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Thesis Summary

Biomass-To-Liquid (BTL) is one of the most promising low carbon processes available to
support the expanding transportation sector. This multi-step process produces hydrocarbon
fuels from biomass, the so-called “second generation biofuels” that, unlike first generation
biofuels, have the ability to make use of a wider range of biomass feedstock than just plant
oils and sugar/starch components. A BTL process based on gasification has yet to be
commercialized. This work focuses on the techno-economic feasibility of nine BTL plants.
The scope was limited to hydrocarbon products as these can be readily incorporated and
integrated into conventional markets and supply chains.

The evaluated BTL systems were based on pressurised oxygen gasification of wood
biomass or bio-oil and they were characterised by different fuel synthesis processes
including: Fischer-Tropsch synthesis, the Methanol to Gasoline (MTG) process and the
Topsoe Integrated Gasoline (TIGAS) synthesis. This was the first time that these three fuel
synthesis technologies were compared in a single, consistent evaluation. The selected
process concepts were modelled using the process simulation software IPSEpro to
determine mass balances, energy balances and product distributions. For each BTL
concept, a cost model was developed in MS Excel to estimate capital, operating and
production costs. An uncertainty analysis based on the Monte Carlo statistical method,
was also carried out to examine how the uncertainty in the input parameters of the cost
model could affect the output (i.e. production cost) of the model. This was the first time that
an uncertainty analysis was included in a published techno-economic assessment study of
BTL systems.

It was found that bio-oil gasification cannot currently compete with solid biomass
gasification due to the lower efficiencies and higher costs associated with the additional
thermal conversion step of fast pyrolysis. Fischer-Tropsch synthesis was the most
promising fuel synthesis technology for commercial production of liquid hydrocarbon fuels
since it achieved higher efficiencies and lower costs than TIGAS and MTG. None of the
BTL systems were competitive with conventional fossil fuel plants. However, if government
tax take was reduced by approximately 33% or a subsidy of £55/t dry biomass was
available, transport biofuels could be competitive with conventional fuels. Large scale
biofuel production may be possible in the long term through subsidies, fuels price rises and
legislation.
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1 INTRODUCTION

1.1 Background

Energy is a critical resource that governs the lives of humanity and promotes civilization.
Energy services around the world have provided comfort through transportation, power
and heat, however there is a considerable and widespread concern over the effect of the
extensive consumption of energy on the environment and security for those countries with

limited energy resources.

Over the last decades, significant amounts of carbon dioxide (CO,), which is a greenhouse
gas, have been accumulated in the atmosphere. Since the Industrial Revolution, humans
have significantly added to the amount of heat-trapping greenhouse gases in the
atmosphere by burning fossil fuels, cutting down forests and other activities. It is believed
that the recent increase in man-made greenhouse gas (GHG) emissions is the main
reason behind the observed rise in average global temperatures [1]. As pressure to reduce
GHG grows, several countries have ratified the Kyoto Protocol (1997), which is an
agreement made under the UN Framework Convention on Climate Change for the
reduction of GHG [2]. The major feature of the Kyoto Protocol is that the industrialised
countries that ratify this protocol commit to mandatory GHG emissions reductions.
Specifically for the Member States of the European Union (EU), this corresponds to a
reduction of 5% below 1990 levels by 2008 - 2012 [2].

In addition to environmental concerns and according to the current facts, energy experts
predict a 35% increase in worldwide petroleum demand by 2025 [3]. This will increase
dependency on a limited number of oil producing countries with grave risks for energy
security and global social stability [4]. Regarding the oil market, it is predicted that the
Middle East will continue to be in dominant position as it has the greatest proven oil
reserves in the world. Conversely, nations with less petroleum resources will be vulnerable
to energy shortages unless they develop alternative sources of energy. Such alternatives

include nuclear, wind, solar, hydroelectricity, wave, tidal, geothermal and bioenergy.

Biomass derived transportation fuels (biofuels) can play an important role in filling the gap

between limited fuel supplies and increasing worldwide demand. Biomass is the only
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carbon neutral alternative source for the production of liquid fuels thus it can constitute a
key option to deliver significant reductions in GHG emissions from the transportation
sector. Contrary to electricity or heat production, where the relevant technologies can be
operated in a carbon neutral way by using CO, sequestration, the transportation sector
does not allow CO, capture due to the nature of transport emissions. Therefore, the
substitution of fossil fuels by biofuels constitutes the only way to reduce GHG emissions
from transport [5]. This is also why the European Union has set ambitious targets for the
application of biofuels through EU Biofuels Directive 2009/28/EC. According to the
directive, 10% of all transport fossil fuels sold in EU countries, calculated on the basis of
energy content, should be replaced with biofuels by 2020 [6]. The UK’s implementation of
the EU Biofuels Directive is the Renewable Transport Fuel Obligation (RTFO). The main
requirement of the RTFO is that biofuels should contribute over 5%, by volume, of road
vehicle fuels sold in the UK by April 2013 [7].

Nowadays, the substitution of transport fossil fuels with biofuels is already feasible by
state-of-the-art renewable liquid hydrocarbons, such as bhioethanol for gasoline engines,
produced by fermentation of sugar or starch and biodiesel for diesel engines produced via
transesterification of vegetable oils or animal fats [8]. These so-called “first generation
biofuels” are characterised by an unexpected growth following government subsidies and
legislative pressures, however there are some serious problems associated with their
application with respect to feedstock requirements and land availability. In the UK, the road
transport sector consumes 37.8 million tonnes of crude oil products per year [8]. In order to
meet current usage, 12.3 million ha and 7.8 million ha of land would be required for rape
cultivation and sugar beet production [8]. Since the total area of arable land in the UK is
6.5 million ha [8], first generation biofuels do not constitute a feasible solution for meeting
the current UK transport requirements. In addition to the consequences on economy and
land competition, net carbon savings from first generation biofuels are questionable due to
the clearance of virgin land (e.g. rain forests) for cultivation, high fertilizer requirement and

low productivity per hectare [4].

In order to overcome the above mentioned shortages, the so-called “second generation
biofuels” have been introduced. Unlike first generation biofuels, they have the ability to
make use of a wider range of biomass feedstocks than just plant oils and sugar/starch

components. These sources include non-food biomass, dedicated energy crops and
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biomass co-products and waste from many different sectors such as agriculture,
horticulture, forestry and paper and pulp processing [9]. The processing of these ligno-
cellulosic biomass feedstocks by thermal conversion is considered to be a long-term

prospect for renewable transport fuels production [10].

Second generation hydrocarbon biofuels are specifically attractive due to their unlimited
compatibility with conventional fuels in any proportion and the capability to be refined to
current fuel standards and specifications in conventional refineries, thus offering
economies of scale and access to state-of-the-art processing. Development of thermal
processing technologies for the production of second generation biofuels is already well
advanced in some areas, especially gasification, which presents higher thermal
efficiencies compared to combustion, whereas fast pyrolysis is still at an early stage of
development [11].

1.2 Scope and objectives of the thesis

This study was funded by the Engineering and Physical Sciences Research Council
(EPSRC) as part of the SUPERGEN Bioenergy Il Consortium which was concerned with
the development of energy from biomass. This consortium consisted of leading academic
and industrial partner organisations across the UK who organised the work into eight

integrated and coordinated themes that are listed below and shown in Figure 1-1.

Resources (Subtheme: Marine Biomass)
Characterisation and Pre-treatment (Subtheme: Nitrogen)

Thermal Conversion

Transport Fuels, Biorefinery (Subtheme: Ammonia)

1.

2.

3

4. Power and Heat
5

6. Systems Analysis
7. Innovation

8

Dissemination

The present study was carried out as part of Theme 5 of this programme and focused on
transport fuels. Aston University was the leader of Theme 5 and had responsibility for a
number of tasks within this theme including the production of hydrocarbon fuels and

chemicals from biomass derived syngas via Fischer-Tropsch synthesis.
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SUPERGEN Bioenergy I

Dissemination

Characterisation
& Pretreatmen

Resources

Marine
biomass

¢ Innovation :
-------------------- Systems analysis

Figure 1-1: The structure of SUPERGEN Bioenergy |l

This work examines processes from solid biomass to liquid transport fuels, known as

Biomass-To-Liquids (BTL) processes. The term “BTL” is only applied to thermo-chemical

processes, such as pyrolysis and gasification, and thus it is not used for biochemical

routes (e.g. fermentation) to biofuel production. The scope was limited to hydrocarbon

products (diesel, gasoline and kerosene) as these can be readily incorporated and

integrated with conventional markets and supply chains while alcohols (e.g. ethanal,

methanol, mixed alcohols) and ethers (e.g. DME — dimethyl ether) have more limited short

term prospects in the UK and European transport fuel infrastructures [12].

The main objectives of this thesis are as follows:

Identify the most promising thermo-chemical process routes in terms of
performance and costs for large-scale production of 2™ generation liquid transport
biofuels, including options for biomass pre-treatment (e.g. fast pyrolysis),
gasification technologies, syngas clean-up and fuel synthesis processes.

Measure the technical performance in terms of energy efficiency and mass yield of
the selected process concepts by using the process simulation software IPSEpro to

determine mass balances, energy balances and product distributions.
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e Develop an economic model for each process concept to estimate capital,
operating and production costs.

o Compare the selected process concepts in terms of performance and costs.

e Conduct a sensitivity analysis on production costs with respect to key performance
and economic parameters.

e Carry out an uncertainty analysis to examine how the uncertainty in the economic
model parameters can affect production costs.

e Estimate the minimum subsidy required for biofuels to compete with conventional

transport fuels.
1.3 Thesis structure

Chapter 2 describes the basic features and status of the various technology options
available for the production of liquid hydrocarbon fuels in order to identify the most suitable
technologies for commercial biofuel production.

Chapter 3 reviews previous techno-economic studies of BTL systems. The scope, results,
strengths and weaknesses of a number of recent comparative studies are highlighted to
develop a scope for this work that supplements previous studies and builds on experience

already gained.

Chapter 4 discusses the selection of the BTL plant concepts identified as most promising
for techno-economic evaluation, whereas Chapter 5 describes the development of the
process simulation models that are used to evaluate the selected BTL concepts. The
chapter concludes with a performance comparison in terms of energy efficiency and mass

yield of the selected systems.

Chapter 6 discusses the methodology which was used to economically evaluate the
selected BTL concepts which are compared in terms of capital, operating and production
costs. The chapter also addresses uncertainties in the economic parameters and
examines whether BTL plants could compete economically with conventional transport

fuels plants.

Chapter 7 summarises the findings of this work and draws conclusions from the systems’

evaluations. The thesis ends with recommendations for further work in Chapter 8.
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2 TECHNOLOGIES NECESSARY FOR BIOFUEL SYNTHESIS

2.1 Introduction

This chapter provides an overview of various thermo-chemical conversion technologies
associated with the production of liquid hydrocarbon fuels. It describes the main
technologies of biomass pre-treatment, gasification, gas cleaning and conditioning and fuel
synthesis. This overview cannot properly consider all aspects of the available technologies
for biofuel production as this is out of the scope of this thesis but identifies the main
advantages and disadvantages of these technologies and briefly discusses them. The
findings of this overview led to the selection of the most promising technologies for
commercial transport biofuel production which is discussed in Chapter 4.

Biomass-to-Liquid (BTL) is a multi-step process that converts biomass to liquid biofuels
through thermo-chemical routes. It consists of several discrete steps which are discussed
in the next sections [12]:

¢ Reception storage and handling

e Preparation including comminution, screening, drying

e Pre-treatment as fast pyrolysis or torrefaction (optional)

e Gasification of solid biomass (fresh or torrefied) or bio-oil from fast pyrolysis

e Gas cleaning to derive correct gas quality

e Gas conditioning to derive correct gas composition

e Synthesis of hydrocarbons (or methanol or alcohols)

e Conversion of methanol to gasoline and/or diesel (optional)

e Synthesis products refining

e Offsites including an oxygen production plant (optional) and power and heat

provision
2.2 Reception, storage and handling (RSH)

Conversion of biomass into a more valuable product requires that after harvesting, the
material is transported to the conversion plant where it is stored and reclaimed for
preparation and pre-treatment. A simple concrete pad with a front end loader can be used

for biomass storage in small-scale plants, whereas substantial automated bulk handling
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systems analogous to those found on pulp and paper mills can be used in large capacity
plants [12].

A wide variety of biomass sources can be used as feedstock for the production of 2™
generation liquid fuels. Such sources range from wood (logging residues, trees, wood
wastes, SRC), energy crops (miscanthus and switchgrass) and agricultural wastes (e.qg.
straw) [8, 13]. The elemental composition along with the heating value of the biomass
employed is required for the estimation of mass and energy balances. In Table 2-1 such
data is given for several types of biomass.

Table 2-1: Composition & calorific values of different types of biomass (wt% dry, ash free)

[14]
Biomass C H 0 N s cl |(_|I\;I_|J\;kg) I(_l\%kg)
Wood chips | 50.8 |62 |424 |05 |005 |0013 |20.7 19.4
Miscanthus | 49.1 |64 |439 |03 |01 |0132 |19.9 185
Switchgrass | 49.2 | 6 439 |077 |o008 |0036 |193 18
Wheatstraw | 485 |58 |436 |174 |01l |0263 |19.4 18.1
Ricesttaw | 481 |59 |436 |169 |0.14 |0581 |19.7 18.4

2.3 Preparation

Biomass requires several preparation steps, the number of which is determined by the
type of biomass. These steps include:

e Comminution to reduce biomass material size to the necessary size for the
subsequent conversion step.

e Screening to separate the required biomass particle size. This may include
rejection of oversized particles for recycling to a re-chipper and/or rejection of the
undersized particles which can potentially be used elsewhere in the plant (e.g.
combustion for heat provision to the drier).

e Drying to reduce biomass moisture content to the preferred level for the
subsequent conversion step.

e Optional steps, such as magnetic separation to remove ferrous metals. These

steps depend on the type of biomass used in the process.
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Biomass feedstocks are typically characterised by relatively high water contents (up to
65%) [8]. For biomass gasification (BG) applications, drying is usually required to reduce
the moisture content to 10-15% wt for efficient operation of the gasifier [8, 15, 16]. For fast
pyrolysis, the moisture content of the feed material should be reduced to a maximum 10%
[17].

2.4 Pre-treatment

In addition to biomass preparation, further thermal pre-treatment may be desirable for
certain biomass feedstocks or gasification technologies. Fast pyrolysis and torrefaction
have attracted considerable interest as methods of pre-treatment for biomass since both
technologies can convert biomass into high energy dense carriers to ease transportation

and handling.

2.4.1 Fast pyrolysis
2.4.1.1 Process description

Pyrolysis is the thermal decomposition of the organic components in biomass in the
absence of oxygen to produce a mixture of solid char, condensable liquids and gases. The
relative proportions of the products depend on the pyrolysis method, the biomass
characteristics and the reaction parameters [18, 19]. Fast pyrolysis is a moderate
temperature (around 500°C) process that devolatilises biomass into high yields of a liquid
known as bio-oil (up to 75 wt%), with some char (typically 13 wt%) and gas (typically 12
wt%o).

Bio-oil yields can be maximised with short vapour residence times of typically 1 second,
rapid cooling of pyrolysis vapours, high heating rates and moderate temperatures of
around 500°C [20]. Typical bio-oils have a high oxygen content up to about 45 wt% and
may contain up to 35 % water [17, 21]. The main characteristics of bio-oil are summarised
in Table 2-2.

Figure 2-1 shows a typical fast pyrolysis process based on the fluidised bed reactor

technology. After preparation, which usually includes drying and grinding, the biomass is

fed into the reactor via a conveyor screw.
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Table 2-2: Typical characteristics of wood-derived bio-oil [17, 22]

Moisture content 25%

pH 2.5

Specific gravity 1.20

Elemental analysis (moisture free basis)

C 56%

H 6%

O 38%

N 0-0.1%

Higher heating value, HHV as produced 17.0 MJ/kg

(depends on moisture)

Viscosity (at 40°C and 25% water) 40-100 cP

Gas
——> export
Cyclones J Quench Recycle >
/\ () gas
Dried & sized >
Biomass ﬁa\
N
‘ Char for process heat Electrostatic
or export precipitator
Bio-oil
Recycle gas
heater and/or
combustor

Figure 2-1: Typical fast pyrolysis process

The heat for both pyrolysis and drying may be provided by the combustion of parts or all of
the non-condensable gases and char, depending on temperature. The char is separated in
a set of cyclones, after which the vapours are condensed to give the bio-oil. Electrostatic
precipitation has been shown to be the most effective method for collection of aerosols
which are formed during the condensation of pyrolysis vapours [17]. Extensive reviews of
biomass fast pyrolysis are available [11, 17, 22, 23].
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2.4.1.2 Bio-oil gasification for synfuels

As discussed below, there is an increasing interest in using bio-oil and bio-oil/char slurries

as energy carriers to feed state-of-the-art gasifiers for liquid fuels synthesis plants. Even

though the additional thermal step of fast pyrolysis reduces overall process efficiency [5,

17], there are some important advantages associated with this option:

Easier and cheaper transportation

Biomass has a much lower bulk density (100-150 kg/m®) compared to bio-oil (1200
kg/m®), thus due to the lower volume of feed material this option results in lower
transportation costs [12, 17]. In addition, the energy content of bio-oil is about the
same as biomass which, in combination with bio-oil’s higher bulk density, leads to
higher energy densities than biomass [5, 12, 17].

Need for pre-treatment for certain gasifiers
Fast pyrolysis, along with other upgrading technologies, is considered crucial for
entrained flow gasifiers since this technology requires very fine particles