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ASTON UNIVERSITY 

REQUIREMENT FOR AND OPTIMISATION OF PREMIUM INTRAOC ULAR 

LENSES 

GURPREET KAUR BHOGAL 

DOCTOR OF PHILOSOPHY 

SEPTEMBER 2012 

Summary 

Premium intraocular lenses (IOLs) aim to surgically correct astigmatism and 
presbyopia following cataract extraction, optimising vision and eliminating the need 
for cataract surgery in later years. It is usual to fully correct astigmatism and to 
provide visual correction for distance and near when prescribing spectacles and 
contact lenses, however for correction with the lens implanted during cataract 
surgery, patients are required to purchase the premium IOLs and pay surgery fees 
outside the National Health Service in the UK. The benefit of using toric IOLs was 
thus demonstrated, both in standard visual tests and real-world situations. 
Orientation of toric IOLs during implantation is critical and the benefit of using 
conjunctival blood vessels for alignment was shown. The issue of centration of 
IOLs relative to the pupil was also investigated, showing changes with the amount 
of dilation and repeat dilation evaluation, which must be considered during surgery 
to optimize the visual performance of premium IOLs. 

Presbyopia is a global issue, of growing importance as life expectancy increases, 
with no real long-term cure. Despite enhanced lifestyles, changes in diet and 
improved medical care, presbyopia still presents in modern life as a significant 
visual impairment. The onset of presbyopia was found to vary with risk factors 
including alcohol consumption, smoking, UV exposure and even weight as well as 
age. A new technique to make measurement of accommodation more objective 
and robust was explored, although needs for further design modifications were 
identified. Due to dysphotopsia and lack of intermediate vision through most 
multifocal IOL designs, the development of a trifocal IOL was shown to minimize 
these aspects. 

The current thesis, therefore, emphasises the challenges of premium IOL surgery 
and need for refinement for optimum visual outcome in addition to outlining how 
premium IOLs may provide long-term and successful correction of astigmatism 
and presbyopia.  

Keywords: presbyopia, accommodation, intraocular lens, pupil centration, 
astigmatism 
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Cataract, or clouding of the crystalline lens in the eye, is currently the leading form 

of visual impairment in the world and surgery to remove cataracts is now the most 

common surgical procedure in the developed world, undertaken by 

ophthalmologists. Cataract Surgical Rate (CSR), defined as the number of cataract 

extractions carried out per million population per year is estimated at 4,000-6,000 

within developed countries (Vision 2020; Sparrow, 2007). The demand for cataract 

extraction and intraocular lens (IOL) implantation has grown due to improvements 

in the healthcare provision, which has increased life expectancy (Foster, 2000). In 

addition, visual expectation and task demands are increasing within the older 

population, particularly with the demands of mobile communication. Since the 

advent of intraocular lenses (IOLs) in the 1950’s, designs have advanced to not 

only optimize the spherical power of the eye for distance vision, but also aim to 

achieve spectacle independence through correction of astigmatism and by 

increasing the range of clear focus in the presbyopic eye. These ‘premium IOLs’ 

are not normally covered by public health systems and may benefit patients more 

than lenses that are conventionally implanted during cataract surgery. Hence a 

clear evaluation of the benefits they offer and when they should be considered 

needs to be understood.  
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1.1. Crystalline Lens 

The crystalline lens (Figure 1.1) is an avascular, biconvex structure located in the 

posterior chamber of the eye between the posterior surface of the iris and anterior 

vitreous chamber, composed of 65% water and 35% protein (Pipe and Rapley, 

1987). 

 

It is a flexible structure and can change shape by forces of contraction by the 

ciliary body and zonular fibres that are attached to the lens. This creates a change 

in dioptric power of the lens known as accommodation, allowing near objects to be 

focused on the retina. The lens provides approximately 20 dioptres of refractive 

power in its non-accommodated state and contributes to a third of the overall 

refractive power of the eye.  

 

 

 

 

 

 

 

 

 

 



 

Figure 1.1: Crystalline lens 
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The crystalline lens is initially formed from the inverted epidermal layer and is 

known for constant cellular mitosis; as more cells are produced older cells are 

pushed towards the centre of the lens leaving newer cells in the periphery 

(Davson, 1990). The cells eventually lose all their organelles giving the vital 

property of transparency.  

 

The thickness of the lens in the un-accommodated state is approximately 3.5-

5mm, which increases by 0.02mm throughout each year of life (Dubbelman et al., 

2001; Remington, 2005). The diameter of the adult lens measures approximately 

9mm (Hogan et al., 1971; Remington, 2005) which increases through life from 

6mm, with its posterior surface being much steeper in comparison to its anterior 

surface. 

 

The lens is attached to the ciliary body by elastic fibres known as the zonules of 

Zinn. The structure consists of many components (Figure 1.1 &1.2) but is often 

divided into three main entities; the lens capsule, lens fibres and epithelium. The 

lens capsule is an ellipse shaped basement membrane that surrounds the lens 

cortex and nucleus. It is the thickest basement membrane within the human body 

and comprises of two main purposes; firstly it encases the lens contents and IOLs 

when implanted and secondly translates the force of contraction to the lens 

components during accommodation. Additionally, the capsule provides a barrier to 

large molecules from entering into the lens which would obscure its transparency. 
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The main component of the capsule is type IV collagen arranged in a meshwork 

with sulphated glycosaminoglycans giving its property of elasticity. The young lens 

capsule is very strong and shows high elasticity which is eventually lost with aging 

(Krag et al., 1997). The thickness of the capsule is not uniform; it is thickest around 

the anterior pole and thinnest at the equator. The lens capsule comprises of the 

anterior and posterior capsules which merge at what is known as the ‘equatorial’ 

plane (David et al., 2007) and is often described as being axisymmetric (David et 

al., 2007; Krag et al., 1994), showing nonlinear behaviour (David et al., 2007; Krag 

et al., 1994).  
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Figure 1.2: Internal view of crystalline lens 
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There is rising interest in the functioning of the capsule as such knowledge 

provides a wider understanding of the mechanism of accommodation. Pedrigi et al 

(2007) suggest cataract extraction may cause alterations to the properties of the 

lens capsule and it has been established there is an increase in lens capsule 

thickness following cataract extraction, possibly due to deposition of proteins such 

as, collagen types I and III. Such interference in the structure of the capsule may 

enhance the development of posterior capsular opacification (PCO).  

 

Fincham (1937) first described the elastic properties of the lens capsule, as he 

noted the remaining lens adopted an un-accommodated state on removal of the 

capsule, suggesting the capsule moulded the lens substance into its 

accommodated shape. Since then it has been confirmed that both the lens 

material and lens capsule indeed possess some elastic properties (Weale, 1963). 

 

The lens fibres which make up the cortex and nucleus of the lens are continually 

produced all through life, with newer fibres being laid on the outer regions of the 

lens. These crescent-like shaped cells measure approximately 8-10nm. Within the 

cytoplasm of these fibres, lens proteins called crystallins are found in high 

concentration. Crystallin concentration in the nucleus is approximately 70% and 

15% within the lens cortex, giving the crystalline lens a gradient refractive index 

(Weeber et al., 2005). 
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The epithelium of the lens, located immediately adjacent to the anterior lens 

capsule, is composed of a single layer of cuboidal cells providing metabolic 

transport for the entire structure and regulating its osmolalrity, in addition to 

providing new lens fibres through division and differentiation. These cells span 

15µm in width and 6µm in height and become much longer towards the lens 

equator (Pipe and Rapley, 1987). 

 

Within the pre-equatorial region of the lens, known as the germinal zone, cell 

mitosis regularly occurs, the new cells then move into a transitional zone where 

they differentiate into lens fibre cells. The processes of the new cells pass through 

the anterior and posterior epithelium, forming layers on top of older cells by 

pushing older fibres towards the nucleus of the lens. These processes are the lens 

fibres. The fibres eventually meet with other fibres within their layer and form a 

suture. During embryological stages they link as three branches forming a Y-

shaped suture which further develop into a radial pattern as seen in an adult lens.      

 

The crystalline lens receives nutrients from the aqueous humour and vitreous via 

diffusion through the lens capsule with waste products being removed in a similar 

way, generally there is a low metabolic requirement.     

 



24 

 

Measurements of capsular thicknesses between ages 1 to 94 years show 

increases in thickness up to 70 years (Krag et al., 2003) although this differs 

between the anterior and posterior regions. The posterior capsule shows no 

changes with age and may even become thinner with age (Barraquer et al., 2006), 

whereas the anterior capsule is considerably thicker (Bron et al., 1997) and is the 

thickest of basement membranes in the entire human body (Strenk et al., 2005).    

 

Understanding the mechanism of functions of the lens and its components and the 

extent to which they contribute to the phenomenon of accommodation will allow 

further advances in creating more efficient IOLs with the capability to provide 

effective accommodation or reviving accommodative ability.  
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1.2. Accommodation 

Accommodation is the ability to alter the dioptric power of the eye by changes in 

anatomical structures in order to produce a retinal image of objects at various 

distances. Many theories have been postulated to explain this phenomenon but its 

exact mechanism has not yet been determined. The first comprehensive and most 

widely accepted theory of accommodative mechanism is that of Helmholtz (1855, 

cited in Strenk et al., 2005), whereby accommodation results from ciliary muscle 

contraction, causing relaxation of resting zonular tension surrounding the lens 

equator. The outward tension on the lens capsule is hence released leading to an 

increase in anterior and posterior lens surface curvature with a decrease in lens 

diameter, resulting in an increase of the dioptric power of the crystalline lens. 

Cessation of accommodation is facilitated by relaxation of the ciliary muscle, 

zonular tension is restored on the lens equator, pulling the capsule into a flatter 

form, decreasing the curvature of lens surfaces and increasing the lens diameter 

(Helmholtz 1855 cited in Strenk et al., 2005).        

 

The Helmholtzian theory suggests the crystalline lens is an elastic entity taking on 

a natural accommodative state with removal of tension forces. The theory was 

based upon observations of forward movements of the anterior lens surface and 

increases in curvature with accommodative effort, it was also believed that the 

posterior surface curvature increased but no movement was observed. Axial 

thickness was recorded to have increased by 0.5mm, however, as the lens volume 
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did not alter it was concluded that equatorial diameter may decrease on 

accommodation. 

In order to refine the Helmholtzian theory, experimental work by Fincham (1937) 

recognized the backward movement of the posterior lens surface, in addition to 

ciliary body movement and decreases in lens diameter. It was soon concluded that 

the lens capsule is under tension whilst unaccommodated which is released on 

accommodative effort, providing evidence for Helmholtz previous description. 

 

Despite evidence from Fincham, Helmholtz theory did not gain entire acceptance 

and has faced many opposing theories. One opposition, prior to Fincham’s 

findings, includes that of Tscherning (1895, cited in Strenk et al., 2005) who 

believed the zonular fibres do not relax and contraction forces of the ciliary muscle 

further increased zonular tension moulding the lens into a conoidal shape. 

However, Fincham (1937) later provided evidence that the zonular tension in fact 

decreases on accommodation, hence proving the theory of Tscherning incorrect. A 

second theory proposed by Tscherning (1909, cited in Strenk et al., 2005) explains 

ciliary contraction to exert tension on the choroid which compresses the vitreous 

against the periphery of the posterior lens surface whilst the anterior lens surface 

remains stationary with tension from zonular fibres.  
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A more recent theory by Schachar et al (1992), in favour of Tscherning, proposes 

stretching of the lens causes the central lens surface to become steeper and 

central thickness to increase while peripheral areas of the lens surface become 

flatter inducing an increase in power. Schachar and Anderson (1995) provide 

details that movement of the anterior ciliary muscle towards the sclera, on 

contraction of the ciliary muscle, produces increased zonular tension at the lens 

equator while tension is released from anterior and posterior zonular fibres. It is 

believed that the outward force produced shifts the lens equator towards the sclera 

which with relaxation of zonules would reduce the curvature of peripheral lens 

surfaces coupled with increases in central curvature. Schachar’s theory however 

has not gained wide acceptance. There has been controversy over Schachar’s 

proposals as various studies have failed to support his theory of accommodation, 

also studies of scleral expansion surgery have not reported any valuable 

restoration of accommodation (Glasser and Kaufman, 1999; Mathews, 1999).    

 

Obtaining in-vivo evidence for accommodation theories is challenging as imaging 

of the ciliary body and fibres are obstructed by the iris as well as image distortion 

with corneal power (Strenk et al., 2005). Published observations by Fincham 

(1937, cited in Strenk et al., 2005), however, on a case of aniridia noted a 

decrease in diameters of the lens equator and ciliary body with increases in lens 

thickness. Fincham’s finding has been further supported by more recent work of 

Wilson (1997), where retro-illumination infrared video imagery has also captured a 

decrease in lens equator diameter.  
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The general understanding of accommodation at present combines the findings of 

Helmholtz and Fincham. On accommodation, contraction of the ciliary muscle 

causes movement towards the lens equator releasing zonular tension. The lens 

capsule then shapes inner softer material into its accommodated form. Such an 

action increases lens surface curvatures and axial thickness with a corresponding 

decrease in diameter. Ceasing accommodation involves relaxation of the ciliary 

body which is pulled backwards. Zonular fibre tension is then restored pulling the 

lens back into a flatter form.       
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1.3. Presbyopia 

The progressive loss of accommodation with age, termed presbyopia, is a process 

believed to occur as a result of age-related anatomical changes of the eye. 

Although, not yet entirely understood, it is assumed to be resultant of a variety of 

mechanical changes occurring within the accommodation system. Finding a 

solution to presbyopia is now becoming of growing interest in ocular research as 

visual demands of an aging population increase; for this the processes leading to 

presbyopia must be understood. 

 

As with accommodation various explanations for the development of presbyopia 

exist. In periods of early research Helmholtz (1855, cited in Strenk et al., 2005) had 

suggested it to be due to lens sclerosis whilst Donders (1864, cited in Strenk et al., 

2005) approached the explanation by describing the lack of shortening of the 

ciliary muscle with age. Further proposals by Tscherning-Pluugk (1909, cited in 

Strenk et al., 2005) mention a reduction in viscosity of the vitreous humour (Strenk 

et al., 2005). Proposed theories for presbyopia may be categorized as lenticular 

(Duane-Fincham theory) or extralenticular theories (Hess-Gullstrand theory). 
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It is generally assumed that presbyopia is a result of mechanical changes of the 

crystalline lens. For some time it has been assumed that increased stiffness of the 

crystalline lens is a cause of presbyopia development (Gilmartin, 1995) and has 

been supported by many investigators suggesting increased stiffness reduces the 

ability of the lens to change shape (Glasser et al., 1998; Pierscionek, 1995; 

Atchison, 1995). 

 

 A more recent theory has been introduced proposing that lens growth leads to 

accommodative loss. With age the ciliary muscle is displaced anteriorly and 

inwards (Strenk et al., 1999; 2005). The pupil margin is placed against the anterior 

surface of the lens which produces an upward force pushing against the iris and 

ciliary muscle. A second tangential force acts on the ciliary muscle produced by 

the sclera leading to an anterior and inward shift in the position of the ciliary 

muscle and iris root. Such displacement may cause a decrease in pupil diameter 

which may explain the development of senile miosis; this allows the pupil margin to 

move towards the anterior surface the lens where it is thickest. As lens growth 

continues with age, the ciliary muscle moves further anteriorly and upwards 

decreasing the circumlental space available and reducing the zonular tension in 

the process, thus creating greater curvature on disaccommodation with less 

effective ability to respond on accommodation. These events have been described 

as the Modified Geometric Theory which supports the variety of changes that have 

previously been indentified in lenticular aging (Strenk et al., 2005). 
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Presbyopia is therefore most likely attributed to a combination of lenticular and 

extralenticular effects, making the condition ‘multifactorial’ (Weale, 1989; Burd et 

al., 2002). However, the changes in mechanical properties of the lens structure do 

not present until after presbyopia has manifested. It may therefore be proposed 

that the continuous increase in lenticular mass generates these changes and is 

thus the sole factor for developing presbyopia.  Presbyopia, although known to 

generally occur in the fourth decade of life, differs in rate of progression amongst 

individuals and may present earlier or later than when commonly expected. 

Various aspects of lifestyle may influence this rate of progression such as; diet, 

climate, latitude, environmental temperature and race. Understanding the aetiology 

of presbyopia will aid advancements in provisions which aim to correct presbyopia. 

In addition, knowledge of factors which increase or inhibit its progression will assist 

in the global research aim of alleviating this inevitable effect of age.  
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1.4.      Cataracts  

A cataract, from the Latin cataracta, is defined as opacification of the crystalline 

lens. It leads to the loss of transparency of the lens, causing vision to become hazy 

and if left untreated can eventually lead to blindness. Patients present with a 

reduction in visual acuity and occasional complaints of glare and ‘clouded’ vision.  

Classification of cataracts may be anatomical or aetiological. Aetiological 

classification is divided into many different categories as listed in Table 1.1. 

 

 
Aetiological Classification of Cataracts 

 

Age-Related  
Traumatic:  injury or surgery 

Congenital:  hereditary or complications on birth 

Systemic disease: diabetes mellitus 

Secondary to ocular pathology:  uveitis, glaucoma,  retinitis pigmentosa 

Drug-Induced:  chloroquinine, steroids, amiodarone  

 

 

 

 

 

 

Table 1.1: Categories of aetiological classification of cataracts 
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Age-related (senile) cataract remains the most common form encountered, 

however, the formation of a cataract can be multifactorial (Hammond, 2001) and 

cannot be attributed to a single aetiology. The anatomical classification seems the 

more suitable choice for clinicians, which consists of three types or categories; 

cortical, nuclear and subcapsular cataract, each of which impose a varied affect on 

visual function.       

 

Cortical cataracts (Figure 1.3.) are opacities located in the lens cortex usually 

appearing as spokes radiating from the lens periphery. Such opacities rarely cause 

visual symptoms until they have extended further centrally interfering with the 

visual axis.  
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Figure 1.3: Cortical Cataract 
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Nuclear cataract (Figure 1.4) typically begins with brunescence, a brown 

discolouration, of the lens nucleus which increases central refractive index leading 

to its associated myopic shift. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.4: Nuclear Cataract 
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Subcapsular cataract may occur on the anterior or posterior regions of the 

crystalline lens. Anterior subcapsular cataract occurs with fibrous metaplasia of the 

anterior epithelium whilst posterior subcapsular cataract (Figure 1.5) is due to 

migration of lens epithelial cells. Individuals suffer particularly debilitating glare 

from bright lights with the latter and often require removal far earlier than other 

forms of cataracts.      

 

 

 

 

 

 

 

 

Figure 1.5: Posterior Subcapsular Cataract 
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If cataracts remain untreated they may progress into a mature cataract in which 

the crystalline lens becomes completely opaque. Over time leakage of fluid and 

shrinkage of the cataract leads to a hypermature cataract. Liquefaction of the 

cataract cortex into a milky fluid may result in morgagnian cataract; the lens 

nucleus in this case may sink inferiorly causing potential capsule ruptures. 

Leakage of fliud through ruptures may cause severe inflammation within the eye 

and may lead to phacomorphic glaucoma.    

 

Cataract increases light scatter within the eye degrading contrast sensitivity (Elliott, 

1993; Miyajima et al., 1992) and as a result degrades the retinal image that is 

formed. There is currently no medicinal cure for the occurrence of cataract; the 

only successful remedy is surgical extraction and replacement of the natural 

crystalline lens with an intraocular lens implant (IOL).   

 

Cataract extraction is indicated where there is significant deterioration of vision. It 

is generally agreed upon that referral for cataract surgery is warranted when visual 

quality is significantly affected. Referral for extraction, however, should not be 

based solely upon visual acuity measurements, degree of glare and ability to carry 

out daily tasks must also be taken into consideration. Individuals with reasonable 

acuity on high contrast test charts may demonstrate a reduction in visual 

functioning on contrast sensitivity or brightness acuity tests. No NICE (National 

Institute for Health and Clinical Excellence) guidelines currently exist on cataracts 



38 

 

warranting referral for surgery hence symptoms must be appropriately investigated 

to determine how a patient’s lifestyle is affected by the reduction in vision. 

 

1.5.      Cataract Surgery 

Cataract surgery dates back to early civilizations with the Egyptians, Chinese and 

Indus Valley civilizations all describing primitive methods of cataract extraction or 

displacement from the visual axis. A procedure known as couching was the 

earliest form of cataract treatment being dated as early as 600 BCE, this involved 

inserting a sharp needle into the eye and displacing the opaque material into the 

vitreous cavity, resulting in aphakia and blurred vision (Fan, 2005). Couching 

continued up to the 19th century and is still performed in some developing 

countries, however, severe post-operative complications are commonly associated 

with this procedure such as endophthalmitis and retinal detachment (Bamashmus, 

2010).  

 

Following the traditional couching method, intracapsular cataract extraction (ICCE) 

and extracapsular cataract extraction (ECCE) developed which coexisted in the 

early 1900s. ICCE, in which a large incision of approximately 14-16mm in the 

cornea facilitated the removal of the entire lens and capsule, this procedure 

however was associated with high rates of complications and is now rarely 

practiced. ICCE procedures require implantation of an anterior chamber IOL as it 

lacks the capsular bag to support a posterior chamber IOL, although the majority of 
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cases remained aphakic, due to other factors such as anterior chamber depth.. 

Extracapsular cataract extraction (ECCE) involved removal of the cataractous 

material manually through a large incision of 10-12mm leaving the capsular bag 

within the eye and required stitches. These early procedures have now been 

superseded by the more preferred phacoemulsification procedure. 

Phacoemulsification works on a similar principle to ECCE where cataractous 

content is removed leaving the lens capsule behind, however removal is performed 

using an ultrasonic instrument to break up the cloudy material, allowing smaller 

incision sizes of approximately 3.2mm and fewer surgical complications.  Due to 

the high costs of phacoemulsification ECCE is still commonly performed in 

developing countries and may occasionally be required in developed countries if 

phacoemulsification presents difficulty or to facilitate the removal of highly dense 

cataracts. As part of cataract surgery, intraocular lenses are usually implanted into 

the patient’s eye to correct for the refractive error that would present with aphakia, 

relieving patients of significantly poor vision following surgery. 

 

Prior to intraocular lenses, extraction of cataracts left patients aphakic requiring 

very high positive powered spectacles. Intraocular lenses to replace the optical 

power of the crystalline lens were not introduced until after the World War II. Sir 

Harold Ridley working in St. Thomas’s Hospital in London examining aircraft pilots, 

with penetrating injuries from their shattered perspex canopes, noticed the relative 

biomimetic properties of the synthetic material (Apple and Sims, 1996). His early 

attempts at intraocular lens design and implantation required large corneal 
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incisions and many failed due to optical and physiological complications, but 

formed the basis for the development of modern IOLs. Since then and with recent 

developments in intraocular lens implants there has been a growing interest 

amongst researchers in methods of restoring optimal vision following cataract 

surgery.  

Before implantation, determination of IOL power is required, which is subject to 

various ocular measurements including; corneal curvature, axial length, anterior 

chamber depth and post-operative positioning of the IOL. Originally A-scan 

ultrasound and keratometry were performed; more recently pre-operative 

measurements are established using the Zeiss IOL Master, which utilises the 

sophisticated technique of partial coherence interferometry (PCI) to accurately 

measure axial length, anterior chamber depth and automated keratometry. 

Occasionally A-scan ultrasound is performed with more dense opacities due to 

measurement difficulties with PCI.  

 

In recent years, with increased cataract extractions underway due to an ageing 

population, higher demands of spectacle independence from the older population 

have resulted and optimizing vision after cataract surgery is now paramount. 

Advances such as smaller wound incisions, continuous curvilinear capsulorhexis 

(CCC), improved biometric techniques and use of topical anesthesia have led to 

the highly successful post-operative outcomes of cataract surgery. As surgical 

techniques have advanced profoundly interests now turn to advancing intraocular 

lens designs to provide optimum vision following cataract extraction. 
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1.6. Intraocular Lenses 

Intraocular lenses consist of an optic where the refractive power of the implant is 

concentrated, projections from this termed haptics which provide stability when 

implanted in the eye (Figure 1.6). 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.6: Diagram of IOL 
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The majority of IOL implants in routine cataract surgery are monofocal and 

spherical, providing clear vision at only one focal length. Emmetropia is usually the 

aim for distance vision with monofocal IOLs, leaving the patient with no true 

accommodation, although some depth of focus is present due to the pupil 

aperture, optical aberrations and the patient’s tolerance to blur (Wolffsohn et al. 

2010). The desire to optimize uncorrected distance vision post-surgery has 

resulted in the development of aspheric, toric and light-adjustable lenses (LALs). 

To extend the range of eye focus, multifocal designs have been developed, 

together with attempts to restore more natural eye focus with ‘accommodating’ IOL 

designs. Complementing these optical advances, the transmission properties of 

IOLs have been altered to try to protect the retina, inserters and 

phacoemulsification techniques have allowed smaller corneal incisions and the 

edges have been moulded to reduce posterior capsular opacification (PCO). In the 

following sections these various designs of intraocular lenses will be described. 
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1.6.1. Aspheric IOLs 

The positive aberration of the cornea in youth is mainly cancelled out by the 

negative spherical aberration of the crystalline lens. In the aging eye there is 

increasing positive aberration which contributes to a decrease in visual quality due 

to imbalance of the aberration between the two structures (He et al., 2003). 

Removal of the natural lens and introduction of a spherical IOL leaves positive 

aberration of the cornea creating high-order aberrations (Barbero et al., 2003).  

 

The development of aspheric IOLs has aimed to balance the spherical aberration 

of the cornea by introducing negative spherical aberration (Holladay et al., 2002). It 

was estimated that aspheric lenses would decrease high-order aberrations to a 

level below that of the cornea in 45-86% of implantations (Wang and Koch., 2005) 

thereby improving contrast sensitivity and visual acuity of the eye (Fahle, 2009). 

Aspheric lenses may be designed to be aberration-free or simply reduce levels of 

existing aberration; termed aberration-correcting IOLs (Buckhurst et al., 2010). The 

performance of aspheric IOLs in comparison to spherical IOLs have shown to be 

superior or at least equal for distance visual acuity (Mester et al., 2003; Bellucci et 

al., 2005) and mesopic contrast sensitivity (Mester et al., 2003; Packer et al., 

2002), although the depth of clear focus has been found to be reduced in some 

(Marcos et al., 2005; Rocha et al., 2007; Nanavaty et al., 2009), but not all studies 

(Shentu et al., 2008). However, it should be noted that the optical benefits of these 

IOLs are heavily reliant on their centration within the capsular bag and pupil size 
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(Montés-Micó et al., 2009), for example decentration exceeding 0.5mm would 

provide no beneficial asphericity (Atchison, 1991).  

 

 

1.7. Presbyopia & IOLs 

Although the power of implanted conventional monofocal IOLs is usually calculated 

from ocular biometry to correct distance refractive error, the range of clear focus 

varies greatly between individuals. This range of clear focus is due to residual 

myopia, myopic astigmatism, monovision, corneal multifocality through aberrations 

and pupil miosis (Nakazawa and Ohtsuki, 1983; 1984; Nanavaty et al., 2006). A 

combination of these factors in eyes implanted with monofocal IOLs can produce a 

pseudo-accommodative range of 0.7 - 5.1D (Menapace et al., 2007). 

 

Monovision, where one implant is optimized for distance vision and the other 

focused at a closer distance, is often targeted by surgeons to optimize the range of 

clear vision. The technique relies on the suppression of the blurred image from one 

eye by the brain, but is not tolerated by an estimated 10-20% of patients 

(Greenbaum, 2002; Handa et al., 2004). Monovision also results in stereopsis and 

contrast sensitivity loss, with the reduction growing with the power difference 

between the two eyes (Durrie; 2006). However, a recent study of IOL monovision 

with on average 1.2D anisometropia between the eyes has suggested that contrast 
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and stereopsis can be maintained, although only one quarter of patients were 

spectacle independent (Finkelman et al., 2009). 

 

To meet demands of clearer near vision and spectacle independence premium 

intraocular lenses have been devised to optimise vision for both distance and near. 

Toric IOLs aim to correct higher degrees of astigmatism for distance vision, while 

multifocal and accommodating designs aim to provide clarity for near tasks in 

addition to distance vision. The remainder of the current chapter will discuss the 

current premium IOL options available for implantation during cataract surgery and 

refractive lens exchange. 

 

1.8. Premium IOLs 

 

1.8.1.  Multifocal IOLs         

Simultaneous vision is used in IOLs to provide multifocal clear distances. Until 

recently, the optical designs have been concentric refractive or diffractive designs, 

or a combination of both. Publications on their performance have been limited by 

the use of non-linear Snellen acuity measurements at distance and reporting the 

number of people who can read Jaegar text of a certain size at near (e.g. Steinert 

et al., 1999; Pineda-Fernandez et al., 2004; Javitt and Steinert, 2000) when it is 

well established that Jaegar print sizes differ between charts (Mehr and Fried, 

1976).  
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Enlargement of pupil size such as in dim conditions, exposes more annular zones 

of the IOL, changing the distribution of light energy between the distance and near 

focus of refractive IOLs, depending on the optical design. Hence refractive IOLs 

are dependent on pupil size and this is important to consider prior to implantation. 

The brain selects the in focused image and suppresses other. Such interference 

can lead to development of various photopic phenomena. 

 

 Although multifocal IOLs split the light entering the pupil between distance and 

nearer distances, most studies show comparable distance vision between 

multifocal and monofocal IOLs (Steinert et al., 1999; Vaquero-Ruano et al., 1998; 

Orme et al., 2002) as well as improvements in near acuity and depth of focus in 

multifocal IOLs (Javitt and Steinert, 2000).  

 

Refractive multifocal designs (Figure 1.8) comprise of concentric areas of differing 

refractive power usually on the anterior optic surface, created by differences in 

curvature for distance and near power correction. Refraction is described as the 

change in direction of light rays travelling from one medium to another of differing 

density due to a change in speed. Using this principle a refractive IOL is able to 

change the way in which light focuses on the retina. The changes in power within 

regions of a refractive IOL enable foci from a range of distances to fall on the retina 

simultaneously. Distance correction tends to be central with peripheral regions 

designated to near correction. Such lenses are distanced-biased for small pupils, 
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allowing nearly all light energy to be used for distance viewing as peripheral near 

focus zones are obstructed by the pupil. Enlargement of pupil size such as in dim 

conditions, exposes more annular zones of the IOL, where some light energy is 

transferred to near focus regions and less to that of distance. When viewing in the 

distance regions providing distance focus form an image on the retina whilst other 

regions form a blurry image. These are superimposed; the brain selects the in 

focused image and suppresses other. Such interference can lead to development 

of various photopic phenomena. Most refractive IOLs are dependent on pupil size 

and thus this is important to consider prior to implantation.  

 

Diffractive IOLs (Figure 1.7) use the Huygens-Fresnel principle of concentric 

eschelets on the surface of the IOL to create a diffraction pattern by acting as a 

grating. Unlike refractive optics, all rings work together to produce constructive and 

destructive interference for distance and near foci, and hence the optics are largely 

pupil independent. Not all the available incident light can be used by a diffractive 

IOL, approximately 40% of light is used for both distance and near viewing, hence 

contrast is lost as well as halos created by the concentric prism elements.  
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Figure 1.7: Fully diffractive multifocal optic. Light rays diffracted to 
different foci through diffractive surface 
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Figure 1.8: Refractive multifocal optic. Juxtaposition of zones of 
differing power produces different foci. 
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The third multifocal design known as apodized diffraction or ‘partially diffractive’ is 

a combination of refractive and diffractive techniques to obtain multifocality 

(Kohnen and Derhartunian, 2007). To achieve this, the step height at each 

diffraction step is gradually decreased resulting in reduced reflection at edges.  

The aim of such a design is to improve image quality, to reduce contrast sensitivity 

loss and to be less pupil dependant. Patients report high levels of spectacle 

independence following implantation of multifocal IOLs (e.g. Alfonso et al., 2008) 

which indicates the benefit of their use. Distance visual acuity is often better with a 

distance dominant IOL, while near visual acuity shows more improvement with a 

near dominant lens (Steinert, 2000; Alfonso et al., 2008; Kershner, 2003; Jacobi et 

al., 2002; Choi et al., 2008; Simpson, 1992; Berdeaux et al., 2008). Bilateral 

multifocal IOL implantation generally gives better visual function (Steinert, 2000; 

Pineda-Fernandez et al., 2004), however unilateral implantation of a multifocal IOL 

in those with unilateral cataracts may still prove beneficial due to possibilities of 

aniseikonia and anisometropia with spectacle correction (Jacobi et al., 1999). 

Mixing and matching different multifocal IOLs in the two eyes of an individual 

patient is now becoming a common technique to overcome the limitations of a 

single design (Gunenc and Celik, 2008; Goes, 2008; Hutz et al., 2010).  
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The most recent development in premium lenses aiming to overcome presbyopia 

following cataract surgery is the trifocal IOL. The aim of this design is to provide 

better intermediate vision in addition to good distance and near vision by 

incorporating three foci into the optic of the IOL. Being of relatively new concept 

very few studies have reported the visual performance of these lenses. Although 

distance and near vision is maintained with the added benefit of intermediate 

vision there is skepticism of contrast sensitivity and dysphotopsia as this IOL is in 

effect of diffractive design. To date, only two studies by Voskresenkaya et al 

(2010) and Gatinel et al (2011) have investigated trifocal performance, the latter 

only being of optical bench tests. Both studies show promising results however 

further investigations are required within patients to fully explore the benefits of 

such a design.      

 

Despite improved near visual acuity and comparable distance visual acuity to 

spherical IOLs, implantation of multifocal IOLs are associated with photopic 

phenomena such as haloes, disability glare and reduced contrast sensitivity 

particularly in mesopic conditions (Steinert, 2000; Richter-Mueksch et al., 2002; 

Awwad et al., 2008). Glare and halo phenomena tends to occur more in refractive 

multifocal IOL designs than diffractive, though contrast sensitivity shows greater 

impairment with diffractive designs (Pieh et al., 1998; Hayashi et al., 2009). 

However, such visual phenomenon is shown to reduce over time as adaptation 

occurs (Vaquero-Ruano et al., 1998). The contrast sensitivity can be improved and 
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the range of clear focus extended into the intermediate range by adding asphericity 

to the multifocal IOL (Alfonso et al., 2008).  

It is important to establish the visual demands of the patient in order to provide the 

most suitable near additional power. Lower adds provide better intermediate, but 

poorer near vision than higher additions, along with less unwanted visual effects 

such as reduced contrast sensitivity loss (Hayashi et al., 2009). The IOL power is 

traditionally stated for the spectacle plane so this must be converted to the optical 

plane to determine the optimum working distance with the IOL implanted. Residual 

astigmatism after IOL implantation reduced the effectiveness of multifocal IOLs; 

therefore corneal astigmatism must be quantified prior to surgery and reduced by 

corneal relaxing incisions or a toric multifocal IOL if greater than about 1 dioptre 

(Hayashi et al., 2010). 

 

 

 

 

 

 

 

 

 

 



53 

 

1.8.2. Accommodating IOLs 

Current ‘accommodating’ IOLs rely on the Helmholtz theory of accommodation, 

where inwards and forward contraction of the ciliary muscle loosens the zonules 

coupling the muscle with the crystalline lens. The elastic lens capsule can then 

take up a more convex shape, increasing its optical power. Studies using 

ultrasound biomicroscopy (Bacskulin et al., 1996; Stachs et al., 2002) and 

magnetic resonance imaging (MRI) (Strenk et al., 1999; 2006) demonstrating that 

the human ciliary muscle maintains its contractility throughout life, allows a 

mechanism to control an IOL through natural eye focusing structural changes. 

Accommodating IOLs were initially conceptualised in the 1980s by J. S. Cumming 

who observed remarkable near vision acuity in patients implanted with plate haptic 

silicone IOLs. Though pseudoaccommodation, which is described as the 

subjective range of clear focus enhanced by ocular aberrations, pupil size and an 

individual’s tolerance to blur, could not be solely responsible, measurements with 

A-scan ultrasonography showed movement of the IOL (Doane, 2004).  
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Accommodating IOLs are categorised in accordance to their mechanism of action 

(Sheppard et al., 2010). Assessment of the performance of accommodating IOLs 

must separate true accommodation from pseudoaccommodation. Many studies 

have attempted to image the lens mechanism using pharmacological (2% 

pilocarpine) rather than physiological methods to stimulate the ciliary muscle, but 

the resulting change shows the maximum potential of the implant rather than the 

natural or achievable objective accommodation (Koeppl et al., 2005). The following 

will discuss the various types of accommodating IOL designs. 
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1.8.2.1. Single-Optic IOLs 

Single optic IOLs (Figure 1.9) were designed to move forward with contraction of 

the ciliary muscle, either due to the forward movement of the capsule and 

contraction of the lens equator pushing against a hinge mechanism, or due to the 

increased vitreous pressure from the ciliary muscle bulk displacement into the 

vitreous chamber (Glasser, 2008). The space in the anterior chamber limits the 

potential objective accommodation of single optic-shift IOLs to approximately 1.5D 

(for a maximum 1mm movement; McLeod et al., 2003). Although dynamic 

objective accommodation has been shown (Wolffsohn et al., 2006a), the average 

objective accommodation is only as much as 0.75D (Wolffsohn et al., 2006b; 

Menapace et al., 2007) and decreases with increased time after surgery. One 

study investigating the performance of the 1CU accommodating lens 

(HumanOptics AG, Erlangen, Germany) reported a decrease in objective 

accommodation of -0.19 ± 0.44D with a corresponding decrease in subjective 

measurement of -0.25± 0.59D  two years following implantation (Wolffsohn et al., 

2006a,b). More recently it has been shown that the mechanism of action mainly to 

be due to the flexing of the lens changing the high order aberrations, although not 

in a systematic manner between individuals (Wolffsohn et al., 2010). PCO rates 

are also high due to the IOLs not forming a restrictive kink in the capsule with lens 

fibrosis following cataract surgery (Sheppard et al., 2010).  

 

 



Figure 1.9: Single-Optic accommodating IOL mechanism 
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1.8.2.2. Dual-Optic IOLs 

Dual-optic IOLs consist of a biconvex anterior optic with a power of approximately 

32D and a posterior negatively powered haptic which is altered in power to correct 

for the patients ocular biometry. The optics are separated by connecting spring 

haptics, which are designed to push the optics further apart on contraction of the 

ciliary muscle to create an  inwards equatorial tension from the crystalline lens 

capsule. The optics therefore take the form of a Galilean telescope and can deliver 

up to 4.0D of power change within the confines of the anterior chamber (McLeod et 

al., 2007). Currently, there is only one published report on the clinical performance 

of such an IOL. The Synchrony dual-optic accommodating IOL (Visiogen, Irvine, 

CA) (Figure 1.10) was reported to give 3.2 ± 0.9D of accommodation (Ossma et 

al., 2007), although the defocus curve presented has no error bars and is 

symmetrical around zero dioptres which casts doubt over the methodology used. 

However, the low PCO rate reported supports the view that holding the lens 

capsule open after cataract surgery may limit epithelial cell migration to the 

posterior pole. 
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Figure 1.10: Synchrony dual-optic accommodating IOL 
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1.8.2.3. Curvature Change IOLs 

The natural change in optical power with the relaxation of the lens zonules occurs 

principally due to the crystalline lens curvature increasing rather than the lens 

moving forward in the eye (Davies et al., 2010). Hence, ideally accommodating 

IOLs would work by a similar mechanism, resulting in much larger changes in 

optical power being possible. No commercially available IOLs using this 

mechanism are currently available although some are described in the literature. 

The most natural restoration of accommodation would be from lens refilling once 

the cataract has been removed. The capsulorhexsis would have to be small, 

peripheral and able to be effectively sealed. Although much research has been 

conducted into achieving this procedure, sealing the capsular bag and preventing 

the proliferation of epithelial cells to the posterior pole of that capsule, where the 

traditional treatment with YAG laser would destroy the accommodating lens, have 

resulted in a lack of progress to clinical trials (Nishi et al., 2009). 

 

The FluidVision IOL (PowerVision Inc, Belmont, CA) has fluid channels connecting 

a hollow haptic to the optic that can retain fluid. On contraction of the ciliary 

muscle, fluid from the haptics is pushed into the optic increasing its volume and 

equatorial diameter and hence causing an increase in power, with a potential of 8D 

change in lens curvature (Pepose, 2009). A recent paper described the NuLens 

(NuLens Ltd.) (Figure 1.11) which uses the capsular bag as a diaphragm, whose 

forward movement from the contraction of the ciliary muscle bulges a transparent 

silicone gel through an aperture causing a curvature change. Despite suggesting a 
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large change in optical power of the IOL is possible from the 0.1-0.2mm movement 

of the gel lens sag, the current design reduces the optical power on 

accommodation (Alio et al., 2009). 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.11: NuLens accommodating IOL 
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1.8.3. Toric IOLs 

Approximately 20% of patients requiring cataract surgery present with over 1.50 

dioptres of corneal astigmatism (Hoffer, 1980; Ferrer-Blasco et al., 2009). The 

effect of which has not been determined on daily life. While any residual 

astigmatism can be corrected with spectacles, refined biometric techniques enable 

the selected IOL power to leave little residual spherical refractive error. With more 

patients desiring to be spectacle independent for distance viewing, more efforts to 

minimize residual astigmatism during cataract surgery must be made to meet such 

demands (Buckhurst et al., 2010).  

 

Skilled surgeons can use corneal (CRIs) or limbal relaxing incisions (LRIs) to 

reduce post-operative astigmatism. These involve partial thickness incisions along 

the axes of the astigmatism with the depth and arc length relating to the degree of 

pre-operative corneal astigmatism. However, wound healing variability limits the 

accuracy and magnitude of the effect (Amesbury and Miller, 2009). The toric IOL 

(Figure 1.12) was so forth devised in the mid 1990’s to eliminate the need for 

incisional surgery and increase spectacle independence for astigmats (Medicute, 

2008).  

 

 

 



Figure 1.12: Toric IOL 



63 

 

Implantation of a toric IOL requires careful determination of corneal cylindrical 

power. Manual or automated methods can be used, with newer biometry devices 

measuring axial length and corneal curvature (Buckhurst et al., 2009). Ideally 

corneal topography should be confirmed by a second device (Budak et al., 1999) 

and the operator should be well trained (Cronje et al., 1999). Prior to surgery, 

reference marks are placed at the limbus for the alignment of the IOL. The patient 

must be upright for application of these exterior markings due to deviation of the 

eyes in a supine position (Horn, 2007) which may lead to misalignment of the IOL. 

Newer techniques involve digital imaging of the eye to allow alignment of the toric 

IOL axis to predetermined iris features or bulbar conjunctival features (Wolffsohn 

and Buckhurst, 2010) and in the future the chosen axis will be presented through 

the surgical microscope, tracked to the orientation of the orbit. Studies have 

presented visual improvements with toric IOLs, though post-operative rotation of 

toric IOLs is still a concern (Gills et al., 2002; Sun et al., 2000; Buckhurst et al., 

2010). Deviations from the correct axis will reduce the effective power of the 

cylinder, with a rotation of 30º or more providing no cylindrical correction (Shimzu 

et al., 1994). 
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Rotation after IOL implantation occurs mainly due to compression of the haptics 

caused by contraction of the capsule through fibrosis. Friction between the haptics 

and the capsule are important for reducing IOL rotation, as is the haptic design and 

careful removal of the viscoelastic from around the IOL after lens implantation 

(Buckhurst et al., 2010). Stabilization does occur within a few days to weeks, 

probably due to joining of the anterior and posterior capsules holding the IOL in a 

fixed position (Shimzu et al., 1994; Buckhurst et al., 2010). Rotation is reported as 

less with open loop haptics than plate haptics, although plate haptics show better 

long-term stability (Parssinen et al., 1998). Newly introduced closed-loop haptics 

may be more stable during capsular compression though this requires further 

research (Buckhurst et al., 2010).  

 

Repositioning a rotated lens is possible, although it is more complicated and 

difficult to achieve the longer after the original surgery it is attempted due to 

fibrosis with the lens capsule. Lens extraction and repositioning is considered 

optimum approximately 1 week after surgery as earlier may allow the lens to re-

rotate and later than two weeks following implantation will cause difficulty in trying 

to reposition due to fusion of the capsule (Novis, 2000). It has associated risks 

such as cystoid macular oedema, capsular tears and endophthalmitis and thus is 

favourable to avoid (Sun et al., 2000).  
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1.8.4. Blue-Light Filtering IOLs 

The visual spectrum spans from 400 to 700nm. It is widely known and accepted 

that exposure to UV radiation and blue light is harmful to retinal structures 

(Mainster et al., 1983). In order to protect the eye the cornea absorbs wavelength 

below 295nm, the remaining wavelengths 300-400nm are then blocked by the 

crystalline lens. Despite this some blue light still reaches the retina and crystalline 

lens removal through cataract surgery will leave the retina further exposed if the 

IOL transmits harmful wavelengths. 

 

It has long been known that blue light is associated with an increased risk of 

development of macular degeneration (Mainster et al., 1983). The blue light 

causes the production of reactive oxygen species (ROS), being extremely reactive, 

these cause damage mainly to the retinal pigment epithelium (RPE) (Ham et al., 

1980; Boulton et al., 2001). Lipofuscin within the RPE absorbs short wavelengths 

due to its component A2E (light absorbing chromophore), that has a peak 

absorbance of 335-435nm (Sparrow et al., 2000). Absorption results in production 

of ROS leading to RPE apoptosis and eventually cellular death. It is suggested that 

the levels of A2E increase with age. Natural cellular defenses against ROS 

production include; superoxide dismutase, catalase, phospholipase and pigments 

such as xanthophylls (Patel, 2007). Macular pigment can only be obtained from 

diet and possesses antioxidant properties; it absorbs blue light providing protection 

for the retina. Also, with age, oxidative changes occur in the crystalline lens 
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causing ‘brunescence’ or yellowing of the lens, due to an accumulation of 

chromophores (Brockmann et al., 2008). Thus its absorbance widens to 400-

500nm providing further protection against shorter wavelengths of light. The young 

lens also contains a short wavelength filtering substance 3-Hydroxykynurenine-

glucoside, however the ageing yellowing lens provide three times more protection 

(Benz et al., 2007). 

 

It may therefore be argued that on cataract extraction, replacement with a clear 

IOL removes natural protection and increases the risk of macular degeneration 

and retinal phototoxicity as transmission of shorter wavelengths of light (UV and 

blue) will be increased (Brockmann et al., 2008). Originally IOLs were constructed 

from PMMA with no form of UV filtration allowing all UV through to the retina. In 

1978 it was identified that UV radiation (100-400µm) was harmful to the retina 

(Mainster, 1978). Some IOLs have shown to transmit more than 10% of 

wavelengths 350-400nm which is not adequate protection against UVA (Laube et 

al., 2004). By the 1980’s chromophores were incorporated into most IOLs to block 

UV light. However these IOLs still transmit an undesirable amount of blue light 

(Henderson et al., 2010) thus the RPE is still vulnerable to damage. This has 

driven the development of blue light filtering IOLs (Figure 1.13). Chromophores are 

added to the IOL which block blue light; the IOL takes on a yellow appearance and 

hence are also known as ‘yellow’ IOLs.  
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Figure 1.13: Blue-filtering IOLs 
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Despite the proposed benefits of yellow IOLs there has been much debate over 

light filtering and its significance to ocular health (Henderson et al., 2010). There 

has been speculation over the effects on contrast sensitivity, colour perception, 

glare sensitivity, scotopic vision and circadian cycle. In general no clinical effects 

have been measured (Hayashi and Hayashi, 2006; Brockmann et al., 2008), 

although some investigators have found a reduction in scotopic sensitivity which 

could increase the risk of falls in the elderly (Schwiegerling, 2006). More recently, 

concern with blocking blue light from reaching the retina has focused on sleep 

regulation through the circadian rhythm. A substance called melanopsin within the 

retinal ganglion cells is stimulated by blue light which aids the control of melatonin, 

via the pineal gland which is associated with sleep regulation. In dark conditions 

less blue light is available to stimulate melanopsin therefore the pineal gland 

secretes melatonin which causes sleeping. With bright light the secretion is 

reduced causing an increase in attention. Thus reduced transmission of blue light 

due to yellow IOLs may cause deregulated sleeping patterns (Mainster, 2006). An 

estimated 27-38% decrease in melatonin suppression is reported by Mainster 

(2006). However, this is in comparison to a UV filtering IOL and not an opacified 

cataractous lens where all light transmission is significantly reduced (Henderson et 

al., 2010). Hence Edwards and Gibson (2010) in their recent review conclude “The 

real value of blue-blocking lenses in preventing AMD or its progression has yet to 

be shown and, while there would not appear to be any proven significant 

limitations associated with these lenses, the current trend of using evidence based 
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medicine to determine treatment modalities would seem to be missing for these 

lenses which attract a price premium”. 

 

 

 
1.8.5. Light Adjustable Lens (LALs) 

As IOLs are implanted in the eye, patients cannot test the effects as easily as they 

can with spectacles and contact lenses. Even after accurate biometry, wound 

healing can lead to unexpected residual refractive error. To overcome this and 

allow post-implantation adjustment of the IOL power and multifocality, a Light 

Adjustable Lens implant (LAL) has been introduced (Calhoun Vision, Inc, 

Pasandena, California). The lens implant consists of light-sensitive macromers in 

an X-linked silicone matrix that are sensitive to ultraviolet light (365nm). Exposure 

of UV light controlled and monitored by a digital computer system, induces 

polymerisation of the macromers to create an interpenetrating polymer in the lens, 

causing thickening in that area (von Mohrenfels, et al., 2010). The non radiated 

macromers diffuse into areas free of UV radiation exposure and this leads to 

changes to the shape and or refractive index of the LAL (Figure 1.14). Myopic 

changes are achieved by applying UV emission on the periphery of the LAL, 

effectively thickening that zone. A hyperopic change is thus achieved by directing 

the beam towards the centre of the LAL. This adjustment is current performed two 

weeks post-operatively usually followed by two lock-in exposures. Each session 

allows a change of up to 2D. To correct presbyopia, monovision can be tested in-

vivo to see how the patient adapts and the lens profile can also be made multifocal 



 

(Hengerer et al., 2009).

adjusted or removed.  

 

 

 

 

 

 

 

 

 

Figure 1.1
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2009). If the patient cannot tolerate their correction, it can be 

Figure 1.14: Mechanism of adjusting power of LAL 

 

If the patient cannot tolerate their correction, it can be 
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1.8.6. Phakic IOLs 

IOLs that can be implanted in the anterior chamber have been developed to 

correct refractive error without affecting natural accommodation in pre-presbyopes 

(Figure 1.15). These lenses are generally used in patients whose refractive error is 

too high to correct by laser refractive surgery and where the corneal thickness was 

not adequate to allow the ablation depth required to correct their ametropia. 

Endothelial loss leading to a loss in corneal transparency and cataract still remain 

the two main concerns with such implantation, despite the effectivity, predictability 

and general safety having improved (Espandar et al., 2009).  
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Figure 1.15: Phakic IOL 
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1.9. Conclusion 

While many advances have been made in IOL designs, the benefits of premium 

IOLs have not been well established, nor when they should be considered as an 

optical correction. Implanting advanced optical designs also raises more complex 

surgical issues relating to IOL rotation and centration which deserve attention to 

optimise the visual results. This thesis therefore examines the benefits of 

astigmatic correction with a toric lens over the mean spherical equivalent and how 

pupil dilation influences the alignment of these lenses. Centration of IOLs during 

surgery and over the following 6 months will also be examined. 

 

There is a clear requirement for correction of presbyopia. Reports of global 

prevalence of functional presbyopia in 2005 estimated 1.04 billion cases, which is 

expected to escalate to 1.4 billion in 2020 and 1.6 billion in 2050 (Holden et al., 

2008). While many non-surgical options for presbyopia exist, such as spectacles 

and contact lenses, there is some interest in presbyopic IOLs, which are usually 

fitted when cataracts have developed, to implant them when presbyopia first 

occurs.  This would allow spectacle independence in addition to removing the 

probable need for cataract surgery later in life when other age related health 

problems may make surgery more complex and risky. Hence, better methods to 

measure residual accommodation will be explored along with what factors, other 

than age, affect when an individual becomes presbyopic and therefore should 

consider elective IOL surgery with implantation of a premium IOL. Finally, the 
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benefits of a new type of IOL, a trifocal diffractive design, is evaluated to determine 

the range of clear vision offered as well as the visual compromises experienced.    
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CHAPTER 2 

Effect of Uncorrected 

Astigmatism- Implications for 

Toric Intraocular Lenses  

 

 

 

 

 

 



 

2.1. Introduction 

Corneal astigmatism is ametropia due to irregular surface curvature of the cornea

where two perpendicular meridians give differ

result is two foci with a blurred area between them

giving rise to blurred vision (

 

 

Figure 2.1:

76 

Corneal astigmatism is ametropia due to irregular surface curvature of the cornea

ere two perpendicular meridians give different focal powers (Figure 2.1

result is two foci with a blurred area between them known as the interval of Stürm, 

blurred vision (Zadnik, 1997).  

 

 

 

 

Figure 2.1: Foci with corneal astigmatism 

Corneal astigmatism is ametropia due to irregular surface curvature of the cornea, 

Figure 2.1). The 

known as the interval of Stürm, 
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 It is a common condition, occurring in about 85% of the general population, with 

20-30% of the older population (>60 years), when cataracts are most common, 

having significant severity (>1 dioptre) (Vitale et al., 2008; Ferrer-Blasco et al., 

2009). During routine cataract surgery, enhanced biometric techniques now allow 

the approximation of IOL power to fully correct spherical errors leaving the patient, 

in most cases, spectacle free for distance vision. Correction of astigmatism, 

however, presents more difficulty; traditionally corneal relaxing incisions (CRIs) or 

astigmatic keratotomy and limbal relaxing incisions (LRIs) are used in order to 

reduce post-operative astigmatism (Lindstrom 1990; Thornton 1990). CRI’s appear 

more ‘effective’ but LRIs tend to be preferred amongst surgeons as are considered 

safer (Gills et al., 2002). Reducing higher levels of astigmatism requires numerous 

incisions leading to complications such as corneal distortion. LRIs although 

extensively used are therefore limited to lower astigmatic errors. Predictability of 

incision surgery is also variable and can result in over- or under-correction, skills of 

the surgeon and variability amongst healing responses are also factors affecting 

surgical outcome (Lindstrom et al., 1994; Thornton, 1994; Abbey et al., 2009). The 

toric IOL, first devised by Shimzu et al in 1994 (Mendicute, 2008) aims to eliminate 

the need for incisional surgery and increase spectacle independence. Various 

studies have reported successful reduction in astigmatism with toric implants and 

good satisfaction rates (Ruíz-Mesa et al., 2009; Dardzhikova et al., 2009; Ahmed 

et al., 2010). A study by Sun et al (2000) of 130 toric implantations documented 

84% achieving uncorrected visual acuities of 20/40 or better. Implantation of toric 
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IOLs may therefore enhance a patient’s perception of clarity of vision regardless if 

reflected in visual acuities. 

 

 While it is standard practice to correct astigmatism when prescribing glasses and 

about one third of prescribed contact lenses correct astigmatism (Morgan & Efron, 

2009), many public health services consider intraocular lenses that correct 

astigmatism as specialist devices. Therefore, older astigmatic patients desiring 

optimum vision following their cataract operation must pay for both the intraocular 

lens (IOL) and the cost of private surgery. Suboptimal vision is associated with 

reduced quality of life and an increase in falls in the elderly (Black & Wood, 2005; 

Lotery et al., 2007), however the impact of uncorrected astigmatism has not 

previously been assessed.  

 

Since the advent of intraocular lens correction following cataract surgery in the 

1950’s, surgical techniques and intraocular lenses have developed rapidly to keep 

pace with the increasing demand created by expanding life expectancy and a 

corresponding more active lifestyle in patients experiencing cataracts. Therefore 

this study examines the challenges of uncorrected astigmatism in everyday life in 

people of the age when cataracts typically form to determine the need for toric 

intraocular lenses to be implanted as the routine standard of care. 
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2.2. Methods 

Twenty-one presbyopes, aged 50-69 years old (58.9 ± 2.8 years, ten females) with 

no ocular pathology, not on medication likely to influence the stability of refractive 

error, having less than 0.75D of manifest astigmatism and binocular acuity better 

than 0.0 logMAR were recruited. Due to the nature of the glare tests involved it 

was important to exclude patients with epilepsy. The study conformed to the 

declaration of Helsinki and was approved by the institutional ethics committee. 

Subjects gave their informed consent to take part. 

 

Each of the subjects were made familiar with the assessments of visual function. 

Visual acuity and contrast sensitivity was assessed binocularly using a Thomson 

computerised logMAR progression Test Chart (Thomson Software Solutions, 

Hatfield, UK).  Subjects were asked to read the smallest visible letters and were 

encouraged to guess when uncertain. Each letter was scored as 0.02logMAR and 

the acuity measured with 95%, 50% and 10% contrast letters, randomised 

between measures. Near acuity and reading speed at 0.2 logMAR larger than this 

acuity was assessed at a 40cm working distance with a +2.50D near addition using 

standardised reading performance texts of 830 ± 2 characters length (Hahn et al., 

2006). The chart was presented on an LCD computer screen and the words were 

changed between each repetition. Light scatter in the right eye was assessed 

using the C-Quant straylight meter (Oculus Optikgerate GmbH, Wetzlar, 

Germany), recording the average of three repeated measured (Figure 2.2). Driving 
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was simulated using a split attention task displayed on a 14” computer monitor. 

Subjects responded to the car in front  travelling at a matched 60mph breaking 

(and increasing in visual angle) or a pedestrian initially seen at 3.6° eccentricity on 

the off or far side beginning to cross the path of the subject when they reached 

6.5° eccentricity (Figure 2.3). Reaction times were averaged for 3 repeats of each 

condition over a 1.5 minute simulated drive. Finally mobile phone screen and 

internet computer screen clarity (Figure 2.4) positioned at the subject’s standard 

working distance for that task were each subjectively rated as a percentage, whilst 

viewing binocularly. 
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Figure 2.2: Cquant straylight meter 
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Figure 2.3: Driving Simulator  

Figure 2.4: Web page used for subjective rating of clarity 
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Having practiced each of the tasks until they felt comfortable and had a consistent 

performance, subjects repeated the tasks seven times wearing a trial frame with 

spectacle lenses fitted to correct their refractive error together with a cylindrical 

addition of different powers and axes in randomised order compensated with a 

sphere so the mean spherical equivalent was always zero (Table 2.1). They had 

approximately 5 minutes to adapt to each set of lenses before testing, although it 

appears the brain does not adapt to binocular astigmatism (Yehezkel et al., 2005).  
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Effect of 

uncorrected 

astigmatism: 

Full sphero-

cylindrical 

refractive error  

Effect of 

uncorrected 

astigmatism: 

Full sphero-

cylindrical 

refractive error  

POWER 

+0.00 / -0.00 x 90 

AXIS 

+1.50 / -3.00 x 90 

+0.50 / -1.00 x 90 +1.50 / -3.00 x 180 

+1.00 / -2.00 x 90 +1.50 / -3.00 x 45 

+1.50 / -3.00 x 90 

+2.00 / -4.00 x 90 

Table 2.1: Trial lens combinations used to simulate uncorrected astigmatism 
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The lens combinations simulated the typical situation of patients with an astigmatic 

corneal refractive error being implanted with a spherical intraocular lens of a power 

to compensate the average refractive error for distance, i.e. based on the average 

corneal curvature. To compensate for the effects of the trial lens surfaces, the 

minimal astigmatism comparison was simulated with the same number of trial 

lenses as the other conditions. The effects of uncorrected astigmatism power was 

assessed with the negative cylinder orientated vertically (90°) as this is the 

commonest cylindrical axis up to approximately 60 years of age (Ferrer-Blasco et 

al., 2009). A three dioptre cylinder was chosen as the power at which to assess the 

effect of the cylinder axis as this encompasses 95% of astigmatic errors in this 

population (Ferrer-Blasco et al., 2009). 
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2.3. Statistical analysis 

Descriptive statistics of mean and standard deviation were plotted for each 

assessment. Kolmogorov-Smirnov tests were performed to check normality of 

data. Visual acuity, contrast sensitivity, reading speed, light scatter and reaction 

time data were compared using repeated measure analysis of variance with paired 

t-tests for post hoc testing. The linearity of changes was assessed with Pearson’s 

correlations. Subjective ratings of clarity were compared using Fisher non-

parametric related sample comparisons with Wilcoxon signed rank tests for post 

hoc testing.  
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2.4. Results 

Distance visual acuity decreased significantly with increasing uncorrected 

astigmatic power (F = 174.50, p < 0.001) and was reduced at lower contrasts as 

expected (F = 170.77, p < 0.001), with no interaction between these effects (F = 

1.47, p = 0.26). Each dioptre of uncorrected astigmatism caused a significantly 

lower acuity than the previous power at each contrast level (p < 0.01; Figure 2.5). 

Distance visual acuity was significantly affected by uncorrected astigmatic axis (F 

= 5.19, p = 0.02) and was reduced at lower contrasts as expected (F = 129.75, p < 

0.001), with no interaction between these effects (F = 0.36, p = 0.83). Uncorrected 

astigmatism at 90° orientation resulted in a significantly better acuity than with the 

axis at 45° or 180° at each contrast level (p < 0.05; Figure 2.5). On average 

uncorrected astigmatism caused a reduction of 1.5 lines per dioptre (+0.15 ± 0.03 

logMAR/DC, r = -0.76) in visual acuity at high contrast and a similar effect at 50% 

and 10% contrast (+0.14 ± 0.03 logMAR/DC, r = -0.91; +0.14 ± 0.05 logMAR/DC, r 

= -0.80, respectively) 
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Figure 2.5: Distance visual acuity with uncorrected astigmatism power 
and axis. N=21. Error bars = 1 S.D. 
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Near visual acuity decreased significantly with increasing uncorrected astigmatism 

power (F = 221.62, p < 0.001). Each dioptre of uncorrected astigmatism caused a 

significantly lower acuity than the previous level (p < 0.001; Figure 2.6). Near 

visual acuity was significantly affected by uncorrected astigmatic axis (F = 26.00, p 

< 0.001). Uncorrected astigmatism at 90° orientation resulted in a significantly 

better acuity than with the axis at 45° or 180° at each contrast level (p < 0.001; 

Figure 2.5). Reading speed decreased significantly with increasing uncorrected 

astigmatism power (F = 11.97, p < 0.001), but only with -3.0DC or greater 

(p<0.001; Figure 2.7). Reading speed was significantly affected by uncorrected 

astigmatic axis (F = 4.45, p = 0.03). Uncorrected astigmatism at 180° orientation 

resulted in a significantly worse reading speed than with the axis at 45° (p = 0.03; 

Figure 2.6). 
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Figure 2.6: Near visual acuity with uncorrected astigmatism power and axis. 
N=21. Error bars = 1 S.D. 
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Figure 2.7: Reading speed with uncorrected astigmatism power 
and axis. N=21. Error bars = 1 S.D. 
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Although there was no significant increase in light scatter with increasing 

uncorrected astigmatism power (F = 1.11, p = 0.559) or changes in axis (F = 0.13, 

p = 0.878; Figure 2.8), the reliability and variability of measurements decreased 

with increasing uncorrected astigmatic power (F = 2.93, p = 0.026; F = 2.44, p = 

0.05). 
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Figure 2.8: Light scatter with uncorrected astigmatism 
power and axis. N=21. Error bars = 1 S.D. 
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Responding to a car in front braking (F = 0.813, p = 0.521) or a nearside (F = 

1.266, p = 0.290) or offside (F = 0.200, p = 0.102) pedestrian was not significantly 

affected by uncorrected astigmatic power (Figure 5). Responding to a car in front 

breaking (F = 0.111, p = 0.895) or a nearside (F = 1.148, p = 0.327) or offside (F = 

1.441, p = 0.249) pedestrian was unaffected by uncorrected astigmatic axis (Figure 

2.9).  
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Figure 2.9: Driving task performance with uncorrected astigmatism power and 
axis. N=21. Error bars= 1 S.D. 
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Subjective rating of clarity decreased significantly with increasing uncorrected 

astigmatic power when viewing a mobile phone (Chi Squared = 81.29, p < 0.001) 

or a computer screen (Chi-Squared = 79.91, p < 0.001). Each dioptre of 

uncorrected astigmatism caused a significantly lower rating of clarity (p < 0.01; 

Figure 6). Subjective clarity was significantly affected by uncorrected astigmatic 

axis when viewing a mobile phone (Chi-Squared F = 19.01, p < 0.001) or a 

computer screen (Chi-Squared = 21.53, p < 0.001). Uncorrected astigmatism at 

90° orientation resulted in a significantly better rating than with the axis at 180°, 

and the 180° orientation was rated significantly better than the 45° orientation for 

both mobile phone and computer viewing (p < 0.01; Figure 2.10). 
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Figure 2.10: Subjective rating of clarity with uncorrected astigmatism 
power and axis. N=21. Error bars= 1 S.D. 
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2.5. Discussion 

The present study assessed whether leaving patients with uncorrected 

astigmatism after cataract surgery and implantation of an intraocular lens has a 

significant impact on their visual function and visual performance. Visual acuity at 

high and low contrast sensitivity is critical to performing tasks as diverse as 

reading road signs and navigating. After cataract surgery, few patients report 

difficulties with vision for driving in daylight (5%), but almost half (43%) find night 

driving difficult due to glare associated with low contrast visual acuity (Monestam 

et al., 2006). The driving standard is usually around 0.3logMAR with high contrast 

letters, which patients with more than -2.0 dioptres of uncorrected astigmatism 

could not achieve. Visual acuity was further reduced by an axis of astigmatism off 

the vertical axis and with low contrast. The average loss of visual acuity of 1.5 lines 

per dioptre induced by the uncorrected astigmatism equates to approximately half 

the effect of spherical blur as expected from the average blur circle at the retina 

(Johnson and Casson, 1995). Therefore, even a relatively low amount of 

uncorrected astigmatism will significantly reduce visual acuity, which will further 

reduce ability to perform low contrast tasks. For example reduced contrast 

sensitivity has been shown to be associated with self restricted night driving in 

older adults (Freeman et al., 2006), with about 20% of those in their 70’s and 55% 

of those in their 80’s not driving at night (Klein et al., 2003). 
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Reading tasks are considered the most critical to quality of life by older individuals 

(Wolffsohn and Cochrane, 1999). Although less systematic than distance visual 

acuity (r = -0.42), reading acuity decreased a similar amount with uncorrected 

astigmatism power (+0.13 ± 0.07 logMAR/DC). Newspaper print (approximately 

0.4 logMAR at 40cm) was only just resolvable with 2.00DC of uncorrected cylinder 

and made worse by the steepest axis not being in the vertical, as occurs with 

increasing age (Ferrer-Blasco et al., 2009). Allowing for an acuity reserve of 6-18 

times the threshold letter size to achieve highly fluent reading speed (Whittaker 

and Lovie-Kitchin, 1993), even 1.00DC of uncorrected astigmatism will affect 

simple everyday reading tasks. Despite reading speed being assessed with words 

0.2logMAR larger than the threshold reading acuity with each lens combination, 

the speed was significantly reduced with higher levels of uncorrected astigmatism 

which will make reading tasks more difficult to perform, less pleasurable, and often 

leading to a reduction in independence and quality of life (Wolffsohn and 

Cochrane, 2000).  

 

Difficulties with night driving and glare are reported by both elderly drivers with 

visual impairment and those with healthy eyes (McGregor and Chaparro, 2005). 

Trouble with driving at night is a commonly reported symptom in the elderly, 

occurring in 28.2% of drivers over the age of 50 years in the Australian Blue 

Mountains population study (Ives, et al., 2000). Although there was no significant 

increase in light scatter with increasing uncorrected astigmatism power or changes 

in axis, this was principally due to the systematic reduction in quality of the 
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measurements. It would therefore appear that uncorrected astigmatism negatively 

affects glare even though this accepted test of light scatter was unable to quantify 

the effect. Interestingly, while visual acuity declines with decreasing luminance and 

or blur, steering performance does not unless the visual field is restricted (Owens 

and Tyrell, 1999; Brooks et al., 2005). Therefore the driving simulator findings were 

not unexpected. However, performance with unexpected events and poorer driving 

conditions such as rain and on-coming traffic headlights may still be compromised 

by uncorrected astigmatism.  

 

Patients’ rating of clarity was significantly reduced by increasing uncorrected 

astigmatic power. The patients were allowed to use their standard viewing 

conditions, which were kept constant between comparisons. They were also 

masked to the level of uncorrected astigmatism, so this was a real effect. 

Therefore, as well as the effect on visual function, patients were aware of their 

reduced vision, so uncorrected astigmatism is likely to negatively impact  quality of 

life. Although patients could choose to improve their vision by the use of 

spectacles or contact lenses, they are unlikely to do this if left with just astigmatic 

refractive error with current improvements in biometry (Buckhurst et al., 2009) or 

implantation of intraocular lenses that correct presbyopia (Madrid-Costa et al., 

2010; Sheppard et al., 2010). 
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The main limitation to this study relates to adaptation effects known to occur after 

changes in the optics in from of the eye, which may have reduced the impairment 

measured with time. It was unrealistic to expect the patients to wear the 

corrections examined in the study for about a month before examining each one. 

Patients could have been recruited with different levels of astigmatism, but that 

would not have allowed comparison of different levels of uncorrected astigmatism 

without a huge cohort to account for individual variability. Assessment of glare with 

increasing astigmatic error failed to quantify any systematic effect that may have 

been present due to reduction in the quality of measurements as the power of 

astigmatism increased. Glare testing could be repeated using halometry devices 

(see chapter 7), to quantify the extent of glare perception. Driving simulation also 

did not show any compromise with astigmatic error perhaps due to peripheral 

vision being less sensitive to blur, as this task consisted of reacting to pedestrians 

crossing and braking with changes in speed. The high contrast nature of the test 

may have also influenced results, repeating with real driving simulations in poor 

weather or night conditions may better depict the typical effects of astigmatism 

during driving.  
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2.6. Conclusion 

 In conclusion, uncorrected astigmatism significantly compromises a patient’s 

vision. In the long-term this is likely to lead to restricted independence, reduced 

quality of life and falls (Black and Wood, 2005; Lotery et al., 2007). With modern 

intraocular lenses implanted after cataract surgery, astigmatism can easily be 

corrected (Buckhurst et al., 2010) and modern designs show increased 

orientational stability. However, there is still no standard procedure for aligning 

toric IOLs during surgery and new imaging techniques require further refinement 

which will be addressed in chapter 3. The findings of this chapter show the 

additional cost of these ‘premium’ lenses is likely to be far less than the 

consequences of leaving them with uncorrected astigmatism. It is estimated by the 

Royal Society for the Prevention of Accidents (ROSPA) that one in three aged 65 

years and over may experience a fall at least once a year and one in two in those 

over 80 years (NICE guideline for Assessment & Prevention of Falls, 2004). In 

1999, fall related injuries incurred costs of £908.9 million with 63% of which was 

accounted by patients over 75 years. Toric intraocular lenses typically cost £500 

per eye with private surgery fees reaching £2500 per eye. However if such 

implants were made available on the National Health Service with the option for 

patients to ‘top up’ fees to receive toric IOLs it would prove beneficial by aiding the 

prevention falls as well as improving driving safety. Hence, this study suggests 

correction of corneal astigmatism during cataract surgery and intraocular lens 

implantation should be the standard of care. 
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3.1. Introduction  

Astigmatism over 1.50 dioptres occurs in approximately 20% of patients presenting 

for cataract surgery (Ferrer-Blasco et al., 2009). Although this astigmatism can be 

reduced by corneal or limbal relaxing incisions, toric intraocular lens implants 

(IOLs) give a more predictable result and can correct higher levels of astigmatism 

(Sun et al.,  2000; Mendicute et al., 2009).  Chapter 2 has already shown that 

uncorrected astigmatism can have a significant impact on the performance of daily 

tasks even if the mean spherical equivalent refraction is corrected, resulting in 

reduced quality of life. Successful toric IOL implantation requires precise and 

accurate marking of the orientation at which the intraocular lens is to be implanted, 

as misalignment by as little as 1° can result in an  estimated 3.3% loss of cylindrical 

correction (Lane, 2006). It is reported a deviation of 30° with a toric IOL results in 

no correction of cylindrical power (Shimzu et al., 1994) and anything greater will 

add to the cylindrical power requiring correction (Novis, 2000). 

 

The axis of astigmatic orientation or horizontal axis is generally marked on the 

peripheral cornea or over the sclera prior to surgery to account for the cyclorotation 

of the eye when moving to a supine position for the surgical procedure (Smith et 

al., 1994; 1995). Ink markings often spread due to the blink action and tear film 

movement, and fade with time. Even laceration markings have a finite size and rely 

on a surgeon's skill to be correctly located with reference to a biomicroscope slit 

illumination orientation or protractor increments. Markings are usually made with 
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patients sitting at a slit-lamp biomicroscope, thus stable head positioning is critical 

in order to avoid misalignments due to head tilts (Wolffsohn et al., 2011). There 

have been suggestions of using Nd:YAG laser to mark the cornea to overcome 

some of these issues (Bordanaba et al., 2009), but head tilt again may prove a 

source of error. Imaging systems use conjunctival blood vessels or iris features as 

markers for orientation, but the robustness of this approach with variation in 

dilation during the imaging and surgery has not been investigated (Wolffsohn et al., 

2010). 

 

During refractive surgery and cataract extraction pharmacological dilation of the 

pupil is required to create an adequate opening for removal of the crystalline lens 

and insertion of the IOL. It is generally assumed that the pupil is circular, well 

centred within the iris and that dilation, caused by smooth muscle in the iris, occurs 

symmetrically. However, the pupil is generally located slightly nasal and superior to 

the geometric centre of the cornea (Yang et al., 2002). It has been documented 

that with pupil dilation there is a corresponding change in pupil centration, which is 

of clinical importance in ophthalmic surgery where pupil centration relative to the 

limbus can affect surgical outcomes (Walsh 1988; Wilson and Campbell 1992; 

Yang et al., 2002). The eye suffers a range of regular and irregular optical 

aberrations which can vary between eyes (Walsh et al., 1988). Both pupil dilation 

and decentration have been noted to increase high order aberrations within the 

visual system (Ivanhoff 1956; Yang et al., 2002), in particular spherical aberration 

and coma (Wilson et al., 1992), thus degrading retinal image quality. These 
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aspects must be taken into consideration for various refractive procedures such as 

toric implantation, as poor centration of an IOL will give rise to further optical 

aberrations resulting in reduced image quality.  

 

Various studies have been carried out in order to investigate the changes in pupil 

centration with changes in diameter. Walsh (1988) analysed projected 

photographs of light and dark adapted and pharmacologically dilated eyes of 39 

subjects and found superior (0.02 ± 0.14mm) and temporal (0.03 ± 0.15mm) 

decentration of the pupil with pharmacologically- induced mydriasis.  No 

systematic pattern was found with decentration in relation to the level of mydriasis, 

however, although the decentration measured was of small magnitude this can still 

impact image quality hence expressing its significance in surgery. The centration 

changes were also found to be similar between eyes for the majority. Wyatt (1995) 

found nasal and superior decentration of the pupil with constriction in a study of 23 

subjects, through analysis of projected and digitised slit lamp photographs. The 

photographs were first captured in steady illumination followed by photographs of 

eyes in darkness after approximately 10 to 20 seconds, hence observing natural 

dilation. Wilson et al (1992) however found greater shifts in centration in 

comparison to the above studies. 
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More recent experimentation conducted by Yang et al (2002) involved monitoring 

pupil decentration in mesopic, photopic and pharmacologically dilated conditions 

using an infrared camera. High resolution images of 70 subjects were analysed 

and found a significant supero-temporal (0.162 ± 0.083mm) shift in the pupil centre 

following mydriatics. A similar shift was found when measuring dilation from 

photopic to scotopic conditions (0.183 ± 0.093 mm). As with the investigations 

carried out by Walsh (1988) and Wyatt (1995), Yang et al (2002) also found nasal 

decentration on pupil constriction, with left eyes showing greater displacement 

than right eyes. Vertical decentration was shown to be very slight in the superior 

direction (0.04mm) with drug-induced dilation. Although the changes in pupil 

location have generally been found to be small, greater, unpredictable shifts can 

still occur particularly with drug-induced mydriasis (Walsh 1988; Yang et al., 2002; 

Wilson et al., 1992) which proves a challenge for surgery.  

 

Age and refractive error may be considered as variables which may affect the pupil 

location however Yang et al (2002) reports no such relationship exists. There is, 

however, a well known linear decrease in pupil size with age thus young patients 

may show greater shifts in pupil centre (Winn et al 1994; Yang et al 2002).  
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Therefore this study examined the effect of pharmaceutical dilation on conjunctival 

vessels and iris features and their potential as biological markers for aligning toric 

IOLs. In addition, the changes in pupil centration relative to the limbus that occur 

with various degrees of dilation were assessed. 
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3.2. Methods 

Thirty six subjects were recruited with a mean age of 21.7 ± 2.7 years, 20 males 

and 16 females. All participants were healthy individuals with no ocular pathology. 

Exclusion criteria included no ocular abnormalities or pathology, no previous 

history of ocular surgery and no medication likely to affect rate or process of pupil 

dilation. Patients were required to maintain adequate posture as the procedure 

involved sitting still at a slit lamp for a duration of time. 

 

After obtaining informed consent, intraocular pressures and anterior angle 

measurements were measured prior to pharmaceutical dilation to ensure suitability 

of individuals for the investigation. Right eyes of each subject were then 

pharmacologically dilated using two drops of Tropicamide 0.5% to ensure maximal 

dilation. Ethical approval was granted by the Aston University Ethics Committee 

and the study conformed to the tenets of the declaration of Helsinki. 

 

Subjects were seated at a slit lamp where images of right eyes were taken every 2 

minutes from immediately following instillation of the drops using an anterior eye 

imaging system attached to a CSO Elite slit lamp (Figure 3.1) with high pixel light 

sensitivity (Costruzione Strumenti Oftalmici, Scandicci, Italy). Images were 

captured for 30 minutes until maximal dilation was achieved (Levine, 1976; 

Krumholz et al., 2006). Patients were instructed to keep as stable as possible 
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during photographs to ensure clear images were captured for analysis, as 

movement would cause blurring and loss of detail in images.  

 

The images were captured onto a computer linked to the imaging device, the 

camera exposure and image brightness were both controlled by Epsilon Lyrae 

software. Pairs of images were taken at each 2 minute time interval to allow for 

blurred images to be replaced. The pupils were illuminated by an external diffuse 

light source and a thin slit beam was positioned temporal to the limbus to minimise 

any influence on pupil diameter. At the end of the process intraocular pressure and 

angle measurements were repeated. 
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Figure 3.1: CSO Elite Slit Lamp 
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Analysis of the photographic images was then carried out using bespoke 

LabView™ 2010 imaging software (Wolffsohn and Buckhurst, 2010). For each 

subject, pairs of the most prominent conjunctival vessels were chosen horizontally 

separated on either side of the limbus, and using LabView™ (National Instruments 

Corporation, Austin, United States)  the orientation of these vessels were 

determined by drawing a line from one vessel to the other (Figure 3.2).  
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Pairs of horizontal and vertical prominent features on the iris either side of the pupil 

were also selected for each participant, the orientation of which at each time point 

was determined by the same line drawing technique (Figure 3.3A, B). Ovals were 

drawn to fit both the pupil and limbal margins to give the respective centration as 

well as width and height measurements in terms of X and Y coordinates. For pupils 

this was measured twice per image to give an average of height and width (Figure 

3.4). 

 

 

Figure 3.2: Two conjunctival vessels chosen, connected with line for 
measurements 
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Figure 3.3: 

Horizontal (A) and 
vertical (B) iris features 
connected for 
measurements of 
separation  

A 

B 
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Figure 3.4: Image analysis showing orientation lines joining horizontal 
conjunctival blood vessels and horizontal and vertical iris features as 

well as ovals fitted to the pupil and limbal edge to allow centration and 
width and height to be determined during dilation. 
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3.3. Statistical Analysis 

For repeatability purposes one randomly selected image per subject was re- 

analysed. As the values obtained were in pixel units a conversion factor 

determined from image analysing a millimetre unit ruler was applied (1 pixel = 

0.01475mm) in order to convert the measurements to millimetres. Statistical 

analysis was then carried out to determine the significance of the results obtained.       
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3.4.  Results 

The average standard deviation of the 15 images for each subject captured every 

2 minutes between dilation drug instillation and 30 minutes of limbal width (0.17 ± 

0.07 mm) and height (0.21 ± 0.08 mm) and the ratio between them (0.02 ± 0.01) 

were similar to that of the measurement variability of repeated analysis of the 

same image twice (Table 3.1). 

 

 

Blood Vessel 
Orientation 

(⁰⁰⁰⁰) 

Horiz. 
Iris 

Features 
(⁰⁰⁰⁰) 

Vertical 
Iris 

Features 
(⁰⁰⁰⁰) 

Pupil 
Width 
(mm) 

Pupil 
Height 
(mm) 

Limbus 
Width 
(mm) 

Limbus  
Height 
(mm) 

Limbal 
Width/Height 

Ratio 

SD 
 

 
0.63 

 
0.39 

 
0.87 

 
0.12 

 
0.12 

 
0.23 

 
0.22 

 
0.03 

 
  

 

 

Hence the eye orientation and position from the slit lamp camera seems to be well 

controlled by the conventional slit lamp head/chin rest and the slit-lamp focusing, 

and no compensation of the images captured between visits based on apparent 

limbal dimensions was therefore applied. At the typical slit lamp to eye distance of 

30cm, a 0.20mm change in limbal width (of 12.00mm) would occur from a 5mm 

change in slit lamp to eye distance and a 0.02mm change in limbal width to height 

ratio from a 11.4⁰ orientation change of the pupil to the camera plane. 

 

Table3.1: Standard deviations of repeat analysis for the ocular measurements. N = 36. 
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The limbus was generally vertically oval varying little with repeat imaging at each 

visit (width to height ratio 1.065 ± 0.003). The pupil was essentially symmetrical 

(width to height ratio 1.018 ± 0.018 at baseline), and remained so with dilation (SD 

± 0.013) as it increased in size in a sigmoid manner, with maximum dilation 

reached by approximately 25 minutes (y = -3.594 / (1 + e(-(x-13.18)/3.569)) r2=0.998; 

Figure 3.5).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



118 

 

 

 

 

 

 

Time after Dilation Drops Instilled (mins)

0 5 10 15 20 25 30

S
iz

e 
(m

m
)

0

2

4

6

8

10

12

Scleral Width
Scleral Height
Pupil Width
Pupil Height
Scleral Width/Height
Pupil Width/Height

 

 

 

 

 

 

Figure 3.5: Variations in width and height of pupil, limbus and sclera with 
dilation. N = 36. Error bars =1 S.D. 
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Pupil dilation had no significant effect on the average change in orientation of the 

conjunctival blood vessels, horizontal or vertical iris features (F = 2.95, p = 0.069, 

Figure 3.6), however, the variability between subjects was much greater using iris 

features than conjunctival blood vessels (F = 31.233, p < 0.001; Figure 3.6). The 

change in pupil size was more strongly correlated to the change in orientation with 

the horizontal (r = 0.13 ± 0.60) and vertical (0.18 ± 0.49) iris features than the 

conjunctival blood vessels (r = 0.02 ± 0.43; F = 3.149, p = 0.049). 
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Figure 3.6: Orientation changes of conjunctival blood vessels and iris 
features through the process of dilation. N = 36. Error bars = 1 S.D. 
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The pupil was on average was centred superior (0.07 ± 0.09mm) and nasal (0.26 ± 

0.14mm) compared to the centre of the limbus, moving superiorly with dilation with 

the change mainly occurring in the first 10 minutes post-dilation and some 

recovery from 20 minutes. Overall, there is an inferior displacement of the pupil 

centre (Figure 3.7). 
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Figure 3.7: Change in centration with dilation 
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3.5. Discussion 

The pupil, as expected, increased in diameter with pharmacological dilation 

reaching maximum dilation at approximately 25 minutes following drug instillation, 

the increase was generally symmetrical through the process with a sigmoidal 

increase in diameter. On analysis of pupil centration it was found to be located 

superior-nasal on average, moving inferior upon dilation, which coincides with 

previous studies of pupil centration (Walsh, 1988; Wyatt, 1995; Yang et al., 2002). 

It is possible that the changes in pupil centration may be smaller with physiological 

than pharmacological dilation (Yang et al, 2002), but the intraocular lens is 

implanted under pharmacological dilation so these pupil centration changes need 

to be considered. Previous research has shown these changes are not age 

dependant and hence the use of young subjects should not have influenced this 

conclusion. Non-linearity of the pupil was calculated as 0.018 which corresponds 

to that found by Wyatt (1995) reporting 0.017 in dark conditions and 0.016 in light 

conditions.  

 

Analysis of limbus height and width showed good repeatability over time, similar to 

that found on repeat analysis of the same images a second time. Therefore, this 

suggests there is adequate control of eye orientation using the head and chin rest 

of slit lamp with minimal effect from head tilt. The limbus remained generally oval 

in the horizontal plane which varied little upon repeat measurements. As surgeons 

generally use the pupil rather than the limbus to judge centration, such findings 
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confirm the change in pupil centration when the eye is restored to physiological 

stimulation must be taken into consideration for surgery requiring dilation, 

particularly LASIK refractive surgery as ablation of the cornea must be confined to 

the optical zone. Ablation beyond this area can lead to glare, haloes and ghost 

images, hence resulting in an unsuccessful outcome (Yang et al., 2002) and 

dissatisfaction from the patient.   

 

Previous research has shown image analysis of lens rotation to be more robust 

than subjective rating, and the use of conjunctival blood vessels or iris features to 

allow for head rotation further improves reliability (Wolffsohn and Buckhurst, 2010). 

Although dilation of the pupil had no effect on the average change in orientation of 

blood vessels and iris features, the variability of iris features with dilation was much 

greater in comparison to conjunctival blood vessels. The conjunctival blood 

vessels therefore prove to be better markers for orientation and hence provide 

surgeons with anatomical markers that can be used for various procedures.     

 

Studies carried out to investigate the changes in pupil centration with diameter, 

generally report a superior-temporal shift in pupil centre with pharmaceutically 

induced mydriasis and inferior-temporal or temporal with light induced mydriasis of 

magnitude less than 0.2mm, which is only related to pupil size for the latter (Walsh, 

1988; Wyatt, 1995; Yang et al., 2002). However, the effect of different degrees of 

dilation on pupil centration has not previously been assessed. This study showed a 
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similar inferior centration shift finding with pharmaceutical dilation to that previously 

found with light induced mydriasis, although there was a counter movement 

superiorly from 20 minutes onwards. While the study was performed on younger 

adults to allow a wide dilation change to be imaged, age does not appear to affect 

pupil centration (Yang et al., 2002), although non-linearities in pupil shape increase 

with age (Wyatt, 1995). 

  

The limitation in this study was evaluation of only young subjects which may be 

found to differ if compared to older individuals. Also, the outcomes of the 

investigation were limited to the quality of images obtained; despite capturing two 

images for each stage of dilation some images presented difficulty in analysis. 

Hence more robust instrumentation for imaging the anterior eye and IOL should be 

designed and evaluated to support researchers and surgeons alike.  
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3.6. Conclusion 

In conclusion, it is well documented that shifts in pupil centration occur with 

pharmacological dilation, which need to be considered for any type of refractive 

surgery to in order to avoid an unsuccessful outcome. The current study supports 

existing knowledge of this change in pupil location through dilation and has 

established conjunctival blood vessels as better markers for correcting the 

alignment of toric IOLs and compensating for head rotation compared to using iris 

features. 

 

Hence, the pupil position may significantly influence the surgical outcome of 

premium IOLs due to the complexity of their optics through misalignment and 

increases in aberrations, which will be discussed further in the following chapter. 

The effect of modern IOL surgery on the pupil and long term changes in pupil 

centration relative to the limbus and IOL have not previously been considered as a 

potential factor in the visual performance of premium IOLs. The next chapter 

therefore aims to research the significance of this aspect of premium IOL 

optimisation. 
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CHAPTER 4 

Stability of Pupil Dilation 

Following Cataract Surgery 
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4.1. Introduction 

Various refractive surgical procedures, such as implantation of intraocular lenses, 

require pharmacological dilation of the pupil. It is well established, however, that 

the location of the pupil centre shifts with dilation (Walsh 1988; Wilson et al., 1992; 

Yang et al., 2002,) and as discussed in the previous chapter such decentration 

may lead to undesirable outcomes in refractive surgery.      

 

The pupil is the entrance point for light approaching the visual system which 

regulates retinal illumination by changes in its diameter. Pupil diameter is 

controlled by smooth muscles in the iris; the sphincter pupillae located within the 

stroma of the iris and dilator pupillae radiating from the iris root into the stroma 

(Remington, 2005). Pupil size is affected by various factors such as; level of 

illumination, age, accommodation and emotions (Winn et al., 1994).   

 

Generally, the eye exhibits a range of optical aberrations (Walsh et al., 1988) with 

increases in pupil diameter and decentration from the visual axis having been 

shown to increase high-order aberrations (Ivanhoff 1956; Yang et al., 2002; 

Campbell et al., 1966; Artal 1990; Liang et al., 1997; Kasper et al., 2006; Castejon-

Mochon et al., 2002; Wang et al., 2003) such as spherical aberration and coma 

(Wilson et al., 1992). High-order aberrations (HOAs) cause various visual 

symptoms for example, spherical aberration may form starburst and glare, whilst 

horizontal coma can lead to monocular diplopia (Chalita et al., 2003, 2004). Optical 
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quality is reduced with spherical aberration and often manifests as a reduction in 

contrast sensitivity (McLellan et al., 2001; Nio et al., 2000). Sakai et al (2007) 

demonstrated the correlation between pupil size with HOAs and residual 

astigmatism suggesting that the pupil adjusts accordingly to optimize retinal image 

quality in varying luminance levels.  

 

Pupil decentration can lead to ablation outside of the optical zone in 

keratorefractive procedures resulting in halos, glare and some reports of reduced 

contrast sensitivity (Pande and Hillman, 1993). It is therefore plausible that 

decentration of a dilated pupil may lead to misalignment of an intraocular lens 

(IOL) affecting the visual outcome and degrading the retinal image, particularly 

with advanced optical designs such as the optics on multifocal and toric intraocular 

lenses.  

 

Previous studies have indicated greater shifts in pupil centration with 

pharmacologically, rather than physiologically, induced dilation (Yang et al., 2002). 

The general finding of temporal movement of the pupil centre with slight vertical 

shifts have been documented (Walsh et al., 1988; Yang et al., 2002; Wyatt 1995). 

Pupil decentration may be of particular concern in younger patients requiring 

refractive surgery, such as for congenital cataracts or when electing for refractive 

lens exchange, as larger pupils have shown greater degradation of M.T.F (Modular 

Transfer Function) by Walsh and Charman (1988).      
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Misalignment of a toric intraocular lens results in no correction of the cylinder and if 

great enough may even add to the cylindrical power (Shimzu et al., 1994). Toric 

IOLs are susceptible to rotational instability (Novis, 2000) and if coupled with initial 

misalignment during surgery, may result in a very poor surgical outcome with 

substantial patient dissatisfaction.  

 

Multifocal IOLs manipulate aberrations to enhance the depth of focus of the eye, 

but can give rise to photic phenomena (Leyland and Zinicola, 2003; Hayayshi et 

al., 2009; Steinert, 2000). As IOL position and tilt may adversely affect the 

effectiveness of the IOL it could be assumed that there may be an association 

between the centration of multifocal intraocular lenses and dysphotopsia. 

 

Age-related lenticular changes lead to increased high-order aberrations (HOAs) in 

later life, particularly spherical aberration (Nio et al., 2002; McLellan et al., 2001). 

In the young eye the positive corneal aberration is reduced by the negative 

aberration of the crystalline lens. Following cataract surgery there is an increase in 

such aberration as often the natural lens is replaced by a spherical monofocal lens 

which exhibit higher degrees of optical aberrations (De Castro et al., 2007). For 

these reasons aspheric designs have been developed to improve the visual 

outcome by incorporating negative spherical aberration within the lens. The effect 

of these aspheric lenses, however, may be lost by IOL displacement as shown by 

many studies; for example Mckelvie et al (2011) showed pupil size had the most 
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affect on HOA in their investigation followed by IOL decentration, stating 0.5mm of 

decentration can vastly affect the performance of an aspheric IOL particularly 

those which incorporate higher levels of negative asphericity. The authors 

demonstrated that 0.5mm decentration of an IOL, with -0.27µm of negative 

spherical aberration, would increase HOA by 48% which would increase to 80% 

with 1.5mm of decentration. Performance of aspheric multifocal IOLs are also 

jeopardized by decentration exceeding 0.5mm (Atchison 1991; Altman et al., 

2005). 

 

Coma also increases with decentration and tilt, as shown by optical bench tests by 

Epigg et al (2009) and Pieh et al (2009), which impairs visual quality. Despite 

these claims, some studies have not found any significant change in HOAs with 

decentration and tilt of an aspheric IOL such as that of Choi et al (2010) which 

perhaps may have been due to their small sample size of only 32 participants, 

however, another study by Baumeister et al., (2009) also did not find any 

correlation between image quality and decentration of aspheric IOLs. 
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Holladay et al (2002) stated if an aspheric IOL was centred within 0.4mm and tilted 

less than 7° its optical performance would surpass that of a monofocal while 

Lopez-Gil et al (2007) suggest for optimum performance an IOL should be centred 

in line with the visual axis. It is therefore clear that negative spherical aberration 

can be altered by IOL tilt and decentration the effect of which is greater with higher 

levels of asphericity inducing higher amounts of HOAs. 

 

The result of decentration or tilting of IOLs that provide negative spherical 

aberration may be observed as impairment of contrast sensitivity (Baumeister et 

al., 2005). It has been shown by Pepose et al (2005) an increase of 1µm in HOAs 

can reduce photopic contrast sensitivity by 2.5 logarithm of min angle of resolution 

and a reduction in mesopic contrast sensitivity of 12 logarithm min angle of 

resolution. In addition, Epigg et al (2009) investigated six IOLs and reported poor 

MTF measures with decentration with a 3mm pupil for the five aspheric IOLs, 

whereas measures with the spherical IOL were relatively unaffected. For a larger 

pupil of 4.5mm decentration gave rise to horizontal coma, astigmatism and 

defocus, with the performance of the Tecnis Z9000 IOL being most affected by 

decentration. Aspheric lenses, particularly, aberration-correcting IOLs are thus 

more vulnerable to tilt and decentration despite their aim of providing better image 

quality. Conversely, aberration-free IOLs are less affected by decentration, the use 

of which is suggested where centration could be suboptimal (Eppig et al., 2009). 

Many premium IOLs incorporate asphericity into their design and hence may be 
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vulnerable to impairment of contrast sensitivity, which in the case of multifocal 

IOLs may exacerbate the already reported reduced contrast sensitivity.  

 

Misplacement of IOLs may also affect refractive error; computer modelling by 

Korynta et al (1999) indicated a shift towards myopia and oblique astigmatism with 

IOL decentration, but the resultant effect was dependent on the amount of 

dislocation. Earlier investigations by Atchison (1989) had already established that 

decentration considerably affected refractive errors, which were calculated to be 

proportional to the square of decentration. In addition, it was found coma-like 

aberration and astigmatism affected the retinal image by IOL displacement and 

that larger pupils (≥4mm) suffered more from spherical aberration, whilst smaller 

pupils were affected principally by astigmatism (Atchison, 1989).        

 

It is suggested that in addition to surgical technique, IOL haptic design may also 

influence stability of an IOL (Epigg et al., 2009). Haptics made from PMMA have 

been reported to give better stability (Ohmi et al., 1995; Gallagher et al., 1999), 

although Baumeister et al (2005) found no such difference between haptic 

materials over a 12 month period. Post-operative intraocular lens rotation tends to 

occur during the earlier postoperative stages (Rushwurm et al., 2000) as a result of 

friction between lens haptics and capsular bag, instability of the anterior chamber 

due to intraocular pressure or ocular trauma, IOL design, the level of fibrosis or 

compression of haptics as shrinkage of the capsular bag occurs (Buckhurst et al., 
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2010). Post-operative rotation combined with initial displacement of the IOL due to 

pupil decentration can lead to various visual symptoms and thus a poor surgical 

outcome. In extreme cases dislocated IOLs may have to be explanted, putting 

unnecessary constraints on financial resources and possibly increasing risks of 

endophthalmitis. Repositioning a rotated IOL, such as a toric lens is possible, 

however may further raise complications such as; CMO, capsular tears and 

endophthalmitis and thus is favourable to avoid (Sun et al., 2000). 

 

Regardless of the direction of pupil decentration, the resultant aberration will 

degrade the quality of the retinal image and affect spatial vision (Walsh and 

Charman 1988; Thibos 1987). Even small pupil displacements may induce 

significant levels of aberrations (Rynders et al., 1995). There is now more interest 

developing in IOL tilt and decentration as development of IOLs begins to widen 

attention to broader aspects of IOL design and focus more on correcting HOAs in 

addition to refractive error (Mester et al., 2003).  

 

There is little literature on the effects of cataract surgery on the pupil; however 

Gibbens et al (1989) did carry out an investigation to examine the effects of post-

operative pupil dilation with intracapsular cataract extraction (ICCE) and 

extracapsular cataract extraction (ECCE) surgical procedures. A significantly 

smaller post-operative pupil size was noted on dilation with both surgical 

procedures, but the location of the pupil was not assessed. The effect of more 



134 

 

recent cataract extraction procedures on the stability and post-operative location of 

the pupil has not yet been explored within the literature therefore; the purpose of 

the present study was to investigate the changes in size and centration stability of 

the pupil six months following cataract surgery and intraocular lens (IOL) 

implantation.
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4.2.    Methods  

Two hundred and four patients were implanted monocularly with the fifth 

generation Akreos AO aspheric IOL (Bausch and Lomb, Rochester, New York) in 

one eye at six hospital sites across Europe. Inclusion criteria included age-related 

cataract amenable to treatment with standard phacoemulsification and IOL 

implantation, and pupils which could be dilated to at least 5mm. Subjects were 

aged 67.6 ± 7.9 years (range 51 to 89 years) and 65% were female. 

 

The acrylic, hydrophilic lens has a 6 mm optic with a 360° posterior square edge 

barrier attached to 11 mm closed loop haptics. The optic has aspheric surfaces 

aiming to induce no IOL aberrations. A 5.5 mm continuous curvilinear capsulotomy 

was used through which phacoemulsification was performed. Once the capsular 

bag was filled with a viscoelastic substance, the lens was inserted using an Akreos 

single use insertion device through a 2.8 mm incision and the viscoelastic device 

aspirated from in front and behind the lens. 

 

Patients were dilated using phenylephrine 2.5% and tropicamide 1.0% at the 

operative visit and the following four post-operative appointments. These 

appointments were conducted 0, 1-2, 7-14, 30-60 and 120-180 days after IOL 

implantation. The intraocular lens was imaged at 10x magnification in 

retroilluminantion using a CSO SL-990 digital slit-lamp biomicroscope 
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(Construzione Strumenti Oftalmici, Florence, Italy). Informed consent was obtained 

from all participants prior to lens implantation and the study was approved by 

ethical committees at each of the sites. 

 

The centre of three ovals overlaid to circumscribe the IOL optic edge, the pupil 

margin and the limbus, were compared to determine the IOL centration (Figure 

4.1). Pupil diameter and height were taken from the pupil oval dimensions. This 

technique has previously been evaluated and showed excellent repeatability 

(Wolffsohn and Buckhurst, 2010). 
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Figure 4.1: Measurement of pupil, limbus and IOL edge 

Limbus measurement 
Iris Measurement 

IOL optic edge measurement 
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4.3. Statistical Analysis  

The IOL and pupil centration with respect to the limbus at each visit was 

subtracted from the values immediately after surgery to assess decentration. 

Repeated measure analysis of variance was used to assess locational stability 

between visits.  
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4.4. Results 

There was a significant inferior shift in pupil centration with time after cataract 

surgery (F=2.953, p=0.02), but no significant change in horizontal centration 

(F=1.010, p=0.4). Intraocular lens centration was stable with respect to the limbus 

(width F=0.483, p=0.75; height F=0.282, p=0.89), but was decentred relative to the 

pupil vertically (F=7.672, p<0.001), but not horizontally (F=1.120, p=0.35; 

Figure4.2) thus indicating a change in centration.  
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Figure 4.2: IOL, dilated pupil and limbal centration relative to each other with time post-
cataract surgery. Pupil centration becomes increasingly inferior relative to the limbus and 

IOL. N = 204.  
(Red arrows indicate direction of movement on subsequent visits) 
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Pupil width (F=32.476, p<0.001) and height (F=35.167, p<0.001) were significantly 

larger with dilation immediately after surgery than at subsequent dilations (Figure 

4.3). The ratio between pupil width and height was close to 1.0, but also altered 

with time after surgery (F=36.009, p<0.001), becoming more vertically oval.  
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Figure 4.3: Dilated pupil width and height with time post cataract surgery.  

N = 204. Error bars = 1 S.D. 

Pupil Size following Cataract Surgery 
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4.5. Discussion 

The results have shown a significant inferior shift in pupil centration following 

cataract surgery. As there was no relative change with time between the IOL and 

limbus, this suggests that the IOL is stable within the eye, but the pupil dilator 

pupillae or iris tissue has been damaged in some way as the shift was only in one 

meridian.  The significant decrease in post-operative pupil diameter with dilation 

found with time may indicate additional sphincter muscular damage. 

 

An earlier investigation by Gibbens et al (1989) similarly assessed the pupil 

following ECCE as well as ICCE, as it was stated at the time clinicians believed the 

aphakic pupil did not dilate as well as pre-operatively. In scotopic conditions the 

pupil diameter was on average 0.3mm less than pre-operatively whereas in 

photopic conditions it constricted less and was larger by 0.3mm, suggesting 

possible damage to the iris which reduced its mobility. The diameter of the aphakic 

pupils implanted with an IOL were also reduced by 0.9mm when dilated with 

Tropicamide 0.5% and Phenylephrine 10% similar to the horizontal pupil dilation 

reduction found in this study. Gibbens and colleagues (1989) found the pupil size 

reduction with repeat dilation after surgery did not occur in aphakic eyes 

suggesting the damage was due to IOL implantation, rather than the cataract 

removal, although surgical techniques and IOL materials and designs since have 

changed.  
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Understandably, with Gibbens et al (1989) study, ICCE without IOL implantation 

reduced the pupil diameter most, as this involves the removal of the entire lens 

cavity and capsule and hence the most disturbance to the eye. No ICCE with IOL 

implantation group were examined so it is not possible to tell whether the IOL 

would have contributed further damage in this scenario. 

  

Decentration and tilt of IOLs may also occur  following cataract surgery for various 

reasons such as; capsule contraction, asymmetric bag and sulcus fixation or 

capsular tear (Jung et al., 2000), surgical technique, residual cortical material, IOL 

properties, asymmetric haptic fixation or haptic location (Cabellero et al., 1991; 

Hansen et al., 1988; Akkin et al., 1994; Kimura et al., 1996). The incidence of such 

occurrences has reduced since the introduction of phacoemulsification and 

development of more stable IOLs. However, combined with pupil decentration 

there may be substantial impairment of visual quality.  

 

The apparent inferior shift in the pupil centre following cataract surgery may 

account for various visual phenomena with multifocal IOLs. Many studies have 

shown a general increase in high-order aberrations following cataract surgery 

(Hayashi et al., 2000; Barbero et al., 2003; Guirao et al., 2004), perhaps 

contributed to by poor centration of IOLs, reducing contrast sensitivity and causing 

undesirable refractive errors. Better surgical technique of aligning IOLs is therefore 

required in order to prevent dislocation cases (Mutlu et al., 2005). Visual 
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phenomena do tend to lessen in subjective significance with time (Vaquero-Ruano 

et al., 1998), but this may be due to adaptation to the aberrations and their effects 

rather than them resolving with time. Restricted pupil diameters following surgical 

intervention may also affect the treatment of the peripheral retina, should it be 

required, and the effectiveness of premium IOLs such as; multifocal designs if 

annular zones are not adequately exposed.    

 

The main limitation of the present investigation was lack of pre-operative pupil 

diameters, measurements were only taken on the date of surgery and on post-

operative visits. Knowledge of the average pupil diameters before surgery would 

provide confirmation of reductions of pupil mobility and hence iris damage. 

However it should be noted the differences that were presented at subsequent 

visits may be attributed to increased corneal permeability at the time of surgery.  
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4.6. Conclusion 

In conclusion, this research confirms that when a pupil is pharmacologically dilated 

for cataract surgery it cannot be used as a satisfactory guide for centration (Melki 

et al., 2011). The limbus is a better guide although the pre-dilation pupil 

decentration relative to the limbus also needs to be taken into account when 

positioning an IOL. Such knowledge becomes even more critical when premium 

IOLs are to be implanted because of their more complex optical designs, which 

can cause a significant reduction in visual quality if they are not perfectly centred. 

In addition, research is warranted into the development of new surgical IOL 

implantation techniques and IOL materials and designs that do not impair the 

dilation response.  

 

Premium IOLs are becoming of growing interest in refractive surgery and not just 

for optimising distance vision following cataract surgery. Patients are continuously 

seeking for possible solutions from practitioners to presbyopia. In order to advise 

patients of their suitability for refractive lens exchange and what factors influence 

when it might be needed, a better understanding of the risk factors for presbyopia 

is required and this is explored in chapter 5. 
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Lifestyle –  

Implications for Multifocal and 
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5.1. Introduction 

Presbyopia is recognized as the most common ocular change occurring in middle 

age (Weale, 2003). The decline in amplitude of accommodation with age is well 

documented within literature, however, the rate of decline and onset of presbyopia 

for individuals varies and may be influenced by various health and environmental 

factors such as nutrition, climate, altitude, ethnicity and physical stature (Kragha, 

1985; Kragha and Hofstetter, 1986). 

 

Both presbyopia and cataracts occur with an ageing lens and tend to develop 

much earlier in populations in warmer climates (Miranda, 1979; 1980). It could be 

assumed that the factors increasing the development of senile cataracts may also 

be factors accelerating presbyopia, such that presbyopia may be the initial stage in 

the development of senile cataracts. Higher environmental temperature has been 

noted as possibly accelerating the onset of presbyopia by some authors (Kragha 

and Hofstetter, 1986). An inverse relationship between environmental temperature 

and onset of presbyopia has been demonstrated through investigations by Weale 

(1981a, b) and Miranda (1979) with correlation coefficients of -0.89 and -0.85 

respectively. However Kragha and Hofstetter (1986) explain this relationship to be 

of self-selection bias and conversely reported no significant differences in bifocal 

additions prescribed across North and Central America, with a range of average 

temperatures between -7°C and 26°C. An earlier inve stigation by Kragha (1985) 

on bifocal additions prescribed to patients in Nigeria showed the influence of 
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temperature on accommodation to only just approach significance (p= 0.051, 

correlation coefficient -0.44), although the additions prescribed to females were 

significantly higher compared to males, explained to be as a result of the smaller 

stature of females and hence shorter working distances used rather than actual 

difference in accommodative ability. More recent studies, however, show females 

exhibit presbyopia earlier due to possible hormonal differences (Nirmalan et al., 

2006; Pointer 1995; Mukesh et al., 2006). Women are also considered to have a 

higher incidence of developing cataracts as shown by the Beaver Dam Study 

(Klein et al., 1998) and Barbados Eye Study (Leske et al., 2000) although reasons 

for this are unclear.  Other comparisons of near additions include that of Hofstetter 

(1968), who showed additions prescribed to patients in Fiji and Ghana were on 

average 0.50 dioptres higher than prescribed to Europeans of a similar age profile. 

 

Rambo (1953) reported variance in the age of presbyopia onset with geographical 

location; it was documented on average as 40 years in Iran, India, Iraq, Arabia and 

Cuba whereas in Italy it was typically 42-43 years, but occurred much later in 

Sweden and Norway at 48 years of age, indicating a much earlier onset in regions 

closer to the equator. Similarly, Ong (1981) found presbyopia to occur earlier in 

southeastern Asian refugees of around 42 years. Geographical data collected by 

Miranda (1980) also shows a negative correlation in the Western and Eastern 

hemispheres, whereby presbyopia onset occurred earlier in regions of warmer 

climate. Differences may also occur within regions, particularly with coastal areas 

where presbyopia seems to occur earlier than in mountainous areas of that same 
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region (Miranda, 1979). Variations in the findings of these studies of climate and 

accommodation may perhaps be due to the lack of definition of presbyopia, 

making comparisons between them difficult (Kragha, 1985). A study in Tanzania, 

where presbyopia was defined to be the inability to read N8 text at 40 centimetres 

with distance correction and improvement using an additional lens, found 61.7% in 

the population of 40 year olds and older to be presbyopic (Burke et al., 2006). A 

similar study in Nigeria, but without a clear description of presbyopia, reported a 

prevalence of only 33% (Nwosu, 1998).      

 

Ultraviolet (UV) radiation is a well-known factor contributing to the aging of the 

human body (Stevens and Bergmanson, 1989). For the eye, radiation between 

310-400nm affects the crystalline lens (Miranda, 1979) increasing the risk of 

cataract development with prolonged exposure (Stevens and Bergmanson, 1989; 

Bergmanson and Söderberg, 1995; Roberts, 2011). It is therefore reasonable to 

assume that UV light can affect an individual’s amplitude of accommodation and its 

rate of decline. Health is another aspect which can greatly affect amplitude of 

accommodation. Reports of conditions such as diabetes and Human 

Immunodeficiency Virus (HIV) have been associated with reduced amplitudes of 

accommodation (Newsome, 1989; Westcott et al., 2001). The effect seems to be 

more pronounced in younger patients aged between 25-29 years; it is perhaps less 

noticeable in older age groups due to a significant decrease in amplitude already 

having taken place (Westcott et al., 2001).   The pathological processes in HIV 

infection may accelerate the changes associated with the aging of the crystalline 
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lens through possible autonomic dysfunction (Westcott et al., 2001). Comparisons 

of young insulin-dependent diabetic patients and non-diabetic patients have also 

shown reductions in pull-down measures of accommodation with diabetes (Moss 

et al., 1987) which may be associated with hypoxia (Berens et al., 1932). Duane 

(1925) had also noted diabetes as a possible factor reducing the amplitude of 

accommodation. 

 

Most studies discussed above, considering the environmental influences on 

accommodation, have based their investigations on one main factor. Jain et al 

(1982) however, investigated a variety of factors possibly contributing to onset of 

presbyopia in an Indian population, including; temperature, UV radiation, diet and 

exposure to toxic substances. Approximately one-third (36%) of the population 

studied were found to enter presbyopia at 38 years of age or younger. Patients 

within rural areas showed earlier onset of presbyopia, possibly due to greater UV 

exposure which was not quantified in the study. A low dietary intake of amino acids 

was also associated with reduced levels of accommodation and earlier onset of 

presbyopia. Furthermore, the study noted the effect of hair dye on earlier onset of 

presbyopia in 4% of patients, which was supported by previous work by Jain et al 

(1979) where lenticular changes occurred in 89% and presbyopia in 7% of 200 

patients using hair dye. 
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Specific vitamins or minerals have not been associated with presbyopia, however 

levels of antioxidants have been linked with cataracts particularly vitamin C, low 

levels of which have been noted in a population with a high prevalence of cataracts 

(Dherani et al., 2008). Levels of carotenoids (lutein, zeaxanthin, carotenes and 

lycopene) are also thought to have protective effects on the crystalline lens 

(Dherani et al., 2008). Caffeine intake can increase levels of accommodation within 

30 minutes of consumption, the effect of which slowly reduces after 30 minutes 

(Ajayi and George, 2007), although long-term effects have not been investigated. 

Lifestyle habits such as long-term excessive alcohol intake and smoking may also 

bear significance on amplitude of accommodation and presbyopia. Subjective 

monocular measurements have shown reduced accommodation in alcoholics 

when compared to controls particularly in younger individuals, the effect being 

sustained even following a recovery period (Campbell et al., 2001). The onset of 

presbyopia with prolonged higher alcohol consumption may therefore occur much 

earlier than anticipated. Smoking may be associated with lenticular changes, as 

this has been described as a possible risk factor in developing nuclear opacities 

(Mukesh et al., 2006; Christen 1992; Hiller et al., 1997; Hankinson et al., 1992). 

The processes by which smoking effects the crystalline lens requires more 

research, however it is proposed that plasma concentrations which maintain 

transparency are interfered with (Christen et al., 1992). Other explanations include 

excessive oxidative stress leading to cellular DNA damage (Kleiman and Spector, 

1993).  
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As part of the World Health Organisation Vision 2020 initiative presbyopia is not 

recognised as a refractive error, however increases in the elderly population will 

inevitably result in higher prevalence of presbyopia, attention to which should be 

considered, as this is an unnecessary source of visual impairment. In this study, a 

combination of environmental and nutritional factors were investigated, using a 

detailed  lifestyle questionnaire and more advanced methodology, in comparison to 

previous studies discussed, to assess the influence on amplitude of 

accommodation and onset of presbyopia in a population attending optometric 

practice in the United Kingdom. Intraocular lenses for presbyopia have advanced, 

but are usually implanted as part of cataract surgery. Cataracts typically occur from 

50 years onwards when presbyopia has already manifested, with patients missing 

out on the potential benefits of premium IOLs for many years and at the peak of 

their working ability. Patients are already benefiting from refractive lens exchange, 

replacing their hardened lens causing presbyopia, however, it is important to know 

when presbyopia occurs and what factors influence this as lifestyle has 

significantly changed since the work of Jain et al (1979) and Miranda (1979), with 

changes in diet and visual demands. A better knowledge of when individual’s may 

become presbyopic will help with counselling on premium IOL options they might 

wish to consider alongside other forms of refractive correction. 
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5.2. Methods 

Four hundred and ninety eight consecutive patients attending routine optometric 

practice in the West Midlands (United Kingdom), who met the inclusion/exclusion 

criteria and gave consent, participated in the study. They were aged between 18 

years to 90 years, with an average age of 42± 23 years. Ethical approval, adhering 

to Declaration of Helsinki, was obtained from the Aston University ethics 

committee. Participants required good physical and mental health with no ocular 

pathology, as observed by slit-lamp biomicroscopy and ophthalmoscopy and no 

previous ocular surgery. All participants were English-speaking to ensure 

instructions and questionnaires were fully understood. 

 

Following informed consent, refractive error was determined subjectively based on 

the principal of maximum plus power for best distance visual acuity to ensure the 

patient was fully corrected for distance vision. Pupil sizes were recorded in 

photopic conditions (300 lux), right eye and binocular amplitude of accommodation 

were then measured using the RAF near point rule (H.S Clement Clarke 

International, Harlow, Essex, United Kingdom) as the push-up technique is the 

most widely accepted method for measuring subjective amplitude of 

accommodation. For pre-presbyopic patients measurements were obtained whilst 

fully corrected for distance. However, for presbyopes a +2.00 dioptre lens addition 

was used required to allow for measurements to be taken within a more sensitive 

range on the RAF rule. Push-up and pull-down techniques were carried out three 
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times for both monocular and binocular amplitudes of accommodation using the 

Snellen chart optotype on the instrument. For push-up measurements, subjects 

were asked to view their lowest line of acuity at 40cm as the target was slowly 

moved towards them. Observers were asked to report when the target became 

blurry and could no longer be resolved. For pull-down measurements, the optotype 

was positioned initially in front of the point of blur on push-up testing; the target 

was then slowly pulled away from the observer until it could again be resolved.  

The reference point at which measurements were made was the spectacle plane, 

located 12mm from the cornea. Additional lighting was used to illuminate optotypes 

to ensure high contrast at all distances (range 80 to 100cd/m2). The same 

examiner carried out all measurements of accommodation for all subjects to 

reduce inter-examiner variability.  

 

Minus lens measurements of accommodation were also obtained by presenting 

minus lenses in 0.25 dioptre steps from blur to initial clearance of a 6 metre target. 

The target viewed was determined as the individual’s lowest line of distance visual 

acuity on a computerised logMAR chart. These two methods were used to allow 

comparison with previous studies on the development of presbyopia (table A4). 
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In addition, adult participants were asked to complete a lifestyle questionnaire 

which is not validated but has previously been used as part of age-related macular 

degeneration studies. Questions included dietary intake, alcohol intake, medical 

conditions and medication, UV exposure, iris colour and supplement intake (see 

appendix for questionnaire, A1).   
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5.3. Statistical Analysis 

For statistical comparisons the amplitude of accommodation with the RAF rule was 

calculated as the average of push-up and push down values, in order to provide 

the best estimation of accommodation (Zadnik, 1997). As  the RAF rule was 

determined as more sensitive to accommodative change with age (see chapter 6), 

these values were used for the correlation with lifestyle in preference to the minus 

lens technique. As both eyes should be affected by any of the lifestyle issues 

evaluated, binocular RAF rule amplitude of accommodation was considered. All 

data was assessed for normal distribution using the Kolmogorov-Smirnov test. 

Comparisons between categories were performed using analysis of covariance 

(ANCOVA) with age as a covariate, as it is known to be the strongest factor 

associated with amplitude of accommodation. Non-parametric data was analysed 

using Kruskal-Wallis and Mann-Whitney U tests. Linear regression modelling was 

used to determine which variables may influence accommodation. 
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5.4. Results  

 

5.4.1. Onset of Presbyopia 

All presbyopic participants were asked when they first required a reading 

prescription which would indicate the onset of presbyopia, as at this time a patient 

seeks help from a practitioner due to inability to carry out near tasks satisfactorily. 

The average age of onset of presbyopia, reported by the population that 

participated in the study was calculated as 48.9 ± 7.3 years. The average age of 

presbyopia onset for females was 48.2 ± 7.2 years and for males it was  49.7± 7.4 

years, these results however showed no statistical difference (p=0.11). 

Average photopic pupil size for male presbyopes was calculated as 3.19 ± 

0.05mm, for females it was 3.17±0.05mm, although this showed no statistical 

difference (F=0.07, p=0.79). 
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5.4.2. Age & Gender 

Binocular amplitude of accommodation with the RAF rule, calculated as the mean 

of binocular push-up and pull-down values and minus lens technique amplitudes 

were compared. Both techniques show decrease in amplitude with age (Figure 

5.1).  
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Figure 5.1: Comparison of binocular amplitude of accommodation with RAF rule 

(n=536) 
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The relationship between age and binocular accommodation with RAF rule was 

investigated by performing analysis of Pearson product-moment correlation 

coefficient. A strong negative correlation was present between age and 

accommodation, where an increase in age results in a decrease in 

accommodation, for males; r= -0.86, n=215, (p<0.001) and for females; r= -0.85, 

n=278 (p<0.001).  

 

On age-controlled comparisons of accommodation between gender, pre-

presbyopic females (<45 years) showed higher average binocular amplitude of 

accommodation, with the RAF rule, of 10.29 ±  3.29 D compared to an average of 

9.54 ± 2.77 D for pre-presbyopic males, although this was just outside statistical 

difference (p=0.06). Presbyopic males (≥ 45 years) exhibited a mean amplitude of 

accommodation of 3.46 ± 0.76 D compared to females with mean amplitude of 

3.39 ± 1.00 D; again this was not found to be of statistical significance (p= 0.5, 

Figure 5.2). 
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Average Binocular Amplitude of Accommodation 
& Gender 

 
 

 
 
 

 

 

 

Figure 5.2: Comparison of average binocular amplitude of accommodation between pre-
presbyopic and presbyopic males (n=215) and females (n=278). Error bars = 1 S.D. 
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5.4.3. Height, Weight & Body Mass Index (BMI) 

For height (cm) no association with accommodation (r= 0.06, n= 493, p= 0.202) 

was found. Weight (kg) showed a very small positive association, with a Pearsons 

correlation coefficient of 0.11, found to be of significance (p=0.014, n= 493). 

However, Body Mass Index (kg/m2) showed a significant stronger negative 

association with accommodation, (r= -0.44, n= 493, p<0.001). 

 

 

 

5.4.4. Ethnicity 

To investigate the influence of ethnicity on accommodation, comparisons 

weremade only between the two largest ethnic groups found from the 

questionnaire; British (n=103) and South Asian (n=90).  A one-way between-

groups analysis of covariance (ANCOVA) was conducted to compare the two 

major ethnic groups from results of the questionnaire and their binocular 

accommodation values obtained with the RAF rule; the independent variable being 

noted as ethnicity, the dependent variable set was accommodation and age 

selected as a covariate.     

No significant differences were found amongst the ethnic groups (F= 3.31, p= 0.07, 

partial eta squared= 0.02).  

 

 

 



164 

 

5.4.5. Iris Colour   

Comparisons of iris colour groups; black/dark brown, blue, brown, green, grey, 

hazel and light brown, were made as these were the most common categories 

obtained from the questionnaire. One-way between-groups analysis of covariance 

(ANCOVA) was conducted to compare iris colours and binocular accommodation 

values obtained with the RAF rule, the independent variable being noted as iris 

colour, the dependent variable was set as accommodation and age selected as a 

covariate.  

    

Differences between iris colour whilst controlling for age were found to be 

significant (F= 5.96, p<0.001, partial eta squared= 0.09). 9% of the variance in 

accommodation, according to the analysis, can be explained by iris colour. Further 

post hoc comparisons with the Tukey HSD test shows black/dark brown (7.42± 

0.28D, n=59), brown (5.76± 0.21D, n=85) and light brown (6.21± 0.43D, n=19) 

irides significantly differ from blue (5.54± 0.19D, n=108) and grey (5.29± 0.41D, 

n=22) irides. The darker irides gave higher values of mean accommodation in 

comparison to lighter irides. The three groups of brown iris colours (Black/dark 

brown, brown, light brown) also showed statistical differences between each other, 

with black/dark brown giving the greatest adjusted mean amplitude of 

accommodation. Green (5.28± 0.34D, n=31) and Hazel (5.72± 0.31D, n=37) 

showed no statistical differences with all iris colour groups.    
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5.4.6. Ultraviolet Light Exposure & Climate 

To investigate the possible effects of ultraviolet (UV) light and climate on amplitude 

of accommodation, subjects were asked a number of questions; the hours spent 

outside per week in Spring/Summer months and Autumn/Winter months, annual 

exposure to strong sunlight abroad and the total number of weeks in hot climates 

throughout the individual’s entire lifetime.  Generally the hours spent outdoors in 

daylight were more in the Spring/Summer (24.57± 20.14 hours) period than in 

Autumn/Winter period (15.07± 14.14 hours, p<0.001). To investigate if a 

relationship exists between the number of hours outdoors per week in warmer and 

colder seasons and accommodation, partial correlation was conducted between 

binocular amplitude of accommodation (RAF rule) and the two sets of seasons. 

Again controlling for age was a requirement for this analysis. 

 

For hours of UV exposure per week in the Autumn/Winter months, a significant but 

relatively small negative association was found (r= -0.12, n= 491, p= 0.01), 

suggesting that the less hours an individual spends outside  in the colder seasons, 

the higher the amplitude of accommodation. Surprisingly, the correlation between 

binocular accommodation and weekly exposure to UV light in the Spring/Summer 

months showed only a borderline association (r= -0.08, n=491, p=0.06). 
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Participants were also asked for how many weeks of their annual holidays they 

were exposed to strong sunlight abroad. Partial correlation showed no significance 

between annual exposure to strong sunlight and amplitude of accommodation (r = 

0.01, n= 491, p=0.77). Using the total number of weeks spent abroad in hot climate 

in the participant’s entire lifetime obtained from the questionnaire to explore the 

possibility of an association between hot climate and amplitude of accommodation, 

partial correlation gave no significant association between time in hot climates 

throughout a lifetime and amplitude of accommodation (r= 0.01, n=491, p=0.82).  
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5.4.7. Ultraviolet Light Protection 

Within the questionnaire, participants were asked about their UV protection and 

how often sunglasses were worn during times of bright sunlight. Answers were 

split into categories of; always, most of the time, sometimes, occasionally, very 

rarely and never.  

 

A Kruskal-Wallis test was conducted and revealed a significant difference amongst 

the six groups (p<0.001, χ2 = 39.76).  Never wearing sunglasses generated a 

lower median than all other groups except for always wearing sunglasses. Mann-

Whitney tests were conducted between all groups and showed a significant 

difference in amplitude of accommodation between never (Md= 4.06, n=89) 

wearing sunglasses and four other groups; very rarely (p<0.001, Md= 8.12, n= 57), 

occasionally (p=0.03, Md= 7.58, n= 44), sometimes (p<0.001, Md= 7.94, n= 64) 

and most of the time (p=0.001, Md= 8.50, n= 71). Never wearing sunglasses and 

always wearing sunglasses in bright conditions, however, showed no statistical 

difference (p=0.87, Md= 3.50, n= 83).  
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5.4.8. Diet & Nutrition 

One way between groups analysis of covariance (ANCOVA) was conducted to 

assess the binocular amplitude of accommodation measured with the RAF rule for 

meat eaters (n=428), vegetarians (n=41) and partial vegetarians (n=24). No 

vegans were found to have participated in the study. The covariate was selected 

as age. However, the different categories in diet did not show any significance in 

the level of binocular accommodation measured (F=2.12, p= 0.12).  

 

For more detailed information on dietary intake patients were asked how many 

separate servings of fruit and vegetables they consumed per week and how many 

eggs and oily fish were eaten per week. One cup of fruit or vegetables was defined 

as a serving of food. Fruit and vegetable intake per week was combined to give an 

overall estimate of weekly intake by summing up the separate serving scores for 

fruit and vegetables. Partial correlation was used to explore the relationship 

between the combined intake per week and binocular accommodation (RAF Rule) 

whilst controlling for age. No significant association was found between fruit and 

vegetable intake and binocular accommodation (r =0.007, n=491, p=0.88).   
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The recommended daily intake of fruit and vegetables is known to be 5 servings of 

both fruit and vegetables per day, making a weekly intake of 35 servings. To 

investigate if this recommendation may of benefit to accommodation levels, one 

way between groups analysis of covariance (ANCOVA) was conducted for weekly 

intake of less than 35 servings of fruit and vegetables (n=441) and 35 or more 

(n=52). No significant difference in accommodation was found between individuals 

adhering to the recommended intake and those not achieving the recommended 

intake (F=0.19, p=0.66, partial eta squared<0.001).     

 

The number of eggs consumed per week and accommodation was also assessed 

using partial correlation, again controlling for age. Again, no association was found 

(r=0.03, n=491, p=0.51), hence suggesting the number of eggs consumed does 

not affect binocular accommodation. Partial correlation was again used to assess if 

a relationship exists between the amount of oily fish consumed per week and 

binocular accommodation (RAF rule).  Oily fish intake per week also did not show 

any significant relationship on binocular amplitude of accommodation (r=0.03, 

n=491, p=0.51).  
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5.4.9. Alcohol Consumption 

To assess the effects of alcohol consumption adult participants were asked if they 

consumed alcohol and if so how many units were consumed per week. One way 

between groups analysis of covariance was used to compare the binocular 

accommodation (RAF rule) between participants that drink alcohol (n=263) and 

participants that do not drink alcohol (n=230), with the covariate set as age. The 

results of the ANCOVA show some significance in the differences of amplitude of 

accommodation between the alcohol drinkers and non-alcohol drinkers (F=9.91, 

p=0.002, partial eta squared= 0.02). The mean accommodation was higher for 

those that do not drink alcohol (6.81 ±0.13 D) in comparison to those that do (6.26 

± 0.12 D). 

 

In order to investigate how much alcohol is required to affect accommodation, 

partial correlation analysis on binocular accommodation and the units of alcohol 

consumed per week, whilst controlling for the effect of age. No correlation was 

found as the value was just outside significance (r= -0.11, n= 263, p=0.07), 

suggesting that for participants in the current study, the quantity of alcohol 

consumption did not affect levels of accommodation.   

 

 

 



171 

 

5.4.10. Smoking 

All adult participants were asked if they smoked cigarettes, subjects were then split 

into two groups of smokers and non-smokers. Binocular accommodation values 

measured with the RAF rule were compared for both presbyopic and pre-

presbyopic smokers and non-smokers. Comparisons of average accommodation 

with the RAF rule within pre-presbyopes (<45 years) show significantly lower 

average accommodation for smokers (n=23) compared to non-smokers (n= 236, 

p< 0.001). The reverse is shown in presbyopic subjects (≥ 45 years) where 

smokers (n=38) exhibit a significant and slightly higher mean amplitude of 

accommodation with the RAF rule compared to non-smokers (n=196, p<0.001, 

Table 5.1, Figure 5.3). 

 

 

 

 Pre-Presbyopes (<45 yrs) Presbyopes ( ≥ 45 yrs) 

Non-smokers 10.25 ± 2.98D 3.32 ± 0.68D 

Smokers 7.21 ± 3.51D 3.75 ± 0.79D 

 

 

 

 

 

 

 

 

Table 5.1: Average amplitude of accommodation (dioptres, D) measured using RAF 
rule for pre-presbyopes and presbyopes 
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Figure 5.3: Comparisons of smokers and non-smokers 
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One way between groups analysis of covariance (ANCOVA) with age set as the 

covariate also confirmed an overall difference between smokers and non-smokers 

(F=13.36, p<0.001, partial eta squared 0.3). Smokers showed reduced mean 

amplitude of accommodation (5.93± 0.27D, n=61) in comparison to non-smokers 

(6.98D± 0.10D, n=432). 

 

To determine if there is any variation amongst the quantity of cigarettes smoked, 

one way analysis of covariance (ANCOVA) was also carried out within the smoker 

group. Comparisons of those smoking less than 100 cigarettes per week and 100 

or more cigarettes per week, whilst controlling for age, showed a significant 

difference (F= 6.72, p= 0.01, partial eta squared= 0.1). Smokers that smoke 100 or 

more cigarettes per week seem to possess greater amplitude of accommodation 

once age has been controlled for, with adjusted means of 10.50 ± 0.35D and 

12.14D ± 0.49D for smoking less than 100 cigarettes (n=39) and 100 or more 

(n=22), respectively.   
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5.4.11. Vitamin Supplement Intake 

As part of the questionnaire, patients were asked if they used vitamin 

supplements, such as multivitamins, as part of their diet in the last ten years. 

Comparisons of the binocular accommodation (with RAF rule) between individuals 

taking vitamin supplements once a day for ten years (n= 125) and those not taking 

supplements (n= 368) were made using one way between groups analysis of 

covariance (ANCOVA), with age as a covariate. Intake of vitamin supplements 

showed no significant affect on amplitude of accommodation (F= 1.92, p= 0.17, 

partial eta squared= 0.004).  

 

 

5.4.12. Diabetes 

One way between groups analysis of covariance was used to explore the 

differences in binocular accommodation with the RAF rule between diabetic 

patients (n= 89) and non-diabetic patients (n= 404), age was selected as a 

covariate.  No significant difference was found between the two groups, (F= 2.56, 

p= 0.11, partial eta squared= 0.005), but there were only 89 diabetics in the 

population examined.   
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5.4.13. Hair Dye 

Comparisons between groups that have used hair dye in the last ten years (n= 

138) and those that have not (n=355) were carried out using a one way between 

groups ANCOVA, with age as a covariate. A significant difference was found 

between the two groups (F= 5.51, p=0.02), with the group not using hair dye 

showing a greater mean of binocular accommodation with the RAF rule (6.99 

±0.11 D) then the group using hair dye (6.49 ± 0.18D). Suggesting hair dye use 

may have some involvement in accommodation levels. 
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5.4.14. VDU & Mobile Phone Use 

To investigate how more recent visually demanding technology may affect 

accommodation, subjects were asked if they used a laptop or PC and mobile 

phones. To assess if the amplitude of accommodation differs between users of 

VDUs and non-users a one way between groups analysis of covariance 

(ANCOVA) was performed, with age set a covariate. Interestingly, the analysis 

showed a significant difference amongst the two groups (F= 5.77, p= 0.02), 

suggesting that using a VDU may have some influence on accommodation levels. 

However it must be noted although age was controlled in this analysis, 74% of the 

users were pre-presbyopes (<40 years of age). The mean RAF amplitude of 

accommodation, controlled for age, was slightly greater amongst those that do not 

use VDUs (6.96± 0.21D, n= 173) compared to those using VDUs (6.27± 0.13D, n= 

320). Partial correlation was then used to investigate if the number of hours daily 

using a VDU also influenced amplitude of accommodation, again the effect of age 

was controlled for. No significant correlation was obtained between number of 

hours daily on VDUs (r = 0.01, n= 320, p=0.31) and RAF binocular 

accommodation, suggesting the amount of time spent working on computers does 

not affect accommodation, but using or not using does. 

 

 

 

 



177 

 

For mobile phone use, one way between groups analysis of covariance was also 

used to explore the differences in accommodation between those using mobile 

phones and those that do not. Again age was selected as the covariate. The 

difference between users and non-users of mobile phones significantly differed in 

binocular accommodation values with RAF rule (F= 10.32, p=0.001, partial eta 

squared=0.021). Again the majority of mobile phone users were pre-presbyopes 

(62%, <40 years). With age adjusted, non-users of mobile phones show greater 

mean binocular amplitude of accommodation (7.18± 0.22D, n= 110) than mobile 

users (6.33± 0.11D, n= 383).  

 

 

 
 
5.4.15. Near Work 
 

Patients were asked how many hours per day they spend on near tasks such as 

reading. To assess if the amount of time carrying out near tasks and levels of 

accommodation are associated, partial correlation analysis was used. No 

significant correlation was found between the number of hours spent on near tasks 

per day and accommodation (r= -0.05, n= 493, p= 0.31) with the RAF rule. 
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5.4.16. Near Working Distance 

Parametric comparisons were made to determine if the preferred near working 

distance of an individual influences the onset of presbyopia or rather the 

requirement for reading spectacles.  

A significant positive correlation between near working distance and presbyopia 

onset exists (r =0.17, n= 236, p=0.01), therefore as the preferred working distance 

increases, the later an individual will require reading spectacles. However, the 

correlation is small suggesting that near working distance is a small factor 

influencing presbyopia in addition to others.   

 

 

 

5.4.17. Modelling of Continuous Variables 

To form a model of predicting presbyopia onset and level of accommodation, 

continuous variables including age, gender, weight, height, BMI, alcohol units 

consumed were investigated. The effect of smoking, diabetes, UV exposure, diet, 

use of hair dye, mobile phones and VDU usage were also investigated controlling 

for the variables found to affect the model. 
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For stepwise linear regression modelling, age, height, weight, BMI, weekly fruit and 

vegetable intake, alcohol units, hours spent outdoors in autumn/winter and 

spring/summer, weeks spent abroad in strong sunlight per year, total time spent in 

hot climates through lifetime, hours spent on near tasks daily and reading distance 

were all entered as variables. The model shows only age, weight, units of alcohol 

units consumed per week, hours spent outdoors in autumn/winter and reading 

distance to have some affect on accommodation, excluding the other variables that 

were entered. The model obtained was given as follows; 

 

 

Accommodation= 16.876 + (Age – 0.135) + (weight -0. 023) + (reading distance 

-0.053) + (alcohol units – 0.023) + (hours autumn/w inter – 0.013) 

 

 

The final R2 value was 74.6%, hence the majority of the variation in binocular 

accommodation with the RAF rule can be explained by the model shown above, 

with the additional variables excluding age adding 2.3% to the variation in 

accommodation. 

 

 

 



180 

 

Categorical regression in which the remaining non-continuous variables were 

entered showed smoking, diet type, alcohol consumption, sunglass wear, vitamin 

intake and diabetes to account for a small variation in accommodation. The R2 

value calculated as 13.7% indicating a small influence on accommodation yielded 

by the categorical model. Use of VDU shows the greatest measure of relative 

importance (0.42) and is thus fundamental to the regression model. The relative 

importance for smoking (0.06), diet type (0.12), alcohol (0.14), sunglass wear 

(0.10), vitamin intake (0.007), diabetes (0.08) and mobile phone use (0.06) were all 

much lower in comparison. Tolerance values for smoking, diet type, alcohol, 

sunglass wear, vitamin intake and diabetes all have found to be near 1, hence 

cannot be predicted well from one another and show less bearing on the 

regression model. VDU and mobile phone use show tolerance values of 0.61 and 

0.63 respectively, although relative importance of mobile phone use was only 0.06.    
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5.5. Discussion  

With both techniques of measurement a definite decrease in amplitude of 

accommodation was evident with age. The average age of patient reported onset 

of presbyopia (nearly 49 years) which was similar for males and females was 

considerably higher than previously reported by other researchers (please refer to 

appendix, table A4). The difference may be explained by improvements in 

healthcare and considerable changes in diet and general lifestyle and seem to 

concur with when the objective data asymptotes.  

 

The onset of presbyopia between males and females did not differ significantly, 

despite females showing slightly earlier development, similar to Hickenbotham et 

al (2012, in press). There is a general agreement that females tend to develop 

presbyopia earlier than males (Nirmalan et al., 2006; Millidot et al., 1989; Koretz et 

al., 1989; Kragha 1986; Miranda 1979; Carnevali and Southaphanh 2005; Morny 

1995). Although hormonal differences have been suggested as possible reasons, 

recent work by Hickenbotham et al (2012, in press) have demonstrated the 

differences are attributed to preferred near working distances and differences in 

hobbies requiring near vision rather than physiological variations and focusing 

ability.  In addition, length of arms, occupation, and lighting tasks may also 

influence the requirement for reading spectacles. Therefore, the measurement of 

amplitude of accommodation alone does not provide sufficient information on 

presbyopia as one must consider the visual requirements of the patient 
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(Hickenbotham et al., 2012, in press). Consideration of depth of focus, high order 

aberrations and pupil size in future research is also recommended to determine 

any differences between males and females. Near working distance amongst 

women has already been determined (Millidot and Millidot 1989) and seems the 

most likely factor in the earlier development of presbyopia as the physical stature 

of women is much smaller than men. Women over 40 years also show a tendency 

towards hyperopic refractive errors (Kempen et al., 2004)  which may exacerbate 

near vision symptoms leading to an earlier prescription for reading spectacles.  

  

No previous work has considered height, weight or body mass index (BMI) as 

possible contributors to levels of accommodation and onset of presbyopia, even 

though they may relate to arm length and eye size. Within the current results no 

association was found between height and accommodation. Weight and BMI, 

however, showed a small relationship with accommodation. Weight was positively 

associated with accommodation indicating as weight increases amplitude of 

accommodation may also increase, though this was only a small relationship it was 

of enough significance to be included in regression modeling. Conversely, BMI 

showed a negative relationship, suggesting as BMI increases the amplitude of 

accommodation will decrease, the magnitude of this relationship was far greater 

than that of weight but unusually was not included in regression modeling. Height 

and weight alone, clearly do not show a vast bearing on accommodation, however 

when combined to give an overall score such as body mass index, a relationship 

with accommodation may be observed.   
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Ethnicity has long been recognized as a considerable contributing factor to the age 

of onset of presbyopia and bears a significant effect on accommodation levels. 

Caucasians have been reported to possess greater amplitudes of accommodation 

in comparison to other ethnic groups (Covell, 1950, Rambo and Sangal, 1960), 

although it is not always to differentiate this from environmental conditions at some 

point in the subjects’ history. Covell (1950) reported a 5 to 10 year early onset of 

presbyopia amongst black migrants with a very rapid decrease in accommodation 

when compared to white Panamanians, this was distinguished by examining the 

near additions prescribed to both ethnic groups. Hofstetter (1968, 1949) had also 

reported a higher addition for near work was prescribed to black patients in 

comparison to Caucasians in the order of ~0.50 dioptres.  In addition, Olurin (1973) 

stated an early onset of presbyopia in native Nigerians, where 48% aged 35 to 40 

years old require near additions. Further research by Ong (1984), as previously 

mentioned, discovered a particularly earlier onset of presbyopia, below the age of 

35 years, in Southeast Asian refugees. These studies on presbyopia and 

accommodation have reported differences between ethnic groups originating from 

different countries. No retrospective studies have investigated differences between 

ethnic groups within in the same country or region. In the present investigation all 

participants were UK residents.   
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Similar to Carnevali and Southaphanh (2005), investigating presbyopia in Hispanic 

and non- Hispanic groups and Hunter et al (1997), no statistically significant 

differences were found amongst ethnic groups within the current study. The lack of 

significance between results is not unexpected, as all ethnic groups were residents 

of the United Kingdom and have hence been subjected to the same climate and 

general lifestyle. Such a finding suggests rather than ethnic origin influencing 

accommodation levels, climate and geographical location may be more valuable 

factors for consideration.  

 

Age-related lenticular changes, such as cataracts have been associated with 

darker irides in numerous studies (Leske et al., 2002; McCarty et al., 1999; 

Cumming et al., 2000, Delcourt et al., 2000). The general notion being darker 

irides absorb more heat energy and transfer this to the crystalline lens inducing 

thermal damage and aging (Langley et al., 1960), which in turn increases the risk 

of opacities and hence may even play a role in reducing amplitude of 

accommodation. It is also suggested that iris melanin may produce free radicals 

through UV exposure which damage the lens (Mason et al., 1960). However, as 

the present study has found greater binocular amplitudes with brown irides 

compared to blue irides, it could be postulated that darker irides absorb more UV 

radiation protecting the crystalline lens from UV damage. A similar finding was 

cited in a study investigating iris pigment and UV radiation in rats, where cataracts 

developed more in non-pigmented rats than the pigmented species (Löfgren et al., 

2012). The authors also suggested darker irides may absorb more sunlight hence 
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provide better protection, in addition melanin may provide protection against 

damage (Hill et al., 1997) due to proclaimed antioxidant properties (Löfgren et al., 

2012). Previous findings of association with opacities and dark irides may be 

influenced by the geographical locations in which research was carried out, the 

investigations tended to be in regions of hot climate with high levels of sunlight 

where darker irides are most prevalent. Furthermore, these regions consist of 

lower socio-economical status and poorer nutrition which also may have affect the 

rate of aging.            

 

Ultraviolet light (UV) is defined as three sets of wavelengths; UVA of wavelengths 

315-400nm, UVB of wavelengths 280-315nm and UVC with the shortest 

wavelengths of 100-280nm. The shorter the wavelength the more energy is carried 

and hence increase the severity of any damage caused. In the young eye, the 

cornea absorbs any UVC penetrating the atmosphere and the lens absorbs any 

UVB traversing the cornea, though aging processes this absorption may increase 

to include UVA (Bergmanson and Söderberg, 1995). Chronic UV exposure can 

significantly deteriorate ocular health, external effects include development of 

pterygia and piguecula on the conjunctiva and photokeratitis, with reports of 

pleomorphism and polymegathism as possible results of UV damage. Internally, 

damage through macular degeneration and cataracts may develop. It is therefore 

assumed that UV light may induce aging of the crystalline lens (Stevens and 

Bergmanson, 1989).     
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The lens is also very sensitive to temperature and lifelong exposure can accelerate 

ageing by affecting metabolic processes of lens epithelium. As discussed 

previously there is strong evidence suggesting a link between presbyopia and hot 

climates as well as with increased exposure to UV light, whereby presbyopia 

develops much earlier in regions of warmer climates with high levels of sunlight 

(Stevens and Bergmanson, 1989). Also Miranda (1979) has suggested an earlier 

onset of presbyopia with lower latitudes.  

 

UV light of 290-400nm causes considerable damage to the crystalline lens and 

prolonged exposure to 290-400nm throughout life has been associated with 

accumulation of chromophores and increase in the insoluble proteins within lens 

fibres (Lerman, 1980). Various studies have described processes by which UV 

light may cause damage to induce aging of the lens, which could explain the 

earlier onset of presbyopia closer to the equator. Light exposure may induce an 

inflammatory response within the eye, which leads to the release of reactive 

oxygen species that damage tissues, photoxidation may also lead to production of 

reactive oxygen species by pigments within the eye (Roberts, 2011). As the lens is 

made up of dead proteins, which accumulate through life, any damage to the 

proteins also accumulates as no processes exist to remove damaged cells 

(Andley, 2008; Young, 1992). UVB induced damage has also been linked to 

increased calcium levels; this is believed to activate a substance called calpain 

which damages crystallin proteins (Hightower and McCreedy, 1997). Damage to 

the lens by UV radiation can occur in as little as 24-48 hours, with experimentation 
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showing swelling of epithelial cells, granules within cytoplasm and formation of 

peripheral wall cells within 48-72 hours of exposure (Pitts et al., 1977). Changes 

within the anterior epithelium have also been noted particularly within pupil area, 

although the damage appeared to reverse after ten days (Duke-Elder 1926, 1954). 

Tryptophan, found in ϒ- crystalline, when irradiated with UV light produces 

chromatic photoproducts that bind to the lens proteins and change their colour and 

make them insoluble (Zigman et al., 1972). Furthermore, mice experiments by 

Zigman et al., (1974) and Zigman and Vaughan (1974) have shown epithelial cells 

lose their differentiation ability to form fibre cells 35 weeks following chronic 

exposure, cataract development soon manifested after 50 weeks.     

 

Environmental temperature, as shown by Miranda (1979), presents a strong 

negative correlation with onset of presbyopia. Schwartz (1965) showed the 

temperature in rabbit lenses to be 8°F higher with an environmental temperature of 

75°F compared to 50°C. As metabolic rates increase to almost double with 

increased tissue temperature, it is likely that aging will occur sooner. In the current 

study, no significance was found in accommodation results and how much time an 

individual spent abroad in hot and sunny climates annually or throughout their 

lifetime. However, the number of hours spent outdoors in winter and autumn 

showed a positive correlation but time spent outdoors in summer and spring was 

just outside statistical significance. Individuals wearing sunglasses in bright 

conditions also showed higher accommodation values than if sunglasses were 
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never worn, suggesting protection around the eyes in bright conditions will reduce 

the level of UV damage to the crystalline lens.     

 

Time spent outdoor in autumn and winter may have shown more significance on 

accommodation results as it is unlikely that any UV protection is worn around the 

eyes during the colder months. Also, with the low-lying sun during these seasons 

one may be exposed to more UV light than anticipated. The finding of reduced 

accommodation amongst constant wearers of sunglasses in bright light could be 

explained by the disadvantages of sunglasses. Wearing sunglasses may inactivate 

the mechanism of squinting, which attempts to provide some protection against 

excessive light exposure, additionally, pupil dilation may be stimulated by dark 

glasses allowing more access to light coming from around the frame of sunglasses 

(Corneo 2011; Deaver et al., 1996; Sliney 2001).  Perhaps for these reasons, the 

group wearing sunglasses ‘most of the time’ presented the highest levels of 

accommodation compared to all other categories, as this would not completely 

inhibit defense mechanisms. However, the importance of eye protection against 

UV radiation must be expressed to patients and the general public despite these 

claimed disadvantages of sunglasses. Sunglasses should be of wraparound style 

to provide the best protection.  Persons wearing fulltime refractive correction 

should be advised on UV coated lenses and contact lens wearers should be 

encouraged to opt for lenses providing UV filters. UV protection in children must 

also be stressed as the development of presbyopia is the result of life-long 
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metabolic processes of the crystalline lens and the retina is not fully protected from 

UV until adulthood, hence earlier protection may help prevent signs of early aging.       

 

The role of diet in various age-related processes and disease has become of 

growing interest among researchers. Increased fruit and vegetable intake is 

recommended with age as normal rates of antioxidant production are reduced with 

advancing age (Jacques et al., 2001; Lyle et al., 1999). Through aging the 

crystalline lens endures photoxidative damage, oxidation of lens proteins may 

cause changes within the lens, eventually resulting in senile cataracts (Jacques et 

al., 1997). Studies have shown reductions in age-related conditions such as 

cataracts and macular degeneration with increased intake of antioxidants such as 

vitamin C, E, A and carotenoids, this may be due to their protective effects against 

oxidation (Jacques et al., 1997; Jacques et al., 1994; Taylor et al., 1993). Results 

from questioning participants on fruit and vegetable intake, however, did not 

demonstrate any benefits to accommodation; multivitamin supplementation also 

did not show any significant effect on accommodation levels.  Similarly, Taylor et al 

(2002) observed no association between antioxidant intake and cataract formation, 

though did report an association between low vitamin C levels with lens opacities 

in women below 60 years of age, the chances of which could be reduced through 

long-term vitamin C supplementation. Jacques et al (1997) recommend observing 

supplement intake over a ten year period as shorter time scales may fail to 

demonstrate any effects.  Questioning on supplementation was indeed refined to 

intake over 10 years but results failed to indicate any effects with amplitude of 
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accommodation. It is believed that social status may influence the quality of 

nutrition and diet and hence rate of presbyopia onset, as reports within developing 

countries have determined earlier onset. Hunter et al (1997) have shown social 

economic status does not impact presbyopia and again suggests further research 

into causative factors of early presbyopia.  

 

Consumption of alcohol has been shown to result in lower amplitude of 

accommodation compared to no alcohol consumption. The number of units 

consumed did not show any significant change in binocular accommodation levels, 

though it should be emphasized that there may have been a bias in information 

from patients as to how many units were consumed. It should be noted, however, 

the results from minus lens measures (not presented in the results) showed a 

negative correlation with weekly alcohol units, where increases in number of units 

consumed correlated with lower amplitude of accommodation. The effects of 

alcohol on aging of the human body and normal functioning of processes in the 

body are well known. Although the effects of alcohol consumption on 

accommodation and presbyopia have not widely been researched, Campbell et al 

(2001) have noted lower accommodation, measured with the RAF rule, with 

excessive consumption particularly in young subjects. These findings were 

sustained a week later following a period of no alcohol consumption and therefore 

cannot be explained by blood alcohol levels as this period of time is sufficient for 

eradication of alcohol within the bloodstream. An increase in pupil size is also 
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noted in alcoholics which may reduce depth of focus and hence reduce 

accommodation.      

Alcohol may have an effect on lens homeostasis and has already been implicated 

in cataractogenesis with moderate to heavy consumption (Manson et al., 1994).   

Fatma et al., have also shown cytotoxic effects of ethanol on lens epithelial cells 

whilst previous research has shown alterations in membrane permeability which 

may affect permeability of calcium (Harding, 1995, Zeng et al., 1998). Additional 

studies have shown toxic effects of alcohol leading to loss of LEDGF protein in 

lens epithelial cells (Fatma et al., 2004), losses of this protein are correlated with 

cell death due to stress. Reductions in LEDGF in cells may impair homeostasis 

and hence functioning of cells. Furthermore, LEDGF is a transcriptional regulator 

of the genes ADH and ALDH, both of which participate in detoxification of cells 

from ethanol toxicity. Less LEDGF may hence reduce this action making the 

crystalline lens more susceptible to damage through alcohol consumption (Fatma 

et al., 2004).     

 

Cigarette smoking has already been categorised as being cataractogenic (Cekic, 

1998), hence smoking may affect amplitude of accommodation and onset of 

presbyopia. Smokers were found to exhibit significantly lower accommodation 

when compared to age-matched non-smokers, particularly in pre-presbyopes. In 

presbyopes, however, the opposite occurred where smokers had significantly 

higher amplitudes, although this was a small difference of only ~0.4 D. It has been 
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stated that 2.6% of cataracts may be attributed to smoking (van Heyningen & 

Harding, 1988), the risk of which may be increased in diabetic smokers (Klein et 

al., 1985). Numerous toxins within tobacco smoke are particularly harmful to ocular 

structures causing ischemic or oxidative stress (Mosad et al., 2010). Oxidative 

stress is known to induce opacities within the lens (Balasubramanian et al., 1993) 

but it is reasonable to assume this may initially affect accommodative ability and 

lead to early presbyopia. Various substances such as cadium, cyanide, 

thiocyanide, free radicals and aldehydes are all increased within smokers (Reznick 

et al., 1992). Aldehydes may cause damage by attacking proteins and enzymes 

within the crystalline lens (Harding, 1993). Cadium levels are of particular concern, 

as increased amounts have been noted in cataractous lenses which increase 

further with the number of cigarettes smoked (Cekic 1998; Mosad et al., 2010). 

Reports have suggested that cadium may denature lens proteins (Ramakrishnan 

et al., 1995) or affect copper metabolism, which is required for enzyme 

functionality (Cook & McGahan, 1986).  Increased levels of copper and lead have 

also been noted in lenses of smoker which may be due to the activity of cadium 

within the lens (Cekic, 1998). Cadium has a half-life of approximately 30 years, 

hence is able to cause disruption within the human body for some time, possibly 

inducing premature aging of the lens.  

 

Smoking is also linked to lower levels of antioxidants, such as vitamin C, E and 

carotenoids (Christen et al., 1992; Hankinson et al., 1992). These antioxidants 

‘quench’ free radicals that may otherwise cause oxidation (Klein et al., 1985), such 
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substances may therefore aid the prevention of premature aging of the lens but 

seem to be reduced in smokers which may provide some understanding of the 

reduced accommodation found in the smoker group of the present study.  Although 

cadium levels increase with increased numbers of cigarettes, no significance was 

found on amplitude of accommodation with the amount of cigarettes smoked. In 

addition, presbyope smokers showed slightly higher accommodation which could 

possibly be attributed to disruption or inhibition of metabolic processes in the lens 

epithelium that eventually cause aging.  

 

Diabetes Mellitus has been associated with early onset of various age-related 

conditions (Cahill, 1979) and hence may exhibit lower amplitudes of 

accommodation. With age the crystalline lens of diabetic patients, when compared 

that of healthy subjects, is thicker and more convex in shape (Brown et al., 1982; 

Saw et al., 2007; Huggert 1953; Brown and Hungerford 1982). Cataracts also tend 

to occur more frequently and at an earlier age with diabetes sufferers (Bron et al., 

1993).  It is estimated that duration of diabetes has 70% more of an effect than age 

on the lens per year (Sparrow et al., 1990; Goldmann, 1964), making it a 

significant factor to consider in onset of presbyopia. The increase in lens thickness 

is believed to be due to increases in the size of the cortex and nucleus (Sparrow et 

al., 1990), particularly the cortex, with effect being more apparent in type I 

diabetics. Weimer et al., (2008a) has also shown variations in the structure of the 

lens with diabetes compared to controls, again with greater changes in type I 

diabetes. The thickness of the cortex and nucleus were found significantly thicker 
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in diabetes type I, duration of diabetes was a significant factor showing a positive 

relationship with thickness. Type II diabetes, however, showed less effect on the 

structure of the lens. Weimer et al (2008a) proposed two theories to explain the 

increase in thickness – the theory of enhanced growth and theory of lens swelling. 

The increase in thickness of the lens could be attributed to an increase in lens fibre 

production through using insulin (Reddan et al., 1982, 1983). Alternatively, the lens 

swelling theory may provide better explanation, in which increases in thickness 

could be resultant of overhydration of the crystalline lens by increased influx of 

water, this is supported by findings of lower refractive index in type I diabetes 

(Weimer et al., 2008b). Both Pierro et al (1996) and Weimer et al (2008a) have 

found no association with lens structure and metabolic control of the condition, 

examining metabolic control for longer periods however may show different effects. 

Diabetic retinopathy and photocoagulation have also shown to pose no effect on 

the lens (Sparrow et al., 1992). 

 

The results of the current study found no significant difference between diabetic 

patients and healthy individuals. Such a finding may perhaps be warranted by 

better control of diabetes now due to better healthcare compared to previous 

studies. In addition, all diabetics within the study were late-onset which, as proven 

by the studies discussed, show variations in lens structure to a lesser extent.  

Moss et al (1987) showed reduced amplitudes in younger diabetic patients, the 

results were obtained using only pull-down values. Comparisons by the authors 

against data presented by Duane (1925) showed a significantly lower mean 
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accommodation, though this may have been influenced by differences in 

methodology. However, within the study by Moss et al (1987), a difference 

between non-diabetics and diabetics was still found and other factors including 

duration of diabetes, diabetic retinopathy and poor metabolic control were also 

implicated as affecting accommodation. In addition, hypoxia may contribute to 

lower levels of accommodation by disruption of circulation (Moss et al., 1993). 

Oxidative stress may be increased in diabetes (Bron et al., 1993), this may lead to 

earlier age-related changes as oxidation of lens membrane can increase its 

permeability (Duncan et al., 1991). Other findings include more light scattering in 

diabetic lenses (Weiss et al., 1982) which is more marked with retinopathy and 

photocoagulation. A combination of all the structural variations described in 

diabetic lenses may thus all contribute to perceived lower levels of amplitude of 

accommodation.  

 

Toxins such as hair dye have been reported by Jain et al (1982) as a possible 

agent in earlier onset of presbyopia. Users of hair dye within the present study 

appeared to have significantly lower binocular accommodation than individuals that 

had never used hair dye. Jain et al (1982) observed 4% of patients with early onset 

of presbyopia were longstanding users of hair dye; similarly an earlier study by the 

same authors recorded early presbyopia onset in 7% of hair dye users with 89% 

showing some form of lenticular changes. The exact effects of hair dye on the 

crystalline lens have not been extensively researched; however, it is believed 

paraphenylene diamine, found in hair dye, may pose toxic effects on the metabolic 
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reactions within crystalline lens leading to an earlier onset of presbyopia (Jain et 

al., 1979, 1982). Further research into chemicals within hair dye affecting the 

crystalline lens and accommodation may thus be a worthwhile area of research.       

With recent advances in technology, the use of mobile phones and VDUs are 

rising, resulting in different demands on the visual system. This study 

demonstrated that users of computers and mobile phones both show significantly 

reduced levels of binocular accommodation in comparison to non-users of both 

devices. Similar findings have been found in other studies (Tyrell and Leibowitz, 

1990; Gur et al., 1994). This may link to various reports of asthenopic symptoms 

and fatigue through prolonged and regular use of VDUs (Bergqvist 1989; Smith et 

al., 1984). The exact mechanism as to how VDU use may impact the visual system 

is unclear, a suggestion by Jaschinski-Kruza (1988) of overload on the 

convergence system which in turn affects accommodation and causes fatigue may 

provide some explanation, as in their study a further working distance of 100cm 

was preferred to 50cm by VDU users. These collective findings suggest that 

prolonged and regular use of VDUs may contribute to the earlier onsets on 

presbyopia, although, interestingly in this study it was found that the number of 

hours using a VDU daily did not significantly affect the levels of accommodation. 

Mobile phone use has not been previously investigated, making this the first study 

to assess its bearing on accommodation. As mobile communication (SMS 

messaging, emails) is effectively another form of near task, excessive 

convergence fatiguing the visual system may too explain the difference in 

accommodation levels of users and non-users.  
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No association was observed between the number of hours an individual carries 

out near tasks daily and the binocular amplitude of accommodation. This is not 

surprising as the accommodative system has been shown to be very resistant to 

fatigue (Wolffsohn et al., 2011). As expected, a significant positive correlation was 

found for working distance and onset of presbyopia, therefore as an individual’s 

preferred working distance increases the age of presbyopia onset increases. The 

onset of presbyopia is often defined as the point at which one cannot sustain focus 

satisfactory for near tasks, prescription of reading spectacles bring the focus point 

closer to the cornea allowing a comfortable working distance. Those with closer 

preferred working distances hence will require reading spectacles far earlier to 

maintain comfortable vision, whereas those working at greater distances can 

persevere for longer before finding difficulty with near tasks.  
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5.6. Conclusion 

It is clear that in addition to age, presbyopia is influenced by many environmental 

factors; this study has shown significant variations in accommodation with alcohol 

consumption, smoking, UV exposure and even weight.  Understanding the factors 

which influence the onset of presbyopia will enable practitioners in the future to 

advise patients how their lifestyles may influence their individual rate of 

progression and onset of presbyopia. Presbyopia is a widespread and inevitable 

visual deficit and although cannot be cured, many advanced IOLs are available 

which aim to provide spectacle independence in presbyopes. Better education of 

patients as to the causes of presbyopia and how it may be effectively managed 

including the option of clear lens extraction is hence warranted. Using 

questionnaires, however, to gather information from patients presents as a 

significant limitation within the current study, as for example there may have been 

biased answers for questions regarding diet and alcohol consumption. Bias in 

information would therefore influence the results of the investigation.  

 

One of the major limitations of this and all subjective accommodation studies is the 

variability in the push-up/down techniques due to the changing visual angle of the 

target, pupil size changes and luminance variations. Hence the next chapter 

described and evaluates new technology developed in conjunction with engineers 

to attempt to overcome some of these limitations. 
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CHAPTER 6 

Validity and Repeatability of a  

Digital Accommodometer 

 

 

 

 

 

 

 



200 

 

6.1. Introduction 

Accommodation is the ability of the crystalline lens to change the dioptric power of 

the eye to clearly focus on objects closer than infinity (Glasser, 2008). With age 

this ability reduces resulting in near objects becoming blurry and indistinguishable; 

this progressive reduction is a result of age rather than actual ageing of the eye, 

where clarity at near can no longer be sustained to satisfy an individual’s needs 

(Gilmartin, 1995). Presbyopia is usually first noticed around the age of 40 years 

and continues gradually until no accommodation remains (Hamasaki et al,. 1956). 

Amplitude of accommodation may be described as the dioptric distance between 

the near and far points of accommodation. 

 

Accommodation can be measured with subjective or objective techniques. Such 

measurements may be used to investigate asthenopic symptoms associated with 

near tasks or to evaluate the amplitude of accommodation gained following 

presbyopia-correcting surgical procedures such as following implantation of 

accommodating intraocular lenses. Objective measures of the optical change in 

the power of the eye can be made using autorefractors or aberrometers (Mallen et 

al., 2001; Wolffsohn et al., 2004; Win-Hall and Glasser 2008; Wold et al., 2003). 

They need to be open-field to not induce proximal accommodation (Rosenfield and 

Ciuffreda 1991; Wolffsohn et al., 2002) and to allow presentation of a target that 

optimally stimulates accommodation (such as a high contrast Maltese Cross), 

often within a Badal optical system to negate changes in target resolution and 
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lighting with changes in working distance (Atchison et al., 1994). Objective 

measures are good at assessing real accommodation without the confounds of 

pupil size, optical aberrations and perceptual factors which result in a depth of 

focus range before blur is noticed by an individual. However, it is also important to 

understand how well an individual performs in the real world where both real and 

pseudo-accommodation interact with subjective accommodation measures. It is 

particularly useful to measure subjective accommodation when assessing 

presbyopia-correcting surgery and implantation of multifocal or accommodating 

IOLs as objective measures do not provide evidence of accommodation to support 

the functional near vision achieved (Wold et al., 2003).  

 

In clinical practice subjective amplitude of accommodation is most commonly 

determined using push-up and push-down techniques such as using the Royal Air 

Force (RAF) rule (HS Clement Clarke International, Harlow, Essex, U.K.). The 

procedure involves advancing an optotype of fixed size until the patient reports 

sustained blurring of the target and then moving the optotype away from the 

observer until clear. When a subject’s amplitude is higher than can be measured 

on the scale of the RAF rule, as in younger patients, additional negative lenses are 

required to extend the test range and to make the test more sensitive as dioptre 

changes reduce in physical distance as accommodation increases. For older 

subjects positive lenses are required due to low amplitude of accommodation 

being off the end of the scale.  
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The RAF rule, however, does possess limitations for example artificially higher 

values of amplitude of accommodation have been reported with this using the 

push-up technique compared to objectively measured accommodation (Rosenfield 

et al., 1996; Ostrin and Glasser 2004). Factors contributing to this include the eye’s 

depth of focus include pupil size and ocular aberrations (Ostrin and Glasser 2004; 

Atchison et al., 1994) as well as the subject’s tolerance to blur (Ostrin and Glasser 

2004; Rosenfield and Cohen 1996). The use of a constant target size may also 

lead to unreliable results, as with reducing distances, the angular subtense of the 

optotype increases leading to poor blur detection and over-estimation of the 

amplitude of accommodation particularly with higher amplitudes (Ostrin and 

Glasser 2004; Atchison et al., 1994; Rosenfield and Cohen, 1995). To account for 

this patients can be instructed to change fixation to a smaller target as the current 

target blurs, however if the target is too large, accommodation may be over-

estimated. Also if the target is too small to resolve accommodation may not be 

stimulated. It is suggested that targets should subtend 5 minutes of arc at 20cm for 

measurements of subjects under 30 years of age (Berens et al., 1950) whilst 

others suggest a target size of 6/6-6/9 (London, 1991; Grosvenor, 1989; Carlson, 

1990). Constant lighting may also be an issue with the RAF rule as this will affect 

the effective contrast of the target and hence accommodative demand, in addition 

to pupil size which influences the depth of focus of the eye. The RAF rule is 

generally operated by the examiner, hence there may be a small delay in reacting 

to when the patient reports blurring of the target, which may vary between 

examiners; to overcome this, patients may be asked to take control by moving the 
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target themselves. The speed at which the target approaches the observer is often 

difficult to keep consistent between examiners or patients and may also affect the 

stimulation of accommodation.  

 

Donders (1864) was the first to investigate accommodation and mapped out 

values of binocular amplitude of accommodation for various ages which have since 

been used as the standards for comparison of other similar investigations. 

However, flaws within the experimental technique may have resulted in these 

findings being inaccurate. Donders’ experiment employed the push-up technique 

using thin vertical wires as targets and measured accommodation using the nodal 

point of the eye, located 7mm behind the cornea. Subjects were assumed to be 

emmetropic or near emmetropia. As Donders used the push-up technique to 

define his values of accommodation amplitudes there may be some over-

estimation in the results hence these values required re-assessment. Duane 

(1909, 1912) later revised Donders findings in an attempt to provide more accurate 

measures of accommodation. The push-up test was again used with test targets of 

single, thin vertical black lines with the near point taken as the first point of 

reported blur from the spectacle plane, located approximately 13mm in front of the 

cornea. Emmetropia was ensured in all subjects through use of cycloplegia and 

distance correction. Comparisons of amplitude of accommodation curves obtained 

by Duane (1909) and Donders (1864) show overall data findings by Duane report 

lower amplitudes of accommodation. Duane also noted higher binocular amplitude 

of accommodation than monocular, the difference between which reduced with 
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increasing age. The differences between the findings of the two authors are likely 

to be resultant of the methodology employed, highlighting the reduced accuracy of 

Donders technique (Hofstetter, 1944). Although Duane offered more reasonable 

values for amplitude of accommodation the push-up test was again used, in 

addition to targets which may not appropriately stimulate accommodation.      

 

A more refined technique would need to include a method to control or take into 

account depth of focus which may prove challenging due to functioning of the near 

triad response on such testing procedures. Stigmatoscopy, as used by Hamasaki 

et al (1956), may be a solution to minimise depth of focus. Hamasaki et al (1956) 

compared push-up and stigmatoscopy accommodation and found push-up 

amplitudes generally coincided with that of Donders and Duane. In addition, the 

measures of stigmatoscopy gave much lower estimates of amplitude of 

accommodation in comparison to push-up values, with a mean difference of 1.75D. 

Push-up measurements declined up to 50-52 years and remained fairly constant 

up to 60 years. Conversely, beyond 52 years stigmatoscopy demonstrated 

absolute presbyopia. Depth of focus hence presents as a significant limitation in 

subjective push-up measurement of accommodation. 
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There are very few reports investigating the repeatability of subjective 

measurements of accommodation. Brozek et al (1948) and Rosenfield and Cohen 

(1996) investigated the push-up, pull-down and minus lens techniques at near 

reporting that although the techniques showed significant difference between one 

another. Rosenfield and Cohen (1996) reported similar repeatability with all three 

measurement techniques as no statistical differences were found upon repeated 

readings (p=0.95), with standard deviations of 0.73D, 0.71D and 0.73D reported 

for the push-up, pull-down and minus lens methods, respectively. Antona et al 

(2009) investigated intra-examiner repeatability with the same three techniques 

and suggested where multiple techniques are being used for validity and 

repeatability purposes the same examiner should perform all measurements, but 

found the minus lens method to be most repeatable technique with the least mean 

difference of -0.08D and 95% agreement interval of ±2.52D. Generally, with the 

RAF rule three measurements are still taken with the instrument although there is 

no standardised procedure for its use, as numerous measures should always be 

made with subjective methods (Duane, 1909).  
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Taking all these factors into consideration a new and more accurate subjective 

method of measuring amplitude of accommodation would be beneficial, for 

example in assessing accommodation following presbyopia-correcting surgery, 

assessing near vision gained with premium IOLs and investigating asthenopic 

symptoms associated with near tasks.  A new hand-held electronic device has thus 

been constructed to measure the amplitude of accommodation which is back 

illuminated to a constant luminance and detects its distance from the patient, 

allowing it to maintain a target of constant visual angle. The current study aims to 

validate the accuracy and repeatability of this digital accommodometer against the 

traditional RAF rule and the minus lens to clear technique in a wide age range of 

patients attending optometric practice.    
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6.2. Methods 

One-hundred and twenty four consecutive subjects between ages of 19 and 85 

years (average 52.8 ±20.2 years) attending optometric practice were included in 

this study, following informed consent. The study was approved by the University 

Ethics Committee and followed the tenets of the Declaration of Helsinki. Exclusion 

criteria included any form of ocular pathology, ocular abnormality such as binocular 

vision problems and any form of ocular surgery. All subjects participating in the 

investigation were required to speak English to ensure the procedure was fully 

understood, as this can affect blur detection and hence amplitude measurements 

(Rosenfield et al., 1996, Ostrin and Glasser 2004). A corrected distance visual 

acuity of at least 0.0 logMAR (6/6) was required in all subjects, with near vision 

acuity of N5 or better at 40 centimetres. Ocular health was checked with a slit-lamp 

biomicroscope and ophthalmoscope. The study consisted of a single visit where 

patients were refracted using the maximum plus prescription without reducing 

optimum visual acuity technique and fully corrected before accommodation 

measurements were taken with the digital accommodometer and RAF rule in 

random order. Refractive error, age and gender of patients were also recorded.   
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The digital accommodometer (Figure 6.1) used was a hand-held device developed 

at Aston University displaying a target letter ‘E’ on a small 4.5cm x 6cm Liquid 

Crystal Display (LCD) screen of resolution 800 x 600 pixels, luminance 150cd/m2 

and contrast set at 90%. It has two ultrasonic sensors which detect the working 

distance to the patient and automatically adjusts the size of the target to maintain 

the same visual subtence as is determined as the smallest size of letter the patient 

can just read with the device initially held at their arm’s length. 

 

The RAF rule (Figures 6.2, 6.3) consists of a 50cm four-sided rod, with markings of 

distance in centimeters from the subject, dioptric values of these distances, a 

guide for age and level of convergence to aid the determination of poor amplitude 

of accommodation or convergence. A small moveable target attached to the rod 

consists of a rotating cube which displays four optotypes. For the purposes of the 

current study the small Snellen chart optotype was used which ranges from N12 to 

N4 acuity. 

 

 

 

 

 

 



 

 

 

 

 

Figure 6.1: 
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Figure 6.1: Electronic Accommodometer 
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Figure 6.2: RAF (Royal Air Force) rule; 50cm rod with four 
optotypes.  

Figure 6.3: Snellen optoype used for 
measurement of amplitude of accommodation 



211 

 

Amplitudes of accommodation were measured with the digital accommodometer 

(Figures 6.4, 6.5) binocularly both from far to near and near to far to represent 

push-up and pull-down amplitudes respectively. First, the accommodometer was 

held at arm’s length and the size of the E target adjusted until it was just visible to 

set the target visual angle for the tests. To perform far to near measurements, 

subjects were asked to hold the accommodometer at arm’s length, focus on the 

letter ‘E’ and slowly bring the device closer until the target began to blur, the 

accommodometer then needed to be held static at that distance for 5 seconds, 

after which the final working distance (the average of 5 readings, one each second 

while the device is held at the minimal clear distance) was presented on the screen 

and were recorded by the examiner.  For near to far measurements the 

accommodometer was held by subjects as close as possible to the nose and 

pulled back until the target appeared clear. Again the same results were recorded 

as above. Both procedures were repeated three times to assess intra-session 

repeatability with a time interval of 2 minutes between each measurement.  

 

 



 

 

 

 

 

Figure 6.5: LCD screen displaying target optotype (letter E), followed by results display 

Figure 6.4
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LCD screen displaying target optotype (letter E), followed by results display 
screen 

Figure 6.4: Use of the electronic accommodometer 

 

 

LCD screen displaying target optotype (letter E), followed by results display 
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For push-up measurements with the RAF rule, the rod was placed on the subject’s 

cheeks and they were asked to view their lowest line of acuity on the small chart 

optotype. The target was moved at a slow constant speed from the end of the rod 

towards the patient until blur was first reported. The patient was then asked if the 

target could be made clear again if so, the target was brought closer until blur was 

reported. The distance at which the patient reported sustained blur was recorded. 

The target was then moved away from the subject and the pull-down amplitude 

recorded as the distance at which the target first appeared clear. Both techniques 

were performed three times and the spectacle plane was used as the reference 

point.   

 

A third technique was also performed to measure subjective accommodation using 

optical rather than distance induced blur (Langenbucher et al., 2003a,b; Gupta et 

al., 2008). Subjects, wearing their distance correction were asked to view a 

logMAR chart 6 meters away and to view their lowest line of acuity. High minus 

trial lenses appropriate for the patient’s age were then introduced to blur their line 

of best visual acuity and powers were reduced in 0.50D steps until this line again 

became clear. By using this lens-to-clear technique a subject’s ability to 

accommodate over lenses could be recorded, hence giving a value for amplitude 

of accommodation. The highest minus lens through which the letters on the line of 

best acuity was correctly identified was recorded; letters on the line of best acuity 

were randomized on each lens presentation to avoid patients memorizing the 
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characters. All three techniques were carried out by the same examiner in random 

sequence. 

6.3. Statistical Analysis 

Data was tested for normality using the Kolmogorov-Smirnov test and Analysis of 

Variance applied to parametric data. Bland-Altman analysis comparing the 

difference between the instruments compared to the mean was conducted plotting 

the results, the mean and the 95% confidence interval (Bland and Altman 1986). 
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6.4. Results 

All three measurement techniques clearly illustrated the decrease in amplitude of 

accommodation with age, as shown by figure 6.6 (p < 0.001). The decrease in 

accommodation with each measurement method for pre-presbyopes (<45 years) 

and presbyopes (≥45 years) are given in table 6.1. The accommodometer and 

RAF rule gave a similar reduction in accommodation with the pre-presbyopic group 

(<45 years) whilst the minus to lens technique estimated much less in comparison. 

Accommodation reduction in the presbyopes (≥45 years) was much less, as 

expected, compared to the reduction with pre-presbyopes. All three methods 

showed differences, the RAF gave the greatest reduction in accommodation 

followed by the minus lens technique with the accommodometer estimating the 

least decrease in presbyopes. 

 

 

Measurement Method  Accommodative 
Decrease <45 years (D) 

Accommodative 
Decrease ≥45 years (D) 

Accommodometer -0.30 -0.009 
RAF Rule -0.29 -0.05 
Minus Lens to Clear -0.21 -0.02 
  

 

 

 

Table 6.1: Decrease in accommodation for pre-presbyopes and presbyopes 
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Analysis of variance (ANOVA) showed a significant difference between the three 

measurement techniques (F= 341.498, p<0.0001). Comparisons of the 

accommodometer measures and RAF rule measures showed no significant 

difference (p = 0.75) and this held for pre-presbyopes (<45 years, p = 0.81) and 

presbyopes (≥45 years p = 0.84). However there was a significant lower estimation 

of amplitude measurements with the lens to clear method in comparison with the 

accommodometer and the RAF rule (p < 0.0001).  
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Amplitude of Accommodation with Age
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Figure 6.6: Reduction in amplitude of accommodation (in dioptres) with RAF 
rule, Accommodometer and Lens to Clear technique. (n=124) 



218 

 

Bland-Altman comparison of the RAF rule and accommodometer (Figure 6.7) 

showed that on average the two techniques (push-up and push-down) did indeed 

provide similar amplitudes of accommodation, shown as minimum focal length 

(p=0.75), however the difference between the push-up and pull-down techniques 

was greater with the accommodometer. The mean difference for the 

accommodometer was calculated as -43mm with 95% agreement interval of ± 

162mm. The RAF rule gave a mean difference of -34mm with 95% agreement 

interval of ± 54.5mm.  

 

 

 

 

 

 

 

 

 

 

 



219 

 

 

 

 

Comparison between Average Push-Up/Pull-Down  
Focal Length Measurements 

with Accommodometer & RAF Rule
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Figure 6.7: A Bland-Altman Comparison of average minimum focal 
length with RAF rule and accommodometer. 
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Figure 6.8 shows separate comparisons of push-up and pull-down focal lengths 

measured with both the digital accommodometer and the RAF rule.  Mean 

difference for the push-up values were found to be 9mm whilst pull-down showed a 

greater mean difference of 18mm. The 95% confidence limits were also greater 

with the pull-down values at ±195mm compared to ±177mm with push-up values. 

No significant difference was found between these averaged results (p=0.06).     
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Comparison Between Push-Up & Pull-Down 
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Figure 6.8: A Bland-Altman comparison of push-up and pull-down measurement 
techniques 
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On further analysis of push-up values with the digital accommodometer and RAF 

rule mean differences were found as 244± 130mm and 234± 100mm respectively, 

with 95% confidence limits of ±256mm with the accommodometer and ±234mm 

with the RAF rule, these differences however were insignificant (p=0.22). For pull-

down measurements the mean differences were higher; calculated as 287±134mm 

for the accommodometer and 268±119mm for the RAF rule with 95% confidence 

limits of identical values of ±286mm and ±268mm and were calculated as just 

within significance (p=0.05). The mean difference and confidence intervals were 

higher with pull-down measurements overall in comparison to that of push-up 

values (p<0.001).      

 

Bland- Altman plots for repeatability of the RAF rule and accommodometer (Figure 

6.9) show acceptable repeatability for both measurement techniques which again 

were similar in magnitude and variability (-1.4 ± 27.5mm for accommodometer; -

4.1 ± 29.0mm for RAF rule; p = 0.09). The plot shows there is no change in 

repeatability as focal length changes.    
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Repeatability of Accommodometer & RAF Rule

Average Focal Length (mm)

0 100 200 300 400 500 600 700

D
iff

er
en

ce
 b

et
w

ee
n 

1s
t &

 3
rd

 M
ea

su
re

m
en

ts
 (

m
m

) 

-100

0

100

200

A: 26mm

R:25mm

R: -33mm

Accommodometer
RAF Rule
Mean
95% Confidence Intervals

A: -29mm

 

 

 

 

 

 

Figure 6.9: Comparison of repeatability with RAF rule and accommodometer. 
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6.5. Discussion  

On analysis of the results, the accommodometer has shown the expected 

decrease in amplitude of accommodation and an increase in minimum focal length 

with increasing age up to 45 years of age; following this little or no accommodation 

remains and the minimum focal length measured for individuals is achieved by 

their depth of focus. There was no overall systematic difference between the digital 

accommodometer and RAF rule measurements, however the lens to clear 

technique was significantly different compared to both devices. The lens to clear 

technique is a distance task in which blur is induced by lenses. Such blurring with 

lenses may vary when measured subjectively as there is no standardisation in 

conducting this procedure (Wold et al., 2003). At distance the pupil size is 

relatively fixed, unlike with near accommodation tasks where the near triad of 

responses take place to aid focusing of close objects. However, due to the 

minification effects of minus lenses, pupil miosis and hence the near triad of 

response are indeed stimulated therefore this aspect is unlikely to provide a full 

explanation as to why this technique differed to the accommodometer and RAF 

rule. Differences in target size with the minus lens technique and RAF rule may 

lend an explanation to differences in the results yielded. With the minus lens to 

clear method the target size is fixed whereas with the RAF this varies as the target 

brought closer to the observer leading to increased angular subtense with the RAF 

rule (Gupta et al., 2008). Increased stimulation of proximal accommodation (depth 

of focus) with the RAF rule in particular may have also contributed to the 

differences in measurements (Gupta et al., 2008). Furthermore, with the minus 
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lens technique the target was changed on each lens presentation whereas the 

same target was presented with both the RAF rule and accommodometer, which 

may have influenced the results. Familiarity of the target may have lead to 

measures of greater amplitude of accommodation with the accommodometer and 

RAF rule as subjects will find the target easier to recognise even through blurring, 

whereas with the minus lens method subjects may have lacked confidence in 

recognising the letters correctly. However, with the push-up and pull-down 

techniques which require continuous presentation and movement of a target, it is 

difficult to keep changing optotypes although this could be done at set or random 

time intervals with the accommodometer screen.           

 

The digital accommodometer, did present some variability in results. The 

accommodometer is required to be held at a 90 degree angle to the patient’s 

forehead (as shown in Figure 6.10).  

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

Instructions as seen on digital accommodometer 
prior to taking measurements of accommodation
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Figure 6.10:  

Instructions as seen on digital accommodometer 
prior to taking measurements of accommodation 
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The accommodometer can then detect the distance between the device and 

patient’s forehead. However tilting of the device during the 5 second processing 

period may have led to other facial features such as the nose being detected 

instead, leading to an incorrectly estimated focal length and hence measurement 

of amplitude of accommodation. In addition to detecting other facial features the 

device may have detected lenses from spectacles (Ide et al., 2012) as patients 

were fully distance corrected for measurement purposes. The shape profile of 

these lenses may have distorted the signal received by the ultrasonic sensors. The 

forehead also does not necessarily correlate to the position of the eyes, for 

example some individuals may present with deeper inset eyes. Such aspects may 

lead to shorter distance detection and over-estimation of accommodation. 

 

Furthermore, the accommodometer testing procedure was patient controlled 

whereas the RAF rule was examiner controlled. Patient-controlled push-up tests 

have previously shown to yield higher results than if examiner-controlled (Fitch, 

1971). To overcome this, the accommodometer testing could also have been 

advanced and moved away by the examiner. 
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Although the accommodometer is a digital device, it is still in effect a subjective 

method of measuring accommodation and hence shares some similar limitations 

as other subjective measurement techniques. For example the understanding of 

‘blur’ varies between each individual (Wold et al., 2003) with some reporting 

blurring when the target first begins to distort and others waiting until completely 

indistinguishable. To avoid this confusion all subjects were informed to stop when 

the target first became blurry and could not be made clear with effort for push-up 

tests and first became clear for pull-down testing.  

 

Push-up testing may cause over-estimation in any subjective method (Antona et 

al., 2009); it has been known for some time that, although commonly used in 

practice, the push-up test reads higher amplitudes (Fitch, 1971; Hokoda et al., 

1982; Wold et al., 2003) reported to be between 1.50-2.50 dioptres (Rosenfield 

and Gilmartin; 1990, Atchison et al., 1994; Rosenfield and Cohen, 1995). It is 

stated that such errors do not pose any clinically significant complications for 

young subjects, however, for those approaching early presbyopia it may lead to an 

insufficient correction being prescribed for near tasks (Antona et al., 2009). In 

addition it may lead to inaccurate estimations of how much accommodation is 

gained following surgical procedures aiming to restore accommodation. Pull-down 

measurements tend to estimate lower dioptric values in comparison to push-up 

methods as the end-points differ. The pull-down technique begins from blurred 

vision, where the patient is unaware of the character they are viewing up until it is 

clearly identifiable, hence it may take longer until the subject is certain. With the 
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push-up technique the target is clearly distinguishable and can still be identified 

whilst blurry leading to a higher reading (Antona et al., 2009). Our results support 

this as minimum focal length was significantly greater with the pull-down technique 

with both the accommodometer and RAF rule hence providing lower dioptric 

values of accommodation. Moreover, with fixed target sizes, it is expected that the 

push-up technique will overestimate the amplitude of accommodation, as the 

angular subtense of the target will increase and induce proximal accommodation, 

the effect being more pronounced in younger subjects with higher levels of 

accommodation. For this very reason the accommodometer was designed to 

provide an automatically adjustable target which would subtend the same angle 

throughout the measurement procedure. 

 

 The contrast of the target can also affect the measurement of the amplitude of 

accommodation (Johnson, 1976; Tucker and Charman, 1986; Heath, 1956). The 

contrast of the accommodometer is 90% but this may vary with reflection of 

lighting, within the test area, off the LCD screen. Additional lighting was not 

required with the accommodometer as it provided sufficient luminance by back 

illumination. However results suggest that neither illumination nor constant target 

size has caused any consistent changes in the measurement of accommodation 

as observed by comparison of the accommodometer compared to the RAF rule 

data. 
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It has been suggested that the lens to clear technique might be a more appropriate 

measure of accommodative ability (Wold et al., 2003). However the push-up and 

pull-down techniques may provide more useful measurements of accommodation 

as the ‘near point of clear vision can be identified’ unlike with minus lens 

techniques (Atchison et al., 1994); also the minus lens technique is considered 

more variable if measured subjectively (Wold et al., 2003). Furthermore push-up 

techniques are considered as more natural methods of measurements.  

 

A recent paper by Ide et al (2012) has also investigated the use of a device similar 

to the Aston accommodometer in having ultrasonic sensors to detect the working 

distance objectively, but this measurement did not affect the target size, the target 

was not back illuminated and the range of measurement was only 20-50cm. 

Surprisingly, despite this a difference was found in measurements compared to an 

subjective near point measurement device.            
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6.6. Conclusion 

In conclusion, despite some limitations with the sensors of the digital 

accommodometer and failure to demonstrate advantages in measurement with 

constant target subtense and illumination, the repeatability of both the RAF rule 

and accommodometer were acceptable and equivalent which suggests the new 

measurement technique is good, although re-working of the design is required. As 

a result a Smartphone version is currently being developed which should be a 

more compact device and overcome the variability issue as the distance between 

the sensors and observer is less, allowing better alignment with the subject’s 

forehead (Figure 6.11).   
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Figure 6.11: Prototype Smartphone Accommodometer 
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The digital accommodometer although variable, has shown good demonstration of 

the increase in minimum focal length and profile of amplitude of accommodation 

with age. It has the potential to be a useful alternative to the RAF rule being more 

portable and maintaining the illumination and visual subtense of the target. The 

development of a Smartphone version of this device may offer better assessment 

in the near focus obtained with accommodating and multifocal IOLs.  

 

In addition to demand for better near vision there is a growing demand for 

improved intermediate vision with multifocal and accommodating IOLs. Diffractive 

multifocal designs incorporating optics which allow three foci have been 

developed. The forthcoming chapter presents the evaluation of the visual 

performance of such a design using modern assessment techniques. 
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7.1. Introduction 

In recent years, there have been many advances in cataract surgery procedures. 

Traditionally, cataract extraction involves implantation of a monofocal intraocular 

lens (IOL) providing adequate distance vision but the requirement of spectacles for 

near vision.  Due to an increasingly ageing population and changes in lifestyle, the 

demand for spectacle independence following cataract surgery has led to the 

development of accommodating and multifocal IOLs.    

 

Multifocal IOLs were first introduced in the 1990s and are now becoming more 

popular with new improved designs continually being developed. The two main 

designs of multifocal technology include refractive and diffractive optics, both of 

which produce simultaneous images of distant and near objects. As described in 

Chapter one, refractive multifocal IOLs consist of rings of different refractive 

powers for near and distance correction whilst diffractive IOLs use the Huygens-

Fresnel principal where the IOL acts as a diffraction grating. Of the two designs it 

has been reported diffractive multifocal IOLs show better visual performance 

(Maxwell et al., 2009; Gatinel et al., 2011). 
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Multifocal IOLs, although they attempt to provide spectacle independence, do not 

provide adequate vision for intermediate distances for many patients (Bucci 2006; 

Alfonso et al., 2007; Petermeier et al., 2007; Goes et al., 2008) with reports of 

reduction in visual acuity within the intermediate range (Voskresenskaya et al., 

2010). Since the introduction of computers and boost in mobile technology in the 

last decade there has been a significant increase in VDU usage by the elderly 

population and hence demand for better intermediate vision.  In 2006 it was 

reported the percentage of 50-65 year olds using computers doubled 

(Voskresenskaya et al., 2010). Such a limitation would require use of spectacles 

solely for this working distance, hence it is suggested that multifocal IOLs are 

better referred to as ‘bifocal’ IOLs in order to avoid high expectation of intermediate 

vision (Voskresenskaya et al., 2010). 

 

Examples of investigations noting decreases in intermediate visual acuity include 

that of Hütz et al (2008) with the ReSTOR multifocal IOL where an average 

reduction down to 20/40 at distances of 40 to 80cm was reported. Blaylock et al 

(2006) also reported a decrease in intermediate visual acuity from 40 to70cm of 

20/30 to 20/44 with multifocals, however, only 25% of patients reported 

significantly severe problems whilst 75% occasionally or never found any difficulty.   
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Hayashi et al (2009) reported a significant decrease in intermediate vision with 

IOLs with a +4.00D addition for near in comparison to +3.00D multifocal lenses, 

although the near acuity with +3.00D lenses was less than that of the +4.00D. 

Diffractive multifocal IOLs in particular show worse intermediate vision (Alfonso et 

al., 2007; Blaylock et al., 2006; Pepose et al., 2007; Hütz et al., 2008).  

 

Visual acuity for intermediate distances may vary between individuals due to the 

photopic and mesopic pupil sizes. Alfonso et al (2007) noted those requiring 

intermediate correction had pupil diameters of 4-4.5mm on average in photopic 

condition and 6-6.5mm in mesopic conditions. They found vision with the ReSTOR 

multifocal deteriorated from 40 to 70cm but only 4% of subjects required 

spectacles for intermediate work.  

 

Other reported limitations of multifocal intraocular lenses include haloes, glare and 

reduced contrast sensitivity particularly in mesopic conditions (Steinert, 2000; 

Richter-Mueksch et al., 2002; Awwad et al., 2008). Photic phenomena are reported 

to be 3.5 times more prevalent in multifocals than monofocal lenses (Leyland & 

Pringle 2006). In a study conducted by Woodward et al (2009) 7% of eyes required 

explantation to resolve the visual complications induced by the multifocal lens 

used. 
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As incident light is divided and shared amongst two foci in multifocal IOLs, 

overlapping of the focused and out of focus images reduces contrast sensitivity 

resulting in poor image quality. Poor contrast sensitivity tends to be more 

pronounced at lower spatial frequencies (Arens et al., 1999; Vaquero-Ruano et al., 

1998; Steinert 2000) although there are some claims of worse contrast sensitivity 

at higher spatial frequencies also (Alfonso et al., 2009; Montés-Micö et al., 2004). 

Montes-Mico et al (2001) highlighted this compromise of contrast sensitivity at low 

spatial frequencies and suggested it is due to light scatter whilst that at higher 

spatial frequencies, the effect is mainly attributed to defocus and optical 

aberrations. Despite the reported reductions, photopic contrast sensitivity, although 

reduced in comparison to monofocal IOLs, is still found to be within the normal 

limits (Hayashi et al., 2009; Montés-Micó et al., 2004). Studies have also indicated 

an improvement of contrast sensitivity 3-6 months following implantation (Montes-

Mico et al., 2003).   

 

Glare is another well known phenomenon to occur with multifocal IOLs, particularly 

with refractive designs. It was reported 21.3% of patients implanted with ReSTOR 

IOL complained of glare in comparison to just 7.5% of those implanted with 

monofocal IOLs (Chiam et al., 2006). In a survey carried out by Mamalis et al 

(2003) it was reported one of the main reasons for explanting a multifocal IOL was 

disability glare in addition to incorrect IOL power and IOL dislocation, as well as 

being the most common complaint  in a study conducted by Blaylock et al (2006). 

Disability glare has been described as light which spreads over at least 1° 
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(Hofmann et al., 2009), but is more likely to vary with individual’s tolerance and 

environmental conditions. The size of haloes tends to be greater in patients over 

70 years as light scatter from ocular structures such as; the cornea, increases with 

age which adds to the effect of multifocals (Dick et al., 1999). Hofmann et al (2009) 

investigated retinal straylight with monofocal and multifocal IOLs and reported a 

20% increase with multifocal IOLs; this study also pointed out more patient-

reported discomfort in dim light conditions which potentially would affect night 

driving.  Although this measure of straylight was statistically insignificant it was 

concluded that the straylight produced with multifocals adds to visual discomfort 

more rather than visual disability as shown by the significantly higher complaint 

scores from patients implanted with the AcrySOF ReSTOR IOL. Vries et al (2008) 

also investigated retinal straylight measurements in an apodized diffractive IOL 

and reported slightly higher levels with the multifocal lens group than monofocal 

group.  Higher levels of intraocular straylight lead to higher sensitivity to glare (Van 

Den Berg, 1995).   

 

There is controversy over patient satisfaction with multifocal IOLs as for example; 

a questionnaire completed one year following implantation of the Array multifocal 

highlighted three particular symptoms of glare, halos and blurry distance vision 

which were reported as significantly worse than with monofocal lenses (Steinert, 

2000). These symptoms were described as ‘severe’ in 15% of cases for halos, 

11% for glare and 4% for blurred distance vision. However, studies have shown 

such occurrence of photic phenomena does reduce with increasing time post-
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operatively (Vaquero-Ruano et al., 1998) in a process of neuroadaptation 

(Voskresenskaya et al., 2010; Souza et al., 2006).    

 

Jacobi et al (1999) suggested asymmetric bilateral implantation of multifocal IOLs 

in order to enhance contrast sensitivity (mix and match technique) and 

intermediate vision where one diffractive IOL is implanted in one eye and a 

refractive IOL in the other. However compromises in distance and near vision 

result with loss of stereopsis (Voskresenskaya et al., 2010). Other suggestions 

include aspheric designs with a lower additional power for near vision (Hayashi et 

al., 2009) however this may not provide sufficient near vision.       

 

A clear requirement thus exists for improved intermediate vision with multifocal 

technology. Swanson (1994) developed a theoretical calculation for a diffractive 

lens to form three foci, where each focal point receives 28.8% of the incident light, 

and a residual 14% of light distributed to the other foci. Such a design, known as a 

trifocal lens, allows vision at intermediate distances without degrading vision in the 

distance or at near (Gatinel et al., 2011). There are very few studies investigating 

this new concept of trifocal lenses. The first published findings were by 

Voskresenkaya et al (2010) where the visual outcomes of the MIOL-Record 3 

(Reper-NN, Nizhegorodskaja Provinces, Russia) trifocal lens were investigated. 

The MIOL-Record consists of a stepped design diffractive optic, this lens 

significantly improved distance and near vision comparable to diffractive multifocal 
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IOLs (AcrySof ReSTOR, AcrySof Natural ReSTOR, Acri.Lisa 366D, ReZoom, 

Tecnis MF), as well as providing adequate intermediate vision of 0.66 ±0.22 at 

50cm.  

 

As there are three simultaneous foci with a trifocal lens, it may be argued that 

contrast sensitivity could be compromised further however Voskresenkaya et al 

(2010) found photopic contrast sensitivity to be comparable with that of monofocal 

IOLs. Mesopic contrast sensitivity however was indeed reduced in comparison to 

monofocal IOLs although this did not seem to affect patient satisfaction as 94% 

reported no or mild difficulty with vision at night. Glare and halos were also of 

acceptable levels as 75-94.5% of subjects did not find significant problems with 

such photic phenomena and also noticed a decrease with time following 

implantation leading to a significant decrease in complaints 3-6months post-

operatively.   

 

Gatinel et al (2011) described an aspheric fully diffractive IOL aiming to provide 

better intermediate vision and less photic phenomena which has been 

implemented into the Physiol FineVision IOL;  optical bench testing has shown it to 

successfully provide these aims, but further clinical studies are required to validate 

its performance.   The purpose of the present study was therefore to investigate 

the visual outcomes, measurement of glare, photopic and mesopic contrast 
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sensitivity and the patient satisfaction with the Physiol FineVision trifocal diffractive 

intraocular lens.      
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7.2. Methods 

7.2.1. Intraocular Lens Characteristics 

Physiol FineVision is a four point haptic aspheric diffractive lens, made of 

hydrophilic acrylic with 25% water content, of bi-convex design (Figure 7.1). Three 

foci are achieved by a combination of two bifocal diffraction patterns of +1.75 

dioptre addition for intermediate vision and +3.50 dioptre addition for near vision 

(Figure 7.2). The first diffraction pattern with the addition of +3.50 dioptres is the 

first diffraction order with a second diffraction order occurring at a vergence of 7 

dioptres. The second pattern, with an addition of +1.75 dioptres as the first order 

has a second order which is twice the first diffractive order, resulting in +3.50 

dioptres. Since the first and second orders of this second pattern equate to the 

intermediate and near powers of the IOL they contribute and enhance intermediate 

and near vision. Resulting light loss from this design is reduced to approximately 

14% from a typical 18% with bifocal multifocal designs (Gatinel et al., 2011). In 

photopic conditions 42% of incident light is used for distance foci, 29% for near 

and 15% for intermediate, with mesopic conditions 58% is distributed to distance, 

20% for near and 8% for intermediate vision.     
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The IOL is apodized, where the step height reduces from the centre to the 

periphery of the lens optic. The design is pupil dependent; with pupil enlargement 

light enters through the peripheral areas of the IOL which is assigned to distance 

vision, reducing the amount of light reaching near and intermediate foci. The optic 

is entirely convoluted where a smoothing function has been implemented into the 

design to reduce the perception of haloes.  The optic diameter is of 6.15mm with 

an overall diameter of 10.75mm. The IOL filters ultraviolet and blue light. There is 

also a four-point loop haptic design for increased stability. The powers available in 

this particular design range from +10 dioptres to +30 dioptres in 0.50 dioptre steps.  
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Figure 7.1: FineVision trifocal diffractive IOL 

Order 0: 

Distance 

Vision = 40% 

Order 1: Near 

Vision = 40% 

+3.50D 

 

Order 2: Very 

Near Vision = 4% 

+7D 

Figure 7.2: Multiple foci of trifocal IOL 
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7.2.2. Experimental Design    

Thirty eyes of fifteen patients undergoing routine bilateral cataract extraction at the 

Midland Eye Institute, UK were implanted with the PhysIOL FINe Vision intraocular 

lens following informed consent. The study was approved by the Institutional 

Review Board and conformed to the tenets of the declaration of Helsinki. 

Participants were aged between 52-86 years, with a mean age of 69.8 ± 10.0 

years, with bilateral senile cataracts. Exclusion criteria consisted of no retinal 

pathology or history of ocular infections, clear intraocular media, no previous 

ocular surgery or trauma, potential for BCVA of only 6/12 or worse. Good general 

physical and mental health was also required for participation in the study. The 

study consisted of an initial pre-operative visit of biometry measurements using the 

Zeiss IOLMaster and explanations regarding surgery and the proposed IOL 

implantation. Routine phacoemulsification surgical technique and IOL implantation 

was completed at the Midland Eye Institute, UK. Following surgery ocular health 

was again assessed to ensure no post-surgical complications had arisen. Second 

eye surgery took place 6 weeks following the initial operation. 
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Visual performance was assessed at a three months post-operative visit to assess 

the visual. Tests included; 

 

� Monocular and Binocular UCDVA (logMAR) 

� Subjective Refraction (maximum plus for best distance VA) 

� Monocular and Binocular BCDVA 

� Monocular defocus curves from  +1.50D to -4.00D in 0.50D steps in photopic 

(85cd/m2) conditions 

� Binocular defocus curves from  +1.50D to -4.00D in 0.50D steps, in photopic 

and mesopic (5 cd/m2) conditions 

� Contrast sensitivity measurement using the CSV-1000 test (VectorVision, Ohio, 

USA) 

� Halometry glare test 

� Completion of the NAVQ questionnaire 
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Defocus curve measurements consisted of recording visual acuity, using 

computerised logMAR progression Test Chart (Thomson Test Chart XPert, 

Thomson Software Solutions, Hertfordshire, UK ),  through random presentations 

of trial  lenses from +1.50 dioptres to -4.00 dioptres over the refractive correction; 

this was repeated moncularly in photopic conditions and binocularly in both 

photopic and mesopic conditions. Pupil diameters were also measured in photopic 

and mesopic conditions. Letters were randomized as each trial lens was presented 

to avoid subjects memorizing the chart (Gupta et al., 2007).  

 

Photopic contrast sensitivity was recorded using the CSV-1000 contrast sensitivity 

chart at a distance of 2.5 meters. The chart comprises of 4 rows of 8 sine-wave 

gratings consisting of spatial frequencies 3, 6, 12 and 18 cycles/degree. The 

subject was instructed to indicate the direction of each sine gratings in each of the 

five rows until no longer resolved. The last correctly indentified grating in each row 

was recorded. 
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The Halometry glare test (Buckhurst et al,. 2011)  used to measure the glare area 

for each patient, involved a central LED light source (colour temperature 3200K) 

placed centrally on a flat LCD screen on which letters were presented around the 

light source at eccentricity of 0, 45, 90, 135, 180, 225, 270, 315 degrees. Letters 

were presented at a height that subtended 0.21° at a working distance of 3 meters, 

equivalent to the minimum vision requirements for driving standards in Europe. 

The letters were presented on a black background at a contrast of 500 Weber 

contrast units (Cw) and presented along each of the eight meridians in 0.05° steps. 

Testing was conducted in a dark room monocularly and binocularly, letters were 

presented in a random order and randomized between presentations along each 

meridian from the centre. The closest point to the glare source, at which the patient 

correctly identified a letter, was recorded.   

 

To assess subjective satisfaction with near vision function, patients completed a 

validated 10-item questionnaire; the Near Activity Visual Questionnaire (NAVQ), 

(Buckhurst et al., 2012). The NAVQ is designed for the evaluation of presbyopic 

corrections, and requires patients to indicate their level of difficulty performing 

common near and intermediate vision tasks without the use of reading spectacles 

(where 0 = no difficulty, and 3 = extreme difficulty), and to rate overall satisfaction 

with their near vision (where 0 = completely satisfied, and 4 = completely 

unsatisfied). The summated score from the main body of 10 questions is adjusted 

to a Rasch score (from 0 to 100 Logits) using a conversion table, such that 0 
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indicates no difficulty at all with any near tasks, and 100 indicates extreme difficulty 

with all near activities. 
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7.3. Statistical Analysis 

Monocular and binocular visual acuity measures were totalled and averaged for 

comparisons and defocus curve plots. Contrast sensitivity scores were also 

averaged with comparisons made between photopic and mesopic contrast 

sensitivity. All answers from the questionnaire were totalled and converted to a 

Rasch score to give the final questionnaire result. T-tests for measures of 

statistical significance were also performed. 
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7.4. Results 

All patients underwent uneventful cataract surgery on both eyes, IOLs were well 

centred in all eyes, with no occurrence of pupil distortion or iris trauma. Details of 

the means and standard deviations of monocular and binocular distance visual 

acuities and distance vision efficacy are shown in Table 7.1. The mean monocular 

refractive correction was 0.27 ± 0.36 D sphere (range -0.25 to +1.00 D) and -0.48 

± 0.45 D cylinder (range 0 to -1.50 D). Figure 7.3 shows the binocular mean 

defocus curves under photopic and mesopic conditions. In both lighting conditions, 

optimum visual acuity results were obtained at 0.00 D defocus which is equivalent 

to distance vision viewing, with a second “peak” at -2.50 D equivalent to near 

viewing at 40 cm. No distinct peak in the intermediate zone was present for either 

of the lighting levels, with no sharp drop in acuity in the intermediate zone for the 

photopic condition, although the range of clear vision (0.3 logMAR or better) 

extended from +1.00 to -2.50 D of defocus. The mean visual acuities were 

generally better in the photopic conditions, however the differences between 

lighting conditions were not significant, except at -1.50 D defocus (p=0.008), 

corresponding to an intermediate viewing distance.  
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Acuity 

 

Number of eyes/ patients (%) 

 Mean ± SD 0.3 logMAR or better 0.1 logMAR or better 

Monocular:    

UDVA 0.19 ± 0.09 24 eyes (80) 6 eyes (20) 

CDVA 0.08 ± 0.08 30 eyes (100) 21 eyes (70) 

Binocular:    

CDVA 0.06 ± 0.08 15 patients (100) 13 patients (87) 
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0.50 0.001.001.50 -0.50 -1.00 -1.50 -2.00 -2.50 -3.00 -3.50 -4.00

 

Table 7.1: Monocular and binocular logMAR distance visual acuities 3 months following 
FineVision IOL implantation. UDVA = uncorrected distance visual acuity; CDVA = best-

corrected distance visual acuity. 

 

Figure 7.3. Binocular mean defocus curves for the FineVision trifocal IOL in photopic and 
mesopic conditions. Error bars = ± 1 SD. The dotted reference line at 0.3 logMAR equates 

to the European driving standard. 
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Figure 7.4 shows the monocular and binocular distance contrast sensitivity 

(log10CS) under photopic conditions. Binocular contrast sensitivity values were 

significantly better than monocular values at all spatial frequencies tested (p<0.05). 

No significant differences in contrast sensitivity values between right and left eyes 

were found at any spatial frequency (p> 0.05). 

 

 

 

 

 

 

 

 

 

 

 

 

 



255 

 

 

 

*
*

*

*

Spatial frequency (cpd)

Lo
gC

S

0.0

0.5

1.0

1.5

2.0

Right eyes
Left eyes
Binocular

                             3 6 12 18

 *
*

*

*

 

 

 

 

 

 

Figure 7.4. Monocular and binocular contrast sensitivity functions with the FineVision 

trifocal IOL, under photopic conditions. * = statistically significant difference between 

monocular and binocular values. 
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Figure 7.5 illustrates the halometry results, with the magnitude of the mean 

monocular and binocular photopic scotomas, measured under mesopic conditions 

shown. The mean photopic scotomas are generally uniform in shape, extended 

binocularly between 0.69 ± 0.24 degrees and 1.03 ± 0.20 degrees for all 8 

meridians. 

 

NAVQ scores for subjective satisfaction with near vision were high, with a mean 

Rasch score of 15.9 ± 10.7 Logits (0 = completely satisfied, 100 = completely 

unsatisfied; range 0 to 33.3). The final NAVQ item, rating overall satisfaction with 

near vision (0= completely satisfied, 4= completely unsatisfied) resulted in a mean 

score of 0.7 (range 0 to 2). 
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Figure 7.5: Size of monocular and binocular photopic scotomas, measured using 

halometry under mesopic conditions. Y axis = extent of scotoma from glare source 

(degrees), radial axis = visual field meridian (degrees). 
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7.5. Discussion 

Multifocal IOLs are becoming more widely used as patients undergoing cataract 

surgery have increasing functional expectations and a desire for post-operative 

spectacle independence (Hawker et al., 2005; Pager, 2004; Mũnoz et al., 2011). 

Current diffractive multifocal IOLs typically provide good vision at distance and 

near (Zhang et al., 2011; Munoz et al., 2011; Alió et al., 2008) but have the 

disadvantages of bifocal design, potentially leading to intermediate vision 

difficulties (Gatinal et al., 2011; Voskresenskaya et al., 2010).   To the best of our 

knowledge, this is the first study to report clinical outcomes of a cohort implanted 

binocularly with a diffractive trifocal IOL design. The mean monocular UDVA (0.19 

± 0.09) and CDVA (0.08 ± 0.08) results are similar to the values reported by 

Voskresenskaya et al (2010) with predominantly monocular implantation of the 

MIOL-Record. Furthermore, the visual acuity outcomes were comparable to those 

achieved with several bifocal-design diffractive IOLs (Zhang et al., 2011; Alió et al., 

2011, Alió et al., 2008).  

 

Binocular defocus curve testing indicated an extended range of clear vision. 

Although mean VA was 0.3 logMAR or better from +1.00 to -2.50 D defocus in both 

photopic and mesopic conditions, no obvious peak in VA was apparent in the 

intermediate zone. Such a finding may be expected, as a relatively small 

proportion of light is available for intermediate vision compared to distance and 

near. As pupil size increases, a greater proportion of light is directed to the 
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distance focus due to the apodized optic, such that for a 5mm pupil, only 

approximately 5% of light is available for intermediate vision. The reduced light 

available for intermediate vision with larger pupil sizes is likely to be the cause of 

the significantly poorer visual acuity in mesopic compared to photopic conditions at 

-1.50 D defocus. No significant differences in VA between mesopic and photopic 

conditions were found at any of the other defocus levels tested. 

 

With the FineVision IOL binocular contrast sensitivity values were significantly 

higher than monocular values at all spatial frequencies. The well-known effect of 

binocular summation explains the difference between monocular and binocular 

results, and is in agreement with previous reports of diffractive IOL outcomes, 

where several authors have advised binocular implantation to optimise contrast 

sensitivity (Jacobi et al., 1999; Fernández-Vega et al., 2007; Schmidinger et al., 

2005). Multifocal IOLs have previously been reported to cause up to a 50% 

reduction in contrast sensitivity (Pieh et al., 1998), however, in this study 

monocular contrast sensitivity values were within the normal range for older adults 

as described by Pomerance and Evans (1994), although slightly below their mean 

values. Reasons for this may include the older cohort used in the present study 

(mean age 69.8± 10.0 years in the present study, compared to 63.9 ± 12.2 years 

for Pomerance and Evans) and normal age-related retinal and neural changes 

(Elliot 1987, Spear 1993).  
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Photic phenomena frequently associated with multifocal IOLs are approximately 

3.5 times more common with multifocal compared to monofocal IOLs (Leyland and 

Zinicola, 2003) and may impact on quality of life (Javitt and Steinert, 2000). In the 

present study, no patients reported photic phenomena, suggesting that the design 

of the FineVision IOL, with increasing far vision dominance as pupil size increases, 

may be effective in minimizing halos and glare perception. However, a larger scale 

study would be required to gain a full insight into the frequency of adverse photic 

phenomena with the FineVision IOL. The mean size of the photopic scotomas 

(monocular extent from glare source ranged from 0.6 ± 0.3 to 1.1 ± 0.2 degrees)   

measured in the present study compares favourably with previous measures using 

the same technique and with another study investigating glare, on patients 

implanted with a multifocal and an accommodating IOL design (Berrow, et al,. 

2012). The novel halometry technique used within the current study has not been 

used widely therefore comparisons with multifocal IOLs are limited. However 

previous straylight measurements using the CQuant straylight meter show 

straylight levels of 1.2 log units within a diffractive multifocal group (de Vries et al., 

2008) therefore showing much higher levels of halos and glare compared to the 

FineVision trifocal lens.  

Subjective satisfaction with unaided near vision, as measured with the NAVQ 

questionnaire, was high in the present study (mean 15.9 ± 10.7 Logits). The NAVQ 

test (Buckhurst et al., 2012) is designed to allow a more standardized comparison 

of presbyopia correction strategies, by questioning patients on their ability to 

perform common near tasks such as; reading post and seeing the display on a 
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computer without an additional near vision correction. The mean value obtained 

with the FineVision trifocal IOL shows a higher level of patient satisfaction with 

near vision than reported by Buckhurst et al. (2012) for other multifocal and 

accommodating IOLs. The improved score with the FineVision compared to other 

presbyopia-correcting IOLs may be due in part to improved intermediate vision 

provided by the 1.75 D intermediate add as the NAVQ includes questions relating 

to intermediate-distance visual function, such as using a computer and performing 

hobbies such as gardening or playing cards. 

A particular limitation in this investigation was the small sample size. Although the 

sample size efficiently demonstrated the advantages of trifocal design, a larger 

cohort would be required in order to validate these findings in a wider range of 

patients. Patients are usually happy following cataract surgery as limitations of the 

IOL optics are of less concern than the reduction in vision and light scatter caused 

by the cataract. However, the use of a validated near vision questionnaire at least 

allows comparison with other forms of presbyopic correction already evaluated.  
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7.6. Conclusion 

In conclusion, the FineVision trifocal IOL provides a good standard of distance, 

intermediate and near visual function, as demonstrated by defocus curve testing. 

The increasing far vision dominance of the IOL as pupil size increases may be 

effective at reducing photic phenomena frequently associated with multifocal IOLs. 

Near vision satisfaction amongst this cohort of bilaterally-implanted patients was 

high, which along with the clinical measures, suggests that the FineVision IOL is 

an effective method of providing good distance, near and intermediate visual 

ability. However a greater cohort is required to appreciate the benefits of this new 

IOL design.  
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CHAPTER 8 

Summary & Conclusions 
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8.1. Introduction 

Since the introduction of intraocular lenses in the 1950s there have been vast 

developments in their design. Research initially concentrated on improving IOL 

materials to allow long-term stability within the eye and to remain transparent once 

implanted. In more recent years, focus has now changed to enhancing the optics 

of intraocular lenses to provide optimum vision following surgery. Such lenses, 

termed premium IOLs, aim to reduce astigmatism and provide correction for 

presbyopia. The health system of the U.K. currently implant basic spherical IOLs 

as the standard of care following cataract extraction as the cost of implantation of 

premium IOLs exceed that of what is currently available. Individuals seeking 

spectacle independence following cataract surgery or refractive lens exchange are 

often unaware of the options that premium lenses are able to offer. For patients 

that desire such lenses, payment of both the actual lens and private surgery fees 

would be required as no ‘top-up’ option is available through the National Health 

Service in the U.K.   

 

As outlined in the introduction, although many advances have been made in IOL 

designs, the benefits of premium IOLs have not been well established, nor when 

they should be considered as an optical correction. Implanting advanced optical 

designs also raises more complex surgical issues relating to IOL rotation and 

centration which deserve attention to optimise the visual results. The present 

thesis therefore examined the benefits of astigmatic correction with a toric lens 
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over the mean spherical equivalent and how pupil dilation influences the alignment 

of these lenses. Centration of IOLs during surgery and over the following 6 months 

was also examined. Better methods to measure residual accommodation were 

explored along with what factors, other than age, affect when an individual 

becomes presbyopic and therefore should consider elective IOL surgery with 

implantation of a premium IOL. Finally, the benefits of a new type of IOL, a trifocal 

diffractive design, was evaluated to determine the range of clear vision offered as 

well as the visual compromises experienced.    
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8.2. Summary 

Chapter 2 indicated the negative effect of uncorrected astigmatism on a selection 

of daily activities in the elderly population. Performance of tasks reduced as 

simulated astigmatism increased in power from as low as 1 dioptre with deviation 

of the axis from the vertical further affecting visual ability. Contrast sensitivity was 

highly compromised by increasing levels of astigmatism which may present as 

difficulty in night driving and navigation. As a large proportion of patients already 

restrict their journeys in dark conditions post-cataract surgery, residual astigmatism 

will simply add to this effect. Individuals with spherical errors alone usually conform 

to driving standards following cataract surgery but uncorrected astigmats often do 

not without additional refractive correction which may restrict driving further due to 

lack of confidence through reduced vision. 

    

In addition, the study showed significantly reduced reading acuity and reading 

speed with increases in astigmatic power. Reading is of paramount importance in 

the elderly population often due to restrictions in mobility. Furthermore, it has been 

iterated that visual demands particularly for near work are continuously rising with 

developments in technology and communication, the use of which is increasing 

within elderly populations. Despite the lack of a mobile lens in presbyopia already 

impacting on near vision, this will be exacerbated by effects of astigmatism. The 

subjective ratings of clarity within the study highlighted the awareness of 

individuals of that poor vision. 
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Collectively, such restrictions in the ability to perform the daily tasks described will 

lead to a significant reduction in quality of life as well as increased risk of falls and 

possible risks to driving safety. Chapter 2 therefore outlined the potential benefits 

that premium lenses such as toric IOLs may provide to patients through 

improvements in quality of life. The study also supports toric implantation as 

standard care for cataracts by public health services as it is suggested that the 

cost of implantation would outweigh the consequences of residual uncorrected 

astigmatism.       

 

Implanting toric IOLs, however, raises speculation of rotational stability. For a 

successful visual outcome, toric IOLs require high precision on alignment from 

surgeons. As there is currently no standardised procedure for alignment of such 

premium intraocular lenses, Chapter 3 therefore examined the effect of dilation on 

newer, more robust imaging techniques for toric IOL alignment which rely on either 

iris features of conjunctival blood vessels on either side of the iris to compensate 

for head rotation when examining IOL orientation. The development of more 

complicated optics for correction of presbyopia following cataract surgery requires 

more precise and diligent techniques of implantation. Pupil dilation is imperative in 

cataract and refractive lens surgery although it has been associated with changes 

in pupil centration which could impact alignment. Current positioning techniques 

however are crude and may lead to misalignment along with central dislocation 

due to deviation in pupil centre on dilation. 
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Assessment of iris features and conjunctival vessels with various degrees of 

dilation showed the latter as a more stable landmark for use in IOL alignment. 

Head tilt has been considered as a possible source of error in pre-operative 

marking for toric implants, however, the current investigation showed little 

disturbance to measures by head movement suggesting that a slit lamp head rest 

provides sufficient stability. Pupil diameter increased in a sigmoidal pattern moving 

more inferiorly through dilation. On average the pupil, prior to dilation, is located 

slightly supero-nasal, the limbus measures showed negligible changes in its 

position on repeated measures suggesting the pupil to be an unreliable structure 

for alignment procedures. Surgeons may thus find use of the limbus as a reference 

structure in such proceedings more beneficial in addition to conjunctival vessels as 

markers for alignment. As previously discussed only young subjects were recruited 

for the study therefore repeating the investigation with an older cohort may provide 

further knowledge as to how dilation affects mature pupils. Such information may 

prove beneficial as premium IOLs are generally fitted in older age groups. 

 

Future studies could expand this research by investigating the differences between 

pupil location in different coloured irides to establish if the effect of dilation in pupil 

decentration is more pronounced in dark or light irides. Such information may then 

be accounted by surgeons in order to achieve the best possible surgical outcome 

with premium IOLs. Scheimpflug imaging may be another way to determine 

movement changes in IOL centration with respect to the pupil along with additional 



269 

 

information on IOL tilt, with time. Moreover, future research could explore if minor 

decentration contributes to visual phenomena with multifocal IOLs.   

 

Chapter 3 therefore clearly established the significant changes of pupil centration 

and surface features during pre-operative dilation and how this may affect the 

implantation of premium IOLs. However, the possible effect on the pupil following 

cataract surgery has not been considered in the performance of premium IOLs, 

Chapter 4 thus extended this by examining the post-operative effect on pupils six 

months after cataract extraction and IOL implantation. Early investigations by 

Gibbens et al (1989) had reported on pupil changes following suggestions of 

reduced pupil diameter with ICCE and ECCE procedures. Since then cataract 

surgery has advanced considerably and no previous research has investigated 

such post-operative effects with newer phacoemulsification techniques. As post-

operative complications have reduced in magnitude since the evolution of cataract 

extraction, it would be assumed that little impairment to pupil function would occur. 

On the contrary, chapter 4 describes post-operative inferior movement of the pupil 

centre but no horizontal displacement. Pupils became more oval with time and the 

maximum diameter following dilation showed significant reduction. These changes 

tended to become more apparent much later after surgery rather than immediately 

following surgery. Interestingly, IOL centration remained stable with respect to the 

limbus but showed vertical displacement when compared to the pupil. Such 

findings suggest that the pupil must alter its position whilst in fact the IOL remains 

stable. In relation to premium IOLs this information emphasizes the need for a 
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more stable structure to assist surgeons with the centration of premium IOLs. 

Complexity in their optical designs may present considerable visual disturbances if 

inaccurately centred. It is therefore again confirmed that the limbus offers a more 

suitable guide for IOL alignment. The investigation further suggests post-operative 

changes in pupil structure may interfere with the performance of premium IOLs 

regardless of initial positioning, indicating the requirement for further research into 

post-operative alignment of premium IOLs.  

 

Comparisons and measurements of diameters prior to surgery were not made, 

which may have provided some information to the variation found within chapter 4 

and provides scope for further research. Permeability of the cornea could also be 

examined in order to investigate if this contributes to the differences in pupil 

diameter following surgery. In addition, advanced high resolution imaging of the iris 

may aid further research into where damage may occur to the iris structure to 

result in only vertical shifts of the pupil centre. 

 

Spectacle independence and correction of presbyopia remain the penultimate aim 

of premium IOLs to which there is a rising interest for refractive lens exchange 

amongst patients approaching presbyopia. Age has already been deemed as the 

greatest factor contributing to presbyopia. However, earlier work from various 

researchers introduced the concept of environmental factors influencing amplitude 

of accommodation and hence the age of onset of presbyopia. Climate, increased 
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sunlight and environmental temperature presented as common findings affecting 

accommodation and leading to early presbyopia, giving the general agreement that 

populations inhabiting near the equator exhibited lower amplitudes of 

accommodation and developed presbyopia much earlier than clinically expected. 

 

Chapter 5 explored the amplitude of accommodation and onset of presbyopia in a 

population within the United Kingdom. Questioning on lifestyle and measurements 

of accommodation has shown many factors may contribute to the rate of 

progression of presbyopia in addition to age, in particular; alcohol consumption, 

smoking, UV exposure, weight and even use of VDUs and mobile communication. 

Knowledge of factors which may indicate the rate of progression to presbyopia 

allows estimates of an individual’s age of presbyopia onset to be made. Such 

knowledge will aid better communication when discussing the changes that would 

occur with patients considering a premium IOL clear lens extraction. 
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Within this thesis, the average presbyopia onset was calculated as approximately 

48 years. Cataracts typically form later than this, but patients should be provided 

with all the relevant information to them which should include advice on premium 

IOL implantation, removing the need for further cataract surgery in later years. 

Chapter 5 has thus shown despite improvements in health, diet and medicine, 

aspects of modern lifestyle may still increase the rate of presbyopia hence 

warranting the need of presbyopia correcting solutions which may be addressed by 

premium IOLs, as no significant factors have shown to reverse or reduce the effect 

of presbyopia. 

 

Further assessment of lifestyle and environmental factors on a more global scale 

may be carried out as little information exists on this area of research. To avoid 

bias of information given by the patients to questionnaires, data for dietary 

information could be collected prospectively using food diaries and blood samples. 

Information gathered through such procedures would provide better determination 

of vitamin intake as the food and supplements consumed does not necessarily 

correlate to nutrition actually absorbed into the bloodstream.  Further research 

proposes to revise the work of Donders (1864) and Duane (1909, 1912) using 

more objective measurements of accommodation rather than subjective. As 

previously highlighted the primary limitation of this chapter was the use of 

subjective measurement of amplitude of accommodation. Despite combining push-

up and pull-down results, the values obtained may still present higher readings due 

to depth of focus. Chapter 6 outlined the inadequacies of the RAF rule in providing 
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reliable measurements of accommodation and how new technology may be able to 

overcome the limitations of the standard push-up technique with the RAF rule. 

 

It is important to investigate how much near vision range is gained through 

presbyopia correcting procedures, such as implantation of premium lenses, in 

order to assess their level of benefit. To accurately measure this, a better 

subjective technique is required than those that currently exist. The preference for 

subjective techniques, for the assessment of premium lenses, in combination with 

objective measures is attributed to their presentation of functional vision. 

Functional vision is in association with the patient’s perceived vision, ultimately 

showing greater importance in addition to what is clinically gained.  Evaluating and 

formulating a new method of assessing subjective amplitude of accommodation 

would allow better assessment of accommodation following various procedures 

aimed at restoration of accommodation. Improved assessment of visual symptoms 

on near task performance would also be accomplished by such technology. The 

development and validation of an electronic accommodometer aimed to fulfil these 

suggestions by introducing an automatically adjustable target, which subtended 

the same visual angle and illumination upon push-up and pull-down measurement. 

In comparison to measurements of the RAF rule the accommodometer 

demonstrated higher amplitudes of accommodation but these were found to be 

statistically insignificant. Repeatability of both instruments was acceptable and 

similar. The RAF rule and accommodometer, however, showed differences in 

comparison to the minus lens technique which may be attributed to differences in 
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target distance. With minus lenses minification of targets is induced and 

accommodative demand is increased, conversely, with push-up tests targets 

become larger and accommodative demand is decreased.  

 

Further research in this field includes the development of a new modified 

accommodometer incorporated into a Smartphone; which would provide a more 

compact form of measuring accommodation and would reduce the time delay 

leading to erroneous detection and over-estimated output. 

 

Premium IOLs may effectively improve functional vision at near with exceptional 

distance vision and thus fulfil the requirement of correcting refractive errors and 

presbyopia. Despite good levels of distance and near vision with multifocal IOLs, 

poorer intermediate visual acuity hinders aims of spectacle independence. In 

addition photic phenomena are of concern with these premium IOLs. In attempts to 

provide improved intermediate vision with diffractive multifocal designs an IOL 

producing three points of focus has been conceptualized, as conventional 

multifocal IOLs have been shown to have a significant drop in visual acuity for 

intermediate distance viewing. Restrictions of visual function at this distance not 

only limits work on VDUs but other tasks and hobbies such as reading music. To 

achieve multiple foci the trifocal design shares incident light amongst three foci 

with the aim of not compromising the distance and near images formed. 
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Assessment of the PhysIOL FineVision intraocular lens in Chapter 7, showed 

acceptable visual acuity which conformed to European driving standards. Visual 

acuity, as expected, was generally better in photopic conditions. Defocus testing 

gave a peak for distance vision and strong second peak depicting near vision at 

40cm, however, no sharp peaks were attained for intermediate vision and 

performance at this distance was better than is generally seen with effectively 

bifocal IOL designs.  

 

Being diffractive in nature the trifocal lens could be expected to display 

compromise in contrast sensitivity; binocular contrast sensitivity was significantly 

improved compared to monocular values and were within normal range. Halometry 

findings recognized the presence of photic phenomena within the trifocal design, 

however the finding were similar to other non-multifocal optical designs, no reports 

of glare or haloes were received from patients and levels of satisfaction were high. 

This suggests the combination of apodized design and distant dominance provides 

some reduction in glare and halo perception. 

 

Proposals for expanding research would be direct comparisons of visual 

performance between groups implanted with a trifocal IOL and another with a 

conventional multifocal providing only two foci.  
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8.3. Conclusion 

In conclusion this thesis has demonstrated the benefits of as well as the 

challenges of implanting premium IOLs which aim to correct astigmatism and 

presbyopia. The price of premium products reduces the more that are sold, as the 

research and development costs can be spread more widely. If they offer 

significant patient benefits, deals should be considered to make them the standard 

lens of choice. While correction of refractive errors can be worked, it is ideal and 

desirable to overcome uncorrected astigmatism or presbyopia, as this can impact 

on quality of life and is also linked to costly incidents such as changes in driving 

performance and falls. Patients are also currently poorly informed as to the options 

available to them and this needs to be communicated to them at the appropriate 

time so they can be directly involved in their health management. Industry is 

continuing to invest in new IOLs to provide a better quality of all round vision and 

this thesis contributes to the exciting future for optimizing vision in the elderly, a 

critical sense in maintaining our quality of life.  
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A1. 

LIFESTYLE  QUESTIONNAIRE 

 

1. Age:  ________                    

2. Gender:  � Male � Female 

 

3. What is your occupation? 

_________________________________________________________________ 

 

4. How would you describe your ethnic group?  The categories below were those used 

in the 2001 census and are recommended by the Commission for Racial Equality. 

A White 

� British 

� Irish 

� Other White background (please state) ______________________ 

B Mixed 

� White and Black Caribbean 

� White and Black African 

� White and Asian 

� Other Mixed background (please state) ______________________ 

C Asian or Asian British 
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� Indian 

� Pakistani 

� Bangladeshi 

� Other Asian background (please state) ______________________ 

D Black or Black British 

� Caribbean 

� African 

� Other Black background (please state) ______________________ 

E Chinese or other ethnic group 

� Chinese 

 � Any Other (please state) ________________________________ 

 

5. Height:  ________ 

 

6.   a) Weight:  ________ 

 b) Has this been your approximate weight the past t en years?  

 � Yes � No If no, how has it changed? ________ 
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7. Iris colour:  � Black/dark brown � Brown  � Light brown 

 � Hazel � Green  � Grey 

 � Blue 

 � Other (please state, e.g. light brown/hazel) _____________ 

 

 

8. Do you smoke?  � Yes � No 

 If yes, please go to question 9. If no, please go to question 10. 

 

9. a) Approximately how many cigarettes do you smok e in a week?  ___ 

  

     b) What brand(s) of cigarette do you smoke mos t regularly?  

 ________________ 

  

     c) How many years have you smoked for?  ________ 

 

10. Have you ever been a regular smoker in the past ? � Yes � No 

 If yes, please go to question 11. If no, please go to question 12. 

 

11. a) Approximately how many cigarettes did you sm oke in a week?  __ 

 b) What brand(s) of cigarette did you smoke most r egularly? ___________ 

 c) How many years did you smoke for?  ________ 
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 d) How long has it been since you stopped smoking?  ________ 

12. a) Which of the following best describes your c urrent dietary background? 

 � Meat eater � Vegetarian � Partly vegetarian � Vegan 

Please specify as appropriate, e.g. ‘meat eater but no beef’ or ‘vegetarian but eat 

eggs’ or ‘partly vegetarian (eat fish)’. 

 __________________________________________________________ 

 

(i) On average, how many servings of vegetable do y ou eat per week? 

 ________  

(ii) On average, how many servings of fruit do you eat per week?                  

________ 

(iii) On average, how many eggs (including yolks) d o you eat per week? 

 ________ 

(iv) a) On average, how many servings of oily fish do you eat per week?       

________  

 b) Has this been your dietary background for the pa st ten years?  

 � Yes � No If no, how has it changed? ________ 

 

13. a) Do you drink alcohol?  � Yes � No 

 If yes, approximately how many units do you consume in a week? _____ 

 1 alcopop bottle = 1.4 units. 

 1 bottle of average strength beer/lager/cider = 1.7 units. 

 1 can of average strength beer/lager/cider = 2.2 units.  

 1 pint (568 ml) of average strength beer/lager/cider = 2.8 units. 
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 1 strong cocktail = 4 units. 

 25 ml spirit/shot = 1 unit (gin, rum, sambuca, tequila, vodka, whisky). 

 35 ml spirit/shot = 1.3 units. 

 1 bottle of average strength wine (12% vol) = 9 units. 

 1 small glass (125 ml) of wine = 1.5 units. 

 1 standard glass (175 ml) of wine = 2.1 units. 

 1 large glass (250 ml) of wine = 3 units. 

 

b) Has this been your approximate alcohol consumpti on for the past ten                      

years?  

 � Yes � No If no, how has it changed? ________ 

 

14. a) Approximately how many daylight hours per week do you spend

 outdoors (i.e. outside of buildings/vehicles and t herefore exposed to light) in: 

 Autumn/Winter months? ________ Spring/Summer months? ________ 

 

 b) Has this been your approximate light exposure fo r the past ten years?  

 � Yes � No If no, how has it changed? ________ 

 

15. Do you spend time abroad exposed to strong sunl ight  _____ weeks/year 

 

16. a) Do you use sun beds or tanning booths regula rly?  � Yes  � No 

  If yes, how often and for how long on average?         
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           _______________________________________________ 

           _______________________________________________ 

      b) Has this been your habit for the past ten years?  

    � Yes � No If no, how has it changed? ________ 

 

17. Is your skin particularly sensitive to sunlight ? � Yes � No 

18. a) In bright conditions, how often do you wear sunglasses? 

 � Always  � Most of the time � Sometimes 

 � Occasionally � Very rarely � Never 

 b) Has this been your habit for the past ten years?  

 � Yes � No If no, how has it changed? ________ 

 

19. a) Have you ever visited or lived in a country of hot climate? 

      � Yes                                              � No 

      b) if yes how much time have you spent abroad ? 

      _________________________________________________________ 

20. Do you or have you used hair dye?   

     � Yes                                              � No 

 If yes, when and for how long?  

_______________________________________________ 

_______________________________________________ 
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21. Have you had any kind of medical condition such  as diabetes?  � Yes � No  

If yes, what and when was it diagnosed / treated? 

_______________________________________________ 

_______________________________________________ 

 

22. Are you taking any medication?   

� Yes                                                     � No 

 If yes, what and what for and how long have you been taking the medication? 

_______________________________________________ 

_______________________________________________ 

 

23. Have you taken any regular vitamins or suppleme nts over the last 10 years?   

� Yes                                                      � No 

If yes, what and for how long? (Please include as much detail as possible, e.g. Superboots 

Multivitamin A-Z, 1 tablet 3x/week and Seven Oceans 650mg fish oils, 1 cap/day) 

 __________________________________________________________ 

 __________________________________________________________ 

 __________________________________________________________ 

 

24. Do you wear glasses?  � No   � Yes – which type do you wear? ___________ 

a) If you wear glasses for reading at what age did you start wearing them?__________ 
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25. How much time do you spend wearing your glasses ? ___________________ 

____________________________________________________________________ 

 

26. Do you wear contact lenses?  � No   � Yes – how much of the time and for how 

long? ______ 

 

27. a) Do you have any kind of eye condition, besid es needing spectacles?  

 � Yes� No 

 If yes, what and when was it diagnosed/treated?                              

     ________________________________________________ 

 

      b) Are you taking any kind of medication for this eye condition? 

      ________________________________________________ 

 

28. Do you use a PC or laptop? 

      � Yes        � No 

If yes, how many hours daily do you spend on it? _______________hrs 

 

 How far away is your screen      _______________cm 

29. Do you use a mobile phone? 

     � Yes          � No      

If yes, how far away do you hold your mobile?  __________________cm 
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30. How much time do you spend on reading or any ot her near tasks? 

____________________________________________________________ 

At what distance do you typically read? 

__________________cm 

 

If you have any further comments regarding your lif estyle, please write them here:  

 __________________________________________________________ 

 __________________________________________________________ 

      ___________________________________________________________
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A2.  THE NEAR ACTIVITY VISUAL QUESTIONNAIRE (NAVQ) 

OVERALL Completely 
Satisfied 

Very 
Satisfied 

Moderately 
Satisfied 

A little 
satisfied 

Completely 
Unsatisfied 

How satisfied are you 
with your near vision? 

0 1 2 3 4 

How much difficulty do you 
have: 

N/A or 
stopped for 
non-visual 

reasons 

No 
Difficulty  

A little 
difficulty  

Moderate 
difficulty 

Extreme 
Difficulty  

1. Reading small print, such as:  
newspaper articles, items on a 
menu, telephone directories? 

x 0 1 2 3 

2. Reading labels/ instructions/ 
ingredients/ prices such as on:  
medicine bottles, food 
packaging? 

x 0 1 2 3 

3. Reading your post/ mail, such 
as:  
electric bill, greeting cards, 
bank statements, letters from 
friends & family? 

x 0 1 2 3 

4. Writing and reading your 
own writing, such as:  
greeting cards, notes, letters, 
filling in forms, checks, signing 
your name? 

x 0 1 2 3 

5. Seeing the display & 
keyboard on a computer or 
calculator? 

x 0 1 2 3 

6. Seeing the display & 
keyboard on a mobile or fixed 
telephone? 

x 0 1 2 3 

7. Seeing objects close to you 
and engaging in your hobbies, 
such as:  
playing card games, gardening, 
seeing photographs? 

x 0 1 2 3 

8. Seeing objects close to you in 
poor or dim light? 

x 0 1 2 3 

9. Maintaining focus for 
prolonged near work? 

x 0 1 2 3 

10. Conducting near work 
without spectacles? 

x 0 1 2 3 
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A3. The Near Visual Activity Questionnaire (NAVQ) L inear 
Adjustment 
The summated NAVQ score can be converted to a linear scale using the following 
table. Any ‘N/A’ responses are scored according to the median overall score for the 
subject 

 

Non-Adjusted 
Score 

Rasch Score  Non-Adjusted 
Score 

Rasch Score  

0 0 16 56.89 

1 10.72 17 58.89 

2 18.13 18 60.84 

3 23.07 19 62.77 

4 26.96 20 64.68 

5 30.30 21 66.81 

6 33.3 22 68.58 

7 36.08 23 70.62 

8 38.70 24 72.77 

9 41.22 25 75.09 

10 43.65 26 77.68 

11 46.02 27 80.72 

12 48.32 28 84.59 

13 50.56 29 90.55 

14 52.73 30 100 

15 54.84   
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A4. Amplitude of Accommodation & Presbyopia Onset S tudies 

 

Study/Author Age Range (yrs) 

&  

Sample Size  

Techniques Used Countries 

Examined 

Average Age of 

Presbyopia Onset 

(yrs) 

 

Jain et al., 1982 

 

 

30-65 years 

800 subjects 

 

 

Minus lens technique at 33.3cm from clear to 

blur. Presbyopia determined as amplitude of 

accommodation below 3.75D 

 

 

India 

 

40 

 

 

 

Miranda 1979 

 

 

703 

questionnaires 

 

Questionnaire sent to 1,500 ophthalmologists 

throughout world  

 

Norway 

Finland 

Alaska 

Canada 

Sweden 

Denmark 

N. USA 

Germany 

Ireland 

Holland 

Belgium 

Mid USA 

Puerto Rico 

India 

Malaysia 

Thailand 

 

 

46.1 

44.5 

44.1 

44.7 

43.8 

42.5 

44 

43.5 

46.5 

45.3 

44.8 

43.3 

39.8 

40 

38.9 

40.5* 
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Ayrshire 1964 

 

30-75 years 

1307 eyes 

 

 

Push-up test using small print text 

 

England 

 

47 

 

Turner 1958 

 

18-62 years 

5000 subjects 

 

Push-up test using small print text 

Homatropine used on subjects <20years 

 

 

England 

 

43 

 

Duane 1912 

 

10-60 years 

4200 subjects 

 

 

Push-up test using thin lines as target. 

Homatropine used for subjects <48years 

 

 

New York 

 

45 

Allen 1961 - - Cleveland 50 

 

Kajiura 1965 

 

1651 subjects 

 

 

Push-test, defined presbyopia as amplitude of 

3-4D 

 

 

Japan 

 

45 

Fukuda 1965 - - Japan 43 

 

Hamasaki 1956 

 

42-60 years 

106 subjects 

 

 

Stigmatoscopy and push-up tests 

 

California 

 

43 

 

Fitch 1971 

 

13-67 years 

110 subjects 

 

 

Apparatus consisting of head rest and 

movable rod for advancing target. Target of 

1mm used. No definition of presbyopia.  

 

 

Texas 

 

45 

 

Coates 1955 

 

10-80 years 

4038 eyes 

 

Exact methodology not stated but target size 

and illumination standardised 

 

South Africa 

 

40 
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Raphael 1961 

 

35- 80 years 

10,000 

refractions 

 

 

Amplitude measured using Lindsay optometer 

 

Israel 

 

41 

 

Rambo & Sangal 

1960 

 

- 

 

Push-up test with single line as target. 

Presbyopia defined as amplitude of 

accommodation of 3D 

 

 

India 

 

37 

 

Miranda 1977 

(cited in Miranda 

1979) 

 

1000 subjects 

Age-range not 

stated 

 

Minus lens technique used. Presbyopia 

defined as amplitude of accommodation 

≤3.75D 

 

 

Puerto Rico 

 

39 

 

Burke et al., 

2006 

 

40-65+ years 

1562 subjects 

 

Presbyopia defined as inability to read N8 at 

40cm with distance correction and 

improvement with additional lens 

 

Tanzania 

 

61.7% at 40 yrs 

 

Nirmalan et al., 

2006 

 

30-102yrs 

5587 subjects 

 

 

Presbyopia defined as addition of at least 

+1.00D to give at least N8 near acuity 

 

India 

 

36.6 yrs  

in 30-39 yr age 

group   

 

*small selection of data from study presented  
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A5. Power Calculations 

 

A5.1. Sample Size for Chapter 2 

No previous studies investigating the effects of astigmatism on daily tasks exist 

therefore sample sizes for glare testing and subjective rating could not be 

calculated. However, sample sizes for contrast sensitivity from previous studies 

(Dougherty et al., 2008) with a sample size of 68, can be calculated. Statistical 

power of 80%, significance level of 0.05 with an effect size of 20cpd gives a 

minimum sample size of 14. 

 

Previous studies of reading speed and near acuity (Chung et al., 2007) quote a 

sample size of 19. Minimum sample size with 80% statistical power, significance 

level of 0.05 and effect size of 0.1 for near acuity and 10wpm for reading speed 

are calculated as 2 and 4 respectively.   
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A5.2. Sample Size for Chapter 3 

Previous sample sizes of pupil centration studies vary from 8-70 subjects (Walsh 

1988; Wilson et al., 1992; Wyatt 1994; Yang et al., 2002). Using data from Yang et 

al., (2002) with statistical power size of 80% and significance level of 0.05 and 

meaningful difference of 0.1mm, the minimum sample size required is calculated 

as 10. 

 

A5.3. Sample Size for Chapter 4  

No recent studies have assessed changes in pupil size following cataract surgery 

therefore sample sizes using statistical power cannot be performed. A sample size 

of 25 patients was used in an early study by Gibbens et al (1989) but no standard 

deviations were reported. Kohnen et al (2003) however measure pupil sizes with a 

pupilometer amongst a sample of 50. 

Minimum sample size for digital measurements of pupil dilation, with statistical 

power of 80% an effect size of 0.2mm, is calculated as 102.  

 

A5.4. Sample Size for Chapter 5 

Sample sizes for ethnicity range from 332 to 692 (Carnevali et al., 2005; Edwards 

et al., 1993; Hunter et al., 1997) however as no standard deviations were reported 

in the above studies minimum sample sizes could not be calculated; also 
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presbyopia onset was determined from additions prescribed and not measurement 

of amplitude of accommodation within these studies. Minimum sample sizes also 

could not be calculated for iris pigment, UV exposure, smoking and mobile phone 

usage as no pervious data exists in relation to accommodation. For VDU usage, 

Gur et al (1994) report sample sizes of 16 users and 13 controls however again no 

standard deviation values are reported thus minimum samples cannot be 

calculated. 

For the following variables, statistical power of 80% and significance level of 0.05 

was used to calculate sample sizes.  

Minimum sample size for measuring accommodation amongst alcohol consumers 

and controls with effect size of 0.50 dioptres, using average data, was calculated 

as 152.  

Minimum sample size calculated for measurement and comparison of amplitude of 

accommodation in diabetics and normals was calculated as 241. 

 

A5.5. Sample Size for Chapter 6 

To measure the appropriate sample size required for validation of a new 

accommodation measuring device, statistical power selected was 80%, 

significance level of 0.05 and an effect size of 1 dioptre. Sample sizes vary from 28 

to 57 (Ostrin and Glasser 2004; Rutstein et al., 1993), the minimum sample size 

was calculated using the averages of previous studies to give 37 patients. 



342 

 

A5.6. Sample Size for Chapter 7 

Initial results of trifocal diffractive IOL implantation; Voskresenskaya et al., 2010 

reports a sample size of 36 patients. The sample sizes for the following measures 

were calculated using statistical power of 80% and significance of 0.05. 

 

Minimum sample size for measurements of BCVA with a trifocal implant, with 

effect size of 0.1 is calculated as 42. 

For CIVA at 50cm with an effect size of 0.1 a minimum sample size of 8 is 

required. 

6-months postoperative assessments for trifocal implants minimum sample size is 

calculated as 11 with an effect size of 0.5. 
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