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Abstract
Agent-based technology is playing an increasingly important role in today’s economy. Usu-
ally a multi-agent system is needed to model an economic system such as a market system,
in which heterogeneous trading agents interact with each other autonomously. Two ques-
tions often need to be answered regarding such systems: 1) How to design an interacting
mechanism that facilitates efficient resource allocation among usually self-interested trad-
ing agents? 2) How to design an effective strategy in some specific market mechanisms for
an agent to maximise its economic returns? For automated market systems, auction is the
most popular mechanism to solve resource allocation problems among their participants.
However, auction comes in hundreds of different formats, in which some are better than
others in terms of not only the allocative efficiency but also other properties e.g., whether
it generates high revenue for the auctioneer, whether it induces stable behaviour of the bid-
ders. In addition, different strategies result in very different performance under the same
auction rules. With this background, we are inevitably intrigued to investigate auction
mechanism and strategy designs for agent-based economics.

The international Trading Agent Competition (TAC) Ad Auction (AA) competition pro-
vides a very useful platform to develop and test agent strategies in Generalised Second Price
auction (GSP). AstonTAC, the runner-up of TAC AA 2009, is a successful advertiser agent
designed for GSP-based keyword auction. In particular, AstonTAC generates adaptive bid
prices according to the Market-based Value Per Click and selects a set of keyword queries
with highest expected profit to bid on to maximise its expected profit under the limit of
conversion capacity. Through evaluation experiments, we show that AstonTAC performs
well and stably not only in the competition but also across a broad range of environments.

The TAC CAT tournament provides an environment for investigating the optimal design
of mechanisms for double auction markets. AstonCAT-Plus is the post-tournament version
of the specialist developed for CAT 2010. In our experiments, AstonCAT-Plus not only
outperforms most specialist agents designed by other institutions but also achieves high
allocative efficiencies, transaction success rates and average trader profits. Moreover, we
reveal some insights of the CAT: 1) successful markets should maintain a stable and high
market share of intra-marginal traders; 2) a specialist’s performance is dependent on the
distribution of trading strategies.

However, typical double auction models assume trading agents have a fixed trading
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direction of either buy or sell. With this limitation they cannot directly reflect the fact
that traders in financial markets (the most popular application of double auction) decide
their trading directions dynamically. To address this issue, we introduce the Bi-directional
Double Auction (BDA) market which is populated by two-way traders. Experiments are
conducted under both dynamic and static settings of the continuous BDA market. We find
that the allocative efficiency of a continuous BDA market mainly comes from rational se-
lection of trading directions. Furthermore, we introduce a high-performance Kernel trading
strategy in the BDA market which uses kernel probability density estimator built on his-
torical transaction data to decide optimal order prices. Kernel trading strategy outperforms
some popular intelligent double auction trading strategies including ZIP, GD and RE in the
continuous BDA market by making the highest profit in static games and obtaining the best
wealth in dynamic games.
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Chapter 1

Introduction

In recent years, electronic commerce (e-commerce) has become an important tool for busi-
nesses worldwide in terms of not only boosting sales but also engaging customers [52]. It
offers great opportunities to significantly improve or permanently change the way that busi-
nesses interact with both their customers and suppliers. In fact, new commodities such as
search engine keywords, e-money [65] are created in e-commerce. The sponsored search
helps businesses gain exposure to their potential customers through displaying their ad-
verts and website links when users search keywords that are related to their businesses.
E-money provides Internet companies a convenient way to charge their customers for the
services they provide. Furthermore, fast development of computers and Internet enables
many new business models such as group buying [14] in which the Internet helps to locate
individual buyers of the same product or service and the group buying company organ-
ise them into a buying group in order to obtain the special discount for the simultaneous
purchase of multiple items. In business-to-business world, the integration of supply chain
significantly improves operational efficiency and reduces operational costs. Such systems
cannot be implemented without intervention of computing technologies.

As e-commerce is increasingly assuming pivotal role in almost all kinds of businesses,
how to act quickly, wisely and strategically in the new environment is realised as a new
challenge. To address this challenge and harness the full potential of e-commerce, we
believe that a new model of software is needed. This model is based upon the concept of
software agents – software entities that act on behalf of their owner in an autonomous fash-
ion in order to achieve their objectives [81]. Compared with human beings, the software
agent is able to collect and analyse much larger amounts of information in much shorter
time and process thousands of requests simultaneously. Agents are considered intelligent
if they can make strategic decisions or take optimal actions in some environment automat-
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ically. When two or more cooperative organisations use agents, their agents should be able
to autonomously communicate, coordinate and collaborate with one another and ultimately
form coalitions in order to achieve their common goals.

In agent-based computational economics, economic processes are modelled as dynamic
systems of interacting agents [184]. If multiple interacting intelligent agents are involved,
such a system is called multi-agent system [183]. In the design of agent-based systems,
there are two key aspects to be considered. One is concerned with the agent itself and the
other is concerned with the relationship between different agents. First, an agent needs to
have some strategies to guide its behaviours in order to achieve its design objectives within
a specific environment. To form effective strategies, the agent usually needs certain level of
intelligence in terms of perceiving and reacting to the change of its environment, learning
and inferring from historical data, and predicting the trend of future [82]. Second, agents
need to interact with one another. Therefore, the interacting mechanism needs to be care-
fully designed. In economic systems, agents interactions often result in transactions and
resource allocations. With self-interested agents, the most widely studied and employed
interaction mechanisms are auctions - institutions where goods are sold by the process of
making bids and allocating goods according to competition [71]. Auctions are prevalent
because they are extremely efficient and effective methods of allocating goods or services
[185]. In economic theory, an auction may refer to any mechanism or set of trading rules
for exchange. Hence, auctions come in many different forms, each with their own rules and
ensuing properties.

There are four primary types of auctions:

• English auction, also known as an open ascending price auction [71]. In English
auction, the auctioneer starts with a reserve price and solicits successively higher
public bids from the bidders until no one will increase the bid and the last bidder is
the winner who pays for his/her bidding price.

• Dutch auction, also known as an open descending price auction. In Dutch auction,
the auctioneer begins with a high asking price which is lowered until some participant
is willing to accept the auctioneer’s price [118]. The winning bidder pays the last
announced price.

• First-price sealed auction, in which all bidders simultaneously submit sealed bids
so that no bidder knows the bid of any other participant [118]. The highest bidder
wins the item and pays the price he/she submitted.
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• Second-price sealed-bid auction, first described by William Vickrey [173] where
bidders submit written bids without knowing the bid of the other people in the auc-
tion, and in which the highest bidder wins, but the price paid is the second-highest
bid.

Other popular auctions include bidding fee auction [136], unique bid auction [148], reverse
auction [79], and combinatorial auction [142].

Given the variety of auction protocols, bidding strategies must be tailored to the type
of the auction in order to be effective or just working. Therefore, agent-oriented auc-
tion mechanism and strategy design become an interesting problem to us. Our research is
mainly related to two specific types of auctions:

• Generalised Second Price auction (GSP), in which bids are sorted in descending
order, the highest bidder wins the top slot, the second highest bider wins the sec-
ond highest slot and so on. Each bidder pays the bid of the next highest bidder if
he/she wins a slot [50]. It is used mainly in the context of keyword auctions, where
sponsored search slots are sold on an auction basis. This technology is employed by
most search engines including Google, Bing, Yahoo and Baidu in order to fairly and
efficiently set prices for the right to use their advert slots available on a search result
page of any keyword or keywords combination. We survey the mechanism and bid-
ding strategy design issues of GSP in the context of sponsored search (see Chapter
2) and present an effective advertiser strategy that shows superior performance in the
TAC AA competition (see Chapter 3).

• Double Auction (DA), in which multiple sellers submit asks and multiple buyers
submit bids continuously and simultaneously, and the auctioneer choose a price p to
clear the market [71]. In terms of the time delay of clearing the market after finding
match(es) between asks and bids, there are major variations of DA: Continuous Dou-
ble Auction (CDA) which clears the market as soon as a match is found and Clearing
House (CH) which clears that market at the end of fixed periods. This auction, often
appearing in the form of the combination of CDA and CH, is the dominant exchange
institution adopted by financial markets for trading equities, currencies, derivatives
etcetera. Especially, the CDA has been the principle trading system in equity markets
for more than 140 years under open-outcry floor trading [188]. Due to its high effi-
ciency in resource allocations, it is also used to solve many other allocation problems
including bandwidth allocation and electricity distribution. With respect to shout ac-
cepting, matching and charging rules etcetera, it has other interesting alterations than
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just CDA and CH. Our research about DA is first concentrating on the automatic mar-
ket design based on the framework of TAC CAT (see Chapter 4). Then, we develop
a Bi-directional Double Auction (BDA) model for financial market simulation, in
which a high-performance trading strategy based on probability density estimations
is proposed and evaluated (see Chapter 5).

In the following, we introduce the three topics we are going to discuss in this thesis: 1)
GSP mechanism and strategy, 2) Double auction mechanism design and 3) Bi-directional
double auction and Kernel trading strategy.

1.1 GSP Mechanism and Strategy

In recent years, sponsored search [54, 97] has become the indispensable source of rev-
enue for Internet search engine companies like Google, Yahoo and Bing. Instead of show-
ing the same advertisement to every user, it enables companies to promote their products
to targeted groups of consumers based on their search queries [151]. Moreover, setting a
price for the advertisement is through Generalised Second Price auction, which has many
advantages over the conventional negotiation between the seller and the buyer such as price
efficiency. Since GSP is mainly used to sell keywords, it is often referred as the keyword
auction.

From agent point of view, keyword auction can be modelled as a multi-agent system
containing three types of agent - the user, the advertiser and the publisher (the search en-
gine). The user wants the most relevant ads to appear in the most prominent place so they
can spend the smallest amount of time on finding what they want. The advertiser wants
to maximise his return of investment. The publisher wants to satisfy both the user and ad-
vertiser with relevant ad, fair ranking and charging, stable amount of traffic, etcetera., to
make sure they will come back and reuse their services. More importantly, search engines
obviously want to maximise their long-term return in revenue through valuable services to
both parties.

Since keyword auction has become the dominant method that search engines adopt to
sell their advertisement services, the advertisers face one inevitable question: how can they
formulate an effective bidding strategy under the rules of GSP. This issue has also attracted
attentions of computer scientists. In order to explore the solutions, University of Michigan
developed Trading Agent Competition Ad Auction (TAC AA) [84], in which participants
play the role of advertiser in a simulated keyword auction environment and compete with
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each other in order to maximise their own profit. In the first TAC AA tournament held
in 2009, we designed the software agent AstonTAC, which was ranked the 2nd and made
the highest revenue in the competition. Our strategy allows us to extract the Market-based
Value Per Click (MVPC) of every keyword and perform adaptive biding along with the
changes of MVPC. Our paper “Designing a Successful Adaptive Agent for TAC Ad Auc-
tion” [28] describes our findings in regard to GSP strategy formulation in a multi-keywords
environment.

1.2 Double Auction Mechanism Design

Double Auction market is a market in which multiple buyers compete to purchase many
items that are simultaneously offered for sale by multiple sellers competitively [72]. This
mechanism has dominated today’s financial instruments exchanges (e.g., the New York
Stock Exchange and the London Stock Exchange) for its high allocative efficiency and
simplicity in implementation. As economy and technologies evolve, the burgeoning on-
line trading system and electronic marketplaces have offered traders more freedom than
ever to trade their securities across the world. Given this, one double auction market has to
face competitions from other similar markets running concurrently around the world [155].
So, to design an efficient market in such a competitive environment, we need to address
the following issues well: 1) How can such a market attract and keep traders in such a
competitive environment? 2) How can such a market maximise its own profit by charging
as much fees as possible without driving traders away for the sake of overcharging? And
3) how to facilitate the most efficient allocation of resource inside such a market?

It is too complex to analyse double auctions, particularly continuous double auctions,
theoretically [59]. Thus, researchers turned to do their experimental analysis by develop-
ing software agents that can bid for goods or services on behalf of their human owners
[71, 114]. Since 2007, market design tournament (also called CAT) was introduced into
the International Trading Agent Competition1 to simulate the competitive environment of
multiple double auction markets and enable automated market mechanism design. It aims
to seek answers to the above questions.

AstonCAT is a double auction mechanism designed in the CAT tournament. Inspired
by its soaring improvement on performance in Game 3 of CAT-2010 (rank advanced by
4 places), we developed a post-tournament version called AstonCAT-Plus, which signif-

1http://www.sics.se/tac/
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icantly outperforms its predecessor and achieves the highest transaction success rate, al-
locative efficiency and average trader profit among all the specialists of double auction in
our controlled experiments.

More specifically, AstonCAT-Plus uses a market equilibrium framework - both the
shout accepting thresholds and the estimated equilibrium prices are based on the estimated
market equilibrium price. We choose the equilibrium framework because a market reaches
the best allocative efficiency if it is always cleared on its equilibrium price and an equi-
librium clearing market encourages truthful bidding behaviour of the traders. It adapts the
shout accepting thresholds against the change of market conditions and clears the market
based on the profit per trader. This allows the shout engine to match more profitable bid-ask
pairs. Moreover, we treat matched shouts differently if one of the shouts in the matched
pair is an extra-marginal shout identified by comparing the shout price to the estimated
equilibrium price. Further, our charging strategy constrains the fees to small ranges while
adapting it to market share related criteria.

1.3 Bi-directional Double Auction and Kernel Trading
Strategy

Nowadays, computer scientists are increasingly involved in building market systems
[172] that often employ double auction mechanism because of its high efficiency of re-
source allocation [180, 146]. Consequently, the CAT competition [22] has been developed
to investigate the optimal design of a double auction market. Although many effective
alterations of double auction market have been proposed since the competition [132], re-
searchers typically only deal with one-way traders i.e., traders are either buyers or sellers
but not both [140]. It is well-known that the dominant application of double auction institu-
tion is the financial market, in which traders are usually sellers and buyers simultaneously.
Hence, we consider necessary to introduce a Bi-directional Double Auction (BDA) model,
in which the trading activity of every individual trader can be bi-directional. To complete a
dynamic financial market simulation, we also introduce a news system to enable traders to
update their private valuations along with the change of the environment.

In the BDA market, the selection of trading direction is through trading direction algo-
rithms, for which we introduce Dual and Bi. Once the decision is made, the order price is
determined by a trader’s trading strategy. Besides implementing some of the most popular
double auction trading strategies (see Section 5.1.5), we develop a new trading strategy
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called Kernel based on probability density estimations, which significantly outperforms all
other strategies in our experiments.

1.4 Research Contributions

The work described in this thesis makes a number of important contributions to the state
of the art in the area of auction mechanism and trading strategy design and in the realm of
agent-based computational economics.

• We design a successful bidding strategy for GSP-based keyword auction in the envi-
ronment of TAC Ad Auction competition. Specifically,

1. We introduce a novel concept called Market-based Value Per Click (MVPC).
Based on MVPC, we submit bids that win appropriate ad slots at reasonable
costs.

2. Given limited conversion capacity, we propose an effective query selection al-
gorithm which estimates the realistic maximum number of conversion allowed
by the advertiser’s distribution capacity and sort queries by their profitability.
The algorithm only selects the most profitable queries to bid on so that the de-
mands of conversion quantity and high conversion value are balanced.

• We design a double auction market mechanism which demonstrates strong and stable
performance on TAC CAT platform. Specifically,

1. We develop a novel clearing strategy which clears the market considering both
the quality and quantity of transactions.

2. We introduce a new shout accepting policy that adapts the accepting thresholds
dynamically according to the change of market condition.

3. We propose an algorithm that combines the long-term and short-term transac-
tional data to effectively estimate local market equilibrium price.

4. We introduce a rule-based hierarchical charging strategy, which effectively bal-
ances maintaining high market share and generating high revenue in a compet-
itive multi-market environment.

• We analyse the CAT tournament to reveal essential features of successful CAT spe-
cialists. For example,
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1. CAT specialists’ performance is affected by the distribution of trading strate-
gies. No specialist is absolutely superior to others if the current dominant trad-
ing strategy is not preferred by this specialist.

2. A successful market should maintain a stable and high market share, especially
the share of intra-marginal traders.

3. A successful specialist usually features a balanced profile between buyers and
sellers.

• We introduce the Bi-directional Double Auction (BDA) for financial market simu-
lation in which traders determine their trading directions dynamically as what they
do in real financial markets. For the BDA market, we create Dual and Bi trading
direction algorithms to model the traders’ behaviours in terms of changing trading
directions when trading financial instruments. Furthermore, we reveal properties of
the static continuous BDA Market:

1. The market allocative efficiency largely comes from traders’ rational choices of
trading directions.

2. With incentive-compatible trading direction algorithms, the more intelligent the
trading strategies, the less efficient the market.

3. The market is more efficient and stable if traders are more confident with their
private valuations of the traded asset.

• Last but not the least, we develop Kernel trading strategy in the continuous BDA
market, which shows superior performance when competing with some popular ex-
isting intelligent CDA strategies adapted for the BDA market. This strategy, for
the first time, uses kernel probability density estimation technology to calculate the
transaction probability of future shouts and submit shouts to maximise the expected
profit.

1.5 Thesis Structure

The thesis is structured as follows:

• Chapter 2 summarises the related work to our research in generalised second price
auction and double auction. For GSP, we first survey existing work in regard to
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sponsored search mechanism design. Then, we focus on the bidding strategy prob-
lem faced by the advertiser. For DA, we present the ideas of other successful CAT
tournament entrants and post-tournament analytical findings regarding double auc-
tion mechanisms. Finally, we design a bi-directional double auction financial market
simulation and discuss various ways of implementing artificial financial markets in
addition to a general introduction of agent-based computational finance which is the
background of this work. Meanwhile, some classical design of double auction trad-
ing strategies are described because our new Kernel strategy is inspired by the study
of these existing ones.

• Chapter 3 specifically describes the design, implementation and evaluation of the
TAC AA agent AstonTAC. We emphasise the importance of understanding the fea-
ture of the commodity and evaluation of its market value against a dynamic back-
ground. We also point out, with limited budget and conversion capacity, selecting
the right keywords to invest is as important as employing an effective strategy on the
bidding of any individual keyword.

• Chapter 4 concentrates on the TAC CAT competition for which AstonCAT-Plus de-
signed. From the aspects of equilibrium estimation, accepting policy, clearing policy
and charging policy, we introduce our innovative ideas that make AstonCAT-Plus
one of the most efficient and attractive double auction mechanisms in this competi-
tive multi-market environment. In addition, we reveal some insights about the CAT
competition through trader analysis and trading strategy distribution games.

• Chapter 5 introduces the bi-directional double auction market. In details, we de-
scribe Dual and Bi trading direction algorithms and introduce a high-performance
Kernel trading strategy. Through experiments, we analyse endogenously generated
time-series and show that BDA is a valid model for financial market simulation.
Furthermore, we investigate the allocative efficiency of the static continuous BDA
market and evaluate the performance of Kernel trading strategy with heterogeneous
trading games in both static and dynamic settings.

• Chapter 6 recaps the main contributions of this thesis and highlights the key open
problems that need to be addressed in both GSP and DA markets.



Chapter 2

Literature Review

In this chapter, we review the literature related to our research. Based on the three separate
projects involved in our research and a short survey conducted on sponsored search, we di-
vide our review into four parts: (i) Sponsored search mechanism design; (ii) GSP strategy;
(iii) CAT market design and analysis; (iv) Agent-based financial market simulation.

2.1 Sponsored Search Mechanism Design

In sponsored search, advertisers enter an amount that they are willing to pay for show-
ing their ads alongside the algorithmic results of a keyword. The search engine sorts adver-
tisers’ bids by some sort of ranking mechanism and awards positions to advertisers’ ads.
When the user searches the keyword targeted by participated advertisers, he will see their
ads as well as natural results. If he clicks on one or more ads, the corresponding adver-
tiser will have to pay the search engine for the clicks by a price determined by the auction.
Advertisers are normally ranked by a score which may not only relate to the bid price but
also the corresponding ad’s relevance, quality, and so on. In this scenario, the search en-
gine is responsible of designing a practical and efficient auction mechanism that attracts
advertisers and satisfies its users by automatically providing helpful sponsored link in a
none-interruptive way. According to a specific auction mechanism, the advertiser needs to
formulate a bidding strategy in order to maximise its expected utility under some budget
constraint typically.

Jordan et al. identify two main streams in the research of sponsored search [84]: (i)
mechanism design problem faced by search publishers, (ii) strategic problem faced by ad-
vertisers. Without comprehensive understanding of the market mechanism, it is impossible
to create a successful strategy in it. Therefore, the survey of the sponsored search mech-

10
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anism is very necessary. The mechanism design has to be based on certain assumption of
user behaviour model such as viewing, clicking and conversion behaviours. So what are
the appropriate models for them? Usually independent ad effect is assumed, but is it true?
Have we missed out important externalities that actually exist in the real business? Gen-
eralised GSP is the most popular mechanism used by search engines. Why is it selected?
What are its merits and drawbacks? What other mechanisms have been proposed and why
are they not popular? With these questions and more, we discuss literature on the design of
sponsored search mechanism.

2.1.1 Keyword Auction Formats

In sponsored search, keyword auctions are employed to sell ad slots automatically.
Therefore, conventional auction formats are generalised to create keyword auction mecha-
nisms. Many formats have been tried and GSP [50, 73, 122] finally becomes the industrial
standard because it makes the market more user friendly and less susceptible to gaming.
Big search engines like Google and Yahoo adopted it quickly after recognising its advan-
tages.

GSP, as its name implies, is conceived as a natural extension of second price seal-bid
auction, also called Vickrey auction [107]. In details, GSP auction has two major formats:
rank-by-bid GSP and rank-by-revenue GSP. In rank-by-bid GSP auction, the advertiser in
position i pays a price per click equal to the bid of an advertiser in position i + 1. In rank-
by-revenue GSP auction, a weight ws is associated with bidder s. If bidder s bids bs, his
corresponding score is wsbs which determines his rank. Without loss of generality, let us
assume bidder s receives position s, what he pays is the minimum payment p to retain his
position p = ws+1bs+1

ws
. Although conventional second price sealed auction has the property

of truthful bidding, GSP is proved no longer truthful after generalisation [50].
However, besides GSP, there is not lack of other popular formats that have been used,

proposed or analysed.

Generalised First-Price (GFP) Pay-what-you-bid is the simplest format of payment and
adopted initially by Overture. This mechanism is unstable due to the Winner’s Curse
[21] which causes bids to be changed very frequently as bidders do not want to pay
a penny more than what is enough to win the desired position.

Vickrey-Clarke-Groves (VCG) VCG is famous for the property that the dominant strategy
of bidders is to bid their true valuation of an item. In VCG keyword auction, the
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advertiser i1 would be charged the externality that he imposes on other advertisers:
the difference between the aggregate value all other advertisers would receive if i is
not present and the aggregate value all other advertisers would receive if i is present.
Despite VCG reduces the incentive for strategising and makes life easier for adver-
tisers, search engines still use GSP today. According to Edelman et al. [50], there
are two major reasons why it is not adopted by major search engines. First, VCG
is hard to understand and advertisers will not stop shading their bids immediately
before they realise shading does not work. Second, VCG revenue is at most as large
as GSP if all advertisers bid the same amounts under two mechanisms which means
search engines will not have incentives to change.

The Laddered Auction In laddered auction, the price for a merchant builds on the bid of
each merchant ranked below it [3]. The designer assumes ith merchant also has the
ith rank in the auction. For 1 ≤ i ≤ K, set the price-per-click pi charged to merchant
i according to the equation:

pi =
K∑
j=i

(
CTRi,j − CTRi,j+1

CTRi,i

)
wj+1

wi
bj+1 (2.1)

where CTRi,j is click-through rate of ith merchant at jth position, w is the weight
on bid b. Aggarwal et al. [3] prove its truthfulness such that it is better than GSP for
reducing gaming effect and its revenue equivalence with GSP such that it is better
than VCG for a higher potential revenue.

GSP with Hidden Cost An important externality in sponsored search is the Hidden Cost
that one advertiser with low quality or relevance landing page imposes on other ad-
vertisers. A poor ad can discourage the searcher from trying to view any sponsored
link at all. As a result advertiser’s social welfare will be reduced. In economic theory
[154, 9, 153], pricing externalities are encouraged to improve social welfare. Simi-
larly, in keyword auction mechanism design, a search engine should encourage ads
that give users a positive experience because it makes users more likely to click on
other ads [1]. In Abrams’s model, the hidden cost per click is denoted by hi = h(qi),
where qi denotes the choice of the landing page for advertiser i and bi denotes his
bid. Ranking is run on b′i = bi − hi instead of bi. Finally, hi is added to the price per
click of bidder i leaving the ranking unchanged.

1Advertiser i denotes advertiser rank at position i
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2.1.2 Ranking Mechanism

Ranking mechanism determines how sponsored link slots are awarded to each adver-
tiser. Although GSP is the industrial standard, the ranking mechanism in GSP varies from
one implementation to another. Moreover, different ranking mechanisms result in different
user behaviours and search engine revenue, which is why it is an important topic to be
discussed in the design of GSP.

Feng et al. [55] propose four alternative mechanisms for choosing the allocation of paid
slots to advertisers.

• “v ranking” is also called rank-by-bid which is purely based on the advertiser’s will-
ingness to pay or valuation per click v. The highest payer will be ranked at the top.
It is a stylised version of Yahoo’s model before 2009.

• “v × α ranking” is based on stylised Google’s model. α represents the expected
click-through rate (relevance) of the listing. It is also explained as advertiser effect
es in [97]. v × α can be deemed as expected revenue of the listing. The higher the
expect revenue, the higher the rank. Therefore it is also called rank-by-revenue.

• “α ranking” selects the highest k bids and ranks the bidders by their expected click-
through rates.

• “Posted Price Ranking” is a mechanism that the search engine sets a reserve price
for each position and allocates k highest bidders to k positions and lets them pay the
reserved price for that position if their bids meet the corresponding reserves.

“v × α ranking” substantially ranks by weighted bids rather than bids themselves. The
weight w associated with the bid is usually the advertisement’s expected click-through rate
es which is determined by a number of factors including ad relevance, historical click-
through rate, landing page quality, and etcetera. Pennock et al. [97] generalise this model
by introducing a family of weights ws = es

q for q ∈ (+∞,−∞). When q = 0, advertiser
effect is in fact ignored and it becomes Yahoo’s rank-by-bid. When q = 1, it covers
Google’s rank-by-revenue. They claim that tuning q can significantly improve equilibrium
revenue. However, the improvement of revenue may come at the price of future revenue
because advertisers and users may be lost due to decrement of their satisfaction.

Lahaie and Pennock [97] extensively investigate the tuning of q based on the revenue
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equation at the equilibrium:

R(q) =
K∑
s=1

K∑
t=s

(
et+1

es
)qes(xt − xt+1)vt+1 (2.2)

They show that although q = 1 yields the efficient allocation, setting of q considerably less
than 1 can yield better revenue if v and α correlation is strongly positive. If the bidders are
ranked in decreasing order of relevance, then ei+1

ei
< 1 and decreasing q slightly without

affecting the allocation will increase revenue. Similarly, if bidders are ranked in increasing
order of relevance, increasing q slightly will yield an improvement. For perfect positive
correlation between value and relevance, q = 0 yield more revenue than q = 1.

Correlation Between v and α

Besides [97], [55] also identifies that the correlation between bidder values and click-
through rates (or relevance) should be a key parameter affecting the revenue efficiency
of various ranking mechanisms. However, because their assumptions are different, their
findings are different too.

In [55], they have the following findings regarding not just the v and α correlation but
the number of competitors N and attention decay factor δ,

1. Revenue is increasing in the correlation between α and v. The effect is more pro-
nounced for rank-by-bid.

2. Rank-by-revenue strongly dominates rank-by-bid in the region of negative correla-
tion in terms of revenue and weakly dominates it in the region of positive correlation.

3. Both revenue decrease as δ increases.

4. When v and α correlation is strongly positive, the increase of N significantly in-
creases search engine’s revenue for both mechanisms. When v and α correlation is
strongly negative, N still increases with revenue for rank-by-revenue but decreases
with rank-by-bid.

5. When there is a highly positive correlation between α and v, the search engine’s
expected revenue is approximately concave in the number of sponsored ad links it
enrols. 3 to 7 seems to be the optimal choice. Intuitively, more ad slots will increase
the revenue, but too many can negatively affect the overall quality of the search en-
gine and in turn reduce total traffic at the search engine and the clicks on the ads,
thereby lowering revenue from sponsored search.
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6. The relevance issue does need to be addressed in rank-by-bid. Otherwise, sponsored
slots could be awarded to poor relevance ad thus yielding low revenue. In practice,
editorial control is conducted to screen out listings below a certain threshold. With a
good choice of the threshold value, the modified v ranking outperforms v × α in the
regions of both positive and negative correlation.

2.1.3 Modelling User Behaviours

Two essential factors in click models are position effect and relevance effect. Position
effect is how the probability of click depends on position. Relevance effect is how the
probability of click depends on the relevance of the listing content. Different arrangements
on these two factors generate different click models.

Craswell et al. [37] propose four simple hypotheses to model click behaviour over
natural search results which also suit sponsored search results. They number position i ∈
1, . . . , N , denote rd as the listing’s relevance:

rd = p(Click = ture|Document = d) (2.3)

denote cdi as observed probability of click:

cdi = p(Click = true|Document = d,Rank = i) (2.4)

Baseline Hypothesis There is no position bias, the probability of clicking on a document
at position i is the same as the probability of clicking it at position j.

cdi = rd = cdj (2.5)

Mixture Hypothesis There is a probability bi that the user will click on early ranks blindly.
The proportion of users who click blindly can be explained by a mixture parameter
λ:

cdi = λrd + (1− λ)bi (2.6)

Examination Hypothesis This is also called separable click-through rate model. To be
clicked, the document link must be both noticed with probability xi and relevant:

cdi = rdxi (2.7)

where xi is the probability that the document is noticed.
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Cascade Model In this model, they assume the user search results from top to bottom.
The probability that he/she clicks on one document is dependent on joint probability
all document with higher position are skipped.

cdi = rd

i−1∏
j=1

(1− rdoc in rank:j) (2.8)

They conclude that cascade model fits data the best. But whether it is the best explanation
for position effect on sponsored links still remains as a question. Although the separable
click-through rate model is currently the popular one and many theoretical works (e.g.
[50, 171, 98]) are based on it. Kempe et al. [87] say it is mainly because of its simplicity
for analysis and one of the main drawbacks of separable model is that it completely ignores
externalities between ads. However, both anecdotal evidence and user studies [83, 37]
suggest that externalities are common.

Another user behaviour to model is the conversion, which is harder because it depends
on the complex interaction between the customer and the merchant once he or she is re-
ferred to the merchant website by the search engine. Das et al. [42] propose an extension
of separability model in which the searcher will not only click on ad with high relevance
but also convert on ad with higher relevance. Moreover, conversion will come at most from
one of the advertisers and the probability of conversion on that ad in slot i is:

Prcon(i) =
θiri · ri∑
1≤j≤k rj

(2.9)

where θ denotes position effect and ri denotes the relevance effect. Lately, Patrick Jordan et
al. propose a conversion model for the use of TAC AA 2009. In this model, more specific
keyword phrases get higher chance of conversion and conversion probability is diminished
if the advertiser’s stock is about to run out.

2.1.4 Analysis of Empirical Data

The handful of empirical studies that exist in search engine marketing have typically
analysed publicly available data from search engines. Telang et al. [164] summarise that
search user behaviours (click and conversion probability) are also affected by the character-
istics of keyword itself apart from ad-related characteristics like relevance and rank. They
also show that a model that accounts for periodicities fits the search engine visits well.
Moreover, different goals of search users can be indicated by search queries. According
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to Broder [120] and Jansen et al. [78], search goals can be classified into three categories:
navigational (e.g., a search query consisting of a specific firm or retailer), transactional
(e.g., a search query consisting of a specific product), or informational (e.g., a search query
consisting of longer words). Moreover, the length of keyword phrase is also an important
determinant of search and purchase behaviour. But anecdotal evidence on this varies across
trade press reports. Some studies have shown that the percentage of searchers who use a
combination of keywords is 1.6 times the percentage of those who use single keyword
queries [90]. In contrast, another study found that single keywords have on average the
highest number of unique visitors [77].

Ghose and Yang [61] empirically investigate sponsored search advertisement campaign
data from a large retailer in USA. They find that the monetary value of a click is not uniform
across all positions because conversion rates are the highest at the top and decrease with
rank as one goes down the search engine results page. Though search engines take into
account the current period’s bid as well as prior click-through rates before deciding the
final rank of an advertisement in the current period, the current bid has a larger effect than
prior click-through rates. Their analysis shows that keywords that have more prominent
positions on the search engine results page, and thus experience higher click-through or
conversion rates, are not necessarily the most profitable ones - profits are often higher at
the middle positions than at the top or the bottom ones. Besides providing managerial
insights into search engine advertising, these results shed light on some key assumptions
made in the theoretical modelling literature in sponsored search. They also find that an
increase in landing page quality scores is associated with an increase in conversion rates
and a decrease in advertiser’s cost per click.

Animesh et al. [1] look at the presence of quality uncertainty and adverse selection
in paid search advertising on search engines. Goldfarb and Tucker [64] examine the fac-
tors that drive variation in prices for advertising legal services on Google. Rutz and Bucklin
[152] show that there are spillovers between search advertising on branded and generic key-
words, as some customers may start with a generic search to gather information, but later
use a branded search to complete their transactions. Agarwal et al. [2] provide quantita-
tive insights into the profitability of advertisements associated with differences in keyword
position and show that profits may not be monotonic with rank.
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2.2 GSP Strategy

What advertisers want is the best bidding strategy, which is also the goal of TAC Ad
Auction competition. Good return-on-investment ratio is most advertisers’ main target re-
garding the bidding strategy. But there are many other aspects that some particular advertis-
ers care about such as beating the competitors, keeping a certain position on the sponsored
link list, sticking with a restrictive budget limit and so on. From game theoretic perspective
[137], a good bidding strategy is a stable one with which bid prices converge to an equi-
librium where nobody has incentive to change his/her bid any more and the social welfare
is maximised at this equilibrium. The remaining of the this section will try to cover most
well-known bidding strategies that have been proposed, investigated or actually used in the
real sponsored search so far.

2.2.1 Greedy Biding Strategies

Greedy bidding strategy is a category of bidding strategies in sponsored search that
features maximising the utility return of an advertiser given the expected bids of other
advertisers. Assuming that bids are known and other bidders will bid in the next round
exactly what they bid in the current round, a greedy bidding strategy [24] for advertiser A
is to choose a bid for the next round to maximise his utility relative to this postulated set
of bids by other bidders. Because the GSP mechanism allows a range of bid values that
will result in the same outcome from A’s perspective, A so as to win slot s can choose any
bid in the interval (Ps, Ps−1). Therefore greedy bidding strategies have three subcategories
where cs is click-through rate of position s:

Balanced Bidding (BB) in which A’s choice of next bid b makes it indifferent between
successfully winning the targeted slot s at price ps, or winning slot s− 1 at price b.
Formally, A chooses b so that

cs(v − p∗s) = cs−1(v − b)

where v is private value of the advertiser. If s∗ is top slot, b = (v + p1)/2.

Competitor Busting (CB) [123] in which A chooses the highest bid value consistent with
the target. By playing CB, players focus on forcing their competitors to pay more
without affecting their own payment.[192] Formally, A chooses b so that

b = min(v, ps−1 − ε)
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Altruistic Bidding (AB) in which A chooses the lowest bid value consistent with the target
slot. Formally, A chooses b such that

b = min(v, ps + ε)

BB is a particular interesting strategy as it has a unique fixed point with payments
identical to those of the VCG mechanism. The main convergence properties of BB are the
following:

• For two slots, BB converges to its unique fixed point with probability 1.

• For three or more slots, BB does not always converge assuming all players simulta-
neously update their bids according to BB.

• In an asynchronous model, if and only if one randomly chosen player updates his bid
each round according to BB, BB bidding always converge eventually.

Vorobeychik’s analysis on bidding dynamics suggests that AB is highly unstable al-
though it yields the greatest pay-offs to players(but least to the auctioneer) [175]. BB is has
considerable strategic stability but yields lowest pay-offs to players(likely highest search
engine pay-offs). Zhou et al. [192] is more interested in vindictive bidding(CB) which is
also referred as anti-social bidding by [16] because it is likely the most used strategy in the
real world. They prove that Pure Strategy Nash Equilibria(PSNE) may not exist when there
are at least three players who are all vindictive to each other.

2.2.2 Budget Constrained Strategies

Normally an advertiser’s budget is limited. Therefore, they have to solve the problem
of placing bids on keywords of their interests so their return can be maximised for a given
budget [122]. On both Google and Yahoo, in addition to the bids, the advertiser can also
specify a daily budget for each keyword such that every advertiser faces a budget optimiza-
tion problem. Muthukrishnan et al. assume that budget and the set of keyword are already
given in single slot case, search companies can predict probability distribution associated
with queries in the future with reasonable accuracy and measure the effectiveness of the
advertising campaign as the number of clicks. Under these premises, an advertiser has a
set T of keywords, with |T | = n, and a budget B. For each keyword i ∈ T , they are given
clicksi, the number of clicks that correspond to i, and cpci, the cost per click of these clicks.
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bi ∈ 0, 1 represents whether or not to bid on keyword i. The optimization objective is to
find a solution b = (b1, . . . bn) with a bid bi for each i ∈ T to maximise

value(b) =

∑
i∈T biclicksi

max(1,
∑

i∈T bicpciclicksi/B)
(2.10)

So maximising value(b) is equivalent to maximising the number of clicks in that the ad-
vertiser is under budget, and minimizing the average cost per click the advertiser is over
budget. They identify three stochastic versions to model the joint distribution of clicksi
corresponding to different keywords as random variables:

• Proportional Model, in which queries and clicks vary from day to day, but the pro-
portions of clicks for different keywords stay the same.

• Independent Keyword Model, in which each keyword comes with its own proba-
bility distribution for the number of clicks, and the samples are drawn from these
distributions independently.

• Scenario Model, in which there is an arbitrarily large number of scenarios, each of
which specifies the exact number of clicks for each keyword. One scenario is sam-
pled from a given probability distribution over scenarios, determining the numbers
of clicks for the problem.

Finally, they show that an optimal factional solution can be found in polynomial time in the
proportional model. For independent model, they present an 2+ε approximation algorithm
in polynomial time. For scenario model it is NP-hard to reach the optimum.

Zhou and Lukose [191] model the bidding optimization problem as an on-line (multiple-
choice) knapsack problem. By achieving a provably optimal competitive ratio, their algo-
rithm can be translated back to fully automatic bidding strategies maximising either profit
or revenue for the budget-constrained advertiser. To maximise revenue from sponsored
search, their bidding strategy can be ignorant of other bidder’s prices and/or click-through-
rates for those positions.

Given a daily budget, the advertiser would want to spend the money on the most prof-
itable keywords. There is, however, a trade-off between selecting too few profitable key-
words and not spending the entire budget versus selecting too many keywords and depleting
the budget too soon, and thus, losing opportunities to receive clicks from more profitable
keywords that may arrive later. Rusmevichientong et al. [151] formulate a model of key-
word selection where they develop an algorithm that adaptively identifies the set of key-
words to bid on based on historical performance. The algorithm prioritises keywords based
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on a prefix ordering sorting of keywords in a descending order of profit-to-cost ratio. They
show that if the cost of each item is sufficiently small compared to the budget, if the ex-
pected number of arrivals of any given keyword is not too large, and if the expected number
of searched keywords is close to its mean, then the average expected profit generated by the
algorithm converges to near-optimal profits. AstonTAC borrows the idea of prefix ordering
in the descending order of each keyword’s conversion profit.

2.2.3 Heuristic Rules

Heuristic rules are basic strategies that people employ in PPC (Pay-Per-Click) auction.
The most popular and fundamental rule is the spend limit over a period of certain length
typically one day. In TAC AA [84], a daily spend limit can be set for the whole ad cam-
paign including all keywords or every individual keyword. Several companies market bid
management by allowing clients to set higher level rules. Here are some examples from
www.gotoast.com:

• Relative positions: Allows your listing to always be a certain number of positions
above a particular competitor.

• Gap Jammer: Moves a bid price to one cent below your competitor. This one is
similar to competitor busting (CB) in the family of greedy bidding strategies. How-
ever, CB first identifies an optimal position on which the advertiser’s own utility is
expected to be maximised. If the optimal position is not 1, then the bid is set as high
as possible to maximise the competitor’s cost.

• Move to gap: Move to a gap greater than D in dollars. A ‘gap’ in an PPC auction ex-
ists when there are several groups of bidders whose bid prices are close to each other
inside each group and there is a much larger price gap between groups. Those gaps
are desirable places to move in because the bidder can avoid the intense competition
within a group and subsequent high cost.

• Time position: Set a position that you would like to maintain in the auction between
certain hours of the day.

Rules are useful for catching exceptions and implementing business logic on branded terms.
However, maintaining and adjusting rules for a large set of keywords amidst a continuous,
non-stationary auction can be really hard to manage.
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2.2.4 Large Scale Optimization

Kitts and Leblanc (2004) [95] develop an optimization-based strategy that also incor-
porates rules to exert finer control over the behaviour of certain keywords. They test the
model through bidding on real search engines. In the same advertising campaign, a human
marketing analyst manages the keyword auction in period-1 (01-08-2003 to 14-09-2003)
to the best he can and their bidding agent continues to operate period-2 (15-09-2003 to 30-
10-2003). In the end, period-2’s clicks approximately quadruples period1’s with an daily
expenditure decrease from $18.40 to $16.60.

In their model, they try to find a bk,t to assign to each keyword k, at each future time t.
This vector of prices, called the bid allocation plan, should have the property of maximis-
ing the summed profit during the planning horizon, while not exceeding a daily budget.
They first estimate unknown functions such as click function conditional on position and
position function conditional on bid and unknown parameters such as expected revenue per
click rk using historical data, then set constraints including daily budget, maximum bid
and minimum bid as mathematical inequations, finally solve the whole problem as integer
programming problem. The estimation of click function needs support of time similarity
function to decide weight of historical time ti’s observation on the forecast of future time t.
Instead of simply giving near time a larger weight and far time a smaller weight, they use
three kernels to cover hour similarity, day similarity and week similarity. It is interesting
because by doing so they automatically assume that users present similar behaviour for the
same hour of the day, same day of the week and same week of the year. Consequently,
weight on the same hour of different day may be more than the weight on an hour that is
further from the hour being forecasted but in the same day.

2.3 CAT Market Design and Analysis

Trading agent competitions are contributive in fostering and exchanging innovative
ideas among researchers [181, 159]. After investigating keyword auctions, our research fo-
cus is switched to the double auction mechanism by participating in another trading agent
competition – the CAT tournament.

2.3.1 Markets Designed by CAT Entrants

An initial representative work on CAT is IAMwildCAT [177] – the winner of the first
CAT tournament. It treats the market mechanism design as solving the problem of mul-



Chapter 2: Literature Review 23

tiple trade-offs in the mean time. It introduces the hybrid clearing strategy, which clears
shouts to maximise transactions in some rounds and profit in the others. It also takes mea-
sures to improve its profit-score conversion ratio. IAMwildCAT also tracks the absolute
value of daily overall profit and exploits it when it is small to obtain high profit share
score. Moreover, it introduces a side-biased pricing strategy, which gives benefit to the
under-represented side depending on the number of buyers and sellers participating in the
market. On this aspect, our work is similar but more focused on offering benefits to under-
represented intra-marginal traders.

PersianCAT, the winner of CAT-2008, proposes a method for estimating equilibrium
price based on market trend [75]. The method can produce more robust estimations than
using a sliding window to calculate an average of the recently matched ask-bid pairs [133].
Their work shows the importance of establishing a market on equilibrium price, which
leads to positive market outcomes given a sufficiently accurate estimation. In AstonCAT-
Plus, we extend PersianCAT’s method of equilibrium price estimation [75] by taking into
account the latest change in the market on the current day. Besides, Honari et al. [75] show
that instability in charging fees can cause negative market outcomes when comparing the
same markets with almost equal average fees throughout the game. They also show that
three factors contribute to the market stability: 1) an equilibrium based pricing policy; 2)
an equilibrium based accepting policy; and 3) a stable charging policy.

Lampros et al. [158] successfully calculate the global competitive equilibrium as op-
posite to the equilibrium of any single market. They continually keep track of the highest
bids, the lowest asks and the number of goods traded daily, and then form the global cu-
mulative demand and supply curves to compute the desired competitive equilibrium pair of
price and quantity. Their method is validated by a mean absolute error of less than 2% to
the theoretical global competitive equiblibrium. Based on this equilibrium, Mertacor (2008
version) identifies globally intra-marginal traders and implements a strategy to promote the
quality of traders in its market. In our AstonCAT-Plus, our method is based on the equilib-
rium of the single market. From our experiments, it can be seen our approach is not worse
than theirs.

Gruman et al. use classification techniques to determine the distribution of bidding
strategies used by all traders subscribed to a particular specialist. Their experiments show
that Hidden Markov Model classification yields the best results. Then, distribution of
strategies is used to determine the optimal action in any given game state. Data shows
that the GD [62] and ZIP [35] bidding strategies are more volatile than the RE [53] and
ZIC [63] strategies, although no traders switch specialists too easily. Finally, they propose
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an Markov Decision Process (MDP) framework for determining optimal actions given an
accurate distribution of bidding strategies.

Pardoe et al. [139] suggest a novel approach to mechanism design. Instead of relying
on analytical methods that depend on specific assumptions about bidders, they create self-
adapting auction mechanism in which parameters are adjusted in response to past auction
results. Their experiments show that the difference between the results of the adaptive
method and each fixed choice is statistically significant with 95% confidence according to
a paired t-test. What’s more, they demonstrate the efficacy of this approach in a situation
where a seller must choose from a space of sequential auctions in order to maximise its
revenue.

There are other investigations that concentrate on other aspects of market design in
CAT. Phelps et al. [145] use genetic programming to price transaction at an optimal point
in bid-ask spread based on which allocative efficiency can be maximised. Cliff [34] ex-
plores a continuous space of auction mechanisms defined by a parametrised version of the
continuous double auction, where the parameter represents the probability that a seller will
make an offer during any time slice.

2.3.2 Analysis on CAT Specialists

CAT competition is a very important approach to test different designs of double auction
mechanism. It alone usually cannot provide a complete view of the relative strengths and
weaknesses of different specialists because the performance of a specialist in the competi-
tion depends upon the composition of its opponents [132]. Hence, it is necessary to carry
out post-tournament analysis. [129, 130] provide a refined classification of the CAT-2007
entries based on their internal designs to the taxonomy covered by [187]. Using white-
box analysis, they attempt to relate market dynamics to the auction rules adopted by these
entries and their adaptive strategies through a set of post-tournament experiments. Using
black-box analysis, they reveal the strength and weakness of the specialists in several sce-
narios and demonstrated some vulnerabilities in entries placed highly in the competition.

Besides, Cai et al. [23] examine how standard economic measures, like allocative ef-
ficiency, are affected by the presence of multiple markets for the same goods. They find
that dividing traders between several small markets typically leads to a lower efficiency
than grouping them into one large market. Nevertheless, the movement of traders between
markets and price incentives for changing markets can reduce this loss of efficiency. [134]
also finds that generally the traders are attracted towards lower charging markets and these
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markets generate more profit.
In [129], the CAT developers introduce a specialist names MetroCat, which is devel-

oped based on the insights about the CAT game: 1) it is crucial to maintain a high transac-
tion success rate; 2) registration and information fees should be avoided; 3) intra-marginal
traders still stay with the market as long as they make a considerable amount of profit
through transactions after covering fees. Specifically, they use a history-based shout ac-
cepting policy developed based on GD trading strategy [62], which estimates the proba-
bility a shout would be matched, and only accepts those shouts with a probability higher
than a specified threshold. They demonstrate such a market can successfully beat all en-
tries in CAT 2007. However, their clearing strategy is not adaptive. Rather, our specialist
AstonCAT-Plus can adapt its clearing thresholds according to the change of a market status.
Although we did not run experiments to compare our market agent with those in CAT 2007,
generally speaking adaptive one should perform better than non-adaptive ones. Moreover,
Niu et al. [129] demonstrate some vulnerabilities of entries that placed highly in the 2007
CAT competition and provide a general approach to conducting experimental analysis of
similar competitive games.

Additionally, [157] particularly focuses on how market agents use registration fee poli-
cies to attract intra-marginal traders and drive out extra-marginal traders. They also study
how Nash equilibrium changes across two markets when one of them charges a registra-
tion fee. Robinson et al. [149] make an effort in analysing the generalisation abilities
of specialists in CAT 2008 and show that specialists are sensitive to several factors in the
competition, including the trading strategies distribution and scoring period. Compared
with the above investigations, our post-tournament experiments and analysis emphasise on
revealing the essential features of success specialists, such as the balanced trader structure
and the market share dominance regardless of trader mixtures.

2.4 Agent-based Financial Market Simulation

Our investigation of keyword auction and double auction is largely based in multi-agent
simulation systems. With these experience, we build a simulation of financial market using
an alteration of double auction model which particularly reflects the inconstant behaviour
of financial traders in terms of changing trading directions. Here we discuss the state of the
art in the field of computational economics.
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2.4.1 General Computational Finance

Agent-based computational economics (ACE) [167, 101], alternatively the micro sim-
ulation [103] is an important research field for understanding complex patterns, stylized
phenomena observed in economic systems especially financial trading systems. ACE em-
phasises the need to represent traders as individual agents in order to study the way macro
features emerge from individual interactions [15, 103]. It is able to tackle some limitations
of the analytical models in economics and finance [117]. Agent-based approaches attempt
to model the market as evolving systems of competing, autonomous interacting agents and
emphasise their learning dynamics [168, 99]. ACE has been successfully applied to various
economic studies [94, 6, 8, 4] and the most popular area should be computational finance
[170]. In this background, we are strongly motivated to create a financial market simulation
based on our experience in the research of double auction market and a specific angle of
viewing the financial market.

Over the last 30 years, there is growing literature attempting to model financial in-
teractions from the agent perspective in which the most influential work is probably the
Santa Fe Artificial Stock Market Institution (SFI) [7]. The SFI framework [101] employs a
rational expectations asset-pricing model, genetic algorithm learning, and Walrasian taton-
nement as the market clearing mechanism. Despite its influence, Santa Fe market is not
the first and has quite some contemporaries [36, 91, 58, 46]. These are followed by much
of the later literature in being concerned with the interaction of potentially destabilizing
trend following strategies and their interactions with others. [104] is another market exam-
ple which introduced constant relative risk aversion preferences along with varying agent
memory lengths. Moreover, the market of [11] introduce trading strategies based on neural
networks. [110, 93] and [31] provide relatively simple tractable dynamic frameworks for
agent interactions.

In the last ten years or so, more agent-based models have been proposed. Some focus
on agent strategies or characteristics, e.g., [160, 116, 51, 72]. For example, Yang [188]
investigates the convergence property in a double auction market where artificial neural
networks take on the role of traders, who form their expectations about the future return
and place orders based on their expectations. The author finds that the convergence of mar-
ket price is sensitive to the deviation from rationality of agents. This is quite similar to one
of our findings with BDA market: market efficiency largely comes from rational selection
of trading directions. He et al. [72] develop an algorithm that employs heuristic fuzzy rules
and fuzzy reasoning mechanisms in order to determine the best bid to make given the state
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of a continuous double auction market. Moreover, they show how an agent can dynamically
adjust its bidding behaviour to respond effectively to changes in the supply and demand.
The adaptive-aggressiveness strategy [176] is based on a short-term and a long-term learn-
ing of the agent’s bidding behaviour. For the short-term learning, the motivation was to
immediately respond to fluctuations in the market conditions. For long-term learning, the
motivation is to respond to more systematic changes in the market conditions i.e., market
shocks.

Some focus on market mechanisms, e.g., [147, 178, 29, 132, 139]. For example, Walia
et al. [178] use a self-adaptive Evolutionary Strategy (ES) to explore the space of possible
auction types in a CDA populated by Zero Intelligence Constrained traders and demon-
strate that non-standard variants of the CDA can provide favourable dynamics for trading
strategies. Some borrow ideas from statistical mechanics, e.g., [105, 111]. Some modelling
frameworks are inspired by Minority Games, e.g., [27, 156]. For example, Challet et al.
use the minority game model to study a broad spectrum of problems of market mechanism.
The central issue they are concerned about is the information flow: producers feed in the
information whereas speculators make it away. They claim market impact is shown to play
an important role and a strategy should be judged when it is actually used in play for its
quality.

In terms of whether portfolio management is involved in modelling artificial financial
market, we further detect two groups of paper: (i) mono-asset market [88, 86, 56, 127] and
(ii) multi-asset market [109, 89, 32, 25]. In addition, Brock and Hommes [20, 74] model
financial market as an adaptive belief system and point out a large fraction of chartists
tends to destabilize the market. Lux and Marchesi [112, 113] use mass-statistical approach
to represent traders and model agents in groups, switching the proportion of agents over the
alternatives in a stochastic manner. Danials et al. [41] describe a microscopic dynamical
statistical model for the continuous two-sided auction under the assumption of IID random
order flow. In the model of Franci et al. [57], traders do not only analyse historical data but
also take into account the forecast of other successful agents and news in order to formulate
their own trading intentions.

Apart form what’s mentioned above, there are recent work regarding financial market
simulation. Raberto et al. [147] create Genoa market in which they investigate stylised
facts of the limit order book and the distribution of waiting times between two consecutive
transactions. LeBaron [100] introduces a new framework extended from the pioneering
SFI mentioned above, which emphasises memory length as a key heterogeneity dimension,
and determining factors for convergence to homogeneous equilibrium pricing instead of
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learning speeds. Andre et al. [26] develop AgEx market to address the demand of trad-
ing strategies’ development and assessment in financial market. Veryzhenko et al. [172]
present ArTificial Open Market API (ATOM), which is developed as a large scale exper-
imental platform with generic architecture and heterogeneous agents populations. They
demonstrate a series of key points and principles that have governed the development of an
agent-based financial market in the form of an API.

In terms of modelling financial market, literature in quantitative finance has to be men-
tioned.

The prevalent theory of financial markets during the second half of the 20th century
has been the efficient market hypothesis (EMH) which states that all public information is
incorporated into asset prices. Any deviation from this true price is quickly exploited by
informed traders who attempt to optimize their returns and it restores the true equilibrium
price. For all practical purposes, then, market prices behave as though all traders were
pursuing their self-interest with complete information and rationality.

2.4.2 Double Auction Financial Market

When designing an agent-based market system, an important issue is how the price
of the good is formed. It can be given exogenously or generated endogenously by the
interaction of autonomous trading agents. Automated electronic markets with endogenous
prices frequently use auction protocols as the mechanism to determine prices of the goods
to be traded [141]. Double auction protocol is normally adopted to build both real financial
market and its simulations. Our BDA market project is an effort to simulate financial
market using a double auction model, in which we also create a high-performance kernel
trading strategy. Hence, our research is related to two types of literature: agent-based
computational simulations [183] which emphasises the model’s ability to replicate the real
market and double auction mechanism and strategy design which emphasises the model’s
ability to allocate resource efficiently.

From the aspect of double auction mechanism and strategy design, there are quite a few
previous literature that paves the way for our research of BDA market. Gode and Sunder
[63] claim that allocative efficiency of a double auction derives largely from its structure
so that “zero-intelligent” traders imposing budget constraints are sufficient to raise the al-
locative efficiency of these auctions close to 100%. Cliff [33] claims that more than zero-
intelligence is required to achieve efficiency close to that of markets with human traders.
[70, 115] study the effects of changes in supply and demand in the context of the New



Chapter 2: Literature Review 29

York Stock Exchange and [62] considers the performance of artificial trading agents under
varying conditions. Recently, TAC CAT tournament [22] opens a door to the exploration
of the optimal design of double auction market using competition approaches. However,
Chang et al. [30] point out that the success of a particular design of double auction market
is not independent of the distribution of trading strategies equipped by the traders. They
also discuss how to make a double auction market more efficient, robust and profitable by
setting effective rules from various aspects in the background of CAT tournament [29].

Additionally, the extended Glosten and Milgrom microstructure model [44] focuses on
the market makers’ quote-adjusting strategy. In this model, non-parametric density estima-
tion technique is proposed for maintaining a probability distribution over the expectation
of real stock value that market-maker can use to set prices. Our Kernel trading strategy
employs the same technique to maintain two probability distributions over the expected
transaction of both ask and bid. Blum et al., [12] examine the design of matching algo-
rithms with good worst-case performance within the framework of competitive analysis.
Bredin et al. [17] construct a general framework that facilitates a truthful dynamic double
auction from truthful, static double auction rules. Zhao et al. [190] develop computational
efficient matching algorithms using weighted bipartite matching in graph theory. Muchnik
et al. [121] introduce continuous time asynchronous model to simulate financial market
under the name of NatLab (asynchronous double auction). Simulations show that market
dynamics can be drastically changed by a small fraction of trend followers. Our BDA
market also features asynchronous order submission but our timing discrete currently.

In terms of trading strategy design in double auction market, we have reviewed many
popular existing ones including zero intelligence [63], ZIP [35], GD [62], RE [53], GDX
[165], Fuzzy logic based strategy [72], Adaptive-Aggressive bidding strategy [176] and
so on. Their details are given in Section 5.1.5. In above literature, trading directions of
individual agents in a double auction market are either generated randomly or pre-defined,
which drives us to create a market with dynamically-decided rational trading directions of
the agents.

In terms of making decisions in real financial markets, there are even more strategies
developed based on the data of real financial markets or high-level realistic simulation of
stock or foreign exchange markets such as SFI. Most of them use machine learning algo-
rithms combined with technical analysis indicators [106, 13, 189, 124] to generate trading
decisions. Neural network is a commonly studied approach [169, 92, 182]. Even though
these studies indicate that they outperform their benchmarks, the main problem with the
neural network approach is the difficulty of interpreting the trading rules generated, espe-
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cially in the case of complex networks with many nodes and hidden layers. In comparison,
genetic algorithm has the advantage that the rules are interpretable. For example, Lettau
[102] builds an agent-based financial market using simple agent benchmarks based on ge-
netic algorithms. Routledge [150] extends the basic framework of Grossman and Stiglitz
[68] with agents that can learn by using genetic algorithm. Reinforcement learning is an-
other popular approach. For example, in [10], order flow data is coupled with order book
derived indicators and pattern recognition techniques are employed to infer trading strate-
gies on the underlying time series. They show that using order flow and order book data is
usually superior to trading on technical signals alone. Moriyama et al. [119] successfully
test the application of reinforcement learning to trade on a futures market simulator (U-
Mart) of the large Japanese industrial companies (J30) index. In addition, support vector
machine is applied by Tay and Cao [162] giving more weight to more recent values and
show improved forecasting results of the S&P 500 index, and US and German government
bond futures than using moving averages and lagged prices.

In contrast to that many strategies take input of low frequency financial data e.g., daily
prices and returns, Creamer [38] proposes a high frequency trading strategy for equity
index futures. His agent uses the expert weighting algorithm [39] to forecast a price trend
as an input for a trading strategy based on a variation of a market maker strategy proposed
by [40]. It automatically calibrate a trading model using different versions of the same
technical analysis indicators because their approach takes advantage of boosting’s feature
selection capability to select an optimal combination of technical indicators and generates
experts at different moments of the trading cycle. The main objective of their algorithm
is to predict the return of the future contract in the next period. It combines the output of
several experts and suggests a short or long position. If the expected position is positive
(negative), the trading agent sends a buy (sell) limit order at prices slightly lower (higher)
than the bid price at the top of the buy (sell) order book less (plus) transaction costs. In
comparison to our BDA market, their trading directions signals more realistic because they
do rely on an assumed private value which still needs to be derived from other information
in practice. However, the general trading action structure is similar to ours, which is to
generate a trading direction first, then a price of order.



Chapter 3

Adaptive Strategy Design for TAC Ad
Auction

Sponsored search is one of the most cost-effective and efficient ways of advertising because
advertisers only pay when a user shows true interest in their advertised product by clicking
on their ads, which makes it the most popular advertising manner of search engines. The
success of such advertising approach should attribute to the introduction of GSP which
fairly prices ad slots through competition and efficiently determines allocations of adver-
tisement resources. This chapter discusses our research into the strategy design problem in
GSP. Specifically, we will describe TAC AA competition and explain how AstonTAC – one
of the most successful strategies in TAC AA is designed, implemented and evaluated. In
order to help readers understand this chapter and possibly replicate our agent, we provide
Appendix A to show our agent and experimental settings and Appendix B to list symbols
used in our agent design and description.

3.1 Sponsored Search and Ad Auction Competition

The investigation of sponsored search generally falls into three categories: 1) search
user behaviour modelling; 2) mechanism design faced by the search engine; 3) strategy
formulation faced by the advertiser. The Trading Agent Competition Ad Auction1 provides
an ideal test bed for advertiser strategies. In TAC AA, there are three kinds of agents: users,
publishers and advertisers. The behaviour of the users and publishers are generated by TAC
AA server according to some fixed stochastic policy [84]. There are eight advertiser agents

1http://aa.tradingagents.org
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Figure 3.1: Daily activities cycle in TAC AA.

(entrants to the competition) that compete against each other on ad placement for search
result given queries over 60 days of bidding periods.

In more details, agents represent retailers of home entertainment products featured by
three manufacturers (Flat, Lioneer and PG) and three components (TV, Audio and DVD).
Altogether, there are nine distinct products. A query generated by a user is a (manufacturer,
component) pair and unspecified manufacturer or component is denoted as ‘null’. In total,
there are 16 possible queries at three focus levels denoted by F0, F1, F2. The more specific
the query, the higher the focus level.

QF0 : {(null, null)}

QF1 : {(Flat, null), (Lioneer, null), (PG, null), (null, TV ),
(null, Audio), (null,DV D)}

QF2 : {(Flat, TV ), (Flat, Audio), (Flat,DV D),

(Lioneer, TV ), (Lioneer, Audio), (Lioneer,DV D),

(PG, TV ), (PG,Audio), (PG,DV D)}

On each day of the game and for each query type above, an auction is run to determine
the ad placements. Once an ad is clicked and leads to a customer transaction, it is called
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a conversion. Based on the focus levels, distributions of click probability Pclick, contin-
uation probability Pcontinuation (probability that a user proceeds to click the next ad), and
conversion rate Pconversion differ between queries. In addition, each advertiser is assigned
a Manufacturer Speciality (MS) and a Component Speciality (CS) in each game. If a query
matches MS, it will receive a high conversion value. If a query matches CS, it will receive
a high conversion rate. The number of conversion is softly constrained by Distribution Ca-
pacity Ccap. TAC AA introduces Ccap to impose the effect of diminishing marginal value
[84] of conversion: when the number of conversion exceeds Ccap, Pconversion starts to drop
and result in lower conversion profit due to the increased cost.

On each day of the game and for each query type, the advertiser agent submits a bid to
the publisher. Such a bid specifies the bid price (the maximum amount that an advertiser is
willing to pay for a click on his ad), the spend limit (the corresponding ad will be excluded
once the spend limit is reached) and the ad display type (either generic or targeted). At the
end of the game, agents are evaluated based on their cumulative surplus: sales profit less
cost they paid for all the clicks received in the game.

Figure 3.1 illustrates activities on each day of the game. On day d, each advertiser
agent first receives market reports of day d-1, then decides a bid for each query to submit
for day d+1. The publisher ranks bids submitted by different advertiser agents on day d-1
and works out a price per click to charge on each query for each agent. As users click on
ads and buy products from advertiser agents, the server collects every agent’s impression,
position, clicks, conversions, revenue and cost to generate market reports of day d. Bidding
period begins from day 0 and agents’ first bid submission is for day 1. Consequently,
market reports are available from day 2. Therefore, the first market report is for day 1 and
accessible from day 2.

According to specific settings of TAC AA, designing a successful agent mainly faces
two challenges: a) without knowledge of bid prices of other participants, what is the opti-
mal position and how to decide an appropriate bid price to target it? b) given indeterministic
conversion limit, how to maximise profit in terms of both number of conversion and con-
version value? To address the first problem, we find an alternative way to build bid prices
on Market-based Value Per Click (MVPC) which can be estimated based on system param-
eters or market reports. To overcome the second challenge, we estimate the true maximum
number of conversion allowed by distribution capacity and select only the most profitable
queries to bid on and fill the expected conversion allowance every day.
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Figure 3.2: Architecture of AstonTAC.

3.2 AstonTAC

In this section, we look into details of the design and evaluation of AstonTAC. Aston-
TAC is the runner-up in the Ad Auction Game of 2009 International Trading Agent Com-
petition. In particular, we focus on how AstonTAC generates adaptive bid prices according
to the Market-based Value Per Click and how it selects a set of keyword queries to bid
on to maximise the expected profit under limited conversion capacity. Through evaluation
experiments, we show that AstonTAC performs well and stably not only in the competition
but also across a broad range of environments.

AstonTAC is composed of four components: Agent Knowledge Base, Bid Price Gen-
erator, Query Selector and Ad Display Selector shown in Figure 3.2.

Agent Knowledge Base is designed to process, organise and record information from
the server and turn them into knowledge for other components to use. The information it
deals with can be divided into two categories: static information including setting parame-
ters and game initialisation information and dynamic run-time information such as market
reports received on daily basis. The other three components collectively generate the bid
B=〈b, l, t〉 for each query q and submitted as a bundle on each day of the game. In partic-
ular, Bid Price Generator (Section 3.2.1) calculates a bid price b. Query Selector (Section
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3.2.2) specifies a spend limit l. Ad Display Selector (Section 3.2.3) makes the choice of ad
display type t.

3.2.1 Bid Price Generator

Based on the availability of market reports, the whole game can be divided into two
phases: Phase One (day 0 and 1) and Phase Two (from day 2 to 59). Bid price generation
in both phases is based on the same concept - Market-based Value Per Click (MVPC) - of
each query.

Definition 1. A query’s MVPC is the expected conversion revenue minus advertising
cost that a click on its ad incurs.

We introduce MVPC because we find clicks a kind of special commodity as they are
not keepable. In an auction of normal commodity, the bidder is willing to pay up to his/her
valuation for an item because he/she can own the item after the payment. However, in a
keyword auction, clicks cannot be owned so that bidders always want to make a profit out
of them. For this reason, we believe MVPC is the true worth of a click to an advertiser. Un-
like the conventional Value Per Click [50, 174] which is the expected conversion profit of a
click, MVPC is much more dynamic by incorporating the advertising cost. Basically, if it
is assumed that revenue-per-click is independent of position [95] which is disapproved by
[61], MVPC still varies as cost-per-click (CPC) is expected to vary for different positions.
Moreover, due to conversion limit, one query’s conversion affects the others’ conversion
rates rendering the change of revenue-per-click such that MVPC reflects the real value of a
query in an interdependent multi-query environment. Therefore, if we can estimate every
query’s MVPC and set a bid price accordingly, our bids should automatically approximate
the best response to the market without explicitly targeting any position. MVPC is esti-
mated in two different ways for different phases of the game.

Phase One

In phase one, MVPC is estimated using expected revenue-per-click multiplied by a
fixed discount ratio rdiscount indicating the proportion of profit in revenue. The expected
revenue-per-click is a product of expected conversion value and conversion rate. Because
MVPC is based on static fundamental information, it is denoted as vstatic,q,

vstatic,q = Pconversion,q · vcon,q · rdiscount (3.1)
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The conversion value vcon,q in above formula is given by,

vcon,q =


USP (1 +MSB) if qm = MS
2
3
USP + 1

3
USP (1 +MSB) if qm = null

USP otherwise
(3.2)

where USP (Unit Sale Profit) is the standard conversion value, MSB=50% is MS
bonus rate [84] and qm denotes the manufacturer part of a query. The first line of the above
formula means qm=MS queries receive a 50% higher conversion value than the normal
USP . The second branch means qm=null queries has 1/3 probability to receive a higher
conversion value and 2/3 probability to receive a normal conversion value. The third branch
means if a query’s manufacturer part is a specific manufacturer other than MS, its conver-
sion value will be exactly USP .

Pconversion,q is calculated in a similar way,

Pconversion,q =


(1+CSB)πq
1+CSBπq

if qc = CS
2
3
πq + 1

3

(1+CSB)πq
1+CSBπq

if qc = null
πq otherwise

(3.3)

where qc denotes the component part of a query,CSB=50% is CS bonus rate and πq denotes
the baseline conversion rate of query q which is determined by q’s focus level. F0 queries’
baseline conversion rate is 0.1. F1 queries’ baseline conversion rate is 0.2. F2 queries’
baseline conversion rate is 0.3. On this basis, if qc=CS, a superior conversion rate calculated
by a η function η(x, y) = xy

xy+(1−x) where x=πl and y=(1+CSB) will apply. If a query’s qc
is null, it has 1/3 chance to receive the superior conversion rate because generally 1/3 user
population’s preference matches the advertiser’s CS. If a query’s qc is a specific component
other than the advertiser’s CS, its conversion rate will be exactly its corresponding πl.

The discount ratio rdiscount in Formula 3.1 is a value between 0 and 1. The best rdiscount
is chosen so that AstonTAC’s accumulative profit in the first five day of the game is max-
imised in experimental games.

By now, vstatic,q has been found. Apparently, queries with relatively high vstatic,q are
expected to produce more profit on each conversion and vice versa. Since slightly higher
bid price does not necessarily raise the cost due to the features of Generalised Second Price
[50, 54] mechanism, it is sensible to set high bid prices for relatively high-value queries to
increase their chance of receiving top positions. To counterbalance the possible increase
of conversion from high-value queries under restricted total conversion, relatively low bid
prices should be set for relatively low-value queries. To this end, hv,q (80% ≤ hv ≤ 120%)
is introduced to enforce the heuristic. In addition, higher Ccap means more conversions
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and clicks are acceptable. Therefore, we also introduce hc ∈ {85%, 100%, 115%} so that
AstonTAC generally bids lower when Ccap = 300 or higher when Ccap = 500. Together
bid of each query in phase one is given by,

b0,q = vstatic,q · hv,q · hc (3.4)

where hv,q varies with the static MVPC of q and hc varies according to the assigned distri-
bution capacity from game to game.

Phase Two

In phase two, dynamic MVPC of query q is denoted by vdynamic,q, which is calculated
according to the dynamic market reports. Consequently, a query’s bid bq in phase two is
built on its vdynamic,q and adjusted by distribution capacity adapter δ and ranking mecha-
nism adapter βq simultaneously:

bq = vdynamic,q · δ · βq (3.5)

Dynamic MVPC Formula 3.6 incorporates information about a query’s revenue, cost and
clicks from recent W days, where W is the size of aggregation window for distribution
capacity (Specifically, W = 5), to calculate the average profit of a click so far as the
expected profit a click can possibly make on the next day:

vdynamic,q =

∑d−W
i=d−1 revenueq,i −

∑d−W
i=d−1 costq,i∑d−W

i=d−1 clickq,i
(3.6)

We aggregate W-day data for two reasons: (i) Ccap takes effect on the basis of W-day ag-
gregate number of conversion. (ii) it reduces the unwanted fluctuation of vdynamic,q caused
by system dynamics. As a result of the above formula, vdynamic,q is highly responsive and
adaptive to the change of environment represented by three key factors:

1. Search user population - deciding the baseline number of possible clicks, conversion
and revenue

2. Competition intensity - deciding ad rank and cost-per-click

3. Conversion probability - deciding number of clicks needed to generate a conversion

The rationale behind is that we map the above three factors to the three components
revenue, cost and clicks respectively in Formula 3.6. Revenue is an indicator of user popu-
lation - a larger number of active users tend to generate more revenue assuming other two
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factors are fixed. Cost is an indicator of competition intensity - assuming user population
is fixed and Ccap is not filled, the severer the competition, the more it costs to maintain
the same position. Finally, number of clicks is an indicator of the conversion probability
- excess conversion beyond Ccap causes lower Pconversion, which means more clicks are
needed to generate the same number of conversions for any query.

Distribution Capacity Adapter Distribution Capacity Adapter is designed to adapt our
bid prices to Ccap ∈ {300, 400, 500} a decisive factor in TAC AA explicitly. It strongly
confines the advertiser’s potential profit by affecting conversion rates. According to the
focus levels, each agent’s each query is set a default Pconversion,def by the server. During
the game, once W-day accumulative conversion exceeds Ccap, the timely conversion rate
Pconversion,t will start to drop below Pconversion,def . When Pconversion,t is sufficiently low,
clicks will make losses rather than profits because users only click on the ad but almost
never make a transaction. Hence, there is a trade-off between number of conversions and
conversion rates at which a critical number of conversionCcrit(Ccrit > Ccap) occurred such
that profit of next conversion equals to its cost. The aim of setting a bidding constraint is to
keep them both high so that accumulative profit can be maximised. Ccap is a soft constraint
because exceeding Ccap does not stop conversion but only reduce its probability. Ccrit can
be estimated (see Section 3.2.2) but cannot be used here because bids are only allowed to be
changed daily rather than every time a conversion happens. Eventually, the ratio δ between
Ccap and expected W-day aggregate conversion by day d denoted by cagg,d is found to be a
suitable indicator of bid adjustment over vdynamic. To obtain δ, cagg,d is first estimated using
weighted average,

cagg,d =

∑0
t=d−1(wt

∑t−(W−1)
i=t ci)∑0

t=d−1wt
(3.7)

where exponential weight wt = ωd−t−1 (0 < ω < 1) and ci denotes total conversion from
all queries on day i. Then the adjustment factor δ is given by,

δ =
Ccap

cagg,d
(3.8)

The intuition behind δ is: if δ > 1, Ccap is expected to be under-filled on day d, then all
bids are increased by δ, then the number of clicks is expected to increase as well as the
subsequent conversions on day d+1; if δ < 1, all bids are reduced for the opposite effect.
In this game, δ falls in the range between 0.6 and 1.8.
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1. Prefix-ordering queries.
2. Estimate conversion allowance Cw,d+1 for day d+1.
3. Estimate expected conversion of each query cq,d+1 on day d+1.
4. Identify a bidding set of queries A = {1, . . . , s}, s ∈ {1, 16}:

4.1. IF Cw,d+1 ≤ 0 THEN A = φ; GOTO 5.
ELSE initialise s to 1.

4.2. WHILE
∑

q∈A cq,d+1 < Cw,d+1 and s < 16

DO s = s+ 1.
4.3. A = {1, 2, . . . , s}.

5. Set l =∞ for each q ∈ A and l = 0 for each q /∈ A.

Table 3.1: The algorithm of query selector.

Ranking Mechanism Adapter Ranking mechanism adapter adjusts the bid price further
by taking into account of the ranking mechanism adopted by the publisher. TAC AA em-
ploys a squashing parameter χ(0 ≤ χ4 ≤ 1) initialised at the beginning of each game
to interpolate between two extremes: χ = 0 is equivalent to rank-by-bid and χ = 1 is
equivalent to rank-by-revenue [97]. Specifically, given eq as the estimated click through
probability by the publisher for query q and bq as the bid on q, the ranking score is calcu-
lated as bq(eq)χ. In order to adapt our bid prices to the dynamic ranking mechanism ranking
mechanism adapter β is introduced and unknown eq (eq employed by the publisher is not
revealed to the advertiser) can be estimated using the aggregate Click-Through-Rate (CTR)
and denoted as e′q,

βq =
(
1 + e′q

)−χ
=

(
1 +

∑d−1
i=0 Clickq∑d−1

i=0 Impressionq

)−χ
(3.9)

Based on βq, bid price bq stays unchanged if e′q = 0, or χ = 0. Otherwise, bq is reduced with
increase of either e′q or χ.

3.2.2 Query Selector

Given limited conversion capacity, query selector selects only a set of queries to bid on
such that the expected available conversions are allocated to the queries that can potentially
generate high profit. The following table shows the selection process.

As we can see, the output of query selector is a set of spend limits. Selected queries are
not restricted by a spend limit so that their spend limit is set to infinite. Unselected queries
will not be active on day d+1 so that their spend limit is set to zero. The intuition here is:
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by estimating conversion allowance, the maximum number of conversion before expected
conversion profit drops to zero is revealed; by prefix-ordering and selecting first s queries
to put in the bidding set A, we make sure the allowance is used by high-profit queries only.
How Step 1, 2 and 3 work is explained in the remaining of this section.

Prefix-ordering Prefix-ordering [151] is used to sort and prefix queries in the descending
order of their profit-per-conversion (PPC). A query’s PPC is calculated as follows,

PPCq =

∑0
i=d−1 revenueq,i −

∑0
i=d−1 costq,i∑0

i=d−1 conversionq,i
(3.10)

where values of variables are obtained from market reports.

Conversion Allowance Referring to the discussion of distribution capacity adapter in
Section 3.2.1, expected conversion allowance is the difference between Ccrit and conver-
sions of four recent days including day d which can be estimated as cagg,d − cd−4, (cagg,d is
given by Formula 3.7). Once Ccap is exceeded, every additional conversion lowers timely
conversion rate Pconversion,t by λ = 0.995. Hence, we model Ccrit as Ccrit = Ccap + n

where n is the number of additional conversions by which Pconversion,t reaches a critical
value Pconversion,crit such that expected conversion revenue equals to conversion cost (clicks
needed to generate a conversion times CPC). At this equilibrium point, n is maximised and
additional conversion will start to make a loss rather than profit. Since both conversion
revenue and CPC differ across queries, we introduce general conversion revenue v′con as
the average revenue with respect to total conversion and general CPC c′click as average cost
with respect to total clicks from all queries,

v′con =

∑0
i=d−1

∑
q∈all revenueq,i∑0

i=d−1
∑

q∈all conversionq,i
(3.11)

c′click =

∑0
i=d−1

∑
q∈all costq,i∑0

i=d−1
∑

q∈all clickq,i
(3.12)

Mathematically, the equilibrium point can be presented as,

v′con = P−1conversion,crit · c′click (3.13)

Since Pconversion,crit equals to Pconversion,std × λn, we have,

n = logλ
Pconversion,crit
Pconversion,std

= logλ
c′click

v′con · Pconversion,std
(3.14)
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where Pconversion,std is an average of baseline conversion rates weighted by the distribution
of both queries and search population towards different focus levels. n decreases with c′click
because the larger the conversion cost the less excess conversion is needed to reach the
equilibrium point. n increases with v′con because the larger the conversion revenue, it takes
more excess conversion to bring Pconversion,t down from Pconversion,std to Pconversion,crit.
Once n is found, conversion allowance Cw,d+1 is available too,

Cw,d+1 = Ccap + n− (cagg,d − cd−4) (3.15)

Expected Conversion We model expected conversion of each query on day d+1 as a
product of expected impression, click probability and conversion rate,

cq,d+1 = impressionq,d+1 · Pclick,q,d+1 · Pconversion,q,d+1 (3.16)

impressionq,d+1 is estimated based on impressions occurred on query q in last Pr−1burst =

10 days where Prburst is the search population burst rate. Pconversion,q,d+1 is estimated as a
product of Pconversion,q given by Formula 3.3 and

√
δ (δ is given by Formula 3.8),

Pconversion,q,d+1 = Pconversion,q min
(

1,
√
δ
)

(3.17)

Pclick,q,d+1 is dependent on the relevant bid which is already generated by bid price gen-
erator and stored in knowledge base. We first estimate an exponential function [95] for
each query to map bid to position. Then we infer Pclick,q,d+1 according to distributions of
click probability and continuation probability provided in the game specification of TAC
AA 2009.

3.2.3 Ad Display Selector

Finally, we discuss how to choose an ad display type tq between Generic and Targeted
for a query q. Generic ad leads to query’s system default click-through-rate whereas tar-
geted one can either brings the effective click-through-rate over or under the system default
one depending on whether query’s component part matches user’s underlying component
preference. Our following heuristic rule works well in the competition:

tq =

{
Generic if qc 6= CS and qm 6= MS
Targeted if qc = CS or qm = MS (3.18)

Based on this rule, for (non-MS,CS) queries or (MS,non-CS) queries, targeted ad will cause
a lower-than-default click probability from the users whose underlying product preference
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disagrees with our product speciality. However, this is not a truly adverse result. First,
users with another component preference are less likely to buy our specialised component.
It is pointless to display a generic ad which increases the odds of clicks leading to more
cost. Secondly, if a user with different manufacturer preference purchases a product made
by our specialised manufacturer, as the manufacturers do not match, our profit is only the
standard value. Because the underlying query is a MS query, we expect more clicks coming
from users with the same preference to purchase MS products and yield a larger profit of
USP(1+MSB). Since distribution capacity is limited, for users with different manufacturer
preference, we would rather like them less likely to click on our ads such that the chance
of their low-revenue-same-cost conversion becomes smaller.

3.3 Evaluation

In this section, AstonTAC is analysed from two aspects: competition results to identify
the successful properties and three controlled experiments to test robustness of our agent.

3.3.1 Game Results and Analysis

In TAC AA 2009, AstonTAC ranked 2nd out of 15 teams in both qualifying games and
the final. In the final, 40 games were played on server one and server two simultaneously.
We download logs of all forty games run on server one for analysis in which we are particu-
larly interested in the top three agents - TacTex, AstonTAC and Schlemazl - whose average
scores in the final are $79886, $76281 and $75408, respectively.

We start with a correlation test to see whether agent’s profit potential is affected byCcap.
It turns out correlation coefficient between Ccap and average profit is over 97.7%. This
proves the importance of adapting bidding strategies to Ccap. Such strong correlation also
implies that it is only appropriate to make comparison of performance between agents based
on same setting of Ccap or identical number of each different Ccap in case of analysing
aggregate results.

As can be seen in Figure 3.3, AstonTAC performs the best in terms of revenue genera-
tion. We believe there are two reasons. First, we set high bid prices for high-value queries
to target top positions. High-value means high expected profit per click and top position
brings maximum number of clicks. Second, we suppress low-profit conversions by bidding
less on low-value queries and selecting only profitable keywords to bid on. Moreover, for
AstonTAC and TacTex, profit forms a clear ascending trend against capacity whereas for
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Figure 3.3: Average revenue and profit of top three agents.
The left vertical axis shows the revenue and the right vertical axis shows the profit. The four

groups of bars, from left to right, represent the averaged revenue of agents with different capacity:
overall (all games), 300, 400 and 500 respectively. The three curves show the correlation between

the profit and capacity for each of the three agents.

Schlemazl there no significant profit increase from Ccap = 400 to Ccap = 500. The par-
ticularly low profit and revenue at Ccap = 500 indicates that Schlemazl did not sufficiently
exploit its conversion space in high capacity. With 25% incremental capacity brought by the
change of Ccap from 400 to 500, Schlemazl’s average number of conversion only increases
by 0.96%. By contrast, TacTex’s increase rate is 12.3% and AstonTAC’s is 14.23%.

CTR is one of the most important criteria to judge whether an on-line advertising cam-
paign is successful. Furthermore, in rank-by-revenue mechanism, high historical CTR can
raise rank and reduce payment for the same bid. In TAC AA, high CTR is particularly

(a) (b) (c)

Figure 3.4: (a) Average CTR (b) Average CPC (c) CPC/CTR of AstonTAC, Schlemazl and
Tactex.
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Figure 3.5: Click through rate against capacity.

preferred because parameter χ is closer to 1 than 0 meaning that the ranking mechanism is
more by-revenue than by-bid. Based on this, we set high bid prices for high-value queries
to target the 1st slot and highest possible CTR. Conversely, our high CTR results in com-
paratively low CPC. Figure 3.4 shows although our average cost per click is larger than the
other two, but our advantage in CTR justifies it. The smallest CPC/CTR means our cost
increasing speed against CTR is slower than the other two. To sum up, the rise of cost is
dominated by the rise of revenue, our strategy benefits more from increased revenue than
suffers from increased cost.

Higher Ccap offers the advertiser larger capacity to deal with conversions and subse-
quently more clicks can be accepted before effective Pconversion seriously decays. Therefore
increasing CTR against Ccap should be expected in successful strategies. Figure 3.5 shows
all top three agents have the increasing trend. This trend of AstonTAC is most prominent
suggesting its strong adaptivity.

TacTex and AstonTAC are two most successful agents in the competition. But their
bidding patterns are distinct from each other as shown by Figure 3.6. We call AstonTAC’s
pattern surf pattern and TacTex’s one jigsaw pattern. Surf pattern makes relatively stable
revenue with stable cost every day. In particular, a successful surf pattern agent like As-
tonTAC can manage to make constantly high profit, meanwhile speculate chances to make
even more. Jigsaw pattern makes very high or very low even zero profit intermittently.
Other agents’ behaviour can also be generally classified into these two categories. Munsey,
epflagent typically show a surf pattern and the others show a jigsaw pattern. The reason
behind the different patterns is the different ways of treating capacity constraint. Surf pat-
tern aims to maintain a relatively stable amount of conversion everyday to make sure the
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Figure 3.6: Distinct bidding patterns shown by AstonTAC (wave pattern on the left) and
TacTex (jigsaw pattern on the right).

Figure 3.7: Different variances of top three agents in terms of daily conversion.

lowest probability of critical total conversion limit not to be violated and loss not to be
suffered. Jigsaw pattern does its best to precisely estimate and sufficiently exploit conver-
sion allowance for any given day. Once it detects that its W days conversion capacity has
been completely run out within W − 1 days, it stops biding for one day to let its capacity
recover. Even jigsaw pattern finally wins, we still believe that surf pattern has its special
merits especially in real world.

After all, our strategy works not because it makes sky-high profit someday but because
it consistently makes large profit while other agents could earn nothing periodically. In
addition to the second-best profit score, AstonTAC also features lowest-variance in daily
conversion. Figure 3.7 demonstrates this through visualizing daily conversions of Aston-
TAC, TacTex and Schlemazl in a typical final game in which they fortuitously had same
Ccap and gained very similar accumulative profit. As Figure 3.7 shows, with statistically
identical mean, AstonTAC’s standard deviation is only 55.9% and 51.2% of that of TacTex
and Shlemazl, respectively. This should largely be attributed to behaviour associated with
Ccrit which stetches our ability of making conversions even when Ccap is exceeded.
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Table 3.2: Settings of post-tournament ad auction games.
Exp. Participants Capacity Setting Iterations

A AstonTAC, TacTex, Dummy ×6 Game default 80
B AstonTAC, TacTex, AstonBB, Game default 80

AstonRules, Dummy ×4
C AstonTAC, TacTex, Dummy ×6 Identical Ccap 15

3.3.2 Controlled Experiments

In order to see whether AstonTAC works well in a broader range of environment such as
competing with other agents than participants in TAC AA, we have purposefully designed
three controlled experiments. Table (3.2) shows settings of each experiment.

Experiment A and B are set in the same way of TAC AA. What is changed is the partic-
ipating agents. In Experiment C, all agents are assigned identical Ccap ∈ {300, 400, 500}
in each game.

Experiment A

AstonTAC is the overall winner in Experiment A. In fact, out of 80 games, AstonTAC
won 54 whereas TacTex only won the rest 26. Figure 3.8 shows that not only AstonTAC
has won more games, but also its winning margin is larger. In particular, there are six
games that AstonTAC wins with a margin of over 20000 whereas TacTex has none of these
cases. AstonTAC’s average score is 50263(±7944.6) whereas TacTex got 45439(±8254.9).
Besides, the deterioration of return-on-investment and cost-per-click comparing with com-
petition results for TacTex are more than that of AstonTAC. We believe our relatively stable
performance is in connection with the unpredictable environment caused by dummy agents
who are expected to exercise stochastic bidding. Because our bids are based on query’s
value, AstonTAC is less affected by environmental unpredictability than other agents. In
this experiment, both AstonTAC and TacTex’s overall performances are worse than that in
the final suggesting that the best social welfare can only be achieved when every agent bids
wisely.

Experiment B

Two more agents are introduced in Experiment B: AstonBB and AstonRules. AstonBB
is initially developed essentially based on balanced bidding strategy [24]. AstonRules em-



Chapter 3: Adaptive Strategy Design for TAC Ad Auction 47

Figure 3.8: Winning margin and frequency comparison for experimental game 690-769.
Columns above zero are for AstonTAC, columns below zero are for TacTex (Experiment A).

ploys heuristic rules to infer bid according to the position each query receives in each
round. AstonTAC is the overall winner again but with a very small margin over TacTex.
However, our strategy seems quite superior for high capacity as AstonTAC’s average profit
at C500 is $3185 more than TacTex. We believe both Distribution Capacity Adapter and
Query Selector contribute significantly to this result. As for query selector, the algorithm
works better at high Ccap because prefix decision gets preciser with larger capacity. As the
number of intelligent agent increases in the game, TacTex’s performance tends to increase
rapidly whereas AstonTAC’s performance keeps stable. It implies that TacTex may have
the ability to recognize the bidding pattern of other intelligent agents and act accordingly to
undercut the intelligence of their strategy. In contrast, AstonTAC’s strategy is holistically
built on the basis of dynamic market-based value per click, which does not need to target
any specific position such that it cannot be easily undercut. For this reason, it appears to
present stable and reliable performance in whatever environment especially unpredictable
ones.

Experiment C

In this experiment, agents performance can be compared directly because capacity bias
is eliminated. Out of a total of fifteen games, AstonTAC has won ten (2/3). A table in Ap-
pendix D shows the details of each agent’s CTR and profit in each iteration. AstonTAC’s
average profit is $50412 and TacTex’s average profit is $47269. In most games, we have
observed TacTex gradually picks up and forms its jigsaw profit pattern once it found its dis-
cipline whereas AstonTAC’s pattern is usually formed after five days. Furthermore, Figure
3.9 shows that TacTex’s click-through-rate forms a declining trend against capacity while
AstonTAC’s trend is ascending which is more compatible with intuitions. Our attention
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Figure 3.9: Different CTR trend against change of distribution capacity (Experiment C).

to the most crucial game parameter Ccap and adaptive bidding strategy designed through
different components accordingly should be the reason. For the same reason, this is why
AstonTAC’s profit increases with capacity is always more significant.

3.4 Conclusion

AstonTAC has shown to be successful and stable across a wide range of settings of
TAC AA environments in both the competition and controlled experiments. In particular,
we attribute the success of AstonTAC to the strategy used by the bid price generator and
the query selector. Market-based Value Per Click reflects the dynamic change of the market
and thus leads to the generation of flexible and adaptive bidding prices.

Although strategies employed by AstonTAC are tailored to the specific context of the
TAC AA, due to the similar features of the TAC AA and the real sponsored search scenario,
many concepts developed for AstonTAC are broadly applicable to an advertiser agent in a
real sponsored search scenario. Firstly, the concept of MVPC suits any keyword auction as
long as the advertiser aims to make a profit out of clicks after deducting his advertising fees.
Secondly, the algorithm of selective bidding suits any advertiser who has a large number of
choices on keywords and a constraint whether it is budget or order processing capacity or
something else.

In a multi-keyword scenario especially when keywords are also interdependent, it is
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essential to view the set of all possible queries as a whole while conceiving a strategy. Se-
lective bidding is one of the ways. MVPC itself is a direct reflection of the market status.
Therefore, MVPC-based bid prices are flexible enough to produce a robust performance
in almost any circumstance. Given a limited conversion capacity, knowing how much fur-
ther we can go beyond it gives us the ability of grabbing the largest possible number of
conversion to extend our profit space.

3.5 Future Work

As mentioned in Section 3.1, we summarise three research directions in sponsored
search: user behaviours modelling, auction mechanism design and advertiser strategy for-
mulation. In the trading agent competition, we have been focusing on the advertiser strategy
with the goal of maximising the accumulative profit of the ad campaign. Our MVPC-based
adaptive strategy has been proven successful in the specific scenario of TAC AA. Even the
real sponsored search e.g., Google Adwords has many different features like some infor-
mation we can easily obtain from market reports may not be available and the bid price
can be changed at any time, the essential ideas in AstonTAC are still useful. When the
constraint is changed from distribution capacity to a limited daily budget, our new strategy
should consider a maximisation of number of conversions while not exceeding the maxi-
mum summed expenditure that we are allowed per day. The combination of heuristic rules
and large-scale budget-constraint optimization seems to work well in the real pay-per-click
auction like Yahoo Search Marketing. Therefore, we plan to integrate our MVPC-based
strategy with Kitts’s approach [95].

In addition, we can try different machine learning techniques to generate more ac-
curate estimation of unknown functions e.g, click-conditional-upon-position function and
position-conditional-upon-bid function. Revenue-conditional-upon-click-through is one of
the most difficult parameter to estimate because of the rarity of sales events. Kitts et al.
[95] assume that if a customer manages to click through to the site, their probability of
generating revenue will be the same after arriving, regardless of the time of their click (e.g.,
mid night versus midday), or the position from which they click. With this assumption,
revenue-per-click can be calculated as a simple average. However, based on the finding
of Ghose and Sha [61], the independence assumption does not necessarily hold. Instead,
the conversion probability is influenced by the position of the ad on the screen, keyword
specific characteristics (retailer, brand and length), the landing page quality score and the
time of the click. In our conversion probability model, we may try to include the three
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most significant covariants identified in [61]: rank, retailer and brand. Brand information
decreases the conversion rate significantly. Retailer information increase the conversion
rate significantly. The conversion rate monotonically increases with the rank (position).

Last but not the least, we will design experiments to test the generalisation ability of the
three most successful agents in TAC AA 2009: TacTex, AstonTAC and Schelamazl. When
other advertisers realise that there is a more profitable bidding strategy, it is rational for
them to switch to the better ones. Therefore, it is interesting to see whether the successful
strategy in heterogeneous competitive environment can be generalised. We only test the top
three strategies because they are most likely to be adopted by other advertisers in a keyword
auction campaign. Our question is which of these three strategies generates the highest so-
cial welfare. Specifically, we will run homogeneous game in which each of the three top
agent is replicated and complete with itself only in every individual game. By comparing
the aggregate profit made in each game between games with different homogeneous adver-
tiser population, we hope to reveal which strategy is the best in terms of maximising social
outcome and investigate why one strategy generalises better than the other.

Proposal of Multi-item Keyword Auction

Apart from advertiser strategy formulation, even more researchers put their effort in
designing a better keyword auction mechanism, which is why the mechanism has evolved
from the original generalised-first-price and rank-by-bid to the present generalised-second-
price and rank-by-revenue. A new and better mechanism can enhance both the advertisers’
utility and the users’ satisfaction. Therefore, search engines companies incorporate more
and more information into the ranking mechanism in order to induce an automatic be-
haviour of truth bidding and ad quality improving from the advertisers. Ultimately, better
ads improve the user experience and in turn attract more users to click on the ads such that
both the advertiser and the search engine can benefit financially from users’ clicks.

Billions of people are using the search engine and see the sponsored links everyday, a
small improvement of the keyword auction mechanism can make a huge difference. Being
aware of the significance of improving auction mechanism, we try to spot problems in the
current keyword auction designs that can be improved. Currently advertisers can only bid
on and pay for clicks. The publisher chooses the “click” because it is the item that balances
the interest and risk of both advertisers and publishers. However, this also means both ad-
vertisers and publishers have to compromise. Advertisers have to pay for clicks that do not
lead to conversion. Publishers are not paid at all no matter how many times an advertiser’s
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ad is shown but not clicked. The biggest argument made by the advertiser is: clicks are
worthless without conversion. Hence, most advertisers prefer to pay for conversions di-
rectly, which is not liked by the publisher because conversion is every difficult to quantify
from the publisher side. If search engine can find an effective and impartial way to esti-
mate a user’s conversion probability after click-through, offering pay-per-conversion will
definitely attract a lot more advertisers. On the other hand, if the goal is brand awareness,
it is beneficial to the advertiser to show an advertisement without being clicked. So there
is a dispute over the importance of CTR [18, 73]. Some advertisers may not care how the
CTR is as long as his ad is shown when users search the keywords of their interest. This is
the case especially when the ad link is in the form of logo images or brand names.

After identifying the demand of payment against a variety of items, we propose an the
multi-item keyword auction which allows advertisers to freely choose what to pay for. As
discussed, there are three different items to pay for in an Internet advertisement: impres-
sions, clicks and conversions. So our new mechanism allows advertisers to bid on any of
these three items and positions are allocated according to equivalent pay-per-impression
price. In order to convert pay-per-click and pay-per-conversion to a price of pay-per-
impression, the publisher will have to estimate both the click-through-rate and conversion
probability of an advertiser. Here, we better use an example to explain our idea:

If bidder A bids 5 pence per impression and bidder B bids 200 pence per
click and has an estimated CTR of 0.05, B’s equivalent pay-per-impression
price is 200 × 0.05 = 10 such that B will be placed above A. If bidder C
bids 20 pounds (2000 pence) per conversion and has an estimated conversion
probability of 0.1 and an estimated CTR of 0.06, his bid is equivalent to 2000×
0.1× 0.06 = 12 pence per impression, C will be placed above both A and B.

Assuming a default CTR and conversion probability can be obtained based on exist-
ing data, every new advertiser’s pay-per-click bid or pay-per-conversion bid can be con-
verted into an equivalent pay-per-impression bid for ranking. Existing advertisers’ CTR
and Pr(conversion) can be updated hourly mainly based on the statistics of impressions,
clicks and conversions. Out of these three metrics, only the conversion data cannot be
collected directly by the publisher. So it is designed to be submitted by the advertisers
voluntarily. However, the publisher does not need to worry about that advertisers provide
false conversion report because it is the advertiser’s job to balance between reporting too
many conversions and reporting too few conversions. If they report too many, they benefit
from increased estimated conversion rate of next round but suffer from paying for every
conversion they report. If they report too few, they benefit from saving on the conversions
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that they should pay for, but suffer from a much lower estimated conversion rate for next
round which significantly increase their cost of bid to stay in the desired positions. Review
is made on hourly basis, so eventually, advertise should converge to the rational behaviour
– reporting the actual number of conversion. In case that some advertiser do not report
conversions at all when they bid on conversions only, some minimum charge depending on
the clicks they have received should be applied.

Advertisers in this mechanism have the incentive to improve their ad relevance and
quality if they want a position in the sponsored link list because a bad record of CTR or
Pr(conversion) automatically lead their ad to a lower position. There is a way to guarantee a
good position regardless of CTR or Pr(conversion) which is to directly bid for impression.
If an advertiser prefer to receive a stable position, he should choose pay-per-impression. If
an advertiser prefers a stable cost against fluctuation of CTR, he should choose pay-per-
click. If an advertiser does not want to waste money on impressions or clicks, he should go
for pay-per-conversion.

In the new regime, advertisers are not restricted to submit a bid on only one of the
three items. Instead, they can submit bids on a combination of the three bidding items.
For example, a combinatorial bid can be: 1 penny per impression, 10 pence for click and
15 pounds per conversion. Finally, payments are calculated based on the bid profile. For
the above bid, if the advertiser receives 100 impressions, 12 clicks and 1 conversion (as
reported by the advertiser) in an hour, his payment for that hour will be:

1× 100 + 10× 12 + 1500× 1 = 1720(pence)

For next hour, this advertiser’s CTR and Pr(conversion) will be reviewed based on the
historical data. Consequently, if his bid is not changed, his rank will be calculated based
the updated CTR and Pr(conversion). The above payment is calculated based on the first-
price scheme. We believe it is easy to transfer it to the second-price one if necessary.

To sum up, what is exciting about this multi-item keyword auction is its multi-item
feature. Because different advertisers have different demands, it offers them freedom bid
and pay for what an advertiser really cares about. Moreover, CTR and Pr(conversion)
are important in deciding an advertiser’s rank, which gives the advertiser an incentive to
improve the quality their ad, website, products and services.



Chapter 4

Mechanism Design of Double Auction

This chapter focuses on the design of double auction mechanism. Specifically, we will
present details of AstonCAT-Plus - a successful e-market specialist designed for and tested
in the TAC CAT environment.

After briefly describing the CAT tournament, we will present the details of AstonCAT-
Plus. We have carried out experimental analysis in a wide range of CAT environments
for different purposes. To evaluate AstonCAT-Plus, two types of experiments are con-
ducted: heterogeneous games and head-to-head games. In heterogeneous games, we com-
pare agent’s performance in terms of not only scoring metrics used for CAT competition
but also allocative efficiency and convergence coefficient. Through head-to-head games,
we show the strength and weakness between two competing market specialists. AstonCAT-
Plus performs well (ranked 2nd) in both games, particularly in terms of allocative efficiency
and transaction success rates. Through the controlled experiments, our specialist design is
shown to be highly effective across a wide range of game profiles.

Apart from the analysis of game results, we have also run trader distribution analysis
on heterogeneous games to gain insights about double auction mechanism design. More
specifically, we investigate what market mechanism is the most attractive to the traders
in a competitive environment. We find that a successful specialist needs to maintain a
high market share and a high proportion of intra-marginal traders (see the definition in
Sec 4.2.3). Furthermore, we also analyse how the balance between buyers and sellers in
a market affects its performance. It turns out that a specialist of market performs well if
the side-balance rate (see Eq 4.15) is low and with small variance because more trades
are produced in such a market. To conclude, a successful market not only needs large
trader-population but also balanced trader-profiles.

After investigating the features of an efficient specialist of double auction market, we
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proceed to analyse whether the performance of a specialist is affected by the trading strate-
gies employed by the traders. In terms of experimentation, we design seven game profiles.
One of the seven represents perfectly balanced trading strategy distribution and the other
six either have a dominant strategy or strategy combination. The experimental results show
that there does not exist an optimal specialist in the ones that we have tested that can con-
stantly beat all others regardless of the trading strategy distribution; rather, different spe-
cialists have their preferred trading strategy (i.e., a specialist performs significantly better
if their preferred strategy dominates the market).

In order to help readers understand this chapter and possibly replicate our agent, we
provide tables in Appendix C to summarise variables and parameters used in our agent
design.

4.1 CAT Market Design Tournament

This section briefly recaps the basic points of CAT. In the CAT tournament, There are
two principal entities: trader agents that could be either buyers or sellers, and specialist
agents that are double auction market where these traders make deals. All the traders are
provided by the tournament organiser, but the specialists are developed by the competition
entrants. The platform of the tournament is JCAT [131], a client-server implementation of
the Java Auction Simulator API (JASA) [144], which provides additional support for the
operation of multiple markets [22]. This platform uses CAT protocol (CATP) detailed in
[135] to regulate communication between the CAT server and clients.

Each trader is equipped with a trading strategy and a market selection strategy. The
trading strategy determines their bidding behaviour and the decision making process of
selecting their offers (or shouts) in a market. The tournament organiser has implemented
four most studied bidding strategies of ZI [63], ZIP [35], GD [62], and RE [128]. The
market selection strategy specifies traders’ behaviour of selecting a market for their trading,
which is typically based on their history of making profit in each market. A small number
of traders select markets randomly. For those traders who do not randomly select market,
they treat the problem as an n-armed bandit problem,1 and solve it using either an ε-greedy
exploration policy or a softmax exploration policy [161]. Each trader is endowed with a set
of goods to trade and a reservation price (the maximum price willing to purchase for a buyer

1N-armed bandit problem takes its name from a traditional slot machine where an arm represents a lever.
When multiple levers are pulled, each lever provides a reward drawn from a distribution associated with that
specific lever.
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or the minimum price willing to sell for a seller). Traders can be distributed symmetrically
or asymmetrically with respect to their strategies. Based on a pre-set range, traders’ private
values of reservation price are normally identically, uni-formally distributed and remain
constant during each game. However, the specialists cannot know the strategies and private
reservation prices of their traders since they are supposed to be private in reality.

The design of a market specialist is to specify the following policies [22]:

• Shout Accepting Policy. It determines which shouts are accepted.

• Clearing Policy. It determines the way in which bids and asks are matched.

• Pricing Policy. It determines the transaction price of matched bids and asks.

• Charging Policy. It sets the fees charged to traders and other specialists who wish to
use the services provided by the specialist. This kind of fees have the following five
types:

– Registration fees: a charge for registering with the specialist.

– Information fees: a charge for receiving market information from the specialist.

– Shout Fees: a charge for successfully placing bids and asks.

– Transaction fees: a flat charge for each successful transaction.

– Profit fees: a share of the profit made by traders, where a trader’s profit is
calculated as the difference between the shout and transaction price.

A CAT game lasts 500 simulation days in both CAT-2010 and our experiments. Each
day consists of 10 trading rounds, each of which lasts for a known constant length of time.
At the beginning of each day, specialists announce their fees and traders decide upon which
market to register with for that day. Once they make their decisions, the traders cannot
switch to another market specialist during that day.

The evaluation of a market specialist is carried out daily against three metrics: (i)
market-share (i.e., the percentage of the total trader population registered in the market),
(ii) profit-share (i.e., the ratio of the daily profit obtained by the assessed specialist to the
profit of all specialists), and (iii) transaction success rate (i.e., the percentage of the shouts
accepted that result in transactions). The daily score of each specialist is the mean value of
these three metrics [22]. The game score of a specialist is the sum of their daily scores of
500 simulation days that a game lasts.
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Figure 4.1: AstonCAT-Plus architecture.

4.2 AstonCAT-Plus

This section details the management strategies of AstonCAT-Plus. Figure 4.1 shows
its architecture. The four strategies correspond to the clearing policy, shout accepting pol-
icy, pricing policy and charging policy, respectively. The shout engine registers, sorts and
classifies the accepted shouts. It couples tightly with clearing strategy to determine how
to match bids with asks. The auctioneer acts as a coordinator assembling and passing in-
formation requested by other components. The market client deals with communication
issues with the CAT server. Finally, the market equilibrium estimator generates the cur-
rent estimated equilibrium price, which is referred to by the clearing, accepting and pricing
strategies of the market specialist. In this section, we will present their details one by one.

4.2.1 AstonCAT-Plus Equilibrium Estimation

The equilibrium price of a market is a price at which the quantity demanded and the
quantity supplied are the same [138]. An equilibrium based market mechanism can reduce
the fluctuation of transaction prices and achieve a high overall efficiency in their market
[133]. So, in order to allocate goods efficiently and price transactions fairly in a market, it
is pivotal to find an effective way to estimate its equilibrium price. Our estimation method
is based on running sliding windows on two independent streams of market information.
One is the history of transaction prices, from which we find short-term equilibrium price
ps. The other is the history of daily maximum transacted asks and the minimum transacted
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bids [75], from which we calculate long-term equilibrium price pl.
When calculating ps, we use a higher weight for more recent transactions over a short

window because ps is supposed to be reactive to the instant changes of market conditions.
Let the last executed transaction be the kth transaction of the game, then ps is calculated as
follows:

ps =
k∑

j=k−Wshort+1

pjtωj (4.1)

where Wshort = 5 is the size of the sliding window, pjt denotes the price of the jth transac-
tion and

ωj =
0.9k−j∑k

j=k−Wshort+1 0.9k−j
, (k −Wshort < j ≤ k) (4.2)

pl is actually the rolling average of the middle ground between maximum transacted
ask (denoted as a) and minimum transacted bid (denoted as b). For calculating pl, we set
equal weight on every element over a relatively long window (typically 20) because that
way a long-term shifting tendency of market prices can be well reflected. That is, after
trading day z is closed, pl is given by:

pl =
1

Wlong

z∑
i=z−Wlong+1

ai + bi
2

, (z ≥ Wlong) (4.3)

where Wlong denotes the sliding window size and when z < Wlong, z itself is used as the
window size. Once the value of pl is obtained, it will be used for the next trading day.

Hence, we can see that ps contains only a few transactions’ information and gets up-
dated dozens of times a day, whereas pl reflects several days’ information and gets updated
only once a day. Thus, by combining ps and pl, we can obtain a good estimation of equilib-
rium price, which can the balance well the long-term and the short-term market tendencies.
That is, the estimated equilibrium price, denoted as p̂∗ can be given by:

p̂∗ = psωs + pl(1− ωs) (4.4)

where ωs is the weight of ps and the weight of pl is (1− ωs).
According to the allocative efficiency of 60 heterogeneous games which are run with

an ωs ranging from 0.1 to 0.65 by a step of 0.05, we finally set ωs to 0.3 because it results
the highest mean allocative efficiency. ωs keeps constant during later experiments.

In fact, the above method of local equilibrium price estimation brings us very satisfac-
tory results. As shown in Table 4.5 (see Section 4.3.1), our transaction prices, which are
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Figure 4.2: Demonstration of AstonCAT-Plus’s shout accepting strategy.
The shaded areas are accepting ranges. The arrows pointing to the equilibrium price indicate

directions towards which accepting thresholds shift during a day.

normally our estimated equilibrium prices according to our pricing strategy, deviate from
the theoretical ones by only 6.205 (i.e., 6.28%), which is small comparing with that of
other specialists except Mertacor. Moreover, AstonCAT-Plus achieves the highest alloca-
tive efficiency meaning that our traders obtain 95.76% of the maximum profit that they can
possibly get. Therefore, formula (4.4) and its weight setting are effective for estimating
market equilibrium.

4.2.2 Pricing Strategy

Our pricing policy simply sets a transaction price to p̂∗ if p̂∗ lies inside the bid-ask
spread because it implies where demand trades off supply. In the case that p̂∗ falls outside
the spread, our transaction price is set to the bid or ask price, whichever is closer to p̂∗ to
avoid a negative transactional profit to one of the two traders. Here the term of transactional
profit is defined as the profit generated by the difference between bid and ask price. It is
different from the concept of trader profit, which is defined as transaction price minus
seller’s private value or buyer’s private value minus transaction price. Compared with side-
biased pricing policy [177] which basically gives benefit to the under-represented side,
equilibrium pricing effectively rewards the intra-marginal (see definition in Section 4.2.3)
side in a transaction rather than the side of less quantity. Being short in number does not
change an extra-marginal trader to an intra-marginal one in CAT environment.

4.2.3 Shout Accepting Strategy

The shout accepting strategy decides whether a shout can be placed in our market. On
one hand, a large shout accepting range can significantly increase the burden on the match-
ing policy [129] and decrease the market efficiency. On the other hand, a small accept-
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ing range can rapidly drive potential traders away for the sake of not providing sufficient
trading opportunities. Due to the existence of extra-marginal sellers (buyers) whose pri-
vate reservation prices are above (below) the market equilibrium price and intra-marginal
sellers (buyers) whose private reservation prices are below (above) the equilibrium price,
the accepting policy aims to reject unmatchable offers from extra-marginal traders. It is
not possible to retrieve the private values directly such that equilibrium price estimation
cannot be 100% accurate although we aim to accurately estimate it. For this reason, our
accepting thresholds are set around p̂∗ (see Figure 4.2) so that the probability of rejecting
intra-marginal shouts by mistake can be reduced.

Firstly, it is impossible to estimate the underlying equilibrium price accurately with
incomplete information. So our estimated equilibrium price may deviate from the actual
one. What’s more, with intelligent bidding strategies (e.g., GD, RE and ZIP), intra-marginal
traders may attempt extra-marginal shouts to increase their profits. If their shouts cannot
get transacted, they will modify the shouts to be more competitive in later rounds. In other
words, intra-marginal traders do not always submit intra-marginal shouts in the first place.
Therefore, an accepting threshold should have a certain level of tolerance around p̂∗. To
this end, we set p̂∗(1 + α) and p̂∗(1 − α) as ask and bid thresholds respectively, where α,
called slack rate, determines the degree of openness of the accepting policy.

We decrease slack rate α with transactions such that the more the transactions, the
tighter the thresholds become. On one hand, a smaller value of α will result in fewer ac-
cepted shouts and consequently less transactions than it should be. On the other hand, a
larger value of α will result in excess extra-marginal shouts and unfair matches between
extra-marginal shouts and intra-marginal ones. Moreover, a too-open policy would reduce
transaction success rate due to lots of unmatchable shouts [177]. So, to make a proper trade-
off, at the beginning of each day, a large value of α is used to encourage shout submissions,
which is important for maintaining market share; and then as transactions are executed,
intra-marginal shouts (goods) are consumed, thus the probability of new shouts being sub-
mitted by intra-marginal traders and extra-marginal shouts being matched becomes lower
and lower, and therefore a decreasing α can effectively block unmatchable shouts from
extra-marginal traders and improve transaction success rate. As a result, AstonCAT-Plus
achieves the highest transaction success rate in heterogeneous games of the controlled ex-
periments (see Section 4.3.1).

Because a transaction involve at least one intra-marginal shout, the more transactions
the less the intra-marginal shouts are in our market. Shifting thresholds towards p̂∗ create
a easy environment at the beginning to encourage shout submission when intra-marginal
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traders have many goods to trade, and make extra-marginal shouts more and more difficult
to be accepted when intra-marginal traders have less and less goods to trade.

An ideal initial value, α0, of the slack rate is found via experiments between 0.15 and
0.35. Because the number of the buyers and sellers are usually not exactly symmetric, a
bias to the side that is inadequately represented would give the fewer side more freedom
and result in a more balanced ask and bid profile. The initial value, α0,s, of seller’s slack
rates and the initial value, α0,b, of buyer’s slack rates need to be updated daily according to
the following formulas:

α0,s = α0

(nb+ns)
2

+ (β − 1)ns

βns
(4.5)

α0,b = α0

(nb+ns)
2

+ (β − 1)nb

βnb
(4.6)

where ns and nb are the average number of sellers and buyers over last 5 days respectively,
β ∈ [2, 5] is used to flatten the result such that the output will not be absurdly far from 1
even if there is a large difference in quantity between buyer and seller. And in the above for-

mulas, actually
(nb+ns)

2
+(β−1)ns

βns
and

(nb+ns)

2
+(β−1)nb

βnb
are the bias ratios of sellers and buyers,

respectively.
During a day, α0,s and α0,b are deducted by a small amount ε at every transaction until

their pre-defined limits: ls = 1.05 and lb = 0.95. Thus, the ask and bid accepting thresholds
τs and τb can be calculated as follows:

τs = p̂∗max{1 + (α0,s − ntε), ls} (4.7)

τb = p̂∗min{1− (α0,b − ntε), lb} (4.8)

where nt is the number of transactions happened by the time of the calculation on that day.

4.2.4 Clearing Strategy

After deciding which shouts to be accepted into the market, AstonCAT-Plus will need
to decide how to match the accepted shouts and when to convert matches into transactions
by using its clearing strategy. AstonCAT-Plus’ clearing strategy is a combination of CDA
(Continuous Double Auction) and TPT (Transaction Profit per Transaction) based clearing
strategy, called TPT-CDA clearing strategy. With the CDA scheme, the market is cleared
continuously because a transaction takes place as soon as there is a matchable pair of bid
and ask. With the TPT clearing scheme, a market is cleared less frequently than with
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the CDA one. However, the TPT one still belongs to the category of continuous clearing
mechanism compared with Clearing House, which clears all matches at one price by the
end of a fixed period (e.g., a round).

In our system, the transaction profit per transaction (TPT), denoted ρ, is calculated as
follows:

ρ =

nmatch∑
i=1

(pbi − psi)

nmatch
(4.9)

where pb and ps denote prices of matched bid and ask and nmatch is the number of matched
shout pairs that is equivalent to the number of transactions if they are cleared. Clearly,
a trader’s transaction profit per transaction is different from its real profit per transaction,
which cannot be observed by the market specialist because traders’ reservation prices are
private. However, the manipulation of transaction profit helps to guarantee deep intra-
marginal shouts some minimum real profit so that the chance that deep intra-marginal
shouts being exploited by extra-marginal shouts can be effectively reduced, which makes
deep intra-marginal traders happier in our market.

Furthermore, from experiments we observe that an adaptive trader has a tendency to
offer a price that is close to their private reservation price in order to be competitive in our
market. Hence, by promoting traders transaction profit, their real profit is likely to be lifted
too as long as they do not pay too much fee out of their transactional profit. Subsequently, if
traders make more profit in our market, they will be more likely to return to our market. As
for specialist, a high transaction profit per transaction can directly result in a high specialist
profit given the same profit fee rate.

With above analysis and speculations, our TPT clearing scheme is designed. It clears
matches as long as minimum average transaction profit can be generated from matched
shouts. Under TPT scheme, matched shouts pairs within the same set of shouts can be
arranged to prevent low-profit or extra-marginal transactions. In practice, we use the TPT
clearing scheme only for the first three rounds of a trading day when majority of new shouts
are submitted during this period. After the three rounds, trading opportunities are massively
reduced as submitted orders have been fulfilled and every trader’s trading entitlement is
limited. Accordingly, our clearing scheme switches to the CDA one to offer intra-marginal
traders the greatest chances to exchange their remaining entitlements within the time left.

A vital issue before clearing is how to match accepted shouts. The two main approaches
are: (i) Equilibrium Matching (ME) [186], which is commonly used due to its ability of
maximising transaction profit; (ii) Max-volume Matching (MV) [60] which aims to max-
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1. IF ‘SHOUTPLACED’ event occurs THEN
2. shout engine sorts matched bid-ask pairs
3. IF round < 3 THEN /* clear market using the TPT clearing scheme */
4. flag = true
5. calculate average value, denoted ρ̃, of TPT for matched bid-ask pairs
6. IF matched shouts contain extra-marginal ones THEN flag = false
7. IF flag = true AND average ρ > θs THEN trigger clearing
8. ELSE IF flag = false AND average ρ > θl THEN trigger clearing
9. ELSE IF matching volume > ntrader

10nmarket
THEN trigger clearing

10. ELSE trigger clearing /* clear market using CDA */

Table 4.1: Pseudo code of AstonCAT-Plus’ market clearing strategy.

imise the transaction volume of a market (noticing their procedure does not always produce
a maximal matching), but it causes the diversion of intra-marginal traders in a competitive
environment because they often suffer profit-loss as being matched with extra-marginal
traders. So, we choose ME-based four-heap algorithm [186]2 as our shout engine imple-
mentation for both TPT and CDA stages. Then, using our clearing strategy, AstonCAT-Plus
can offer intra-marginal traders more profit.

Normally all shouts do not arrive at the same time and so their matching problem is dy-
namic. The traders’ entitlements are small and their private reservation prices vary widely,
so transaction quality (i.e., transaction profit per transaction) is as important as transaction
quantity. Thus, AstonCAT-Plus employs the TPT clearing scheme to improve transaction
quality in the first three rounds, and then employs the CDA one to maximise transaction
quantity for the remaining rounds. This combination is shown to complement each other
and work well to achieve both high transaction quality and quantity in CAT environment.
The complete TPT-CDA clearing algorithm is displayed in Figure 4.1. In Section 4.3.1, the
average profit of each trader of each specialist are compared to confirm the effectiveness of
our TPT-CDA clearing strategy.

Table 4.1 illustrates AstonCAT-Plus’ clearing mechanism. There ntrader is the total
number of traders and nmarket is the total number of specialists. Two different limits θl and
θs are employed for minimum transaction profit per transaction. Extra-marginal transac-
tions3 do not get executed unless their average value of transaction profit per transaction is

2Four-heap shout engine basically organises shouts into four sorted stacks: (1) Unmatched asks in ascend-
ing order, (2) Unmatched bids in descending order, (3) Matched asks in descending order, (4) Matched bids
in ascending order.

3Extra-marginal transactions are transactions that involve extra-marginal shouts and the opposite is de-
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larger than θl. The value of θs is considerably smaller than that of θl such that intra-marginal
transactions have the priority to be cleared unless their profit is too small. However, as
matching volume increases, we should not hold the matches for too long because the quan-
tity of transaction is also important in order to maximise traders’ total profit in our market.
Therefore, the statement on line 9 in Table 4.1 sets a point where the matches are cleared
regardless of their transaction profile per transaction. The value of θs and θl is related to the
value distribution of traders’ private reservation prices. The smaller the value of the private
reservation, the smaller transaction profit per transaction, and therefore smaller θs and θl;
and vice versa. Assume that seller (buyer) will not attempt an ask (bid) under (over) his
private reservation price, the highest attempted bid (bt) and the lowest attempted ask (at)
over a number of days will give an indication of the value distribution of traders’ private
reservation prices, which confine the maximum value of transaction profit. Accordingly, θs
and θl are set to 2% and 16% of (bt − at), respectively.

An example of our TPT clearing mechanism is as follows:

• Assuming p̂∗ = 100, θs = 2 and θl = 16.

• At time t, suppose matched shouts are: (bid:120; ask:115), unmatched shouts are:
(bid:85,bid:110; ask:125). Because matched shouts contain an extra-marginal ask
(ask:115), θl applies based on our algorithm. Transaction profit per transaction ρ =

120− 115 = 5 < θl and so current match(es) are not cleared.

• At time t + 1, suppose a new shout (ask:105) is placed, shout engine sorts matched
shouts. Matched shouts are: (bid:120; ask:105), unmatched shouts are: (bid:85,
bid:110; ask:115, ask:125). Because matched shouts still contain an extra-marginal
ask, θl applies again. Transaction profile per transaction ρ = 120 − 105 = 15 < θl

and so current match(es) are still not cleared.

• At time t+2, suppose another new shout (ask:90) is placed, matched and unmatched
shouts are re-sorted. Matched shouts are: (bid:110, bid:120; ask:90, ask:105), un-
matched shouts are: (bid:85; ask:115, ask:125). For current matched shouts, Trans-
action profit per transaction ρ = (30 + 5)/2 = 17.5 > θl. That is, the clearing
condition is met and so current match(es) are now cleared.

fined as intra-marginal transactions. An ask (bid) over (under) estimated equilibrium is identified as extra-
marginal shout by AstonCAT-Plus.



Chapter 4: Mechanism Design of Double Auction 64

Figure 4.3: Hierarchical market-adaptive stabilized charging strategy.

In the above example, by using our TPT clearing mechanism, we achieve the aver-
age value of 17.5 for transaction profit per transaction in our market and the unmatched
shouts left are all extra-marginal ones, which is desired. However, if the same shout se-
quence is cleared immediately, the cleared matches will change to (bid:120; ask:115) and
(bid:110; ask:105). Consequently, the transaction profit per transaction becomes ((120 −
115) + (110 − 105))/2 = 5, which is less than 1

3
of the average value of transactional

profit per transaction that is generated by our TPT mechanism. Furthermore, the remaining
unmatched shouts (bid:85; ask:90,ask:125) contain an intra-marginal shout ask:90, which
is undesired.

4.2.5 Charging Strategy

The charging policy selects the type and the amount of the fees that the registered
traders should pay to obtain market services [158]. Out of five fee types explained in
Section 4.1, AstonCAT-Plus charges the type of profit fee only. Our experiments show that
a free-entry market is more attractive to the traders and thus can lead to a higher market
share.

As shown in Figure 4.3, our charging strategy consists of three hierarchical levels of
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rules.4 The rules at the upper level dominate the rules at the lower ones such that fee
updates fired by lower level rules are constrained within a rational range and direction
defined by upper levels. Level-1 rules are set based on our current market share target
completion that is a ratio between AstonCAT-Plus’ current trader ncur which is the average
trader quantity of last 15 days and trader target, i.e.,

ntar =
ntrader
nmarket

(4.10)

where ntrader is the total number of traders and nmarket is the total number of e-market
specialists in a game. Level-1 functions to confine fees to a rational range instead of updat-
ing fees directly. Level-2 determines the direction of fee modification according to market
trend, which is identified using market trend ratio, i.e.,

rt =
ncur

n̄traders
(4.11)

where n̄traders is the all time (From Day 0) mean of AstonCAT-Plus’ daily number of
traders. When rt > 1.16, it indicates an up market trend. When rt < 0.92, it indicates
a down market trend. And when 0.92 ≤ rt ≤ 1.16, it indicates no market trend and
thus the decision will be made by using Level-3 rules, which also determines step size of
fee updates. The parameter for setting Level-3 rules is called moving trend identified by
moving trend ratio rv, which is weighted ncur with higher weight for more recent days
over ncur. When rv > 1.06, it indicates an up moving trend, rv < 0.97 indicates a down
moving trend, and when 0.97 ≤ rv ≤ 1.006, it indicates no moving trend. Combining with
decisions made by level-2 rules, appropriate updating step sizes are selected.

Our hierarchical rules have three important properties that correspond to three basic
requirements on fees: rationality, adaptivity and stability. Firstly, level-1 rules guarantee
that fees are never irrational with respect to a reliable market share evaluation no matter
what updates are triggered in other levels. Moreover, level-1 rules make sure our fee range
corresponds to the right level according to our market share. Secondly, our fee can be
further adapted according to the market trends by using level-2 and level-3 rules. Thirdly,
a market trend is identified only if the change is significant. Furthermore, deciding an up
trend is more cautious to identify an up trend than to identify a down trend, step sizes chosen
to raise fees are smaller than those chosen to reduce fees. All these measures together
effectively guarantee the stability of our fees against high volatility of market dynamics.
By using the hierarchical rules, the balance between large market share and high profit is

4Actually our system can be viewed as a kind of knowledge-based agent system [108].
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Figure 4.4: Profit fees of AstonCAT-Plus in comparison with its market shares (Data from
heterogeneous game iteration 8).

achieved. Figure 4.4 shows the level of profit fee we charge in iteration 4 of heterogeneous
games. By comparing with AstonCAT-Plus’s market share, we can see both the adaptivity
and relative stability of our profit fee.

4.3 Evaluation

This section analyses the performance of AstonCAT-Plus through a variety of controlled
experiments and reveals some sights into the design of an effective CAT specialist. Seven
specialist agents (see Table 4.2) are included in our experiments.5 Three types of experi-
ments are conducted: heterogeneous games, head-to-head games and distribution games. In
heterogeneous and distribution games, AstonCAT-Plus competes with five opponent spe-
cialists developed by other institutes. In head-to-head games, AstonCAT-Plus competes
with only one specialist given in Table 4.2. The first two types of games are similar to the
experiments conducted in [132], through which we attempt to test AstonCAT-Plus’ perfor-
mance against its opponents and relate market dynamics to our adaptive auction strategies.
The third game explores every specialist’s properties with respect to different trader’s strat-
egy distribution.

5Since AstonCAT-Plus is designed for CAT-2010, we mainly include CAT-2010 agents and the latest ver-
sion of known successful agents by 2010. The binary code of all agents including AstonCAT and AstonCAT-
Plus are available for download at http://www.sics.se/tac/showagents.php.
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Specialist Name Description
Mertacor Winner of CAT-2010
Jackaroo Runner-up of CAT-2010
TWBB 5th in CAT-2010
PersianCAT Winner of CAT-2008
IAMwildCAT CAT-2008 Final
AstonCAT CAT-2010 Final version of Day 3, ranked the 5th
AstonCAT-Plus CAT-2010 Post-tournament version

Table 4.2: Specialists used in controlled experiments.
PersianCAT and IAMwildCAT are the latest version available for download at TAC agent
repository visited by 30.01.2012. They are chosen due to their outstanding performance in

previous CAT tournaments.

Our experiment setting is the same as that of CAT-2010: 500 days each game and 10
rounds each day, and an ε-greedy market selection strategy (ε = 0.1, α = 1) for each trader.
However, all the 500 days are set as scoring days in order to see the performance of each
specialist in every stage of a game. Moreover, ten iterations, instead of three in CAT-2010,
are run for each game to obtain more statistically significant results. When showing results
of an individual game iteration, the representative iteration is selected randomly.

4.3.1 Heterogeneous Games

The heterogeneous games in our experiments are similar to those in the CAT tourna-
ment. We set the total number of trading population to 240. Given six specialists in a game,
the number of traders per market is set to 40, which is approximate to that of the CAT com-
petition 2010. In order to eliminate any possible bias, the traders are uniformly distributed
on the four provided trading strategies of ZI, ZIP, RE, and GD (the default setting of the
CAT server). In addition to score metrics, we include allocative efficiency and convergence
coefficient to measure efficiency and stability of each market mechanism. We have also in-
troduced some new evaluation metrics like average trader profit to reveal exclusive features
particularly related to agents’ clearing strategies.

Overall Performance

In heterogeneous games, AstonCAT-Plus is ranked the 2nd according to the overall
scores (see Figure 4.5), and its average overall score of 10 iterations is only 1.71% lower
than Mertacor (winner of CAT-2010) but 29.96% higher than the next best agent Jackaroo
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Figure 4.5: Score comparison for heterogeneous games (AstonCAT is not in heterogeneous
games).

(runner-up of CAT-2010). Statistically, AstonCAT-Plus’ leading over other entrants is sig-
nificant due to a very small p value (p value� 0.0001) in one tail paired t-test against each
of them. Specifically, from Figure 4.5 we can also see that the market share of a specialist is
a vital factor for its overall performance as its rank of overall score is monotonically asso-
ciated with its market share. Hence, undoubtedly the primary target for each specialist is to
maximise its market share. On this aspect, Mertacor significantly outperforms every other
specialist, while AstonCAT-Plus achieves the second best. And they together dominate the
global market because their total market share (56.63%) is considerably more than the total
of the rest specialists. A large market share leads to a large number of transactions. By
charging a small profit fee (around 4.15% averagely), Mertacor and AstonCAT-Plus made
the highest profits too. By comparison, PersianCAT charged 20% profit fee but only ob-
tained 64% and 56.8% of the profit score of AstonCAT-Plus and Mertacor, respectively. So,
a small amount of fee charged on a large number of transactions is more effective than to
charge high fees, which could sacrifice the transaction quantity of the market in terms of
total profit maximisation.

Transaction Success Rate

AstonCAT-Plus achieves the highest transaction success rate among all the specialists
based on the aggregated results of 10 heterogeneous games. As Table 4.3 shows, it is the
only specialist that gained a more than 90% of average transaction success rate through-
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Table 4.3: Transaction success rates summary for heterogeneous games.

out heterogeneous games. We can also see that AstonCAT-Plus and Jackaroo outperform
Mertacor by 4.1% and 6.2% respectively in terms of transaction success rate. Our success
on transaction success rate attributes to the shifting threshold accepting strategy, which can
block unmatchable extra-marginal shouts submitted by extra-marginal traders outside our
market effectively as trading progresses.

The standard deviation of a specialist is calculated based on its daily transaction success
rate. According to standard deviations, AstonCAT-Plus and Mertacor facilitate transactions
at a stable success rate throughout every game. This gives their traders a stable expectation
on chance of transaction, which we believe is one of reasons why traders choose their
markets. Moreover, after further analysis of the games, we find that the both markets
usually grow from low to high, and stabilise after a period of time. The possible cause
is that we both try to favour intra-marginal traders and intra-marginal transactions rather
than high transaction success rate. At the beginning of a game, both intra-marginal and
extra-marginal traders are arbitrarily distributed in each market, the transaction success
rates cannot be very high in order to prevent too many extra-marginal transactions.

Effects of TPT-CDA Clearing Strategy

This section analyses the effects of our clearing strategy, particularly TPT clearing strat-
egy. Our method is to compare each specialist’s average trader profit. This is proper be-
cause our purpose of introducing TPT clearing strategy is to promote trader profit. So, if
AstonCAT-Plus can achieve a high average trader profit, then the new clearing strategy is
effective. The average trader profit, denoted ρ̃t, of a market can be defined as follows:

ρ̃t =
ρ̃r × ñt

2
(4.12)

where ρ̃r denotes the average real profit per transaction of the traders in the market and ñt
denotes the average transaction number per trader in the market. In the above formula, there
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Figure 4.6: Average Trader Profit Per Transaction. Data are from the 8th iteration of the
heterogeneous games.

is a denominator 2 because each transaction involves 2 traders: one buyer and one seller.
The average real profit per transaction and the average transaction number per trader are
not only the components of the average trader profit of a market but also two meaningful
criteria for evaluating a market’s performance or quality. Therefore, we will compare the
markets against these two criteria, respectively.

Figure 4.6 shows AstonCAT-Plus maintains a prominent advantage in terms of average
trader profit per transaction. Although its average market share falls behind Mertacor’s
from day 210, its full-game mean of average trader profit per transaction exceeds that of
Mertacor by 9.94 (21.2% of its mean). Regarding daily average trader profit per transaction,
only Mertacor and AstonCAT-Plus are stable with the standard deviations 3.72 and 4.30,
respectively. This figure of other markets swings violently by a least standard deviation of
9.50. Regarding relative standard deviation of daily average trader profit per transaction
to the full-game mean of average trader profit per transaction, AstonCAT-Plus achieves
the lowest (7.6%) followed by Mertacor (7.9%). Therefore, AstonCAT-Plus should be
particularly favoured by risk-averse traders because it gives them stable and high return
expectations.

A high value of average trader profit per transaction of a market alone does not mean
that the traders made good profit in the market if their average transaction volume is low. At
the beginning of each game, every market’s average transaction volume is around 1.5. How-
ever, after a short period of time, Mertacor and AstonCAT-Plus establish their lead almost
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Figure 4.7: Average market share.

Figure 4.8: Average transaction number (goods traded) per trader.
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Figure 4.9: Comparison between TPT-CDA and CDA (only) clearing strategy.

AstonCAT-Plus IAMwildCAT Mertacor PersianCAT TWBB2010 Jackaroo
Mean 47.593 30.722 44.472 11.856 15.528 22.392
Stdev 3.538 3.368 3.161 2.505 5.383 2.637

Table 4.4: Mean and standard deviation of average profit per trader of across 10 heteroge-
neous game iterations.

simultaneously. Figure 4.8 shows that at the end of the game, the traders with AstonCAT-
Plus have traded averagely 1.77 goods by average out of three total entitlements, which
are 33.5%, 187.2%, 172.3%, 78.4% more than IAMwildCAT, PersianCAT, TWBB, Jacka-
roo respectively, but only 1.6% less than Mertacor. AstonCAT-Plus do not seem to suffer
from reduced transaction volume while trying to achieve high transaction profit. In clearing
strategy, two things are done to enhance transaction volume. (1) CDA is employed after 3
rounds. (2) In TPT, we encourages intra-marginal transactions using a smaller transaction
profit threshold.

Finally, the average profit per trader of AstonCAT-Plus is 50.38 in iteration 8, which
significantly exceeds those of Mertacor, IAMwildCAT, Jackaroo, PersianCAT and TWBB
by 19%, 75%, 130%, 303% and 335%, respectively. It is noticable that IAMwildCAT’s
good average profit per transaction does not seem compitable with its poorest overall per-
formance. This is probably due to a narrow and rigid shout accepting range that guan-
rantees good transaction experience for accepted shouts from higly intra-marginal traders
but drives away a large number of average intra-marginal traders at the same time. Table
4.4 shows the overall performance across all 10 heterogeneous game iterations in terms of
average profit per trader. AstonCAT-Plus achieves the best (47.593) by this criteria despite
a slightly big variance.

Besides the positive results shown by heterogeneous games, we have done additional
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Table 4.5: Summary of allocative efficiency and convergence coefficient in heterogeneous
games.

experiments specifically designed to test the effectiveness of our TPT-CDA clearing strat-
egy. In these experiments, we just replace TPT-CDA clearing strategy with only CDA
clearing strategy and run 10 iterations of each setting. Figure 4.9 shows the average result
of 10 game iterations in terms of market profit, the total trader profit, the average trader
profit by number of transactions and the number of transactions. First of all, we can see
a significant improvement of market profit, which is easy to understand because market
profit directly benefit from lifted transaction profit. Secondly, the trader profit with respect
to the CDA clearing scheme falls by 9.6% in comparison with that of the TPT-CDA one
and the average trader profit per transaction falls by 4.3%. Hence, the average number
of transactions of TPT-CDA market also beats CDA market by 14451 vs 13830. Further-
more, AstonCAT-Plus’ allocative efficiency dropped by 3.23% when its clearing scheme is
switched from the TPT-CDA to pure CDA. So, we are confident that the TPT-CDA clearing
scheme is an effective and efficient at least for AstonCAT-Plus in the context of CAT.

Efficiency and Convergence

Allocative efficiency and convergence coefficient are two essential metrics to identify
whether or not a market is efficient and stable. According to [22], the allocative efficiency
denoted as ϕ is defined as the ratio of the traders’ actual profit to the theoretical maximum
profit (obtained had all traders traded at the theoretical equilibrium according to microeco-
nomic theory [143]):

ϕ =
(
∑n

i=1 vbi − pi) + (
∑m

j=1 pj − vsj)
(
∑n

i=1 vbi − p0) + (
∑m

j=1 p0 − vsj)
(4.13)
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Figure 4.10: Allocative Efficiency of each agent in a typical heterogeneous game.
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where p0 is the theoretical equilibrium price; vbi and vsj are buyer i’s private value and
seller j’s private value, respectively; pi and pj are buyer i’s actual transaction price and
seller j’s actual transaction price, respectively; n and m are buyer’s number and seller’s
number, respectively. The convergence coefficient denoted as ψ is defined as the standard
deviation of transaction prices around daily theoretical equilibrium:

ψ =
100

p0

√√√√ 1

nt

nt∑
i=1

(pa,i − p0)2 (4.14)

where nt denotes the number of transaction and pa,i denotes the actual trade price of trans-
action i. According to the heterogeneous game results shown in Table 4.5 and Figure
4.10, Mertacor and AstonCAT-Plus’ efficiencies are significantly higher with significantly
smaller standard deviation than other specialists, which means they are much more efficient
and stable markets.

Figure 4.11 shows convergence coefficient of each specialist in a typical heterogeneous
game. For days convergence coefficient cannot be calculated in some markets, it is denoted
by a negative number of -10. We can see only Mertacor, AstonCAT-Plus and Jackaroo do
not have a day that equilibrium cannot be found. Mertacor got the most steady conver-
gence coefficient, which is almost always under 10. AstonCAT-Plus keeps convergence
coefficient under 20 constantly. Jackaroo occasionally got it over 20. With highest conver-
gence coefficient nearly 80, IAMwildCAT is worst agent measured by this metric, which is
probably the main reason for it poorest overall performance. Low convergence coefficient
often comes with high allocative efficiency because market is often cleared at somewhere
near the equilibrium price. Since our pricing policy prices transactions at the estimated
market equilibrium price p̂∗, the second lowest aggregated convergence coefficient accord-
ing to Table 4.5 demonstrates the effectiveness of our method for equilibrium estimation.
Mertacor’s lowest convergence coefficient (5.163 ± 0.722) indicates that its equilibrium
estimates are more accurate, which is probably why AstonCAT-Plus cannot beat it.

4.3.2 Head-to-Head Games

In heterogeneous games, the performance of any market specialist depends not only on
its own policy but also on the policies of other competitors. Head-to-head games make
direct comparisons between AstonCAT-Plus and its opponents to identify its strength and
weakness in such environment. In head-to-head games, without loss of generality the trader
population is set to 120 and the four provided trading strategies (see Section 4.1) are evenly
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Figure 4.11: Convergence coefficient of each agent in a typical heterogeneous game.
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Opponent Overall Score Market Share TSR Efficiency %
IAMwildCAT 0.842 vs 0.402 0.774 vs 0.226 0.862 vs 0.869 93.02 vs 93.41
Mertacor 0.558 vs 0.659 0.462 vs 0.538 0.839 vs 0.824 92.08 vs 94.57
PersianCAT 0.757 vs 0.475 0.693 vs 0.307 0.908 vs 0.789 94.08 vs 70.29
TWBB 0.789 vs 0.470 0.750 vs 0.250 0.884 vs 0.893 94.05 vs 82.77
Jackaroo 0.681 vs 0.574 0.574 vs 0.426 0.836 vs 0.930 94.32 vs 92.85
AstonCAT 0.853 vs 0.356 0.663 vs 0.337 0.898 vs 0.730 94.11 vs 81.39

Table 4.6: The results of head-to-head games.
Each repeated 10 times. First values in each column refer to mean of AstonCAT-Plus and second

ones refer to means of the corresponding opponents.

distributed over the trader population.

Overall Performance

The overall results are consistent with that of heterogeneous games (see Table 4.6).
Mertacor is still the only market specialist that outscores AstonCAT-Plus. AstonCAT-Plus’
market shares are very stable in head-to-head games. Our smallest market share 46.2%
comes from the games played with Mertacor. Although our transaction success rates are
outscored by IAMwildCAT, TWBB and Jackaroo, we still obtain significantly more market
shares against each of them. With further investigation, we realised Mertacor’s transac-
tion success rate of first 180 days are much lower than those of the remaining 320 days,
which indicates that its transaction success rate is sacrificed for the satisfaction of intra-
marginal traders at the beginning of the game. This strategy certainly worked according to
Mertacor’s outstanding overall performance and stably high market share in any circum-
stances. In addition, its high transaction success rate for the rest of the game compensates
for the loss of transaction success rate in the first 180 days, which brings its overall score
of transaction success rate to an acceptable level in the end. Thus, it is suboptimal try-
ing to maximise transaction success rate in CAT before an intra-marginal trader dominated
market is established. To conclude, AstonCAT-Plus’ allocative efficiency is high and stable
(varying between 92.08% and 94.32%) despite opponents, which shows the robustness and
reliability of our auction mechanism.

Market Convergence Trend

In the head-to-head situation, we are also interested in whether or not the traders con-
verge to one of the two markets. If so, how the migration and convergence take place. Fig-
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ure 4.12 shows that the market quickly converges to AstonCAT-Plus in the games against
PersianCAT, TWBB and IAMwildCAT, gradually converges toward AstonCAT-Plus in the
games against AstonCAT and Jackaroo. In the game against Mertacor, AstonCAT-Plus
managed to hold an equilibrium of market share where traders do not converge to either
market.

AstonCAT-Plus vs AstonCAT

The original AstonCAT showed a significant improvement on the third day of the CAT-
2010 because it employed the framework that is similar to AstonCAT-Plus, which accepts
shouts and clears matches based on estimated equilibrium of the market. The improvement
is not only reflected by the better rank (5th in Game 3 vs 8th in both Game 1 and 2) and
higher score (176.12 in day 3 vs 120.84 in day 1 and 130.71 in day 2), but the second best
efficiency (94.17%), which exceeds that of day 1 by 55.8%. Although their frameworks
are similar, AstonCAT-Plus is more sophisticated and accomplished on many aspects. For
example, the equilibrium estimator of AstonCAT is based on transaction prices only; the
accepting thresholds of AstonCAT are fixed throughout a game; and AstonCAT’s charging
strategy is not systematic such that it could be vulnerable to certain composition of entries.

Rather surprisingly, AstonCAT-Plus’ overall score is a massive 240% of that of Aston-
CAT. So, obviously the current version has successfully sorted out the major problems of
the original version. By further investigation, we realise that AstonCAT’s charging strategy
leads to unstable profit dispersion because whether or not to enforce fees depends too much
on its competitors’ charging policies.

AstonCAT-Plus is not only better in score but also stabler and less vulnerable than As-
tonCAT according to their relative performance in head-to-head games. First, AstonCAT-
Plus’s average overall score is 239% of that of AstonCAT. Specifically, AstonCAT-Plus
outperforms AstonCAT by 96.2% on market share, 23.0% on transaction success rate, and
15.6% on allocative efficiency, respectively. The biggest difference between them is in
their profit scores. AstonCAT-Plus nearly obtains full profit score (499.2 vs 0.8). The
reason is that AstonCAT-Plus can maintain a high market share persistently, which makes
AstonCAT’s market share too low to allow its minimum charging rules to be fired. In other
words, a free-of-charge market is not necessarily competitive in attracting traders against a
charged market. This indicates that to improve traders’ profitability is more effective than
to lower fees in keeping traders.
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Figure 4.12: Daily market shares in head-to-head games.
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Figure 4.13: Distributions of universal traders, intra-marginal traders and equilibrium
trader profits in a typical heterogeneous game.

4.3.3 Trader Distribution Analysis

One of the main objectives of CAT tournament is to investigate which market mech-
anism is the most attractive to traders in a competitive environment of multiple markets.
Hence, based on the data of a representative heterogeneous game, this section analyses the
distributions of traders (especially intra-marginal traders) and trader reservation prices to
reveal some important properties of AstonCAT-Plus and other CAT specialists.

Trader Distribution

Figure 4.13 demonstrates three distributions: (i) the universal trader distribution, which
is equivalent to the market share of each specialist, (ii) the intra-marginal trader distribution,
which shows the market share of global intra-marginal traders,6 and (iii) the equilibrium
profit distribution, which shows the percentage of each market’s theoretical trader profit to
aggregate theoretical profit of all markets. Successful specialists like the winner of CAT-
2010 and our AstonCAT-Plus have the same feature, which is the ability to keep far larger
than average market share. Furthermore, in terms of the shares of intra-marginal trader,
their dominance is even more prominent.

Each specialist’s average market share should be 1
6

(i.e., 16.7%) when the traders select
markets randomly. As shown by Figure 4.13(a), with respect to the universal trader distri-
bution, Mertacor’s and AstonCAT-Plus largely over-fulfilled their average market share by
13.3% and 10.5%, respectively. Consequently, none of the other specialists did manage to

6Global intra-marginal traders are those whose private values are superior to global equilibrium.
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Figure 4.14: Mean and standard deviation of percentage of intra-marginal trader to total
number of traders.

achieve this in the experiments.
In fact, the private value of each trader is available in the game data after a game is

completed. According to the data, the intra-marginal traders can be identified and the per-
centage of the intra-marginal traders can be calculated for each specialist of market. As far
as the distribution of global intra-marginal traders is concerned, Mertacor and AstonCAT-
Plus extended their dominance by a big margin. Their aggregate market share is increased
to 69.6% from 57.1%. This means that the trend of convergence of intra-marginal traders
into these two markets are even more prominent as shown in Figure 4.13(b).

The intra-marginal trader can be further divided into: (i) deep intra-marginal trader
whose private reservation price is greatly superior to the global theoretical equilibrium,
and (ii) shallow intra-marginal trader whose private value is slightly superior to the global
theoretical equilibrium. For the same number of intra-marginal traders, the deeper the
intra-marginal traders the better because deeper ones can produce higher profit to them-
selves and their trading counterparts. Figure 4.13(c) shows the percentage of profit of each
market in terms of trader values. Generally, the shares of equilibrium profit agree with
the shares calculated based on the number of intra-marginal traders. However, the biggest
difference between Figures 4.13(c) and (b) is that AstonCAT-Plus’ share is increased by
5.03%, while every other’s is decreased as shown in Figure 4.13(c) compared with their
values in Figure 4.13(b). Apparently, AstonCAT-Plus is competitive on keeping deep intra-
marginal traders. We attribute this achievement to our clearing strategy that highly rewards
deep intra-marginal traders using larger threshold and effectively facilitates transactions
between shallow intra-marginal traders using smaller threshold.



Chapter 4: Mechanism Design of Double Auction 82

Proportion of Intra-marginal Traders

Here we focus on exploring the internal constitution of traders within each specialist.
Figure 4.14 shows the mean and standard deviation of the intra-marginal trader propor-
tion in each specialist market. As shown, every market contains both intra-marginal and
extra-marginal traders. Mertacor and AstonCAT-Plus maintain a high proportion of intra-
marginal traders with the smallest standard deviations (i.e., AstonCAT-Plus: 6.9%; and
Mertacor: 6.0%). IAMwildCAT’s average intra-marginal trader proportion is also high
(60.39%), but its standard deviation is the highest among all specialists. According to
trader distribution analysis, IAMwildCAT’s average market share is around the lowest one.
We believe this is the main reason that causes its unstable trader structure. Hence, another
feature of a successful specialist is a high and consistent intra-marginal trader composition.
Another interesting finding is that it is difficult to eliminate all the extra-marginal traders in
one market because the highest average intra-marginal trader proportion is just over 63%.
However, it is not hard to understand this because the more intra-marginal traders in a
market, the more attractive the market is to extra-marginal traders.

Trader Balance

A well-formed double auction market should maintain a good balance between supply
and demand. In CAT tournament since every trader has the same amount of goods to trade,
the balance between supply and demand is equivalent to the balance between the seller and
the buyer. When the trader balance is lost, the less represented side is compensated with
a looser shout accepting threshold in AstonCAT-Plus market in order to create a relatively
balanced accepted shout profile and facilitate as many trades as possible (see Section 4.2.3).
Thus, our mechanism can result in a desired balance between demand and supply, which is
consistent with the symmetric and fixed global demand and supply.

To measure the balance of demand and supply in a specialist market, we introduce
side-balance rate λ that is defined as follows:

λ =
|ns − nb|
ns + nb

(4.15)

where ns and nb are the numbers of sellers and buyers in a market on each day. A market
mechanism that performs well (i.e., with a smaller value of λ) is capable of facilitating
more trades. If a trader finds that he can trade more goods in market A than in market
B, the trader is more likely to prefer A to B. So, we expect successful specialists to
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Figure 4.15: Trader side-balance rate λ of each specialist.
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Game Type Trader structure ZIP RE GD ZI Total

I
Distribution A 120 120 60 60 360
Distribution B 90 90 90 90 360
Distribution C 60 60 120 120 360

II

Distribution ZIP 280 40 40 40 400
Distribution RE 40 280 40 40 400
Distribution GD 40 40 280 40 400
Distribution ZI 40 40 40 280 400

Table 4.7: Trader population settings for strategy distribution games.

keep this rate as close to zero as possible. Top three specialists Mertacor, AstonCAT-
Plus and Jackaroo all have consistently small values of λ. In particular, AstonCAT-Plus
and Mertacor both can keep λ under 0.2 during almost the whole game in addition to far
smaller variances compared with the other specialists. This evidently reflects the fact that
a successful specialist has the feature of a stably balanced trader profile in the competitive
global environment. Figure 4.15 shows the traders side-balance rate for each specialist.

4.3.4 Trading Strategy Preferences

In order to test the robustness of our results in the setting that is different from that
of CAT-2010, we have conducted some special experiments where each type of games is
featured by a different trader structure with respect to trading strategy distribution. Two
types of experiments were carried out. In type I, distribution A and C simulate the trader
structures that are similar to that of [132] where two of the four provided strategies are
over-represented while the other two are under-represented. And distribution B produces a
uniform distribution of strategies. In type II, there is one dominant trading strategy, which
equips the majority of the trader population. With this type of games, we aim to explore
exactly which trading strategy is preferred by which specialist if such a preference exists.
We expect that a specialist performs well when its favourite trading strategy is dominant.
There are seven individual game profiles. Table 4.7 shows the experiment set-up for each
game profile which mainly specifies the number of traders using each different trading
strategy. With respect to each profile, we have run five heterogeneous games.

Figure 4.16 displays the average daily scores of each specialist in type I. AstonCAT-
Plus maintains its rank against the change of trader structure. Its smallest advantage over
the third is 7.7% across distributions A, B and C. This demonstrates its robustness. The
relative rankings between each market agent keep unchanged across three games of type I
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Figure 4.16: Average daily score of each specialist in Type I games.

Figure 4.17: Average daily score of each specialist in Type II games.

and are consistent with the rankings of our standard heterogeneous games.
However, in type II games, the trader structure has extreme biases and thus the perfor-

mance of specialists changed radically. Figure 4.17 shows the scores of type II games, from
which we can see Mertacor, AstonCAT and PersianCAT strongly prefer ZIP, GD and RE
traders, respectively. IAMwildCAT and Jackaroo have not shown any particular preference
for any trading strategy because their overall score variations across different game profiles
are far smaller than those of the others.

In the games of type II, Mertacor is no longer the all-time winner. Instead, it ranks the
2nd in Distributions RE and GD, beaten by PersianCAT and AstonCAT-Plus, respectively.
It means that none of the current market mechanism in our controlled experiments is opti-
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Figure 4.18: Average market share of each specialist in Type II games.

mal. Mertacor’s dominance in the ZIP and ZI market and AstonCAT-Plus’ dominance in
GD market are significant because they respectively score 80.9%, 24.6% and 26.2% higher
than the next best entry. In contrast, persianCAT’s dominance in the RE market is not very
significant since its winning margin is only 6.9%.

Moreover, varying trading strategy distributions do not change the dominance of Mer-
tacor and AstonCAT-Plus in terms of their relative market share. Figure 4.18 shows the
dominance of market share by Mertacor and AstonCAT-Plus, because except for RE mar-
ket (46.3%), the total market share of these two entries is consistently over 50% (63.9% in
ZIP, 54.4% in GD and 56.5% in ZI).

In summary, the change of trading strategy mixture definitely affects the score of a spe-
cialist. A specialist can show outstanding performance with its preferred trading strategy.
Consequently, there is not a specialist that is absolutely optimal against all trader profiles.
Nevertheless, a successful specialists show the ability of maintaining their appeal to traders
regardless of the dominant trading strategy.

4.4 Conclusion

Firstly, this paper presents a smart e-market agent, called AstonCAT-Plus, which is a
post-tournament version of that in the CAT 2010. Specifically, we introduce an effective
method to estimate the market equilibrium price by making a good balance between long-
term and short-term price tendencies. We also propose some novel market management
strategies: (i) the adaptive accepting thresholds for shouts, which depends on dynamic
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transaction; (ii) the TPT-CDA clearing strategy, which allows the shout engine to search
for more profitable bid-ask pairs to match and clear; and (iii) the hierarchical charging
strategy, which can balance well the high market share and the high profit making for the
specialist.

Then through a variety of experiments, we evaluate the e-market performance against
AstonCAT (tournament version for CAT-2010) and other top entrants of the 2010 compe-
tition. The experimental results show that AstonCAT-Plus performs efficiently and stably
in heterogeneous games. In particular, it has advantages over other market specialists in
terms of transaction success rate, allocative efficiency and average trader profit. It outper-
forms the original AstonCAT significantly (by 140%) in head-to-head games. Moreover,
through experimental analysis we not only demonstrate the strength of AstonCAT-Plus in
terms of attracting intra-marginal traders but also identify some features of successful de-
sign of double auction market, such as balanced trader profile and high, stable proportion
of intra-marginal traders. At last, through the experiment of trading strategy preference
games, we discover that no specialist is universally optimal if the traders’ strategy distribu-
tion is highly biased. However, a successful specialist does show its outstanding ability of
maintaining market share across a series of extreme trading strategy compositions.

In the end, we believe both our ideas and findings for market mechanism design are
potentially useful to the design and implementation of autonomous e-market of double
auction market in the real world. However, we still need to further improve our shout
engine method so that the clearing decision can be made on each individual bid-ask pair
rather than the matched shouts bunch. Furthermore, our current specialist agent involves
too many hard-coded parameters that are manually chosen through experiments. So, it is
worth employing an evolutionary approach to learn optimal values for these parameters.

As far as additional experiments are concerned, we will involve the most successful
agents from the 2011 CAT tournaments in all kinds of games. To thoroughly explore the
effectiveness of TPT-CDA clearing strategy, we will make further comparisons between
TPT-CDA and CH-CDA with the same switching points. With similar baselines, we will
compare the other individual strategies including strategies from 2011 winner if possible to
determine the impact of their strategy on the success of AstonCAT-Plus. Moreover, specific
experiments will be designed to find out the amount of contribution of each hierarchical
level into the adjustment of fee.

Last but not the least, it is worth developing more realistic autonomous e-markets of
double auction, in which the traders could change roles, have bi-directional strategies and
dynamic private reservation prices.



Chapter 5

Bi-directional Double Auction and
Kernel Trading Strategy

It is well-known that the dominant application of double auction institution is the financial
market, in which traders are usually sellers and buyers simultaneously. Hence we introduce
a Bi-directional Double Auction (BDA) model, in which the trading activity of every indi-
vidual trader can be bi-directional. By further introducing a news system to enable traders
to update their private valuations, we complete a dynamical financial market simulation.

In BDA market, the selection of trading direction is through trading direction algo-
rithms. Once the decision is made, the order price is determined by a trader’s trading
strategy. Besides implementing some of the most popular double auction trading strategies
(see Section 5.1.5), we develop a new trading strategy called Kernel based on probability
density estimations, which significantly outperforms all other strategies in our experiments.

The rest of this chapter is organised as follows. Section 5.1 describes the mechanism
of BDA market and details each component. Section 5.2 focuses on the details of Kernel
trading strategy. Section 5.3 shows experimental results and explains our findings. Finally,
Section 5.4 concludes the chapter.

5.1 Market Mechanism

This section presents the design of our BDA market.

5.1.1 BDA Market Architecture

Figure 5.1 illustrates the architecture of BDA market. It is composed of three compo-
nents:

88
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Figure 5.1: Architecture of BDA market.

• Simulation controller It manages the life cycle (round and day) of the market sim-
ulation, initialises the market and traders at the beginning of each game. It contains
a class called agent mixing manager, which decides the number of active traders at
each round and the way they interact.

• Market manager It provides all services that market management needs with the
help of three following components. (i) Auctioneer: It manages orders, generates
quotes, clears the market, and so on. (ii) Reports Manager: It generates all kinds of
reports such as order flow, transaction, equilibrium and group status reports. Traders
usually retrieve information they need from various reports to assist their trading
decisions. (iii) Events manager: It is responsible to broadcast all kinds of events
including market events (e.g., order filled and transaction executed events) and sim-
ulation events (e.g., round closed and news occurrence events).

• Trading Agent It is a generic interface for developing traders in BDA market. Trad-
ing agents can perceive the status of the market and environment and act accordingly.
A trading agent consists of four components: (i) Account manager: It manages cash,
stock, and daily entitlement accounts. Cash and stock accounts are non-negative such
that there is no over-drafting. Once daily entitlement is filled in a day, the trader stops
trading until the next day. (ii) Valuation policy: It determines how a trader’s valu-
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Figure 5.2: Daily activity flow of BDA market.

ation of the asset is initialised and updated. (iii) Trading direction algorithm: It
generates a trading direction out of buy, sell and hold. (iv) Trading strategy: It cal-
culates a shout price should an order be submitted. Trading strategies designed for
one-way traders can be employed here.

In terms of implementation, BDA market is implemented as an extension of the Java Auc-
tion Simulator API (JASA)1, which is a high-performance auction simulator designed for
performing experiments in agent-based computational economics.

The daily activity flow of BDA market is demonstrated by Figure 5.2. There is a pre-
defined population of traders in the market. At the beginning of a day, if news system is
enabled, news is drawn with some kind of news occurring probability. If news occurred,
traders will update their private valuations accordingly. At the start of a round, agent mixing
manager randomly selects a percentage of the traders into the market. In stochastic order,
active traders submit new orders or update their previous orders. Each trader will first
choose a trading direction based on the decision of his trading direction algorithm. Then,
should a trader’s decision is to buy or sell one unit of stock, his order pricing strategy will
calculate an order price. Afterwards, he submits the order and waits for response from
the market. Market manager receives orders and places orders beating current quote on its
order book and update market quote. As soon as a match is found, the market is cleared
immediately and related events are announced. Traders are informed of these events and
update account information as applied. Unmatched orders stay on the order book until
order book is reset when resetting conditions are satisfied. Unmatched orders stay alive

1http://sourceforge.net/projects/jasa/, by Steve Phelps
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until the end of the day. If the same trader enters the market again at another round and his
previous order still exists, his new order will replace the old one.

5.1.2 Agent Mixing Manager

In a real financial market, not every trader is actively trading in every round although the
total trading population is relatively stable. Agent mixing manager is introduced to ensure
asynchronous order submission in this situation. It selects and mixes active traders in each
trading round. Our agent mixing manager uses a Normal-Poisson process to determine the
number of active traders in each round. This is because Poisson distribution expresses the
probability of a given number of events occurring in a fixed interval of time if these events
occur with a known average rate [69]. In our case, the event is that a trader enters the
market and the average rate is drawn from a Normal distribution.

Let ρ ∼ N (µ1, σ1) represent the distribution of the average active percentage of the
population in each round. A different ρ is drawn at the beginning of every trading day such
that the average number of active traders of a round is ρN where N is the number of trader
population. The actual number of active traders in a round is Na = Pois(ρN). Finally, Na

active traders are randomly selected from the total population.

5.1.3 Trading Direction Algorithms

Trading direction algorithm is the essential component of a BDA market. Stochastic
decision [147] is obviously the simplest trading direction algorithm. But our focus is on
the incentive-compatible trading direction algorithms, for which we have developed Dual
and Bi. Dual mimics the way normal human traders decide their trading directions in stock
markets and therefore is intuitive. Dual is simple, fast and not resource-consuming, while
generating fairly high allocative efficiency (93.6%). In contrast, Bi is more complicated
and resource-demanding. However, it is non-paramatric and features learning ability based
on transaction history. Hence, it achieves higher efficiency in terms of resource allocation
(96.1%). In following, we describe Dual and Bi in details, respectively.

Dual

Dual trading direction algorithm is designed to mimic the way human traders think
and behave in choosing a trading direction. The basic assumption is: low(high)-valuation
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traders are more likely to submit sell (buy) orders. The closer the market price is to one’s
private valuation, the more likely that trader will hold.

In Dual, traders make decisions by comparing their own valuations with the asset’s
market prices. Let v be the private valuation of a trader and vp be the current market price
of the traded asset, we introduce α to represent the uncertainty degree (unconfident level)
of the trader’s private valuation. α takes a value from (0, 1) so that we obtain a valuation
spread [v(1 − α), v(1 + α)] for each trader. The trading direction decision is denoted by
boolean variables isBuy and isHold. When isHold = true, irrespective of the value of
isBuy, trader’s decision is to hold. When isHold = false, the resulting decision is to buy
if isBuy = true or to sell if isBuy = false.

Based on whether market price lies inside a trader’s valuation spread, the trading direc-
tion problem can be divided into two cases: Deterministic case if vp /∈ [v(1−α), v(1 +α)]

and Probabilistic case if vp ∈ [v(1 − α), v(1 + α)]. In deterministic case, traders do not
hold, so

isHold =

{
false if vp < v(1− α)
false if vp > v(1 + α)

(5.1)

and the decision of buying or selling is quite straight forward:

isBuy =

{
true if vp < v(1− α)
false if vp > v(1 + α)

(5.2)

In probabilistic case, traders are not sure about their position because their valuations
are not definitely higher or lower than the market price. So they are likely to hold. At the
same time, because of willing to make a profit, intuitively, the farther vp is to the left of v on
the x-coordinate, the trader is more likely to make a buying decision and vice versa. Since
traders’ decision are probabilistic, we need to find a way to translate the distance between
v and vp to a probabilistic value rationally. After some research in mathematics, we found
sigmoid function very suitable to translate v − vp into a value between 0 and 1, which can
be used to denote the probability of buy P (isBuy),

P (isBuy) =
1

1 + e−β·λ(v−vp)
(5.3)

where β > 0 is introduced as the trader’s risk attitude and λ is a normalization factor. The
probability of sell P (isSell) is simply 1− P (isBuy). β = 1 indicates risk-neutral, β < 1

indicates risk-averse because the sigmoid curve is stretched and the trader is more likely to
come up with hold decision; and β > 1 indicates risk-seeking because the sigmoid curve
is squeezed and the trader is more likely to come up with sell or buy decision.



Chapter 5: Bi-directional Double Auction and Kernel Trading Strategy 93

Because every trader’s v and α are different, without normalization, calculated proba-
bility can easily approach the extreme values of 1 or 0 if |v− vp| is large enough. If so, the
subsequent decision becomes over-deterministic. Hence, the parameter λ in Formula 5.3
is to make sure P (isBuy) = 0.99 if and only if v − vp = vα, where vα is the maximum
distance between v and vp in probabilistic case. So λ is derived as follows:

1

1 + e−λvα
= 0.99

e−λvα =
1− 0.99

0.99

λ = −
ln 1−0.99

0.99

vα
(5.4)

Due to the symmetric characteristic of sigmoid function, when v−vp = −vα, P (isBuy) =

1− 0.99 = 0.01 and the probability of sell reaches the maximum.
Hold is possible in probabilistic case and its probability is calculated by:

P (isHold) =

{
1−P (isBuy)

0.5
if P (isBuy) > 0.5

P (isBuy)
0.5

if P (isBuy) ≤ 0.5
(5.5)

Thus, the closer vp is to v, the more likely to hold.

Bi

A bid (ask) from a low (high) valuation trader should have a smaller chance of transac-
tion than that from a high (low) valuation trader as long as the offer is “sensible”2. Based
on this idea, we design trading direction algorithm Bi in addition to Dual. Because trans-
acted ask or bid prices should appear in different price ranges with different frequencies
and these different frequencies can be converted to a probability density curve using kernel
technologies, then transaction possibility of future shouts can be estimated.

Since the information about transacted shouts is available in market reports, we can
calculate how likely a new shout at the price of a trader’s private valuation v is going to
be transacted by building kernel density estimators on transacted shout prices. Since a
shout can be either a bid or an ask, there are two estimators to be built: bid estimator
and ask estimator. After each transaction, two kernel density functions Ka(x) and Kb(x)

are generated based on the last maximum m transacted bids and asks up to the ones of
the last transaction, respectively. Figure 5.3 demonstrates how kernel estimators are built.

2An offer is sensible if the bid price is not greater than valuation or the ask price is not less than valuation
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Figure 5.3: Building kernel density estimators.

Blue or lighter (Red or darker) histograms show the frequency that transacted bids (asks)
appearing in each bin. Using kernel density estimation techniques, we can build continuous
probability density functions for transacted asks and bids respectively, which are shown as
red (solid) and blue (dotted) curves respectively in the figure.

Based on Ka(x) and Kb(x), we can compute two cumulative probabilities as follows:

Pb(v) =

∫ v

−∞
Kb(x)dx (5.6)

Pa(v) =

∫ ∞
v

Ka(x)dx (5.7)

where Pb(v) is the probability of transaction should bid price be v, and Pa(v) is the proba-
bility of transaction should ask price be v. Depending on the approximation level of Pb(v)

and Pa(v), the probability of hold is,

P (isHold) = max(1− |Pb(v)− Pa(v)|
α

, 0) (5.8)

In case isHold = false, we continue to select a trading direction of buy or sell whichever
got higher transaction possibility, i.e.,

isBuy =

{
true if Pb(v) > Pa(v)
false if Pa(v) > Pb(v)

(5.9)
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5.1.4 News System

The occurrence of news represents the change of environment in BDA market. News
is modelled by impact level θ ∈ [−10, 10], generated by simulation controller with a daily
news occurrence probability and released by events manager. The news system defines how
news happens and influences traders’ valuations. The introduction of news system converts
a static BDA market into a dynamic one. A positive value indicates bullish news that could
cause asset value to rise and vice versa. Once news is received, the most important question
is: how should traders’ valuations be updated? We use exponential function to model the
valuation updating process for its ideal function curve. Let a trader’s new valuation be vn,
old valuation be vo, when one receives a news of impact level θ, his valuation is updated
as:

vn = voe
γ2θ + vpε (5.10)

where γ ∈ [0.05, 0.20] represents the trader’s intrinsic news sensitivity. The range of γ is
based on the advice of the stock market experts and our experimental results. For the same
impact of news, a trader who is more sensitive updates his valuation more aggressively and
vice versa.

Nevertheless, vpε (where ε ∼ U(−0.02, 0.02)) is introduced into the valuation updat-
ing function for two purposes: (i) It ensures that two traders with identical γ and private
valuation do not get exact the same valuation after updates. (ii) It models the judgement
diversion on weak news (i.e., news of low impact levels). The stronger the news, be it
positive or negative, the more consistent traders’ reactions are because the first part of the
formula is dominant over vpε. The weaker the news, the more diverse trader’s reactions
become as vpε is dominant. Figure 5.4 depicts how a trader’s valuation changes excluding
vpε.

5.1.5 Trading Strategies

Most trading strategies used in our BDA market are inherited from well-studies dou-
ble auction trading strategies including Zero-Intelligence Constrained (ZIC) strategy [63],
Zero Intelligence Plus (ZIP) strategy [33], Roth-Erev (RE) strategy [53], Gjerstad-Dickhaut
(GD) trading strategy [62]. Besides, we design new trading strategies: Kernel and Fore-
cast. Kernel is detailed in Section 5.2. Forecast submits a(an) bid (ask) price that is above
(below) a linearly predicted future asset price by a small random amount as well as below
(above) the trader’s private valuation. In addition, the truth telling strategy (Truth) and the
stochastic strategy Noise are coded for experimentation.
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Figure 5.4: Mesh of private valuation update ratio function eliminating the stochastic part.

Details of each implemented trading strategy are given as follows.

1. ZIC is Gode and Sunder’s Zero-Intelligence Constraint trading strategy [63]. ZIC
traders determine order prices by adding a uniformly distributed random mark-up
to their private valuations. ZIC is non-history-based and non-reactive as it does not
consider the market condition in its decision-making process [22]. ZIC is used as
our benchmark trading strategy for its ability of mimicking the trading behaviours of
ordinary people from macroscopic view.

2. ZIP stands for Zero Intelligence Plus and is first designed by [35] and has been
used as a benchmark for strategy evaluation (e.g. [43, 166, 179]) in a number of
works. In practice, ZIP is believed to be frequently used by some mutual funds
[66, 67, 80] despite its simplicity relatively. While ZIC uses a random mark-up,
ZIP learns an appropriate profit margin using momentum based algorithms. In BDA
market, two learners are separately built to determine selling margins and buying
margins respectively.

3. RE stands for Roth-Erev algorithm, which is a strategy designed to mimic human
game-playing behaviour in extensive form games [53]. This strategy trains a discrete
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learner based on immediately feedback from placing previous shouts using 1-armed
bandit learning algorithm. Then discrete learner helps the agent to choose an action
that balances exploitation of historically profitable actions and exploration of new
actions.

4. GD trading strategy is developed by Gjerstad and Dickhaut [62]. In GD, certain
length of shout placement and transaction history are recorded. Then agents use cubic
spline interpolation to build a belief function on each successive pair of data item to
indicate whether a particular shout is likely to be accepted. Given this information,
the bidding strategy is to submit a shout that maximises the trader’s own expected
surplus.

5. Forecast trading strategy borrows the idea of technical analysis which is believed
to be widely used in various markets [125, 163, 85]. It uses linear regression to
predict a future asset price pf based on selective historical prices. Because the agent
believes pf will be the next transaction price, his bid and ask prices are pf (1 + εf )

and pf (1 − εf ) where εf ∼ U(0, 0.06), respectively to suppress the transaction cost
while standing reasonable chance of obtaining the transaction opportunity. There is
never lack of criticism from some sectors of the industry and academia on technical
analysis. But there are also numerous works suggesting its profitability [126, 19, 5,
76, 47, 49, 48]. As an evidence, Forecast strategy has shown very good (better than
GD) performance in many of our experiments.

6. Kernel trading strategy determines shout prices based on a kernel probability density
estimator built on historical transaction information to calculate the possibility of a
future shout being transacted. The details are given in Section 5.2.

7. Truth strategy simply bids the trader’s private valuation on the established trading
direction.

8. Noise strategy chooses trading direction randomly. Then on the selected trading
direction, it forms a shout prices using ZIC trading strategy.

5.2 Kernel Trading Strategy

Kernel trading strategy is constructed based on kernel probability density estimators
built upon historical transaction data in BDA market, which calculate the chance of a shout
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(ask or bid) being transacted. It has close relationship to Bi because they use the same
kernel estimators. After trading direction is generated (by Dual or Bi), kernel estimators
(updated automatically after every transaction) are employed to assess the profitability of
each possible shout on the chosen trading direction. Finally, the most profitable shout price
will be selected for submission.

Assuming in the last m transactions, the lowest transacted bid price is b and the high-
est transacted ask price is a. Thus, the searching spaces for the optimal bid and ask are
[min(0, b(1 − 0.05) − 0.05v), v] and [v, a(1 + 0.05) + 0.05v], respectively. As seen, we
allow both relative (5%) and absolute (0.05v) extra space to explore the best possible price
outside transacted bids or asks. Meanwhile, the extra space is limited to keep the algorithm
efficient. Moreover, we use K′(p) to denote the transaction probability of the price point p
on the estimated probability density curve. Thus, the optimal bid b∗ or optimal ask a∗ can
be calculated as follows:

b∗ = arg max
p∈[min(0,b(1−0.05)−5),v]

K′b(p) · (v − p) (5.11)

a∗ = arg max
p∈[v,a(1+0.05)+5]

K′a(p) · (p− v) (5.12)

Because K(x) is a probability density function, K(p) is actually represented by the prob-
ability of a small area around p. The small area is defined by a precision threshold δ. So,
K′(p) can be obtained by,

K′(p) =

∫ p+δ

p−δ
K(x)dx (5.13)

where the default value of δ is 0.01.

5.3 Controlled Experiments

The framework of our BDA market is modular and highly customisable. By setting pa-
rameters differently, we can easily simulate many different market scenarios. For example,
it can be set to continuous BDA market or Clearing House (CH) BDA market. By default,
all experiment results discussed in this thesis are based on continuous BDA market. Ba-
sically, we have run two types of experiments: (i) static games where hold, news system
and agent mixing manager are disabled and (ii) dynamic games where all disabled dynamic
features are enabled. By default, all agents use Dual trading direction algorithm. Games
with random initial valuations are run for 100 iterations. Games with fixed-array initial
valuations are run for 20 iterations. In each iteration, there are 100 days of 10 rounds daily
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Figure 5.5: Daily closing prices in iteration 6 and corresponding news series on the same
time scale.
News impact levels are drawn from Normal distribution N (0, 4). The probability of news

occurrence on a day is 0.3.)

for static games or 200 days of 50 rounds daily for dynamic games. In the performance
comparisons, usually the aggregate results of trader groups covering the same valuation
distribution or valuation array are compared. Initial private valuations are drawn from a
uniform distribution U(60, 120) in static games, and assigned by a fixed-array in dynamic
games. Table 5.1 shows the details of the configurations of our experiments.

5.3.1 BDA Market Time Series

In dynamic games, BDA market produces rational time-series in response to news.
Figure 5.5 shows how daily closing price evolves in response to news impact levels during
200 simulation days (data taken from iteration 6). The asset value generally rises with
positive news and falls with negative ones, which agrees with our intuitions.

In terms of return, BDA market can reproduce some well-known stylised facts of real
financial markets. The distribution of daily returns displays a heavy tail with positive excess
kurtosis around 2.48. The absolute daily log returns show a decaying auto-correlation as
time lags increase (see Figure 5.6).

When the news system is disabled, asset value do not shift in general because the shape
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Table 5.1: BDA market experiment configuration details.
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Figure 5.6: Decaying auto-correlation of absolute daily log returns in BDA market.

Direction Algorithm Mean Standard Deviation
Bi 0.961 0.0113

Dual 0.936 0.0142
Stochastic 0.699 0.0171

Table 5.2: Market average efficiency and standard deviation calculated based on the data
of 100 static game iterations.

of the curve of the expected probability density of transaction prices is perfectly balanced
(see Figure 5.7).

5.3.2 Static Market Efficiency

One of the essential research topics about double auction markets is the market’s al-
locative efficiency, i.e., the ratio of actual profit of all traders to the theoretically maximum
profit. Therefore, static games are designed to investigate the efficiency of BDA market.
ZIC [63] is used as our benchmark trading strategy as it is proven one of the most suc-
cessful applications of agent-based computational economics [96] and has been found to
mimic trader behaviour closely [45]. Our first finding is that trading direction algorithms
seriously affect the market efficiency. As shown in Figure 5.8 and Table 5.2, stochastic trad-
ing directions lead to poor market efficiency and biggest variance. As long as the trading
direction algorithm is incentive compatible, the market efficiency is significantly improved
from 69.9% to minimally 93.6%. The intelligent Bi beats the intuitive Dual by 2.5%. Bi
also keeps the efficiency above 95% for 87% of time.

The market efficiency is also affected by traders’ confidence with their private valua-
tions. The greater the uncertainty, the lower the confidence. In relevant experiments, we set
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Figure 5.7: Convergence of transaction prices in static games.

Figure 5.8: Sorted market efficiencies of 100 static games.
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Figure 5.9: Sorted market efficiencies categorised by uncertainty degree distributions of
the valuation.

Figure 5.10: Average market efficiencies of static game in regard to uncertainty distribu-
tions of the valuation.

U(0, 0.15) as traders’ uncertainty degree distribution for the first batch and U(0.15, 0.35)

for the second batch. Each batch contains 100 iterations and results are shown in Figures
5.9 and 5.10. It can be seen that the high confidence (low uncertainty) market significantly
outperforms the low confidence (high uncertainty) market. Additionally, the high confi-
dence market demonstrates better stability as its efficiency deviation is only 0.014 while
the low confidence market’s deviation is 0.047. The minimum allocative efficiency is sig-
nificantly improved in the high confidence market compared to the low confidence one
(0.905 vs 0.702).

Figure 5.11 shows how the cumulative market efficiency typically evolves during a
game. We notice that without a rational trading direction strategy, market efficiency starts
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Figure 5.11: Daily cumulative market efficiency in a game.

as low as 0.2 and also finishes significantly lower than those with rational ones. Bi shows
good learning ability. Its efficiency is not as high as Dual when the game starts, but over-
takes Dual after about 20 days. Uncertainty degree α has a significant influence on the
convergence of efficiency as well as market stability. The efficiency of the low uncertainty
market is much stabler from day to day, and converges much faster (in 10 days) than the
high uncertainty market.

Finally, the market efficiency is also affected by trading strategy (see Figure 5.12). GD
and Kernel strategies cannot trade with themselves although they are the best performers in
heterogeneous environments. After inspection, we found their calculated optimal buying
prices are lower than selling prices. Consequently, data of these two strategies are not
displayed in Figure 5.12. In summary, if every trader in a BDA market has the ability
to calculate a near-optimal price of bid or ask after sensible choice of trading direction,
transaction opportunities among them will be reduced seriously. So we infer, in a financial
market where the asset’s fundamental value does not change, there must be unintelligent
traders to make exchanges happen.

For other strategies, Figure 5.12 shows their average efficiencies and standard devi-
ations. The market reaches the best allocative efficiency when filled with truth telling
traders. As long as traders select trading directions rationally, they virtually need to do
nothing extra to achieve high allocative efficiencies. However, if traders all want to exploit
others using intelligent trading strategies, the more intelligent the trading strategies are, the
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Figure 5.12: Average market efficiencies and deviations regarding trading strategies.

less efficient the market is.

5.3.3 Performance of Kernel Strategy

Our Kernel trading strategy shows excellent performance in both static and dynamic
games. In static heterogeneous market, traders of multiple types compete to make their
own profit. Every group employs Dual as trading direction algorithm such that the differ-
ent group profit is the result of different trading strategies. As shown by Figure 5.13, the
highest average group profit comes from kernel group. According to paired 1-tail student
t-test performed over results of 100 iterations, the probability that Kernel group’s profit has
the same mean to the second best group is 3.29×10−7. GD is the strategy that achieves the
highest unit profit (see Figure 5.15). However, with the smallest quantity of all (see Figure
5.14), GD’s final performance in terms of total profit is only modest. Dual ZIP and Truth
traders have traded large quantities at the cost of giving profit away to competitors, which
leads to their poor performance in terms of total profit. Therefore, the most profitable strat-
egy should earn good profit in each transaction while not letting transaction opportunities
slip away due to its unfavourable shout prices.

We also investigate whether trading direction algorithms have a significant contribution
to the profitability. Our answer is positive as Dual’s transaction quantity is only 92.9%
of Bi while Dual’s unit profit is also slightly lower than Bi. Consequently, Bi ZIC traders
make about 10% more profit when compete with Dual ZIC traders in one market.

In dynamic heterogeneous games, multiple types of traders compete to maintain their
wealth. News events are generated exogenously with occurrence probability of 0.3. News
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Figure 5.13: Average profit of each trader group in static heterogeneous game (100
iterations).

Figure 5.14: Average traded quantity of each trader group in static heterogeneous game
(100 iterations).
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Figure 5.15: Mean of the average profit per unit of each trader group in static heterogeneous
game (100 iterations).

Figure 5.16: Proportional comparison of profit, traded quantity and unit profit between
Dual ZIC trader group and Bi ZIC trader group (100 iterations).
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impact levels are subject to Normal distribution N (0, 4.0). As response to news, traders
update their private valuations asynchronously, which cause the Rational Expected Equi-
librium (REE) to shift continuously. Every group starts with exactly the same wealth of
11,356,800 and valuations. Their news sensitivities are from the same distribution.

After 20 iterations, Kernel traders achieve the best aggregate wealth. From Figure 5.18,
we can see kernel group’s average wealth exceeds that of GD group by 1.36% and ZIC
group by 4.91%. Although the advantage is marginal in terms of ratio, in financial market,
even 1% difference could mean millions of pounds of profit or loss. Averaged over all
iterations, the winner group’s wealth surpass the worst group by 8.4%, Clearly, an effective
trading strategy is needed if the investor wants to maintain his wealth properly. Figure
5.17 provides the details of the final wealth of every group in each iteration of dynamical
heterogeneous wealth game.3 Kernel group’s wealth is ranked first for 18 times out of 20
iterations. The black broken line indicates group initial wealth level. In a falling market,
kernel traders maintain their wealth best without exception. In a rising market, GD group
wins twice at itertations 13 and 20 and kernel group wins the rest.

Obviously, GD traders perform better in a rising market, which is to do with their low
volume (i.e., the smallest traded quantity among all groups). Specifically, GD’s average
quantity is 20505.3, which is 55% of Kernel’s and only 37% of that of Truth group that has
the largest average volume. Low volume means GD traders keep more stocks in their own
hands in stead of exchanging them with other traders. In a rising market, their stocks rise in
value, which leads to their good performance in terms of maintaining wealth. In a declining
market, this advantage does not exist any more. The worst performing group is the Truth
group. Members of the group are the most frequent traders in the market. However, they
only make averagely 8.655 profit in each transaction. Thus, the more they trade, the more
loss they make in each transaction. Since everyone’s stock is limited, they are actually
giving wealth away to their trading counterparts. This corresponds to the phenomena in
real market that non-strategic traders who frequently trade but becomes the worst wealth
maintainers.

5.4 Conclusion

In this chapter, we present the design of bi-directional double auction market together
with the new Dual and Bi trading direction algorithms to specifically model how trading

3We have also done the same experiments with Bi and obtained the same results statistically.
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Figure 5.17: Final wealth each trader group possess in dynamic heterogeneous games.
From left to right, strategy of the group is Dual ZIC, Dual ZIP, Dual RE, Dual GD, Dual Kernel,

Dual Forecast, Dual Truth and Dual Noise (20 iterations).

Figure 5.18: Aggregate group wealth of dynamic heterogeneous games (20 iterations).



Chapter 5: Bi-directional Double Auction and Kernel Trading Strategy 110

directions are dynamically decided. In addition, the news system and Normal-Poisson
agent mixing manager are introduced to complete a dynamic financial market simulation.
Through experiments, we find that BDA market generates rational series against varying
impact levels of news and successfully reproduces some typical stylised facts of real finan-
cial markets. In terms of the allocative efficiency of a static continuous BDA market, the
trading direction algorithm is found to be the most critical factor and intelligence of trading
strategies has the effects of reducing the market efficiency provided that traders’ trading di-
rection decisions are rational. Furthermore, our new Kernel trading strategy demonstrates
superior performance to others in terms of both making profit in static games and maintain-
ing wealth in dynamic games.



Chapter 6

Conclusion and Future Work

Nowadays, e-commerce is gradually taking the primary position of the traditional business.
One can almost purchase any commodity or service on the Internet without going out to
the brick-and-mortar shops or meeting any real person. Therefore, we have the reasons
to believe that more and more traditional trading via person-to-person negotiation will be
replaced by the autonomous interactions among software agents on behalf of their owners
in the future. Subsequently, designing efficient economic mechanisms such as the market
system and developing effective trading strategies in any specific economic system are two
very important and meaningful topics, which are exactly the aims of this work.

The first economic system we investigate is the sponsored search in which GSP-based
keyword auctions are the main method to determine prices and resource allocations. As-
tonTAC is a trading agent designed for such auction. It is shown to be successful and stable
across a wide range of TAC AA environments in both the competition and our controlled
experiments. In particular, we attribute its success to the bidding price generating strategy
and the query selector. Market-based Value Per Click reflects the dynamic change of mar-
ket value of different keywords and thus leads to the generation of flexible and adaptive
bidding prices. In a multi-keyword scenario especially when keywords are interdependent,
it is essential to view the set of all possible queries as a whole while conceiving a strategy.
Selective bidding is one of the ways. Query selector makes sure that we invest only on the
most profitable keywords of each day. Given a limited conversion capacity, knowing how
much further we can go beyond it gives us ability of grabbing the largest possible number
of conversion to extend our profit space.

Although, strategies employed by AstonTAC are tailored to the specific context of the
AA competition, due to the similar features of the TAC AA competition and real sponsored
search, we believe that concepts developed for AstonTAC are broadly applicable to an
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advertiser agent in the real sponsored search scenario.
Following the research in GSP, we switch our attention to a more influential auction

format, namely Double Auction, which is employed to determine transaction prices and
resource allocations of many powerful economic systems represented by the financial mar-
ket. AstonCAT-Plus is the post-tournament version of AstonCAT in the TAC CAT tourna-
ment which concentrates on the investigation of double auction market mechanisms. It is
shown to be an efficient, stable, profitable and trader-friendly e-market in our controlled
experiments. We attribute its success to the following strategies: (i) We introduce an effec-
tive method to estimate the market equilibrium price by merging long-term and short-term
transaction price information. (ii) We design an adaptive accepting strategy which con-
tributes to its high transaction success rate. (iii) Our TPT-CDA clearing strategy, which
allows the shout engine to search for more profitable bid-ask pairs to match and clear,
which improves the profit of traders especially intra-marginal traders. (iv) Our hierarchical
charging strategy balances the needs of attracting traders and make much as possible profit
for the e-market agent.

Through a variety of experiments, we evaluate AstonCAT-Plus’s performance against
AstonCAT (tournament version for CAT-2010) and other top entrants of the 2010 competi-
tion. Our experimental results show that AstonCAT-Plus performs efficiently and stably in
heterogeneous games. In particular, it has advantages over other market specialists in terms
of transaction success rate, allocative efficiency and average trader profit. It outperforms
the original AstonCAT significantly (by 140%) in head-to-head games. Moreover, through
empirical analysis, we not only demonstrate the strength of AstonCAT-Plus in terms of at-
tracting intra-marginal traders but also identify some features of successful design of double
auction market, such as balanced trader profile and high, stable proportion of intra-marginal
traders. At last, in trading strategy preference games, we uncover that no specialist is uni-
versally optimal if the traders’ strategy distribution is highly biased. However, a successful
specialist does show its outstanding ability of maintaining market share across a series of
extreme trading strategy compositions. We believe both our ideas and findings for market
mechanism design are potentially useful to the design and implementation of automated
double auction market in the real world.

In future, we will improve our shout engine method so that the clearing decision can be
made on each individual bid-ask pair rather than the matched shouts bunch. To thoroughly
explore the effectiveness of TPT-CDA clearing strategy, we will make further comparisons
between TPT-CDA and CH-CDA with the same switching points. We will also design
specific experiments to find out the amount of contribution of each hierarchical level into
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the adjustment of fee. Nevertheless, our current specialist agent involves many hard-coded
parameters that are manually chosen through experiments. So, it is worth employing a
machine learning approach, such as an evolutionary approach to learn optimal values for
these parameters.

CAT competition is developed on the basis of a traditional double auction platform -
JASA. By running experiments on such a platform, we realise that traders are assigned a
fixed trading direction before the simulation starts. But real financial traders can change
their trading direction at any time. If traders can decide their trading direction dynamically,
would the market show different properties? With this question, we design and implement
the BDA market. By introducing a news system, we do not only try to explore the prop-
erties of a static BDA market, but also explain phenomenon emerged in financial markets
using our financial market simulation model. Consequently, Dual and Bi trading direction
algorithms are developed to model how trading directions are dynamically decided.

Through experiments conducted in the continuous BDA market, we have the follow-
ing findings. First, BDA market generates rational series against varying impact levels of
news and successfully reproduces some typical stylised facts of real financial markets. The
allocative efficiency of a static BDA market largely comes from the rational trading direc-
tion selections of the traders. With sensible trading direction algorithms, the intelligence
of trading strategy has the effects of reducing the market efficiency. A high-confidence
market is more efficient and stable than a low-confidence one. Moreover, we design a
high-performance trading strategy called Kernel in the BDA market, which also works in
DA markets. Kernel strategy utilises the techniques of probability density estimation to
seek the optimal bidding price after a trading direction is decided. Kernel trading strategy
demonstrates superior performance to others in terms of both making profit in static games
and maintaining wealth in dynamic games.

In future, we plan to extend this work in the following directions. (i) We will conduct
additional experiments to further explore the properties of the BDA market, e.g., to com-
pare different ways of extracting the asset’s market price, to explore the influence of risk
attitudes, to explore the properties of the BDA market in the setting of Clearing House and
to investigate how different new impact distributions affect the performance of each trad-
ing strategy. (ii) We will implement and study other well-known trading strategies into the
BDA market, such as adaptive-aggressive strategy [176], extended GD strategy [165] and
fuzzy-logic based strategies [72]. (iii) We will improve our model according to real finan-
cial data and possibly extend it into a distributed system that accepts human offers from
remote machines. Then we will be able to find out in the BDA market whether humans can
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beat computer programs.
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Table A.1: Parameter Settings of AstonTAC and TAC AA competition.
Here we only list important parameters to the design of agent AstonTAC. For comprehensive

information about TAC AA game parameter settings, refer to Table 1 in [84].
Symbol Denotation Setting

Game standard parameters
D Length of game 60 days
N Number of advertising agents 8 agents

NHigh High capacity agents in a game 2 agents
NMed Medium capacity agents in a game 4 agents
NLow Low capacity agents in a game 2 agents

M Number of simulated search users 90,000 users
K Ad slot 5 slots
W Aggregation window size 5

for distribution capacity
USP Unit sale profit $ 10
TE Target effect 0.5

CSB Component specialist bonus 0.5
MSB Manufacturer specialist bonus 0.5
Prburst Probability of searching burst 0.1
Ccap Distribution capacity 300,400,500
λ Distribution capacity discounter 0.995
πl Baseline conversion rate 0.1,0.2,0.3

Pconversion,def Baseline conversion rate 0.1, 0.2, 0.3
χ Squashing parameter 0 ≤ χ4 ≤ 1

Parameters defined for AstonTAC
hv,q Query value adapter of query q 80% ≤ hv ≤ 120%
hc Distribution capacity adapter hc ∈ {85%, 100%, 115%}

for day 0 and 1
rdiscount Discount ratio for static MVPC 0.775
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Table B.1: List of symbols used in Chapter 3.
Symbol Denotation

CPC Cost Per Click
CTR Click Through Rate
PPC Profit Per Conversion

MVPC Market-based Value Per Click
vstatic,q Static MVPC of query q
vdynamic,q Dynamic MVPC of query q

qc Component part of query q
qm Manufacturer part of query q

Pconversion Conversion rate in general
Pconversion,q Conversion rate of query q
Pconversion,t Timely conversion rate
Pconversion,crit Critical timely conversion rate
Pconversion,std Average baseline conversion rate
Pconversion,q,d+1 Estimated conversion rate of query q on day d+ 1

vcon,q Conversion value of query q
δ Distribution capacity adapter
βq Ranking mechanism adapter for query q
b0,q Bid for query q in Phase One
bq Bid for query q in Phase Two
Ccrit Critical number of conversion
Cw,d+1 Conversion allowance for day d+ 1

where w is the aggregate window
cagg,d W days aggregate conversion by day d
cd−4 Number of conversions of all queries on day d− 4
cq,d+1 Estimated conversion from query q on day d+ 1
eq Estimated click through probability by the publisher

for query q
e′q Estimated eq
tq Ad display type of query q

Pclick,q,d+1 Click probability on day d+ 1 for query q
v′con General conversion value with respect to all queries
c′click General cost per click with respect to all queries

impressionq,i Number of impression from query q day i
revenueq,i Revenue from query q on day i

conversionq,i Number of conversion from query q on day i
clickq,i Number of clicks from query q on day i
costq,i Cost from query q on day i
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Table C.1: Parameter settings and symbol denotation of AstonCAT-Plus - Part 1.
Symbol Denotation Setting
ps Short-term equilibrium price Dynamic
pl Long-term equilibrium price Dynamic
p̂∗ Estimated local market equilibrium price Dynamic

Wshort Short window size for short-term 5
equilibrium price

Wlong Long window size for long-term 20
equilibrium price

ωs Weight of ps in calculation of p̂∗ Dynamic
b Minimum transacted bid Dynamic
a Maximum transacted ask Dynamic
α Slack rate for short accepting threshold Dynamic

α0, s Initial α for ask Dynamic
α0, b Initial α for bid Dynamic
β Parameter used to flatten result of initial α 4
τs Ask accepting threshold Dynamic
τb Bid accepting threshold Dynamic
ls Ask accepting threshold ratio limit 1.05
lb Bid accepting threshold ratio limit 0.95
ρ Transaction profit per transaction (TPT) Dynamic
ρ̃ Average TPT Dynamic
θl Minimum TPT threshold for 0.16(bt − at)

extra-marginal matches
θs Minimum TPT threshold for 0.02(bt − at)

intra-marginal matches
bt Highest attempted bid Dynamic
at Lowest attempted ask Dynamic
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Table C.2: Parameter settings and symbol denotation of AstonCAT-Plus - Part 2.
Symbol Denotation Setting
nmatch Number of matched bid-ask pairs Dynamic
ntrader Number of traders Game setting
nmarket Number of market specialists Game setting
ntar Trader target Dynamic
ncur Average trader quantity with AstonCAT-Plus Dynamic

in last 15 days
n̄traders All time mean of AstonCAT-Plus’ daily trader Dynamic
rt Market trend ratio benchmark Dynamic

N/A Up market trend threshold 1.16
N/A Down market trend threshold 0.92
rv Moving trend ratio benchmark Dynamic

N/A Up moving trend threshold 1.006
N/A Down moving trend threshold 0.97
N/A Mini fee updating step 0.00025
N/A Small fee updating step 0.0005
N/A Large fee updating step 0.001
rt Market trend ration benchmark Dynamic
ρ̃t Average trader profit Dynamic
ρ̃r Average trader profit per transaction Dynamic
ñt Average transaction quantity per trader Dynamic
ϕ Allocative efficiency Dynamic
ψ Convergence coefficient Dynamic
λ Side-balance rate of traders Dynamic
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Table D.1: CTR and profit of TacTex and AstonTAC in controlled experiment C of Chapter
3.


