally map to causal relations. Also it can be seen that for the 

relations that have the reflexive property even though they have other properties 

(e.g. transitivity) the reflexive property takes precedence over the other properties. 

 For the relationship types that are transitive (and not reflexive), the default 

behaviour is to map to being causal. However, when all the influencing factors are 

taken into consideration (such as the context within which the relation is defined, is 

it within a fixed generic component and so on) then it is possible that the causal 

nature will be overridden. However, generally the default behaviour is that it is 

causal (these additional factors and the order of precedence will be discussed in 

more detail in Chapter 5). 

 For the antisymmetric relations the default characteristic trait is non-causality. 

 

4.3  Formal Coding of the GRiST Relationship Types 

Although the process of defining the relationship types between the various nodes in the 

GRiST knowledge structure contains a subjective element, nevertheless it is still important 

to have a formal coding method for the process.  

 

The process involves identifying the various relationship types between the nodes and 

labelling each link as one of the identified types (i.e. is_a, gives_details_of, precedes, 

contributes_to, part_of, and component_of). The first relationship type to be checked for is 

the is-a relationship type. This is simply because it is the easiest to both define and 

identify. 

 

We consider the question: Are nodes X, Y types of node Z? An actual example from the 

GRiST knowledge structure is degree of aggression/hostility and how upbeat or 

downbeat/depressed which have an is-a relationship with general risk tone, simply 

because they are types of tones (i.e. being aggressive or upbeat). A second example is 

the nodes alcohol misuse and drug misuse, which are both types of substance misuse. 

 

After these have been identified the next type of relationship type to be identified is the 

gives_details_of relationship type. Nodes that the is-a relationship type have been 

identified between, need not be reconsidered. It will be unnecessary and time consuming 

to re-scan through and process the entire model again (and redundant).  By definition the 

gives_details_of relationship type exists between nodes where further details of one of the 
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nodes is given by the other node and its siblings. An example of this is seen in the nodes 

first time suicide attempt occurred, how many suicide attempts and suicide attempts 

escalating in frequency all of which give further details of the pattern of suicide attempts 

concept node. In this relationship type, there is a clear correlation (correlation is used here 

in a non-mathematical sense) between the nodes, in the example used they are all related 

to the pattern of suicide attempts.  

 

The next relationship type to be identified is the contribute_to relationship type. This 

relationship type differs from the previous one, in that the relationship generally depicts a 

causal relationship i.e. if node X has a contribute_to relationship with node Y, this means 

that node X directly influences and contributes to node Y. Examples of this relationship 

type from the GRiST knowledge structure are, the nodes insight and responsibility and 

religious values/beliefs affecting suicide risk, these two variables have a causal relation to 

a person’s constraints in suicidal behaviour. Another example is the influence that the 

sibling nodes feelings and emotions, person's perspective of self worth, voice 

hallucinations, general motivation in life, paranoid delusions, impaired cognitive function, 

general current behaviour, person's behavioural presentation and engagement with world 

have on the variable serious depression. 

 

The preceding relationship type is then identified within the model. An example from the 

GRiST knowledge structure is the relationship between past suicide attempt and suicide 

risk. Finally the last two relationship types are then also identified; the part_of and 

component_of relation, the difference between these two appears to be slight. However, it 

is important to distinguish between them because it affects how they are mapped to 

probability building blocks, from the earlier discussion on their differences it was seen that 

the part_of relations does not generally exhibit causality whereas the component_of 

relations can. The component_of relation depicts a relationship type where internal nodes 

and their siblings together constitute a root node. 

 

In summary to map the relationship types between the various nodes in the GRiST 

knowledge structure, we start with the is-a relationship type, followed by the 

gives_details_of, contribute_to, precedes, part_of and the component_of relationship 

types. 
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4.4  Extending the GRiST Knowledge Structure into Concept Maps 

Once the various relationship types were identified, the concept maps for the GRiST 

knowledge structures could then be constructed. A concept map allows one to represent 

the knowledge structure of a domain in an easily accessible manner. To reiterate, the idea 

behind the use of concept maps is to extend the current GRiST knowledge structure by 

the addition of relationship types between the concepts within the GRiST knowledge 

structure.  

 

An example of a subsection of the GRiST concept map can be seen in Figure 4.3, in this 

figure the focus is on motive-eng and gen-personality and so only these concepts and 

their internal nodes have fully labelled relationship types in Figure 4.3. This concept map 

was produced using CMapTools knowledge modelling kit (Cmap Tools, n.d.). A one to one 

mapping exists between the GRiST knowledge structure nodes (i.e. concept and datum 

nodes) and the nodes represented in the concept maps.  

 

 

Figure 4.3: Subsection of GRiST suicide concept map. 

   

Figure 4.3 and various other figures in this thesis use the GRiST knowledge structure 

code names to describe the nodes within the structure. Appendix 1 contains a full listing of 

all the code names in the Suicide section of the GRiST knowledge structure and their 

corresponding labels. The code names are simply short descriptions of the various nodes, 

whilst the labels are more meaningful descriptive names for the corresponding nodes. 

Table 4.3 gives a snapshot of the listings in Appendix 1 that relate to the nodes in Figure 

4.3. 
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Table 4.3: GRiST knowledge structure code names and descriptions 

Node Code Name Description 

motive-eng motivation and engagement with world 

gen-eng-world engagement with world 

gen-motivation general motivation in life 

gen-listless listless, no energy, slowed down, loss of 

drives 

gen-phys-withd physical withdrawal from world 

gen-mental-withd mental withdrawal 

gen-personality personality 

gen-assertive assertiveness 

gen-empathy-abil ability to empathise 

gen-dependence dependence 

gen-controlling controlling/organisational approach 

gen-coping-abil capacity to cope with major life stresses 

gen-hostile Hostility 

gen-impulse impulsiveness 

gen-reliable Reliability 

 

 

4.5 Representation of GRiST Ontology in OWL 

The next stage in the ontology development process was to explore briefly a possible 

representation of the GRiST concept map in an ontology language. This process was 

carried out for the same reason as the earlier exploration of the relationship types, to 

distinguish the types of concepts that help determine the most appropriate probability 

structure for conversion. This ontological representation provides a formal underpinning to 
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the GRiST XML structure, where required concept maps produced using the CMapTools 

served as a starting point for ontology development using OWL (W3C, n.d.) and this was 

utilised in the examination of the potential GRiST ontology. 

 

The OWL ontology language was chosen, simply because of its universal use and 

acceptance across a wide spectrum of domains. Next a possible GRiST ontology using 

the OWL language is discussed. It represents a small snapshot of a possible method of 

developing a GRiST ontology bearing in mind the objective of identifying the best 

structures from GRiST for mapping to appropriate probability building blocks. However, 

prior to the ontology development discussion we briefly revisit some of the past work done 

on ontologies in the mental health domain and how they relate to GRiST. 

 

An ontology provides a way of representing and sharing knowledge about a domain, in a 

formal structured way. A large amount of research has been done on the development of 

ontologies. However, in mental health ontologies possibly as a result of the complexity 

and vastness of the mental health domain, the various ontologies seem to focus on 

different aspects of mental health and none completely subsumes the others. The GRiST 

knowledge structure was developed focusing on a wide range of mental health issues 

(such as suicide, harm to others, self-harm and so on) and the particular knowledge 

elicitation task given to the domain experts involved in the development of the model, was 

to identify the risk factors for the various mental health risk areas and how they impact on 

each other. With some of the other knowledge structures the emphasis of the collected 

knowledge is different from that of GRiST. For example in DecisionBase which is said to 

be the most professional available program for psychiatric diagnosis (DecisionBase n.d.; 

Haghighi et al, 2009) the emphasis is on diagnosing mental illness. In some other 

ontologies priority is given to the defining of the various relationships that exist between 

the diseases and treatments, whereas as mentioned earlier in GRiST the emphasis is on 

the risk factors that lead to potential mental health risks (such as suicide, harm to others 

and so on). 

 

4.5.1 OWL Classes in the Ontology 

In OWL, classes represent sets that hold domain objects within them. Representing the 

GRiST knowledge structure in a model represented by classes is not a straightforward 

task. This is because of both the nature of knowledge represented in the GRiST structure 

and the way the knowledge is structured and arranged. When classes are organised into 

a super class/subclass form, this generally represents a generalisation/specialisation 
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relationship and parts of the GRiST knowledge structure can in fact fall into this kind of 

category. For example general drug misuse and general alcohol misuse are clearly 

specialisations of general substance abuse. However, there are many relationships within 

the GRiST knowledge structure where the correct link type between the nodes are parent 

to child but cannot be defined as a generalisation/specialisation relationship. For example 

in Figure 4.6, suic-first-occ, suic-how-many and suic-escalate are not specialisations of 

suic-patt-att (i.e. the pattern of the suicide attempt). This leads to the need for a variant 

where appropriate relationships are defined via class relationships and others purely 

through the relationship type that they share. In our example from Figure 4.3, suic-first-

occ, suic-how-many and suic-escalate simply give further details of the pattern of the 

suicide attempt. Many other examples where the relationship that exists needs to be the 

overriding factor can be seen throughout the entire GRiST knowledge structure. If the 

assumption was made that the relationship between every two nodes in the GRiST 

knowledge structure that are directly linked together is one of super class to subclass (see 

Figure 4.4 for a depiction of this using OWL), although this will be easy to model using 

OWL, it will be flawed and an incorrect representation of the semantics contained within 

the GRiST knowledge structure. The conclusion that was hence reached was that in order 

to accurately model the GRiST knowledge structure using OWL, an alternative method to 

the classes approach must be sought and used. In the next section the alternate approach 

is discussed, this is representation of the GRiST knowledge structure via the use of OWL 

properties which will be shown to facilitate the modelling and defining of the relationships 

between the GRiST nodes. 

 

4.5.2 The Phases of the GRiST Ontology Development 

 

As described earlier from the GRiST knowledge structure, the concept map which depicts 

the relationships that exist between the various nodes is specified, the next stage after 

this is then the development of the mapping rules from the constraints and relationship 

types contained within the GRiST ontology. This will in turn lead to the mapping to 

probability building blocks, which will then culminate in the development of the final chain 

graph. Here we describe briefly the processing that needs to be done to the concept map 

prior to the ontology development. We then again briefly discuss the ontology modelling 

processing and end this subsection on the GRiST ontology by exploring the 

decomposition of the ontology into component structures, to be mapped to probability 

building blocks and the resultant chain graph. 
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Figure 4.4: Subsection of GRiST ontology modelled as having superclass to subclass 

throughout the domain.  

 

4.5.3 Pre-Ontology Modelling Processing 

In the GRiST knowledge structure apart from classifying nodes into either datum nodes or 

concept nodes, we can further categorise them into non-generic, generic distinct or fixed 

generic nodes (see Chapter 2). Prior to the ontology modelling, the GRiST knowledge 

structure is broken down into these groups using the following rules: 

 The GRiST knowledge structure is scanned from the bottom of the hierarchy (i.e. 

the datum nodes end of the taxonomy). This is done in the first instance in a bid to 

identify all the generic component structures (i.e. both their root nodes and internal 

nodes). For both fixed generic and generic distinct component structures, the root 
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node is identified by scanning up the hierarchy in the direction of the top risk, all 

the fixed generic and generic distinct nodes that are scanned are classed as 

internal nodes of a root node. The root node is reached once the scanning results 

in the last generic node that is not the top risk node.  

 The type of the component structure is dependent on the root node i.e. if the root 

node is a fixed generic node then the component structure is fixed generic and in a 

similar vein if the root node is generic distinct then the component structure is 

generic distinct. 

 Examples of this can be seen in Figure 4.5, where scanning from the bottom of the 

hierarchy from the datum node gen-cog-think-mem, when we scan up to the ment-

fac node we would have reached a non-generic node and so moving down the 

hierarchy by one step, gen-impaird-cog is the last generic node to be reached and 

is therefore the root risk. Its internal nodes are gen-cog-think-mem and gen-

concentr. 

 After all the fixed generic and generic distinct component structures have been 

identified, the ontology pre-processing is complete and we can now proceed with 

the modelling of the ontology. 

 

 

4.5.4 Exploring the GRiST Ontology Model 

In the GRiST ontology representation in OWL, the choice was made to model the 

ontology as a physical model with each node in the GRiST knowledge structure 

represented in the ontology. For possible alternate design choices, such as the 

representation of concept relationships as parent-child (the class to subclass 

view), see Wrighton and Buckingham (2009). The rationale behind our choice is 

that unlike in traditional ontology developments, where the main objective of the 

ontology is to represent a particular domain (i.e. the concepts and relationships 

between them) to aid sharing of information, our main aim is to explore the links 

(relations) between the concepts in the GRiST model and how these and 

equivalent links have been (and would be) represented using an ontology 

language such as OWL. 
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Figure 4.5: Subsection of GRiST knowledge structure I (‘g’ and ‘gd’ denote ‘FG’ and ‘GD’ 

components respectively; whist ‘gdat’ and ‘gdd’ are the respective datum node 

equivalents). 

 

The purpose of this OWL ontology is to aid the analyses of the GRiST knowledge 

structure leading to the identification of the correct probabilistic equivalents; recall that the 

ultimate aim is the mapping from the GRiST knowledge structure to a probabilistic 

graphical model. Next the modelling of relationship types that are not of the form super 

class to subclass using OWL is examined. 
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4.5.5 GRiST General OWL Classes 

In the GRiST OWL ontology, three general classes are modelled, namely the non-generic 

class, the fixed generic class and the generic distinct class. The various component 

structures that the GRiST knowledge structure decomposes into are then categorised in 

the ontology as being members of the relevant classes. For example from Figure 4.5 the 

fixed generic component structure with root node gen-impaird-cog (impaired cognitive 

function) is a member of the OWL fixed generic GRiST class, the component structure 

with root node gen-personality (personality) is a member of the class generic distinct and 

the node motive-eng (motivation and engagement with world) is a member of the non-

generic OWL class.  

 

The general properties held by each of these class types are added to the OWL 

definitions for each of them. The advantage of modelling these three general classes in 

OWL is that every node or component structure that is a subclass of any of the classes 

automatically inherits the properties of the said class. Below we summarise the properties 

and outline the modelling of these using OWL.  

 Members of the non-generic class must have their cardinality fixed to one. Here 

cardinality refers to the magnitude of the relation between nodes. That is, the 

members of this class share a one to one relation. 

 Members of the fixed generic class can occur in more than one location in the 

model and always have both the same structure and the same uncertainty values. 

 Members of the generic distinct class can occur in more than one locale but differ 

from the fixed generic class in that even though they always have the same 

structure, their uncertainty value varies depending on the context (i.e. their location 

in the model). However, as the initial model does not include uncertainty, we do 

not initially see any distinction between the generic-distinct and the fixed generic 

classes but when the extension of the ontology to include the uncertainty 

representation that is encapsulated in the GRiST fuzzy model is briefly explored in 

section 4.6, the difference between the two classes can be seen. 

As mentioned earlier, since each structure that belongs to any of these classes inherits its 

defined properties, if a structure violates any of its class properties, the reasoning facility 

in OWL will flag it up as an error. So a non-generic class structure cannot be modelled in 

multiple locations and be seen as valid, this will generate an error because by definition 

one of the properties of the non-generic class is that it can only occur once in the model. 
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To model this in OWL, we exploit the fact that the underlying knowledge representation 

paradigm that exists in OWL is description logics (Nardi and Brachman, 2010). One way 

to explore a possible method for the development of a GRiST ontology from the GRiST 

knowledge structure is by considering the possible description logics that can be used to 

describe and model the GRiST knowledge structure. The descriptive logic that we use to 

capture the properties of each of this classes result in axioms that provide the constraints 

that ensure that the properties of the classes are well defined. 

 

To start off, the generic distinct and fixed generic structures that were identified during the 

pre-ontology processing were assigned to the appropriate OWL generic-distinct or fixed 

generic class. Below is an example of part of the process of defining the various non 

super class to subclass relationships in the ontology. With reference to Figure 4.6, some 

of the relationships between the nodes can be written out as follows: 

 

i. suic-first-occ gives_details_of suic-patt-att 

ii. suic-how-many gives_details_of suic-patt-att 

iii. suic-escalate gives_details_of suic-patt-att 

iv. suic-patt-att gives_details_of suic-occur 

v. suic-most-rec gives_details_of suic-occur 

vi. suic-past-att contributes_to suicide and so on.  

 

We consider a simple example to illustrate how this can be modelled in OWL. As a 

starting point to representing one of the above statements in OWL abstract syntax, we first 

of all define in the syntax the non-generic, fixed generic and the generic distinct classes 

(see Grimm et al (2007) for further details on the OWL abstract syntax and its equivalent 

in descriptive logic). OWL has a number of features that aid ontology development, but 

one that has not yet been mentioned is the notion of restrictions. 

These allow concepts (i.e. classes or objects) and properties to be qualified by logical 

features such as ‘only’ (Kola et al, 2010).  Also see Kola et al (2010) for more details on 

OWL features such as axioms, primitive concepts, and properties.  
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Figure 4.6: Subsection of GRiST suicide knowledge structure II (‘g’ and ‘gd’ denote ‘FG’ 

and ‘GD’ components respectively). 

 

Non-Generic Class: restriction (ng max cardinality(1)) 

Fixed Generic Class: restriction (fg min cardinality (1)) 

Generic Distinct Class: restriction (gd min cardinality (1)) 

 

In the above the non generic class is defined as one with a maximum cardinality of one 

i.e. it can only occur once in the entire model whereas both the fixed generic and generic 

distinct classes are defined as having minimum cardinalities of one. Minimum cardinality 
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were used for them as against maximum cardinality because by definition there is no set 

upper limit as to how many times they can occur in the entire knowledge structure. And 

their minimum cardinality was set to one and not two, because although they can occur in 

more than one location in the model, it is not necessary the case. 

 

To define the individual classes such as the suic-first-occ (suicide first occurrence) class, 

we used a combination of the different OWL features mentioned previously. The classes 

which represent the nodes in the GRiST knowledge structure are represented in OWL by 

primitive concepts, which are the basic elements that make up the knowledge structure 

and the class hierarchies. We then represent the relationships that exist between different 

primitive concepts (and that have been clearly outlined in the GRiST concept maps) using 

properties. So for example suic-first-occ will be represented by a primitive concept (i.e. a 

class) and will be modelled as a subclass of the non-generic class. We can also use OWL 

to define more complex nodes by OWL defined concepts. These are defined using a 

combination of primitive concepts and properties such as for GRiST generic concepts that 

are made up of other generic concepts (e.g. Depression). Together with OWL restrictions 

and axioms (which refer to the conditions that are assumed to be true and the constraints 

on the relevant objects or properties), it is possible to map the GRiST knowledge structure 

into an appropriate OWL ontology. For more on OWL primitive concepts, defined 

concepts, properties, restrictions and axioms see Kola et al (2010).  

 

Part of the definition for the suic-first-occ class includes: 

Class Description:suic-first-occ 

Non-Generic Class 

And gives_details_of suic-patt-att 

 

From which we can see that the suic-first-occ class is a subclass of the non generic class 

and that it is related to the suic-patt-att class via the gives_details_of relationship type. In 

a similar manner the various concepts in the GRiST knowledge structure and in the 

GRiST concept maps can be defined and the different relationships between them defined 

in the ontology. Exploring the options available for this process and how this will be done, 

helped clarify the sub trees that the GRiST knowledge structure can be decomposed into 

and in two instances highlighted the need for an additional variant in the decomposition of 

the fixed generic and generic distinct classes. This resulted in two different kinds of 
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component structures each for both the fixed generic and the generic distinct component 

structures. This will be discussed later. 

 

After all the various concepts and their relations have been defined, we are left with two 

possible views in OWL. These are the asserted model and the inferred model. The 

asserted model is the directly modelled one whilst the inferred model is the one that is 

inferred from the various restrictions, axioms, properties and relationship types defined in 

the ontology. It is within the inferred model that we see the GRiST knowledge structure 

fully represented in the ontology together with the various constraints and relationship 

types between the different concepts. As a result of the exploration of the GRiST ontology, 

a number of important issues were highlighted. These include the importance of 

decomposing the generic structures (i.e. both the fixed generic and generic distinct 

structures) into the smallest possible generic structures that can occur in a location. For 

instance previously it was assumed that in the decomposing of the GRiST knowledge 

structure into the generic component structures, the most important concept was the 

generic concept closest to the top risk. For instance, in Figure 4.7, the root concept will be 

the gen-depression concept and together with all of its internal nodes, this would have 

been taken as the fixed generic component structure. However, from the GRiST ontology 

we see that this is only part of the solution, and it is also vital to define in their own right 

the generic structures that occur within the larger gen-depression fixed generic 

component structure (examples are gen-presentation and gen-feel-emot). This is 

important because these smaller generic components can and do occur in other contexts 

outside of the higher concept (in this example gen-depression). That is, they occur in 

other parts of the model where depression does not occur. From the ontology exploration 

we have therefore been able to identify the need to decompose into what we call “pure” 

generic component structures and component structures such as gen-depression that are 

made up of a combination of some of these smaller pure component structures. The 

conversion from the GRiST knowledge structure into its constituent component structures 

was hence done by starting at the leaf nodes and working up to the first generic concept, 

defining it, and then finding its context node by moving on up to the first generic fixed 

node or the root risk node in the path. The generic structure is then defined based on the 

root concept type i.e. if the root concept is fixed generic then the component structure is 

fixed generic and vice versa for generic distinct roots. 
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Figure 4.7: Subsection of GRiST suicide knowledge structure III (‘g’ and ‘gd’ denote ‘FG’ 

and ‘GD’ components respectively). 

 

4.6 Extending the GRiST Ontology to Handle Uncertainty 

Related work has tended to look at the possibility of extending OWL to include uncertainty 

values (examples of these can be seen in Vacura et al, 2008 and Ding and Peng, 2004). 

Ding and Peng (2004) extended OWL to include uncertainty values and then converted an 

ontology built using this extended OWL into a Bayesian Belief Network, Fenz et al (2009) 

and Yang and Calmet (2005) also used similar methods.  

 

For this research the case is different, although the OWL class system has been used to 

explore modelling the GRiST knowledge structure, and the notion of using its object 

properties functionality to add the definitions and constraints that are needed to correctly 
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model the relationship between the various GRiST classes has been described. However, 

in mapping to the probability building blocks, the impact of these properties must be taken 

into consideration. This led to further exploration of the identified relationships between 

the GRiST classes, their definitions, and their semantic meanings. Careful consideration 

has also been given to ascertaining what information these relationship types can give 

about the probabilities potentially encapsulated in the GRiST knowledge structure. 

 

In Chapter 2 on the discussion on the GRiST fuzzy model it was seen that uncertainty is 

represented using membership grades (MGs) and relative influences (RIs) in the GRiST 

model. These MG and RI values provide useful information in relation to uncertainty 

leading up to probability representations in the GRiST knowledge structure. From Section 

2.2 it is seen that the contribution from each concept to the overall risk (e.g. suicide, harm 

to others and so on) is represented by the value of its membership grade and its relative 

influence. Hence although the precise function that relates the MG x RI value of each 

concept to the probability of the said concept (given the internal nodes that lead up to it) is 

unknown, it is clear that there is a corresponding relation between them. These are 

summarised for the various component types in the following equations: 

 Datum Nodes 

).|()( DatumRiskPDatumMG   

For a datum node the membership grade of the datum node is proportional to the 

probability of the top risk (e.g. suicide) given the datum node. This refers 

specifically to the fact that the datum node’s value is ultimately making some 

contribution towards the final probability of the top risk. 

 

 Fixed Generic Concepts 

).()( FGFG ConceptPConceptMG 
 

For fixed generic concepts that are not context dependent the membership grade 

of the root concept of the component structure is proportional to the probability of 

the fixed generic concept. This is the case because the uncertainty values of the 

fixed generic component remains the same regardless of its location or context in 

the knowledge structure. 

 Generic Distinct Concepts 

).()(
GDConceptGD tributionMaxRiskConPConceptMG 

 

Where ConceptGD   stands for generic distinct concept. 
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For the generic distinct concepts which are context dependent the membership 

grade of its root concept node is proportional to the probability of the maximum 

contribution to risk of the generic distinct concept. 

 

 All Nodes 

).|()( ConceptRiskPxRIConceptMG pathall   

Finally for all nodes the product of the all their membership grades multiplied by all 

the RI values along their path (see Figure 2.1) is proportional to the probability of 

the top risk given the concept.  

We extend the explored GRiST ontology by adding to the various concepts the MG and RI 

values as defined in the corresponding GRiST knowledge structure. These uncertainty 

values are then interpreted to give the following: 

 For a node X that links upwards to a node Y higher up in the hierarchy, the value 

ypathxRIXMG )(  gives the degree of membership of X in class Y. 

The probabilistic relations that have been drawn out of the GRiST knowledge structure will 

play an innate part in the learning of parameters for the GRiST probabilistic graphical 

model from data. The learning process is discussed in more detail in Chapters 6 and 7. 

4.7 Revisiting the GRiST Component Structures 

As a direct result of the conclusions reached from the section on the OWL ontology 

representation, the GRiST component structures that the knowledge structure can be 

decomposed into are now extended.  

 

4.7.1 The Non-Generic Structure 

The non generic structure as mentioned earlier refers to nodes that are not generic, and 

as such can only occur in one location. Examples of these include suic-occur, suic-first-

ocurr and suic-ideation from Figure 4.6.  

 

4.7.2 The Pure Fixed Generic Component Structure 

The pure fixed generic component structure refers to a fixed generic component structure, 

which comprises of a fixed generic root node and internal nodes that have no more than 
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one layer of generic nodes (i.e. this component structure does not have any internal node 

that is itself a generic node). An example of this is the gen-voice-hal pure fixed generic 

structure (see Figure 4.7), this structure together with its internal nodes itself makes up a 

pure fixed generic component structure (and none of the internal nodes are themselves 

generic) but it is also clear that this entire structure is part of the internal structure of the 

non pure fixed generic structure with root node gen-depression. We call the component 

structure with root node gen-depression non pure because some of its internal nodes are 

themselves generic component structures.  

It is important that we differentiate between the pure fixed generic component structures 

and the non pure fixed generic structures because the pure fixed generic component 

structures can and do occur in other locations outside of the context of the non pure fixed 

component structures and this same logic holds for generic distinct component structures. 

Another reason why it is important that we differentiate between the pure and non pure 

structures is that in mapping to probability building blocks it will reduce some of the 

complexity of the mapping process. An example of this type of component structure can 

be seen in Figure 4.7, where the pure fixed generic component structure with root node 

gen-voice-hal occurs both within the gen-depression context (see top of the figure) and 

outside this context (see bottom of the figure). And so we must define and model each of 

the pure generic component structures as structures in their own right. The fixed generic 

structure represents the generic root node that always has the same uncertainty values 

regardless of its location in the GRiST knowledge structure, the context (i.e. point of 

reference) for all the internal nodes is the root concept node. Within (and only within) the 

context of the root concept, the uncertainty values of the internal nodes are fixed and 

always remain the same regardless of location. 

 

4.7.3 The Pure Generic Distinct Component Structure 

The discussion on the pure generic distinct component structure is similar to that of the 

pure fixed generic component structure. The main difference between these two is that 

the uncertainty values of the generic distinct structures are context sensitive. The generic 

distinct structures have varying internal RIs and varying root concept MG. The context for 

these nodes is the top root risk node (e.g., suicide, self harm and so on). This structure 

has no generic ancestor or, more to the point, if it did, it behaves as an FG node and can 

be ignored as a GD concept. An example of the pure generic distinct component is the 

presentation concept (see Figure 4.7) which is a generic distinct component structure with 

root concept gen-presentation. Examples of the occurrence of this structure can be seen 
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in Figure 4.7 where the root concept gen-presentation along with all its internal nodes are 

part of the non pure fixed generic component structure gen-depression internal nodes. 

However, we see the same gen-presentation component structure re-occurring outside of 

the gen-depression context (in the context of suic-app-behvr i.e. person's appearance and 

behaviour at assessment indicating suicide as in Figure 5.1). 

 

4.7.4 The Non Pure Fixed Generic Component Structure  

This component structure refers to fixed generic component structures that have some 

internal nodes that are themselves generic component structures (either fixed generic or 

generic distinct). An example of the non pure fixed generic component structure which can 

be seen in Figure 4.7 includes the component structure with root concept gen-depression 

(depression) and some of its internal nodes that are themselves generic component 

structures include those with root concepts gen-currnt-bhvr (general current behaviour), 

and gen-feel-emot (feelings and emotions). 

  

4.7.5 The Non Pure Generic Distinct Component Structure  

Again this is very similar to its fixed generic counterpart, and applies to generic distinct 

component structures that are made up of other generic component structures. An 

example is the component structure with root concept gen-ser-mentl-ill, which has as part 

of its internal nodes the fixed generic root concept gen-voice-hal (see Figure 4.7). 

 

4.7.6 Operationalising the Types of Identified Subtrees  

Here, we briefly summarise the types of subtrees that have been identified in the GRiST 

knowledge structure from the ontology exploration process. Given a GRiST knowledge 

structure, to categorise them into the identified component structures, the following 

questions and actions need to be considered: 

 Are there parts of the knowledge structure that repeat in more than one context of 

the knowledge structure? 

 Split up the knowledge structure into the sections that occur in more than one 

location and those that do not. 

 The non-repeating nodes are the non-generic component structures. 
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 Next split up the sections that repeat into those that always have fixed uncertainty 

values and those that have varying uncertainty values depending on their context 

 Repeat the last action until you have the smallest possible repeating partitions. 

These are the pure fixed generic and pure generic distinct component structures 

respectively. 

 Next check the knowledge structure for larger subtrees that repeat and are 

themselves made up of component structures, which will give the non pure fixed 

generic and generic distinct component structures. 

 

Having explored both the GRiST fuzzy model and ontology knowledge representations, 

the last representation type to be considered is the classes, objects and wrappers 

representation type, and we discuss this in the next subsection. After this, we then from all 

of the above develop a set of mapping rules to go from the GRiST knowledge structure to 

the probability building blocks. In particular we detail how they all constrain and direct the 

production of the mapping rules. 

 

 4.8  GRiST Decomposition into Classes, Objects and Wrappers 

This is the final representation type that was examined in the GRiST knowledge structure. 

The elements that were identified in this representation type were categorised as classes, 

objects and wrappers. We will start off the section by defining the key terms used here. 

The terms “objects” and “classes” have been used for the semblance that they bear to 

their role in object oriented methodologies such as the attachment of properties to 

classes, and the fact that subclasses have in common at least one property of their 

superclass. However, other aspects like inheritance and encapsulation are neither used 

nor relevant in this representation type. Also, objects are not necessarily instantiations of 

classes in this context (they are defined and described later). The term “wrapper” on the 

other hand is a GRiST specific term defined specifically in this research. 

 Wrapper - a convenient holder for organising concepts but with no particular 

semantics of its own. Examples of this include person’s behavioural presentation 

during assessment. The psychological purpose of the wrapper is to chunk units of 

information together so that it is easier to recall and process them but, in the case 

of wrappers, the chunk itself does not make a tangible concept with meaning in its 

own right. 
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 Class - a component that can hold several subclasses of the same type all of 

which have at least one common property. An example of this is physical 

indicators of suicide and its internal nodes. 

 Object – represent nodes which have properties attached to them but they are not 

classes or wrappers. An object can have properties that may themselves be 

objects with properties. As such it is possible to have a hierarchy of objects but 

never an object with a class in it. 

 

 Properties – these are a special case of an object in that they have no properties 

of their own. An example of properties are suic-first-occurrence (first occurrence of 

suicide) and its sibling nodes suic-how-many (number of suicide attempts) and 

suic-escalate (are the attempts escalating) which are all properties of suic-patt-att 

(suicide pattern of attempt). These can be seen in Figure 4.6. 

In a similar fashion to the other representations, from the list of constraints produced by 

the representation type it is possible to infer the component structures that the knowledge 

structure can be decomposed into. The constraints that exist within the 

classes/objects/wrappers representation are as follows: 

 Objects can not contain classes within them, but can have properties attached to 

them or have properties that are themselves objects. 

 Properties have no properties of their own but simply represent the properties of 

the parent node that they are attached to. Properties of objects are its internal 

nodes, in the semantics of GRiST, and so can have RIs. However the objects 

differ from classes because they do not need to inherit any of these properties (i.e. 

internal nodes). In this representation properties map to datum nodes (i.e. the 

physically observable data). 

 Wrappers can contain other wrappers, classes, and/or objects. 

 Wrappers should not have properties of their own (i.e. they should not be directly 

linked to properties) because they do not represent tangible concepts.  

 Classes must, by definition, be able to hold several subclasses of the same type. If 

a concept cannot do this (e.g. current situation), then it cannot be a class. Classes 

ought to have at least one common property shared amongst all its members. If 

not, then it is a wrapper. In other words, the objects are placed in a class precisely 

because they have something in common within themselves and these shared 

properties are the class definition. If the class cannot be defined in such a way, 

then it is an artificial collection i.e. a wrapper. 
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 What distinguishes a class from an object is that for all the other concepts within a 

class (i.e. its subclasses) there must be at least one common property held by the 

class. Whereas although an object can hold other objects the root object is not 

compelled to hold a common property. This distinguishing factor between objects 

and classes is significant when considering hierarchy of classes as against 

hierarchy of objects because it plays a part in the definition of causality and 

dependencies between concepts which directly affects the mapping rules between 

the GRiST knowledge structure and the probability building blocks. 

 If a concept is not a wrapper, it must have control over its internal RIs because this 

makes the concept the context of its internal components. If the internal 

components can have different RIs in different places with the same parent, the 

parent is not controlling them and thus not dictating the context. Hence you can 

remove the parent and still have the same sense for the subcomponents. This 

defines the difference between an object and a wrapper. 

 By definition a wrapper cannot have control over its internal nodes, because if it 

did, then it will not be irrelevant to the conceptual understanding of risk because it 

will in effect represent the context of its internal components. 

Next we consider the similarities between the different visualisations and following that in 

Chapter 5 develop mapping rules to the probability building blocks. 

4.9 Learning from the Explored Representation Types 

In this section the similarities and differences that exist between the different 

representation types are scrutinized and the visualisations, properties and constraints that 

will aid the mapping to probability building blocks are identified. For each of the parts that 

a comparison is done, the following headers are used: 

 Fuzzy Model – This simply refers to a component structure derived from the 

GRiST knowledge structure of the fuzzy model (e.g. the fixed generic component 

structure). The sections on the fuzzy model will refer to high level and low level 

component structures. A low level structure is one in which none of the internal 

nodes are themselves generic component structures. An example from the GRiST 

knowledge structure is the generic distinct component structure gen-self-worth-p 

(see Figure 4.7). A high level structure is a more complex hierarchical structure, 

with at least one component structure as an internal node, such as the generic 

distinct component structure gen-presentation (see Figure 4.7). Figure 4.8 

illustrates high and low level component structures. 
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Figure 4.8: Low level and high level FG structures (a) and (b) respectively. All rectangle 

nodes with prefixes ‘d’ in the figures refer to datum nodes whilst the oval nodes with 

prefixes ‘c’ refer to concepts. The two oval nodes labelled ‘g’ refer to the root FG concept 

node of the respective component structures. 

 

 Ontology – This refers to any of the extended component structures derived after 

the OWL ontological representation (e.g. the pure generic distinct component 

structure). 

 Classes/Objects/Wrappers – This as indicted by its name refers to any mappings 

to the components detailed under this representation. 

 Discussion – After the mapping of the equivalent structures for each of the above 

representations are done, it will be followed by a discussion section which draws 

out rationale and conclusions arrived at from the preceding mappings. 

 

4.9.1 First Mappings between Representations 

 Fuzzy Model - Low level FG component structure. 

 Ontology - Maps to pure FGs (i.e. FGs that are not themselves made up of other 

FGs or GDs). 

 Classes/Objects/Wrappers – Objects or properties. 
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 Discussion – The mapping to objects makes logical sense as the root concept of 

the pure FG has control over its internal RIs, and if these map to wrappers then 

this will not be the case. Low level FG do not map to classes and this tallies with 

the GRiST class semantics because by definition the class is hierarchical in 

nature, containing other classes and at least one property that is common to its 

subclasses whilst the low level FG is non-hierarchical. The observed mapping to 

properties also tallies with the fuzzy model, as datum nodes which map to 

properties can be of the type FG. Examples from the GRiST knowledge structure 

include gen-impaird-cog (impaired cognitive function) and its internal nodes (see 

Figure 4.5) which in the classes/objects/properties visualisation maps to an object. 

 

4.9.2 Second Mappings between Representations 

 Fuzzy Model - High level FG component structure. 

 Ontology – Maps to non pure FGs. 

 Classes/Objects/Wrappers – Objects or classes 

 Discussion - Same as above with regards to objects and classes, examples from 

the GRiST knowledge structure include depression and its internal nodes (see 

Figure 4.7), which in the third visualisation maps to an object. However, unlike 

their low level counterparts, they cannot map to properties, this is because any 

high-level structure cannot be a property because by definition properties cannot 

be hierarchical. 

 

4.9.3 Third Mappings between Representations 

 Fuzzy Model - Low level GD structures. 

 Ontology – Maps to pure GD structures. 

 Classes/Objects/Wrappers – Wrappers, objects or properties. 

 Discussion - The pure GD structures map to wrappers, objects or properties. The 

observed mappings to wrappers make logical sense when we recall that wrappers 

are just convenient containers with no particular semantics of their own. Also as 

the removal of the wrapper would not make any difference to the conceptual 
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understanding of risk, therefore the mapping from the pure GD structures, whose 

root concepts have no control over their internal nodes makes logical sense. 

However, having observed the above, we also observe that GD structures can 

also additionally map to objects or properties. The mapping to properties might 

seem easier to rationalise than the mapping to objects. However, the logic behind 

this is that as the structure is a low level GD structure, everywhere it maps to an 

object, this structure is contained within a “larger” FG or GD structure (i.e. high 

level) and hence within the context of the high level root component.  In such 

situations, even if the low level GD structure maps to an object ultimately the 

behaviour of its RIs are determined by the root node of the higher level structure 

within which it resides and if this is an FG root concept then the behaviour of the 

object remains consistent with expected results. An example from the GRiST 

knowledge structure where a pure GD structure maps to an object is gen-eyes 

(eyes), which has as internal nodes the two properties gen-avoid-eye-contact 

(avoiding eye contact) and gen-eye-movement (eye movement). The FG root node 

that applies to this object is depression (see Figure 4.7).  

 

 

4.9.4 Fourth Mappings between Representations 

 Fuzzy Model - High level GD structures. 

 Ontology – Maps to non pure GD structures. 

 Classes/Objects/Wrappers – Wrappers. 

 Discussion - Again in this category the discussion on these mappings is the same 

as the above (i.e. low level GD structures) for the mappings to wrappers. However, 

they cannot map to properties, as by definition properties cannot be hierarchical. 

Furthermore it also differs from its low level counterpart in that high level GD 

nodes like gen-presentation (persons behavioural presentation during 

assessment) do not map to objects. These concept maps to wrappers. Another 

example is the gen-ser-mentl-ill (serious mental illness) concept which also maps 

to a wrapper. 

 

4.9.5 Fifth Mappings between Representations 

 Fuzzy Model - Non Generic structures. 
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 Ontology – Same as in Fuzzy Model. 

 Classes/Objects/Wrappers – Properties, objects, classes or wrappers. 

 Discussion – The observed mapping here highlights the fact that as non generic 

structures occurs only once in the model, a lot of the peculiarities seen in the 

generic structures (of both FG and GD variants) are not relevant to it. Examples of 

this from the GRiST knowledge structure include suic-past-att (past and current 

suicide attempts) which map to an object and the suic-prep-serious-at (preparation 

and seriousness of suicide attempts) which map to a property. Other examples 

from GRiST (see Figure 4.6) include physical indicators of suicide which maps to a 

class, suic-curr-int (current intention to commit suicide) which maps to an object 

and suic-person-per (person’s current perspective on suicide attempts) which 

maps to a property. 

 

4.9.6  The Different Visualisations and Relationship Types  

From the last section on the similarities between the different visualisations of the GRiST 

knowledge structure considered in this chapter the following summarises some of the 

conclusions reached. The rationale behind the identification of either causality or non-

causality is to aid the mapping to appropriate probability blocks. For example a structure 

whose relations are causal in nature can more naturally be represented by a directed 

graph than an undirected graph. Some of the identified associations between the 

representations examined and the relations between nodes are as follows: 

 For low level FG component structures that map to objects or properties, the 

relationship types between these nodes generally tend to be non causal. An 

example is the low level FG object gen-impaird-cog (impaired cognitive function) 

concept and its sibling node gen-learn-disab (learning disabilities) which both 

share a non causal gives_details_of relationship with the ment-fac (mental 

faculties/cognitive capacity) concept. 

 For high level FG component structures that map to classes or objects such as 

depression, it was observed that the dominant relationship types between their 

nodes tend to be non causal. However in some instances exceptions to this can 

occur. Figure 4.7 contains an example in the form of the high level FG depression 

with internal nodes grandiosity and worthlessness which contribute to gen-self-

worth-p (general perspectives of self worth) and share a causal relation 
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contributes_to between each other. In Chapter 5 where the mapping rules are 

developed, the rules to determine which attribute takes precedence are outlined. 

 For low level GD component structures that map to objects or properties it was 

observed that both causal and non causal relations exist within these structures. 

This behaviour is stabilised by the influencing effect of a high level structure that 

such a low level node is contained within, this is addressed further in Chapter 5 as 

part of the discussion on the development of the mapping rules. An example of a 

low level GD that maps to an object which has non causal relations can be seen in 

Figure 5.1; the gen-eyes (eyes) concept and its properties gen-avoid-eye-contact 

(avoid eye contact) and gen-eye-movement (eye movement). These two 

properties just give more details about the state of the person’s eyes and hence 

share the non causal gives_details_of relation with the object. On the other hand 

an example of a low level GD depicted in Figure 4.5 with causal relations is the 

gen-personality (personality) GD object with its internal nodes gen-assertive 

(assertiveness), gen-empathy-abil (ability to empathise), gen-dependence 

(dependence), gen-controlling (controlling/organisational approach), gen-coping-

abil (capacity to cope with major life stresses), gen-hostile (hostility), gen-impulse 

(hostility) and gen-reliable (reliability). All of these internal nodes contribute to the 

general way that the personality comes across and hence have a contributes_to 

relationship to the root concept gen-personality. 

 For high level GD component structures that map to wrappers, the relationship 

types between the GD’s root node and its internal nodes generally tend to be 

causal. Examples of this include depicted in Figure 5.1 gen-presentation (person’s 

behavioural presentation during assessment) and its internal nodes and in Figure 

4.7 gen-ser-mentl-ill (serious mental illness) and its internal nodes. The implication 

of this when it comes to mapping to probabilistic building blocks is discussed in 

Chapter 5. 

In the next chapter (i.e. Chapter 5), the different aspects of the GRiST knowledge 

structure that have been discussed in the current chapter are built upon to develop a set 

of mapping rules that can most accurately represent the GRiST knowledge structure.  
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 4.10  Conclusion 

In this chapter the deconstruction of the fuzzy GRiST knowledge into formal substructures 

that guide the mapping into probability structures has been explored. The similarities and 

differences between the various visualisations and some of the implications that these can 

have for the mapping to the probability building blocks were also considered. The ultimate 

objective of the chapter was to ensure that the structure of the GRiST fuzzy model was 

fully explored prior to the development of mapping rules to the probabilistic graphical 

models. This objective was achieved via the following  

 The exploration of the hierarchical tree structure of the GRiST fuzzy model. 

 Exploration from the GRiST ontology angle, where the focus was on the types of 

concepts and datum nodes (e.g. generic or non-generic) and the type of 

relationships that exists between them and the properties of these relations. 

 The final approach was the classification into classes, objects and wrappers. The 

GRiST knowledge structure was shown to naturally decompose into these 

categories.  

In the next chapter (Chapter 5) all the various aspects explored in this chapter are brought 

together and used to develop the mapping rules required to translate between the GRiST 

component structures and probability building blocks. The process of combining the 

identified probability building blocks will eventually result in the GRiST chain graph which 

will be used for the assessment of the mental health risk. The discussion on this process 

is continued in Chapter 5. 
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Chapter Five 

5. The Mapping Rules 

In this chapter we discuss the development of the mapping rules which govern the 

translation process for the conversion of the GRiST knowledge structure into the final 

GRiST chain graph. 

 

This chapter directly builds on preceding chapters that have examined the GRiST 

component structures, relations between GRiST nodes, the various representations of the 

GRiST knowledge structure and the probability building blocks (i.e. Chapters 2, 3 and 4). 

The content covered in this chapter can be broadly split into two parts. In the first half, the 

different aspects of the GRiST knowledge structure examined up to this point are brought 

together in a bid to determine what information they individually give about the properties 

represented in the GRiST knowledge structure. These properties mainly include causality, 

conditional independence and dependency. Following on from this, an examination is 

done to determine what information regarding causality and the like can be obtained from 

the various combinations of these properties (e.g. a wrapper with is-a relationship links). 

At the end of the first part the objective is to have a clear and concise list of the possible 

combinations of the various properties and what can be inferred from them in particular in 

relation to causality and conditional independence and dependencies.  

 

In the second half of the chapter, the first half is expanded on by mapping the different 

representations and their meanings in terms of causality and independence (and 

dependency) that were identified in the first half to probability building blocks. This will 

draw on areas covered in Chapter 3, where the Markov properties of the different 

probability graphs and what they mean in terms of conditional independence and causality 

was covered. The general idea here will then be to map the combinations identified in the 

first half of the chapter to the appropriate graph with the Markov property that accurately 

represents each one. Having completed the above, the mapping rules are then formalised 

by putting together a concise list of the mapping rules for the different possible 

combinations. The chapter then concludes with a full explanation of how GRiST maps to a 

chain graph.  
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5.1 The GRiST Relations 

From the general semantics of the relations that can exist between the GRiST knowledge 

structure nodes, using a general (default based) approach (as against an “every situation 

is covered” approach) the following were inferred: 

 

 The gives_details_of relation is generally non causal. This can be seen from the 

definition of the relation and its semantics. An object that describes another object 

is a property and not a catalyst of any kind of change in the object. If we recall 

from Hill’s Biological Influence criterion (see section 4.2.2) the greater the value of 

the causal element the greater the observed effect, this kind of effect will not be 

seen between variables linked via the gives_details_of relation.  

 The is_a relation can have a variety of meanings with subtle differences depending 

on the variables being modelled (Brachman, 1983). Some of these meanings 

include a class relationship, generalisation/specialisation relationship, and so on. 

In the GRiST knowledge structure the definition of the is_a relation is that of “a 

kind of” definition. This implies that for two variables where X1 is_a X2  then X1  is a 

type of X2 and not a causal factor for it. This therefore leads to the conclusion that 

the is_a relations like the gives_details_of relation is generally non causal. 

 The contributes_to relation represents the case where the internal nodes 

contribute to and causally influence the parent node. An example of this can be 

seen in Figure 4.6 for the parent node suic-bhvr-const (constraints on suicidal 

behaviour) and its children nodes insight-resp (insight and responsibility) and suic-

rel-belief (religious values/beliefs affecting suicide risk). In this type of relationship 

the internal nodes have a direct influence on the parent node. For instance a 

person’s religious beliefs on suicide and their insight and responsibility will directly 

affect the constraints that they have when it comes to suicidal behaviour. The 

properties of the relation also support the case for it being causal, as it is transitive 

and not antisymmetric.  

 The part_of relation is generally non causal as for a variable X1 to cause another 

X2 , X1 needs to not only fulfil certain criteria (e.g. Hill’s Criteria for Causality) but X1 

needs to be a separate and distinct variable from X2. From the definition and 

semantics of the part_of  relation, it is evident that this is not the case here. 

 The component_of relation in most instances is non causal, and the rationale 

behind its lack of causality is similar to that of the part_of relation. However in 

some cases, it can potentially be causal. 
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 The precedes relation is an interesting one, in that it can either be causal or non 

causal. The characteristic trait that it exhibits will depend on other relevant factors 

and the specific context in question. 

 

5.2 The GRiST Visualisations 

From the different visualisations the following were determined: 

 

 High level GD component structures generally map to wrappers, and they tend to 

have causal relations between them. 

 Low level GD component structures map to objects or wrappers and were seen to 

exhibit either causal or non causal relations (dependent on other criteria). 

 High level FG component structures map to either classes or objects and generally 

tend to have non causal relations. However there are some examples of instances 

where some high level FG component structures have non causal relations 

between their nodes. 

 Low level FG component structures generally map to either objects or properties 

and tend to have non causal relations between them. 

 

5.3 Implications of the GRiST Visualisations and Relations to Causality and 

Conditional Independence 

In the GRiST knowledge structure and in its constituent component structures, nodes that 

are related to each other are linked. In Chapter 4 the different possible relations were 

examined in-depth. Hence it can be inferred that nodes that do not share a link either 

directly or indirectly are not related to each other. Examples of nodes that are directly 

linked are gen-congruence (congruence of physical, verbal, and emotional presentation) 

and gen-presentation (person's behavioural presentation during assessment) in Figure 

5.1. An example of nodes that are indirectly linked is gen-congruence and suic-app-behvr  

(person's appearance and behaviour at assessment indicating suicide). From the GRiST 

knowledge structure (again see Figure 5.1) examples of nodes that are not linked include 

suic-fam-hist (family history of suicide) and gen-jealous (jealousy). 
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Figure 5.1: Subsection of GRiST knowledge structure depicting directly and indirectly 

linked nodes and unlinked nodes (‘g’ and ‘gd’ denote ‘FG’ and ‘GD’ components 

respectively; whist ‘gdat’ and ‘gdd’ are the respective datum node equivalents). 

 

A pattern starts to emerge and it becomes possible to see that any two nodes that are not 

directly or indirectly linked can be said to be conditionally independent of each other given 

the other nodes in the knowledge structure. 

 

In the previous section and also in Chapter 4, in examining the GRiST visualisations and 

the relationship types that they tend to have between their nodes, for some of them (such 

as the low level GD and the high level FG) it was seen that it was possible for these to 

have no particular kind of relation as their default type (i.e. they could equally have either 

causal or non causal relations). A clear example of this is in the case of the low level GD. 
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We now examine the implications of this for the process of developing the mapping rules. 

To help motivate the discussion, the definition of the different types of links that a 

component structure can have is illustrated in Figure 5.2, for each structure in the 

mapping to probability building blocks there are two distinct link types to consider; 1) what 

we term the internal links, which refers to the type of links between the internal nodes of 

the structure and 2) the external link type, which refers to the type of link between the root 

node of the structure and other neighbouring nodes or structures external to the structure 

being considered (see Figure 5.2). 

 

Figure 5.2: Figure depicting a component structure’s internal and external links. 

 

A low level component structure such as gen-eyes and its internal nodes gen-avoid-eye-

contact and gen-eye-movement of Figure 5.1 will by definition be contained within a 

‘larger’ high level generic component structure. In the example in Figure 5.1 cited (i.e. 

gen-eyes) the high level component structure it is contained within is the GD component 

structure gen-presentation. It is this high level’s component root node that will determine 

the behaviour exhibited by the low level GD component structure. This overrides the 

relationship type defined between the low level component structures nodes. For example 

if a GD low level component structure that has causal relations is contained within a high 

level FG component structure which generally is non-causal, then this non-causal 

behaviour of the high level FG component structure overrides the causal characteristic of 

the low level GD structure and it is modelled as part of the non causal high level FG 
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structure. This is important in the mapping to the probability building blocks and helps to 

ensure correctness and consistency in the conversion process. A similar thing applies for 

low level FG component structures too, as they too are contained within a high level 

component structure whose root node becomes the context for the low level FG 

component structure and hence determines its characteristic traits.  

 

This thus leads to the conclusion that the external links between low level FG structures 

are dependent on the higher (in terms of the tree structure hierarchy) root node to which 

the low level FG structure is an internal node i.e. whether this “higher” root node is an FG 

or a GD structure will determine the link types between the low level FG structure. The 

same is also true for the external link type of low level GD structures. An additional 

example from the GRiST knowledge structure will be used to illustrate this and how it 

impacts on the mapping rule from the low level FG structures to the probability building 

blocks. Our example low level FG structure from Figure 4.5 is the gen-impaird-cog 

(general impaired cognitive) concept which has two internal nodes, gen-cog-think-mem 

(general cognitive thinking processes and memory) and the gen-concentr (general 

concentration) node. Focusing on the general impaired cognitive concept within the 

context of the GRiST knowledge structure, as an FG structure its uncertainty values 

remain the same regardless of its location, which implies that it is conditionally 

independent of the top risk (in this case suicide) and its neighbouring nodes given the FG 

component’s root risk (i.e. the general impaired cognitive concept) and its internal nodes 

(i.e. the cognitive thinking processes and memory and the general concentration nodes).  

 

5.4 Linking the GRiST Properties and the Probability Building Blocks’ Markov 

Properties 

Probabilistic graphical models and their properties were discussed in Chapter 3. In this 

section, links between the GRiST component structures and the Markov properties of the 

graphical models are described. This serves as a further stage in the process of 

developing the mapping rules from the GRiST component structures to the probability 

building blocks. The first probability graph whose Markov property is to be considered is 

that of the Markov random fields, which are undirected graphs.  
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5.4.1 Mapping to Markov Random Fields 

For the subsequent discussion we use the same definitions of Markov properties given in 

section 3.3.1 page 54. Considering the pairwise and local Markov properties, these can be 

related to the GRiST FG component structures as follows. In the discussion on the 

constraints of the FG component structure (Chapter 2), it was seen that the FG 

component structure is context independent and the context of all its internal nodes are 

characterised by its root concept only and not the top risk. This directly maps to the 

concept of the pairwise and local Markov properties and implies that the FG root concept 

node is independent of other variables given its internal nodes (which are in essence its 

neighbours). This directly correlates with the notion of the FG structure being context 

independent. Furthermore it can also be seen that high level FG internal links map to 

Markov random fields because their contribution to the risk is always the same regardless 

of their location or the neighbouring nodes around them. If they are mapped to directed 

edges, then their semantics become constrained and to an extent determined by their 

neighbouring nodes and this will not be a true representation of the said nodes. Another 

major consideration was that in maintaining the conditional independencies represented in 

the original GRiST knowledge structure is whether this interpretation holds true. The only 

area that needs special consideration to ensure that the assertion holds true was in 

regards to the GD structures contained within the high level FG structure. However, what 

we found was that to a large extent the GD structures within the high level FG structures 

map to wrappers (for example the high level FG gen-depression (depression) structure 

depicted in Figure 5.4, some of the GD component structures in it which map to wrappers 

are gen-presentation (general presentation), gen-ser-mentl-ill (general serious mental 

illness) and the gen-feel-emot (general feeling / emotions) component structures). And as 

mentioned earlier as wrappers do not have any particular semantics of their own, the 

above observation also supports the mapping rule decision here. It is important in these 

discussions to distinguish between the GRiST component structures’ internal and external 

links (see Figure 5.2). To summarise: the first link that has been established between the 

GRiST component structures and Markov properties is that the internal links of high level 

FG component structures map to Markov random fields. 

 

Next the global Markov property of the Markov random fields are considered. This states 

that any two subsets of variables are conditionally independent given a separating subset. 

This applies to the GRiST component structures when there are three or more fixed 

generic component structures (or generic distinct with a generic ancestor, these mirror the 

behaviour of fixed generic components) that are directly linked to each other via their root 
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concepts. If for instance we have a combination of FG1 + FG2 + FG3, then if every path 

between FG1 and FG3 goes through FG2, then FG1 is conditionally independent of FG3. 

The rationale behind this for the GRiST component structures is that, any fixed generic 

component structure FG2 that separates via every path FG1 and FG2 essentially means 

that the cumulative influence that FG1 ought to have on FG3 is contained in FG2 (in a 

similar manner to Bayesian belief networks where a child is independent of its non-

descendents given its parents – the cumulative effect/influence of these non-descendents 

– via its ancestors - is encapsulated in the parent nodes). Alternatively, as in a FG 

structure the generic root concept that is the point of reference for the structure, it can be 

argued that in the linking between FG1, FG2 and FG3, what is important is correctly 

identifying the positions of the FG structures (e.g. which of the root nodes is closest to the 

top risk and hence the ‘defining’ root node). So for instance in Figure 5.3, the Markov 

random field depicted will have a factor f1 that measures the affinity between the node 

pairs a  and b . Factor f2 on nodes b and c. Factor f3 on a and c. 

 

 

 

Figure 5.3: Mapping of internal nodes into Markov random field maximal clique. 

 

The  joint probability distribution of the three nodes is then: 

).,(),(),(),,( 321 cafcbfbafcbaP   

In mapping the GRiST component structures to Markov random fields, care was to be 

taken to ensure that the correct joint probability is encoded by the resultant Markov 

random field. 
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5.4.2 Mapping to Bayesian Belief Networks 

As mentioned in Chapter 2 where probabilistic graphical models were first discussed, 

Bayesian belief networks allow the modelling of causal relations. From the various 

sections in Chapter 4 it was clearly established that the GRiST knowledge structure 

encapsulates both causal and non causal links. Bayesian Belief Networks are used in the 

mapping process when considering the causal parts of the GRiST component structures. 

For the defining of conditional independence in Bayesian Belief Networks the notion of d-

separation is used.  

 

High level GD internal links generally map to directed graphs. This is primarily because 

the structure’s uncertainty values/risk contribution is dependent on its neighbouring nodes 

and a directed graph will be able to encapsulate this dependency structure. Although high 

level FG internal links map to undirected graphs, high level FG component structure’s 

external links (see Figure 5.2) map to directed graphs, this is because as a whole, the 

high level FG components contribute in a causal manner to the overall top risk. However, 

the point that is being made here stems from the fact that the overall contribution of all the 

various component structures is geared towards the determination of the assessment of 

the top risk (e.g. suicide, harm to others and so on). Again this is based on the fact that 

the knowledge engineering task addressed by the domain experts doing the knowledge 

elicitation process for GRiST was to determine the risk factors and how they are 

structured. As such we can assume that the knowledge structure obtained from the 

process is the one underpinning risk assessments and that these are dependent on cues. 

Therefore the probability relationship exists such that P(Category|Cues). High level GD 

external links also map to directed graphs for the same reasons given above for the high 

level FG external links. 

 

For a GD component structure that is to be mapped to a Bayesian Belief Network the 

following steps need to be considered: 

 Removal of any redundant nodes. 

 However even if a node is thought to be redundant, special care must be taken in 

the modelling/design decisions. If for instance a node is removed and its internal 

nodes linked directly to the node on the next level of the hierarchy, then the new 

set of (in)dependences will be between the removed node’s internal nodes and the 

new node they link into. However because of the removal of the node, its internal 

nodes will now have additional and new sibling nodes. The issue now is then that if 

the relationship between these new siblings and the removed node’s internal 
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nodes become dependent, the graph might now represent a different set of 

independency assertions from the original component structure. However this is 

not an issue in the GRiST mapping because the removed node’s internal nodes 

only become dependent on their new sibling nodes if the concept node they now 

link into (in the direction of the top risk) is observed and since in GRiST this cannot 

be the case the independency assertions remain the same, in spite of the graph 

reduction. 

 Where nodes are removed re-link the nodes to an un-attached node in the next 

level. To determine the type of link to use consider the relationship types of the 

nodes that linked to the redundant node both a level up and down. If either one of 

these relationship types was a causal relationship type then use a directed edge.  

 For converging nodes (the direction being considered, is going up the hierarchy), 

given the concept on top, the siblings that link to it become conditionally 

dependent on each other, due to d-separation. This result is similar to and tallies 

with the GRiST Markov random field solution. One can revisit the definition of d-

separation in section 3.2.2 on page 47. 

 If the link between the nodes is serial i.e. goes from X Y Z  then by d-

separation, given Y, X and Z become conditionally independent. This tallies with 

the independence property of the GRiST knowledge structure because this simply 

means that it is taken into account that the contribution of Z to X is already 

contained in Y. 

 Diverging links do not occur in the GRiST knowledge structure and as such have 

not been treated. 

 

We now consider some additional concepts that occur in relation to Bayesian belief 

networks that will have an impact on the mapping of relevant GRiST component 

structures to a Bayesian Belief Network. 

 

5.4.2.1 Independency Map (I-Map) 

The following definitions have been adapted from (Koller and Friedman, 2009). The set of 

independence associations with a particular joint probability distribution D can be defined 

as follows: 

Let D be a joint probability distribution over a graph G comprising of X, Y and Z, the 

I(D) is the set of independence associations of the form |X Y Z that holds in D. And 
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I( 1bbn ) represents the independencies associated with a particular Bayesian Belief 

Network ( 1bbn ).  

Where I( 1bbn )  I(D), 1bbn  is said to be the independency map for D. 

 

The above relates to a GRiST component structure’s mapping process as follows. For a 

GRiST component structure to be mapped to a Bayesian Belief Network, the set of 

independencies associated with the GRiST component structure’s distribution must be 

satisfied by the Bayesian belief network’s local independencies. Let us consider an 

example to aid our answering this question. Let the GRiST component structure to be 

mapped to a Bayesian Belief Network be a GD structure (gd1) with relationship type of 

contribute-to between all its nodes, and the Bayesian Belief Network to be mapped to be 

bbn1. To check that I( 1bbn )  I(gd1), we need to clearly define I( 1bbn ). 

 As a result of the direction of causality, the GD structure is seen to be made up 

of a series of V structures, which represent “common effect”, in this context two 

nodes have common effect when they are both linked to a third node with a 

directed edge going from them to the third node (an example of this is depicted 

in figure 3.4(e)). The following constitute the independencies associated with 

the GD structure: 

1. A node X in a higher level L in the hierarchical structure, not independent of 

the nodes in a level L-1 that are directly linked to it. 

2. Nodes linked via paths are not independent of each other. However along 

a path with nodes X -> Y -> Z, the contribution from X to Z is contained and 

passed to Z via Y and as such Z is conditionally independent of X given Y. 

 

We now need to ascertain that I( 1bbn )  I(gd1) holds by highlighting the ways in which 

they correlate 

 The local Markov property of a Bayesian Belief Network that states that any variable is 

conditionally independent of its non descendents given its parents directly maps to 

point #2 above (Korb and Nicholson, 2003). 

 The V structure in the GD component structure maps directly to the global 

independence properties represented by d-separation. In particular the common effect 

d-separation, where X can influence Y via Z only if Z is observed or one of its 

descendents is observed. And this correlates directly with #2. 
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We therefore see I( 1bbn )  I(gd1) holds true.  

 

5.4.3 Chain Graph Markov Properties 

Chain graphs model the relations between variables using both directed and undirected 

edges with the constraint that they do not have semi-directed cycles. In representing the 

variables within a domain and the relationships between them, these can only be 

represented by a chain graph if they have inherent within their structure a dependence 

chain (Krause, 1998). A dependence chain refers to the capacity to order the variables 

and the relationships that exist between them in such a way that they can be partitioned 

into disjoint subsets (or blocks), and within each of the subsets where links exist between 

variables in the same subset, the relationship is associative (i.e. the links are non causal, 

represented by lines) and between subsets where links exists between variables the links 

are directed edges depicting causal relations. Furthermore for the links between subsets 

i.e. the directed edges, the arrows all need to be pointing in the same general direction 

(traditionally from right to left). However due to space constraints or for aesthetic reasons 

they are sometimes drawn from top to bottom or vice versa.  

 

In developing chain graphs all the variables in the domain are initially split into one of two 

groups consisting of explanatory and response variables, where the explanatory variables 

are the variables that influence other variables and thereby generate a response in these 

variables (which are therefore known as the response variables). Explanatory variables 

are the variables that ‘explain’ the response variables, whilst the response variables 

measure the outcomes. For instance in GRiST a response variable will be the suicide 

concept node. The notion of explanatory and response variables is closely linked to 

causation and can imply causation but this is not necessarily always the case. There is no 

limit to the number of explanatory variables that can be linked to a response variable and 

the same is true for the number of response variables that an explanatory variable can be 

linked to, these are all driven by the domain being modelled. A simple example of each of 

the variables would be the link between Suicide and Depression, in this case Suicide is 

the response variable and Depression the explanatory variable. In addition to the direct 

influences between variable, within a chain graph the indirect influences between models 

and the association structure that exists between explanatory variables are also modelled 

(Buntine, 1995).  

 

In some cases, and this is definitely the case for the GRiST structure, explanatory 

variables (also known as influence variables) can in some instances be further split into 
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intermediate response variables and the influence nodes of the intermediate response 

variables. For instance, considering a larger subset of the GRiST suicide knowledge 

structure; Suicide can be taken as the main response variable, whilst Depression is seen 

as an intermediate response variable and the variables linked to the Depression node can 

also be split into intermediate and explanatory variables depending on their locations and 

functions in the structure. For example from Figure 5.4 gen-voices-type and gen-

presentation are intermediate nodes. 

 

Figure 5.4: GRiST knowledge structure depicting depression and its internal nodes (‘g’ 

and ‘gd’ denote ‘FG’ and ‘GD’ components respectively ; whist ‘gdat’ and ‘gdd’ are the 

respective datum node equivalents). 

 

In the GRiST model, a relationship pattern that is seen to reoccur at different locations in 

the knowledge structure is the relationship between component structures root node Z 
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and its internal nodes X and Y. This pattern can be interpreted to expose a symmetric 

relationship between X and Y with a latent child variable L. For instance the diagram on 

the left of figure 5.5 depicts the original relationship between X and Y as modelled in the 

GRiST knowledge structure (note that in the original diagram, arrows, do not necessarily 

depict causality but rather depict the direction of propagation of the membership grade 

values). Whereas the diagram on the right illustrates the existence of a symmetric 

relationship between the two variables as a result of a common latent child L inferred from 

the relations between the variables. The relationship between the newly added latent child 

L and child variable Z is now depicted as a symmetric one, this is because the latent child 

L represents the cumulative influence of variables X and Y. Richardson (1999) outlines 

three ways in which two variables can be symmetrically related as (1) if the two variables 

have a common cause (2) if they are both causes of some variable (3) if they are both 

causes of each other. The pattern found in some parts of GRiST discussed above falls 

under (1). 

 

Figure 5.5: Illustration of symmetric relationship between variables with addition of latent 

child variable. 

 

5.5 Impact of Relations on the Mapping Rules 

In this section the development of the mapping rules taking into consideration the impact 

of the relationship types on the mapping rules is carried out. The focus is on the mapping 

of the high level (non pure) generic component structures and the non generic component 

structures. The low level (pure) generic component structures are being intentionally 

omitted, due to the fact that the probability building blocks that they map to are determined 

by the root node to which they are internal nodes. What this means for instance to a low 

level GD component structure is the following. Even if on applying the mapping rules the 

resultant probability building block should be a directed graph, if the low level GD structure 
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constitutes a set of internal nodes to a FG structure. The resultant directed graph is 

overridden and the rules that apply to a FG structure will be what would hold for the GD 

structure. This is a direct result of the constraints of the component structures. This also 

highlights part of the importance of breaking down the component structures into both 

high and low level structures. Some rules override others for instance regardless of 

whether or not a wrapper has causal relations between its nodes it maps to a Bayesian 

Belief Network (see the mapping example in Figure 5.9). A similar rule applies to high 

level FGs which however map to Markov random fields (see Figure 5.6). Figure 5.7 

depicts some unpermitted combinations, whilst Figure 5.9 depicts the high level GD. 

 

 

Figure 5.6: Mapping rule for high level FG that map to objects or classes with non causal 

relations.  

 

From the exploration of the GRiST knowledge structure it was found that generally the 

generic component structure that map to classes and objects are FGs. This tallies with the 

expected theory as classes and objects are able to control their own internal RIs. And as 

mentioned earlier this is the precisely the case for FGs where their root concept is always 

seen to be the context that influences them and not the top risk as in the case of GDs. 

However, this does not mean that GDs cannot be objects or classes; there are examples 

in the GRiST knowledge structure of these. 
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Figure 5.7: Depictions of unpermitted combinations for high level FG mappings. 

 

 

Figure 5.8: Mapping rule for high level GD that map to wrappers and have non causal 

relations.  

 

 
High Level GD 

 
Non 

causal 

relations 

 

 

MARKOV PROPERTY:  

d-separation indirect causal effect. 

X can Influence Y as long as Z is 

unobserved. In this case Z in 

between X and Y represents the 

high level GD root wrapper 

concept. Taken to be unobserved 

and can be removed as it has no 

semantics of its own and nothing 

is lost in the model by its removal. 

 

PROBABILITY BUILDING BLOCK: 

Directed Graph 

*despite the fact that relation is 

non causal. Using indirect causal 

effect, to account for the influence 

of the wrappers internal nodes on 

the concept they’ll link to higher 

up the hierarchy 

 

 

Maps to 

 

Maps to 

 Wrapper 

High Level GD with varying 

uncertainty dependent on 

location. i.e. GD conditionally 

independent of top risk (i.e. 

relevant context for GD is top 

risk) 
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The interesting thing with these cases is that what we have found is that wherever a GD 

structure falls into the category of a class or an object, it is always a low level GD structure 

contained within another generic FG component structure (i.e. its root concept is a FG) 

and as such its characteristic traits are overridden by those of its root FG structure. An 

example of this from the GRiST knowledge structure is a person's perspective of self 

worth (gen-self-worth-p in Figure 5.4), which is a GD component structure classified as an 

object but with a root concept depression which is a FG component structure. The above 

is illustrated in Figure 5.11. 

 

 

Figure 5.9: Mapping rules for low level GDs that map to objects or properties.  

 

5.6   Summary of Mapping Rules to Probability Building Blocks  

In this section, the mapping rules from GRiST component structures can be summarised 

as follows: 

 Low level GD or FG, map to the probabilistic graphical model of the ‘higher root 

node’ that determines their behaviour. 

 High level FG component structures map to Markov random fields (here the 

reference is to their internal links). 

 High level FG component structures external links map to Bayesian Belief 

Networks. 

 High level GD component structures map to Bayesian Belief Networks. 
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5.7    From Probability Building Blocks to the GRiST Chain Graph  

Chain graphs are graphical models which allow both directed and undirected graphs with 

the constraint that they do not have semi directed cycles (Drton, 2009). Linking two 

variables in a chain graph with a directed edge implies that the relationship between them 

is causal, and the direction of the edge is from cause to effect. On the other hand 

variables that are linked with an undirected edge do not have a causal relationship but 

have an associative relationship (in a similar manner to Markov random fields). As a result 

of the inherent causal and associative relationships contained within the GRiST 

knowledge structure, which are also clearly seen in the mapping to the building block 

probability graphs (discussed earlier), it makes logical sense to model this knowledge 

structure using a probability chain graph. More in-depth discussions on the chain graph 

can be seen in the earlier section on probability graphical models (see Chapter Two and 

(Lauritzen and Wermuth (1989)). The approach that we are taking to develop the GRiST 

chain graph is to construct it from the building block probability graphs. To ensure that this 

is done correctly we will start by looking at the standard components that are defined for a 

chain graph. 

 

The following definitions are taken from Buntine (1995:48): 

 

Definition 1 “Given a chain graph G over some variables X, the chain components are the 

coarsest mutually exclusive partition of X where the set of subgraphs induced by the 

partition are connected and undirected”. 

 

In this context the coarsest mutually exclusive partition of X refers to the largest partition 

that can be obtained from the chain graph with the nodes within the partition connected by 

undirected edges. The chain components of a chain graph can be found simply by 

deleting from the graph all directed arcs, leaving only the chain components (Drton, 2009). 

 

Definition 2 “Given a chain graph G over some variables X, the component subgraphs are 

a coarser partition of variables X than the chain components, and are the coarsest 

partition where the set of subgraphs induced by the partition are connected, undirected or 

directed (but not mixed) subgraphs of the chain graph G”. 

 

From definition 2, we see that chain graphs naturally decompose into component 

subgraphs. The component subgraphs are the chain graph’s maximal directed and 

undirected parts (Buntine, 1995). Therefore for the composition/construction of the GRiST 
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chain graph we need an additional step, where we ensure that from the probability 

building blocks we obtain the maximal directed and undirected graphs. 

 

To obtain the maximal directed and undirected graphs, once we have obtained all our 

building blocks from the component structures, we need to then identify those which ought 

to be combined together to obtain the maximal directed or undirected (but not mixed) 

subgraph that they represent.  

 

In summary this means we need to  

 link together all directed building block graphs that are meant to be joined together 

so as to form the maximal directed graphs and likewise for the undirected graphs. 

 then for all probability building blocks that contain mixed edges, we need to 

decompose them into their maximal subgraphs (i.e. the coarsest partition that they 

can split into where each subgraph has the same type of link; directed or 

undirected). 

 

For every chain graph there is a unique set of component subgraphs. The algorithm for 

finding these subgraphs and the subsequent proof for it can be found in (Buntine, 1995). 

In our case we are attempting to do the reverse of what has been done there i.e. we are 

constructing the chain graph from the component subgraphs obtained via the probability 

building blocks. Below we consider the decomposition of a chain graph into component 

subgraphs and then consider the composition of chain graphs from component 

subgraphs.  

 

 

Figure 5.10: Decomposing a Chain Graph.  
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In the chain graph depicted on the left of Figure 5.12, from definition 1 above the 

component chains are {X2,X4}, {X2,X5}, {X1}, {X3,X6}, {X3,X7}.and {X3,X8}. Whilst from 

definition 2 the component subgraphs are {X2,X4,X5}, {X1} and {X3,X6,X7,X8}. The graph at 

the right hand side of Figure 5.12, depicts the directed master graph of the chain graph. 

This master graph is a Bayesian Belief Network showing how the component subgraphs 

are pierced together. The possibility of deriving a Bayesian Belief Network from the final 

chain graph is worth noting as it opens up the range of possible tools that can be used. A 

definition for the interpretation of a chain graph that supports the above is given by 

Buntine (1995). 

 

The two main challenges are 1) how to obtain valid and correct component subgraphs 

from the probability building blocks 2) how to combine these subgraphs to obtain the 

correct chain graph. For the GRiST development the probability building blocks that the 

component structure map to directly correspond to the component subgraphs of definition 

2, and by combining these the final chain graph is obtained.  

 

5.8   Conclusion 

In this chapter the mapping rules for the conversion from the GRiST component structures 

to probability building blocks have been developed. These rules were constructed by 

further analysing the various areas of the GRiST knowledge structure that give information 

regarding the semantics engrained in the various GRiST component sections. Concepts 

such as causality and conditional independency within the GRiST knowledge structure 

were also considered and how these map to the Markov properties of the probability 

building blocks. Identified correlations between the GRiST knowledge structure semantics 

and the probability building blocks Markov properties were then used to develop the 

mapping rules that will drive the conversion process. 

The chapter then concluded by examining chain graphs and their development from chain 

components and component subgraphs and what these correspond to in the GRiST 

domain. In the next chapter (i.e. Chapter 6) the implementation process of the GRiST 

chain graph is discussed. 
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Chapter Six 

6. The GRiST Chain Graph for Mental Health Risk Assessments 

 

In this chapter we discuss the implementation of the GRiST chain graph. In particular we 

discuss details of the various algorithms used at various stages of the development 

process. Details of the tool and programs used to facilitate the implementation process 

are also discussed.  

 

This chapter begins with a brief introduction to the data used in this research. This is then 

followed by a section outlining the various programs and tools used for the implementation 

process. This is followed by a discussion of the two main approaches used for the 

implementation of the GRiST chain graph, namely the embedded graph and the factor 

graph approaches. The embedded graph approach was primarily to facilitate parameter 

learning from the GRiST data, whilst the factor graph approach was for the inference. The 

chapter goes on to examine the methods and how they were utilised to develop the final 

probabilistic graphical model for the mental health risk assessments. In this chapter the 

term undirected graphs and Markov random fields are used interchangeably, and likewise 

for directed graphs and Bayesian belief networks. 

 

6.1 Introduction to the Data 

The data used in this research consists of 9417 patients on whom mental health risk 

assessments were performed. This was collected by clinicians during the course of their 

clinical risk assessments with the patients, using electronic questionnaires based on the 

questions listed in Appendix 2. In Appendix 2 the full list of possible questions can be 

seen, from the GRiST version for working-age adults. There are altogether three versions 

of the questionnaire designed with specific populations in mind, namely the version for 

working-age adults, older adults and finally the one for children and adolescents. The data 

used contains 138 potentially observable variables, which map directly to the GRiST 

datum nodes discussed in the section on the GRiST knowledge structure (Chapter 2). In 

addition to the values of the datum nodes, the data also contains the clinicians’ expert 

judgements of the mental health risk level for each patient. These values become 

important when the validation of the implemented model is done. This will be explored in 

Chapter 7. 
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6.2 GRiST Programs 

In the overall development process from the GRiST knowledge structure to the 

probabilistic model for risk assessments there are six main steps: 

 The identification of the relationship types that exist between the GRiST 

knowledge structure nodes. 

 The decomposing of the GRiST knowledge structure into the GRiST component 

structures.  

 The mapping of the GRiST component structures into probability building blocks. 

 The composition of the GRiST chain graph from the probability building blocks. 

 The learning of the GRiST chain graph parameters from data. 

 And finally the prediction of the risk assessments using the probabilistic graphical 

model. 

Each of these steps maps to various aspects of the research. The way the complete 

implementation of the GRiST probabilistic graphical model has been carried out is through 

a series of programs that feed into one another. This facilitates the automation of sections 

of the development. The overall development is semi-automated with most of the 

processes being automated by their implementation in programs. In this section we briefly 

outline the various programs developed in this thesis. All together these programs 

facilitate the objective of providing a principled approach to translating the GRiST 

knowledge structure into a probabilistic graphical model to be used for mental health risk 

assessments. We have represented the various steps as algorithms depicting the function 

they perform, each of which are depicted in Figure 6.1. To add clarity each of these 

algorithms has been named based on their function.  

 

This section outlining the various steps and/or programs has been added here to improve 

clarity by giving a general overview of the different steps. Subsequently some of these 

algorithms are then explored in greater detail. 

 

The first step which we call the IDENTIFY step corresponds to the identification of the 

relationship types that exist between the various nodes (this was discussed in detail in 

Chapter 4).  
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Figure 6.1: GRiST programs:  the algorithms they implement. 

 

 

6.2.1 IDENTIFY 

 

Algorithm 6.1 Algorithm for identifying the relationship types between the GRiST 

knowledge structure nodes 

 

Procedure IDENTIFY 

 

Input: A GRiST knowledge structure GKS. 

 

Output: GKS with set R of relationship types between every linked pair of 

nodes N identified and filled. 

 

1 Set R = 0; 

2 foreach GKS pair of nodes N do 

3 Start from bottom of GKS tree, i.e. datum nodes D and work upwards 

through both Datum D and Concept C node pairs 

4 foreach pair of Nodes N ({D,D}, {D,C}, {C,C) do 

5  if relationship between pair is of type relation1 (i.e. is-a) then 

6   set R = is-a for the pair 

7 mark relationship type as done between this pair //node pair 

not to be revisited 

8          end 
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   9       if relationship between pair is of type relation2 (i.e.   

     gives_details_of) AND R=0 for node pair then 

   10   set R = gives_details_of for the pair 

   11    mark relationship type as done between this pair //node pair 

         not to be revisited 

12    end 

   13       if relationship between pair is of type relation3                                     

      (i.e.contributes_to) AND R=0 for node pair then 

   14       set R = contributes_to for the pair 

   15        mark relationship type as done between this pair //node pair                               

             not to be revisited 

   16    end  

   17       if relationship between pair is of type relation4 (i.e.   

      precedes) AND R=0 for node pair then 

   18   set R = precedes for the pair 

   19    mark relationship type as done between this pair //node pair 

         not to be revisited 

20    end 

   21       if relationship between pair is of type relation5 (i.e.   

     part_of) AND R=0 for node pair then 

   22   set R = part_of for the pair 

   23    mark relationship type as done between this pair //node pair 

         not to be revisited 

24    end 

   25       if relationship between pair is of type relation6 (i.e.   

     component_of) AND R=0 for node pair then 

   26   set R = component_of for the pair 

   27    mark relationship type as done between this pair //node pair 

          not to be revisited 

   28     end //in this way map all nodes from possible set of                     

relations until all relations for all linked nodes are set 
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29             end 

30     end 

31  end   

 

6.2.2 DECOMPOSE 

The decompose program takes as input a GRiST knowledge structure and decomposes it 

into its constituent component structures and is implemented as a c# program. The 

algorithm outlines the various steps that need to be carried out to decompose the GRiST 

knowledge structure into its component structures. This process is motivated by the 

discussion on the GRiST constraints and component structures in Chapter 2 and 4. 

 

Algorithm 6.2 Algorithm for decomposing the GRiST knowledge structure into the GRiST 

component structures 

Procedure DECOMPOSE 

Input: A GRiST knowledge structure GKS. 

Output: A set of GRiST component structures C comprising of FGs, GDs and 

non generics 

1 Set C = 0; 

2 foreach GKS level l do 

3  Start from highest level i.e. top of tree with nodes nearest to top 

 risk try 

4 foreach identified root node rn (i.e. type g or gd) & while embedded 

components == true do 

5 Add C = {component type, tr, l, primaryKey=rn,   

foreignKey=parent node} 

9              end 

10     end 

11 end 

 

6.2.3  MAP 
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The MAP program like the DECOMPOSE program is implemented as a c# program. It 

takes as input the GRiST component structures and maps them to the relevant probability 

building blocks using the mapping rules discussed in Chapter 5. 

 

Algorithm 6.3 Algorithm for mapping the GRiST component structures into probability 

building blocks 

Procedure MAP 

Input: GRiST Component Structure CS 

Output: Probability Building Block BB 

1 Set BB = 0; 

2 foreach GKS CS do 

3  if CS == high level FG then 

4   BB =  MRF 

5  end 

6  else if CS == high level GD then 

7   BB = BBN 

8  end 

9  else if CS == non generic then 

10   BB = BBN 

11  end 

12 end 

13   end 

 

 

 

6.2.4 COMPOSE 

Algorithm 6.4 Algorithm for composing the GRiST chain graph from the probability building 

blocks 
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Procedure COMPOSE 

Input: Probability Building Blocks BB 

Output: GRiST Chain Graph CG 

1 Set CG = 0; 

2 foreachGRiST BB do 

3  Split BB into Chain Components CC 

4  Identify Nodes to be linked via directed edges e 

5  Link CC with e 

6 end 

7     end 

 

6.2.5  LEARN 

This section covers the learning of the parameters of the probabilistic graphical models 

from the patient data. The entire learning process was done using the MATLAB 

Probabilistic Modelling Toolbox for MATLAB/Octave (PMTK, n.d.). This toolbox is 

discussed in a subsequent section and the processes it was used to carry out are also 

explored in greater detail later on in this chapter. The Expectation Maximisation algorithm 

is used to estimate unknown parameters and was used for the parameter learning of the 

GRiST probabilistic graphical models (Kjaerulff and Madsen, 2008). The algorithm is 

discussed in further detail in section 6.4.2.1, page 146. 

  

Algorithm 6.5 Algorithm for learning the parameters for the GRiST chain graph from 

patient data 

Procedure LEARN 

Input: Probability Building Blocks BB 

Output: Parameters for graph 

1 Set BB = 0; 

2 foreach GRiST BB do 

3  Learn BB parameters using Expectation Maximisation Algorithm  
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4  end 

5 end  

 

6.2.6 PREDICT 

This section relates to the prediction of risk using the final probabilistic graphical structure. 

Again like the LEARN algorithm it was carried out using the MATLAB Probabilistic 

Modelling Toolbox for MATLAB/Octave and is discussed in more detail in subsequent 

sections in this chapter. The junction tree and belief propagation algorithms used in the 

PREDICT algorithm are inference algorithms used to compute probabilities in the 

graphical structure (Korb and Nicholson, 2003). They are discussed further in section 

6.4.3 page 150. 

 

Algorithm 6.6 Algorithm for prediction of the mental health risk using the final GRiST 

probabilistic graphical model 

Procedure PREDICT 

Input: GRiST Probabilistic Graphical Model GM 

Output: Risk predictions from the probabilistic graphical model 

1 Set GM = 0; 

2 from GRiST GM do 

3 For GM = BBN or MRF inference use Junction Tree / Belief Propagation 

Algorithms  

4  else if GM Type is Factor graph, then use Sum - Product Algorithm 

5  end 

6 end 

The PREDICT step is operationalised using MATLAB scripts. 

 

 

 

6.2.7 The PMTK3 Tool 

In addition to the programs developed, the main tool used for the implementation of the 

GRiST chain graph was the Probabilistic Modelling Toolbox for MATLAB/Octave, version 
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3 (PMTK3) (PMTK, n.d.) and the Bayes Net Toolbox for MATLAB (BNet, n.d.). Both of 

these are MATLAB graphical modelling toolkits. The toolkits support a large collection of 

probabilistic models and algorithms and was chosen for this research because they cover 

in-depth the areas that pertain to this research. In the sections that follow on the 

algorithms used, we explore some of the functions available in the PMTK3 toolbox.  

 

6.3 The Factor Graph Method 

The first method used for the construction of the GRiST probabilistic graphical model is 

the factor graph approach. Using this method we convert the chain graph obtained from 

using the mapping rules into a factor graph. The conversion from directed, undirected and 

chain graphs to factor graphs has been covered in detail in Chapter 3. Building further on 

that the factor graph sum-product algorithm is discussed in the next section. 

 

6.3.1 The Factor Graph Inference Algorithm 

The choice of inference algorithm for the GRiST factor graph is the sum-product 

algorithm. The sum – product algorithm is used to perform inference on a factor graph via 

message passing. Messages are passed between the various variable and factor nodes 

of the factor graph, and the algorithm eventually terminates after each edge in the graph 

has had two messages passed through it in alternate directions (Kschischang et al, 2001). 

The sum – product algorithm uses the following rule known as the sum – product update 

rule:  

 

“The message sent from a node v on an edge e is the product of the local function 
at v (or the unit function if v is a variable node) with all messages received at v on 
edges other than e, summarised for the variable associated with e.” Kschischang 
et al (2001:502). 

  

In the GRiST model the messages passed potentially represent one of two things:  

a) When the message is from a factor node to a variable, the message corresponds 

to a vector over the various possible states of the variable e.g. if the variable is 

past suicide attempt then the possible states are yes or no. 

b) When the message is from a variable node   to a factor node Y, it relates to the 

probabilities that the variable node takes some value  , where the value of   is 

computed based on the data received from all the neighbouring nodes of   with 

the exception of the factor node  .   
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When it comes to GRiST the important thing is the assessment of risk from the predicted 

probabilities. However, the messages generated using the sum – product algorithm do not 

directly aid decision making but they make it possible to compute the marginal posterior 

distribution of each variable in the factor graph. This tallies with the basic task of general 

probabilistic inference systems i.e. the calculation of the posterior probabilities of some 

nodes given evidence on some nodes in the graph (Korb and Nicholson, 2003).  

 

If the update rule is applied to the factor graph in Figure 6.2, the numbered circles 

illustrate the sequence of the messages generated in each stage of the sum – product 

algorithm on this particular factor graph. In the illustration lowercase letters are used to 

represent variables (e.g. w, x, y and z in Figure 6.2) whilst letter f with uppercase letters 

as subscripts are used to represent functions ( cBA fff ,, and Df ). The illustration of the 

use of sum-product algorithm on Figure 6.2 is based on the example given in Kschischang 

et al (2001).  

 

 

Figure 6.2: Messages generated in each stage of sum – product algorithm. 

 

The first messages that are passed are from singly connected function nodes and 

variables (in this example ).,, zff BA   

The next set of messages to be sent are from the receiving variables or function nodes in 

step one, these then send messages to the nodes they are connected to, all the time 

adhering to one of the key rules when it comes to factor graphs, namely that a node x 

cannot pass a message to another node y until it has received messages from all its 

neighbours except y. So each of the nodes in the factor graphs receives messages from 
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its neighbours, takes a product, and performs summation, and then sends the resulting 

message to the one neighbour which it did not receive a message from. The difference 

between a function leading to a leaf node (e.g. W or X) and a leaf variable that has no 

function leading to it (e.g. Z) from the perspective of the conversion from the GRiST chain 

graph to factor graph is highlighted in Figure 6.3 which summaries the different conversion 

processes (see Chapter 3). 

 

 

Figure 6.3: Summary of conversions from directed, undirected and chain graphs (going 

from top to bottom respectively). 

 

In the sum- product algorithm there are two types of messages that can be passed, 

namely the variable to local function message and the local function to variable message. 

In a factor graph if a leaf is a variable, any message it passes to a factor node reduces to 

1 whereas if a leaf is a factor node, any message it sends to a variable node x reduces to 

f(x) (Zhu, 2009). Whether a node is a leaf variable or has a factor node leading into it, is 

defined via the conversion process from chain graphs to the factor graph (see Figure 6.3) 

The equations representing the messages passed at various stages for a similar example 

can be seen in Kschischang et al (2001). 
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Once all the messages have been passed the termination stage involves taking a product 

and getting the marginal probabilities in order to compute the marginal posterior 

distribution of the required variable(s). One way of doing this is by taking the product of all 

messages directed towards the variable of interest; further details on this can be seen in 

Kschischang et al (2001). In this manner the required marginal posterior distribution of 

each required variable in the factor graph is calculated.  

 

6.3.2 The Factor Graph Model Representation 

In the PMTK3 toolbox for MATLAB, a factor graph structure is created using the PMTKs 

command factorGraphCreate. Factor graphs are represented in the toolbox using structs 

(a programming structure containing different components and values). The PMTK3 factor 

graph struct comprises of the following: 

 

 A bipartite undirected adjacency matrix. An adjacency matrix presents a way to 

encode the structure of a graphical model. The values in the intersections of the 

rows and columns of the matrix are used to depict whether or not a link exists 

between any two nodes in the structure. This is done by the addition of a number 

e.g. ‘1’ to represent the existence of a link and ‘0’ the non-existence of any link. 

For example Figure 6.4 depicts a simple directed graph and its corresponding 

adjacency matrix below it. In this directed graph there are only two edges i.e. the 

edge between nodes (1) and (3) and the second edge between (2) and (3). The 

direction of any links is also encapsulated in the matrix.  For factor graphs their 

corresponding adjacency matrices are undirected. 

 An array of factors, where each factor is represented as a tabular factor; the 

PMTK3 tabularFactorCreate command is used to create these. 

 Number of states (nstates), where nstates( ) represents the number of states that 

variable   can have. 

 Node factors - factors linked to only one variable. Examples of this can be seen in 

Figure 6.2 where Af  and    are node factors as they are both only linked to a 

single variable each (nodes   and   respectively). 

 Edge factors - factors linked to more than one variable. An example from Figure 

6.2 is factor    which is linked to nodes  ,   and  . 

 Round - indices into the adjacency matrix that indicate nodes. 

 Square - indices into the adjacency matrix that indicate factors. 
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Figure 6.4: Screenshot of a simple directed graph and its corresponding adjacency matrix 

as depicted using the PMTK3 MATLAB toolbox. 

 

After the creation of the factor graph using the PMTK3 toolbox, the learning of graphical 

structure parameters is done using the Expectation Maximisation algorithm (discussed 

later in the chapter), after which the inference algorithm is applied to the factor graph to 

compute the marginal posterior distributions of the unobserved variables and that of the 

top risk. More details on the learning of parameters using the toolbox and the rationale 

behind the choice of the algorithm used are given in the next section where we start to 

explore the embedded graph approach to the construction of the GRiST graphical model. 

The GRiST chain graph was constructed using two methods (i.e. the embedded method 

and the factor graph) for two main objectives 1) to learn the model parameters from the 

embedded graph and 2) to generate the required marginal probabilities from the factor 

graph by applying the inference algorithms to it. However, other advantages were 

obtained from the embedded graph, advantages such as being able to use it to explore 

relations within chain graph blocks and between chain graph blocks. So to summarise 

this, the embedded graph method’s primary purpose is for learning the parameters and 
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the factor graph for inference. All discussions and analyses of the results obtained from 

the GRiST chain graph are left till Chapter 7, the analysis and results chapter. 

 

6.4 The Embedded Graph Method 

The second approach used to develop the GRiST mental health assessment is that of an 

embedded graph. Some previous work has been done using the idea of embedded 

graphical models and mixture trees (Murphy and Nefian, 2001; Meila and Jordan, 2001). 

Murphy and Nefian (2001) explore the development of an embedded graphical model of 

Markov random fields where each node is itself a graphical model (i.e. a Markov random 

field). Embedded graphical models make it possible to construct complex models in a step 

wise fashion. So depending on the number of levels in the hierarchical structure being 

modelled the construction process itself can be broken down into several steps. For 

instance a step can comprise of the modelling of all nodes in a particular level in the 

hierarchy initially independent of the rest of the structure and then the results from this are 

fed into the next level and so on. 

 

The primary purpose of the embedded model is to facilitate the parameter learning from 

data. However, it also served as an additional layer of evaluation and for comparison 

purposes. 

 

To illustrate the design of embedded graphs, see Figure 6.5 which depicts a subsection of 

the GRiST knowledge structure.  Figure 6.6 on the other hand depicts the same 

knowledge structure (as that of Figure 6.5) but as an embedded knowledge structure with 

some of the GRiST component structures represented as being contained within other 

component structures.  

 

In Figure 6.6 we see the nodes from Figure 6.5 grouped together in composite nodes that 

can contain other composite nodes within them. An example of this from Figure 6.5 is the 

fixed generic component structure gen-app-diet that is contained within the generic 

distinct gen-currnt-bhv. However in cases like this (because of the semantics represented 

by the GRiST knowledge structure) the most important structures are the structures 

closest to the top risk. This is because a structure’s root node provides the point of 

reference for all the structures contained within it. 
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Figure 6.5: Non embedded subsection of GRiST knowledge structure (‘g’ and ‘gd’ denote 

‘FG’ and ‘GD’ components respectively). 

 

Therefore in the cited example there are four equally important structures, an example of 

which is the generic distinct structure gen-currnt-bhv. From Figure 6.5, we identify five 

generic distinct component structures and two fixed generic component structures, which 

we depict in Figure 6.6 (left and middle diagrams). 
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Figure 6.6: Diagram depicting subsection of GRiST knowledge structure from Figure 6.5, 

with component structures drawn (note that the non generic nodes which do not fall into 

either one of the component structures have been left out of this diagram but not the final 

model). TR = Top Risk. 

 

The concept behind the embedded graphical model approach is similar to the component 

structures one of Figure 6.5. However, the main difference that exists between them is 

that the nodes represented in the embedded graph are not component structures but 

probability building blocks. The embedded graph approach can be summarised as follows:  

 

From the probability building blocks mapped from the GRiST component structures (i.e. 

directed and undirected graphs) a two step method is used. Initially each identified 

probability building block (i.e. directed or undirected graph) is represented in the overall 

graphical model as a composite variable. This results in an embedded model where each 

node can itself represent a graphical model. The second layer is then reached when we 

model and consider an individual sub-tree. The uncertainty contribution from each node 

(i.e. embedded graphical model) is then plugged into an overall graph. The overall top risk 

for the top root (e.g. suicide) is then obtained using this overall graph which comprises of 

nodes that can also themselves be graphical models. In the next subsections we explore 

the implementation of the probability building blocks and the overall embedded graphical 

model (i.e. the LEARN and PREDICT algorithms outlined in section 6.2). 
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The focus in this section is on the methods that apply to the embedded graph approach. 

To implement the LEARN algorithm for the embedded approach, the probability building 

blocks that make up the entire overall embedded graphical model needed to be identified 

and represented as models. Recall that when it comes to context and the mapping rules 

(Chapter 5), the most important component structures are the high level structures. The 

initial step was the identification of all the high level component structures in the model 

and the probability building blocks that they map to (using the mapping rules). Table 6.1 

lists all high level component structures relating to Suicide risk for the GRiST knowledge 

structure.  

 

Table 6.1: The GRiST suicide knowledge structure high level components and 

corresponding probability building block types 

High Level Component Structure Probability Building Block Type 

insight-resp Undirected Graph 

sn-appearnce Undirected Graph 

gen-impaird Undirected Graph 

gen-depression Undirected Graph 

gen-meds-therpy Undirected Graph 

gen-presentation Directed Graph 

gen-feel-emot Directed Graph 

gen-self-worth-p Directed Graph 

gen-personality Directed Graph 

gen-eng-world Directed Graph 

gen-ser-ment-ill Directed Graph 

gen-phys-hlth-prb Directed Graph 

adv-life-event Directed Graph 

gen-demog Directed Graph 

gen-soc-contxt Directed Graph 

gen-currnt-bhvr Directed Graph 

gen-subs-misuse Directed Graph 

 

The directed probability graphs identified in Table 6.1 were then each modelled using the 

PMTK2 and the Bnet MATLAB toolboxes. The probabilistic results obtained for each 

subgraph was then plugged into an overall embedded graph. This embedded graph was 

also itself modelled using the toolbox and then used to obtain the probabilistic risk 
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prediction results. We now discuss how each of the directed probabilistic building blocks 

were implemented using the MATLAB toolkits. 

 

6.4.1 Graph Model Representation 

Similarly to the factor graph approach, each of the structures were represented via the 

use of an adjacency matrix. A program was implemented that takes in as input the XML 

document representing each probability building block and then gives as output files for 

each probability building block, its corresponding adjacency model. These models were 

then loaded into MATLAB, along with the data file containing the patient cases in the 

relevant probability building block. The MATLAB, the Bnet and the PMTK3 toolkits provide 

functions to check the model at different stages. For example Figure 6.4 depicts a simple 

example of the results from two functions depicting both diagrammatically and in matrix 

format the adjacency matrix representing a structure that had been loaded into the toolbox 

for processing.   

 

In PMTK3/Bnet following the importation of the adjacency matrix representing the model 

and the dataset, for a Bayesian Belief Network the next PMTK3 function to use is the 

mkRndTabularCpds. The mkRndTabularCpds function creates a cell array of tabular 

CPDs. The function takes in as input parameters the graphical structure (in the form of an 

adjacency matrix), and an array containing the list of number of states for the nodes. It 

then returns a conditional probability distribution as output in the form of a cell array of 

tabular conditional probability distributions. Initially this array starts out as a place holder 

for the conditional probability distributions that will be obtained when the training 

algorithms are applied to the model. Figure 6.7 is a screenshot of the PMTK3 MATLAB 

toolbox depicting a tabular conditional probability distribution structure. 

 

After the cell of tabular conditional probability distributions has been obtained the next 

stage involves the creating of the directed graphical model using the PMTK3 dgmCreate 

command. This function takes as input the graph structure (i.e. the adjacency matrix) and 

the newly created array of conditional probability distribution. Once the directed graphical 

model is created the next step is then to train the directed graphical model and learn its 

parameters. This is done with a PMTK3 function dgmTrain, which takes as input the 

directed graphical model and the patient data. 
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Figure 6.7: Screenshot of PMTK3 MATLAB toolbox with tabular CPD structure (left of 

figure), prior (middle) and post processing (right of figure) values. 

 

As our data is incomplete (i.e. there are instances of missing data in a patient vector. 

Incomplete data refers to individual vectors), our choice of algorithm for the parameter 

estimation was the Expectation Maximization (EM) algorithm (Lauritzen, 1995). More 

details on this are given later in this chapter. 

6.4.2 Graph Parameter Learning 

Parameter learning makes it possible to obtain the parameters of a model given its 

structure and data for the model. Generally all parameter learning algorithms try to 

estimate from the data the best parameter fits to the model and a number of algorithms 

have been proven to be effective. However, the choice of learning algorithm should be 
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dependent on the particular characteristic traits of the available data and the model. For 

instance if the available data is complete (i.e. there is no missing data) then some 

algorithms will perform better on them than if the data is incomplete (i.e. some data is 

missing). This section includes a discussion on the rationale behind the choice of learning 

algorithm and its implementation using the Bnet/PMTK3 toolkits. 

 

The algorithm used for parameter learning for the directed graph probability building 

blocks of the GRiST chain graph was the EM algorithm. In the GRiST probability building 

blocks the concept nodes are unobserved variables whilst the observed variables directly 

correspond to the datum nodes. In the GRiST model, in addition to the concept nodes, 

data can also be missing as a result of the semantics of the knowledge structure. For 

instance filter questions in the GRiST questionnaire are linked to their underlying 

questions. In Figure 6.8, we see an example of this. To the question Has there been more 

than one self-harm episode?, if an answer of no is given then because of the semantics 

ingrained in the structure this will in turn render all the underlying questions (e.g. 

Approximately how many episodes of self-harm have there been?) irrelevant and so a 

membership grade value of 0, are automatically assigned to these underlying questions.  

 

Our chosen algorithm is therefore the EM algorithm which is particularly good at handling 

incomplete data. Other algorithms that can be used for parameter learning include 

algorithms based on the Maximum Likelihood Estimation and Bayesian Estimation 

Techniques. For more details on these see [39, 103, 104].  

 

6.4.2.1 Expectation Maximisation (EM) Algorithm 

The EM algorithm was used to estimate the probability building block’s parameters, by the 

application of the algorithm to the patient cases given the model. The EM algorithm is a 

variant of maximum likelihood estimates that is effective for parameter learning when the 

dataset is incomplete. In cases where the data set is complete, learning the parameters of 

the model is less complex. For instance the sufficient statistics can be calculated for 

datasets with complete datasets by taking a count of the frequency of occurrence of the 

various variables in the dataset. 
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Figure 6.8: Screenshot GRiST electronic data collection tool. 

 

The sufficient statistics show using the data to obtain a function that represents all the 

information needed to calculate the likelihood (Koller and Friedman, 2009). Further details 

on likelihood and Maximum Likelihood Expectation can be found in Koller and Friedman 

(2009), Jensen and Nielsen (2007) and Kjaerulff and Madsen (2008). Once the sufficient 

statistics for complete datasets are obtained, their parameters can be estimated by 

obtaining the estimation of parameters that maximise the likelihood (Koller and Friedman, 

2009). However, for incomplete datasets like the GRiST data, the same approach cannot 

be followed as it is not possible to obtain sufficient statistics from the data. Various 

approaches can be considered to resolve the issues that arise when it comes to 

parameter estimation of incomplete datasets. Simple solutions can involve attempting to 
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‘complete’ the data by giving the missing data values but as mentioned by Koller and 

Friedman (2009) this will introduce a bias in estimated parameters.  

 

The objective behind the EM algorithms approach is the computing of the best estimates 

of the parameters of the model, without introducing bias and skewed parameters. The way 

it accomplishes this is via an alternating two step process. These steps are the 

Expectation step and the Maximisation step. In the Expectation step the current parameter 

estimates are used to obtain expectations for the unobserved values (Jensen and Nielsen, 

2007), whilst in the Maximisation step the previously completed dataset (i.e. the dataset 

completed via the use of the expectations in the previous Expectation step) is used to 

derive a new set of parameters by performing a maximum likelihood estimation (Koller 

and Friedman, 2009).  The expectations that are calculated for the missing values in the 

Expectation step are calculated using the expected sufficient statistics (i.e. the expected 

counts) (Koller and Friedman, 2009). The expected sufficient statistics, like the full 

sufficient statistics (used in the case of complete datasets), need to be calculated from the 

complete dataset. However, as there are missing values in GRiST, the expected sufficient 

statistics are computed in the first instance using the initial values assigned to the missing 

values. The assignment of these initial values can be of any form (i.e. arbitrary). In the 

GRiST model this assignment is random. 

 

As the two steps (i.e. Expectation and Maximisation) are iterated through, the estimated 

parameters keep continually improving until either the algorithm either converges or 

reaches a pre-specified end point (i.e. pre defined number of iterations). 

 

Formally the Expectation and Maximisation steps can be represented as follows (the two 

definitions are taken from Kjaerulff and Madsen (2008).  

 

For a model structure G the Expectation step computes the expected sufficient statistics 

(counts). Representing the current parameter values with   and the observed data with D, 

Then      represents the count for (     (  ))  (   )  and    the lth case of the 

observed data D. Then the expected sufficient statistics is computed using the following 

equation in the Expectation step. 

 

                    (    )  ∑  (  
 
        (  )     

 ,  ,G).                           (1) 
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The Maximisation step then computes new estimates of the parameters     
  

                  
  

  (    )

∑   (    )
      
   

                                                                       )2(  

Algorithm 6.8 below gives a formal summary of the EM algorithm and has been adapted 

from Kjaerulff and Madsen (2008) and Koller and Friedman (2009) 

 

 

 Algorithm 6.8: EM Algorithm for Parameter Estimation 

Procedure EM Algorithm 

Input: G, //graphical structure over X1,.....,Xn 

  , //set of parameters for G 

 D //incomplete dataset 

Output: estimated parameters    (after t iterations) 

BEGIN 

1  Initialise parameters or initialise missing values 

2  Compute Expected Sufficient Statistics 

3  for each t=0,1,....until convergence 

4  // Step 1: Expectation Step 

5    (    )  ∑  (  
 
        (  )     

 ,  ,G) 

6  //Step 2: Maximisation Step 

7      
  

  (    )

∑   (    )
 |  | 

   

 

8  return     
  

9 END 

 

In the PMTK3 MATLAB toolbox, the EM algorithm is implemented using the dgmTrainEM 

function. These function input arguments are the previously created directed graphical 

model (Section 6.4.1) and the dataset. The parameters are then randomly initialised and 
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these parameters used for the first iteration. The expected sufficient statistics are then 

computed using the PMTK3 estep function, after which the Maximisation step is 

performed on the data using the mstep function. In this manner the two steps of the EM 

algorithm are alternatively applied until the algorithm converges and at this point the final 

sets of estimated parameters are obtained. For the GRiST chain graphs the EM algorithm 

performed well and converges each time. 

  

6.4.3 Graph Inference Algorithms 

The main objective of the inference for the GRiST probabilistic graphical model is to 

compute the probabilities of the top risk given the values of the observed datum nodes 

and the entire model. The risk assessments of the top risks will then be directly inferred 

from these probability values. For the Suicide section of the GRiST knowledge structure 

there are 138 distinct datum nodes and 81 distinct concept nodes as a result of the large 

number of nodes in the model, the inference algorithms used needed to be 

computationally feasible for the GRiST probabilistic graphical model. For models with 

large numbers of nodes, algorithms can become computationally intractable unless 

simplifying assumptions are made on the model (Wemmenhove et al, 2007). However, in 

making assumptions care must be taken not to apply assumptions that will result in 

skewed results or a loss of semantics. However, for the GRiST implementation using the 

embedded graph approach, the issue of computational infeasibility is not an issue 

because the embedded graph approach makes the model more tractable as a direct result 

of its two stage approach. The learning algorithms in the first instance are applied to 

subsets of the final graph (i.e. the probability building blocks) and then in the second stage 

on nodes representing the different subgraphs. Performing inference on the embedded 

graph was not the primary goal of using this approach in addition to the factor graph 

approach and as such inference was only performed on the GRiST block structures as an 

additional layer of analysis/validation but not as the main method. Here the junction tree 

algorithm was used and this is described briefly below. 

 

6.4.3.1 Junction Tree Algorithm 

The junction tree algorithm is an inference algorithm that performs belief propagation. 

However, the difference between the junction tree algorithm and the others like the Belief 

Propagation algorithm (for example) is that the belief propagation in the junction tree is 

performed on a tree called the junction tree which is obtained by making some alterations 
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to the original probability graph. A junction tree is obtained by conducting the following 

steps. These have been adapted from Korb and Nicholson (2003): 

 

 For directed graphs moralise the graph. To moralise a graph, all the edges in the 

graph are converted into undirected edges and for every set of nodes that are 

unconnected but share a child, an undirected edge is drawn between them. 

 Add the evidence (i.e. the observed data) into the model. 

 Triangulate the graph. This is done by the addition of arcs to ensure that each 

cycle in the graph with greater than three nodes has a subcycle made up of three 

of its nodes (i.e. it is chordal). 

 The next step is now to construct the junction tree from the triangulated graph. 

This is done by creating compound nodes from maximal cliques in the graph 

(where a maximal clique refers to a complete subgraph not contained within any 

other subgraph). 

 Separators are added which represent the intersection points of adjacent nodes. 

 New parameters are computed from the nodes in the graph and the separators. 

 

The belief propagation algorithm is then performed on the junction tree and in this manner 

the probabilities are propagated along the graph. 

 

6.4.4 Undirected Graph Model  

The implementation of the probability building blocks that map to undirected graphs is 

very similar to that of the probability building blocks that map to directed graphs (section 

6.4.1). The graph structures are represented as adjacency matrices. mrfCreate is run. 

This function takes in as input the graphical structure (i.e. the adjacency matrix that 

represents the node topology). Other input arguments include numeric matrices that 

represent both node and edge potentials. Also in a similar manner to the directed 

graphical models, the estimation of the parameters was done with the EM algorithm 

(function mrfTrainEm). The same inference algorithms used for the Bayesian Belief 

Network subgraphs were used.  

 

6.4.5 The Complete Embedded Graph 

In this section the second stage of the embedded graph approach is discussed. This 

stage involves bringing together the subgraphs (i.e. the probability building blocks) that we 

have prior to this point constructed within the Bnet/PMTK3 MATLAB toolkits) in way that 
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some of the nodes in the overall embedded graph themselves represent the subgraphs. 

Using the estimated parameters learnt for the subgraphs (i.e. both directed and 

undirected) we construct a directed graph that represents the entire GRiST chain graph. 

The graph that we construct in this second stage is linked to its neighbouring nodes using 

directed edges in the direction of the top risk (including nodes that represent both Markov 

random fields and Bayesian belief networks). This is because the experts from whom the 

knowledge was elicited to develop the GRiST knowledge structure provided information 

that will lead them to believe a person was at risk. As a result of this the modelled 

knowledge structure is an overall causal structure in the direction of the top risk. However, 

within the structure both causal and non-causal relations are contained. This is seen in the 

Bayesian belief networks and Markov random fields probability building blocks 

respectively. For the inference of the full embedded graph, as it is modelled as a directed 

graph the same inference algorithms as for the directed subgraphs (Section 6.4.3) are 

used, following the same processes. The only difference between the full embedded 

graph and the directed subgraphs is that in this stage we obtain the probability distribution 

of the top risk (e.g. suicide) given the evidence (in this case the observed patient data).  

 

 

6.5 Conclusion 

This chapter has involved a discussion of the two approaches used for the construction of 

the GRiST chain graph. The main objective behind the use of the factor graph was so that 

the sum graph algorithm could be used for inference on the GRiST probabilistic model, 

whilst the second approach the embedded graph was to facilitate the learning of the 

parameters of the model from GRiST data. In this section the parameter estimation and 

inference algorithms applied to the model have also been examined. The implementation 

process within the PMTK3/Bnet MATLAB toolkits have also been outlined. In the next 

chapter (i.e. Chapter 7), we discuss the results obtained from the GRiST chain graph 

using the different inference algorithms and analyse the results obtained. We also validate 

the GRiST probabilistic graphical model using correlation analysis and the expert 

judgements. 
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Chapter Seven  

7. Application of the Chain Graph to the GRiST Data and 

Evaluation of Results 

 

In this chapter we discuss the testing of the model on GRiST data and evaluate the 

results. 

 

In this chapter the steps followed to apply the developed model to the GRiST data and 

evaluations of the results are carried out. The discussion in the chapter will be done in the 

same sequence as the actual implementation and can be split into three main areas 1) the 

implementation 2) the analysis of the results and finally 3) the evaluation of the results. 

Throughout this chapter, selections of the component structures are used to analyse the 

data specifically to validate the types of graphical substructures and towards the end of 

the chapter the entire factor graph's predictions are tested against the actual clinical ones. 

For the implementation section the areas to be discussed are: 

 Construction of the GRiST chain graph. 

 Parameter Learning from the GRiST data. 

 The conversion from the GRiST chain graph to a factor graph. 

 The use of the factor graph to run inference algorithms on the model to obtain 

results. 

For the analysis section, the parts to be discussed are: 

 The analysis of nodes within block structures and analysis of nodes between block 

structures. 

 Analysis of the strength of the links between the nodes. Are there any particular 

factors that stand out or appear to be particularly significant? 

For the evaluation section, 

 Comparisons are made between the results obtained from the GRiST probabilistic 

graphical models and the expert risk judgements. 

 Data and correlation analysis are also carried out on the model. 
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7.1 Construction of the GRiST Chain Graph 

This section builds on the earlier discussions on chain graphs (i.e. from Chapters 3 and 

5). To construct the GRiST chain graph from the building blocks that the component 

structures map to, the model was partitioned into chain graph block structures as 

discussed in Chapter 3. In the construction of the GRiST chain graph the conventional 

way of representing the structure of a chain graph was utilised. This representation entails 

partitioning the nodes of the graph into subsets known as blocks, with the explanatory 

nodes in blocks at the right hand and the response nodes on the left and the intermediate 

nodes in the centre (Bouckaert and Studený, 1995). For the GRiST model this partitioning 

corresponds to the probability building blocks and in this section the block structures and 

the construction process are examined. The GRiST chain graph blocks are listed below: 

1. Suicide specific nodes. 

2. Insight and responsibility. 

3. Self neglect appearance. 

4. General impaired cognitive function. 

5. General depression. 

6. General medical therapy. 

7. General presentation. 

8. General feelings and emotions. 

9. General self worth. 

10. General personality. 

11. General engagement with world. 

12. General serious mental illness. 

13. General physical health problems. 

14. Adverse life events. 

15. General demographics. 

16. General social context. 

17. General current behaviour. 

18. General substance misuse. 

The nodes within a chain graph block structure are linked together via undirected edges 

and as such these block structures correspond directly to the Markov random field 

probability building blocks that some of the GRiST component structures map to. The 

block structures are then linked together via any nodes within them that are connected. 

However, whilst the links within blocks are undirected, the links between blocks are 

directed. In the list of the GRiST chain graph blocks listed above not all of these blocks 
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are ‘conventional’ chain graph block structures. ‘Conventional’ in the sense that not all of 

them map to Markov random fields but for the construction of the GRiST chain graph 

given its peculiarities it was found to be convenient to model the blocks in this manner. 

However, for clarities sake, the following blocks are the ones that model conventional 

chain graph blocks: 

 Insight and responsibility (block 2). 

 Self neglect appearance (block 3). 

 General impaired cognitive function (block 4). 

 General depression (block 5). 

 General medical therapy (block 6). 

 

And the non conventional chain graph blocks are: 

 General suicide specific nodes (block 1). 

 General presentation (block 7). 

 Feelings and emotions (block 8). 

 Self worth (block 9). 

 Personality (block 10). 

 Engagement with world (block 11). 

 Serious mental illness (block 12). 

 Physical health problems (block 13). 

 Adverse life events (block 14). 

 General demographics (block 15). 

 General social context (block 16). 

 Current behaviour (block 17). 

 General substance misuse (block 18). 

These are termed non conventional because they do not map to Markov random fields as 

they include directed edges, other studies have done extensions to the conventional chain 

graph model (see Zhang et al, 2011). However, in the GRiST case it is purely a design 

choice and does not have any effect on the structure and processing of the graph. This is 

because when it comes to the actual processing of the data, the GRiST block structures 

that correspond to ‘conventional’ chain block structures are treated as chain block 

structures and the ones that do not are  not treated as composite chain graph structures 

but rather like different distinct chain block structures containing single nodes. Each chain 
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graph block structure represents a model in its own right whose values are only 

dependent on the prior and concurrent nodes. The prior nodes in this context refer to 

nodes in earlier blocks whilst concurrent nodes refer to nodes within the same block. As a 

direct result of this a lot can be discovered from analysing each block individually and not 

just within the context of the overall chain graph. The decision to model each of the 

building blocks individually, helped to reduce some of the complexity inherent in the 

process, as the converting of the GRiST knowledge structure with its 279 unique nodes 

into a probabilistic graphical model is not a trivial one. This also aided in the issue of 

reducing the processing and computational power required for parameter learning and the 

overall processing of the model. Hence in this section analysis is carried out for some of 

the blocks that make up the GRiST chain graph. 

 

We will now consider a representative sample of the different types of block structures. 

The first block listed and to be considered is the general suicide specific nodes. This does 

not fall under the category of the conventional chain graph block structure but for clarity 

we have used the concept of a block to group these nodes together. The nodes contained 

within this block are non generic GRiST nodes, this is the only block that falls under this 

category. The remaining 17 blocks are either conventional representations of a chain 

graph block (i.e. Markov random fields) or are GRiST component structures that map to 

directed graphs. The nodes in the general suicide specific nodes block are linked together 

via different GRiST relationship types and have an overall causal influence in the direction 

of the top risk node (suicide). The nodes within this category include suicide past attempt, 

suicide plans, suicide ideation, suicide end of life preparations and so on. It comprises of 

both observed (i.e. the datum nodes) and unobserved nodes. Figure 7.1 gives a more 

detail view of the nodes in this block. 

 

The second GRiST chain graph block is the insight and responsibility block. This block is 

a fixed generic component structure made up of four nodes. From the mapping rules 

developed in Chapter 5 the probability building block that this maps to is a Markov random 

field. Figure 7.2 depicts the Markov random field that this block maps to. The three cliques 

it contains are also highlighted in the figure. In this block, the observed variables are the 
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Figure 7.1: Nodes in the first block of the GRiST chain graph block general suicide 

specific nodes (g  denotes ‘FG’ component and unlabelled nodes non-generic 

components). 

 

insight into behaviour and consequences, responsibility for impact of behaviour on others 

and the need for help with difficulties variables whilst the insight and responsibility concept 

node is unobserved. For each of the three cliques in this model the link between each set 

of variables in each clique is parameterised via the use of potential functions. And from 

the definition of the joint probability distribution of the random variables of a Markov 

random field we see that multiplying together the potential functions of all the cliques gives 

the probability of obtaining a node in a particular setting. These parameters were learned 

from the GRiST data using the EM algorithm as described in Chapter 6. 
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Figure 7.2: The GRiST second chain graph block (a MRF). It has 3 cliques: A) insight and 

responsibility and insight into behaviour and consequences; B) insight and responsibility 

and responsibility for impact of behaviour on others and; C) insight and responsibility and 

need for help with difficulties. 

 

The third GRiST chain graph block is the self neglect appearance and this block 

measures and contributes to the model the impact that an appearance of self neglect 

contributes to the likelihood of a suicide attempt. Compared to some of the other building 

blocks such as general depression (block 5), the self neglect appearance is a simple one 

containing a total of 5 variables. The self neglect appearance has 4 cliques and potential 

functions over these cliques.  Figure 7.3 depicts this chain graph block. 

 

 

Figure 7.3: GRiST chain graph block 3 – self neglect appearance. 
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The fourth GRiST chain graph block is general impaired cognitive function again like the 

other blocks discussed so far (with the exception of block 1), this is a conventional chain 

graph block that maps to a Markov random field. It contains a total of three nodes, two of 

which are observed and one that is unobserved. The fifth building block depression is 

arguably the most interesting and complex of all the GRiST chain graph building blocks. It 

is made up of 69 nodes, 47 of which are observed and 22 unobserved. Figure 7.4 is a 

network diagram of depression; it does not show clearly the nodes and their interactions 

but rather gives a feel for the complexity of the block.  

 

Figure 7.4: Network diagram of the depression chain graph block (5). 

 

Figure 7.5 on the other hand depicts clearly the GRiST fixed component structure 

depression and its internal nodes. 
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Figure 7.5: The depression fixed generic component structure and its internal nodes. 

 

Some of the key features of the mapping rules (Chapter 5) are demonstrated in the 

depression block structure. For instance even though depression is itself a high level fixed 

generic structure it has as internal nodes other generic structures (i.e. both fixed generic 

and generic distinct structures). Some examples of this can be seen in Figure 7.5, gen-

currnt-bhvr (general current behaviour) is a generic distinct component structure 

contained within the fixed generic depression structure. However, as a result of the 

mapping rule that states that for all structures within a high level fixed generic node, the 

root concept node of the high fixed generic node becomes the relevant context for all its 

internal nodes the default behaviour of the gen-currnt-bhvr is overridden by that of 
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depression and the entire high level fixed generic structure maps to a Markov random 

field. Within the depression block, interesting semantic issues are also encountered, for 

example for the internal fixed generic node gen-hopeless (hopelessness) and its internal 

nodes (gen-life-not-worth-living and gen-plans-for-future) contained within depression (see 

Figure 7.5). Is it the case that hopelessness causes depression or does depression bring 

about feelings of hopelessness? Markov random fields are precisely good at modelling 

representations like this where there is a clear association but the direction of causality is 

not known or does not necessarily exist. Examining the various internal nodes of 

depression it can be seen that there are clear associations but they are not necessarily 

causal or for some links even if they might be causal, the direction of causality is not 

obvious.  However, what is certain is that the overall contribution from depression and its 

internal nodes act in a direction to influence suicide attempts i.e. for instance, a person 

with a seriously high level of depression is more likely to attempt suicide than someone 

who is slightly or not depressed at all. This again illustrates another one of the mapping 

rules (specifically the external links of a high level FG component structure map to a 

directed graph). This kind of modelling is precisely what chain graphs make possible and 

again serve as a further justification for our choice of probabilistic graphical model. 

 

The next GRiST chain building block and the last of the conventional ones is the General 

medical therapy (block 6) one. This block structure measures the influence of the patient’s 

concordance with health services/medication/therapies and has four observed nodes, the 

gen-meds-concord (concordance), gen-serv-perc-supp (person's perception of the 

supportiveness of service received), gen-serv-last-acc (time since person accessed 

services) and the gen-med-perc-benft (perceived benefit of medication/therapies). In a 

similar manner to early block structures discussed this maps to a Markov random field 

with four cliques. 

 

The next set of block structures to be discussed are the unconventional ones that map to 

directed graphs. In practice these link to the conventional building blocks and other nodes 

via their root concept node. The first of these is block 7, which represents the general 

presentation generic distinct component structure. The block structure comprises of 18 

nodes and its structure is depicted in Figure 7.6 below. 
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Figure 7.6: Network diagram for the general presentation structure. 

 

The nodes in figure 7.6 are numbered in topological order going from the outermost datum 

node gen-risk-upbeat to the root concept node gen-presentation. This ordering means that 

with the nodes numbered 1, 2, 3 and so on, for every edges with (i,j), i < j holds. Table 7.1 

lists the corresponding code names and descriptive labels for all the nodes in Figure 7.6. 

Table 7.1: Numbers, nodes and descriptions for Figure 7.6 

Node Number Node Code Description 

19 Gen-risk-upbeat how upbeat or downbeat/depressed 

18 Gen-risk-aggrsv degree of aggression/hostility 

17 Gen-risk-tone Tone 

16 Gen-coherence degree to which the person is making 

sense 

15 Gen-risk-verbal verbal indicators of risk 

14 Gen-gut-assment assessor's uneasiness about the person 

13 Gen-responsve person's responsiveness 

12 Gen-rapport rapport/empathy 

11 Gen-engagement person's engagement with assessor 

10 Gen-eye-movement eye movement 

9 Gen-avoid-eye-contact avoid eye contact 
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8 Gen-eyes Eyes 

7 Gen-detached preoccupied/detached demeanour 

6 Gen-threat-move aggressive/threatening movements, 

posture, or expression 

5 Gen-low-mood movements, posture, facial expression 

indicating low mood 

4 Gen-distrss-b-lang body language indicating distress 

3 Gen-body-face body language and expression 

2 Gen-congruence congruence of physical, verbal, and 

emotional presentation 

1 Gen-presentation person's behavioural presentation during 

assessment 

 

The block diagrams that map to directed graphs are different from those that map to 

Markov random fields primarily as a result of the differences in the representations of 

conditional independencies for both graphs. It is easier to read off the conditional 

independencies encapsulated in a Markov random field than it is for a directed graph. For 

a Markov random field as seen in Chapter 3, a variable is conditionally independent of 

another variable given all its neighbouring nodes. However, for directed graphs the 

concept of d-separation is used to determine the conditional independencies (see Chapter 

3). For the GRiST chain graph block components that map to directed graphs the direction 

of causality is clear, always going from cause to effect hierarchically up the structure in the 

direction of the top risk (e.g. suicide). The other blocks such as the feelings and emotions, 

self worth, personality, serious mental illness and so on, are clearly components that 

influence suicide risk. In the analysis section the results obtained are analysed to measure 

the effect of these different factors on the suicide risk assessments obtained from the 

model. 

In the next section the parameter learning process is discussed. The technical details will 

be omitted as these were covered in Chapter 6. 

 

7.2 Parameter Learning 

In this chapter we carry out analysis of independent correlations and on the overall graph 

versus the expert judgements. For the learning process the results obtained (i.e. the 

parameters learned), represent the conditional probability distribution of the relevant node, 
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whilst from the factor graph inference the result obtained is the marginal probability of the 

suicide risk. This marginal probability is then compared with the expert judgements and 

this acts as a test of how well the factor graph correlates with the expert judgements.  

The learning of parameters was carried out as discussed in Chapter 6 using the EM 

algorithm and in this section we illustrate the process and results from the process by 

focusing on some subsections of the GRiST chain graph. Parameter learning is extremely 

important because without knowing the values of these parameters, inference cannot be 

carried out on the overall model and this in turn means that the model will not be able to 

make risk assessments.  

Two examples component structures will now be discussed for illustrative purposes. The 

examples to be considered are the general personality (block 10) component structure 

(discussed in this section and on page 171) and the self worth (block 9) component 

structure (discussed on page 166). This initial analysis of the parameter learning of the 

contribution of single standalone components was done to explore the strength of the 

contribution that a single component structure will have on the top risk independently from 

the other component structures. In fact, any of the component structures could have been 

chosen for this analysis. Later on in the chapter (page 179) we consider the full graphical 

structure (with the contributions from all the component structures).    The general 

personality structure is made up of nine nodes, eight of which are observed. It is a generic 

distinct GRiST component structure and has the causal relation contributes_to linking its 

nodes together. Figure 7.7 depicts the adjacency matrix used to represent the model in 

the pmtk3 and bnet toolkits for MATLAB. 

The parameter learning process involved using the 9417 GRiST data cases in the EM 

algorithm. The data were split into two sets, 2000 cases were used as the test data and 

the remaining 7417 were used for training. The algorithm ran over a few iterations until the 

parameters converged into a final set of values which represent the best fit. The pre set 

maximum number of iterations that were set was ten. However, for this block structure the 

parameters converged into the final set of values after three iterations of the algorithm.  

In the learning process all datum nodes were treated as observed nodes (i.e. nodes 

whose values are known) and the concept nodes as unobserved nodes (i.e. nodes whose 

values are not directly observed). In this particular example there is one unobserved node 

i.e. the component structure’s root node gen-personality and eight observed nodes 

(namely gen-assertive, gen-empathy-abil,  gen-dependence, gen-controlling, gen-coping-

abil, gen-hostile, gen-impulse and finally gen-reliable). 
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Figure 7.7: Figure depicting the gen-personality GD component structure. In the graph 

node 1 represents gen-personality, 2  gen-assertive, 3  gen-empathy-abil, 4 gen-

dependence, 5 gen-controlling, 6 gen-coping-abil, 7 gen-hostile, 8 gen-impulse and finally 

9 gen-reliable. 

The parameters learned from the data were as expected directly correlated to the number 

of occurrences of the different values in the dataset.  

On completion of the parameter learning process for the different chain graph block 

structures the next step in the process was the conversion to a factor graph to facilitate 

the use of the factor graph sum product algorithm. A similar process to the above for gen-

personality was carried out to learn the parameters using the EM algorithm for all the 

block structures. As mentioned in Chapter 6, the EM algorithm was used for parameter 

learning for both directed and undirected graphs.  

 

7.2.1 Parameter Learning Results and Analysis 

In this section some of the results obtained from the parameter learning are analysed and 

discussed. We start by examining the parameters learned from the data for the ninth 

building block of GRiST chain graph i.e. person's perspective of self worth (gen-self-worth-

p) block.  
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7.2.1.1 Self Worth 

This structure is made up of three nodes (two observed nodes and an unobserved root 

node). For the purposes of this discussion, the observed nodes grandiosity and 

worthlessness are assigned numbers 2 and 3 respectively, whilst the unobserved root 

concept general self worth is assigned the number 1. Each of these nodes can have ten 

possible states and so the process of parameter learning return results for each of the 

possible states. On completion of the learning process the following results were obtained 

for the probability distributions of nodes 2 and 3. 

 

Table 7.2:  Parameters learned from data for GRiST chain block structure general self 

worth 

                                               Possible states for Node 1 

Possible State Node 3 (Worthlessness) Node 2 (Grandiosity) 

1 0.0758 0.9566 

2 0.0489 0.0183 

3 0.0679 0.0086 

4 0.0585 0.0047 

5 0.3152 0.0047 

6 0.1943 0.0024 

7 0.0237 0.0029 

8 0.2014 0.0014 

9 0.0071 0.0003 

10 0.0072 0.0002 

 

Plotting the distributions for worthlessness and grandiosity, against their possible states 

give Figures 7.8 and 7.9 respectively. 

 

From Figure 7.8 it can be seen that the states with the highest probabilities of occurring 

are the middle range states (i.e. between 4 and 7), followed by the slightly higher state 8, 

the lower states between 1, 4 and 7 are less likely to occur and the highest states 9 and 

10 are the very least likely to occur. 
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Figure 7.8: Probability distribution of node 3 (worthlessness). 

 

On the other hand the probability distribution for grandiosity is very different from its 

sibling node worthlessness. From Figure 7.9, it can be seen that for the probability 

distribution of grandiosity, the highest probability distributions map to the very lowest 

states whilst the middle range to the highest states have very low probability distribution 

values mapped to them. Figures 7.8 and 7.9 help to identify the values of the nodes that 

give the highest and lowest contribution to the overall sense of self worth of the patient. 

 

For node 1 (self worth) 

For the unobserved node 1, the conditional probability distribution obtained consists of all 

the possible probability distributions of node 1, given all the possible values of nodes 2 

and 3. This means that for the ten possible states of each of nodes 2 and 3, a row of 

possible values is obtained for node 1. A snapshot of these results are displayed in a 

compact form in Table 7.3. In Table 7.3, the values to the left of the colon represent the 

values of nodes 3 and 2 respectively, whist the values to the right of the colon represent 

the values learned from data for node 1. 
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Figure 7.9: Probability distribution of node 2 (grandiosity). 

 

Table 7.3: Subset of conditional probability distribution of self worth 

 

 

 

 

 

 

 

 

 

 

1 1 : 0.8358 0.0095 0.0161 0.0343 0.0375 0.0173 0.0205 0.0189 0.0088 0.0014  

2 1 : 0.0880 0.0017 0.0802 0.1585 0.2028 0.1941 0.2224 0.0441 0.0081 0.0000  

9 1 : 0.0000 0.0000 0.0000 0.5567 0.0000 0.0000 0.0000 0.0000 0.4433 0.0000  

10 1 : 0.3582 0.0000 0.0000 0.6418 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000  

1 2 : 0.7689 0.0152 0.0168 0.0446 0.0475 0.0450 0.0401 0.0035 0.0154 0.0031  

2 2 : 0.1199 0.0914 0.0147 0.0231 0.0928 0.0490 0.3839 0.1463 0.0790 0.0000  

8 2 : 0.5150 0.0000 0.1670 0.0000 0.0731 0.0000 0.0137 0.2313 0.0000 0.0000  

9 2 : 0.0000 0.0000 0.0000 0.2929 0.0000 0.0000 0.0000 0.0000 0.7071 0.0000  

10 2 : 0.4228 0.0000 0.0000 0.5772 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000  

1 3 : 0.7556 0.0049 0.0106 0.0419 0.0261 0.0155 0.0890 0.0226 0.0324 0.0014  

6 3 : 0.1126 0.0560 0.1603 0.0342 0.0000 0.5316 0.0710 0.0343 0.0000 0.0000  

. . . 
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7.2.2 Probabilistic Contributions 

Using the bnet toolbox inference engine, the probabilistic contributions to the final value of 

the top risk for the different block structures were obtained. This probabilistic contribution 

represents the probability distribution of the variable of interest averaging over the other 

nodes in the block structure and was computed to facilitate the probability of particular 

nodes given certain evidence. Using the inference engine, the contribution of the root 

node gen-self-worth of the GRiST chain graph ninth block structure was obtained. The 

process of marginalisation involves the addition of specified evidence into the network. 

Here the split data cases comes into play where the first 2000 cases designated the test 

cases are passed as the required evidence for marginalisation and the remaining 7417 

cases are used for the initial training of the structures parameters. In Figure 7.10 the 

probabilistic contribution of the gen-self-worth is plotted against the corresponding experts 

risk judgements for suicide. This serves to give a feel for the relationship between general 

self worth and suicide risk. In a similar manner the contributions obtained from other 

blocks are compared to the expert risk judgement. This aids in the identification of 

relationships and strength of relationships between the various nodes and suicide risk. 

However, the acid test still remains the comparison that will be done later between the 

marginal probability distribution obtained for suicide risk using the GRiST factor graph 

inference algorithm and the experts risk judgements. Figure 7.10 is a plot of general self 

worth’s probabilistic contribution against the domain experts’ judgements (using the first 

2000 cases).  

In the plot of the contribution of gen-self-worth vs expert judgements in Figure 7.10 (which 

only considers this subgraph) although a slight trend can be seen, it is very slight. 

However, this is not totally unexpected for two main reasons: 

 The first is that only a very small subsection of contributing factors of the entire 

GRiST knowledge structure to suicide risk has been taken into account and  

 Secondly the vast majority of the training data (7417 of 9417) was used for the 

training of the model parameters, whilst the remaining 2000 cases (i.e. the test 

data) were introduced as evidence during the marginalisation process (compare 

this with Figure 7.11, where 7417 cases were entered as evidence). In Figure 7.11 

where more data cases are used, the shape depicting the relationship between the 

set of values becomes more distinct than in Figure 7.10 (where 2000 cases was 

used as evidence) but this does not necessarily imply better results due to the 

presence of outliers in Figure 7.11. 
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Figure 7.10: Contributions of gen-self-worth vs expert judgements taken from GRiST 

(evidence = 2000 data cases). 

 

Figure 7.11: Contribution of gen-self-worth vs expert judgements (evidence = 7419 data 

cases). 
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The expected result was that the more factors (i.e. variables and block structures) are 

taken into account doing the inference process, the closer the final value will be to the 

experts’ judgements, to assess this we continue with the analysis of the subgraphs and 

their contributions.  

 

7.2.2.1 General Personality 

Next another example of the parameter learning results for a GRiST chain graph block 

structure (the tenth) is considered. This is the gen-personality block structure and is made 

up of nine nodes. Earlier on in the chapter it was seen that for the gen-personality block 

structure the best fit was obtained after three iterations. This node holds one of five 

possible states (i.e. states 1 to 5).  

The conditional probability distributions obtained from the parameter learning for the 

observed nodes of the gen-personality block structure are as follows: 

 

Node 9: gen-assertive, Node 8: gen-empathy-abil, Node 7: gen-dependence, Node 6: 

gen-cotrolling, Node 5: gen-coping-abil, Node 4: gen-hostile, Node 3: gen-impulse, Node 

2: gen-reliable and Node 1: gen-personality 

 

Table 7.4: Learned parameters for gen-probability block structure observed nodes 

States Node 9 Node 8 Node 7 Node 6 Node 5 Node 4 Node 3 Node 2 

1 0.3118  0.8680 0.7643 0.8797 0.7172 0.9339 0.7917 0.8350 

2 0.2261 0.0560 0.0808 0.0680 0.0537 0.0000 0.0716 0.0693 

3 0.2556 0.0411 0.0760 0.0327 0.1014 0.0532 0.0735 0.0513 

4 0.1156 0.0295 0.0640 0.0154 0.1073 0.0000 0.0502 0.0346 

5 0.0910 0.0054 0.0149 0.0042 0.0204 0.0128 0.0131 0.0098 

 

The probability distribution graphs of these nodes 2 to 9 are depicted in Figure 7.12 
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Figure 7.12: Probability distribution of the 8 observed nodes of the gen-personality 

structure, with the probability distributions depicted along the y-axis and their possible 

states along the x-axis (going from top left to right, for nodes 9 all the way down to node 

2). 

Examining the probability distributions of the eight observed nodes, the similarities that 

exist in the probability distribution of all the nodes with the exception of node 9 (gen-

assertive) can be seen, this depicts the fact that extreme values are less likely.  In the 

seven similar distributions, the probability distribution values are at their peak with the 

lowest state value and then decrease and remain relatively low into the mid and high 

ranges. 

The probability distribution for the root concept gen-personality (node 1) is a complex one, 

as it contains values for every possible state and combination of states of the observed 

nodes (390,562 rows in total). However, an interesting fact from the parameters learned 

for the root node is that for its probability distribution, the highest probability values are 

seen when nodes 2 to 8 are in their lowest ranges and for these values node 9 does not 

yield much influence in comparison to the collective influence of its ‘united’ sibling nodes. 

In addition to this it was also observed that unlike the earlier block discussed (i.e. person’s 

perspective of self worth) the gen-personality returned a large number of values with 

probability values of zero.  

This phenomenon can be explained by examining the probability distribution of the 

observed nodes for the person’s perspective of self worth; the probability distribution of its 
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observed nodes are fairly spread out (see Figures 7.8 and 7.9), whilst for the gen-

personality structure this is not the case (see Figure 7.12). The effect this has is that in the 

areas such as states 1 where the probability distribution is high, there is a correspondingly 

high probability distribution in the root node but in the other states where the values are 

low and tending to zero; this has a corresponding effect on the root concept node gen-

personality (node 1). Some examples of this can be seen in Table 7.5. In Table 7.5, the 

values to the left of the colon represent the values of nodes 9, 8, 7, 6, 5, 4, 3 and 2 

respectively, whilst the values to the right of the colon represent the values learned from 

data for node 1. 

 

Table 7.5: Snapshot of learned conditional probability distribution for the gen-personality 

variable. The first eight values before the colon, represent the possible states of its 

internal nodes and the five values after the colon its conditional probability distribution.   

 

1 1 1 1 1 1 1 1 : 0.9991 0.0009 0.0000 0.0000 0.0000  

2 1 1 1 1 1 1 1 : 0.8745 0.0000 0.0000 0.0000 0.1255  

3 1 1 1 1 1 1 1 : 0.6136 0.3864 0.0000 0.0000 0.0000  

4 1 1 1 1 1 1 1 : 0.0000 1.0000 0.0000 0.0000 0.0000  

5 1 1 1 1 1 1 1 : 1.0000 0.0000 0.0000 0.0000 0.0000  

1 2 1 1 1 1 1 1 : 0.5501 0.2319 0.0000 0.0000 0.2179  

2 3 1 1 1 1 1 1 : 0.9139 0.0000 0.0000 0.0000 0.0861  

1 4 1 1 1 1 1 1 : 0.2740 0.5880 0.0000 0.0000 0.1380 

2 4 1 1 1 1 1 1 : 0.0000 0.0000 0.0000 0.0000 0.0000  

2 5 1 1 1 1 1 1 : 0.0000 0.0000 0.0000 0.0000 0.0000  

3 5 1 1 1 1 1 1 : 0.9358 0.0642 0.0000 0.0000 0.0000  

4 5 1 1 1 1 1 1 : 0.0000 0.0000 0.0000 0.0000 0.0000  

5 5 1 1 1 1 1 1 : 0.0000 0.0000 0.0000 0.0000 0.0000  

. . . 

 

The parameters for all the block structures are obtained in a similar manner to the above. 
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7.2.3 Conversion to Factor Graph 

Having obtained the parameters for the various chain graph blocks, the next step in the 

process is the conversion from the chain graph to the factor graph. The rationale behind 

this conversion is to make it possible for the effective sum product algorithm to be used on 

the factor graph for the risk assessments. This algorithm cannot be used on chain graphs. 

For the actual conversion two methods were considered, firstly the process outlined in 

Chapter 6 to convert from the hybrid of the probability building blocks (essentially the 

chain graph) or alternatively both of the toolboxes that were used for the portion of the 

developments done using MATLAB (i.e. bnet and pmtk3). Both have functions that 

facilitate the conversion from directed graphs and Markov random fields to factor graphs. 

In the pmtk3 toolbox the functions are: 

 fg = dgmToFactorGraph(dgm) and fg = mrfToFactorGraph(mrf) respectively. 

For the bnet toolbox the function to convert from Bayesian network to factor graph is  

fg = bnet_to_fgraph(bnet)  

The conversion from directed graph to factor graph via the toolbox functions follows a 

similar pattern to that of Chapter 6, it is briefly outlined here for completeness. For the 

bnet toolbox, the bnet_to_fgraph takes in as input the Bayesian network to be converted 

into a factor graph and from the Bayesian networks converts to the required factor graph. 

The pmtk3 toolbox directed graphical model to factor graph dgmToFactorGraph also 

operates in a similar manner. It takes as input the directed graph, converts it into a Markov 

random field and then converts the Markov random field into a factor graph with its 

constituent nodes and factors. The mapping rules and the process leading to the 

generating of the right format of input graphs have been discussed in the preceding 

chapters. What this means is that the MATLAB toolkits are not making any design 

decisions but processing as instructed to via the written scripts. 

Having learned the GRiST chain graph parameters from the data and converted the chain 

graph into its corresponding factor graph representation, inference was carried out on the 

factor graph to produce marginal probability distributions that are used as the basis for 

comparison with the expert judgements for the evaluation of the model. The next section 

considers the analysis of the results. 
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7.2.4 Analysis of Results 

The next step in the process was now the computing of the probabilistic contributions to 

the overall top risk. These contributions are what represent the risk prediction and to 

evaluate the results, they will be compared with the expert risk judgements. In this section 

the analysis of the results are done via comparisons of the contributions of individual 

subgraphs against the expert judgement values. We start off by comparing the 

contributions of some of the subgraphs to the expert judgements and then build up to the 

comparison of the factor graph marginal probability distribution for suicide with the expert 

judgements. 

 

7.2.4.1 General impaired cognitive function (gen-impaird-cog) Chain Graph Block 

Structure 

The contribution of this block was compared and plotted against the expert judgements, 

the results (Figure 7.13) show some correlation but not as defined as that of gen-self-

worth (in Figure 7.11). 

 

Figure 7.13: Contribution of gen-impaird-cog  vs expert judgements. 
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Some other statistics were obtained to aid the comparisons of the marginal probability 

distribution of this block via the experts judgements. These include: 

The correlation coefficient which helps to establish the presence or absence of statistically 

significant correlations between sets of data. On applying it to the gen-impaired-cog data 

and the experts judgement the following results were obtained. 

 

The correlations R returned: 

R = 

    1.0000    0.0274 

    0.0274    1.0000 

Whilst the p-value P returned was: 

P = 

    1.0000    0.0071 

    0.0071    1.0000 

From the values above the correlation between the gen-impaired-cog block structure and 

the expert judgements is not zero. However, the correlation is very small but then this is 

as expected as these values were obtained by considering a small section of the entire 

GRiST structure. 

 

7.2.4.2 General Engagement with World (gen-eng-world) Chain Graph Block 

Structure 

In a similar manner to the gen-impaired-cog block structure above, the contribution of the 

gen-eng-world block structure was compared against the expert judgements. Figure 7.14 

depicts the plot of the two sets of data.  
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Figure 7.14: Contribution of gen-eng-world vs expert judgements (evidence = 100 data 

cases). 

 

It can immediately be seen that like in the other plots obtained so far of block structure 

contributions against the expert judgements the greatest amount of correlation is for 

contributions under 0.25, the concentration of overlap in this range spread across the 

expert judgements (between the expert judgement values of 0 to 9) is more concentrated 

than in previous graphs seen. However it also has the more scattered data outside this 

region than the other graphs examined so far. This means that for the gen-eng-world 

distribution the probability of obtaining the different expert judgement values is not widely 

different. The correlation coefficient was also obtained for these sets of data to confirm 

whether or not a significant correlation exists between them. 
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The correlation R was 

R = 

    1.0000    0.0318 

    0.0318    1.0000 

And the p-value P: 

   1.0000    0.0000 

    0.0000    1.0000 

 

Again like in the case of the gen-impaird-cog the results imply that there is correlation 

between the two sets but this correlation is significant at a very low value. 

 

7.2.4.3 Insight Responsibility (insight-resp) Chain Graph Block Structure 

Figure 7.15, depicts the plot of insight-resp’s contribution against the expert judgements. 

Again even though this graph is different in its own right from the other graphs, it can be 

seen that all the graphs share a generally similar form.  

 

From the similar form that the different contributions vs the expert judgements share and 

based on the statistical significance established for them, none of the subgraphs on its 

own has had a high correlation to the expert judgements when considering its individual 

contribution. This is not unexpected as each subgraph on its own represents a very small 

part of the overall GRiST structure. Next we consider the the entire GRiST chain graph 

and its correlation to the expert judgements.  
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Figure 7.15: Contribution of insight-responsibility  vs expert judgements.  

 

7.3 GRiST Factor Graph Results Comparison with Expert Judgements 

In a similar manner to the processes for the subgraphs discussed in the preceding 

sections, when the sum-product algorithm is applied to the GRiST factor graph, it results 

in the values of the probability distribution of the top risk (i.e. suicide) being obtained. To 

measure the correlation between the results of the factor graph and the expert 

judgements as was done for the subgraphs, the two sets of data were compared. The 

probability distribution of the suicide node was also converted into discrete integers. 

Analyses of these two datasets showed correlation between the two sets and they were 

then plotted against each other (see Figure 7.16).  
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Figure 7.16:  Factor graph suicide vs expert judgements.  

 

From Figure 7.16 we can see some indication of a trend for correlation between the 

suicide marginal probability distribution and the expert judgements for values 0 and 2 to 9. 

However, due to unknown reasons no correlation is present for value 1. As mentioned 

previously in the chapter the more subgraphs were added the better the correlation 

obtained and this was also seen to be the case when contrasted with inference on a 

model of GRiST with a fully directed representation (as against the more accurate chain 

graph representation containing both directed and undirected edges). In the next section 

we discuss some further results obtained from the implemented GRiST probabilistic 

graphical model. 

 

7.4 GRiST Factor Graph Further Analysis of Results 

In addition to the previously discussed tests, the GRiST factor graph was also applied to 

an additional 22,845 GRiST data cases. The results obtained from this are discussed in 

this section. 
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After running the sum-product algorithm a series of results were obtained giving the 

marginal probability distributions of the variables. The final suicide marginal distribution 

was then produced and compared with the weighted average obtained from the expert 

judgements. The weighted averages were obtained using the following equation: 

                                         
                              

                       
. 

The results obtained using the above equation are shown in table 7.6. 

 

Table 7.6: GRiST expert judgements weighted averages 

Expert Judgement Values Weighted Averages 

0 0.089343 

1 0.201937 

2 0.247255 

3 0.204090 

4 0.093218 

5 0.073842 

6 0.033261 

7 0.027771 

8 0.019590 

9 0.007319 

10 0.002368 

 

 

7.4.1 Analysis of Patient Level Data Results 

To establish how the ratings are linked to specific patients, the factor graph algorithm was 

run on patient level data. This process and the results obtained are discussed below. 

The different possible results that can be obtained from the algorithms and the expert 

judgements were grouped into the following categories: 

 Low – This refers to resultant values of 1, 2, or 3 (in the case of expert 

judgements, this will refer to patient cases that the experts have categorised as 

having suicide risks of 1, 2, 3). 
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 Medium – in a similar fashion to low, these refer to all those with values 4, 5 or 6. 

 High – finally these refer to all those with values 7, 8, 9 or 10. 

 

The results obtained are summarised below and followed by a discussion of the results: 

 

Table 7.7: Expert judgements weighted averages based on categories 

Category Weighted Average Percentage (of Low, 

Medium & High) 

Low 0.7172446 71.7% 

Medium 0.220026039 22.0% 

High 0.0627293171 6.3% 

 

Table 7.7 gives the GRiST expert judgements weighted averages based on the grouped 

categories (i.e. low, medium and high) whereas table 7.6 gave the weighted average 

based on the possible risk levels ranging from 0 to 10. 

 

Table 7.8: Factor graph results based on categories 

LOW Non-Normalised Normalised 

Low 0.154839 0.53063763 

Medium 0.107753 0.3692726 

High 0.029206 0.1000898 

   

MEDIUM   

Low 0.249445 0.20511225 

Medium 0.706861 0.58123372 

High 0.259833 0.21365403 

   

HIGH   

Low 0.177838 0.08256439 

Medium 0.435318 0.20210397 

High 1.540775 0.71533164 
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Table 7.8 gives the results obtained for the three different categories using the GRiST 

probabilistic graphical model. In tables 7.9 and 7.10, the results depicted in tables 7.8 are 

then compared with the GRiST expert judgements.  

 

Table 7.9: Patient level comparisons: 

Category Expert Risk 

Judgements 

FG Results – this 

refers to the % of 

the FG results that 

tally with the expert 

judgements per 

category 

FG Results Breakdown by 

Category – this looks at the % of 

the FG in light of all categories 

(low, medium and high) and is 

thus directly comparable to the 

expert judgements  

Low 71.7% 53% of Low 38%(low); 26.5%(medium); 

6.6%(high) 

Medium 22.0% 58% of Medium 4.5%(low); 12.8%(medium); 

4.7%(high) 

High 6.3% 71.5% of High 0.52%(low); 1.3%(medium); 

4.5%(high) 

 

This information can also be seen in the confusion matrix (Kohavi and Provost, 1998) 

depicted in table 7.10. 

 

7.4.2 Discussion 

From table 7.9 above, we see that 71.7% of the total patient cases (for values 1 to 10) 

were categorised as low risks by the experts. Of these 71.7%, 58% were also categorised 

as being low risk by the factor graph algorithm. This translates to 38% of the dataset (over 

categories low, medium and high). It is also both interesting and important to note in the 

FG categorisation the bulk of the remaining cases that were not categorised to low (but 

which were categorised to low by the expert judgements) were categorised to the closest 

category to low i.e. medium (26.5% of the whole dataset) and not to high (which had just 

6.6% categorised to it of the cases that had been categorised to low by via expert 

judgements). 
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Examining the medium category in a similar manner to the low category. It can be seen 

that of the 22% of the entire cases that were categorised to medium via expert 

judgements, 58% of this 22% were also categorised to medium via the FG algorithm (this 

translates to an equivalent of 12.8% of the full dataset covering low, medium and high). 

Examining the spread of the remaining cases that were assigned to medium via expert 

judgements we see from the table above that 4.5% were assigned to low and 4.7% 

assigned to high which is almost an even spread in both directions, as the medium 

category sits in between these two categories and one is not necessary closer to it than 

the other this observation does not seem illogical. 

 

Finally when we consider the high category, it can be seen that of the 6.3% of the entire 

dataset that were assigned to high via expert judgements 71.5% of these were also 

assigned to high via the factor graph. This is a significantly high percentage and again 

when compared to the entire dataset translates to 4.5% of the entire dataset over low, 

medium and high being categorised to high.  From the table we see that 0.52%  of these 

cases were assigned to low and 1.3% to medium, again like in the case of the low 

category, the larger proportion not assigned to the same category as the expert 

judgements was assigned to the category closest to the expert judgement (in the case the 

closest category being the medium category).   

 

The above findings can be summarised as follows 

 Expert judgements assigned 6.3% of the cases to high, of these 6.3%, the FG 

method categorised 4.5% to high too, 1.3% to medium and 0.52% to low. 

 Expert judgements categorised 22% to medium, of these 22%, the factor graph 

technique assigned 12.8% to medium too, and the 4.5% to low and 4.7% to high. 

 Finally via expert judgements 71.7% were categorised to low, of which 38% were 

also assigned to low via the FG algorithm. A further 26.5% of these were then 

assigned to medium and 6.6% to high. 
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Table 7.10: Confusion matrix depicting for the three categories; low, medium and high 

 Low (%) Medium (%) High (%) Classification 
Overall (%) 

Producer 
Accuracy 
(Precision) 

Low 38.00 4.50 0.52 43.02 88.33 

Medium 26.50 12.80 1.30 40.60 31.53 

High 6.60 4.70 4.50 15.80 28.48 

Truth Overall 71.70 22.00 6.30 100  

User 
Accuracy 

53.00 58.18 71.43   

 

In the confusion matrix depicted in table 7.10, the user accuracy and producer measures 

give us estimates of accuracy of the results. The user accuracy shows the accuracy of the 

results obtained from the GRiST probabilistic graphical model as a percentage of correctly 

categorised components divided by the total number of components in the category. The 

diagonal elements (highlighted in bold in table 7.10) represent the correctly categorised 

components. Finally, the overall accuracy of the categorisation can also be obtained from 

the confusion matrix in table 7.10 as follows: 

Overall accuracy from confusion matrix = values correctly classified for each category /                   

overall % classified 

Overall accuracy = (38.00 + 12.80 + 4.50)/100 = 45.3 

 

7.5 Conclusion 

In this chapter the implementation of the GRiST probabilistic graphical model has been 

discussed, including the construction of the GRiST chain graph, parameter learning and 

conversion of the chain graph to factor graph. Analysis was also carried out on the model 

and the results from the factor graph inference compared to the expert judgements. The 

results showed an overall accuracy of 45.3 percent for the GRiST probabilistic graphical 

model in comparison to expert judgement. On the face of it this is not a good indication of 

a trend for correlation between the expert judgements and the graphical structure and the 

model as it stands cannot be used as a sole method for determining risk. However, when 

we considered the accuracy of the probabilistic model for the individual categories (i.e. 

low, medium and high), it can be seen that the model predicts well whether a patient is 

high risk (i.e. values 7 to 10) or not high risk (i.e. 1 to 6). This makes the model a good 

candidate for a mental health risk assessment decision support system, and can be used 

to highlight the patients that need additional assessment (using alternate methods such as 
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expert judgements or the GRiST fuzzy model).  The model therefore can be seen to have 

use as an alternative method for identifying high risk patients. 

In the next chapter we conclude and discuss possible future directions for the GRiST 

probabilistic model, implementation of some of these ideas might improve the overall 

accuracy of the model. 
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Chapter Eight  

8. Conclusions and Further Research 
 

In this chapter we discuss the various methods and results from the processes used, the 

limitations of the processes, and problems encountered and possible future directions for 

the research. 

 

8.1 Contributions  

This research has focused on the process of developing a principled approach for 

translating a model of mental-health risk expertise into a probabilistic graphical structure. 

The nature of the research has involved exploring different areas. Areas ranging from the 

fuzzy logic domain, to psychological models, semantics of knowledge structures and 

ontologies and finally probabilistic graphical knowledge. This has made it a particularly 

interesting journey.  

 

We started by dissecting the GRiST fuzzy knowledge structure in a bid to capture from the 

fuzzy / psychological model everything that could help in the accurate mapping to 

appropriate probabilistic graphical models. The main objective of the research was to 

develop a mental health risk assessment tool based on probabilistic graphical models. As 

noted in Chapter 2, the issue of bridging the gap between fuzzy logic and probability 

theory is a long drawn ongoing area of contention. However, we were able to circumvent 

this issue by basing our conversion rules on all the information that can be obtained from 

the GRiST fuzzy model. These include the GRiST uncertainty representations (based on 

membership grades and relative influences), the constraints inherent in the knowledge 

structure, the GRiST knowledge structure semantics, the relationship types between the 

variables in the knowledge structure and the visualisations of GRiST. From these we were 

then able to develop a set of mapping rules to guide the conversion of the expert based 

GRiST knowledge structure into probabilistic graphical structures.  

 

The methods discussed in this thesis could be applicable to other systems based on 

hierarchical expertise, especially ones that contain both causal and non-causal relations. 

The entire research contributes to the area of risk assessments, and the conversion of 

knowledge-based systems using hierarchical expertise into probabilistic graphical models 
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and contributes to the possibility of representing complex domains which encapsulate 

both causal and non causal relations in a way that more accurately represents such 

domains and as such has direct impact on the quality of the risk assessments obtained 

using the model. 

 

8.2 Possible Future Directions 

We believe that the methods discussed in this research may have applicability for other 

knowledge-based systems using hierarchical expertise, and in particular as a viable and 

effective alternative to trying to induce accurate probability graphs from a data set (which 

can be notoriously difficult). The approach outlined in this research shows that it can 

become more tractable by exploiting the structure induced from domain experts. In this 

section some offshoots from this research that could further extend the success of the 

research are highlighted as potential future directions for the research. 

 

8.2.1 Expansion of Learning Algorithms 

 

In this thesis the Expectation-Maximisation (EM) algorithm (Chapters 6 and 7) was used 

for learning the parameters. This proved to be a successful choice for the learning 

process, however it might still prove productive to expand the possible algorithms to 

determine if one that will give even better results exists or can be developed (e.g. 

developing a variant of the EM algorithm). Any discovering of an algorithm that gives an 

even better fit than the current EM algorithm will be a distinct advantage because the 

learned parameters directly influence the quality of the risk predictions obtained from the 

model. 

 

8.2.2 Consideration of Additional Probability Building Blocks 

 

In addition to the issue of the learning algorithm, the approach used in this research has 

been to map the GRiST component structures into probability building blocks, which are 

then combined to give a final chain graph. This approach has proved to be effective and 

made it possible to model both the causal and non causal parts of the GRiST knowledge 

structure correctly. However, we believe that in future work this can be improved on. This 

improvement can be brought about by broadening the possible probability building blocks 

that the GRiST component structures can map to. The rationale behind this being that the 

more accurately the final model represents the domain, the more accurate will the 

predictions from it be. This will possibly involve breaking the knowledge structure into 
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more fine grained components and seeing if there are additional probability structures that 

these fine grained components naturally map to. To illustrate this, for example in the 

current research an assumption was made that within a component structure all the nodes 

are related by the same type (i.e. they are either all causal or non causal). However there 

will be instances where a component structure can be more accurately modelled if it is 

mapped to a probability building block that does not force a decision to be made on 

whether its causal or non causal if it happens to be a mixture of these.  

 

An example of such a potential building block is the tree structured conditional random 

field (TS-CRF). A conditional random field (CRF) is similar to an MRF in that it is an 

undirected graph but unlike the MRF, it encodes a conditional distribution P(Y|X) (Koller 

and Friedman, 2009), where X is a set of observed nodes and Y are unobserved nodes 

(this can correlate directly with the notion of datum and concept nodes respectively in the 

GRiST knowledge structure). Consider a fixed generic component structure such as gen-

depression (Figure 5.4) which is a high level structure and is fairly complex as it is made 

up of several other fixed generic component and generic distinct component structures. 

To model it as a TS-CRF, the important dependencies to identify, are all parent to child, 

siblings and internal nodes to root dependencies (i.e. for every internal node to root node, 

there must be a path that links the two together).  

 

Examples of parent to child relationships in this structure are gen-hopeless to gen-plans-

future and so on. Sample sibling relationships are gen-dep-stage and serious-depression. 

An example of internal node to root node dependency can be seen between gen-jealous 

and gen-depression, in this case the path that links these two goes from gen-jealous to 

gen-feel-emot to serious-depression and finally to gen-depression. A TS-CRF allows us to 

model hierarchy relations of the form ( | )P Y X where Y is unknown and X is known. In our 

case X represents the set of datum nodes that are directly connected with the fixed 

generic component structure, whilst Y represents the fixed generic component structures 

concept nodes. The equation that defines this is depicted below and has been taken from 

(Tang et al, 2006).  

 

Let (     ) be the dependency between a parent and a child vertices , (     ) the 

dependency between child and parent and (     ) between siblings. Then, 
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 (   )  
 

 ( )
   ( ∑   

  {          }  

  (       )  ∑     (       )

     

)  

Where     represents the set of (     ) etc and    and    are feature functions. 

Thus the TS-CRF allows us to model the independency assertion encoded in the high 

level fixed generic component structure, and might prove to be better than the current 

representation. The TS-CRF was not used in the current research because it was not 

proven to be the case that within a component structure based on the current version of 

the GRiST knowledge structure that there will be mixed relationship types (i.e. both causal 

and non causal). However, if the GRiST knowledge structure is re-visited and found to 

contain these additional constraints then an extension such as this will be worth 

considering. 

 

 

8.2.3 Structure Learning 

 

The structure of the current probabilistic graphical model has been based entirely on 

human expertise (encapsulated in the GRiST fuzzy model). In contrast, and in spite of the 

complexity involved in learning structure from data, it will be interesting and potentially 

informative to learn the structure from data directly. However, this is not suggested as a 

potential extension to the current research but more as a useful complement that can 

potentially be used as another basis for comparison of results. It might also potentially be 

used to feedback to the fuzzy model and provide improvements to it (which could in turn 

influence the probabilistic model). 

 

8.3 Limitations and Problems Encountered  

In the learning of the parameters from the GRiST data, it was clearly seen that the more 

data was used for the training the more accurate the produced results. This in turn means 

that the results achieved were limited to the amount of data available, 9417 cases which 

had to be split into training and test data for the learning process (different approaches 

were explored to increase the test data). Another limitation was in the available tool for the 

construction of the chain graph. The Bnet and Pmtk3 toolkits for MATLAB provided a good 

set of algorithms and functions, it could not handle the loading and processing of the 

entire graph structure in a single go. The embedded approach discussed in Chapter 6, 

provided a solution to this. However, some of the commercial tools (e.g. Hugin) are 
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supposed to be able to handle thousands of nodes in a graph; such a tool might have 

been useful. 

 

Overall the methods used in this thesis have been successful and can potentially be 

further improved by the implementation of some of the extensions suggested in this 

chapter. 
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Appendix 1 

 

Full Listings of GRiST knowledge Structure Node Code Names 

and their Descriptive Labels. 

 

Node Name Descriptive Label   Node Name Descriptive Label 

Suic Suicide   gen-accm-share-nd 

number of non-

dependents 

sharing 

accommodation 

suic-past-att 

past and current suicide 

attempts   gen-accom-depndnts Dependents 

suic-curr-int 

current intention to commit 

suicide   gen-accom-state 

state of 

accommodation 

suic-int-p-trig 

potential triggers for 

prospective suicide   gen-body-face 

body language 

and expression 

suic-ideation suicidal ideation   gen-cog-think-mem 

thinking 

processes and 

memory 

suic-bhvr-const 

constraints on suicidal 

behaviour   gen-concentr concentration 

suic-app-behvr 

person's appearance and 

behaviour at assessment 

indicating suicide   gen-congruence 

congruence of 

physical, verbal, 

and emotional 

presentation 

suic-s-h-behv 

self-harm behaviour 

indicative of suicide   gen-day-actvty-lev 

general level of 

activity during the 

day 

suic-fam-hist family history of suicide   gen-day-struct structure of day 

gen-feel-emot feelings/emotions   gen-dep-stage 

stage of 

depression 

gen-self-worth-p 

person's perspective of self 

worth   gen-diet-drink drinking 

mental-health mental health problems   gen-diet-eating eating 

ment-fac 

mental faculties/cognitive 

capacity   gen-diet-weight weight 
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Node Name Descriptive Label   Node Name Descriptive Label 

gen-personality Personality   gen-engagement 

person's 

engagement with 

assessor 

motive-eng 

motivation and engagement 

with world   gen-forensic-proc 

forensic/criminal 

proceedings 

gen-soc-contxt social context   gen-home-type type of home 

gen-currnt-bhvr general current behaviour   gen-insght-behvr 

insight into 

behaviour and 

consequences 

gen-subs-misuse substance misuse   gen-job-chg-frq 

frequency of 

changing jobs 

insight-resp insight and responsibility   gen-life-abuse abuse to person 

gen-phys-hlth-

prb physical health problems   gen-life-not-livng 

life not worth 

living 

gen-meds-therpy 

concordance with health 

services/medication/therapie

s   gen-mental-withd 

mental 

withdrawal 

adv-life-event adverse life events   gen-mentl-insght 

insight into 

mental-health 

problems 

gen-demog Demographics   gen-mntl-cur-sympt 

current 

symptoms of 

severe mental 

illness 

gen-accom-share 

occupants sharing 

accommodation   gen-move-freq 

frequency of 

moving 

accommodation 

gen-age Age   gen-nd-hlp-diff 

need for help 

with difficulties 

gen-alc-misuse 

detrimental effects of alcohol 

misuse   gen-neighbrhd neighbourhood 

gen-angry-

emotns angry emotions   gen-net-relat 

external network 

of relationships 

gen-anx-emotns anxiety-based emotions   gen-perc-debt-anx 

anxiety about 

perceived level of 

debts 

gen-app-diet appropriateness of diet   gen-phys-withd 

physical 

withdrawal from 

world 
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Node Name Descriptive Label   Node Name Descriptive Label 

gen-assertive Assertiveness   gen-plans-future 

plans for the 

future 

gen-chall-bhvr challenging behaviour   gen-poverty chronic poverty 

gen-com-imp communication impairment   gen-rec-bad-job-ch 

recent or 

potential 

detrimental 

change to 

employment 

gen-controlling 

controlling/organisational 

approach   

gen-recent-life-

trauma 

recent traumatic 

life changes 

gen-coping-abil 

capacity to cope with major 

life stresses   gen-relat-detr-chg 

detrimental 

changes to 

relationships 

gen-day-actvty daily activity   gen-relat-nature 

nature of 

relationships 

gen-dependence Dependence   gen-resp-impct-oth 

responsibility for 

impact of 

behaviour on 

others 

gen-depression Depression   gen-risk-verbal 

verbal indicators 

of risk 

gen-distress Distress   gen-sh-cuts self-harming cuts 

gen-drug-misuse 

detrimental effects of drugs 

misuse   partner-share-acc partner sharing 

gen-eating-dis eating disorders   serious-depression 

Seriousness of 

current 

depression 

gen-educ-expr educational experience   sn-appearnce 

appearance 

indicators of self 

neglect 

gen-empathy-

abil ability to empathise   suic-leth-insght 

insight into 

lethality of 

previous suicide 

attempts 

gen-employment Employment   suic-most-rec 

most recent 

suicide attempt 

gen-eng-world engagement with world   suic-note-prev 

suicide note 

written for one or 

more previous 

attempts 

gen-env-grew-up 

environment person grew up 

in   suic-patt-att 

pattern of suicide 

attempts 
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Node Name Descriptive Label   Node Name Descriptive Label 

gen-ethnicity Ethnicity   suic-plan-dtail 

level of detail and 

clarity of suicide 

plan 

gen-finance-prob financial problems   suic-planning 

How much 

planning was 

generally involved 

in the suicide 

attempts 

gen-gender Gender   suic-plan-real 

realism of suicide 

plan 

gen-helpless Helplessness   suic-prosp-leth 

potential lethality 

of prospective 

suicide method 

gen-hopeless Hopelessness   suic-ser-method 

seriousness of 

suicide methods 

gen-hostile Hostility   suic-steps-takn 

physical steps 

taken to 

implement 

suicide plan 

gen-impaird-cog impaired cognitive function   suic-thght-prev 

thoughts/feelings 

related to 

previous suicide 

attempts 

gen-insght-behvr 

insight into behaviour and 

consequences   suic-first-occ 

first time suicide 

attempt occurred 

gen-jealous Jealousy   suic-how-many 

how many suicide 

attempts 

gen-learn-disab learning disabilities   suic-escalate 

suicide attempts 

escalating in 

frequency 

gen-life-trauma traumatic experiences   suic-discovery 

chance of 

discovery after 

suicide attempts 

gen-listless 

listless, no energy, slowed 

down, loss of drives   suic-lethality 

potential lethality 

of suicide method 

gen-living-arr living arrangements   suic-ser-succd 

How much did 

the person want 

to succeed with 

the suicide 

attempts 
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Node Name Descriptive Label   Node Name Descriptive Label 

gen-marital-

status marital status   suic-regret 

regret about 

trying to commit 

suicide 

gen-med-perc-

benft 

perceived benefit of 

medication/therapies   sn-hair-clothes 

hair and clothing 

indicative of self 

neglect 

gen-meds-

concord Concordance   sn-hygiene personal hygiene 

gen-mood-

swings mood swings/lability   sn-recnt-app-chnge 

recent change in 

appearance of 

self neglect 

gen-motivation general motivation in life   sn-skin skin 

gen-nd-hlp-diff need for help with difficulties   gen-rapport rapport/empathy 

gen-negative-self 

negative feelings about the 

self   gen-responsve 

person's 

responsiveness 

gen-phys-hlth-

deg-diag 

when life-threatening or 

degenerative illness first 

diagnosed   gen-gut-assmnt 

assessor's 

uneasiness about 

the person 

gen-phys-hlth-

det 

deterioration in physical 

health   gen-risk-tone tone 

gen-phys-hlth-

disa Disability   gen-coherence 

degree to which 

the person is 

making sense 

gen-phys-hlth-

pain Pain   gen-distrss-b-lang 

body language 

indicating distress 

gen-presentation 

person's behavioural 

presentation during 

assessment   gen-low-mood 

movements, 

posture, facial 

expression 

indicating low 

mood 

gen-relatnshps Relationships   gen-threat-move 

aggressive/threat

ening 

movements, 

posture, or 

expression 

gen-reliable Reliability   gen-detached 

preoccupied/deta

ched demeanour 

gen-resp-impct-

oth 

responsibility for impact of 

behaviour on others   gen-eyes eyes 
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Node Name Descriptive Label   Node Name Descriptive Label 

gen-rsk-behavr reckless risk taking   gen-feel-emot feelings/emotions 

gen-sad sad/downbeat   gen-self-worth-p 

person's 

perspective of 

self worth 

gen-ser-mentl-ill serious mental illness   gen-motivation 

general 

motivation in life 

gen-serv-last-acc 

time since person accessed 

services   gen-voice-hal 

voice 

hallucinations 

gen-serv-perc-

supp 

person's perception of the 

supportiveness of service 

received   gen-paranoid-del 

paranoid 

delusions 

gen-sleep-dist sleep disturbance   gen-impaird-cog 

impaired 

cognitive function 

gen-unint-risk-

behavr unintentional risk making   gen-currnt-bhvr 

general current 

behaviour 

gen-unusl-rec-

bhvr 

uncharacteristic recent 

change in behaviour   gen-presentation 

person's 

behavioural 

presentation 

during 

assessment 

grandiosity Grandiosity   gen-eng-world 

engagement with 

world 

insight-resp insight and responsibility   gen-mania 

mania/hypomani

a 

suic-eol-prep 

end-of-life preparations for 

intended suicide act   gen-voice-hal 

voice 

hallucinations 

suic-id-control 

ability to control suicidal 

ideation   gen-paranoid-del 

paranoid 

delusions 

suic-id-freq frequency of suicidal ideation   gen-relat-supp 

supportive 

relationships 

suic-id-hi-risk 

content of suicidal ideation 

indicates high risk   gen-relat-detr 

detrimental 

relationships 

suic-id-strngth 

strength, intensity, 

intrusiveness, and 

persistence of suicidal 

ideation   gen-isol-accom 

isolated 

accommodation 

suic-int-inform 

informed someone about 

intention to commit suicide   gen-neigbrhd-rsky 

risky 

neighbourhood 

suic-occur occurrence of suicide attempt   gen-accom-hm-care care of home 
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Node Name Descriptive Label   Node Name Descriptive Label 

suic-person-per 

person's current perspective 

on suicide attempts   gen-accom-habitbl 

habitable 

accommodation 

suic-phys-indic physical indicators of suicide   gen-diet-weigt-ext person's weight 

suic-plans 

plans and methods for 

committing suicide   gen-diet-weigt-chg 

extreme weight 

change 

suic-pot-trig potential triggers of suicide   gen-relat-detr-chg 

detrimental 

changes to 

relationships 

suic-prep-

serious-at 

preparation and seriousness 

of suicide attempts   gen-perc-debt-anx 

anxiety about 

perceived level of 

debts 

suic-p-trig-mtch 

potential triggers match 

those that previously caused 

suicide attempts   gen-rec-bad-job-ch 

recent or 

potential 

detrimental 

change to 

employment 

suic-rel-belief 

religious values/beliefs 

affecting suicide risk   

gen-phys-hlth-deg-

diag 

when life-

threatening or 

degenerative 

illness first 

diagnosed 

worthlessness Worthlessness   gen-life-sex-abuse sexual abuse 

      gen-phys-abse physical abuse 

      gen-emot-abse emotional abuse 

      gen-financial-abuse financial abuse 

      gen-accom-num-dep 

number of 

dependents 

      gen-dep-ygnst-age 

age of youngest 

dependent 

gen-risk-aggrsv degree of aggression/hostility   gen-plans-future 

plans for the 

future 

gen-risk-upbeat 

how upbeat or 

downbeat/depressed   gen-life-not-livng 

life not worth 

living 

gen-avoid-eye-

contact avoid eye contact   gen-voice-dang-s 

danger of voices 

to self 

gen-eye-

movement eye movement   gen-voice-dang-o 

danger of voices 

to others 
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Node Name Descriptive Label   Node Name Descriptive Label 

 

gen-mood-swngs 

 

mood swings/lability   

 

gen-paran-del-spec 

 

about specific 

individuals 

gen-negative-self 

negative feelings about the 

self   gen-paran-del-pers 

being harmed, 

killed, or 

persecuted 

gen-angry-

emotns angry emotions   gen-diet-eating eating 

gen-anx-emotns anxiety-based emotions   gen-diet-weight weight 

gen-helpless helplessness   gen-diet-drink drinking 

gen-sad sad/downbeat   gen-day-struct structure of day 

gen-distress distress   gen-day-actvty-lev 

general level of 

activity during the 

day 

gen-jealous jealousy   gen-rapport rapport/empathy 

gen-hopeless hopelessness   gen-responsve 

person's 

responsiveness 

grandiosity grandiosity   gen-gut-assmnt 

assessor's 

uneasiness about 

the person 

worthlessness worthlessness   gen-risk-tone tone 

gen-voices-type type of voices   gen-coherence 

degree to which 

the person is 

making sense 

gen-prob-act-

voice 

likelihood of acting on the 

voices   gen-distrss-b-lang 

body language 

indicating distress 

gen-type-

paranoid-del type of paranoid delusions   gen-low-mood 

movements, 

posture, facial 

expression 

indicating low 

mood 

gen-prob-act-

par-del 

likelihood of acting on 

delusions   gen-threat-move 

aggressive/threat

ening 

movements, 

posture, or 

expression 

gen-cog-think-

mem 

thinking processes and 

memory   gen-detached 

preoccupied/deta

ched demeanour 

gen-concentr concentration   gen-eyes eyes 

gen-rsk-behavr reckless risk taking   gen-voice-dang-s 

danger of voices 

to self 
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Node Name Descriptive Label   Node Name Descriptive Label 

gen-unint-risk-

behavr unintentional risk making   gen-voice-dang-o 

danger of voices 

to others 

gen-sleep-dist sleep disturbance   gen-paran-del-spec 

about specific 

individuals 

gen-app-diet appropriateness of diet   gen-paran-del-pers 

being harmed, 

killed, or 

persecuted 

gen-unusl-rec-

bhvr 

uncharacteristic recent 

change in behaviour   gen-diet-weigt-ext person's weight 

gen-chall-bhvr challenging behaviour   gen-diet-weigt-chg 

extreme weight 

change 

gen-day-actvty daily activity   gen-risk-aggrsv 

degree of 

aggression/hostili

ty 

gen-engagement 

person's engagement with 

assessor   gen-risk-upbeat 

how upbeat or 

downbeat/depres

sed 

gen-risk-verbal verbal indicators of risk   

gen-avoid-eye-

contact avoid eye contact 

gen-body-face 

body language and 

expression   gen-eye-movement eye movement 

gen-congruence 

congruence of physical, 

verbal, and emotional 

presentation   gen-prob-act-par-del 

likelihood of 

acting on 

delusions 

gen-phys-withd 

physical withdrawal from 

world   gen-sex-abse-last 

most recent 

episode of sexual 

abuse 

gen-mental-

withd mental withdrawal   gen-sex-abse-as-ch 

sexual abuse 

during childhood 

(0 to 16) 

gen-voices-type type of voices   gen-phys-abse-last 

most recent 

episode of 

physical abuse 

gen-prob-act-

voice 

likelihood of acting on the 

voices   gen-phy-abse-as-ch 

physical abuse 

during childhood 

(0 to 16) 

gen-type-

paranoid-del type of paranoid delusions   gen-emot-abse-last 

most recent 

episode of 

emotional abuse 
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Appendix 2 

 

GRiST Full Questionaire for Working Age Adults (Ages 18 – 65)  
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single (never married) married (first marriage) 
 

remarried 

separated but legally married divorced widowed 

 

                 www.galassify.org/grist General Version 1 (July 29, 2009) 
 

                  Person’s name: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Date of birth:  d m y 

 

                           Gender: male female 

 
                 Marital status: 

 
 

                   Does the person share his or her living accommodation with anyone (if no, ignore   

                all indented  questions, as explained  in the instructions)?   . . . . . . . . . . . . . . . . . . . . . . . 

 
 
 
 
 

 
yes no 

 

 
                  Does the person live with any dependents (older relatives or children)? . . . . . . . yes no 

 
                     number of dependents         Approximate age of youngest dependent 

 
               Which non-dependents share the   

            Living accommodation (tick all that a pply)?. 

partner  carer  friends/communal      other service users 

sibling(s)   parent(s)         other relatives 
 
 

                 Please tick the most appropriate ethnic group for the person 

 
              white: british irish other white background 
 

     mixed: white/black caribbean white/black african white/asian other mixed background 

         asian: indian pakistani bangladeshi other asian background  

          black: caribbean african other black background  

 chinese other ethnic group  

 
RISK SUMMARY  OVERALL RISK COMMENTS 

 

 
                             Suicide.  

 
0 

 
1 

 
2 

 
3 

 
4 

 
5 

 
6 

 
7 

 
8 

 
9 

 
10 

 
dk 

 0 1 2 3 4 5 6 7 8 9 10 dk 

                          Self harm               
 0 1 2 3 4 5 6 7 8 9 10 dk 

                         Self neglect.             

                         Harm to others 
                              /damage to   

                            Property. .                        

                  Vulnerability  

              Risk to dependents 

0   1   2   3   4   5   6   7   8   9   10 dk 

 
 
0   1   2   3   4   5   6   7   8   9   10 dk 
 

 
0   1   2   3   4   5   6   7   8   9   10 dk 

 
 

   
ACTION PLAN 

 

 
 
 
 
 
 
 
 
 
 

(See page 16 for instructions on how to complete the form) 

                  White:      British    Irish      other white background 

    Mixed:     white/black Caribbean    white/black African      white/black Asian    other mixed      

    background 

                  Asian:   Indian   Pakistani   Bangladeshi  other Asian background 

                  Black:  Caribbean  African  other black background 

     Chinese  other ethnic background 
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Rapid  screening questions 
 

 
 

         SCREENING QUESTIONS LINKED TO A PARTICULAR RISK 
 

         SUICIDE 
 

dk 

            Has the person ever made a suicide  attempt? If yes, → p6  . . . . . . . . . . . . . . . . . . . . . . . .. yes no 
 

          Are you concerned about the person’s current intention to commit suicide? If    
         yes, →p6  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

         Are you concerned about the person being exposed to circumstances or  

           emotions that could trigger suicide attempts? If yes, → p7  . . . . . . . . . . . . . . . . . .  

 
dk 

yes no 
 

 
dk 

yes no 
 

dk 

          Is the person having suicidal thoughts or fantasies? If yes, → p7  . . . . . . . . . . . . . . . . .  yes no 
 

         SELF-HARM 
 

dk 

            Has the person ever engaged in self-harming behaviour? If yes, → p7  . . . . . . . . . . . yes no 
 

          Are you concerned about the person being exposed to circumstances or    

          emotions that could trigger self-harm? If yes, → p7 . . . . . . . . . . . . . . . . . . . . . . . . . .. 

 
dk 

yes no 
 

dk 

          Is the person having self-harming  thoughts or fantasies? If yes, → p8  . . . . . . . . . . . .. . yes no 
 

         HARM TO OTHERS OR DAMAGE TO PROPERTY 
 

            Has the person ever engaged in episodes of harm to people/animals or damage to 
dk 

           property (fire setting, vandalism, etc)? If yes, → p8 but also record the most      
           important information below . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

yes no 

 

           Tick all groups of people who are       
        Known  to have been the target of any   
        harm by the person. . . . . . . . . . . . . . . . .  

 

people in domestic setting health and social care workers 

friends/acquaintances/work colleagues ethnic groups 

authority figures 
dk 

         Were any of the episodes physical or sexual assaults/abuse? If yes, → p8  . . . . . . . . . . yes no 
dk 

       – Has the person ever engaged in fire setting behaviour? If yes, → p8  . . . . . . . . . . . . . . . yes no 
dk 

       Do you believe the person has an intention  to cause harm or damage? If yes, → p9  . . . . yes no 
 

         Are you concerned about the person being exposed to circumstances or   

         emotions that could trigger harm or damage? If yes, → p9  . . . . . . . . . . . . . . . . . . .   
 

            Is the person having thoughts or fantasies about harming people/animals or          

            damaging property? If yes, → p9  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . 

 
dk 

yes no 
 

 
dk 

yes no 
 

dk 

            Are there any child protection issues? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . yes no 
 

          SELF NEGLECT 
 

           Are you concerned about the person being at risk of self neglect or neglect by   
            others? If yes, → p10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

 

          VULNERABILITY  OF SERVICE USER 

 
 

dk 

yes no 
 
 
 

dk 

              Does the person have a history  of falls or other accidents? If yes, → p10  . . . . . . . . . . . . . yes no 
 

            Are you concerned about any other issues that may be putting  the person at risk due to 
dk 

            his or her vulnerability  (consider physical, emotional, sexual, and financial   
       vulnerability)? If yes, → p10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

 

          RISK TO DEPENDENTS? 

yes no 
 

 
 
 

dk 

          Are you concerned about risks to dependents? If yes, → p5 . . . . . . . .. . . . . . . . . . . . yes no 
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       SCREENING QUESTIONS RELEVANT TO MORE THAN ONE RISK 

dk 

            Are you concerned about risks due to the person’s feelings/emotions? If yes, → p11  . . yes no 
dk 

              Are you concerned about risks due to the person’s sense of self worth?  If yes, → p11  yes no 
 

            Is there any history of depression or serious mental illness, including    

        any current episode? If yes, → p11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

              Are you concerned about risks due to the person’s mental faculties/cognitive   

                   capacity? If yes, → p12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

 
dk 

yes no 

 
dk 

yes no 
 

dk 

             Are you concerned about personality factors and their impact on risks? If yes, → p12 yes no 
 

              Are you concerned about the person’s motivation and engagement with the   

               world?  If yes, → p12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

              Are you concerned about risks due to the person’s social context (relationships,      

         living arrangements, finances, employment,  any detrimental  changes)? If yes, → p13 

              Are you concerned about the person’s general current behaviour (eg risk-taking,      

          sleep patterns, daily activities, challenging behaviour)? If yes, → p13  . . . . . . . . . . 

 
dk 

yes no 

 
dk 

yes no 

 
dk 

yes no 
 

dk 

                Does the person have a history  of misusing drugs or alcohol? If yes, → p14 . . . . . . . yes no 
 

             Are you concerned about the person’s lack of insight  and sense of     
           responsibility? If yes, → p14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

 
dk 

yes no 
 

dk 

              Are you concerned about risks due to any physical health problems? If yes, → p14  yes no 
 

             Are you concerned about the person’s concordance with mental-health    
        treatment? If yes, → p14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
                 Does the person have a history  of adverse life events (eg suffered abuse, criminal    

           justice proceedings, detrimental upbringing/education,  eating disorders)? If yes, → p15 

               Consider also social context (p.13) and physical health (p.14). . . . . . . . . .  

              Are you concerned about the person’s behavioural presentation with respect to      

                potential risks (eg verbal and physical behaviour, uneasy ‘gut’ feeling in yourself)? If    

               yes, →p15  

 
dk 

yes no 
 
 

dk 

yes no 
 

 
 

dk 

yes no 

 
dk 

              Are you concerned about the person’s diet? If yes, → p16  . . . . . . . . . . . . . . . yes no 
 
                         

            END OF SCREENING QUESTIONS 

             General comments 
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Risk judgements 
 

Please use your judgement to assess the risks  associated  with the person, incorporating  information you have 
obtained from the screening questions and the additional  information  associated with them. When you have 
finished, don’t forget to copy the risk judgement scores to the front-page summary. 

 
 

SUICIDE: In your judgement, to what extent is the person at risk 
of suicide? 

Comments 

min low medium high  max 

0   1   2   3   4   5   6   7   8   9   10 dk 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

SELF-HARM: In your judgement, to what extent is the person at risk of 
self-harm?                         

Comments 

min low medium high  max 

0   1   2   3   4   5   6   7   8   9   10 dk 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

SELF NEGLECT: In your judgement, to what extent is the 

person at risk of self- neglect? 

Comments 

 
min low medium high  max 

0   1   2   3   4   5   6   7   8   9   10 dk 

216 
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HARM TO OTHERS OR DAMAGE TO PROPERTY: In your 

judgement, to what extent is the person at risk of causing harm to 

people/animals or damaging property?  

Comments 

 
min low medium high  max 

0   1   2   3   4   5   6   7   8   9   10 dk 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

VULNERABILITY  OF SERVICE USER: In your judgement, 
to what extent is the person at risk due to his or her 
vulnerability (consider physical, emotional, sexual, and 
financial vulnerability)?  

Comments 

 

 
min low medium high  max 

0   1   2   3   4   5   6   7   8   9   10 dk 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
RISK TO DEPENDENTS: In your judgement, to what 

extent does the person put dependents at risk, if any 

(consider both chil- dren and adults but answer zero if there 

are no dependents)?  

Comments 

 

 
min low medium high  max 

0   1   2   3   4   5   6   7   8   9   10 dk 
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dk 
dk 

 

Additional questions specific to a particular risk 
 

These questions only need to be answered if flagged by the screening questions as relevant or appropriate for this 
particu- lar assessment. Indented questions can also be ignored  if the root (filter) question is ‘no’ or ‘dk’ (don’t 
know). 

Additional questions for SUICIDE 
 

            Further questions on past and current suicide attempts 
 

dk 

– When was the last suicide attempt? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . d m y 
dk 

– Has there been more than one suicide attempt? . . . . . . . . . . . . . . . . . . . . . . . . . yes no 
 

dk 

– When was the first suicide attempt?  . . . . . . . . . . . . . . . . . . . . . . .. . . d m y 
 

– Approximately how many suicide attempts have there been?  . . . . . . . . . . approx 
 

How have the suicide attempts been changing in frequency over the dk 
–

last two years?  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
decreasing same increasing

 

 
– To what extent were the suicide attempts well planned? . . . . .. . . . . . .  

 
min low medium high  max 

0   1   2   3   4   5   6   7   8   9   10 dk 

 
dk 

– Was a suicide  note written for any previous or current suicide attempts?  . .  . yes no 

 
– To what extent were the suicide attempts concealed to prevent 
discovery?  

min low medium high  max 

0   1   2   3   4   5   6   7   8   9   10 dk 

 
How lethal was the most serious method used by the person in any of the  

Suicide 
 
attempts (i.e. how likely to succeed in killing the person without 

any intervention)? 
 

– 
To what extent do you believe the person wanted the suicide attempts to 

succeed at the time? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
 

How much does the person fail to show any regret or remorse over having 
tried to 

 
commit suicide in the past? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

 
To what extent does the person lack awareness about how dangerous the 
suicide attempts were? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

 

Further questions on current intention  to commit suicide 

 
0   1   2   3   4   5   6   7   8   9   10 dk 
 

 
 
0   1   2   3   4   5   6   7   8   9   10 dk 
 

 
 
0   1   2   3   4   5   6   7   8   9   10 dk 
 

 
 
0   1   2   3   4   5   6   7   8   9   10 dk 
 

 
 
 

dk 

– Does the person have any plans for making a future suicide attempt?  . .  . . . . . yes no 
 

To what extent can the person easily carry out the suicide plan (consider 
realism 

 
of plan, access to means of putting it into effect, and any collusion 

with others)? 

 
min low medium high  max 

0   1   2   3   4   5   6   7   8   9   10 dk 

 

– How clear and detailed is the suicide plan? . . . . . . . . . . . . . . . . . . . . . 0   1   2   3   4   5   6   7   8   9   10 dk
 

 

To what extent has the person taken steps towards implementing  the suicide 
– 

plan? .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

 
0   1   2   3   4   5   6   7   8   9   10 dk 

 

– How likely is the chosen method to succeed once the attempt has started?. . . . 0   1   2   3   4   5   6   7   8   9   10 dk
 

 
dk 

– Has the person told anyone about an intention  to commit suicide?  . . . . . . . . . . yes no 

To what extent has the person made end-of-life  preparations matching those 
that would cause you most concern about suicide risk (eg written a will, 
sorted finances, put house in order, written suicide note)? . . . . . . . . . . . . . . . . . . 
. . . . . . . . . . . . . . . . . . . . . . 

 
min low medium high  max 

0   1   2   3   4   5   6   7   8   9   10 dk 
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dk 
dk 

 
Further questions on potential triggers for prospective suicide 

 

To what extent is the person exposed to circumstances or emotions that may 
trigger a suicide attempt? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
 
To what extent do the person’s current emotions or circumstances match 
those that are known  to have triggered previous suicide attempts? . . .  . . . . . . . 
 
Further questions on suicidal ideation 

 
 
min low medium high  max 

0   1   2   3   4   5   6   7   8   9   10 dk 

 

 
0   1   2   3   4   5   6   7   8   9   10 dk 

 

– To what extent does the person lack ability to control suicidal thoughts or fantasies? 
0   1   2   3   4   5   6   7   8   9   10 dk

 

 

– 
How much does the content of the suicidal thoughts or fantasies raise serious 

con- cerns about suicide risk? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
. . . . . . . . . . 

 
0   1   2   3   4   5   6   7   8   9   10 dk 

 
dk 

 – How often do the suicidal thoughts or fantasies occur?         daily weekly  monthly     less 
 

min low medium high  max 

– How persistent, intrusive, or intense are the suicidal thoughts?  . . . . . . 0   1   2   3   4   5   6   7   8   9   10 dk 

 
General suicide questions 

 

What effect do the person’s religious values, beliefs, or 

attitudes to dying have on risk of suicide? . . . . . . . . . . . . . . . 

. . . . . . . . . . .  

 
 
strongly reduce reduce no effect 

increase strongly increase  dk 

 

To what extent does the person have a pattern of self-harming that 
indicates suicide risk? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
. .  

min low medium high  max 

0   1   2   3   4   5   6   7   8   9   10 dk 

 
dk 

Has there been any history  of suicide attempts in the person’s family? . . . . . yes no 
 
 

Additional questions for SELF-HARM 
 

Further questions on past and current  episodes of self-harm 
 

dk 

– When was the last self-harm episode? . . . . . . . . . . . . . . . . . . .  . . . . . . . . d m y 
dk 

– Has there been more than one self-harm episode?  . . . . . . . . . . . . . . . . . . . yes no 
 

dk 

– When was the first self-harm episode? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . d m y 
 

– Approximately how many episodes of self-harm have there been?  . . . . . approx 
 

Are the self-harm episodes increasing or decreasing in frequency dk 

– 
over the last two years? . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . 

decreasing same increasing
 

 

min low medium high  max 

– How much planning was generally involved in the self-harm episodes? 0   1   2   3   4   5   6   7   8   9   10 dk 

 

 

– To what extent are the self-harming  attempts concealed to prevent discovery? . . 0   1   2   3   4   5   6   7   8   9   10 dk
 

 
– In general, how likely is it that the chosen self-harm methods could lead to death? 

0   1   2   3   4   5   6   7   8   9   10 dk
 

 
– How much were the self-harm  episodes more than a cry for help? . . . . .. . . . . . 0   1   2   3   4   5   6   7   8   9   10 dk

 

 
dk 

– Did the self-harm  episodes help the person cope with difficulties? . . . . . . . . yes somewhat  no 
 

Further questions on potential triggers for prospective self-harm 
 

To what extent is the person exposed to circumstances or emotions that may 
trigger 

 
self-harm episodes? .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

To what extent do the person’s current emotions or circumstances match 
those that

– 
are known  to have triggered any previous episodes of self harm? 

 

min low medium high  max 

0   1   2   3   4   5   6   7   8   9   10 dk 

 

 
0   1   2   3   4   5   6   7   8   9   10 dk 



www.galassify.org/grist patient name/id: 

 

220 
 

 
Further questions on self-harm  ideation 

 

– How persistent, intrusive,  and intense are the self-harming  thoughts?  . . . . . . . 
. . . . . 

 
min low medium high  max 

0   1   2   3   4   5   6   7   8   9   10 dk 

 
dk 

– How often do the self-harming  thoughts or fantasies occur?  daily weekly monthly less 
 

General self-harm questions 
 

To what extent does the person display evidence of self-harming  cuts?  
min low medium high  max 

0   1   2   3   4   5   6   7   8   9   10 dk 

 
dk 

Has there been any history  of self-harm in the person’s family? . . . . . . . . . . . yes no 
 

 

Additional questions for HARM TO OTHERS OR DAMAGE TO PROPERTY 
 

Further questions on past and current  episodes of harm  or damage 
 

Further questions on any violent assault/physical abuse 
 

– How serious was the most severe assault or physical abuse? . . .. 
min low medium high  max 

0   1   2   3   4   5   6   7   8   9   10 dk 
 

 
dk 

– When was the first episode of assault/physical abuse?  . . . . . . . . . . . d m y 
 

dk 

– When was the most recent episode of assault/physical abuse? . . . . . . . d m y 

Questions on sexual assault/abuse 
dk 

– Were any of the assaults rape or some other form of sexual abuse? . . . . . yes no 

 
Tick the most serious form of sexual assault by the 
– 

person? . . . . . . .. . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . 

 

indecent exposure forcible fondling 
dk 

sexual assault with an object 

forcible oral or anal intercourse forcible rape 
 

dk 

– When was the first episode of sexual assault? . . . . . . . . . . . . . . . d m y 
 

dk 

– When was the most recent episode of sexual assault? . . . . . . . . . . d m y 
dk 

– Did any previous episodes of harm to others involve weapons (eg guns, knives)?  yes no 
 

Further questions on any fire-setting 

 
– How serious were the acts of fire setting?  . . . . . . . . . . . . . . . . . .  

 

min low medium high  max 

0   1   2   3   4   5   6   7   8   9   10 dk 
 

dk 

– When was the first episode of fire setting?  . . . . . . . . . . . . . . . . . . . d m y 
 

dk 

– When was the most recent episode of fire setting?  . . . . . . . . . . . . . . .. d m y 

Questions  on emotional  episodes of harm  to others 
dk 

– Has the person ever inflicted  emotional cruelty on others (including  racial abuse)? . . yes no 
 

min low medium high  max 

– How serious was the emotional  cruelty? . . . . . . . . . . . . . . . . . . . . .  0   1   2   3   4   5   6   7   8   9   10 dk 
 

 

dk 

– When was the first episode of emotional cruelty? . . . . . . . . . . . . . . . . d m y 
 

dk 

– When was the most recent episode of emotional cruelty? . . . . . . . . . d m y 

Questions on destructive acts against property 
 

Has the person ever engaged in destructive acts concerning property (excluding fire         dk 
– 

setting)? . . . . . . . . . . . . . . . . . .. . . 
yes no
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  – How serious were the destructive acts concerning property?  . . . .  . . . 
min low medium high  max 

0   1   2   3   4   5   6   7   8   9   10 dk 

 
dk 

  – When was the first destructive act concerning property? . . . . . . . . .  d m y 
 

dk 

  – When was the most recent destructive act concerning property? . . . . . . . d m y 

Questions on abuse of animals 
dk 

 – Has the person ever abused animals?  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . yes no 

 
 – How serious was the animal abuse? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

 
min low medium high  max 

0   1   2   3   4   5   6   7   8   9   10 dk 

 
dk 

 – When was the first episode of animal abuse? . . . . . . . . . . . . . . . . . . . . . . . d m y 
 

dk 

– When was the most recent episode of animal abuse?  . . . . . . . . . . . . . . d m y 

         General  questions relating  to any previous episodes of harm  or damage 
 

                     – 
Approximately how many episodes of all types of harm or damage are there dk 

                     known to have occurred?  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . approx 
dk 

                      – How are the episodes of harm or damage changing in frequency?    decreasing same increasing 
  To what extent does the person continue to believe there was nothing 
wrong with causing harm or damage? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

 
min low medium high  max 

0   1   2   3   4   5   6   7   8   9   10 dk 

 

Further questions on intention  for harm or damage 
 

To what extent does the person’s plan for harm or damage match 
one that would

 
cause you most concern?  . . . . . . . . . . . . . . . . . . . . . . ..  

 

                            To what extent does the person have the means and know-how  for    
                  carrying out the

 
plan to harm or damage? . . . . . . . . . . . . . . . . . . . . . . . . . 

 

                            To what extent has the person taken steps towards implementing  the      
                  plan to harm or damage (eg made threats, monitored  the victim)? . . . . 
 

 

                        Has the person got any particular victims (specific individuals) in     
                  mind for harming?……………….. 

 

 
 
0   1   2   3   4   5   6   7   8   9   10 dk 
 

 
 
0   1   2   3   4   5   6   7   8   9   10 dk 
 

 
 
0   1   2   3   4   5   6   7   8   9   10 dk 

 
 

dk

 
yes no

 

Further questions on potential triggers for prospective harm or damage 
 

To what extent is the person exposed to emotions or circumstances that 
could trigger episodes of harm or damage? . . . . . . . . . . . . . .. . . . . . . . . . . . 

 

To what extent do the person’s current emotions or circumstances 
match those that have previously triggered episodes of harm or 
damage? . . . . . . . . . . . . . . . . . . . . . . . . . . . 

 

Further questions on ideation about violence 
 

To what extent does the content of the person’s thoughts or fantasies 
raise serious concerns about risk of harm or damage?  . . . . . . . . . . . . 

 
min low medium high  max 

0   1   2   3   4   5   6   7   8   9   10 dk 

 

 
0   1   2   3   4   5   6   7   8   9   10 dk 

 
 
 

0   1   2   3   4   5   6   7   8   9   10 dk 

dk 

– How often do the thoughts or fantasies about harm or damage occur? daily weekly monthly less 

 
– How persistent, intrusive, or intense are the thoughts/fantasies of harm or damage?  . 

 
min low medium high  max 

0   1   2   3   4   5   6   7   8   9   10 dk 

 
To what extent do the thoughts/fantasies of harm or damage relate to 
the people, events, and circumstances in the person’s own world (ie the 
realism of the thoughts)?  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

 
0   1   2   3   4   5   6   7   8   9   10 dk 



 
 

222 
 

 
General  questions on harm or damage 

 

What effect do the person’s religious  values or beliefs have 

on the risk of harm or damage?  . . . . . . . . . . . . . . . . . . . . .. 

 
 
strongly reduce reduce no effect 

increase strongly increase  dk 

To what extent is there a history  of violence,  abuse, or aggression in the 

person’s family? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
 

To what extent does the person have an interest in pursuits related to 

violence (eg weapons, violent videos or computer games)? . . . . . . . . . . .  

To what extent does the person’s appearance (not body language or 

behaviour) match one that would cause you most concern about risk of 

harm or damage (eg sweating, blood, state of clothes)?  . . . . . . . . . . .  

min low medium high  max 

0   1   2   3   4   5   6   7   8   9   10 dk 

 
 

0   1   2   3   4   5   6   7   8   9   10 dk 

 
 
 

0   1   2   3   4   5   6   7   8   9   10 dk 

Additional questions for SELF NEGLECT 
 

To what extent do the person’s hair and clothing  indicate a failure to 

look after one- self? . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

 

 
 
min low medium high  max 

0   1   2   3   4   5   6   7   8   9   10 dk 

 

 

To what extent does the person have poor personal hygiene (eg smell, 

dirty hair and nails)? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

 
0 

 
1 

 
2 

 
3 

 
4 

 
5 

 
6 

 
7 

 
8 

 
9 

 
10 

  
dk 

To what extent has there been a recent change in appearance suggestive 

of failing to look after oneself?  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

. . . . . . . . . . . . . . . . . . . . . . . . . . . 

 
0 

 
1 

 
2 

 
3 

 
4 

 
5 

 
6 

 
7 

 
8 

 
9 

 
10  

 
dk 

To what extent does the person’s skin (condition, lesions, injuries,  etc) 

indicate a failure to look after oneself? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

 
0 

 
1 

 
2 

 
3 

 
4 

 
5 

 
6 

 
7 

 
8 

 
9 

 
10  

 
dk 

 

Additional questions for VULNERABILITY OF SERVICE USER 
 

Further questions on falls 
 

Have any of the falls or accidents occurred recently (within 6 to 9 months  dk 

 
approximately)? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

yes no
 

 

– 
Are the reasons for the falls or accidents known (eg physical health 

problems, hazards in the home)?  . . . . . . . . . . . . . . . . . . . . . 
 

Further questions on person’s appearance and behaviour indicators of vulnerability 

To what extent does the person’s appearance match one that would cause 
you most concern about vulnerability  to abuse by others (eg bruises, 
scratches, blood,  state of clothes)?  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

 

– 
To what extent does the person’s behaviour make the person vulnerable to 

sexual harrassment or abuse? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
 

– 
To what extent does the person’s behaviour make the person vulnerable to 

physical harrassment or abuse? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
 

– 
To what extent does the person’s behaviour make the person vulnerable to 

emotional harrassment or abuse? . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

– 
To what extent does the person’s behaviour make the person vulnerable to 

financial abuse? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

 
dk 

yes no 
 
 

 
min low medium high  max 

0   1   2   3   4   5   6   7   8   9   10 dk 
 

 
 

0   1   2   3   4   5   6   7   8   9   10 dk 

 
 

0   1   2   3   4   5   6   7   8   9   10 dk 

 
 

0   1   2   3   4   5   6   7   8   9   10 dk 

 

0   1   2   3   4   5   6   7   8   9   10 dk 

dk 

– Does the person have a history  of wandering behaviour?  . . . . . . . . . . . . . yes no 
  

min low medium high  max 

To what extent is the person dependent on carers? . . . . . . . . . . . . . . . . .  0   1   2   3   4   5   6   7   8   9   10 dk 

 
 

To what extent is the person confused or disorientated  as a result  of 

recent changes in circumstances (eg hospital admission, new carer)? . . . 

. . . . . . 

 
0 

 
1 

 
2 

 
3 

 
4 

 
5 

 
6 

 
7 

 
8 

 
9 

 
10 

  
dk 

To what extent does the person lack the ability to look after daily living 
requirements (cooking, shopping, cleaning, etc)? . . . . . . . . . . . . . . . . . .  

 
0 

 
1 

 
2 

 
3 

 
4 

 
5 

 
6 

 
7 

 
8 

 
9 

 
10 

  
dk 
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0 1 2 3 4 5 6 7 8 9 10  dk 

0 1 2 3 4 5 6 7 8 9 10  dk 

 

 

Additional questions for information that is relevant to more than one risk 
 

Further questions on feelings/emotions 
 

– To what extent does the person have unstable moods or mood swings?   

 
min low medium high  max 

0   1   2   3   4   5   6   7   8   9   10 dk 

 
To what extent does the person have negative feelings about him or 
herself (eg self-hatred, guilt, shame, humiliation)? . . .  . . . . . . . . . . . . . . .  

 
0   1   2   3   4   5   6   7   8   9   10 dk 

 

– To what extent is the person displaying  anger?. . . . . . . . . . . . . . . 0   1   2   3   4   5   6   7   8   9   10 dk
 

 

 
– To what extent does the person show anxiety (eg afraid, fearful)? . .  . . 0   1   2   3   4   5   6   7   8   9   10 dk

 
 

 
– To what extent does the person feel helpless?  . . . . . . . 0   1   2   3   4   5   6   7   8   9   10 dk

 
 

 
– To what extent does the person seem sad or downbeat?  . . . . . . . . . 0   1   2   3   4   5   6   7   8   9   10 dk

 
 

 
– To what extent is the person displaying  or expressing distress? . . . . . . . . 0   1   2   3   4   5   6   7   8   9   10 dk

 
 

 
– To what extent is the person expressing jealousy?  . . . . . . . . . . . . . . . . 0   1   2   3   4   5   6   7   8   9   10 dk

 

 
Questions on hopelessness 

– To what extent does the person lack any plans for the future? . . . . . . . . .  
 

– To what extent does the person think life is not worth living? . . . . . . . .  
 

Further questions on person’s perspective of self worth 
 

– To what extent does the person have an exaggerated self-worth or grandiosity?   

 
min low medium high  max 

0   1   2   3   4   5   6   7   8   9   10 dk 

 
 

– To what extent does the person regard him or herself as worthless?   0   1   2   3   4   5   6   7   8   9   10 dk
 

 

Further questions on mental health problems 
dk 

– Does the person have any history  of depression (past or present)?  . . . . . . . . . . yes no 
dk 

– 
Tick the most appropriate label for the current episode of 

depression? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

first episode relapse 

recovery (first) recovery (repeat) 
dk 

– Does the person have any history  of serious mental illness (past or present)?   yes no 

 
– How much does the person lack insight into his or her mental-health problems?  . 

 
min low medium high  max 

0   1   2   3   4   5   6   7   8   9   10 dk 

 
dk 

– Is the person currently suffering from symptoms of a mental  illness? yes no 
 

To what extent is the person displaying  manic or hypomanic behaviour (mood 
– 

swings, fast speech, excessive irritability, recklessness, impulsivity, etc)?  

 
min low medium high  max 

0   1   2   3   4   5   6   7   8   9   10 dk 

 

Questions on voice hallucinations 
dk 

– Does the person hear voices that are not present in reality? . . . . . . . . . . . . . . . . . yes no 

 
– How much do the voices urge the person to be harmed or endangered?  . . . 

 
min low medium high  max 

0   1   2   3   4   5   6   7   8   9   10 dk 

 
 

– How much do the voices urge the person to harm/endanger other people?  . 0   1   2   3   4   5   6   7   8   9   10 dk
 

 

 
– How likely is it that the person will act on the voices?. 0   1   2   3   4   5   6   7   8   9   10 dk
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not assertive somewhat assertive normally assertive 

very assertive excessively assertive dk 

 

 
Questions on paranoid delusions 

 

– 
Does the person suffer from delusions (ie clearly incorrect and 

illogical ideas about his or her life and circumstances)?  . . . . . . . . . . . . . . 
 

How much is the person obsessed about the perceived bad behaviour  
of 

 
particular known people?  . . . . . . . . . . . . . . . . . . . . .. . . . 

 

How much is the person obsessed about being harmed or persecuted 
by particular known people?  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

 
 

dk 

yes no 

 
min low medium high  max 

0   1   2   3   4   5   6   7   8   9   10 dk 

 

 
0   1   2   3   4   5   6   7   8   9   10 dk 

 

– How likely is it that the person will act on any delusions?  . . . . . 0   1   2   3   4   5   6   7   8   9   10 dk
 

 

Further questions on mental faculties/cognitive capacity 
 

– 
Does the person have impaired cognitive  functions (thinking processes, 

memory, concentration) or dementia?  . . . . . . . . . . .  . . . . . . . . . . . . . . 

 
 

dk 

yes no 

 
– To what extent have the thinking  processes and memory  deteriorated?  

 
min low medium high  max 

0   1   2   3   4   5   6   7   8   9   10 dk 

 
 

– How poor is the person’s ability to concentrate? . . . . . . . . . . . . .. . 0   1   2   3   4   5   6   7   8   9   10 dk
 

 

 
– To what extent do you believe the person to have learning disabilities? 0   1   2   3   4   5   6   7   8   9   10 dk

 

 
Further questions on personality 

 
– How assertive is the person? . . .. 

 
 

– How much does the person lack empathy?  . . . . . . . . . . . . . . . . . . . .. . 
min low medium high  max 

0   1   2   3   4   5   6   7   8   9   10 dk 

 
To what extent is the person overdependent (weak, over-reliant  on 
others, easily influenced, unable to function  independently)?  . . . .  . . .. 

 
0   1   2   3   4   5   6   7   8   9   10 dk 

 

 
dk 

– How organised is the person’s general approach to life? 
chaotic disorganised normal 
very organised obsessional/perfectionist 

 
– How much does the person lack the ability to cope with major life stresses? 

 

min low medium high  max 

0   1   2   3   4   5   6   7   8   9   10 dk 

 
 

– How hostile is the person? . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 0   1   2   3   4   5   6   7   8   9   10 dk
 

 

 
– How impulsive is the person? . . . . . . . . . . . . . .. . . . . . . . . . 0   1   2   3   4   5   6   7   8   9   10 dk

 
 

 
– How unreliable is the person (eg untrustworthy,  unpredictable, shiftless)?   0   1   2   3   4   5   6   7   8   9   10 dk

 

 
Further questions on motivation and engagement with world 

 
– How much is the person physically  isolated from the world? . . .. . . 0   1   2   3   4   5   6   7   8   9   10 dk

 
 

 
– How much has the person mentally  disengaged or withdrawn from the world? 0   1   2   3   4   5   6   7   8   9   10 dk

 
 

 
– To what extent does the person lack motivation in general life?   0   1   2   3   4   5   6   7   8   9   10 dk

 

 

– 
To what extent does the person appear listless or lacking energy and 

drives (eg loss of enthusiasm, libido, and/or interest)? . . . . . . . . . .. 

 
0   1   2   3   4   5   6   7   8   9   10 dk 
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Further questions on social context 

 

Questions on current relationships 
dk 

– Are you concerned about risks due to the person’s current relationships?   yes no 

 
– How much does the person lack an external network of relationships?  

 

min low medium high  max 

0   1   2   3   4   5   6   7   8   9   10 dk 

 
 

– How much does the person lack supportive relationships?  . . . . .. . 0   1   2   3   4   5   6   7   8   9   10 dk
 

 

To what extent does the person have detrimental relationships (eg bullied,  over- 
 
protected) or ones with people who have antisocial or exploitative  behaviours?  . . 

 

To what extent does the person perceive his or her relationships to 
have recently changed for the worse (eg bitter divorce or separation; 
rows; carer’s role; bereave- ment)? . . . . . . . . . . . . . 

 

Questions on living arrangements 

 
0   1   2   3   4   5   6   7   8   9   10 dk 

 
 

 
0   1   2   3   4   5   6   7   8   9   10 dk 

 
 
 
 

dk 

– Are you concerned about risks due to the person’s living arrangements? . . . yes no 
 

– How often does the person’s living place change? . 
monthly or more  several times per year 

every year less  dk 
 

institution/fully supervised daily support 

– What type of supported living does the person 

have  . . . 

dk 

limited support no support (own home) 

hostel homeless 
 

– 
To what extent is the person’s accommodation isolated from other living 

abodes and resources? . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 
 

To what extent does the neighbourhood  or care environment  exacerbate 
the person’s particular  risks (eg violent,  easy access to drugs and 
unhelpful  temptations)? . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . 

 

min low medium high  max 

0   1   2   3   4   5   6   7   8   9   10 dk 

 
 
 

0   1   2   3   4   5   6   7   8   9   10 dk 

 

– To what extent is the person’s accommodation showing lack of care? . .. 0   1   2   3   4   5   6   7   8   9   10 dk
 

 

 
– To what extent does the person think the accommodation is unfit to live in? . 0   1   2   3   4   5   6   7   8   9   10 dk

 

 

Questions on financial problems 
dk 

– Are you concerned about risks due to financial problems?  . . .. . . . . yes no 

 
– How anxious is the person about perceived levels of debt? . . . . .. 

 
min low medium high  max 

0   1   2   3   4   5   6   7   8   9   10 dk 

 
To what extent does the person’s income fail to meet the basic essentials for 
– 

supporting living requirements of the household (food, rent, heating, etc)?  
 

Questions on employment 

 
0   1   2   3   4   5   6   7   8   9   10 dk 

 

 
 
 

dk 

– Are you concerned about risks related to the person’s employment  or lack of it . yes no 
 

How unstable is the person’s employment history (eg always 
changing, poor 

 
disciplinary record)? . . . .. . . . . . . . . . . . . . . . . . . .. . 

 

To what extent does the person believe a recent change in employment to 
be detrimental (eg loss of job, retirement, work stress)? 

Further questions on general current behaviour 
 

To what extent does the person take reckless risks (eg with sexual 
behaviour, driving, gambling and other leisure pursuits)? . .  . . 

 
min low medium high  max 

0   1   2   3   4   5   6   7   8   9   10 dk 

 

 
0   1   2   3   4   5   6   7   8   9   10 dk 

 

 
 
 
 

0   1   2   3   4   5   6   7   8   9   10 dk 
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To what extent does the person’s behaviour lead to unintentional risks (eg fire or 
 
harm 

due to being careless, thoughtless or forgetful; self-injurious  behaviour)?  . . . . . 

 
0   1   2   3   4   5   6   7   8   9   10 dk 

 

– To what extent does the person experience problems with sleeping?  . . .. . . . 0   1   2   3   4   5   6   7   8   9   10 dk
 

 

– 
To what extent has the person been behaving out of character or 

unpredictably in recent weeks? . . . . . . . . . . . . . . . . . . . . . . . .  
 

To what extent does the person display challenging behaviour (eg 
antisocial, disruptive, resistance to advice, predatory)  . .. .. . . . . . . . . . . . . 

 
0   1   2   3   4   5   6   7   8   9   10 dk 
 

 
 
0   1   2   3   4   5   6   7   8   9   10 dk 

 

– To what extent does the person’s day lack any structure?  . . . . . . . . . 0   1   2   3   4   5   6   7   8   9   10 dk
 

 
dk 

– What is the person’s general level of activity? . . .. . . 
passive/inert underactive 
normal overactive hyperactive 

 

Further questions on substance misuse 

 
– To what extent does the person misuse alcohol  to the detriment of his or her life? . . 

 
min low medium high  max 

0   1   2   3   4   5   6   7   8   9   10 dk 

 
 

– To what extent does the person misuse drugs to the detriment of his or her life? . . . . 0   1   2   3   4   5   6   7   8   9   10 dk
 

 

Further questions on insight and responsibility 
 

To what extent does the person lack insight into the potential  
consequences of his/her risk-taking  behaviour?  . . . . . . . . . . . . . . . . . . . . .. 
 

To what extent does the person lack any sense of responsibility for the 
outcomes of risk-taking  behaviour?  . . . . . . . . . . . . . . . . . . . . . . . . . . .  
 

– 
To what extent does the person fail to recognise any need for help with 

mental- health issues? . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 
 

Further questions on physical health problems 

 

 
 
0   1   2   3   4   5   6   7   8   9   10 dk 
 

 
 
0   1   2   3   4   5   6   7   8   9   10 dk 
 

 
 
0   1   2   3   4   5   6   7   8   9   10 dk 

 

If the person has a life-threatening  or degenerative illness (eg cancer, multiple  
sclerosis, Parkinson’s, emphysema, HIV), when was it first diagnosed? . . . .  

 
dk 

d m y 
 
min low medium high  max 

– To what extent does the person suffer from chronic or periodic pain? 0   1   2   3   4   5   6   7   8   9   10 dk 

 
To what extent does the person suffer from problems that affect mobility 
and/or dexterity  (eg eyesight, balance, disability due to disease or trauma)?   
 

– 
To what extent does the person suffer from physical problems affecting 

communication? . . . . . . . . . .  
 

To what extent has there been a deterioration in physical health over 
the last few 

 
months, including temporary or cyclical problems?  . 

 

Further questions on concordance with health services/medication/therapies 
 

To what extent is the person failing to concord with medication or therapies, 
either 

 
deliberately or due to complexity of polypharmacy, for example?  

 

To what extent does the person fail to perceive health or social  care 
services as 

– 
supportive?  . . . . .  

 
0   1   2   3   4   5   6   7   8   9   10 dk 
 

 
 
0   1   2   3   4   5   6   7   8   9   10 dk 
 

 
 
0   1   2   3   4   5   6   7   8   9   10 dk 
 

 
 
 
 
0   1   2   3   4   5   6   7   8   9   10 dk 
 

 
 
0   1   2   3   4   5   6   7   8   9   10 dk 

 

– 
When did the person last access any health or social-care services or 

have ongoing medication reviewed?  . . . . . . . . . . . . . . . . . .  
 

To what extent does the person and/or carer believe that their medication/therapies 

 
dk 

d m y 
 
 
min low medium high  max 

– 
are failing to have a beneficial  effect? . .. . . 

0   1   2   3   4   5   6   7   8   9   10 dk 
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Further questions on adverse life events 

 

– 
Has the person ever been the victim of any form of abuse (eg physical,  

sexual, financial, emotional)?  . . . . . . .. . . . . . . . . . . . . . . 

 

 
dk 

yes no 
 

dk 

– Has the person ever been sexually abused? . . . . . . .. . . . . . . . yes no 
 

dk 

– When was the most recent episode of sexual abuse? . . . . . .. d m y 
dk 

– Was the first episode of sexual abuse during childhood  or early adolescence? . yes no 
dk 

– Has the person ever been physically  abused? . . . . . . . . . .. . . . . . . . yes no 
 

dk 

– When was the most recent episode of physical abuse? . . .. . . d m y 
 

– 
Was the first episode of physical abuse during childhood  or early 

adoles- cence? . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . 

 
dk 

yes no 
 

dk 

– Has the person ever been emotionally  or racially abused? . . .. . . yes no 
 

dk 

– When was the most recent episode of emotional or racial abuse? . d m y 
 

– 
Was the first episode of emotional or racial abuse during childhood  or 

early adolescence? . . . . . . . .. . . . . . . . . . . 

 
dk 

yes no 
 

dk 

– Has the person ever been financially  abused? . . . . . . . .. . . . . . . yes no 
 

– 
Has the person ever faced serious criminal justice proceedings (court 

cases, custodial sentences, etc)? . . . . . . . . . . . .. . . . . . . . . . . 
 

– 
To what extent did the person grow up in emotionally disturbed or 

disruptive envi- ronments?  . . . . . . . . . . . . . .. . . . . . . . . . . . . 

 
dk 

yes no 

 
min low medium high  max 

0   1   2   3   4   5   6   7   8   9   10 dk 

 

– How seriously  has the person suffered from eating disorders in the past?. 0   1   2   3   4   5   6   7   8   9   10 dk
 

 

 
– How much has the person had detrimental educational experiences? . 0   1   2   3   4   5   6   7   8   9   10 dk

 

 

Further questions on person’s behavioural  presentation during assessment 
dk 

– Are you concerned about the person’s engagement with the assessor?. yes no 

 
– How difficult is it to have rapport and empathy with the person?  .. 

 
min low medium high  max 

0   1   2   3   4   5   6   7   8   9   10 dk 

 
 

– To what extent is the person unwilling to communicate or respond to questions? 0   1   2   3   4   5   6   7   8   9   10 dk
 

 

To what extent do you have an uneasy ‘gut’ feeling about the person (eg about 
– 

the person’s honesty, something doesn’t quite add up, something missing)?  . . . . . . 

 
0   1   2   3   4   5   6   7   8   9   10 dk 

 

 
dk 

– Are you concerned about verbal indicators of risk? . . . . . . . . .. . . . . yes no 

 
– How aggressive/hostile is the person’s tone of voice? . .. . . 

 
min low medium high  max 

0   1   2   3   4   5   6   7   8   9   10 dk 

 
 

– How depressed and downbeat is the person’s tone of voice? . .. . . . . 0   1   2   3   4   5   6   7   8   9   10 dk
 

 
 

– To what extent is the person failing to make sense (eg incoherent, irrational)? . . . 
min low medium high  max 

0   1   2   3   4   5   6   7   8   9   10 dk 

 
dk 

– Are you concerned about the person’s body language and expression?  . yes no 

 
– To what extent does the person’s body language indicate distress? . 

 
min low medium high  max 

0   1   2   3   4   5   6   7   8   9   10 dk 
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→ 

 

To what extent do the person’s movements, posture, and facial 
expression indicate 

 
a low, downbeat, or gloomy mood? . . . . . . . . . . . . 

 
0   1   2   3   4   5   6   7   8   9   10 dk 

 

– How aggressive or threatening are the person’s movements and posture?  . . . . . . . . 0   1   2   3   4   5   6   7   8   9   10 dk
 

 
– To what extent does the person appear detached or preoccupied?  . . . . . . . . . . . . . . . 0   1   2   3   4   5   6   7   8   9   10 dk

 

 
– To what extent does the person avoid eye contact? . . . .. . . 0   1   2   3   4   5   6   7   8   9   10 dk

 

 
dk 

– What is the person’s predominant form of eye movement?   . unresponsive/glazed normal darting 
 

How inconsistent are the person’s physical,  verbal, and emotional  
presentations (lack of congruence)?  . . . . . . . . . . . . . . .. . . . . . . . . . . . . 

 

Further questions on appropriateness of diet 

 

min low medium high  max 

0   1   2   3   4   5   6   7   8   9   10 dk 

 

– To what extent does the person fail to eat appropriately?  . . . . . . . . 0   1   2   3   4   5   6   7   8   9   10 dk
 

 
Is the person’s weight  a cause of concern? Tick the appro- 

 
dk 

extreme underweight underweight 
– 

priate description.  . . . . . . . . .. . weight OK overweight extreme overweight 
 

min low medium high  max 

– How much has the person experienced weight  change in recent months?   0   1   2   3   4   5   6   7   8   9   10 dk 

 

 

– To what extent does the person fail to drink adequately? .. . . 0   1   2   3   4   5   6   7   8   9   10 dk
 

 

 
 

Form completed by: 
 

 
 
Setting (where completed): Date: d m y 

 

 
 

Instructions for completing the form 
 

1. This tool records your risk judgements associated with the person’s mental-health  problems and the 
information supporting them. It is not an interview  schedule: it is your prerogative how and when to ask 
questions. 
 

2. Rapid screening questions are placed first in the document, with an arrow pointing  to the page number, p, 
where additional  questions can be found for the screening question (e.g. p4). Relevance of information  
varies across assessments and further  data is only required for screening questions that have been given a “yes” 
response. However, by answering all screening questions, GRiST will have recorded your comprehensive 
consideration of risk issues irrespective  of how much information is actually supplied. 
 

3. GRiST helps you record data only for those issues relevant to the particular  circumstances and context of the 
current assessment. It has a number  of questions that ask whether you are concerned about a concept or 
whether the concept applies and you only need to answer the questions indented beneath if your answer is yes. 
 

4. Many questions have a ten-point  rating scale to record your subjective judgement about the extent to which the 
item applies to the person. Response choices range from 0 for no extent, to 10 for maximum extent, with labels 
above the boxes to help interpret the meaning of the numbers. Do not worry about the exact number: the ten-
point scale allows for a margin of error and you are only expected to give a response that “feels right”. 
 
5. Give  dates as accurately  as you can but leave the days and/or months blank if unknown. 
 
6. If items were considered during  assessment but no answer was obtained, mark the dk box for “Don’t Know”. 
 
 

Repeat  assessments using the paper  form 
 
If people are using GRiST on paper rather than the online version, then carrying out repeat 
assessments is inefficient because much of the data that has not been changed needs to be put in 
again on a new form. We have tried to help with this by providing  a repeat assessment form on the 
following two pages. Detach it from the full form, print as many copies as you like, and follow the 
instructions for how to identify changed information  on the full GRiST form. 
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Repeat  assessment form for GRiST 
 

Each item of information on this repeat-assessment form equates to a screening question  on the full 
form and is in the same order.  All you need to do is: 
 

1. choose a different  coloured  pen or some other form of identification  that distinguishes the 
repeat data from the data on the original GRiST form; 

 
2. tick those questions on this repeat form where the repeat assessment has identified  a change in status and 

fill in the changed data on the original GRiST form using the chosen distinguishing  pen/mark; 
 

3. in the space provided  at the end of the repeat assessment, record  the name of the repeat 
assessor, the date, and how the new GRiST data will be identified; 

 

4. attach the repeat assessment form to the original GRiST  assessment. 
 

Please note that the online version of GRiST automatically accounts for historical and persistent data, 
making the han- dling of repeat assessments and the reporting of changes very much easier. 

 
 

Repeat  assessment questions 
 

For all the risk areas below,  state whether  the repeat assessment has changed their data. If so, add 
the new data to the original GRiST form as instructed  above. 

SUICIDE  Data changed? 
 

Past and current suicide attempts? If yes, → p6  . . .  . . . . . . . . . . . . . . . .  

Current intention to commit suicide? If yes, → p6  . . . . . . . . . . . . . . . . . . . . 

Potential triggers for prospective suicide? If yes, → p7  . . . .  . . . . . . . . . . . 

Suicidal ideation? If yes, → p7  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

. . . . . . . . . . . . . . . 

yes 

yes 

yes 

yes 

no 

no 

no 

no 

SELF-HARM  Data changed? 

Past and current  episodes of self-harm? If yes, → p7  . . . . . . . . . . . . . . . . . . . . . . 
. . . . . . . . . . 

yes no 

Potential triggers for prospective self-harm? If yes, → p7  . . .. . . . . . . . . . . 

Self-harm ideation? If yes, → p8  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

. . . . . . . . . . . . . . . 

yes 

yes 

no 

no 

HARM TO OTHERS OR DAMAGE TO PROPERTY  Data changed? 
 

Past and current  episodes of harm or damage? If yes, → p8 but also 

record the most important information below . . . .. . . . . . . . . . . 

 
yes no 

Targets of harm to others? . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . .  yes  no 

Any violent assault/physical  abuse? If yes, → p8  . . . . . . . . . .. . . . . . . . . . . .     yes  no 

Any fire-setting? If yes, → p8  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .      yes  no 

Intention for harm or damage? If yes, → p9  . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . .  yes  no 

Potential triggers for prospective harm or damage? If yes, → p9  . . . . . . . . . . . . . .  yes  no 

Ideation about violence? If yes, → p9  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  yes  no 

Child protection issues? . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . . .  yes  no 

SELF NEGLECT  Data changed? 
 

Appearance indicators of self neglect? If yes, → p10 . . . . . .  yes no 

VULNERABILITY  OF SERVICE USER  Data changed? 

Falls? If yes, → p10  . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
 

Person’s appearance and behaviour indicators  of vulnerability? If yes, → p10   

yes 
 

yes 

no 
 

no 

RISK TO DEPENDENTS?  Data changed? 
 

Any new information affecting risks to dependents? If yes, → p5 .. . yes no 
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SCREENING QUESTIONS RELEVANT TO MORE THAN ONE RISK                              Data changed? 

Feelings/emotions? If yes, → p11  . . . . . . . . . . . … . . . . . . . . . . . . . . .                 yes           no 

Person’s perspective of self worth? If yes, → p11  . . . . . . .. . . . . . . . . . . . .                 yes           no 

Mental health problems? If yes, → p11 . . . . . . . . . . . . . . . . . ………. . . . . . .                yes           no 
 

Mental faculties/cognitive capacity? If yes, → p12  . . . . . .. . . . . . . . . .                 yes           no 

Personality? If yes, → p12  . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . .                 yes           no 

Motivation and engagement with world? If yes, → p12  . . . . . . . . . . . .                 yes           no 

Social context? If yes, → p13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                yes           no 

General current behaviour? If yes, → p13 . . . . . . . . . . . . . . . . . . . . . .                yes           no 

Substance misuse? If yes, → p14  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                 yes           no 

Insight and responsibility?  If yes, → p14  . . . . . . . . . . . . . . . . . . . . . . .                 yes           no 

Physical health problems? If yes, → p14  . . . . . . . . . . . .. . . . . . . . . . . .                 yes           no 

Concordance with health services/medication/therapies? If yes, → p14  ..                 yes           no 

Adverse life events? If yes, → p15 Consider also social context (p.13) 
and physical health (p.14). . . . . . . . . . . . . . . . . . . . . .  

 

yes no 
 

Person’s behavioural  presentation  during  assessment? If yes, → p15  . . . . . . . . . . yes no 
 

Appropriateness of diet? If yes, → p16  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . yes no 
 
 

REPEAT RISK SUMMARY                 OVERALL RISK COMMENTS 
 

 
                         Suicide . .. .  

 
0 

 
1 

 
2 

 
3 

 
4 

 
5 

 
6 

 
7 

 
8 

 
9 

 
10 

 
dk 

 0 1 2 3 4 5 6 7 8 9 10 dk 

                      Self harm .             
 0 1 2 3 4 5 6 7 8 9 10 dk 

                      Self neglect             

                       Harm to ot-      

                        hers /damage  
 

                            Vulnerability  
 

                    Risk to    
                     dependents  

0   1   2   3   4   5   6   7   8   9   10 dk 

 
 
0   1   2   3   4   5   6   7   8   9   10 dk 
 

 
0   1   2   3   4   5   6   7   8   9   10 dk 



www.galassify.org/grist patient name/id: 
 

231 
 

 
 
 

 
UPDATED ACTIONS 

 

 
 
 
 
 
 
 

Form completed by: 
 
 

Method  used to distinguish  repeat assessment data: 
 

 
Setting (where completed):                                                 Date:        d         m     y 

 




