
DOCTOR OF PHILOSOPHY

Techno-economic assessment and
uncertainty analysis of thermochemical

processes for second generation biofuels

Ioanna Dimitriou

2013

Aston University



 

 

 

 Some pages of this thesis may have been removed for copyright restrictions. 

 

If you have discovered material in AURA which is unlawful e.g. breaches copyright, (either 

yours or that of a third party) or any other law, including but not limited to those relating to 

patent, trademark, confidentiality, data protection, obscenity, defamation, libel, then please 

read our Takedown Policy and contact the service immediately 

  



TECHNO-ECONOMIC ASSESSMENT AND UNCERTAINTY ANALYSIS 

OF THERMOCHEMICAL PROCESSES FOR SECOND 

GENERATION TRANSPORT BIOFUELS 

 
 

 

 

 

IOANNA DIMITRIOU 
 

Doctor of Philosophy 

 

 

 

 

 

 

 

ASTON UNIVERSITY 
 

September 2012 

 

 

 

 

© Ioanna Dimitriou, 2012  

Ioanna Dimitriou asserts her moral right to be identified as the author of this thesis 

 

 

This copy of the thesis has been supplied on condition that anyone who consults it is 

understood to recognise that its copyright rests with its author and that no quotation 

from the thesis and no information derived from it may be published without proper 

acknowledgement.  



 
2 

 

Aston University 

 

Techno-economic assessment and uncertainty analysis of thermochemical 

processes for second generation transport biofuels 

 
Ioanna Dimitriou 

 
Doctor of Philosophy 

 
2012 

 
 

Thesis Summary 

Biomass-To-Liquid (BTL) is one of the most promising low carbon processes available to 
support the expanding transportation sector. This multi-step process produces hydrocarbon 
fuels from biomass, the so-called “second generation biofuels” that, unlike first generation 
biofuels, have the ability to make use of a wider range of biomass feedstock than just plant 
oils and sugar/starch components. A BTL process based on gasification has yet to be 
commercialized. This work focuses on the techno-economic feasibility of nine BTL plants. 
The scope was limited to hydrocarbon products as these can be readily incorporated and 
integrated into conventional markets and supply chains. 

The evaluated BTL systems were based on pressurised oxygen gasification of wood 
biomass or bio-oil and they were characterised by different fuel synthesis processes 
including: Fischer-Tropsch synthesis, the Methanol to Gasoline (MTG) process and the 
Topsoe Integrated Gasoline (TIGAS) synthesis. This was the first time that these three fuel 
synthesis technologies were compared in a single, consistent evaluation. The selected 
process concepts were modelled using the process simulation software IPSEpro to 
determine mass balances, energy balances and product distributions. For each BTL 
concept, a cost model was developed in MS Excel to estimate capital, operating and 
production costs. An uncertainty analysis based on the Monte Carlo statistical method, 
was also carried out to examine how the uncertainty in the input parameters of the cost 
model could affect the output (i.e. production cost) of the model. This was the first time that 
an uncertainty analysis was included in a published techno-economic assessment study of 
BTL systems. 
 
It was found that bio-oil gasification cannot currently compete with solid biomass 
gasification due to the lower efficiencies and higher costs associated with the additional 
thermal conversion step of fast pyrolysis. Fischer-Tropsch synthesis was the most 
promising fuel synthesis technology for commercial production of liquid hydrocarbon fuels 
since it achieved higher efficiencies and lower costs than TIGAS and MTG. None of the 
BTL systems were competitive with conventional fossil fuel plants. However, if government 
tax take was reduced by approximately 33% or a subsidy of £55/t dry biomass was 
available, transport biofuels could be competitive with conventional fuels. Large scale 
biofuel production may be possible in the long term through subsidies, fuels price rises and 
legislation. 
  
Keywords: biomass, gasification, pyrolysis, synthetic fuels, process simulation  
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 ̇  massflow  kg/h 

  plant life years 

r interest rate % 

T temperature 
o
C, K 

  weight fraction kg/kg 

  yield % 

       
  enthalpy of formation kJ/mol 

  energy efficiency % 

  stoichiometric air-fuel ratio kg/kg 
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1 INTRODUCTION 

1.1 Background 

Energy is a critical resource that governs the lives of humanity and promotes civilization. 

Energy services around the world have provided comfort through transportation, power 

and heat, however there is a considerable and widespread concern over the effect of the 

extensive consumption of energy on the environment and security for those countries with 

limited energy resources.  

 

Over the last decades, significant amounts of carbon dioxide (CO2), which is a greenhouse 

gas, have been accumulated in the atmosphere. Since the Industrial Revolution, humans 

have significantly added to the amount of heat-trapping greenhouse gases in the 

atmosphere by burning fossil fuels, cutting down forests and other activities. It is believed 

that the recent increase in man-made greenhouse gas (GHG) emissions is the main 

reason behind the observed rise in average global temperatures [1]. As pressure to reduce 

GHG grows, several countries have ratified the Kyoto Protocol (1997), which is an 

agreement made under the UN Framework Convention on Climate Change for the 

reduction of GHG [2]. The major feature of the Kyoto Protocol is that the industrialised 

countries that ratify this protocol commit to mandatory GHG emissions reductions. 

Specifically for the Member States of the European Union (EU), this corresponds to a 

reduction of 5% below 1990 levels by 2008 - 2012 [2]. 

  

In addition to environmental concerns and according to the current facts, energy experts 

predict a 35% increase in worldwide petroleum demand by 2025 [3]. This will increase 

dependency on a limited number of oil producing countries with grave risks for energy 

security and global social stability [4]. Regarding the oil market, it is predicted that the 

Middle East will continue to be in dominant position as it has the greatest proven oil 

reserves in the world. Conversely, nations with less petroleum resources will be vulnerable 

to energy shortages unless they develop alternative sources of energy. Such alternatives 

include nuclear, wind, solar, hydroelectricity, wave, tidal, geothermal and bioenergy.  

 

Biomass derived transportation fuels (biofuels) can play an important role in filling the gap 

between limited fuel supplies and increasing worldwide demand. Biomass is the only 
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carbon neutral alternative source for the production of liquid fuels thus it can constitute a 

key option to deliver significant reductions in GHG emissions from the transportation 

sector. Contrary to electricity or heat production, where the relevant technologies can be 

operated in a carbon neutral way by using CO2 sequestration, the transportation sector 

does not allow CO2 capture due to the nature of transport emissions. Therefore, the 

substitution of fossil fuels by biofuels constitutes the only way to reduce GHG emissions 

from transport [5]. This is also why the European Union has set ambitious targets for the 

application of biofuels through EU Biofuels Directive 2009/28/EC. According to the 

directive, 10% of all transport fossil fuels sold in EU countries, calculated on the basis of 

energy content, should be replaced with biofuels by 2020 [6]. The UK’s implementation of 

the EU Biofuels Directive is the Renewable Transport Fuel Obligation (RTFO). The main 

requirement of the RTFO is that biofuels should contribute over 5%, by volume, of road 

vehicle fuels sold in the UK by April 2013 [7].  

 

Nowadays, the substitution of transport fossil fuels with biofuels is already feasible by 

state-of-the-art renewable liquid hydrocarbons, such as bioethanol for gasoline engines, 

produced by fermentation of sugar or starch and biodiesel for diesel engines produced via 

transesterification of vegetable oils or animal fats [8]. These so-called “first generation 

biofuels” are characterised by an unexpected growth following government subsidies and 

legislative pressures, however there are some serious problems associated with their 

application with respect to feedstock requirements and land availability. In the UK, the road 

transport sector consumes 37.8 million tonnes of crude oil products per year [8]. In order to 

meet current usage, 12.3 million ha and 7.8 million ha of land would be required for rape 

cultivation and sugar beet production [8]. Since the total area of arable land in the UK is 

6.5 million ha [8], first generation biofuels do not constitute a feasible solution for meeting 

the current UK transport requirements. In addition to the consequences on economy and 

land competition, net carbon savings from first generation biofuels are questionable due to 

the clearance of virgin land (e.g. rain forests) for cultivation, high fertilizer requirement and 

low productivity per hectare [4]. 

 

In order to overcome the above mentioned shortages, the so-called “second generation 

biofuels” have been introduced. Unlike first generation biofuels, they have the ability to 

make use of a wider range of biomass feedstocks than just plant oils and sugar/starch 

components. These sources include non-food biomass, dedicated energy crops and 
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biomass co-products and waste from many different sectors such as agriculture, 

horticulture, forestry and paper and pulp processing [9]. The processing of these ligno-

cellulosic biomass feedstocks by thermal conversion is considered to be a long-term 

prospect for renewable transport fuels production [10].  

 

Second generation hydrocarbon biofuels are specifically attractive due to their unlimited 

compatibility with conventional fuels in any proportion and the capability to be refined to 

current fuel standards and specifications in conventional refineries, thus offering 

economies of scale and access to state-of-the-art processing. Development of thermal 

processing technologies for the production of second generation biofuels is already well 

advanced in some areas, especially gasification, which presents higher thermal 

efficiencies compared to combustion, whereas fast pyrolysis is still at an early stage of 

development [11].      

1.2 Scope and objectives of the thesis 

This study was funded by the Engineering and Physical Sciences Research Council 

(EPSRC) as part of the SUPERGEN Bioenergy II Consortium which was concerned with 

the development of energy from biomass. This consortium consisted of leading academic 

and industrial partner organisations across the UK who organised the work into eight 

integrated and coordinated themes that are listed below and shown in Figure 1-1. 

1. Resources (Subtheme: Marine Biomass) 

2. Characterisation and Pre-treatment (Subtheme: Nitrogen) 

3. Thermal Conversion 

4. Power and Heat 

5. Transport Fuels, Biorefinery (Subtheme: Ammonia) 

6. Systems Analysis 

7. Innovation 

8. Dissemination 

The present study was carried out as part of Theme 5 of this programme and focused on 

transport fuels. Aston University was the leader of Theme 5 and had responsibility for a 

number of tasks within this theme including the production of hydrocarbon fuels and 

chemicals from biomass derived syngas via Fischer-Tropsch synthesis. 
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Figure 1-1: The structure of SUPERGEN Bioenergy II 
 

This work examines processes from solid biomass to liquid transport fuels, known as 

Biomass-To-Liquids (BTL) processes. The term “BTL” is only applied to thermo-chemical 

processes, such as pyrolysis and gasification, and thus it is not used for biochemical 

routes (e.g. fermentation) to biofuel production. The scope was limited to hydrocarbon 

products (diesel, gasoline and kerosene) as these can be readily incorporated and 

integrated with conventional markets and supply chains while alcohols (e.g. ethanol, 

methanol, mixed alcohols) and ethers (e.g. DME – dimethyl ether) have more limited short 

term prospects in the UK and European transport fuel infrastructures [12]. 

 

The main objectives of this thesis are as follows: 

 Identify the most promising thermo-chemical process routes in terms of 

performance and costs for large-scale production of 2nd generation liquid transport 

biofuels, including options for biomass pre-treatment (e.g. fast pyrolysis), 

gasification technologies, syngas clean-up and fuel synthesis processes.   

 Measure the technical performance in terms of energy efficiency and mass yield of 

the selected process concepts by using the process simulation software IPSEpro to 

determine mass balances, energy balances and product distributions. 
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 Develop an economic model for each process concept to estimate capital, 

operating and production costs. 

 Compare the selected process concepts in terms of performance and costs. 

 Conduct a sensitivity analysis on production costs with respect to key performance 

and economic parameters. 

 Carry out an uncertainty analysis to examine how the uncertainty in the economic 

model parameters can affect production costs. 

 Estimate the minimum subsidy required for biofuels to compete with conventional 

transport fuels. 

1.3 Thesis structure 

Chapter 2 describes the basic features and status of the various technology options 

available for the production of liquid hydrocarbon fuels in order to identify the most suitable 

technologies for commercial biofuel production. 

Chapter 3 reviews previous techno-economic studies of BTL systems. The scope, results, 

strengths and weaknesses of a number of recent comparative studies are highlighted to 

develop a scope for this work that supplements previous studies and builds on experience 

already gained. 

 

Chapter 4 discusses the selection of the BTL plant concepts identified as most promising 

for techno-economic evaluation, whereas Chapter 5 describes the development of the 

process simulation models that are used to evaluate the selected BTL concepts. The 

chapter concludes with a performance comparison in terms of energy efficiency and mass 

yield of the selected systems.  

 

Chapter 6 discusses the methodology which was used to economically evaluate the 

selected BTL concepts which are compared in terms of capital, operating and production 

costs. The chapter also addresses uncertainties in the economic parameters and 

examines whether BTL plants could compete economically with conventional transport 

fuels plants. 

 

Chapter 7 summarises the findings of this work and draws conclusions from the systems’ 

evaluations. The thesis ends with recommendations for further work in Chapter 8.    
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2 TECHNOLOGIES NECESSARY FOR BIOFUEL SYNTHESIS 

2.1 Introduction 

This chapter provides an overview of various thermo-chemical conversion technologies 

associated with the production of liquid hydrocarbon fuels. It describes the main 

technologies of biomass pre-treatment, gasification, gas cleaning and conditioning and fuel 

synthesis. This overview cannot properly consider all aspects of the available technologies 

for biofuel production as this is out of the scope of this thesis but identifies the main 

advantages and disadvantages of these technologies and briefly discusses them. The 

findings of this overview led to the selection of the most promising technologies for 

commercial transport biofuel production which is discussed in Chapter 4.     

 

Biomass-to-Liquid (BTL) is a multi-step process that converts biomass to liquid biofuels 

through thermo-chemical routes. It consists of several discrete steps which are discussed 

in the next sections [12]: 

 Reception storage and handling 

 Preparation including comminution, screening, drying 

 Pre-treatment as fast pyrolysis or torrefaction (optional) 

 Gasification of solid biomass (fresh or torrefied) or bio-oil from fast pyrolysis 

 Gas cleaning to derive correct gas quality 

 Gas conditioning to derive correct gas composition 

 Synthesis of hydrocarbons (or methanol or alcohols)  

 Conversion of methanol to gasoline and/or diesel (optional) 

 Synthesis products refining 

 Offsites including an oxygen production plant (optional) and power and heat 

provision 

2.2 Reception, storage and handling (RSH) 

Conversion of biomass into a more valuable product requires that after harvesting, the 

material is transported to the conversion plant where it is stored and reclaimed for 

preparation and pre-treatment. A simple concrete pad with a front end loader can be used 

for biomass storage in small-scale plants, whereas substantial automated bulk handling 
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systems analogous to those found on pulp and paper mills can be used in large capacity 

plants [12].  

 

A wide variety of biomass sources can be used as feedstock for the production of 2nd 

generation liquid fuels. Such sources range from wood (logging residues, trees, wood 

wastes, SRC), energy crops (miscanthus and switchgrass) and agricultural wastes (e.g. 

straw) [8, 13]. The elemental composition along with the heating value of the biomass 

employed is required for the estimation of mass and energy balances. In Table 2-1 such 

data is given for several types of biomass. 

 

Table 2-1: Composition & calorific values of different types of biomass (wt% dry, ash free) 

[14] 

Biomass  C H O N S Cl 
HHV 
(MJ/kg) 

LHV 
(MJ/kg) 

Wood chips 50.8 6.2 42.4 0.5 0.05 0.013 20.7 19.4 

Miscanthus 49.1 6.4 43.9 0.3 0.1 0.132 19.9 18.5 

Switchgrass 49.2 6 43.9 0.77 0.08 0.036 19.3 18 

Wheat straw 48.5 5.8 43.6 1.74 0.11 0.263 19.4 18.1 

Rice straw 48.1 5.9 43.6 1.69 0.14 0.581 19.7 18.4 

 

2.3 Preparation 

Biomass requires several preparation steps, the number of which is determined by the 

type of biomass. These steps include: 

 Comminution to reduce biomass material size to the necessary size for the 

subsequent conversion step.  

 Screening to separate the required biomass particle size. This may include 

rejection of oversized particles for recycling to a re-chipper and/or rejection of the 

undersized particles which can potentially be used elsewhere in the plant (e.g. 

combustion for heat provision to the drier).      

 Drying to reduce biomass moisture content to the preferred level for the 

subsequent conversion step. 

 Optional steps, such as magnetic separation to remove ferrous metals. These 

steps depend on the type of biomass used in the process. 
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Biomass feedstocks are typically characterised by relatively high water contents (up to 

65%) [8]. For biomass gasification (BG) applications, drying is usually required to reduce 

the moisture content to 10-15% wt for efficient operation of the gasifier [8, 15, 16]. For fast 

pyrolysis, the moisture content of the feed material should be reduced to a maximum 10% 

[17]. 

2.4 Pre-treatment 

In addition to biomass preparation, further thermal pre-treatment may be desirable for 

certain biomass feedstocks or gasification technologies. Fast pyrolysis and torrefaction  

have attracted considerable interest as methods of pre-treatment for biomass since both 

technologies can convert biomass into high energy dense carriers to ease transportation 

and handling. 

2.4.1 Fast pyrolysis 

2.4.1.1 Process description 

Pyrolysis is the thermal decomposition of the organic components in biomass in the 

absence of oxygen to produce a mixture of solid char, condensable liquids and gases. The 

relative proportions of the products depend on the pyrolysis method, the biomass 

characteristics and the reaction parameters [18, 19]. Fast pyrolysis is a moderate 

temperature (around 500oC) process that devolatilises biomass into high yields of a liquid 

known as bio-oil (up to 75 wt%), with some char (typically 13 wt%) and gas (typically 12 

wt%).  

 

Bio-oil yields can be maximised with short vapour residence times of typically 1 second, 

rapid cooling of pyrolysis vapours, high heating rates and moderate temperatures of 

around 500oC [20]. Typical bio-oils have a high oxygen content up to about 45 wt% and 

may contain up to 35 % water [17, 21]. The main characteristics of bio-oil are summarised 

in Table 2-2. 

 

Figure 2-1 shows a typical fast pyrolysis process based on the fluidised bed reactor 

technology. After preparation, which usually includes drying and grinding, the biomass is 

fed into the reactor via a conveyor screw. 
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Table 2-2: Typical characteristics of wood-derived bio-oil [17, 22] 

Moisture content 25% 
pH 2.5 
Specific gravity 1.20 

Elemental analysis (moisture free basis)  
C 56% 
H 6% 
O 38% 
N 0-0.1% 

Higher heating value, HHV as produced 17.0 MJ/kg 
(depends on moisture)  

Viscosity (at 40
o
C and 25% water) 40-100 cP 

 

Quench

Electrostatic 

precipitator

Dried & sized 

Biomass

Char for process heat 

or export

Cyclones
Recycle 

gas

Gas 

export

Bio-oil

Recycle gas 

heater and/or 

combustor

 

Figure 2-1: Typical fast pyrolysis process   

The heat for both pyrolysis and drying may be provided by the combustion of parts or all of 

the non-condensable gases and char, depending on temperature. The char is separated in 

a set of cyclones, after which the vapours are condensed to give the bio-oil. Electrostatic 

precipitation has been shown to be the most effective method for collection of aerosols 

which are formed during the condensation of pyrolysis vapours [17]. Extensive reviews of 

biomass fast pyrolysis are available [11, 17, 22, 23]. 
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2.4.1.2 Bio-oil gasification for synfuels 

As discussed below, there is an increasing interest in using bio-oil and bio-oil/char slurries 

as energy carriers to feed state-of-the-art gasifiers for liquid fuels synthesis plants. Even 

though the additional thermal step of fast pyrolysis reduces overall process efficiency [5, 

17], there are some important advantages associated with this option: 

 Easier and cheaper transportation 

Biomass has a much lower bulk density (100-150 kg/m3) compared to bio-oil (1200 

kg/m3), thus due to the lower volume of feed material this option results in lower 

transportation costs [12, 17]. In addition, the energy content of bio-oil is about the 

same as biomass which, in combination with bio-oil’s higher bulk density, leads to 

higher energy densities than biomass [5, 12, 17]. 

 

 Need for pre-treatment for certain gasifiers 

Fast pyrolysis, along with other upgrading technologies, is considered crucial for 

entrained flow gasifiers since this technology requires very fine particles by milling 

of solid biomass which is very energy consuming [17, 24]. 

 

 Lower gas cleaning requirements 

Biomass contains alkali metals (see section 2.6.3) which can cause significant 

problems as they can damage filters at high temperature and poison synthesis 

catalysts [25]. In fast pyrolysis these compounds are almost entirely retained in the 

char which, as explained earlier, is typically separated from bio-oil in a series of 

cyclones. Therefore, the product gas from the gasifier fed with bio-oil will have 

much lower alkali metals thus reducing cleaning requirements [12]. 

 

 Combining decentralisation and economies of scale 

An interesting concept is to have a number of smaller fast pyrolysis plants that 

produce bio-oil which is then shipped to a large scale decentralised gasification and 

fuel synthesis plant for further conversion to transport fuels. Although this concept 

will result in lower process efficiencies and higher transportation costs, these are 

believed to be more than compensated by the economies of scale achievable on a 

commercial sized gasification/synthesis plant [5, 17]. This concept is being 

investigated by FZK in collaboration with Lurgi (Bioliq project) although, in this 

case, bio-oil is mixed with the pyrolysis char to create a slurry for subsequent 
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gasification to syngas and conversion to fuels and/or chemicals (see section 

2.11.4). Consequently, the energy needs of the fast pyrolysis process need to be 

met by another source. 

2.4.2 Torrefaction 

Torrefaction is thermal treatment technology performed at atmospheric pressure at 200-

300oC in the absence of oxygen [26]. Torrefaction dries and partially devolatilises biomass 

through decomposition of some of the hemicellulose to give a dry and fragile form of 

biomass that can be crushed and milled [12]. The solid biomass product has a very low 

moisture content (1% to 6%) and a high calorific value compared to fresh biomass [19]. A 

flow diagram of the torrefaction process is shown in Figure 2-2.  Torrefaction is considered 

to be a promising option for feeding biomass into entrained flow gasifiers which are likely 

to be preferred for large-scale biofuel production [26]. The suitability of entrained flow 

gasifiers for large scale BTL plants is discussed in detail in section 4.5.  

 

 

Figure 2-2: The ECN torrefaction process 

Torrefaction requires additional heat above 300oC in order to drive the drying and 

devolatilisation process. In the case of fast pyrolysis, the char and the non condensable 

gases can be used to supply the necessary heat for the reactions of fast pyrolysis. 
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However, as shown in Figure 2-2 above, torrefaction only has the off-gas for heat supply. 

This will contain some particulates which will require satisfactory removal [12]. ECN, who 

are the main proponents of torrefaction, report that the mass and energy yield of the 

process is 70% and 90%, respectively [27]. They also claim that the heating requirements 

of the process can be fulfilled by combusting the off-gas [27, 28] but there is no evidence 

or experience of this claim. At the high yields claimed it is questionable whether there is 

sufficient energy in the off-gas to cover the heat requirements of the process and also 

whether the off-gas quality is sufficiently high to sustain combustion [12]. Therefore it is 

likely that other energy sources for heat supply will be required such as fresh biomass or 

torrefied product [12]. Unlike fast pyrolysis, torrefaction is not commercialised yet and has 

only been demonstrated under laboratory conditions [19]. 

2.5 Gasification 

Gasification is a high temperature process that converts a carbonaceous feedstock, such 

as coal or biomass, into gas. This gas product, known as syngas (from synthetic gas or 

synthesis gas) or producer gas, contains carbon monoxide, hydrogen, carbon dioxide, 

methane, water, nitrogen (if air is used as the oxidation medium) and various contaminants 

such as small char particles, tars and ash. Gasification occurs in three main steps: - pre-

heating and drying to evaporate moisture, - pyrolysis to produce gas, volatiles and char, - 

syngas formation through gasification or partial oxidation of the char residues, pyrolysis 

vapours and pyrolysis gases [11, 23].  

2.5.1 Gasification agent 

Air, oxygen, steam or a mixture of these can be used as gasification medium. Partial 

oxidation with air produces a low heating value gas around 5 MJ/m3, which is heavily 

diluted with nitrogen [11, 29]. This is disadvantageous for the subsequent synthesis since 

nitrogen dilutes carbon monoxide and hydrogen in synthesis gas thus it adversely affects 

the synthesis reaction resulting in poor performance. Moreover, due to the high volume of 

nitrogen larger downstream equipment is required which results in increased capital costs 

[23]. 
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Oxygen gasification gives a better quality (heating value: 10-12 MJ/m3), nitrogen-free 

syngas [11, 30]. However, oxygen plants require additional capital costs and energy 

requirements due to the need for air separation.  

 

The heating value of syngas is maximised during steam gasification (or indirect 

gasification) of biomass (~15-20 MJ/m3) due to a higher CH4 and hydrocarbon gas content 

[11]. However, the higher methane content gas increases the process complexity and 

costs if the preferred product is liquid biofuels as the lower hydrocarbons need to be 

reformed to syngas. Nevertheless, for SNG production, this route has advantages [12].  

2.5.2 Pressure 

Gasification can take place both in atmospheric and elevated pressures. Pressurised 

operation has the advantage of avoiding a costly compression step before the synthesis 

process however it is related to problems with regard to biomass feeding into the 

pressurised gasification system (see section 2.4.1.2). The feasibility of biomass 

gasification has already been demonstrated both at atmospheric pressure as well as in 

pressurized systems. More specifically: 

 

At atmospheric pressure, the ARBRE demonstration plant was installed from 1998 to 2001 

in Eggborough, Yorkshire, UK. The BIGCC-plant (biomass integrated gasification 

combined cycle) was designed for a biomass fuel power of approximately 23 MW and 

used a catalytic cracker for tar cleaning. After further cleaning and a 5-stage compression, 

the synthesis gas passed through a gas turbine, with heat recovery in a steam cycle. In 

total, a net electricity production of 8 MW was anticipated, although the plant only operated 

for 48 hours in total, corresponding to an anticipated electric efficiency of about 30% [31-

33].  

 

Biomass atmospheric gasification has been demonstrated successfully in a 8MWth CHP 

plant in Guessing, Austria. After steam gasification, gas cleaning and cooling, the syngas 

is combusted in a gas engine with a subsequent steam cycle. The plant has been 

operational since 2002 [34]. The unit has achieved more than 70,000 hours of operation at 

a plant availability in excess of 90% [33].  
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A pressurized CFB air gasifier was demonstrated in the Värnamo plant in Sweden. After 

gasification at 18 bar, only hot gas cleaning was required before combustion in a gas 

turbine with a subsequent steam cycle. A net electric output of 6 MW was achieved, with 

an additional 9 MW of district heat production [32, 35]. 

2.5.3 Reactors 

A number of biomass gasification reactors have been developed and tested as shown in 

Table 2-3. Each main type of gasifier is summarised below with significant advantages and 

limitations highlighted. 

Table 2-3: Gasifier technologies [11, 23] 

Gasifier type Characteristics 

Downdraft-fixed 
bed reactor 

 Solid and product gas move downward in a co-current mode 

 A relatively clean gas is produced with low tar 

 Limited scale-up potential to about 500kg/h feed rate 

 Reliable and proven technology for feedstocks with low content of fine 
particles 

Updraft-fixed 
bed reactor 

 Solid moves down and product gas moves upward in a counter-current 
mode 

 Low quality gas is produced with high tar content 

 Small scale-up potential (around 4 t/h feed rate) 

 Reliable and proven technology for feedstocks with low content of fine 
particles 

 Simple construction and high thermal efficiency 

Bubbling 
Fluidised bed 
(BFB) 

 Air or oxygen blown up though the fluidising medium (e.g. silica sand) 
bed to mix with biomass. 

 High reaction rates & isothermal bed operation 

 Moderate tar content in product gas but higher particulates 

 Suitable for large scale applications since they can be readily scaled up 
to about 10-15 dry t/h with high specific capacity 

 Small carbon loss with ash 

Circulating 
Fluidised bed 
(CFB) 

 All features of the BFB plus 

 Higher carbon conversion efficiency since entrained solid material is 
recycled back to the fluid bed 

 Only potentially viable above 15 dry t/h feed rate 

Entrained flow  Costly feedstock pre-treatment is needed since very small particles can 
be processed. 

 Product gas has low concentrations of tars and condensable gases 

 Operate at higher temperatures of about 1200 – 1500 
o
C 

 Large minimum size for viability, above around 20 dry t/h feed rate 

 

This study cannot properly consider all aspects of biomass gasification as this is out of the 

scope of the thesis. Extensive reviews of biomass gasification are available [11, 23, 25, 

36, 37]. 



 
29 

 

2.6 Gas cleaning 

The syngas produced by the gasification process contains several impurities (tars, 

particulates, alkali compounds, H2S, HCl, NH3 and HCN) that need to be removed prior to 

fuel synthesis mainly due to the high sensitivity of synthesis catalysts to small amounts of 

these contaminants. Table 2-4 summarises the main problems associated with these 

impurities and common clean-up methods.  

 

Table 2-4: Syngas contaminants [30] 

Contaminant  Problems Clean-up method 

Particulates (ash, char, bed material 
fines) 

Erosion Filtration, scrubbing 

Alkali metals (sodium & potassium 
compounds) 

Hot corrosion Cooling, adsorption, 
condensation, filtration  

Nitrogen and chlorine compounds 
(NH3, HCl) 

Corrosion & NOx 
formation respectively 

Scrubbing, dolomite 
absorption in tar cracker (if 
used)  

Tars (mostly poly-nuclear aromatics) Clogged filters, deposit 
internally 

Tar catalytic cracking, 
physical tar removal  

Sulphur compounds (H2S, COS) Corrosion, emissions Scrubbing (Rectisol), 
adsorption (ZnO, CuO) 

 

The definition of a gas cleaning system is based on an economic trade-off between gas 

cleaning and synthesis catalyst performance, i.e. investment in a gas cleaning system 

versus accepting decreasing performance due to catalyst poisoning [38, 39]. Therefore, 

the maximum acceptable levels of impurities in the feed gas of fuel synthesis processes 

are not fixed and may vary from one plant to another. Some indicative syngas 

specifications for the Fischer-Tropsch and methanol synthesis processes are presented in 

Table 2-5. 

 

The majority of the world syngas production is achieved by partial oxidation of natural gas 

[40]. The rest is produced by gasification of coal (SASOL plants, South Africa), while some 

small amounts are produced in refineries [40]. Since there are no biomass-specific 

impurities that require a totally different gas cleaning approach, the cleaning and 

conditioning of the syngas from biomass gasification is quite similar to fossil based syngas 

(e.g. coal) [39]. This means that it includes cyclons, dust filters, wet-scrubbing techniques 

(for NH3 and HCl) and guard beds (ZnO filters) for H2S. 
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Table 2-5: FT and methanol synthesis feed gas specifications [36, 38, 39] 

Impurity Specification 

S (H2S + COS + CS2) < 1 ppmV 

N (NH3 + HCN) < 1 ppmV 

Cl (HCl) < 10 ppbV 

Alkali metals < 10 ppbV 

Solids (soot, dust, ash) Almost completely removed 

Organic compounds (tars) Not condensing: below dew point 

Hetero-organic components ( e.g. S, N, O) < 1 ppmV 

 

2.6.1 Particulates  

Particulates originate from the ash in the feedstock, soot (typically from entrained flow 

gasifiers), and carry-over bed material in the case of fluidised bed gasifiers. Particulates 

removal apparatus include: cyclones, barrier filters (e.g bag filter), electrostatic filters 

(ESP) and scrubbers [36, 41].   

 

Cyclones can be used in a wide temperature range but the achieved separation 

efficiencies are low [36]. By coupling of cyclones (multi-cyclone) higher separation 

efficiencies can be achieved [41]. Cyclones are more suitable for a first stage separation 

which is usually followed by barrier filters in order to meet the clean gas requirements. 

Barrier filters can be designed to separate any particle size and can achieve high particle 

reduction of 90-99% [36].  

 

Wet electrostatic precipitators also achieve high separation efficiencies and are used for 

low temperature particulate separation (below 100oC) [36]. They can also partly remove 

water-soluble gaseous compounds like NH3, HCl and H2S [41]. Scrubbers use a scrubbing 

liquid, in many cases water, to remove particles from a gas stream. Like all wet separation 

technologies, the gas inlet temperature should be kept below 100°C, which requires gas 

cooling before the scrubber [41]. Table 2-6 contains a summary of performance of different 

particle removal apparatuses together with possible operating temperatures. 
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Table 2-6: Comparison of different particulate separators [36] 

Particle removal apparatus Temperature, 
o
C Particle reduction, % 

Cyclone 20-900 45-70 

Bag filter 150-750 90-99 

Wet electrostatic precipitator 40-50 95-99 

Scrubber 20-200 40-65 

 

2.6.2 Tars 

The major gas cleaning issue in biomass gasification is the presence of tars in the syngas. 

Tars are condensable organic compounds of high molecular weight with boiling points 

ranging from 80-350oC [38]. When the temperature in the system decreases to below 

350oC, tars start to condense in exit pipes and on filters resulting in blockages and clogged 

filters and ultimately in system failure [42].  

 

Thermal cracking occurs at temperatures above 800oC [25], with tars being substantially 

destroyed without a catalyst, usually by addition of steam and oxygen. The effect is similar 

to direct gasification at high temperature (i.e. an entrained flow gasifier can be used as tar 

cracker). The main disadvantage of this technology is the production of soot [36]. 

 

Catalytic cracking takes place at temperatures of typically 800-900oC using dolomite, 

nickel-based and other catalysts [5, 36]. A tar conversion rate of over 99% has been 

achieved by using dolomite and nickel-based catalysts [43]. However, this technology is 

not yet fully proven and some research and development are still needed [5, 15, 16].  

 

Tars can be also removed by physical removal processes with organic washing liquids. 

ECN has developed the OLGA tar removal technology which aims at the removal of all 

aromatic organic components at low temperatures in a scrubber with an oil based medium 

[38, 40]. In the CHP plant in Guessing, biodiesel is used to clean the syngas to meet gas 

engine specifications [36]. While appropriate technologies and adequate experience are 

available, the carbon bound in tars is lost for the fuel synthesis process when physical 

methods are used [5, 36]. 
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2.6.3 Alkali metal compounds 

Alkali metals can damage filters in high temperature and poison synthesis catalysts [25]. 

They can also damage the gas turbine blades by stripping off their protective oxide layer 

due to high temperature corrosion [25]. Alkali metal compounds of biomass evaporate 

during the gasification process. They stay in the vapour phase at high temperatures and 

therefore pass through particulate removal apparatuses unless the gas is cooled [25]. The 

maximum temperature that is considered to be effective for condensing alkali metal 

compounds is 600°C [25]. Tests on alkali metal species have shown that their 

concentrations in the vapour phase fall with temperature to the extent that concentrations 

are close to fuel synthesis specifications at temperatures below 500-600°C [44]. Therefore, 

syngas cooling to this temperature level will cause alkali metal compounds to condense on 

entrained solids and be removed later on by the particulate separators (see section 2.6.1). 

2.6.4 Nitrogen compounds 

Nitrogen in biomass mostly forms ammonia (NH3) and small traces of other nitrogen 

compounds like hydro cyanide (HCN). These compounds will cause potential emissions 

problems by forming NOx if the syngas or the off-gas from the fuel synthesis process is 

combusted. HCN is highly poisonous for Fischer-Tropsch catalysts and thus it needs to be 

removed from the syngas. 

 

The common method to remove ammonia from the product gas is scrubbing with a slightly 

acid liquid, though for low ammonia levels water alone is sufficient [41]. Water scrubbing 

produces wastewater, which requires extensive wastewater treatment due to the presence 

of trace contaminants in the gas. 

 

Ammonia and other nitrogen compounds can also be removed by using catalysts like 

dolomite, nickel, and iron based catalysts, which are also used for tar cracking [41]. As 

discussed in section 2.6.2, catalytic tar cracking is not a well proven technology and its 

major disadvantage is the sensitivity of the catalysts in the inorganic impurities of the 

syngas [36]. 

2.6.5 Sulphur compounds 

Even though biomass only contains minor amounts of sulphur, hydrogen sulphide (H2S) 

and carbonyl sulphide (COS) must be thoroughly removed in fuel synthesis plants. The 
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reason for this is that sulphur is a major catalyst poison as it takes up the active sites of 

catalysts and reduces the catalytic activity during the reaction, thus drastically reducing 

performance and the lifetime of common catalysts. Extremely low sulphur contents <1 

ppmV are required (see Table 2-5). 

 

Sulphur compounds can be removed by conventional absorption and adsorption 

processes [36]. To remove sulphur by absorption, commonly a basic scrubbing liquid is 

used, which is a proven state of the art technology [36]. Higher sulphur levels can be 

conveniently removed by technologies such as Rectisol, Sulfinol, Amisol DEA and MDEA 

[36]. However, due to their high costs, these methods of removal are only suitable for large 

scale plants [41].  

 

Adsorption processes are based on the adsorption of the sulphur compounds on a solid 

material. The most well known adsorbers are based on ZnO or activated carbon and they 

are widely used in refineries as guard beds [36]. Adsorption processes are generally 

expensive due to the need for frequent adsorbent renewal and thus are currently used for 

low sulphur inlet concentrations (normally <50ppm) [36]. Hofbauer et al. [36] provide a 

thorough and consistent comparison of various absorption and adsorption processes for 

the removal of sulphur compounds as well as CO2 from gasification product gas.  

2.6.6 Chlorine compounds  

Chlorine is another inorganic contaminant which originates from pesticides and herbicides 

as well as waste wood [25]. At elevated temperatures chlorine causes corrosion of metals 

and has therefore to be removed [25]. Chlorine can be removed by absorption processes 

as described in the previous section, or by dissolution in a wet scrubber [25].    

2.7 Gas conditioning 

The adjustment of syngas composition is known as gas conditioning. In spite of the 

impurities that cause various problems in a biofuels synthesis plant, the syngas can 

contain a considerable amount of light hydrocarbons and carbon dioxide that are not 

harmful but have negative influence on the system performance. These compounds have 

to be either converted (e.g. CH4) or removed (CO2) in order to assure maximum fuel 
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synthesis yield. Syngas conditioning usually consists of three steps, which are all optional 

depending on the composition of syngas after cleaning. 

2.7.1 Reforming  

During gasification, some light hydrocarbons (C2, C3) and methane are produced, which 

can be considered as inert for the synthesis process [5, 36]. Thus, it is necessary to reform 

these light hydrocarbons from the fuel synthesis step. The chemical energy in these 

compounds is lost for the fuel synthesis unless they are converted into H2 and CO in a 

reformer. The reforming of these hydrocarbons is similar to natural gas based processes 

and results in higher yields of the FT liquid products [38, 40]. In case of methane, the 

following reaction occurs in the reformer at temperatures above 800oC [45]. 

 

CH4 + H2O  CO + 3H2  o

ref = +210 KJmol−1 

2.7.2 Water-Gas-Shift 

The syngas produced by the gasifier generally has an H2/CO ratio that ranges between 

0.7-1.8, which is lower than the required consumption ratio (H2/CO = 2) for FT and 

methanol synthesis [5, 36]. As a result, hydrogen and carbon monoxide are not fully 

converted and liquid fuels yields are reduced. Thus, the ratio needs to be adjusted by 

using a water-gas-shift step prior to synthesis. The water-gas-shift reaction takes place in 

a shift reactor, where CO is converted into H2 (with steam) at temperatures between 200-

300oC.  

CO + H2OCO2 + H2  
o

WGS = -41 KJmol−1  

2.7.3 CO2 removal  

Carbon dioxide (CO2) is considered inert in fuel synthesis processes, therefore it has 

negative influence on the yield of liquid fuels in the same way as nitrogen. Furthermore, 

shifting results in an increase of CO2 concentration in the syngas and this is further 

aggravated if a recycle loop is used (inert build-up). CO2 is removed by chemical or 

physical absorption processes (or a combination of both). For chemical absorption in 

commercial processes, amines are typically used, while solvents like methanol or 

polyethylene glycol are used in physical absorption. The CO2 concentration in the syngas 

can be reduced to values lower than 0.1 vol% by these processes which can also remove 
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hydrogen sulphide (H2S) [36]. Rectisol (Lurgi), Amisol (Lurgi), and Sulfinol (Shell) are 

examples of commercial CO2 removal processes (see also section 2.6.5). 

2.8 Fuel synthesis 

2.8.1 Fischer-Tropsch synthesis  

2.8.1.1 Process description 

The Fischer-Tropsch reaction was discovered in 1923 by Franz Fischer and Hans Tropsch 

at the Kaiser Wilhelm Institute for Coal Research in Germany [5, 40]. Fischer-Tropsch (FT) 

is a process for converting catalytically a mixture of carbon monoxide (CO) and hydrogen 

(H2), known as syngas to a variety of organic compounds, including hydrocarbon products 

of variable chain length. The main mechanism of the FT reaction is: 

CO + 2H2 → -CH2- + H2O  
o

FT = - 165 KJmol−1 

The methylene group -CH2- shown in the above equation is used to represent the 

hydrocarbon chain.  

 

In FT synthesis process, lower temperatures between 200 and 250oC (low temperature 

Fischer-Tropsch, LTFT) favour the production of liquid fuels up until middle distillates [5, 

29]. Contrary to the high temperature Fischer-Tropsch synthesis (HTFT) that operates at 

300-350oC, the LTFT synthesis results in lower gas yields to the advantage of higher 

diesel yields [5, 46] . The FT process is generally operated at pressures ranging from 20-

40 bar [5, 16]. 

 

There are three main types of FT reactors: fluidised bed, fixed bed and slurry phase 

reactor. The last two types are considered the most promising according to many authors 

[5, 15, 16, 29]  with some favouring the fixed bed and others the slurry phase reactor. 

Specifically, an in-house study by Hoek and Kersten [47] showed that the fixed bed reactor 

will have higher liquids selectivity (or C5+ selectivity), lower catalyst consumption and lower 

CO2 production compared to the slurry reactor technology. According to Fleisch et al. [48], 

slurry reactors offer capital cost and operational advantages compared to fixed bed 

technology. However, they require a unique catalyst/wax separation technology [16, 49]. 
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Iron and cobalt-based catalysts are commercially used for FT synthesis. Cobalt (Co)-

based catalysts have a selectivity beyond 90% for the production of alkanes and do not 

support the water-gas-shift (WGS) reaction [50]. Iron (Fe) catalysts, on the other hand, 

show a significant WGS activity thus the H2/CO ratio is adjusted in the FT reactor but result 

in lower liquids selectivity [5, 50]. 

 

Nowadays, FT synthesis is operated commercially by Sasol in South Africa (from coal-

derived syngas) and Qatar (from natural gas-derived syngas) [48]. One of the largest 

implementations of FT synthesis is in Bintulu, Malaysia. This GTL plant is owned by Shell 

who has recently finished construction on a 140,000 bbl/d GTL plant in Qatar. The plant 

shipped its first products in 2011 and is expected to reach full production in 2012 [51]. 

 

2.8.1.2 Fischer-Tropsch products 

Since a wide range of products are obtained from the Fischer-Tropsch synthesis a 

quantitative approximation of product distributions is necessary. The most widely used 

approach to tackle this problem is the Anderson–Schulz–Flory (ASF) product distribution. 

Anderson, Schulz and Flory assumed that during the FT synthesis process, the adsorbed 

carbon chain can either undergo further addition of a -CH2- group, or the chain can 

terminate [52-54]. The ASF-product distribution describes the molar yield in carbon 

number as:  

      Cn = (1 − α)  αn−1   

where Cn is the molar fraction of a hydrocarbon product consisting of n carbon atoms and 

α the chain growth probability, which makes 1 − α the chance that the chain growth 

terminates. Figure 2-3 shows the hydrocarbon products distribution for different values of 

chain growth probability α from the Shell Middle Distillate Synthesis (SMDS) process. The 

liquids selectivity of the process is influenced by a number of factors, such as the type and 

age of catalyst, the H2/CO ratio in the feed gas, reactor type and operating conditions [5]. 

 

Fischer-Tropsch synthesis results in the production of various products, thus it is not a 

highly selective process. However, the process offers the possibility to cover the entire 

range of petrochemical products, thus gasoline, diesel and aviation fuel (kerosene) can be 

produced with adequate process control. In addition, FT fuels have some outstanding 

properties, which explain the current interest as a pathway to transport biofuels. They are 
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high quality and ultra clean fuels, free of sulphur and aromatic compounds [5]. Their major 

advantage is that unlike other fuels, such as DME and alcohols, they can be easily 

assimilated in the existing transport infrastructure, both concerning vehicle engines and 

distribution channels. Table 2-7 shows the specification of FT diesel. 

 

Figure 2-3: Product distribution from Shell Middle Distillate Synthesis Process [49]. 

Regarding products refining, the lighter FT products (naphtha/gasoline fraction) are 

separated from the heavier products and isomerised by catalytic reforming to increase its 

octane number in order to become suitable for blending into conventional gasoline [42].  

Table 2-7: Chemical characteristics of FT-diesel with comparison to conventional diesel 

Chemical properties FT-diesel Conventional diesel 

Lower Heating Value (MJ/l) 34.3 
1
 

35.1 
2
 

36.4 
1
 

35.7 
2
 

Density (kg/m
3
) 780 

1
 

804 
2
  

840 
1, 2

 

Oxygen content (%wt) ~ 0 
1 

1.6 
2
 

~ 0 
1, 2

 

Cetane number 50 - 75 
1, 2

 50 
1, 2

 

Flash point (
o
C) 72 

1
 77 

1
 

1
[55], 

2
[42] 



 
38 

 

The upgrading of the heavier FT products to meet market requirements is achieved by 

hydrocracking. Depending on the wax cracking conditions, mainly kerosene or diesel are 

produced as shown in Figure 2-4 [49].  

 

  

Figure 2-4: Production towards diesel or kerosene 

2.8.1.3 Fischer-Tropsch commercial technologies 

The two major worldwide manufacturers of liquid fuels by FT synthesis are Sasol (South 

African Synthetic Oil Ltd.) and Shell: 

 

SASOL 

Among the most widely known fuel synthesis plants in the world are the coal-to-liquid 

(CTL) Fischer-Tropsch plants operated by Sasol in South Africa. Sasol’s initial FT reactor 

technology, the Arge reactor, involved a fixed bed reactor operated at 200 - 250 oC and 

20-30 bar [48, 56]. The Arge reactor primarily produced high boiling hydrocarbons that 

were used as petrochemical feedstock [56]. This technology was the only FT reactor 

technology available until the 1950s/1960s when the Sasol Synthol reactors were 

developed. These were circulating fluidised bed reactors that operated at high 

temperatures (300-360 oC) and pressures (20-30 bar). In the late 1990s the Synthol 

reactors were replaced by the so-called Sasol Advanced Synthol (SAS) reactors [48].  .  

 

The first commercial plant, SASOL I, which came on stream in late 1955 in South Africa 

included both the Arge and Synthol technology [57]. The SASOL II plant was built on a 

greenfield site at Secunda by Sasol and commissioned in the early 1980s for the 

production of liquid fuels and chemicals from coal [57]. The plant relies only on Synthol 
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reactors since Arge reactors are not included. The SASOL III plant was built by Sasol at its 

Secunda site in 1982 as an extension to the SASOL II plant in order to increase the 

production of liquid fuels from coal [57]. 

 

The Sasol Slurry Phase Distillate (SSPD) reactor is the latest development of FT reactor 

technology by Sasol. The synthesis process is carried out in a slurry reactor at 200-250oC 

and 20-30 bar [48]. The SSPD technology was commercialised on May 1993 in Sasolburg 

at 2,500 b/d with an iron-based catalyst  [48]. 

 

Shell 

Shell is a worldwide leader in commercial GTL technology with its Fischer-Tropsch plants 

in Malaysia and Qatar. Instead of using a slurry phase reactor, Shell uses a tubular fixed 

bed reactor containing a cobalt-based catalyst [48]. The technology applied is referred to 

as Shell Middle Distillate Synthesis (SMDS) technology, which is normally a three-stage 

process, as described below [47, 49]: 

 

In the first stage, syngas is obtained by partial oxidation of natural gas with pure oxygen in 

the Shell Gasification Process, which is a non-catalytic partial oxidation process operated 

with a flame. The process operates at 1300 to 1500oC and pressures up to 70 bar. The 

carbon efficiency is in excess of 95%. A Steam Methane Reformer (SMR) is also used to 

provide the H2 to compensate for the slight shortage in the hydrogen balance in the HPS 

stage (2nd stage) and to be used as the feed gas for the HPC stage (3rd stage). The 

Syngas manufacturing stage is very important not only from a technical point of view but 

also economically since 50-60% of the process capital cost relates to the sungas 

manufacturing unit. 

 

In the second stage, known as Heavy Paraffin Synthesis (HPS), the synthesis gas is 

converted into liquid hydrocarbons via a Fischer-Tropsch (FT) reaction. The multi-tubular 

fixed bed reactor is filled with a Shell proprietary Fischer-Tropsch cobalt-based catalyst.  

 

In the third and final stage, the crude FT product is fractionated into high-quality products, 

a part of which is converted into middle distillates by means of the Heavy Paraffin 

Conversion (HPC), which is a hydrocracking process employing a shell proprietary catalyst 

and operating typically at 30 - 50 bar and 300 - 350oC. The waxy part of the raw synthesis 
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product is selectively hydrocracked to the desired middle distillate products. Crucial for the 

performance is the use of the proprietary hydrocracking catalyst. The HPC product is 

subsequently fractionated in a conventional distillation column. The product fraction boiling 

above the gas oil range is recycled to the HPC. Naphtha, middle distillates and waxy 

raffinate (WR) (low wax content) are produced from the hydrocracked FT product. 

2.8.2 Methanol-to-Gasoline (MTG) 

The Methanol-To-Gasoline (MTG) process, developed by Mobil (today: ExxonMobil) 

scientists in the 1970s, was the first major synthetic fuels development in the fifty years 

since the development of the FT process [58]. A Mobil MTG plant was operated in 

Motunui, New Zealand from 1985 to 1997 and produced 14,500 bbl/d of unleaded gasoline 

composed mainly of isoparaffins and aromatics with low benzene content and essentially 

zero sulphur [18]. The Motunui plant was designed to meet one-third of New Zealand’s 

demand for transport fuels, thus lessening their dependence on fossil fuels import [59]. In 

1997, the production of gasoline was abandoned but the plant continued to manufacture 

methanol. Possible reasons behind this could be the market price of methanol and the 

crude oil price [18]. 

 

In the MTG process, methanol is converted to hydrocarbons and water over zeolite 

catalysts (ZSM-5). A short description of methanol synthesis, which is the intermediate 

step of the MTG process, is given in the following section. 

 

2.8.2.1 Methanol Synthesis 

Methanol is one of the top ten most produced commodity chemicals and is predominantly 

produced from syngas which is synthesized via steam reforming of natural gas. The first 

large-scale commercial methanol plant was introduced by BASF in 1923. The syngas was 

produced by coal and a water-gas-shift reactor was implemented in the process. The 

methanol synthesis reactor was operated at temperatures of 300 - 400oC and pressures of 

30 - 40 bar, whereas a zinc chromite (ZnO/Cr2O3) catalyst was used [60].  

 

Today, methanol is produced by low pressure technology at 200 - 300oC and 50 - 100 bar 

[60, 61]. The two major worldwide manufactures of methanol are ICI and Lurgi. The ICI low 

pressure process, which was also used in the MTG process, is shown in Figure 2-5. 
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Similar to FT synthesis, the methanol reaction requires a consumption H2/CO ratio of 2 

[60, 62]. 

 

Methanol is synthesised by the following chemical reactions: 

CO + 2H2  CH3OH   o

MeOH = - 90.84 KJmol−1  

  CO2 + 3H2  CH3OH + H2O  o

MeOH = - 49.6 KJmol−1  

In addition, a reverse water-gas-shift reaction occurs over the catalyst: 

CO2 + H2  CO+ H2O  o

WGS = - 41 KJmol−1 
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Figure 2-5: The ICI low pressure methanol process 

  

2.8.2.2 The MTG process 

During the MTG process, crude methanol is directly converted to hydrocarbons by 

synthetic zeolite catalysts (ZSM-5). The overall reactions may be represented by the 

simplified equation: 
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nCH3OH→ (CH2)n + nH2O           o

MTG = - 54.4 KJmol−1 

where (CH2)n represents the average formula of the hydrocarbon mixture produced.  

 

The first step of the MTG process is to pass the methanol over a methanol dehydration 

catalyst to form a mixture of methanol, DME, and water, and the second step is converting 

this mixture to gasoline over a zeolite catalyst. Gasoline range compounds (C5-C10) with no 

hydrocarbons above C10 are produced due to the very selective zeolite (ZSM-5) catalyst 

[63, 64]. The overall energy efficiency of the Mobil’s MTG plant, including the methanol 

synthesis plant, was 53% [63].  

  

Mobil’s MTG plant employed the ICI low pressure methanol process that incorporated two 

methanol trains, each with a capacity of 2200 t/d [63]. The natural gas was first 

desulphurised and saturated before entering the reformer reactor, where it reacted with 

steam over a nickel catalyst at 900oC to produce syngas [64]. The syngas exiting the 

reformer was sent to the methanol synthesis reactor where it was converted at 250-300oC 

to methanol and water (17 wt%) [59, 64, 65]. The crude methanol was then sent to the 

MTG plant for conversion to gasoline compounds.  

 

A simplified block diagram of the MTG process is shown in Figure 2-6. Conversion of 

crude methanol to gasoline was carried out in two stages [63, 64]: In the first stage, 

methanol entered a dehydration reactor where it was converted to a mixture of dimethyl 

ether (DME), methanol and water over an alumina catalyst at 300-420oC. In the second 

stage, the effluent from the first reactor was mixed with recycle gas from the product 

separator and passed through the conversion reactors containing the ZSM-5 catalyst, 

where it was converted at 360-415oC and 22 bar to hydrocarbons and water. The second 

stage conversion included a system of five fixed-bed reactors in parallel. Methanol was 

fully converted to approximately 44 wt% hydrocarbons and 56 wt% water [59, 63-65].  

Small amounts of CO, CO2 coke were also formed. After cooling to 25-35oC and 

condensing, the gasoline product entered the product separator where gas, liquid 

hydrocarbons and water separated. 

 

After the product separation, liquid hydrocarbons passed to three distillation columns to 

produce a heavy gasoline stream, a light gasoline stream and a high vapour pressure 
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gasoline which was used for vapour pressure control [63]. The MTG gasoline contained 

higher concentration of durene (about 3-6 wt%) than conventional gasoline (about 0.2-0.3 

wt%). The concentration of durene in gasoline should be less than 2 wt% to ensure vehicle 

driveability [65]. Therefore, heavy gasoline was further treated to reduce the amount of 

durene which could adversely affect product quality.   

 

Figure 2-6: Block diagram of Mobil’s MTG process 

 

A typical MTG products distribution is shown in Table 2-8. Table 2-9 shows the 

hydrocarbon compounds composition in gasoline. 

 

Table 2-8: Hydrocarbon products from MTG process [59] 

Products wt % 

Light gas  1.4 

Propane 5.5 

Propene 0.2 

i-Butane 8.6 

n-Butane 3.3 

Butenes 1.1 

C5-C10 Gasoline 79.9 

 

Since the first MTG plant in New Zealand, ExxonMobil has made improvements in the 

MTG technology in the early 1990s that reduce both capital investment (by 15-20%) and 
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operating costs mainly due to reductions in the size and number of heat exchangers [66, 

67]. The first coal-to-gasoline MTG plant, utilising the second generation MTG technology, 

was constructed by Jincheng Anthracite Mining Group (JAMG) in China [66, 67]. The plant 

started up in June 2009 and its current capacity is 2,500 bpd [68]. Another CTL plant 

based on MTG technology is planned to be operational in Wyoming, USA towards the end 

of 2014 with an initial capacity of 15,000-20,000 bpd [66, 67]. 

 

Table 2-9: MTG gasoline composition [65] 

Compounds wt % 

Highly branched alkanes 53 

Highly branched alkenes 12 

Napthenes (cycloalkanes) 7 

Aromatics 28 

 

TransGas Development Systems LLC, has recently begun construction of a coal-to-

gasoline MTG plant, the Adams Fork Energy plant in Mingo County, West Virginia. The 

plant will produce 18,000 bpd of gasoline and is expected to be completed by 2015 [69]. 

2.8.3 Topsoe Integrated Gasoline Synthesis (TIGAS)  

The main principle of the Topsoe integrated gasoline synthesis (TIGAS) is the 

incorporation of the methanol synthesis and the DME synthesis into a combined methanol 

and DME synthesis process, thus intermediate methanol production and storage are 

eliminated. It has been developed by Haldor Topsoe to reduce investment costs and 

subsequently production costs of gasoline produced from the MTG process [70]. It was 

demonstrated in Houston Texas where natural gas was used as feed to the process. The 

demonstration plant of 1 ton/day gasoline started up in early 1984 and terminated in 

January 1987 after 10,000 hours of operation [70]. A block diagram of the TIGAS process 

is shown in Figure 2-7. 

 

The aim of this process development work by Haldor Topsoe was to come up with a 

process scheme in which all three steps of synthetic gasoline production - syngas 

production, oxygenate synthesis and gasoline synthesis - operate at the same pressure. 

By combining steam reforming and autothermal reforming for syngas production, and by 

using a multifunctional catalyst system, producing a mixture of methanol and DME instead 
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of only methanol, syngas production and oxygenate synthesis can operate at the same 

relatively low pressure (~25 bar) which eliminates the need for syngas compression prior 

to synthesis (methanol synthesis operates at 50-100 bar). This results to lower capital 

costs which are further reduced due to the integration of the methanol synthesis and the 

DME synthesis into a combined oxygenate synthesis process [70]. 

 

 

Figure 2-7: Block diagram of the TIGAS process 

2.9 Product refining 

Refining of the BTL products can be carried out on-site or the crude products can be 

shipped to a conventional refinery in order to take advantage of established “know-how” 

and operational experience as well as the economies of scale and an established 

distribution chain [12].    

2.10 Offsites  

Offsites are required for all stand alone plants and include power and heat provision, 

oxygen provision (depending on the gasification method) and waste disposal [12]. Power 

can be provided on-site for a self-sufficient facility, or it can be partly provided from waste 

heat from the process. It can also be purchased from the grid. Oxygen can be provided 

from an on-site oxygen production plant (usually an air separation unit). Significant water 

amounts will be required for cooling and heating (e.g. heat exchangers). Depending on the 

process and local requirements, waste disposal and wastewater facilities may be required 

as well [12]. 
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2.11 Biomass-to-Liquids (BTL) projects 

2.11.1 Choren 

Choren was one of the leading European companies in the BTL technology based on 

Fischer-Tropsch synthesis. C OREN’s pilot facility, the Alpha Plant, was constructed in 

1997 and had seen 17,000 operating hours by the end of 2004 [71]. Initially constructed for 

gasification trials, the 1 MWth Carbo-V gasifier, which used forestry wood as feedstock, 

was complemented with a Fischer-Tropsch reactor in 2002 and thereafter began to 

produce diesel from for automotive and research purposes [71, 72]. For its FT synthesis 

technology, Choren used the Shell Middle Distillate Synthesis which employs a cobalt 

catalyst to recombine carbon and hydrogen into long chain paraffin liquids and waxes (see 

section 2.8.1.3).  

 

The Choren BTL process, which is shown in Figure 2-8, starts off by feeding biomass into 

a low temperature gasifier (500oC) to remove volatiles that will form tars at higher 

temperatures [71]. 

 

 

Figure 2-8: Choren/Shell BTL process 

The product gas from the low temperature gasifier passes to the high temperature gasiifer 

(Carbo-V gasifier) where it is partially oxidised with oxygen and steam at around 1400oC to 

produce a tar-free gas [71].  
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The char from the low temperature gasifier is first pulverized, and then blown into the 

bottom of the high temperature gasifier [71]. The gas that exits the high temperature 

gasifier is cooled (down to 900oC) due to the endothermic gasification of char, generating 

steam in the process that is used for power generation [71]. The syngas is then further 

treated (filtered and scrubbed), and passes to the Fischer-Tropsch synthesis section. The 

appropriate H2/CO ratio is set in a shift reactor after which excess CO2 is eliminated [71]. 

Choren does not supply any information on the CO2 removal technology used in their 

process. The gas composition in three different stages of the process is given in Table 

2-10. 

Table 2-10: Choren BTL process - syngas composition [71] 

Vol.% A B C 

CO 36.8 21.8 31.9 

H2 34.6 43.6 64.5 

CO2 22.6 32.5 2.5 

N2 1.7 1.6 0.8 

CH4 0.4 0.3 0.1 

H2O 3.9 0.2 0.2 

Sum 100.0 100.0 100.0 

  

A After gasifier, clean up and compression 

B After shift reactor 

C After CO2 removal 

 

Previously, the world's first commercial BTL plant was under construction by Choren in 

Frieberg Saxony. It was initially scheduled to be completed by late 2009 and it would have 

an output capacity of 15,000 t/yr requiring an estimated 67,500 t/yr of dry biomass (forestry 

wood and wood residues) [71, 73]. The capital investment was reported to be €100 million 

[73]. CHOREN was also planning to build large scale plants of 200,000 t/yr of FT diesel 

the first of which would be in Lubmin on the North-east German coast, to be followed by 

four additional plants across Germany [73]. However, Choren Industries filed for 

insolvency in July 2011 because of financial difficulties in starting up the new plant in 

Frieberg [74]. On February 2012, Choren's biomass gasification technology was sold to 

Linde Engineering Dresden [74]. 

2.11.2 NSE Biofuels Oy 

NSE Biofuels Oy, which was a joint venture between Neste Oil and Stora Enso, operated a 

BTL demonstration plant at Stora Enso’s Varkaus pulp and paper mill in Finland from 
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2009-2011. The output was 656 t/yr of FT fuels from a 12 MW CFB gasifier developed by 

Foster Wheeller [75]. The CFB gasifier operated with oxygen (40-50%) and steam at 

atmospheric pressure and 870-890oC [76]. NSE Biofuels (in partnership with Foster 

Wheeler and VTT) planned to develop a commercial production plant at one of Stora 

Enso’s mills with a projected output capacity of 100,000 t/yr, once enough experience was 

gained from the demonstration plant [77]. However, in August 2012, Neste Oil and Stora 

Enso announced that they have decided not to progress with their plans to build a 

biodiesel plant due to funding being denied from the European Commission [78]. 

According to Neste Oil, even with public funding, significant investment would also have 

been required for the commercial plant [78].  

2.11.3 BioTfueL project 

In 2010, five French partners and Uhde launched BioTfueL, a $113 million project that 

uses the Fischer-Tropsch process to convert torrified wood biomass into liquid 

hydrocarbon fuels [79, 80]. The project uses Uhde’s proprietary PRENFLOTM gasification 

process which is an entrained flow gasification technology that operates at 1200-1600oC 

and 30-40 bar. The PRENFLOTM gasification technology is currently being used in 

Puertollano, Spain at a 300 MWe combined cycle power station (the largest in the world) 

which utilises coal and petroleum coke as feedstock [80, 81]. Demonstrations of using 

biomass as a supplemental fuel were also conducted in the Puertollano plant [82]. The 

BioTfueL project is subsidised by €33 million from French Public Funds and includes the 

construction and operation of two pilot plants in France before moving on to industrial 

scale production in 2020 [83]. 

2.11.4 Bioliq project 

FZK in partnership with LURGI GmbH is constructing a €60 million pilot BTL plant for 

biofuel production [84]. The Bioliq process includes decentralised fast pyrolysis of residual 

straw or wood to produce a pyrolysis bio-oil/char slurry which, according to KIT, its energy 

density is ten times higher than fresh biomass [84]. The slurry, referred to as biosyncrude, 

allows for economic long range transportation to a central entrained flow gasification plant 

for gasoline synthesis via DME using a process similar to TIGAS (see section 2.8.3) [85]. 

The 2 MWth (0.4 t/h) fast pyrolysis plant is already in operation since 2009 [85]. The 5 MWth 

gasifier, hot gas cleaning section, and gasoline synthesis section are still under 

construction with start-up expected in 2012 [85-87].  
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3 LITERATURE REVIEW OF PREVIOUS BTL TECHNO-ECONOMIC 

STUDIES 

3.1 Introduction 

This section carries out a review of the literature on techno-economic studies that have 

dealt with the production of transport fuels from biomass. The scope of the review has 

been narrowed to techno-economic assessment studies of biomass gasification and fast 

pyrolysis systems for production of liquid hydrocarbon fuels, i.e. diesel, gasoline and 

kerosene. This covers a reasonable number of studies with a high degree of relevance to 

the present work. The purpose of the review is to place the present study in context and 

demonstrate its novelty, while also presenting key results from other studies for 

comparison with those of the present work. It also identifies areas that have not been 

studied yet and those topics where there was a consensus. 

3.2 Previous techno-economic studies 

3.2.1 Utrecht University 

Utrecht University has been active for many years in the area of bio-energy systems 

analysis, having conducted a number of techno-economic studies using Aspen Plus for 

process simulation. Tijmensen et al. [16] carried out a techno-economic assessment of 

various integrated biomass gasification-Fischer Tropsch (BIG-FT) systems for the 

production of FT liquids and electricity. In order to cover the wide range of gasification 

technologies and operating conditions, the study considered five different CFB gasifiers 

that were available or under development when the paper was written in 2001. Table 3-1 

shows the five gasifiers chosen for evaluation in this study. 

Table 3-1: Summary of evaluated gasifiers - Tijmensen et al [16] 

Gasifier Characteristics 

Battelle Columbus Atmospheric indirect air blown 
Termiska Processer Atmospheric direct air blown 
Enviro Power Pressurised direct air blown 
Gas Technology Institute Pressurised direct oxygen blown 
Gas Technology Institute (process adjustments) Pressurised direct oxygen blown 
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Only CFB gasifiers were selected since the investigated range of thermal input was 100-

1600 MWth as CFB gasifiers, along with entrained flow gasifiers, are considered the most 

suitable gasification technologies for large scale biofuel production. This is further 

discussed in section 4.5 (see also Table 2-3 at section 2.5.3). Nevertheless, entrained flow 

gasification was not considered in the analysis. Gas cleaning consisted basically of tar 

removal and residual contaminations removal. Only the water scrubber was modelled in 

ASPEN. Tar cracking was not modelled but its capital costs were incuded in the economic 

analysis. Hot gas cleaning was also considered for evaluation. Gas conditioning included a 

reformer, a WGS reactor and a Sulfinol process for CO2 removal. 

The selected gasifiers were studied in combination with two different FT-concepts: 

1. Full conversion mode: In order to maximise the FT liquids production, most of the 

FT offgas was recycled back to the FT reactor and the remainder passed to a gas 

turbine. 

2. Once through mode: The FT offgas was not recycled but passed to the gas 

turbine where it was co-fired with natural gas for electricity production.  

Wood (poplar chips) was used as feedstock. The plant capacity was fixed at 367 MWth 

LHVwet or 80 dry t/h for all process concepts which were modelled using Aspen Plus. The 

scope of the study covered all activities from plant gate to product refining. The gasification 

process was not modelled; instead product gas compositions from literature were used. 

The authors did not give any explanation for this choice. Biomass preparation (drying, 

milling) was also not modelled thus the process flowsheet in Aspen begun with the gas 

cleaning step. Overall energy efficiencies from biomass reception to hydrocarbon biofuel 

product (LHV basis) were in the range of 33-40% for the atmospheric gasification concepts 

and 42-50% for the pressurised gasification (22-34 bar) concepts. 

 

Economic analyses were carried out of the various process concepts. 2000 was the base 

year for the analyses. Total capital costs were estimated at 280-450 million US$ 

(depending on the concept) using the factored estimation method based on cost data 

obtained from literature and experts opinion. The FT liquids production costs were 

calculated by dividing the total annual costs of a modelled concept by the annual produced 

amount of FT liquids. Production costs of FT liquids were in the range of 13-30 US$/GJ. 

These included annualised capital repayments, operating and maintenance (including 
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consumables, labour, waste handling, maintenance), biomass feedstock and electricity 

supply/demand (fixed power price). 

  

Pressurised gasification concepts resulted in lower production costs. A sensitivity analysis 

of various key parameters (e.g. capital costs, biomass costs, electricity cost, interest rate) 

was performed which resulted in a reduction of production costs to 14-16 US$/GJ. By 

including a number of improvement options (i.e. higher yield, lower feedstock cost, 

reduction of capital and operating costs through technological learning), production costs 

could drop to 9 US$/GJ in the longer term. 

 

A second study was carried out by Utrecht University in collaboration with the Energy 

Research Institute of the Netherlands (ECN). Hamelinck et al [15] using also Aspen for 

process simulation investigated the performance and costs of various BIG-FT systems for 

the production of FT liquids and electricity. The scale and type of feedstock remained the 

same as those of Tijmensen’s study above [16]. 

 

As with Tijmensen, CFB gasification was the only gasification technology that was 

considered in the study. However, no information was given on whether the chosen 

gasifier was modelled based on public data. Contrary to Tijmensen, the Aspen process 

flowsheet was not provided so comparisons between the two models could not be made. 

Three different gasification pressure conditions were investigated: 1, 6 and 25 bar. The 

gasification medium was air, enriched air with oxygen (80%), or pure oxygen.  

 

Gas cleaning included tar cracking and residual contaminants removal. For the FT 

synthesis, both full conversion and once through options were evaluated as explained in 

the previously reviewed study. Pressurised (25 bar) oxygen-blown gasification, followed by 

a tar cracker and wet gas cleaning performed better than other concepts with an energy 

efficiency of 45% (HHV basis), capital costs at 286 million US$ (2003) and production 

costs at about 18 US$/GJ (2003). Similar to Tijmensen, pressurised gasification concepts 

resulted in higher efficiencies than atmospheric gasification concepts. It is not clear if the 

reported energy efficiency values included also the energy efficiency from electricity 

production.  
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As with Tijmensen, the total capital costs were calculated using the factored estimation 

method based on known costs for major equipment as found in literature or given by 

experts. Hamelinck also used the same method as Tijmensen to estimate production costs 

which also included the same cost items (e.g. annualised capital repayment). Production 

costs of FT liquids were in the range of 18-25 US$/GJ. By assuming a 90% conversion of 

syngas to FT liquids (70% for the initial concepts investigated) production costs could drop 

to 16 US$/GJ. However, such a high conversion rate is unrealistic based on the current FT 

technology which typically achieves 60-70% conversion [5]. In the longer term (larger 

scale, lower biomass costs, technological learning, and selective catalyst), this could 

decrease to 9 US$/GJ. These values for short and long term are comparable with the 

costs found in the previous study by Tijmensen et al. [16] which is not surprising as they 

were both carried out at the same institute.  

 

A third, more recent study on techno-economics of FT liquid hydrocarbons was published 

by Utrecht University in 2009 [88]. It is one of the few studies publicly available that not 

only provides estimates of performance, capital and production costs, but also calculates 

carbon emissions of 14 FT fuel production plant concepts based on various feedstocks, 

such as biomass, natural gas, coal or a combination of these. It is also one of the few 

studies in which the methodology for cost calculations is explained in detail. The main aim 

of the study was to evaluate which of these 14 FT plant concepts could be economically 

competitive with fossil-based diesel production plants.  

 

The following biomass feedstocks were considered: forest residues from Canada, 

eucalyptus from Latin America and willow (or poplar) from Eastern Europe. The authors do 

not give the reason for choosing these specific feedstocks over others (e.g. energy crops), 

especially in the case of eucalyptus which is a rather unusual choice compared to other 

studies.  

 

Table 3-2 summarises the FT diesel production plant concepts evaluated in this study. 

Pelletisation or torrefaction combined with pelletisation (for TOPs production) were 

considered as biomass pre-treatment options. Several gasification technologies were 

evaluated as shown in Table 3-2. These included: fluidised bed gasification, entrained flow 

gasification and the Carbo-V gasification technology developed by CHOREN. FT synthesis 

technologies developed by Shell (SMDS) and Sasol (SSPD) were considered for fuel 
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production. A combination (Adv. FT) of the SSPD process with Shell’s  PC hydrocracking 

process (see section 2.8.1.3) was also considered as promising and included in the study, 

although such a combination has not been demonstrated yet. 

 

Table 3-2: FT plant concepts studied by van Vliet et al. [88] 

   PTL: Pellets-to-Liquids 

  TTL: TOPs-to-Liquids 

 

Since the study included an assessment of carbon emissions of the selected concepts, 

carbon capture and storage (CCS) for the resulting CO2 removed by a Selexol unit was 

also considered. Mass and energy balances for the selected FT plant concepts were 

calculated in Excel. There is not sufficient information regarding the structure and the type 

of the Excel-based models used in this study thus conclusions cannot be made on the 

reliability of the models. In general, Excel is not usually used for detailed techno-

economics studies for the reasons highlighted in section 5.2.1. Therefore, the results of 

this study should be used with caution.  

 

Energy (biomass-to-fuel) efficiencies for the selected BTL concepts (PTL, TTL, BTL in 

Table 3-2) were in the range of 48-52%. The FT plant concept based on eucalyptus chips 

without pre-treatment (BTL 300 in Table 3-2) resulted in the highest efficiency (52%). A 

pellets-based concept of slightly higher scale (PTL 400) resulted in an energy efficiency of 

51%. According to these results, torrefaction and pelletisation does not seem to have an 

important energy penalty on the overall plant efficiency. However, someone would expect 

that the effect on the plant efficiency would have been higher due to the thermal pre-

processing of biomass by torrefaction and pelletisation. This was not discussed in the 

study. There is also no information with regards to the heat integration of torrefaction and 

pelletisation.  
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Capital costs comprised of installed equipment costs, other direct costs (instrumentation, 

piping, buildings, etc) and indirect costs (e.g. contingency), although it is not clear what 

exactly direct and indirect costs included. Equipment costs were estimated using scaling 

factors. The fuel (diesel) production costs were calculated by dividing the total annual 

costs of a modelled concept by the annual produced amount of FT hydrocarbons. The total 

annual costs included annual capital repayments, operating and maintenance, biomass 

feedstock and revenue from electricity sales and carbon credits. A plant life of 10 years, an 

interest rate of 10%, operation and maintenance (O&M) costs of 4% of TCI, and a plant 

availability of 8,000 hours per year were assumed. Labour and fixed costs of 2000 €/MWth, 

input were assumed in addition to 4% O&M. This assumption was not justified or 

referenced.  

 

Capital costs for the selected BTL concepts were in the range of 135-1,440 million €2005. 

The BTL 300 concept resulted in capital costs of 273 million €2005, whereas the PTL 400 

concept resulted in capital costs of 390 million €2005. This is mainly due to the additional 

cost of pelletisation and the more complex gasification technology of the PTL 400 concept. 

 

Production costs for the selected BTL concepts were in the range of 14-25 €2005/GJ. The 

BTL 300 concept resulted in production costs of 15.5 €2005/GJ, whereas the PTL 400 

concept resulted in production costs of 24.8 €2005/GJ, the highest of all concepts. In 

general, the results of this study showed that pre-treatment of biomass via torrefaction and 

pelletisation results in higher capital and production costs compared to BTL plants without 

biomass pre-treatment.   

3.2.2 Energy Research Centre of the Netherlands (ECN) 

Boerrigter [89] investigated the economics of a BTL plant based on FT synthesis. Process 

simulation and technical assessment of the BTL plant were not undertaken in this study. 

The plant efficiency is provided (55%) though no explanation was given on how it was 

found.  

 

Boerrigter proposed oxygen-blown entrained flow gasification for the plant’s gasification 

technology. This option was identified by the same author [40] as the most suitable for 

large BTL plants since  it has the following advantages: 

 High efficiency to syngas 
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 Fuel flexibility for all types of biomass 

 Ability to be scaled-up to a few thousand MW 

 It’s a well established and commercial technology for coal 

For biomass pre-treatment and CO2 removal, torrefaction and a Rectisol unit were 

recommended, respectively.  

  

Using a scaling factor of 0.7, the total capital investment (TCI) was estimated for the whole 

scale range from 10 to 100,000 bbl/d. The GTL plant built by Sasol in Qatar was used as 

the known scale data (34,000 bbl/d). A depreciation period of 15 years, a required IRR of 

12%, operation and maintenance (O&M) costs of 5% of TCI, and a plant availability of 

8,000 hours per year were assumed.  

 

It was concluded that the TCI for a BTL plant based on FT synthesis is typically 60% more 

expensive than a GTL plant with the same capacity. This was due to the 50% higher ASU 

capacity, the 50% more expensive gasifier due to the solids handling, and the requirement 

of a Rectisol unit for CO2 removal. Production costs were in the range of 30 €/GJ (1.1 €/l) 

for a 50 MW
th 
plant to 15 €/GJ (0.55 €/l)

 
at a scale of 9 GW

th
.  The method for calculating 

production costs was not explained. It should also be noted that the economic assessment 

approach followed in this study was relatively simple so results should be looked at with 

caution. 

3.2.3 Vienna University of Technology 

In the past decade, several master and PhD-students in Vienna University of Technology 

developed IPSEpro models that include the entire conversion chain from biomass to 

electricity generation and district heat. While the commercially available simulation 

package IPSEpro (see section 5.2) includes a model library for modelling conventional 

power plant processes, all biomass-related models were specifically developed at the 

Vienna University of Technology.  

 

These models, along with others that had to be built from scratch (e.g. fast pyrolysis), were 

used by Fürnsinn [5] who investigated the conversion of woody biomass to FT liquids at 

small scale (50 MW or approximately 240 dry t/d). This study covers a range of biomass 
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gasification and FT synthesis concepts and has a high degree of relevance to the present 

work as these concepts were simulated on IPSEpro. 

 

Various process concepts were identified as particularly promising which were all based 

on atmospheric steam gasification (as realised in Guessing, Austria). These were 

evaluated using the process simulation software IPSEpro. The gas cleaning step 

differentiated between the selected concepts which were divided into “advanced gas 

cleaning” concepts and a single “starting point” concept. The advanced gas cleaning 

concepts included a catalytic tar cracker and a CO2 removal unit (Benfield), whereas the 

starting point concept was based on the gas cleaning technologies (e.g. physical tar 

removal) of the CHP-plant in Guessing. The starting point concept included also the co-

generation of electricity and heat (polygeneration mode), whereas the advanced gas 

cleaning concepts were operated either in fuel orientation mode that maximises the FT-

liquids yield or in polygeneration mode that produces electricity, FT fuels and district heat. 

Table 3-3 summarises the biomass gasification and FT synthesis concepts studied by 

Fürnsinn. Energy efficiencies (LHV basis) were in the range of 49-56% for fuel orientation 

concepts and 31-43% for polygeneration concepts including the starting point scenario 

which resulted in the lowest energy efficiency.  

 

Table 3-3: Biomass gasification and Fisher-Tropsch concepts studied by Fürnsinn [5]   

Concepts Mode 
Net electricity 

production (MW) 

FT starting point Polygeneration 
Depending on FT 

conversion 

FT_I Fuel orientation 
< 0 as electricity is 

bought from the grid 

FT_II Fuel orientation 0 

FT_III Polygeneration 2 

FT_IV Polygeneration 5 

 

Fast pyrolysis for biomass pre-treatment was also considered. Fürnsinn was actually the 

first to model fast pyrolysis using IPSEpro and some of his models were also used in this 

study. This is discussed in section 5.5. He investigated three different possibilities in terms 

of the heat supply for the endothermic pyrolysis reactions. The three fast pyrolysis 

concepts examined by Fürnsinn are shown in Table 3-4. 
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Table 3-4: Fast pyrolysis concepts studied by Fürnsinn [5] 

Concepts Pyrolysis heat supply method 

Pyrolysis I  Combustion of a part of the produced char. 

Combustion of permanent gases. 

Pyrolysis II  Combustion of a part of the wet (30% moisture) 
biomass feedstock. 

Combustion of permanent gases. 

Pyrolysis III  Combustion of a part of the dried (10% moisture) 
biomass feedstock. 

Combustion of permanent gases. 

 

The first concept gave higher bio-oil yields since all of the available biomass was used to 

produce bio-oil and the by-product char was used to supply the heat, thus the bio-oil yield 

was not influenced. For both biomass combustion concepts, the product mix of bio-oil and 

char contained more char while bio-oil yields were lower. This is due to the fact that a 

considerable part of the available biomass feedstock (around 10 wt%) was combusted for 

heat supply, thus less bio-oil was produced. The third fast pyrolysis concept resulted in 

higher yields of slurry (mix of bio-oil and char). It was chosen, along with the first concept 

to be examined in connection with the FT_II (see Table 3-3 above) concept which included 

steam gasification, advanced gas cleaning and FT synthesis. The combination of the fast 

pyrolysis concepts with the FT_II concept resulted in lower overall efficiencies by 10-20% 

compared to the solid biomass gasification concepts shown in Table 3-3, due to the 

thermal pre-processing of biomass by fast pyrolysis. 

 

Fürnsinn also carried out an economic assessment of the modelled concepts which are 

summarised in Table 3-3 above to estimate production costs of FT fuels. Equipment costs 

were obtained from the plant manufacturer of the CHP plant in Guessing, although this 

data is not given in the study. In general, economic calculations are not included and the 

methodology for the economic assessment is not explained thoroughly. A biomass cost of 

83 €/dry t and 7500 h/y of plant operation were assumed. The base year for costing was 

2007. For capital costs, values in the range of 40-43 million € were estimated. Production 

costs were in the range of 0.78-0.93 €/l and included earnings from electricity and district 

heat depending on the modelled concept. Capital and production costs for the concepts 
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that included fast pyrolysis as a biomass pre-treatment option were not provided since 

Fürnsinn did not carry out an economic assessment for these concepts. 

3.2.4 National Renewable Energy Laboratory (NREL) 

The National Renewable Energy Laboratory (NREL) in the United States have carried out 

a number of techno-economic studies of biomass gasification and fast pyrolysis systems 

over recent years, usually considering large scale systems and using Aspen Plus to 

calculate technical performance. 

 

NREL, in collaboration with Iowa State University and ConocoPhillips, published a report in 

2010 that compared two BTL plants based on gasification utilising 2000 dry tonnes per day 

of corn stover [90]. A scientific paper which summarises the results of this report is also 

available [91]. The aim was to compare capital and production costs for BTL plants that 

produce liquid transport fuels and electricity as co-product, using commercially available 

technology within the next 5–8 years [90].  

 

Two process concepts were analysed. The first concept was based on high temperature 

(HT) gasification and incorporated a steam/oxygen-fed, entrained flow gasifier (1300oC, 28 

bar). The other concept was based on low temperature (LT) gasification which included a 

pressurized, steam/oxygen-fed fluidized bed gasifier (870oC, 28 bar). Both concepts 

included FT synthesis for the production of hydrocarbon fuels. Aspen Plus was used for 

process simulation to calculate mass and energy balances. 

 

In the LT concept, tars were removed by water quenching. This was a rather unrealistic 

assumption since tars cannot be completely removed by water quenching [36]. Other 

technologies are more appropriate for tar removal (see section 2.6.2). A WGS reactor was 

used in both concepts to adjust the H2/CO molar ratio to the optimal value for FT 

synthesis. In the HT concept, the WGS unit was placed before the acid gas removal area 

to allow carbon dioxide produced in the WGS reaction to be removed by the 

monoethanolamine-based acid gas (CO2 and H2S) removal system. In the LT concept, the 

WGS unit was placed after the syngas cleaning area, right before the FT reactor, due to 

the presence of tars that have the potential to clog equipment and poison catalysts. 

However, no information was given on the effect of the increased CO2 concentration in the 
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syngas on the subsequent FT synthesis. Other common process steps included biomass 

preparation, power generation, and cryogenic air separation (for oxygen production).  

 

An economic analysis was carried out for both concepts, assuming the nth production plant 

(i.e. a plant with technologies that have been used in previous commercial plants). The 

base year for costing was 2007. Capital costs were based on equipment costs from the 

Aspen Icarus Process Evaluator software where possible; elsewhere they were capacity 

factored from equipment costs found in literature. A plant lifetime of 20 years, a required 

IRR of 10%, biomass cost of 83 $/dry t and a plant availability of 7,446 hours per year 

(85%) were assumed.  

 

The resulting biomass to fuel energy efficiencies (LHV basis) were 53% and 43% for the 

HT and LT concept, respectively. For the HT concept, estimated capital costs were 

approximately 600 million US$, while for the LT scenario they were 500 million US$. The 

100 million US$ difference in capital costs was mainly due to the more complex gasifier 

design for the HT concept. Production costs were approximately 35 $/GJ and 40 $/GJ for 

the HT and LT concept, respectively. 

 

The majority of techno-economic studies of BTL processes for production of liquid 

hydrocarbon fuels are based on FT synthesis. Philips et al. [92] decided to take a different 

approach and conducted a techno-economic study of BTL systems based on the MTG 

process. This report evaluated the fluidised bed MTG process, in which case direct 

conversion is possible because, contrary to the fixed bed MTG process, both the 

conversion of methanol to DME as well as the synthesis of DME to gasoline can be 

performed in one reactor. The fluidised bed MTG process was also developed by 

ExxonMobil but it has not been commercialised yet. It was demonstrated in Germany by 

ExxonMobil and Uhde on a scale of 100 bpd from 1981 to 1984. Details of this project are 

described by Grimmer et al. [93] and Chang [59].  

 

One concept was evaluated that was based on indirect gasification. Steam was injected to 

the gasifier from the steam cycle and a char combustor was used to supply heat for the 

endothermic gasification reactions. Gas cleaning and conditioning consisted of multiple 

operations: catalytic tar cracking, syngas cooling/quench, WGS and acid gas removal. 

Detailed mass and energy balance calculations were performed by using Aspen Plus 
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software. Plant capacity was set at 2000 dry t/d with an expected 8,406 operating hours 

per year (~96 % plant availability factor). Poplar wood chips delivered at 50% moisture 

were used as feedstock. Biomass price was 56 $/dry t. 

 

The costs analysis was based on the assumption that this was a nth plant. Thus additional 

costs for risk financing, longer start-ups, and other costs associated with first-of-a-kind 

plants were not included. The capital costs were extracted from a variety of sources. For 

some sub-processes that are well known technologies and can be purchased as modular 

packages (i.e., amine treatment, acid gas removal), an overall cost for the package unit 

was used. Investment costs for common equipment items (tanks, pumps, simple heat 

exchangers) were estimated by using the Aspen Icarus Process Evaluator and Aspen 

Questimate costing software. For other more specific unit operations (gasifier, LOCAT 

system), cost estimates from other studies and/or from vendor quotes were used. The 

base year for costing was 2007.  

 

Capital costs and production costs were 200 million US$ and 0.52 $/l, respectively. These 

values are low compared to the other BTL studies mentioned here. Overall energy 

efficiency was 43% (LHV basis) which included energy efficiency from LPG production.     

3.2.5 Pacific Northwest National Laboratory (PNNL)  

Jones et al. [94] also carried out a techno-economic study of biomass gasification and the 

MTG process. Two concepts with different gasification technologies were evaluated by 

using the process simulation software CHEMCAD 6.1. The reason for choosing this 

software over Aspen Plus or other process simulators was not given. Wood chips (50% 

moisture) were used as feedstock and the plant capacity was set at 2000 dry ton per day 

for both concepts. 

 

Biomass gasification was used to differentiate the selected BTL concepts. The first 

concept was based on a low pressure indirectly-heated gasifier which consisted of two 

vessels: a gasifier and a char combustor. Steam extracted from the steam cycle is sent to 

the gasifier which is operated at 870oC and 1.6 bar. The second concept was based on an 

oxygen/steam-blown fluidised bed gasifier operated at 870oC and 23 bar. A cryogenic air 

separation unit provides oxygen at 99.5% purity to the gasifier. The dried wood is fed to 
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the gasifier by using a lock hopper feeder system and pressurized by compressed CO2 

recovered from the CO2 removal unit.       

 

The indirectly-heated gasifier was modelled using data from a Battelle-Columbus 

Laboratory (BCL) indirect gasifier. The performance of the oxygen-blown, directly-heated 

pressurized gasifier was predicted using data from a pressurized, oxygen/steam-blown 

fluidized bed gasifier developed by Gas Technology Institute (GTI). However, no 

information was given on exactly what data from BCL or GTI was used to model the 

gasifiers.   

 

For both concepts, the gas cleaning and conditioning section included a catalytic tar 

cracker, a water quench, a steam reformer, a LO-CAT oxidation unit for H2S removal, ZnO 

beds and an amine-based CO2 removal unit. No information was given on the type of the 

amine used in the CO2 removal unit. The steam reformer was used to convert the methane 

and other light hydrocarbons to H2 and CO and adjust the H2/CO ratio to the optimum 

value (~2) for methanol synthesis.  

 

The syngas from the CO2 removal unit was reheated and compressed before entering the 

methanol synthesis reactor. The methanol synthesis section was based on the low 

pressure technology (see section 2.8.2.1). Raw methanol at about 95 wt% purity was 

produced. The MTG section was modelled using data from ExxonMobil’s commercialised 

fixed bed MTG process.   

 

An economic analysis was carried out for both concepts. The base year for costing was 

2008. Cost data for the estimation of equipment costs was obtained from literature. The 

total capital investment is factored from installed equipment costs using the methodology 

recommended by Peters et al. [95] for solid-liquid chemical plants. A plant lifetime of 20 

years, a required IRR of 10%, biomass cost of 66 $/dry t and a plant availability factor of 

90% were assumed.  

 

For the indirect gasification concept, estimated capital costs were approximately 383 

million US$, while for the direct gasification concept they were 499 million US$. The 

reported difference in capital costs was mainly due to additional cost for an air separation 

unit and the more complex gasifier design for the direct gasification concept. Production 
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costs were approximately 0.70 $/l and 0.80 $/l for the indirect gasification and direct 

gasification concept, respectively. A sensitivity analysis of capital costs, feedstock price 

and yield showed that economic viability would require improved yield, reduced capital 

costs and low feedstock costs (below 20 $/dry t).  

 

Energy efficiencies were 47% and 41% for the indirect gasification and direct gasification 

concept, respectively. The reported energy efficiencies were calculated on HHV basis and 

included the energy efficiency from LPG production. Consequently, it is difficult to compare 

the results of this study with those of most studies mentioned here. 

3.2.6 DENA 

The Deutsche Energie-Agentur GmbH (DENA) commissioned and published a report in 

2006 that compared nine options for production of liquid hydrocarbon fuels based on five 

processing routes, four of which were additionally considered as integrated into a refinery 

[96]. Even though only its summary is available, this is one of the few reports publically 

available that provides a thorough and consistent comparison of various routes to 2nd 

generation liquid hydrocarbon fuels. Companies and organisations that contributed to this 

work include: BASF, BP, Choren, FNR, Lurgi, Total and VDA as well as several German 

Government Departments. 

 

The aim of this project was to develop a basis for the implementation of large scale BTL 

production in Germany. Nine process concepts were evaluated as summarised in Table 

3-5. 

 

No information was given on the fuel synthesis technology that followed the methanol 

synthesis step, thus it is not known if the MTG process was evaluated in this study. 

However, it is mentioned that products ranged from 60 to 90% diesel depending on the 

concept. Therefore, it is very likely that another fuel technology based on methanol 

synthesis, such as MOGD or Lurgi MtSynfuels, was evaluated.  

 

Processes are understood to be self sufficient in power and heat. Energy crops were used 

as biomass feedstock. The plant capacity was set at 1 million t/y (wet biomass at 30% 

moisture thus 700,000 dry t/y or 2400 dry t/d). It is not known how the performance of the 
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BTL concepts was assessed. The summary does not mention the use of any simulation 

software. 

 

Table 3-5: The five process concepts studied in the DENA report [96] 

 
Mechanical 

treatment 

Thermal 

pretreatment 
Gasification 

Gas 

purification 
Synthesis 

Product 

conditioning 

d c      

1 Milling  Entrained flow 
Gas 

purification 
FT 

Product 

conditioning 

  d c    

2 Shredding Fast pyrolysis Entrained flow 
Gas 

purification 
FT 

Product 

conditioning 

     d c 

3 Shredding  Fluidised bed 
Gas 

purification 

Methanol 

synthesis 

Product 

conditioning 

 d c     

4 Shredding Pyrolysis Entrained flow 
Gas 

purification 
FT 

Product 

conditioning 

 d c     

5 Shredding Pyrolysis Entrained flow 
Gas 

purification 
MTG 

Product 

conditioning 

        d: decentralised; c: centralised 

 

The BTL plants were built on a new location (Greenfield site option) or on a location of an 

existing refinery. The plant availability for the Greenfield site option was 7000 h/y (80%). 

Plants built on an existing refinery location resulted in lower capital costs by approximately 

25% due to higher plant availability (90%) and lower capital expenditure and operating 

costs. In general, capital costs were in the range of €400-650 million. The base year for 

costing was 2006. There were some small inconsistencies on capital costs, such as one 

large pyrolysis plant (Cases 4 and 5) cost more than several small pyrolysis plants (Case 

2), belying the belief in economies of scale. In addition, the advantage of a liquid bio-oil 

feed to gasification is identifiable in Case 2 (savings of 11 million euros) but this is not 

apparent in Cases 4 and 5, which were also fed with bio-oil.  

 

Fuel production was between 106,400 and 118,300 t/y hydrocarbons (mass yields of 15% 

to 17% respectively). Products ranged from 60 to 90% diesel depending on the concept. 

Case 1 resulted in the lowest production costs (0.88 €/l) in a location with an existing 

refinery or chemical plant. A sensitivity analysis of biomass price, capital costs and plant 
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efficiency showed that the cost of production could be lowered to 0.70 €/l. Production costs 

for the other concepts were not provided. 

3.3 Summary of the performance and cost results of the reviewed 

studies 

The performance and cost results of the reviewed techno-economic studies are 

summarised in Table 3-6 at the end of this chapter. By using the US Chemical Engineering 

magazine Plant Cost Index, the capital costs in $ were indexed to 2009 which is the 

costing year of this study (see section 6.2.1). The capital costs in € were indexed to 2009 

by using the Engineer magazine International Plant Cost Indices. All capital costs were 

then adjusted to £2009 using the 2009 annual exchange rate from the Bank of England’s 

web site [97]. They were then scaled to 2016 dry t/d which is the selected scale of this 

study (see section 4.2) by using the following equation [95, 98]: 

      (
  

  
 )

 

             

where    is the capital investment of a BTL study reviewed in this section with capacity    

(2016 dry t/d) and    is the original reported capital cost of the same study with capacity 

  . The scaling factor   typically ranges from 0.6 to 0.7 [99] thus a generic scaling factor of 

0.65 was selected for this study. Scaling the published capital costs to this study’s scale 

allowed for comparison with the capital costs results of this study. This is discussed in 

section 6.5.1. 

 

Production costs were adjusted to £2009 using exchange rates and inflation rates from the 

Bank of England’s web site. Some studies (Furnsinn, Jones and DENA) provide 

production costs in $/l or €/l. These were converted to £/GJ by using a volumetric energy 

density of 34 MJ/l (LHV) and 32 MJ/l (LHV) for FT diesel and MTG gasoline, respectively 

[100]. Energy efficiencies were given in LHV basis unless otherwise indicated.  

 

The studies reviewed have come from a number of different countries. As a result, there 

are differences in the units used, feedstock prices, financing assumptions and potential 

market prices. They also quote prices at different base dates but this was easily dealt with 

as described above. These studies also differ in scale and the type of hydrocarbons 

produced, though most of them include the FT process for hydrocarbon synthesis. Table 
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3-6 is provided below as an indication only of the wide range of performance and costs of 

different techno-economic studies of BTL plants and a comparison between them should 

be made with extreme caution (e.g. studies with similar assumptions and methodologies). 

 

Nevertheless, some conclusions can be made: 

 Large scale operation (≥ 2000 dry t/d) was considered in most studies. 

 The biomass feedstock is usually wood chips from forestry or timber processing. 

 Entrained flow and fluidised bed gasification were preferred mainly due to the fact 

that these two technologies are best suited for large scale operation. 

 The most “popular” fuel synthesis process was the FT synthesis process.  

 A comparison between BTL concepts based on different fuel synthesis processes 

(e.g. FT, MTG) was not attempted by any of the studies, with the exception of the 

DENA report. However, only the summary of this report is available, thus access 

to important data (e.g. the type of fuel synthesis technology that follows methanol 

synthesis) is restricted.  

 Different operations in the process chain have different degrees of risk and 

uncertainty. None of the reviewed studies dealt with uncertainty on either 

performance or costs. Rather than assuming that the input parameters are fixed 

one should have their model account for uncertainties in the input parameters. An 

uncertainly analysis was undertaken in this thesis and the methodology is 

described in section 6.7.  
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Table 3-6: Performance and cost results of the reviewed techno-economic studies of BTL processes 

  Characteristics 
Capital costs 
(million £2009) 

Capital costs 
scaled to 2016 

dry t/d 

Production 
cost (£2009/GJ) 

Energy 
efficiency 

Utrecht 
University 

Tijmensen 
et al. [16]  

 2000 dry t/d 

 Fluidised bed gasification 
(oxygen-blown, pressurised ) 

 FT synthesis 

322 323 13.8 45% 

Hamelinck 
et al. [15]  

 2000 dry t/d 

 Fluidised bed gasification 
(pressurised) 

 FT synthesis 

237 238 11.8 45% (HHV) 

van Vliet et 
al. [88] 

 300 MWth (or approx. 1500 
dry t/d)* 

 Fluidised bed gasification 
(oxygen-blown, pressurised) 

 FT synthesis 

278 337 11.8 52% 

ECN 
Boerrigter 

[89] 

 9 GWth (or approx. 43,200 
dry t/d)* 

 Entrained flow gasification 

 FT synthesis 

1,832 250 10.6 55% 

Vienna 
University 

of 
Technology 

Fürnsinn [5] 
(average 
values) 

 50MWth (or approx. 240 dry 
t/d)* 

 Steam gasification 

 FT synthesis 

 Fuel orientation mode 

43 171 17.9 53% 

NREL 

Swanson et 
al. [90] 

 2000 dry t/d 

 Entrained flow gasification 

 FT synthesis 

381 383 18.2 50% 

Swanson et 
al. [90] 

 2000 dry t/d 

 Fluidised bed gasification 
(oxygen-blown, pressurised) 

 FT synthesis 

317 319 20.8 39% 

Philips et 
al. [92] 

 2000 dry t/d 

 Steam gasification 
127 128 8.5 43% 
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 Methanol synthesis and 
Fluidised MTG 

PNNL 

Jones et al. 
[94] 

 2000 dry t/d 

 Steam gasification 

 Methanol synthesis and 
Fixed MTG 

222 223 12 47% (HHV) 

Jones et al. 
[94] 

 2000 dry t/d 

 Fluidised bed gasification 
(oxygen-blown, pressurised) 

 Methanol synthesis and 
Fixed MTG 

289 291 13.7 41% (HHV) 

DENA 

DENA 1 
[96] 

 2400 dry t/day 

 Entrained flow gasification 

 FT synthesis 

393 351 22.2 39.8% 

DENA 2 
[96] 

 2400 dry t/day 

 Fast pyrolysis 

 Entrained flow gasification 

 FT synthesis 

514 459 Not provided 37.2% 

DENA 3 
[96] 

 2400 dry t/day 

 Fluidised bed gasification 

 Methanol synthesis and 
subsequent fuel synthesis 

618 552 Not provided 36.3% 

DENA 4 
[96] 

 2400 dry t/day 

 Pyrolysis 

 Entrained flow gasification 

 FT synthesis 

480 428 Not provided 41.3% 

DENA 5 
[96] 

 2400 dry t/day 

 Pyrolysis 

 Entrained flow gasification 

 Methanol synthesis and 
subsequent fuel synthesis 

480 428 Not provided 41.3% 

 
        * A biomass LHVdry of 18 MJ/kg was assumed.
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4 IDENTIFICATION OF SUITABLE OPTIONS  

4.1 Introduction 

The previous chapters have identified a wide range of technologies, processes and BTL 

studies for the production of liquid hydrocarbon fuels. This chapter discusses the selection 

and combination of these technologies to construct BTL process concepts, as well as the 

rationale behind their selection. The block diagrams included in this chapter outline the 

necessary process steps (as identified in Chapter 2) in the selected concepts but do not 

represent complete flow sheets including all process streams. These flow sheets can be 

found in chapter 5 which is the process simulation chapter.   

 

4.2 Feedstock and plant size 

Wood is the feedstock of choice in proposed biofuel systems because of its homogeneity, 

consistency and quality. Wood has also been and currently is used in commercial 

bioenergy plants (e.g. Guessing plant, Dynamotive, Varnamo, Choren). There is more 

information available about wood production, handling and processing than any other 

biomass feedstock. For these reasons this work focuses exclusively on wood biomass and 

specifically wood chips since the majority of the studies reviewed in the previous chapter 

used wood chips as feedstock. The water content and the ash content of the feedstock 

were arbitrarily set to 30% and 1%, respectively in the modelling to represent typical 

biomass compositions. The elemental composition of the selected feedstock can be found 

in section 5.3.2. 

 

According to Bridgwater [101], Dimitriou [102] and other authors [10, 38, 89] large-scale 

production is generally considered necessary in order to eventually replace a significant 

proportion of conventional fuels by biofuels. Generally, the preferred scale for biofuels from 

FT or methanol synthesis with MTG is 2000 dry t/d (approximately 84,000 dry kg/h 

biomass) (see Table 3-6 at section 3.3). Kilograms per hour (kg/h) is the weight 

measurement unit for biomass used in IPSEpro, which is the process simulation software 

used in this study. Therefore, a biomass input of 84,000 dry kg/h (or 2016 dry t/d) was set 

as the basic plant size for all process concepts. In this study, the term “dry” before weight 

measurement units accounts for 0% water content in the biomass feedstock. Even though 
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scale effects on the performance and costs of BTL plants are potentially important, the 

same scale of biomass input was used for all the selected concepts so that results were 

directly comparable.  

4.3 Feed handling and preparation 

Biomass can be transported by road, rail or water. Road transport (trucks) is the typical 

mode of transport in bioenergy facilities since it offers flexibility and is particularly suited to 

facilities where the material is transported over distances of less than 100 km [103]. For 

BTL plants, low cost feedstock is preferred as it results in lower production costs. This 

usually limits transport distances to less than 100km [104]. Therefore, it was assumed that 

wood chips are delivered to the plant via trucks [104]. The trucks are weighed as they 

enter the plant and the wood chips are dumped into a storage pile. From the storage pile, 

the wood chips are conveyed to a magnetic separator and screened to keep particle sizes 

within appropriate limits and prevent contamination of the feedstock by metal or rocks. 

Feed handling and preparation of wood biomass is a well known process as it is already 

widely practised in the pulp and paper industry. The characteristics and costs of wood 

chips RSH have been thoroughly investigated by Aston University and specifically by Toft 

[104] and Rogers [105].     

 

Biomass drying was done by either hot air (rotary dryer) or steam (superheated steam 

dryer). Air rotary dryers are the most common technology for biomass drying since they 

are less sensitive to particle size and have bigger capacity compared to other dryers [106]. 

However, rotary dryers are associated with higher fire risks since they have the longest 

retention times [106]. Superheated steam dryers (SSD) are less common but are safer that 

rotary dryers with respect to fire hazard. Since oxygen is not present in superheated steam 

dryers, the fuel cannot burn, even at elevated temperatures [106, 107]. Fuel synthesis 

processes, such as FT and MTG generate significant amounts of steam which can be 

used for other processes within the plant. In this case, superheated steam drying could be 

preferable. In addition, SSDs do not produce air emissions since all the vapour exiting the 

dryer is condensed [106, 107]. This, however, means that a wastewater treatment facility 

will be required [106]. Hot air drying was employed for the fast pyrolysis process and 

superheated steam drying for the biomass gasification process. This is further discussed in 

sections 4.4 and 4.5 respectively.  
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A grinder (hammer mill) is placed after the dryer to reduce the wood chips size to 1mm 

[24, 90] for the entrained flow gasification concepts. Contrary to entrained flow gasifiers, 

fluid bed gasifiers are capable of handling a wider variety of biomass particle sizes [23]. 

Thus no grinding would be required for the concepts based on fluidised bed gasification. 

The selection of the gasification technologies is further discussed in section 4.5. During 

drying, light biomass particles can get entrained in the gas flow of the dryer thus significant 

biomass losses can occur. Consequently, the grinder is placed after the dryer in the feed 

preparation chain. 

 

It should be noted here that grinding was not modelled on IPSEpro since the simulation 

software does not allow estimation of particle sizes. It was, however, considered in the 

economic assessment and its capital and operating costs were included in the cost 

estimations. Grinding biomass to about 1mm particle size requires a lot of electricity 

(approx. 0.08 kWe/kWth wood) [24] which makes this option unattractive for entrained flow 

gasification. 

4.4 Pretreatment 

Due the cost of grinding biomass for entrained flow gasification, other pretreatment 

methods are possible such as fast pyrolysis for liquid production and torrefaction for a 

grindable solid. Fast pyrolysis was modelled and evaluated as an alternative to grinding for 

the concepts based on entrained flow gasification. Fast pyrolysis gives a higher energy 

density liquid that can be transported, handled and gasified more easily than solid 

biomass, as discussed in section 2.4.1.2. Torrefaction was not considered in this study 

since this technology is still in early stages of development contrary to fast pyrolysis which 

has already been commercialised by Dynamotive and Ensyn. Specifically, Ensyn has 

commissioned a 400 dry t/d fast pyrolysis plant in Alberta, Canada which is expected to be 

built by 2012 [108]. In addition, research at Bioenergy Research Group (BERG) at Aston 

University focuses mainly on fast pyrolysis, thus more data necessary for the techno-

economic evaluation of this option was available. 

 

The pre-treatment of biomass via fast pyrolysis was assumed to be done in a number of 

regional fast pyrolysis plants. Each fast pyrolysis plant was assumed to have a capacity of 
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400 dry t/d [33, 108], thus five fast pyrolysis plants were needed for the BTL plant capacity 

of 2016 dry t/d selected in this study (see section 4.2). The bio-oil produced from each 

plant was then transported to a central entrained flow gasification plant for production of 

hydrocarbon fuels. In the following chapters (5 and 6), the performance and costs of solid 

biomass and bio-oil for gasification feedstock for BTL are discussed and a comparison is 

made. 

 

The fast pyrolysis process evaluated in this study was based on a fluidised bed reactor as 

described in section 2.4.1.1. Fast pyrolysis plants based on fluidised bed reactors have 

been commercialised by Ensyn (100 t/d wood - plant in Renfrew, Ontario, Canada) and 

Dynamotive (200 t/d wood - plant in Guelph, Ontario, Canada), thus this is a relatively well 

tested and proven technology [17, 109].  

 

The fast pyrolysis process included drying, fast pyrolysis of biomass, char separation and 

combustion for process heat, bio-oil condensation and gas recirculation and combustion 

for process heat, as shown in Figure 4-1. Drying of biomass was done in an air rotary 

dryer as discussed in section 4.3. 

 

The heat for drying was provided by the combustion of the non-condensable gases and 

char, since the plant has to be energetically self-sufficient. This is discussed in detail in 

section 5.5 in the modelling chapter. In order to supply the necessary heat for the 

endothermic pyrolysis reactions, either one or any combination of the products, i.e., the 

permanent gases, the bio-oil, the char or the feedstock must be burnt. Bridgwater [17] 

provides a comprehensive list of all the methods of providing heat to the pyrolysis reactor. 

Fürnsinn [5], whose work was reviewed in section 3.2.3, modelled three different options 

for heat supply to the fast pyrolysis reactor. He showed that the combustion of char and 

non-condensable gases is a more attractive option in terms of performance and costs than 

the combustion of biomass (wet or dry) and non-condensable gases. Combustion of 

biomass results in lower bio-oil yields since part of the available biomass is burnt for heat 

supply to the reactor. Therefore, in this study, the heat supply option of char (and non-

condensable gases) combustion was chosen.  
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Figure 4-1: Block diagram of the fast pyrolysis concept 

4.5 Gasification 

As discussed in section 4.2, this study focuses on large-scale production of biofuels. The 

two gasification technologies best suited for large-scale BTL plants are the circulating 

fluidised bed (CFB) and entrained flow (EF) gasification [12, 23, 89, 96]. For fluidised bed 

gasifiers, operating temperature varies between 700-1100oC. CFBs require a large 

minimum size for viability of  typically above 15 t/h dry feed rates and they are relatively 

easy to scale up from a few MWth to ~100 MWth [23]. Even for capacities above 100 MWth, 

there is confidence that the industry would be able to provide reliable gasifiers [23]. There 

is also considerable experience with CFB gasification of biomass (e.g. Varnamo plant, 

HTW, IGT). Entrained flow reactors are only potentially viable above around 20 dry t/h 

feed rate and have a good scale-up potential [23]. In addition to its scalability, EF 

gasification has the advantage that extensive experience is available from coal entrained 

flow gasification plants (e.g. 2000 t/d coal-fired Shell gasifier in Buggenum, Netherlands) 

that have been developed to substantial commercial scale units [36, 110]. EF gasifiers can 

operate at much higher gasification temperatures of up to 1200-1400oC. These high 

temperatures result in higher carbon conversion, very low tar and methane content and 

thus lower gas cleaning requirements compared to other gasifiers [24, 89, 91]. Therefore, 

these two gasification technologies were selected for evaluation in this study. 

 

Both gasifiers were oxygen-blown and pressurised. Many authors, as discussed in 

Chapter 3, recommend oxygen-blown pressurised gasification for the production of 



 
73 

 

synthetic hydrocarbon fuels from biomass. Oxygen-blown gasification is preferred to air-

blown gasification since in the latter nitrogen acts as an inert diluent, decreasing the 

efficiency of other processes and necessitating larger (and more costly) equipment. 

Conversely, oxygen gasification is associated with increased capital costs and energy 

requirements due to the need for air separation. However, the use of oxygen is usually 

justified by increased liquid fuels yield due to the higher syngas quality [16, 24, 38, 89, 91]. 

Capital costs are also decreased due to smaller equipment sizes resulting from the 

absence of nitrogen.  

 

Pressurised gasification holds the advantage of avoiding a costly compression step before 

the synthesis process required in atmospheric pressure systems and thus reducing 

complexity and costs. However, capital and operating costs of such plants can be 

increased due to the additional costs of building pressure vessels [23]. These additional 

costs are to some extent balanced by savings from reduced piping sizes, the avoidance of 

gas compressors for the synthesis reactor and higher efficiencies [23]. The circulating fluid 

bed demonstration plant at Värnamo in Sweden, which was built and operated by Foster 

Wheeler and Sydkraft is an example of pressurised gasification. 

 

Biomass feeding for pressurised gasifiers is a technology area where additional 

development is needed. Lock hoppers are the conventional pressurising technology for 

coal-fired gasifiers. The main drawback of this pressurised feed system is the high 

requirements of inert gas (usually N2 or recovered carbon dioxide) and the additional costs 

of the inert gas compression [24, 111]. A number of efforts have been made to develop 

alternative pressurised feed systems to address the disadvantages of lock hoppers. These 

include rotary, screw, piston and screw/piston feeders [111]. None of these have yet been 

demonstrated in large-scale operations [111]. 

 

At the demonstration plant at Värnamo, the preconditioned feedstock was pressurised in a 

lock hopper system by N2 before being passed to a CFB gasifier via a pressurised vessel 

[112]. This is maybe affordable in a small-scale facility, such as the Värnamo plant, with 

limited operation time. However, in a large-scale commercial plant this will be far too 

expensive and needs to be solved in another way [113]. Therefore, it was decided to use 

CO2 as the pressurisation gas which was acquired from the downstream CO2 removal unit. 
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This way nitrogen dilution in downstream equipment is also avoided. The use of CO2 as 

pressurisation medium is also proposed by Swanson [91], Larson [114] and van Drift [24].  

 

Air drying of biomass is not desirable for large-scale operations due to the high risk of fire. 

Therefore, superheated steam drying was employed for both gasifiers. Another reason 

behind this selection was that FT and MTG generate significant amounts of steam which 

can be used in other parts of the plant, such as the dryer [114]. More information on the 

operating conditions, syngas composition, etc, is given in the next chapter where the 

simulation of the selected concepts using IPSEpro is discussed.   

4.6 Gas cleaning & conditioning 

Gas cleaning is considered to be one of the biggest challenges to the development of a 

successful BTL plant. The impurities in syngas need to be reduced to the level demanded 

by the catalytic fuel synthesis processes, as discussed in section 2.6. For each plant, and 

also for each type of catalyst, the acceptable levels of contaminants may be different. 

Even though it is claimed that there are no insuperable problems associated with cleaning 

of biomass-based syngas, there is no large scale or long term experience. 

 

Tars are the major gas cleaning issue in biomass gasification, as discussed in section 

2.6.2. For the CFB concepts, a catalytic autothermal steam reformer was employed for tar 

destruction, as well as reforming of light hydrocarbons and ammonia [115].  A tar cracker 

was not necessary for the EF concepts due to the high operating temperature of the 

gasifier (1400oC) that inhibits tar formation.  

 

Catalytic tar cracking is recommended by many authors [5, 15, 16, 94, 116], even though 

this technology has not yet been demonstrated on large-scale. However, there is a 

significant ongoing research on tar reforming catalysts, especially on dolomite and nickel-

based catalysts. Specifically, at the Varnamo plant, 95-99 % of tars in gas streams were 

successfully cracked in a catalytic (dolomite catalyst) cracker at 750-900oC under 

laboratory conditions [117]. Other catalysts also have been proved effective at tar 

decomposition. Pfeifer achieved an almost complete tar destruction (approx. 98%) and 

considerable ammonia decomposition (approx. 40%) using commercial steam reforming 

nickel catalysts at temperatures above 850oC [118]. These catalysts were tested in a 
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laboratory scale reactor fed by slip streams taken from the dual fluidised bed steam 

gasifier plant in Güssing, Austria. Caballero [119] and Aznar [120] also reported that 98% 

of tars, 87-99% of methane and 100% of other light hydrocarbons in raw syngas streams 

were successfully reformed at 780-830oC using commercial nickel-based catalysts (e.g. 

BASF, Haldor Topsoe). The experiments took place in a laboratory scale reactor fed by 

raw syngas from a 5-20 kg wet biomass/h fluidised bed steam/oxygen blown gasifier [119, 

120]. 

 

Filters and cyclones were employed for the removal of particulates and alkali compounds 

(see section 2.6). For the EF concepts, a water quench was placed after the gasifier for 

removal of particulates and syngas cooling. This was also proposed by several authors 

[40, 90, 92, 94]. For the CFB gasifier, cooling of syngas was done by a heat exchanger to 

use the generated steam for tar cracking/reforming. A water quench is also used to 

remove ammonia from the syngas but for gasifiers coupled with a tar reformer, such as the 

CFB gasifier in this study, most of nitrogen compounds can be cracked in the tar reformer, 

thus a water quench was not employed for the CFB concepts.  

 

Sulphur in the biomass mostly forms hydrogen sulphide (H2S) with small amounts of 

carbonyl sulphide (COS). A Rectisol unit was assumed for the removal of sulphur species, 

as well as CO2. Rectisol is a very efficient process for the removal of the acid compounds 

since the achieved concentration of CO2 and H2S could be as low as 2 ppm and 0.1 ppm 

respectively [36]. In addition, it has been proven successful in large scale applications. 

Rectisol was also chosen due to data availability, as compared to other large scale acid 

gas removal processes, such as Amisol and Sulfinol. The low nitrogen, chloride and 

sulphur concentrations in the raw biomass syngas from oxygen-blown gasifiers ensure that 

the resulting HCN, NOx and SO2 emissions are well below permitted levels for the 

downstream fuel synthesis process. Nevertheless, Rectisol can also remove trace 

components, such as HCN and HCl [36]. 

 

The simulation of the EF concept on IPSE showed that the H2/CO molar ratio of the dust 

free syngas was lower than the required ratio (H2/CO = 2) for FT and methanol synthesis. 

Therefore, the ratio was adjusted by using a water-gas-shift (WGS) reactor. The WGS unit 

here allowed carbon dioxide produced in the reaction to be removed soon after in the 

Rectisol unit.  Simulation of the CFB concept also showed that a WGS unit was not 
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necessary for the CFB-based concepts since the H2/CO ratio of the syngas exiting the tar 

cracker was approximately 2. This is mainly due to the fact that light hydrocarbons and 

tars are almost fully reformed in the tar cracker/reformer. This also depends on the 

composition of the raw syngas from the gasifier. EF gasifiers produce syngas with high 

concentrations of hydrogen and carbon monoxide due to the high conversion of tars and 

light hydrocarbons. This results in lower H2/CO ratios compared to fluidised bed gasifiers. 

The CFB and EF gasification concepts with their downstream gas clean-up configurations 

are shown in Figure 4-2 and Figure 4-3, respectively. 
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Figure 4-2: Block flow diagram of the circulating fluidised bed (CFB) gasification concept 
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Figure 4-3: Block flow diagram of the entrained flow (EF) gasification concept 
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4.7 Fuel synthesis 

Liquid transport fuels were produced from syngas using either FT synthesis, methanol 

synthesis followed by the MTG process or the TIGAS process: 

 FT synthesis was chosen since it has already been used in large-scale CTL and 

GTL plants throughout the world, as discussed in section 2.8.1.3.  

 The production of methanol from natural gas has also been proven successful in 

large scale applications (e.g. ICI, Lurgi). The synthesis of fuels from methanol via 

the MTG process has also been commercialised by ExxonMobil in 1980s in New 

Zealand.  

 Even though there is very limited available data on the demonstration TIGAS plant 

developed by Haldor Topsoe, it was decided to evaluate this process to compare it 

with the MTG process. As discussed in section 2.8.3, the TIGAS process can result 

in lower capital costs compared to the MTG process by avoiding a costly syngas 

compression prior to methanol synthesis, as well as due to the integration of the 

methanol synthesis and the DME synthesis into a combined oxygenate synthesis 

process. Extensive efforts were made to acquire performance and cost data for the 

TIGAS process from various contacts at Haldor Topsoe but without success. 

Simplified block flow diagrams of FT synthesis, MTG and TIGAS are shown in Figure 4-4, 

Figure 4-5 and Figure 4-6, respectively. 
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Figure 4-4: Block flow diagram of FT synthesis  

 

Figure 4-5: Block flow diagram of methanol synthesis and MTG 

 

Figure 4-6: Block flow diagram of TIGAS 
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4.8 Utilities 

A cryogenic air separation unit (ASU) was employed to supply the oxygen to the gasifiers 

since cryogenic distillation has been the predominant air separation technology for large-

scale operations for over 75 years [121]. It can account for up to 15% of the total 

gasification plant cost and is an energy intensive process [121]. Other technologies include 

ceramic ion-transfer membranes (ITM) and pressure swing absorption (PSA) which are not 

mature technologies [121], thus they were not considered in this study.  

 

Synfuels plants typically include a power island for heat balancing and to generate 

electricity for both internal use and export. A power plant was not modelled on IPSEpro 

due to time constraints and to avoid complexity. It was, however, considered in the 

economic assessment and its capital and operating costs were included in the cost 

estimations. 

4.9 Selected process concepts 

The BTL process concepts selected for techno-economic and uncertainty assessment are 

summarised in Table 4-1. 

 

 

 

 

 

 

 

 

 

 

 



 
82 

 

 

 

Table 4-1: The BTL process concepts analysed in the study 

BTL concept Preparation Pre-treatment Gasification Gas clean-up Fuel synthesis Fuel product 

EF-FT SSD dryer, grinder  Entrained flow 
Gas clean-up as 
shown in Fig. 4.3 

Fischer-Tropsch 
Diesel, gasoline, 

kerosene 

EF-MTG SSD dryer, grinder  Entrained flow 
Gas clean-up as 
shown in Fig. 4.3 

Methanol 
synthesis followed 

by MTG 
Gasoline 

EF-TIG SSD dryer, grinder  Entrained flow 
Gas clean-up as 
shown in Fig. 4.3 

TIGAS Gasoline 

CFB-FT SSD dryer  
Circulating 

Fluidised bed 
Gas clean-up as 
shown in Fig. 4.2 

Fischer-Tropsch 
Diesel, gasoline, 

kerosene 

CFB-MTG SSD dryer  
Circulating 

Fluidised bed 
Gas clean-up as 
shown in Fig. 4.2 

Methanol 
synthesis followed 

by MTG 
Gasoline 

CFB-TIG SSD dryer  
Circulating 

Fluidised bed 
Gas clean-up as 
shown in Fig. 4.2 

TIGAS Gasoline 

FP-FT Air dryer, grinder Fast pyrolysis Entrained flow 
Gas clean-up as 
shown in Fig. 4.3 

Fischer-Tropsch 
Diesel, gasoline, 

kerosene 

FP-MTG Air dryer, grinder Fast pyrolysis Entrained flow 
Gas clean-up as 
shown in Fig. 4.3 

Methanol 
synthesis followed 

by MTG 
Gasoline 

FP-TIG Air dryer, grinder Fast pyrolysis Entrained flow 
Gas clean-up as 
shown in Fig. 4.3 

TIGAS Gasoline 
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5 PROCESS SIMULATION 

5.1 Introduction 

Computer programs for process simulation can be divided into dynamic and stationary 

tools [122]. In dynamic simulation, variations of process parameters with time are analyzed 

allowing the prediction and control of chemical processes in real time. However, dynamic 

simulations are characterised by increased calculation times and are more complex than 

stationary simulations [95]. Stationary programs can be used for the analysis of steady-

state operations, i.e. without any variations of parameters over time [95]. They are 

particularly useful for mass and energy balances calculations, as well as investigating 

long-term equipment performance. Therefore, they provide a reasonably good estimate for 

process equipment and raw materials needs and utility requirements [95]. 

 

The modelling task of this techno-economic study is the development of a steady-state 

representation of various BTL process concepts which were discussed in the previous 

chapter. The purpose is to calculate mass and energy balances and thus overall 

efficiencies for each process concept to enable costs estimations and comparisons of the 

selected BTL concepts.  

 

Steady-state processes are modelled as a network of conversion units interconnected by 

process streams. Process units typically include chemical reactors, stream splitters, heat 

exchangers, pumps and turbines, which are mathematically modelled by mass and energy 

balances and by thermodynamic principles [41]. 

 

Stationary simulation programs differ in various aspects but share some common 

characteristics such as model libraries for unit operations and user interfaces that are 

based on flow sheets. However based on the way the results are calculated, stationary 

simulation programs can be divided into sequential-modular and simultaneous or equation 

oriented simulation programs [5, 41]. 

 

In sequential-modular simulation programs, the entire flow sheet is calculated by solving 

the units in the same order as they appear in the process. An equation solver is run locally 

for each unit before the system proceeds to the next. Thus, the results of the first unit 
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represent the input data for the second, and so on. As a result, the calculation path can be 

easily followed and thus assisting with the localisation of errors. However, complex 

systems that include a large number of recycled streams usually lead to long calculation 

times [41]. Aspen Plus is an example of a sequential-modular process simulation program. 

 

In contrast, in simultaneous or equation oriented simulation programs the flow sheet is 

translated into an equation system containing the same number of equations as variables. 

This system is then solved in one step, regardless whether input or output parameters of a 

unit are defined, resulting in short calculation times. Any parameters can be specified as 

long as they are independent of each other. Flexibility is thus maximized and even large 

complex systems can be calculated [5, 41, 123].  However, the calculation path is not so 

easy to follow, thus locating errors becomes more difficult than for sequential-modular 

calculation [41, 123]. IPSEpro is an example of an equation oriented simulation program. 

 

The main differences between the two simulation approaches described above are 

summarized in Table 5-1 below. 

 

Table 5-1: Comparison of stationary computer simulation programs 

Type Advantages Disadvantages 

Sequential-modular Detailed description of single 
units. 

Long calculation times and 
instabilities for large and 
strongly linked sheets. 

Simultaneous or equation 
oriented 

High flexibility and short 
calculation times make it 
appropriate for complex flow 
sheets. 

Difficult localisation and 
identification of errors. 

 

5.2 Process simulation with IPSEpro 

5.2.1 Why IPSEpro? 

The literature review in Chapter 3 revealed two main modelling approaches to studies of 

this kind. In one, a process simulation software is used, typically Aspen Plus, usually to 

resolve complex configurations. This generally requires a process simulation program to 

be already available since few studies of this kind would have the time and resources to 
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develop their own. In the other, which is the least preferred one, Microsoft Excel 

spreadsheets are used. 

 

The high level of flexibility which equation oriented programs like IPSEpro offer is 

particularly suitable for process comparisons as required in this study because complete 

processes can be compiled from sequences of units that are simply described in terms of 

inputs and outputs.  The relationships and parameters between units can be readily 

modified to account for new information or changed conditions.  The more sophisticated 

Aspen approach requires a more detailed flowsheet in which each component is 

considered individually.  This reduces the flexibility of complex process configurations and 

leads to iteration difficulties as described above. 

 

Microsoft Excel, on the other hand, requires more complex constructions to enable 

process modules to properly interact, and while innately simpler requires much more effort 

to construct a suitable and versatile model. 

 

IPSEpro is an example of an equation oriented process simulation environment which is 

licenced by SimTech Simulation Technology, an Austrian company located in Graz. Apart 

from short calculation times (typically less than a second) and high flexibility in terms of 

parameters settings, IPSEpro holds the following additional advantages compared to 

Aspen and Microsoft Excel [5, 41, 123]: 

 High level user-friendly graphical interface and ease of operation. The level of 

detailed knowledge needed and the amount of possible changes can easily be 

adjusted to the users performing the calculations as well as to the simulation task. 

 It allows the creation and implementation of user defined model libraries which 

contain all the information about the process units and streams.   

 It has an extensive database of physical and chemical properties associated with 

thermo-chemical conversion processes. It also allows the creation of new property 

databases or alterations of the existing ones. This is of specific importance for the 

effective implementation of new technologies, such as biomass gasification and 

fast pyrolysis. 

 Good support and individual attention offered by the software developer. SimTech 

is a relatively small company and thus it is easier to be contacted when technical 

support is needed. 
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 Good collaboration with Vienna University of Technology who developed the model 

library used in this study. Further details about the library are given in the next 

section. 

5.2.2 IPSEpro structure 

IPSEpro was designed in a modular structure as shown in Figure 5-1 [124]. The Process 

Simulation Environment (PSE) is the user interface where the process is modelled and 

data is entered. IPSEpro models are mathematical descriptions of the behaviour of 

process units (or component models) in terms of equations (e.g. energy balance 

equations) and other items like variables and parameters. Setting up the mathematical 

model of the process in PSE means to combine the equations and variables of all 

component models into one single system. PSE does this automatically while the user 

connects component models on the flow sheet. 

 

When a calculation is performed, data from the PSE is sent to the equation solver (Kernel), 

which refers to a model library that contains the information about the units used in the 

process. The model library can be edited by the user with a special editor, the Model 

Development Kit (MDK), which is a separate module of the IPSEpro package. MDK 

provides a Model Description Language (MDL) that allows users to describe their models 

mathematically, once their equations are identified. An example of an IPSEpro model 

(dryer) on the MDK is given in Appendix A.  

 

The concept of MDL is very different from the one used in traditional programming 

languages like FORTRAN, Pascal or C++. These traditional languages are based on a 

sequential concept: statements are processed sequentially, as they appear in the code 

[124]. This sequence is frequently interrupted by control statements. However, the main 

flow of the program is sequential. MDL is an equation-oriented language. A model is 

defined by writing a system of equations. The sequence of the equations has no influence 

on how the equations are processed.  
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Figure 5-1: Modular structure of the process simulation software IPSEpro 

Thermodynamic property data, i.e. functions of temperature, pressure, etc., are usually not 

included in the actual simulation software, but are imported from external property libraries 

in the format of a dynamic link library (DLL). New substances can be introduced by the 

user, since the creation of additional property-DLLs is possible. The external function 

libraries are developed and compiled in a C/C++ development environment. 

 

The standard IPSEpro package provided by SimTech already contains a model library for 

modelling conventional power plant processes (Advanced Power Plant Library). However, 

this library does not contain any models of gasifiers, driers, gas cleaning equipment, and 

synthesis reactors. In order to model biomass gasification, fast pyrolysis and fuel synthesis 

with this library, a large number of models needed to be created. However, for the 

simulation of biomass gasification and related processes, a special model library called 

Pyrolysis and Gasification Process Library (PGP_Lib) has been developed by several 

researchers at the Vienna University of Technology [125, 126] and is licensed by SimTech. 

The structure of this library has been expanded by Pröll [126] in order to include biomass-

related substances (e.g. tars) and to cover inorganic solids (e.g. CaO, K2O). It also 

includes models of gasifiers, steam reformers, cyclones, filters, etc. A list of the PGP_Lib 

models is given in Appendix A. The models contain mass and energy balances and 

specific equations describing chemical conversions, splitting conditions, empiric 

correlations from measurements of real gasification plants, etc. 
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There are four classes of substances in the PGP_Lib [123]: 

 Ideal gas mixture (Ar, CH4, C2H4, C2H6, C3H8, CO, CO2, H2, H2O, H2S, HCl, N2, NH3, 

HCN, N2O, NO, O2, SO2). 

 Water/steam. 

 Organic substances (such as biomass, tar and char) that consist of C, H, O, N, S, 

and Cl, water and ash. 

 Inorganic solids, such as dust in gas streams and ash in organic streams. 

 

The simulation of processes, such as fast pyrolysis, Fischer-Tropsch, methanol synthesis 

and MTG required the introduction of new substances and component models. This is 

possible on IPSEpro since the software allows the user to edit the source code of a 

standard model and create new models with the MDK as described above. 

5.3 General conditions 

In the following sections the ambient conditions and the composition of the feedstock are 

given. These were kept constant for all process concepts in order to maintain consistency 

and to make results comparable. 

5.3.1 Ambient conditions 

Ambient conditions of all process concepts were set to 15°C and 1 atm [5, 41]. Previous 

modelling work on IPSEpro [41, 126] assumed a relative humidity of 60% which was also 

used in this study. 

5.3.2 Feedstock 

For all process concepts throughout this study the same type of biomass is used for 

consistency. The biomass model is based on wood chips as discussed in section 4.2. The 

elemental composition of the biomass model is shown in Table 5-2.  

 

In this thesis, plant capacities are expressed in dry tonne per day (dry t/d), where “dry” 

accounts for 0% water content in the biomass feedstock and 1t is 1000kg. Unless 

otherwise stated mass yields and energy efficiencies are quoted on a dry ash free (daf) 

basis where the presence of water and ash in the feedstock are not taken into account for 

the purposes of the calculation. 
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Table 5-2: Biomass characteristics [5] 

Moisture content 30% 

Ash content (wf) 1% 

Elemental analysis (wf)  

C 52% 

H 6.3% 

O 40.32% 

N 0.3% 

S 0.05% 

Cl 0.03% 

LHV (dry) 19.7 MJ/kg 

LHV (wet) 13.1 MJ/kg 

 

5.4 Biomass preparation 

As discussed in section 4.3, biomass drying was done by either an air rotary dryer (fast 

pyrolysis concept) or a SSD dryer (biomass gasification concepts). The IPSEpro dryer 

model used in this study was developed by Pröll [126, 127] and is included in the 

PGP_Lib. It allows modelling of directly heated drying, indirectly heated drying, or 

combinations of the two. Pröll’s dryer model was used for modelling both the SSD dryer 

and the air rotary dryer.  

5.4.1 Superheated steam dryer 

The SSD dryer is operated using superheated steam (200oC, 12 bar) [128] which is 

generated from the downstream synthesis processes. The biomass is dried from 30% to 

10% [117]. For all biomass gasification concepts throughout this study the same SSD 

dryer model was used in order to maintain consistency and to make results comparable.   

5.4.2 Air rotary dryer 

The air rotary dryer employed for the fast pyrolysis process is operated using air at a 

temperature of 70°C [5]. The biomass is dried from 30% to 10% water content [5], with the 

necessary heat being supplied via the mixture of the cooled char flue gas from the 

pyrolysis reactor and the second fraction of the combusted non-condensable gases (see 

also section 5.5.5).   
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5.5 Fast pyrolysis 

5.5.1 Modelling approach 

As discussed in section 2.4.1.1, fast pyrolysis leads to three products: bio-oil as the main 

product, gas and char. As discussed in section 5.2.2, the gas streams and char have 

already been defined on IPSEpro for biomass gasification and can also be adopted for fast 

pyrolysis. Bio-oil, however, cannot be compared to any of the organic product mixtures 

from biomass gasification and thus it was necessary to define it in order to model the fast 

pyrolysis process. In the literature, there is a lot of information on bio-oil’s elemental 

composition which is sufficient for general mass and energy balances since energetic 

properties such as heating value can be approximated and mass balances can be 

calculated from the elemental composition of inputs and outputs [5, 126].  

 

The thermodynamic property data of the products were also considered for energy 

balances calculations as they are necessary for calculating heat transfer, such as the 

cooling duty for bio-oil condensation. The thermodynamic property data for non-

condensable gases and char were described and implemented into IPSEpro by Pröll [126] 

and were already included in the PGP_Lib. However, thermodynamic data for bio-oil 

(vapour and liquid phase) is not included in the PGP_Lib and thus it was necessary to 

introduce and implement such data into the simulation software. For this purpose, a 

number of representative model substances/compounds contained in the bio-oil were 

selected to supply thermodynamic data necessary for the calculation of energy balances 

for the fast pyrolysis process. The selection of representative model substances for bio-oil 

is not an easy task since the number of chemical species contained in bio-oil is very high, 

up to 230 substances and more [129, 130]. This is due to the fact that the bio-oil contains 

a mix of primary and secondary products, which depend on the biomass and the operating 

conditions of the process [129].  

 

Cottam and Bridgwater [131] followed a similar approach for the thermodynamic modelling 

of bio-oil. They selected four organic chemical compounds for their study which focused on 

the techno-economics of fast pyrolysis for fuel production, without giving reasons for their 

choice except that all four had a molecular weight of approximately 100 g/mol.  These 

substances included: furfural, n-heptane, isovaleric acid, and methyl-isobutyl-ketone. Apart 

from n-heptane, these compounds are typically found in pyrolysis oils, at least in minor 
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quantities [132]. Still, none of the main components (e.g. phenols) of either pyrolysis 

vapours or bio-oil were selected. Therefore, a different set of substances was sought. 

 

Fürnsinn in collaboration with Aston University conducted a comprehensive and thorough 

research into the selection of representative model substances for the thermodynamic 

modelling of fast pyrolysis vapours and bio-oil [5]. He first identified the main compounds 

in fast pyrolysis vapours and bio-oil based on experimental data from the literature. These 

compounds were further limited to those that are important (in terms of quantity) in both 

the vapour and the liquid phase of bio-oil and sufficient thermodynamic data is available 

for each one of them. Table 5-3 shows the five representative model substances of bio-oil 

proposed by Fürnsinn.  

  

Table 5-3: Bio-oil model substances selected for modelling [5]  

Substance class Compound wt% 

Organic acids Acetic acid 18 

Aldehydes Hydroxyacetaldehyde 22 

Ketones Hydroxyacetone 9 

Phenols Guaiacol 46 

Alcohols Methanol 5 

 

These compounds represent the most dominant chemical substance classes found in bio-

oil [132, 133], as Fürnsinn intended. The chemical compounds selected by Fürnsinn are in 

good agreement with results reported by Peacocke [133] who found that the main 

compounds in the liquid phase are: acetic acid, hydroxyacetaldehyde, hydroxyacetone, 

phenols and levoglucosan, as well as with the results of Gerdes [134] who, in extensive 

compound analyses of bio-oil from several types of biomass, equally identified most of the 

above to be major compounds. In addition, Evans and Milne [129] conducted a 

comprehensive study of the formation of fast pyrolysis vapours and their chemical 

composition. They identified the major products of fast pyrolysis of wood by means of 

molecular-beam mass spectrometric sampling at real time. They reported approximately 

40 compounds that were detected in mass spectroscopy of fast pyrolysis vapours, 

although some of them were of relative abundance. These also included the substances 

selected by Fürnsinn. Therefore, Fürnsinn’s set of representative model substances for the 

thermodynamic modelling of pyrolysis vapours and bio-oil was selected for this study. 
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5.5.2 Thermodynamic modelling 

As discussed in the previous section, the elemental composition of bio-oil is not fully 

sufficient for calculating energy balances for the fast pyrolysis process. From this, only the 

lower and higher heating value of bio-oil can be estimated via the method of Boie which is 

used in IPSEpro for the calculation of LHVs of solid and liquid organic fuels [127]. 

Therefore, as discussed in the previous section, five model substances contained in the 

bio-oil were selected to supply additional thermodynamic data necessary for the 

calculation of energy balances. In the following, the methodology for the calculation of 

thermodynamic state variables for both the vapour and the liquid phase of bio-oil is 

described. 

   

5.5.2.1 Vapour phase 

The enthalpy of a compound can be calculated from the enthalpy of formation and the heat 

capacity as follows: 

            
  ∫         

 

      

                             

Therefore, in order to calculate the enthalpy of each model substance in the vapour phase, 

the enthalpy of formation and the heat capacity must be known.  

Enthalpy of formation 

The Joback method was used to estimate the enthalpy of formation for each model 

substance. The Joback method is a widely used group contribution method which 

estimates the thermodynamic properties of chemical compounds from their molecular 

structure [5, 135]. With this method, thermodynamic properties of a chemical compound 

(e.g. methanol) are calculated based on characteristic groups of atoms (e.g. -OH) found in 

the compound. The enthalpy of formation for each model substance in the vapour phase of 

bio-oil was calculated from the following equation [135]:  

       
                                             

where Ni represents the number of each characteristic group in the model substance (e.g. 

one methyl group -CH3 in methanol). The       is the contribution of each characteristic 

group in the enthalpy of formation of the model substance and its value for each group can 



 
93 

 

be found in Perry’s Chemical Engineers’  andbook [135]. The calculation of the enthalpy 

of formation for each model substance is shown in Table 5-4. 

Heat capacity 

The Joback method was also used for the calculation of heat capacities of the selected 

model substances. With this method, heat capacities are calculated as a function of 

temperature. To this end, a polynomial equation is proposed by Joback [135]: 

                                 

The polynomial coefficients A, B, C, D are valid from 273 K to 1000 K and are calculated 

from the following equations [135]: 

                                                 

                                                 

                                            

                                           

where ai, bi, ci, and di are the characteristic group contributions to the polynomial 

coefficients A, B, C and D, respectively.  

Table 5-4 shows the group contributions ai, bi, ci, and di which were found in Perry’s 

Chemical Engineers’  andbook [135]. The same table shows the calculation of the 

polynomial coefficients A, B, C and D for each of the five model substances specified in 

section 5.5.1. 

 

Table 5-4: Calculation of enthalpies of formation for the selected bio-oil model substances 
in the vapour phase  

Hydroxyacetone 
Groups Ni ΔHf a b c d 

  kJ/mol J/mol·K J/mol·K J/mol·K J/mol·K 

CH3 1 -76.45 1.95E+1 -8.08E-3 1.53E-4 -9.67E-8 
CH2 1 -20.64 -9.09E-1 9.50E-2 -5.44E-5 1.19E-8 
CO 1 -133.22 6.45 6.70E-2 -3.57E-5 2.86E-9 
OH 1 -208.04 2.57E+1 -6.91E-2 1.77E-4 -9.88E-8 

                                      

  -438.35 5.07E+1 8.48E-2 2.40E-4 -1.81E-7 

   hf,29 
0

 A B C D 

  -370.06 1.28E+1 2.95E-1 -1.51E-4 3.87E-7 



 
94 

 

 

Methanol 
Groups Ni ΔHf a b c d 

  kJ/mol J/mol·K J/mol·K J/mol·K J/mol·K 

CH3 1 -76.45 1.95E+1 -8.08E-3 1.53E-4 -9.67E-8 
OH (alcohol) 1 -208.04 2.57E+1 -6.91E-2 1.77E-4 -9.88E-8 

                                      

  -284.49 4.52E+1 -7.72E-2 3.30E-4 -1.96E-7 

   hf,29 
0

 A B C D 

  -216.20 7.27 1.33E-01 -6.10E-05 1.0E-08 

 

Guaiacol 
Groups Ni ΔHf a b c d 

  kJ/mol J/mol·K J/mol·K J/mol·K J/mol·K 

CH3 1 -76.45 1.95E+1 -8.08E-3 1.53E-4 -9.67E-8 
=C< (ring) 2 46.43 -8.25 1.01E-1 -1.42E-4 6.78E-8 
=CH- (ring) 4 2.09 -2.14 5.74E-2 -1.64E-6 -1.59E-8 
OH (phenol) 1 -221.65 -2.81 1.11E-1 -1.16E-4 4.94E-8 
-O- 1 -132.22 2.55E+1 -6.32E-2 1.11E-4 -5.48E-8 

   Δ                                  

  -329.1 1.73E+1 4.71E-1 -1.43E-4 -3.01E-8 

   hf,29 
0

 A B C D 

  -260.81 -2.08E+1 6.81E-1 -5.34E-4 1.76E-7 

 

Acetic acid 
Groups Ni ΔHf a b c d 

  kJ/mol J/mol·K J/mol·K J/mol·K J/mol·K 

CH3 1 -76.45 1.95E+1 -8.08E-3 1.53E-4 -9.67E-8 
COOH 1 -426.72  2.41E+1 4.27E-2 8.04E-5 -6.87E-8 

   Δ                                  

  -503.17 4.36E+1 3.46E-2 2.33E-4 -1.65E-7 

   hf,29 
0

 A B C D 

  -434.88 5.67 2.45E-1 -1.58E-4 4.06E-8 

 

Hydroxyacetaldehyde 
Groups Ni ΔHf a b c d 

  kJ/mol J/mol·K J/mol·K J/mol·K J/mol·K 

CH2 1 -20.64 -9.09E-1 9.50E-2 -5.44E-5 1.19E-8 
CHO 1 -162.03   3.09E+1 -3.36E-2 1.60E-4 -9.88E-8 
OH 1 -208.04 2.57E+1 -6.91E-2 1.77E-4 -9.88E-8 

   Δ                                  

  -390.71 5.57E+1 -7.70E-3 2.83E-4 -1.86E-7 

   hf,29 
0

 A B C D 

  -322.42 1.77E+1 2.02E-1 -1.08E-4 2.03E-8 
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Enthalpy of bio-oil in vapour phase 

The next step was to combine equation 5.3, which was used for the calculation of heat 

capacities, with equation 5.1 in order to calculate the enthalpy for each model substance. 

The resulting equation is given below: 

             
   ∫         

 

      

        
   ∫                     

 

      

         
   [    

 

 
     

 

 
     

 

 
    ]

      

 

                 

Finally, the enthalpy of bio-oil in the vapour phase was estimated in IPSEpro using the 

following equation which is the weighted average of the enthalpies of the model 

substances: 

     ∑                            

where       is the enthalpy of each model compound as a function of temperature 

(equation 5.8) and      is the mass fraction of each model substance as given in Table 5-3 

(see section 5.5.1).  

 

5.5.2.2 Liquid phase 

For the fast pyrolysis liquids, the heat capacity for each model substance was estimated 

by using another group contribution method, the Chueh and Swanson method [135]. This 

method provides an estimate of heat capacities at 293 K. Since bio-oil appears at room 

temperature (20oC) in the fast pyrolysis model, heat capacities at 293 K can reasonably be 

used. For each characteristic group a certain value for the heat capacity can be found in 

tables and the heat capacity of the molecule results from the addition of all group values: 

   ∑                    

Table 5.5 shows the characteristic group contributions      [135] and the calculation of the 

heat capacity for each model substance. The same table shows the enthalpy of formation 

values for each model substance in the liquid phase [136, 137].  
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Table 5-5: Thermodynamic properties of the selected model substances in the liquid 
phase. Literature values: 1 [137], 2 [136] 

Hydroxyacetone  Methanol 

Groups Ni Cp,i 

J/mol·K 

 Groups Ni Cp,i 

J/mol·K 

CH3 1 36.82  CH3 1 36.82 
CH2 1 30.38  OH 1 44.77 
CO 1 52.97     
OH 1 44.77     

Cp 

 

164.94 

J/mol·K 

 Cp 81.59 

J/mol·K 

 hf,29 
0  2 -410.8 

kJ/mol 

  hf,29 
0  1 -238.6 

kJ/mol 

 

Guaiacol  Acetic acid 

Groups Ni Cp,i 

J/mol·K 

 Groups Ni Cp,i 

J/mol·K 

CH3 1 36.82  CH3 1 36.82 
=C< 2 12.13  COOH 1 79.91 
=CH- 4 22.18     
OH 1 44.77     
-O- 1 35.15     

Cp 

 

229.72 

J/mol·K 

 Cp 116.73 

J/mol·K 

 hf,29 
0  2 -287.4 

kJ/mol 

  hf,29 
0  1 -484.1 

kJ/mol 

 

Hydroxyacetaldehyde 

Groups Ni Cp,i 

J/mol·K 

CH2 1 30.38 
CHO 1 52.97 
OH 1 44.77 

Cp 

 

128.12 

J/mol·K 

 hf,29 
0  2 -357.2 

kJ/mol 

 

Heat capacities of liquids are much less dependent on temperature than gases [5, 126] 

and since bio-oil appears at a low temperature (40oC) in the fast pyrolysis model, no 

temperature dependence of the liquid heat capacities was modelled.  Thus, the enthalpy of 

each model substance in the liquid phase was estimated by the following equation: 
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   ∫         

 

      

         
                                 

where    is the heat capacity of each model substance calculated from equation 5-10. As 

with the vapour phase, the enthalpy of bio-oil in the liquid phase was also estimated as the 

weighted average of the enthalpies of the model substances. 

 

5.5.3 Fast pyrolysis reactor 

5.5.3.1 Model structure 

As with gasification, where the IPSEpro gasifier model only consists of a black-box 

approach with only few major chemical reaction relationships, fast pyrolysis modelling 

equally needs to be cast in simplicity in order to allow for efficient integration into IPSEpro. 

Thus, while inclusion of chemical kinetics or complex thermodynamic relationships are 

beneficial for the understanding of what takes place inside the reactor, in this study the fast 

pyrolysis reactor model was built to describe the mere relation between biomass and fast 

pyrolysis products. 

 

The IPSEpro model of the fast pyrolysis reactor is shown in Figure 5.2. The reactor was a 

fluidised bed system for the reasons already discussed in section 4.4. In fluidised bed 

reactors, some heat is supplied via the fluidisation gas but heat requirements cannot be 

met by the fluidisation gas alone. Therefore additional heating via the reactor walls or 

heating coils was also employed. As with all PGP_LIb models a gaseous heat carrier was 

assumed for the indirect heat transfer. A description of the input and output streams of the 

fast pyrolysis reactor is given in Table 5-6. 
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Figure 5-2: IPSEpro model of the fast pyrolysis reactor 

 

Table 5-6: Input and output streams of the fast pyrolysis reactor model 

Input streams Characterisation 

Biomass 
Elemental composition, water and ash 
content, enthalpy as a function of 
temperature  (Pröll [126]) 

Fluidisation gas Gas composition (described in section 5.2.2) 

Feed indirect heating Gas composition 

 

Output streams Characterisation 

Pyrolysis vapours 

 Fast pyrolysis vapours 

Elemental composition, enthalpy as a 
function of temperature based on model 
substances (section 5.5.2) 

 Other gases 

Gas composition (section 5.2.2) 

 Char 

Elemental composition, enthalpy as a 
function of temperature based on model 
substances (Pröll [126]) 

 Dust 

Elemental composition, enthalpy as a 
function of temperature based on model 
substances (Pröll [126]) 

Drain indirect heating 
Gas composition (same as feed indirect 
heating) 
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5.5.3.2 Mass balances 

As with the biomass gasifier IPSEpro model, the fast pyrolysis reactor model employs 

elemental mass balances of all components entering and leaving the reactor in order to 

estimate the relative amount of products formed. Similar to other IPSEpro models of the 

PGP_Lib (e.g. biomass gasifier), the elemental mass balances were set up for carbon (C), 

hydrogen (H), oxygen (O), nitrogen (N), argon (Ar), sulphur (S) and chlorine(Cl).  

 

The three product classes (see Table 5-6 in section 5.5.3.1) were determined in both total 

mass and composition: 

 Fast pyrolysis vapours (total amount produced and elemental composition) 

 Char (total amount produced and elemental composition) 

 Dust from biomass ash which is carried into the reactor via the fluidisation gas 

(total amount, elemental composition) 

The total amount of gases produced resulted from the elemental mass balances. However, 

some gas compounds had to be specified in order to get a fully determined equation 

system for the fast pyrolysis reactor model. The following section describes the approach 

followed to estimate the amount of products formed from fast pyrolysis. 

Fast pyrolysis vapours and char 

As described in section 2.4.1, the amount of vapours and thus bio-oil produced, as well as 

the quantity of char formed in the fast pyrolysis process highly depend on the reaction 

conditions. Cottam and Bridgwater [131], whose work was mentioned in section 5.5.1, 

estimated the yields of dry bio-oil (i.e. vapours), char, gases and water as a function of 

temperature based on experimental results from wood. The equations for estimating the 

mass yields of fast pyrolysis vapours and char by Cottam and Bridgwater [131], were also 

adopted in this study and are as follows: 

                                                      

                                                       

The above empirical relationships for estimating the mass yields of dry bio-oil and char 

were based on a dry ash-free (daf) wood feedstock. The amounts of water and other 

gases produced were calculated in IPSEpro via elemental mass balances. 
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For the elemental composition of bio-oil and char produced in the process, values given 

from Fürnsinn were used [5]. These values were based on experimental studies from the 

literature. Table 5-7 shows the elemental composition of bio-oil used in this study. 

 

Table 5-7: Bio-oil elemental composition (wt%, dry basis); literature values and model 
settings 

 Woody biomass [5] Model 

Temperature 500 
o
C 500 

o
C 

C 55 % 55 % 
H 6.6 % 6.5 % 
O 38.5 % 38.5 % 
N 0.1 % - 
S 0.05 % - 
Cl 0.03 % - 

 

According to Fivga [132], the nitrogen content of bio-oil from woody biomass is very low (0-

0.02%), thus the nitrogen content of bio-oil was set to zero in the model. Due to the lack of 

data in the literature for the sulphur and chlorine content of bio-oil, Fürnsinn assumed that 

they were 0.05 % and 0.03 % respectively. These values were based on the simple 

assumption that both are slightly lower than nitrogen, but in the range of the corresponding 

values for wood biomass. It should be noted that the sum of Fürnsinn’s model values is not 

100% as it should be and Fürnsinn does not give any explanation on that. According to 

Bridgwater [17, 22] and Fivga [132], the sulphur and chlorine content of bio-oil from woody 

biomass are extremely low (<0.01%) and thus they were both set to zero. 

 

Table 5-8 shows the elemental composition of char used in this study. Again, as opposed 

to Fürnsinn’s model the sulphur and chlorine content were set to zero for the reasons 

described above. The selected composition is in accordance to Stahl et al. [138] who do 

not provide any values for the sulphur and chlorine content of fast pyrolysis char. Thus, 

they were both assumed to be very low to significantly affect the overall mass balances of 

the process. 
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Table 5-8: Char elemental composition (wt%, dry basis) for fast pyrolysis; literature values 
and model settings. 

 Woody biomass [5] Model 

Temperature 500
o
C 500

o
C 

C 90-92 % 89.7 % 
H 3 % 3 % 
O 4-6 % 6.8% 
N 0.4 % 0.4 % 
S 0.05 % - 
Cl 0.03 % - 

 

Other gases 

For the gas compounds of the fast pyrolysis process (e.g. CO, CO2), Fürnsinn used 

literature values for the yields of the major gas compounds based on the dry ash-free 

biomass input. These values were also adopted in this study and are shown in Table 5-9. 

 

Table 5-9: Fast pyrolysis gas yields [5]. Process temperature: 500oC 

 % yield wt% (dry gas) 

H2 0.02 0.2 
CO 4.22 43.4 
CO2 4.72 48.5 
CH4 0.39 4.0 
C2H4 0.17 1.8 
C2H6 0.04 0.4 
C3H8 0.16 1.6 

 

The values for CO, H2, CH4, C2H4, C2H6 and C3H8 were set in IPSEpro to the values shown 

in Table 5-9. It was also assumed that neither oxygen, nitrogen nor NO were formed or 

consumed during the fast pyrolysis reactions. The amounts of sulphur and the remaining 

nitrogen containing gases were calculated from the respective elemental balances. 

 

5.5.3.3 Energy balance 

As with all IPSEpro unit models, the energy balance (i.e. enthalpy balance) of the fast 

pyrolysis reactor is given by the following equation:  

  ̇         ̇                                                                        

For the fast pyrolysis reactor model the above equation was formulated as following: 
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  ̇           ̇             ̇          

 ̇                 ̇                                  

where Qloss is the heat loss from the reactor in kW and ḣ is the enthalpy flow in kJ/h 

defined as: 

 ̇   ̇                                                                          

where  ̇ is the massflow of the stream in kg/h and    is the enthalpy of the stream in 

kJ/kg. 

 

From equation 5-15 the amount of heat required for the pyrolysis reactions is defined as: 

     [ ̇          ̇         ]                                      

 

5.5.3.4 Reactor model variables 

Apart from the mass and energy balances equations, some variables were required to 

describe the model. These variables are shown in Table 5-10. Variables represent 

numerical data of an IPSEpro model and can either be prescribed by the user or 

calculated while the system is solved on IPSEpro.  

 

Table 5-10: Variables of the fast pyrolysis reactor model  

Variable Unit Description 

dp_gas bar Pressure drop of the fluidisation gas; also determines 
the pressure of vapours and other gases. 

dp_htx bar Pressure drop of the indirect heating stream   

Q_htx kW Power of indirect heating 

Q_loss kW Heat loss from the reactor 

ratio_fluid_biomass kg/kg Mass flow of fluidisation gas to biomass input ratio 

 

5.5.4 Condensation unit model 

After fast pyrolysis, the resulting gases pass through a set of cyclones where dust and 

char are extracted. IPSEpro models of particulates removal units, such as filters and 

cyclones, have already been developed by Pröll [126] and are included in the PGP_Lib. 

After removal of dust and char, the gases enter a condensation unit where they are cooled 
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and condensed into bio-oil. The condensation unit model was not available in the PGP_Lib 

and thus it was built specifically for this study. 

 

5.5.4.1 Model structure 

The condensation unit model is shown in Figure 5.3. Some simplifications listed below 

were made in order to build an easy-to-operate model that could be efficiently integrated 

into IPSEpro: 

 Black box model; no kinetics or construction details of the unit. 

 Same elemental composition for fast pyrolysis vapours and bio-oil. 

 Model substances for fast pyrolysis vapours and bio-oil were the same, only in 

different physical state. Therefore, no chemical reactions occurred during 

condensation. 

 Simple indirect heat exchange (cooling water) for bio-oil condensation. 

 

 

Figure 5-3: IPSEpro model of the bio-oil condensation unit 
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In fact, chemical reactions, such as oligomerisation, do take place during condensation 

[129]. However, the contribution of the enthalpy of reaction to the overall energy balance 

was considered insignificant due to the large amount of heat transferred to the cooling 

medium since the gases are cooled down by 460oC. Furthermore, the enthalpy of reaction 

influences only the cooling duty of the condensation unit which it is not included in the 

calculation of the overall energy efficiency of the process (see section 5.12.1). 

 

The chemical reactions that take place during condensation change the chemical structure 

of the vapours compounds but not their elemental composition [5]. Since the chemical 

properties of bio-oil are not of interest in this study but only its heating value based on 

elemental composition, the assumption of equal elemental composition of vapours and 

bio-oil is justified.   

 

Condensation via simple indirect heat exchange with cooling water was assumed. 

However, this condensation method can cause preferential deposition of lignin-derived 

components leading to liquid fractionation and eventually blockage in pipelines and heat 

exchangers [17]. Thus, quenching with previously made bio-oil (e.g. Dynamotive, Ensyn) 

or a hydrocarbon solvent is usually employed. For the reasons highlighted above, neither 

the cooling duty nor the nature of the cooling medium of the pyrolysis condenser are of 

interest in the process performance assessment, thus a simple condensation model was 

built.  

 

5.5.4.2 Mass and energy balances 

The condenser was modelled without any change of chemical composition of the 

participating phases (see also previous section), thus no chemical species were consumed 

or formed. The mass balance equations of this model were component specific and forced 

equal amounts and compositions at feed and drain of each stream. 

 

The energy balance equation was similar to that of the fast pyrolysis reactor: 

 ̇                 ̇           ̇                                                

where Qclg is the cooling duty (kW) of the condenser estimated from the following equation: 

     [ ̇           ̇        ]                                      
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5.5.4.3 Condensation unit model variables 

Several variables were required to describe the condensation unit model. These are briefly 

described in Table 5-11.  

 

Table 5-11: Variables of the condensation unit model 

Variable Unit Description 

dp_gas bar Pressure difference between pyrolysis vapours and 
non-condensable gases 

dp_org_gas bar Pressure difference between exiting gas and bio-oil  

dp_clg bar Pressure drop of the cooling stream 

dt_gas 
o
C Temperature difference between pyrolysis vapours 

and non-condensable gases 

dt_org_gas 
o
C Temperature difference between pyrolysis vapours 

and bio-oil 

sep_eff_vap % Separation efficiency of pyrolysis vapours 

rho_drain_org kg/m
3
 Density of bio-oil. Set to 1200 kg/m

3
 [139]. 

Q_clg kW Cooling duty of the water heat exchanger 

Q_loss kW Heat loss from the reactor 

 

5.5.5 Fast pyrolysis process concept - Overall model  

The flow sheet of the fast pyrolysis process concept is shown in Figure 5-4. Biomass 

(wood chips) was dried from 30% to 10% water content using an air rotary dryer (see 

sections 4.3 and 5.4.2). The dried biomass was then fed to the fast pyrolysis reactor, 

where the product mix was obtained at 500oC [17]. The char and ash were separated in a 

set of cyclones, after which the pyrolysis vapours were condensed to bio-oil. 

 

As already discussed in section 4.4, the heat demand of the fast pyrolysis reactor was met 

by the combustion of the non-condensable gases and part of the char. The cooled non-

condensable gases were combusted with little oxygen surplus (  = 1.05) to avoid high 

oxygen concentration in the combustor flue gas, since part of the latter was used as 

fluidisation medium for the fast pyrolysis reactor [5]. A flue gas temperature of about 520oC 

was achieved which could thus be directly fed into the reactor.  
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Figure 5-4: Flow sheet of the fast pyrolysis process 
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The char was combusted to supply the extra heat needed for the fast pyrolysis process. 

The temperature of the flue gas stream from the char combustor was set to 700°C [5].  

The flue gas stream of the char combustor exited the fast pyrolysis reactor at 510°C [5]. It 

was then combined with flue gas from the gas combustor and passed through a heat 

exchanger to supply heat to the air dryer.  

 

5.5.5.1 Results 

The results of the simulation analysis of the fast pyrolysis process are summarised in 

Table 5-12. In this study, the energy efficiency of the fast pyrolysis concept is defined as 

the ratio between the total energy in bio-oil (organics only) and that in the biomass 

feedstock (daf basis): 

           
 ̇                  

 ̇                   

                       

where   ̇        is the mass flow (kg/h) of bio-oil,            is the lower heating value 

(kJ/kg) of bio-oil,  ̇        is the mass flow input (kg/h) of the daf biomass and             

is the lower heating value (kJ/kg) of the daf biomass feed. 

 

It should be noted that almost all the pyrolysis char (about 98%) needed to be combusted 

to meet the heat requirements of the fast pyrolysis reactor. This was due to the low heating 

value of the non-condensable gases since the pyrolysis gases were diluted with 

combustion flue gas used as fluidisation medium for the reactor. 

 

The results from the simulation of the fast pyrolysis process with IPSEpro are consistent 

with those from recent modelling studies on fast pyrolysis [5, 105]. Furnsinn [5] reports a 

mass yield of 66% and a plant energy efficiency of 70%, whereas Rogers [105] reports 

mass yields in the range of 50 - 74% and energy efficiencies in the range of 55 - 70%.  
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Table 5-12: Settings and results of the fast pyrolysis process simulation 

Biomass   

LHV wet biomass kJ/kg 13,056 

Water content % 30 

Ash content % 1 

Mass flow (wet) kg/h 23,810 

LHV daf biomass kJ/kg 19,897 

Mass flow (dry) kg/h 16,667 

Mass flow (dry) t/d 400 

Bio-oil   

LHV (organic fraction) kJ/kg 21,103 

HHV (organic fraction) kJ/kg 22,522 

LHV (as produced) kJ/kg 14,582 

HHV (as produced) kJ/kg 16,284 

Water content % 27 

Mass flow (as produced)  kg/h 15,004 

Mass flow (as produced) t/d 360.1 

Char   

Mass flow (prior to combustion) kg/h 2,519 

Mass flow (after combustion) kg/h 49.4 

Mass flow (after combustion) t/d 1.185 

   

Energy efficiency (eqn. 5-20) % 69.7 

Bio-oil mass yield (daf basis) % 65.8 

 

 

 

 

It is also worthwhile comparing the results of the model with the reported mass yields of 

Dynamotive’s fast pyrolysis pilot plant [140]. Table 5-13 shows the results of the model in 

comparison with those from Dynamotive’s plant. The model was rerun with a biomass 

water content of 3% and ash content of 1.5% to make results comparable. 
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Table 5-13: Comparison of the fast pyrolysis model with Dynamotive’s pilot plant [140]  

 Dynamotive Model 

Settings 

Biomass type wood wood 

Biomass water content 3%* 3% 

Biomass ash content 1.5%* 1.5% 

Results 

Bio-oil water content 22.5%* 21% 

Bio-oil LHV 16.5 MJ/kg* 16.2 MJ/kg 

Mass yield 70% 66% 

*The value used is the average of the values reported in the reference 

 

Table 5-13 shows that the fast pyrolysis simulation results of this study which were based 

on reported experimental data are consistent with reported data from an industrial pilot 

plant. 

5.6 Gasification 

5.6.1 General gasifier model 

As discussed in section 4.5, gasification of biomass was done using either a circulating 

fluidised bed (CFB concepts) or an entrained flow gasifier (EF concepts). The IPSEpro 

gasifier model used in this study was developed by Pröll [126] and is included in the 

PGP_Lib. Pröll’s gasifier model is a general balance model of a biomass gasifier which 

consists of elemental mass balances, energy balances and some chemical equilibrium 

relationships. As with the fast pyrolysis reactor model (see section 5.5.3), since chemical 

reactions take place during gasification, the mass balances of the gasifier model are 

formulated on the basis of chemical elements. This is the approach followed for all 

IPSEpro models that include chemical reactions since production or consumption of 

chemical species can occur in these models. Only inorganic solids (char, ash) are treated 

as inert, i.e. the conservation of chemical species is formulated for the solids [127]. For 

char and tar composition, the model relies on prescribed values determined by 

measurements [127].  
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For the product gas composition, the elemental mass balances determine the 

concentrations of Ar, H2S and HCl. The equilibrium of the CO shift reaction can be set by 

the user (a value of zero defines equilibrium) in order to determine the CO/CO2 ratio in the 

product gas. The hydrogen balance calculates the amount of H2 in the product gas, the 

oxygen balance yields H2O and the nitrogen balance N2.  Finally, the compositions of all 

the other components (C2H4, C2H6, C3H8, CH4, NH3, HCN) are set by the user. 

 

Proll’s model was used for modelling both the CFB and the entrained flow gasifier, 

however operating conditions, syngas composition and gasification medium requirements 

were different for the two gasifiers. This is further discussed in the following two sections. 

5.6.2 Circulating Fluidised Bed gasifier 

Biomass dried to 10% moisture using an SSD dryer (see section 5.4.1) is fed to a 

pressurised CFB gasifier. As discussed in section 4.5, the dried fuel was pressurised in a 

lock hopper system and was fed into the pressurised gasifiers via a pressurised vessel 

[112]. IPSEpro includes a model which increases the pressure of an organic stream and 

simulates a lock hopper. This model was used to pressurise the dried biomass stream 

before it passes to the gasifiers. As discussed in section 4.5, a lock hopper system 

requires large amounts of inert gas, usually N2, in order to pressurise the dried fuel which 

results in lower gasification efficiencies due to the dilution of the product gas. CO2 

produced from the Rectisol unit was used instead of N2 as inert gas for the lock hopper 

system. Higman et al. [141] report inert gas requirements of 0.09 kg/kg dry biomass for 

pressurised gasifiers (~25 bar). This results in a 180 t/d CO2 requirement for the lock 

hopper system of both gasifiers.  

 

Oxygen at 95% purity and steam are fed into the gasifier which operates at 28 bar and 

870oC [91]. For both CFB and EF gasifiers, the amount of oxygen entering the gasifier was 

not set, as it was defined by the temperature of the gasifier. The amount of steam was 

adjusted accordingly in order to have a syngas composition similar to reported 

experimental results [36, 142, 143] 

5.6.3 Entrained Flow Gasifier 

The entrained flow gasifier operates at 1400oC and 28 bar [91]. As discussed in section 

4.5, the high temperature of the entrained flow gasifier results in a methane and tar-free 
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product gas [110, 144]. However, in order to reach this high temperature the EF gasifier 

requires higher amounts of oxygen than the CFB gasifier. Table 5-14 shows the syngas 

composition for both gasifiers. More hydrogen and carbon monoxide are formed from the 

entrained flow gasifier as a result of the water-gas-shift reaction (see section 2.7.2) and 

the reforming of light hydrocarbons (see section 2.7.2). In general, according to Le 

Chatelier’s principle, higher temperatures favour the reactants in exothermic reactions 

(e.g. Water-gas-shift reaction) and favour the products in endothermic reactions (e.g. 

steam reforming reaction). The CFB gasifier, on the other hand, produces tar and a 

significant amount of methane and other light hydrocarbons, thus requiring downstream 

reforming. This is discussed in the following section. 

 

Table 5-14: Characteristics and raw syngas composition (vol %) for the gasification 
concepts evaluated in this study 

 CFB gasifier EF gasifier 

P (bar) 28 28 

T (
o
C) 850 1400 

Oxygen (kg/kg dry feed) 0.32 0.6 

Steam (kg/kg dry feed) 0.17 0.15 

   

Gas composition (vol% wet 
basis [dry basis]) 

  

H2O 12.6 [0] 25 [0] 

H2 28.3 [32.4] 25.9 [34.5] 

CO 26 [29.8] 37.1 [49.5] 

CO2 21.2 [24.2] 10.8 [14.4] 

CH4 10.5 [12] 0 [0] 

C2+ 0.52 [0.6] 0 [0] 

Ar 0.27 [0.3] 0.42 [0.55] 

N2 0.56 [0.62] 0.75 [0.99] 

NH3 0.005 [5.8 x10
-3

] 0 [0] 

H2S 0.02 [0.024] 0.017 [0.023] 

HCl 0.01 [0.013] 0.009 [0.013] 

HCN 5 x10
-4

 [6 x10
-4

] 0 [0] 

 

5.7 Gas cleaning & conditioning - CFB gasifier 

The gas cleaning section for the CFB gasifier is shown in Figure 5-11 in section 5.12.2.2. 

After the initial particulates (char and ash) separation by a cyclone, the syngas passes to 

the tar cracker where tars are destroyed at 875oC by addition of oxygen and steam (see 
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also section 4.6). It is assumed that light hydrocarbons (C1-C3) are converted at 99% 

conversion to syngas [117-120]. Tars are assumed to be fully converted into gaseous 

compounds [114] and all gases are determined in the model via elemental mass balances. 

The tar cracker/reformer model used in this study was developed by Pröll [126] and is 

included in the PGP_Lib. Proll’s model is a general steam reformer model (i.e. indirectly 

heated) which can also be used as a water-gas-shift reactor. The original model was 

modified to include the molar steam to carbon ratio (S/C) to be specified in order to have 

an autothermal reformer model. This is because steam reformers are more suitable for 

hydrogen production applications due to their high H2/CO ratio (~3). Furthermore, an 

autothermal reformer holds the advantage of relatively simple design compared to a steam 

reformer due to the absence of heat transfer hardware which also results in higher thermal 

efficiency [145]. The S/C ratio of the autothermal tar cracker/reformer model was set at 2 

for higher conversion of light hydrocarbons as proposed by Zeman and Hofbauer [146]. 

 

The tar free syngas is then cooled to 280oC by a heat exchanger yielding steam which is 

used by the tar cracker. The cooled syngas passes through a bag filter [36] where the 

remaining particulates are removed. The gas cleaning section for the CFB gasifier is 

shown in Figure 5-11 in section 5.12.2.2.     

 

After the final particulate removal the syngas is fed to the Rectisol unit where CO2 and 

sulphur compounds are removed (see also section 4.6). In order to avoid catalyst 

poisoning, sulphur must be removed to at least 1 ppmV before the gas passes to the fuel 

synthesis process [36, 38, 39]. Rectisol can efficiently remove acid compounds in the 

syngas as the achieved concentration of CO2 and H2S could be as low as 2 ppmV and 0.1 

ppmV respectively [36]. IPSEpro does not include any models of absorption processes, 

thus a simple model was built which can be used as a general gas stream separation 

model. The model is shown in Figure 5-5. It is a single black-box model which includes 

separation efficencies for each component of the feed gas stream. The gas composition in 

the two exit streams of the model can be estimated by either setting the concentration for 

each component or prescribing the separation efficiencies. The same model was used to 

simulate the air separation unit. H2S, HCl and CO2 are removed together on top of the 

model, whereas the clean syngas exits from the bottom. H2S and HCl concentrations in the 

clean syngas were set at 0.1ppmV (0.00001 vol%), whereas the CO2 volume fraction was 

set at 2 % [90]. 
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Figure 5-5: IPSEpro model of the Rectisol process 

 

5.8 Gas cleaning & conditioning - EF gasifier 

The gas cleaning section for the entrained flow gasifier is shown in Figure 5-10 in section  

5.12.2.1. After gasification, the syngas is fed to a direct quench where it is cooled to the 

operating temperature of the WGS reactor (200oC) [90]. The cooled syngas then passes 

through a bag filter to remove particulates. The H2/CO ratio of the produced gas from the 

EF gasifier is 0.7, which is lower than the required ratio (H2/CO = 2) for FT and methanol 

synthesis. Therefore, the ratio was adjusted by using a WGS reactor which was modelled 

at equilibrium conditions and had an exit gas temperature of 340°C [36]. The WGS reactor 

at this point of the process allows carbon dioxide produced from the WGS reactor to be 

removed soon after in the Rectisol unit. For the Rectisol process the same model with the 

CFB gasifier was used which was described in the previous section.  

 

5.9 Fischer-Tropsch synthesis 

5.9.1 Modelling approach 

Just as with fast pyrolysis where a wide range of products is obtained, FT synthesis also 

yields a large number of different substances due to the low selectivity of the process (see 

also section 2.8.1.2). The number of individual chemical substances produced from FT 
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synthesis is very high, reaching a total of several hundred hydrocarbon species [5]. During 

FT synthesis many primary and secondary reactions take place leading to many individual 

components [147]. Detailed FT modelling is a task far beyond the time and resources in 

this study, thus some simplification was necessary. As with the fast pyrolysis model (see 

section 5.5), the FT synthesis model is based on a black-box approach. Neither chemical 

kinetics nor complex thermodynamic relationships were incorporated. The FT synthesis 

model was built to describe the mere relationship between syngas and FT hydrocarbon 

products in order to estimate the energy efficiency of the process and determine the 

products of interest.  

    

In fast pyrolysis modelling a number of model substances were chosen to represent bio-oil 

in order to supply thermodynamic data necessary for the calculation of energy balances. 

The same approach was followed to model the liquid hydrocarbon products of FT 

synthesis.  

 

Fürnsinn conducted a comprehensive and thorough research into the selection of 

representative model substances for the thermodynamic modelling of FT products on 

IPSEpro [5]. In his study only n-alkanes in the range of C1 (methane) to C35 (penta-

triacontane) were chosen.  His selection of model substances for the FT products was 

mainly based on practical aspects regarding IPSEpro modelling (efficient integration of the 

model into IPSEpro) and on the following criteria [5]:   

 Thermodynamic data such as heat capacity is not available for all FT products. 

Therefore, a selection of a specific number of representative model substances is 

unavoidable.  

 Some products are more abundant than others; thus, products with low 

concentration such as highly branched hydrocarbons (>C35), alkenes and alkanes 

isomers can be left out without significant effects on the results. 

 Calculation times and programming efforts would highly increase if several 

hundred product substances were included. 

 Reliable, quantitative data on the formation of the chosen model substances must 

be available; in practice, however, adequate data is scarce for many substance 

classes, let alone single product compounds. 
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 The chosen model substances should cover a wide range of FT products which 

include gases, gasoline, kerosene, diesel and waxes. 

The chemical compounds selected by Fürnsinn are in good agreement with results 

reported in experimental studies of FT synthesis coupled with wood gasification. Sauciuc 

and Rauch found that for FT synthesis based on cobalt catalysts about 90% of the final FT 

products is alkanes [148].  This is also reported by CUTEC Institute [50] . Products such 

as alcohols, aldehydes, ketones, ethers, alkenes and alkanes isomers are 10% of the final 

FT products [148], thus these substances can be left out without significant effects on the 

mass and energy balances results. Additionally, C1 to C35 alkanes cover the most 

abundant range of FT products [50, 54, 147] which include gases, gasoline, kerosene, 

diesel and waxes. Therefore, Fürnsinn’s set of representative model substances for the 

thermodynamic modelling of FT products was selected for this study.  

5.9.2 Thermodynamic modelling 

The thermodynamic properties of methane (CH4), ethane (C2H6) and propane (C3H8) have 

already been described by Pröll [126, 127] and are included in the PGP_Lib. Therefore, 

new mathematical relationships for the calculation of thermodynamic properties (ΔΗf, Cp) 

needed to be found for hydrocarbons from C4 to C35. 

  

Enthalpy of formation 

Similar to the thermodynamic modelling of fast pyrolysis (see section 5.5.2), since 

experimental values on thermodynamic properties (ΔΗf, Cp) of all selected model 

substances are not available, a mathematical function found in literature was used to 

estimate the enthalpy of formation for each model substance. To this end, the model of 

Helgeson [149] was used as, compared to other models [150-155], it is the most recent, 

has the most comprehensive applicability and fits well with experimental data. According to 

 elgeson’s model, the standard enthalpy of formation can be calculated via a linear 

function of the carbon atoms of a n-alkane: 

       
                             

The values of the constants    and    depend on the substance class. For liquid n-alkanes 

these values are:    = - 43.76 kJ/mol and    = - 25.73 kJ/mol [149]. Note that the original 
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values are given in cal/mol but for this study they were converted to kJ/mol (1 cal = 4.184 

J) as these units are used on IPSEpro for enthalpy calculations. 

 

Heat capacity 

For the heat capacity of liquid hydrocarbons,  elgeson’s model could not be used as it is 

only valid for n>17. Therefore, the model of Durupt was used which fits well with 

experimental data [156]. Durupt proposes linear functions of temperature for the 

calculation of heat capacity of alkanes. Luria and Benson [157] propose more complex 

equations (cubic polynomials) but their results are similar to Durupt’s model, thus Durupt’s 

model was chosen instead. With Durupt’s model, heat capacities of liquid alkanes are 

estimated using a group contribution approach, where values for the -CH2- and -CH3- 

groups are calculated to give the molecular heat capacity of an alkane [156]: 

CH2 group:        
                

CH3 group:        
                 

Therefore, for a n-alkane (CnH2n+2) the heat capacity (J/mol·K) was calculated by the 

following equation: 

                   
          

               

Thus, the enthalpy of each model substance was calculated by the following equation: 

 

             
   ∫         

 

      

                                                                                          

           ∫ [                                           ]
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Similar to fast pyrolysis modelling, the total enthalpy of the FT hydrocarbon products was 

calculated as the weighted average of the enthalpies of the selected model substances 

(eqn. 5-9 at section 5.5.2.1). The mass fractions of the selected FT hydrocarbons were 

taken by the Anderson-Schultz-Flory product distribution (see section 2.8.1.2) for an alpha 

value of 0.85. This is further discussed in the following section. Due to the high number of 
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model substances the calculation of the total enthalpy was more complex than other 

processes modelled in this study. The calculation can be found in Appendix B.   

5.9.3 Model structure 

The model structure of the FT synthesis corresponds to a black-box approach. Figure 5-6 

shows the model of FT synthesis which was built on IPSEpro for this study.  

 

 

Figure 5-6: IPSEpro model of the Fischer-Tropsch synthesis 

 

The black-box model includes reaction to FT hydrocarbons, product condensation and 

upgrading. Therefore, two product streams leave the model: FT off-gas on top and liquid 

hydrocarbons to the right. The FT off-gas consists of unconverted syngas and gaseous 

light hydrocarbons formed during the FT synthesis. It is assumed that the FT off-gas is 

sent to the power island for electricity production (once- through FT synthesis). Recycling 

of FT off-gas to the synthesis reactor via a reformer was not examined since it is claimed 

that the increased costs for reforming the light hydrocarbons of the FT off-gas exceed the 

benefits of increased fuel production [15, 88]. Furthermore, Tijmensen et al. [16] and 

Hamelick  et al. [15] reported a small difference in energy efficiency between once-through 

operation and recycling of FT-off gas (2-3% higher for off-gas recycling). Once-through 

operation for FT synthesis also provides a significant second revenue stream from sale of 

electricity which can also be used to cover part of the electricity requirements of the plant. 

 

The liquid FT hydrocarbons stream consists of all liquid FT products (gasoline, diesel, 

kerosene) and does not contain any dissolved light hydrocarbons or syngas. A description 

of the input and output streams of the FT synthesis model is given in Table 5-15. 
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The FT reaction is exothermic, thus a water cooling system (see section 5.5.4.1) was 

included in the model, which can be operated for steam generation. However, as 

discussed in section 4.8, a power plant was not modelled in this study so steam generation 

from fuel synthesis (FT and MTG) was not investigated. 

 

As discussed in section 2.8.1.1, the low temperature Fischer-Tropsch synthesis (200 - 

250oC) favours the production of liquid fuels up to middle distillates. Therefore, the FT 

synthesis temperature was set to 230oC. The operating pressure was set to 25 bar [48]. It 

should be noted that the Sasol Slurry Phase Distillate process, which is a low temperature 

Fischer-Tropsch synthesis, has similar operating conditions (see section 2.8.1.3).  

 

Table 5-15: Input and output streams of the Fischer-Tropsch synthesis model  

Input streams Characterisation 

Clean syngas Gas composition (described in section 5.2.2) 

 

Output streams Characterisation 

FT liquids 

Elemental composition, enthalpy as a function 
of temperature based on model substances 
(section 5.9.2). 

They are divided into 4 product classes [158, 
159]: 

 Gasoline 

All alkanes from C5 to C12 

 Kerosene 

All alkanes from C13 to C15 

 Diesel 

Diesel products range from C16 to C19 

 Wax 

All alkanes from C20 to C35 

FT off-gas Gas composition (described in section 5.2.2) 

 

5.9.4 Mass balances 

As discussed in section 2.8.1.2, the Anderson-Schultz-Flory distribution is the most widely 

used model for the description of FT product distribution. As opposed to kinetic models 
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with much detail and complex calculation algorithms (e.g. Schulz/Claeys [160], Ahón et al. 

[161]), the ASF model is quite straightforward, as it only uses one parameter (the chain 

growth probability “α”) for the calculation of the molar or mass fractions of the FT 

hydrocarbons. Furthermore, in accordance with the assumptions made in section 5.9.1, 

only linear alkanes are considered in the ASF model. 

 

In this study, a chain growth probability value for the Anderson-Schultz-Flory distribution of 

0.85 was chosen for estimation of the product composition based on reported literature 

values [5, 90, 147]. Figure 5-7 shows the ASF product distribution for an alpha value of 

0.85.  

 

At this chain growth probability, relatively low amounts of waxes are formed (approximately 

19% - Figure 5-7), thus less wax products need to be hydrocracked [5]. Following 

Swanson [90], Furnsinn [5]  and Hamelinck [15], it was assumed that after FT synthesis all 

waxes are hydrocracked to middle distillate products  (C10-C19). The product from the 

hydrocracking unit is isomerised to improve the cold flow properties and subsequently 

fractionated in a conventional distillation column, as discussed in section 2.8.1.2. A 

product distribution of 60% diesel, 25% gasoline and 25% kerosene was assumed for the 

hydrocracking unit, as reported from Eilers et al. [49] for the SMDS process (see section 

2.8.1.3). 

 

 

Figure 5-7: ASF product distribution for α=0.85 
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Hydrocracking of FT hydrocarbons was not modelled on IPSEpro due to time constraints 

and to avoid complexity. However, it was considered in the economic assessment and its 

capital and operating costs were included in the cost estimations.  

 

The FT synthesis model employs elemental mass balances of all components entering 

and leaving the model in order to estimate the relative amount of products formed. Similar 

to other IPSEpro models of the PGP_Lib (e.g. biomass gasifier), the elemental mass 

balances were set up for carbon (C), hydrogen (H), oxygen (O), nitrogen (N), argon (Ar), 

sulphur (S) and chlorine(Cl).  

 

The elemental composition of the FT liquids stream (see Table 5-15) was estimated in the 

model from the following equations: 

                                                    

 

  

  
 

        

               
                    

 where    and    are the weight fractions (kg/kg) of carbon and hydrogen of the FT liquid 

mix, 12.011 and 1.00794 is the atomic weight (g/mol) of carbon and hydrogen, 

respectively. The chain length   for the selected FT alkanes (general formula: CnH2n+2) is a 

variable of the model and needs to be set by the user. It was calculated as the weighted 

average of the chain lengths of the selected model substances: 

 ̅ ∑                          

where      is the mass fraction of each model substance from the ASF product distribution 

as shown in Figure 5-7. Note that the mass fractions of the remaining C35+ hydrocarbons 

(about 2 wt% in total) are added to C35 for calculating the average  . 

5.9.5 Energy balance 

The energy balance equation was similar to that of the other IPSEpro models already 

described in this study: 

 ̇          ̇              ̇                                                
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5.9.6 Fischer-Tropsch model variables 

Several variables were required to describe the FT synthesis model. These are briefly 

described in Table 5-16.  

 

Table 5-16: Variables of the FT synthesis model 

Variable Unit Description 

dp_gas bar Pressure difference between syngas and FT off-gas 

dp_FTliq bar Pressure difference between syngas and FT liquids  

dp_clg bar Pressure drop of the cooling stream 

dt_gas 
o
C Temperature difference between syngas and FT off-

gas 

dt_FTliq 
o
C Temperature difference between syngas and FT 

liquids 

n - Average chain length of FT liquid products (eqn.5-26) 

Q_clg kW Cooling duty of the reactor heat exchanger 

Q_loss kW Heat loss from the reactor 

 

5.10  Methanol synthesis and Methanol-to-Gasoline (MTG) 

5.10.1 Modelling approach 

As with FT synthesis, a simplified approach was also used to model the MTG process.  In 

contrast to the abundant literature for FT synthesis, there is a dearth of published literature 

for the methanol-to-gasoline (MTG) process. This made the modelling task more difficult 

compared to other processes modelled in this study and also increased the uncertainty in 

the results. The MTG process also produces a wide range of chemical substances (see 

section 2.8.2.2). Quantitative data on the formation of products is scarce for many 

substance classes and especially for single product compounds. Therefore, simplification 

was once again necessary. 

 

The main product of the MTG process is gasoline at approximately 80 wt % [59, 65]. As 

already discussed in the previous sections (5.5.1 and 5.9.1), a set of model substances 

had to be defined in order to estimate the thermodynamic properties of the gasoline 

product. Table 5-17 shows the different substance classes composition in gasoline. 
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Table 5-17: MTG gasoline composition [162] 

Substance class wt % 

Alkanes 60 

Alkenes 12 

Aromatics 28 

 

The reasons for the selection of the model substances were similar to the FT synthesis 

and fast pyrolysis and were discussed in the previous sections (5.5.1 and 5.9.1). 

Quantitative data on the formation of single compounds could not be found in the literature 

thus, as with fast pyrolysis, a model substance representative of the substance classes 

shown in Table 5-17 was selected. The selection was based on the availability of 

thermodynamic data of the gasoline products. Table 5-18 shows the three representative 

model compounds of gasoline selected in this study.  

 

Table 5-18: MTG gasoline model substances 

Substance class Compound wt % 

Alkanes Heptane 60 

Alkenes Octene 12 

Aromatics Benzene 28 

 

5.10.2 Thermodynamic modelling 

The thermodynamic properties of methanol and DME were estimated using the Joback 

method which was described in section 5.5.2. With regards to the MTG gasoline, for the 

estimation of enthalpy of each model substance in both the gaseous and liquid gasoline, 

the NASA-polynomials by Burcat and McBride [163] were used. NASA-polynomials were 

also used by Pröll [126] to calculate the enthalpy of gas compounds of the PGP_Lib.  

 

For enthalpy calculations, the isobaric heat capacity is needed whose temperature 

dependency       is described by the 5-coefficient dimensionless NASA-polynomials 

[164]: 
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From equation 5-1 and equation 5-28, the NASA-polynomial for enthalpy is given by the 

following equation [127]: 

     

 
       

  

 
    

  

 
    

  

 
    

  

 
                          

where R is the gas constant (8.314 J/mol·K). Burcat and McBride [163] report the 

coefficients   -   for a large number of substances, where they distinguish two parameter 

sets for low (≤1000 K) and high (>1000 K) temperatures. Table 5-19 shows the coefficients 

  -   of the NASA polynomials for the selected model substances. 

 

Table 5-19: NASA-polynomials coefficients for the selected model substances in gaseous 
(G) and liquid (L) gasoline [163] 

Compound                   

Heptane (G) 1.75E+1 4.21E-2 -1.64E-5 2.99E-9 -2.06E-13 -3.17E+4 

Heptane (L) 3.58E+1 -1.4E-1 4.92E-4 -4.04E-7 0 -3.5E+4 

Octene (G) 2.08E+1 3.83E-2 -1.24E-5 -1.8E-9 -9.37E-14 -2.02E+4 

Octene (L) 2.60E+1 6.43E-2 9.25E-06 -5.1E-8 2.33E-11 -1.36E+4 

Benzene (G) 1.18E+1 1.91E-2 -6.54E-6 9.8E-10 -5.33E-14 4.07E+3 

Benzene (L) 6.37E+1 -6E-1 2.67E-3 -5.06E-6 3.64E-9 -1.67E+3 

 

Similar to fast pyrolysis and FT modelling, the total enthalpy of the MTG gasoline was 

calculated as the weighted average of the enthalpies of the selected model substances 

(eqn. 5-9 at section 5.5.2.1).  

5.10.3 Model structure 

As with FT synthesis and fast pyrolysis, the IPSEpro model of the methanol synthesis and 

MTG process was kept as simple as possible in order to ensure a working and effective 

model. Thus no chemical kinetics or complex thermodynamic relationships were included. 

The IPSEpro model of methanol synthesis and the MTG process is shown in Figure 5-8. 

Syngas from gas clean-up passes to the methanol synthesis reactor where it is converted 

to methanol at 50 bar and 250oC [60, 61]. The crude methanol is then fed to the MTG 

plant.   

 

The simulation of the MTG process (process layout, operating conditions) was based on 

the ExxonMobil’s MTG plant [59, 65]. Methanol is vaporised by heat exchange with MTG 

reactor effluent gases before it enters the DME reactor where a mixture of DME, methanol 

and water is produced at 404oC.   
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Figure 5-8: IPSEpro model of the methanol synthesis and MTG process 
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The effluent from the DME reactor is combined with recycle gas from the product 

separator and enters the MTG reactor where it is converted at 415oC and 21.2 bar to 

mainly hydrocarbons and water. 

 

The hot reactor effluent is cooled by heat exchange with recycle gas from the vapour-liquid 

separator. It is then further cooled to about 200oC before it passes to the vapour-liquid 

separator, where gas, liquid gasoline and water separate. The off-gas from the product 

separator contains mostly low hydrocarbons (C1-C3), CO and CO2. The water from the 

product separator contains trace amounts of oxygenated organic compounds and thus it 

requires treatment [58]. 

5.10.4 Mass and energy balances 

Methanol synthesis 

Methanol synthesis catalysts have been reported to be extremely selective, with 99% or 

better selectivity to methanol [60]. According to LeBlanc et al. [60], methanol synthesis by-

products are present in concentrations of less than 5000 ppmw and they are also reported 

to be converted by the downstream MTG process [92]. Therefore, given the high selectivity 

reported in the literature, no other by-products (e.g. higher alcohols, hydrocarbons) were 

included in the crude methanol product.  

 

The elemental composition of methanol was set in IPSEpro to 37.5% carbon, 12.5% 

hydrogen and 50% oxygen and was calculated from the molecular weights of the individual 

elements (C, H, O) in methanol (CH4O, M=32 g/mol). An example is given for hydrogen: 

       
         

  
          

Philips [92] reports 96 wt% methanol purity in the product, whereas Jones [94] assumes 

93 wt%. In the ExxonMobil’s MTG plant (see section 2.8.2.2), methanol at 83 wt% was 

produced [60]. In this study, it was assumed that methanol at 90% purity was produced 

which is the approximate average of the reported literature values. The other 10% mainly 

consists of H2O, CO and CO2. 
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DME reactor 

In order to estimate the elemental composition and product yield of the DME reactor 

effluent, the conversion of methanol to DME and H2O was set in the model to 77% [65]. 

The elemental composition of the oxygenate product mix (DME and methanol) estimated 

in the model was 47.5% carbon, 12.8% hydrogen and 39.7% oxygen. 

 

MTG reactor 

For the MTG reactor, the gasoline fraction in the product stream was set to 36 wt% of the 

methanol and DME input as reported by Yurchac [65] for the ExxonMobil MTG process. 

The conversion of methanol and DME was 100% [58, 65, 162] thus the product stream did 

not contain any methanol or DME. The gasoline’s composition estimation was based on 

the three selected model substances and their respective weight fractions (see Table 5-18 

at section 5.10.1). For example the weight fraction for carbon of the gasoline product was 

given by the following equation: 

                                                                                  -      

                                                             

where wi is the weight fraction of the model substance, and wc,i is the weight fraction of 

carbon in the model substance. A similar equation was used for hydrogen. The elemental 

composition of gasoline estimated in the model was 86% carbon and 14% hydrogen.  

 

Energy balances were similar to the other IPSEpro models described in this study. Energy 

balances for each individual model of the overall methanol synthesis and MTG model are 

given by the following equations: 

Methanol synthesis: 

 ̇          ̇                                                           

DME reactor: 

 ̇                        

 ̇                                                                           

MTG reactor: 

 ̇                            



 
127 

 

 ̇                                                                                         

5.11 Topsoe Integrated Gasoline Synthesis (TIGAS) 

5.11.1 Modelling approach and model structure 

There is even less information in the literature about the TIGAS process than the MTG 

process. As discussed in section 4.7, numerous efforts were made to get cost and 

performance data from industrial contacts at Haldor Topsoe but without success. 

Information about the product distribution and the operating conditions of the gasoline 

synthesis reactor of the TIGAS process could not be found. Therefore, for modelling 

purposes, it was assumed that the TIGAS gasoline had the same composition with the 

MTG gasoline which was described in the previous section.  

 

The IPSEpro model of the TIGAS process is shown in Figure 5-9. As already discussed in 

sections 2.8.3 and 4.7, the main difference between the TIGAS process and the MTG 

process is the absence of a discrete methanol synthesis step. In the TIGAS process, 

methanol and DME are synthesised in one reactor (oxygenate synthesis reactor) and they 

are then converted to gasoline in the gasoline synthesis reactor (same as the MTG reactor 

[58]). For the TIGAS oxygenate reactor, the DME reactor model which was built for the 

MTG process was used with some minor changes that are discussed in the next section. 

Both the TIGAS oxygenate reactor and MTG’s DME reactor produce methanol and DME 

thus there was no need to build a different model. As with the MTG process, the gasoline 

product is separated from gas and water in a vapour-liquid separator. 

5.11.2 Mass and energy balances 

In order to estimate the elemental composition and product yield of the oxygenate 

synthesis reactor effluent, the weight fraction of methanol and DME in the oxygenate 

product mix were set in the model to 20% and 80%, respectively [70]. 

 

The gasoline synthesis reactor of the TIGAS process used the same technology with the 

gasoline synthesis reactor of the MTG process [58]. Therefore, the model settings of the 

TIGAS gasoline reactor were the same with the MTG reactor (see section 5.10.4). 
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Figure 5-9: IPSEpro model of the TIGAS process 
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Energy balances were similar to the MTG process models. Energy balances for each 

individual model of the TIGAS model are given by the following equations: 

Oxygenate synthesis reactor: 

 ̇          ̇                                                               

Gasoline synthesis reactor: 

 ̇                            

 ̇                                                                                                        

5.12  Results 

In the following sections the results of the performance assessment are presented, starting 

with the definition of the energy conversion efficiency of a BTL plant used in this study. 

The performance results and the flow sheets of the different BTL concepts are presented 

and a comparison is later made between the modelled BTL concepts. 

5.12.1 Definition of energy efficiency 

The energy conversion efficiency is widely used to measure the technical performance and 

the economic feasibility of chemical plants. The energy efficiency of a BTL plant is a 

measure as to which extent the biomass energy remains in the hydrocarbon fuels 

products. In this study, it is defined as the ratio between the total energy in the 

hydrocarbon fuels output and that in the biomass feedstock:  

       
 ̇              

 ̇                      

                       

where   ̇      is the mass flow (kg/h) of hydrocarbon fuels,          is the lower heating 

value (kJ/kg) of hydrocarbon fuels,  ̇        is the mass flow input (kg/h) of the daf 

biomass and             is the lower heating value (kJ/kg) of the daf biomass feed. The 

energy efficiency as defined above was calculated for each selected BTL plant concept in 

order to compare the different BTL concepts in terms of performance. 
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5.12.2 BTL concepts based on biomass gasification 

Each process step was described in detail in the previous sections so a summary of the 

nine BTL concepts will be provided here. The selected BTL concepts are summarised in 

Table 4-1 in section 4.9. 

 

5.12.2.1 EF-FT concept 

The flowsheet of the EF-FT concept is shown in Figure 5-10. The EF-FT concept included 

entrained flow gasification and Fischer-Tropsch synthesis as already discussed in section 

4.9. After drying to 10% water content, biomass was gasified in an entrained flow reactor 

at 1400oC. The produced gas was then quenched and scrubbed of particulates as 

discussed in section 5.8. A WGS reactor was employed to adjust the H2/CO ratio of the 

syngas to the required consumption ratio for FT synthesis. Hydrogen sulphide and carbon 

dioxide when then removed in the Rectisol unit and the clean syngas passed to the FT 

synthesis to produce liquid hydrocarbon fuels.  
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Figure 5-10: Flow sheet of the EF-FT process concept 
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Table 5-20 shows the results of the IPSEpro simulation analysis of the EF- FT concept. 

Looking at the energy conversion efficiency of this concept, which correlates the energy of 

the FT hydrocarbon fuels and the energy in biomass, 45% of this energy is recovered in 

the FT fuels. This is mainly due to the high amount of produced off-gas in the FT synthesis 

which also contains unconverted syngas. 

    

Table 5-20: Settings and results of the EF-FT concept simulation 

Biomass   

LHV wet biomass kJ/kg 13,056 

Water content % 30 

Mass flow (wet) kg/h 120,000 

LHV daf biomass kJ/kg 19,897 

Mass flow (dry) kg/h 84,000 

Mass flow (dry) t/d 2016 

FT-fuels   

LHV kJ/kg 43,917 

HHV kJ/kg 47,276 

Mass flow  kg/h 16,958 

Mass flow  t/d 406.9 

FT-off gas   

Mass flow kg/h 42,237 

   

Energy efficiency (eqn. 5-36) % 45 

FT-fuels mass yield (daf basis) % 20.4 

 

5.12.2.2 CFB-FT concept 

The CFB-FT concept differs from the EF-FT concept by the gasification and gas cleaning 

steps. The flow sheet of the CFB-FT concept is shown in Figure 5-11. Instead of an 

entrained flow gasifier, a CFB gasifier was employed with subsequent gas cleaning 

technologies including tar cracking, particulates and acid gas removal as discussed in 

section 5.7. The results of the simulation analysis of the CFB-FT concept are shown in 

Table 5-21. 
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Figure 5-11: Flow sheet of the CFB-FT process concept 
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Table 5-21: Settings and results of the CFB-FT concept simulation 

Biomass   

LHV wet biomass kJ/kg 13,056 

Water content % 30 

Mass flow (wet) kg/h 120,000 

LHV daf biomass kJ/kg 19,897 

Mass flow (dry) kg/h 84,000 

Mass flow (dry) t/d 2016 

FT-fuels   

LHV kJ/kg 43,917 

HHV kJ/kg 47,276 

Mass flow  kg/h 17,930 

Mass flow  t/d 430.3 

FT-off gas   

Mass flow kg/h 48,860 

   

Energy efficiency (eqn. 5-36) % 47.6 

FT-fuels mass yield (daf basis) % 21.6 

 

5.12.2.3 EF-MTG concept 

The MTG process was used as the fuel synthesis technology for the EF-MTG concept 

instead of FT synthesis which was employed in the previous two concepts. The 

gasification and gas cleaning steps were the same with the EF-FT concept. Figure 5-12 

shows the IPSEpro flow sheet of the EF-MTG concept. The results of the simulation 

analysis of this concept are shown in Table 5-22. It should be noted that the energy 

efficiency of the EF-MTG concept is lower than the energy efficiencies of the previous FT 

based concepts. This is further discussed in section 5.12.4, where a comparison between 

the modelled concepts is made. 
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Figure 5-12: Flow sheet of the EF-MTG process concept 
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Table 5-22: Settings and results of the EF-MTG concept simulation 

Biomass   

LHV wet biomass kJ/kg 13,056 

Water content % 30 

Mass flow (wet) kg/h 120,000 

LHV daf biomass kJ/kg 19,897 

Mass flow (dry) kg/h 84,000 

Mass flow (dry) t/d 2016 

MTG gasoline   

LHV kJ/kg 42,308 

HHV kJ/kg 45,354 

Mass flow  kg/h 14,810 

Mass flow  t/d 355.4 

MTG-off gas   

Mass flow kg/h 19,149 

   

Energy efficiency (eqn. 5-36) % 37.9 

Gasoline mass yield (daf basis) % 17.8 

   

5.12.2.4 CFB-MTG concept 

For this concept, CFB gasification and the MTG process were employed. The CFB 

gasification and the subsequent gas cleaning steps were kept the same with the CFB-FT 

concept. The flow sheet of the CFB-MTG process is shown in Figure 5-13, whereas the 

simulation results are shown in Table 5-23. 
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Figure 5-13: Flow sheet of the CFB-MTG process concept 
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Table 5-23: Settings and results of the CFB-MTG concept simulation 

Biomass   

LHV wet biomass kJ/kg 13,056 

Water content % 30 

Mass flow (wet) kg/h 120,000 

LHV daf biomass kJ/kg 19,897 

Mass flow (dry) kg/h 84,000 

Mass flow (dry) t/d 2016 

MTG gasoline   

LHV kJ/kg 42,307 

HHV kJ/kg 45,353 

Mass flow  kg/h 16,980 

Mass flow  t/d 407.5 

MTG-off gas   

Mass flow kg/h 19,137 

   

Energy efficiency (eqn. 5-36) % 43.4 

Gasoline mass yield (daf basis) % 20.4 

 

5.12.2.5 EF-TIG concept 

The EF-TIG employed a different fuel synthesis technology to the other concepts, the 

TIGAS process. The gasification and gas cleaning steps were the same with the other EF 

based concepts to retain consistency and to make results comparable. The flow sheet of 

the EF-TIG concept is shown in Figure 5-14. Table 5-24 shows the results of the 

simulation analysis of the EF-TIG concept on IPSEpro.   
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Figure 5-14: Flow sheet of the EF-TIG process concept 
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Table 5-24: Settings and results of the EF-TIG concept simulation 

Biomass   

LHV wet biomass kJ/kg 13,056 

Water content % 30 

Mass flow (wet) kg/h 120,000 

LHV daf biomass kJ/kg 19,897 

Mass flow (dry) kg/h 84,000 

Mass flow (dry) t/d 2016 

TIGAS gasoline   

LHV kJ/kg 42,338 

HHV kJ/kg 45,383 

Mass flow  kg/h 15,831 

Mass flow  t/d 379.9 

TIGAS-off gas   

Mass flow kg/h 17,398 

   

Energy efficiency (eqn. 5-36) % 40.5 

Gasoline mass yield (daf basis) % 19 

    

5.12.2.6 CFB-TIG concept 

This concept was similar to the previous CFB based concepts although the TIGAS process 

was employed for the production of synthetic hydrocarbon fuels. The IPSEpro flow sheet 

of the CFB-TIG concept is shown in Figure 5-15. Table 5-25 shows the results of the 

simulation analysis of this TIGAS based concept. It should be noted that both TIGAS 

based concepts give higher energy efficiencies than the MTG based concepts but lower 

efficiencies than the FT based concepts. This is further discussed in section 5.12.4.   
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Figure 5-15: Flow sheet of the CFB-TIG process concept 
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Table 5-25: Settings and results of the CFB-TIG concept simulation 

Biomass   

LHV wet biomass kJ/kg 13,056 

Water content % 30 

Mass flow (wet) kg/h 120,000 

LHV daf biomass kJ/kg 19,897 

Mass flow (dry) kg/h 84,000 

Mass flow (dry) t/d 2016 

TIGAS gasoline   

LHV kJ/kg 42,312 

HHV kJ/kg 45,358 

Mass flow  kg/h 17,541 

Mass flow  t/d 420.9 

TIGAS-off gas   

Mass flow kg/h 17,828 

   

Energy efficiency (eqn. 5-36) % 44.9 

Gasoline mass yield (daf basis) % 21 

 

5.12.3 BTL concepts based on bio-oil gasification  

In this section the results of the simulation analysis of the BTL concepts based on bio-oil 

gasification are presented. As discussed in section 4.4, fast pyrolysis was employed as an 

alternative to energy intensive and costly biomass grinding for the entrained flow 

gasification based concepts. The evaluation of fast pyrolysis as a pretreatment option for 

entrained flow gasification also allowed for the comparison of BTL concepts based on bio-

oil gasification with BTL concepts based on solid biomass gasification. The fast pyrolysis 

model used in the bio-oil gasification concepts was described in section 5.5.   

 

5.12.3.1 FP-FT 

As discussed in section 4.4, five regional pyrolysis plants with a capacity of 400 dry t/d 

each, supplied a central BTL plant with bio-oil. In the IPSEpro model shown in Figure 5-16, 

the five fast pyrolysis plants were represented as one fast pyrolysis plant for a more 

efficient integration into IPSEpro (lower calculation times, lower overall model complexity). 
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Figure 5-16: Flow sheet of the FP-FT process concept 



 
144 

 

The same was done for the other two fast pyrolysis based BTL concepts. The IPSEpro 

model of the fast pyrolysis process was given in section 5.5.5. This did not affect the 

simulation results of this study since the scale of the fast pyrolysis model can be increased 

(or decreased) according to the needs of the user. The gasification and gas cleaning steps 

were kept the same with the other entrained flow gasification based concepts. Table 5-26 

shows the results of the simulation analysis of the FP-FT concept. 

 

Table 5-26: Settings and results of the FP-FT concept simulation 

Biomass   

LHV wet biomass kJ/kg 13,056 

Water content % 30 

Mass flow (wet) kg/h 120,000 

LHV daf biomass kJ/kg 19,897 

Mass flow (dry) kg/h 84,000 

Mass flow (dry) t/d 2016 

Bio-oil (as produced)   

LHV kJ/kg 14,582 

HHV kJ/kg 16,284 

Water content % 27 

Mass flow kg/h 75,620 

Mass flow t/d 1815 

FT-fuels   

LHV kJ/kg 43,917 

HHV kJ/kg 47,276 

Mass flow  kg/h 10,621 

Mass flow  t/d 255 

FT-off gas   

Mass flow kg/h 30,175 

   

Energy efficiency (eqn. 5-36) % 28.2 

FT-fuels mass yield (daf basis) % 12.8 

          

5.12.3.2 FP-MTG 

Figure 5-17 shows the IPSEpro flowsheet of the FP-MTG concept. The only difference of 

the FP-MTG concept from the previous one is the fuels synthesis technology. The MTG 
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process was employed for this bio-oil gasification concept. Table 5-27 shows the results of 

the simulation of this concept on IPSEpro. 

 

Table 5-27: Settings and results of the FP-MTG concept simulation 

Biomass   

LHV wet biomass kJ/kg 13,056 

Water content % 30 

Mass flow (wet) kg/h 120,000 

LHV daf biomass kJ/kg 19,896 

Mass flow (dry) kg/h 84,000 

Mass flow (dry) t/d 2016 

Bio-oil (as produced)   

LHV kJ/kg 14,582 

HHV kJ/kg 16,284 

Water content % 27 

Mass flow  kg/h 75,620 

Mass flow  t/d 1815 

MTG-gasoline   

LHV kJ/kg 42,301 

HHV kJ/kg 45,346 

Mass flow  kg/h 9,465 

Mass flow  t/d 227 

MTG-off gas   

Mass flow kg/h 13,978 

   

Energy efficiency (eqn. 5-36) % 24.2 

Gasoline mass yield (daf basis) % 11.4 

    



 
146 

 

 

Figure 5-17: Flow sheet of the FP-MTG process concept 
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5.12.3.3 FP-TIG 

The FP-TIG concept included entrained flow gasification and the TIGAS process as the 

fuel synthesis technology. The IPSEpro flow sheet of the concept is shown in Figure 5-18. 

The results of the simulation are shown in Table 5-28. It should be noted that the energy 

efficiencies of the all three BTL concepts based on bio-oil gasification are significantly 

lower the biomass gasification based BTL concepts. This was expected and it is further 

discussed in the next section. 

  

Table 5-28: Settings and results of the FP-TIG concept simulation 

Biomass   

LHV wet biomass kJ/kg 13,056 

Water content % 30 

Mass flow (wet) kg/h 120,000 

LHV daf biomass kJ/kg 19,698 

Mass flow (dry) kg/h 84,000 

Mass flow (dry) t/d 2016 

Bio-oil (as produced)   

LHV  kJ/kg 14,582 

HHV  kJ/kg 16,284 

Water content % 27 

Mass flow  kg/h 75,620 

Mass flow  t/d 1815 

MTG-gasoline   

LHV kJ/kg 42,336 

HHV kJ/kg 45,381 

Mass flow  kg/h 10,046 

Mass flow  t/d 241.1 

MTG-off gas   

Mass flow kg/h 13,163 

   

Energy efficiency (eqn. 5-36) % 25.7 

Gasoline mass yield (daf basis) % 12.1 
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Figure 5-18: Flow sheet of the FP-TIG process concept 
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5.12.4 Concept comparison 

The energy efficiencies of the nine BTL concepts evaluated in this study are summarised 

in Figure 5-19. Looking at the corresponding efficiencies shown in Figure 5-19, it becomes 

clear that the FT concepts perform better than the TIGAS and MTG concepts. Specifically, 

the CFB-FT concept shows the highest energy efficiency at 47.5%. This is due to the 

additional synthesis steps required in TIGAS and especially in the MTG process to 

produce liquid hydrocarbon fuels. The TIGAS process requires initially the synthesis of 

methanol and DME in the oxygenate synthesis reactor and then the synthesis of gasoline 

in another reactor (see section 5.11). The MTG process includes three subsequent 

synthesis steps: methanol synthesis, oxygenate synthesis and gasoline synthesis. As 

100% conversion to the desired products is not achieved in any individual synthesis step, 

each additional synthesis step results in lower mass yields and thus lower energy 

conversion efficiencies.     

 

 

Figure 5-19: Energy conversion efficiencies (daf basis) of the evaluated BTL concepts 
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is probably due to the loss of energy during quenching and cooling of the syngas after the 

entrained flow gasifier.  

 

It also becomes clear that bio-oil gasification results in significantly lower energy 

efficiencies (by 14-17%) than direct gasification of biomass due to the additional thermal 

conversion step of fast pyrolysis. Fürnsinn [5] who, using IPSEpro, investigated the effect 

of biomass pre-treatment by fast pyrolysis on the plant’s energy efficiency also reports 

lower energy efficiencies by 10-20% compared to direct biomass gasification.   Based on 

these results, it seems questionable if decentralized pyrolysis pre-treatment with a 

centralized gasification and fuel synthesis plant could ever be competitive with direct 

gasification of biomass in terms of plant efficiency. 

 

The mass yields of the nine BTL plant concepts are summarised in Figure 5-20. For the 

reasons discussed above FT synthesis performs better than the other fuel synthesis 

processes based on the same gasification technology. As expected, fast pyrolysis results 

in lower mass yields than the equivalent direct biomass gasification concepts. 

 

 

Figure 5-20: Mass yields (daf basis) of the evaluated BTL concepts 
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This study’s results on the energy conversion efficiency of BTL plant concepts are 

consistent with those from other modelling studies (see Table 3-6 at section 3.3) which 

range from 36-55% (LHV). As a large-scale BTL plant has yet to be built the results of this 

study cannot be compared with a real industrial BTL plant. Bridgwater [12] reports that 

mass yields of  BTL plants based on biomass gasification range from 14.9 to 23.5% on dry 

basis. The mass yield results of this study are well within this range.   
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6 ECONOMIC ASSESSMENT 

6.1 Introduction 

The previous chapters of this thesis have dealt with the description and the modelling of 

the technologies utilised for the thermo-chemical conversion of biomass to liquid 

hydrocarbon fuels. This chapter deals with the costs of these technologies and more 

specifically the costs of the nine BTL plant concepts evaluated in this study. One main 

purpose of the economic analysis is to identify the most promising BTL processes in terms 

of production costs. Another important aim is to examine whether BTL plants can compete 

economically with conventional transport fuels plants. 

 

Firstly, a cost model was developed in MS Excel for each BTL concept to estimate capital, 

operating and production costs. A sensitivity analysis was then undertaken to investigate 

the effect of different cost parameters on the production costs of liquid fuels. Finally an 

uncertainty analysis was carried out to examine how the uncertainty in the input 

parameters of the cost model could affect the output (i.e. production cost) of the model.  

6.2 General assumptions 

6.2.1 Base year 

The base year for the economic analysis was chosen to be 2009. This was the latest date 

for which US Chemical Engineering cost indices were available when the economic 

analysis study was started (late 2010). All cost data was therefore presented in 2009 GBP 

(£) using the Bank of England annual exchange rates [97]: 

 1 US ($) = 0.6389 GBP (£) 

 1 EUR (€) = 0.8911 GBP (£) 

6.2.2 Plant life and operating hours 

A plant life of 20 years was assumed, in line with the majority of similar techno-economic 

studies [90, 92, 94, 105, 107, 116]. A plant availability of 8,000 operating hours per year 

was used to account for maintenance downtime [12, 15, 88, 89, 94, 96].  
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6.3 Capital Costs 

Capital costs are generally required in order to show the total amount of money necessary 

for the construction of an industrial plant. They also contribute to the estimation of 

production costs as will be discussed in section 6.4.1, therefore their calculation is 

necessary. The aim of this study is to calculate the total plant cost (TPC), which is the total 

investment needed to finance the project to the point at which the plant is ready to operate. 

The TPC, is also known as fixed-capital investment (FCI) [95, 98] and is an one-off cost 

thus it is not recovered at the end of the project life [98]. Conversely, the working capital 

(WC) which is the investment required to start the plant up, is recovered at the end of the 

project life [98, 99].  The sum of the fixed-capital investment and working capital is known 

as the total capital investment (TCI) [95, 98]. In this study the total capital investment was 

not used as a measure of capital cost since the working capital can be recovered at the 

end of the project life, thus the total plant cost was used instead. 

 

The TPC of each modelled BTL concept was calculated using factorial estimation [95, 98]. 

This is an established cost estimation method reported by Peters [95] whereby the TPC is 

calculated from the total purchased equipment cost (TPEC) by using ratios based on cost 

breakdowns for a solid-fluid processing plant as shown in Table 6-1. 

 

In order to estimate the TPC, each BTL plant concept was divided into plant modules in 

line with Brammer [165] and Toft [104]. The plant modules were the following: 

 RSH and biomass preparation 

 Biomass pre-treatment 

 Gasification 

 Gas cleaning and conditioning 

 Fuel synthesis 

 Refining 

 Air separation 

 Power generation 

Firstly, the installed costs of all plant modules were estimated using reported costs from 

the literature. The installed costs are shown in Table 6-1 and include: 

 Total purchased equipment cost (TPEC) 



 
154 

 

 Purchased equipment installation (PEI) 

 Instrumentation and controls 

 Piping 

 Electrical systems 

 Service facilities 

Most literature costs used in this study were installed costs thus they included the costs 

mentioned above. In the rare case when a reported cost was not an installed cost, it was 

converted to an installed cost using the factors shown in Table 6-1. The installed cost of 

the plant was estimated as the sum of the installed costs of all plant modules.  

Table 6-1: Calculation of total plant cost [95] 

 %TPEC 

Direct costs (installed)  

Total purchased equipment cost (TPEC) 100 

Purchased equipment installation (PEI) 39 

Instrumentation and controls 26 

Piping 31 

Electrical systems 10 

Service facilities 55 

Direct costs (non-installed)  

Buildings 29 

Yard improvements 12 

Land 6 

Indirect costs  

Engineering and supervision 32 

Construction expenses 34 

Contractor’s fee and legal expenses 23 

Contingency 37 

Total Plant Cost (TPC) = Direct + Indirect costs 

 

Table 6-2 shows the literature scales and installed costs which were used in this study for 

the estimation of the installed plant cost.   
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After the estimation of the installed plant cost, the TPEC was calculated using the 

estimated installed plant cost and the sum of the factors associated with all the installed 

direct costs (see Table 6-1): 

                                        
   

   
            

This was done to estimate the remaining direct costs and the indirect costs from the TPEC 

using the respective factors shown in Table 6-1. The total plant cost was estimated as the 

sum of the installed direct costs, the non-installed direct costs and the indirect costs. 

  

It is unusual to get a published cost estimate for the exact size of plant that is being 

considered. Thus the installed costs were scaled when necessary using the equation 3-1 

in section 3.3. The Chemical Engineering Plant Cost Index was used to bring the cost to 

2009 GBP (£) whenever a  literature reported cost was from a previous year [95, 98]: 

                                 
                       

                    
                    

The Chemical Engineering Plant Cost Index was used in this study as it was also used in 

the studies that the costs were taken from. Location factors were not applied to literature 

reported costs from different countries. This is mainly due to the lack of location data in 

much of the literature. Brennan [166] gives a spread of location factors among the US 

states (excluding Alaska and Hawaii) of 1.0 - 1.7 and a factor of 1.13 for the UK. Since 

most literature reported costs used in this study are from the US, it would appear 

reasonable to assume that average US and UK costs will be similar.  
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Table 6-2: Base scales and installed costs used in this study 

Plant Module Main items Base capacity Base cost 
(million US $) 

Base year Reference 

RSH & preparation (EF) Dryer, grinder 2000 dry t/d 21.3 2007 Swanson et al. [90] 

RSH & preparation (CFB) Dryer 2000 dry t/d 20.7 2007 Swanson et al.  [90] 

Fast pyrolysis - RSH & preparation
a
 Dryer, grinder 400 dry t/d 4.6 2006 Rogers [105] 

Fast pyrolysis
b
 

Fast pyrolysis reactor, 

Condenser 
400 dry t/d 

20.8 

16.9 

30.7 

1995 

2000 

2008 

Toft [104] 

Bridgwater et al. [167] 

Bridgwater [12] 

Gasification & gas cleaning (EF) EF gasifier, lockhopper, 

Water quench 
2000 dry t/d 63.4 2007 

Swanson et al. [90] 

Reed [168] 

Gasification & gas cleaning (CFB) CFB gasifier, lockhopper, 

tar cracker, syngas cooler 
4536 dry t/d 112.9 2009 Larson et al. [114] 

Gas conditioning (EF) - WGS WGS reactor 1650 dry t/d 2 1991 Williams et al. [169] 

Gas conditioning (EF & CFB) - 
Rectisol 

Rectisol 
1800 dry t/d 

4536 dry t/d 

14.5 

44 

1992 

2009 

WVU [170] 

Larson et al. [114] 

Fuel synthesis (FT) FT reactor 2000 dry t/d 42.2 2007 Swanson et al. [90] 

Fuel synthesis (MeOH) MeOH reactor 1650 dry t/d 38 1991 Williams et al. [169] 

Fuel synthesis (MTG) DME reactor 

MTG reactor 

1735 t/d gasoline 

1149 t/d gasoline 

83.5 

117 

1982 

1988 

Grace et al. [171] 

Bridgwater et al. [172] 

Fuel synthesis (TIGAS) Oxygenate reactor 

MTG reactor 
1735 t/d gasoline 44.5 1982 Grace et al. [171] 

Refining (FT) Hydrocracking 2000 dry t/d 42.2 2007 Swanson et al. [90] 

Refining (MTG) Included in the fuel synthesis cost 

Refining (TIGAS) Included in the fuel synthesis cost 

Air separation  735 t/d O2 24.3 2007 Swanson et al. [90] 

Power generation Steam turbine 14 % of other installed equipment costs [90, 92, 114] 

 

Notes to Table 6-2 

(a),(b) The costs found in the literature for the fast pyrolysis process were total plant costs and thus apart from installed costs they also included other direct and 

indirect costs (see Table 6-1 for a full list of direct and indirect costs).
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6.4 Production costs 

Production costs on an annual basis are composed of operating costs, which typically 

include feedstock costs, raw materials costs, labour, utilities, maintenance and overheads, 

plus capital amortisation [95, 98]. Production costs are usually calculated on an annual 

basis since annual estimates smooth out the effect of any seasonal variations and provide 

a convenient way of considering large expenses that occur occasionally, such as annual 

planned maintenance shutdowns [95].   

 

The production costs of transport hydrocarbon fuels were calculated on the basis of 

constant costs and performance for each year of operation of the plant [105, 107]. In most 

cases, plants (particularly those using new technologies) operate at reduced production 

rate during the first few years while the operators try to optimise the process [105]. 

Likewise, the operating costs tend to decrease with time as the operators become more 

experienced [105]. All biomass conversion technologies compared in this study are in a 

similar early stage of development so they have similar time profiles for performance and 

costs. Therefore, in order to make results comparable, the same assumption of constant 

costs and performance for each year of operation was used for all BTL concepts evaluated 

in this study. In reality, each year costs will increase in nominal terms because of inflation. 

However, revenues would also be expected to rise in nominal terms because of inflation 

and balance out the increase in costs. Therefore, it is considered reasonable to use real 

constant costs in this study provided that this is applied consistently. Additionally, inflation 

may well affect the operating costs, such as raw material prices, differently. Therefore, a 

decision between alternative BTL projects made without formally considering the effect of 

inflation on costs will still be correct, as inflation is likely to affect the cost estimates of all 

BTL concepts in a similar way [98]. In the following sections, the individual elements for 

the calculation of production costs are discussed. 

6.4.1 Annual capital repayment 

This cost calculation method amortizes the installed capital investment over the anticipated 

life of the plant at a given interest rate. The annual capital repayment is the money 

required to pay back the loan on capital which is required to set up the plant. It is 

calculated from the following equation [173]: 
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where     is the annual capital repayment,     the total plant cost,   the interest rate and 

  the plant life. 

 

A reasonable interest rate has to be assumed in order to be able to apply this formula. 

RWE npower, a UK energy company involved in renewables including bio-energy, paid in 

2009 a market (risk-free) interest of 4.5% [174]. If the annual capital repayment was 

calculated using a market interest rate, such as RWE’s, the financial markets would have 

already taken inflation into account when setting the interest rate. As a result, an allowance 

for inflation would be built into the annual capital repayment but not into the other costs that 

comprise production costs. This problem can be overcome by removing the rate of inflation 

from the market interest rate, which is a nominal interest rate, and thus using the real 

interest rate. The Consumer Price Index (CPI), which is the measurement the UK 

governments use for inflation targets, reports an inflation rate of 2.2% for 2009 [175]. 

Therefore, the real interest rate that RWE paid in 2009 was approximately 2.3%. This real 

interest rate is considered very low for a new industrial BTL plant. It should be noted that 

the market interest rates as RWE’s mentioned above, reflect the full range of businesses 

owned by energy companies. Many of these businesses are mature and are considered a 

low financial risk. It is likely that a new venture like a BTL plant would be considered high 

risk so it would be appropriate to use a higher interest rate. Consequently, a real interest 

rate of 10% was used in this thesis in line with similar techno-economic studies [16, 88, 

105, 170].  

6.4.2 Operating and maintenance costs 

6.4.2.1 Fast pyrolysis 

As discussed in section 4.4, biomass pre-treatment for the EF concepts based on bio-oil 

feed was done in five fast pyrolysis plants. O&M costs were estimated for each of the five 

fast pyrolysis plants and summed up to give the overall O&M cost of the biomass pre-

treatment step. 
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Maintenance and overheads 

Maintenance and fixed costs (insurance and taxes) were taken as 2.5% and 2% of the 

TPC respectively. This was in line with other techno-economic studies on fast pyrolysis 

[104, 105, 167].  

Labour 

Labour, as well as power requirements estimates were based on Rogers’ study which 

provides a thorough and detailed comparison of staffing and power requirements of 

various fast pyrolysis studies.  

 

Before estimating the number of plant employees, the number of shifts which an employee is 

likely to work in a year needed to be estimated first. This is shown in Table 6-3.  

 

The wood chips RSH and preparation area was highly automated thus it was assumed 

that one operator was required for supervising the process. It was also assumed that the 

RSH and preparation area required staffing on a two shift basis (8 hours/shift) [105]. 

  

Table 6-3: Number of shifts worked by an employee in a year [105] 

Rest days (2 days/week) 104 

Holiday 25 

Bank holiday 7 

Sickness 9 

Training 5 

Total absence 150 

Days/year 365 

Shifts worked in a year 215 

 

This was due to the fact that the biomass reception area is shut down at night with the 

drying process supervised by the plant operators at the pyrolysis area [105]. Reclaim and 

stock pile management were supervised by the front end loader driver [105]. The total 

staffing requirement for the RSH and preparation area of the fast pyrolysis plant is shown 

in Table 6-4. 
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Table 6-4: Labour requirement for the RSH and preparation area of the fast pyrolysis plant 

Reception supervisors/shift 1 

Shifts/day 2 

Reception shifts/week 14 

Front end loader drivers/shift 1 

Shifts/day 2 

Drivers shifts/week 14 

Total shifts/week 28 

Total shifts/year 1456 

Shifts/employee/year (Table 6-3) 215 

Employees required 7 

 

The fast pyrolysis area was also assumed to be mostly automated but it also needed 

supervision. There has been insufficient operating experience to establish what the 

appropriate staffing requirement should be for a fast pyrolysis plant [105]. It would be 

reasonable to assume that the staffing structure would follow normal power station 

practice of having control room and plant operators [105]. The fast pyrolysis area would 

need staffing on a four shift basis, 2 persons per shift to cover health and safety 

requirements [12, 33, 167]. The total staffing requirement for the fast pyrolysis area is 

shown in Table 6-5.  

 

Table 6-5: Labour requirement for the fast pyrolysis area  

Shifts/day 4 

shifts/week 28 

Operators/shift 2 

Total shifts/week 56 

Total shifts/year 2912 

Shifts/employee/year (Table 6-3) 215 

Employees required 14 

 

As shown in Table 6-4 and Table 6-5 the plant will require in total 21 employees. The cost 

per employee was assumed to be 41,000 £2009/yr [105]. This rate was based on the 

average wage of employees in the energy and water sector plus payroll administration (5% 

of earnings) and employer’s contribution to national insurance, staff pension and training 

[105]. 
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Power requirements 

According to Rogers, a 400 dry t/d fast pyrolysis plant requires an electrical consumption 

of 648 MJ/dry t (180 kWh/dry t) which corresponds to approximately 5180 GJ/yr (1.44 

GWh/yr). The Department of Energy and Climate Change reports an average 2009 

electricity price of 8.31p/kWh for large consumers [176]. This electricity price was used in 

this study to estimate costs from power consumption. 

Heat requirements 

Heat for the fast pyrolysis process is supplied by combustion of the char and off-gas as 

discussed in sections 4.4 and 5.5. While this simplifies the economic analysis, the system 

could be more cost-effective if the char was sold as a by-product (given that there was a 

market for it) and another energy source was used in the process. Future work would 

consider the various options available. 

Bio-oil transport costs 

Another important operating cost is the transportation cost of bio-oil to the central 

gasification plant. The costs associated with growing, harvesting storing and loading 

biomass into trucks are usually included in the biomass production costs. This is not the 

case for bio-oil so its transportation costs had to be estimated separately. It was assumed 

that bio-oil was transported to the central gasification plant by trucks in line with other 

similar studies [105, 167, 177]. Fixed and variable costs of bio-oil transportation costs were 

taken from two different literature sources shown in Table 6-6. The fixed cost includes the 

loading and unloading cost of bio-oil between trucks and storage tank [177]. The variable 

cost of bio-oil transportation by truck includes fuel consumed by engine, labour and 

maintenance charges [177]. Both studies gave similar results therefore the bio-oil 

transportation cost was taken as the average of the reported costs. 

 

Table 6-6: Bio-oil transportation costs used in this study 

Reference Truck capacity Base date Fixed cost Variable cost 

Pootakham [177] 30 m
3
 2010 5.67 $/m

3
 0.07 $/m

3
/km 

Bridgwater [167] 30.5 tonnes 2000 4.29 €/t 0.039 €/t/km 

 

A full analysis of transport distances can only be performed on a case by case basis, 

taking account of actual bio-oil production areas, local topography, the road network and 
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other case-specific features. This study requires a more generic approach and the 

following assumptions were made: 

1. Bio-oil production is evenly distributed over a circular bio-oil supply area. The 

central gasification plant is in the middle of this area. 

2. Each fast pyrolysis plant is identical.  

3. The road network to the central gasification plant is regular and symmetrical. 

4. The distance between the central gasification plant and a fast pyrolysis plant is 

maximum 100 km [177]. 

 

6.4.2.2 Gasification and fuel synthesis plant 

There appears to be limited consensus in the literature as to the staffing level as well as 

utilities costs and requirements for large-scale BTL plants. To deal with this problem 

operating costs can be taken instead as a percentage of the fixed capital investment. Van 

Vliet et al. [88] assumed that the O&M costs (labour, maintenance, raw materials, waste 

disposal, utilities) were 4% of the fixed capital investment. These costs did not include 

power requirements and fixed costs (insurance, taxes). Hamelinck et al. [62], as well as 

Larson et al. [114] made the same assumption (4% TPC) for the O&M costs of large-scale 

BTL plants. Swanson et al. [90], whose study was reviewed in Chapter 3 (section 3.2.4), 

give detailed capital and operating costs of BTL plants. In their study, operating costs 

including fixed costs were approximately 6% of the fixed capital investment. Fixed costs 

are usually taken as a percentage of the fixed capital, which is assumed to be 1.5-2% [95, 

98]. Therefore, Swanson’s results are in accordance with the other studies. Bridgwater 

also reported that the materials, utilities and labour costs of large scale BTL plants are 

approximately 2.2% of the fixed capital investment [12]. By assuming a maintenance cost 

of 2.5% of TPC [33, 167], Bridgwater’s reported O&M cost is 4.7% of TPC [12].  Therefore, 

in this study, O&M costs of the gasification and fuel synthesis plant were assumed to be 

5% of the TPC. Adding the fixed costs, which were assumed to be 2% of the TPC [95, 98], 

the total operating costs were 7% of the TPC. 

6.4.3 Biomass costs 

Wood chips cost estimates were based on Rogers’ study [105] who provides a 

comprehensive and thorough study on wood chips production costs. The price of wood 

chips was 54.41 £2006/dry t and this included growing, harvesting and storage, as well as  
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transporting biomass to the gasification plant [105]. This biomass cost reported by Rogers 

was adjusted to 58.6 £2009/dry t using a 2.5% inflation rate from the Bank of England’s web 

site [97].The cost of biomass can vary significantly and it mainly depends on the biomass 

yield and the land available for cultivation [105]. The biomass feedstock cost is an 

important element of the production cost [12] and thus its effect was investigated in the 

sensitivity and uncertainty analysis sections (section 6.6 and 6.7, respectively).  

6.5 Results 

This section presents and evaluates the capital and production costs results of the nine 

BTL plant concepts. A comparison between all modelled BTL concepts for processing 

2016 dry t biomass per day is made based on their capital and production costs. The 

results are then compared to the production costs of conventional transport fuel plants. 

The estimated capital, operating and production costs for each concept are presented in 

detail in Appendix C. The nine BTL concepts are summarised in Table 6-7 from Table 4-1 

in section 4.9. 

 

Table 6-7: The nine BTL concepts evaluated in this study  

BTL 
concept 

Pre-treatment Gasification 
Fuel 

synthesis 
Product 

EF-FT  EF FT Diesel, Gasoline, Kerosene 

EF-MTG  EF MTG Gasoline 

EF-TIG  EF TIGAS Gasoline 

CFB-FT  CFB FT Diesel, Gasoline, Kerosene 

CFB-MTG  CFB MTG Gasoline 

CFB-TIG  CFB TIGAS Gasoline 

FP-FT Fast pyrolysis EF FT Diesel, Gasoline, Kerosene 

FP-MTG Fast pyrolysis EF MTG Gasoline 

FP-TIG Fast pyrolysis EF TIGAS Gasoline 

 

6.5.1 Capital costs 

Figure 6-1 shows the breakdown of capital costs by area and resulting total plant cost for 

all nine BTL plant concepts summarised in Table 6-7 above. As discussed in section 6.2.1, 

the base year for the economic assessment study was 2009 and the costs were presented 

in British Pounds. The total plant cost data used for Figure 6-1 is shown in Table 6-8. 
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It can be seen that the estimated capital costs of large-scale BTL plants range from 264 to 

390 million GBP. All the MTG based concepts give higher capital costs by up to 27% than 

the equivalent FT and TIGAS based concepts.  

    

 

Figure 6-1: Total plant costs of the evaluated BTL concepts (2016 dry t/d) 

 

This difference is easy to understand since the MTG process includes the additional 

conversion step of methanol synthesis. A significant portion of methanol synthesis capital 

cost is the syngas compression to 50 bar which is the operating pressure of methanol 

synthesis. According to Swanson et al. [90], compressors have high purchase costs and 

can make up of approximately 18% of the purchased equipment costs of BTL plants. The 

additional compression step required for the MTG process would result in higher 

compression equipment requirements than the FT and TIGAS concepts and thus will 

significantly increase the capital cost of the MTG process.  
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Table 6-8: Breakdown of total plant costs (million £2009) of the nine BTL concepts evaluated in this study 

 

EF-FT EF-MTG EF-TIG CFB-FT CFB-MTG CFB-TIG FP-FT FP-MTG FP-TIG 

Biomass preparation & RSH 13.60 13.60 13.60 12.34 12.34 12.34 12.58 12.58 12.58 

Fast pyrolysis - - - - - - 78.89 78.89 78.89 

Gasification & gas cleaning 40.45 40.45 40.45 55.28 55.28 55.28 30.79 30.79 30.79 

Gas conditioning 20.14 20.14 20.14 18.04 18.04 18.04 15.33 15.33 15.33 

FT synthesis & upgrading 47.97 - - 45.75 - - 36.51 - - 

Methanol synthesis - 39.95 - - 39.95 - - 30.41 - 

MTG & upgrading - 42.34 - - 46.28 - - 31.65 - 

TIGAS synthesis & upgrading - - 44.22 - - 47.27 - - 32.90 

Air separation 21.36 21.36 21.36 17.35 17.35 17.35 18.01 18.01 18.01 

Power plant 20.09 24.90 19.57 20.83 26.49 21.04 14.09 17.67 13.58 

Other direct costs 29.46 36.51 28.69 30.54 38.85 30.85 37.13 42.38 36.40 

Indirect costs 78.98 97.87 76.92 81.87 104.15 82.70 99.54 113.60 97.56 

TOTAL 272.05 337.11 264.94 281.98 358.72 284.87 342.86 391.29 336.02 
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The major process areas of capital investment for all BTL concepts based on solid 

biomass gasification, are the gasification and gas clean-up area and the fuel synthesis 

area. This is in line with all techno-economic studies of BTL plants reviewed in Chapter 3. 

The BTL concepts based on the CFB gasification technology have higher gasification and 

gas clean up costs than the EF based concepts due to the need for a tar cracker and the 

additional heat exchange equipment required for syngas cooling. As discussed in section 

4.6, syngas cooling for the EF concepts was done by a water quench thus a heat 

exchanger was not employed. 

 

Figure 6-1 also shows that in general bio-oil gasification results in higher capital costs than 

solid biomass gasification. Even though the gasification plant of the bio-oil gasification 

concepts is smaller than this of the solid biomass gasification concepts the overall capital 

costs are higher. This was due to additional process step of fast pyrolysis which makes up 

of approximately 20-24 % of the TPC of the bio-oil gasification concepts. Nevertheless, it is 

interesting to see that the FP-TIG concept results in lower capital costs than the EF-MTG 

and the CFB-MTG concepts, although the FP-TIG concept employs a different fuel 

synthesis technology (TIGAS) than the other two concepts (MTG).  

 

This study’s results on the capital costs of BTL plant concepts are consistent with those 

from similar modelling studies of the same gasification technologies which range from 238-

552 million GBP2009 (see Table 3-6 at section 3.3). However, cost comparisons with other 

studies should be made with caution due to the different financing assumptions of each 

study. For example, Swanson et al. [90] assumed a 15% working capital as an additional 

cost to his capital investment. Additionally, Jones et al. [94] and Philips et al. [92] assumed 

a 5% working capital of fixed capital investment. As discussed in section 6.3, this study did 

not consider working capital since this can be recovered at the end of the project. 

Therefore, if working capital was removed from the capital cost estimations of these three 

studies, their reported capital costs would be lower.        

6.5.2 Operating and maintenance costs (O&M) 

Figure 6-2 shows the annual operating and maintenance costs which included biomass 

costs and capital dependent operating costs (see section 6.4.2). It is clear that biomass 

cost is the largest contributor to O&M costs and represents essentially more than 50% of 

the annual O&M costs for all BTL concepts. Once again the MTG concepts have higher 
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costs than the FT and TIGAS concepts. This was expected since most O&M costs are a 

fraction of the TPC as explained in section 6.4.2.  

 

 

Figure 6-2: Annual operating and maintenance costs of the evaluated BTL concepts 

 

There is confusing Information on O&M costs in the literature. Annual O&M costs are 

usually not reported at all in other studies and if provided are expressed in $/gal, $/t or 

$/GJ of product. According to Swanson et al. (reviewed in section 3.2.4), O&M costs of 

large-scale BTL plants based on FT synthesis are approximately 50 million GBP2009 [90]. 

Hamelinck et al., whose study was reviewed in section 3.2.1, reports similar O&M costs of 

approximately 42 million GBP2009 [15]. The estimated O&M costs of the FT-concepts of this 

study are higher than those of Swanson and Hamelinck. However both studies used lower 

feedstock prices than this study, therefore this study resulted in higher O&M costs 

compared to those of Swanson and Hamelinck. Jones et al., whose study was reviewed in 

section 3.2.5, studied the costs and performance of fixed bed MTG plants [94]. His 

reported O&M costs were approximately 37 million GBP2009 and thus lower than the other 

two studies [94]. However, Jones’s results need to be looked at with scepticism since MTG 

based BTL plants should result to higher O&M than FT synthesis based plants of the same 

scale due to the cost penalty associated with the additional process step of methanol 

synthesis. 
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6.5.3 Production costs 

6.5.3.1 Concept comparison         

Figure 6-3 shows the estimated production costs of all BTL plant concepts evaluated in 

this study. This includes a comparison with the average tax free market price of 

conventional transport fuels at the refinery gate in 2009. 

 

 

Figure 6-3: Production costs of the evaluated BTL concepts in £2009/GJ (LHV) 

 

It can be seen that the BTL plants based on FT synthesis result in lower production costs 

than the TIGAS and MTG based BTL plants. More specifically, the CFB-FT concept gives 

the lowest production costs of liquid hydrocarbon fuels at 14.65 £/GJ. It is closely followed 

by the EF-FT concept at 15.18 £/GJ. Even though the EF-FT concept results in lower 

capital and O&M costs than the CFB-FT concept (see section 6.5.1 and 6.5.2), the latter 

gives lower production costs due to the slightly higher efficiency of the CFB-FT concept for 

the reasons explained in section 5.12.4. From this it is clear that efficiency (and thus 

production rate) is a very important element of the production costs thus its effect was 

investigated in the sensitivity and uncertainty analysis sections (section 6.6 and 6.7, 

respectively).  
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TIGAS is the second most economic fuel synthesis option after FT synthesis. As 

discussed in section 5.12.4 and 6.5.1, TIGAS based concepts resulted in lower energy 

efficiencies and higher costs since the TIGAS process is more complex than FT synthesis. 

Therefore, the TIGAS concepts give higher production costs than the FT synthesis 

concepts.  

 

The BTL concepts based on the MTG process always result in higher production costs 

than the FT and TIGAS based concepts due to the increased complexity associated with 

the inclusion of the methanol synthesis process and the lower efficiencies (see section 

5.12.4). The EF-MTG concept gives the highest production cost among all the biomass 

gasification concepts at 20.48 £/GJ.  

 

Bio-oil gasification for biofuel production is much more expensive than solid biomass 

gasification as shown in Figure 6-3. Although capital and operating costs are slightly 

higher than the equivalent solid biomass concepts, the conversion efficiency is much lower 

thus leading to much higher production costs. Therefore, it seems questionable if fast 

pyrolysis coupled with gasification will ever be an economically viable option for the 

production of liquid hydrocarbon fuels. 

 

Figure 6-4 shows the contribution of capital costs, O&M costs including fixed costs and 

biomass costs to the estimated production costs of liquid hydrocarbon fuels. It can be seen 

that biomass cost is a very important contributor to the production costs as it represents 

approximately 43-44% of the overall production costs of the solid biomass gasification 

concepts. Therefore, its effect will be examined in the sensitivity and uncertainty analysis 

sections. Capital costs have also a significant effect representing approximately 35-40% of 

the production costs of the biomass gasification concepts. Capital costs are slightly more 

important for the bio-oil gasification concepts than the biomass gasification concepts as 

they represent approximately 38-40% of the production costs. This shows the impact that 

the additional process step of fast pyrolysis has on the overall BTL process costs.  
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Figure 6-4: Production costs breakdown 

 

This study’s results on the production costs of BTL plant concepts are consistent with 

those from similar modelling studies of the same scale and same gasification technologies 

which range from 11.8-20.8 £/GJ (see Table 3-6 at section 3.3). 

 

6.5.3.2 Comparison with market price of fossil transport fuels 

Figure 6-3 also provides a comparison between the BTL production costs and the 2009 

price of fossil diesel and gasoline. The 2009 refinery gate (tax-free) prices of conventional 

diesel and gasoline were 8.8 £/GJ and 8.6 £/GJ, respectively and were taken from the UK 

petroleum industry association (UKPIA) website [178]. The fuel prices reported in the 

UKPIA website are given in £/l. These were converted to £/GJ by using a volumetric 

energy density of 34 MJ/l (LHV) and 32 MJ/l (LHV) for diesel and gasoline, respectively 

[100].  

 

The aforementioned refinery gate prices of conventional diesel and gasoline do not include 

taxes, profit for the producer and retailer, marketing and distribution costs so that a 

comparison can be made with the estimated biofuel costs of this study. As such, they are 

not the retail prices (also known as pump prices) that the consumer would pay at the petrol 
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station. The fuel retail prices for the same year were 31.2 £/GJ for gasoline and 30.6 £/GJ 

for diesel [178]. It can be seen that the prices of diesel and gasoline are very similar. The 

refinery gate price of jet fuel (kerosene), which is produced from FT synthesis, is not 

reported in the UKPIA website and could not be found elsewhere. A comparison of 

transport fuels retail prices is available on the Index Mundi website [179]. From this it is 

clear that the retail prices of diesel, gasoline and kerosene in 2009 were very similar. 

Therefore, it would appear reasonable to assume that the refinery gate price of kerosene 

in 2009 would also be similar to the refinery gate prices of diesel and gasoline shown in 

Figure 6-3.  

 

Figure 6-3 shows that BTL plants cannot compete with the costs of the large conventional 

fuel production plants. It would require increases in fossil fuel prices, subsidies or 

legislation such as high carbon taxes to make 2nd generation transport biofuels competitive 

in the market. It can be seen that the CFB-FT concept (the main product is diesel) is closer 

than the other concepts to matching the reference diesel price which is approximately 65% 

lower. The other concepts will require further development to reduce costs before they can 

be economic but viability by this route is a likely prospect. In the case of gasoline, the 

CFB-TIG concept results in a biomass derived gasoline price of approximately 82% higher 

than the reference gasoline price.  

 

Nevertheless, based on the constantly increasing fossil fuels prices and the current 

subsidies for bioenergy applications, BTL production is considered promising. More 

specifically, the current retail diesel and gasoline price is 41.3 £/GJ and 42.4 £/GJ [180], 

thus higher than the 2009 prices. In addition, through the Renewables Obligation (RO), the 

UK government already makes generous subsidies available for biomass-based electricity 

production. The RO requires licensed UK electricity suppliers to derive from renewable 

sources a specified and annually increasing proportion of electricity they supply to 

customers, or pay a penalty [181]. Such subsidy schemes are driven by a combination of 

the pressures described in Chapter 1. According to the Wood Panel Industries Federation 

(WPIF), these UK subsidies amount to £75 per tonne of wood burned in a power plant 

[182]. A co-firing station, which is a plant that burns biomass alongside coal, receives 

about £25-£50/t of wood burned [182]. 
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For the CFB-FT concept, which was the most economic BTL system, a subsidy of 

approximately £55/t of dried wood would be required to meet the conventional fuel prices 

shown in Figure 6-3. The necessary biomass subsidy was estimated by iterating the cost 

model of the CFB-FT concept to get the conventional fuel price (8.7 £/GJ on average). If 

the £75/t subsidy reported by the WPIF was used instead, the production costs of the 

CFB-FT concept will significantly reduced by almost half of the estimated costs. However, 

these promotional measures are usually aimed at small or medium-sized power plants and 

it is therefore questionable if they can be applied for large scale BTL installations. Many 

government programmes have limited budget or are tied to certain technologies, thus a 

project of this size might not be subsidised. Government subsidies would mainly depend 

on the political climate and thus their level is still unknown. Furthermore, subsidies of this 

kind have other consequences such as the increase in biomass costs. For example, since 

2005, the price of wood used in the construction and wood panel industries has risen by 

more than 50% in the UK as a result of the aforementioned biomass subsidies which have 

increased demand for wood [182].  

 

Apart from biomass subsidies, there are also other subsidies associated with capital 

investment (e.g. Enhanced Capital Allowance (ECA) scheme [183]), government taxes 

and biofuel products (e.g. RTFC). With regards to transport biofuels subsidies, according 

to the Renewable Transport Fuels Obligation (RTFO), which was also discussed in section 

1.1, UK owners of biofuels are awarded one Renewable Transport Fuel Certificate (RTFC) 

per litre of biofuel, or kilogram of biomethane, supplied [184]. The value of the RTFC is not 

fixed as it depends on the market [184]. Biofuels produced from certain feedstocks are 

eligible for double counting [184]. These include biofuels derived from wastes and residues 

as well as those from non-edible ligno-cellulosic biomass [184]. RTFCs may be traded 

between participants in the scheme thus even the smallest biofuel company may claim 

certificates which can potentially be sold to obligated fuel producers that may then use 

them to meet their 5% obligation. 

  

 It should be noted that in July 2012, the Department of Energy and Climate Change 

(DECC) announced that it will continue to subsidise bioenergy applications under the 

Renewable Obligation Certification scheme [185]. There is however the possibility that 

public and political support for subsidising bioenergy could wane due to lack of interest 

and budget restrictions. Although such schemes are valuable opportunities for BTL plants 
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in the short term, it would be far better to find markets (e.g. chemicals) that could be 

penetrated without any subsidies.  

6.6 Sensitivity analysis 

The evaluations thus far have taken the results of the models at face value, therefore 

sensitivities and uncertainties in the models have not been considered yet. This section 

discusses the sensitivity analysis study which was conducted in order to investigate the 

effect of parameters variations on the production costs results. 

 

In the previous section some parameters were identified as having an important effect on 

the production costs of liquid hydrocarbon fuels. These parameters were selected for the 

sensitivity analysis and were: biofuels production rate (GJ/h), capital costs (i.e. TPC) and 

biomass cost. Other parameters included: O&M costs, real interest rate, plant availability 

and plant life as these were identified by other studies for also significantly affecting 

production costs [90, 104, 167]. The sensitivity analysis was carried out by changing each 

parameter in turn by ±10% of its default value. It should be noted that the plant availability 

parameter (see section 6.2.2) was changed by -10% to +5% since the plant’s operating 

hours cannot exceed the maximum hours per year (+110% of 8000hrs/yr = 8800>8760 

hrs). The sensitivity analysis results of the CFB-FT concept, which was the most economic 

BTL system, are presented here. The sensitivity analysis of the other BTL concepts gave 

similar results with the CFB-FT concept thus the sensitivity analysis results of the other 

BTL concepts are presented in Appendix C.   

 

Figure 6-5 shows the sensitivity of the production costs of the CFB-FT concept to the 

variations of the selected model parameters. Figure 6-5 is a spider plot which is widely 

used for presenting sensitivity analysis results. Steeper curves indicate a higher degree of 

sensitivity to deviations from the original estimates/values of the model parameters. The 

point in the graph where all lines meet indicates the original estimated value of the cost 

model’s output (i.e. biofuel production cost). 

 



 
174 

 

 

Figure 6-5: Sensitivity of biofuel production cost of the CFB-FT concept 

 

Table 6-9 shows the variations on production costs of the CFB-FT concept which resulted 

from the variations of the selected model parameters from their default value. From Figure 

6-5 and Table 6-9 it can be seen that production rate is the most sensitive model 

parameter which has the greatest effect on production costs. The product energy yield 

used as a default (47.6%) is a reasonable estimate of the IPSEpro model since the vast 

majority of published studies on techno-economics of large-scale BTL plants based on FT 

synthesis report energy yields of 39-50% (see Table 3-6 at section 3.3). The performance 

of FT synthesis reactors in general is established but there is limited experience of FT 

reactors operation using biomass derived syngas. This increases the uncertainty of the 

overall results. The sensitivity of the model to the production rate of biofuels suggests that 

improving process performance should be an early priority. 
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Table 6-9: Production costs of the CFB-FT concept as a result of parameters’ variations  

 

-10% -5% 0 5% 10% 

Biomass cost 14.03 14.34 14.65 14.97 15.28 

Total plant cost 13.81 14.23 14.65 15.07 15.49 

O&M cost 14.43 14.54 14.65 14.76 14.88 

Production rate 16.28 15.42 14.65 13.95 13.32 

Interest 14.3 14.47 14.65 14.83 15.02 

Plant availability 15.58 15.09 14.65 14.25 - 

Plant life 14.85 14.75 14.65 14.57 14.5 

 

The plant availability is the next most sensitive parameter. Therefore, it is imperative to the 

viability of large scale BTL plants that the plant operating hours are as high as possible to 

maximise annual production and reduce production costs. The 8000 hrs/yr default 

availability which was selected in the model is a reasonable estimate, however situations 

can occur, such as seasonal demand or feedstock availability, where this parameter must 

be carefully set to prevent serious errors in the calculated biofuel production costs. The 

experience gained in the first year of the plant’s operation and the optimisation carried out 

in the meantime will most likely result in an increase in the plant availability. 

 

The plant availability is closely followed by the overall total plant cost with regards to the 

impact on production costs. Regarding the calculated value, there is some uncertainty 

inevitable in study estimates of this type. Errors of ±30% are typical, and increased 

accuracy can only be achieved through very detailed and expensive analysis of the 

specific case study. It should be noted that there are inherent uncertainties in projecting 

BTL plant costs given the pre-commercial status of some of the major pieces of equipment 

included in the concepts examined. The next section deals with the uncertainties on total 

plant costs and other input parameters and how these affect production cost which is the 

model’s output.   

 

System sensitivity to the delivered feedstock cost is often investigated in BTL system 

studies. The biomass cost is the fourth most sensitive parameter, however this cost can 

vary enormously and certainly well outside the 10% limit tested here. As rising biomass 

prices can be expected in the short and medium term (see section 6.5.3.1), the conclusion 

of a long term biomass supply contract with fixed quantities and prices should be sought 

with a respectable agricultural or forest management company. If it is decided that several 
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companies should supply biomass during a large scale BTL plant project, a joint delivery 

commitment should be agreed. The next section examines uncertainties associated with 

feed cost in more detail.  

 

Finally, the model is less sensitive to the interest rate, O&M costs and plant life chosen. 

Regarding the calculated value of O&M costs, there is some uncertainty since the estimate 

was based on published data (see section 6.4.2). Increased accuracy can only be 

achieved through very detailed analysis of the individual cost elements of O&M costs. 

However, this is time consuming and there are limited reliable resources on detailed O&M 

costs of BTL plants. Based on the demonstrated low sensitivity of the model to this 

parameter, there is questionable gain in the accuracy of results for such a high level of 

detail. 

 

The interest rate and plant life influence the annual repayments of borrowed capital. The 

life of the project is largely within the control of the project developer and can be planned 

for. Interest rates can also be controlled by agreeing fixed rates with the lenders 

throughout the project’s life. Thus the uncertainty associated with these parameters can be 

minimised. 

6.7 Uncertainty analysis  

6.7.1 Introduction  

As discussed in section 6.4, BTL production costs were estimated using a number of 

technical and economic parameters assuming that these have a fixed value. However, in 

reality the values of these parameters which, among others, include capital costs, biomass 

costs and efficiency, have a certain degree of uncertainty and are not known with absolute 

accuracy. This results in uncertainty in the model’s output (i.e. production costs) and can 

be reduced through acquiring more data. However, even then, the modeller can never be 

entirely certain of their models’ estimates particularly in the case of new plant projects and 

technologies, such as a BTL plant, as there is no experience of a real life plant. 

 

As mentioned above, uncertainty in the model’s output results mainly from uncertain 

estimates of various model parameter values. Many of these values were taken from 

existing BTL techno-economic studies with their own estimates and assumptions and thus 
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they depend on the accuracy and reliability of each published study. Additionally, some 

model assumptions, which were presented and justified throughout this study, were made 

due to the lack of published data (e.g. TIGAS capital costs and product distribution). This 

further increases uncertainty. Uncertainty in the model’s output can also result from errors 

in the simulation model structure compared to a real system, and approximations made by 

numerical methods employed in the simulation. Process simulation models are always 

simplifications of real processes and, hence, ‘imprecision’ can result. Increasing the model 

complexity to more closely represent the complexity of the real system may not only 

significantly add to the time and cost of data collection, but may also introduce even more 

parameters, and thus even more potential sources of uncertainty in the model’s output 

[186].  

 

In this study, the uncertainty analysis employed the Monte Carlo method which is 

commonly used for uncertainty analysis studies [187]. Each selected parameter was 

assigned a range of values and a probability distribution derived from the literature and 

industry experts. A Monte Carlo simulation of the selected input parameters to account for 

uncertainties was then implemented in the programming language C++. This allowed for 

estimates of the probability distributions of the production costs of hydrocarbon biofuels. 

The methodology and results of the uncertainty analysis are discussed in detail in the next 

sections. 

 

It is common in other published techno-economic studies of BTL systems to assess 

uncertainty by sensitivity analysis where the effect on biofuel production costs of changing 

key model parameters is determined. This was done and discussed in the previous 

section. However, sensitivity analysis provides a range of output estimates without 

providing guidance as to the probability of a particular case occurring [186]. Additionally, 

uncertainty analysis repeatedly takes a high number of random samples (e.g. in this study 

1,000,000 - this is set by the user) from the probability distributions of the selected 

uncertain parameters in order to estimate the probability distributions of the resulting 

outputs [186]. A sensitivity analysis deals with determenistic changes in model input 

values to determine the change in model output values, as shown in section 6.6. This is 

the first time that an uncertainty analysis is included in a published techno-economic 

assessment study of BTL processes for 2nd generation liquid hydrocarbon fuels. 
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6.7.2 Methodology 

6.7.2.1 Monte Carlo simulation 

There are only two published studies, both by ECN, that assess uncertainty analysis of 

biomass thermochemical processes [188, 189]. None of them examines transport fuels as 

product. The first study, which was undertaken by Calis et al. [188], is a techno-economic 

study of large scale (800 MWth) syngas production from biomass. The second study was 

done by Mozaffarian and Zwart [189] and is a techno-economic assessment of SNG 

production systems based on biomass gasification. For their uncertainty analysis study, 

both studies used @RISK which is an Excel add-in software based on the Monte Carlo 

(MC) simulation method [188, 189].        

 

The Monte Carlo statistical method is the most widely used means for uncertainty analysis, 

with applications ranging from aerospace engineering to zoology [187, 190]. This method 

includes random sampling from the probability distributions of a model’s input parameters 

and repeated runs to estimate the probability distribution of the model’s output. In effect, 

the Monte Carlo software, such as @RISK, tries a representative set combinations of the 

input parameter values to simulate and assess the likelihood of all possible outcomes for 

the model’s output. The end result is a probability distribution of the model’s output which 

allows estimation of the probability that the output will lie in a specific range. This is very 

useful for this study as it provides the opportunity to estimate the likelihood that BTL 

production costs can meet a targeted value (e.g. price of conventional fuels).  

 

In this thesis, the uncertainty analysis study was done in the following three steps: 

 Selection of the uncertain input parameters and their value range 

 Choice of the probability distribution type for the selected parameters 

 Implementation of the value range and probability distribution of each parameter 

into the Monte Carlo simulation 

 

6.7.2.2 Uncertain parameters 

The choice and the value range of the uncertain input parameters of the cost model 

emerges from the sensitivity analysis (see section 6.6), the literature and experts opinion. 

The sensitivity analysis showed that the uncertainties associated with efficiency, plant 

availability, capital costs, and biomass costs have a significant influence on production 
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costs. Therefore, these parameters were also selected for the uncertainty analysis study. 

Operating costs and interest were also selected as there is also some uncertainty 

associated with these two parameters. O&M costs were taken as a percentage of the TPC 

(5% TPC – see section 6.4.2.2) which was based on reported costs of other published 

studies. The interest for capital repayment is likely to be higher than 10% due to the fact 

that a BTL plant has never been built before and thus there is higher risk for the lender. 

The selected uncertain parameters together with their value range are shown in Table 

6-10. 

 

Table 6-10: Selected uncertain input parameters of the cost model from literature and 
experts 

Parameter Base assumption/estimation Range Source 

Biomass cost 58.69 £/dry t ± 50% [33] 

Literature installed costs See Table 6-2 ± 30% [90, 114] 

O&M cost (gasification) 5% TPC 3-7% [189] 

Maintenance cost (fast pyrolysis) 2.5% TPC 2-3% [16, 90, 92] 

Fixed costs 2% TPC 1.5-2.5% [16, 90, 92] 

Interest 10% 8-15% [33] 

Land 6% TPEC 4-8% [95] 

Power plant installed cost 14% other installed costs 11-16% [90, 92, 114] 

Scale factor 0.65 0.6-0.7 [99] 

Plant availability 8000 hrs/year 7008-8322 [92, 96] 

Efficiency (GJ/h) See section 5.12 ± 20% [33] 

 

According to Larson et al. [114] and Swanson et al. [90] accuracy of capital costs results is 

usually ± 30%. Therefore, for the installed costs, which were based on other literature 

costs (see section 6.3), a ± 30% deviation from their default value was assumed.  

 

As discussed in section 6.4.3 and 6.6, biomass prices can vary significantly with no 

systematic pattern. Thus, a large deviation of ± 50% was selected to express the high 

uncertainty associated with this parameter. 

 

The process efficiency (GJ/h) was assigned a ± 20% deviation from the default value 

which was estimated in IPSEpro. The efficiency results presented in section 5.12 showed 

that they are consistent with other published studies of BTL systems, thus a larger 

deviation than ± 20% was not needed.  
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The uncertainty analysis study was done for the Excel cost models only, thus it did not 

include any parameters of the IPSEpro models of the selected BTL systems. However, 

since the capital costs are based on IPSEpro process simulation parameters (e.g. scale, 

oxygen requirements) the cost uncertainties in Table 6-10 may be considered to reflect the 

IPSEpro model uncertainties to some degree. Future studies will explicitly address the 

uncertainty of process simulation parameters in addition to cost parameters.  

 

6.7.2.3 Probability distributions 

For all the selected uncertain parameters in Table 6-10, bounded normal probability 

distributions (i.e. normal distributions constrained to lie in the ranges specified in Table 

6-10) were chosen. In uncertainty analyses, the normal distribution is used for the 

probability distribution of the input parameters when the most likely values for the input 

parameters can be estimated but fluctuations around these values are expected [191]. As 

discussed in section 5.12.4 and 6.5, the performance and cost results of this study were 

consistent with those of other techno-economic studies of BTL systems. For this reason it 

is more likely that the values of the model input parameters will be closer to their default 

value. In addition, both ECN studies [188, 189] discussed in the section 6.7.2.1 used the 

normal distribution for their uncertain parameters. Mozaffarian and Zwart [189] mainly 

used the PERT distribution which is similar to a bounded normal distribution as it is also 

requires a minimum, a maximum and a most likely value [192]. However, no reason was 

provided for choosing the PERT distribution over the bounded normal distribution.  

Therefore, in this study, the probability distribution selected for the uncertain parameters of 

the cost model was the bounded normal distribution. All of the normal distributions in this 

study were parameterized such that the distance between the most likely value and the 

upper end of the range was equal to three standard deviations. 

 

To estimate the probability distributions of the production costs, the normal probability 

distributions of the uncertain parameters were simulated as part of a Monte Carlo 

simulation. Because uncertainly analysis software, such as @RISK and RiskAmp, was not 

available at Aston University, the simulation was implemented in C++. This was done in 

collaboration with the Computer Science Department of Aston University. 
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6.7.3 Results 

The cumulative probability distributions of biofuel production costs of the CFB concepts 

and the EF concepts are shown in Figure 6-6 and Figure 6-7, respectively. For the CFB-FT 

concept, which was the most economic system (see section 6.5.3), the 90% confidence 

interval of production cost is 12.5–18 £/GJ, compared to the deterministic estimate of 

14.65 £/GJ. In other words, the actual value has 90% chance to be within the range of 

12.5 to 18 £/GJ. Similarly, it is observed that the chance that the cost exceeds 17 £/GJ in 

this case, is approximately 10%. This shows how important the economic assumptions are 

in estimating the economic feasibility of a BTL plant. 

 

 
Figure 6-6: Cumulative probability of biofuel production costs (£/GJ) of the CFB concepts 

 

As discussed in section 6.5.3.2, the 2009 refinery gate (tax-free) price of fossil transport 

fuels was 8.7 £/GJ on average. The chance that the biofuel production cost of the CFB-FT 

concept will meet this price is very low (close to zero). However, from Figure 6-6, it can be 

Conventional fuel 

price with tax 

Conventional fuel 

tax free price 
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seen that there is a 50% chance that the production cost of the CFB-FT concept, will be 

less than 14.65 £/GJ. Therefore, if biofuel production costs were reduced from this level to 

8.7 £/GJ (approximately 40% reduction) through capital, biomass, manufacturing and/or 

tax credits, there is a 50% chance that they will meet or exceed the conventional fuel 

prices. Additionally, the conventional transport fuel tax rate in the UK in 2009 was 

approximately 67.7% on average [178]. Therefore, the conventional fuel price, including 

tax was approximately 27 £/GJ (see Figure 6-6). If biofuels from the CFB-FT concept were 

to have 50% chance to meet this price then a tax take of 45.7% would be required. This is 

22% less than the conventional fuel tax take (67.7%). Therefore, if the government tax 

take (i.e. the amount of tax that that the government receives per GJ of fuel produced) was 

reduced by approximately 32.5%, biofuels through the CFB-FT route could be competitive 

with conventional transport fuels. This is promising based on the current political climate 

for biofuel subsidies which was discussed in section 6.5.3.2.  

 

 
Figure 6-7: Cumulative probability of biofuel production costs (£/GJ) of the EF concepts 
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For the CFB-TIG, which was the most economic concept for gasoline production, the 90% 

confidence interval of production cost is 13.5–19 £/GJ, compared to the deterministic 

estimate of 15.64 £/GJ. The probability that the gasoline production costs of this concept 

meet the 2009 refinery gate price of gasoline (8.6 £/GJ) is zero. If production costs of this 

concept were reduced from the initial estimate of 15.64 £/GJ to 8.7 £/GJ (approximately 

44% reduction), there is a 50% chance that they will meet or exceed the conventional 

gasoline price. Similarly to the CFB-FT concept, a tax rate of 42% would be required if 

gasoline from the CFB-TIG was to have a 50% chance to meet the conventional gasoline 

tax price.  Thus a government tax take reduction of approximately 38% would be required 

for the CFB-TIG gasoline to compete economically with conventional gasoline. 

 

For the most economic EF concept, which was the EF-FT concept (see section 6.5.3), the 

90% confidence interval of production cost is 12.9–18.6 £/GJ, compared to the 

deterministic estimate of 15.18 £/GJ. Additionally, the actual value has 44% chance to be 

within the range of 14 to 16 £/GJ, which shows the impact of uncertainties of the model’s 

input parameters on the estimated production cost. If production costs of the EF-FT 

concept were reduced from the initial estimate of 15.18 £/GJ to 8.7 £/GJ (approximately 

43% reduction), there is a 50% chance that they will meet or exceed the conventional 

transport fuel price. A tax rate of 43.8% would be required if biofuels from the EF-FT were 

to have a 50% chance to meet the conventional fuel tax price.  Therefore, if the 

government tax take was reduced by approximately 35%, biofuels through the EF-FT route 

could be competitive with conventional transport fuels. 

 

Figure 6-8 shows the cumulative probability of biofuel production costs of the bio-oil 

gasification concepts. For the FP-FT concept, which was the most economic bio-oil 

gasification system, the actual value has 90% chance to be within 24-34 £/GJ.  

 

The range is wider than the equivalent biomass gasification concept (EF-FT). However, 

since the range will increase with the mean (initial estimated value) it is more appropriate 

to compare the relative range of the uncertainties (i.e. the range as a proportion of the 

mean). For the FP-FT concept there is a 36% relative uncertainty which is similar to the 

EF-FT concept’s value of 3 %. 
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Figure 6-8: Cumulative probability of biofuel production costs (£/GJ) of the bio-oil 

gasification concepts 

 

The production costs of the FP-FT concept need to be reduced by 70% in order to have a 

50% chance to meet the conventional fuel prices. This is a very high reduction and it is 

questionable if it can be achieved through subsidies only. There is a 27 % chance that the 

production cost of this concept will meet or exceed the conventional fuel price including tax 

(27 £/GJ). There is zero chance that it will meet the conventional tax free fuel prices (8.7 

£/GJ). Therefore, it is very unlikely that this and the other bio-oil gasification concepts can 

compete with conventional transport fuels at the current time. 

 

Table 6-11 shows, for each solid biomass gasification concept, the tax take reduction 

required for biofuels to meet the conventional fuel prices including tax. It can be seen that 

Conventional fuels 

price with tax 
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the most expensive option (EF-MTG) would need approximately twice as much tax take 

reduction as the CFB-FT concept which was the most economic BTL plant concept.  

 

Table 6-11: Tax take reduction (as a percentage of the 2009 tax take for conventional 
fuels) necessary for biofuels to compete with conventional fuels 

Concept 
Tax take reduction (%) from 2009 

tax take 

CFB-FT 32.5 

CFB-MTG 53.8 

CFB-TIG 38 

EF-FT 35 

EF-MTG 64.4 

EF-TIG 43.2 
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7 CONCLUSIONS 

 

The aim of this work was to calculate, evaluate and compare the costs and performance of 

thermochemical routes from solid biomass to 2nd generation liquid transport fuels, known 

as Biomass-To-Liquids (BTL) processes. The project was undertaken to provide a 

consistent and thorough review of the full range of these pathways to compare alternative 

technologies within them in order to identify the most promising opportunities that deserve 

closer attention. The scope was limited to hydrocarbon products (diesel, gasoline and 

kerosene) as these can be readily incorporated and integrated into conventional markets 

and supply chains while alcohols and ethers have more limited short term prospects in the 

UK and European transport fuel infrastructures.  

 
Nine BTL plant concepts were selected which were based on entrained flow and 

circulating fluidised bed gasification of wood biomass or bio-oil. Fuel synthesis 

technologies included Fischer-Tropsch synthesis, methanol synthesis followed by the 

Methanol-to-Gasoline (MTG) process and the Topsoe integrated gasoline (TIGAS) 

synthesis. This was the first time that these three fuel synthesis technologies were 

compared in terms of performance and costs in a published techno-economic assessment 

study of biofuel systems. 

 

All BTL concepts were modelled using the equation oriented process simulation software 

IPSEpro in order to determine mass balances, energy balances, and product distributions. 

The process simulation results showed the following: 

 Fischer-Tropsch synthesis looks the most promising fuel synthesis technology for 

commercial production of liquid hydrocarbon fuels since it achieved higher 

efficiencies than the TIGAS and MTG. This is due to the additional synthesis steps 

required in TIGAS and especially in the MTG process as each synthesis step 

results in lower mass yields and thus lower energy conversion efficiencies.      

 The CFB-FT concept showed the highest energy efficiency and mass yield at 

approximately 47.6% and 20.6%, respectively. 

 The EF-MTG concept was the least promising solid biomass gasification concept in 

terms of energy and mass yields (38% and 17.8%, respectively). 
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 CFB gasification resulted in slightly higher energy efficiencies by 2.6–5.5% than 

entrained flow gasification. This was due to the loss of energy during quenching 

and cooling of the syngas after the entrained flow gasifier. 

 Bio-oil gasification concepts showed significantly lower energy efficiencies (14-

17%) than the solid biomass gasification concepts due to the additional thermal 

conversion step of fast pyrolysis. It is therefore questionable whether bio-oil 

gasification could ever be competitive, in terms of efficiency, with solid biomass 

gasification.  

 This study’s results on the performance of BTL plant concepts are consistent with 

those from other modelling studies of BTL systems. 

An economic assessment of the BTL concepts modelled was also carried out in order to 

identify the most promising BTL processes in terms of production costs. Another important 

aim was to examine whether BTL plants could compete economically with conventional 

transport fuels plants. 2009 was the base year for the economic analysis which included 

estimates of capital, operating and production costs for each of the nine BTL concepts. A 

sensitivity analysis was also carried out to investigate the impact of different cost 

parameters on the production costs of BTL plants. Similar techno-economic studies of BTL 

plants which are publicly available have not dealt with uncertainty in their cost models’ 

input parameters. Rather than assuming that the input parameters are known with an 

absolute accuracy, one should have the model account for uncertainties in the input 

parameters. To this end, an uncertainty analysis based on the Monte Carlo statistical 

method was carried out to examine how the uncertainty in the input parameters of the cost 

model could affect the output (i.e. production cost) of the model. The results of the 

economic assessment study showed the following: 

 The Fischer-Tropsch synthesis was the most economic option of all three fuel 

synthesis technologies as it gave the lowest capital, operating and production 

costs. 

 The major process areas of capital investment for all BTL concepts based on solid 

biomass gasification, were the gasification and gas clean-up area and the fuel 

synthesis area. 

 CFB gasification was more capital intensive due to the need for a tar cracker and 

the additional heat exchange equipment required for syngas cooling. 



 
188 

 

 The MTG process was the most expensive fuel synthesis option due to its 

increased complexity and low efficiencies.  

 Bio-oil gasification for biofuel production gave slightly higher capital and operating 

costs than the equivalent solid biomass concepts. However, the conversion 

efficiency was much lower thus leading to much higher production costs. Therefore, 

it seems questionable if fast pyrolysis coupled with gasification will ever be an 

economically viable option for the production of liquid hydrocarbon fuels. 

 The CFB-FT concept was the most promising BTL concept as it gave the lowest 

production costs (14.65 £/GJ), whereas the least economically attractive concept 

based on solid biomass gasification was the EF-MTG concept (20.48 £/GJ). 

 A biomass subsidy of approximately £55/t of dried wood would be required to meet 

the conventional fuel prices. However, it is unlikely that this high subsidy will be 

given to large scale BTL plants. 

 Clear political parameters which need to be stable over a period of time of at least 

20 years are necessary if investors and lenders are to provide long term financing 

for the first large scale BTL plant. 

 Process efficiency has the most sensitive effect on biofuel production costs, thus 

improving process performance should be an early priority. 

 Plant availability is the second most sensitive item in production costs thus it is 

imperative to the viability of commercial BTL plants that the plant operating hours 

are as high as possible to maximise annual production in order to reduce 

production costs. 

 Based on the initial estimates of production costs there is a very low probability that 

biofuel production costs will meet the price of conventional fuels. If biofuel 

production costs were reduced by 40% through capital, biomass, manufacturing 

and tax subsidies, there is a 50% chance that they will meet or exceed the 

conventional fuel prices. 

 Transport biofuels could be competitive with conventional fuels if government tax 

was reduced by approximately 32.5%. 
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This study was based on the fuel market in the UK so some of its findings may not be 

relevant to other countries. The study assumed that the gasification plant was located in 

the centre of the area that provided it with biomass (or bio-oil), thus the findings may be 

different for plants that use imported biomass or biomass from across the country. 

 

Extensive use is made of published data which was taken from existing BTL techno-

economic studies with their own estimates and assumptions. This affects the overall 

results which highly depend on the accuracy and reliability of each published study. 

Additionally, there was limited published information on the MTG and especially the TIGAS 

process thus some assumptions had to be made. This further increases the uncertainty of 

the performance and economic results of these fuel synthesis technologies.  

 

While the evaluation showed that none of the BTL systems are directly competitive on 

price with conventional large scale fossil fuel plants (which enjoy the benefits of low 

feedstock costs and strong economies of scale), large scale biofuel production can be 

made competitive through a combination of subsidies and tax reduction. Subsidy schemes 

are now in place in many countries in Europe and the UK but they rely on public and 

political support for their long term implementation. In addition, future fossil fuel prices 

rises and environmental taxes would enhance the competitiveness of biofuels. 
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8 RECOMMENDATIONS FOR FUTURE WORK    

 

The recommendations resulting from the work reported in this thesis are as follows: 

 Evaluation of other biomass feedstocks. This may require additions and changes to 

the current biomass preparation and pre-treatment models on IPSEpro. 

 Investigation of different scales and their effects on the performance and costs of 

BTL plants. 

 Because of time and resource constraints, the techno-economic study did not 

include electricity production and heat integration, thus a complete heat exchange 

network for heat recovery was not conceptualized. This could be addressed in the 

future and relevant models could be built on IPSEpro. 

 Due to lack of published data some processes such as TIGAS could not be 

modelled rigorously and can be improved with detailed mass and energy flows and 

costs when more information is available. More detailed modelling will likely result 

in changes to economic components such as capital and operating costs. 

 Heat for the fast pyrolysis process was supplied by combustion of the char and off-

gas. It is likely that the fast pyrolysis process could be more cost-effective if the 

char was sold as a by-product and another energy source was used in the process. 

Future work could consider the various options available. 

 Evaluation of atmospheric gasification and comparison with pressurised 

gasification systems. 

 Modelling and economic analysis of other fuel synthesis technologies, such as 

MOGD, MtSynfuels and bio-oil upgrading routes, to highlight their benefits and 

drawbacks in comparison with the BTL systems already evaluated in this study. 

 Inclusion of torrefaction for biomass pre-treatment as it gives a dry and grindable 

product which makes it suitable for entrained flow gasification. Heat integration of 

the process could be examined to see whether or not the off-gas alone can cover 

the heat requirements of the process as claimed by ECN. 

 The gasification of bio-oil/char slurry could also be examined and compared with 

bio-oil and solid biomass gasification. 
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 The uncertainty analysis study did not include any parameters of the IPSEpro 

models of the selected BTL systems. Future studies could explicitly address the 

uncertainty of process simulation parameters in addition to cost parameters. 

 Different operations in the process chain have different degrees of risk and 

uncertainty. For example, the development and demonstration of pressurized, 

oxygen-blown CFB gasification of biomass involves significantly greater technical 

risks than EF gasification which is already employed in large scale coal plants. 

Therefore, it would be possible to expand the uncertainty analysis to include risks 

and uncertainties associated with different technologies within a BTL process. 

These uncertainties could be quantified and their impact on production costs could 

be investigated. 
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Appendix A. IPSEpro examples and list of models 

 

Available units: 

PG_comb_dfb combustion chamber in dual fluidized bed gasification process 

PG_comb_g gas combustion chamber 

PG_comb_o organic fuel combustion chamber 

PG_compr_g gas compressor 

PG_compr_w steam compressor 

PG_cond_gw selective condenser / gas dryer 

PG_conv_oo organic - organic converter 

PG_drum_w steam drum 

PG_dryer fuel dryer 

PG_gasengine gas engine 

PG_gasif_dfb gasifier in dual fluidized bed gasification process 

PG_gasif_o gasifier 

PG_heat_sink_g heat sink for gas 

PG_heat_sink_w heat sink for water 

PG_heat_source_g heat source for gas 

PG_heat_source_w heat source for water 

PG_htex_gg gas - gas heat exchanger 

PG_htex_go gas - organic heat exchanger 

PG_htex_gw gas - water/steam heat exchanger 

PG_htex_oo organic - organic heat exchanger 

PG_htex_sw solid - water/steam heat exchanger 

PG_htex_wo water/steam - organic heat exchanger 

PG_htex_ww water/steam - water/steam heat exchanger 

PG_inj_sg solids into gas injector 

PG_inj_so solids into organic injector 

PG_inj_wg water/steam into gas injector 

PG_inj_wo water into organic injector 

PG_loop_g gas loop connector 

PG_loop_o organic loop connector 

PG_loop_w water/steam loop connector 

PG_mixer_g gas stream mixer 

PG_mixer_o organic stream mixer 

PG_mixer_s solid stream mixer 

PG_mixer_w water/steam stream mixer 

PG_monitor_ambient ambient air monitor 

PG_monitor_g gas stream monitor 

PG_monitor_o organic stream monitor 

PG_monitor_s solid stream monitor 

PG_monitor_w water/steam stream monitor 

PG_orc_bbox organic rankine cycle black box 

PG_oxid_react gas oxidation reactor 

PG_pipe_g gas pipe 

PG_pipe_w water/steam pipe 
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PG_pump_o organic pump 

PG_pump_w water pump 

PG_quench_w water quench 

PG_scrubber_go organic solvent gas scrubber 

PG_sep_gs gas - solid separator 

PG_sep_os organic - solids separator 

PG_sep_ow organic - water separator 

PG_sink_ambient gas sink to ambient environment 

PG_sink_g gas sink 

PG_sink_o organic sink 

PG_sink_s solids sink 

PG_sink_w water/steam sink 

PG_source_ambient ambient air gas source 

PG_source_g gas source 

PG_source_o organic source 

PG_source_s solids source 

PG_source_w water/steam source 

PG_splitter_g gas stream splitter 

PG_splitter_o organic stream splitter 

PG_splitter_s solids stream splitter 

PG_splitter_w water/steam stream splitter 

PG_steam_ref steam reforming reactor 

PG_turbine_g gas turbine 

PG_turbine_w steam turbine 

generator generator 

motor motor 

Available stream connections: 

PG_stream_g gas stream 

PG_stream_o organic stream (solid or liquid fuels, solvent, or heat carrier oil) 

PG_stream_s (inorganic) solids stream 

PG_stream_w water/steam stream 

Available compositions: 

PG_ambient ambient conditions 

PG_comp_g gas composition 

PG_comp_o organic composition 

PG_comp_s solids composition 
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Example of an IPSEpro model (dryer) on the MDK 
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Appendix B. Average enthalpy calculation for FT model substances 
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Rearranging         we get: 

 

                                                                                        

 
Calculating the indefinite integral: 
 

        ∫                                                           

 
giving us the enthalpy equation: 
 

        
                                    

      
                                                   

 

where        is the molecular weight (g/mol) of the n-alkanes (CnH2n+2).  
 
 
Now, let: 
 

 ̂                                                                         
                                                                           
                                                                                                                                      

 
Equation (4) is arranged to give: 
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Now, let      be the mass fraction (wt%) of the hydrocarbon with chain length  . Let      

and      be the minimum (five) and maximum chain-length (thirty five), respectively. The 

average enthalpy at temperature   is given by: 
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Appendix C. Cost results 

 

APPENDIX C.1: Capital, operating and production costs of the evaluated BTL 

concepts 

 

 

EF-FT concept 

Table C-1: Costs results for the EF-FT concept 

CAPITAL COST 

 
Cost (£) % 

Biomass preparation & RSH 13,602,783 5.0 

Gasification & gas cleaning 40,445,361 14.9 

Gas conditioning 20,139,359 7.4 

FT synthesis & upgrading 47,966,668 17.6 

Air separation 21,357,929 7.9 

Power plant 20,091,694 7.4 

Other direct costs 29,461,220 10.8 

Indirect costs 78,981,142 29.0 

Total 272,046,155 100.0 

   
OPERATING COST 

 
Cost (£) % 

O&M 10,881,846 18.6 

Power 2,720,462 4.7 

Fixed 5,440,923 9.3 

Biomass 39,439,680 67.4 

Total 58,482,911 100.0 

   
PRODUCTION COST 

 
£/GJ % 

Capital  5.36 35.3 

O&M 3.20 21.1 

Biomass 6.62 43.6 

Total 15.18 100.0 
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EF-MTG concept 

Table C-2: Costs results for the EF-MTG concept 

CAPITAL COST 

 

Cost (£) % 

Biomass preparation & RSH 13,602,783 4.0 

Gasification & gas cleaning 40,445,361 12.0 

Gas conditioning 20,139,359 6.0 

Methanol synthesis 39,947,545 11.8 

MTG & upgrading 42,343,659 12.6 

Air separation 21,357,929 6.3 

Power plant 24,897,129 7.4 

Other direct costs 36,507,613 10.8 

Indirect costs 97,871,473 29.0 

Total 337,112,852 100 

 
  

OPERATING COST 

 

Cost (£) % 

O&M 13,484,514 21.4 

Power 3,371,129 5.3 

Fixed 6,742,257 10.7 

Biomass 39,439,680 62.6 

Total 63,037,580 100 

 
  

PRODUCTION COST 

 

£/GJ % 

Capital 7.90 38.6 

O&M 4.71 23.0 

Biomass 7.87 38.4 

Total 20.48 100 
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EF-TIG concept 

Table C-3: Costs results for the EF-TIG concept 

CAPITAL COST 

 
Cost (£) % 

Biomass preparation & RSH 13,602,783 5.1 

Gasification & gas cleaning 40,445,361 15.3 

Gas conditioning 20,139,359 7.6 

TIGAS & upgrading 44,218,909 16.7 

Air separation 21,357,929 8.1 

Power plant 19,567,008 7.4 

Other direct costs 28,691,852 10.8 

Indirect costs 76,918,582 29.0 

Total 264,941,784 100.0 

   
OPERATING COST 

 
Cost (£) % 

O&M 10,597,671 18.3 

Power 2,649,418 4.6 

Fixed 5,298,836 9.1 

Biomass 39,439,680 68.0 

Total 57,985,605 100.0 

   
PRODUCTION COST 

 
£/GJ % 

Capital 5.80 34.9 

O&M 3.46 20.8 

Biomass 7.36 44.3 

Total 16.62 100.0 
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CFB-FT concept 

Table C-4: Costs results for the CFB-FT concept 

CAPITAL COST 

 
Cost (£) % 

Biomass preparation & RSH 12,341,894 4.4 

Gasification & gas cleaning 55,280,179 19.6 

Gas conditioning 18,036,856 6.4 

FT synthesis & upgrading 45,745,324 16.2 

Air separation 17,350,199 6.2 

Power plant 20,825,623 7.4 

Other direct costs 30,537,408 10.8 

Indirect costs 81,866,244 29.0 

Total 281,983,728 100.0 

   
OPERATING COST 

 
Cost (£) % 

O&M 14,099,186 23.8 

Fixed 5,639,675 9.5 

Biomass 39,439,680 66.6 

Total 59,178,541 100.0 

   
PRODUCTION COST 

 
£/GJ % 

Capital 5.26 35.9 

O&M 3.13 21.4 

Biomass 6.26 42.7 

Total 14.65 100.0 
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CFB-MTG concept 

Table C-5: Costs results for the CFB-MTG concept 

CAPITAL COST 

 
Cost (£) % 

Biomass preparation & RSH 12,341,894 3.4 

Gasification & gas cleaning 55,280,179 15.4 

Gas conditioning 18,036,856 5.0 

Methanol synthesis 39,947,545 11.1 

MTG & upgrading 46,279,333 12.9 

Air separation 17,350,199 4.8 

Power plant 26,493,041 7.4 

Other direct costs 38,847,760 10.8 

Indirect costs 104,145,058 29.0 

Total 358,721,866 100.00 

   
OPERATING COST 

 
Cost (£) % 

O&M 14,348,875 22.2 

Power 3,587,219 5.6 

Fixed 7,174,437 11.1 

Biomass 39,439,680 61.1 

Total 64,550,211 100.0 

   
PRODUCTION COST 

 
£/GJ % 

Capital 7.33 39.5 

O&M 4.37 23.5 

Biomass 6.86 37.0 

Total 18.56 100.0 
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CFB-TIG concept 

Table C-6: Costs results for the CFB-TIG concept 

CAPITAL COST 

 
Cost (£) % 

Biomass preparation & RSH 12,341,894 4.3 

Gasification & gas cleaning 55,280,179 19.4 

Gas conditioning 18,036,856 6.3 

TIGAS & upgrading 47,267,532 16.6 

Air separation 17,350,199 6.1 

Power plant 21,038,732 7.4 

Other direct costs 30,849,898 10.8 

Indirect costs 82,703,983 29.0 

Total 284,869,274 100.0 

   
OPERATING COST  

 
Cost (£) % 

O&M 11,394,771 19.2 

Power 2,848,693 4.8 

Fixed 5,697,385 9.6 

Biomass 39,439,680 66.4 

Total 59,380,529 100.0 

   
PRODUCTION COST 

 
£/GJ % 

Capital 5.64 36.0 

O&M 3.36 21.5 

Biomass 6.64 42.5 

Total 15.64 100.0 
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FP-FT concept 

Table C-7: Costs results for the FP-FT concept 

CAPITAL COST 

 
Cost (£) % 

Biomass preparation & RSH 12,575,241 3.7 

Fast pyrolysis 78,891,010 23.0 

Gasification & gas cleaning 30,786,540 9.0 

Gas conditioning 15,329,846 4.5 

FT synthesis & upgrading 36,511,671 10.6 

Air separation 18,008,299 5.3 

Power plant 14,089,090 4.1 

Other direct costs 37,130,306 10.8 

Indirect costs 99,540,819 29.0 

Total 342,862,821 100.0 

   
OPERATING COST 

 
Cost (£) % 

O&M 15,214,299 23.5 

Power 2,506,015 3.9 

Fixed 6,439,045 10.0 

Bi-oil transport 3,625,000 5.6 

Biomass 36,899,520 57.0 

Total 64,683,880 100.0 

   
PRODUCTION COST 

 
£/GJ % 

Capital 10.79 38.4 

O&M 7.45 26.5 

Biomass 9.89 35.2 

Total 28.13 100.0 
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FP-MTG concept 

Table C-8: Costs results for the FP-MTG concept 

CAPITAL COST 

 
Cost (£) % 

Biomass preparation & RSH 12,575,241 3.2 

Fast Pyrolysis 78,891,010 20.2 

Gasification & gas cleaning 30,786,540 7.9 

Gas conditioning 15,329,846 3.9 

Methanol synthesis 30,407,608 7.8 

MTG & upgrading 31,652,353 8.1 

Air separation 18,008,299 4.6 

Power plant 17,665,850 4.5 

Other direct costs 42,375,046 10.8 

Indirect costs 113,601,188 29.0 

Total 391,292,982 100.0 

   
OPERATING COST 

 
Cost (£) % 

O&M 17,151,506 25.2 

Power 2,990,317 4.4 

Fixed 7,407,649 10.9 

Bi-oil transport 3,625,000 5.3 

Biomass 36,899,520 54.2 

Total 68,073,991 100.0 

   
PRODUCTION COST 

 
£/GJ % 

Capital 14.35 40.3 

O&M 9.73 27.3 

Biomass 11.52 32.4 

Total 35.60 100.0 
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FP-TIG concept 

Table C-9: Costs results for the FP-TIG concept  

CAPITAL COST 

 
Cost (£) % 

Biomass preparation & RSH 12,575,241 3.7 

Fast Pyrolysis 78,891,010 23.5 

Gasification & gas cleaning 30,786,540 9.2 

Gas conditioning 15,329,846 4.6 

TIGAS & upgrading 32,902,065 9.8 

Air separation 18,008,299 5.4 

Power plant 13,583,745 4.0 

Other direct costs 36,389,299 10.8 

Indirect costs 97,554,291 29.0 

Total 336,020,337 100.0 

   
OPERATING COST 

 
Cost (£) % 

O&M 14,940,600 23.3 

Power 2,437,590 3.8 

Fixed 6,302,196 9.8 

Bi-oil transport 3,625,000 5.6 

Biomass 36,899,520 57.5 

Total 64,204,906 100.0 

   
PRODUCTION COST 

 
£/GJ % 

Capital 11.60 38.1 

O&M 8.03 26.3 

Biomass 10.84 35.6 

Total 30.47 100.0 
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APPENDIX C.2: Sensitivity analysis results 

 

EF-FT concept 

 

Figure C-1: Sensitivity of biofuels production cost of the EF-FT concept 

 

 

 

Table C-10: Production costs of the EF-FT concept as a result of parameters’ variations 

 
-10% -5% 0 5% 10% 

Biomass cost 14.52 14.85 15.18 15.51 15.84 

Total plant cost 14.32 14.75 15.18 15.61 16.04 

O&M cost 14.95 15.07 15.18 15.29 15.41 

Yield 16.87 15.98 15.18 14.46 13.80 

Interest 14.82 15.00 15.18 15.36 15.55 

Plant availability 16.13 15.63 15.18 14.77 - 

Plant life 15.38 15.27 15.18 15.1 15.02 
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EF-MTG concept 

 

Figure C-2: Sensitivity of biofuels production cost of the EF-MTG concept 

 

 

 

Table C-11: Production costs of the EF-MTG concept as a result of parameters’ variations 

 
-10% -5% 0 5% 10% 

Biomass cost 19.69 20.08 20.48 20.87 21.26 

Total plant cost 19.21 19.84 20.48 21.11 21.74 

O&M cost 20.14 20.31 20.48 20.64 20.81 

Yield 22.75 21.55 20.48 19.5 18.61 

Interest 19.94 20.21 20.48 20.75 21.02 

Plant availability 21.88 21.14 20.48 19.87 - 

Plant life 20.78 20.62 20.48 20.35 20.24 
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EF-TIG concept 

 

Figure C-3: Sensitivity of biofuels production cost of the EF-TIG concept 

 

 

 

Table C-12: Production costs of the EF-TIG concept as a result of parameters’ variations 

 
-10% -5% 0 5% 10% 

Biomass cost 15.88 16.25 16.62 16.99 17.35 

Total plant cost 15.69 16.15 16.62 17.08 17.54 

O&M cost 16.37 16.49 16.62 16.74 16.86 

Yield 18.46 17.49 16.62 15.83 15.11 

Interest 16.23 16.42 16.62 16.82 17.02 

Plant availability 17.65 17.11 16.62 16.18 
 

Plant life 16.84 16.72 16.62 16.53 16.45 
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CFB-MTG concept 

 

Figure C-4: Sensitivity of biofuels production cost of the CFB-MTG concept 

  

 

 

Table C-13: Production costs of the CFB-MTG concept as a result of parameters’ 
variations 

 

-10% -5% 0 5% 10% 

Biomass cost 17.88 18.22 18.56 18.91 19.25 

Total plant cost 17.39 17.98 18.56 19.15 19.73 

O&M cost 18.25 18.41 18.56 18.72 18.88 

Yield 20.63 19.54 18.56 17.68 16.88 

Interest 18.07 18.32 18.56 18.82 19.07 

Plant availability 19.86 19.18 18.56 18.01 - 

Plant life 18.84 18.69 18.56 18.45 18.35 
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CFB-TIG concept 

 

Figure C-5: Sensitivity of biofuels production cost of the CFB-TIG concept 

 

 

 

Table C-14: Production costs of the CFB-TIG concept as a result of parameters’ variations 

 
-10% -5% 0 -5% 10% 

Biomass cost 14.97 15.30 15.64 15.97 16.3 

Total plant cost 14.74 15.19 15.64 16.09 16.54 

O&M cost 15.40 15.52 15.64 15.76 15.88 

Yield 17.37 16.46 15.64 14.89 14.21 

Interest 15.26 15.45 15.64 15.83 16.03 

Plant availability 16.64 16.11 15.64 15.21 - 

Plant life 15.85 15.74 15.64 15.55 15.47 
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FP-FT concept 

 

Figure C-6: Sensitivity of biofuels production cost of the FP-FT concept 

 

 

 

Table C-15: Production costs of the FP-FT concept as a result of parameters’ variations 

 
-10% -5% 0 5% 10% 

Biomass cost 27.14 27.63 28.13 28.62 29.12 

Total plant cost 27.05 27.59 28.13 28.67 29.21 

O&M cost 27.55 27.84 28.13 28.41 28.70 

Production rate 31.25 29.61 28.13 26.79 25.57 

Interest 27.4 27.76 28.13 28.5 28.87 

Plant availability 30.14 29.08 28.13 27.27 - 

Plant life 28.54 28.32 28.13 27.96 27.81 
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FP-MTG concept 

 

Figure C-7: Sensitivity of biofuels production cost of the FP-MTG concept  

 

 

 

Table C-16: Production costs of the FP-MTG concept as a result of parameters’ variations 

 
-10% -5% 0 5% 10% 

Biomass cost 34.45 35.03 35.60 36.18 36.75 

Total plant cost 34.17 34.88 35.60 36.32 37.04 

O&M cost 34.86 35.23 35.60 35.97 36.34 

Production rate 39.56 37.48 35.60 33.91 32.37 

Interest 34.64 35.12 35.60 36.10 36.59 

Plant availability 38.26 36.86 35.60 34.46 - 

Plant life 36.15 35.86 35.60 35.38 35.18 
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FP-TIG concept 

 

Figure C-8: Sensitivity of biofuels production cost of the FP-TIG concept 

 

 

 

Table C-17: Production costs of the FP-TIG concept as a result of parameters’ variations 

 
-10% -5% 0 5% 10% 

Biomass cost 29.39 29.93 30.47 31.01 31.55 

Total plant cost 29.31 29.89 30.47 31.05 31.63 

O&M cost 29.85 30.16 30.47 30.78 31.09 

Yield 33.86 32.07 30.47 29.02 27.7 

Interest 29.69 30.08 30.47 30.87 31.27 

Plant availability 32.63 31.49 30.47 29.54 - 

Plant life 30.91 30.68 30.47 30.29 30.13 
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