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Thesis Summary

This thesis considers sparse approximation of still images as the basis of a lossy compression
system. The Matching Pursuit (MP) algorithm is presented as a method particularly
suited for application in lossy scalable image coding. Its multichannel extension, capable
of exploiting inter-channel correlations, is found to be an efficient way to represent colour
data in RGB colour space. Known problems with MP, high computational complexity of
encoding and dictionary design, are tackled by finding an appropriate partitioning of an
image. The idea of performing MP in the spatio-frequency domain after transform such
as Discrete Wavelet Transform (DWT) is explored. The main challenge, though, is to
encode the image representation obtained after MP into a bit-stream. Novel approaches
for encoding the atomic decomposition of a signal and colour amplitudes quantisation are
proposed and evaluated. The image codec that has been built is capable of competing
with scalable coders such as JPEG 2000 and SPIHT in terms of compression ratio.

Keywords: Matching Pursuit, Sparse Approximations, Lossy Compression, Colour
Image Coding, Wavelets, Run Length Encoding
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Chapter 1 INTRODUCTION

1 Introduction

1.1 Motivation

In the era of multimedia, compression is critical for the storage and transmission of video
and image data. A wide range of applications includes video broadcasting for digital TV,
and image and video distribution over the Internet.

The focus of this thesis is on digital still images which are displayed as two-dimensional
matrices (bitmaps) of values called pixels. Typically, pixels are represented as integer values
in a range [0..255] for grayscale images thus requiring 8 bits per pixel. In colour imaging,
three 8-bit values are used to represent one colour pixel. For display purposes these values
usually represent Red, Green and Blue channels. Such a representation is called the raw
format and the number of bits needed to represent one pixel value is referred to as bit
or colour depth. A static colour picture of size 1600 × 1200 requires 5.49 MB of memory
in a raw format. Two hours of colour video in NTSC standard definition (SD) format
(720 × 480) with 30 raw frames per second would need more than 200 GB. The scale of
these numbers indicates that reduction of data is not only desirable but essential for the
multimedia industry to function. Therefore videos and images are displayed as bitmaps
(frames) but transmitted and stored as compressed bit-streams.

A compression system that consists of an encoder (compressor) that maps a bitmap
into a bit-stream and a decoder that performs the reverse operation is referred to as
a codec. Compression methods can be classified as lossless, near lossless or lossy. Lossless
techniques preserve data ideally, near lossless up to rounding errors while lossy introduce

1



Chapter 1 INTRODUCTION

distortion that although mathematically significant can still be acceptable or even unno-
ticeable for a human observer. The efficiency of image compression method is characterised
by the compression ratio defined as:

CR = RawSize

CompressedSize
: 1 = c×W ×H

CompressedSize
: 1, (1.1)

where c is bit depth, W is image width and H is image height. It is more convenient,
especially in lossy compression, to use bit-rate instead since it represents the average
number of bits needed to represent one pixel and is measured in bits per pixel [bpp]:

R = CompressedSize

W ×H
[bpp]. (1.2)

Depending on the size of a compressed bit-stream, low, medium and high bit-rates can
be distinguished. Low bit-rate image coding refers to bit-rates below 0.5 [bpp], medium
to 0.5 − 1 [bpp], and high to greater than 1 [bpp]. Bit-rates 0.5 and 1.0 correspond to
compression ratios: CR0.5 = 16, CR1.0 = 8 for grayscale and CR0.5 = 48, CR1.0 = 24 for
three-channel colour images.

The lower the bit-rate the higher is the compression but more distortion is introduced.
For typical still images lossless methods can achieve a bit-rate of 3 bpp while lossy methods
can reach less than 0.5 bpp without visible distortion [42]. Recognisable representations
can be achieved at rates as low as 0.05 bpp, which is extremely useful when the commu-
nication channel capacity is limited or the resolution of the target device is much lower
than the size of original image.

For the evaluation of lossy methods an appropriate measure of distortion, denoted here
by D, is required. Mean Squared Error (MSE) is commonly used despite being heavily
criticised due to its poor correlation with human perception of visual data [123]. The topic
of metric selection is touched on throughout this thesis with a special concern over colour
data. Since distortion depends on the bit-rate the problem of lossy compression could be
viewed as minimisation of the function R(D) called the rate-distortion curve.

It has to be remembered that rate-distortion optimisation is only one of the issues
that need to be taken into account when designing video and image codecs. Modern
applications often require a flexible construction of the encoded stream in order to be
able to recover partial information without necessarily decoding the whole stream. For
example, the fore-mentioned reconstruction at lower resolution or quality may be desired.
This is referred to as scalable or progressive coding and is supported by most of the latest
image and video coding standards (e. g. H.264 and JPEG 2000).

Other features desired from modern codecs include (see [65, 114]): low complexity of
encoder and decoder, robustness to channel errors, the possibility of performing image
operations directly in a bit-stream, region of interest coding. The potential for hardware
implementation and parallelisation can be also of interest especially when a sequential
algorithm is computationally complex. Moreover, in terms of computational and memory
complexity codecs can be classified as either symmetric or asymmetric. In the symmetric
case encoder and decoder have similar complexity while for the asymmetric case they
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differ significantly. For example, for scalable coding of TV or Internet broadcasting a fast
decoding is critical, while encoding can be slower as it will be done only once. On the
other side, applications such as video conferencing require both real time decoding and
encoding.

High compression and construction of bit-streams that fulfil industrial demands is
a challenge which involves applying techniques from applied mathematics and computer
science as well as psychophysics. This thesis looks at the mathematical aspects of scal-
able image coding on the examples of current image compression standards and recent
advances in signal processing. This leads to new ideas of encoding signal representations
into bit-streams. The practical issues of implementing codecs are also addressed. Lossy
compression for asymmetric systems which require fast decoding is considered with em-
phasis on low bit-rates and static still colour images. However, most of the presented
methods can be used as a part of video codecs.

Historically, the development of image and video coding standards was always a process
of putting together advances in understanding human vision, signal representation and
theory of information and coding. For example, in 1992 static Huffman coding [52] and
Discrete Cosine Transform (DCT) were included in the JPEG standard [55]. The DCT
transform was examined by researchers in the 1970s as a way of representing an image in
the frequency domain in the same spirit as the Discrete Fourier Transform (DFT) [56].
Due to advances in wavelet methods and the theory of coding in the 1980s and 1990s,
JPEG 2000 [115] was based on Discrete Wavelet Transform (DWT) and a version of
Binary Arithmetic Coding (BAC) called the MQ-coder [114]. At the turn of the 21st
century more flexible tools for signal analysis based on redundant transforms started to
be in the research focus of signal and image processing.

1.2 Outline

The research reported in this thesis analyses and evaluates the use of signal representation
methods called sparse approximations in image coding. A special emphasis is placed
on colour images. A novel colour image codec is proposed, implemented, described and
evaluated. Both the algorithms used to obtain a sparse approximation of the signal and
the proposed idea of encoding this approximation into a bit-stream can be viewed as a form
of generalisation of well-known concepts such as image transform, significance map and
bit-plane coding. They are the basis of well established methods such as JPEG standards
(JPEG and JPEG 2000) and SPIHT.

Chapter 2 introduces the main concepts in image compression and coding. The trans-
form coding is introduced using JPEG standards as examples. The problem of selecting
an appropriate transform for image representation is highlighted in relation to the con-
struction of the human vision system. The reasons behind choosing particular wavelets to
decompose still images are given. Then a comprehensive outline of wavelet-based coding
methods is provided as the state-of-the art in scalable image coding. Bit-plane coding of
significance maps is introduced together with an outline of these methods. After presenting
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the main concepts for single-channel data (grayscale) their extension into colour imaging
is given. In Chapter 3 the problem of sparse approximation of grayscale and colour images
is formulated and an algorithm to solve it, called Matching Pursuit (MP), is selected from
a range of methods available in signal processing. The proposed implementation of MP is
presented in Chapter 4. The problem of designing dictionaries which define MP as a data
transformation is carefully studied and the relation between the structure of a dictionary
and complexity of encoder is analysed. Chapter 5 deals with the quantisation and en-
coding of an image approximation into a scalable bit-stream. An in-depth analysis of the
quantisation effect is performed. Then a novel coding method that utilises the concepts
from database index coding is proposed. In Chapter 6, different choices of colour spaces
and optimisation criteria during the approximation process are compared and the pro-
posed codec is evaluated in comparison to state-of-the-art methods. Chapter 7 concludes
the thesis and lists the problems that require further investigation.

1.3 Contributions

This thesis considers common problems with sparse approximations such as efficient im-
plementation and the choice of the dictionary. Extensions of these problems into multi-
channel data are studied and a general method of encoding atomic decomposition into a
bit-stream is proposed.

The author considers the following main contributions of this work:

• Extending the use of MP in the transform domain into colour images (Chapter 4).

• Proposing and evaluating a novel colour-amplitude quantisation scheme (Chapter 5).

• Proposing a new method of encoding multi-channel atomic decompositions with
detailed analysis (Chapter 5).

Other contributions include:

• Comparison of different sparse approximation methods Basis Pursuit (BP), Matching
Pursuit (MP) and Orthogonal Matching Pursuit (OMP) when applied to lossy image
compression (Chapter 3).

• Detailed analysis and evaluation of the idea of MP in the spatio-frequency domain,
proposed in [131], using DWT and DCT (Chapter 4).

• Evaluating the effect of signal partitioning into blocks in the DWT domain (Chap-
ter 4).

• Design of dictionaries for grayscale and colour MP proposing an efficient dictionary
that minimises coherence (Chapter 4).

• Implementation of single and multi-channel MP with uBlas (Chapter 4).
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• Adapting proofs of convergence from [118] to Quantised MP for single and multi-
channel signals (Chapter 5).

• Using a standard paired t-test for statistical comparison of the average performance
of two different compression methods on a set of images (Chapters 2, 4 and 6).

• Comparison of the proposed method against the SPIHT and JPEG 2000 standards
employing recent advances in objective image quality assessment (Chapter 6).

• Analysis of different norms as atom selection criteria for MP (Chapter 6).

• Evaluating usefulness of different colour spaces for MP-based colour image coding.
Comparison of a single-channel MP in YCbCr colour space against multi-channel
performed directly in RGB (Chapter 6).

1.4 Published Work

R. Maciol and Y. Yuan and I. T. Nabney. Colour image coding with Matching Pursuit in
the Spatio-Frequency Domain. In Proc. of the International Conference on Image Analy-
sis and Processing, volume I, pages 306-317, 2011.

R. Maciol and Y. Yuan and I. T. Nabney. Grayscale and colour image codec based on
Matching Pursuit in the Spatio-Frequency Domain. Technical report, Aston University,
availabale at: http://eprints.aston.ac.uk/15194/, 2011.
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2 Modern Lossy Image
Compression

Compression is only possible due to the presence of redundancy in data. Three types of
redundancy can be distinguished in relation to images [45, p.526-534]:

Inter-pixel redundancy which refers to similarities between nearby pixels.

Psycho-visual redundancy which refers to human perception of the images.

Coding redundancy which refers to the modelling of the symbol distributions and Shan-
non’s entropy coding.

For colour data there is also inter-channel redundancy which refers to correlations and
dependencies between colour planes.

Reduction of statistical correlations by exploiting inter-pixel, inter-channel and coding
redundancies can be done in a lossless way. In practice, lossless techniques such as PNG,
GIF or lossless JPEG 2000 achieve compression ratios only up to 3 for standard test
images of size 512×512. The key to achieve greater compression is to discard information
that is imperceptible to the Human Vision System (HVS). Lossy methods such as JPEG,
JPEG 2000 or SPIHT exploit the properties of the HVS allowing us to achieve compression
ratios of up to 20 without noticeable distortion. Moreover, wavelet-based JPEG 2000 and
SPIHT can provide recognisable image at ratios as high as 100 [42, ch.5]. This chapter
outlines the problems of developing and evaluating image coding methods using examples
of codecs such as JPEG, JPEG 2000 or SPIHT. The focus is on the scalable lossy coding
of still colour images.
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The chapter starts with an outline of the HVS in Section 2.1 and highlighting its
features that are useful for lossy compression of visual information. Section 2.2 focuses on
human perception of colours outlining models used to define colours and represent digital
images. A general framework of the image codecs considered in this work is described
in Section 2.3. A methodology for comparing codecs is introduced including a review of
distortion metrics used for Image Quality Assessment (IQA). A discussion of the pros and
cons of using Mean Squared Error (MSE) is followed by an outline of the state-of-the-art
distortion metrics. A detailed description is provided for the methods used in Chapters 4-6
for the evaluation of the proposed coding and decomposition methods. Section 2.4 briefly
outlines the data transforms used in lossy compression to exploit inter-pixel and psycho-
visual redundancies. Section 2.5 addresses problem of encoding transformed data into
bit-streams and the main methods of scalable coding are reviewed. Section 2.6 analyses
colour transforms and extensions of coding methods presented in Section 2.5 to colour
data. Methods for exploiting inter-channel redundancies for colour image compression
alternative to colour transforms are also discussed. Section 2.7 summarises the introduced
algorithms and concepts.

2.1 The Human Vision System

Processing of visual stimuli, which results in seeing, is done by the HVS in a few stages.
At the first stage a visual signal is captured by the eye lenses. Then it is acquired inside
the eye with the use of the two types of photoreceptors to be finally processed by the
complex network of brain neurons. There are two types of photoreceptors at the image
acquisition stage namely rods and cones located on the inner surface of an eye called the
retina. Rods are responsible for vision at low luminance levels e. g. in darkness (scotopic
vision) while cones deal with daylight colour vision (photopic vision). Signals captured
by the photoreceptors are processed through the network of brain neurons called cortical
cells, located in part of the brain called the visual cortex. A visual signal acquired by
approximately 130 million photoreceptors is transmitted to the brain by only 1 million
ganglion cells without loss of meaningful information [33, ch.1]. This emphasises that
already in the first stage of processing in the HVS a sparse representation of the input
signal is of interest. More than 30 groups of cortical cells denoted as V1, V2, etc. can
be distinguished in the visual cortex. Thanks to the communication happening in the
network of those cells people can interpret the content of the viewed scene under a wide
range of conditions.

Photoreceptors transmit electrical signals depending on the strength of light that has
reached them. In general, they act as filters that do not respond below some threshold of
the input signal amplitude and get saturated above the upper threshold. The chemical re-
action behind this process varies with a type of photoreceptor and determines its spectral
response characteristic. Ganglion cells combine the responses of the groups of photore-
ceptors, typically by taking positive/negative input of one cone/rod and summing it with
negative/positive input of the surrounding photoreceptors. In terms of image processing
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the ganglion cell acts as the edge detector. Moreover, after this stage signals are processed
as frequency-modulated rather than amplitude-modulated at the stage of acquisition by
photoreceptors. In further stages of processing visual signals: inside V1, cortical cells act
as filters that respond to: various oriented edges, spatial and temporal frequencies, loca-
tions and combinations of the above. Hence the interest in representing images in terms
of frequencies, spatial locations and edges.

Colour perception is another aspect of vision that can be explained by the physical
structure of the HVS. We perceive differently the light at different wavelengths due to a
presence of three types of cones of varying spectral responses. L, M, and S cones can be
distinguished responding to long, medium and short wavelengths respectively. The area
on the retina that has the densest concentration of cones and reduced number of rods is
called fovea. It occupies an area of 2◦ angle on the surface of the retina and corresponds
to the sharpest spatial and colour vision. The term 2◦ CIE standard colorimetric observer
refer to testing human perception of the visual stimuli acquired by the photoreceptors
on the fovea. In the next section we look more closely at the nature of colour, human
perception of colours and its relation to digital imaging.

2.2 Colour Models

Defining and managing colours is of great importance in all modern multimedia applica-
tions. However, the perception of colour is extremely subjective and personal. Colour
emerges by interaction of the three components: light source(s), observed object(s) and
the HVS [33]. A visual stimuli is an effect of interaction between light and the observed
object and can be physically characterised by a function Φ(λ), called spectral distribution.
Defining colours means building a model that predicts the average human perception of a
given stimuli.

2.2.1 Defining Colours: CIE Standards

Any colour perceivable by a human can be matched by a combination of the three primaries
of different intensities: this is referred to as trichromatic theory of colour vision. The
original experiments, performed independently by Wright (1929) and Guild (1931) on a
set of human observers, have matched a perception of the light at every wavelength to
a combinations of three primary wavelengths that correspond to Red (700.0nm), Green
(546.1nm) and Blue (435.6nm) light. The table of these values for wavelengths from the
visible spectrum: λl = 380nm to λh = 700nm defines the CIE RGB colour space for the
2◦ CIE standard colorimetric observer. Figure 2.1a shows the colour matching functions:
r̄(λ), ḡ(λ) and b̄(λ). The coordinates (tri-stimulus values) R, G and B of the colour of a
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Figure 2.1: Colour matching functions.

visual stimuli characterised by a spectral distribution Φ(λ) are:

R =
∫ λh

λl

Φ(λ)r̄(λ) dλ,

G =
∫ λh

λl

Φ(λ)ḡ(λ) dλ, (2.1)

B =
∫ λh

λl

Φ(λ)b̄(λ) dλ.

CIE RGB can be transformed by linear transformation from Equation (2.2) into another
space: CIE XYZ. Hereby negative values are avoided and the Y coordinate measures the
brightness of the stimuli. This results in a new set of colour matching functions ¯x(λ), ¯y(λ),

¯z(λ) plotted in Figure 2.1b. The Y-component in CIE XYZ space is called luminance and
corresponds to spectral response of the HVS that is a balanced combination of L,M and
S cone responses. Numerically, most of the luminance information comes from the green
component in the CIE RGB. Indeed, cones responses are stronger in the medium-wave
(green) region of the visible spectrum and the HVS is the most sensitive to green light.

X

Y

Z

 = 1
0.17697


0.49000 0.31000 0.20000
0.17697 0.81240 0.01063
0.00000 0.01000 0.99000



R

G

B

 . (2.2)

2.2.2 Device Dependent Colour Spaces

CIE XYZ or CIE RGB define colours referring to the average human perception of visual
stimuli forming device-independent colour spaces. Devices such as cameras, scanners,
printers and digital displays represent image data as a composition of three values (e. g.
R, G and B for display or C, M, Y and K for printing) that are translated to analogue
signals. R, G and B values on different devices correspond to the different visual stimuli
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that also dependent on lighting condition. Digital images are represented using coordinates
in device-dependent colour spaces what creates a problem with exchanging image data
between devices.

For applications including computer display it is usually acceptable to use RGB data
calibrated for a typical monitor. Hence, Microsoft and HP have developed the sRGB colour
space [112] to simplify the process of exchanging colour data. The viewing conditions
correspond to a typical CRT monitor and dim viewing environment simulating a typical
office.1

Under such conditions the RGB values used by sRGB are related to absolute CIE XYZ
values by the following linear transform:

R

G

B

 =


3.2410 −1.5374 −0.4986
−09692 1.8760 0.0416
0.0526 −0.2040 1.0570



X

Y

Z

 . (2.3)

RGB values outside a range [0, 1] are simply clipped, which results in narrowing of the
range of colours (gamut) that can be represented by RGB compared to CIE XYZ. Never-
theless, for most of the applications RGB gamut is wide enough.

Then the values C ∈ {R,G,B} are transformed into the values C ′ ∈ {R′, G′, B′}
using non-linear transform expressed by Equation (2.4). This transform is called gamma
correction and is introduced to compensate for non-linearities of the display devices. It has
to be noted that at the same time it compensates for non-uniformities of human perception
depending on the brightness. In this sense gamma-corrected RGB values form a more-less
perceptually uniform colour space. This is, for example, important in measuring colour
image distortion (see Section 2.3.2).

C ′ =

 12.92× C if C < 0.00304
1.055× C1.0/2.4 − 0.055 if C ≥ 0.00304.

(2.4)

To obtain 8-bit values, normalisation to the range [0, 255] and rounding to the nearest
integer is performed. The sRGB form a link between absolute colour definitions using
CIE XYZ and numerical data stored digitally. The colour images used as raw data through-
out this thesis are gamma corrected sRGB images which will be referred to just as RGB
images.

2.2.3 Luma-chroma Colour Representation

The RGB colour model, models (to some extent) the image acquisition process performed
by the HVS and is convenient and common for display devices. However, according to the
so called opponent colour theory, signals transmitted to later stages of the HVS include
combinations of L, M and S cone responses. Those signals can be defined [33, p.18] as:

(1) L+M+S forming luminance (see Section 2.2.2),

(2) L-M+S forming red-green opponent signal,
1In CIE standards the light source is defined by a so called illuminate, D65 here.
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(3) L+M-S forming yellow-blue opponent signal.

The opponent signals are chrominance components. The HVS is sensitive to a wider spec-
trum of luminance than chrominance frequencies. Moreover, separating the brightness and
colour information is a form of a decorrelating transform and thus reduces difficulties with
handling noise. Therefore, for image representation, compression and transmission colour
models that separate chrominance (colour) and luminance information are of interest.

YUV

An example of such a model is YUV, that has been originated in analogue TV broadcasting
standards, NTSC in the United States and PAL in Europe. Video data stored as RGB
are transformed using a linear transformation to the space that can provide more efficient
transmission as an analogue signal. Transformation from RGB to the YUV system is given
by Equation (2.5):

Y = 0.299R+ 0.587G+ 0.114B
U = 0.492(B − Y )
V = 0.877(R− Y ).

(2.5)

The coefficients 0.299, 0.587 and 0.114 determine the amounts of Red, Green and Blue
needed to produce reference white light. It has to be noted that the Y channel in YUV and
similar colour spaces is not the same as the luminance component Y in CIE XYZ when
the transform is applied to RGB values from semi-uniform colour space such as sRGB.
Therefore we shall refer to it as luma or Y-channel [93, ch.8].

HSV and HSI

Other colour models close to human perception and very popular in image processing
nowadays are HSV and HSI [110]. Colour data are represented by its Hue, Saturation
and Intensity which is analogous to the way how artists produce colours. At first they
select the Hue and then modify its Saturation and Brightness (Intensity) to achieve the
desired effect. Due to the properties of the transformation algorithm from RGB: HSV is
referred as the hex-cone model while HSI as the class of triangle models. The hex-cone
model transforms the RGB cube through a non-linear transform into a hex-cone while
the triangle model into a pyramid. The I value in the general triangle model (HSI) is
expressed as a weighted sum of R, G and B:

I = wrR+ wgG+ wbB (2.6)

Different weights wr,wg,wb define a different transform hence we talk about the class of
triangle models. If wr = wg = wb = 1

3 then the achromatic (gray) points are placed in
the centre of an equilateral triangle. I value in this case can be seen as the projection of
R, G, B data onto the diagonal of RGB cube. Taking wr,wg,wb as in Equation (2.5) will
result in I = Y from the NTSC standard.
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Figure 2.2: Lossy image coding system.

Both, YUV and HSI/HSV exhibit similar decorrelating properties. In this work we
prefer chroma-luma transforms for compression as it is used by the standards. The HSV
model is utilised in Chapter 6 for image quality evaluation (see also Section 2.3.3).

2.3 Design and Evaluation of Image Codecs

2.3.1 Codec Structure

Image codecs, especially lossy, are designed as hybrid systems with a few steps of pro-
cessing which exploit a different type of redundancy. Usually three main stages can be
distinguished: transform, quantisation and entropy coding. This structure, shown in Fig-
ure 2.2, is the basis for most modern lossy image codecs.

It can be observed for still images that pixels close to each other typically do not differ
much, although, they do not tend to have equal values. This suggests the presence of
statistical correlations and dependencies. The same is true of colour channels in the RGB
colour space. Inter-pixel and inter-channel redundancies can be reduced by applying the
appropriate decorrelating transform. In addition the transform is designed to be capa-
ble of reducing psycho-visual redundancies by exploiting properties of the HVS. Coding
standards use two types of decorrelating transforms: colour space and image transforms.
Colour space transformations, such as those introduced in the previous section, operate
on each pixel independently transforming R,G,B:

CT : (R,G,B)→ (x, y, z),

while image transforms operate on each of the colour planes of size H ×W :

IT : RH×W → RH×W .
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The transform itself does not give any compression, but a more convenient representation
of the image. At the lossy step of quantisation, denoted as Q, the floating point values are
converted into symbols from a finite set. After quantisation the transformed data can be
seen as the symbols from a finite alphabet usually with many repetitions. Such data can
be further processed by the symbol (entropy) encoder denoted by E to exploit the coding
redundancies. Encoding of an image f is a composition of multiple stages that results in
an output stream s:

s = E Q IT CT (f). (2.7)

A decoding process is a composition of reverse operations (denoted as ∗−1) and can be
expressed as follows:

f̂ = C−1
T I−1

T Q−1E−1(s). (2.8)

In principle CT and IT are reversible transforms i. e: C−1
T I−1

T ITCT (f) = f (in practice up
to floating point errors). Encoding E, as operating on the integers, is absolutely reversible.
Quantisation Q introduces an error εn for each transformed coefficient cn:

εn = |Q−1Q(cn)− cn|. (2.9)

While in JPEG standards the stages of compression are well separated we will see that
some of the steps can be combined. The codec proposed in this thesis is an example in
which the components are not entirely distinct.

2.3.2 Rate-Distortion Evaluation

The compression performance of a codec is measured by comparing an image f̂ distorted
by the process of encoding and decoding against the original one: f . An Image Quality
Metric (IQM) which requires both input and distorted images to be known is called a
full-reference IQM. The most commonly used metric is the Mean Squared Error (MSE):

MSE = 1
HW

H∑
x=1

W∑
y=1

(
f(x, y)− f̂(x, y)

)2
. (2.10)

The Peak Signal to Noise Ratio (PSNR), derived from the MSE (Equation (2.11)), provides
a convenient representation of the MSE in decibels (dB) on a logarithmic scale:

PSNR = 10 log10

(
IMAX

2

MSE

)
[dB]. (2.11)

IMAX denotes a dynamic range of signal f , which is 255 for 8-bit grayscale images.
Equation (2.10) defines MSE for one channel image. Mathematically, the simplest

extension to colour images would be an average over the three channels defined as follows:

RGB-PSNR = 10 log10

(
3 · IMAX

2

MSEr +MSEg +MSEb

)
. (2.12)

As mentioned in Section 2.2, sensitivity of the HVS is different for Red, Green and Blue
channels. Adding weights for each channels is a common technique to better model this
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difference. Weighted PSNR (W-PSNR) can be defined as:

W -PSNR = 10 log10

(
IMAX

2

wrMSEr + wgMSEg + wbMSEb

)
. (2.13)

By taking weights to be equal to the squares of the first row of Equation (2.5) we get the
PSNR calculated for the Y-channel in luma-chroma colour. It is denoted here as Y-PSNR
and widely used in colour image and video quality assessment. The idea behind Y-PSNR
is to concentrate on the luminance data to which the HVS is the most sensitive. However,
the colour information is almost completely discarded.

Despite their high popularity as a standard way of evaluating image compression meth-
ods MSE and PSNR are poorly correlated with the human perception of image distortion.
This drawback is even more serious in the case of colour data. Another disadvantage of
PSNR is that it does not give an absolute scale comparable for different images. Typi-
cally at 20 dB the output image is recognisable but has a poor quality, at 30 dB quality
is acceptable while at 40 dB there is no visible difference to the reference image. How-
ever, it happens often that for some images 20 dB provides acceptable images while for
others there are visually annoying artefacts at 30 dB. Figure 2.3 visualises this situation
on two standard test images: Lenna and Baboon. On the highly textured Baboon image
distortion, although comparable in terms of MSE, is not as clearly visible as on Lenna.

An argument for using PSNR is that it is derived from the Euclidean norm in an inner
product space and is simple to calculate. Many optimisation problems are formulated as
MSE minimisation (equivalently PSNR maximisation). For example, MSE is used when
designing a quantiser as a measure of quantisation error (see Equation (2.9)). Therefore
it can serve as a first indicator when comparing the compression performance of different
algorithms.

2.3.3 Image Quality Assessment

Critiques of MSE with a review of recent promising methods for image quality assessment
can be found in [123]. The survey [89] reviews more than 100 metrics. To statistically
verify performance of the new metrics, subjective evaluation experiments [92,104] need to
be conducted. Here, we give an outline of full-reference metrics that have been tested and
are well established in the field of IQA. We will those metrics for evaluation of compression
methods in Chapters 4-6.

One of the most promising techniques is based on combining results of separately com-
paring structure, luminance and contrast of reference and distorted image. The Structural
Similarity Index Metric (SSIM) [122] is defined for a single-channel image patch fi as:

SSIMi = l(fi, f̂i)αc(fi, f̂i)βs(fi, f̂i)γ (2.14)

The three components l(fi, f̂i), c(fi, f̂i), s(fi, f̂i) model luminance, contrast and structural
distortion respectively. In general, the exponents α, β and γ represent relative importance
of each component: they are taken here to be α = β = γ = 1 as in [122]. SSIM is computed
locally for N image patches (windows) sliding over the whole image resulting in N values
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Original image (left) against compressed with JPEG 2000 at 0.05 bpp (right).

PSNR=27.23 dB, M-SSIM=0.7552.

Original image (left) against compressed with JPEG 2000 at 0.70 bpp (right).

PSNR=27.13 dB, M-SSIM=0.7996.

Figure 2.3: Visualisation of different qualities corresponding to similar PSNR.

SSIMi for i = 1, 2, . . . , N . If fi is a window of size B × B and its distorted version is f̂i
then we can define the mean mfi , standard deviation σfi and cross-correlation σfif̂i within
this window as

mfi = 1
B2

B∑
x=1

B∑
y=1

fi(x, y), σfi = 1
B2

B∑
x=1

B∑
y=1

(fi(x, y)−mfi)
2 ,

σfif̂i = 1
B2

B∑
x=1

B∑
y=1

(fi(x, y)−mfi)(f̂i(x, y)−mf̂i
). (2.15)

The luminance distortion depends on mean values:

l(fi, f̂i) =
2mfimf̂i

+ θl

m2
fi

+m2
f̂i

+ θl
, (2.16)

the contrast distortion on standard deviations:

c(fi, f̂i) =
2σfiσf̂i + θc

σ2
fi

+ σ2
f̂i

+ θc
, (2.17)
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and the structural information on standard deviations and cross-correlation σfif̂i

s(fi, f̂i) =
2σfif̂i + θs

σ2
fi

+ σ2
f̂i

+ θs
. (2.18)

The Mean SSIM (M-SSIM) metric is obtained by taking the average over all SSIMi:

M -SSIM = 1
N

N∑
i=1

SSIMi (2.19)

Small positive constants θ∗ in denominators of the Equations (2.16)-(2.18) provide nu-
merical stability when the values σ or m are close to 0. Disadvantage of MSSIM as IQM
is that it requires adjusting parameters such as block-size, sliding window overlap and
choice of the constants in Equations (2.16)-(2.18). In [124] constants were chosen to be:
θc = θs = (K1 · L)2 and θl = (K2 · L)2 with K1 = 0.01, K2 = 0.03 and L = 255, being
dynamic range of 8-bit grayscale images. The block size was 8× 8, sliding pixel by pixel.
Moreover in practice due to the blocking effect each block was convolved with 11 × 11
circular-symmetric Gaussian weighting function with standard deviation of 1.5 samples
before calculation of l(fi, f̂i), c(fi, f̂i), s(fi, f̂i). In practice this is implemented by adding
appropriate weights when calculating means, standard deviations and cross-correlations
in Equation (2.15). For more details see [124] and [123]. Within these settings, which
we also shall use in this thesis, M-SSIM has been reported to correlate much better with
human opinions about image quality than MSE [92,123,124].

A natural way to extend Equation (2.14) for colour images is to use the single-channel
M-SSIM in a colour space that models human vision such as HSI. This approach was
realised in [106] which introduced Structure and Hue Similarity Metrics (SHSIM) based
on the M-SSIM from Equation (2.19). For the Hue channel (M-HSIM) a simplification of
Equation (2.19) expressed by Equation (2.20) is used:

HSIM =
2mfmf̂

mf
2 +mf̂

2 . (2.20)

The SHSIM metric is defined as follows:

SHSIM = αSSIM + βHSIM

α+ β
. (2.21)

The weights α and β were selected to maximise correlation with available subjective eval-
uation data [104]. The best correlation has been found for α = 1.0 and β = 0.2.

We perform R-D evaluation of compression methods in subsequent chapters using
different IQA methods. However, we will still extensively use MSE especially when formu-
lating the optimisation problems. For example, well-known image transformations that
will be introduced in Section 2.4 are designed with MSE in mind as the distortion measure.
For grayscale images we take into consideration SSIM and PSNR while for colour images
we will also analyse performance using Y-PSNR and the methods just introduced based
on SSIM, namely SSIM of luminance channel and HSSIM.
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2.3.4 Comparing Lossy Compression Methods

To fairly compare the different lossy compression techniques we have chosen 12 standard
test images of different sizes and characteristics which are shown in Appendix A. We are
interested in a development of a general purpose method so the average performance is of
interest. Standard statistical tool to compare average performance for our case (a small
sample size) is based on a paired t-test, [21, p.322] which analyses a mean and variance of
paired differences assuming that they are drawn from the normal distribution. The main
idea is that when comparing the two methods A and B for A to be considered better than B
it has to be consistently better for most of the data. We can also measure whether tuning
some parameters of one method gives statistically significant improvement. Using paired
t-test the distribution of differences between methods across a set of images is assessed. In
the literature, it is not uncommon that the new ideas for image compression are presented
with one image as a target. Using basic statistics we are more likely to avoid tuning a
method for a single image.

A comparison procedure to test whether performance of method A is better than B in
terms of distortion measure D is as follows:

(1) Measure distortions Di
A and Di

B for methods A and B and images i = 1, 2, . . . , S (in
our case S = 12).

(2) Calculate differences ∆i = Di
A−Di

B and estimate mean µ̂ = 1
S

∑S
i=1 ∆i and standard

deviation: σ̂ = 1
S−1

∑S
i=1 (µ−∆i)2.

(3) Check, using Kolmogorov-Smirnoff normality test (K-S test), whether ∆i are drawn
from the normal distribution.

(4) Perform t-test to check whether mean difference is greater than zero what suggests at
given confidence level that the method A performs better than B.

We will use t-test to compare different decomposition methods for a fixed number of
coefficients (atoms) in Chapter 4 and to compare a proposed algorithm with compression
standards at fixed bit-rates in Chapter 6. If we consider fixed rate the values Di of PSNR
are not typically normally distributed for a set of images. In fact this is the case for
any IQM considered in Section 2.3.3. The same PSNR may correspond to completely
different rates as it was highlighted in Figure 2.3 (p.15). However the differences ∆i can
be considered as approximately normally distributed i. e. we observed that they always
pass K-S test. Results of t-test: p-value and a confidence interval for a mean difference
can tell us whether the method A can be considered to be superior to B and whether this
is of practical importance.

A procedure described above is a case of hypothesis testing. Small p-values (here less
than 0.05) indicate rejection of the null hypotheses. We can test three null hypotheses:
(1) µ = 0, (2) µ > 0, (3) µ < 0. We shall always report p-values for the hypothesis that
µ = 0. If we are interested in testing the null hypotheses that the mean performance of
the method A is better than B (µ > 0) provided that the mean estimate µ̂ > 0 then we
can obtain p-value for this case as: pµ>0 = 1− pµ=0/2.
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2.4 Transform coding

Once a methodology to compare codecs has been introduced the next step is to actually
build the codec from blocks described in Section 2.3.1. This section starts with image
transforms. We are interested in transforms that:

(1) provide a sparse representation of an image;

(2) decorrelate pixel data;

(3) are general for a wide range of images;

(4) can be implemented using fast algorithms.

Mathematically, the idea behind transform coding is to represent element of linear space
in the basis in which vector coordinates are decorrelated. The statistically optimal, in the
sense of MSE, linear decorrelating transform is the Karhunen-Loève Transform (KLT) [95,
ch.2]. Computation of KLT requires estimation of the covariance matrix and hence it is
signal-dependent. Two types of signal-independent decorrelating transforms which at-
tempt to approximate KLT for image data, namely: Discrete Cosine Transform (DCT)
and Discrete Wavelet Transform (DWT) are reviewed in the next sections.

2.4.1 Discrete Cosine Transform

The family of sinusoidal unitary transforms that are data independent and can be com-
puted efficiently has been constructed and described in [56]. It is shown in [56] that the
DCT of type II (DCT-II) defined by Equation (2.22) is a good general estimate of KLT
for a Markov source of first order with very high correlation. Such a model reflects the
high correlations between adjacent pixels [95, ch.2].

ak = Ck

W−1∑
i=0

fi cos
((2k + 1)πi

2W

)
, k = 0, 1, . . . ,W − 1, (2.22)

where f = [f0, f1, ..., fW−1] is the input signal and a = [a0, a1, . . . , aW−1] is the transformed
output. The normalisation factors Ck equal:

Ck =


√

1
W k = 0,√
2
W k = 1, 2, . . . ,W − 1.

(2.23)

The 2D version used for images is given by Equation (2.24).

akn = CkCn

H−1∑
x=0

W−1∑
y=0

fxy cos
((2k + 1)πx

2H

)
cos

((2n+ 1)πy
2W

)
. (2.24)

Now the input image f is an H × W matrix: f = [fxy] with x = 0, 1, . . . ,H − 1 and
y = 0, 1, . . . ,W−1. The output is also an H×W matrix: a = [akn] with k = 0, 1, . . . ,H−1
and n = 0, 1, ...,W − 1 and Ck are given by Equation (2.23). The properties of DCT-II
make it especially interesting for image compression tasks. Therefore the lossy part of the
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first still-image compression standard: JPEG [55] is based on the DCT transform defined
by Equation (2.24) performed on non-overlapping square blocks of fixed size. A default
block-size was selected to be W = H = 8. The DCT is the real part of the complex
Discrete Fourier Transform (DFT) [56] and can be seen as an image representation in
the frequency domain. There are two reasons for performing block-wise DCT. Firstly,
small blocks are faster to process and require less memory. Secondly, although the lower
frequencies contain most of the important data, irregularities, like edges, are concentrated
in high frequencies. In order to preserve some information about location of edges a spatio-
frequency representation is required. In case of DCT, performing the transform locally,
i. e. on small blocks, gives a desired spatio-frequency representation (see Figure 2.4a,
p.21). We consider only a discrete number of frequency bands in this way. The most
top-left corner represents the lowest frequency data that are formed by the most top-left
coefficients of DCT for each block. The horizontal frequencies increase from left to right
while vertical from top to bottom. One of the problems with this approach is that the
use of block transforms introduces visible blocking artefacts. For very high compression
ratios blocking is so severe that DCT-based methods such as JPEG are unsuitable for low
bit-rate image coding.

2.4.2 Discrete Wavelet Transform

Another way to obtain image representations that are well localised in both space and
frequency is to use the Discrete Wavelet Transform (DWT). DWT, contrarily to DCT, is
capable of localising the high frequency information [5]. Moreover, it does not operate on
blocks thus avoiding blocking artefacts at low bit-rates. The spatio-frequency representa-
tions of an image by both DCT and DWT are visualised in Figure 2.4. The highest the
frequency the more precisely it is localised.

The DWT is applied as a sequence of low-pass and high-pass filtering operations alter-
nating in vertical and horizontal directions. The result is a set of 2D subband signals as
shown in Figure 2.5. Subband 1, often called the approximation subband, represents the
lowest frequency information. Higher frequency subbands can be grouped into the scales
of decomposition. In Figure 2.5 the 2 scales can be distinguished: one for the highest
frequency subbands 5-7 and the second one for subbands 2-4.

In the spatial domain the DWT can be defined as a discrete convolution with digital
filters:

a2n =
LL∑

i=−LL
lif2n−i

a2n+1 =
LH∑

i=−LH
hif2n+1−i

(2.25)

where fn for n = 0, 1, ..., N − 1 is an input signal of length N , a2n+1 stores the high-pass
filtered subband and a2n the low-pass, hi are high-pass filter coefficients and li are low-
pass filter coefficients. The low-pass filter in Equation (2.25) is of length 2LL + 1 and
the high-pass of length 2LH + 1. The forward transform is done using analysis filters
while the reverse is by synthesis filters. Note that Equation (2.25) is a generalisation
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i 0 ±1 ±2 ±3 ±4
hi 0.788485 −0.418092 −0.040689 0.064538 0
li 0.852698 0.377402 −0.110624 −0.023849 0.037828

Table 2.1: CDF 9/7 analysis filters coefficients.

of Equation (2.22) that defines DCT. For DCT the convolution was done with discrete
cosines with the same number of non-zero elements (support) as input signal. In case of
DWT short-support filters that define compactly supported wavelets are of interest. Short
filters are more likely to localise the feature they are designed to detect and require less
computations. An important property especially for singularities detection and image
compression is wavelet regularity: n-regular wavelets are orthogonal to polynomials of
order up to n − 1. It means that smooth structures that can be well approximated by
polynomials will result in negligible values in high bands in the transform domain.

The choice of wavelet filters for image compression has been a subject of intensive
research [5, 48, 49]. CDF (Cohen-Daubechies-Feauveau) 9/7 filters [5] have been exper-
imentally shown to give the best R-D performance among short-support filters [48, 49].
Moreover they are highly regular (n = 4) and hence became adopted by the JPEG 2000
standard [115]. Coefficients for CDF analysis filters are irrational numbers with approx-
imate numerical values given in Table 2.1 [5]. The synthesis filters coefficients h̃i, l̃i
used to reconstruct an image are related to hi and li according to Equation (2.26) for
i = 0, . . . ,max(LL, LH):

h̃i = (−1)ili,
l̃i = (−1)ihi.

(2.26)

One of the practical problems during wavelet analysis of images is the treatment of
image boundaries. The theoretical framework of wavelet analysis has been derived for
infinite signals. In practice a signal fn is defined for n = 0, 1, . . . , N − 1: to get the
transformed signal an for n = 0, 1, . . . N − 1 the samples f−1, f−2, . . . , f−L, . . . , f−LH+1 as
well as fN , fN+1, . . . , fN+LL , . . . , fN+LH−1 are needed. In signal processing zero-padding,
i. e. assuming unknown samples are 0, is common. However, for images the best vi-
sual performance is typically achieved by symmetric periodic extension rather than zero-
padding (see also Section 4.1.1 on p.54). For example, a finite sequence {1, 2, 3} becomes
{. . . , 3, 2, 1, 2, 3, 2, 1, . . .} after extension.

2.4.3 Complex Wavelets

The DWT, although highly successful in a range of signal processing applications includ-
ing image compression, suffers from some fundamental shortcomings [64, 101]. The most
serious issues for application in image compression are inevitable aliasing and lack of direc-
tionality. Aliasing in the case of images can be observed in the form of ringing artefacts. It
is not a result of the DWT itself but it is caused by processing the wavelet coefficients for
example by quantisation which is an essential step before encoding coefficients into a bit-
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(a) 4 × 4 block-wise DCT. (b) 2-scale 2D-DWT.

Figure 2.4: Subband decomposition of Lenna, scaled and contrast adjusted for display
purposes.
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Figure 2.5: Wavelet subband image decomposition.

stream. Further, the patterns represented by DWT that arise from applying consecutive
vertical and horizontal filtering have the form of the checker-board oriented simultaneously
along different directions [101].

One of the possible solutions is based on performing wavelet decomposition in a similar
fashion to the DFT on a complex analytic signal rather than on the original real valued
input. In fact the complex Fourier basis in 2D is formed of directed plane waves and quan-
tisation of Fourier coefficients will not introduce aliasing. In principle, by applying the
Complex Wavelet Transform (CWT) we expect to keep the advantages of wavelets includ-
ing regularity and good localisation of singularities while eliminating major deficiencies.

Unfortunately the problem which has occurred now of designing a pair of real and
complex wavelets at the same time is not trivial. In a review article [101] the solutions in
the discrete case were classified into two categories:

(1) Find wavelets that form orthonormal or bi-orthogonal bases in complex Hilbert space.
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(2) Design CWT as a redundant transform.

The first set of ideas appears to impose very strong constraints and after applying it we
have to face again the same issues as with the real DWT. The second idea overcomes
the disadvantages of the DWT on the cost of 2d times redundancy, where d is the signal
dimension. This means 4 times redundant representation in application to images. An
example realisation is the Dual-Tree CWT from [64] which has already found promis-
ing applications in image compression [62, 63, 128]. We shall review this in Chapter 4
when exploring the idea of sparse image representation combining wavelets and non-linear
approximations.

2.5 Encoding Transform Coefficients

2.5.1 Quantisation

The floating point output of the transform has to be mapped into symbols from a finite
alphabet that can be transmitted to the coder. A scalar quantiser maps the numbers
an ∈ R into L disjoint intervals Ii = [ti, ti+1), for i = 0, 1, . . . , L.

JPEG standards use Uniform Dead-zone Scalar Quantisation [41] defined by Equa-
tion (2.27) (quantisation) and Equation (2.28) (de-quantisation):

Qn = Q(an) = sgn(an)
⌊ |an|

∆

⌋
, (2.27)

Q−1(Qn) = sgn(Qn)(|Qn|+ δ)∆. (2.28)

The parameter δ ∈ [0, 1) defines the position of the de-quantised value inside the interval Ii:
if δ = 0.5 then we have quantisation to the mid-point of the interval. ∆(i) is the width of
the intervals Ii which in uniform case is the same for all i. Intervals Ii can be identified
by the symbols Qn from an alphabet of size L.

These symbols or their differences can be encoded directly or a significance map can
be sent to the encoder. A significance map is a binary map that indicates whether to
quantise a transform coefficient to 0 or not [102]. Usually the entries in significance maps
are specified in terms of bit-planes. If coefficients are represented in a binary form: an =∑m
i=−∞ a

(i)
n 2−i, then the values a(i)

n form (m−i)th bit-plane assuming all the coefficients are
less than 2m+1. By sending coefficients by bit-planes from the most to least significant bit
the high coefficients are encoded first. This is a base of the concept of scalable image coding
outlined in Section 2.5.4. The next section introduces information theoretical concepts
used to map quantised coefficients into bits exploiting statistical (coding) redundancies.

2.5.2 Symbol Encoding

The average number of bits needed to encode symbols from a given alphabet is bounded
from below by Shannon’s entropy. For an L-symbol alphabet with probabilities of symbols
{pi}i=1,...,L Shannon’s entropy is defined as:

E = −
L∑
i=1

pi log2(pi). (2.29)
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Estimations of the probabilities pi define a data model according to which the entropy
coder maps symbols into bits. No prior knowledge about data i. e. pi = 1

L for all symbols
results in a maximal entropy of log2(L), which when L is a power of 2 is exactly the
number of bits needed to encode each of the symbols.

Imagine we have a sequence of K symbols from an alphabet of size L. To encode it
we can map each of the symbols individually to a binary codeword or consider the whole
message. In the latter case we would need a model for LK messages. If data in the
sequence are statistically independent then we can process them symbol after symbol and
still achieve entropy bounds.

Variable Length Coding

The first idea is to assign a binary codeword for each symbol so that a fewer bits are
spent on more likely symbols. The constraint is that decoder has to know where the
codeword ends to be able to recover a symbol. This is resolved by using prefix-free codes
with the property that none of the codewords is a prefix of any other. Huffman coding
algorithm [52] constructs the most efficient of such codes. In fact it only approaches the
entropy rate when probabilities are powers of 2 not lower than 2−L. The waste is caused
by the requirement that the codewords are at least one bit. Imagine a situation (binary
case) that we have just two symbols 0 and 1 with p1 close to 0 which means a lot of
repeating 0s. The Huffman code will assign one bit for each symbol although the entropy
can be arbitrary small.

Arithmetic Coding

Mapping the whole sequence of symbols into a binary message is an alternative that
allows a fractional number of bits per symbol. The idea is usually explained as mapping
the message to the real number in the interval I = [0, 1]. After each symbol in the
sequence is encoded, I is subdivided according to probability distribution of symbols.
In the end of encoding the whole message is mapped to some number from I. This
idea is called arithmetic coding and can be effectively implemented using finite precision
arithmetic. The case of 2-symbol alphabet is referred to as Binary Arithmetic Coding
(BAC). Arithmetic coding of the sequence of symbols generated from a given distribution:
{pi}i=1,...,L asymptotically reaches a theoretical bound of the Shannon’s entropy [126].

Run Length Encoding

Usually if data are dependent and correlated we try to exploit it before applying entropy
coding. For example if there are long runs of repeating values in the sequence we can
signal a symbol followed by the number of its consecutive occurrences which is referred as
Run Length Encoding (RLE). In the binary case the run lengths of more probable symbol
follow geometric distribution and the optimal Huffman codes to encode them are called
Golomb codes [44].
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−1 3 −1 −1 1 1 −2 2

−5 −4 2 0 −1 2 −1 0

6 3 −2 0 0 1 −1 1

Input data Rounded transformed data

Figure 2.6: Example of block-wise DCT transform from JPEG for the most top-left block
of luminance channel of Lenna.

Entropy coding can be done using static or adaptive models. In static methods the model
(distribution) is fixed for all symbols in the sequence while in adaptive it changes by
adapting to the changing distribution by exploiting any additional information that arrives
with a new symbol.

The next sections describes how these symbol coders are used in practice to encode
DCT and DWT coefficients.

2.5.3 Encoding DCT Coefficients: JPEG

For the JPEG, the output after transform is formed from 64 coefficients per each image
block of size 8× 8. The lowest frequency coefficient a00, called DC (from Direct Current)
represents simply the scaled mean value of the block. The remaining 63 coefficients, are
called AC (from Alternating Current) components. Figure 2.6 shows rounded output of
block-wise DCT: the most top-left value is DC component. Uniform scalar quantisation
[41, ch.5] using quantisation tables [55] is performed for each coefficient akn according to
Equation (2.30):

Q(akn) = round
(
akn
qkn

)
, (2.30)

q is a fixed quantisation table that is adjusted depending on the required quality level.
Quantised coefficients Q(a) from each block are then encoded using combination of RLE
and entropy coding. Figure 2.6 shows the rounded output of block-wise DCT: the most
top-left value is the DC component. Data are scanned in zig-zag order from the lowest to
highest frequency, for our example: 1284,7,5,3,-1,-5,2,0,1,0 etc., quantised and sent block
by block. Either static Huffman coding specified by a standard [55] or arithmetic coding
can be used [121, Sec.4]. Different Huffman codes, specified by the standard, are used for
DC and AC values.

2.5.4 Scalable Image Coding

The JPEG standard was highly successful at the time it was released in 1992 [55]. How-
ever, with quickly evolving multimedia technologies new requirements for image and video
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coding standards have been raised. For example, for JPEG 2000, in addition to improved
R-D performance at low bit rates, the requirements included: precise rate control and
generation of a scalable bit stream [17].

A scalable codec can encode many versions of the image at different qualities or/and
resolutions into the same bit-stream. With JPEG limited support for scalable coding is
provided. It is referred to as modes of progression and requires prior specification of the
type of progression and desired quality parameters. Moreover JPEG does not provide
direct rate control (i. e. control of the output file size). The JPEG 2000 standard and
the other wavelet coders provide, on top of direct rate control two types of scalability:
SNR and spatial. SNR scalability allows an image to be decoded at different qualities
while spatial scalability allows decoding at different resolutions. Both scalability features
are achieved using special markers (i. e. symbols) added to a bit-stream. Change of
progression type can be achieved without re-encoding thanks to the structure of a stream
which is formed from packets and markers that indicate all the necessary information [18].

The feature of a bit-stream related to progressiveness and scalability is the generation
of the embedded bit stream. Embedded bit-stream refers to fully scalable data. Knowing
the first N bits of the compressed stream allows decoding at any target number of bits
K up to N bits with the best possible quality (lowest distortion) by taking the first K
bits of the known stream. This feature is characteristic for EZW and SPIHT algorithms.
Also MP decomposition introduced in the next chapter naturally leads to an embedded
bit-stream generation. Data transmission can be stopped at any point resulting in the
maximal quality in terms of MSE for the transmitted amount of data.

EBCOT [114], the encoding algorithm from JPEG 2000, does not provide a fully
embedded bit stream. However, with the use of markers both spatial and quality pro-
gressiveness are provided while EZW and SPIHT can only offer SNR scalability. EBCOT
also does not exploit all the redundancies between subbands. However, the generated
bit-stream is robust to transmission errors thanks to coding done on separate units called
code-blocks which can be important for mobile and Internet applications. This is one of
the reasons why EBCOT has been selected as a standard rather than the less complex
SPIHT.

JPEG 2000 was a big step forward in image coding. Key factors for the improved
performance were the use of wavelets and coding the coefficients by bit-planes. Moreover
the nature of DWT and bit-plane coding naturally results in a scalable bit-stream [65]. A
few ways of encoding DWT transformed data are reviewed in the next sections.

2.5.5 Encoding DWT Coefficients

EBCOT: JPEG 2000

In baseline JPEG 2000 specified in [115] each wavelet scale is independently quantised
using a uniform scalar quantiser with quantisation step adapted to subbands. Further
parts of the standard allow more advanced quantisation methods. Quantised wavelet
coefficients are rearranged to form an input for the entropy coder. Each subband is split

25



Chapter 2 MODERN LOSSY IMAGE COMPRESSION

into non-overlapping rectangles. Three such rectangles from the subbands at the same
scale form a precinct. Precincts are typically divided into 64×64 code-blocks which form a
basic unit to be encoded by a symbol coder. Code-blocks are scanned in raster order and
by bit-planes of wavelets coefficients starting from the most significant bit. Each bit-plane
defines a significance map which is encoded using a binary arithmetic coder [18].

Each bit is encoded in one of three passes, namely: significance propagation, magnitude
refinement and clean-up. Different passes use different contexts specified by the standard
[115] for arithmetic coder. The bit-stream is refined using Lagrange optimisation to find
truncation points for each code-block. This approach is referred to as Post-Compression
Rate Distortion (PCRD) optimisation [116].

The shortcomings of the coding incorporated into JPEG 2000 are its complexity and
that it does not exploit correlations and dependencies between subbands. Each code-block
is coded completely independently [18]. Methods that make use of inter-band redundancies
between wavelet coefficients, namely EZW, SPIHT and SPECK, are described in the next
sections.

EZW

The Embedded Zerotree Wavelet algorithm (EZW) has been developed by Shapiro [102]
as an efficient way of encoding significance maps. Shapiro’s method utilises similarities
between subbands of the same orientation together with the concentration of image infor-
mation at low frequencies. This is realised with the introduction of the zerotree structure
as shown in Figure 2.7. Wavelet coefficients axy are successively bit-plane coded based
on a significance map. Coefficients axy are scanned in a fixed but arbitrary order with
the important constraint of scanning from lower to higher frequency. For each scanned
coefficient, the encoder sends one of four types of symbol: the sign of the significant co-
efficient (+ or -), the zerotree symbol ZT indicating that all descendants of the scanned
coefficient are insignificant or the isolated zero symbol IZ which says that there is a sig-
nificant descendent. Owing to the fact that high coefficient values are unlikely to appear
at higher frequencies, a lot of coefficients at later passes are not scanned. This, together
with adaptive arithmetic coding of the four symbols +, -, ZT and IZ, makes the effective
compression possible.

SPIHT

SPIHT is a coding algorithm proposed in 1996 by Said and Pearlman [99]. Similarly
to EZW, it utilises the spatial correlations between wavelet subbands using a tree data
structure called the Spatial Orientation Tree (SOT). The algorithm also uses bit-plane
coding of wavelet coefficients. However SPIHT traverses through the tree (i.e. scans the
coefficients axy) more efficiently than EZW. This is done by using a slightly different tree
structure (see Figure 2.7) and an additional partitioning step that is not present in EZW.
Significance bits generated by SPIHT can be arithmetic coded but here, contrarily to EZW,
this does not give any significant improvements in coding performance. Nevertheless,
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(a) EZW (b) SPIHT

Figure 2.7: Tree structures used in zerotree algorithms.

SPIHT outperforms EZW even without entropy coding. Due to its simplicity and excellent
R-D performance SPIHT was among the candidates considered during the standardisation
process of JPEG 2000. Although, was not selected, it is still one of the most efficient
existing techniques of lossy coding of still images and is often used as a benchmark when
evaluating new methods.

SPECK

An extension of the idea of zero-tree coding, called Set-Partitioning Embedded BloCK
(SPECK), has been proposed in [88]. The SPECK coder groups the pixels in rectangular
blocks exploiting the tree structure of wavelet decomposition. The idea is to find areas in
the subbands with high energy rather than single pixels and encode them first. Two lists
are maintained during coding: List of Significant Pixels (LSP) and List of Insignificant
Sets (LIS), contrarily to SPIHT where an additional list of insignificant pixels (LIP) is
also maintained. Sets in LIS are quadrisected to localise significant blocks inside an image
in the transform domain.

The R-D performance of SPECK is comparable to SPIHT. It is mentioned here as
it exploits dependencies between different subbands and finds significant coefficients by
quad-tree partitioning rather than just scanning them in some order like EZW and SPIHT.
The sparse approximation methods that will be introduced in Chapter 4, can be used to
represent the important areas in an image as atoms rather than single coefficient values.

2.6 Colour Compression

This section presents a range of ideas used to encode RGB images, classified into three
categories:

• methods based on decorrelating transforms of colour planes - Section 2.6.1;
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Figure 2.8: R, G, B channels of Goldhill.
Inter-channel correlations: ρR,G = 0.94, ρR,B = 0.90, ρG,B = 0.97.

Figure 2.9: Y, U, V channels of Goldhill (U and V adjusted for display purposes).
Inter-channel correlations: ρY,U = −0.09, ρY,V = 0.25, ρU,V = 0.34.

• methods operating directly in RGB colour space - Section 2.6.2;

• extensions to colour data of presented wavelet methods - Section 2.6.3.

2.6.1 Decorrelating Colour Channels

R,G and B channels are known to be highly correlated and dependent [94]. This is visu-
alised on the example of Goldhill image in Figure 2.8. Figure 2.9 shows that less correla-
tions between channels exist in luma-chroma space than in RGB.

JPEG 2000 defines two colour transforms: the Reversible Colour Transform (RCT) for
lossless coding and the Irreversible Colour Transform (IRCT) for lossy mode. The RCT
transform is defined by Equation (2.31) and IRCT by Equation (2.32).

Y = bR+2G+B
4 c

Cb = B −G
Cr = R−G

(2.31)


Y

Cb

Cr

 =


0.299 0.587 0.114
−0.16875 −0.33126 0.500

0.500 −0.41869 −0.08131



R

G

B

 (2.32)

A similar transformation to IRCT is used with JPEG to improve the compression ratio
although it is not imposed by the standard. Both are referred to as YCbCr colour spaces.

Decorrelation results in concentrating the most important information into one chan-
nel. The main idea behind the use of chroma-luma colour spaces for compression is to allow
more loss of chroma information. The HVS, as explained in Section 2.2, is more sensitive to
high frequencies in luminance. Y component, after transformation to luma-chroma colour
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Figure 2.10: Evaluation of decorrelating transform from RGB to YCbCr for Lenna com-
pressed using JPEG.

space, contains the most of the luminance information. In lossy coding standards Cb and
Cr channels are typically sub-sampled. This can be seen as low-pass filtering of chroma
(colour) information and gives a significant improvement of compression ratio without vi-
sual degradation of an image for most applications. Depending on a technical details of
sub-sampling a few modes can be distinguished. The 4:2:0 mode refers to sub-sampling by
2 both horizontally and vertically, 4:2:2 to sub-sampling only in the horizontal direction by
a factor 2, 4:1:1 to sub-sampling only in the horizontal direction by a factor 4, 4:4:4 mode
does not involve any sub-sampling (see [42, ch.2]). In JPEG 2000 chroma sub-sampling
is realised by setting the highest frequency wavelet coefficients to 0 [42]. Following the
same property of insensitivity of human vision to high frequency chroma information, a
coarser quantisation for Cb and Cr channels is normally implemented in JPEG codecs. It
is realised by using a different quantisation table for chroma channels. In this way more
chroma high frequency information is discarded by a coarse quantisation.

The difference in compression performance between different sub-sampling methods in
YCbCr and direct encoding of RGB data is shown in Figure 2.10 for the JPEG codec.
Performing coding in YCbCr colour space rather than in RGB can give a reduction of bit
stream size by up to θ = 33% (from about 0.9 bpp to 0.6 bpp) without loss of quality.
Further reduction of the size can be achieved by sub-sampling the chroma channels which
is effective for low and medium bit rates. When higher quality colour reproduction is
needed the mode without sub-sampling should be used to avoid colour errors.

Colour space transformations are simply matrix transforms in three-dimensional linear
space. It should be mentioned that transforms that separate the Y-channel with weights
from the first row of matrix transform from Equation (2.32), preserves compatibility with
the monochrome TV systems [103]. Skipping this constraint gives more flexibility in
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design of the optimal colour transformation [50, 61]. With development of new image
and video coding standards some research effort has been put into evaluating other linear
transformations. Motivations for this include not only the possibility of obtaining higher
compression for the same quality but also computational efficiency [91] as well as numerical
accuracy for near lossless [61] and integer realisation [90,91] for lossless compression.

The problem is analogous to searching for the optimal transform in transform coding,
reviewed in Section 2.4. Now the number of dimensions is reduced to only three. The
optimal decorrelating transform for a given colour image is again KLT. Since derivation of
KLT depends on the data, approximations calculated basing on standard image sets are
used or alternatively KLT coefficients can be sent with encoded data since the number of
dimensions is low.

In [50] a comparative study of 11 commonly used colour transforms has been done.
These include transforms from TV standards, JPEG standards and some KLT approxima-
tions. For lossy compression the highest performance, by mean of PSNR, for a given bit
rate has been achieved for KLT approximations: KLT from [94], Discrete Cosine (DCT)
and Discrete Hartley (DHT) Transforms. DCT and DHT are well known as good estima-
tion of KLT for image data. The authors of [50] also presented a derivation of Reversible
Transforms for lossless coding.

The new floating point colour transform YSbSr is proposed in [61] (Equation (2.33))
is based on the KLT.

Y

Sb

Sr

 =


0.6460 0.6880 0.6660
−1.0 0.2120 0.7880
−0.3220 1.0 −0.6780



R

G

B

 (2.33)

It outperforms YCbCr and other existing transforms by PSNR measured separately for
each channel.

A colour transform is the simplest way to extend grayscale compression methods into
colour data. However, from results achieved by [50], [61] and [91] it is clear that the
performance improvement of the whole coding system just by decorrelating the colour
components is limited. The gains in PSNR over YCbCr in [61] are minor and achieved at
higher bit rates where it is likely that they will not be perceptible by the human eye for
most applications. A review of some of the latest attempts to build efficient colour image
codecs that goes beyond colour transformations is given in the next two subsections.

2.6.2 Directly Exploiting Inter-channel Correlations

First of all, instead of decorrelating data with the use of a matrix transformation, the
functional dependency between channels can be estimated and only the estimation error
encoded. The authors of [43] have proposed a method in which two channels of three-
channel image (denote them by C1, C2) are approximated by a polynomial of order K of
the base colour C0 (see Equation (2.34)).

C1 =
∑K
k=0 akC0

k

C2 =
∑K
k=0 bkC0

k.
(2.34)
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The chosen colour space was RGB. The image was divided into small blocks and linear
regression (Least Squares fit of polynomial of order K = 1) was used to find coefficients:
a0, a1, b0 and b1 in Equation (2.34). Differences between those coefficients were encoded.
As a base colour the one with highest weighted correlation to the others was selected.
Information about the selected colour has to be sent for each block. The green channel
which contains the most luminance information, is selected most of the time. The Huffman
code is used to encode the information about the base colour selection. A further step is
taken in [39] where this approach is integrated into subband coders JPEG and JPEG 2000.
A similar linear fit is performed in the frequency domain. This allows direct comparison
of the proposed method with the decorrelating colour transforms employed in standard
codecs. A bit allocation algorithm for colour components and subbands, proposed in [40],
has been used. The authors claim to achieve compression improvement in the case of JPEG
and visual superiority when integrating the proposed methods within the JPEG 2000
framework.

In [80,81] RGB channels are also encoded in the spatio-frequency domain after applying
a DCT. Decorrelation of DCT blocks is done using a 3-level wavelet decomposition and
optimal bit allocation similar to JPEG 2000. However, the proposed coder is reported to
have inferior performance to JPEG 2000.

Another interesting, but in principle completely different, idea for perceptual improve-
ment of image compression algorithms that works regardless of colour space has been
proposed in [16] and described in detail in [15]. The idea is to tune existing codecs by
allowing them to discard indistinguishable colours. Realisation of the idea has been done
by changing the mechanism of rate control in JPEG 2000. The algorithm minimises the
colour distortion measure from [14] instead of the MSE (Mean Squared Error). Results for
tuned JPEG 2000 suggest that the same visual quality can be preserved with a reduction
of size of up to 33%.

A different approach to combining decorrelation transforms with exploitation of re-
maining redundancies at later stages of processing was presented in [100]. It was analysed
in [100] that there are still high inter-colour correlations after RCT or IRCT. The authors
have proposed a coding scheme inspired by JPEG 2000 that additionally models correla-
tions between channels in the YCbCr colour space. A slight improvement over JPEG 2000
has been reported. The next section reviews the ideas to extend a concept of zero-tree
to colour images. In principle the idea is similar to [100]: perform colour decorrelating
transform and the DWT and then link resulting data (sub-bands) into zero-tree in order
to exploit remaining redundancies.

2.6.3 Colour Extensions of Wavelet-based Methods

Both EZW and SPIHT have been primarily analysed and designed only for grayscale im-
ages. EZW has been extended to colours as Colour EZW (CEZW) in [105]. A zerotree that
connects colour channels in YUV space has been constructed. The important observation
has been made that although YUV channels have little correlation in the wavelet domain,
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(a) CEZW [105]. (b) CSPIHT [58].

Figure 2.11: Parent-node relation in colour codecs.

Figure 2.12: Spatial Orientation Tree (SOT) used in CSPIHT [58].

it is likely that sharp transitions (i. e. large values at higher frequencies) occur at the
same locations for all channels. The structure of a tree where each luminance coefficient
has 6 children as in Figure 2.11a has been proposed and implemented. SPIHT has been
extended into colour image and video coding in [60]. An image codec is freely available
at [111]. The proposed method encodes all three channels together using separate SOTs.
Prior to the coding, a KLT is estimated and applied. The codec preserves the embedded
nature of the bit-stream but does not fully exploit inter-channel correlations. As SPIHT
performs much better than EZW for grayscale this extension for colours is only just better
than [105] when evaluated using PSNR. This suggests usage of the improved tree structure
shown in Figure 2.11b also with SPIHT.

The algorithm proposed in [58] builds SOT across all channels in a different way. The
coder works in YCbCr colour space. The luma and chroma planes are linked through the
lowest frequency subband of Y channel that has no offspring (see Figure 2.12). Exactly
the same idea has been analysed by Khan and Ghanbari [59] in YUV colour space as
Composite SOT B. Moreover they have compared three methods of coding named after
the structure of the used Colour SOT (CSOT):

• Independent CSOT, almost the same as [111];
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• Composite CSOT A, tree structure as in [105];

• Composite CSOT B, tree structure as in [58].

The conclusion has been drawn that CSOT B is the best. However reconstruction of
chroma channels has been better for CSOT A. The performance of Composite SOTs is
always slightly better than for original SPIHT with KLT. Further improvement in the
performance has been achieved in [127] by utilising KLT with the tree structure from
[58, 59]. Authors have observed that after KLT the magnitudes of the components are
different. Therefore wavelet coefficients are grouped by transformed colour components
K1, K2, K3 and then by subbands. At each pass only non empty groups are coded.

A further step based on the idea of coding blocks instead of single pixels has led to the
family of algorithms represented by SPECK from [88]. The block-tree structure inspired
by SPECK has been introduced for colour coding in [74,75]. Proposed system is reported
to have better R-D performance than CSPIHT [58] even though original SPECK performs
similar or sometimes worse than SPIHT for grayscale [88]. Additionally block based meth-
ods are less memory and computationally complex. Nevertheless, the differences measured
by PSNR are small.

2.7 Summary

In this chapter the most important ideas behind transform coding were introduced. These
include decorrelating colour and image transforms such as KLT, DCT and DWT, quan-
tisation and bit-plane coding of significance maps. Examples of JPEG standards and
zero-trees from EZW and SPIHT were used to illustrate these concepts. The challenges
of colour imaging have been pointed out. The basics of colour vision, the most popular
colour models and their use in image compression were outlined. The framework of Image
Quality Metrics (IQAs) has been introduced for application in systematic comparison of
different coding methods.

It can be concluded that, although, invented in the early 1990s, the idea of coding
wavelet coefficients by bit-planes and zero-trees adapted in EZW and SPIHT are among
the most efficient existing scalable lossy image compression methods. Various ideas for
colour compression were also reviewed, including:

(1) improvements of decorrelating transform [50,61,94],

(2) discarding indistinguishable colours [14–16],

(3) analysing and exploiting inter-channel redundancies in the spatio-frequency domain
[39,59,75,80,81,100].

To summarise, most of the presented colour coding algorithms operate in the decorrelated
(mainly luma-chroma) colour space: YUV [59,74,75], YCbCr [58, 127] and KLT [60,127].
RGB data were used directly in [39] with the intention to exploit correlations at later
stages. Moreover, most of the methods operate in the wavelet domain (or DCT [81]) trying
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to extend existing methods such as SPIHT or EZW to better exploit inter-correlations and
inter-dependencies between colour channels by modifications in the structure of zero-trees.

The next chapters seek beyond wavelets for more efficient transforms and coding meth-
ods that preserve scalability and embedded bit stream construction. Moreover, we put
special attention on the idea of exploiting inter-channel correlations directly on RGB data
without any colour space conversion.
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3 Sparse Approximations for
Image Compression

Chapter 2 reviewed well-established methods of representing images. This included
wavelets which form the basis of JPEG 2000, the industry standard for lossy image coding.
Here, alternative and more general ways to represent signals are studied.

Image transforms like the DWT can be defined by sets of filters. Those filters are
expected to represent well the features of an image perceived as important by people.
It is known that filters oriented at different directions and well localised in space and
in different spatial scales (bandpass) characterise simple cortical cells of the mammalian
vision system [86]. The wavelet transform outlined in Chapter 2 have been designed
with human perception in mind and partially satisfies those properties. Numerous work
has been done in wavelet image de-noising [9–11] following Donoho’s analysis of general
capabilities of wavelets to recover noisy signals [24, 25, 27]. A range of issues, including
lack of translation invariance [19], led to the development of signal denoising methods that
use overcomplete transforms as an alternative, outperforming wavelets [13,30].

Mathematically the DWT defines the transformation of a basis in a linear space. Sparse
representations in redundant (overcomplete) dictionaries, introduced in this chapter, can
be viewed as a generalisation of the basis transform. The original problem of the sparse
representation has its origins in more general idea of compressed sensing of a given sig-
nal [26]. The goal is to recover a high-dimensional signal using many fewer components
by measuring it (sensing) using a set of measurement vectors from the same space. There
exists evidence [86] that human vision processes an image in a similar way. The number of
neurons beyond optic nerves increases by an order of magnitude and only a small number
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of them is active at the same time for a typical stimulus [6]. Highly sparse firing of neurons
is a widespread phenomenon in a variety of brain activities [47].

The above observations suggest that the set of filters used by our vision system is
much richer than in sets that define wavelet or Fourier basis. In the fore-mentioned
work of Olhausen and Field [86], it has been shown that localised, oriented and bandpass
filters can be obtained with a learning algorithm that maximises sparsity. Hence, sparse
representations are of interest for a wide range of imaging applications from de-noising [12,
13,30], de-blurring [31] and restoration (e. g. recovering missing pixels [70]), to image [36,
131] and video compression [20,83,130].

This chapter gives a brief overview of the optimisation problems of sparse representa-
tions and approximations. The main trends are introduced and selected examples of the
algorithms are presented. Section 3.1 introduces the necessary notation and formulates
related optimisation tasks. The main algorithms are introduced in Section 3.2 and Sec-
tion 3.3. We argue in Section 3.4 that although the more sophisticated methods usually
give a much sparser signal representations MP remains the method of choice for image
and video coding, especially at low bit-rates. Then the idea of Multichannel MP (MMP)
is introduced in Section 3.5 and recognised as an effective way to represent colour images
and videos. Section 3.6 summarises advantages of MP in image coding application and
outlines challenges related to necessity to encode sparse approximations into a bit-stream
that are addressed in the next chapters.

3.1 Problem Specification

Consider a signal f as a function from a Hilbert space H represented as a sum of the basic
waveforms gi called atoms that come from an arbitrary set D:

f =
∞∑
i=1

aigi. (3.1)

The set D = {gi}i∈Γ of all the atoms is called a dictionary and the coefficients ai are called
the amplitudes. The set of all dictionary indices is denoted as Γ and if Equation (3.1) is
used then Γ = N. In order to be able to represent any function f ∈ H as a combination
of dictionary elements, H has to be spanned by D:

Span(D) = H. (3.2)

This means that the set of all finite linear combinations of the elements from D is dense
in H. Importantly, the dictionary elements are normalised, i.e.:

∀i∈Γ ‖gi‖ = 1. (3.3)

The theory of sparse approximations can be formulated in a general Hilbert space (see [118,
Sec. 8]). However, in practical signal processing, the data are represented in the form of
finite-dimensional vectors. Therefore, it is assumed in this work that dim(H) = M and
the size of the dictionary D is K, which means that we can use Γ = {1, 2, . . . ,K}.
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If D is a basis in H (i.e. K = M and gi are linearly independent) then Equation (3.1)
expresses a unique representation of the function f with ai = 〈f, gi〉 for all i = 1, . . . ,M .
The KLT, DFT, DCT and DWT are basis transforms and can be also viewed as signal
representations in a form given by Equation (3.1). In Chapter 2 we looked at basis
transforms as matrix transformations or equivalently as sequences of filters. Equation (3.1)
can be written as a matrix transform:

f = Ga, (3.4)

by writing a dictionary in the form of a matrix G with K columns, each representing a
dictionary element gi of length M . The column vector a is a vector of K amplitudes ai.

Here, we are interested in the case when K > M . Then G is a matrix representation
of a redundant or overcomplete dictionary D. In this case f has many representations over
D. For the purpose of compression a decomposition with a minimal number of significant
coefficients ai is desired. The number of non-zero entries in a is referred to as its L0-norm
and denoted as ‖a‖0. In the case of lossy compression we are satisfied by the approximation
f̂ of f given by Equation (3.5):

f̂ =
N∑
i=1

aigγi (3.5)

for a given number of atoms N . In matrix notation Equation (3.5) implies that there are
significant entries in the amplitude vector a only for a subset of indices ΓN ⊂ Γ defined as:
ΓN = {γi}i=1,...,N . The approximation defined by Equation (3.5) is referred to as N -term
approximation. For the purpose of analysing greedy algorithms, repeated entries in ΓN
are allowed (i. e. it can happen that i 6= j and γi = γj).

The optimisation problem that is a subject of the main focus in this work can be
specified as follows. Find a subset (vector) of dictionary indexes ΓN and a vector of
amplitudes a such that the error:

e (ΓN ,aN ) =
∥∥∥f − f̂∥∥∥ (3.6)

is minimal under the constraint of a fixed number of atoms:

‖a‖0 = N. (3.7)

We shall use notation aN for a vector that satisfies (3.7). We can see that we are interested
in the minimum of the function e (ΓN ,aN ) over all possible N -term approximations. If
the error is e (ΓN ,aN ) = 0 then Equation (3.5) gives an exact reconstruction of the signal
which is referred to as an N -term representation and the signal is said to be N -sparse.

It has to be noted here that theoretical analysis (e.g. [29,119,120]) considers either exact
representation or approximation for a given error threshold ε that has a minimal number
of atoms. In general the sparsest representation for a given error threshold ε is of inter-
est. Then the problem at hand is to minimise ‖a‖0 (L0-norm) subject to e (ΓN ,aN ) ≤ ε.
This set-up with ‖a‖0 as an objective function is very useful for denoising where we are
interested in recovering an approximation f̂ that is composed of as many components as
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needed to obtain a version of the signal f with noise removed. However, in compression we
are usually interested in minimising error for a given target size of a bit-stream (bit-rate).
Intuitively we can expect that the number of atoms in decomposition is approximately
proportional to the number of bits needed to encode this decomposition. Moreover, we
want to be able to organise the stream in an embedded way as described in Section 2.5.4
so the most important atoms are encoded first. For now, let us outline the main prob-
lems and introduce a range of methods designed to look for sparse approximation. In
Section 3.4 we will analyse issues with adapting those methods to solve a problem defined
by Equations (3.6) and (3.7).

In general using the number of atoms ‖a‖0 as either a constraint or an objective makes
the problem non-convex. Therefore in either of settings sparse approximation and repre-
sentation are combinatorial and NP-complex tasks [119]. To find a solution guaranteed to
be optimal for a fixed number of atoms N ,

(K
N

)
possibilities need to be searched which is

typically infeasible. A wide range of algorithms can find a suboptimal solution. They fall
into two main categories:

• greedy methods that iteratively build ΓN and aN like Matching Pursuit (MP) and its
variations such as Orthogonal Matching Pursuit (OMP) and Optimised Orthogonal
Matching Pursuit (OOMP);

• global optimisation methods like Basis Pursuit (BP) that attempts to translate the
problem into a convex optimisation.

The second class of methods replaces the non-convex norm ‖a‖0 by related convex function
denoted as ‖a‖s which favours the components of a with many small values:

‖a‖s =
K∑
i=1

S(ai). (3.8)

In fact as pointed out in [29, sec.1.6] any symmetric, non-decreasing function S with non-
increasing derivative for x ≥ 0 favours a sparse solution. In [85] a few choices for S(x) have
been tried, including: |x|, log(1 + x2) or −e−x2 . S(x) = |x| deserves a special attention
as it translates the problem into a linear programming task which is referred to as Basis
Pursuit [12].

Both classes of methods are in use with satisfactory results for different signal process-
ing applications. Next sections give an overview of MP (Section 3.2.1) and its enhance-
ments OMP (Section 3.2.2) and OOMP (Section 3.2.3). BP is outlined in Section 3.3.1.
We summarise Section 3.3.1 by highlighting a theoretical importance of OMP and BP.
We then also consider greedy modification of BP: Greedy Basis Pursuit (GBP) in Sec-
tion 3.3.2. In Section 3.4.1 we argue basing on experimental results that MP is the most
promising choice for image coding at low bit rates.
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3.2 Greedy Algorithms

3.2.1 Matching Pursuit

In 1993 Mallat and Zhang introduced a simple greedy technique for solving sparse ap-
proximation [72]. The Algorithm 3.1, called Matching Pursuit (MP), iteratively finds the
approximation of a signal f by a sum of N atoms gγn selected from a dictionary D:

f ≈
N∑
n=1
〈Rnf, gγn〉gγn . (3.9)

For any dictionary that spans H, the decomposition in Equation (3.9) obtained after N
steps of Algorithm 3.1 converges to f as N → ∞ [72]. At each iteration the atom most
correlated with the actual signal residual Rnf is selected and removed from Rnf . MP

Algorithm 3.1 Single-channel Matching Pursuit [72].
Initialisation: R1f = f .
for n = 1 to N do

Find atom gγn ∈ D such that:
|〈Rnf, gγn〉| ≥ α supgγ∈D (|〈Rnf, gγ〉|) .

Update residual:
Rn+1f = Rnf − 〈Rnf, gγn〉gγn .

end for

gives a suboptimal N -term solution to the sparse approximation problem.
We recall a few properties of MP. Firstly, the way the atoms are removed from a signal

implies the energy conservation, i. e. after n iterations we have:∥∥∥Rn+1f
∥∥∥2

= ‖Rnf‖2 + |an|2 , (3.10)

with an = 〈Rnf, gγn〉. This implies inductively a Parseval-like equality for the N -term MP
decomposition:

‖f‖2 =
N∑
n=1
|an|2 +

∥∥∥RN+1f
∥∥∥2
. (3.11)

The equality from Equation (3.11) implies convergence of MP without requiring the selec-
tion of the best atom at the nth iteration. This is a sub-optimality parameter α ∈ (0, 1]
from Algorithm 3.1 which gives some flexibility at the selection step. In theory, for an
infinite dictionary D, the best atom, i. e. the one that maximises the absolute value of
the inner product |〈Rnf, gγ〉|, may not even exist. In a finite case the supremum (sup)
in Algorithm 3.1 can be replaced with the maximum (max). The sufficient and necessary
condition of convergence for any dictionary and any Hilbert space has been formulated
in [118] and [67].

One of the theoretical results [118] is that parameter α can vary from iteration to
iteration. Convergence is guaranteed to be preserved for sequences αk ∈ (0, 1] such that∑∞
k=1 αk

2 = ∞, i. e. αk are large enough so the series diverges. Although theoretically
possible, choosing atoms in a suboptimal way significantly slows down the convergence.
A marginal case of α = 1 (selecting the best available atom) is referred to as the Full
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Search MP (FSMP) [20, 35]. In the theory of approximations, the FSMP is referred to
as a Pure Greedy Algorithm while MP in the form of Algorithm 3.1 as a Weak Greedy
Algorithm [118]. It is known that in image compression FSMP gives significantly lower
distortions than atom selection heuristics [20]. Therefore unless explicitly stated we refer
further to FSMP simply as MP and shall always perform full search.

It has been proven in [72] that the decay of the error Rn+1f in a finite dimensional
space is exponential and a bound is given by the following formula:∥∥∥Rn+1f

∥∥∥ ≤ ‖f‖ (1− α2β2
)(n+1)/2

, (3.12)

where β is the cosine of the maximum possible angle between functions from H and their
closest dictionary elements:

β = inf
f∈H

sup
gγ∈D

|〈f, gγ〉|
‖f‖

. (3.13)

This result implies that the first few atoms preserve most of the signal energy. In marginal
case if there is an atom that exactly matches the signal: β = 1 and full search is performed
(α = 1) then the convergence is achieved in one step. In general the decay of error

∥∥Rn+1f
∥∥

is dependent on the structure of the dictionary described by parameter β and on the sub-
optimality parameter α.

MP has been originally proposed for speech signal de-noising [72] but also found ap-
plications in EEG signal analysis [28], image de-noising [32], video [83] and image com-
pression [36, 131]. MP with an appropriately chosen dictionary can well match the signal
structures. Nevertheless it suffers several major shortcomings that include:

(1) High computational cost of finding the atomic decomposition.

(2) Non-guaranteed convergence in finite steps even in the finite-dimensional space (MP
converges only asymptotically).

(3) Risk of finding a representation that is far from optimal which is a typical drawback
of greedy techniques.

While finding decomposition (encoding) is slow composing an image back (decoding) re-
quires just summing up the atoms which makes decoding as fast as DCT or DWT. There-
fore MP is suitable for an asymmetric application in which one encodes the stream once
and decodes it many times. This includes the storage of images and videos for progressive
transmission.

3.2.2 Orthogonal Matching Pursuit

The convergence of the MP is not guaranteed in a finite number of steps. The atoms
selected after N steps indicated by ΓN are not only not guaranteed to be linearly inde-
pendent but not even to be different meaning that the same atom can be selected many
times. A simple numerical example when MP fails to recover a sparse representation was
shown in [87]. This problem is solved by the method called Orthogonal Matching Pursuit
(OMP) that guarantees the exact recovery of a signal in finite-dimensional space H with
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no more steps than the dimension of the space [87]. A key change compared to MP is the
requirement for the residual Rn+1f to be orthogonal to the current n-term approximation.

〈Rn+1f, gγi〉 = 0 for i = 0, 1, . . . , n (3.14)

The Algorithm 3.2 involves an additional step to preserve the property expressed by Equa-
tion (3.14). It can be achieved by updating amplitudes of already found atoms, which
requires solving a system of linear equations of size n×n at the nth iteration. In fact, this
is equivalent to solving least squares at each iteration. This can be performed recursively
based on the solution from previous iteration [87].

The atoms {gγi}i=1,...,n that form the n-term decomposition are guaranteed to be
linearly independent. The set of amplitudes an = {ani }i=1,...,n minimises the mean squared
error e (Γn,an) from Equation (3.6) at each iteration for an already fixed set of atoms Γn.
The actual improvement over MP is based on a refinement of the values of amplitudes

Algorithm 3.2 Single-channel Orthogonal Matching Pursuit [87].
Initialisation: R1f = f , D1 = ∅.
for n = 1 to N do

Find atom gγn ∈ D \ Dn such that:
|〈Rnf, gγn〉| ≥ α supgγ∈D\Dn (|〈Rnf, gγ〉|) .

Calculate {bni }i=1,...,n−1 so for all i it satisfies:
〈gγn , gγi〉 =

∑n−1
j=1 b

n
j 〈gγj , gγi〉

Update amplitudes:
ann = 〈Rnf,gγn 〉

1−
∑n−1

j=1 b
n
j 〈gγj ,gγn 〉

ani = ani − annbni , for i = 1, . . . , n− 1
Update residual:
Rn+1f = f −

∑n
i=1 a

n
i gγi .

Dn+1 = Dn ∪ {gγn}.
end for

ani at the cost of additional computational and memory overhead. A superscript n next
to amplitudes indicates that all amplitudes are updated every iteration. The OMP is an
improved version of MP that selects the next atom in the same fashion but recalculates
amplitudes to reduce the error. An update equation analogous to Equation (3.10) for MP
still holds: ∥∥∥Rn+1f

∥∥∥2
= ‖Rnf‖2 + |ann|2, (3.15)

However, since amplitudes keep changing from iteration to iteration the Parseval equality
(Equation (3.11)) no longer holds and hence the atom contribution to overall error cannot
be explained any more just by the square of its amplitude.

In approximation theory OMP is known as a Weak Orthogonal Greedy Algorithm [118].
In practice, in initial iterations the behaviour of OMP is almost exactly the same as MP
as atoms selected at first are often nearly orthogonal. Note that the first iteration of
Algorithm 3.2 is exactly the same as for Algorithm 3.1.
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3.2.3 Optimised Orthogonal Matching Pursuit

OMP does not guarantee that the update step chooses the atom that improves the approx-
imation the most after the orthogonalisation expressed by Equation (3.14). One of the
improvements has been introduced in [98] called Optimised Orthogonal Matching Pursuit
(OOMP). OOMP guarantees that the next atom is chosen so that the updated approxi-
mation has minimal error. OMP selects the next atom γn+1 and adds it to Γn:

Γn+1 = Γn ∪ {γn}.

Then it updates amplitudes independently

an+1 = an ∪ {an+1
n+1}.

OOMP updates both dictionary Γn and amplitudes an of n-term decomposition at the
same time so that the error for n+ 1-term decomposition is minimised.

Several further refinements that remove or replace some non-optimal atoms have been
proposed over the years [3, 4, 97]. As we shall see in the example given in Section 3.4, in
practice improvements of OMP and OOMP over MP related to faster convergence only
become clear for relatively many atoms. This fact favours MP for applications to low
bit-rate image coding which is the main topic of this thesis. The numbers of atoms in de-
compositions considered in Chapters 4-6 are much lower than the actual signal dimension,
for example 6000 atoms is only 2.29% of 512× 512 = 262144 which is a typical size of test
images. On the other side, slow convergence of MP prevents from adapting it at higher
rates.

3.3 Global Optimisation Techniques

All refinements to MP such as OMP or OOMP remain greedy techniques and still can
be trapped into a local minimum. The main concern is that sub-optimal atom choice
in the first iterations will require to be recovered at later stages. A simple numerical
example (Chen’s example from [13]) can be given when OMP fails to recover a N -sparse
signal requiring M steps even though N is much smaller than a dimension of space M .
Global optimisation is an answer to the shortcomings of the greedy nature of iterative
procedures such as MP and OMP, but at the cost of increased computational and memory
complexity. Here, we give an example of the approach called Basis Pursuit that has been
found especially useful for signal de-noising [13, 30, 31]. For application in scalable image
coding, iterative methods such as MP or OMP are, as we shall see in Section 3.4.1, still
of interest. It is important to obtain a decomposition as in Equation (3.5) in which the
atoms are sorted by their importance which can be measured by the contribution to overall
error. Hence, we also consider performing Basis Pursuit in iterative manner referred to as
Greedy Basis Pursuit (GBP) [53].
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3.3.1 Basis Pursuit

Basis Pursuit refers to the concept of translating a non-convex sparse approximation prob-
lem into linear programming [12]. For the exact signal reconstruction given by Equa-
tion (3.8) this is done by taking the L1 norm instead of L0:

‖a‖1 =
K∑
n=1
|an|. (3.16)

Note that this is the same as taking function S(x) = |x| in Equation (3.8). The optimisa-
tion problem solved by Basis Pursuit can be expressed as:

min
a
{‖a‖1}, (3.17)

with a constraint f = Ga as has been expressed by Equation (3.4). Non-zero entries in a
indicates selected atoms. The problem can be directly translated into a linear program as
shown for example in [12]:

min
â
{1Tâ} subject to [G,−G]â = f, âi ≥ 0, (3.18)

the result â includes both positive and negative components of the actual amplitudes a.
Subtracting second half of â from the first one gives the result a.

The following modification of original BP formulation called Basis Pursuit De-Noising
(BPDN) [13] is considered in application for image de-noising rather than exact recon-
struction [30]. Then, the optimisation problem which is equivalent to convex perturbed
linear programming [13] can be formulated as follows:

min
a
{1

2

∥∥∥f − f̂∥∥∥+ λ ‖a‖1}, (3.19)

where f̂ is given by Equation (3.5). Factor λ in additive white noise model equals to
σ
√

2 logK, [13] where σ is a parameter of noise and K is a size of dictionary [13]. For
many applications BP and BPDN are more powerful than MP and OMP [13, 31]. The
main advantage is that, since it has been translated to a convex a linear (BP) or perturbed
linear (BPDN) programming optimisation problem, it is guaranteed to converge to a global
optimum.

It has to be remembered here that we are finding a global minimum of a different
optimisation task (either (3.18) or (3.19)) while the sparsest representation is of interest
((3.6)-(3.7)). The remarkable property of BP is that after changing optimisation objective
it can recover N -sparse signals in cases when greedy methods fail. What is more, if
N is sufficiently small comparing to a signal dimension M then BP finds the sparsest
solution in L0-norm sense. Numerous research has been devoted to study this phenomenon
[26,29,119,120]. In [119] the conditions have been given that guarantees success for both
OMP and BP. Those conditions give the lower bound for N and a dictionary for which
Pursuit algorithms succeed to solve exact recovery problem (see also [26]). In practice
signals are hardly ever exactly sparse as pointed out in [119] and if they are there is a
major challenge to identify appropriate dictionary.
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3.3.2 Greedy Basis Pursuit

If the signal is not N -sparse in the dictionary used BP could be used to obtain a sparse
approximation based on the fact that many coefficients an are small and could be neglected.
The two major practical problems here include necessity to compute the full decomposition
at first and selection the most important atoms afterwards. If we are focused on scalable
lossy image compression we want to be able to target a fixed number of atoms so that
we can stop computationally expensive decomposition process once we obtain satisfactory
image quality. Moreover, we want to order atoms to support construction of embedded bit-
stream so that the ones selected first contain most of the information. Greedy methods
addresses both issues hence MP and its refinement is the method considered in image
compression applications.

There has been some research effort to adapt global optimisation such as BP so it
can work in situations where MP suits better than BP. Greedy Basis Pursuit where we
can order atoms by their importance has been introduced in [53]. The idea is to exploit
geometric properties of linear program as defined by Equation (3.18) in order to be able
to iteratively select atoms to build up a signal decomposition. In the example involving
speech signal authors of [53] achieved better sparsity than MP but the mean squared of
the residual error decrease was slower. In the next section we try to apply GBP among
other methods to down-sampled versions of still images obtaining results in similar spirit
to [53].

3.4 Sparse Approximations of Images

3.4.1 Choice of Method

In order to use sparse approximations for image compression the crucial factors include
the sparsity of decomposition and the possibility to encode it progressively as for wavelets
codecs. Iterative greedy techniques are of interest in image and video coding as they nat-
urally generate a progressive representation. Since the atom amplitude tends to decrease
(i.e. the atoms are found from more to less important) it is possible to build a scalable
image codec based on greedy methods [36, 131]. There is no advantage in global optimi-
sation such as BP when it comes to scalable image coding as it optimises for a fixed error
level or number of atoms.

The following experiment summarises properties of outlined methods and attempts
to evaluate their application into image coding. Figure 3.1 shows a comparison of the
outlined methods applied to represent images using the same dictionaries. In this example
we used the lowest frequency subbands of size 16 × 16 after the wavelet transform as it
represents the most of the image energy. Figure 3.1 considers grayscale Lenna. Results for
all test images can be found in Appendix C. The main motivation for a choice of small-size
signals is the computational complexity of BP and OMP. Also it has to be noted that it
the lowest frequency subband can be seen as a down-sampled version of the original image.
The input signals have been normalised by dividing each sample by the maximum absolute
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Figure 3.1: Comparison of different basis selection methods for the normalised and DC-
shifted lowest frequency subband of 5-scale CDF 9/7 wavelet decomposition of grayscale
Lenna, 16 × 16. RMSE (y-axis) as a function of number of atoms (x-axis). Random
dictionary with ×4-redundancy (left), D16 (right).

value and mean shifting so that Figure 3.2 shows meaningful PSNR values for image data.
We apply MP, OMP, OOMP, BP and GBP in the most general form. The input is a
256-dimensional signal and hence a dictionary is represented by a matrix with 256 rows.
Implementations of OMP and OOMP [98] are taken from [96] and GBP from [53]. BP was
performed using Matlab’s linprog. The author’s implementation of MP was applied. For
GBP, to avoid problems with ill-conditioned matrices a small perturbation has been added
to the dictionary matrix as recommended in [53]. Two dictionaries were used: uniform
random dictionaries with redundancy 4 (i.e. K = 4M) generated for each image in the
same way as in [53] and our dictionary D16 designed for MP (see Chapter 4).

BP and OMP (OOMP) converge, as expected, in at most 256 steps, which can be seen
in Figure 3.1. MP struggles to converge for a random dictionary. However, for D16 the
error is negligible, though not zero, after 256 steps. It is worth noting here that 51 out
of the 100 first atoms for the MP decomposition of Lenna in Chapter 4 are found in the
lowest frequency sub-band. This means there are only 49 atoms across other 15 subbands
emphasising the importance of the lowest frequencies for low bit-rates image coding.

BP, OMP and OOMP were applied to solve the sparse representation problem (ex-
act recovery). For BP atoms were sorted by decreasing amplitude as since this is global
optimisation method their order in a dictionary does not reflect contribution to a decom-
position, For GBP, MP, OMP and OOMP atoms were ordered as they were found. The
results obtained are in a similar spirit as analogous results presented for image blocks
in [2, p.46]. BP and GBP solve a different optimisation problem therefore their mean
square performance is inferior to MP and OMP in considered application. Interestingly,
when using a random dictionary this gap become less clear as shown in Figure 3.1. Also
in our experiment, GBP finds a decomposition that in the R-D sense (MSE) is inferior to
just sorting coefficients found by BP by their absolute value. Final solutions are the same
for BP and GBP up to numerical errors. Figure 3.3 shows performance measured by a
L1-norm which shows the expected gap between Basis Pursuit and MP-like methods. BP
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Figure 3.2: Comparisons with OMP targeting fixed number of atoms for the normalised
and DC-shifted lowest frequency subband of 5-scale CDF 9/7 wavelet decomposition of
grayscale Lenna. PSNR (y-axis)[dB] as a function of number of atoms (x-axis).

finds the solution with 25% lower L1-norm.
Figure 3.2 visualises a case when OMP and OOMP are applied as approximation

methods. We can see a clear improvement of OMP over MP and OOMP over OMP for
more than 60 atoms. It has to be remembered that in this case we lose progressiveness.
The problem can be summarised in the following way: if we use OMP and OOMP and
obtain N0-term and N1-term decompositions (N1 > N0) N0 atoms in N0-term decompo-
sition are the same as for N1-term decomposition, however the amplitudes changed (often
drastically). For the MP the next atoms are selected without changing previous ones, so
that N0-term decomposition is always a subset of N1-term. This property together with
a good performance at low rates makes MP the method of choice for our coding system.
In Section 3.4.2 we will see additional benefits of MP when it comes to quantisation and
encoding. If we would use BP de-noising and obtain N0-term and N1-term decomposi-
tions (N1 > N0) both decompositions will include not only different amplitudes but also
different atoms.

3.4.2 Encoding Atomic Decompositions

It is known that sparse approximations and MP in particular provides a sparser representa-
tion of images than DCT or DWT [7]. In practical compression applications an additional
issue is quantisation and encoding of the transform coefficients. MP is the most popular
choice of a redundant transform in the field of image and video compression [36, 83, 131]
regardless the fact that OMP gives a much sparser representation. Quantisation in the
case of MP can be done inside a loop [84]. It means that it is possible to choose worse
amplitude an at nth iteration and correct the error at later stages (see Chapter 5 for
details). The advantage of OMP is based on refining the amplitudes which is in contradic-
tion to the necessity of quantising them. Chapter 5 provides the evidence that even very
coarse quantisation has a minor effect on the decomposition error. For the reasons above
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Figure 3.3: Sum of absolute values of amplitudes: y (x) =
∑x
i=1 |ai| (y-axis) as a function

of number of atoms (x-axis).

plus our focus on low-bit rate coding and significantly lower computational and memory
requirements MP is chosen in this work.

The first successful application of MP to 2D signals was video coding of motion com-
pensation residuals in [82]. It has been shown that only a few atoms are required to
represent well the motion prediction signal. Once the atoms were found, their amplitudes
were uniformly quantised and the residual Rnf was updated by a quantised value [84].
To identify their locations the atoms were grouped into blocks and the difference from a
centre of a block was coded using Huffman coding. For reasons of memory and computa-
tional complexity, atom search at each iteration was done sub-optimally over an area of
size 32× 32 with the highest signal energy (Find Energy from [83]). Later [20] it has been
shown that a full search gives significantly lower distortion and several speed-ups were
proposed e.g. [57].

3.5 Multichannel Matching Pursuit

MP can be extended to decompose vector signals without losing the convergence prop-
erty [67]. The atom that, according to some criterion, best matches all the components
of the input signal is selected. The video codec described in [83] was also capable of cod-
ing colour data (see [82, p.27]). Atoms were selected in the YUV colour space. Image
channels were decomposed separately. In this way the most of the atoms are assigned to
Y channel mimic the idea of sub-sampling from JPEG and JPEG 2000 standards. We
show in Chapter 4 that with the idea from [35] and [130] presented in this section we can
achieve sparser representation. Multi-channel MP (MMP) for RGB images is summarised
by Algorithm 3.3.
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Algorithm 3.3 Full Search Multi-channel Matching Pursuit for RGB images.
Initialisation: R1f (r) = f (r), R1f (g) = f (g), R1f (b) = f (b).
for n = 1 to N do

Find atom gγn ∈ D that maximises the L2-norm:
γn = maxγ∈Γ

√〈
Rnf (r), gγ

〉2 +
〈
Rnf (g), gγ

〉2 +
〈
Rnf (b), gγ

〉2
.

Update residuals:
Rn+1f (r) = Rnf (r) − 〈Rnf (r), gγn〉gγn .
Rn+1f (g) = Rnf (g) − 〈Rnf (g), gγn〉gγn .
Rn+1f (b) = Rnf (b) − 〈Rnf (b), gγn〉gγn .

end for

It has to be noted that theoretical results in [67] were provided for selecting the atom
that maximises the absolute value of an inner product over all channels as expressed by
Equation (3.20):

γn = max
γ∈Γ

max
r,g,b

(
|
〈
Rnf (r), gγ

〉
|, |
〈
Rnf (g), gγ

〉
|, |
〈
Rnf (b), gγ

〉
|
)
. (3.20)

In [37], where Algorithm 3.3 was applied in the RGB colour space, atoms with maximal L2

norm were selected. This corresponds to minimisation of the Mean Squared Error (MSE)
over all channels [71, ch.9]. This approach will be also used here.

The data obtained after MP decomposition by the colour codec from [37] include the
selected atom parameters and three channel amplitudes. The amplitudes are projected
onto a diagonal of the RGB cube and then the distance from diagonal (H), direction (S) and
position on the diagonal (I) are quantised and encoded. H and S values are quantised using
uniform scalar quantisation and the I component using exponential quantisation from [38].
This is analogous to the representation of amplitudes in HSI colour space. Entropy coding
was performed using the same adaptive arithmetic coding as for grayscale [34]. The
proposed scheme has been compared with JPEG 2000 showing promising performance
at low-bit rates. It has to be remembered that this codec, based on the grayscale codec
from [34] extended to colour coding, is computationally extremely complex. The idea of
performing the MP after the wavelet transform proposed in [131], used here and described
in the next chapter is many times faster (in practice time is reduced from a few hours to
a few seconds).

The general idea behind matching the same atom to all three channels is to explore
the inter-channel correlations and dependencies of a typical image directly in RGB colour
space. Most of the properties of single-channel MP, such as the Parseval-like equality from
Equation (3.11), holds for MMP. The choice of an atom can also be suboptimal with a
sub-optimality parameter α ∈ (0, 1]. This flexibility brings here the potential to choose
the best atom according to quality metrics more correlated than MSE with human visual
perception. This topic is touched on in Chapter 6.

3.6 Summary

The main conclusion of this chapter is to highlight MP as a preferable method for sparse
approximation of images in application to scalable image coding. Let us summarise its
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main advantages. Firstly, the signal norm preservation provides scalability and easy rate
control. Sorting atoms by magnitude of their amplitudes is equivalent to sorting them
by their contribution to overall signal error. Secondly, the atom search is independent
on previous iterations which allows flexibility in coefficients quantisation which can be
performed in-loop and in an adaptive way. Quantisation is essential for applications in
coding and when performed in-loop allows to recover introduced errors at later stages
(see Chapter 5). Furthermore, the performance of MP at low bit rates has been shown
to be as good as for OMP or BP. Finally, linear programming is typically of order of
magnitude slower for realistic problems [13] and although it has been shown to perform
better when applied on sound on image sub-band and considered dictionary it failed to
provide representation suitable for scalable image coding.

Even though MP is the simplest among the reviewed sparse approximation methods
and even after applying clever algorithmic optimisations its main shortcoming remains the
high computational complexity of the atom finding process (encoder). The next chapter
addresses the problems of an efficient implementation of MP as well as dictionary de-
sign. Atom quantisation and encoding with focus on colour image coding are tackled in
Chapter 5.
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4 Matching Pursuit in the
Spatio-Frequency Domain

This Chapter focuses on implementation of the MP algorithm for grayscale and colour
images, its complexity and the design of dictionaries. A dictionary, as already explained
in Chapter 3, can be defined as a set of filters. We are interested in choosing a set of filters
that gives the best coding performance for a wide range of images. We assume for a while
that the number of atoms in a decomposition is on average directly proportional to the size
of the stream. Quantisation and encoding of an MP decomposition is a topic in Chapter 5
where we also try to find the optimal size of the dictionary. Therefore in this chapter we
evaluate dictionaries mainly by comparing distortion for a given number of atoms. It will
be shown that the size and structure of a dictionary are critical parameters for the memory
and computational complexity of the decomposition process, and also that with increasing
dictionary size above a certain value reduction in distortion is negligible. To achieve a good
spatio-frequency representation and consequently a sparser image approximation, MP is
applied after the spatio-frequency transform. This means that a dictionary is defined by
both a set of mother functions, called here generators or bases, and the choice of transform.
This idea is inspired by [131] where preceding MP with DWT was first performed explicitly.

We start with a review of methods for performing MP in Section 4.1. Different varia-
tions of MP of the transformed data are considered and compared. Then the multi-channel
extensions are analysed. The effects of different treatment of image borders, choice of im-
age transform and removal of DC-component are evaluated.

Both general and application specific problems of dictionary design and selecting gen-
erators are tackled in Section 4.2. It starts with a general formulation of the problem in
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signal processing and then refines it to separable dictionaries in the transformed domain.
Then dictionaries are trained using the method from [76] and evaluated on the independent
test data. Our implementation and its complexity are analysed in relation to dictionary
design in Section 4.3. The Chapter is summarised and concluded by Section 4.4.

4.1 MP and Image Transforms

Applying MP directly to represent image pixels has very limited practical application due
to the necessity of computing an enormous number of inner products. To overcome this
limitation a range of ideas1 to apply MP to smaller parts of the signal have been suggested.

A video codec proposed in [83] used a heuristic, called Find Energy, that finds the block
inside a signal with maximal energy (L2-norm) and then searches for the best atom only
around the centre of this block. In practice for 4CIF video frames of dimension 704× 576,
Find Energy searched among 12×12 overlapping blocks while atom search was performed
then inside a block of size 16× 16.

A lot of research followed [83] trying to improve coding performance and speed the MP
up. The idea of representing a dictionary as a set of band-filters analogously to wavelets
was proposed in [22] where a Haar-like approximation of a dictionary from [83] was used
for the calculation of inner products.

In other work on the structure of a dictionary [20] not only reduction of complexity but
also improvement in performance have been achieved. It was also shown that heuristics,
like Find Energy, generally give a higher distortion than a full search over the whole
signal [20,35,36].

In [36] filters of footprints up to a quarter of the image size were applied to represent
image features at different scales. The two 2D generating functions were used Gaussian,
exp(−x2−y2), and its second derivative, (4x2−2) exp(−x2−y2). A dictionary was designed
so that the low frequencies are represented by scaled Gaussians. Rotation and scaling of
the Gaussian second derivative captures image contours. Scaling was anisotropic which
means that it can vary in vertical and horizontal direction. Due to these transformations
the filters obtained were inherently non-separable. In order to make it computationally
feasible, matching was done after performing a Fast Fourier Transform (FFT). Nevertheless
the Full Search MP from [36] still remained computationally extremely demanding. In
[35] it was reported to take more than 2 hours for decomposition of 128 × 128 grayscale
Lenna to 29.91 dB. The full codec proposed in [36] had coding performance comparable
to JPEG 2000 at low bit rates.

In our work, we use the 2D Discrete Wavelet Transform (2D-DWT) and perform MP
on all subbands: this approach was originally proposed in [131] to preserve low complexity
and to create a dictionary capable of capturing image features at different scales. One-
scale subband decomposition was reported independently in [54] to be a straightforward
way to improve performance of a given dictionary in video coding. The method from [131]
is comparable in coding performance to the JPEG 2000 standard and has a practical com-

1Unless otherwise stated, the ideas reviewed here were applied to single-channel signals.
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image
PSNR M-SSIM

DCT CDF 9/7 Haar DCT CDF 9/7 Haar
airplane512x512 25.64 26.56 24.80 0.7331 0.7869 0.7164
baboon512x512 20.75 21.01 20.59 0.3986 0.4287 0.3806
barbara720x576 22.90 23.52 22.18 0.6004 0.6519 0.5378
goldhill720x576 26.35 27.00 25.90 0.6135 0.6485 0.5922
house768x512 22.12 22.57 21.89 0.5133 0.5508 0.5009
lenna512x512 26.85 28.34 25.88 0.7197 0.7845 0.6790

lighthouse768x512 23.57 24.13 23.42 0.6452 0.6775 0.6416
motorcross768x512 19.57 20.10 19.22 0.3807 0.4227 0.3612

parrots768x512 28.93 30.51 28.29 0.8035 0.8549 0.7811
peppers512x512 26.21 27.68 25.34 0.6887 0.7510 0.6471
sailboat512x512 23.21 23.90 22.57 0.5898 0.6366 0.5610
sailboats512x768 26.81 27.64 26.68 0.7397 0.7788 0.7387

average 24.41 25.25 23.90 0.6189 0.6644 0.5948

Table 4.1: Comparison between image transforms for performing MP.

putational complexity (encoding takes a few seconds on the modern PC, see Section 4.3.1
for details). Extension into Multi-channel Matching Pursuit (MMP) has been proposed
and applied to grayscale video coding [130] where it was performed on Groups of Pictures
in temporal direction. In Section 4.1.1 and in Chapter 5 we will apply it to decompose
RGB images.

4.1.1 MP Performed on Subbands

We provide here some arguments on why using a subband transform with MP can reduce
complexity and improve coding performance. We also justify use of CDF 9/7 wavelets
filters from JPEG 2000 standard.
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Figure 4.1: PSNR performance in dB (y-axis) for a given number of atoms (x-axis) using
different numbers of wavelet scales (grayscale Goldhill).
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The main argument is based on applying redundant dictionary to improve sparsity
of the transformed data. Coding schemes such as SPIHT and EBCOT attempt to take
advantage from sparse representation of image in the wavelet domain by directly quantising
and coding wavelet coefficients. Encoding groups of coefficients rather than single numbers
by matching functions from redundant dictionary using MP algorithm allows to achieve
much sparser representation. We observed that by introducing redundancy we can half the
number of atoms needed to represent an image to the same PSNR. For example, for Lenna
image to achieve the same PSNR of 27.23 dB for 2000 quantised wavelet coefficients we
need 1735 atoms if using a dictionary with 2 generators (D2), 1045 atoms using 4 generators
and only 751 atoms using dictionary D16 that will be introduced in Section 4.2.2. These
figures confirms a known fact [7, 36] that enriching a set of functions in a dictionary
significantly improves the sparsity.

Additional argument for two-stages process involving image transform and MP is based
on the fact that it can be computationally easier to match filters in the spatio-frequency
domain. Filters applied locally in the spatio-frequency domain correspond to global struc-
tures in the image domain. To give an example for the discrete case, consider a dictionary
entry with support W : g(t) = 1/

√
W for t = 1, 2, ...,W . Its DCT (and DFT) is the Dirac

delta g(ω) = [1] with support 1. Performing an inner product with such a short signal
requires only one multiplication. It is known that for transforms like DCT, DFT or DWT
long-support functions have short support after transformation, and hence MP is compu-
tationally more efficient in the transform domain. A similar idea was used indirectly in [36]
where convolutions with filters in a dictionary were performed in the Fourier domain.

Let us look how this affects an update step of the MP algorithm. If the transform T

is linear and preserves an inner product,

〈f, g〉 = 〈T{f}, T{g}〉 for all f, g ∈ H, (4.1)

then the MP decomposition of signal f (see Equation (3.9)) obtained in the transform
domain is:

T{f} ≈
N∑
n=1
〈T{Rnf}, T{gγn}〉T{gγn}. (4.2)

If the inner product is preserved then selecting the best matching atom in the transform
domain also maximally reduces an error in the spatial domain.

The natural question arises about the choice of the transform T . In [131] filters designed
for video coding in the image domain were applied to wavelet subbands after performing
2D-DWT with CDF 9/7 filters from the lossy mode of JPEG 2000. 2D-DWT is not
exactly an orthonormal transform but with appropriate normalisation (see Chapter 2) can
be practically treated as such [102]. Thanks to the energy compaction property of the
DWT, the atoms found in the wavelet domain in initial iterations have high amplitudes.
Hence, they contribute more to the whole image energy resulting in higher PSNR for
the same number of atoms. Figure 4.1 shows PSNR as a function of atom numbers and
different number of wavelet scales. The results highlight that the dictionary D16 applied
to wavelet subbands gives a representation which is sparser by a few orders of magnitude
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(a) Haar, 5 scales, zero-padding,
PSNR=25.88 dB, M-SSIM=0.6790.

(c) CDF 9/7, 5 scales, zero-padding,
PSNR=27.89 dB, MSSSIM=0.7732.

(b) DCT, 16x16 blocks,
PSNR=26.85 dB, M-SSIM=0.7197.

(d) CDF 9/7, 5 scales, symmetric ext.
PSNR=28.34 dB, M-SSIM=0.7824.

Figure 4.2: Grayscale Lenna decomposed using 1000 atoms and a dictionary of 16 bases
with different transforms and border treatments.

than if the same dictionary was applied in the image domain. Further, MP with DWT
gives significantly better performance than with DCT as can be seen in Figure 4.2. It
has to be noted, though, that the choice of suitable wavelet filters is critical. Highly
regular filters such as CDF 9/7 mentioned in Chapter 2 are preferred. Figure 4.2 shows
comparison between CDF 9/7 and Haar wavelets. The latter performs even poorer than
DCT in terms of PSNR.

One of the technical problems with wavelets is the treatment of image borders while
performing filtering operations. Generally, as mentioned in Chapter 2, the best results
in imaging application are obtained by symmetric periodic extension. Figure 4.2 displays
the different results obtained when using different wavelet filters and different border
treatments. Indeed periodic symmetric extension is by far more effective than, for example,
zero-padding.

The small number of 1000 atoms was chosen to visually highlight compression artefacts
introduced by different set-ups. Table 4.1 collects the results of comparisons between
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(a) DCT, 16x16 blocks,
PSNR=22.90 dB, M-SSIM=0.6022.

(b) CDF 9/7, 5 scales, symmetric ext.,
PSNR=25.38, M-SSIM=0.7027.

Figure 4.3: Grayscale Lenna decomposed using 1000 transformed coefficients.

Haar and CDF 9/7 wavelets against DCT. The difference in coding performance in terms
of PSNR between the simplest Haar wavelets and CDF 9/7 from JPEG 2000 can be as
high as 2 dB. On average the gap between Haar and CDF 9/7 filters is 1.5 dB while
the gain achieved by the smooth wavelets over DCT is 0.84 dB on average. The gaps
in performance are consistent across all images and hence statistically significant when
analysed using methodology introduced in Section 2.3.4. Moreover, using non-smooth
wavelets such as the Haar transform introduces even more annoying visual effects, in a
form of non-uniform blocking, than applying block-based DCT, as can be seen in Figure 4.2
(b).

These conclusions are generalisation of the known facts about image transforms. The
commonly used thresholding of the raw transformed coefficients (see Chapter 2) can be
viewed as the Matching Pursuit in the transform domain with a dictionary that contains
just one one-pixel-long basis (Dirac delta). In Figure 4.3 an image is composed only from
raw transformed coefficients. Two known facts about the MP (see also for example [7]
or [17]) are visualised.

Firstly, by comparing Figure 4.3 and Figure 4.2, it is clear that MP with a redundant
dictionary gives a much sparser representation of an image than wavelets. To achieve the
same PSNR=28.34 dB as for MP and a dictionary with 16 bases (Figure 4.2) 2450 raw
wavelet coefficients are needed. Interestingly using raw wavelets coefficients to achieve
the same PSNR results in lower M-SSIM (M-SSIM=0.7784 in this case). This suggest
the potential for better visual appearance of images decomposed using MP since M-SSIM
correlates better with human perception of image quality.

Secondly, the block-based transforms introduce annoying blocking artefacts and per-
form much poorer in an R-D sense than smooth wavelets. To provide a guideline about
partitioning that minimises distortion and keeps the computational and memory cost of
an encoder tractable some more comments have to be made regarding blocking. Process-
ing fixed-size blocks makes program optimisation, including the potential for parallel and
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(a) 4x4-block-DCT, 16 subbands,
PSNR=25.64 dB, M-SSIM=0.6516.

(c) CDF 9/7, 5 scales, 16x16 blocks,
PSNR=28.10 dB, M-SSSIM=0.7776.

(b) 32x32-block-DCT, 1024 subbands,
PSNR=26.78 dB, M-SSIM=0.7259.

(d) CDF 9/7, 5 scales, 32x32 blocks,
PSNR=28.28 dB, M-SSIM=0.7818.

Figure 4.4: Grayscale Lenna decomposed using 1000 atoms and a dictionary of 16 bases
with different numbers of blocks in the DCT and DWT domain.

GPU implementations, easier. Many compression schemes based on redundant represen-
tations partition an image into non-overlapping blocks [8,51,109] speeding up the process
but keeping the problems of blocking artefacts unsolved. For example, our MATLAB im-
plementation designed for processing small fixed-size blocks can be in practice a few times
faster than full search in wavelet subbands. Implementation details of the MP are left for
Section 4.3. Here, the relation between block size and R-D performance is investigated.

Figure 4.4 shows the effect of using different block sizes for MP with DCT. Performing
DCT on 4x4 blocks means transforming the image into 16 subbands, which is the same
number as after 5-scale DWT. Hence the results are similar to Haar wavelets from Fig-
ure 4.2. Experiments show that the optimal PSNR is achieved when applying DCT on
blocks of size 16 × 16 which, for 512 × 512 images, means subbands of size 32 × 32. A
similar type of partitioning of DWT coefficients can also be used. On average for 10 images
2 and 6000 atoms full subband search gives: 31.34 dB, partitioning into non-overlapping

2We excluded Barbara and Goldhill as they cannot be split into equal blocks of size 32 × 32.
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32× 32 blocks: 31.19 dB and 16× 16 blocks: 30.92 dB. The lower R-D performance could
be compensated for by an increase in encoding speed. In fact a speed-up is only observed
for partitioning into 16× 16 blocks.

We have shown that applying MP after the spatio-frequency transform improves spar-
sity of decomposition. DCT and DWT were analysed but any pre-transform could be
chosen. It has to be remembered that by using Fourier or wavelet basis we have to accept
its shortcomings. In Section 2.4.3 Complex Wavelets (CWT) have been introduced as
the alternative to wavelets. The Dual-tree Complex Wavelet Transform was presented as
possible implementation of the concept of complex wavelets to improve representation of
directional features in images [101]. It could be used to represent images within an MP-like
framework [62,128]. A potential issue with transforms such as CWT is that contrarily to
DWT and DCT it is a redundant transform. In case of Dual-tree implementation from [62]
four times redundancy is introduced. It was shown in [128] that complex wavelets provide
less sparse representation than the DWT. The coding scheme introduced in Chapter 5
relies on the use of a basis transform. We assume that only one parameter, the atom
index (see Section 5.2), accounts on extended data dimensionality from the use of redun-
dant transformation. Therefore, in the general form introduced in Chapter 5, our codec is
not expected to perform well when used with the redundant pre-transform. Nevertheless,
some promising results have been recently presented with complex wavelets applied to
grayscale image coding using known coding algorithms such as EBCOT from JPEG 2000
or SPIHT [128]. The main focus here is on representing multichannel images and encod-
ing colour decomposition after Multichannel Matching Pursuit in the transform domain.
Complex Wavelets are beyond the scope of this work but can be seen as an interesting
alternative to DWT that preserves directional features in images. Further investigation is
required to study a potential of Complex Wavelets to represent multi-channel images.

4.1.2 Multichannel MP with DCT and DWT

If we extend MP to multi-channel signals according to Algorithm 3.3 then most of the
conclusions from the previous subsection transfer across directly. For example, the differ-
ence between colour MP in DCT and DWT is presented in Figure 4.5. The differences in
PSNR values is similar to the grayscale image.

However, it is remarkable that we need only 1105 colour (RGB) atoms to achieve the
same quality in terms of Y-PSNR as 1000 atoms in the grayscale case (Figure 4.2). We
know that most of image information is stored in Y-channel. Multi-channel MP can recover
it directly in RGB colour space. This confirms the ability of multi-channel algorithm
to exploit correlations between RGB channels. However, if we increase the number of
grayscale atoms there are more and more colour atoms needed to recover Y-channel. The
results of an illustrative experiment are presented in Table 4.2 for the image Lenna. The
Y-channel of the original colour image after RGB→YCC transform, was decomposed with
a single-channel MP and a specified number of atoms. Then MMP was iterated on the
original RGB-colour image until Y-PSNR reached the value obtained for a single-channel.

57



Chapter 4 MATCHING PURSUIT IN THE SPATIO-FREQUENCY DOMAIN

(a) DCT, 16x16 blocks,
Y-PSNR=26.94 dB,

RGB-PSNR=26.43 dB,
Y-M-SSIM=0.7218.

(b) CDF 9/7, 5 scales, symmetric ext.,
Y-PSNR=28.34 dB,

RGB-PSNR=27.67 dB,
Y-M-SSIM=0.7833.

Figure 4.5: Lenna decomposed using 1105 atoms and 16-generators-dictionary.

For smaller numbers of atoms only around 10% more atoms are needed to represent both
grayscale and colour (chroma) information. From Table 4.2 it is clear that this number
increases with the number of iterations. The interpretation of this result is that from some
stage in the application of MP there is mainly noise left to be decomposed resulting in
less correlation between channels and less benefit from the multi-channel algorithm.

The advantage of the multi-channel algorithm is even more visible if we compare its
performance against single-channel MP applied to each of the three channels indepen-
dently. This approach was used in the colour extension of the historical video codec
from [83], mentioned in Section 4.1.1. MP was applied in YCbCr colour space. The Find
Energy heuristic was calculated for Y, Cb and Cr channels. The block with the highest
energy was selected and then the best atom was found within this block (see Section 4.1
and [83]).

The same procedure can be adapted to our Full Search MP scheme (see Section 3.2.1).
We simply pick an atom with globally the highest absolute value of the inner product
instead of searching for the highest energy block. We shall compare sparsity obtained

Number of gray atoms 1000 2000 5000 10000 20000
Number of colour atoms 1105 2267 5940 13060 30230

Difference ratio (%) 10.50% 13.35% 18.80% 30.60% 51.15%

Y-PSNR 28.34 31.08 35.04 38.07 41.34
RGB-PSNR 27.66 30.02 33.21 35.64 38.58
Y-M-SSIM 0.7831 0.8417 0.9020 0.9352 0.9647

Grayscale M-SSIM 0.7845 0.8428 0.9025 0.9350 0.9635

Table 4.2: Number of colour atoms needed by the MMP with DWT (5 scales, CDF 9/7) to
obtain the same quality decomposition of the Y-channel as single-channel MP for Lenna.
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by single-channel MP in YCbCr against MMP. When this approach was applied to the
Lenna image, decomposed into 6000 atoms: 4326 atoms were found in Y channel and only
816 in Cb and 858 in Cr. The Y-PSNR of such a decomposition was 34.36 dB compared
to 35.08 dB obtained by multi-channel decomposition, and the Y-M-SSIM values are
0.8626 and 0.9025 respectively, favouring MMP in RGB colour space. If a single-channel
decomposition is done directly in RGB space then we get 1806 red, 2366 green and 1828
blue atoms. As this approach ignores inter-channel correlations, it is not surprising that
the quality cannot even compete with MP in YCbCr: we get RGB-PSNR=30.65 dB for
single-channel MP in RGB space while MMP achieves 33.24 dB and single-channel MP
in YCbCr space: 32.01 dB, for the same number of 6000 atoms. Using RGB-PSNR, the
difference between MMP in RGB and MP in YCC is obviously much higher than using Y-
PSNR as the first method minimises the joint error (hence maximises RGB-PSNR) while
the second maximises Y-PSNR.

These experimental results confirm better decorrelating properties of the joint decom-
position (MMP in RGB) over decorrelating colour space transform (MP in YCC). It has
to be noted that since Multi-channel MP potentially generates more data per atom (three
amplitudes rather than single one) quantisation and encoding should be taken into account
to ensure a fair comparison of compression performance. This is analysed in Chapter 6
with use of multi-channel coding method introduced in Chapter 5. When coding is taken
into account both methods performs similarly.

4.1.3 Zero-Mean Signals

The last point to discuss about the transform part of image codecs is the fact that it
is convenient theoretically [102] to consider zero-mean signals before applying an image
transform. The JPEG standard includes a processing step in which the value 128 is
subtracted from each pixel in an 8-bit image. Here, by mean-shifting (or DC-shifting
as referred to by JPEG) we mean subtracting the mean pixel value quantised to 8-bits
from each channel. Such a value can be sent to the encoder as an 8-bit number and our
signal becomes zero-mean up to quantisation. In fact mean-shifting is not only convenient
but also gives a slight but statistically significant improvement in PSNR. For the codec
proposed in this thesis, the comparison done for 1000 atoms on 12 standard test images
shows that in the DWT domain the average PSNR equals 25.25 dB with mean-shift against
25.19 dB without. The same is true for colour images for which, with the same settings,
we have: 24.42 dB against 24.34 dB. The general rule is the more wavelet scales the
smaller the difference. This is due to the fact that the non-zero mean is only the lowest
frequency subband which preserves the DC component. Nonetheless, difference is always
statistically significant in our experiments, even if the sample is of only 12 images. For
each single image mean-shift gave a small improvement ranging from 0.02 dB to 0.12 dB,
with standard deviation of differences less than 0.04 dB for both grayscale and colour.

As the gain from using mean shifting seems negligible we provide the evidence that it is
significant. Performing a paired-sample t-test gives p-values 0.0004 for grayscale and 0.0017
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for colours with corresponding 95% confidence intervals within [0.03, 0.09] and [0.03, 0.12]
respectively. For the same comparisons according to M-SSIM metric, we have, for grayscale
M-SSIM = 0.6664 against M-SSIM = 0.6626 and for colour Y-M-SSIM = 0.6551 against
Y-M-SSIM = 0.6528, with p-value for a paired-sample t-test less than 10−4 in both cases.
Due to this minimal but consistent gain we always use mean-shifting before the transform
step.

4.2 Design of the Dictionaries

In Section 4.1 we analysed the properties of different transform used in combination with
Matching Pursuit. Problem of building a dictionary is often specified as general optimisa-
tion problem in the image domain. In practice, due to the size of the image data we have
to restrict our search to a smaller subspace. In this section a few dictionaries are designed
and evaluated.

4.2.1 Separable 2D-Dictionaries

A 2D dictionary of size K, in the most general form as introduced in Chapter 3, is defined
as a set of K matrices:

D = {g1, g2, . . . , gK} . (4.3)

For image representation we are interested in translation-invariant dictionaries which
means that D is generated by locating a subset of B � K matrices {gλ}λ=1,2,...,B at
each point in the image:

∀i∈{1,...,K} gi(x, y) = gλ(x− tx, y − ty), for some λ, tx, ty. (4.4)

Approaches to dictionary design can be classified into two categories. In the first category,
mother functions (i. e. generators gλ) are selected according to some image model as in [36],
reviewed in Section 4.1.1, where the Gaussian and its second derivative were chosen. The
second category is based on training a dictionary on a set of images. In the seminal work of
Neff and Zakhor [83] video residuals were decomposed using huge dictionaries. Functions
that occur in decompositions of training data more often were kept while the others were
removed.

Due to the complexity issues (see Section 4.3.1) we focus on dictionaries that are
separable, i. e. each matrix gλ can be represented as a tensor product of vectors. A
dictionary is defined by b 1D filters (B = b2) and has the following form:

D(sep) =
{
gλx ⊗ gλy

}
λx,λy=1,2,...,b

. (4.5)

From here on we identify a dictionary by the set of its separable generators gλi , for λi =
1, 2, . . . , b.

The dictionary D(0) from [83] was separable and translation-invariant and contained
b = 20 generators which corresponds to B = 400 separable 2D bases. Improvements over
D(0) based on the same top-down principle (removing bases from a bigger dictionary)
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which was carried out in [20] resulting in a more efficient (both computationally and in
terms of R-D) dictionary D(1) consisting of 16 1D bases. Later, the contribution of [76]
has shown that the even better results can be achieved by building a dictionary with a
bottom-up approach, i. e. iteratively building up a dictionary by adding one basis at a
time.

4.2.2 Basis Picking

The algorithm, proposed in [76], called Basis Picking creates a sequence of dictionaries:
{Ds}s=0,1,2,...,S with increasing numbers of generators. We have: D0 ⊂ D1 ⊂ D2 ⊂ . . . ⊂
DS and at each step s > 0 one function, denoted as gs, is removed from a large set of
candidates and added to form a new dictionary:

Ds+1 = Ds ∪ {gs}. (4.6)

This implies that if D0 = ∅ then the size of the s-th dictionary is s. In Monro’s original
experiments grayscale images were decomposed with a fixed number of atoms and the
candidate set built from parametrised Gabor atoms of the form given by Equation (4.7)
and one Dirac delta. Codebooks for both grayscale still images and video residuals have
been trained and tested in [76,79].

g(σ,f,w,φ)(t) = K(σ,f,w,φ) exp
(
− π

4σ t
2
)

cos
(
πft

w
+ φ

)
. (4.7)

All the bases g are sampled at 2w + 1 points: t = [−w, . . . , 0, . . . , w] and normalised
by factor K(σ,f,w,φ) to have unit norm as required by the MP algorithm [72]. There-
fore they can be represented as vectors of length l = 2w + 1: g = [g(1), g(2), . . . , g(l)].
In [76] the lengths (footprints) of bases in the candidate set varied from 1 to 15 (w
from 1 to 7). The distribution of bases (filters) in the candidate set according to their
footprint is given in Table 4.3. The values of the parameters σ, f, φ were taken to be:
σ ∈ {1, 2, 4, 8, 12, 16, 20, 24}, f ∈ {0, 1, . . . , w}, φ ∈ {0, π/8, π/4, 3π/8, π/2}. If the max-
imum footprint is 15 then selection is performed from a candidate set of 946 distinct
functions. At each iteration a function, that for a fixed number of atoms (6000 atoms are
taken), reduces the distortion the most (i. e. maximises PSNR), is selected.

footprint 1 3 5 7 9 11 13 15
number of generators 1 16 49 96 136 176 216 256

candidate set size 1 17 66 162 298 474 690 946

Table 4.3: Number of generators in the candidate set by their footprints.

Since the sizes of generators have a large effect on the complexity of the encoder (see
Section 4.3 for more details) we are interested in short-support discrete filters matched in
the transform domain as already described in Section 4.1. The next section analyses the
effects of different parameters on training and evaluates the resulting dictionaries.
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Trained on: Gabor Walsh Mixed
max. length: 5 7 9 15 7 8 10 9(8)

Averaging over grayscale decompositions into 1000 atoms.
Grayscale Lenna 24.43 24.56 24.63 24.67 24.71 24.69 24.69 24.74

Grayscale Goldhill 24.47 24.63 24.67 24.69 24.71 24.70 24.74 24.76
Colour Lenna 24.44 24.61 24.65 24.63 24.64 24.69 24.69 24.71

Colour Goldhill 24.45 24.64 24.62 24.71 24.71 24.70 24.74 24.77

Averaging over colour decompositions into 1000 atoms.
Grayscale Lenna 23.67 23.81 23.86 23.89 23.91 23.90 23.90 23.95

Grayscale Goldhill 23.71 23.86 23.90 23.91 23.91 23.88 23.93 23.97
Colour Lenna 23.69 23.85 23.88 23.84 23.86 23.91 23.90 23.94

Colour Goldhill 23.71 23.87 23.85 23.92 23.90 23.92 23.93 23.98

Averaging over grayscale decompositions into 6000 atoms.
Grayscale Lenna 30.35 30.56 30.61 30.63 30.66 30.66 30.65 30.75

Grayscale Goldhill 30.38 30.61 30.66 30.67 30.67 30.66 30.62 30.72
Colour Lenna 30.34 30.62 30.64 30.63 30.57 30.64 30.64 30.70

Colour Goldhill 30.38 30.63 30.58 30.66 30.66 30.66 30.66 30.75

Averaging over colour decompositions into 6000 atoms.
Grayscale Lenna 29.13 29.30 29.34 29.35 29.37 29.35 29.36 29.45

Grayscale Goldhill 29.15 29.33 29.38 29.37 29.37 29.34 29.31 29.42
Colour Lenna 29.13 29.35 29.37 29.35 29.31 29.35 29.36 29.43

Colour Goldhill 29.16 29.35 29.32 29.37 29.35 29.36 29.36 29.45

Table 4.4: PSNR (RGB-PSNR for colour images) averaged over 10 test images for dictio-
naries composed of 16 bases.

4.2.3 Comparing Dictionaries

Properties of the training method of choice are visualised using the colour and grayscale
(i. e. Y channel after YCC colour transform) Goldhill and Lenna as training images.
The remaining 10 images are used as a test set. We trained the dictionaries for colour
and grayscale representation separately. In all the experiments we initialised a dictionary:
D1 = {g1}, where g1 = [1] is a single pixel (Dirac delta), as g1 is always picked in
one of the first iterations (if not in the first) anyway [79]. Table 4.4 collects average
performances of different dictionaries trained using Basis Picking. Considering a Gabor
candidate set, our results confirm those in [79] that searching for filters of size greater
than 7 increases computational complexity, as we are selecting from 162 candidates rather
than from 946, while the improvement in overall performance is negligible. Results of
the t-tests performed to compare the averages shown in Table 4.4 indicate that there is
either no statistical difference between the average performance of the dictionaries or the
selection of the longer filters can cause over-fitting. For example, comparing a dictionary
trained from 162 candidates on the colour Lenna image on decompositions into 6000 atoms
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against those picked from 946 and 298 (see Table 4.3) gives p-values for the t-test 0.3496
and 0.1228 respectively. For colour Goldhill as a training image the corresponding p-
values are p = 0.1617 (for comparing footprints up to 7 against 15) and p = 0.0442 (for
comparing footprints up to 7 against 9) suggesting that with a confidence level 5% the
shorter support dictionary can even have a slightly higher average performance. However,
limiting search to footprints smaller than 7 degrades performance significantly. Comparing
candidate sets with footprints up to 7 against up to 5 gives p-values less than 10−4, for
example for colour Goldhill for 6000 atoms p = 1.5961×10−5, thus indicating significantly
poorer average performance of the smaller-support dictionaries. Furthermore, there is no
significant difference between dictionaries trained on different images, even though Goldhill
and Lenna are very different images with Goldhill being highly detailed. Similarly the
same quality dictionaries are obtained regardless of whether the training is performed on
grayscale or on colour. This is due to the use of short-support filters which are more likely
to be efficient for a wide range of images. Later in this section we use those findings to
design improved general-purpose dictionaries for MP in the wavelet domain.

The shortcoming of the Basis Picking algorithm, on top of the inevitable sub-optimality
is restricting the resulting dictionary to be a subset of a predefined candidate set. Gabor
atoms, proposed in [79], are useful to represent smooth structures in the image data. We
argue here that in order to benefit from the MP algorithm after preprocessing the image
with DWT we need to represent as general signal features as possible using short-support
filters. Therefore we tried replacing a Gabor candidate set with the functions defined by
Equation (4.8) for different footprints n:

gi,n(t) = (−1)it 1√
n
, (4.8)

where i = 0, 1, . . . , 2n − 1 and in−1 . . . i1i0 is a binary representation of i such that:

i =
n−1∑
t=0

it2t. (4.9)

Equation (4.8) generates 2n functions of footprint n. Half of them can be discarded as
the negatives of the other half and we need to consider only 2n−1 functions of footprint n.
This candidate set includes Walsh functions as a subset, therefore we refer to it as the
Walsh-like candidate set. The size of the whole candidate set with bases of a maximal
footprint n, i. e. with the functions of a support from 1 to n, is 2n − 1. If we train
on the Walsh-like set as an alternative to the Gabor then comparable or slightly better
performance can be achieved (see Table 4.4) for comparable sizes of the candidate sets
when picking from a candidate set of 127 (footprints up to 7) or 255 (footprints up to 8)
bases. Interestingly, performance does not degrade significantly if we limit the candidate
set to short-support bases. Taking atoms of the footprints as low as 5 will still give a
reasonable performance. An increase in the footprint, similarly as for Gabors, does not
improve performance and causes exponential expansion of the candidate set.

One of the next possible steps towards an improved dictionary is to merge together
Walsh and Gabor candidate sets. Small but consistent improvements in PSNR can be
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Figure 4.6: Colour dictionary trained on Goldhill with bases in the order they are picked
during training.

achieved as shown in Table 4.4. Picking from the combination of the set of Gabors of
footprint up to 9 and the set of Walsh-like functions up to 8 gave the dictionary with the
best average performance when trained on the Goldhill colour image. 1D filters trained in
this way for colour and grayscale Goldhill are shown in Figure 4.6 for colour and Figure 4.7
for grayscale. From now on, the colour dictionary visualised in Figure 4.6 is denoted by
D(t)

16 .
The results analysed so far confirm that a dictionary for our MP codec should be

built from short-support filters. Moreover all the dictionaries studied so far exhibit very
similar performance. Then a natural question is: if only the number of generators and
their footprints matter then why not just use any (random) dictionary of a particular
structure. The following experiment shows the significance of the difference between the
best trained dictionaries from Table 4.4 and the best dictionary picked from randomly
generated population of dictionaries. If we know the number of filters and their sizes we
can treat a generator of footprint n as a point on an n-dimensional unit sphere. To form
a dictionary we generate points uniformly on an appropriate number of such unit spheres.
For fairer comparison we generated in this way 4351 random dictionaries of the same
structure as the one trained on colour Goldhill (Figure 4.7) which corresponds to the total
number of MP decompositions done when performing 16 iterations of Basis Picking from
a candidate set of 298 bases. We simple take the dictionary with the best performance for
the Goldhill image and denote it as D(rand)

16 . It has to be noted that with this idea we are
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Figure 4.7: Grayscale dictionary trained on Y-channel of Goldhill with bases in the order
they are picked during training.

not limited to bases from a particular candidate set. Nevertheless the experiments showed
(see Table 4.5) that in this way it is not possible to obtain a better dictionary than the
one picked by Basis Picking. The results for a random dictionary will serve as a useful
reference point when evaluating our further experiments.

Following the fact that picking from a relatively small candidate set of limited-support
generators can give a reasonable performance, we can, instead of training, build a separable
dictionary analytically based on some of the observations made during the training. Firstly,
it can be noted that short-support Walsh-like filters are picked in every training run.
Moreover, typically short-support atoms in the dictionary were picked from the Walsh-
like subset while the longer ones from the Gabor subset. Therefore, the first dictionary
that we build (D(b1)

16 ) consists of the Walsh-like functions of lengths up to 4 and the
following Gabor functions: Gaussians of lengths 3, 5, 7, 9 and the modulated Gaussians
of lengths 5, 7 and 9. The functions are defined as follows (with normalisation factors
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K10,K11, . . . ,K16):

g1 = [1], g9 = 1
2 [1,−1, 1,−1],

g2 =
√

2
2 [1, 1], g10(t) = K10 exp(−π

4 t
2), for t = −1, 0, 1,

g3 =
√

2
2 [1,−1], g11(t) = K11 exp(−π

8 t
2), for t = −2, . . . , 2,

g4 =
√

3
3 [1, 1, 1], g12(t) = K12 exp(− π

12 t
2), for t = −3, . . . , 3,

g5 =
√

3
3 [1,−1, 1], g13(t) = K13 exp(− π

16 t
2), for t = −4, . . . , 4,

g6 = 1
2 [1, 1, 1, 1], g14(t) = K14 exp(−π

8 t
2) sin(π8 t), for t = −2, . . . , 2,

g7 = 1
2 [1, 1,−1,−1], g15(t) = K15 exp(− π

12 t
2) sin( π12 t), for t = −3, . . . , 3,

g8 = 1
2 [1,−1,−1, 1], g16(t) = K16 exp(− π

16 t
2) sin( π16 t), for t = −4, . . . , 4.

(4.10)

This set of generators, from the results we have analysed in this chapter so far, seems
to be a reasonable design for a general-purpose dictionary. However, as shown by the
results in Table 4.5, it does not perform better than the random dictionary D(rand)

16 . In
fact it is on average indistinguishable from the random one with p-value from the paired
t-test p = 0.2539.

We introduce here an additional criterion that the functions in the general-purpose
dictionary should be as distinct as possible in order to be able to represent a wide range
of the signal features. One of the metrics to measure how much the functions in the
dictionary vary is coherence defined as the maximal absolute value of the inner products
between distinct atoms [119]:

c(D) = max
i 6=j
|〈gλi , gλj 〉|. (4.11)

The coherence c(D) is always less than 1 and equals 0 only for an orthonormal basis. A
smaller value of c(D) indicates less correlation between dictionary entries which can be
seen as greater variety in a dictionary. It is worth noting here that in the case of separable
dictionaries defined by Equation (4.5) if in the dictionary there are at least two generators
gλ1 and gλ2 of sizes 1 and 2 respectively then already c(D) ≥

√
2/2, (since for any t:

gλ1 = [1], gλ2 = [cos(t), sin(t)] implies that max |〈g1, g2〉| = max{| cos(t)|, | sin(t)|} ≥
√

2/2
with equality only for t = π/4). It can be calculated that for the studied dictionaries:
c(D(rand)

16 ) = 0.9619, c(D(t)
16 ) = 0.9557 and c(D(b1)

16 ) = 0.9945.
We now build a dictionary from short-support Walsh-like filters trying to keep the

coherence small. The resulting dictionary D(b2)
16 is defined as:

g1 = [1], g9 = 1
2 [1, 1,−1,−1],

g2 =
√

2
2 [1, 1], g10 = 1

2 [1,−1,−1, 1],
g3 =

√
2

2 [1,−1], g11 = 1
2 [1,−1, 1,−1],

g4 =
√

3
3 [1, 1, 1], g12 =

√
2

2 [1, 0, 0, 1],
g5 =

√
3

3 [1,−1, 1], g13 =
√

2
2 [1, 0, 0,−1],

g6 =
√

2
2 [1, 0,−1], g14 =

√
5

5 [1, 1, 1, 1, 1],
g7 =

√
2

2 [1, 0, 1], g15 =
√

5
5 [−1, 1,−1, 1,−1],

g8 = 1
2 [1, 1, 1, 1], g16 =

√
3

3 [1, 0,−1, 0, 1].

(4.12)

For this dictionary c(D(b2)
16 ) = 0.8944 which is the lowest so far.
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Image Trained D(t)
16 Random D(rand)

16 Built D(b1)
16 Built D(b2)

16

airplane512x512 33.86 33.47 33.48 33.85
baboon512x512 23.22 23.14 23.06 23.20
barbara720x576 28.46 27.56 27.92 28.08
house768x512 26.51 26.30 26.29 26.49

lighthouse768x512 28.60 28.43 28.37 28.60
motocross768x512 24.19 23.97 23.91 24.13

parrots768x512 36.29 35.87 35.97 36.29
peppers512x512 31.55 31.27 31.38 31.53
sailboat512x512 27.92 27.76 27.74 27.97
sailboats512x768 33.92 33.34 33.52 33.75

average: 29.45 29.11 29.16 29.39

Table 4.5: Comparing the dictionaries built from 16 filters by the RGB-PSNR on 10
decompositions of colour images into 6000 atoms.

In Table 4.5 the dictionaries: D(t)
16 , D(rand)

16 , D(b1)
16 and D(b2)

16 are compared on 10 images.
On average in terms of PSNR the trained dictionary D(t)

16 remains the best and the random
one the worst. However, there is no significant difference between D(t)

16 and D(b2)
16 . In

addition the dictionary D(b2)
16 includes much shorter generators which significantly reduces

the computational complexity of MP (more details will be given in Section 4.3.1). Highly
detailed images such as Baboon and Motocross are known to achieve low PSNR values
when compressed with wavelet-based methods. Therefore, also for MP performed with
wavelets, the PSNR values obtained for those images are equally low regardless of the
dictionary. It has to be remembered that for the system considered here there are two
stages that define a dictionary. The first is a choice of the spatio-frequency domain. If the
DWT is chosen its disadvantages have to be accepted. The ideas introduced here for a
selection of dictionary generators are not limited to wavelets. In the next section, details
of the MP implementation for this work are given and then the dictionaries are analysed
from the perspective of computational complexity.

4.3 Implementation and Complexity

4.3.1 Complexity of Subband Implementation

The MP algorithm is implemented in this work in a similar way to the full 2D separable
inner product search from [129]. The maximal inner products and the corresponding atom
indexes are stored for each location and for each wavelet subband. At each iteration,
inner products have to be recomputed only on a sub-area of one subband. For colour
coding it has to be done for all channels and requires approximately three times more
multiply-accumulate operations than for grayscale. Recalculating inner products is where
the majority of computations is done within this approach. Here, we analyse the com-
plexity of our implementation showing how it depends on the structure of the dictionary.
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Algorithm 4.1 Inner products calculation from [83].
for i = 1 to b do

Calculate vertical inner products Vi = 〈Rfn, gi〉
for j = 1 to b do

Calculate horizontal inner products 〈Rfn, gi ⊗ gj〉 = 〈Vi, gj〉
end for

end for

Denote the length of the filter gi by wi for i = 1, . . . , b−1. Following [83], if separability
is ignored then calculation of all inner products for an image of size N by M would require
T

(non−sep)
inner multiply-accumulate operations:

T
(non−sep)
inner = NM

(
b∑
i=1

wi

)2

. (4.13)

By exploiting separability in the same way as in [83] (see Algorithm 4.1), the number of
operations can be reduced to:

T
(sep)
inner = NM (b+ 1)

b∑
i=1

wi. (4.14)

The overall complexity of the proposed implementation of MP can be estimated as follows:

T (sep) = T
(sep)
in +

K∑
n=1

(
T

(sep)
updaten

+ T
(sep)
searchn

)
. (4.15)

Initialisation and update steps involve mainly multiply-accumulate operations performed
according to Algorithm 4.1. The search for the maximum value is performed over the
whole image at initialisation and only over the modified subbands at each subsequent
iteration.

T
(sep)
searchn

= O(NM). (4.16)

Update of the maximum inner product is performed only on the area where it could
change. This area has size Wn ×Hn with Wn = Hn = 2(W − 1), where W = maxi (wi)
is the length of the longest generator. By combining Equation (4.14)-(4.16) and writing
S =

∑b
i=1wi we get the following complexity estimate for the update step:

T
(sep)
updaten

= 4(W − 1)2(b+ 1)S. (4.17)

Complexity from the Equation (4.17) can be expressed, using the fact that S ≤ bW , in
terms of O-notation as:

T (sep) = O(b2W 3K) +O(KNM), (4.18)

where N ×M is size of the image (subband in our case). From both Equation (4.17) and
Equation (4.18) it is clear that size of the dictionary and lengths of generators are the
critical factors for the complexity of the MP algorithm. The maximal footprint has a more
significant impact than the number of generators.
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Figure 4.8: Increase in complexity during the process of adding functions picked by Basis
Picking [76] to a dictionary. Colour decomposition (left), grayscale (right), time in seconds
on Linux PC with Intel Core 2 Duo (y-axis) and number of dictionary generators (x-axis).
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Figure 4.9: Changes in average PSNR over 10 test images during Basis Picking for 6000
atoms. Colour decomposition (left), grayscale (right), PSNR and RGB-PSNR (y-axis)
and number of dictionary generators (x-axis).

4.3.2 Dictionary Structure and Computational Complexity

For MP performed in the transformed domain the details of complexity are much more
complicated than Equation (4.17) since they also depend in which subband the atoms are
found and other factors such as the boundary treatments. For the low-frequency subbands
the inequality b2W 3 � NM typically holds. For example for 5-scale DWT decomposition
of 512 × 512 image the approximation subband is only of size 16 × 16. For a 512 × 512
image we already need to search up to 65536 (256× 256) values in the highest-frequency
subbands. If atoms are found in the higher frequencies the computational cost of the
maximum inner product search becomes more significant. Therefore the initial iterations,
when more low-frequency atoms are picked, are computed slightly faster. In practice the
inner-product recalculation is always the core part of computations.

Experimental results of complexity analysis of MP performed during the process of
training dictionaries on different images are shown in Figure 4.8. The growth in MP
decomposition time with increasing dictionary size during Basis Picking process is shown
for grayscale and colour Goldhill and Lenna images. For a fixed number of atoms the size
of an input image is less critical for complexity than the structure of a dictionary. On
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the other hand, it has to be remembered that more atoms are usually needed for higher-
resolution images to achieve the same distortion. The current C++ implementation that
uses uBlas on a Linux PC with Intel Core 2 (3 GHz) finds 6000 colour atoms in the
wavelet domain in around 30 seconds for the dictionary D(t)

16 and colour image Goldhill of
dimension 720 × 576 (see Figure 4.8). For the same dictionary 6000 grayscale atoms are
found in around 10 seconds. For this dictionary: b = 16, S = 95 and W = 9 resulting
in not more than T

(sep)
updaten

= 413440 multiply-accumulate operations per iteration (see
Equation (4.17)). For D(b2)

16 we have: b = 16, S = 56 and W = 5 with T
(sep)
updaten

=
60928, which is more than six times less. Since the time complexity of the search for the
maximum value, T (sep)

searchn
, depends in our implementation on the subband size and not on

the dictionary, in practice the change of the dictionary from D(t)
16 to D(b2)

16 gives around 3-
fold speed-up. For example, finding 6000 grayscale atoms for Goldhill image takes around
3 seconds with D(b2)

16 comparing to 10 seconds for D(t)
16 .

At this point it is also worth to ask the question of the optimal number of bases in
the dictionary as there is a trade-off between time complexity and distortion. Figure 4.9
shows the improvements in PSNR for the training images after picking each basis in
turn. It is clear that during the first few iterations adding a new function significantly
improves coding efficiency while later in the process only a minor improvement in PSNR
was achieved. Our choice here is a fixed number of 16 generators. Adding more bases
would improve PSNR but it has to be remembered that for image compression encoding
has to be taken into account. The more generators are used the more bits are needed to
encode them. Moreover for more than 16 bases the average gain in PSNR is lower than
0.1 dB. We propose and describe a quantisation and encoding method in Chapter 5 and
leave its analysis in terms of dictionary size for Chapter 6.

4.4 Summary

In this chapter we analysed in depth the MP performed in the spatio-frequency. A special
focus was on the choice of the transform and designing the dictionaries. We have demon-
strated clearly the advantage of performing MP in the spatio-frequency domain over MP
directly in the spatial domain. We have also shown that choosing DWT with smooth
regular filters such as CDF 9/7 from JPEG 2000 gives much better performance than
DCT or Haar transforms. The process of decomposition can be significantly speeded-up
by block-based processing with 16× 16 blocks however at the cost of higher distortions.

The choice of spatio-frequency transform can be viewed as the first stage of a dictionary
design process. The second stage is the choice of generators (filters) to perform MP. The
number of generators and their lengths are critical for the complexity of the decomposition
algorithm. We trained the dictionaries using a method proposed in the literature [76] for a
similar hybrid Wavelet and MP-based image codec. We proposed a dictionary with shorter
support generators that can give statistically the same performance with significantly
reduced complexity. A key to the success is to minimise coherence and not to limit the
search for generators to Gabor atoms. We extended the Gabor candidate set with Walsh-
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like bases achieving better performance in terms of PSNR. The topic of dictionaries will
be reconsidered in Chapter 6 in terms of quantising and encoding MP decomposition into
a bit-stream proposed in, the next, Chapter 5.
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5 Quantisation and Atom
Encoding

For data compression applications an MP decomposition has to be encoded into a bit-
stream. Typically, in transform based lossy image coding the floating-point data obtained
after the transformation are quantised and then encoded using some lossless scheme. In
the case of an MP-based system quantisation can be performed inside (in-loop) [83] or
outside (a-posteriori) [38] the MP loop. In-loop quantisation has the aim of correcting
the introduced quantisation error during later iterations, thus achieving better R-D per-
formance than a-posteriori schemes [23]. With this approach, unlike in the case of wavelet
or DCT-based coders, quantisation becomes an integral part of the transformation step.

Quantisation is a subject of Section 5.1. Sufficient conditions for convergence are given
and their practical implications are analysed. Results are extended into the multichannel
case. Then, Section 5.2 introduces and presents the details of the encoding stage. The
proposed algorithm, inspired by advances in representing file and database indexes, is a
novel method for encoding MP decomposition into a bit-stream. The idea to adaptively
mix run length with entropy coding for the case of sorted and grouped symbols is the
main contribution of this chapter. The coding of MP decomposition has been extensively
studied in the literature focusing on a single-channel data [1, 36, 78, 83]. In colour image
coding with simultaneous decomposition of all the channels, new problems arise with the
new types of data. A detailed description of the proposed solutions is the main subject of
Section 5.2.

Most of the information included in this chapter is available in the report available
from [69]. The ideas for encoding have been presented in [68].
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5.1 Quantisation

5.1.1 Quantised Matching Pursuit

The values an = 〈Rnf, gγn〉 obtained by MP are quantised (e. g. rounded) to values An
that can be mapped into the symbols from a finite alphabet and encoded. This step, when
performed in-loop, modifies the update steps from the Algorithms 3.1 and 3.3 introduced
in Section 3.1. MP with in-loop quantisation is referred to as Quantised Matching Pursuit
(QMP) [46]. Below, we give the necessary conditions which have to be met for the single-
channel QMP to converge. The conclusions are then generalised for multichannel QMP.

For MP without quantisation and decomposition given by Equation (3.9) the Parseval-
like equality (see Equation (3.11)) is satisfied. If we replace an by An in the update step
to reflect in-loop quantisation then Equation (3.11) will change into [84]:

||f ||2 =
N∑
n=1

(
|an|2 − |An − an|2

)
+ ||RN+1f ||2. (5.1)

To preserve convergence of the algorithm the energy of the residual Rnf has to keep
decreasing [72,84]. Therefore we only can use the quantisation methods for which:

|an|2 − |An − an|2 > 0. (5.2)

Applying polarisation inequality, it follows that: |An|2 < 2<〈An, an〉. When An and an

are real numbers Equation (5.2) implies An(2an − An) > 0 which is equivalent to an, An
having the same sign and their absolute values to satisfy [84]:

0 < |An| < 2|an|. (5.3)

An issue with a too coarse quantisation is the possibility of a dead-lock occurring which,
for example, would be present if we allowed quantisation to 0 [82, 84]. Therefore it is
important to analyse the effect of quantisation on the decomposition algorithm. The
condition from Equation (5.2) does not allow quantisation to 0. It is a necessary condition
for MP with quantisation to converge. Nevertheless, only the decreasing norm of the
residuals Rnf is guaranteed and with a too coarse quantisation the algorithm still could
converge to a non-zero residual. Proposition 5.1.1 gives a stronger but sufficient condition
under which it can be proved analogously to [117], where MP is referred to as the Weak
Greedy Algorithm, that the convergence is guaranteed.

Proposition 5.1.1. For MP with in-loop quantisation to converge it is enough that the
quantisation error introduced at the nth iteration is lower than than some fixed fraction
θ ∈ (0, 1) of the actual amplitude |an|:

|εn| = |An − an| ≤ θ|an|. (5.4)

Proof. To prove Proposition 5.1.1 we follow the proof of Theorem 1 from [117]. We
shall present the proof in full details in Appendix B. Equation (5.1) guarantees that
||RNf || is strictly decreasing, hence ||RNf || converges and it can be proven (see Lemma 2.2
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from [117] and Appendix B) that also RNf → R∞ as N →∞. It is enough to show that
||RNf || → 0 which is equivalent to RNf → 0. Suppose this is not true and R∞ 6= 0.
Hence, there exist δ > 0 such that supgγ∈D |〈R

∞, gγ〉| ≥ 2δ. This implies that there
exist M such that for all N > M we have supgγ∈D |〈R

Nf, gγ〉| ≥ δ. For all N we have:
|aN | = |〈RNf, gγN 〉| ≥ α supγ∈D |〈RNf, gγ〉| ≥ αδ, and hence:

||RN+1f ||2 = ||f ||2 −
∑N
n=1

(
|an|2 − |ε|2

)
≤

||f ||2 − (1− θ2)
∑N
n=1 |an|2 ≤ ||f ||2 −N(1− θ2)α2δ2,

which implies that:
||f ||2 − ||RN+1f ||2 ≥ N(1− θ2)α2δ2 ≥ 0,

which is impossible as the term N(1−θ2)α2δ2 →∞ as N →∞ while ||f ||2 and ||RN+1f ||2

are bounded.

The inequality in Equation (5.2) can be derived as follows from Equation (5.4):

0 < |An| ≤ |an|+ |An − an| ≤ (1 + θ)|an| < 2|an|. (5.5)

Moreover, we have:
|An| ≥ |an| − |An − an| ≥ (1− θ)|an| > 0. (5.6)

For real numbers the condition from Equation (5.4) becomes:

0 < (1− θ)|an| ≤ |An| ≤ (1 + θ)|an| < 2|an|. (5.7)

Proposition 5.1.1 provides certainty that every new atom will sufficiently refine a de-
composition to lead to convergence. Parameter θ can be viewed as an analogy to the
sub-optimality parameter α. Letting α < 1 we allow selecting a non-optimal atom while
θ > 0 means non-optimal choice of the amplitude.

To satisfy Proposition 5.1.1 the quantisation scheme must involve adaptivity as the
bounds in Equation (5.4) depend on the actual value an of the inner product at the nth
iteration. The methods used for MP-based scalable image coding including those used in
grayscale video [84,130] and image [36,38,107,131] coding all apply adaptive schemes in this
sense. Our grayscale implementation utilises Precision Limit Quantisation (PLQ) [77,131]
while the colour codec uses PLQ and Uniform Quantisation (see Section 5.1.3). These
quantisation schemes conform to requirements of Proposition 5.1.1. In the next sections
we evaluate their performance in grayscale and colour image coding applications. En-
couragingly, the experiments show that for a single-channel codec and PLQ quantisation,
the distortion is only slightly higher than without quantisation for the same number of
atoms. This confirms the advantage of in-loop quantisation and shows that even very
coarse quantisation can give satisfactory results in imaging applications. It serves as an
important guidance for designing the atom encoder.
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Figure 5.1: Differences in PSNR for varying quantisation parameters at a given number
of atoms averaged over 12 grayscale test images relative to the MP without quantisation
(5 scales, Dictionary D16).
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Figure 5.2: Differences in PSNR for varying quantisation parameter at a given bit-rates
averaged over 12 grayscale test images relative to: PL = 2 with PLQ to the mid-point
(5 scales, Dictionary D16).
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5.1.2 PLQ Quantisation

The original idea of PLQ comes from bit-plane coding where only the most significant bits
are encoded for each coefficient (here each atom amplitude an) [77]. Quantisation bins in
PLQ with parameter PL (PL > 0) are of the form:

bit-planes: k = M,M − 1, . . . , 1, 0,−1, . . . ,
refinements: r = 1, 1 + 1

2PL−1 , . . . , 1 + 2PL−1−1
2PL−1 ,

quantisation bins: Bkr =
(
r2k, (r + 1

2PL−1 )2k
]
.

(5.8)

The original approach was to keep only the most significant bit and some refinement bits
governed by PL which means that the an was quantised to |An| = r2k [77]. The integer
value k indicates the bit-plane and the positive value r is called a refinement. However,
it is known from quantisation theory [41] that the quantisation to the middle point of the
bin is a better choice (in fact, optimal in the mean-squared error sense when data are
uniformly distributed over the bins). The experiments with PLQ (see Figure 5.1) clearly
confirm superiority of a mid-point quantisation only when PL ≤ 2. The advantage known
in the theory is non-obvious due to the non-linear character of both MP algorithm and
in-loop quantisation.

If we select mid-point quantisation then the value |an| ∈ Bkr is quantised to: |An| =
(r + 2−PL)2k. Such a scheme satisfies the conditions from Equation (5.4). We have
|an| ∈ Bkr and further:

|an|
2 ≤ r2

k ≤ |An|,
|An − an| ≤ 1

2PL 2k ≤ 1
2PL |an|.

(5.9)

Figure 5.1 shows that for a single-channel decomposition the level of distortion introduced
by quantisation to the lower bound r2k with parameter PL = p gives the similar results
to quantisation to the mid-point with PL = p−1, i. e. one level coarser. The results from
Figure 5.1 are in agreement with the bounds described in Equation (5.9). For quantisation
to the lower bound these bounds could be violated when PL = 1. We can also see in
Figure 5.1 that for PL = 1 quantisation to the lower bound gives by far the highest
distortion. The benefit of mid-point quantisation becomes less obvious for PL = 3 and
gives even slightly worse coding performance for PL = 4 (Figure 5.2).

The use of PLQ allows us to group the atoms with the same value |An| and only
signalling the group counts or end of groups. Moreover the atoms inside one group can be
rearranged providing a potential for additional compression.

Experiments show (see Figure 5.2) that for our coding scheme the optimal value of
the quantisation parameter is PL = 2 as advised in [131]. This is not surprising as our
coding scheme for grayscale utilises the same concept of grouping atoms as the MERGE
coder [78] used in [131]. Figure 5.3 presents the PLQ quantisation for PL = 2. In our case,
PL = 2 and quantisation to the mid-point implies that the refinement r ∈ {1.25, 1.75}.
For example the value |an| = 13.5, which belongs to the bit-plane with k = 3, will be
quantised to 14 which is a mid-point between 12 and 16 (12 = 1.50 · 23, 14 = 1.75 · 23 and
16 = 24 respectively).
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Figure 5.3: Precision Limit Quantisation
with parameter PL = 2 (bit-planes M
and M − 1 shown).

Figure 5.4: Scalar Uniform Quantisation
with parameter L = 2 (5 quantisation
bins indexed from 1 to 5).

Interestingly, as visible in Figure 5.1, for a wide range of parameters there is only
a minor difference in PSNR between MP with PLQ and without any quantisation. For
quantisation to mid-point and PL = 3 the average PSNR over 12 test images is lower than
for decomposition without quantisation by less than 0.05 dB with up to 12000 atoms. The
case of 12000 atoms corresponds to bit-rates higher that 0.5 bpp for all tested images.
The gap in PSNR between MP without and with quantization increases with the number
of atoms. Nevertheless, for PL = 4 the effect of quantisation is practically negligible
at all tested rates and numbers of atoms. This confirms usefulness of PLQ for in-loop
quantisation of the MP decomposition.

Since, in the end the coding performance has to be taken into account, the preferable
value for PL is PL = 2 rather than PL = 4 (see Figure 5.2). PL = 1 appears to be
effective only for very low bit rates. Smaller values of PL mean grouping atoms into
fewer groups with a larger number of atoms. Larger groups allow more benefit to be
gained from Run Length Encoding at the encoding stage, which is described in detail in
Section 5.2. The size of groups increases with decreasing amplitudes which corresponds
to the increasing number of atoms. This explains the significant improvement in relative
performance with increasing bit-rate for the higher values of parameter PL (PL ≥ 3).
Nonetheless, for the bit-rates up to 0.5 bpp the choice of PL = 2 is on average at least
0.1 dB superior over PL = 3 and even 0.3 dB over PL = 4.

5.1.3 Colour Amplitude Quantisation

The nature of multi-channel MP applied to decomposition of RGB images is far more com-
plicated than single-channel MP for grayscale. This section proposes an extension of the
quantisation scheme based on PLQ and grouping similar atoms into colour coding. Simi-
larly as for grayscale we start with analysis of the convergence bounds. Proposition 5.1.1
can be easily adapted for multichannel signals by the following:
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Proposition 5.1.2. For multichannel MP with in-loop quantisation to converge it is
enough that the maximal amplitude over all channels is quantised so that the condition
(5.4) from Proposition 5.1.1 is satisfied and the norms of channel residuals are not in-
creasing.

Proof. We adapt the proof of Proposition 5.1.1 to M -channel signals from the Hilbert
space HM i. e. M -dimensional vectors of the form f = [f (1), . . . , f (M)]. The convergence
means here that for any dictionary that spans a space H the residual RNf (i) converges
to 0 as N → ∞ for each component f (i), where i ∈ {1, . . . ,M}. Non-increasing channel
norm means that for each channel only a relaxed condition (i. e. with weak inequalities)
from Equation (5.2) needs to be satisfied, i. e.:

∀i∈{1,...,M}|a
(i)
N |

2 − |A(i)
N − a

(i)
N |

2 ≥ 0, (5.10)

requiring a stricter condition |amaxN |2− |AmaxN − amaxN |2 > 0 only for a maximal amplitude:

|amaxN | = max
i∈{1,...,M}

|〈RNf (i), gγN 〉|, (5.11)

which guarantees that for at least one component the norm ||RNf (max)|| is strictly decreas-
ing. Similarly as for Proposition 5.1.1, it is enough to prove, this time for each component
i ∈ {1, . . . ,M} that ||RNf (i)|| → 0 as N → ∞. Suppose for a contradiction, like in the
proof of Proposition 5.1.1, that there exists δ > 0 such as:

max
i∈{1,...,M}

sup
gγ∈D

|〈RNf (i), gγ〉| ≥ δ. (5.12)

The Parseval equality (Equation (3.11)) is satisfied for each channel i ∈ {1, . . . ,M}. We
simply sum it up over the all M channels:

M∑
i=1
||RN+1f (i)||2 =

M∑
i=1
||f (i)||2 −

M∑
i=1

N∑
n=1

(
|a(i)
n |2 − |ε(i)n |2

)
. (5.13)

By extracting the maximal amplitude components from the sum on the right-hand side
and skipping the rest of the terms as non-negative numbers (due to the weak inequality
from Equation (5.10)), we have:

M∑
i=1
||RN+1f (i)||2 ≤

M∑
i=1
||f (i)||2 −

N∑
n=1

(
|a(max)
n |2 − |ε(max)

n |2
)
. (5.14)

Which leads to the same type of impossible inequality as for Proposition 5.1.1:

M∑
i=1
||RN+1f (i)||2 ≤

M∑
i=1
||f (i)||2 +N(1− θ2)α2δ2, (5.15)

and finishes the proof.

This proof is adapted from [117] and [118] where different criterion for atom selection from
Algorithm 3.3 has been used. It can be easily shown (see (5.16) below) that the criterion of
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picking the atom that maximises L2-norm used in our codec satisfies inequality from [118]
by taking a sub-optimality factor α

3 .

maxi∈{r,g,b} |〈Rnf (i), gγn〉| ≥
1
3

√
|〈Rnf (r), gγn〉|2 + |〈Rnf (g), gγn〉|2 + |〈Rnf (b), gγn〉|2 ≥

α
3

√
|〈Rnf (r), gγ〉|2 + |〈Rnf (g), gγ〉|2 + |〈Rnf (b), gγ〉|2 ≥

α
3 |〈R

nf (max), gγ〉|.

(5.16)

In the quantisation scheme proposed in this work, the amplitude with the maximal value
over the three colour channels (amaxn ) is quantised using PLQ and serves as a base for
grouping atoms. The atoms with the same quantised absolute value of maximal ampli-
tude |Amaxn | compose one group. We record the channel cn for which the maximal value
occurred. The remaining two amplitudes for the other two colours are quantised using uni-
form scalar quantisation with dead-zone subtraction [41]. The values sent to the encoder
are d(i)

n (given for i = 1, 2 by Equation (5.17)).

Q(A(i)
n ) = min

(
round

(
L |a(i)

n |
|Amaxn |

)
, L

)
,

d
(i)
n = L+ 1− sgn(amaxn ) sgn(a(i)

n )Q(A(i)
n ).

(5.17)

The values a
(i)
n are quantised in a range determined by |Amaxn | which is available for

both the encoder and decoder. This means introducing the overload error [41] when
|a(i)
n | > |Amaxn |. Parameter L determines a number of quantisation bins and the granularity

of quantisation. The values d(i) given by Equation 5.17 are sent to the encoder as additional
atom parameters. The signs of the amplitudes are included into these values which is
visualised in Figure 5.4. Q(A(i)

n ) would be used instead if signs were considered separately.
Below we give an example to clarify the quantisation scheme defined by Equation (5.17).

Example of quantisation

Suppose we want to encode the nth atom with the amplitudes for R, G, B channels:
a

(r)
n = 11, a(g)

n = 13.5 and a
(b)
n = −9 respectively. If the parameters are PL = 2 and

L = 2, then amaxn = a
(g)
n is quantised to Amax = 14 using the PLQ quantiser. Channel

index, cn = 2 and the sign of the maximum amplitude, sgn(amaxn ) = +1 are recorded as a
side information. The assumed range of quantised values is [−14, 14]. If there is a value
outside the range then it is simply truncated as given by Equation (5.17). There are 5
quantisation bins: [−14,−10.5), [−10.5,−3.5), [−3.5, 3.5), [3.5, 10.5) and [10.5, 14] (see
Figure 5.3). The value a(1)

n = a
(r)
n , since it is greater than 10.5, is quantised to A(1)

n = 14
and mapped into the first bin (d(1)

n = 1) while a(2)
n = a

(b)
n ∈ (−10.5,−7] is quantised into

A
(2)
n = −9 and mapped into d(2)

n = 4.

5.1.4 Choice of Quantisation Parameters

In this Section the effects of colour quantisation granularity are studied. It has been
observed that the three channel amplitudes after MMP performed in RGB are highly
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image corr(a(r), a(g)) corr(a(r), a(b)) corr(a(g), a(b))
airplane512x512 0.8428 0.7513 0.9049
baboon512x512 0.3933 0.1004 0.7805
barbara720x576 0.8261 0.6959 0.8875
goldhill720x576 0.9181 0.8780 0.9406
house768x512 0.9632 0.9341 0.9519
lena512x512 0.8505 0.5454 0.7734

lighthouse768x512 0.8200 0.5450 0.8654
motorcross768x512 0.8692 0.7690 0.8422

parrots768x512 0.5835 0.4666 0.6409
peppers512x512 0.2286 0.3936 0.8047
sailboat512x512 0.8774 0.7826 0.9299
sailboats512x768 0.9306 0.6475 0.7253

Table 5.1: Correlations between channel amplitudes for the decompositions of 12000 atoms
obtained with the parameters: PL = 2, L = 2, S = 5.

correlated. Table 5.1 contains the cross-correlations between pairs of channels for quan-
tised amplitudes for a set of test images, which are usually high and always positive. The
presence of such high correlations can be expected but due to non-linearity of both quan-
tisation and MP, it is not obvious. Moreover, for more than 72 percent of the atoms, the
signs of all three amplitudes are the same. In [37], in order to exploit these high corre-
lations between atom amplitudes, the amplitudes were quantised after transforming into
HSV colour space.

In our coding scheme, based on in-loop PLQ quantisation and encoding the groups
with the same maximal amplitude, we try to exploit these correlations at the coding
stage. A low value for the optimal uniform quantisation parameter L means longer runs
of the same amplitude differences which can be exploited during encoding stage using Run
Length Encoding. The value of L has been experimentally chosen to be as low as L = 2
in order to maximally reduce the number of bits required (see Figure 5.5). It can be seen
in Figure 5.5 that for L = 1 the quantisation error increases significantly comparing to
L = 2. The value of the parameter PL = 2 for PLQ quantisation appeared to be optimal
as it is for grayscale. However, contrarily to grayscale where mid-point quantisation is
preferred, there is a significant gap between a mid-point and lower bound quantisation in
favour of the lower bound. The difference grows from 0.1 dB for 50 atoms to almost 0.2 dB
for 12000 atoms. PLQ Quantisation to a lower bound of the bin results in a lower absolute
value of Amaxn and finer uniform quantisation of the other two channels, leading to the
possibility of lower overall error. When using finer uniform quantisation the choice of a
mid-point becomes more attractive. For fixed PLQ parameter at PL = 2, as in Figure 5.5,
mid-point is clearly preferable for L > 2. A general tendency is that for lower PL the
advantage of choosing mid-point starts from lower L. Figure 5.6 shows the performance
loss to MP without quantisation for different values of PL for fixed L = 2. For PL = 1
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quantisation to a mid-point gives clearly a lower distortion while for PL = 3 it is clearly
higher.

PLQ affects directly only one out of the three amplitudes but also determines the
range and granularity of uniform quantisation. In [130], where the idea of Multichannel
MP (called there Replicated MP) was used for coding Group of Frames of grayscale video,
PLQ quantisation was used for all the channels. It can be seen in Figure 5.9, though,
that the error introduced by PLQ is higher than for the proposed uniform scheme. The
presented comparison is done for the parameters selected as optimal for video coding
in [130], i. e. PL = 2 for a maximum amplitude and PL = 1 for the other two channels.
Uniform quantisation gives better results even if no threshold is used for PLQ but the
difference is then within 0.05 dB. However, in order to be able to encode the amplitudes
as differences between bit-planes as in [130], some threshold (i. e. dead-zone) for PLQ
must be introduced. This results in the clear inferiority of the PLQ from [130] to the
proposed uniform scheme. A comparison between the two methods for the same number
of quantisation bins is shown Figure 5.9. It is worth mentioning here that in the PLQ
scheme [130] the quantisation to the mid-point of the quantisation bin is clearly superior.

Figures 5.7 and 5.8 show the effect of quantisation on the actual coding performance.
Finer quantisation requires more bits. Therefore the values of PL and L have to be kept as
low as possible. In Figures 5.7 and 5.8 the optimal configuration of parameters serves as a
reference for comparisons. The optimal choice is PL = 2 and L = 2 with a quantisation to
the middle point rather than lower bound (with the difference less than 0.05 dB though).

In Figure 5.6 the gaps between quantisation with optimal in R-D sense parameters
(PL = 2 and L = 2) and MP without quantisation can be observed. The difference grows
from 0.1 dB to 0.4 dB. This suggests that there is still a potential for improvement over
the proposed colour quantisation scheme. On the contrary for the single-channel MP, PLQ
quantisation with parameter PL = 2 or higher can achieve a distortion close to the case
when no quantisation is performed.
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Figure 5.5: Differences in PSNR relative to Multichannel MP without quantisation aver-
aged over 12 test images for different granularity of Uniform Quantiser (PL = 2, 5 scales,
Dictionary D16).
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Figure 5.6: Differences in PSNR relative to Multichannel MP without quantisation aver-
aged over 12 test images for different values of PL parameter (L = 2, 5 scales, Dictio-
nary D16).
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5.2 Atom Encoding

5.2.1 Details of the Coding Algorithm

After MP decomposition and quantisation described in Section 5.1 there are groups of
atoms with the same maximal amplitude to be encoded. Each group can be seen repre-
sented as a matrix M with the rows indicating atoms and columns their attributes. It
is assumed that the size of each group of atoms is known: in practice group counts are
encoded as a side information. The matrix of atoms within one group can be viewed as
the analogy of a table from relational database.

For a table with c columns each row is often referred to as a c-tuple. The data come
from finite domains (alphabets) and can always be mapped onto integer values from 1
to N , where N is the size of alphabet. We denote the alphabet size for the c-th column
by Nc and call it the column cardinality [66]. For our colour coding, 8 columns can be
distinguished, describing the following attributes of the atoms:

1 : sn sign of the maximal amplitude, sn ∈ {−1, 1},
2− 3 : d1

n, d
2
n quantised amplitude differences, d∗n ∈ {1, 2, . . . , 2L+ 1},

4 : cn maximum amplitude colour channel, cn ∈ {1, 2, 3},
5 : wn sub-band index, wn ∈ {1, 2, . . . , 3S + 1},
6 : λn, 2D dictionary entry, λn ∈ {1, 2, . . . , B2},
7 : xn atom location inside the sub-band wn, xn ∈ {1, . . . ,Wxn},
8 : yn atom location inside the sub-band wn, yn ∈ {1, . . . ,Wyn}.

In the grayscale case, there are only 5 columns: sn,wn,λn,xn and yn. Our goal is to en-
code such a table into a bit-stream so that the maximal compression ratio is achieved.
The atoms from one group have the same amplitude, hence can be considered equiva-
lent without significantly affecting the scalability of the decomposition. The possibility
of reordering rows gives a lot of flexibility in designing a coding algorithm to exploit
redundancies among atoms within one group.

A choice of the optimal row ordering for maximal compression is an NP-complex
problem, infeasible to solve during encoding. In practice sorting rows can be a good
heuristic [66]. Moreover, there are efficient encoding techniques for sorted data known
from index compression [125, ch.3]. It is natural to consider here column-oriented indexes
and sort the rows in a lexicographical order recommended for such indexes in databases [66].
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Algorithm 5.1 Encoding one group of atoms in the MP decomposition.
function encode(M ,d,istart,iend)
inputs:

Matrix M of data rows.
depth parameter d.
the first istart and the last row iend.

body:
encode d-th column using Algorithm 5.2.
if d < MAX then

Group the same symbols into groups gi.
for all Groups gi do

encode(M ,d+ 1,igstart,i
g
end)

end for
else

encode atom positions.
end if

Algorithm 5.2 Encoding inside one column.
inputs: K length of data, N size of the alphabet.
input sequence: {vs}s=1,2,...,K with s < s′ ⇒ vs ≤ vs′
sl = K symbols remaining
al = N alphabet entries remaining
while sl > 0 and al > 1 do

if sl > 2al then
encode zl (if any) zero lengths assuming range 0 . . . sl
encode run of length R in range 0 . . . sl
sl = sl −R
al = al − 1− zl

else
encode symbol vK−sl+1 in range 1 . . . al
sl = sl − 1
al = N − vK−sl+1 + 1

end if
end while

After grouping and sorting, the data are ready to be encoded. Algorithm 5.1 sum-
marises one of the possible ways to scan matrix M for encoding. It calls the proposed
encoding procedure outlined in Algorithm 5.2. Algorithm 5.2 is used to encode data from
columns 1-6 for colours (1-3 for grayscale). Figure 5.10 presents an example of scan order
while encoding the data consisting of 10 rows which represent 10 grayscale atoms.

In the lexicographical order the two rows are compared based on the first value read-
ing left to right on which they differ. Lexicographical order is an example of recursive
order [66]. The definition guarantees that the projection from c-column data onto c − 1
columns generates a recursive order. By projection we mean taking the rows with the
same values for the c-th column. This guarantees that the data recursively passed to
Algorithm 5.1 are always sorted lexicographically.

Algorithm 5.2 defines the procedure to encode a sorted sequence {vs}s=1,2,...,K from an
alphabet of size Nc. Data in the first few columns tend to contain a lot of consecutively
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Figure 5.9: Comparison of PLQ+Uniform Quantisation against PLQ for the same numbers
of quantisation bins.

Figure 5.10: Example of encoding of one sorted group of coefficients.
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repeating values therefore utilising Run Length Encoding (RLE) should be considered. On
the other hand, deeper in the recursion of Algorithm 5.1 the consecutively repeating values
are less frequent. Therefore, the atom positions (the last two columns) are considered
separately and encoded as two raw values xn and yn that come from the ranges 1 . . .Wxn

and 1 . . .Wyn , where Wxn ×Wyn is dimension of the sub-band wn. For a dictionary built
from 16 1D bases it rarely happens that there are more atoms with all the attributes the
same. In such a conditions the most efficient way to encode position is to send a raw value.

It has to be noted that, although our coding is based on the idea of grouping and
sorting atoms, it is different from MERGE coding [78] where the significance map is
coded analogously to standard methods like EBCOT, EZW, SPIHT or SPECK described
in Chapter 2. We use the wavelet scale index as an additional atom parameter and
allow change of column order. This makes our method more flexible and, what is more
important, more suitable for colour data, where there are more attributes to be encoded.
The choice of column permutation that can be applied prior to sorting and encoding is
analysed in Section 5.2.2.

Algorithm 5.2 summarises the proposed universal and adaptive procedure for column
encoding. At each iteration of the main loop a decision is made whether to encode the
s-th symbol directly or to signal its run length. The number of symbols remaining to
encode after already encoding s − 1 symbols is stored in a variable sl. The relation of sl
to the current s-th position in the stream is: sl = K − s+ 1. The next symbols can come
from an alphabet of size al = N − vs−1 + 1 (vs ∈ {vs−1, vs−1 + 1, . . . , N}, i. e. vs can take
any value greater or equal to the previous symbol). The values sl and al are available
for both encoder and decoder at each iteration. We assume as a rule of thumb that run
length coding is only efficient when there is an expected run of at least two symbols.
We estimate the average expected run length as sl/al, i. e. as a ratio of the number of
remaining symbols to the size of alphabet. When sl/al > 2 we encode a count of the next
expected symbols which can be 0, otherwise a raw symbol vs is encoded. The next section
shows an example of an described algorithm which generates symbols that are input to a
final step of arithmetic coding [126].

Example of the basic version of encoding

Consider a sorted sequence: v = {1, 1, 1, 1, 2, 2, 3, 4, 4} from the alphabet A = {1, 2, 3, 4}
to be encoded using Algorithm 5.2. The length of the sequence is K = 9 which needs to
be known prior to encoding/decoding. The first symbol is v1 = 1. Control variables sl
and al are initialised to be sl = K = 9 and al = 4. The ratio sl/al = 9/4 > 2 so we
start by encoding a run length of four 1s. Therefore we encode 4 and move forward by 4
symbols which implies sl = sl − 4. Now, as we encoded all 1s, we expect a symbol from
the reduced alphabet {2, 3, 4} which means that al = 3. There are also only 5 symbols
left, since sl = 9 − 4 = 5. The ratio sl/al = 5/3 ≤ 2 so we encode the raw symbol: 2
and move forward by one symbol (sl = sl − 1). Now there are sl = 4 symbols left that
still can come from the set {2, 3, 4}, i. e. al = 3. sl/al = 4/3 ≤ 2 so again we encode
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the raw symbol: 2. Now there are 3 symbols left again from {2, 3, 4}, al = 3, sl = 3,
sl/al = 3/3 ≤ 2, v6 = 3 comes and we encode it as a raw 3. The next symbol can only be
either 3 or 4. So sl = 2 symbols remaining from alphabet of size al = 2. Now, v7 = 4 and
sl/al < 2 so we encode raw 4. The last symbol does not need to be encoded as we know
how many symbols remained (the value of variable sl). The input sequence v is going
to be sent to the arithmetic coder as 4, 2, 2, 3, 4. The decoder, basing on the number of
remaining symbols (sl) and the size of the alphabet (al), will have the same information
during decoding as encoder while encoding.

5.2.2 Column Order

image the best order the worst order
(πg) 2 · worst−bestworst+best(2, 3, 1)

airplane512x512 101776(2,3,1) 108487(3,1,2) 101776 6.36%
baboon512x512 103017(2,1,3) 113788(1,3,2) 104073 9.94%
barbara720x576 105699(2,1,3) 115314(1,3,2) 106577 8.70%
goldhill720x576 102978(2,3,1) 111453(3,1,2) 102978 7.90%
house768x512 105457(2,3,1) 114743(1,3,2) 105457 8.43%
lena512x512 102321(2,3,1) 110012(3,1,2) 102321 7.24%

lighthouse768x512 104441(2,1,3) 112076(1,3,2) 104905 7.05%
motorcross768x512 101065(2,3,1) 108161(1,3,2) 101065 6.78%

parrots768x512 107218(2,3,1) 113520(3,1,2) 107218 5.71%
peppers512x512 102222(2,3,1) 108971(3,1,2) 102222 6.39%
sailboat512x512 99303(2,3,1) 107284(3,1,2) 99303 7.73%
sailboats512x768 107438(2,3,1) 116146(3,1,2) 107438 7.79%

Table 5.2: Number of bits required for 6000 grayscale atoms for different column orders.

In the previous section the encoding procedure has been explained. It was mentioned
that lexicographical ordering of rows is a heuristic recommended for database indexes.
Before sorting rows it is always possible to apply a fixed permutation of columns. The
problem of finding the optimal column order for lexicographical order of rows is in general,
similarly to the row ordering problem, NP-complex as pointed out in [66].

To investigate the effect of column sorting on overall performance each permutation
was tried for 12 grayscale (see Table 5.2) and colour images (see Table 5.3). The differences
in the size of a bit-stream for different column orders are significant. For grayscale, where
there are only 6 possible column permutations, the differences between the maximum and
minimum bit-stream sizes are from 6 − 10%. For colour, where we have 720 orders, the
differences can be up to 20%. In the proposed coding scheme the best, or close to the best,
performance is achieved when atoms are sorted by wavelet scale first. Atom indexes and
signs of amplitudes are the last sorting criteria for both grayscale and colour. There are
column permutations that perform close to optimal for all tested images: πg = (2, 3, 1) for
grayscale and πc = (5, 2, 3, 4, 6, 1) for colours. The performance difference between sub-
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image the best order the worst order
(πc) 2 · worst−bestworst+best(5,2,3,4,6,1)

airplane512x512
123815 142816

124130 14.25%
(3,4,2,5,6,1) (1,6,5,2,4,3)

baboon512x512
124316 144858

124455 15.26%
(5,3,4,2,6,1) (1,6,4,5,3,2)

barbara720x576
126937 148111

126937 15.40%
(5,2,3,4,6,1) (6,1,4,5,3,2)

goldhill720x576
124938 142009

124971 12.79%
(5,3,2,4,6,1) (1,6,4,5,3,2)

house768x512
125048 147576

125081 16.53%
(2,3,5,4,6,1) (1,6,4,5,2,3)

lena512x512
127077 142753

127113 11.62%
(5,3,2,4,6,1) (6,1,4,5,2,3)

lighthouse768x512
121129 147995

121129 19.97%
(5,2,3,4,6,1) (1,6,4,5,3,2)

motorcross768x512
119399 141864

119399 17.20%
(5,2,3,4,6,1) (6,1,5,4,3,2)

parrots768x512
130512 145187

130739 10.65%
(5,3,2,6,1,4) (6,4,1,5,3,2)

peppers512x512
128686 138515

128803 7.36%
(5,3,2,4,6,1) (6,1,4,5,2,3)

sailboat512x512
123035 140519

123035 13.27%
(5,2,3,4,6,1) (1,6,4,5,3,2)

sailboats512x768
125867 147651

125867 15.93%
(5,2,3,4,6,1) (6,1,4,5,3,2)

Table 5.3: Number of bits required for 6000 colour atoms for different column orders.
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optimal order and the best one is always marginal. The optimal order may be dependent
on the method of encoding and its parameters. Experimental results for our method
consistently suggest that wavelet scales should be the first column while atom indexes and
signs the last two.

5.2.3 Data Modelling

With the use of Algorithm 5.2 the data that constitute the core part of a stream can
be classified as: run lengths, raw symbols and atom positions. These data are sent to
the arithmetic coder from [126]. Bits needed for header information, group counts and
synchronisation form a side part which occupies no more than 5% of the output file
size if we consider decomposition into more than 6000 atoms. We counted the number
of bits needed for each type of core data. Detailed statistics, for the case without any
data modelling (assuming uniform) can be seen in Table 5.4. Most of the bit-stream is
occupied by explicit coding of the positions, which is opposite to coding schemes based
on Significance Maps where positions are never coded explicitly. Without modelling data
63 − 68% of a grayscale bit-stream is formed by atoms positions (55 − 61% for colour).
However, it has been mentioned in Section 5.2.1 that for dictionaries constructed from 16
1D bases, which corresponds to 256 2D bases, there is usually no more than one atom with
all the attributes the same. This fact does depend on dictionary size. In the case of size 256
the most efficient way to encode positions is always just to send a raw number. Therefore,
to reduce the size of the stream better methods should be sought for raw symbols and run
lengths rather than for positions.

Arithmetic coding allows, knowing the probability distribution of data, us to achieve
a compression ratio close to a theoretical bound given by the Shannon’s entropy. The key
element is a probability model of the symbols’ source. Run Length Encoding represents
compactly most of the columns in matrix M . Run lengths (R and zl in Algorithm 5.2) are
coded as uniformly distributed in a range 0 . . . sl, contributing less than 5% to the output
stream size.

On the other hand, modelling the raw symbols vs as uniformly distributed, which
we further refer to as No-model, is wasteful as every next symbol in one group is the
minimum of the remaining symbols since they are sorted. In our case, if there are sl

symbols vs, vs+1, . . . , vK to be encoded, then:

vs = min{vs, vs+1, . . . , vK}. (5.18)

It is well known in the theory of probability [108] that if vs, vs+1, . . . , vK are drawn in-
dependently from the same distribution with cumulative distribution function (CDF) Fv
then vs from Equation (5.18) has, if there are sl symbols, the CDF Fvs given as:

Fvs(x) = 1− (1− Fv(x))sl . (5.19)

For the discrete case of sl symbols from the alphabet of size al the probabilities can be
written as:

p(vs = k) = (1− Fv(k − 1))sl − (1− Fv(k))sl , for k = 1 . . . al. (5.20)
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If vs, vs+1, . . . , vK are drawn independently from a distribution {pi}i=1,2,...,al then Equa-
tion (5.20) follows that:

p(vs = k) =
(

n∑
i=k

pi

)sl
−

 n∑
i=k+1

pi

sl , for k = 1, . . . , al. (5.21)

If the symbols are independently drawn from a uniform distribution then:

p(vs = k) = 1
al
⇒ Fv(k) = k

al
, for k = 1, . . . , al,

and the probability distribution for vs is given by:

p(vs = k) = (al − k + 1)sl − (al − k)sl
alsl

, for k = 1, . . . , al. (5.22)

It has to be remembered that the uniform distribution has the highest entropy among
discrete distributions and hence the results achieved for a described coding could be still
improved. The probabilities in Equation (5.22) are calculated every time a symbol vs
is to be sent directly to the arithmetic coder and are used to update the model during
encoding and decoding. We refer to this improvement as Min-value model. It can be
viewed as a local method of index coding related to interpolative coding from [73]. The
performance is significantly improved compared to No-model as shown in Table 5.5 and
makes the proposed coding system comparable to JPEG 2000 by R-D performance (see
Chapter 6). The size of the data targeted by the described refinement i. e. raw symbols
(see Table 5.5) is often reduced by a factor of two. The overall coding gains are as high
as 15− 20% for grayscale and from 6− 13% for colours with the most of the improvement
achieved for coding of the atom index column.

5.3 Summary

In this Chapter the full quantisation and coding scheme of MP decomposition has been
described and studied. The sufficient conditions for convergence of MP and Multichannel
MP with in-loop quantisation have been proven. Experiments with quantisation show that
even very coarse in-loop quantisation like PLQ, which introduces high errors especially in
initial iterations, can be efficient for MP-based image coding. Moreover, a simple method
of colour atom amplitude quantisation based on scalar uniform quantisation has been
proposed showing, for RGB image data, superiority over the method based on PLQ used
for application to video coding in [130]. The optimal quantisation parameters have been
selected considering the coding efficiency.

The proposed encoding algorithm (Algorithm 5.1), inspired by methods for represent-
ing database and file indexes [66,73] and related to MERGE coding of single-channel MP
decomposition [78], appears to be a promising idea for colour coding. The idea of MERGE
is based on using PLQ quantisation and grouping by bit-planes and atom indexes. The
steps forward comparing to MERGE for grayscale are that we also allow grouping by
wavelet scale and sign and introduce simple adaptive coding (Algorithm 5.2). The atom
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Grayscale Image Run Lengths Raw Symbols Positions
airplane512x512 5806 2.32% 84030 33.63% 159440 63.80%
baboon512x512 9644 3.89% 71184 28.69% 166773 67.22%
barbara720x576 9089 3.61% 74846 29.71% 167469 66.47%
goldhill720x576 9915 3.99% 74506 29.97% 163576 65.79%
house768x512 8553 3.36% 77792 30.53% 167948 65.91%
lena512x512 4376 1.73% 87613 34.69% 159914 63.33%

lighthouse768x512 8171 3.19% 76959 30.04% 170512 66.55%
motorcross768x512 11197 4.59% 69220 28.39% 162922 66.82%

parrots768x512 4178 1.60% 90271 34.59% 165861 63.56%
peppers512x512 9018 3.70% 72738 29.88% 161035 66.16%
sailboat512x512 3800 1.51% 87987 34.96% 159326 63.30%
sailboats512x768 3691 1.41% 88655 33.84% 169052 64.53%

Colour Image Run Lengths Raw Symbols Positions
airplane512x512 9151 3.37% 108045 39.74% 154090 56.67%
baboon512x512 7219 2.64% 103509 37.92% 161688 59.23%
barbara720x576 8036 2.93% 105137 38.28% 160933 58.59%
goldhill720x576 7702 2.84% 104961 38.66% 158213 58.27%
house768x512 6701 2.43% 103009 37.42% 164945 59.93%
lena512x512 10139 3.72% 108696 39.92% 152841 56.13%

lighthouse768x512 6066 2.21% 101875 37.07% 166335 60.52%
motorcross768x512 6284 2.35% 102438 38.24% 158697 59.23%

parrots768x512 9481 3.43% 110472 39.97% 155805 56.37%
peppers512x512 10920 4.02% 108779 40.08% 151032 55.65%
sailboat512x512 9202 3.41% 105893 39.20% 154456 57.17%
sailboats512x768 7316 2.64% 105205 38.03% 163500 59.10%

Table 5.4: Contributions into size of a bit-stream by data type for grayscale and colour
coding of 12000 atoms using No-model.

parameters can be grouped into columns. We generalised this idea for the case of colour
atoms and proposed colour quantisation scheme (see Section 5.1.3). The optimal column
orders have been suggested for both grayscale and colour data. The statistics of bit-
streams generated by Algorithm 5.1 have been analysed and the potential of the proposed
method has been recognised. Studying the effect of dictionary size on the distribution
of atom positions is a natural next step to improve coding. It is important to mention
here that, the MERGE coding from [78] achieves performance comparable to JPEG 2000
thanks to the use of smaller dictionaries and optimising position coding. Our scheme
with optimal ordering of columns and Min-value model achieves the same with sending
positions in a raw format. The ideas for improvement of position coding in our method
for smaller dictionaries are subject of Section 6.4.
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grayscale image Min-value: total bits (reduction) No-model: total bits
airplane512x512 203999 (18.36%) 249889
baboon512x512 207072 (16.54%) 248103
barbara720x576 212505 (15.66%) 251962
goldhill720x576 208659 (16.08%) 248626
house768x512 210615 (17.35%) 254815
lena512x512 205437 (18.65%) 252524

lighthouse768x512 213048 (16.84%) 256198
motorcross768x512 205786 (15.61%) 243838

parrots768x512 212949 (18.39%) 260944
peppers512x512 206277 (15.25%) 243402
sailboat512x512 201630 (19.89%) 251700
sailboats512x768 213616 (18.46%) 261983

colour image Min-value: total bits (reduction) No-model: total bits
airplane512x512 248245 (8.70%) 271886
baboon512x512 246239 (9.79%) 272964
barbara720x576 251630 (8.39%) 274685
goldhill720x576 247995 (8.66%) 271502
house768x512 244581 (11.14%) 275244
lena512x512 254419 (6.57%) 272306

lighthouse768x512 240434 (12.52%) 274840
motorcross768x512 234486 (12.48%) 267914

parrots768x512 257170 (6.96%) 276399
peppers512x512 254062 (6.38%) 271378
sailboat512x512 247395 (8.43%) 270166
sailboats512x768 248604 (10.13%) 276637

Table 5.5: Reductions of a bit-stream size for grayscale and colour coding of 12000
grayscale and colour atoms with Min-value model.
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6 Evaluation of Coding Results

We studied the transform part of MP-based codecs in Chapter 4 and, then, proposed
a novel quantisation and coding scheme in Chapter 5. In this chapter, the performance
of the whole coding system is analysed and compared with the state-of-the-art scalable
image codecs: JPEG 2000 and SPIHT. We show, for a range of different RGB images, the
potential of MP with wavelets for scalable colour image coding.

Section 6.2 and Section 6.1 discuss the flexibility of the MP for colour image coding.
In Section 6.1 the possibility of optimising different criteria than MSE across all channels
is explored. Then, in Section 6.2 we explore the alternative idea to MMP based on a
single-channel MP in decorrelated colour space such as YCbCr. In Section 6.3 we analyse
the coding performance of our codec in comparison to the standards. We explore potential
ways to improve coding performance in Section 6.4. We tackle the question of the dictio-
nary size for a fixed coding algorithm (in this case the method proposed in Chapter 5).
Section 6.5 summarises the main results and concludes the chapter.

6.1 Atom Search Criteria

The multichannel MP introduced in Section 3.5 is truly flexible in terms of atom search
criteria. At first, we show that changing atom selection criterion to best match the Y-
channel can optimise Y-PSNR. However, we point out that a care must be taken to
keep a decomposition algorithm convergent in the signal space. We could minimise Y-
PSNR at each step of the MMP by minimising the weighted MSE which is equivalent

94



Chapter 6 EVALUATION OF CODING RESULTS

to maximisation of the W -PSNR. This can be easily done by changing atom selection
criterion. It can be shown, by extending the result about MSE minimisation (RGB-PSNR
maximisation) from Section 3.5, that the atom selection criterion becomes:

max
g∈D

∣∣∣α〈Rf (r), g〉+ β〈Rf (g), g〉+ γ〈Rf (b), g〉
∣∣∣. (6.1)

The parameters are: α = 0.299, β = 0.587, γ = 0.114 as in the RGB to YCbCr transform
(see Section 2.6).

Comparing Y-PSNR averaged over 12 test images against JPEG 2000 (Figure 6.1b)
we achieved a significant improvement for the MMP with Y-channel atom selection. On
the other hand it is clearly visible in Figure 6.1a that now the RGB-PSNR values are
very low. Figure 6.4 presents Lighthouse decoded at 0.5 bpp with the MMP minimising
only Y-channel distortion. The issue is that visual artefacts originated in colour distortion
are clearly present. It is visible that some of the areas of the sky are represented with
false colour. For comparison, Figure 6.3 shows the same image decomposed from similar
number of atoms using MMP while Figure 6.2 presents results of decoding with JPEG 2000
for the same rate of 0.5 bpp as used in Figure 6.4.

A non-linear nature of MP makes it difficult to control such effects. MMP with the
criterion expressed by (6.1) can converge to any point Rf = [Rf (r), Rf (g), Rf (b)] such as
αRf (r) +βRf (g) +γRf (b) = 0. This case is a good example where an IQM which does not
account for colour information, such as Y-PSNR dramatically fails as a measure of distor-
tion. It also shows that selection criteria that do not affect convergence of decomposition
algorithm has to be used.

Secondly, we can compare L2-maximisation used so far against the further two criteria.
L1-maximisation that selects atom g that at n-th iteration maximises:

L1 = |〈Rf (r)
n , g〉|+ |〈Rf (g), g〉|+ |〈Rf (b), g〉|, (6.2)

and L∞-maximisation, also refereed to as replicated MP [130], where we select an atom
that maximises:

L∞ = max{|〈Rf (r), g〉|, |〈Rf (g), g〉|, |〈Rf (b), g〉|}. (6.3)

The proof of convergence was presented in [118] for L∞-maximisation. We extended the
proof from [118] in Chapter 5 to take into account quantisation and MSE minimisation.
We also showed in Section 5.1 that atom selection according to the maximum L2-norm
minimises joint mean squared error. Therefore, it is not surprising that in terms of the
MSE, the L2-norm is the best criterion. The gain comparing L2-norm against Replicated
MP or L1-norm is small but statistically significant (t-tests) and consistent. Figure 6.1
shows the comparison of performance averaged over 12 test images at different bit-rates.
In terms of Y-PSNR and SHSIM, the L1 and L2 norms perform similarly. L2 achieves
slightly higher averages but not statistically significant for a given test set and significance
level 0.05. L∞-maximisation is significantly inferior in terms of any metrics tried.
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6.2 Colour Space Choice

So far we focused our attention only on encoding multi-channel decomposition obtained by
the MMP. An alternative way to use the MP for colour images is to apply a single-channel
algorithm to each channel in a decorrelated colour space. A similar idea of encoding
performed after decorrelating transform is implemented in JPEG 2000 and colour version
of SPIHT [111]. In Section 4.1.2, we observed that in this way many more atoms are
needed to achieve the same distortion. However, if we take quantisation and encoding
into consideration, a fewer parameters are needed to define one atom in case of the single-
channel algorithm. We can easily adapt our method of coding (Section 5.2) to encode MP
decomposition obtained in the luma-chroma colour space. The attributes of each atom
now include:

1 : sn sign of the amplitude, sn ∈ {−1, 1},
2 : cn colour channel, cn ∈ {1, 2, 3},
3 : wn sub-band index, wn ∈ {1, 2, . . . , 3S + 1},
4 : λn 2D dictionary entry, λn ∈ {1, 2, . . . , B2},
5 : xn atom location inside the sub-band wn, xn ∈ {1, . . . ,Wxn},
6 : yn atom location inside the sub-band wn, yn ∈ {1, . . . ,Wyn}.

The difference comparing to grayscale coding is that an additional attribute cn was added
to indicate the colour channel. Note, that in the case of the MMP, there were two addi-
tional attributes related to quantised amplitudes. We apply the same coding algorithm
as described in Section 5.2 (Algorithm 5.2) to columns 1-4. Grouping is done in order
to form an input to the encoder starting from subband index wn followed by the colour
channel cn, dictionary entry λn and the amplitude sign sn.

We can now evaluate the coding performance of the single-channel MP in YCbCr

colour space (MP-YCC) comparing to MP-RGB. Performing MP-YCC gives much lower
distortion for the Y-channel than MP-RGB. Results in Figure 6.1b visualise a gain in
distortion measured by the Y-PSNR. The Y-PSNR gain is not surprising considering the
numbers of atoms found for each channel. For example, for 12156 atoms used to encode
Goldhill image at 0.50 bpp 10169 are found in the Y-channel and only 835 in Cb and
1152 in Cr. There are no annoying artefacts being introduced since, unlike when using
selection criterion from Equation (6.1), the method is guaranteed to converge. However,
it is interesting to note that Y-PSNR performance is significantly worse than if optimising
Equation (6.1). This suggests some space to improve decorrelating properties of colour
transform to be used with MP. On the other side, if we measure distortion by the RGB-
PSNR a multichannel decomposition is preferred as shown in Figure 6.1a. The two ideas
are comparable in terms of SHSIM metric (Figure 6.1c).
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Figure 6.1: Average R-D comparison of different atom selection criteria (x-axis: bit-rate
[bpp], y-axis: IQM values).
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Figure 6.2: Lighthouse decompressed with default mode of JPEG 2000 at 0.50 bpp.
Y-PSNR=29.96, RGB-PSNR=29.57, Y-M-SSIM=0.8811, SHSIM=0.8072 (SSIM=0.8695, HSIM=0.4962)

Figure 6.3: Lighthouse decomposed by RGB-MP with L2-norm minimisation into 9840
atoms.

Y-PSNR=30.25, RGB-PSNR=29.95, Y-M-SSIM=0.8732, SHSIM=0.8017 (SSIM=0.8635, HSIM=0.4926)

Figure 6.4: Lighthouse decomposed from 9867 atoms (0.50 bpp) selected optimising the
Y-channel.

Y-PSNR=30.79, RGB-PSNR=26.71, Y-M-SSIM=0.8818, SHSIM=0.7893 (SSIM=0.8596, HSIM=0.4383)
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6.3 Comparisons with Standards

In this section we compare the proposed coding of MP and MMP decompositions against
SPIHT and EBCOT (JPEG 2000). For all the experiments we apply 5-scale wavelet
decomposition using CDF 9/7 filters. Five wavelet scales are, for considered images,
typically the best choice. For MP and MMP, the same dictionary D(t)

16 is used for colour
and grayscale, following conclusions of Chapter 4.

Our encoder and decoder are implemented in separate programs to ensure correct R-D
results by measuring the actual output file sizes. The final distortion at each bit-rate was
calculated after the pixel values were rounded to the nearest integer values. This process is
performed to keep consistency with how JPEG 2000 and SPIHT are tested. For the SPIHT
we use freely available executable programs from [111] while for the JPEG 2000 we used the
Kakadu implementation [113] from the author of the EBCOT encoding algorithm [114].

In practical image compression each stream is preceded by the header that contains
information such as image size and compression parameters. For the SPIHT, 6-7 bytes are
used in a message header. For MP-RGB, we add 100 bits of header information which is
12.5 bytes. JPEG 2000 adds header information for each packet in addition to the main
header which for the default setting occupies a few bytes. In all cases, header bytes are
added to the coding rates. For image sizes bigger than 512 × 512 and rates higher than
0.05 bpp these few bytes correspond to insignificant contributions to the bit-rate.

6.3.1 R-D Performance

We compare JPEG 2000, SPIHT and MP algorithms on single and multi-channel images.
We present individual results using PSNR in Figures 6.5 and 6.6 and averages in Figure 6.7.
Despite the shortcomings of the MSE as the image quality metric, we believe that it is
the fairest way to compare compression algorithms designed with MSE-minimisation in
mind. For colour images we measure here RGB-PSNR (i. e the joint MSE introduced in
Equation (2.12)). Colour SPIHT is known to be particularly efficient for colour images
in terms of RGB-PSNR [111]. This is partially thanks to the use of the KLT as a colour
transform for each image in opposition to the fixed RGB to YCbCr transform used by
JPEG standards. For fair comparison, we use the no weights option of Kakadu software
which forces a joint optimisation of MSE analogously to the Colour SPIHT and ours.
The default mode of JPEG 2000 applies visual weights to different colour channels and
subbands in order to potentially improve the visual appearance of images. The effect is
that many more bits are assigned to encode data from lower-frequencies subbands and the
RGB-PSNR values are much lower especially at higher rates. This will be discussed using
visual examples in Section 6.3.2.

Table 6.1 collects comparative results of the average PSNR values. At rates lower than
0.25 bpp, MP achieves higher average PSNR than JPEG 2000. The situation turns around
from 0.25 bpp upwards. SPIHT is inferior to MP and JPEG 2000 average performance
at low bit-rates but its colour version achieves the highest values. In Figure 6.6 and
Figure 6.5 full R-D curves are presented for selected images for bit-rates up to 0.50 bpp.
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(a) Airplane (b) Baboon

(c) Barbara (d) Goldhill

(e) House (f) Lenna

(g) Parrots (h) Peppers

Figure 6.5: R-D comparisons between JPEG 2000, SPIHT and MP for different grayscale
images (x-axis: bit-rate [bpp], y-axis: PSNR [dB]).
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(a) Airplane (b) Baboon

(c) Barbara (d) Goldhill

(e) House (f) Lenna

(g) Parrots (h) Peppers

Figure 6.6: R-D comparisons between JPEG 2000, Colour SPIHT and MP-RGB for dif-
ferent colour (RGB) images (x-axis: bit-rate [bpp], y-axis: RGB-PSNR [dB]).
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Codec 0.10 bpp 0.25 bpp 0.50 bpp

Grayscale JPEG 2000 26.95 30.45 33.66
Grayscale SPIHT 26.90 30.33 33.54

Grayscale MP 27.09 30.35 33.30

Colour JPEG 2000 25.24 28.23 30.89
Colour SPIHT 25.42 28.33 31.01

Colour MP 25.37 28.19 30.67

Table 6.1: Average PSNR performance of codecs over 12 test images.

It is clear that different relative results are obtained for different images. For example, for
grayscale Barbara MP is clearly superior. The grayscale SPIHT is the worst for Barbara
and Goldhill but for the other images performs similarly to JPEG 2000. For grayscale
Parrots and Peppers MP performs the worst. The variation of the results is even higher
for colour images.

As the differences between PSNR values approximately follow a normal distribution
(which was checked using the Kolmogorov-Smirnoff test) we could use paired t-tests to
compare the average performance in the same way as when studying different configura-
tions of the MP system in Chapter 4. For the low bit-rates up to 0.5 bpp at 0.50 bpp
SPIHT is by average PSNR statistically significantly better (at significance level 0.05)
than both MP-RGB and JPEG 2000 for grayscale. For lower rates there is no evidence
for superiority of any of the codecs. In fact from the more detailed analysis of the results
of t-tests we can say that SPIHT outperforms our MP-RGB at rates higher than 0.45 bpp
and JPEG 2000 at higher than 0.40 bpp. We can draw the conclusion here that all the
codecs perform, in terms of PSNR, similarly at low bit-rates. At higher rates MP is slightly
worse but it has to be remembered here that the target of our method was mainly low
bit-rate image/video coding. Nevertheless, there is a potential for using our code also at
medium rates, for example, the position encoding could be improved which is the topic of
Section 6.4. In the next section we look closer at compression artefacts introduced by the
studied methods at low bit rates.

6.3.2 Visual Evaluation

In Section 6.3.1 we compared JPEG 2000, SPIHT and MP-RGB as MSE minimizers for
RGB-images. However, when designing still-image compression system, the method that
gives the best looking image is desired. Although, as outlined in Section 2.3.3, there are
a lot of advances in image quality assessment to judge image and video codecs, visual
comparisons need to be performed. Impressions about quality of visual data are purely
subjective. Not only the distortion of the actual data is important but also viewing
conditions and the context within which the image is viewed. For example, the same
image will be perceived differently on the screen than in print. Practically, when designing
a general purpose method, we are restricted to analyse only the distortion of the actual
data. Better correlation with human perception of visual data is usually achieved by

102



Chapter 6 EVALUATION OF CODING RESULTS

adapting optimisation criterion that attempts to model the HVS. A notable example is
the default mode of JPEG 2000 where visual weights are added for the different image
channels and for different wavelet subbands in YCbCr colour space.

The Y-PSNR metric could be used to reflect the fact that the HVS is most sensitive to
luminance information. Figure 6.7a shows a comparison of average Y-PSNR performance.
The JPEG 2000 default mode still achieves low values compared to colour SPIHT and
JPEG 2000. Our method achieves significantly lower Y-PSNR values compared to the
other algorithms. This is due to the fact that JPEG 2000 perform MSE optimisation after
YCbCr colour transformation and colour SPIHT uses KLT, which still favours Y -channel
information.

Further, Figure 6.7c shows results averaged over 12 test images using a colour version
of SSIM metric outlined in Section 2.3.3 (SHSIM). It shows that the performance of all the
methods is close, favouring both modes of the JPEG 2000 at higher rates, while MP-RGB
performs similarly to SPIHT.

Examples of the visual comparison of the studied codecs are shown in Figure 6.9 for the
Goldhill and Figure 6.8 for the Barbara. Both images are decompressed at 0.30 bpp which
corresponds to CR = 80 : 1. We compare JPEG 2000 in default and MSE-minimising
mode, SPIHT and MP-RGB. In general the images decomposed using the default setting
of Kakadu JPEG 2000 appear to be the sharpest even though the PSNR values are by far
the lowest in that case. It seems there is more blurring and ringing introduced when just
minimising MSE than by the other methods. Visually images represented by a default
mode of JPEG 2000 seem to be the least blurred. However it seems that MP is capable
of decomposing some patterns better than the other methods: for example a texture
checker-board-like patterns which can be seen on the roof of the house in Figure 6.11
and the pattern on the chair in Figure 6.10. This is thanks to enriched set of filters
in redundant dictionary applied in the wavelet domain. Possible directions to improve
performance, related mainly to dictionary design are outlined in the next section.
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Figure 6.7: Average R-D performance comparison using different metrics (x-axis: bit-rate
[bpp], y-axis: IQM values).
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(a) Original image: Barbara

(b) JPEG 2000 default.
RGB-PSNR=26.70,

Y-PSNR=27.67, Y-M-SSIM=0.8295,
SHSIM=0.7290

(d) JPEG 2000 no weights.
RGB-PSNR=28.03,

Y-PSNR=29.37, Y-M-SSIM=0.8552,
SHSIM=0.7524

(c) SPIHT.
RGB-PSNR=27.14,

Y-PSNR=28.08, Y-M-SSIM=0.8181,
SHSIM=0.7233

(e) MP-RGB. 5902 colour atoms.
RGB-PSNR=28.01,

Y-PSNR=29.09, Y-M-SSIM=0.8537,
SHSIM=0.7545

Figure 6.8: Visual comparisons for colour Barbara at 0.30 bpp.
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(a) Original image: Goldhill

(b) JPEG 2000 default.
RGB-PSNR=29.60,

Y-PSNR=31.34, Y-M-SSIM=0.8233,
SHSIM=0.7345

(d) JPEG 2000 no weights.
RGB-PSNR=29.93,

Y-PSNR=31.58, Y-M-SSIM=0.8121,
SHSIM=0.7280

(c) SPIHT.
RGB-PSNR=29.64,

Y-PSNR=30.97, Y-M-SSIM=0.7912,
SHSIM=0.7114

(e) MP-RGB. 5902 colour atoms.
RGB-PSNR=30.00,

Y-PSNR=31.30, Y-M-SSIM=0.8089,
SHSIM=0.7300

Figure 6.9: Visual comparisons for colour Goldhill at 0.30 bpp.
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(a) Original image fragment.

(b) JPEG 2000 default.

(d) JPEG 2000 no weights.

(c) SPIHT.

(e) MP-RGB. 5902 colour atoms.

Figure 6.10: Visual comparisons for fragment of Barbara of size 144× 144 at 0.30 bpp.
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(a) Original image fragment.

(b) JPEG 2000 default.

(d) JPEG 2000 no weights.

(c) SPIHT.

(e) MP-RGB. 6065 colour atoms.

Figure 6.11: Visual comparisons for fragment of Goldhill of size 144× 144 at 0.30 bpp.
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6.4 Coding and Dictionaries

We have described in Chapter 4 how the size of a dictionary affects the computational
complexity of our MP implementation. It was also shown that with increasing number
of bases in the dictionary a sparser approximation can be obtained for a given distortion.
Using a simple iterative method to build dictionaries (Basis Picking) allowed us to analyse
the rate of increase in both encoder complexity and approximation quality. The complexity
increases quadratically with a dictionary size and cubically with the maximal filter length
(see Equation (4.18)). Adding more bases to a dictionary gives performance gain for a
fixed number of atoms. However with increasing size of the dictionary the gain becomes
lower and lower. For example in our case on average for 10 images (see Figure 4.9) we can
gain almost 0.5 dB for 6000 atoms by increasing dictionary size from 16 to 24 for both
grayscale and colour. For comparison, starting from one generator there is more than
2.5 dB difference when comparing against a dictionary of size 8.

The situation changes when the actual coding is considered. We expect that with
the bigger dictionary fewer atoms are needed for the same distortion but more bits are
needed to encode one atom. It can be seen in Table 6.2 that the gains in PSNR at fixed
bit-rate are significantly lower than at a fixed number of atoms. On average there is
no gain after adding more than 16 bases to the dictionary for colour coding while for
grayscale we can improve only by 0.07 dB. The results in Table 6.2 are obtained for the

Dictionary: D(t)
1 D(t)

4 D(t)
8 D(t)

11 D(t)
16 D(t)

24

Colour 28.03 29.58 29.95 30.06 30.14 30.14
Grayscale 29.26 31.66 32.35 32.55 32.72 32.79

Table 6.2: Average PSNR over 10 test images compressed at fixed rate of 0.5 bpp using
dictionaries of different size.

same learning process (on colour images) as the results presented in Figure 4.9. However,
the same conclusions are valid for other experiments that were considered in Chapter 4.
Note that the absolute values of PSNR from Table 6.2 and Figure 4.9 cannot be compared
directly as the results presented here are for a fixed bit-rate and the number of encoded
atoms can vary from image to image. However it is appropriate to compare the relative
differences for varying number of bases. A discrepancy in conclusions that can be drawn
from both cases highlight the importance of taking coding into account when considering
sparse approximations in compression applications rather than relying on sparsity on its
own as the performance indicator.

The problem with encoding is that due to the complex nature of the output of MP
decomposition different approaches to coding exploit redundancy in different way ignoring
some dependencies present in the data. For example, in [84] atoms were grouped by
blocks and position differences from the centre of each block were encoded rather than
the raw position coordinates thus reducing the number of bits spent on position coding.
On the other hand, more bits were needed to explicitly encode the quantised amplitude.
Alternatively atoms can be encoded, as in this work, by decreasing amplitude. In this
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way, the bits spent on the encoding of the amplitudes are saved at the cost of more bits
spent on atom locations. Experiments reported in the literature suggest that the two
approaches are approximately equivalent in terms of coding performance [107]. However,
for application in scalable (SNR-scalable) and embedded image coding it is natural to
encode the more significant atoms first. Encoding atoms by decreasing amplitude from
the lower to higher wavelet scale supports, in a similar fashion to EBCOT and SPIHT,
both resolution and SNR scalability.

We can assume that the final size of the stream (R) is proportional to the number of
atoms (N) and the average number of bits used per one atom (A):

R = NA (B), (6.4)

where B is the size of the dictionary. From the information theory point of view, if
dictionary entries are equally likely to appear in the decomposition then we expect A to
be proportional to the logarithm of number of bases B:

A (B) ∼ log2(B). (6.5)

Figure 6.12 presents the functions of the form: α + β log2(B) fitted to the actual results
for average number of bits per atom computed for the test image Lenna. Parameters α
and β depend on the contribution of the other atom parameters such as positions (see
Section 5.2) and can differ across different images.

It can be assumed that, for our method of coding, the number of bits needed to
encode one atom is proportional to log2(B). Although the number of bits per atom can
be estimated, owing to a non-linear nature of MP, it is difficult to predict the value of
distortion. The choice of 16-bases-dictionaries used throughout this thesis is a trade-off
between coding performance and computational complexity since above certain number of
bases (16) there is no significant improvement in PSNR for fixed rates when adding more
generators to the dictionary.

Moreover, it has to be understood that the idea for atom encoding proposed in Chap-
ter 5 is very general. Statistical modelling of index distributions for particular dictionaries
and optimising position coding could potentially reduce the size of the streams. For ex-
ample, as mentioned in Chapter 5, atom positions are sent in a raw form. For smaller dic-
tionaries, employing Golomb codes [78] or performing deeper recurrence in Algorithm 5.1
(i. e. also for atom positions) could further reduce the size of the stream.

Encoding atom positions in Algorithm 5.1 is equivalent to indicating locations of the
particular 2D basis within a subband. It can happen that there are many atoms with
common parameters.

The significance map M can be defined for each set of common parameters as a binary
map of length n = W ×H if the subband size is W ×H:

M = (c1c2 . . . cn) , ci ∈ {0, 1}, (6.6)

with ci = 1 indicating the atom at location i. If we have just one atom then without
any prior knowledge about how the atoms are distributed the best encoding uses log2 n
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Figure 6.12: Average number of bits per one atom (y-axis) for decomposition to 0.5 bpp
for different dictionary sizes (x-axis) for colour and grayscale Lenna.

bits, with n being the number of ways you can place one atom into n locations (bins).
This is exactly the number of bits needed to encode an integer in the range [0...n − 1].
In practice, vertical and horizontal locations are sent separately to the arithmetic coder.
Using arithmetic coding allows us to assign a number of bits per symbol that is close to
optimal even when n is not a power of 2. We separate x and y locations in order to keep
the values sent to arithmetic coder small so that we are able to maintain feasible size of
the model for arithmetic coding.

Theoretically, the amount of information when placing k atoms into n bins is log2
(n
k

)
bits. Let us estimate what could maximally be gained in this way for real images in
comparison to raw position coding. In the raw case we need k log2 n bits. For images of
size 512× 512 the lowest frequency subband, which is the smallest one, is of size 16× 16,
hence n = 256. In that case if k = 2 then the difference:

k log2 n− log2

(
n

k

)
= |k=2 2 log2 n− log2

n(n− 1)
2 =

= 2 log2 n− log2 n− log2 (n− 1) + log2 2 ≈ |n=256 1.0056 bits

In the more general case of k � n, which holds in our case, we can put log2(n) ≈
log2(n− 1) ≈ . . . ≈ log2(n− k) and then we have:

k log2 n− log2

(
n

k

)
≈ log2 k!. (6.7)

For the Lenna image encoded using a dictionary of size 8 (D(t)
8 ) at 0.50 bpp we could

theoretically make a 10% improvement by optimising position coding. If a dictionary is of
size 16 then we cannot expect more than 4% at the same rate. As the number of repeating
atoms increases with the number of iterations for the same image, at lower rate of 0.10 bpp
the improvement is only about 1.5% for D(t)

16 and about 5.6% for D(t)
8 . Optimising the

position coding is an obvious step to improve the encoder for grayscale images. The
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situation is different for colour data where the potential gains are up to 10 times smaller
than for grayscale. The numerical results for Lenna are collected in Table 6.3. We can
see that only the fraction of atoms (fourth column comparing to the third one) can serve
as a basis for position encoding improvement. The benefit could be significant only for
grayscale images and especially at higher bit-rates. It has to be remembered that the cost
of coding improvement is increased complexity of the encoder as well as the decoder and
that the values shown in Table 6.3 are the theoretical bound.

We can see here that changing the size of a dictionary affects the distribution of atom
parameters. Data modelling for smaller dictionaries and also for alternative way of image
partitioning introduced in Section 4.1.1 still remains an open problem.

Grayscale
Dictionary Rate No. Atoms Repetitions Saved bits Improvement
D(t)

16 0.5 bpp 7800 1988 4818 3.68 %
D(t)

16 0.1 bpp 1535 276 403 1.53 %
D(t)

8 0.5 bpp 8489 2047 14094 10.75 %
D(t)

8 0.1 bpp 1774 526 1479 5.64 %
Colour

D(t)
16 0.5 bpp 6278 348 405 1.55 %
D(t)

16 0.1 bpp 1251 33 34 0.13 %
D(t)

8 0.5 bpp 6988 886 1479 1.13 %
D(t)

8 0.1 bpp 1394 75 106 0.40 %

Table 6.3: Maximal theoretical coding gain from optimising position encoding.

6.5 Summary

We have shown that MP-based methods can compete with the industrial image com-
pression standards in terms of compression ratio. We compared average results on a set
of test images with the aid of statistical tests. The idea for coding MP-decomposition
introduced in Chapter 5 was used. Some ideas for improvements at coding stage were
also presented. The two methods of applying MP to colour images, the first based on
the Multichannel MP performed directly in RGB colour space (MP-RGB) and the second
based on the single-channel MP performed after a decorrelating transform (MP-YCC)
were analysed and found out to perform similarly. Different atom selection criteria for
multichannel algorithm were compared. The importance of preserving convergence in
the signal space has been highlighted. Finally, we compared a proposed MP-RGB codec
against well-established wavelet-based methods. A similar performance for both MP-RGB
and MP-YCC in terms of selected IQMs to SPIHT and JPEG 2000 have been observed at
bit-rates up to 0.50 bpp. A potential to better represent some image features using MP-
based methods has been also recognised. In addition, some of the visual results obtained
in this chapter highlighted the limitations of existing objective quality metrics.
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7 Conclusions and Directions
for Future Work

In this chapter we summarise our findings and propose directions for future work. The
main focus of this thesis was on the problem of sparse signal approximation of multichan-
nel signals such as RGB colour images. The application in mind is scalable image coding
capable of achieving high compression. The problem of image coding was analysed in
two parts: signal representation and encoding of that representation into a bit-stream.
We introduced general concepts from signal processing, theory of information and coding
together with presentation of the state-of-the art methods in image coding in Chapter 2.
Then we concentrated on signal representation in Chapters 3-4 and focused on quantisa-
tion and encoding in Chapter 5. Finally, in Chapter 6 the proposed codec was bench-
marked against EBCOT and SPIHT. For the test images, the performance in terms of
Rate-Distortion at low and medium rates came out to be on average statistically indistin-
guishable from the standards. This means a better compression for some of the images
and worse for the others. However, further ideas to improve coding were suggested, and
it was shown that the proposed encoding method can serve as a staring point to develop
a more efficient method of significance map encoding for a redundant representation.

7.1 Conclusions

Image compression is only one of the possible applications of sparse approximations. Image
de-noising, restoration, in-painting and analysis can be named among others. Moreover,
different types of signals can be modelled, such as sound, video, EEG, or even 3D scenes

113



Chapter 7 CONCLUSIONS AND DIRECTIONS FOR FUTURE WORK

and models. A suboptimal solution of the NP-complete combinatorial problem is of interest
when searching for sparse approximation using a redundant dictionary. A wide range of
heuristics, including greedy optimisation methods and linear programming can be applied.
We compared a few distinct methods such as Orthogonal Matching Pursuit and Basis
Pursuit and evaluated their usefulness for image compression. Some clear advantages of
MP over other known methods were highlighted in Chapter 3. However its limitation to
lossy compression only at low and medium bit-rates due to slow convergence was pointed
out.

The idea of combining MP with other image transforms was studied in Chapter 4. A
formulation of the main idea to perform MP in the spatio-frequency domain was presented.
DWT and DCT were considered, as the examples of spatio-frequency transforms. In terms
of sparse representation, i. e. minimising distortion for a fixed number of atoms, smooth
regular wavelets such as CDF 9/7 filters were favoured over non-continuous Haar filters and
block-based DCT. The benefits of performing decomposition of the zero-mean signal and
symmetrical periodical extension to treat image borders were also recognised. Although
performing MP on the full wavelet subbands gives the lowest distortion, it was found out
that decomposition of fixed-size blocks can be preferred in practice due to reduced time
complexity.

In Chapter 4 we looked at the problem of dictionary design for a hybrid MP and wavelet
compression system. The problem was separated into two stages: choosing wavelets for
the spatio-frequency representation and finding filters for the MP. To keep the complexity
of the encoder tractable, the search of dictionaries was restricted to separable sets of
short-support bases. The dictionaries were trained using a simple method of Basis Picking
proposed for a similar framework in [77]. We compared trained dictionaries with randomly
generated and analytically constructed with minimising a metric called coherence in mind.
Coherence measures maximal similarity between atoms inside dictionary. We found that,
for a hybrid MP and DWT codecs, a dictionary that minimises coherence can achieve
a similar distortion to the dictionaries trained with the Basis Picking while maintaining
significantly lower computational complexity due to the inclusion of shorter-support filters.

Multichannel MP was introduced in Chapter 3 as the promising method to represent
multi-channel signals when the channels are highly correlated. In Chapter 4 we developed,
for the first time, a representation of RGB images using multichannel MP performed in the
spatio-frequency domain. All the findings about mean-shifting, choice of wavelets, border
treatment, image partitioning and dictionaries from Chapters 3-4 transfer across from a
single to multi-channel signals. Moreover, it has been verified that multi-channel MP with
L2-norm as optimisation criterion outperforms, in terms of PSNR, other norms, namely
L1 and L∞, for image compression (Chapter 6). L∞-norm minimisation was the criterion
already tried in grayscale video coding [130]. We have shown that for decomposition of
RGB images using the L1 or L2-norm gives significantly lower distortion.

Encoding the atomic decomposition into a bit-stream is the critical issue with the
application of MP for image and video compression. A new idea for encoding coefficients
obtained after a redundant transform was presented in Chapter 5. We generalised MERGE
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from [78] by introducing a simple adaptive Run Length Encoding algorithm. A proposed
method is particularly suited for encoding of the multi-channel decomposition and thus it
was applied for colour image coding.

The transformed data are floating point numbers hence the quantisation method has
to be designed together with the encoding. While analysing quantisation in Chapter 5 the
importance of convergence was pointed out. Proofs of convergence of Quantised MP were
adapted from from [118] for both single and multi-channel. Analysis of quantisation error
for different parameters has been performed. Our findings were that when quantisation
is performed in-loop then for single-channel images even a very coarse quantisation has
little effect on distortion. For the quantisation parameter PL = 2, chosen for grayscale
encoding, the difference in distortion is less than 0.1 dB when comparing to MP without
quantisation for up to 8000 atoms. However, in the multi-channel case a difference of up
to 0.4 dB is observed. This suggests that further work is required to find more efficient
quantisation of colour amplitudes.

Two main ideas to represent RGB images using MP in the transformed domain were
considered. First, multichannel MP performed directly on RGB images (MP-RGB) and
second, single-channel MP in a decorrelated colour space such as YCbCr (MP-YCC).
After comparing the two in terms of sparsity of the decomposition it has been noted in
Chapter 4 that many fewer atoms are needed for the same distortion using MP-RGB with
L2-norm optimisation thus confirming the decorrelating potential of multi-channel MP.
However, much more information is needed to be encoded for each colour atom in the case
of MP-RGB than for each atom obtained by MP-YCC. In Chapter 6 it was noted that
if the proposed encoding algorithm is applied then the MP-YCC can compete with the
MP-RGB in terms of the coding performance.

In terms of the comparison to related coding standards including SPIHT and JPEG 2000,
statistical t-tests performed on a set of standard images show no significant difference in
R-D performance for up to 0.45 bpp in terms of the average PSNR. Visual comparisons
suggest that MP represents some image patterns better. Investigation in the image features
better represented by MP-like methods opens a list of possible future research directions
in image coding suggested in Section 7.2. Moreover a proposed system is more general and
flexible than standard wavelet methods on both transform and encoding stages, therefore
its practical usefulness to other images types of signals should be also investigated.

7.2 Future Directions

Sparse approximations were recognised to be a potential step forward in the field of scal-
able lossy compression. Nevertheless, questions of the optimal dictionary, atom selection
algorithm and efficient atom coding although extensively studied still remain open.

The method of encoding, proposed in Chapter 5, achieves compression performance
comparable to wavelet-based standards. However, the standards use additional data mod-
elling in the form of Spatial Orientation Trees (SOTs) in SPIHT and context modelling for
arithmetic coding (BAC) in JPEG 2000. A proposed idea is a general algorithm that can
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be used for any data that can be mapped into table of rows and, in our implementation,
a uniform distribution for each column is assumed. A range of ideas to better model the
data that form the atomic decomposition of an image and as a consequence improve cod-
ing performance include: improved position coding by exploiting their distribution with
the use of ideas presented in Section 6.4 and modelling dictionary indexes distributions.
Moreover, predicting amplitude values to improve colour quantisation creates an addi-
tional option for colour coding. Also, atom selection according to a criterion closer than
MSE to human visual perception is possible. However the example shown in Section 6.1
demonstrates that care must be taken to preserve convergence of decomposition. For ex-
ample, this is already a challenging task if we were to to optimise SSIM or HSSIM metrics
introduced in Chapter 1, which could be an obvious step to improve the visual appearance
of decompressed images.

It is always possible to search for more efficient dictionaries and wavelets, but it seems
that a more sensible direction is to narrow the target domain to medical, astronomical,
fingerprints, faces or some other specific class of images. For example, the single-channel
MP with dictionaries trained using the K-SVD from [30] and its variations [132] was
successfully applied for facial image compression especially at low bit-rates [8, 132]. The
decorrelating properties of multi-channel MP profoundly widen the application of sparse
approximations to decomposition of many images at the same time, hyper-spectral data
and to explore both temporal and spatial directions in video coding. MP-like methods are
suitable to be used for both inter (already successfully applied [83,130]) and intra frames
in modern video codecs such as H.264. Multichannel MP is an idea that can be applied
in video coding in both spatial and temporal directions.

The drawback of MP, that stops it from being a widely accepted in image compression,
is the computationally expensive decomposition process. Exploiting a dictionary struc-
ture and partitioning into blocks was suggested as a way to speed up the algorithm in
Section 4.1. Finally, due to possibility of processing sub-bands (or blocks) separately and
performing a lot of mathematical operations on the same data, the sub-band implemen-
tation developed in this work can be easily adapted to run on parallel architectures or
Graphical Processors (GPU).
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A Test Images
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(a) Airplane, 512 × 512 (b) Baboon, 512 × 512

(c) Barbara, 720 × 576

(d) Goldhill, 720 × 576
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(e) House, 768 × 512

(f) Lighthouse, 768 × 512

(g) Motocross, 768 × 512
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(h) Parrots, 768 × 512

(i) Sailboats, 512 × 768 (j) Lenna, 512 × 512

(k) Peppers, 512 × 512 (l) Sailboat, 512 × 512
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Appendix B MATHEMATICAL BACKGROUND

B Mathematical background

B.1 Terminology.

A Linear space is any set H with operations of addition + and multiplication · by a scalar
from the field C (we consider here the fields of real C = R or complex C = C numbers)
that satisfies the following axioms for f, g, h ∈ H and α, β ∈ C:

1. f + g = g + f ,

2. (f + g) + h = f + (g + h),

3. ∃0∈Hf + 0 = f ,

4. ∀f∈H∃(−f)∈Hf + (−f) = 0, we shall use notation: f − f = 0,

5. ∃1∈C1 · f = f ,

6. α(βf) = (αβ)f ,

7. (α+ β)f = αf + βf ,

8. α(f + g) = αf + αg.

An inner product can be defined in the linear space H as a function H×H → C such that
for any f, g, h ∈ H and any α, β ∈ C the following conditions are satisfied:

1. 〈f, g〉 = 〈g, f〉,
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2. 〈αf + βg, h〉 = α〈f, h〉+ β〈g, h〉,

3. 〈f, f〉 ∈ R, 〈f, f〉 ≥ 0,

4. 〈f, f〉 = 0⇒ f = 0.

We denote the complex conjugate of z ∈ C by z, the real part of z by <z and the absolute
value by |z|. We recall the following properties of complex conjugation:

z + z = 2<z, and zz = |z|2. (B.1)

In the linear space with inner product 〈. , .〉 we can define the norm ‖.‖ : H → R as:

‖f‖ =
√
〈f, f〉. (B.2)

The function ρ (f, g) = ‖f − g‖ induces a metric in the linear space which we refer to as
the distance between f and g. The following well-known inequalities are satisfied:

|〈f, g〉| ≤ ‖f‖ ‖g‖ (Cauchy inequality) (B.3)

‖f + g‖ ≤ ‖f‖+ ‖g‖ (triangle inequality) (B.4)

‖f − g‖ ≥ |‖f‖ − ‖g‖| . (B.5)

For each bounded subset of real numbers D ⊂ R there exists a real number a = supD
called the supremum that is the smallest number such that ∀x∈Da ≥ x. Analogously the
infimum is the largest number b = inf D such that ∀x∈Db ≤ x. We shall use the notation
supx∈D x, which is the same as supD, and for indexed sets supi∈I xi ,which is the same as
sup {xi}i∈I . The following properties of supD will be used:

∀i∈Iai < bi ⇒ sup
i∈I

ai ≤ sup
i∈I

bi (B.6)

sup
i∈I

(ai + bi) ≤ sup
i∈I

ai + sup
i∈I

bi. (B.7)

A sequence {fn} converges to f∞, called a limit in a metric space with metric ‖.‖, if and
only if

∀ε>0∃N∀n>N ‖fn − f∞‖ < ε.

We shall write limn→∞ fn = f∞, or just fn → f∞ as n→∞. For every bounded sequence
we can choose a subsequence that converges. If we form a set F of all limits for all
convergent sub-sequences then we can define the lower limit by lim infn→∞ fn = inf F,
and the upper limit by lim supn→∞ fn = supF .
A Cauchy sequence is a sequence fn such that

∀ε>0∃N∀n,m>N ‖fn − fm‖ < ε.

A metric space in which every Cauchy sequence converges to an element from this space
is called complete. A complete linear space with norm induced by the inner product is
called a Hilbert space.
The following well known facts hold in the Hilbert space:
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Lemma B.1.1. If fn is non-decreasing i.e. ∀n>Nfn+1 ≥ fn and bounded from above then
fn converges. Similarly fn converges if it is bounded from below and non-increasing.

Lemma B.1.2. fn → f ⇒ ‖fn‖ → ‖f‖.

Lemma B.1.3. ‖fn‖ → 0⇔ fn → 0.

Lemma B.1.4. fn → f ⇒ 〈fn, g〉 → 〈f, g〉.

Lemma B.1.5. Generalisation of Pythagoras theorem:

‖f + g‖2 = ‖f‖2 + ‖g‖2 + 2<〈f, g〉. (B.8)

Lemma B.1.6. Polarisation inequality, for any f, g ∈ H:

‖f + g‖2 + ‖f − g‖2 = 2
(
‖f‖2 + ‖g‖2

)
. (B.9)

B.2 Matching Pursuit in Hilbert Space

Note that an is the inner product with residual at nth iteration while An the quantised
values, we denote a quantisation error as: εn = An − an (see Chapter 5).

Lemma B.2.1. Parseval-like equality for Matching Pursuit:

‖f‖2 =
N∑
n=1
|an|2 +

∥∥∥RN+1f
∥∥∥2
. (B.10)

Proof. Equation (B.10) is a direct consequence of the MP update step (Algorithm 3.1):∥∥∥RN+1f
∥∥∥2

=
∥∥∥RNf − aNgγN∥∥∥2

=
∥∥∥RNf∥∥∥2

+ |aN |2 − 2<〈RNf, aNgγN 〉 =∥∥∥RNf∥∥∥2
+ |aN |2 − 2< (aNaN ) =

∥∥∥RNf∥∥∥2
− |aN |2.

Hence, for all N :
∥∥∥RNf∥∥∥2

=
∥∥∥RN+1f

∥∥∥2
+ |aN |2, which with R1f = f inductively implies

Equation (B.10).

Lemma B.2.2. Parseval-like equality for Quantised Matching Pursuit:

‖f‖2 =
N∑
n=1

(
|an|2 − |An − an|2

)
+
∥∥∥RN+1f

∥∥∥2
. (B.11)

Proof. Here, the starting point is an update step with quantisation of the amplitude (see
Section 5.1). We apply (B.1) and (B.8).∥∥∥RN+1f

∥∥∥2
=
∥∥∥RNf −ANgγN∥∥∥2

=
∥∥∥RNf∥∥∥2

+ |AN |2 − 2<〈RNf,ANgγN 〉 =∥∥∥RNf∥∥∥2
+ |AN |2 − 2<

(
ANaN

)
=
∥∥∥RNf∥∥∥2

+ |AN − aN |2 − |aN |2.

From which we have, for all N :
∥∥∥RNf∥∥∥2

=
∥∥∥RN+1f

∥∥∥2
+ |aN |2 − |AN − aN |2, which

inductively implies Equation (B.11).
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B.3 Full proofs of convergence.

All proofs below are combination or direct translation of proofs that can be found in [72],
[117], [118] and [67]. It can be shown that ideas from those proofs can be directly applied
to Quantised MP.

Lemma B.3.1. If {sn}n=1,2,... is a positive sequence such that
∑+∞
n=1 sn

2 <∞ then:

lim
n→∞

inf sn
n∑
k=1

sk = 0. (B.12)

Proof. (see [72], Lemma 3 and [117], Lemma 2.3)
We choose n and k for any ε > 0. In particular for a chosen sequence {εN} such as εN → 0
we have: ∞∑

i=1
s2
i <∞⇒

∞∑
i=n

s2
n ≤

εN
2 .

Also
∞∑
i=1

s2
i <∞⇒ lim

i→∞
s2
i = 0⇒ lim

i→∞
si = 0⇒ sk

k∑
i=0

si ≤
εN
2 .

We can choose a subsequence {jN} such sjN = min{i∈n+1,...,k} si and then:

sjN

jN∑
k=0

sk = sjN

n∑
k=0

sk + sjN

jN∑
k=n+1

sk ≤
εN
2 +

jN∑
k=n+1

sk
2 ≤ εN .

Hence, by definition of lower limit and the fact that sn is a positive sequence (B.12)
holds.

Lemma B.3.2. If RNf converges then it converges to 0 for both MP and QMP.

Proof. This proof is an adaptation of Lemma 2.1 from [117] to the quantised version of the
MP. Assume RNf → R∞ 6= 0. R∞ 6= 0 implies that there exists δ > 0 and a dictionary
element gλ (completeness of the dictionary is assumed) such that:

|〈R∞, gλ〉| ≥ 2δ.

Therefore also (B.6):
sup
gλ∈D

|〈R∞, gλ〉| ≥ 2δ. (B.13)

By Lemma B.1.4:
∀gλ∈D〈R

Nf, gλ〉 → 〈R∞, gλ〉.

By definition of the limit and properties (B.6) and (B.7) of supremum there exists M such
that for all N > M and any dictionary element gλ:∣∣∣∣∣ sup

gλ∈D
|〈RNf, gλ〉| − sup

gλ∈D
|〈R∞, gλ〉|

∣∣∣∣∣ ≤ sup
gλ∈D

∣∣∣|〈RNf, gλ〉| − |〈R∞, gλ〉|∣∣∣ ≤ δ.
For the above inequality to be satisfied it must be by (B.13):

sup
gλ∈D

|〈RNf, gλ〉| ≥ δ > 0,
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Finally, we have for all N > M : |aN | = |〈RNf, gγN 〉| ≥ α supγ∈D |〈RNf, gγ〉| ≥ αδ, and
hence: ∥∥∥RN+1f

∥∥∥2
= ‖f‖2 −

∑N
n=1

(
|an|2 − |εn|2

)
≤

‖f‖2 − (1− θ2)
∑N
n=1 |an|2 ≤ ‖f‖

2 −N(1− θ2)α2δ2,

which implies that:
‖f‖2 −

∥∥∥RN+1f
∥∥∥2
≥ N(1− θ2)α2δ2 ≥ 0,

which is impossible as the terms N(1−θ2)α2δ2 →∞ as N →∞ while ‖f‖2 and
∥∥∥RN+1f

∥∥∥2

are bounded. Hence, if RNf converges it must converge to 0.

Lemma B.3.3. RNf converges for both MP and QMP.

Proof. The proof uses the following lemma (Lemma 2.4 in [117]):

Lemma B.3.4. If for all n and m there is: ‖xn − xm‖2 = yn−ym+hn,m, and a sequence
{yn} converges and

lim inf
m→∞

max
n<m

hn,m = 0, (B.14)

then {xn} also converges.

We need to prove that RNf is a Cauchy sequence. We consider for N < M :∥∥∥RNf −RMf∥∥∥2
=
∥∥∥RNf∥∥∥2

−
∥∥∥RMf∥∥∥2

− 2〈RNf −RMf,RMf〉.

Let denote
hN,M =

∣∣∣〈RNf −RMf,RMf〉∣∣∣ .
As

∥∥∥RNf∥∥∥2
converges as a decreasing sequence of positive numbers we only need to prove

Lemma B.3.4. The following can be derived for QMP based on the update step and
inequality (5.7) from Chapter 5 using inner product properties and triangle inequality
(B.4):

hN,M =

∣∣∣∣∣∣〈
M∑

j=N+1
Ajgλj , R

Mf〉

∣∣∣∣∣∣ ≤ |aM |
M∑

j=N+1
|Aj | ≤ (1 + θ)|aM |

M∑
j=1
|aj |.

It holds for all N and M such as N < M so also for maxN<M hN,M . The right hand side
satisfies Lemma B.3.1 which finishes the proof.
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C Comparison of Basis
Selection Methods
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Results for Dictionary D16.
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Figure C.1: RMSE (y-axis) as a function of number of atoms (x-axis) for the lowest
frequency subband for all test images and dictionary D16.
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Results for Random Dictionary.
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Figure C.2: RMSE (y-axis) as a function of number of atoms (x-axis) for the lowest
frequency subbands for all test images and random uniform dictionary.
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